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Abstract

The nearly exponential growth of the performance/price and perfor/saeceatios of
computers has given rise to the development of inexpensive, miniatsyzteas with
wireless and sensing capabilities. Such wireless sensoable to produce a wealth of
information about our personal environment, in agricultural and industriatonogi,
and many other scenarios. Each sensor due to its miniature hastusevere resource
constraints in terms of processing power, storage space, bapasity and bandwidth
of radio. Our goal in this research is to maximize the etitna of information out of

the sensor network by efficient resource utilization.

The typical deployment scenarios of these wireless sensqtsraethat the
individual computers (sensors) communicate with each other ovemplautiops. A
natural representation of this network is as a communication grapk @&eh sensor is
represented as a node in the graph and each wireless link betwesensws is
represented as an edge. With this representation, it is bgahere are many choices
of paths which may be used for communicating the data. Hence a good chtiiee
communication path is an important aspect of optimal resource tidifizan such

networks.
Solving these problems lead to the following graph and path problems:

a) The lifetime of a sensor network is defined as the number of paskéth can be
transmitted (i.e. the amount of data collected) before two sensmranable to

communicate with each other due to depletion of battery powangathe

Xii



b)

d)

intermediate nodes connecting them. To collect the largest ambdata possible,
using a multi-metric shortest path called as the shortesstyi@gh, as well as close
derivatives, is crucial.

Optimal utilization of the available bandwidth and thus improving theqved
throughput is beneficial in multiple ways. First of all, betteroughput is a
desirable end goal in itself. Also it can be shown that betteudiwput requires the
sensors to be transmitting for smaller durations of time andafsossaves energy.

In order to optimize the throughput in a multi-hop wireless netwoekmust focus

on a strategy of finding paths which are ‘interference awanalik& earlier work
which primarily concentrated on link and node scheduling for this problem, our
path scheduling approach produces superior throughput at very reasonable
computational costs.

As we have seen, path problems on sensor networks play an importantgodsl
network resource utilization. Typically we are also interestathplementing these
path problems in a distributed manner. When we develop distributedtiatgeifior
wireless sensor networks, we must be respectful of the typaket size in a
wireless sensor network, which is currently of the order of ééfytes. This puts

an impediment on developing distributed path algorithms which transmit large size
messages. Exploiting earlier work on low bit complexity distridbuddgorithms
provides a way around this impediment.

Another important technique for distributedly computing paths is tonesgork

decomposition strategies. Our work presents a network decomposititegg well

Xiii



f)

suited for wireless sensor networks as it provides energy asvaeution of
distributed algorithms without sacrificing scalability.

As individual sensors become more powerful and start carryingpheuladios, the
problem of activating the radios in an energy aware fashiontwvitl out to be
critical. Our work on radio activation provides additional insight thie problem
and shows that the essential question is one of finding and creathdgopologies
where high power radios form high degree clusters so that the nwhbedes
connected per high power radio activated is fairly high.

We can use these results to provide qualitative specificationthdéodata being
collected. Our work on Quality of Information (Qol) discusses hawvcan define
attributes for information quality so as to perform data collecttn good

resource utilization.
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Chapter One

1 Introduction

The increasing availability of cheap, low power, embedded prosesgtr radios,
sensors and actuators is enabling the use of wireless communaadi@emputing for
interacting with the physical world in a plethora of applmagi such as security and
surveillance, habitat monitoring, medical monitoring and others [3®]wireless
network comprising such devices, also called a wireless sensworkefWWSN), is
being deployed in a wide variety of situations ranging fropearmental deployments
with yet to be discovered tangible benefits [89, 86, 54] to the RBAsing
applications [13, 69, 46] with directly measurable commercial hisheffigure 1.1

demonstrates an example of a wireless sensor network used for volcano monitoring.

1) Earthquake or eruption occurs
2) Nodes detect seismic event

3) Each node sends event report
to base station

=

GPS receiver
for time sync

Base station

at observatory Long-distance radio modem
Sl radio link (4km)

Figure 1.1 Wireless sensor network used for volcrmmitoring3

! Refer to Appendix A for some discussions abouiptgsical capabilities of sensor devices
2 Refer to Appendix B for a list of some real wowiteless sensor networks and their applications
3 http://fiji.eecs.harvard.edu/Volcano
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Figure 1.2 Forest fire detection using wirelessssemetworR

Similarly, figures 1.2 and 1.3 demonstrate how wireless sensoorkstare being
used in forest fire detection and for precision agriculture. Poecegriculture is the
practice of fine grained monitoring and management of crops, whiamatsed by the

use of wireless sensors which can collect and report the requisite data.

by
WEREer hend
el

m:‘.“‘-

Ay boex

potapnagr

Figure 1.3 Sensor network for precision agricufture

The wide variety of application scenarios proposed for sensor netiganistched
by an equally large number of constraints and requirements wheslated to

mathematical models and graph formalizations, and one could sathithas still a

* http://web.mit.edu/newsoffice/2008/trees-0923.html
® http://blog.xbow.com/xblog/2007/10/worlds-largelstml



nascent period of discovery in terms of graph algorithms and netwotkcpls for
wireless sensor networks. While the exhaustive research on wireelbaas wireless
networks could be adopted according to specific requirements fetessr sensor
networks, the extremely resource constrained nature of theserketindeed pose a
different set of questions and more importantly, fundamentally estgal the layered
network model (the OSI seven layer model) in various ways. It isiImodmmon to
find popular sensor network protocols which tune all lower layersthjirer suit the
application level requirements [28, 33]. This is in part due to th@naatous nature of
typical sensor network deployments, which often makes it unnegessaonsider

adversarial behavior on the part of network participants.

While initial research has focused on developing protocols whici span
multiple layers of the seven layer model, there is also@tcase made for finding out
the optimal ways in which individual resources in the network suclathsry power,
bandwidth, storage and packet size could be used. The knowledge of apiiizetion
of individual resources would help identify ways of data collectooh that we can
simultaneously optimize along multiple resource constraints. This lpebvide a data-

specification abstraction to the end user which is both flexible and resoeroyfri

To provide an understanding of the kinds of resource constraints we emdaunte
sensor networks, we consider a sensor with an Intel StrongArm goocefich
consumes 400mW of power in normal mode, 100mW in idle mode aiWy &0 sleep
mode. The energy required to transmit a single bit by such argerabout j1J. These
sensors are powered by batteries with typical voltage ratingdn8\has a capacity of

400mAh. Since a watt-hour is 3600J, this means the number of bits whidbecan



transmitted using a single battery is about 270 MBits. Additiontdl energy required
for a single computation is about 1 nJ per instruction, which meansatioe of
communication energy cost to computation energy cost is nearly 1000! Energyal
resource and communication costs can be overwhelming. So we chatsithe energy
constraints (as well as other resource constraints) requirevéhatake prudent use of
the available resources. Besides, the typical deployment sceharwireless network
calls for unsupervised operation and it is possible that once theyhzfte sensor dies,
the sensor is simply discarded. It is expected that the redunadnitye coverage
coupled with the inexpensive nature of the sensors would make thisihilppsn

such a scenario, it is crucial that the network is operated in a resourcéyfrireanner.

1.1 Energy as network resource — extending the network’s lifetime

Energy management in wireless networks is of paramount importduneeto the
limited energy availability in the wireless devices. SinceelMyss communication
consumes a significant amount of energy, it is important to nueirtie energy costs
for communication as much as possible by practicing energy aaatiag strategies.
Such routing strategies can increase the network lifetime. Iisdbend chapter, we
focus on developing routing strategies for multiple hop wirelesganks where all the
nodes are powered by a battery or other external power sourt¢easssolar energy.
Usually network lifetime is quantified through the number of packbat can be
transferred in the network before the source and destination getksted from each
other [48, 65]. A suitable energy-aware routing strategy foeless networks is to use

those wireless nodes with high energy levels and avoid those with low eneilgy leve



In developing energy aware routing techniques, wireless netvaoekesodeled as
graphs wherein, the vertex represents a wireless device andganbetween two
vertices indicates that they are in direct communication rafigeach other. The
weight on a vertex indicates the residual energy availaltltattvireless node and the
weight on an edgeu(Vv) represents the amount of energy required by nddesp.v) to
transmit one unit of data to noddresp.u). Theresidual energy of a patis defined as
the minimum energy level of any node in the path. The max-mimngoparadigm
suggested in the literature [1, 48, 81] aims to maximize the netiketime by finding
the path where the residual energy is the maximum and forwarkstpalorough this
path termed as thmaximum residual energy pathheenergy consumed along a path

(or simply theenergy of a pathis the sum of the weights on the edges along the path.

Notable routing strategies which utilize the concept of theluasienergy (either
directly or indirectly) proposed so far include MMBCR [81], MRPC ghp max-min
zPmin [48]. These research works also caution that merely using $ictuaé energy
strategy may lead to higher energy consumption in the network, giecenergy
consumed along the data forwarding path is not taken into considetatiaur. work,
we show a theoretical justification of this notion by develoginglationship between
the residual energy of the nodes along a path and the total esfdigy path. A good
energy-aware routing technique should balance two different gdadesing a path

with maximal residual energy and choosing a path with minimefgy consumption.



We note that the residual energy along a path is a concavie’metrereas the energy

consumed along a path is an additive metric.

We present three polynomial time combinatorial techniques whiclpande a
good balance between metrics 1 and 2. The first technique, dadieghbrtest Widest
Path, first maximizes the concave metric (the residualggnef a path) and then
minimizes the additive metric (energy consumed along a path)s@dwnd technique,
which we call the Shortest Width Constrained Path, finds paths wsthitably high
residual energy (which may not be the maximum), and then minintieegnergy
consumed along such a path. Lastly, our third approach (Shortest Fixdd pafil) is
similar to the second approach in the sense that it finds a minenargy path among
the paths that have a high residual energy. However, unlike the shortkbt
constrained path, it does not change the residual energy with eaeltatuutlation; the
residual energy level is changed only when it becomes infeasibteltpaths between
the source and the destination at the current residual energy Gawelsimulation
studies show that the performance of the proposed techniques is supénalr df the
best known routing approach proposed in the literature (Park and $&phniWWe also
discuss the performance of our proposed algorithms in a distributed) sEven if the
nodes lack an accurate global knowledge of the instantaneous node eneggywevel
find that the two phased routing techniques perform reasonably webls&/'d¢ind that
the proposed distributed techniques outperform the distributed impleroar(tatit we

have developed) of the algorithm proposed by Park and Sahni [65].

® For definitions of concave and additive metricg ¥¢ang and Crowcroft [84].
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1.2 Bandwidth as network resource — improving wireless throughput

The throughput observed in a single path in a multiple hop wireléssnkecan be no
more than a third of the single hop bandwidth under the standard radiel 43].
There are some applications where one might require a highdo-emdt throughput
than that available through the use of a single path. As an exathplesolcano
monitoring example mentioned in Section 1.1 is a typical applicatlinhwequires
frequent monitoring and hence fairly high data rates. In contrast, imprthengetwork
throughput may not be as important in other sensor network applications ddta is
generated much less frequently. In any case, a better tuditizaf the available
bandwidth could lead to less idling and hence improved network lifetifhe
traditional way to achieve higher throughputs in wired networks iss¢ multiple paths
in parallel so as to improve the aggregate bandwidth. While &siagiproach can be
adopted for wireless sensor networks too, wireless networks $ufiferthe additional
challenge that in most network topologies the discovered pathdienalpse to each
other. Consequently, packet transmissions in one path may interfereramémissions
taking place in other paths in the path set leading to a signifregoiction in the

overall throughput [87].

This reduction in throughput in wireless networks can be avoided by appeopria
path selection combined with careful packet transmission schedulires been noted
in the literature [48] that the maximum possible throughput equatagsingle hop
bandwidth can be achieved by using three non-interfering paths. Hawicgy multiple

paths which do not interfere with each other is ideal. Howeveshe® in chapter 3



that this problem is the same as the problem of finding chordless cycle aumneajpéair
of vertices in a graph, which is actually NP-Complete [10]. Wa then our attention
towards finding path sets in static wireless networks which wouddige the same
level of aggregate throughput as non interfering paths while atathe time permitting

interfering links

Our contributions are: (a) we demonstrate that it is possible feet of paths
between source and destinatiort with some interference between them to provide
high aggregate throughputs provided the interfering edges amongathe follow
certain favorable patterns; we present a combinatorial approadimding such paths
in a wireless network. (b) we extend our approach to scenarios invehutigple s-t
pairs and show that the proposed approach can improve the throughput in such
scenarios too (c) our combinatorial approach can also provide ightdfteward
mechanism for scheduling the transmissions at various links andyfirid)l the
computation of the transmission schedule is shown to be amenable strilautid

implementation under the proposed approach.

1.3 Message size constraints

The size of messages exchanged in a sensor network is alsgpaniant constraint.
Besides the fact that larger size messages require langegy for transmission, the
usual fragmentation of packets would require multiple transmissmmnsuiccessful
packet transmission. This affects both the latency of the mesgabange as well as
leads to a potentially larger chance for transmission loss andatiges retransmission

cost over lossy wireless links. Distributed algorithms, which paearily based on



message transfers, cover the entire gamut from algorithmd bassangle bit messages
[44] to algorithms which may be fairly oblivious to the size of thessages being
transferred [70]. However, a sensor network provides an environment wieiteutied

algorithms with low message-bit complexity can be more easily implechent

We focus on a specific problem — namely, increasing the wirghesaghput for
multiple source destination pairs in a wireless network. Thesittean chapter 3 are
adapted for a distributed implementation. The fourth chapter of tlsserntition
provides distributed techniques for the throughput improvement problem which have
low message-bit complexity and which use only single messagas under small

packet sizes.

1.4 Improving resource utilization using multiple radios

While the first generation of wireless sensors had limited psbog and storage
capabilities, advances in technology, in combination with increaggdication
demands have resulted in more powerful second generation sensarTeEsnodes
possess relatively higher processing and storage capalalifiesved through the use
of powerful CPUs, and large memories [34], [57]. These nodes arecapmble of
operating multiple radios simultaneously, each with a differentepowange and
bandwidth rating. Though such multi-radio sensors are currently ssgdtaways or
cluster-heads in sensor networks, technological advancement maygsioreeen the

commonly used sensor nodes with multiple radios.

While the capabilities of sensor nodes have increased alongldewets, they will

continue to be powered by batteries. Consequently, energy conseechgmsms are

9



of paramount importance even in next generation wireless sensorketwbe radios
in a multi-radio sensor node may differ not only in terms of tlkemmunication
capabilities but also in terms of energy efficiency and usaggh Blandwidth, long-
range radios usually possess higher energy efficiency,mstef energy expended per
bit transmitted, than low bandwidth, short-range radios [80]. However, higiwidth
radios also consume more power when idling than low bandwidth radiosforbere
activating several high bandwidth radios when there is not a fladata to be
transmitted may result in considerable energy wastage. Qotltee hand, due to their
greater reach, long-range radios can reduce the network diametsequently, the
latency involved in delivering sensory data to a prescribed destinatibdecrease
with the use of long range radios. Several of them may needdotivated when the
application demands smaller data delivery latency. Thus thea$sadio activation is
closely tied to the requirements of the application and is the fafccisapter 5 in this

dissertation.

Earlier research on multi-radio systems assume that the ketgmains connected
even when all the sensor nodes activate only their lowest pedier. However, in a
general setting, such a requirement on the connectivity cannaiarangeed. Radios
with higher power and longer range may have to be activated@veake the network
connected. In chapter 5, we focus on energy efficient radigationm in a sensor
network where each node hids> 1 radios. The radios, r»,..., rx in a node are such
that the one hop reachability distance (resp. energy expende@spf fry) radia; is
greater than that of, 1 <j <i < k. Given such a network, the problem of energy

efficient radio activation is to minimize the total energyndpley the active radios
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across all nodes in order to maintain a connected network. We swkeral
contributions: (1) We show that the problem of energy efficiedibractivation is NP-
Complete. (2) We propose four different polynomial time approximatio
methodologies for solving this problem in networks wkh= 2. The first two
methodologies employ a series of non-trivial reductions to levemageexisting
approximation solutions for other known NP-Complete problems. The third
methodology is based on the minimum spanning tree algorithm. Theh fourt
methodology is a greedy algorithm that is proposed afresh. (3) Wemdexhese
solutions to the general case Kf > 2 radios as well. (4) Our analytical and
experimental studies of the four solutions reveal that the graekgyithm and the
minimum spanning tree solution have the hestst casgerformance while the greedy

algorithm has the beawerage casperformance.

1.5 Lifetime aware network decomposition for executing distribted algorithms

As noted earlier, energy aware routing strategies help tendxg the lifetime of a
wireless network. This is very important for sensor networks avtiex energy is an
important nonreplenishable resource. A suitable energy-aware raattiaggy for
wireless networks is to use those wireless nodes with high elmrgls and avoid
those with low energy levels. The routing strategies on senseonkeinvolve the
following general steps, a) find routes; b) perform routingypdate network values

and perform step a).

Consider a centralized algorithm wherein a single node (cadhiral node) keeps

track of the topology information. The central node will deterntivgeroutes (step a)
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by executing a local algorithm. When a source node requiressage to be routed to
the destination, it sends a request to the central node which wiltlprthe entire route
to the destination. After the receipt of the information from #réral node, the source
node can perform routing (step b). Assuming that the source node ddhewexact
route provided by the central node, the central node can determiandigy changes
of the intermediate node (without the intermediate nodes explicitbrming the
central node) and re-compute the routes locally for the next regiest. In addition to
the energy consumed when packets are routed along the route patly, isngisp
consumed at intermediate nodes along the path from source to c#tetrahd vice-
versa for route request and response. This straight-forwarditlatlgohas all the
weaknesses of any centralized algorithm such as lack oftédedance and problems
associated with hot spots created by request/response informationrigaiceind from
the central node. In fact with repeated route requests it ysteasbserve that the
neighbors of the central site may quickly lose energy themeddying the central node
unreachable and consequently decreasing lifetime. One could choese eentral
node and use a simple distributed algorithm such as the distritbegpeld first search
[70] to learn the topology of the network including the node and link infeomaty et
another weakness of the centralized algorithm is that for legmirce limited sensor
networks a single central node may have neither the spacatgdpastore the entire
network nor the computation power to compute the paths in a short periodepfoti
even enough energy to perform the computation as it is nearirenthef its battery

life.
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Given a distributed system consisting of computational nodes, abulist
algorithm solves a particular problem of interest by exchangiagsages among the
nodes. In the distributed system each node knows its neighbors byutigire
identities and the total number of nodes in the distributed systendistAbuted
algorithm is evaluated based on the total humber of messagengedh@essage-
complexity and the time-taken for the completion of the distributed algor{time-
complexity. Depending on the problem to be solved the distributed algorithm must be
rerun after a node or link update either on the entire network or a portion of tleelaetw
Distributed algorithms are scalable as they do not requiregke s1ode to keep track of
the entire topology information. The fundamental weakness of theibdisd
algorithms for sensor networks stems from the fact that atep b) of the routing
strategy is completed, the intermediate nodes have new elemg)g and now the
distributed algorithm to determine routing paths (step a) has te-&eecuted. That is
after each route request is complete the distributed algorghetnun and thereby the
message complexity is overwhelmed by the number of route redghastsave been

completed.

From the above discussion it is clear that the centralizedithlgois message
efficient, but ineffective on lifetime as a result of hot spois ather issues relating to a
centralized site. The distributed algorithm addresses theiatefies of the centralized
algorithm but is ineffective in terms of lifetime due to langember of messages
required to recompute the routing paths after a completion of a regtest. We
propose a network decomposition approach that will combine both the aasutrahd

distributed approaches described above by decomposing the network iter sm
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networks (referred to aslustery. The centralized algorithm is executed on each
cluster and the distributed algorithm is executed on the centrak rioeferred to as

cluster heaylof each cluster.

Network decomposition is akin to divide-and-conquer approaches to problem
solving wherein, a larger problem is broken into smaller sub-prokdechsolutions of
the smaller sub-problem are combined to arrive at the solution tartier problem.
Network decomposition has been effectively used to solve many pmbiesequential,
parallel, and distributed environments. Network decomposition techniqueshave
to reduce the message complexity of distributed algorithms bge@pmposing the
network into a set of connected components, (ii) running a pseudo-distributed algorithm
on each connected component (we will call the connected compoclested), and (iii)
solving the optimization problem by executing a distributed algorittwolving cluster
heads of each cluster. Note that a node that is along the gratboting two cluster

heads will only forward messages.

Using network decomposition approaches one can alleviate the praielenitsng
in having central site. Updates in each cluster are sent ¢tugter head. The cluster
heads perform a local computation using the topology information as icafee of
centralized algorithm. The cluster heads communicate usin@*mata and execute a
distributed algorithm to solve the problem at hand. Conceptually Sieceumber of
cluster heads is smaller and fewer nodes will participated distributed algorithm the
message complexity could be smaller. The above idea has bekmouselve many

distributed algorithms effectively [4].
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Awerbuch and Peleg [5, 6, 7, 8] have published a series of senone in the
area of distributed algorithms that use the concept of network decaioiposihese
works and the work by Linial [51] and Naor and Stockmeyer [64] exploit the concept of
“locality” in distributed computations. The concept of localityhattcertain functions
when locally computed do not affect the global solution. For certablgm the
solutions of the local computation can be cleverly combined to obl@balgsolution.
Considering network problems on networks that have been decomposed, certain
coloring problem instances can be solved efficiently for the enéite@ork by cleverly

stitching together solutions for each cluster.

In chapter 6, we introduce the widest path problem and its applicatiorptoving
network lifetime. We present an algorithm to perform widest path routingl(ed ¢he
maximum residual energy path routing) given a set of clusteideal network
decomposition which is suitable for improving network lifetime is ttiescribed and a

decomposition algorithm for such a lifetime aware decomposition is also gesent

1.6 Quality of information techniques for knowledge centric sensanetworks

A primary necessity for sensor network deployments is to betaldellect data about
environmental (and other) phenomena under observation and transform it iiodo use
actionable knowledge. However, sensor networks due to their resourceaic@ust
nature have some key differences from general communication net{@ouidts as the
World Wide Web, and corporate intranets). The differences ararfuetal, and hence

we use the term message centric networks to refer to big, powerfarketsuch as the
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WWW and corporate intranets, and knowledge centric networks to tefeensor

networks which usually lie on the other end of the spectrum in terms of scale.

Unit of atomicity— The unit of atomicity can be defined as the ‘indivisible’ unit of
information which still retains semantics. In a knowledge cemnigtwork, where
combining information is encouraged and loss of information is tolerdted,nit of

information is the aggregate knowledge rather than the individual message.

Resource assumptions the simple act of resending a message is commonplace
(and even vital for everyday tasks such as browsing the internetijr@ssage centric
network, where we can make assumptions of virtually unlimited resolResending a
single message would require careful planning on a resource coegtraensor

network, where minimal assumptions are made about the availability of resources

Data gathering- Nearly all messages generated can be and are ust@igd or
collected in a message centric network, while that is neither a requiraorea prudent

choice on a knowledge centric and resource poor sensor network.

Data dispersal Data dispersal refers to the replication of the same atatats
dispersal over multiple media and devices (such as backing up impiddardn to a
USB drive, a backup disk, and online storage). In a message centric network gech as
internet, data dispersal is common and quite useful. Such data dispautbe costly

on a typical sensor network.

Search techniques this is perhaps a vital difference and a key motivation for the
Qol strategy. Any data collected, in order to be made usefedisn® be analyzed and
processed. This would usually require doing a search over thetdatane point in
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time. In a message centric network, due in large part to the cesoah nature, the
exponential growth of data is tolerated and search techniques ¢valeal with the
rate of data generation. We call this the “store and seat@té&gy. In a fundamentally
resource constrained sensor network, the rate of data generatioramsmission is
controlled by using a top down strategy where the search chrses in terms of
usefulness of data collected, i.e. the “Quality of Informatiadére we first search for

what needs to be stored - and hence we “search and store”.

Hence the transformation of data into information (or knowledge)inexja more
top down approach which can balance information needs and resourcéartiliates.
If we begin by defining our information needs (i.e. specifying thealy of
Information requirements), we would be able to better utilize ttem afon-renewable
resources of a sensor network. We believe that adding the yQafalitformation (Qol)
as another dimension will greatly benefit the knowledge which caxtoacted from a
sensor network. Mapping the aspects of Qol to different kinds of semtmork
applications will allow the user to more clearly specify winator she wants from the
sensor network deployment. By providing a framework to deliver treatiser wants,
we give more flexibility to the user for defining his/her needd t understand and

analyze the tradeoffs involved.

The most important benefit of the Qol approach to routing on sensor networks is the
explicit knowledge of the various tradeoffs involved, which leads dbdri quality of
data collected from the sensor network. The explicit use ofa@obutes provides a
considerable variety of options for data collection. A second benéfihe Qol

approach is a better utilization of network resources. In mamasgos, the use of Qol
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for specifying the requirements for the data collection proséssactually allow for

better utilization of network resources than the case wheresQmwt considered. For
example, we may wish to collect information from highly relevaensor nodes. We
expect to find a fair degree of redundancy in the network; so mengors could
possibly satisfy the relevance constraint. We may choose onhy adesors among
them for the data collection task. The sensors chosen may havereigdeal energies,
and thus we could perform the data collection in an energy-baléast@dn. We could

also select sensors which are closer to the sink, hence redbeirigténcy of data
collection. We can clearly see that using the Qol approadhifircase, specifying that
the user is interested in the ‘relevance’ of the data) allos to utilize network

resources far more effectively while also satisfying the end ugeireenents.

We present the case for using an application centric viewpointnfproving
network resource utilization. Specifically, we recommend the uswetif defined
attributes for the information quality to be applied to the data wkitieing collected
from the network - called as Quality of Information (Qol), simitaQuality of Service.
Using Qol attributes for specifying the type of data to b#ected would be an
abstraction which provides a fair amount of flexibility to the endr welgle also

allowing good network resource utilization.

1.7 Organization of the dissertation

The rest of the dissertation is organized as follows. Chaptes@iloes multi-metric

shortest path techniques for extending the lifetime of a sensor netwoitkusnkeeping
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it operational for a long time. Chapter 3 proposes interferaweare routing by
analyzing the impact of interference on the throughput which caacheved in a
wireless network. By identifying interference patterns whiehreon-destructive, i.e. do
not lead to a reduction of throughput, we propose ideas for combiningselatgion
and transmission scheduling in such a way as to increase the thubudgihpation.
Chapter 4 provides distributed techniques for the implementation ofdresregntioned
interference aware routing algorithms. Using multiple radias lead to improved
resource utilization in sensor networks. Chapter 5 identifies and presotiéons for a
connectivity problem which arises in the context of multi-radio semstworks. It has
been shown that the performance of distributed algorithms in tefssalability and
message complexity can be improved using network decomposition techniques.
Chapter 6 describes network decomposition techniques which are difatvare and
shows how these ideas can be applied in the context of energyrawtang discussed
in Chapter 2. Chapter 7 makes the case for data collection in setaarks from an
application centric viewpoint and shows how it can impact resourizatiobn in a
wireless sensor network. The conclusions of this dissertation aenped in Chapter 8
along with a discussion of the future directions in which this rekeaould be

extended.
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Chapter 2

2 Extending network lifetime

2.1. Introduction

Energy management in wireless sensor networks is an impodiasitieration due to
the limited energy availability in battery powered wirglegevices. Wireless
communication consumes a significant amount of energy and imp®riant to

minimize the energy costs for communication as much as possiplattycing energy
aware routing strategies. Such routing strategies can iecteametwork lifetime. In
this chapter, we focus on developing routing strategies for multiple wiagess

networks where all the nodes are powered by a battery arettegnal power sources
such as solar energy. Usually network lifetime is quantifiedutiin the number of
packets that can be transferred in the network before the sandceestination get
disconnected from each other [48, 65]. A suitable energy-aware rottaiggy for

wireless networks is to use those wireless nodes with high elmrgls and avoid

those with low energy levels.

We model the wireless network as a graph wherein, the vepegsents a wireless
device and an edge between two vertices indicates that theyinardirect
communication range of each other. The weight on a vertex indittegeesidual
energy available at that wireless node and the weight on an edgerépresents the
amount of energy required by nodgresp.v) to transmit one unit of data to node
(resp.u). Theresidual energy of a patis defined as the minimum energy level of any

node in the path (referred to @etric 1 in our work). The max-min routing paradigm
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suggested in the literature [1, 48, 81] aims to maximize the netietiknke by finding
the path where the residual energy is the maximum and forwarkstpalorough this
path termed as thmaximum residual energy pathheenergy consumed along a path
(or simply theenergy of a pathis the sum of the weights on the edges along the path
(referred to asnetric 2 in our work). While some defining characteristics of wireless
networks, such as lossy links, non-uniform transmission range etc. caenot
completely described by this somewhat idealized graph model beased as a good
starting point for estimating lifetimes. Also, we are inte¥dsin maximizing the
lifetime which can be achieved, and the more realistic network sagelunlikely to
improve on these bounds. That is, the realistic network models typjpalide a
smaller value of the computed lifetime when compared to the eatistic model we
use, and we are interested in finding lifetimes which are @& chs possible to the

maximum theoretically achievable value.

Earlier routing strategies which utilize the concept of thedves energy (either
directly or indirectly) proposed in the literature include MMBCGR][ MRPC [1] and
max-min zRy, [48]. These research works also caution that merely using slthiaé
energy strategy may lead to higher energy consumption in theonketsince the
energy consumed along the data forwarding path is not taken intale@igin. They
suggest that a good energy-aware routing technique should balanddéférent goals:

choosing a path with maximal residual energy and choosing a path with miningt ener
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consumption. We note that the residual energy along a path is a cane#e,

whereas the energy consumed along a path is an additive metric.

In this chapter, we present three polynomial time combinat@aniques which
can provide a good balance between metrics 1 and 2. The first techratiee,tie
Shortest Widest Path, first maximizes the concave metricgti@ual energy of a path)
and then minimizes the additive metric (energy consumed along a phthsecond
technique, which we call the Shortest Width Constrained Path, finds wpéthsa
suitably high residual energy (which may not be the maximum), and then minthezes
energy consumed along such a path. Lastly, our third approach (SkoxessiVidth
path) is similar to the second approach in the sense that it fimdsraum energy path
among the paths that have a high residual energy. However, unlisbdHhest width
constrained path, it does not change the residual energy with eaeltatmutlation; the
residual energy level is changed only when it becomes infeasibtaltpaths between
the source and the destination at the current residual energy Gawelsimulation
studies show that the performance of the proposed techniques is supénalr df the
best known routing approach proposed in the literature (Park and[88])nMWe also
discuss the performance of our proposed algorithms in a distributed) sEven if the
nodes lack an accurate global knowledge of the instantaneous node eneggywevel
find that the two phased routing techniques perform reasonably webls&/'d¢ind that
the proposed distributed techniques outperform the distributed impleroar(tatit we
have developed) of the algorithm proposed by Park and Sahni [65]. uits ref our

research work has been presented in [59] and [62].

’ For definitions of concave and additive metrame Wang and Crowcroft [84].
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The chapter is organized as follows. Section 2.2 provides an ovest/ibe related
work. Section 2.3 provides the definition of the network lifetime protdemvell as our
basic solution. In Section 2.4, we deduce a relationship betweersitiealeenergy of
nodes along a path and the minimum energy for a given residual eredtgyy In
Section 2.5, we describe two other solutions which may be consideiedtiges of
our basic solution. Section 2.6 compares the performance of our basithaigeith
other approaches on a benchmark topology to show that using the padedtalso
called as max-min) approach usually improves the networkniéetWe use empirical
evaluations to discuss the performance of our three solutions on Igepetagies in
Section 2.7. We describe the distributed implementations of the solutepsopose,

and their performance, in Section 2.8. We conclude our discussion in Section 2.9.

2.2 Related work

We are interested in lifetime maximization using centrdliapproaches. Localized
algorithms for the lifetime maximization problem have been propwsétk literature
under some restricted models. For example, Madan and Lall [53] propliseaa
programming based approach for lifetime maximization where ttiermation
generation rate is assumed to be constant. Also, Zussman anidl [S2paave
proposed localized algorithms for the anycast routing model forgemey network
applications. In the centralized case, notable routing stratefieb wtilize the concept
of the residual energy (either directly or indirectly) incl@&@MBCR [81], max-min
ZPnin [48] and CMRPC [1]. The pioneering work done by Toh et al [81] esteddi
multiple formulations for the online energy aware routing problem, bichv

CMMBCR (Conditional Min Max Battery Capacity Routing) is showrbe better than
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the remaining approaches. CMMBCR uses minimum energy patihe ifirst phase,
and then shifts to paths with maximum residual energy after eoeigy levels in the

network fall below a certain threshold.

Qun Li et al. [48] describe the max-min zPalgorithm. The max-min zR,
algorithm attempts to balance metric 1 and metric 2 by cailcgla path based on the
residual energy levels, but then rejecting any path whoseedoéfy is more than a
factor z times the minimum energy path. The quality of the solution provigethds
max-min zR,, algorithm depends on the empirically generated paramgeterd this

does not always provide an optimal solution.

The CMRPC algorithm [1], which is similar to CMMBCR algbnit proposed in
[81], uses the residual ‘packet capacity’ instead of the resahealyy for optimization.
The residual packet capacity denotes the capacity of eachredge graph based on
the residual energy, the communication cost of the edge as wié asitial energy

levels.

Chang and Tassiulas [15] combine metrics 1 and 2 into a singlec matti run
Dijkstra’s algorithm on this new metric. While it is a good h&tigj this method does
not actually optimize either metric and makes their approacklgldependent on the
empirical values assigned to the parameters used as powey iterthe combined

metric.

Park and Sahni [65] present the Online Maximum Lifetime (OMlisé&c, which
is an enhancement of the CMAX algorithm presented by Kar[dtLhl OML initially

removes edges with low residual energy from the graph. The wdghts are then
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modified such that a high cost (and thus a heavy penalty) is atesbavith edges
having low residual energy or high communication cost. Dijkstrgerdahm is run on
the modified graph such that the paths found usually use nodes withleigly éevels
and edges with low energy costs. They report that OML ghebest network lifetime

among all routing approaches in the current literature.

2.3 Problem definition and proposed solution

Let G = (V, E) represent a wireless network with nod¥esnd edgeg&. Letw(u),u €V,
represent the available energy at nadd_etc (u, v), (u, v) € E, be the energy required
to transmit a packet from noddo nodev. We assume that(u, v) = c (v, u), for all (u,

V) e E.

Let P(vo, W) =Vo, V4, ..., Vk, D€ a path ils. The energy of the paf(vo, vi) denoted

e(P(Vo, W) is given by

e(P(vo, v)) = Tk (Wi, Vi) (1)

Theresidual energy of a patR(v, Vi) denoted (P(vo, W)) is defined as
r(P(Vo, Vi)) = min(w(vi)-c(vi,vi+1)), 0<i <k. (2)

When a packet is sent alomfvy, W), we need to perform the followingnergy
decrease operatioon each node along the path except on the mpd&(vi) = w(v;) —
c(vi, vi+1), 0<i < k. That is, after the packet is sent by a node, the energyoletree
node is decremented by the amount of energy required to send the packet. In dur mode

we have not included the cost of reception explicitly to avoid clutteur discussions
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and such a cost can be easily incorporated in our proposed work. aesdisis at the

end of this section.

Given a sourcs, a destinatiom, and asingle packeto be routed, we can define two

problems formally:

a. Minimum energy path problerkind a pathP(s, t) with minimume(P(s, t)).
b. Maximum residual energy path problefind a pathP(s, t) with maximum
r(P(s, t)).

Let Gy be set to the initial networts. Assume thaPq(s, t) is a path inGy. Now
after routing a single packet along the pRg(s, t) and applying the decrease operation
we obtain a new netwoi®;. In the networlG; the edge weights are the same aSgn
but the node energy levels are different. If a nddeenergy level becomes 0 after the
decrease operation, nodand its associated edges ) € E as well agv, u) € E are
removed from the network. For the second packet we can again phiaith B, (s, t) in
G; and the process continues until there exists no path beseawtt in some network
Gk. That is, we can send at mostpackets froms to t before the network is
disconnected. The goal of thetwork lifetime problemwith respect to a sourseand
destinationt is to find pathsPo(s, t), Pi(s, t),... Pka(s, t), such that the value d&f is
maximized. Here we would like to point out that while our goabisnaximize the
network lifetime, it has been shown that computing the valuk isf NP-hard [65].
While it would be more appropriate to call this the lifetime ioyement problem, we
have decided to use the standard terminology in the literatureetardto this as the

lifetime maximization problem.
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We will begin by outlining our solution to the network lifetime problérne graph
G is modified into an energy graghG = (V, E") as follows. We leave the vertices
intact but replace each single undirected edde with two directed edges. The weight
of a directional edge ilEG is made equal to the difference between the originating
node’s energy level and the transmission cost along the edgdas Eis® the residual
energy of a node as defined in Li et al [48]. In Figure 2.2 (ahaxe shown an

example wireless network and in Figure 2.2 (b), the corresponding energy graph.

Algorithm MaxResidualEnergyHG, sourcg

Il s— source node

/IAdj[ 5] — adjacency list representing the neighbors efdhurce
/I weigh(u,v) = capacity of edgeu( v) in graphEG

[/ width(u) = weight function for a node in graphEG
begin

1.width[s] =0

2. width[v] = weigh(sy) if v € Adj[]

3. width[v] = 0 for all other nodes

4.S=s

5.Q=V[EQG] -s

6.while Q # [0 {

7. findu € Q wherewidth[u] is maximumv u € Q
8. Q=Q-u

9. S=SU{u}

10. for each vertex € Adj[u]

11. if v¢ Sdo RELAX(u, v, weigh(u, v))

12.}

End

RELAX (u, v, weigh{u,v))

L.if width[v] < min(width[u], weigh(u, v))
2. width[v] = min(width[u], weigh{u,v))
3. Pred¢) =u

Figure 2.1 MaxResidualEnergy algorithm to find Widests-t path

Given a source node and a destination node a two-phased routing algorithm
called as shortest-widest path, is executed on this energy gépb find a suitable
path betweens andt. In phase |, we apply a variant of the Dijkstra algorithm
(Algorithm MaxResidualEnergy) which returns a path whose resiglnatgy will be

the maximum in the network. Let the path returned by phase leheegdual energy of
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B. It is to be noted that there could be many paths in the netwarkdret andt with a
residual energy of B. The algorithm MaxResidualEnergy givengarEi2.1 computes
the value of the maximum residual energy of the paths origghétom a given source

to all other nodes.

Figure 2.2(a) A graph showing energy levels at satel energy required to transmit at each edge.

Figure 2.2 (b) shows the corresponding energplyr

In phase II, we choose from the set of all paths with a resehely ofB, a path
which has the lowest energy consumption. This can be accomplishetbas faletE"
be the set of edges EG whose residual energy is less tharTrhese edges are pruned
from EG and by using Dijkstra’s algorithm, the least energy cost patEG\E" is

determined. If there are many such paths, we arbitrarily choose amg danem.

It can be noted that this algorithm can also handle the energypfcosteption if
such information was available. We would need to modify step 1 of tHeARE
procedure to add the energy cost of reception. It must also be notéldetipatining is
temporary, in other words, the pruned edges are restored beforeexheroute
computation. Each time a path is computed, we will invoke Dijkstigsighm twice

in sequence. Hence our algorithm has a complexity equatitees the complexity of
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Dijkstra’s algorithm, wherek is the number of packets transmitted. The algorithm
ShortestWidestPath given in Figure 2.3 calculates the shortdsstwpath on the

modified graph EG for a given source and destination pair.

Algorithm ShortestWidestPat(, source des)

Il source— source nodejest— destination node

/ MinimumEnergyPath (EG, source des} uses Dijkstra’s algorithm to find the
/I minimum energy path in the grapie based on energy cost on each edge
begin

1.w = WIDESTEG, source des}

2. for each edge € EG

3. if (weighfe] <w) EG=EG\e

4. p =MinimumEnergyPath (EG, source des})

5. Restore all edges backi®

end

WIDEST EG, source des)
1. MaxResidualEnerg#G, sourcg
2.return width[dest

Figure 2.3 Shortest Widest Path algorithm

2.4 Relationship between the total energy and the residual emgrof paths

While the maximum residual energy path computation identifiesptite whose
bottleneck edge has maximum energy and allows us to discoverattimmum residual

energy subgraphwe can also definesidual energy constrained subgraphs

Definition: Let EG(w) represent the subgraph constructed from the original residual
energy grapleG, by pruning all those edges EG which have residual energies less

thanw.
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EG(65)
Minimum energy path (represented
by dashed line) requires 30 units of
energy

Original graph G. The node labels are node
energy levels. The edge labels are the energy
costs to transmit a packet along the edge

s s
EG(60) EG(55)
Minimum energy path (represented Minimum energy path (represented
by dashed line) requires 20 units of by dashed line) requires 10 units of
energy energy

Figure 2.4: Total energy of path vs the residuargn

Let Emin(w) represent the energy consumed along the minimum energy path from
sources to destinatiort in EG(w). For example, in the graph shown in Figure 2.4, we
can observe that fdEG(65), which is the subgraph constructed by pruning all edges
whose residual energies are below 65, the minimum energy patls foomequires 30
units of energy, i.eEnin(65) = 30. On the other hanB,i,(60) = 20 andEnin(55)= 10.

That is, as the constraint on the residual energy increaseg)dfgy eéequired for the

minimum energy path also increases.
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If we were to repeatedly compute the minimum energy pattalfathe possible
residual energy values of a graph (a graph can have atrmssth discrete values,
wherem is the number of edges) we would obtain a non-decreasing graitdr $0 the

one shown in Figure 2.5. This result is stated in the following lemma:

Lemma 2.1 Let Emin(w) represent the energy consumed along the minimum energy
path fromstot in EG(w). Given the residual energies of all the edges in the dge&ph
in increasing order asv(, Wo..., W), i.e.W; < W, < ... < Wy, thenEnin(Wi) < Emin(Wz)

< ... < Enin(Wg).

Proof: Let G; = EG(w;) andG, = EG(w,) wherew; < w,. Any edge inG; also exists in
Ga, by definition. Thus the minimum energy pathd@pcannot have higher energy than
the minimum energy path B,. In other wordsEnin(W1) < Emin(Wz). By induction, we

get the resultm

Minimum energy of
path for given residual
energy (width)

A

Minimum energy for
maximum residual —p»
energy path

Absolute Minimum
energy path

. Residual energy
/4 " (width) along path

Residual energy of the
maximum residual
energy (bottleneck) path

Figure 2.5: Total energy of path Vs residual eneygph

We gain some useful insight from the relationship between théuet¢senergy

along a path and the minimum energy path possible for such a resgugy. For one,
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knowing that we have a lower energy path, we could avoid routing tlketpaong a
path with identical residual energy but which consumes a much hegleegy for the
entire path. From Figure 2.5 we can infer that using a higheluasdsenergy path also
automatically implies we may spend more energy in forwardipgcket along that

path.

2.5 Derivatives of Shortest Widest path

In addition to the shortest widest path discussed earlier, we proposather online

energy aware routing algorithms. These algorithms too are twse@hstrategies and
are derivatives of the shortest widest path algorithm disdussre. The derivatives
are based on the following idea: we first prune off all edgebte graph which have
residual energy levels (in the modified energy graph) belowtaicautoff value, and
we find the minimum energy path on the remaining subgraph. Theeditie between
the two algorithms lies in the value we choose for the cutoff lamdvay we select the

cutoff values.

2.5.1 Shortest width constrained path

Besides the shortest widest path (or the minimum energy maxnmesidual energy
path), we can also use paths which are “tradeoffs” in the solytaces That is, by
sacrificing the high residual energy of the absolute widest pagh;ould use a path
with a slightly lesser residual energy, but which can provid¢hasbenefit that it
consumes lesser energy along the path. We call this routing apgineatiortest width
constrained pathWe place a constraint on the width (residual energy) to betarce
fraction of the maximum possible residual energy for the given sae@stination pair.

Suppose the width of the absolute widest path between source and idestsiat Let
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the width (bottleneck residual energy) of the minimum energy pateba the source

and destination b/ . LetA4W =W — W . We multiply4W by a factom (n < 1) and
add that toN” to get the constraint widons: In other wordsWeonst= W + 7 4

W. The edges whose width is less than this constraint widtleareved (temporarily)
from the graph. The minimum energy path is computed on the remaithges,eand
this path is used for routing. In our experiments, wenset0.5. The shortest width

constrained path algorithm is described in Figure 2.6.

Algorithm ShortestWidthConstrainedPatG, source des)
begin
1.w = Widest(EG, source des)
2.p = MinimumEnergyPath (EG, source des)
3.for each edgeinp
4. if (weighfe] < minW minW=weigh{e]
5w =w + (i x minW)
6.for each edge € EG
7. if (weighfe] <w) EG=EG\e
8.p = MinimumEnergyPath (EG, source des})
9. Restore all edges backb®
end

Figure 2.6 Shortest Width Constrained Path

2.5.2 Shortest fixed width path

A third algorithm that we propose fixes the width (residual eneofthe path at a
certain value (for each source destination pair), prunes the edteesidual energy
which is less than this fixed value, and finds the minimum engagfy on the pruned
graph. This procedure is repeated until no path can be found for the gidén ati
which point the width is decreased (by a constant fraction) armch,sontil the source
and destination get disconnected. As an example, let us suppose the paithest
between the source and the destination has a width of 100. Weeheay aur fixed

width to be a high fraction of 100, say 80. Now we prune all edges igrapd with
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width less than 80, and keep finding the minimum energy path untilothrees and
destination get disconnected (on the pruned graph). Now we changeethevidth to
60, and repeat the process. We call thisstim@test fixed width algorithnThe shortest

fixed width path algorithm is given in Figure 2.7.

Algorithm ShortestFixedWidthPatB(, source des)
/linitialNodeEnergyLevel — the initial energy lewathe nodes in the network
begin

1.fixedWidth = 0.95 x initiaINodeEnergyLevel

2for each edge € EG

3. if (weight[e] < fixedWidth)EG = EG\e

4p =MinimumEnergyPath (EG, source des)

5if (p not found)

6. if fixedWidth< O stop

7.else

8. fixedWidth = fixedWidth — (0.2 x initialleEnergyLevel)

9.goto step 2
end

Figure 2.7 Shortest Fixed Width Path

2.6 Performance of the shortest widest path approach on a benchrkaopology

We compare the performance of the proposed shortest widest pathcappitathose
of two other approaches in the literature on an illustrative topabgwn in Figure 2.8
(from Li et al [48]). In the network shown in Figure 2.8, each nodee(dhan source 1
and destinatiom) has energy 26 ¢. The weight of each edge (along the semi-circle) is
set to 1, but the weight of each straight edge is set to 2efiérgy of the source is
infinite. We can note that the residual energy of the path along the seni€it9 units,
while the straight edge path (%, n), where 3< x < n-2 has residual energy 18 units
which is less than the path along the arc of the semicirelecéiLi et al. [48] state that
using a max-min (widest path) approach, it is possible that only twenty messagee
sent before the network gets disconnected (by sending allagesssalong the
semicircular arc). The authors then state that using theghdtrine edges 104)

messages can be sent before the network gets disconnected [48]n vghikre number
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of nodes in the network. This is achieved by alternately sendingaitieet through
different nodes lying inside the semicircle. For example,iteerhessage will take the
path (1,n-2, n). The second message will take the patm{3, n), and so on until the

(n-4)" message will take the path (1,1,

Figure 2.8: Benchmark topology from max minzP

Banerjee and Misra [1] define the residual packet capacttyeasumber of packets
which can be transmitted by a node at its current energy. leveheir algorithm
CMRPC, they define a parametewhich represents the threshold energy level of the
critical nodes. When nodes reach this energy level, they shift minimum energy

routing to maximum residual capacity routing.

Suppose the parameteris set at 0.5 (representing 50% of node’s energy). The
authors of the MRPC algorithm do not mention how they make the chomaimhum
energy paths when there is more than one. Suppose we use the sequer2e(X1,
n-3,n),..., (1, 4,n), (1, 3,n)}, we can send 5(4) messages using the straight line edges
after which each forwarding node (except 2 ardbt) will be left with energy 16 ¢.
Since we reach the threshold value, we start using the maxinsishnakcapacity paths.
Using the maximum residual capacity paths, only 10 more messaglesbe sent, for
a total of 10 + 5§-4) messages. In fact, we may not be able to send more th@r4)0

+ 20(1-y) messages. The maximum value of this quantity happens when(which
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means packet capacity is never used), in which case we dasestll only 10¢-4)

messages.
Algorithm Total messages transmitted
Greedy max-min [48] 20
Qun Li et al. [48] 104-4)
Banerjee and Misra [1] 16(4)
Shortest Widest Path 198)

Table 2.1: Number of messages transmitted usirigrdift algorithms

On the other hand, if one were to use the two-phased shortest wideappaiach
we have proposed, the following paths will be used for routing. We epkat the
sequence {(1n-2,n-1,n), (1,n-2,n-1,n), (1,n-3,n), (1,n-4,n), (1,n-5,n)..., (1, 4,n),
(1, 3,n)} before source and destination get disconnected. Consequently,syitbesee
that a total of 10(-3) messages can be sent before the nodes run out of energy. This
demonstrates a key aspect of our two phased strategy. Thleraudiple possible
widest paths which can be used for routing, and a good choice among these passibilitie
will still allow us to use the widest path and achieve a gootintiée(we use the widest
path which is shortest). A poor choice of the widest path in Li. ¢48] makes them
conclude that it is unsuitable in general to use the widest patth wghinot actually the

case. A summary of these results is shown in Table 2.1.

2.7 Performance on general topologies
Having studied the performance on a benchmark topology, we now discuss the
performance of our three algorithms on general topologies. We @A [Library of

Efficient Data structures and Algorithms) [31] as our simulation tool.
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2.7.1 Simulation settings

In our experimental study, we compare the performance of the proplgseithans
with the on-line maximum life-time (OML) heuristic proposed®grk and Sahni [65]
and the max-min zR, algorithm proposed by Li et al [48]. Reference [65] has shown
the superiority of OML over other existing works. For completenesshave also

included performance evaluation comparisons with the max-mifn algorithm [48].

Topologies Used: We use a topology which is identical to that used for OML. We
randomly populate a 25x25 grid with 50 nodes. We add edges to the netwloek if
nodes are within each others’ transmission range, which is ddoydibe transmission
radius f. The energy cost of transmitting a single packet is cakmlilas 0.0010¢
whered is the Euclidean distance between the nodes. These settindsrdieal to the

ones used for OML.

Session Length:A parameter that we generalize in our simulation studsegsion
length. Earlier works assume that a single packet isni#tesl in a session between a
given node-pair. However, in reality, it is highly likely that tjple packets will be
exchanged in a session between two nodes. Therefore, in our exqstimne assume
that k packets are transmitted in a session between a given nodeWairvary the
value ofk and observe the performance of the different routing schemes. @&tker

works in the literature, we calculate the route afresh for each packetigaiosm

Traffic pattern used: We conduct our experiments assuming any-to-any
communicatiormodel, i.e. source-destination pairs are selected at random andspacke

are transmitted between them.
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Unless otherwise mentioned, we use the following default valuese #dre 50
nodes placed randomly on a 25x%25 grid, the transmission radius is8se¢héosession
length is set to 1 (single packet), the initial energy lémekach node is set to 30 and

any-to-any communication pattern is assumed.

We use 10 different random topologies, and 10 different request segdeneach
such random topology. Each request sequence is an infinite set oftseafutbe form
{(suty), (22, t2),.., }, where §, ti) represent the source and the destination for the given
packet. The same source destination pair is allowed (and expectegett in the set.
During algorithm execution, we choose the next outstanding reqoestliis set until
network disconnection. The average value of these 100 runs is reportedlthere
lifetime of the network is calculated as the total number aifkpts which can be

transmitted in the network before the first session failure occurs.

2.7.2 Performance comparison with basic algorithms

First, we would like to demonstrate that we do indeed get signifjcamproved
lifetimes by using power-aware algorithms. We show thisdyparing the lifetime
obtained by the Shortest Widest path and derivative algorithmsnaendther power-
aware algorithms — namely OML and max-min,gPR against the lifetime obtained by
two basic algorithms - the Minimum Energy Path and the shod#ést{pop count). We
set the session length as 1, the transmission radius as 8, and the ofundokes in the
network as 50. We used 10 different topologies and 10 request sequenegsoanithe

average value of the 100 runs.
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Figure 2.9 Performance of power-aware algorithmisasic algorithms

In Figure 2.9 we show the variation of lifetime as a function ofséssion length.
In the graph shown, the acronyms used for representing the diffegentrahs are as
follows: SEP — Shortest energy path, or minimum energy path, S#t®rtest hops
path or shortest path, MaxMin — max-minzPproposed by Li et al. [48], OMLP —
Online Maximum Lifetime heuristic proposed by Park and Sahni [65], SWRP — shortest
widest residual path, SFWP — shortest fixed width path and SWCHi®rest Width
Constrained Residual Path. We have observed that using power agari¢hmls
improve the lifetime by nearly 70% over the shortest path ithgorand by as much as
30% over the minimum energy path. Similar results were seem \wke&orming
comparisons using other metrics such as transmission radius and nsiiesididence

this justifies the energy expended in finding power aware routes.

2.7.3 Effect of session length

We first observe the effect of varying the session lekgih the lifetime achieved by

various routing algorithms. Here, we sengackets at once for each session. Figure
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2.10(a) shows the results of our experiments. In general, the vwpdéstand its
derivative algorithms have a much better lifetime than the OMuriktic, and the
shortest width constrained path algorithm (SWCRP) consistentlgrfdtie max-min
zPmin algorithm (MaxMin). This supports our rationale behind selectiagnidest path

as well as its derivative algorithms for improving the network lifetime.

Figure 2.10(b) shows the fraction of energy remaining in thearktat the time of
first session failure. That is, we consider the remaining erexgys at each node as a
fraction of its initial energy level, and calculate their agexr. It is interesting to note
that the network nodes retain a higher average residual energy thedproposed
routing algorithms than under OML and max-min,gzPThis shows that the widest
path and its derivative algorithms are able to send more packietweat energy cost
and hence there is more energy available for the nodes to us¢héortasks. We

obtained similar data for all the other simulation values.
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Figure 2.10 (a): Lifetime vs Session length (b)efgy remaining vs session length

2.7.4 Effect of transmission radius

Figures 2.11(a) and 2.11(b) show the impact of the transmissiars raulithe lifetime
and energy levels of the sensor network. We can see agaihdlrstdrtest widest path
and its derivatives perform much better than OML and equal or ble&tgerformance

of max-min zRy,.
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2.7.5 Effect of node density

We evaluate the performance of the algorithms for the node idsns@, 75 and 100.
We increase the number of nodes while keeping the total areamprikts increasing
the density. The results are presented in Figure 2.12 (a) artdefle)again we can see

that the shortest widest path and its derivatives are genetdfperforming OML and

max-min zRn.
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Figure 2.12 (a): Lifetime vs node density (b): Ejyeremaining vs node density

Among the three widest path algorithms proposed, we note that bosihdahest
width constrained path as well as the shortest fixed width path algorithms phoettiele

lifetimes in general (than the shortest widest path).
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2.7.6 Impact of communication cost estimate on lifetime

While communication is a primary source of energy depletionns@enetworks,
we would also need to consider other factors of energy depletiontta getter
understanding of the lifetime. For this we have considered the foljoguestion — if
the estimate of the communication cost of each edge in the netwofklg x% (in
other words, the energy to transmit a packet costs x% more energy thatezhtivhat

is the impact on the network lifetime?

Here we consider the impact on the Shortest Widest ResidualaRmtrithm
(other algorithms indicate similar or better results). We consider g¢stanars of x = 5,
10, 15 and 20% respectively. Other simulation settings are situildre settings in
Section 2.7.2. We note the difference in the lifetime — that ismeasure how much
lesser (as a percentage) the actual lifetime is from vélee computed if the
communication cost was estimated correctly. Figure 2.13 shows shésref this
evaluation. As expected, the percentage error in lifetime ireseas the error in the
cost estimate increases. The x =y line represents thesvalueand y such that the
percentage difference in the lifetime equals the percentage i@ computing the
communication cost. The curve for the percentage lifetime differatways lies below
the x=y line and thus we note that the percentage error immidetloes not rise as
quickly as the error in the communication cost estimate, which shbats our

algorithm is not adversely affected by this error.
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2.8 Distributed implementation

It is highly desirable to have a distributed implementation ofranging algorithm. We
now discuss how the aforesaid routing strategies can be implahianéedistributed
setting. Primarily, there are two models of developing distributglementations. In
the purely distributed model, the algorithm is completely based @sage passing.
That is, the algorithm’s implementation is only based on passisgages and when it
terminates, each node knows the neighbor to whom it must forwekétpaso that the
algorithm rules are followed. The other approach is to make eachawaate of the
global state by enabling each node to advertise its localtstaite entire network so
that each node can locally compute the route based on the globalinstaig.case, the
source will know the entire route to reach the destination, and daagha information

about the route in the packet itself.
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2.8.1 Collecting global state information

Multiple message passing and the convergence latency involved in te& pur
distributed scheme consumes time and energy for each run of tmghatgand hence
may not be desirable in a wireless network. For this reason andatedtiby the fact
that real world protocols such as OSPF [68] use similar sieatege use the second
approach. We construct a rooted spanning tree on the wirelegsrkefraph and the
global information is collected as follows: all nodes at |l¢\a@k expected to send their
energy level information to their parents, before the nodes dtjiévetart transmitting
their information to their parents. We start with the nodes dbthest level on the tree
sending their energy information to the parents on the tres.pfovides us a bound on
the number of links used (and thus the amount of energy spent) foringllet global
information. In other words, each node sends all the information tbh&sparents all
at once. Once the complete network information is collected abtiiethe root then
transmits this information to all the nodes using the links on the sgatm@e. It is
important to note that we only collect global information peridbticéin our
experiments we use a time based periodicity, i.e. each noddiselwé¢his information

once every 360 seconds) and not after every single message transmission.

There is additional latency involved in this approach of collecting glstzde
information. In a wireless network using 802.15.4 wireless nodes, we varahdata
rate of 250kbps [65]. If we assume that the energy level and the ndde éBch node
in the network would require 32 bits of data to encode and suppose we h@06 a
node sensor network, we would still be able to encode all the iniormaithin 32000

bits. All this information can still be transmitted within 1 @ed over a single link in a

46



network with a data rate of 250kbps. Depending on the height of the spaeangyée
must still be able to complete the global update process witostt tens of seconds.
While this is only a rough estimate and factors such as enégrée in the wireless
network should be taken into account, we argue that since the glotwahanion is
collected only periodically, it will not prove to be a bottlenecktfa operation of the

routing algorithms in a distributed setting.

To compute the energy spent during the global update process, wtateatbe
average energy,grequired to transmit a packet across a link in the network, and use
twice that number as the total amount of energy required for thel gidbemation
collection. In other words, we subtract,2enits of energy at each node in the network
after each global update process. For purposes of evaluation, waeatizat the
average packet size used in the expressions for calculatingnérgy required per
packet transmission (mentioned in Section 2.3) is based on continuousi$smsor

one second.

2.8.2 Performance of distributed implementations

The performance of the distributed versions of the algorithms with varymgntiasion
radius and varying node densities are presented in Figures 2.14 —[Zllldwing
acronyms are used for the graphs in this discussion of distriblgedthms: dSWRP —
distributed Shortest Widest Residual Path, dMaxMin — distributed-miaxzRyn,
dOMLP - distributed Online Maximum Lifetime heuristic; dSFWPdistributed
Shortest Fixed Width path, and dSWCRP - distributed Shortest Widthr&loed

Residual Path.
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From these results, we note that the distributed implementatiotise a§hortest
widest path and its derivatives give rise to better netwaekirties than the distributed
implementations of OML and max-min gR Therefore, one may be able to infer that
the distributed implementation of the shortest widest path andriisatiees are less
sensitive to the lack of up-to-date global energy level infoonathan the distributed
versions of OML and max-min zR. While the average residual energy level in the
network seems to be lower for the proposed algorithms than OMhsito be noted
that the proposed algorithms forward lot more packets in the network than ONtn(as

be observed from the graphs) and therefore are left with a smaller residig}.e
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2.9 Hop-by-hop routing for multi-metric shortest paths

In a pioneering work, Sobrinho [78] discusses the implications of édmeept of
isotonicity for various path problems. He introduces the notion of a fgghra which
includes a binary operator which takes as input a path and an etlge paths, and a
relation operator which acts as a ordering function betweeigitwen paths. Isotonicity,
stated simply, is the property of certain types of paths wtereapplication of the
binary operator on two given paths (for example by adding an edgeth of them)

maintains the order relation between them.

In the context of the widest path problem, it has been shown in [#8hthahortest
widest path is non-isotonic. In other words, it is not possible to fimwpmby-hop
distributed algorithm for finding the shortest widest path. It woutgiire at least two
passes for any distributed algorithm if it wishes to find thartest widest path. Since
the shortest width constrained path as well as the shortestwigéd path depend on
finding the widest path as a preliminary step, it follows thay theuld also be non-
isotonic. The reference [78] also proves some types of paths teotmnic — the

ubiquitous shortest path problem as well as the widest shortest path, among others.

2.10 Summary

The shortest widest path algorithm and two of its derivatives havepgoseposed in this
chapter for performing online energy aware routing in wirefesvorks. All of the
proposed algorithms have been shown to improve the network lifetirae @dmpared
with the best solution known in the literature. By exploiting a semalationship

between the energy consumed along a path and the residual energybottkaneck

51



nodes along the path, we have presented a solution space where we better a

chance of prolonging the network’s lifetime.
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Chapter 3

3 Throughput of wireless networks

3.1 Introduction

The throughput observed in a single path in a multiple hop wirelésenkecan be no
more than a third of the single hop bandwidth under the standard radiel [47].
There are some applications where one might require a highao-emdt throughput
than that available through the use of a single path. For exampii-wide wide area
network implemented as a multi-hop static mesh network, may bdragh higher
throughputs. The traditional way to achieve higher throughputs in witeerks is to
use multiple paths in parallel so as to improve the aggregate bandwWidile a similar
approach can be adopted for wireless networks too, wireless netsudfés from the
additional challenge that in most network topologies, the discovered payhgernslose
to each other. Consequently, packet transmissions in one path magrénterth
transmissions taking place in other paths in the path set leadimg significant
reduction in the overall throughput [87].

This reduction in throughput in wireless networks can be avoided by appropriate path
selection combined with careful packet transmission schedutitgs been noted in
the literature [47] that the maximum possible throughput equalingsitigde hop
bandwidth can be achieved by using three non-interfering paths. Hawvicgy multiple
paths which do not interfere with each other is ideal. Howeverhaw 81 this chapter
that this problem is the same as the problem of finding chordless cycle aumn&ajpéair

of vertices in a graph, which is actually NP-Complete [10]. Wa then our attention
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towards finding path sets in static wireless networks which wouddige the same
level of aggregate throughput as non interfering paths while atathe time permitting
interfering links

Our contributions are: (a) we demonstrate that it is possibleafeet of paths
between sources® and destinationt” with some interference between them to provide
high aggregate throughputs provided the interfering edges amongathge follow
certain favorable patterns; we present a combinatorial approadimding such paths
in a wireless network. (b) we extend our approach to scenarios invohaftgple s-t
pairs and show that the proposed approach can improve the throughput in such
scenarios too. (c) our combinatorial approach can also provide ghtwavard
mechanism for scheduling the transmissions at various links antly,fi(d) the
computation of the transmission schedule is shown to be amenable strilauthd
implementation under the proposed approach. Preliminary resultis o¥drk has been
presented in [61].

The rest of the chapter is organized as follows. Section 3.2 désclitesature that is
relevant to the proposed work. Section 3.3 presents the notations amdtcomy of a
timing diagram termed the/ireless Pipeline Scheduling Diagramhich is a visual tool
to aid in the understanding of the material. Section 3.4 discussesphet of the hop
length on the aggregate throughput when we are able to discover pathsdemot
interfere with each other. Section 3.5 presents the relationshigdietive patterns of
interference that can exist between multiple paths and thevablee aggregate
throughput rates. Even when paths interfere, we show that there aexisin

interference patterns (which we calbn-destructiveinterference) which can still
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support high aggregate throughputs. Using this idea, in Section 3.6 wemavrel
algorithm for finding interference aware path sets betweehpair. In Section 3.7, we
extend our approach for finding paths under the mulsgieairs case, which is more
typical in static wireless mesh networks. In Section 3.8, we mresene performance
evaluations and in Section 3.9, we present our conclusions and directiongufer f
research.

3.2 Related Work

Wu and Harms [87] identify the issue of interference betweatipie paths on a
wireless network and show that there is a loss in aggrepaveighput due to
interference. Given a wireless network, a sowead a destinatiofy previous results
related to the study of throughput performance using multiple patlas viireless
multihop network can be categorized into three classes. (a) shelfiss of solutions
try to find multiple node disjoint paths betwesrandt such that there are no edges
connecting two vertices belonging to different paths (we calh ssdgesinterpath
links), (b) solutions under the second class use a centralized multiaditgniow
based linear programming (LP) formulation to exhaustively beanc determine the
maximum achievable throughput with interpdithks (c) the third class of solutions
adopt a combinatorial approach to find multiple paths which can suppomgha hi

throughput even with interpath links.

Techniques presented under class (a) do not consider the casautfrstous
multiple s-t transmissions. Solutions suggested under class (b) neithethgiyeaths
nor provide a schedule for transmissions, but nevertheless are impastahey

establish the bounds for throughput against which other schemes could (&redm
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While schemes under classes (b) and (c) consider mustipleansmissions, approach

(c) is combinatorial and hence could possibly result in distributed solutions.

Hu et al. [18], Saha et al. [72] and Jones et al. [39] discuss technidpes fall
under class (a). Hu et al. [18] address this issue by creatiodidden region around
the first path and finding a second path outside this forbidden regione Wiksl is a
good strategy for finding interference free paths, theiresiyatioes not work if there
are no interference free paths in the network. Saha et al. [72] prapwg directional
antennas to reduce the interference between paths and thereby inerdiwveoughput
of multipath routing. Jones et al. [39] introduce an interferenceiaret assess the
quality of disjoint paths and use this metric to find high qualitytiplel paths which
can improve the throughput. Saha et al. [72] and Jones et al. [39] bstimereéhat
interference is inherently destructive and should be avoided. Consegtieeylyfavor
node-disjoint paths with no interpath links which could possibly preempt sdipairs
from enjoying a high throughput transmission when several such nogewsh to
communicate simultaneously. In our approach, by accommodating cartaipath
links which do not lead to interference (which we calhasdestructive edggsve can
potentially find multiple paths with high throughput values in moenados than in

[72] and [39].

Jain et al. [36] and Buragohain et al. [12] discuss strategiehidliainder class (b).
Jain et al. [36] show that finding optimal throughput for multgptepairs is NP-Hard,
and it is NP-Hard even to approximate the optimal throughput. Addityoriiéy
provide a systematic analysis of the achievable lower and upper béamdise

throughput using a multi-commodity linear programming approach. Bheag et al.
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[12] improve on the work by Jain et al. [36] by proposing a node baBddrimulation
combined with a node ordering technique, which allows them to achiet8 a
approximation of the optimal throughput. However, their technique too, unlike
does not provide the actual schedule for achieving the throughput owithg tioP

formulation.

The approach proposed in this chapter falls under class (c)e¥arglwork under
this class is presented in Liaw et al. [50]. Liaw et al. [88lermine the maximum
achievable throughput for a given wireless network by computingoalible shortest
paths of a given lengtk and independent paths for these shortest paths in such a way
that for a given shortest path an independent shortest path is a disj@rt path.
Clearly, this approach of computing the maximum throughput will have erpahe
complexity. They further make an important observation to indicatdltbamaximum
throughput can be achieved when spatial-reuse with respect to tise souery high,
where spatial-reuse is defined as the maximum number of nodegl{ing the source)
that can transmit simultaneously without causing interferencehign chapter, we
generalize this spatial-reuse concept and show that by hasthtjonal relaxations we
can improve the throughput considerably. We provide a polynomial timestieto
find multiple paths for a singlet pair as well as single paths for multigh pairs that
can achieve high aggregate throughputs. We also give a simple method to detegmine

best transmission schedules to achieve these throughputs.

3.3 System Model

We adopt a system model with the following features whichnidai to the one used

in [18]:
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a) The transmission time in the medium is divided into slots and tuesare
assumed to have synchronous clocks. Clock synchronization among the network
nodes can be achieved by using strategies similar to the one presented in [56].

b) A node can either transmit or receive once in a time slotwitién of the slot is
sufficient enough for the largest packet to be transmitted and received.

c) No node can transmit and receive simultaneously.

d) A node cannot “hear” more than one neighbor at once — in other words, if more than
one neighbor of any node transmit in the same time slot, the noee ddisthe
packets.

e) The internal nodes in the path forward the packets they receive without any delay

To aid the purpose of analysis, we use a timing diagram thatall theWireless
Pipeline Scheduling DiagrarfWPSD) to investigate the theoretical capacity limits of
employing multi-path routing in a wireless network under differecgnarios. An
example of such a timing diagram is shown in Figure 3.1, wheasesitown that the
maximum possible throughput for a single path is only a third of tizlable
bandwidth. Another example of the wireless pipeline scheduling dmagrahown in
Figure 3.2, where we show paths with equal hops. In this case tsedestination 5
receives a new packet during every time slot (after reggiius first packet), the

maximum aggregate throughput is achieved.
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1 2 3 4 5

Path numbers

P1 P1
1>2
2->3
Time
slots 3>4
4>5 1>2
2>3

Figure 3.1: Wireless Pipeline Scheduling Diagramafpath P1.

3.4 Impact of path length on achievable aggregate throughput

We now present a formal analysis of the relationship between tinéepgth (in terms

of hops) and the achievable aggregate throughput when we have npaitipgewhich

do not interfere with each other. We later use this in our algofhriinding multiple
paths for a givers-t pair. For simplicity of analysis, we consider the two pathe cas
first. We assume that packets are injected into all the pattieeimulti-path set at a
constant rate. Lét be a constant denoting the inter-packet interval time, also referred to
as the periodicity. Herk s the inter-packet arrival time with respect to a single path. (It
must be noted that our definition dfdiffers from the statistical average arrival rate
used commonly for Poisson processes). The nodes along a pathheefzackets that
they receive in the time slot following the reception without delay. Allowing the
intermediate nodes to delay their forwarding could have an adefes# on end-to-

end delay experienced by the subsequent packets sent along the path.
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Path P1 = 1-2-3-4-5
Path P2 = 1-6-7-8-5
Path P3 = 1-9-10-11-5

P1 P2 P3 P1 P2

1 1>2

2 2>3 156

3 3>4 627 129

4 4>5 7>8 9->10 1>2

5 8>5 10>11 2>3 1>6
6 1M1>5 3>4 6->7
7 4>5 7>8
8 8->5

Figure 3.2: WPSD shows that three paths can prdhiglenaximum possible throughput.

3.4.1 Two paths

Let h; and h, be the number of hops in patl®s and P, between source and
destinationt. The pathsP; and P, are called non-interfering paths if there are no
interfering edgesbetweenP; andP;. It is to be noted that though andP, may not
have any interfering edges, since they may be of unequal hgimercollisions can
still occur at the destination Let t; andt, represent the time slots when the first
packets are respectively injected into p&handP.. Let the packets traveling aloRg

be designated as type | and packets traveling agibg designated as type Il.

Lemma 3.1: At the destination node, no collisions occur between packets of &k

type Il if t; andt, are chosen such thdi; (+ t;) modi # (hy +t2) modA.

Proof. Based on the parameters given, we can see that the destimatieives packets

of type | at timesS; = {(hs-1)+;, (hi-1)++ A, (he-1)++2,(h-1)+H,+34,...} and it

8 An edgee is considered an interfering edge if its two erdisdlie onP; andP,, but the edge itself belongs to neithd?; norP..
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receives packets of type Il at tim& = {(hy-1)+,, (ho-1)+o+A, (ho-1)++2),(ho-
1)+H,+3),...}. We can ensure that there are no collisions at the destinbt®andS,
have no elements in common. Given two sequeficeda+X1,a+ 2\, a+ 3., ...} and
S={b+A, b+ 2\, b+ 3\...} we can ensure th&, andS, do not share a common
element ifa modA # b modA. The proof is as follows: & modA # b modA then (a +
kid) modi = a modi # (b modA) = (b + kd) modA V k1, k2> 0. Substituting (h1 — 1)
+ t1 for a andlf, — 1) +t, for b, this condition translates als; (+ t1)) modi # (hy +t2)
mod A. That is the condition for scheduling time slttsandt, so that there are no

collisions at the destinatiom.

While the primary condition for achieving collision free transmissialosig the two

paths has been stated, we make some additional observations:

1. For a given set of paths should be made as small as possible to achieve the
maximum aggregate throughput. While the example discussed ugimg B.1 has
made clear that cannot be less than 3, it is possible (and in fact desirabté) tha
exactly 3.

2. The two initial time slote; andt,, should both be as small as possible so the
transmission can start early.

3. Also, t; cannot be the same &s since it would mean that we are transmitting
different data simultaneously to two neighbors during the same time slot.

In the two paths case, we can find suitable valuet fondt, for all values oh; andh,

such that. is exactly 3. Let; andr; represent the remainders after dividmgandh,

by 3 (3 represents the minimum value we seek\joiThere are only three possible

values for each af; andr,, representing a total of nine combinations.
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r ) 1 i (r1+t1)m0d 3 (r2+t2)mod 3
0 0 1 |2 1 2
0 1 1 2 1 0
0 2 1 |3 1 2
1 0 2 1 0 1
1 1 1 2 2 0
1 2 1 2 2 1
2 0 |3 1 2 1
2 1 2 1 1 2
2 2 1 2 0 1

Table 3.1 Suitable and $ values for various values ofand p. Parameters iand » represent the remainders of
dividing the hop lengths of the two paths by 3.

We give appropriate values frandt, for each case in Table 3.1. We see that the
last two columns show that;(+ t;) mod 3# (r2 + t;) mod 3 for all these cases, thus
satisfying the condition in Lemma 3.1. Figure 3.3 shows an exantpeewve have
unequal hop paths, but the aggregate throughput is still two thirds afhdrenel
bandwidth as. = 3 (and the destination receives a packet twice every timeestots).
Here we see thdt; is 3 andh, is 6, and thus both, andr, are 0. We note that = 1
andt, = 2, wheret; andt, are the first time slots during which sender 1 transnsts it

packets to the neighbors in pathsandP, respectively.
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Path P1 =1-2-3-4 Length=3 r1 =0
Path P2 = 1-5-6-7-8-9-4 Length=6 r2=0

2 3
1 4
5 6 7 8 9

P1 P2 P1 P2 P1
1 122
2 2>3 135
3 3>4 56
4 6>7 1->2
5 7>8 2253 15
6 8->9 3>4 556
7 9->4 627 1->2
8 7>8 223
9 8>9 3->4
10 9->4

Figure 3.3 Schedule for unequal hop paths with leguainders, andr..

In the three path case too, given the remainders andr; (for pathsP,, P, andP3),
it is possible to determine the smallest perioditigs well as time slots, t, t3 (all as
small as possible) such that there are no collisions at theeecdhe following two

lemmas provide the necessary guidelines for achieving this.

Lemma 3.2.1 Let us assume we have three paths with hop cdunlis andhs. There

are no collisions at the destinationhf ¢ t;) mod # (hy +t2) modA # (hs + t3) modA.

Proof. Follows from Lemma &
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Path P1 = 1-2-3-4-5

Path P2 = 1-6-7-8-5 P1 P2 P3 P1 P2
Path P3 = 1-9-10-11-5 1 132
The dashed lines represent interfering
edges 2 233 136

3 354 637 139
4 425 728 810 132
5 825 10>11 233 136
6 1135 324 637
7 435 7>8
8 8>5

Figure 3.4 The set of paths allow maximum througdlt@spite interpath interference

Lemma 3.2.2 Letry, r, andrz be the remainders after dividing the hop coumis,
andhz by 3. The condition in lemma 3.2.1 is satisfiedXor 3 only ifry =r, =r3z or if

ri#r, #r3. If ri=ry #r3 then the smallest value bfwhich satisfies Lemma 3.2.1 is 4.

Proof. A simple enumeration of all the possible time slaist, andt; proves the

lemmam

re|ro|rs|Plto|ta|tafro|ra|rs|Plti|ta|ta|ry|ra|rs|P |ttt
0|0|0| 3] 1 2 32|/0|0|4| 1 3 4 20041 2/ 4
00|14 1 2 3 11 0 1 4 1 B8 420|132 3 1
00|24 1 3 21 |0|2,3|1 3 2220241 20 3
0/1{0{4]1 2 4 1 11 Q 4 1L P 42|10 3|1 3 2
O(1,1|4/ 1 20 312|113/ 1 20 32|11 4|1 3 4
O|1(2|3] 1 2 31 |1|2,4/1 4 2 20 1§ 2 4 1

012|041 2 31|2|03|1 20 322|041 3 2
0121|321 31 |2|1,4|1 2/ 4 21 2 1 4 1

012|241 2 4 1 2 2 4 1 R R|2]|2]3|1 2 3

Table 3.2: Suitable, t,, andt; values for various values of, r, andr;
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As in the two paths case, it is possible to enumeraté; thg and t; values for

various combinations af, r, andrz(shown in Table 3.2).

Note If we decide to choose no more than two paths betwserpair, we would seek

a periodicity ofA = 3, 4 or 5 to give rise to a bandwidth utilization &2, 2B/4, and
2B/5 respectively, all of which are superior to the singlén gindwidth ofB/3. If we
decide to choose three paths, we would seek a periodicity of no raare £ giving

an aggregate bandwidth oB/@ which is superior to the maximum possible two path

bandwidth of B/3.

3.5 Non destructive interference patterns

The problem of finding two non-interfering paths between a source atidaties is
the same as the problem of finding a chordless cycle containigien vertices in a
graph, which has been shown to be NP-Complete [10]. Our goal in thisnsiscto
show that there exist interfering paths which achieve the sggregate throughput as

non-interfering paths.

Figure 3.4 shows a topology with three paths having mutual interéer@he
dashed lines represent the interfering edges). Howevéneasxample illustrates, the
path set still provides the maximum possible aggregate throughpat ® the single
hop bandwidthB. The reason for this is that the paths exhitdin-destructive
interference,i.e., the nodes on the two ends of all the interfering edges/eeard
transmit their packets simultaneously, thereby avoiding collisionsh $nterfering
edges are referred to asn-destructive edge#\ set of two or three vertex disjoint

paths are said to have non-destructive interference if it silpego schedule packet
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transmissions along the paths without any collisions for a desereadirity A despite
the presence of interfering edges. In other words, a set telkwdisjoint paths are said
have non-destructive interference if all the interfering e@gesng the paths are non-

destructive in nature.

Lemma 3.3 Let e be an interfering edge between nodeandv, which lie along paths
P, andP,. Let the nodes; andv; bek; andk, hops away from the sourseThe edge

will be non-destructive if :
(i) | (ks + t1) mod — (ko +t,) mod | # 1, and
(i) | (ks +t1) modi — (k2 +t2) modh | #A-1.

Proof. We first consider the case where the interfering edgpn cause a problem with
the packet transmissions on the two paths. Essentially, ifwddensmits its packet at
time slott and noder, receives its packet during the same time slot, then therbevdl
collision atv, andv, will not receive its intended packet. Similarfy, v
transmits a packet at time stadndv; receives a packet during the same time slot, then
vy will not receive any packet. Hence we see that the tiote gduring whichv, andv,

receive their packets must not differ by 1.

We can see that node, receives its packets at time slo&={t;+(k;—1)+ A,
ti+(ki—1)+2\, t1 + (k—1)+3\,... } and nodev, receives its packets at time sl@s=
{tot(ko—1)+A, to+(ko—1)+2\, to + (ko—1)+3\,...}. Following an argument similar to the
proof in lemma 3.1, we will have no time slots with unit differemceequenceS; and
S if we can ensure thdt (ki +t;) moda — (kz +t) mod | #21 and | (ki +t;) moda

- (ke +t) modr| #1-1.m
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We now state the following theorem which directly follows from Lemma 3.3.

Theorem 3.1 Two (resp. three) vertex disjoint paths have non-destructieefenénce
between them for a given periodicityif all the interfering edges among the two (resp.
three) paths are non-destructive with respeétdad if Lemma 3.1 (resp. Lemma 3.2.1)

is satisfiecn

As an example, in Figure 3.4, let us consider the (interfering betyveen nodes 6
and 3. Node 6 receives its packets at the following time slots: &,.5} i.e. it had; =
2 andk; = 1. We note that node 3 also has the same schedule for reqckeys: {2,
5, 8, ...}and in this case we see that 1 andk; = 2. In effect, the packets arriving and
leaving from these two nodes never collide with each other. Alsthitée path lengths

are the same, and hence lemma 3.2.1 is satisfied for periddicidy

3.6 Computing interference aware multi-path sets for a single-t pair

Jain et. al [36] have shown that computing the multi-path set thas ghe highest
throughput between a given source and destination is NP-Hard [36lis bettion, we
describe a polynomial-time heuristic for finding a good set digphetween a sourse

and destinatiom that can give a high throughput. We incorporate our knowledge of the
non-destructive interference patterns into this heuristic. The stieuworks by first
discovering a path between the givenpair. Any path betweesandt would be fine,
though in this chapter we use the shortest path. the heuristic therafiotter path

betweers andt which has ‘good’ interference awareness with respect to the first path.

The heuristic works as follows. We first find the shortest patin fthe source to

destination. To find a second path, we mark all the nodes in the grdplabets which
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indicate which nodes are their neighbors in the first path. Udiege labels, we
compute a suitable interference aware path and a transmisdiedube which

guarantees that the interpath links are non-destructive.

We model the given wireless network as a graph (V, E) whereV is the set of
all nodes andE is the set of all edges between the nodesPL&te the first path from
sources to destinationt in graphG. For each internal node =P,, let d(n) be the
number of hops frors to n alongP;. Let neighborgn) represent the set of nodes in the
graph which are neighbors ofin G which do not belong t®;. We now label all the

nodesv € G, v €P; with a label set(v) as follows: for each nodeg for each node;
Eneighborgn), L(vi) = L(v1) U d(n)}. Since the same node in gra@hcould be a

neighbor of multiple nodes in palh, it is evident thaL is a set of numbers rather than
a single value. Once we have completed labeling all the nod€s ime remove
(temporarily) all the internal nodes Bf from graphG. On the remaining graph,good
interference aware patifrom s to t will be a pathP, whose node labels obey the
following property: there isit least onefeasible pair of time slotd;( t;) such thatv
nodesn, € P,, all edges incident om, are non-destructive. Lef(n,) be the number of
hops froms to n, alongP,. Now let At represent the time slot differentet,. The
condition for all edges to be non-destructive is as follows: dohelement & L(n),

[do(nz) —I+At] mod A # 1 and# A -1 - this directly follows from Lemma 3 (but

remembering thait cannot be 0).

The Algorithm InterferenceAwarePath is a polynomial timeoadlgm that finds a

good interference aware path with respect to a [pattbetween a source and
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destinationt. We note here that determination of a common valug fof the two
paths, a suitablat, and the fact that each intermediate node forwards a packet in the
next time slot after reception collectively define the trassiman schedule needed to
realize a high throughput. It must also be observed that thethigouses a greedy

approach and is hence only a heuristic.

Algorithm InterferenceAwarePath (s, t, Py)

/I Input — Source, destinatiort, pathP; betweers & t

/I Output — A good interference aware pBjftbetweers andt along with) (the schedule for
transmission).

/I h(P, s, u) — number of hops from sours¢o nodeu in pathP

1. For each internal nodeU P;, mark all nodes which are neighbors af with the label Hp,
s, U)

2. Temporarily remove all internal nodes from the grap
3. Initialize ()

4. While Q| >0and ¢ P,

5. forh =3t06

6. forAt= - (A—1) to (—1)

7. u¢& getBestFeasibleS€)

8. R< P, U {u

9. for all neighbons of u

10. ifAt + (h(P,u,9 - label))| '= 1 and At + (h(P,u,9 — label@)) | =1 -1
11. feasibleSef(= feasibleSew) U {At}
getBestFeasibleSet (Q)

returnv wherev € Q has max. |feasibleSe}(
Initialize ()
1. For each node e G

2. feasibleSey) = {~ (\-1), - (. —2),...,A-2.A—1}
3. Q€ QU {W

Figure 3.5 Interference aware algorithm for sirgteair

3.7 Interference aware paths for multiples-t pairs

We now discuss the case of finding good interference aware paths wéhdnave
multiple source destination pairs. Let us say we have a reqteRt=s{(si, t1), (S,

to),..., (S t)} where we need to find multiple paths betwesnt{) ¥V i € [1, K] such

that the aggregate throughput across all these paths is makiWzseconsider long
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lived flows (duration of flow is infinite) between all the sourcstd@tion pairs, which

is likely to be true in the back-bone of a wireless mesh network.

We construct a set of paths called @encurrent Transmission Paths SETPS)
such that the source nodes along the paths in a given CTPS cahebelesd for
concurrent transmissions. We construct different CTPSs so thaintbe of all the
CTPSs supplies eadht pair in R with an individual path such that the chosen paths

have a high aggregate throughput.

3.7.1 Diminishing Returns

Suppose we wish to construct the CTPS for the requesRset{(s, t1), (S
t2),...,(Sutk)}. To begin with, let us consider the pas,(t;) and discover a patR;
between these nodes. This path is added to the CTPS. Based on thistgrééience
aware paths between other node pairs are discovered and adde€idP®eFor this
reason, patl; is called theseed The keen reader will observe that different seeds may
lead to different CTPSs and hence a CTPS is always identifised on its seed as

CTPSP.).

Consider CTP3;) ={P4}. Let us suppose the pakh betweeng, t;)) has the highest
throughput value (minimurh) with respect td®;. While one may be tempted to aéd
to CTPSP,), theprinciple of diminishing returnsnust be applied to determine if this
can be done. Therinciple of diminishing returnstates that patR; can be added to a
CTPS provided the overall throughput of the CTPS with the addition doegehot
reduced to dower value than what it would have been without adding it. As an

example, if CTP3%;) = {P1} and the pathP; with the highest throughput value results
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in aA =6. In this case, adding the p&hto the CTPS may not help since we may have
only two paths in the resulting CTPS and scheduling transmission &hamg
sequentially will result in the same throughput as schedulingn tbencurrently.
However, if the pathP; results in & = 5, it may be worth adding the path to the CTPS
since concurrent scheduling of the paths will have a higher throudrgusequential
scheduling. If patl®; has been added to the CTPJ( we say that the pais(tj) has

been serviced.

We continue this process until we arrive to the stage whereicowld no longer
add any path to CTPB{). Now, we choose a pafx between an unserviceg,(tx) as
the seed and build another CTPS to serve the other un-servicecapdiso on. We

keep repeating the process until all the requed®shiave been satisfied.

While reducing the number of CTPSs may help in increasing thalbtleoughput
at times, it may not always be the case. For exampléhdet be terfs, t) pairs. One
possible arrangement of CTPSs might be {(4, 3), (4, 3), (3, 3)}, whefegshaumber
in the ordered pair represents the number of paths in the set, asectmel number
represents the value af A second possible CTPS arrangement might give us {(5, 5),
(5, 5)}. In the first case, overall throughput 8/3+B/3+B/3)/3 =B/3 is obtained, while
in the second arrangement we only @6¢B/5)/2 =B/5. In other words, the best sets

of CTPSs are those that maximize the weighted throughput.

It is easy to see that given the CTPS sets for eachstepag §,t) as the seed,
ascertaining the best possible set of CTPSs is still an NFplétaproblem, since it is

equivalent to the set cover problem when all xhealues in the second term of the
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ordered pair are equal. Consequently, we propose a greedy hearfstiat the best set
of CTPSs. Let) = |CTPSH for each CTPS. In other wordgrepresents the ratio of the
number of elements in the CTPS set overitier the set. We keep adding sets with

maximumn to our collection of sets until all the requests have been satisfied.

Based on the above discussions, an algorithm for finding a good setP&8sCT

given a request s&is outlined below.

Algorithm InterferenceAwarePath

/lInput —k source-destination pairs{(ty), ..., Sote)}
/[Output —k paths (one each for each source destination gadrYhe schedule for transmission

/ICTPS- Concurrent Transmission Paths Set
/InumCTPS- number of Concurrent Transmission Sets

1. numCTPS =0;

2. foreach pairg, t) ¢ {CTPS0]...CTPSnumCTP§

3 find shortest patR, from s tot;

4, CTPSuUMCTP$= CTPINnumCTPH U P,

5. pathP, = getGoodPathQTPInumCTP§H

6 while (NOT diminishReturn§TP$numCTP§ P,)
7 CTPEUMCTP$= CTPSnumCTPE U Py

8 pathP, = getGoodPathGTPInumCTPH

9 NUuMCTPS numCTPS+ 1

Figure 3.6 Interference aware multiple s-t paigoathms

getGoodPath

/linput — Concurrent Transmission Paths Set witlr@®destination requests
/loutput — Path P which is interference aware wipect to the paths in the Concurrent
Transmission Paths Set

1. setminLambda= Infinity;

2. for each req. pairg( ;) ¢ {CTP30]...CTP§numCTPH
3. A = minimumPeriodicityCTPSj)

4, if A <minLambda

5 minLambda A

6 bestPatl P;

7. returnP,

minimumPeriodicity

/linput — Concurrent Transmission Paths GEPS

/loutput — best periodicity using interference ¢oaiat

1. for each patlP, in CTPS
2. Leti be an internal node
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for eachn(i) wheren(i) € neighbor(i) & n(i)¢ P;
labe(n(i)) = label(n(i)) U hopgi, P,)
scheduleNotFound true
while (scheduleNotFourdand & < B)
forAt=- (A -1) to (—1)
find pattP in graph such that all nodes
have non-destructive intesfece
9. if pathP is found then

e S

10. scheduleNotFourwd false
11. else
12. A=A +1

Figure 3.7 Algorithm for finding good paths givesusce destination requests

diminishReturns

/linput — current concurrent transmission set, thednew path to be added to the CTPS

/loutput — Boolean result indicating if the new tpamproves or worsens the overa
throughput of the CTPS

1.if [CTPS /A, > [CTPSU P,| / X, then return true
2.else return false

Figure 3.8 Algorithm to compute diminishing return

The above algorithm for finding interference aware paths for phelit pairs case
involves a Dijkstra-like computation (with similar complexity) ahis is invoked at
most O¢)xO(r) times — we do this with respect to each request pair, for @tbey
request pair. Hence the overall complexity of our algorith@(i$(E+ViogV)) whereE
and V represent the number of edges and nodes in the graph, respedtiviig
algorithm described above, the param@ter bounded by the number of requests and is
thus O¢) and we could consider different paths as our seeds, adding a f&gtto (e

complexity of the algorithm.

3.8 Performance evaluation

We evaluated the performance of our algorithm against the work dodeitb et al.

[36]. In their work, the authors use the concept of a conflict gragimd links which
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can be scheduled for concurrent transmission. They formulatastiaid P problem and
provide a lower bound for the throughput which can be achieved usinggpeoach.
Using simulation settings previously suggested in the literature [12], Wermrdy place

O(n) nodes on a @) * O(Vn) grid, with a transmission radius of 3.

For our first experiment, we perform a comparison for the smyleair case. We
considered the effect of number of nodes in the network (network sizeheon
throughput of our approach as well as that of [36]. We used values @6n36, 49
and 64. We implemented the linear programming constraints spenifiath et al. [36]
using CPLEX. We implemented our algorithm using the LEDA graphrybi-or each
network size, we took the average value of the throughput over 5 Trissimulation
results in Figure 3.5 and 3.6 indicate that our algorithm consigtpnivides high
throughput for various network sizes. In Figure 3.5 CPLEX repretlemtdhhroughput
values obtained by using the algorithm in [36], while IAMP (lreexhce Aware

Multiple Path) refers to our work.

©c o o o
O N M O

=—CPLEX

*——pp—p —W|AMP
25 36 49 64

Throughput

Density

Figure 3.5 Impact of node density on throughput

For our second experiment, we perform a comparison for the mdtigairs case.
We use a 5 x 5 grid with 25 nodes placed at random and a transmagsiegnof 2. We

simulated 10 trials with differing topologies and source destingizars. The average
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of the 10 trials was considered for 1, 2 and 3 #qnumber of soue-destination pairs’
Then we applied our multipls-t pair algorithm on this topology. The throughput

Jain et al. [3pis computed as per the constraints given in tpaer. In their pape
they describe steps to compute the lower bounteo&thevable throughput, which w
use for comparisorhe throughput value in our algorithm is simply theerse of the
smallest value ok found by the algorithm, multiplied by the numbérs-t paths. We
were able to obtain interference aware node disjpéths between the source &
destination in all cases) = 0.66. Hence we couldinla constant throughput of 2x:
(A was 3 in our results). As shown in the graph iguFe 3.6 we can see that o

approach provides much better throughput thandbitinecby Jain et al.36].

-

B CPLEX
IAMP

© o oo

Aggregate
throughput
o N MO

1 2 3

Number of flows

Figure .6 Aggregate throughput vs number of flows

3.9 Summary

In this chaptewe have shown the impact of interference pattemthe throughput c
wireless networks. We use a path based scheduliategy (as opposed to the mi
common node or link based scheduling strategy)thisdprovides higher throughpt
since it takes it account global information as opposed to theallonformation

considered by the link and node based strategies. sSWow that the impact
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interference on multi-hop wireless networks is more due to thterpabf the
interference than the number of interfering links themselves. 8mexgy is a concern
in wireless networks, as future work we would like to combineifetconsiderations

along with the aforementioned routing strategies to extend the lifetime oftinerke
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Chapter 4

4 Distributed algorithm for interference
aware vertex disjoint paths routing

4.1 Introduction

With the introduction of multi-hop wireless services such aswite wide area mesh
networks, it has become important to improve the throughput of wirettesrks to
provide good quality of service. Under the standard radio model, thehopuult
bandwidth can be at best a third of the single hop bandwidth [3iBlg baultiple paths
is one way to improve the end-to-end throughput, but interferenceedetthese

multiple paths causes a significant reduction in the overall throughput [47].

By combining appropriate path selection, and a systematic pé&eketmission
schedule, this throughput reduction can be avoided. While the maximum bl@ossi
throughput can be achieved using three non-interfering paths [39], the problem
finding such non-interfering paths is the same as the problenmaifhd a chordless

cycle containing a pair of vertices in a graph, which is actually NP-Complefe [

It is not always necessary to use non-interfering paths, howevdmndyg vertex
disjoint paths between source s and destination t which follow repttierns of
interference, we can achieve throughputs which are optimal ortolaggimal. In this
chapter, we focus on finding such paths for a sigglpair in a distributed fashion. Our
approach can easily be extended to the mulsplpair case. The results of our work

has also been presented in [60].
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The chapter is organized as follows. Section 4.2 discussesulitethat is relevant
to the proposed work. Section 4.3 presents the ideas underlying rbtalized
combinatorial approach for finding interference aware multsgigpaths. Section 4.4
provides the distributed algorithm which is used for finding verteoidismultiple s-t

paths. Section 4.5 concludes the discussion.

4.2 Related Work
Many existing centralized algorithms address the issue mfovming wireless network

throughput by minimizing the impact of interference.

Hu et al. [32], Saha et al. [72] and Jones et al. [36] discuss ¢gegswhich try to
find multiple node disjoint paths betweenandt such that there are no edges
connecting two vertices belonging to different paths. They do not conside

simultaneous multiple-t transmissions.

Jain et al. [36] and Buragohain et al. [12] discuss strategiehwhki a centralized
multi-commodity flow based linear programming (LP) formulatian exhaustively
search and determine the maximum achievable throughput with intedipkgh
However these solutions provide neither the paths nor the schedulesnfmission.
Nevertheless, they are important as they establish the boundsdaghput against

which other schemes could be compared.

A third class of solutions adopts a combinatorial approach to find pteulaths
which can support a high throughput even with interpath links. The approachemopos
in this chapter falls under class (c). A relevant work underdlass is presented in

Liaw et al. [50]. Liaw et al. [50] find the maximum achievableotlghput for a given
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wireless network by computing all possible shortest paths given lengthk and
independent paths for these shortest paths in such a way thatienasiyortest path
an independent shortest path is a vertex disjoint path. Clearly,appsoach of

computing the maximum throughput will have exponential complexity.

All the current works use a centralized approach to this prohtehtcathe best of
our knowledge, a purely distributed (message passing) algorithnsofeing this

problem has not been proposed in the literature.

4.3 Finding interference aware multiple paths

We mention the key lemmas for finding interference awargatiis based on our
discussion in Chapter 3. We start with the two paths case. We edisanpackets are
injected into all the paths in the multi-path set at a constdet Let) be the inter-
packet interval time, also referred to as the periodicitye Wés the inter-packet arrival
time with respect to a single path. The nodes along a paththelgpackets that they
receive in the time slot following the reception without anyagelAllowing the
intermediate nodes to delay their forwarding could have an adefes# on end-to-

end delay experienced by the subsequent packets sent along the path.

4.3.1 Two paths

Let h; and h, be the number of hops in pats and P, between source and
destinatiort. Lett; andt, represent the time slots when the first packets are respectively
injected into path®; andP.,. Let the packets traveling aloig be designated as type |

and packets traveling alofy be designated as type II.
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Lemma 4.1: At the destination node, no collisions occur between packets of &k

type Il if t; andt, are chosen such thdt (+ t;)) modA # (hy +t;) modi. m

Lemma 4.2.1 Let us assume we have three paths with hop céynits andhs. There
are no collisions at the destinationhf ¢ t;) modX # (hy +t;) modA # (hs + t3) modA.

Lemma 4.2.2 Letry, r, andrz be the remainders after dividing the hop coumis,
andhg by 3. The condition in lemma 2.1 is satisfiedXor 3 only ifr; =r, =rzorifri#

ro #rs. If ry=r, #r3 then the smallest value biwhich satisfies Lemma 4.2.1 isf.

The problem of finding two non-interfering paths between a source atidadies is
the same as the problem of finding a chordless cycle containlgiten vertices in a

graph, which has been shown to be NP-Complete [10].

Figure 4.1 shows a topology with maximum possible aggregate thpoughren
with three paths having heavy mutual interference (the dashed ripessent the
interfering edges). In other words, a packet is received bgdbegnation during each
time slot starting from time slot 4. The reason for this i$ tha paths exhibihon-
destructive interferencd,e., the nodes on the two ends of all the interfering edges
receive and transmit their packets simultaneously, therebyliagocollisions. Such
interfering edges are referred toram-destructive edgeé set of two or three vertex
disjoint paths are said to have non-destructive interferencésipivssible to schedule
packet transmissions along the paths without any collisions forirediggeriodicityi

despite the presence of interfering edges. In other worskst af vertex disjoint paths
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are said have non-destructive interference if all the integjexdges among the paths

are non-destructive in nature.

Lemma 4.3 Let e be an interfering edge between nodeandv, which lie along paths
P, andP,. Let the nodes; andv; bek; andk, hops away from the soureeThe edges

will be non-destructive if :
(i) | (ks + t1) mod — (ko +t) mod | # 1, and
(ii) | (ks +t2) mod — (kz +t2) modi | #A-1.m

Theorem 4.1 Two (resp. three) vertex disjoint paths have non-destructieefenénce
between them for a given periodicityif all the interfering edges among the two (resp.
three) paths are non-destructive with respect @nd if Lemma 4.1 (resp. Lemma

4.2.1) is satisfiea

Hence our goal is to find paths such that we can satisfy the icorsddf theorem 1

with the smallest possible valueogreater than or equal to 3.

4.4 A distributed algorithm for interference aware st paths

A key issue in using a centralized approach for finding paths and sebdzhged on
earlier discussions is that the entire network topology informatiost be stored at the
source. This could be difficult on large scale wireless netwankd if the network is
fairly dynamic with nodes entering and leaving the network (ar tnaffic coming in)
constantly, it is highly desirable to have a distributed impleatiem based on message

passing for finding interference aware vertex disjoint paths.
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Our distributed algorithm follows the strategy used to find vedisjoint paths in
[45]. Our distributed algorithm also uses the knowledge gained fronmiasni, 2, 3
and Theorem 1 for finding interference aware vertex disjoiritspdthus at the end of
its execution, the distributed algorithm will find paths which ac¢ only vertex

disjoint, but also interference aware.

The centralized algorithm for finding vertex disjoint paths workgadlows [45]:
we are given a grapB = (V, E) and a source and a destination We first find a path
P, from sources to destinationt (for example, we may use the shortest path from
source to destination). The numbers marked in Figure 4.3(a) shastspath in graph
G. We remove all the nodes belonging to the path (including the source and destination)
and obtain all the connected components of the graph. These connected congrenents
calledbridges Figure 4.3(a) shows an example of bridges for the original geapith
respect to the path marked frato t. The edges connecting a bridge to the pathre

called bridge links. Any bridge could have multiple bridgelinks.

Path P1 = 1-2-3-4-5
Path P2 = 1-6-7-8-5 P1 P2 P3 P1 P2
Path P3 = 1-9-10-11-5
The dashed lines represent interfering
edges

122

223 136

3»4 637 139

4>5 7—=»>8 9210 1-=>2

8>5 102311 223 126
1MM=>5 324 627

4->5 728

[== T I I = T < T R I S B

825

Figure 4.1: The set of paths allow maximum througtgespite interpath interferencehe right half is a timing
diagram, where the rows represent time slots amddhumns represent the movement of packets thrthegpaths.

The leftmost bridge link is the edge connecting the bridge tdrarmale which is

closest tos. The rightmost bridge link is the edge connecting the bridgepath node
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which is closest td. The path node belonging to the leftmost (resp. rightmost) bridge
link is called the leftmost (resp. rightmost) attachment point. A briddeipalefined as
a path between the leftmost and rightmost attachment points wtiges all belong to

the bridge.

We can define conceptual arcs between bridges to form a lgridpgk. Each bridge
is represented as a node in the bridge graph. The sswaceé destination are also
nodes in the bridge graph. A conceptual arc in the bridge grapfiriedlas follows: a

given bridgeB; will have candidate bridges to which it could have a conceptual arc.

B2 B3 B
> B8

t
. B6
B1® %

B7

(a) (b)

Figure 4.2: (a) Bridges B1..B10 marked on origigralph G. (b) conceptual edges of bridge graph G

A bridge linke, is defined to be to the left (respectively right) of a bridgl &, if
the path node belonging &, is closer to (respectively farther from)than the path
node belonging t@,. A bridgeB; is a candidate bridge for bridd if the leftmost
bridge link ofB; is to the left of the rightmost bridge link Bf and the rightmost bridge
link of B, is to the right of the rightmost bridge link BfOf all the candidate bridges of
bridge B;, we add a conceptual arc to the bridgdf B; has a rightmost attachment

point closest td among all the candidate bridg@sof B;.
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We also add a conceptual arc from sousc® a bridgeBs if s is the leftmost
attachment point dBs and the rightmost attachment pointBgfis closer td than all the
other bridges whose leftmost attachment poird /e add a conceptual arc from all
bridgesBy to the destinationif t is the rightmost attachment pointBf. Figure 4.2(b)
shows the conceptual bridge graph for the original graph G in Fig@@). We
enforce a rule that a given bridge (as well as rg)dm@n have only a single outgoing
conceptual arc to another bridge in the bridge graph. When there arpleniitidges
satisfying the conditions described above, we arbitrarily choosdrotige conceptual
graph (called dridge graph), if there exists a path between sosraed destinatiom,
then it has been proved that there exists two vertex disjoihs fiedms to t in the

original graphG.

The distributed algorithm of [44] follows the centralized algorithiven in [45].
For the distributed algorithm, each bridge in $ktepath in the conceptual graph marks
the rightmost attachment point and leftmost attachment pointtasokfand rightmost
specialnodes. The first vertex disjoint path is obtained by moving albagoathP;
until a leftmostspecialnode, then moving along the bridge which marked this node,
and then moving back along the path at the rightisyestialnode of the bridge, and so
forth. The second vertex disjoint path is obtained in the same maxoept that we
start along the bridge path of the bridge connected to s. Figure 4.3 shewertex
disjoint paths (as dashed lines) for the original gr@ptound by using the giveat

path.

Upon closer observation, we notice that the sirsgglepath in the bridge graph

decomposes into two vertex disjoint paths in the original g@plhhus we can also

84



infer that the choice of the path frosto t in the bridge graph will determine the
quality of the interference aware path, which is measureelddbais the value df. In
other words, smaller thig the better is the quality of the path set, since snmiadlgive
higher aggregate throughput. Our goal will be to find a path thatmzes\ in the
bridge graph in a distributed fashion. We will now implement the fatigwsteps in a

distributed fashion.

Figure 4.3: Vertex disjoint paths in original gragh

Step I Find a pathP; from nodes to nodet in the original graph G: This step can be
easily done in a distributed fashion by constructing a spanningdo¢ed at node.
Nodes in the pathP; can also be numbered linearly frasn This step will have a

message complexity @(m).

Step 2 Decompose the graph into its bridges relative to the Patfihe formation of

the bridges can be accomplished by finding the connected components through a
distributed construction of spanning trees for all nodes not orPpa#t the end of this

step, all nodes not on pafh will be a part of some spanning tree. The leftmost and
rightmost attachment points of each bridge are also known (andnforsnation is
propagated to the root of the spanning tree). The identity of the ramnhbedhe bridge

identifier. At this point, all the bridges @ relative to the pati®; have been formed
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and the leftmost attachment point of a bridge knows the rightmashatent point of
each bridge to which it is attached. Each leftmost attashpwent,v, stores in variable
r*(v) the rightmost attachment point among all bridges for whicis a leftmost

attachment point.

The corresponding bridge identifier (i.e. the bridge whose rightrattachment
point is r*(v)) is stored in the variablB*(v). The root,v, of the bridge knows the
leftmost and rightmost attachment points of the bridge and stwss in the variables
lap(v) andrap(v), respectively. For this step, the number of messages is boupndleel b

number of edges, for a message complexit®(on).

Step 3 Construct a new grapBes(Ves, Eeg) called arexpanded bridge grapiNodes
initiates this process by sending a message to the next nodehoR;patntaining
valuesrap(v) andlap(v) for all bridges whosép(v) is s. Each noder receiving the

message does the following:

Casev of

1. not an attachment point

A message is sent to the next node in the path at the end of this case statement
2. a left attachment point only

Append to the messagap(i) andlap(i) for all bridges (with root identifier) for which

v is a leftmost attachment point
3. a right attachment point only

a)bridges=0
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b) for allj wherev =rap(j)

i) for each pair ofrép(i), lap(i)) in the message

1) iflap(i) <rap(j) andrap(i) >rap(j) andlap(i) <lap(j)

A) appendto the arrayridges

c) Send ADD_BRIDGE_NBOR message contairnigilgesto rootj
4. left and right attachment point

a) bridges=0

b) for allj wherev =rap(j)

i) for each pair ofrép(i), lap(i)) in the message

1) iflap(i) <rap(j) andrap(i) >rap(j) andlap(i) <lap(j)

A) appendto the arrayridges

c) Send ADD_BRIDGE_NBOR message contairnigilgesto rootj

Append to the messagap(i) andlap(i) for all bridges (with root identifier) for which

v is a leftmost attachment point
End of case statement

The root of a bridge receiving an ADD_BRIDGE_NBOR message ktioatghere
is a conceptual outgoing arc to the bridge identified {from the definition of the
expanded bridge graph) and appends this to an aatagrcs This process is repeated

for the next node in the path and when nodéreceives the message it sends back a
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message to node and step 3 is completed. This step consists of sending messages

along the path and to roots of bridges with time and message com@axity

Step 4 Find a suitable “best path” from nodéo nodet in the expanded bridge graph:
We will consider the interference pattern that a given briglgeakes with the patR;

and compute the best value %f This value is assigned as the node weight of each
bridge. We also assign a weight on an @¢ Bj) with the observed periodicity
caused by the interference pattern of the bridjyesdB; combined. Now we execute a
distributed shortest path algorithm frasnto t on the expanded bridge graph with a

message and time complexity®{n?)[70].

Assigning node and edge weights for this distributed shortest [gpthtlam is a
key step in this process. Using our knowledge of interferencermgti®e can assign
node and edge costs to the expanded bridge graph so as to find interi@neme
paths. Our solution depending on simple factors such as the path landtiise hop
counts of interfering nodes is what allows us to perform tles. Sthe output of the
shortest path algorithm will result in marking of the left matshchment points of the

bridges in the shortest path. Sections 4.4.1 and 4.4.2 elaborate on this idea.

Step 5 From step 4, a path from noddo nodet will be found inGgg (the graph is
assumed to be biconnected). The two vertex disjoint paths betweers andenode
are constructed as follows: Nodeimultaneously sends a message along Patmd
across the bridge identified as the next hop in the shortest pathm&bsage contains
the right most attachment point of the next hop bridge. When the geeatangP;

reaches the leftmost attachment point of the second bridge inhthtest path, it
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branches off fronP; and traverses along the second bridge. When the message sent
across the first bridge reaches the right most attachment point, it nogesh&ncourse

and traverses along; The process continues from the right most attachment of the
bridge. Because the message traverse along the path and thertbdespanning trees

of the bridges, the total time and message complexity of #psisO(n).The total time

and message complexity of the entire algorithm is bounded by tkeatich message

complexity of the distributed shortest path algorithm used in step 4.

4.4.1 Finding non-interfering paths

It is possible to find non-interfering vertex disjoint pathstep g of the vertex disjoint

path algorithm. Notice that a bridge may contain nodes which shaes edth the
selecteds-t path, but it cannot have nodes which share an edge with any other bridge. In
other words, a bridge may interfere with the initial path, but neiteramother bridge.
Given bridgeB;, suppose we are able to construct a spanning trel® farstep 2 in

such a way that thiap and therap have a path on the bridge which do not interfere

with the initial path. We only choose such bridges in the expanded bridge graph.

Additionally, when choosing edges for the expanded bridge graph, wehnase
to add an edge from bridd® to bridgeB; in the expanded bridge graph. We add the
additional restriction that edg®;( B;) will be added to the expanded bridge graph if
and only if therap of B; and thelap of B; are at least two hops away on the inigal
path (in other word&ap(B;) —rap(B;) > 2). On this expanded bridge graph, a path from
sources to destinatiort forms a pair of non-interfering vertex disjoint paths. Note that

while this technique may discover non-interfering paths, it isgnaranteed to find a
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pair of non-interfering paths even if they exist in the graplcesit depends on the

selection of the initiag-t path.
4.4.2 Finding interference aware paths

Just as we did in Section 4.5, we can choose to assign node weightigés in the
expanded bridge graph and restrict the edges which we mag #usléxpanded bridge
graph to find interference aware paths which can still pehigh throughput. A
preliminary approach to finding these interference aware veliggint paths is as
follows: for each bridgds;, assign a node weight which is the minimum valu@ af

can support with the initiad-t path chosen as the second path, after allowing for the
following scenario — thdap(B;)) may be theh™ hop along one vertex disjoint path,
whereh is computed by looking at all bridg& whoserap(B;) < lap(B;). After taking

into account all the possiblemodA\ values (which is the essential quantity of interest —
even if there are many bridges before, the number of pogsiled L values is still
bounded bya itself) we must compute the best possible valué\ftrat the bridges;

may be able to sustain even with interfering edges to thel isitipath. Similarly we

add an edge in the expanded bridge graph between [Bicgel bridgeB; only if the

two bridges do not share any edge with the ingiapath except those vertices in the
initial st path which are shared by both bridges. The edge is assignegha @fezero.

In other words, the bridgg and bridgeB; are permitted to have interfering edges only
with those nodes in the initigit path whose node numbers (along the path) are smaller
thanrap(B;) and larger thamap(B;) if an edge exists between them on the expanded
bridge graph. The path with the smallest bottleneck node weight srexpanded

bridge graph (this can be distributedly computed using a shortéstlgatithm) yields
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suitable interference aware vertex disjoint paths between sandcdestination. Here
the bottleneck node weight refers to maximum node weight alangea path. Note
that in contrast to the algorithm described in section 4.5, this appdussh permit
interference among the bridges and the ingitlpath. However, we are still likely to
fall short of the throughput realizable from the centralized algaoriproposed in
section 3.7 as the algorithm in Section 3.7 considers a much latger®mbinations

for the possible paths.

4.5 Summary

In this chapter, we have presented a distributed algorithm for fimoiederence aware
vertex disjoints-t paths to improve the throughput of wireless networks. In the context
of wireless sensor networks, it is important that the distribakgorithms used for path
problems respect the typically small packet size in massa@ networks (of the order

of 10s of bytes). The proposed approach will allow interferenceeawatex disjoint
path discovery requiring single messages communicated even underestrattivie

packet sizes.

The inherently hard nature of the problem of finding suitable routinigs platr
improving wireless throughput also raises the interesting questidmwf well a
distributed algorithm for such a purpose may perform. When packetaiwtraints are
added, this leads to even more restricted implementations for thisséduted
algorithms. Exploring the tradeoffs between solution quality and afmeunt of
resources allocated to a distributed algorithm, be they total yermmaximum packet

size or perhaps storage space, would be interesting future work.
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Chapter 5

5 Multi-radio activation

5.1 Introduction

While the first generation of wireless sensors had limited psiog and storage
capabilities, advances in technology, in combination with increaggdication
demands have resulted in more powerful second generation sensarTakesnodes
possess relatively higher processing and storage capalalifiesved through the use
of powerful CPUs, and large memories [34], [57]. These nodes arecapmble of
operating multiple radios simultaneously, each with a differentepowange and
bandwidth rating. Though such multi-radio sensors are currently gsgdteways or
cluster-heads in sensor networks, technological advancement maygsgoreween the

commonly used sensor nodes with multiple radios.

While the capabilities of sensor nodes have increased along skewets| they will
continue to be powered by batteries. Consequently, energy conseegh@msms are
of paramount importance even in next generation wireless sensorkegetwbe radios
in a multi-radio sensor node may differ not only in terms of tkkemmunication
capabilities but also in terms of energy efficiency and usaggh bBlandwidth, long-
range radios usually possess higher energy efficiency,mstef energy expended per
bit transmitted, than low bandwidth, short-range radios [80]. However, high ihdw
radios also consume more power when idling than low bandwidth radiosforbere
activating several high bandwidth radios when there is not a fladata to be

transmitted may result in considerable energy wastage. Gothibe hand, due to their
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greater reach, long-range radios can reduce the network diametsequently, the
latency involved in delivering sensory data to a prescribed destinatibdecrease
with the use of long range radios. Several of them may needdotivated when the
application demands smaller data delivery latency. Thus thea$sadio activation is

closely tied to the requirements of the application.

Earlier research on multi-radio systems primarily used atiéitional radios to
improve the network performance in several ways. The focus of such harksbeen
on transmission scheduling [74], [55], hierarchical power managemgnthir@ghput
enhancement [91], and resource discovery and mobility support [77], [67]pMulti
radios have also been used to find suitable end to end paths satesytiaig quality
guarantees [74]. There also have been works that clearly documepeértbemance
benefits of multi-radio wireless networks in real-life st [22], [83], [71]. The above
works assume that the network remains connected even when all tloe sedss
activate only their lowest power radio. However, in a gener#tinge such a
requirement on the connectivity cannot be guaranteed. Radios with pigiver and
longer range may have to be activated even to make the networkated. In [14], the
authors consider linear networks where a random fraction of the nodes network
have dual-radio functionality and apply probabilistic techniques toridesthe

connectivity of such networks.

In this chapter, we focus on energy efficient radio activatioa sensor network
where each node h&s> 1 radios. The radiasg, r»,..., I in a node are such that the
one hop reachability distance (resp. energy expended) of (resp.diy)ires greater

than that ofj, 1< <i < k. Given such a network, the problem of energy efficient radio
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activation is to minimize the total energy spent by the actides across all nodes in
order to maintain a connected network. We make several contributidns wark: (1)
We show that the problem of energy efficient radio activatiowHsComplete. (2) We
propose four different polynomial time approximation methodologiesdiwing this
problem in networks withk = 2. The first two methodologies employ a series of non-
trivial reductions to leverage on existing approximation solutionstfugr known NP-
Complete problems. The third methodology is based on the minimum spareeng tr
algorithm. The fourth methodology is a greedy algorithm thatopgsed afresh. (3)
We extend these solutions to the general cage>o® radios as well. (4) Our analytical
and experimental studies of the four solutions reveal that thdygedgorithm and the
minimum spanning tree solution have the hawstst casgerformance while the greedy
algorithm has the bestverage cas@erformance. Preliminary results from this work

have been submitted in [63].

The rest of this chapter is organized as follows. In section 5.2defiee the
different variants of the radio activation problem. Section 5.3 dissuksecomplexity
of the basic version of the radio activation problem while secbohand 5.5 describe
different solution methodologies for solving this problem. We studyattezage case
behavior of these solutions in section 5.6. Section 5.7 focuses on th&xibynof the
general versions of the radio activation problem and their solutioesstady the
average case behavior of these solutions in section 5.8. We disexagsare relevant to
the proposed research in section 5.9. Finally, we present our conclinssatsion 5.10

and outline our ongoing and future research efforts in this direction.
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5.2 Problem definition

Let w1, Vo,..., V;, be the nodes present in a wireless sensor network. Eachvinisde
equipped withK radiosry, o, ..., k. Let Rq andPx respectively be the range and power
consumption of radik. Without loss of generality 1eR; < R, <... Rc andP; < P;
<...Pk. Let l;x be an indicator variable which denotes the on/off status of katho
sensor node,, i.e.,lix = 1, if radiok is turned on in node and is O, if it is turned off.
Two nodesy; andy; are said to have atge of type ketween them if and only d(v;,

vj)) < Rc andlix = ljx = 1, whered(v;,v;) denotes the geographical distance between the
nodesv; andy;. Thus two nodes can have a maximunKadges between them.path

is said to exist between two nodesindy; if a sequence of distinct nodesvs, Vp,...,

Vm, Vj can be found such that any two adjacent nodes in the sequence leaige af

some type between them.

Given these notations, we focus on a set of related problems eachiobf i&
significant in its own way. To begin with, we consider a nekwafrdevices that have
dual radios (i.e.K = 2) — a low power, short-range radio and a high power, long-range
radio. Such devices are already available commerciallyhefshelf [34] and hence
have immediate relevance. In such networks the radio activatiatepr can manifest

in two different variations.

Problem MHP2C: In the first kind, the low power radios in all the devices are turne
on by default. As this may not guarantee network connectivity, thasatmturn on
minimum number of high power radios so as to make the network cednddtis

problem is referred to as thdinimum High Power 2-Radio Connectivity problem
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(MHP2C). Formally, given thdt; = 1,i € {1, 2, ...,n}, determinel;,, i € {1, 2, ...,n}

such that:
1) A path exists betweenandy;, i, j € {1, 2, ... ,n}, and
2) Yivq I; » i1s minimized.

Problem MP2C: In the second kind, no radios are turned on by default and the
objective is to activate the best set of low and high power radiget a connected
network with minimum power. This problem is referred to asMidmum Power 2-
Radio Connectivity ProblefMP2C). In other words, the objective is to deterniine

ke {1,2},1€{1, 2, ...,n}, such that
1) A path exists betweenandyv;, i, € {1, 2, ...,n}
2) Xy X1y X Py) is minimized

Problem MPKC: The above MP2C problem can be generalized to a scenario where
each device may have upHKoradios. The objective in such a network is to selectively
activate each of th& radios in a node to guarantee network connectivity while
minimizing the total power consumed across the active radio theanodes. This
problem is referred to as tihdinimum Power K-Radio Connectivity ProbléMPKC).
Formally stating, the objective is to determing i € {1, 2,...,n}, ke {1, 2, ...,K}

such that:
1) A path exists betweenandy;, i, ] € {1, 2, ...,n} and

2) Y YK I X Py is minimized
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As mentioned earlier, each of the three problems defined abowuseftd in their
own way. In the following sections, we initially focus on the M¥@Pproblem and take

up MP2C and MPKC problems later.

5.3 Complexity of MHP2C problem

We can also observe that the network formed by the dual-radsons nodes is best
modeled as a multi-graph with at most two edges between anyestices. We argue
that such a multi-graph can be converted to a simple graph for tHR2®Iroblem
without any loss of generality. Under the MHP2C problem, whemhalllow power
radios are turned on, the network as a whole need not be connected. dltas that
the network may remain partitioned as a set of connected componentsva\
components can communicate with each other unless they are conbgaetigh
power radio link. This necessitates that at least one node irceagonent should turn
its high power radio on and the goal is minimize the number of higlep@ios that
are turned on across all components. Figure 5.1 illustrates the@pi®blem through
an example. In the following discussions, the term low (resp. highgmpedge will

refer to an edge of type 1 (resp. 2) in the network.

Component 1 Component 2

e
=g

Component 4
Component 3

Component 5

Figure 5.1(a) MHP2C example. The solid lines repméfow power edges, the dashed lines representauger
edges. The number of high power radios which nedxtturned on in this case is 8.
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Figure 5.1(b) MHP2C example. A different way of nenting the components. The solid lines represemplower
edges, the dashed lines represent high power etigesiumber of high power radios which need touoedad on in
this case is only 6.

Theorem 1.The MHP2C problem is NP-Complete.

Proof: We show that MHP2C is NP-Complete by obtaining a reduction ftioen
minimum hitting set problenWe show that for every instance of the minimum hitting
set problem (a known NP-Complete problem), we can create an insfaheeMHP2C
problem such that the solution to the MHP2C problem is also a solutigheto
minimum hitting set problem. The minimum hitting set problem fndd as follows:
Given a collectiorC of subsets of a finite s& the aim is to find a subs8t< S such
that S contains at least one element from each subsét ithe minimum cardinality
subsetS is called the minimum hitting set. The minimum hitting set gobis known

to be NP-Complete [23].

We now state our reduction. L&, C,,..., C, be the subsets belonging @
Consider any subsél, € C. We can construct a disconnected gr&bk (V, E) as

follows. For each elememte C, V C, € C, we add a vertex , to graphG. This gives
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us a set op |Cj| vertices for grapls. The edge set db is constructed as follows. For
each element € C,, for every other element € C, an edgeg; is constructed
connecting andj in graphG. This step is repeated for eache C. Now G is a disjoint
union of cliques, with each clique representing a subset C. We now add what we
call ‘inactive’ edges to the graph as follows: for each elemente Ssuch thame C

andm € C; wherei #j, we add an edge connectwg; andv ;.

Now graphG can be viewed as a network formed by dual-radio wireles®isens
nodes with each vertex being the sensor node. The cligugsapresent the different
low-power connected components in the dual radio network. The edges aogtieeti
vertices within a component represent the low power radio links betilee
corresponding nodes. We call these edges as component edgdasadthe edges
between the cliques represent the high power radio links betweeontip@nents in the
network. An inactive edge becomes an active edge when the high povesrabboth
nodes on which the edge is incident are turned on. Let a set of high rulies be
turned on such that the set of active edges plus the componenfadges connected

sub-graphG' that connects all the componentsGn

Consider the sét = {i | vertexvi, € G'}. If v is a node whose high power radio is
turned on, then elemenbf setC, will be included in the sdil. SinceG' is connected
sub-graph of5, there exists a nodg, € Cp, V C, € Cy, Gy, ..., Ci such that its high
power radio is turned on. In other words, thet$elefined above is a hitting set ©f It
follows that the if one can determine the minimum number of nodes eddoiturn on

their high power radios to obtain a connected subg@pkhen the correspondirig
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will also be a minimum hitting set fa€. Figure 5.2 shows an example of how the

reduction works.

Set C = {C1,C2,C3} C1 ={1, 2, 4}
CcC2=4§2,3,5C3=4{1,3,6, 7}
e2

Clique C2 __.--~~  Clique C3

Make inactive edges
e2 and e3 active

<

Clique C1 Clique C2 Clique C3

Figure 5.2 Hitting set reduction. In the examplewh, solid edges are the component edges withiigjaec The
dashed edges are inactive edges, and once thembemtive they turn into dotted edges. The numbers

corresponding to the active edges (in this cagadZ3q are chosen to form the hitting set.

Suppose we could find a solution to the MHP2C problem in polynomial time. T
above reduction shows that a polynomial time solution to MHP2C wdl stéve the
minimum hitting set problem in polynomial time. However the minimiiting set

problem is a known NP-Complete problem. Hence MHP2C is also NP-Complete.

As mentioned earlier, we propose four different methodologies for sothiag
MHP2C problem. The first two employ a series of non-trividutions to leverage on
existing approximation solutions for other known NP-Complete problems thiitte
solution is based on the minimum spanning tree solution while the fouttioaadéogy

is proposed afresh.
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5.4 Solving MHP2C through existing solutions

While we can prove the NP-Completeness of the MHP2C problem usiduation
from the minimum hitting set problem, unfortunately not every ingtafiche MHP2C
problem can be mapped to a minimum hitting set problem. Consequentlyorsoloit
the hitting set problem may not be applicable for MHP2C. Hencdoule towards

other approaches which can be used to solve the MHP2C problem.

5.4.1 Node weighted group Steiner tree

The first approach we take is to consider the MHP2C problem raxi@ weighted
group Steiner treproblem. The group Steiner tree problem is defined as follows: given
an undirected weighted gragh = (V, E) with a cost functiorw on the edges and a
family N = Ny,... N of ¢ disjoint groups of nodell € V , find a minimum cost tree
which contains at least one node from each gigufphe node weighted group Steiner
tree problem is identical to the group Steiner tree problem extuaipthe cost function

w is defined on the nodes. It is easy to see how the MHP2C probleralsa be
considered as a node weighted group Steiner tree problem — if welarotise
disconnected graph formed by the low power nodes, each component fognosia
Now we need to select at least one high power radio from each grdugnaure that

the network becomes connected.

There is no readily available solution for solving the node weightedpgSteiner
tree problem. Most solutions proposed in the literature for the g8iamer tree
problem consider the edge weighted case [24], [29]. Arie Segeshbas in [75] that
any node weighted Steiner tree problem with nonnegative node costdecan

transformed into the edge weighted directed Steiner tree problenfollasvs
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(Transformation I) Let w; be the node cost associated with npdendw; represent the
edge cost associated with edgg)( If both node and edge cost coefficiemsandw;

are nonnegative and a root node is identified, the original problem daaniséormed
into the standard edge weighted directed Steiner tree probledeflsyng arc cost

coefficients for each edge |) such that the new cost coefficiemt = w; + w;.

Through Transformation | we convert our node weighted group Steiner tree
problem to a directed edge weighted group Steiner tree problem oramiséotmed
graph. Charikar et al showed in [16] that every directed group Steeeproblem
instance can be solved as a directed Steiner tree problem tmndollowing
transformation Transformation I): for each groupN;, introduce a dummy vertex and
connectx; using zero cost edges to each of the verticé. ifhese dummy vertices are
the terminals (or the required nodes) in a directed Steireiirtsgance with the same
root. After Transformation 1] the original node weighted group Steiner tree problem
becomes a directed edge weighted Steiner tree problem, whih-@Gomplete [16].
Let the number of nodes in the networkrband the number of groups beThe best
known approximation algorithm for solving the directed edge weightethe® tree
problem is by Charikar et al. [16], where they provide an algonthinh achieves an
approximation ratio of(i-1)c*" in time Of'c?) for any fixedi > 1. Setting = logg, this

is a quasi-polynomial time solution with an O(@ approximation ratio.
5.4.2 Minimum Connected Dominating Set solution

The minimum connected dominating set (MCDS) problem is definedlaw/$o given

a graphG = (V, E), a connected dominating set is a set of verficesV such that a)
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every vertex not i’ is connected to at least one membeY'dsy an edge it and b)

the subgraph induced by is connected. The connected dominating set of least size
(here the size refers to the cardinality of the set)@sniinimum connected dominating
set for G. If the objective function that is being minimized is the sumhef node
weights, then this is the weighted minimum connected dominatingrselem, which

is also known to be NP-Complete [25].

LetH = (V,E) be the given multi-radio network wheveis the set of all dual-radio
sensors anét is the set of all low power and high power edges in the networld'lzet
(V, E), whereE' € E is the set of low power edgeskin The connected components of
H' are determined. The given netwdikis transformed into a graph = (V', E” ) on
which an MCDS solution is run to find the set of nodes that needit@tactheir high
power radio. Grapks = (V', E”) is obtained fronH as follows. To each componanf
H', a dummy vertex is added. The vertex setis the union of se¥ and the set of all
dummy vertices X}. The edge seE” is the a) set of all lower power edgesHnb)
high power edgesi( V) in E such that andv are in different connected components of
H', and c) edges( u) from each dummy vertex belonging to a connected component
to all nodesau in the same connected componer®n this resulting graph, the MCDS
algorithm is executed and the dominating set is determined. Theseuof adding a
dummy vertex is to make sure that at least one vertex déawh component is selected
to have its high power radio turned on. Without the dummy vertex pibgsible that
every vertex in some component to be dominated by a connected domiseiting
containing vertices not belonging to the component. Figure 5.3 usassat ©f the

connected components of Figure 5.1 to explain this approach. The best known
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polynomial time approximation algorithm for the minimum connected dommaet
problem on unit disk graphs has been proposed by Wan et al [82] and pravides
constant approximation factor of 8. Their distributed algorithm h@xme complexity

of O(n) and a message complexity ofrfagn), which means the centralized version of

their algorithm has a complexity of @{og n).

Dummy vertex x1

Componen \

57/
lffqlﬂ

Dummy
vertex x3

Dummy
vertex x4

Component 3 Component 4

Figure 5.3 Minimum Connected dominating set tramefiion. The gray edges connect all nodes in agtothe

dummy vertex of the group. We can see that thefsebdes s, a, b, X3, ¢, d, %} form a connected dominating set.

5.4.3 Minimum spanning tree solution

The third approach we adopt for solving the MHP2C problem is to enaphtoyimum
spanning tree (MST) algorithm such as Kruskals [19]. We do thisdigrang suitable
edge weights to the links in the network. A communication link requivesddios to
be turned on. Therefore, for all high (low) power radio edges, vignass edge weight
equal to twice the power consumed by the high (low) power radios.todge radios
that correspond to the edges in the resulting spanning tree aratexttiBy its very

nature, the spanning tree so constructed guarantees that the network is connected.
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Lemma 2. The approximation ratio for the MST solution for MHP2C is 2.

Proof: The MST is constructed by sorting all edges by their edgghis and
incrementally adding these edges in ascending order to forme.altrerefore, the low
power edges are first used to construct the tree before thegbiger edges are used.
Therefore it is clear that the MST will form low power cocteel components first and

then find the suitable high power edges to connect these componentg tHenc
number of high power edges used will be no more than the number of components
which need to be connected. Since each high power edge effettiredyon no more

than two high power radios, the number of high power radios will at lneo&1, where

c is the number of components.

However, we also have a theoretical lower bound on the minimum number of radios
which have to be turned on for connectivity — one high power radio éah group
(connected component) giving us a total cobkuch radios. Let OPT represent the
optimal number of radios to be turned on for achieving connectivity inguan
network. So we know € OPT. This gives us an approximation ratio of 2 for the MST

solution.m

5.5 A greedy solution for the MHP2C problem

While the MST solution minimizes the number of high power edges required to connect
the network, it does not minimize the number of nodes that are reqaitadhttheir
radios on. In the following paragraphs we discuss a greedy approaditémapts to

achieve this while maintaining network connectivity.
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Let the termgroup refer to a subset of nodes that remain connected when no high
power radios are turned on. In other words, each group is a connectgoheomof the
network formed by using just the low power edges. Without the logsrwdrality, let
us assume that the network consists of more than one groupc@seied groupwe
refer to a group in which at least one high power radio has allesatly activated. By
uncovered groupwe refer to a group in which no high power radio has yet been
activated. Clearly, before the algorithm begins to execute, titd severed groups:,
is empty, while the set of uncovered grougscontains all the groups. A node is said
to be a covered node if it belongs to a covered groupv bet a vertex belonging to
groupN;. The span of a nodeis the number of neighbovssuch that: (a)y,v) is a high
power edge, (bl andv belong to different groups, and (¢)pelongs to an uncovered
group. Given a network with nodes anan high power edges, the span of every noede
can be easily determined in3{n) time after determining the connected components

formed using low power edges.

Our polynomial time approximation algorithm, namédly-A, for solving the
MHP2C problem is given in Figure 5.4. At each step, we selechadlde with the
highest span. We turn on the high power radio of the node. Weedés the node’s
high power neighbors; one from each of the groups spanned by the nddetiaate
their high power radios as well. After the activation, we updatespans of all the

nodes in the network and repeat the process.

1)Initialize the span of all nodes

2)Do whileu # @

a) Select node vmax with highest span. Turitohigh power radio.
b) For each uncovered group N' which is a rieaglof vmax

i) C<CUN

ii) U< ULN
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iii) Selectu € N' such thati andv,,.« share a high power edge; turnés high power radio
¢) Update the span of each vertex in the né¢wo
3)End while

Figure 5.4 Approximation algorithilg-Afor solving the MHP2C problem.

Time Complexity ofAlg-A: If we have a total o€ groups in a network with nodes

andm high power edges, the outer DO-WHILE loop requires at mas¢ps. We can
construct a max heap such as the Fibonacci Heap [19] using theapas of each
node in Of) time. In the entire execution of the algorithm, at mostodes will be
removed and at most decrease operations are performed (SR the heap. These
operations on the Fibonacci Heap is very similar to the operatiqngead to execute
the Dijkstra’s shortest path algorithm [19]. Hence the totakttaken to remove the
nodes and update the span values wiliba logn. Therefore the total time complexity

is O(cm+ nlogn).

5.5.1 Approximation ratio

Lemma 3. The approximation ratio ohlg-Ais 2. Proof: We derive the approximation
ratio of Alg-A while observing that it is a loose bound and there may be scope for
tightening it. Recall that in each step Aify-A (the outer loop), at least one group is
selected and added to the covered set C. We turn on exactly dneolwgr node per
uncovered group added at each step. Also, the high power radio ofpeieturned

on. In other words, if we adalgroups to the covered set at any step, we turn on exactly
p+1 high power radios in that step. Since we must necessaritt setegroups in the

first step, we effectively execute the outer do loop no more ¢Hatimes (assuming

we would have a connected network if all high power radios wered on). If the

outer loop executes1 times, then we add at most 2 high power radios per step fsince
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= 1 at each step). Hence at the end of algorithm execution, weuraed on at most
2(c-1) = Z-2 high power radios which gives us an approximation ratio of 2 (bygiotin

that we need to turn on at least one radio from each component tthioiconnected

graph).m
Algorithm Approx. Ratio | Complexity
Directed Steiner Tree[16] legoge-1) On"°%)
MCDS[82] 8 Of°logn)
MST[19] 2 Ofnlogm)
Alg-A 2 O(cmtnlogn)

Table 5.1 Approaches for solving MHP2C with ¢ greup

The approximation ratios and the time complexities of differeRPRIC solutions
discussed so far are summarized in Table 5.1. The asymptodccomplexities of
MST and Alg-A look comparable and their approximation ratios are same as well.
However, as we will see in the following section, our experiniasitaies validates the
fact thatAlg-A outperforms MST (in terms of the number of high radios activated) in

the average case.

5.6 Performance evaluation of MHP2C solutions

The analytical studies carried out thus far have revealed thé¢ eases performance of
the different solutions. However, a more useful metric in practadd be the average
case performance of these algorithms. We investigate thagevease behavior of the
different solutions through simulation experiments. We use the LEBphgalgorithms

library [2] to implement the different algorithms for our simulation.

We use two types of radios for each sensor node. The low power radiadnage
of 2.3 units while the high power radio has a range of 5.5 units. The pegered to
activate the low power and high power radios are fixed respectwdlyand 29 units.

The power values are derived from the standard assumption that theqomsamed
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by an active during transmission is proportionaitovherer is the range anfl is the
path loss exponent. In our setting, we have tgken3.98 [27]. We randomly plage
nodes in a square grid. We increase the number of nodes in the netacrk
correspondingly also increase the square area of the network teokaep the node
density constant. With this approach, we observed that the number gboaer
components created in the graph were almost uniform (variationhi@ssl0%) for a
given number of nodes. The number of nodesere increased from 250 to 1800 in

order to vary the number of low power components from 50 to 400.

We study the performance of the following four MHP2C solutighsSteiner tree
solution, (2) Minimum Connected Dominating Set (MCDS) solution, (3) Mimm
Spanning Tree (MST) solution, and (Mlg-A, which is a greedy solution. The
performance of these solutions is studied by varying the numbeovofpbwer
connected components in the network and the average number of high pdiwer r
activated per component is observed. The results of this study are shéwure 5.5.
Solutions with superior performance should have this average cto4ed@ — higher

values indicate poor performance.
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Figure 5.5 Average case performance of different?8 solutions

From the graph, we can clearly see that for networks witlerfeomponents, the
Steiner tree solution has a good performance. However, as the noindeenponents
are increased, its performance degrades and is dominatdd-Byand MST. Between
Alg-A and MST, we see thalg-A consistently outperforms MST. Therefore, even
though these two algorithms have similar worst case performance tiared

complexities Alg-A might be preferred on account of its average case performance.

5.7 The MP2C and MPKC problems

Having discussed the MHP2C problem, we now take up the other two psphH2C

and MPKC. To begin with, we discuss the complexities of these two problems.

Lemma 4.The MP2C problem is NP-Complete.

Proof: The MP2C problem contains the MHP2C problem as a special dasesiwthe
cost of the low power radios is zero. This means that one can tuthtioa law power
radios to form connected components, without increasing the totafjyecests.

Solving the MHP2C problem on the resulting network will also provigeanswer to
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the special instance of the MP2C problem. Since MHP2C is diRplete, MP2C is

also NP-Completes

Lemma 5.The MPKC problem is NP-Complete.

Proof: The MPKC problem contains the MP2C problem as a special case Whe?2.

Hence the MPKC problem is also NP-Complete.

Recall that in the MHP2C problem, the multi-graph representatioineofiven multi-
radio network can be reduced to a simple graph without any Itiss solution quality.
However, a similar reduction in the case of MP2C and MPKC prableith decrease
the solution quality. Nevertheless, we still apply such a reduatiarder to leverage
on the resulting simplicity of the solution. We provide a polynomiaheti
approximation algorithm for the MP2C problem which makes use of theopsty

discussedilg-A solution for the MHP2C problem.

5.7.1 Approximation algorithms for the MP2C problem

An approximation algorithm, termedlg-B for solving the MP2C problem is given in
Figure 5.6.Alg-B works as follows. In the first step, we find all the connected
components formed by using the low power radios alone. Then, in stepugewbe
previously describedlg-A to find the set of high power radid4; which need to be
turned on so as to create a connected graph. At this stepntagrbe some redundant
low power radios which have been turned on in step 1. Such radios ar&edenrid
turned off in step 3. For example,Afg-A turns on multiple high power radios within
the same component, then these nodes, by virtue of being connected tth@unggh

power radios, can all turn off their low power radios (excluding oneyveier, if any
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of these nodes happen to bat pointswith respect to the low power radios of the

component, then clearly their low power radios cannot be turned off.

Lemma 6. The approximation ratio oAlg-Bis (2o +1)/(a+1), wherea = Py/P., Py is

the power consumed by the high power radio in active state, ansl the power
consumed by the low power radio in active state.

Proof: Suppose we havenodes in the network. In the caseAdd-B algorithm, we will
turn on a set of high power radios first (step 2). Suppose we turimigh power radios.
The power required for this isP4. Notice that steps 3 and 4 do the following — they
remove certain nodes from the candidate s&t;oEffectively, for these nodes, we do
not need to turn on the low power nodes since they are connected netiak
because of their high power radios already. ¢.elbe the number of nodes removed
from candidate se& (i.e.gi = MVi|-IS|). Letg =>.g;, 1<i <p. The number of low power
radios which need to be turned on will then brg) and the total power required by the
low power radios isn-g)P.. So the total power consumed by all the radios uAteB

is hPy + (n-g)PL.. The maximum value oh is reached whein = (2c-2) and the
minimum value ofy is reached wheg = 0. Hence the total power consumed urflgr

B is at most (2-2)Py + nP_.. Whenc > 1, the minimum power required to connect all
the components iBP_+cPy. It can be easily verified that the resulting approximation

ratio of (P_+(2c-2)Py)=(nP.+ cPy) is bounded by @+1)/(a+1) whereo = Py/P.. m

1) Find all the componen& = {C,, C,, ..., C} by turning on low power radios

2) RunAlg-Ato find the set of high power radi¥g that has to be turned on to connect all the
components

3) For eachcomponentC; € C /* Post processing */

a. Let§={V;|V,; € C be the candidate set of nodes in compofignt

b. Find the set of articulation pointgof C,

c.  Turn off all low power radios iG;
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d. Turn on all high power radios in 8¢tN C
e. For eachconnected subgraghi = (V', E') such tha¥' c C;
i. Construct, = {V; |V, € V' andV, & Vj}
ii. Randomly seledts € V., andS =V U § -V, (i.e. except for randomly select¥dremove
other nodes
invV' from the candidate s€&)
iii. Using the selected, as root construct a spanning tig®n S

iv. Turn on low power radios of all nodasspanning treg;
f.  End for
4) End for

Figure 5.6 Approximation algorithilg-B for solving the MP2C problem.

Time Complexity of Alg-B. The time complexity ofAlg-A which is called as a

subroutine, dominates the complexity Alg-B. It can be shown thatlg-B's time
complexity is O¢m+nlogn) whenc components are created by activating only the low

power radios.

Remarks. We note here that a MST based approach can also beruseldihg the
MP2C problem. Such an approach will be identicalip B described in figure 5.6 but
for step 2 which will be replaced by the approach described wedton 5.4.3. It can

be shown that as withAlg-B, the total power consumed under the MST approach is at
most nR +(2c-2)Py. Hence the approximation ratio for the MST based solution for

MP2C will also be bounded byd2 1)/ + 1).

One can also develop solutions for MP2C based on the Steiner tree d08 MC
solutions. However from the discussions in sections 5.4, 5.5 and 5.6, one cdhanfe
such solutions may not have a superior worst case or averageaas@ors in

comparison tAlg-Band MST. Hence, we do not consider such solutions.
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5.7.2 Approximation algorithms for the MPKC problem

A similar approach could be used for solving the MPKC problem, wbeeecould
progressively turn on all the lower power radios and keep forncimgnected
components up to thek{1)" radio. The algorithm, termedlg-C works as follows.
When radios 1 through i <K are turned on in all the nodes, the network may not be
connected but be composed of several componentsCéLdEnote the connected
componentq when radios 1 through at mostre activated in all the nodes in the
network. To begin with all thé(}s and(,‘gs in the network are determined. Any given
component/ in the network will be composed of a sub$gbf C;s. This subsef; is

fed to Alg-B described earlier so that the compong&htan be determined such that
power consumed by the active radios across all the nodég in form C?s is
minimized. The process is repeated for offjer andC;s. Now, the differen;s in the
network are determined and the subSgtof ¢ s that comprise a give6® are
identified. These are then fed &dg-B to form the differentC;s in the network with
minimum power consumption. The above process is repeated until a(ﬁ}rigleutput
from Alg-B.

Lemma 7. The approximation ratio ofAlg-C is bounded from above by
(1+4ak)/(1+20k) Whereax = Px/P1, Pk is the power consumed by the highest power
radioK in active state, an@; is the power consumed by the lowest power radio 1 in
active state.

Proof: Suppose we have nodes in the network. Let the power for radios 1,K.he
respectivelyP;, Py, ..., Px. Let C; denote the number of components in the network

formed when radios up tel are turned on in all the nodes. Similar to the discussions
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in the proof for lemma 5, the minimum power required for connectiegnétwork will
bePnin = NPy + CP, + ... + CkPk. The maximum power required und&g-C will be
Pmax = NPy + (2C-2)P,+...+(2Ck-2)Pk which is less thanP;+2C,P,+...+ 2C«Pk. The
maximum value ofC; is obtained whel€; = n. Let us discuss the maximum possible
value forC;. Recall that radios of type 3 will be turned on only for nefelymed
components — in other words, if an already existing component formegl naslio of
type 2 does not connect to even a single node that lies outside the component by turning
on radio 3 in any of its constituent nodes, then no node in that compotientwon
radio 3. Given the above fact and that maximum valug,a$ n, the maximum value
of Czisn/2, i.e., components at the level of radio 2 should get paired ugnding the
discussion, we can show that the maximum valu@,ai<i<K will be n/2"2. Also, C,P,

+ ... + CxPx < CoPx + CsPg+... + CkPk which is again less thamB«. From these, we

can derive thaPmna/Pmin < (1 + 4k)/(1 + 20k).m

Time Complexity ofAlg-C. The time complexity oAlg-Cis also dominated by that of

Alg-Awhich is called as a subroutine. Unddg-C, whenc components are created by
activating only the low power radio8lg-A is invoked on each of thesecomponents

no more tharK times. ThereforeAlg-C's time complexity is G{cm+ Knlogn).

Remarks. UsinAdlg-C's framework, a MST based approach can also be applied for

solving MPKC by replacind\lg-B with the MST based MP2C solution. Using a similar

argument as shown for the MST approximation for the MP2C problencaweshow
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that the MST based approach to the MPKC problem has an approximatoof @ +

da)l(L + 20).

5.8 Performance evaluation of MP2C and MPKC solutions

As before, we study the average case performance of the MR2MPKC solutions
through experimentation. When the MP2C solutions are studied, the somdettings
remain the same as in section 5.6. Figure 5.7 shows the perforofaficeB and the

MST based solution for the MP2C problem. The number of low power connected
components in the network is varied and the average power consumesl actbe
active radios in a component is observed. A solution that lowersvitiage value is
desired. From the figure, we can clearly see &igtB consistently outperforms the
MST based solution thereby showing tidg-B has a better average case performance

than the MST based solution.
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Figure 5.7Average case performance of different MP2C solstion
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We also studied the performance of the two MPKC solutions bygdt= 3. The
simulation settings remain same as before, but for the factaithadditional radio is
introduced at each node. This new radio has a range of 4 distancanghds energy
consumption of 9 energy units. The performanc@lgfC and the MST based solution
are shown in figure 5.8. From the figure one can clearly seétgaf maintains the

trend by outperforming the MST based solution.
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Figure 5.8Average case performance of different MPKC solitiemaluated for K = 3

5.9 Related works

Multiple radios have many benefits, and they have been exploitediifferent
functions in earlier works. In [74], the authors use dual radios to prowpl®ved data
transmission scheduling. In [55], the authors use dual radios with theoleer radios
exchanging pulse messages which synchronize the other radio used tdor da
communication. In [79], the authors present a hierarchical power mangigecheme

involving radios on sensor motes, PDAs and laptops (the three togetbesidered as
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a single device). In this work, the low power radios wakeup the higlerpmadios in

such a way as to elongate the lifetime of the network.

Zhu et al. [91] propose wireless protocols that exploit the knowledgeexistence
of multiple radios to improve the system throughput. Bilstrup et al. diide the
network into clusters and use multiple radios for inter-clusteeduling to break the
dependence between local medium access schedules of adjacems.chisre the use
of multiple radios helps improve the system throughput, while alseiding better
network connectivity. In [77], the authors propose using one of the mulsigies for
resource discovery, which allows a low power radio to be always rothdéosake of
discovering network resources. The high power radios are turned on loetyamwvake
up message is received. In [67], the authors use multiple rad&okierarchical radio
structure for providing mobility support. In [80], the authors use the lowepoadios
to find suitable end to end paths satisfying certain quality gtega. Recently, dual
radio testbeds are also being increasingly evaluated for thérmpance benefits [22],
[83], [71]. The improvement in system performance measured alorguyatifferent
parameters has shown the feasibility and utility of multi-radiovoeks. The above
works assume that the network remains connected even when all toe sedss
activate only their lowest power radio. The raison-d’etre dar power radios in most
of the existing research is to turn the high power radio on wheanreel to create
alternate paths. However, in a general setting, such a requireméhné connectivity
cannot be guaranteed. Radios with higher power and longer-range mayohhe
activated even to make the network connected necessitating thequrapok. While

our research may seemingly appear similar to other worksatlast the power levels
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of radios for performing topology control [85], [73], it differs from Buworks in a
fundamental way: we have multiple radios at each sensor node (asdppasegle
radio in these works) and we selectively activate one or motgeof ait each sensor;
the individual power levels of the radios are not adjusted. In [14hutiers consider
linear networks where a random fraction of the nodes in the netvawd dual-radio
functionality and use probabilistic techniques to describe the cawviheaif such
networks. Our work provides deterministic solutions, is applicable nip gven

network topology, and also considers the general casearios.

5.10 Summary

In this chapter, we studied energy efficient radio activationiial@ss sensor networks
where each node h#s > 1 different radios. We showed that achieving optimal radio
activation that minimizes the total energy spent by the actigi®ms across all nodes
while maintaining network connectivity is NP-Complete Kore 1. We proposed four
different polynomial time approximation algorithms solving the optimatlio
activation problem. Our analytical and experimental studies rekiatlthe proposed
greedy algorithm and the minimum spanning tree solution have thewvbestt case

performance while the greedy algorithm has the bestage casperformance.
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Chapter 6

6 Energy aware network decomposition
techniques

6.1 Introduction

Wireless communication consumes a significant amount of enerdyit & important
to minimize the energy costs for communication as much as podsibpracticing
energy aware routing strategies. This is very importantdos@ networks where the
energy is an important non-replenishable resource. Routing #satsm increase the
network lifetime. Network lifetime is quantified as the numbepatkets that can be
transferred in the network before the source and destination getksted from each
other [48, 65]. A suitable energy-aware routing strategy foeless networks is to use
those wireless nodes with high energy levels and avoid thosdomitenergy levels.
The routing strategies on sensor networks involve the followingrglesieps, a) find

routes; b) perform routing; c) update network values and perform step a).

Consider a centralized algorithm wherein a single node (aadhiral node) keeps
track of the topology information. The central node will deterntivgeroutes (step a)
by executing a local algorithm. When a source node requiressage to be routed to
the destination, it sends a request to the central node which wiltlprthe entire route
to the destination. After the receipt of the information from #réral node, the source
node can perform routing (step b). Assuming that the source node foHevexact
route provided by the central node, the central node can determiapedigy changes
of the intermediate node (without the intermediate nodes explicitbrming the
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central node) and re-compute the routes locally for the next regiest. In addition to
the energy consumed when packets are routed along the route patly, isnaisp
consumed at intermediate nodes along the path from source to c#tetrahd vice-
versa for route request and response. This straight-forwarditlatgohas all the
weaknesses of any centralized algorithm such as lack oftédednce and problems
associated with hot spots created by request/response informationrigaiceind from
the central node. In fact with repeated route requests it ysteasbserve that the
neighbors of the central site may quickly lose energy themeddying the central node
unreachable and consequently decreasing lifetime. One could choose @emteal
node and use a simple distributed algorithm such as the distribyitd fitst search

[76] to learn the topology of the network including the node and link information.

Yet another weakness of the centralized algorithm is thaafge resource limited
sensor networks a single central node may have neither the sppaitycto store the
entire network nor the computation power to compute the paths in apsrmd of
time, or even enough energy to perform the computation. In thipiarn” model of
centralized algorithms all nodes behave perfectly as instrimgtehe central node and
the central node is able to compute real time and accurate itif@nradout the energy
levels of the nodes in the network. Even if such a utopian model wherblpotse
reliability of the central node itself (being a sensor, it gsialy prone to die, or
experience lossy links to neighbors) as well as the lack cdilstgl of this approach
(as more sensors are added, the rapid rise in communicatisracegelt acutely at the
neighbors of the central node) makes the centralized algorithny riesgmiactical for

implementing in a sensor network.
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Given a distributed system consisting of computational nodes, abulist
algorithm solves a particular problem of interest by exchangiagsages among the
nodes. In the distributed system each node knows its neighbors byutigire
identities and the total number of nodes in the distributed systendistAbuted
algorithm is evaluated based on the total humber of messagengedh@essage-
complexity and the time-taken for the completion of the distributed algor{time-
complexity. Depending on the problem to be solved the distributed algorithmbaust
rerun after a node or link update either on the entire network or a portion of tleelaetw
Distributed algorithms are scalable as it does not requinegéesnode to keep track of
the entire topology information. The fundamental weakness of theibdisd
algorithms for sensor networks stems from the fact that atep b) of the routing
strategy is completed, the intermediate nodes have new eleg)g and now the
distributed algorithm to determine routing paths (step a) has te-&eecuted. That is
after each route request is complete the distributed algorghetnun and thereby the
message complexity is overwhelmed by the number of route redghastsave been

completed.

From the above discussion it is clear that the centralizedithlgois message
efficient, but ineffective on lifetime as a result of hot s@otd other issues of relating
to a centralized site. The distributed algorithm addressesdéfieiencies of the
centralized algorithm but is ineffective in terms of lifetirdee to large number of
messages required to recompute the routing paths after a comgiesi route request.
Our goal in this chapter is to introduce a network decomposition agptbat will

combine both the centralized and distributed approached described above by
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decomposing the network into smaller networks (referred tcclasterg. The
centralized algorithm is executed on each cluster and thebdiswli algorithm is

executed on the central nodes (referred wwster headlof each cluster.

Network decomposition to akin to divide-and-conquer approaches to problem

solving wherein, a larger problem is broken into smaller sub-prokdechsolutions of
the smaller sub-problem are combined to arrive at the solutidmettatger problem.
Network decomposition has been effectively used to solve many pmbiesequential,
parallel, and distributed environments [21]. Network decomposition technigves
shown to reduce the message complexity of distributed algorithms by (i) peseitine
network into a set of connected components, (ii) run a pseudo-distribgtedheth on

each connected component (we will call thidwster), and (iii) solve the optimization
problem by executing a distributed algorithm involving cluster headadi cluster. A

node that is along the path connecting two cluster heads will only forwardgesssa

Using network decomposition approaches one can alleviate the praielemnitsng
in having central site. Updates in each cluster are sent ¢tugter head. The cluster
heads perform a local computation using the topology information as icafee of
centralized algorithm. The cluster heads communicate usin@*mata and execute a
distributed algorithm to solve the problem at hand. Conceptually Sieceumber of
cluster heads is smaller and that fewer nodes will participatéhe distributed
algorithm the message complexity could be smaller. The abosehae been used to

solve many distributed algorithms effectively [4].
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Awerbuch and Peleg [5, 6, 7, 8] have published a series of sewonie in the
area of distributed algorithms that uses the concept of network gesdion. These
works and the work by Linial [51] and Naor and Stockmeyer [64] exploit the concept of
“locality” in distributed computations. The concept of localityhattcertain functions
when locally computed do not affect the global solution. For certablgm the
solutions of the local computation can be cleverly combined to obl@balgsolution.
Considering network problems on networks that have been decomposed, certain
coloring problem instances can be solved efficiency for the emgingork by cleverly

stitching together solutions for each cluster.

Several wireless sensor network routing schemes that uthigeconcept of
“hierarchy” and “clusters” have been proposed before in literat@er work differs
from the existing body of literature in several ways. Irstxg works, the clusters are
defined based on geographical location and/or radio reachability aloosterCl
formation in such works is not directly related to the objectifenaximizing the
network-life time as done in our work. Also, very few of the @xgsthierarchical
routing schemes have their objective as network life-time miaation. Further, the
benefits of using hierarchical routing and intelligent cluster &ion on network life-

time have not been clearly and quantitatively documented in existing works.

The rest of the chapter is organized along the following.linessection 6.2 we
introduce the widest path problem and its application to improving netwetiknke.
We present an algorithm to perform widest path routing (or cahedmaximum
residual energy path routing) given a set of clusters. Idéabrie decomposition for

suits better for network lifetime is described in section 6.3 ardk@mposition
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algorithm for such decomposition is also presented. In section 6.4&psarsentally
validate that network decomposition is the ideal approach to improvingorket

lifetime in sensor networks. We conclude in section 6.5.

6.2 The Widest Path Problem: A Network Decomposition Approach

In this section, we first describe the relevance of the widat problem to lifetime
aware routing on sensor networks in section 6.2.1. Given the need to flequent
compute the widest path (or a variant) on the network, section 6.2 2ptheides a
network decomposition approach for doing the same. The energy costs invotiied

network decomposition approach are discussed in section 6.2.3.

6.2.1 Relevance of widest path to lifetime aware routing

In developing energy aware routing techniques, wireless netwayekanodeled as
graphs wherein, the vertex represents a wireless device andganbetween two
vertices indicates that they are in direct communication rafigeach other. The
weight on a vertex indicates the residual energy availaltltattvireless node and the
weight on an edgeu(Vv) represents the amount of energy required by nddesp.v) to
transmit one unit of data to noddresp.u). Theresidual energy of a patis defined as
the minimum energy level of any node in the path. The max-minngp&aradigm
suggested in the literature [1, 48, 81] aims to maximize the netietiknke by finding
the path where the residual energy is the maximum and forwarkstpalorough this

path termed as theaximum residual energy path

Let G = (V, E) represent a wireless network with nodeand edge&. Letw(u), u

€ V, represent the available energy at nadelLetc (u, v), (U, v) € E, be the energy
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required to transmit a packet from nade nodev. We assume that(u, v) =c (v, u),

for all (u,v) € E.

Let P(vo, W) = Vo, V4, ..., Vk, be a path irG. The energy of the pat?(vo, Vi) denoted

e(P(Vo, W) is given by

e(P(vo, i) = 2Ky (Wi, Vi41) (1)

Theresidual energy of a patB(vo, vi) denoted (P(vo, W)) is defined as
r(P(vo, Vi)) = min(w(vi)-c(vi,vi+1)), 0<i < k. (2)

When a packet is sent alofgvo, V), we need to perform the followingnergy
decrease operatioon each node along the path except on the mpde(vi) = w(v;) —
c(vi, vi+1), 0<i < k. That is, after the packet is sent by a node, the energyoletres

node is decremented by the amount of energy required to send the packet.

Let Gy be set to the initial networ. Assume thaPy(s, t) is a path inG,. Now
after routing a single packet along the pg(s, t) and applying the decrease operation
we obtain a new netwoi®;. In the networkG; the edge weights are the same aSgn
but the node energy levels are different. If a nddeenergy level becomes 0 after the
decrease operation, nodand its associated edges ) € E as well agv, u) € E are
removed from the network. For the second packet we can again iaithB; (s, t) in
G; and the process continues until there exists no path beseaet in some network
Gk. That is, we can send at moastpackets froms to t before the network is
disconnected. The goal of thetwork lifetime problemwith respect to a sourseand
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destinationt is to find pathsPy(s, t), Pi(s, t),... Pxa(s, t), such that the value d&f is

maximized. Here we would like to point out that while our godabisnaximize the
network lifetime, it has been shown that computing the valkeasoNP-hard [65]. The
work by Mohanoor et. al [62] provide an algorithm for computing the widatt and
investigate prior work in the area of lifetime for sensor netsor The algorithm
described in [62] converts the original network into residual enertyyonle as given

below.

We will begin by outlining a description of the widest path whglused in the
solution of Mohanoor et al [62]. The gra@his modified into an energy gratG = (V,
E’) as follows. We leave the vertices intact but replace eagtesindirected edge @
with two directed edges. The weight of a directional edgeGris made equal to the
difference between the originating node’s energy level antrahemission cost along
the edge. This is also the residual energy of a node asedefi Li et al [48]. In Figure
6.1 (a) we have shown an example wireless network and in Figureb)%.1hé

corresponding energy graph.

Figure 6.1 (a) A graph showing energy levels atascahd energy required to transmit at each edggird=6.1 (b)
shows the corresponding energy graph.

After obtaining the energy graph an algorithm similar to the s$tgoteth algorithm

is executed to obtain the maximum residual path.
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6.2.2 A network decomposition approach to distributed widest path problem

Our goal in this section is to describe an algorithm thatstaklwantage of the clusters

that are formed as a result of the network decomposition. In #ieseetion, we will

construct the clusters taking into account lifetime issues apddts. The following

algorithm provides a way to find the widest path on a network. Aswil describe

later, what we compute here is an approximation of the widdstpahich we term as

a ‘weak’ widest path.

a)

b)

Form a set of clustefs;, C,, ..., Cx from a given networks=(V, E). Leth; € C

be the cluster head,<li < k. With eachh; as the root construct a spanning tree
distributedly that includes only the nodes@ Learn the topology of the
network induced by the nodes in the clusigr Let the network learned be
G(Ci). The networks(C)) is stored aby. Compute all-pairs widest path &{C;)

ath.

For each cluste€; find all its neighboring clusters. Two clusté&sandC; are
neighbors if there exists a nodee C; andv;, € C; such that\j, v) € E. Let
N[Ci] be the neighbors of; and letd(C;, C;) = maxy,,».yer d(vij, vji) where

vj € Ci andy; € Cj, andd(v;, v;) represents the weight of edgg, (). (In this
case, the weight is the residual energy of the edge inrbeye graph as
calculated in Figure 1(b)). BotN[C] andd(C;, C;) can be determined during
the learning step as mentioned in step a).0'Btbe a distance vector stored at
cluster headh;. Initially, for each neighboj e N[C], D'[j].d =d(C;C;),
otherwise it is set to zero.
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c) Execute a distance-vector distributed algorithm using thartdistvector®'[]
stored at cluster heatls Let us denot®'[K].nh = C; to be a next-hop neighbor
of clusterC; along the widest path to clus@. Let D'[K].no =v; andD'[k].n; =
v;j be the nodes identified in step b). A message from one chesielh; travels
to a neighboring cluster heag along precomputed paths between the two

cluster heads. The vectdl] is sent fromh; to v;j along this precomputed path.

Since only the weight on the edges joining two clusters (i.e. tlugds) is
considered for computing this widest path, it is quite easy tahsdewhat we are
computing here is only an estimate of the widest path between tves betbnging to
different clusters. Hence we refer to it as a ‘wealdest path. However, Mohanoor et
al.[62] have shown that while it is important to choose high resicheabg paths, it is
not necessary to use the ‘widest’ path to extend the lifetimsufficiently ‘wide’ path
will suffice, a fact which is also borne out by other works inlitezature ([1], [48],

[81]).

Once the distance vector algorithm has been executed distribwtediyould then use
the results of this algorithm for the energy aware routing. follewing steps show

how the actual routing is performed.
Lets € Cj andt € C,.
1) If G andC; are neighbors, then follow steps below:

a. Nodeswill askh; the widest path frorato ;.
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b. Nodeswill next send the packet along the widest path; tmdicating to

it that it should send it tg; and it is meant forwhich is inC;.

c. The nodey; upon receiving the message will requgdbr a widest path

tot.
d. Upon receiving the widest patf will send the message to

2) If C; andC; are not neighbors, then IBY[j].nh=C,. If D'[K].ny = s andD'[K].ny
= tx , route the packet fromto s, and makes = ty, andi = k. If i andj are now

neighbors, execute steps 1(a)-1(d), else execute step 2.
6.2.3 Energy costs

The energy costs incurred by using the network decomposition techeitawe-fold:
the cost of updating the energy levels of all nodes within a cltestiére clusterhead,
and the cost of executing the distributed algorithm among the clustisthe
Furthermore, the cost of updating the energy levels of all nodémvat cluster is
assumed to be a one-time cost. Since we presume that a sendasewihe route
suggested by the cluster-head, it is possible to compute theaskedrenergy levels of
all the nodes along the route. This is true of all the internmeediaties which are
involved in forwarding packets — our scheme ensures that a bleaters aware of the
instantaneous energy level of every node within its cluster whiasad for any given
st request. As we have precomputed routes along which a cluster ndde
communicate with its clusterhead, the energy cost involved atreate in this request-
reply process is also known to the clusterhead. The energy casteofiting the
distributed algorithm is not a one time cost, as we can cleadythat the bridge with
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the highest energy level would keep changing as we keep fonggudckets. When a
clusterhead becomes aware of the fact that the bridge linkrchsse highest energy
edge is no longer the one with the highest energy, it inittageslistributed algorithm
between the clusterheads once again. The final energy costechdwyrthe network

decomposition technique must take into account both these costs.

6.3 Network Decomposition for Improving Lifetime
In the previous section we have presented an algorithm to compudst \path given
the arbitrary network decomposition. The following are some of désrable

properties of any decomposition.

a) The diameter of each cluster should be smaller. The diaofaeslustelS denoted
diam() is the longest shortest path value in the subgraph induced by no8les in
Given that some node in the cluster will be chosen as the clusigrthe number
of hops required to communicate with the cluster head should be snirdiéucing
the number of nodes in the node-cluster head path will result inyesaung
thereby increasing lifetime.

b) The number of nodes in each cluster should be bounded. Clearly, the tee of
cluster and the number of clusters is a tradeoff betweeantrgy consumption as
part of the intra-cluster centralized and inter-cluster distributed congngat

c) The number of clusters should be smaller. Keeping the number tdrslgsnaller
would reduce the inter-cluster communications required by theibdisd
computation. Finding a minimum number of clusters satisfying theedex

constraint is same as the partition into cliques problem [23] which is NP-complete
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d) The number of bridges from each cluster should be high. If themmare bridges
then the inter-cluster distributed computations can use more paths tuster
containing the destination node and thus improving lifetime. It Isanbe said that
the anchor nodes connecting the bridges should have high residual €neegiy is
going to see more traffic as part of the distributed computatonvadest path

routing.

A distributed algorithms along the lines described in [8] can bd fmeobtaining a
desirable decomposition. The distributed algorithm presented itaf@ sonstructing
a breadth-first search tree in a distributed fashion. As thedtirdirst search tree
grows we can stop further exploration if either the desired depth bmuside bound
has been reached. The choice of which node to explore (or to be aexi® will

provide a tradeoff between a)-c) of the desirable properties.

A formal centralized algorithm for the network decomposition takig account
the desirable properties above is given in Figure 6.2. Inigogithm Decompose, the
parametersk; and k, specify bounds on the size and diameter of each cluster,
respectively. The parametedefines a fraction that is used to select the set of high
degree nodes (to increase the number of bridges). For notational pueios@s
denote the either the degree or residual energy of awnadé¢he network. It can be
shown that the time-complexity of the above algorithm fan aode andm edges

network to bed(mlogn).

The basic idea behind the algorithm is to start with an arnpitrartex and add

nodes with low value gf one at a time. As we add nodes to a cluster we have to make
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sure that the size and diameter constraints are satisfieter Wé add a sufficient
number of nodes with low value pfwe have to start adding nodes with high valug. of
We will be adding nodes to the cluster in such a way that theecigsh connected. It
is quite possible that after adding the nodes with low valugs thie diameter of the
cluster could reach the desirable diameter, thereby preventingdthigon of nodes
with high values op. Clearly, the order in which nodes are added is going totélicta
the size and diameter of the cluster and eventually decide the nomtlesters that
are formed. Since the partition problem is NP-complete (as\aas@reviously), our
goal is to provide a better heuristic. Among the nodes thabeatonnected to the
existing connected cluster, we will choose low or highalue nodes, depending on the
current size of the cluster. One could also choosegigtiue nodes after the diameter

has reached a particular value.

Algorithm Decompose@, k;, ko, f)

begin

1. SetP« @

2. Select an arbitrary nodee V andV « V — {v}
3. while (V= ®) do

4. SetS<« {v}

5. L « construct a min-max heap withh values of nodes which are immediate
neighbors of (N(v))

6. while (|9 <ky) and (diam() <k,) do

7. if (|9 xf<k)then

8. u < L.deleteMin()

9. S« Su{u}andV « V- {u}

10. for each node € V andx € N(u) do
11. L.insert§k) based omp (x)

12. end for

13. else

14. l<—k—-5

15. while (i > 0)and (diam(@©) < k,) do

16. U < L.deleteMax()

17. S« Su{u}, Ve V—-{u},andi«i-1
18. for each node € V andx € N(u) do
19. L.insert§k) based op (x)

20. end for

133



21. end while

22. end if
23. end while
24 P« PUS

25. Select a node € V such that it has maximum number of neighboiG(iR) (the
26. graph included by the verticesi

27. end while

28. return P

end

Figure 6.2 Network decomposition algorithm

The algorithm Decompose described in Figure 6.2 provides a suitaiwerke
decomposition strategy that results in clusters which salisfynultiple and sometimes
conflicting constraints — for example, we would like to bound the sitleeofluster but
also restrict the total number of clusters. Clearly, someetffs are involved in the
construction of suitable network decompositions. Besides, one may alsdditichal
hierarchical strategies to find a balance between the nuofldusters (and thus the
number of messages used for the distributed algorithm) and the numhedest per
cluster (update costs after routing). It must be noted that thenijmse strategy may
produce paths (for example widest paths) quite different from aatieatl strategy.
However, our argument here still holds since the network lifetsndecided by a
combination of the paths computed and the strategy used for computipgthkee.g.
centralized vs Decompose). The possible inaccuracy of the pathsnpensated by a

reduction in the amount of messages used in its computation.

6.4 Experimental Evaluation

We performed preliminary evaluations of our idea by using the LEDAhgalgrithms
library [31]. The main objective of our simulation study is to showf¢asibility of the
concept and especially to compare the performance of the purelybudestr

centralized and network decomposition schemes.
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We generated a random graph with 250 and 500 nodes and created components
(clusters) by assigning both a low power as well as a jgber radius to each node.
When only the low power radius is used to create edges, we gebfadigconnected
components. Now we turn on all the high power edges also, and take caneoie
multiple edges between nodes by removing the high power edge between two nodes if a
low power edge already exists between them.

All the nodes which are boundary nodes, i.e. which have an edge to rerdiffe
cluster if their high power edges are used, are used as anchor nbdeerAal nodes
are assigned low energy levels of 20 units and all the anchor n@dassagned high
energy levels of 50 units each. Note that when the network decdmpa@dgorithm is
executed, it will produce clusters with similar propertiesraft® completion. For
consistency, the energy required to communicate between two neighbodas is set
as 0.001 x*® wherer is the high power radius value.

When we ran the purely distributed algorithm, the amount of energyree to
simply exchange sufficient number of messages for algorithmirtation, which is
2V|[E| in the worst case, leads to energy depletion at such a repitiatithe algorithm
itself cannot be executed more than a handful of times. Hencesthiésrof the purely
distributed scheme are omitted.

Our preliminary results for the two different graph sizes256 and n = 500 given
in Figure 6.3 show that the network decomposition scheme indeed outpetfmms
utopian centralized scheme in terms of the number of packetgr{@etvhich can be

routed before network disconnection.
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Figure 6.3 Lifetime of decomposition vs centralizgorithm
6.5 Summary

We have presented a lifetime aware network decomposition approa&xdcuting
distributed algorithms on wireless sensor networks. The utopian lcasdranodel
suffers from the problems of reliability and scalabilityoaserved earlier. In addition,
in an energy constrained sensor network, it also leads to thi&oreé hotspots and
hence leads to smaller lifetimes for the sensor network. By dexsing the network
into clusters and executing the distributed algorithm among thechsads, we avoid
hotspot creation and show how such a technique can lead to improvedelfdbr

sensor networks.
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Chapter 7

7/ Quality of Information (Qol) metrics for
knowledge centric sensor networks

7.1 Introduction

A primary necessity for sensor network deployments is to betaldellect data about
environmental (and other) phenomena under observation and transform it iiodo use
actionable knowledge. However, sensor networks due to their resourceaic@ust
nature have some key differences from general communication ket{grch as the
World Wide Web, and corporate intranets). The differences ararfuetal, and hence
we use the term message centric networks to refer to big, powerfarketsuch as the
WWW and corporate intranets, and knowledge centric networks to tefeensor

networks which usually lie on the other end of the spectrum in terms of scale.

Unit of atomicity— The unit of atomicity can be defined as the ‘indivisible’ unit of
information which still retains semantics. In a knowledge cemgtwvork, where
combining information is encouraged and loss of information is tolerdted,nit of

information is the aggregate knowledge rather than the individual message.

Resource assumptions the simple act of resending a message is commonplace
(and even vital for everyday tasks such as browsing the internetjr@ssage centric
network, where we can make assumptions of virtually unlimited resolResending a
single message would require careful planning on a resource coedtragnsor

network, where minimal assumptions are made about the availability of resources
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Data gathering- Nearly all messages generated can and is usually stored or
collected in a message centric network, while that is neither a requiraorea prudent

choice on a knowledge centric and resource poor sensor network.

Data dispersal Data dispersal refers to the replication of the same atatats
dispersal over multiple media and devices (such as backing up impidgardn to a
USB drive, a backup disk, and online storage). In a message centric network gech as
internet, data dispersal is common and quite useful. Such data dispautbe costly

on a typical sensor network.

Search techniques this is perhaps a vital difference and a key motivation for the
Qol strategy. Any data collected, in order to be made usefulsrteebe analyzed and
processed. This would usually require doing a search over thetdatame point in
time. In a message centric network, due in large part to the cesoah nature, the
exponential growth of data is tolerated and search techniques ¢valeal with the
rate of data generation. We call this the “store and seat@t&gy. In a fundamentally
resource constrained sensor network, the rate of data generatioramsmission is
controlled by using a top down strategy where the search chrses in terms of
usefulness of data collected, i.e. the “Quality of Informatiadére we first search for

what needs to be stored - and hence we “search and store”.

Hence the transformation of data into information (or knowledge) nexjai more
top down approach which can balance information needs and resourcéiartiliates.

If we begin by defining our information needs (i.e. specifying theal@ of
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Information requirements), we would be able to better utilize tte: afon-renewable

resources of a sensor network.

7.2 Motivation for Qol-aware data collection strategies

We believe that adding the Quality of Information (Qol) as anotlirension will
greatly benefit the knowledge which can be extracted from aisaesvork. Mapping
the aspects of Qol to different kinds of sensor network applicatidhallow the user
to more clearly specify what he or she wants from the senssorketieployment. By
providing a framework to deliver what the user wants, we give fiexiility to the

user for defining his/her needs and to understand and analyze the tradeoffs involved.

The most important benefit of the Qol approach to routing on sensor networks is the
explicit knowledge of the various tradeoffs involved, which leads dbdri quality of
data collected from the sensor network. The explicit use ofa@ubutes provides a

considerable variety of options for data collection.

A second benefit of the Qol approach is a better utilizatioretork resources. In
many scenarios, the use of Qol for specifying the requirenfientbe data collection
process will actually allow for better utilization of netwossources than the case
where Qol is not considered. For example, we may wish to cafiisrimation from
highly relevant sensor nodes. We expect to find a fair degreedohdancy in the
network; so many sensors could possibly satisfy the relevancerainohstWe may
choose only a few sensors among them for the data collection taskefi$wrs chosen
may have higher residual energies, and thus we could perform theadlattion in an

energy-balanced fashion. We could also select sensors whiatioaez to the sink,
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hence reducing the latency of data collection. We can cleaéyhat using the Qol
approach (in this case, specifying that the user is interestdte i‘relevance’ of the
data) allows us to utilize network resources far more effdgtivhile also satisfying

the end user requirements.

Some questions could be raised as to what can be categorized as aiQu8 attd
what can be categorized as a Qol attribute. We propose a thenad that QoS refers
to “objective” attributes whose value remains independent of tkepnetation. As an
example, the bandwidth of a link has a standardized definition soivieat tipe unit of
measurement, everyone will measure the same value for the iddnd@n the other
hand, Qol refers to “subjective” attributes whose value would depend on the
specification as well as the interpretation. Some Qol attsbatelld be defined as
graph problems (e.g. our definition of density) which will be objectug there are
also other attributes (for e.g. the relevance of data) whichbwiflirly subjective and

application specific.

7.3 A brief review of QoS models on sensor networks

We now present a brief overview of the literature which pertairseveral qualitative
issues that occur in data collection for sensor networks. The grgoat for the works
we cite here is to satisfy QoS requirements under an additcomatraint on the
resource of the network (usually energy). However, we arguethlest cannot be
termed as QoS since they are more dependent on the informatiomhéhaervice
offered by the network. Though the works cited call these as Qiffeprs, they are in
reality Qol problems or a combination of Qol and QoS. In Table 7.Jresent some

sensor network QoS problems considered in the literature.
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In their paper on finding a predictive quality control strategywoeless sensor
networks, Liang et al. [49] use the number of active sensors @&asurne of the Qol,
since it dictates the spatial resolution of the sensed pamaméteey optimize for the
number of active sensors so as to achieve optimal lifetimegi@ntar the network.
Perillo and Heinzelman [66] aim for a reliable description oféheironment as the
Qol attribute, while simultaneously making the network energgiefit and ensuring
that it meets the bandwidth constraints. Gundappachikkenahalli and Alpi@gose
the AdProc framework, where the criticality of information (JQisltraded off against
the latency and the energy requirements. Mingming Lu et dl.a@@®ess the problem

of maximizing the network lifetime while maintaining target coveragd)(Q

Wu et al. [88] attempt to turn off sensors making redundant measotem
(redundancy is the Qol) while they attempt to reduce the netvarkgy consumption.
Kay and Frolik [43] optimize for the network spatial resolution {Quld control the
network so that sensors participate equally so as to conservey.edergZhu and
Papavassiliou [90] propose a framework called Resource Adaptivembition
Gathering (RAIG) that can aggregate data on the fly by makintable tradeoffs
among latency, energy and quality. They do not define the qualitycgypland their
analysis is based on sensors having knowledge of the quality afathewhich is
transmitted or forwarded. Delicato et al. [20] describe aeglyator managing the duty
cycle of sensors, by selecting different sets of nodes totive at different times. The
nodes with higher residual energy and greater relevance (Qdhetapplication are

kept awake.
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Reference Qol attribute(s) QoS Resource
attribute(s) optimized
Liang[90] Number of active | N/A Maximize
sensors as a measure|of network
QoS lifetime
Perillo[42] Reliable description of Bandwidth Maximize
environment network
lifetime
Gundappachikkenah Criticality of Latency Better energy
alli[26] information distribution
Mingming Lu[58] Coverage of target N/A Maximize
network
Lifetime
Wu[88] Degree of redundancy N/A Maximize
network
Lifetime
Kay[43] Spatial resolution N/A Conserve
total Energy
used
Jin Zhu [90] Sink specified qualityy  Latency Energy
savings per
Sensor due t(
aggregation
Delicato [20] Target coverage, Data Increase
aggregation Acquisition network
Rate Wide
residual
energy

Table 7.1 An overview of QoS approaches for senstworks

7.4 Benefits of Qol aware data collection
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Not all information is equally important, apdeferential treatment of this information
can help us use resources optimaliyne knowledge which can be extracted determines
the information gathering process. However, knowledge is subjectivenfamchation

which is useful for some applications may not really be veryuudef others. For



example, we broadly classify data delivery models on sensor kastasrquery driven,
event driven and continuous delivery [17]. In the continuous delivery modedyreve
interested in data which is spatially and temporally diverseeswe do not always
know exactly what we are looking for. In the event based modelgeleisformation
which is at least sufficient to track an event, and preferdldws a deep analysis of
the event. This information may not be spatially or temporally deyesat we may
expect quick notification and perhaps use techniques like multipath rofdimg
maximizing the effective bandwidth. With the query based model,rtfoemation
which is processed is dependent on the kind of query which is asked. Suntieh
might support specific techniques like aggregation which is a msofirendly

approach when answering queries.

Here we consider the density, a Quality of Information atteibepresenting the
spatial resolution of the sensors reporting their data, and showblaan improve the
utilization of network resources by careful choices of the sasgileln their paper
describing a vision for the worldwide sensor web [9], the authergion the following

as important outstanding issues for data management in such a network:

a) Data ingest — the calibrate, gap-fill and regrid proedgssh would allow easier
multi-dimensional querying of sensor data

b) Data exploration, analysis and visualization — for these advansadeu
scenarios, ascertaining and ensuring data quality is a mepbiem facing
embedded sensing

c) Statistical modeling of sensor data — this is one of the most uhiguit

processing tasks performed on sensor data
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Suppose we consider these as rough guidelines for choosing assasofs which
need to report their data to a sink in the network. Let us also agbensnk has
knowledge of the network topology. So we would like to sample data femsoss

which would satisfy the following requirements

1) Provide adequate coverage of the network — this would help in tashksl )
mentioned above

2) Avoid holes in the data — this would help us with the regrid process of task a)

3) Have a way to verify the accuracy of data collected bgnfning with data
values from the neighbors — this would improve the results in tasks b) and c)

4) Provide for sufficient redundancy of data in case step 3) above ieslizdaulty

sensor - but do not oversample

We can see straightaway that reducing the number of sensqtedamil bring us
cost savings in terms of energy cost and thus sensor kEeBesides, the redundancy
of data collection will help avoid going back and repeating the adkaction (in case
some readings are faulty) and the adequate coverage of thelhetap also help with
future data collection requests (“I have data collected frayiomeA which is only 5
minutes old, and | could reuse that information for my new queryijisTwe can see
that using a Qol approach to data collection provides manifold bemefiesms of

information utility obtained per unit resource spent.

We provide the following definition of the density (a subjectiverdidin, as one
would expect) — choose a set of sensors such that every sensbtdesix % of itsk-

hop neighbors chosen in the sample set (the sensor itself wilbalencluded in this
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list of neighbors). We can observe that this provides us with aofvancreasing and
decreasing the value of according to requirements and the needs of the end user

application.

As a graph problem, this translates to the minimum multi-dominatgproblem
discussed in [37]. Suppose the neighborhood includes all nodes kibis. We add
edges between each node in the graph and all its neighborkumpps to create the
modified graphG;. On this modified graph, we can find the minimum multi-

dominating set by settingv) to be thex x deg{) on the modified grap;.

7.5 Summary

Sensor networks differ in some fundamental respects from Ihteiwodel networks. A
Qol approach towards data collection would serve to maximize [east improve) the

resource utilization as a function of the knowledge extracted from these networks

This strategy could also have some downsides. A Qol approach seeetpiire
more centralized strategies for data collection or decemddal data collection
mechanisms which still satisfy Qol definitions (which would bedeato implement
than less selective data collection strategies). Another issue to caadltarcollecting
data based on some particular Qol attribute may turn out to be alpoice if the

application requirements change.

The Qol approach would need further refinements for developing intteacs.
The new perspective on QoS is likely to lead to new work on redefiQog
parameters, such as collective and aggregate QoS parameteestamed in [17]. A

major issue is network learning — how to obtain knowledge of blstae (if
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necessary), who (and how many) need to obtain this information aficcguency of

such network learning — are all important questions in this context.
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Chapter 8

8 Conclusion and future work

The primary purpose of a wireless sensor network deployment beuttlated as the
collection of timely, actionable data about the phenomenon under observation. The
resource constraints in a wireless sensor network make tbwifgd question highly
relevant: how can we gather this data from sensor networks in asweay as to
maximize the utilization of the networks’ resources? It &ackhat the utilization is a
fairly subjective concept and varies according to the application scenavi@vidr, this
guestion helps us focus on the process of data collection in a mamaiistway. In

this dissertation, we discussed questions on resource utilizatang ahultiple

dimensions.

By solving a series of graph and path problems, we initially findngpptand near
optimal methods of resource utilization independent of any subjeativéraints. A
result of our findings is a set of core principles which lead tangrovement in
resource utilization — these principles can then be utilized and wechlim various
different ways to collect the data needed and to specify the amnstm a resource

friendly manner.

The core principles arising from this work can be summarized as follows
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If our goal is to extend the lifetime of a sensor network teecbthe largest amount
of data possible, using a multi-metric shortest path calleldeashiortest widest path,
as well as close derivatives, is crucial.

If our goal is to optimally utilize bandwidth available in a mulbp wireless
network, we must focus on a strategy of finding paths which arerfémence
aware’. Unlike earlier work which primarily concentrated on liakd node
scheduling for this problem, our path scheduling approach produces superior
throughput at very reasonable computational costs.

If our goal is to execute distributed algorithms for finding pathwireless sensor
networks, we must be respectful of the typical packet size inreless sensor
network, which is currently of the order of tens of bytes. Phis an impediment
on developing distributed path algorithms which transmit large sizeskages.
Exploiting the work of low bit complexity distributed algorithmsoyide a way
around this impediment.

As individual sensors become more powerful and start carryintjpheuladios, the
problem of activating the radios in an energy aware fashiontwitl out to be
critical. Our work on radio activation provides additional insight this problem
and shows that the essential question is one of finding such topolduses high
power radios form high degree clusters so that the number of nodiescted per

high power radio activated is fairly high.

Our goal is to maximize the extraction of knowledge by intefligresource

utilization. This in turn requires a specification of subjective camgs which need to

be applied during the data collection such that the data will gadd ‘knowledge’. An
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important issue which arises in this context is the level ofatigin presented to the
end user of the network. The end users are generally speciatistpeshaps a good
amount of domain specific knowledge but not necessarily trainedeimwiances of
technical details of wireless sensor devices. However, éxigdanowledge from these
networks in a resource efficient manner requires considerable aofaaunth technical
knowhow. While early work in this field used lower level abstractiamsh
considerable technical expertise expected from the end user, thefribe hour is to
find ways to push this level of abstraction up — in other words to providighar level
of abstraction and shield the end user from requiring intricate llkdge of wireless

sensor devices.

The identification of the core principles described earlier reptesan important
step forward in pushing the abstraction of the network representati@nds higher
levels. This frees the end user to make decisions based on applieguirements
without getting mired in the technical details. We also descréegkt of quality
measures (used during data collection) which can be applied inamogiscenarios so

as to allow us to obtain a high amount of ‘knowledge’ with efficteaburce utilization.
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Appendix A

IRIS Mote

Processor:

Program flash memory 128 KB

Measurement flash (for sensing) 512 KB

RAM 8K bytes

Processor current draw 8mA active modeA 8leep mode

Radio:

Frequency band 2405 MHz to 2480 MHz

Transmit data rate 250 kbps

Radio current draw 16mA receive mode, 17mA transmit mode (typical)

Batteries: 2 AA batteries

Source:

http://www.xbow.com/Products/Product pdf files/Wireless pdf/IRIS Dataglide

157



MICAz OEM module

N

Processor:

Program flash memory 128KB

Measurement flash 512 KB

RAM 4KB

Current draw 8mA active mode, <15 sleep mode

Radio:

Frequency band 2400 MHz to 2483.5 MHz

Transmit data rate 250 kbps

Current draw 19.7mA receive mode, 17.4mA transmit mode
Batteries: 2 AA batteries

Source:

http://www.xbow.com/Products/Product pdf files/Wireless pdf/MICAz OEM i&dit

n Datasheet.pdf
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MICA 2

Processor:

Program memory 128 KB

Measurement flash 512 KB

Configuration EEPROM 4KB

Current draw 8mA active mode, 515 sleep mode

Radio:

Frequency band 868-916 MHz

Transmit data rate 38.4 Kbaud

Current draw 10mA receive, 27mA transmit

Batteries: 2 AA batteries

Source:

http://www.xbow.com/Products/Product pdf files/Wireless pdf/MICA2 Datdagitde
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IMote2

Processor:

SRAM memory 256kB

SDRAM memory 32MB

FLASH memory 32MB

Current draw 66mA active mode, 3890sleep mode

Radio:

Frequency band 2400-2483.5 MHz

Data rate 250kbps

Batteries 3 AAA batteries

Source:

http://www.xbow.com/Products/Product pdf files/Wireless pdf/imote2 Dataptte

Note: This sensor can run the .NET micro framework (likenaa Virtual Machine for mobile

devices)
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TelosB

Processor:

Program flash memory 48KB

Measurement flash 1024 KB

RAM 10KB

Radio:

Frequency band 2400-2483.5 MHz

Transmit data rate 250kbps

Batteries 2 AA batteries

Source:

http://www.xbow.com/Products/Product pdf files/Wireless pdf/TelosB Dattphké
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Appendix B

Here we list some real world sensor network deployments.

Volcano monitoring

From http://fiji.eecs.harvard.edu/Volcano

“This interdisciplinary project is investigating the use ofelss sensor networks for
monitoring eruptions of active and hazardous volcanoes. Wireless sensor networks have
the potential to greatly enhance our understanding of volcanic wyciiie low cost,

size, and power requirements of wireless sensor networks hearaentious advantage

over existing instrumentation used in volcanic field studies. This technologyanntifp

sensor arrays with greater spatial resolution and larger agertiuan existing wired

monitoring stations.

We have deployed three wireless sensor networks on active volc&@haesnitial
deployment at Tungurahua volcano, Ecuador, in July 2004 served as a pcoot:ept

and consisted of a small array of wireless nodes capturing contimicasound data.

Our second deployment at Reventador volcano, Ecuador, in July/August 2005 consisted
of 16 nodes deployed over a 3 km aperture on the upper flanks of the vaoano,
measured both seismic and infrasonic signals with high resol@4bbi{s per channel

at 100 Hz). Our third deployment at Tungurahua in August 2007 testdfl #mee]]

utility-driven data collection system that we developed to enhance dattyfidel

Vineyard monitoring

Fromhttp://camalie.com/WirelessSensing/WirelessSensors.htm
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“Camalie vineyards currently has one of the most advanced soitumigionitoring
systems in operation in U.S. agriculture todait uses the wireless sensor networking
technology developed by UC Berkeley in collaboration with Intel Carml
commercialized byCrossbow Inc It is used for optimization of irrigation; reducing
water consumption and associated pumping energy costs as wimstkessing grape
quality without sacrificing yield. It also serves as a monitbthe irrigation system,
failure of which can cause substantial long term impact on the tapital investment
in the vines. This monitoring system, Camalie Net, as such proaidesn of risk

management.

Mark Holler, owner of Camalie Vineyards, developed interfaoeuitry and adapted

Crossbow hardware and associated TinyOS firmware foMfagermark soil moisture

tensiometersoil temperature probe and water pressure sensors used inttherfirsn
of this system which was deployed in the summer of 2005. Markasttasgrower
who looks at the data and makes the irrigation decisidRamon Pulidovineyard
manager for Camalie Vineyards brings 32 years of growingriexme on Mt. Veeder
to the vineyard. He manages all of the cultural practices, isgrdgr powdery

mildew, and erosion control using cover crop in the vineyard.

Soil moisture sensing began at Camalie Vineyards in 2003 using a awither
station with three Watermark Sensors. This data was found to leeugeiul but, it
was clear data from other irrigation blocks was neededit@ter optimally in them as
well. The lack of a scalable solution to gather data from noaegibns was the driving

force behind the development of Camalie Net.
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Camalie Net was used during the 2005, 2006 and 2007 growing seasons to guide

irrigation decisions in the 4.4 acres@hmalie Vineyards Yield per vine in 2005 was

double that of the 2004 yields for same age vines yet water consampas
constant. Water consumption normally goes up with canopy size whocé than
doubled for these 2.5 year old vines in 2005. Grape quality was excellente of
this success was due to generally better than averaghen@&at2005 but, we believe
our visibility of the soil moisture played a significant role. trexdrippers were added
to some areas of the vineyard based on the soil moisture déta.irrigation intervals
were shortened based on sensor data to reduce the amount of waieentktrated

below the root zones where it would be wasted.

In 2006, the third year for our vines, the yields again doubled from 4 tons to 8 tons.

In the 4th year, 2007 the yield again doubled to 16 tons of fruit thatseldsand
another 1.5 tons that we made home wine from. The yield was 3.9pdoracre
which is very rare on Mt. Veeder especially with water kaitiue to less than half the
normal rainfall in the winter of 06/07. Water had to be purchasedhboks to our
precision irrigation we minimized water purchasing and still haghtgyields. Fruit
guality was again excellent although early rains near hablested some of the first
fruit harvested, reducing Brix levels to the 25-26 range. Some tdghé&uit harvested
after a week or two of dry weather, however, had a late in theBdayaverage of

29.7!

At the end of the 2007 growing season the network wpagsadedfrom my 433MHz

prototypes which use Crossbow mica2dot radios to eKo Pro series wafhiisa
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opperating in the 2.4GHz band. The network was scaled up at rtiesfiom 10
sensing sites in one vineyard to 17 sites covering Camalie \fadgwegad the vineyards

of two neighbors and thklt. Veeder Irrigation Co-opvas formed. On March 3,

2008 it was scaled up again26 sites In May six of the nodes at Camalie Vineyards
were fitted with third soil moisture sensors at 36" depth. In Ap@08 Camalie

Networks LLCwas formed to sell, customize and service this technology.”

Zebra monitoring

From http://www.princeton.edu/~mrm/zebranet.html

“Funded by a research grant from thiational Science Foundatiotihrough their

Information Technology Research (ITR)itiative, ZebraNet is a project to explore

wireless protocols and position-aware computation from a power-efficissgqutive.

The Princeton ZebraNet Project is an inter-disciplinary effath thrusts in both
Biology and Computer Systems. On the computer systems sideNag¢lsastudying
power-aware, position-aware computing/communication systems. WMathel goals
are to develop, evaluate, implement, and test systems that iategnaputing, wireless
communication, and non-volatile storage along with global positioningmg{iePS)
and other sensors. On the biology side, the goal is to use syst@adaion novel

studies of animal migrations and inter-species interactions.

As a computer systems research problem, ZebraNet is comgpa#icause the needs of
the biological researchers are stringent enough to requlirbreskthroughs in wireless

protocols and in low-power computer systems design and computer systever
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management. These breakthroughs can be leveraged into other (nore-wiielited)

fields of research; essentially ZebraNet is a power-awmdreless ad hoc sensor
network, but with more serious bandwidth and computational needs than most prior
sensor networks research problems. As a biology research protdbraNgt allows
researchers to pose and to answer important long-standing questionfoageange

migration, inter-species interactions, and nocturnal behavior.”

Storm Petrel habitat monitoring

From http://www.coa.edu/html/motes.htm

“This project represents a collaboration between College of tlamtit and the Intel
Research Laboratory at Berkeley. Through a combination of fundomg fine Henry
Luce Foundation and in-kind donation of equipment and expertise from the Intel

Research laboratory students under the directiodobin Andersonand Dr. Alan

Mainwaring engaged in the active demonstration of wireless sensarkdéghnology

as applied to micro-habitat monitoring Gmeat Duck Island

Intel-developed "motes” consisting of micro-processors contairigrgperature,
humidity, barometric pressure, and infra-red sensors were @eblithin Leach's
Storm Petrel nesting habitat, and linked to a computer basensitatihe Eno Research
Station. This in turn fed into a satellite link that allowed redeas to download real-

time environmental data over the internet.

The ultimate goal was to enable researchers anywhere iwdHd to engage in non-

intrusive monitoring of sensitive wildlife and habitats.”
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