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Abstract

Detective quantum efficiency (DQE) is widely accepted as the golden rule to objec-

tively evaluate the performance of x-ray imaging systems. It provides a comprehensive

characterization of an x-ray imaging system, because it combines several important

image-quality-related measurements such as contrast, resolution, and noise, and be-

cause it measures the efficiency of the utilization of x-ray in the imaging process.

Despite its importance, the current DQE methodology is imperfect in general agree-

ment. The focus of this dissertation is to investigate the DQE methodology for digital

x-ray imaging systems, in an effort to clarify some confusing aspects of the current

DQE methodology. Through a detailed theoretical derivation of the DQE method-

ology for digital x-ray imaging, a more clarified understanding of the DQE theory is

provided. Besides the re-visited DQE theory, techniques to determine the constituent

parts of DQE, including the photon fluence, Modulation Transfer Function (MTF),

and Noise Power Spectrum (NPS) are also discussed in this dissertation.

The dissertation is structured as follows. After a brief introduction of the cur-

rent DQE theory in Chapter 1, the DQE theory for digital x-ray imaging systems

is revisited in detail in Chapter 2, with experimental results for the demonstration

purpose. In Chapter 3, DQE theory for the magnification radiography is provided,

and the theory is supported by experimental results. In Chapter 4, the measurements

of x-ray photon fluence and spectral composition are discussed in detail, and uncer-

tainty analysis is conducted to investigate the impact of the calibration uncertainty

on the two measurements. In Chapter 5, an innovative alignment procedure that was

designed to reduce the error in the spectral measurements and imaging experiments

is introduced. MTF measurement techniques are covered in Chapter 6, and NPS

xv



measurement techniques are discussed in Chapter 7. As an example application of

the DQE methodology, a study about the impact of additive noise on the imaging

performance of a CCD based x-ray system is also reported in Chapter 7. In Chapter

8, a DQE analysis on an innovative dual detector x-ray imaging system is detailed,

as another example application of DQE. Finally, a summary of this dissertation is

provided in Chapter 9.
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CHAPTER 1

Introduction

1.1 Background and Significance

The evaluation of an imaging system’s performance and characteristics is of signif-

icant importance in x-ray imaging. Imaging performance can be evaluated through

more subjective methods, such as Contrast Detail Analysis [1–4] and ACR (Ameri-

can College Radiology) mammography quality control process [4,5], or through more

objective approaches. Detective quantum efficiency (DQE) is widely accepted as the

“golden rule” for the objective performance evaluation for x-ray based medical imag-

ing systems. DQE measures the efficiency of the utilization of x-ray photons in the

imaging process, and combines several important measurements of image quality, in-

cluding contrast, resolution, and noise. This dissertation focuses on the DQE theory

and methods for digital x-ray imaging systems. In order to clarify several confusing

aspects of the current DQE methodology, the theory of DQE is re-derived based on

digital x-ray imaging. Then several aspects of the DQE measurement, including the

measurements of photon fluence, x-ray spectra, modulation transfer function, and

noise power spectrum, are discussed in detail. Finally, two DQE measurements, each

being an independently published study, were included as example applications of the

DQE methodology.

1.1.1 Image quality related concepts

Image quality is a general concept which applies to all kinds of images, including

medical images. From the perspective of objective evaluation, there are three principal
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components of image quality: contrast, spatial resolution, and noise. Contrast is the

difference of pixel values between closely adjacent areas of an image [6,7]; the spatial

resolution and noise will be introduced in the following sections in a more detailed

manner.

Spatial resolution, spread functions and Modulation Transfer Function

Spatial resolution, sometimes simply referred as “resolution”, describes the ability of

an imaging system to precisely depict objects in the spatial dimensions of an image.

One conceptual method to understand and determine the spatial resolution of an

imaging system is to measure the system’s output to an impulse input, such as a

single point, or a narrow line, or just a sharp edge on certain direction. How the

shape of the impulse input is preserved on the output image can provide a clue of

how much blurring is introduced by the imaging system. The image produced from

a single point input is called Point Spread Function (PSF); the cross section of the

output to a line impulse input is called the Line Spread Function (LSF); and the cross

section of the output to an edge input is called the Edge Spread Function (ESF) [6,8].

For example, Fig. 1.1 shows a line impulse input generated by collimating the x-ray

beam with a slit camera, and Fig. 1.3 shows an illustration of the output for the line

input.
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Line input to an imaging system

Figure 1.1: Illustration of a narrow line input to an imaging system

Figure 1.2: Output image of the line

input to an imaging system

Figure 1.3: 3 dimensional illustration

of the output of an imaging system to

a narrow slit input

Modulation Transfer Function (MTF) is a relatively comprehensive description

of the resolution properties of an imaging system [6], and it measures how much
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modulation, which is the change of the amplitude of signals, can be transferred from

the input end to the output end of an imaging system [8]. MTF is closely related the

aforementioned LSF by the fact that MTF is the normalized modulus of the Fourier

Transform of LSF [6,8, 9]:

MTF (f) =
|FT{LSF (x)}|

FT{LSF (x)}|f=0

, (1.1)

where FT{ } denotes the Fourier Transform, | | denotes the modulus operator.

Fig. 1.4 and 1.5 demonstrated the LSF and MTF acquired from the slit image shown

in Fig. 1.2 (data published in [10]).
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Figure 1.4: Line Spread Function from the slit image
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Figure 1.5: Modulation Transfer Function calculated from the LSF in Fig. 1.4

Noise and Noise Power Spectrum

Generally speaking, image noise is something undesirable but present in the images.

For example, even if an image is taken with nothing in the beam–therefore a contrast-

less and almost uniform image is acquired–the pixel values of the output image are

still not exactly uniform, due to the stochastic nature of x-ray radiation and noise

introduced by the imaging device. This type of images are used to assess the noise

characteristics through, for example, the standard deviation of pixel values about their

mean, or through Noise Power Spectrum (NPS) which represents the distribution of

the power of noise in the spatial frequency domain [2, 3, 6, 8, 11–23].

The basic idea of Noise Power Spectrum (also called Wiener spectrum or power

spectrum density function) is to test the subtle relationship between the noise at one

point and the noise at other points, which is not obvious through direct observation.

And it describes the power distribution of the noise in the frequency domain [2, 3, 6,

8, 11–23].

NPS is the Fourier Transform of the autocorrelation function of a wide-sense-
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stationary (WSS) stochastic process. For a uniformly exposed image p(x, y), the

fluctuation of its pixel values (∆p(x, y) = p(x, y)−p) around their mean p is typically

considered as a 2-dimensional WSS stochastic process [8, 12, 24], and the 2D NPS is

defined as the 2D Fourier Transform of the 2D autocorrelation function [8,21–23,25,

26]:

C(ξ, η) = E{∆p(x, y)∆p(x + ξ, y + η)}, (1.2)

NPS(u, v) = F2D{C(ξ, η)}, (1.3)

where F2D denotes the 2D Fourier Transform, C(ξ, η) is the autocorrelation function

and E{ } denotes the operation of ensemble averaging.

If the noise pattern of the images is isotropic, then 1D NPS could fully represent

the noise characteristics, and it could be obtained by circularly averaging the 2D

NPS [10–12,27]:

NPS(f) =
1

Nf


 ∑

f≤√u2+v2<f+∆f

NPS(u, v)


 , (1.4)

where NPS(u, v) and NPS(f) are the 2D NPS and 1D NPS, respectively. Nf is the

number of data points in NPS(u, v) within the interval f ≤ √
u2 + v2 < f + ∆f .
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Figure 1.6: Illustration of the circular averaging algorithm used to obtain 1D NPS

from 2D NPS

Fig. 1.7 and 1.8 demonstrated the 2D NPS and the corresponding 1D NPS (data

published in [11]).
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Figure 1.7: 2D NPS obtained with a CCD based x-ray imaging system at 26KV,

0.3mA, 6s
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Figure 1.8: 1D NPS obtained from the 2D NPS in Fig. 1.7 through the circular

averaging technique

Incident exposure, x-ray quantum noise, and input signal to noise ratio

X-ray counting statistics obey the Poisson distribution [6–8], which means if the

average number of photons received per unit area equals Φ, the probability that a

unit area receives x photons is [8]:

P (X = x) = Φx e−Φ

x!
, (1.5)

where X is the random variable representing the number of photons received per unit

area.

From the property of Poisson distribution, the variance of the random variable X

equals to its mean:

std{X}2 = V ar{X} = E{X} = q. (1.6)
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Therefore, for the incident x-ray field with Φ as the mean number of photons per

pixel, the (per area) input SNR (signal to noise ratio) is [6, 8]:

SNRin =
E{X}
std{X} = Φ/

√
Φ =

√
Φ, (1.7)

1.1.2 General system performance and Detective Quantum Efficiency

In the above sections, the image quality related concepts such as contrast, spatial

resolution and noise are briefly introduced, in an effort to provide a flavor of this

research topic and to pave the way for the following discussion on system performance

evaluation and Detective Quantum Efficiency.

By increasing the x-ray dose within the working range of an imaging system, and

therefore increasing the input SNR and output SNR, better image qualities could be

achieved [3, 6, 7]. However, x-ray radiation is potentially harmful to patient safety.

And there is a tradeoff between image quality and patient radiation dose: it is desir-

able to reduce the radiation dose to a patient to a minimal level (As Low As Reason-

able Achievable), while still having good image quality. Thus, how much portion of

the total incident x-ray radiation is utilized to form images is a critical question for

evaluating and assessing the performance of x-ray imaging systems.

Detective quantum efficiency (DQE), which is widely accepted as the golden rule

for quantitatively evaluating the performance of x-ray imaging systems, integrates the

concept of SNR, contrast, noise and spatial resolution closely. And it is an excellent

description of the dose efficiency of an x-ray imaging system.
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Figure 1.9: Image-quality-related concepts integrated by DQE.

In conceptual terms, DQE is expressed as the SNR transfer of an imaging system,

as a function of the spatial frequencies [2, 3, 8, 15,17–19,28–32]:

DQE(f) =
SNR2

out

SNR2
in

, (1.8)

DQE(f) =
S(0)2 ·MTF (f)2

NPS(f) · Φ , (1.9)

where SNRin and SNRout are the input and the output signal-to-noise ratios of the

x-ray imaging system, respectively. MTF (f) is the modulation transfer function and

NPS(f) is the noise power spectrum. S(0) is the large area signal, and it is the

average pixel value of the output images when the detector is irradiated by a uniform

beam, which are also the images used to calculate NPS. Φ is the incident number

of quanta per unit area, and it equals to the square of the input signal to noise ratio
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SNR2
in according to the Poisson distribution of x-ray photons (Eq. (1.7)).

From Eq. (1.7), (1.8) and (1.9), the output SNR, often referred as NEQ (Noise

Equivalent Number of Quanta), is calculated as [2, 3, 8, 15, 17–19,28–32]:

SNR2
out(f) =

S(0)2 ·MTF (f)2

NPS(f)
= NEQ(f). (1.10)

Fig. 1.10 demonstrated a DQE curve obtained at 26 KV, 0.3 mA, and 3s for a

CCD based x-ray imaging system (data published in [27]).
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Figure 1.10: DQE curve obtained at 26 KV, 0.3 mA, 3s for a CCD based x-ray

imaging system.

1.1.3 Imperfections of the DQE methodology

From Section 1.1.2, one can see that DQE well combines the contrast, spatial res-

olution, noise characteristic, input dose level, and SNR. Therefore DQE provides a

comprehensive objective system evaluation. However, this methodology is not perfect

in general agreement, and a lot of research efforts need to be made in order to make

the DQE methodology more clinically applicable.
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There are several confusing aspects in the current DQE formula, and they are

discussed in detail in the following sections. These confusing aspects cause some

difficulties in the understanding of the DQE concept and in the interpretation of the

DQE results.

Spectral SNR2
out but scalar SNR2

in

From Eq. (1.10), one can observe easily that in the current DQE methodology the

output SNR2
out is a spectrum, which provides information of the imaging process

in a more micro-scale manner. However, from Eq. (1.7) and the derivation of Φ as

the input SNR2, it is obvious that Φ is a scalar, and a more macro-scale measure-

ment. This inconsistency in the forms of SNR2
out and SNR2

in causes confusion in the

understanding of the DQE concept.

Confusing physical model for the DQE measurement

One could be easily confused by the signal and noise defined in the SNR2
out, by

observing the form of SNR2
out and the typical methodology to obtain NPS(f), S(0)

and MTF (f).

At the output end, NPS(f) and S(0) were both obtained using a series of uni-

formly exposed images [2, 3, 8, 12, 15, 17–19, 28–32]: S(0) is the mean pixel value of

the images; NPS(f) is the noise power spectrum of the images as sample functions

of a 2D stochastic process (refer to Section 1.1.1). In this physical scenario utilized

to obtain NPS(f) and S(0), the signal is the mean pixel value, and the noise is the

fluctuation of the pixel values around their mean. It is straightforward and in fact

a standard to represent the noise in frequency domain by NPS [8, 21–23, 25, 26, 33].

However, the way to represent the signal in SNR2
out in this physical scenario is con-

fusing: The signal is represented by S(0)2MTF (f)2, but what S(0)2MTF (f)2 really

means is the system’s response to an impulse signal as the input in the spatial domain,
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which results in a flat spectrum that is further modulated by the MTF of the system

in the frequency domain. So the input signal in this formula should be an impulse

instead of the flat signal, whose frequency-domain representation is a Dirac Delta

function which has a peak at zero frequency and zero values elsewhere [9]. Thus,

the fact that the frequency domain signal (S(0)2MTF (f)2) is from an impulse input

while the frequency domain noise is from a flat input causes inconsistency in the DQE

concept.

Fig. 1.11 illustrates a 1D impulse signal and its Fourier transform, and Fig.1.12

illustrates a 1D flat signal and its Fourier transform.
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Figure 1.11: Illustration of the impulse signal and its Fourier transform
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Figure 1.12: Illustration of the flat signal and its Fourier transform
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Unit of Φ not intuitive

For digital imaging systems the basic imaging units are pixels (photon receptors), so

it’s intuitive to define the macro-scale input signal as the mean number of photons

per pixel and the macro-scale input noise as the fluctuation (standard deviation) of

the number of photons per pixel. By such definition, Φ/
√

Φ is a unit-less quantity,

which is more consistent with the concept of SNR. However, the current quantity Φ

is the number of incident quanta per unit area, and it has a unit of 1/mm2, which is

not intuitive and inconsistent with the concept of SNR.

1.2 Overview of the dissertation

This dissertation focuses on the DQE theory and method for digital x-ray imaging

systems. After the brief introduction of the current DQE theory and method in this

chapter, the theory of DQE is re-derived based on digital x-ray imaging in Chapter

2. Experimental results to support the newly derived DQE theory are also provided

in Chapter 2. Then in the following several chapters, different aspects of the DQE

measurements, including DQE under magnification, the measurements of photon flu-

ence, x-ray spectra, noise power spectrum, and modulation transfer function, are

detailed respectively. Finally, two DQE based imaging system characterization stud-

ies were included in Chapter 7 and Chapter 8, as example applications of the DQE

methodology.
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CHAPTER 2

Theory of DQE based on digital x-ray imaging systems

2.1 Chapter introduction

Detective Quantum Efficiency (DQE) is well accepted as the “golden rule” for the

objective evaluation of the performance of x-ray imaging systems, and it is considered

an excellent description of dose efficiency [8, 16, 34, 35]. Although DQE has been

adopted for digital imaging systems, its original derivation and assumptions are based

on a continuous and analogue foundation. It is worth revisiting the DQE theory for

the digital systems via the theories of digital signal processing and discrete stochastic

processes, in an effort to clarify some confusions and errors in the current DQE

methodology.

In this chapter, the theory of detective quantum efficiency for linear digital x-

ray imaging systems was derived based on 2D DTFT and presented in detail to

clarify some confusing aspects of the DQE methodology for digital imaging systems.

The imaging system is considered as a black box with input signal spectrum and

noise spectrum at the input end, and output signal spectrum and noise spectrum

at the output end. By applying the theory of power spectrum density analysis for

linear systems, DQE could be expressed as the ratio between the input signal-to-noise

spectrum and the output signal-to-noise spectrum. The assumptions and conditions

employed in this derivation were emphasized, and several methodological suggestions

were made in an effort to guide the implementation of the DQE measurements. An

experimental measurement of DQE for a CCD based x-ray system is also presented

to further illustrate the methodology in practice.
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2.2 Derivation of the DQE theory based on digital x-ray

imaging systems

2.2.1 Definition of signal and noise

A classic experimental scenario was chosen for the derivation of DQE [8]: for each

of the repeated exposures the input of the imaging system is a beam that is uniform

over the entire imaging area, and the output is the resultant uniform image. The

mean number of photons per pixel of the uniform exposure is denoted by q, and the

mean output pixel value is designated by p. From the imaging point of view, the

signal in the input exposures is the mean number of photons per pixel (q), which

corresponds to the output signal–the mean pixel value (p) on the output images; the

input noise is the fluctuations in the photon number arriving at individual pixels,

which contributes to the output noise–the fluctuations in the output pixel values.

Due to the stochastic nature of input and output of the system, it is preferable to use

a mathematical treatment based on the theory of stochastic processes for analyzing

the imaging performance.

2.2.2 The input and output as random processes

For each uniform exposure, the number of incident photons at the individual pixels

(photon receptors) forms a finite-size portion of a member function of a 2D discrete

random process that is theoretically defined on an infinitely large domain (denoted by

Q(i, j), and (i, j) is the pixel index). When taking multiple exposures under the same

imaging condition, multiple member functions of the 2D random process are obtained

[8, 21–23, 25, 26]. The process Q(i, j) is assumed as wide-sense stationary (WSS) in

order to allow the noise power spectrum (NPS) analysis to be applied [8,21–23,25,26].

For each of the uniform exposure, the output of the system is a uniform image which is

again a finite-size portion of a member function of another WSS 2D random process
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P (i, j) that is also theoretically defined on infinitely large domain, if the imaging

system is assumed to be linear and shift-invariant (stationary) [7, 23,26,33,34].

2.2.3 Input noise power spectrum

.

NPS (also referred as power spectrum density function) of a 2D discrete wide-

sense stationary random process is defined as the 2D DTFT (Discrete Time Fourier

Transform) [36] of its autocorrelation function of the process [22,23,26]. Without loss

of generality, in practice it is customary to work in term of the fluctuation process,

i.e., the fluctuation about the mean, which can be easily verified as a WSS process

with zero mean, instead of Q(i, j) itself [8, 22,23,26,29,33,37]:

∆Q(i, j) = Q(i, j)− q. (2.1)

The autocorrelation function of the zero-mean WSS random process ∆Q(i, j) is

defined as [23,26]:

R∆Q(m,n) = E{∆Q(i, j)∆Q(i + m, j + n)}; (2.2)

and the NPS for this 2D discrete zero mean WSS process is defined as [23,26]:

Nq(u, v) = D{R∆Q(m,n)}

=
∞∑

m=−∞

∞∑
n=−∞

e−j2π(um+vn)R∆Q(m,n), (2.3)

where D{} stands for the 2D Discrete Time Fourier Transform (DTFT); E{} denotes

mathematical expectation; R∆Q(m,n) is the autocorrelation function for the input

fluctuation process; Nq(u, v) is the NPS for the input fluctuation processes ∆Q(i, j).

(u, v) are the continuous normalized frequencies, and u, v ∈ [−1
2
, 1

2
].
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The numbers of input quanta at each point on the detector plane of an x-ray

imaging system can be considered as statistically uncorrelated Poisson random vari-

ables [34, 37, 38]. The incident photon numbers at individual pixels, as the sums

of uncorrelated random numbers, are also uncorrelated Poisson random variables

[26]. As a result, fluctuation of the incident number of photons at individual pixels

∆Q(i, j) forms a zero-mean white noise process [26], and its autocorrelation function

R∆Q(m,n) is given by:

R∆Q[m,n] = E{∆Q(i, j)∆Q(i + m, j + n)}

=





V ar{∆Q(i, j)} = q for m = n = 0,

0 otherwise,

(2.4)

where q is the mean number of quanta received per pixel, and according to the Poisson

statistics of the incident quanta, it equals to the variance of Q(i, j) and the variance

of ∆Q(i, j).

By Eq. (2.3), it is easy to verify that the NPS of ∆Q(i, j) is a flat spectrum:

Nq(u, v) =
∞∑

m=−∞

∞∑
n=−∞

e−j2π(um+vn)R∆Q(m,n)

=
∑

n,m=0

e−j2π(um+vn)R∆Q(m,n)

= q. (2.5)

2.2.4 Output noise power spectrum

Based on the assumption of WSS process discussed in section 2.2.2 the output fluc-

tuation process

∆P (i, j) = P (i, j)− p (2.6)
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can be treated similarly as in the above section, and p is the mean of the WSS process

P (i, j). Again, the NPS of the fluctuation process is calculated in order to represent

the noise distribution over spatial frequencies. The autocorrelation function and NPS

for the output fluctuation process ∆P (i, j) are:

R∆P (m,n) = E{∆P (i, j)∆P (i + m, j + n)}, (2.7)

Np(u, v) = D{R∆P (m,n)}, (2.8)

where R∆P and Np are the autocorrelation function and the NPS of the output

fluctuation processes ∆P (i, j), respectively.

2.2.5 DQE as the comparison of the input and output NPS

Shaw first proposed the approach of NEQ (Noise Equivalent Number of Quanta) and

DQE to compare the input and output NPS level, as an evaluation of the performance

of imaging processes [8,29,37]. And the basic idea is to convert the output NPS back

to the input end of the system via NEQ based on the theory of the propagation of WSS

random process through linear systems, and to compare NEQ with the input NPS

[8,16,29,34,37]. Following a similar strategy, the NPS of the input fluctuation process

can be converted to the output end of the imaging system, and be compared with the

NPS of the total output fluctuation. For a practical detector, the total fluctuation

in the output image can only be partially attributed to the input fluctuation, i.e.,

the quantum noise. Therefore the ratio between the converted input NPS (N ′
q) and

the NPS of the total output fluctuation (Np) is always less than one for real imaging

systems. Thus this ratio represents how much noise is introduced by the imaging

system into the final output images, and how well the signal-to-noise characteristics

of the input are preserved by the imaging system.

For a linear shift-invariant imaging system, the NPS of the resultant output ran-
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dom process for a WSS input process is the multiplication of the input NPS and the

squared modulus of the transfer function of the linear system [23,26]:

N ′
q(u, v) = Nq(u, v)|H(u, v)|2 (2.9)

where H(u, v) is the transfer function of the linear imaging system; N ′
q(u, v) is the

NPS resulted from only the input fluctuation process that propagates through the

imaging system.

H(u, v) for a linear imaging system is actually the OTF of the system, and its mod-

ulus equals to the multiplication of the digital gain and the 2D Modulation Transfer

Function (MTF) [16,34,37]:

|H(u, v)| = G ·MTF2D(u, v), (2.10)

where G is the digital gain of the linear imaging system, and it equals to the slope

of the characteristic curve of the system; MTF2D(u, v) is the 2D modulation transfer

function, and it equals to the normalized DTFT of the point spread function of the

imaging system:

H(u, v) = DTFT{PSF (i, j)}; (2.11)

MTF2D(u, v) =
|H(u, v)|
|H(0, 0)| =

|H(u, v)|
G

, (2.12)

where PSF (i, j) is the point spread function, and it is the output of the imaging

system to a point input with magnitude of 1, according to the classic digital system

Fourier analysis [36]. For a linear digital imaging system, the digital gain G is constant

over the entire linear range and MTF is normalized to 1 at (0, 0).

From Eq. (2.5), (2.9), and (2.10), we have:

N ′
q(u, v) = qG2MTF2D(u, v)2 (2.13)
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Then we have DQE as the ratio between N ′
q and Np:

DQE(u, v) =
N ′

q(u, v)

Np(u, v)

=
qG2MTF 2

2D(u, v)

Np(u, v)

=
q(p

q
)2MTF 2

2D(u, v)

Np(u, v)

=
p2MTF 2

2D(u, v)

Np(u, v) · q , (2.14)

where p is the mean pixel value of the output image that corresponds to the average

number of photons per pixel q; u, v are the continuous normalized spatial frequencies,

and u, v ∈ [−1
2
, 1

2
].

It is often more convenient to express NPS and MTF in 1D rather than 2D do-

main [8, 12, 16, 34, 39], generally as MTF (f) = MTF2D(u, v)|u or v=0 and NPS(f) =

Np(u, v)|u or v=0. And the 1D formula for DQE is:

DQE(f) =
p2MTF 2(f)

NPS(f) · q , (2.15)

where f is the 1D normalized spatial frequency, and f ∈ [−1
2
, 1

2
].

2.3 Discussion on the DQE theory for digital x-ray imaging

systems

2.3.1 The physical meaning of the DQE spectrum

From Section 2.2.5 it can be seen that DQE is actually the ratio between the deduced

version of the input NPS and the output NPS, as a function of spatial frequencies.

As stated in Section 2.2.1, the input and output signals are constant values over the

spatial indices. The input signal power spectrum (power spectrum density function
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of the signal) Sq(u, v) is thus an impulse function:

Sq(u, v) = D{E{q ∗ q}} = q2δ(u, v), (2.16)

where q is the mean number of photons per pixel, and

δ(u, v) =





1 u = v = 0

0 otherwise.

(2.17)

Similarly, the output signal power spectrum (power spectrum density function of

the signal) Sp(u, v) is also an impulse function:

Sp(u, v) = p2δ(u, v), (2.18)

where p is the mean output pixel value.

Following the same relationship described by Eq. (2.9), the input signal power

spectrum deduced from the input to the output (S ′q(u, v)) is equal to the output

signal power spectrum:

S ′q(u, v) = Sq(u, v)|H(u, v)|2

= q2δ(u, v) ·G2MTF2D(u, v)

= q2δ(u, v) ·G2

= p2δ(u, v)

= Sp(u, v). (2.19)

Therefore, the DQE in Eq. (2.14) can be re-written as the ratio between the output

SNR spectrum and the input SNR spectrum, which are both defined in the sense of
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power spectrum density functions:

DQE(u, v) =
N ′

q(u, v)

Np(u, v)

=
1/Np(u, v)

1/N ′
q(u, v)

=
Sp(u, v)/Np(u, v)

S ′q(u, v)/N ′
q(u, v)

=
SNRout(u, v)

SNRin(u, v)
. (2.20)

It needs to be pointed out that although in Eq. (2.14) and (2.15) q can be inter-

preted as the large scale SNR2
in because of the Poisson statistics of incident photons,

such interpretation can be easily misleading since q is in fact the incident NPS, which

happens to be constant as the result of the uncorrelation property of the incident

photons at individual pixels.

2.3.2 DTFT to DFT and the normalized frequency

In this derivation, the input and output of the digital imaging system are discrete

random processes, and hence the index (i, j) for Q(i, j), P (i, j) are dimensionless. As

a result of sampling and DTFT, we have u, v, f ∈ [−1
2
, 1

2
] in Eq. (2.3), (2.14), and

(2.15), as they have been normalized to the sampling frequency Fs (Fs = 1/∆x) [36].

∆x is the sampling interval (pixel pitch) of the imaging device. When interpreting

the MTF, NPS and DQE in terms of the non-normalized analogue spatial frequencies,

the normalized spatial frequencies u, v, f should be mapped linearly from [−0.5, 0.5]

to [−FNyquist, FNyquist] (FNyquist = 1/(2∆x)) [36].

In practice, Digital Fourier Transform (DFT) and its fast algorithm FFT are

widely used in the situations where DTFT is applicable [36, 40]. The relationship

between DFT/FFT and DTFT for an N-by-N array x(i, j) is that the N-by-N-point

DFT is the samples of the DTFT of x(i, j) at N-by-N evenly spaced frequency points
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over u, v, f ∈ [−1
2
, 1

2
], and the sampling interval (1/N in normalized spatial frequen-

cies and 1/(∆x · N) in analogue spatial frequencies) partially determines frequency

resolution of the calculated spectra [36].

2.3.3 Relationship with the widely accepted DQE formula

By comparing Eq. (2.14) and Eq. (2.15) with the widely accepted DQE formula

[16,31,34,35], one can easily figure out that they share the same form:

DQE(f) =
LAS2 ·MTF (f)2

NPS(f) ·N , (2.21)

where LAS stands for the large area signal, which is the mean output pixel value; N

is the number of photons per unit area; MTF (f) and NPS(f) are functions of the

1D physical continuous spatial frequency. As compared to (u, v), the physical spatial

frequency is not normalized by the sampling frequency Fs (Fs = 1/∆x), and often

takes the unit of line-pair per mm (lp/mm).

However, it needs to be pointed out that the q in Eq. (2.14) is the average number

of incident photons “per pixel” rather than “per unit area” as N is defined in the

widely accepted formula (Eq. (2.21)) . The relationship between q and N is:

q = N ·∆x2, (2.22)

where ∆x2 denotes the pixel area of the detector.

One also has to note that if the periodogram estimator [22,23,33] is employed to

determine the output NPS Np(u, v), there is no ∆x2 (∆x2 denotes the pixel size of the

detector) in the output NPS formula (refer to Eq. (2.24)) in this derivation, and the

resultant NPS is dimensionless (dimensionless value, dimensionless frequency). This
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is different from the formula used in [12,16,31,34,35]:

∆x2

MN
|D{∆P (i, j)}|2. (2.23)

This difference is due to the fact that the derivation in this study is based

on discrete domain, while the formula used in [16, 34] is based on continuous do-

main. The result of these differences in q and output NPS Np(u, v) actually makes

Eq. (2.15) exactly the same as the widely accepted DQE formula, since q/∆x2 =

number of photon per unit area.

2.3.4 Frequency resolution in the estimation of NPS

As mentioned in Section 2.2.2, the input and output are finite-size portions of the

member functions of two 2D discrete random processes which are defined theoreti-

cally on infinitely large spatial domain. Therefore, there exists an intrinsic cutting

window that cuts out the finite-size portion by multiplying itself against the mem-

ber functions. The estimation of NPS based on limited amount of data is a very

important application in the field of stochastic signal processing, and extensive re-

search efforts have been dedicated to this topic (a relatively comprehensive list of

literatures can be found in [22]). In this study, we try to only provide enough infor-

mation to support our analysis. In practice, by assuming ergodicity of the random

process [8, 22, 23, 26, 29, 33, 34, 37], the NPS for the output images is often estimated

using periodograms [8,11,12,22,23,26,29,33,34,37]. For a discrete 2D WSS random

process, the periodogram estimator for the output NPS is [23,26,33]:

N̂p(u, v) =
1

MN
|D{∆P (i, j)}|2, (2.24)

where M and N are the number of pixels on the two dimensions of the fluctuation

image ∆P (i, j); u, v ∈ [−1
2
, 1

2
] are the normalized continuous spatial frequencies.
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The periodogram estimator N̂p is often referred as an asymptotically unbiased esti-

mator [8,22,23,26,29,33], which means when the dimensions of the fluctuation image

are infinitely large, the ensemble average of the periodogram estimator (N̂p(u, v))

converges to the true NPS Np(u, v):

lim
M,N→∞

E{N̂p(u, v)} = Np(u, v). (2.25)

Although the mean of N̂p(u, v) converges to the true output NPS as the size

of the image data used in the periodogram estimator increases, the variance of the

estimator does not reduce as the size increases. Moreover, it remains relatively large:

for example, for a zero-mean white Gaussian sequence, the relative standard deviation

of its periodogram estimator is 100% [23]. Therefore, ensemble averaging of the

estimator N̂p(u, v) is necessary to reduce the variance and to improve the quality of

the NPS measurements [12, 23].

A common practice to reduce the variance of the periodogram results is: firstly,

partition a fluctuation image into multiple sub-images, and secondly, average the pe-

riodograms calculated from the sub-images to obtain the mean periodogram [12, 16,

22, 23]. For a given amount of image data, there is a trade-off between the vari-

ance level of the periodogram estimators and the severeness of the “spectral leakage”

problem [12, 22, 23, 26, 33]: reducing the size of the sub-images can provide more pe-

riodograms to be averaged, and hence can reduce the variance by a factor of the

number of sub-images; but the reduced size of the sub-images can also cause smaller

window to be multiplied to the true image for cutting out the sub-images, which is

equivalent to convolving the actual spectra with the a wider blurring filter (DTFT of

the cutting window) in the frequency domain. This causes the resultant spectra to

be blurred more severely [36].

The severeness of the frequency leakage is determined by the size and the shape of
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the cutting window [12,36], and the sampling rate of the discrete spectra is determined

by the number of points used in the DFT calculation. Therefore, the frequency

resolution of NPS is determined by both the frequency leakage and the frequency

sampling, and improving the frequency resolution requires the improvement from

both directions. The effects of different size and shape of the cutting window on the

estimation of NPS have already been discussed in [12], and in this report we will

discuss the other aspect of the problem: improvement in the frequency sampling rate

of in the NPS estimation.

If an N × N rectangular window is used in the periodogram estimation, which

simply cuts the sub-images of N ×N pixels out of the original image, the main lobe

width of the window’s DTFT is 2/N in normalized spatial frequency (2/(∆x ·N) in

analogue spatial frequency) on both dimensions [36]. The size of the cutting window

determines the intrinsic frequency resolving power of the periodogram. This means

two closely spaced peaks in the true NPS can be clearly resolved if the difference

in their frequencies larger than approximately half of the main lobe width (1/N in

normalized spatial frequency, and 1/(∆x · N) in analogue spatial frequency). If the

N ×N data points are directly utilized in the DFT calculation, an N ×N matrix of

samples is used to represent the windowed periodogram with a frequency interval of

1/N in normalized spatial frequency (2/(∆x · N) in analogue spatial frequency). If,

for example, a peak in this case is about 2/N (in analogue spatial frequency) wide in

one dimension, only 2 peak lines are used to present it, which certainly loses its shape.

In order to improve the frequency sampling rate, the size of DFT can be increased

using the “zero-padding” technique.

The basic idea of “zero padding” is to append zero-valued points to the original

data array, in order to get denser sampling of the resultant DTFT without changing

its values [33, 36, 40]. For an N-by-N array x(i, j), a new M-by-M (M > N) array
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xp(i, j) is formed by adding M2 −N2 zero-valued data points:

xp(i, j) =





x(i, j) 0 ≤ i, j ≤ N − 1,

0 N ≤ i, j ≤ M − 1,

(2.26)

then the M-by-M point FFT can be calculated for xp(i, j) (0 ≤ i ≤ M − 1, 0 ≤ i ≤
M − 1). The benefit of this zero padding is that it increases the number of sample

points of the DFT results but does not change the value of the spectra [33,36,40]. A

more detailed example will be provided in Section 2.4.

2.3.5 Practical suggestions for the implementation of DQE methodology

Along the derivation of the DQE concept and formulae, several assumptions are made

and need to be taken as prerequisite conditions on which the DQE methodology could

be correctly implemented:

• The assumption on the WSS property for both input and output noise;

• The assumption on the ergodicity of the output noise process on which the

periodogram estimator is based;

• The assumption on the system as linear and shift-invariant based on which the

Fourier transform based linear system analysis is valid;

• The assumption that the incident photons are statistically uncorrelated Poisson

random variables, from which the flat input NPS is derived;

• An easily ignored assumption: the input exposures and output images are as-

sumed as the member functions of the respective input and output random

processes, which has an underlying assumption that the imaging conditions for

the exposures are repeatable.
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Based on the assumptions and the discussion in Section 2.2 and 2.3, attentions

should be paid on several aspects of the DQE implementation:

• If there is any non-uniform object/filtration in the beam, the distance between

the object/filter and the detector needs to be large enough to satisfy the as-

sumption of statistically uncorrelated incident photons.

• If there are trends or artifacts in the output images, flat-fielding or other anti-

trend/anti-artifact procedures need to be applied before the calculation of out-

put NPS.

• Repeatability of tube output needs to be justified for DQE measurements.

• Make sure the detector works in its linear range during the exposures.

• In NPS calculation using periodograms, ensemble averaging of the periodograms

is necessary to reduce the variance of the estimation; the periodogram estimator

is more biased if the number of pixels involved in the formation of periodogram

is small; window masking techniques may improve the quality of the NPS mea-

surements by relieving the “spectral leakage” problem [12,22,23,26,33].

2.4 Experimental results based on the newly derived DQE

theory

The measurement of DQE for a digital x-ray imaging system (MX-20, Faxitron X-Ray

Corporation, Wheeling, IL) is presented here as an example of the above discussion

on the DQE analysis. The system employs an x-ray source with a tungsten target

and a 0.25mm-thick Beryllium window. The detector used in this system is based

on two abutted 1024px-by-1024px CCD arrays (KAF-1001E, Eastman-Kodak, New

York) and a Min-R scintillating screen (Eastman-Kodak, Rochester, NY), and the

effective pixel pitch is 48 µm. The SID of the system is 57.2 cm. During the DQE
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measurements, the x-ray system was operated at 26 kVp and 0.3 mA, without any

additional filtration.

1D MTF of this imaging system was measured based on the slit method [39], with

the help of a 10 µm wide slit camera (IIE GmbH, Aachen, Germany). As the CCD

detector demonstrates the property of circular symmetry [10–12], the 2D MTF was

calculated by fitting the data points that is of a distance r from the origin on the 2D

MTF with the data points r away from the origin on the 1D MTF:

MTF2D(u, v) = MTF1D(
√

u2 + v2) (2.27)

The incident number of photons per pixel q was determined through the mea-

surement of exposure level and the incident spectrum used in the NPS measure-

ment [10, 41]. The exposure level of the incident x-ray during each shot of the NPS

measurements was measured with a calibrated ion chamber (Radcal 1015 system with

10X5-6M chamber, Radcal Corp., CA), and the average exposure of 10 repeatedly

measurements at 26 kV, 0.3 mA, 3 s, was determined as 346.6 mR.

The incident spectrum was determined through the use of an x-ray spectrometer

(Amptek Inc., MA). In order to ensure accurate alignment for the spectral measure-

ments, the alignment of the spectrometer with the x-ray source was performed accord-

ing to a previous study [42]. Photon fluence per exposure (number of photons per mm2

per mR, denoted by Φ
X

) was first calculated from the spectral measurements [32,43] as

approximately 8982.9 (mm2 ·mR)−1. Then this number is multiplied by the exposure

level (in mR, denoted by X) and the area of the pixel (∆x2 = 0.0482mm2) to obtain
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q (photon/pixel):

q =
Φ

X
·X ·∆x2

= 8982.9(mm2 ·mR)−1 · 346.6mR · (0.048)2mm2

= 7173.4 (2.28)

2D and 1D NPS was measured through 200 repeated exposures of 26 kVp, 0.3

mA, 3 s, and without any added filtration. This exposure technique was within

the detector’s linear response range, and resulted in a mean output pixel value of

1888.0 out of the detector’s full dynamic range ([0, 4095]). The central region of

interest (ROI) of 512× 512 pixels from the left CCD array was selected to avoid the

non-uniformities near the boundaries of the detector. The ROIs were corrected to

remove any background trend and fixed pattern noise by flat fielding [44], and then

partitioned into sub-images for the aforementioned periodogram estimation of NPS

according to Eq. (2.24), and the mean periodogram was calculated by averaging the

resultant periodograms.

In order to demonstrate the improvement of spatial frequency resolution from zero-

padding used in the estimation of NPS (as mentioned in Section 2.3.4), periodograms

from sub-image of 64×64 pixels were calculated with different level of zero-padding to

obtain FFT of 64×64, 128×128, 256×256 and 512×512 points, and are presented in

Fig. 2.1, 2.2, 2.3, and 2.4. One-dimensional NPS on both the horizontal and vertical

axes of the 2D NPS were also plotted in Fig. 2.5, 2.6, 2.7, and 2.8, in an effort to

present the NPS data in a more detailed manner.

To compare the differences in the estimation of NPS introduced by partitioning

the region of interest into sub-image of different sizes, periodograms from sub-images

of 64× 64, 128× 128, 256× 256, and 512× 512 pixels were calculated using the same

FFT size of 512× 512 points, in an effort to provide a common frequency resolution
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among the resultant spectra. The one-dimensional NPS on both the horizontal and

vertical axes of the 2D NPS were plotted in Fig. 2.9, 2.10, 2.11, and 2.12.

The 2D DQE were calculated by combining the 2D NPS, 2D MTF, q, and mean

output pixel values p. 2D DQE obtained using different FFT sizes (64×64, 128×128,

256×256 and 512×512 points) and the same 64px-by-64px sub-images were compared

in Fig. 2.13, 2.14, 2.15, and 2.16 to show the improvement in the frequency resolution.

Similar to 1D NPS curves, the 1D DQE obtained on both the horizontal and vertical

axes of the 2D DQE were presented in Fig. 2.17, 2.18, 2.19,and 2.20 to show the data

in a more detailed manner. DQE obtained with a constant FFT size of 512 × 512

but different sub-image sizes of 64 × 64, 128 × 128, 256 × 256 and 512 × 512 pixels

were also calculated, and the 1D DQE curves were compared in Fig. 2.21, 2.22, 2.23,

and 2.24 to show the difference caused by the various sizes of sub-images, based on a

common frequency resolution among the resultant spectra.
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Figure 2.1: 2D NPS obtained with 64px-by-64px sub-images and FFT size of 64x64

(zero-padding not applied)
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Figure 2.2: 2D NPS obtained with 64px-by-64px sub-images and FFT size of 128x128

(x4 zero-padding applied)
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Figure 2.3: 2D NPS obtained with 64px-by-64px sub-images and FFT size of 256x256

(x16 zero-padding applied)
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Figure 2.4: 2D NPS obtained with 64px-by-64px sub-images and FFT size of 512x512

(x64 zero-padding applied)
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Figure 2.5: 1D NPS obtained with

64px-by-64px sub-images and FFT

size of 64x64 (zero-padding not ap-

plied)
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Figure 2.6: 1D NPS obtained with

64px-by-64px sub-images and FFT

size of 128x128 (x4 zero-padding ap-

plied)

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

500

1000

1500

2000

2500

3000

3500

Spatial Frequency (lp/mm)

1D
 N

P
S

 (
di

m
en

si
on

le
ss

)

sub−image size = 64, FFT size = 256

 

 

Horizontal NPS
Vertical NPS

normalized freq: −0.5 normalized freq: 0.5

Figure 2.7: 1D NPS obtained with

64px-by-64px sub-images and FFT

size of 256x256 (x16 zero-padding ap-

plied)
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Figure 2.8: 1D NPS obtained with

64px-by-64px sub-images and FFT

size of 512x512 (x64 zero-padding ap-

plied)
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Figure 2.9: 1D NPS obtained with

64px-by-64px sub-images and FFT

size of 512x512 (x64 zero-padding ap-

plied)
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Figure 2.10: 1D NPS obtained with

128px-by-128px sub-images and FFT

size of 512x512 (x16 zero-padding ap-

plied)
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Figure 2.11: 1D NPS obtained with

256px-by-256px sub-images and FFT

size of 512x512 (x4 zero-padding ap-

plied)
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Figure 2.12: 1D NPS obtained with

512px-by-512px sub-images and FFT

size of 512x512 (zero-padding not ap-

plied)
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Figure 2.13: 2D DQE obtained with 64px-by-64px sub-images and FFT size of 64x64

(zero-padding not applied)
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Figure 2.14: 2D DQE obtained with 64px-by-64px sub-images and FFT size of

128x128 (x4 zero-padding applied)
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Figure 2.15: 2D DQE obtained with 64px-by-64px sub-images and FFT size of

256x256 (x16 zero-padding applied)
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Figure 2.16: 2D DQE obtained with 64px-by-64px sub-images and FFT size of

512x512 (x64 zero-padding applied)
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Figure 2.17: 1D DQE obtained with

64px-by-64px sub-images and FFT

size of 64x64 (zero-padding not ap-

plied)
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Figure 2.18: 1D DQE obtained with

64px-by-64px sub-images and FFT

size of 128x128 (x4 zero-padding ap-

plied)
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Figure 2.19: 1D DQE obtained with

64px-by-64px sub-images and FFT

size of 256x256 (x16 zero-padding ap-

plied)
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Figure 2.20: 1D DQE obtained with

64px-by-64px sub-images and FFT

size of 256x256 (x64 zero-padding ap-

plied)
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Figure 2.21: 1D DQE obtained with

64px-by-64px sub-images and FFT

size of 512x512 (x64 zero-padding ap-

plied)
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Figure 2.22: 1D DQE obtained with

128px-by-128px sub-images and FFT

size of 512x512 (x16 zero-padding ap-

plied)
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Figure 2.23: 1D DQE obtained with

256px-by-256px sub-images and FFT

size of 512x512 (x4 zero-padding ap-

plied)
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Figure 2.24: 1D DQE obtained with

512px-by-512px sub-images and FFT

size of 512x512 (zero-padding not ap-

plied)

In the 2D NPS and 2D DQE figures, the x and y axes denotes the frequencies on

both horizontal and vertical axes. The analogue spatial frequencies range in [−1/(2 ·
∆x)), 1/(2 · ∆x))] ([-10.4, 10.4] lp/mm for ∆x = 0.048mm in this study), and the

corresponding normalized spatial frequencies range in [-0.5, 0.5]. For an FFT size
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of M-by-M in the calculation of periodograms, the smallest frequency interval of the

spectra in the sense of analogue spatial frequency is determined as 1/(∆x ·M) , and

are 0.3255 lp/mm, 0.1628 lp/mm, 0.0814 lp/mm, and 0.0407 lp/mm for the FFT sizes

of 64× 64, 128× 128, 256× 256, and 512× 512 points, respectively. In the sense of

normalized spatial frequency which ranges in [-0.5, 0.5], the frequency intervals are

determined as 1/M for an M-by-M FFT, and are 1/64, 1/128, 1/256, and 1/512 for

the FFT sizes of 64× 64, 128× 128, 256× 256, and 512× 512 points, respectively.

As can be seen in Fig. 2.1, 2.2, 2.3, and 2.4, the sampling rate increases with

increased FFT size, as a result of zero-padding. The same improvement can be also

seen in Fig. 2.5, 2.6, 2.7, and 2.8. As stated in Section 2.3.4, the shape of the NPS

curves was not changed when using zero-padding, but the frequency resolution was

improved significantly.

When sub-images of different sizes were used in the NPS estimation, the total

number of individually obtained periodograms averaged to obtain the final output

NPS varied. For the sub-images of 64x64 pixels, 128x128 pixels, 256x256 pixels,

and 512x512 pixels, the total number of periodograms used in the averaging were

12800 (200 × (512/64)2), 3200, 800, and 200, respectively. This difference resulted

in different smoothness of the respective NPS curves, as can be seen in Fig. 2.9,

Fig. 2.10, Fig. 2.11, and Fig. 2.12. By comparing these figures, it is fairly easy to tell

that the NPS resulted from sub-images of different sizes share a common shape. So

if the NPS is smooth in its nature, it is more preferable to use a smaller sub-image

size with zero-padding to obtain smoother spectra with high frequency resolution as

well as small statistical variance in the spectra.

Since DQE curves were based on NPS, similar results of the improvement of fre-

quency resolution from zero-padding and the different smoothness caused by different

sub-image sizes can be observed in Fig. 2.13 ∼ 2.24.
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2.5 Chapter conclusion

In this chapter the DQE formulae were re-derived with the help of DTFT and the

discrete random process theory. This is different from the classic approach which

treats the imaging process on an infinitely large continuous imaging plane and uses

continuous Fourier Transform as the fundamental mathematical tool for the deriva-

tion.

By using DTFT, the discrete nature of the incident photon numbers, the output

pixel values, and the discrete pixel index were fully utilized. In fact, it is due to the

discreteness in both pixel index and input/output values that the imaging system is

called “digital”. One of the advantages of using DTFT is that now the well established

FFT-based computational tools can be naturally adopted for the DQE calculation.

Furthermore, the problems such as the finite size of images vs. the infinitely large

imaging plane, and the justification of using zero padding to improve the frequency

resolution of MTF and NPS can be understood and explained more easily using this

derivation.

The derivation was presented in a way that some confusing aspects of the DQE

methodology for digital imaging systems are clarified. The imaging system is confined

to the image detection system, and the input and output are specified clearly, in

order to clarify the physical meaning of the DQE measuring process. At the end of

the derivation, it is shown that DQE should be interpreted as the ratio between the

converted output NPS resulted from the input fluctuation (N ′
q) and the NPS of the

total output fluctuation (Np), or as the ratio between the output SNR and the input

SNR, which are defined from the perspective of power spectrum density functions.

Based on the re-derived DQE theory, the effect of estimating NPS using limited

amount of image data was analyzed. The frequency resolution was affected by both

the cutting window used in the NPS calculation and the number of points of used
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by DFT. An example experiment of DQE was provided to illustrate the application

of the DQE method and the use of “zero-padding”. At the end, the assumptions

and conditions employed in this derivation of the DQE theory were summarized, and

several methodological suggestions were made in an effort to guide the implementation

of the DQE measurements.

48



CHAPTER 3

DQE in magnification imaging

3.1 Chapter introduction

Geometric magnification has been widely used in x-ray imaging to provide more spa-

tial details. Much work has been done to study the effects of geometric magnification

on image quality in angiography and mammography [45–47]. In the previous chap-

ters the DQE theory for digital imaging systems is introduced, and in this chapter,

the DQE methodology in magnification radiography will be discussed. The impact

of geometric magnifications on DQE under constant SIDs is firstly investigated using

the widely accepted DQE theory that is based on the continuous basis, and then is

studied using the DQE theory for digital x-ray imaging introduced in Chapter 2. At

the end of this chapter, experimental measurements are provided as a demonstration.

3.2 Derivation of DQE in magnification radiography with

constant SID based on the widely accepted DQE theory

3.2.1 DQE at unity magnification

As discussed at the end of Section 2.3.3, the widely accepted 1D DQE formula (at

unit magnification) can be calculated as

DQE(f) =
LAS2 ·MTF (f)2

NPS(f) · Φ , (3.1)
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where LAS is the mean pixel value of the output image that corresponds to the

average number of photons per unit area Φ. MTF(f) and NPS(f) are the modulation

transfer function and noise power spectrum, respectively.

3.2.2 DQE with Geometric Magnification Imaging

In magnification imaging with constant SID, we can imagine a virtual detector plane

located just underneath the object plane (Fig. 3.1). Then the effect of magnification

can be seen as the shrinking of pixel pitch from the actual detector plane to the virtual

detector plane, which means the effective pixel size reduces from ∆xo to ∆xo/M ,

where “o” is for the original, actual detector plane and “m” is for the virtual detector

plane from the magnification. Similarly, the size of the imaging field of the virtual

detector is M times smaller on each dimension than that of the actual detector.
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X-ray Source

Object Plane

Virtual Detector

Actual Detector

h1

h2

M=(h1+h2)/h1

Figure 3.1: Schematic of the imaging system under magnification with constant SID.

The virtual detector plane is closely underneath the object plane. Magnification

factor M = (h1+h2)/h1.

In the following part of this section, the relation of each quantity in the DQE

formula in magnification imaging with their counterparts at regular imaging with

unit magnification (Eq. (3.1)) is derived.
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LAS under magnification

LAS is the large area signal which is calculated by averaging the pixel values of the

image of a uniform beam:

LAS =
1

NxNy

Nx∑
i=1

Ny∑
j=1

I(i, j), (3.2)

where Nx and Ny are the number of pixels in each dimension of the detector, and

I(i, j) is the image intensity at pixel (i, j).

If we keep the distance from the source to the actual detector (Fig 3.1) constant

and change the magnification by moving the object plane, the solid angle subtended

by each pixel is also constant. That is, the number of quanta intercepted remains un-

changed. Therefore, the average pixel intensity of the virtual detector is independent

of the magnification:

LAS2
o = LAS2

m =

(
1

NxNy

Nx∑
i=1

Ny∑
j=1

I(i, j)

)2

, (3.3)

where LASo is the large area signal of the actual detector, LASm is the large area

signal of the virtual detector, and I(i, j) is the image intensity (pixel value) at index

(i, j) for both cases.

Φ under magnification

Φ in Eq. (3.1) is the mean number of incident photons per unit area, i.e., the photon

fluence. Under the same x-ray exposure and with the same SID, the photon fluence

at the virtual detector is M2 times of that at the actual detector based on the inverse

square law (Fig. 3.1):

Φm = M2 · Φo, (3.4)
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where Φo and Φm are the photon fluences at the actual detector and at the virtual

detector respectively, and M is the magnification factor.

MTF under magnification

MTF(f) is affected by magnification primarily in the following two manners. The

Since the Nyquist frequency is determined by the pixel pitch of an imaging system [48],

when the actual detector is projected onto the virtual detector plane, the pixel pitch

is reduced. Thus the Nyquist frequency of the virtual detector will be higher than

that of the actual detector and is related to the latter as:

f ′Nyquist =
1

2 ·∆xm

=
1

2 · 1
M

∆xo

= M · fNyquist. (3.5)

The other effect would be that a change in the source-to-object distance (SOD)

would change the geometric unsharpness caused by the finite focal spot size. As

demonstrated in literature [49, 50], the MTF of the entire imaging chain under mag-

nification can be given by:

MTFtotal(f
′) = MTFfocal(f

′M− 1

M
) ·MTFdet(

f ′

M
), (3.6)

where MTFtotal(f
′) is the MTF of the entire imaging chain, MTFfocal is the MTF of

the focal spot, MTFdet is the MTF of the detection system, M is the magnification

factor, and f ′ is the spatial frequency of the virtual detector.

If the focal spot size of the x-ray source is small enough and the SOD is large

enough, the geometric unsharpness can be neglected and therefore MTFfocal(f) = 1.

Eq. (3.6) can then be reduced to:

MTFm(f ′) = MTFo(
f ′

M
). (3.7)
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NPS(f) under magnification

The 2-D discrete NPS(m,n) at unity magnification can be calculated from the fol-

lowing formula [12]:

NPS(m, n) = lim
Nx∆x,Ny∆x→∞

∆x ·∆x

NxNy

|DFT [I(i, j)]|2 , (3.8)

where Nx and Ny are the number of pixels in the region of interest of the noise only

image, ∆x is the pixel pitch, I(i, j) is the image intensity of the noise only image,

and (m,n) is the index of the result of DFT (2D Discrete Fourier Transform).

The pixel pitch of the virtual detector is 1/M of the pixel pitch of the actual detec-

tor. If the exposure and the SID are the same, the NPS under a given magnification

is 1/M2 of the NPS under unity magnification:

NPSm(m,n)

= lim
Nx∆xm,Ny∆xm→∞

∆xm·∆xm

NxNy
|DFT [I(i, j)]|2

= lim
Nx∆xm,Ny∆xm→∞

∆xo
M

·∆xo
M

NxNy
|DFT [I(i, j)]|2

= 1
M2 ·NPSo(m,n).

(3.9)

Practically, the 2-D discrete NPS(m,n) is a function of the index (m,n), and is

needs to be mapped into NPS(u, v), which is a function of spatial frequency based

on the following formulas:

u = m ·∆f = m · 1
Nx∆x

= m
Nx/2

· 1
2∆x

= m
Nx/2

· fNyquist,

v = n
Ny/2

· fNyquist,
(3.10)

where ∆f is the frequency interval in the sampled spatial frequency domain, fNyquist

is the Nyquist frequency mentioned in Eq. (3.5), and Nx and Ny are the number of

pixels in the region of interest of the detector.
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From Eq. (3.5) and (3.10), it can be derived that:





um = M · uo

vm = M · vo

(3.11)

Then the relationship between the NPS with and without magnification can be

expressed as:

NPSm(u, v) =
1

M2
·NPSo(u/M, v/M). (3.12)

Since we calculate the 1-D NPS(f) using the 2-D NPS(u, v) data along a certain

direction (horizontal, vertical or circular) [12], this relationship between the NPS with

and without magnification still holds for the 1D NPS:

NPSm(f) =
1

M2
·NPSo(f/M). (3.13)

DQE(f) under magnification

Based on Eq. (3.3), (3.4), (3.7), and (3.13), and with constant SID, the relationship

between the DQE under magnification and the DQE under unity magnification is

derived under the assumption that the x-ray source is an ideal point source:

DQEm(f)

= LAS2
m·MTFm(f)2

NPSm(f)·Φm

= LAS2
o ·MTFo(f/M)2

1
M2 NPSo(f/M)·M2·Φo

= DQEo(f/M).

(3.14)

In practice, considering the influence of the finite focal spot size on MTF at

magnification, the MTFm(f) measured under magnification should be used in the
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DQE under magnification:

DQEm(f)

= LAS2
m·MTFm(f)2

NPSm(f)·Φm

= LAS2
o

1
M2 NPSo(f/M)·Φm

·MTFm(f)2,

(3.15)

where f is the spatial frequency ranging from 0 to f ′Nyquist = M ·fNyquist as mentioned

in Eq. (3.5), MTFm(f) is the MTF obtained directly under magnification using the

reduced pixel pitch, and Φm is the input photon fluence measured at the object plane.

It should also be noted that Φm in Eq. (3.15) can be replaced by M2 · Φo according

to Eq. (3.4).

3.2.3 Derivation of DQE in magnification radiography based on the re-

visited DQE theory for digital x-ray imaging systems

Based on the DQE theory for digital x-ray imaging systems detailed in Chapter 2,

the above analysis about DQE measurements under magnification can be derived

more easily and clearly. As discussed in Section 2.2.1 and 2.3.3, q in the DQE for

digital imaging systems is defined as the average number of photons received per

pixel, instead of per unit area. Also, according to Eq. (2.24), the calculation of

NPS is independent of the pixel size ∆x. Further, as discussed in Section 2.3.2, the

frequencies (u, v, f) used in Eq. (2.14) and (2.15) are normalized frequencies whose

values are independent of the pixel size ∆x.

As discussed in Section 3.2.2, by imagining the virtual detector plane located just

underneath the object plane (Fig. 3.1), the effect of magnification can be seen as

the shrinking of pixel pitch from the actual detector plane to the virtual detector

plane, which means the pixel reduces from the original size ∆xo to a smaller size

∆xm = ∆xo/M . Therefore, for magnification imaging with constant SID, q does

not change, as the solid angle subtended by each pixel is constant. If a point source
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is assumed, MTF and NPS as the functions of the normalized frequencies, remains

unchanged. As already discussed previously in Section 3.2.2, LAS also remain the

same when magnification is applied under the same SID. As the values of the four

constituting parts of DQE remain unchanged, the value of DQE for digital x-ray

imaging system, as a function of the normalized frequencies, remain unchanged.

The major effect of the magnification is that the effective pixel size reduces from

the original value ∆xo to a smaller value ∆xo/M . As discussed in Section 2.3.2, the

normalized frequencies are calculated by normalizing the analogue spatial frequency

to the sampling frequency (Fs = 2FNyquist1/∆x). And the effective sampling fre-

quency are increased by a factor of M times as the effective pixel sizes are reduced to

1/M of the actual pixel size ∆x, as stated in Eq. (3.11). Therefore, when interpreting

the MTF, NPS and DQE spectra for their physical meanings, the analogue spa-

tial frequencies corresponding to the continuous normalized spatial frequencies (u, v)

range from −Fm,Nyquist to Fm,Nyquist (Fm,Nyquist = 1/(2∆xm) = M · 1/(2∆xm) =

M · Fo,Nyquist), which is equivalent to the conclusion in Eq. (3.14).

3.3 Experimental results based on the theory of DQE at

magnification

The system used in this study is an x-ray specimen radiography system (MX-20,

Faxitron X-Ray Corporation, Illinois). A tungsten target is used in the x-ray tube

which emits x-ray beam that then passes through a 0.25 mm beryllium window.

The x-ray system was operated at 0.3 mA, 26 kVp constantly in this research. The

source-to-object distance (SOD) can be adjusted by placing the object on different

shelf positions, but the SID is fixed as 572 mm. The detector in this system consists of

two CCD arrays abutted together (KAF-1001E, Eastman-Kodak, New York). Each

CCD had a 24.5 mm x 24.5 mm photoactive area with 1024x1024 pixels; therefore
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the pixel pitch was 24 µm. An optical fiber taper was used to couple the CCDs to a

Min-R scintillating screen (Eastman-Kodak, New York).

The DQE measurement was taken under 26 kVp, 0.3 mA, and 3s of exposure

time. In the measurement of MTF, a 10 µm wide slit camera (IIE GmbH, Aachen,

Germany) was used to collimate the x-ray beam into a line input in order to obtain

Line Spread Functions [39]. NPS was measured by analyzing the images from a

series of uniform incident radiation [12]. DQE was calculated by Eq. (3.15), in which

the MTFm(f) obtained under magnification was used instead of MTFo(f) obtained

under unity magnification. Then the index of the DQE dataset was re-mapped into

the expanded spatial frequency by:

f ′ = n ·∆f ′ =
n

(N/2)
· f ′Nyquist =

n

(N/2)
· (M · fNyquist), (3.16)

where n is the index of data, N is the number of data points in the DQE dataset, ∆xm

is the pixel pitch of the virtual detector, f ′Nyquist is the Nyquist frequency calculated

from the pixel pitch of the virtual detector, and fNyquist is the Nyquist frequency

calculated from the pixel pitch of the actual detector.

The MTF curves shown in Fig. 3.2 and 3.3 were acquired at 26 kVp, 0.3 mA,

and 3s of exposure time, with magnifications ranging from 1X to 5X. The slit camera

method [39] was adopted in the measurement of the MTF, and a 10 − µm wide slit

camera (IIE GmbH, Aachen, Germany) was employed in the measurement.

It can be seen from Fig. 3.2 and 3.3 that the difference in MTF values at M

= 4 and M = 5 is small. This could be due to the fact that the width of the slit

camera used in this research was 10− µm, which is still rather wide to form the line

input for the magnification imaging, and due to the increased geometric unsharpness

introduced by the finite focal spot size and large magnification.
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Figure 3.2: MTF measured at 26 kVp, 0.3 mA, and 3s of exposure time, with mag-

nifications of 1, 1.5, 2, 3, 4, and 5; each MTF curve was presented as an individual

plot.
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Figure 3.3: MTF measured at 26 kVp, 0.3 mA, and 3s of exposure time, with mag-

nifications of 1, 1.5, 2, 3, 4, and 5; all MTF curves were plotted together to compare.
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Figure 3.4: NPS used in the calculation of DQE in this study: measured at 26kVp,

0.3 mA, 3s of exposure time, M=1.
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The NPS was measured by the analysis of a series of images of uniform incident

radiation [12] at M = 1, 26 kVp, 0.3 mA and exposure time = 3s. The resulting curve

is shown in Fig. 3.4.

The DQE curves shown in Fig. 3.5 and 3.6 were obtained according to Eq. (3.15),

with the dataset of MTF and NPS (illustrated in Fig. 3.2, 3.3, and 3.4, as well as

with the input signal to noise ratio N, which was calculated by multiplying the input

exposure at the perspective object plane and the photon fluence per mR, which was

measured as 8.7128*103 photon/(mm2*mR) in this study, following the method and

procedures in [32,51,52].

It should be noticed that the values of the DQE at zero frequency theoretically

should be equal because MTF at zero frequency is normalized to 1 and the other

quantities in Eq. (3.15) are the same even under different magnifications (Fig. 3.5

and 3.6). However, it can be observed that there is some variation in the DQE at

zero frequency, which is due to measurement error in the exposure level at different

magnification.
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Figure 3.5: DQE measured at 26 kVp, 0.3 mA, and 3s of exposure time, with mag-

nifications of 1, 1.5, 2, 3, 4, and 5; each DQE curve was presented as an individual

plot.
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Figure 3.6: DQE measured at 26 kVp, 0.3 mA, and 3s of exposure time, with mag-

nifications of 1, 1.5, 2, 3, 4, and 5; all DQE curves were plotted together to compare

and contrast.

3.4 Chapter Conclusion

In this chapter, the DQE method in magnification x-ray imaging was investigated.

The derivation was first conducted based on the traditional, widely accepted DQE

theory, and then verified by the DQE theory for digital imaging systems introduced

in Chapter 2.

From the traditional DQE point of view, theoretical analysis and experimental

results indicate that the low frequency DQE values under different geometric mag-

nifications are equal under the same x-ray exposure and the same source-to-detector

distance. At a given magnification M and with constant SID, the input x-ray photon

fluence is increased by M2 times due to the inverse square law; and the noise power

spectrum is reduced by M2 times due to the reduction of the effective pixel size of
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the detectors. From the point of DQE for digital x-ray imaging system, the number

of photons per pixel q and LAS are unchanged when magnification is introduced;

MTF, NPS, and DQE are functions of the normalized spatial frequencies and there-

fore their values are not affected by the reduction of the effective pixel size introduced

by magnification. Therefore, as compared to the unity magnification case, the varia-

tion in the DQE(f) curve under geometric magnification is primarily affected by the

MTF curves and the increased effective sampling frequency. At the end, DQE under

magnification of X1, X1.5, X2, X3, X4 and X5 under a constant SID were measured

according to the theory introduced in this chapter. Part of the content in this chapter

was published in [27].
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CHAPTER 4

Determination of the x-ray photon fluence

4.1 Chapter introduction

As introduced in Chapter 2 and 3, the photon fluence plays an important role in

the determination of DQE. Besides their applications in DQE, the measurements of

the spectral composition and the photon fluence of incident x-ray beam is also of

significant importance in many areas of diagnostic radiography, such as control of

beam quality and study of patient dose [32,51–57].

The photon fluence is defined as the number of x-ray photons received per unit

area on a plane of interest, and in our approach the photon fluence is estimated ex-

perimentally through the measurement of incident x-ray spectral composition and the

exposure level at the plane of interest. X-ray spectral composition in diagnostic radio-

graphy depends upon the tube potential, the target material, the generator waveform,

and the total filtration in the x-ray beam [6]. The methods to determine the x-ray

spectral composition include spectral modeling based on the exposure techniques and

beam filtration [51,55,58], as well as direct spectroscopic measurements using various

detectors, including High Purity Germanium (HPGe) detectors [54, 59–61], CdZnTe

detectors [60,61] and CdTe detectors [62,63]. As compared to spectral modeling, the

direct spectroscopic approach is able to offer better sensitivity to changes in experi-

mental conditions, as well as better flexibility of the experiments as the measurements

are not merely restricted to the standard exposure conditions.

In this chapter, the theory behind the estimation of photon fluence through the

measurements of spectral composition and exposure levels is discussed first. Then the
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uncertainty in the photon fluence from the energy calibration process, which converts

the channel numbers in the raw spectral data into the energy levels, is investigated.

To demonstrate the methods reported in this chapter, the photon fluence of a 40 kV,

0.5mA, 25µm-Rh filtered beam from a Mo-target tube at the SID of 183 cm (6 ft)

was calculated with different energy calibrations. To obtain multiple channel-energy

pairs for the calibration, we applied a new technique that utilizes the peaks in the

secondary fluorescent x-ray from different filters placed in the primary beam. Six

characteristic peaks, including Cu Kα1, Cu Kβ1, Pb Lα1, Pb Lβ1, Mo Kα1, and Mo

Kβ1, were used in the comparison.

4.2 Determining photon fluence of an x-ray exposure from

its spectrum and exposure level

Photon fluence (Φ) of the incident x-ray can be determined from the corresponding

exposure level and spectral composition. In order to illustrate this method, the

derivation of the calculation of Φ is first presented. It is helpful to list the definitions

and units of several physical quantities that are involved in the derivation [64]:

• Photon fluence: Φ = Photon Number
Area

(1/cm2).

• Energy fluence: Ψ = Φ·E = Photon Number
Area

·Energy
Photon

(unit: kev/cm2), for monochro-

matic x-ray photon

• Exposure: amount of electrical charge (∆Q) produced by the ionizing electro-

magnetic radiation per unit mass of air (∆m), X = ∆Q
∆m

(unit: milliroentgen,

1mR = 2.58× 10−7C/kg)

• Absorbed dose: the energy (∆E) deposited by ionizing radiation per unit mass

of material (∆m), D = ∆E
∆m

(unit: keV/g)
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The absorbed dose in air (D) resulting from an x-ray with exposure level (X) can

be calculated as the energy needed to release the amount of electrons that forms X:

D =
X · 2.58× 10−7 (C/kg)

1.6× 10−19 (C/e)
× 34(eV/e)

= 5.4825× 1013X (eV/kg)

= 5.4825× 107X (keV/g). (4.1)

In the above equation, X · 2.58 × 10−7 is the amount of charge per unit mass of

air that corresponds to the exposure level X (in mR); 1.6× 10−19 C/e is the amount

of charge of 1 electron; 34eV is the average energy needed to release 1 electron from

air [64].

With a polychromatic x-ray beam, the total absorbed dose in air is the sum of

the absorbed dose at each energy level of the radiation:

D =
∑

E

D(E) (4.2)

The absorbed dose in air at a certain energy level of the radiation equals to the

product of the mass energy absorption coefficient (MEAC) of air
(

µen

ρ

)
E

and the

energy fluence at that energy level Ψ(E) [64]:

D(E) =

(
µen

ρ

)

E

·Ψ(E)

=

(
µen

ρ

)

E

· Φ(E) · E (4.3)

From Eq. (4.1), (4.2), and (4.3), the exposure X can be calculated as a function of

the MEAC of air
(

µen

ρ

)
E
, the energy level E, and the photon fluence at each energy

level Φ(E):
∑

E

(
µen

ρ

)

E

· Φ(E) · E = 5.4825× 107X, (4.4)
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and

X =

∑
E

(
µen

ρ

)
E
· Φ(E) · E

5.4825× 107
, (4.5)

where the units of measurement are as follows: mR for X, cm2/g for
(

µen

ρ

)
E
, keV

for E, and 1/cm2 for Φ(E).

Similar to the absorbed dose in air, the total photon fluence Φ is the sum of the

photon fluence at each energy level of the radiation:

Φ =
∑
E

Φ(E). (4.6)

From Eq. (4.5) and (4.6), the photon fluence per unit exposure (F ) can then be

calculated as follows:

F =
Φ

X

=

∑
E

Φ(E)

X

=

∑
E

Φ(E)

∑
E

(µen
ρ )

E
·Φ(E)·E

5.4825×107

=
5.4825× 107

∑
E

(
µen

ρ

)
E
· [Φ(E)/

∑
E

Φ(E)] · E

=
5.4825× 107

∑
E

(
µen

ρ

)
E
· ΦN(E) · E

(1/(cm2 ·mR))

=
5.4825× 105

∑
E

(
µen

ρ

)
E
· ΦN(E) · E

(1/(mm2 ·mR)), (4.7)

where the unit of measurement for X is mR; for
(

µen

ρ

)
E

is cm2/g; for E is keV ,

and for Φ(E) is 1/cm2. Since the spectrum of the incident x-ray is measured as

the counts of photons at different energy channels, ΦN(E) = Φ(E)/
∑
E

Φ(E) is the

measured spectrum normalized by the total number of photons.
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Now that the photon fluence per unit exposure has been determined, the photon

fluence can simply be calculated as follows:

Φ = F ·X, (4.8)

where the units of measurement are as follows: mR for X, (1/(cm2·mR)) or (1/(mm2·
mR)) for F , and either 1/cm2 or 1/mm2 for Φ, depending on the unit of F .

4.3 Energy calibration process and its uncertainty

In spectroscopic measurements, a spectrometer groups the counts of the detected x-

ray photons into many channels, and generates the spectral data as the number of

photons for each channel. Since the raw data of x-ray spectra are the photon counts

at each channel, energy calibration is needed to convert the channel numbers into

the energy levels to generate more analyzable data. Typically, a linear relationship

between the channel numbers and the energy levels is expected [62,65], and the energy

calibration requires at least two pairs of corresponding channel numbers and energy

values (keV ) to establish the linear relationship [65]. Since the linear relationship is

estimated based on a limited number of channel-energy pairs, the estimation itself

includes uncertainty. One illustration of this uncertainty is that a regression line

determined from a set of channel-energy pairs can differ from the regression line

determined from another set of channel-energy pairs: as can be seen in Fig. 4.1, the

regression line determined from the lower, the middle, and the upper 2 channel-energy

pairs are all different from the regression line determined from all 6 channel-energy

pairs.
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Figure 4.1: Illustration of the uncertainty in the regression line.

The calibration includes two steps: firstly, to determine the linear relationship

between the channel numbers and the photon energy levels based on linear regression

[65,66], and secondly, to convert the channel numbers into energy levels or vise versa.

The regression line representing the linear relationship between the channel num-

bers and the energy levels has the following form:

C = B0 + B1E, (4.9)

where E is the energy level and C denotes the channel number.

The reason for choosing E as the abscissa is that linear regression analysis assumes

that there is no uncertainty in the independent variable [65], which is a good approx-

imate in x-ray spectroscopy because the energy of characteristic peaks are known.

Following the “simple linear model” of linear regression [66] (also known as “normal

regression” [67]), if a set of paired data (e1, c1), (e2, c2), ..., and (en, cn) are used in

the linear regression, ei are considered as constants and ci as values of the corre-

sponding independent random variables Ci. The “simple linear model” assumes that

70



the conditional density of Ci for each fixed ei is normal and has the same variance

(σ2). Therefore the maximum likelihood estimator (MLE) for the regression line is

as follows [66,67]:

B̂1 =

n
n∑

i=1

eici −
(

n∑
i=1

ei

)(
n∑

i=1

ci

)

n

(
n∑

i=1

e2
i

)
−

(
n∑

i=1

ei

)2 , (4.10)

B̂0 = c̄− B̂1ē, (4.11)

where B̄0 and B̄1 are the MLE estimators for B0 and B1 in Eq. (4.9); ē and c̄ are the

mean of ei and ci values from all the data points used in the above calculation.

The variance of the estimators B̂0 and B̂1 can be estimated as [66]:

V̂ ar(B̂1) =
S2

n∑
i=1

(ei − x̄)2

, (4.12)

V̂ ar(B̂0) = S2




1

n
+

x̄2

n∑
i=1

(ei − x̄)2


 , (4.13)

where

S2 =
1

n− 2

n∑
i=1

(ci − B̂0 − B̂1ei)
2 (4.14)

is the unbiased estimator for the variance (σ2) of the random variables Ci.

With a finite number (n) of data points used to estimate B0 and B1, the two

estimators B̂0 and B̂1 follows a Student’s t distribution with a degree of freedom of

n− 2 [66], and the 95% confidence intervals (c.i.) of B0 and B1 are

95% c.i. of B1 =

[
B̂1 − t0.025,n−2 ·

√
V̂ ar(B̂1), B̂1 + t0.025,n−2 ·

√
V̂ ar(B̂1)

]
, (4.15)
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and

95% c.i. of B0 =

[
B̂0 − t0.025,n−2 ·

√
V̂ ar(B̂0), B̂0 + t0.025,n−2 ·

√
V̂ ar(B̂0)

]
, (4.16)

where t0.025,n−2 is the upper percentile of Student’s t distribution with n− 2 degrees

of freedom.

After the regression line is determined, the second step of calibration can be con-

ducted. The typical procedure of energy calibration is to convert the channel numbers

in the raw spectral data into energy levels, which could produce more interpretable

spectral results. However, from the uncertainty analysis point of view, if the spectra

have both uncertainty in its x-values (the energy) and its y-values (spectral readings),

it will very difficult to derive the uncertainty propagated from the spectral measure-

ment to the following calculations such as photon fluence. To solve this difficulty, we

left the spectrum measured in its raw form: the numbers of photons at each channel

(Φ(C)), rather than converting the channel numbers in the raw spectra into energy

levels. Instead, we convert the MEAC of air used in Eq. (4.7) from a known, de-

terministic function of energy levels (f(E) =
(

µen

ρ

)
E
) into a function of the channel

numbers g(C), which contains uncertainty in its abscissa due to the energy-to-channel

conversion:

g(C) = f(E) = f(
C

B1

− B0

B1

), (4.17)

where f(E) and g(C) represent the MEAC of air as the function of energy E and

channel number C, respectively.

With the normalized spectra directly measured as the function of channel numbers

ΦN(C) = Φ(C)/
∑
C

Φ(C), and the energy levels E converted to channel numbers as
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E = C
B1
− B0

B1
, F can be determined based on the channel numbers C (C = 1, 2, ..., k):

F =
5.4825× 105

k∑
C=1

g(C) · ΦN(C) · ( C
B1
− B0

B1
)

=
B1 · 5.4825× 105

k∑
C=1

g(C) · ΦN(C) · (C −B0)

(1/(mm2 ·mR)), (4.18)

where k is the number of channels in the measured spectrum.

According to the propagation of uncertainty theory specified by ISO [68] and

ANSI/ASME [69], for each channel number C = 1, ..., k, the uncertainty of g(C)

propagated from the calibration process is:

V̂ ar(g(C)) =

(
∂g(C)

∂B1

)2

V̂ ar(B1) +

(
∂g(C)

∂B0

)2

V̂ ar(B0), (4.19)

∂g(C)

∂B1

=
df(E)

dE
· ∂E

∂B1

=
df(E)

dE
· −E

B1

, (4.20)

∂g(C)

∂B0

=
df(E)

dE
· ∂E

∂B0

=
df(E)

dE
· −1

B1

, (4.21)

where for each channel C = 1, ..., k, E is its corresponding energy level; df(E)
dE

can be

estimated as the slope of the MEAC curve (f(E)) of air at the energy E.
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Figure 4.2: Mass Energy Absorption Coefficients (MEAC) of air.
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Figure 4.3: Derivative of the MEAC of air.

Based on Eq. (4.12), (4.13), (4.18), and (4.19), the uncertainty that propagates
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from B0, B1 and g(C) (C = 1, 2, ..., k) into F can be calculated as:

V̂ ar(F̂ ) =

(
∂F

∂B1

)2

· V̂ ar(B̂1)

+

(
∂F

∂B0

)2

· V̂ ar(B̂0)

+
k∑

C=1

{(
∂F

∂g(C)

)2

· V̂ ar(g(C))

}
, (4.22)

where

∂F

∂B1

=
5.4825× 105

k∑
C=1

g(C) · ΦN(C) · (C −B0)

, (4.23)

∂F

∂B0

=
B1 · 5.4825× 105

{
k∑

C=1

g(C) · ΦN(C) · (C −B0)

}2 ·
k∑

C=1

g(C) · ΦN(C), (4.24)

and

∂F

∂g(C)
=

−B1 · 5.4825× 105

{
k∑

C=1

g(C) · ΦN(C) · (C −B0)

}2 · ΦN(C) · (C −B0), (4.25)

for each C = 1, ..., k.

And the uncertainty in Φ from the energy calibration process is therefore

V̂ ar(Φ̂) =

(
∂Φ

∂F

)2

· V̂ ar(F̂ ) = X2 · V̂ ar(F̂ ), (4.26)

where X is the measured exposure level at the point of interest.

4.4 The measurement of incident x-ray spectra

Under our experimental settings, x-ray spectra were measured with a spectrometer

system which consists of a Cadmium Telluride (CdTe) detector (XR-100T-CdTe,
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Amptek Inc., MA) and a multi-channel analyzer (MCA8000, Amptek Inc., MA). The

spectrometer uses a wide band-gap, compound CdTe semiconductor as the detector

element, with a CdTe crystal size of 3 × 3 × 1mm3. The internal components of

the detector are cooled with a small thermoelectric that provides an approximately

−50oC temperature difference, in an effort to reduce the leakage current and improve

the charge transport property [63]. In the energy range from 10 keV to 50 keV, the

detector provides nearly 100% detection efficiency [70].

In the spectral measurement process, x-rays were generated from a micro-focus

tube (UltraBright, Oxford Instruments, CA) which has a Molybdenum target and

a 245µm thick Beryllium output window. The X-ray spectra were measured at a

tube potential of 40 kVp and a tube current of 0.5 mA, with the additional filtration

of a 25µm thick Rhodium filter, for a duration of 400s. The CdTe detector was

aligned with the incident beam based on a dual laser alignment approach [42]. The

alignment procedure will be discussed in Chapter 5. The experimental configuration

is illustrated in Fig. 4.4.
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Figure 4.4: The experimental configuration for x-ray spectral measurement. The two

tungsten collimators were separated by a brass cylinder with an opening diameter of

2-mm.
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Figure 4.5: The raw spectrum obtained at 40 kVp, 0.5 mA, 400s, with Mo-target and

25µm Rhodium additional filtration.

4.5 Characteristic peaks for the energy calibration process

Although the calibration line is often determined based on the characteristic peaks

from isotopic radiation [54,59–63], isotopes are not always available for experimental

setups. Using the characteristic peaks of the measured x-ray beam as the basis of

energy calibration is therefore a practical alternative. However, due to the fact that

the number of peaks in a diagnostic x-ray beam is small, significant uncertainty

could thus be involved in the calibration process. In order to increase the number

of characteristic peaks involved in the energy calibration process, we utilized the

fluorescent x-rays resulting from the photoelectric effect between the primary x-ray

and different collimator materials, including lead and copper. X-ray at the tube

potential of 40kVp X-ray was utilized, and the 25µm Rhodium filtration was removed

from the beam to obtain the K-characteristic peaks of the Molybdenum target. In

78



order to determine the channel-energy pair for the characteristic peaks of copper

(Kα1, 8.05 keV and Kβ1, 8.90 keV) and lead (Lα1,10.55 keV and Lβ1, 12.61 keV),

pure copper and lead foil were placed in front of the CdTe detector, respectively.

Table 4.1 shows the 6 channel-energy pairs used to determine the calibration line

for energy calibration. Fig. 4.6, Fig. 4.7, and Fig. 4.8 show the spectra obtained for

the Mo characteristic peaks, the Cu characteristic peaks, and the Pb characteristic

peaks, respectively.

Table 4.1: The channel-energy pairs used in the energy calibration.

Peak Channel Number Energy Level

Cu Kα1 199 8.05

Cu Kβ1 221 8.90

Pb Lα1 261 10.55

Pb Lβ1 311 12.61

Mo Kα1 430 17.48

Mo Kβ1 483 19.61
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Figure 4.6: Characteristic peaks of Molybdenum.
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Figure 4.7: Characteristic peaks of copper.
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Figure 4.8: Characteristic peaks of lead.
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4.6 Statistical results on the energy calibration

Based on the first 3 channel-energy pairs, the first 4 pairs, the first 5 pairs, and all

the 6 peaks in Table 4.1, the statistics on the parameters B0 and B1 of the calibration

line (Eq. (4.9)) can be obtained, and the results are shown in Table 4.2.

Table 4.2: The statistical information of the regression line estimated from different

number of channel-energy pairs. 3 pairs: Cu Kα1, Cu Kβ1, and Pb Lα1. 4 pairs: Cu

Kα1, Cu Kβ1, Pb Lα1, and Pb Lβ1. 5 pairs: Cu Kα1, Cu Kβ1, Pb Lα1, Pb Lβ1, and

Mo Kα1. 6 pairs: all the data pairs listed in Table 4.1.

3 pairs 4 pairs 5 pairs 6 pairs

B1 24.72 24.48 24.43 24.49

B0 0.36 2.50 2.96 2.43

V ar{B1} 0.169 0.033 0.005 0.003

V ar{B0} 14.37 3.43 0.71 0.48

95% c.i. of B1 24.72±5.22 24.48 ± 0.78 24.43 ± 0.22 24.49 ± 0.14

95% c.i. of B0 0.36 ± 48.16 2.50 ± 7.97 2.96 ± 2.68 2.43 ± 1.93

Using the estimated B0 and B1 based on all the six channel-energy pairs, the

calibration can be applied to the raw spectrum in Fig. 4.5, and the results are shown

in Fig. 4.9.
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Figure 4.9: The calibrated spectrum obtained at 40 kVp, 0.5 mA, 400s, with Mo-

target and 25µm Rhodium additional filtration. The energy calibration is based on

all the six channel-energy pairs shown in Table 4.1.

In order to provide an intuitive illustration on the impact of the calibration un-

certainty in the spectral measurement and the photon fluence calculation, the raw

spectrum in Fig. 4.5 are calibrated using the estimated value, as well as the lower and

upper boundary value of the 95% confidence interval of the parameters B0 and B1.

The statistics on B0 and B1 based on 3 channel-energy pairs, 4 pairs, 5 pairs, and all

the 6 pairs in Table 4.1 are compared in this manner, and the results are shown in

Fig. 4.10, 4.11, 4.12, and 4.13.
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Figure 4.10: The calibrated spectra obtained at 40 kVp, 0.5 mA, 400s, with Mo-

target and 25µm Rhodium additional filtration. The energy calibration is based

on the estimated value, as well as the lower and upper boundary value of the 95%

confidence interval of the parameters B0 and B1. The first 3 channel-energy pairs

shown in Table 4.1 are used for the statistics.
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Figure 4.11: The calibrated spectra obtained at 40 kVp, 0.5 mA, 400s, with Mo-

target and 25µm Rhodium additional filtration. The energy calibration is based

on the estimated value, as well as the lower and upper boundary value of the 95%

confidence interval of the parameters B0 and B1. The first 4 channel-energy pairs

shown in Table 4.1 are used for the statistics.
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Figure 4.12: The calibrated spectra obtained at 40 kVp, 0.5 mA, 400s, with Mo-

target and 25µm Rhodium additional filtration. The energy calibration is based

on the estimated value, as well as the lower and upper boundary value of the 95%

confidence interval of the parameters B0 and B1. The first 5 channel-energy pairs

shown in Table 4.1 are used for the statistics.
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Figure 4.13: The calibrated spectra obtained at 40 kVp, 0.5 mA, 400s, with Mo-

target and 25µm Rhodium additional filtration. The energy calibration is based

on the estimated value, as well as the lower and upper boundary value of the 95%

confidence interval of the parameters B0 and B1. All 6 channel-energy pairs shown

in Table 4.1 are used for the statistics.

Based on these different calibration results, the fluence per unit exposure F can

be calculated using Eq. (4.22), and the results are shown in Table 4.3.

Table 4.3: The statistical results of the photon fluence per unit exposure F estimated

based on different number of channel-energy pairs. 3 pairs: Cu Kα1, Cu Kβ1, and Pb

Lα1. 4 pairs: Cu Kα1, Cu Kβ1, Pb Lα1, and Pb Lβ1. 5 pairs: Cu Kα1, Cu Kβ1, Pb

Lα1, Pb Lβ1, and Mo Kα1. 6 pairs: all the data pairs listed in Table 4.1.

3 pairs 4 pairs 5 pairs 6 pairs

Fmin 1/(mm2mR) 18122 35635 38428 38748

Festimated 1/(mm2mR) 39185 39557 39659 39559

Fmax 1/(mm2mR) 66963 43595 40869 40376
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In one of our experiments, the exposure at a SID of 183 cm (6 ft) is measured as

16.28 mR. The estimated photon fluence Φ is shown in Table 4.4. To demonstrate

the impact of the calibration uncertainty in the calculated photon fluence, the values

in Table 4.4 are plotted in Fig. 4.14.

Table 4.4: The statistical results of the photon fluence Φ estimated based on different

number of channel-energy pairs. 3 pairs: Cu Kα1, Cu Kβ1, and Pb Lα1. 4 pairs: Cu

Kα1, Cu Kβ1, Pb Lα1, and Pb Lβ1. 5 pairs: Cu Kα1, Cu Kβ1, Pb Lα1, Pb Lβ1, and

Mo Kα1. 6 pairs: all the data pairs listed in Table 4.1.

3 pairs 4 pairs 5 pairs 6 pairs

Φmin 1/(mm2mR) 295026 580138 625608 630817

Φestimated 1/(mm2mR) 637932 643988 645649 644021

Φmax 1/(mm2mR) 1090158 709727 665347 657321
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Figure 4.14: Illustration of the statistics of the photon fluence Φ for the 40 kVp, 0.5

mA, Mo-target and 25µm Rhodium filtered beam at the exposure of 16.28 mR. The

energy calibration is based on the estimated value, as well as the lower and upper

boundary value of the 95% confidence interval of the parameters B0 and B1.
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4.7 Chapter conclusion

The photon fluence plays an important role in the determination of DQE. Besides

that, the determination of the photon fluence and the spectral composition is also

significantly important in many areas of diagnostic radiography, such as control of

beam quality and study of patient dose. In this chapter, the method to estimate

the photon fluence for an incident x-ray beam based on its spectral composition

and the exposure level is discussed. After a detailed derivation of the method, the

impact of the calibration uncertainty on the calculated photon fluence is analyzed

mathematically. Experimental results based on a 40 kVp, 0.5 mA, and 25-µm-Rh-

filtered beam from a Mo-target based x-ray tube is used to demonstrate the methods.

Several observations could be reached from the experimental results. Firstly, the

level of uncertainty in the energy calibration can be reduced by increasing the number

of channel-energy pairs used in the linear regression, as can be seen in Table 4.2.

Secondly, the uncertainty in the regression can cause energy shifts in the calibrated

spectra, as can be observed in Fig. 4.10, Fig. 4.11, Fig. 4.12, and Fig. 4.13. Thirdly,

with the usage of the characteristic peaks from the secondary fluorescent x-ray caused

by different filters (Cu and Pb in this study), as well as the characteristic peaks

from the primary beam (Mo in this study), more channel-energy pairs can be easily

obtained to reduce the calibration uncertainty, as can be seen in Table 4.3 and 4.4.

Part of the content of this chapter was published in [52].
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CHAPTER 5

A convenient alignment approach for x-ray imaging

experiments based on laser positioning devices

5.1 Chapter introduction

The alignment between the radiation source, the subject, and the measuring and

detecting devices is critical in x-ray imaging experiments, and has been investigated in

subject positioning and portable radiography [71,72], as well as in the measurements

of modulation transfer function (MTF) [73, 74], focal spot size [75, 76], and x-ray

spectra [76–79].

Several techniques for alignment using lasers and other methods have been devised

and reported in literature, such as the combination of a laser projector and reflectors

to indicate the correct relative position between the subject, the detector and the

x-ray beam [71–73, 75], the combination of laser positioning and pinhole focal-spot

radiography to provide precise alignment [74,79], the use of a single laser that points

to the focal spot position to help the alignment of x-ray spectrometer [78], and the use

of multi-pinhole plate and telescope-based observation in determining the collimator

position in spectral measurements [76].

In this chapter, a new alignment approach is reported, which differs from the other

methods in that it provides two coinciding laser beams pointing toward and away from

the x-ray source, instead of using only one laser pointing toward the source. The

advantage of this two laser configuration is that it provides a highly accurate method

to form a visible indicator of the incident x-ray from both directions. Thus imaging
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components such as the pinhole collimators used in the spectral measurements can

be aligned very intuitively and precisely through the help of the laser beams.

The alignment process is described in detail after a brief description of the target

x-ray imaging system [10,80–82] on which the alignment approach was implemented.

In addition, the adjustment of the coverage of the x-ray beam on the detector is also

presented, as it is considered a critical part of the system tuning process because it

ensures a relatively uniform x-ray field on the detector.

5.2 Materials and methods

5.2.1 Description of the imaging system

The imaging system utilized in this study employs a micro-focus x-ray source (Ultra-

Bright, Oxford Instruments, CA) and a Computed Radiography (CR) system (Regius

190, Konica Minolta, NJ) for image detection. The various imaging and measuring

components of the system are mounted on a supporting optical rail on which their

positions can be conveniently adjusted.

Standard opto-mechanic components were used to form the holding structures for

the measurement devices, lasers, detectors, objects and the x-ray tube, due to their

ability to produce flexible, accurate and reproducible alignment and positioning for

the imaging components. In addition, linear and rotational stages were also utilized

to effectively and precisely control their horizontal, vertical and angular positions.

5.2.2 The alignment procedure based on two laser positioning devices

Precise alignment is essential in certain measurements and imaging tasks, as discussed

in Section 5.1, although it often requires arduous efforts and is therefore very time

consuming. In order to ease the difficulty and to improve the accuracy of the align-

ment tasks, two laser pointers were used to establish a visible indicator of the incident
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x-ray beam. The laser pointers were mounted at opposite ends of the supporting rail

and positioned to face each other, as shown in Fig. 5.1. During the alignment process,

the laser facing the x-ray source, hereafter referred to as Laser-1, was first calibrated

to ensure that the laser beam constantly pointed towards the output window of the

x-ray tube when the position of the laser was adjusted along the optical rail. This

verified that the laser beam was parallel to the direction along which the components

were positioned, which was the direction of the supporting optical rail in this study.

The beam of Laser-1 thus indicated the position of the x-ray source with respect to

the supporting rail, and provided a baseline for the other laser to be calibrated.

The laser at the opposite end of the rail, hereafter referred to as Laser-2, was

then adjusted so that the beam coincided exactly with the beam from Laser-1. To

verify this, two transparency films were placed a distance of approximately 20 cm

apart within the path of the two laser beams. The congruence of the laser beams

was confirmed when the laser dots on both sides of each transparency film were

overlapping. To provide a numeric measure of the coincidence of the laser beams,

another transparency film bearing a 10cm-x-10cm grid with line spacing of 1 mm

was also utilized. The transparency was fixed to the optical rail by a holder which

could travel along the rail. While moving the transparency film along the rail, the

position of the laser dots on the grid from both Laser-1 and Laser-2 were recorded

individually and both determined to hold a constant position of [4.2mm, 3.5mm].

This correspondence of the laser positions thus verified that the laser beams were

coinciding and parallel to the optical rail. Since the direction of the beam from

Laser-2 was the same as that of the x-ray from the source, it provided an intuitive

illustration of the incident x-ray. This preparation enabled the position of the object,

detectors and other devices to be aligned easily and accurately with the help of the

two laser beams. It should be noted that although the two lasers employed in this

study both generate red-colored lasers, the use of different colored lasers (red and
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green for example) may make the alignment even more convenient.

Although Laser-2 is more convenient to use in the alignment process due to the

direction of its beam, it must be removed from the path of the x-ray to allow image

acquisition and measurements. Laser-1, which is located at the opposite end of the

supporting rail from the x-ray source, can maintain its position during the imaging

and measurement processes, and thus facilitates reestablishing the alignment of Laser-

2. Verifying that the two laser beams are parallel to the supporting optical rail is

critical for this alignment process, as the laser beams function as the baseline for

mounting and positioning other imaging and measuring components along the rail.

optical rail & carriers

Laser-1

detector

sample Laser-2

x-ray tube

tilt angle

Figure 5.1: Schematic of the alignment process

5.2.3 Laser alignment of collimators in spectral measurements

In spectral measurements, pinhole collimators are commonly used to limit the flux

of the incident x-ray arriving on the spectrometers [76, 78, 79]. In the spectral ex-

periments performed in this study, a CdTe detector (XR-100T-CdTe, Amptek Inc.,

Bedford, MA) was employed. Although the vendor of the spectrometer provided a col-

limator kit and detailed the implementation of a two-pinhole-collimator approach [78]

to aid the collimation process, the precise alignment of the collimators and input win-

dow of the CdTe detector with respect to the direction of the incident beam remains

a difficult task. This is due to the fact that the pinhole collimators must be aligned

concentrically with respect to each other, as well as the direction of the incident

beam, in order to reduce the beam filtration resulting from the collimation. Using

92



our two-laser alignment approach, this problem could be adequately solved. When

the coinciding laser beam from both Laser-1 and Laser-2 is established as described

in Section 5.2.2, the laser from Laser-2 could be utilized as a visible substitute for the

incident x-ray beam in the spectral measurements. Thus when the laser from Laser-2

results in the brightest and roundest dot on the plane of the spectrometer’s input

window after passing through the collimators, a good alignment is achieved. On the

other hand, if the collimators were misaligned, no laser dot could be observed (see

Fig. 5.2 for more details).

optical rail & carriers

Laser-2

pinhole collimators

cylindrical 

collimator spacer

spectrometer

collimator collimator

x-ray tube

Figure 5.2: The alignment of the collimators and the spectrometer with respect to

the direction of the incident x-ray beam using the two-laser alignment approach. The

beam from Laser-2 is utilized as the visible indicator of the incident x-ray beam. The

pinhole collimators are then aligned concentrically with respect to each other, as well

as the direction of the incident beam.

5.2.4 Adjustment of the x-ray beam coverage

In addition to aligning various components with respect to the x-ray source, it is

necessary to adjust the placement of the x-ray source with respect to the detector

position in order to ensure a relatively uniform x-ray field on the detector, which

could help to reduce the background trends and/or artifacts in acquired images. The

prototype system employs a free-standing source that features an output window that

is aligned at an angle with respect to the electron beam, the design of which has been
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reported to be helpful for producing a rounded micro focal spot. However, this design

also introduces challenges into the alignment process. The angle between the x-ray

tube and the supporting rail must be carefully adjusted in order to obtain relatively

uniform beam coverage on the detectors, due to non-uniformities in the output x-ray

field, such as the anode heel effect.

A series of images were acquired at different source to image distances (SIDs) for

the adjustment of the tube angle. An initial image was acquired at an SID of 12 inches

(≈ 30 cm) to illustrate the shape of the entire x-ray field, which is determined by

the intrinsic collimation of the micro-focus x-ray source. From this image, a portion

of the entire field with uniform pixel values was selected to be shifted to the center

of the detector and aligned directly with respect to the pixel array by adjusting the

tube. Through this process the detector could be covered by this uniform portion of

the field at larger SIDs. During the adjustment, several images at a larger SID (91

cm) were acquired to guide the adjustment of the x-ray tube to achieve a uniform

x-ray field. Then images taken at even larger SIDs (122 cm, 127 cm and 132 cm) were

obtained to further guide the tube adjustment and to determine the threshold SID,

beyond which the entire detector (24 inch by 30 inch) is guaranteed to be covered by

the uniform x-ray field. This threshold was determined to be 132 cm in our study,

and was thus utilized in our experiments to ensure a uniform x-ray field.

5.3 Results

The accurate alignment of the tungsten pinhole collimators used in the x-ray spectral

measurements (2 mm thick, with diameter of 100 µm and 200 µm, “Collimation

Kit”, Amptek Inc., Bedford, MA) were verified through the use of x-ray images. The

collimators were aligned with respect to the incident x-ray beam, separated by a 36

mm long brass collimator spacer with an aperture of 5-mm diameter, as shown in

Fig. 5.2. Two images of the pinhole collimators were obtained with magnification
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of approximately 5, at 20 kV, 2 mA and 400s. With a good alignment, the pinhole

x-ray image obtained was a rounded dot; as the angle of the collimators (Fig. 5.2)

was tilted 0.1 degree away from the good position, the pinhole dot shrank and its

shape was blurred; as the angle was tilted further (greater than 0.3 degree), the dot

disappeared.

To further illustrate the advantage of using the two laser alignment approach,

an example application of spectral measurements is provided. X-ray spectra were

measured at 40 kV, 0.5 mA, 400s with a Mo-Be target-window combination. The

placement of the spectrometer and collimators is shown in Fig. 5.2, and the distance

from the source to the spectrometer was approximately 6 ft (183 cm). The influence

of misalignment of the pinhole collimators can be observed through the photon rate

received by the spectrometer, as well as the shape of the resultant spectra. With the

collimators in good alignment with respect to the incident x-ray beam, the photon

rate measured by the spectrometer was 1030 photon/s. However, with a misalignment

of approximately 0.1, 0.2 and 0.3 degree away from the good alignment position, the

photon rate reduced to 947, 222 and 103 photon/s, respectively. This is illustrated in

Fig. 5.3, which compares the good alignment spectrum separately with each degree

of misalignment. As the tilt angle was increased, the magnitude and shape of the

spectrum obtained with misalignment gradually deviated from that acquired with

good alignment. The difference in the magnitude is due to the decreasing photon

rates in the spectral measurements, and the difference in the shape of the spectra

is probably caused by the beam filtration from the collimators, which blocked and

filtered the primary x-ray beam rather than only allowing a limited portion of photons

in the primary beam to pass through their apertures.
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Figure 5.3: X-ray spectrum measured with a CdTe detector at a good alignment

position of the two tungsten collimator disks compared separately with the spectrum

obtained with a collimator position 0.1 (a), 0.2 (b), and 0.3 (c) degree tilted away

from the good alignment position, respectively. The spectra were measured at 40 kV

with a Mo-Be target-window combination.

Profiles on both x direction (the short side of the image) and y direction (the

long side of the image) of the x-ray field after the adjustment of the tube are shown

in Fig. 5.4. The image was taken at 40 kV, 0.5 mA, and 12 s, with an SID of 52

inches (132 cm), which was the threshold SID beyond which the entire detector could

be covered by the uniform x-ray field, as mentioned in Section 5.2.4. The profiles

were measured as the mean of 1000 rows on the x direction and 1000 columns on the

y direction at the center of the image. The maximum and minimum values of the

measured profile on x direction are 2581 and 2608, respectively; the maximum and
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minimum values of the profile on y direction are 2589 and 2607, respectively.
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Figure 5.4: Profile of the x-ray field on the detector after the adjustment of the

placement of x-ray tube. The image was taken at 40 kV, 0.5 mA, 12 s and with SID

of 52 inches (132 cm).

5.4 Chapter conclusion

This paper reports a convenient two-laser alignment approach by which the position-

ing of the imaging and measuring components with respect to the x-ray beam can

be easily achieved. The first laser was positioned a distance from the source with its

beam adjusted to constantly point towards the output window of the x-ray tube and

parallel to the direction along which the components are placed. Then the second

laser was calibrated to ensure that its beam coincided with the beam from the first

laser. After that, a visible indicator of the direction of the x-ray beam was estab-

lished and the imaging components could thus be aligned conveniently and accurately.

One of the advantages of the proposed alignment approach was illustrated in x-ray

spectral measurements in which the pinhole collimators and the spectrometer could
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be conveniently and precisely aligned with respect to the direction of incident x-ray

beam based on the laser beam.

The proposed alignment approach could also be adapted to clinical settings under

which the x-ray tube beam exit window is not visible, although this would introduce

some additional steps for our alignment approach to be applied to clinical systems.

For example, as indicated by the literature [74, 79], pinhole focal-spot radiography

could be used to determine the position of the focal spot, and the pinhole placed

in front of the tube could thus be used as a indicator of the focal spot position. In

addition, the optical rail and opto-mechanic components may not be applicable in a

clinical setting, although they play an important role as the base for accurate and

reproducible alignment in this experimental environment. However, the idea of this

precise two-laser alignment approach would still apply in such settings. For example,

a device as shown in Fig. 5.5 could be constructed and utilized, which consists of

a supporting plane that is perpendicular to the first laser beam and a supporting

arm for moving the second laser. The arm would permit the laser to swing back and

forth from the alignment position where the two beams are coinciding to an alternate

location allowing Laser-1 to point to the focal spot position. For most clinical systems,

the x-ray beam is designed so that the central x-ray is perpendicular to the detector,

thus the device in Fig. 5.5 would provide an acceptable means for precise alignment

utilizing the coincident laser beams.
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Figure 5.5: Schematic of a device for applying the proposed alignment approach in a

clinical setting

In conclusion, the reported alignment process is suitable for facilitating accurate

image acquisition and measurement, as it provides a precise and simple method for

ensuring the alignment of various components with respect to the direction of incident

x-ray beam.
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CHAPTER 6

On the measurement of modulation transfer functions

6.1 Chapter introduction

In the previous chapters, the theory of DQE and one of the constituent measurements–

photon fluence–are discussed. In this chapter, the measurement of another constituent

part of the DQE–Modulation Transfer Function (MTF)–is detailed.

MTF demonstrates the resolving power of an imaging system as a function of

spatial frequency, and is a widely-accepted measurement of system performance in the

sense of contrast transfer and spatial resolution [8,39,73,83–87], not only in the clinical

environment for verification of successful operation, but also in research field for the

comparison among different imaging systems and techniques [24,39,74,83,84,86–93].

Similar to the Fourier Transform based signal-and-system analysis for electrical

systems in the time domain [36, 40], the concepts of impulse response function and

transfer function can also be applied to imaging systems. This analysis requires the

electrical systems in time domain or spatial domain to be linear and shift-invariant

(LSI).

The impulse response function in imaging systems can be either in the form of

Point Spread Function (psf(x, y)), or in the form of Line Spread Function (lsf(x, y)).

The system transfer function, as the Fourier Transform of the impulse response func-

tion, can be either the function of the spatial frequency (u, v) in 2D frequency domain,

or the function of the spatial frequency (f) in 1D frequency domain.

As discussed earlier in Section 1.1.1, 1D continuous MTF is closely related to the

line spread function by the fact that MTF is the normalized modulus of the Fourier
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Transform of LSF [6,8, 9]:

MTF (f) =
|FT{lsf(x)}|

FT{lsf(x)}|f=0

, (6.1)

where FT{ } denotes the Fourier Transform, and | | stands for the modulus operator.

This relationship between the MTF (f) and lsf(x) can be considered as similar

to the relationship between the modulus of the system function in frequency domain

and the impulse response function in the time domain for general electrical systems.

6.2 Measurement of line spread function

6.2.1 Acquisition of the slit image

To determine the MTF (f) of an x-ray imaging system using the slit method [39], the

line spread function (LSF) needs to be measured. A slit camera is often employed to

collimate the incident x-ray beam into a sharp line input to the imaging system, and

based on the “over sampling” method [39], the slit is positioned at a small angle with

respect to one axis of the detector. Then LSF is obtained by scanning the x-ray image

of the sharp line in order to find the intensity value for each pixel and the distance

from each pixel to the slit line. The resultant LSF is a curve of the intensity of each

pixel vs. the distance from each pixel to the slit line, as shown in Fig. 1.4. Fig. 6.1

illustrates the placement of the slit camera: the slit is positioned with a small angle

alpha (≈ 2o) to the i axis which is the scanning direction in the algorithm discussed

below.
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Figure 6.1: Schematic of the region of interest in a slit image that is used in the LSF

measurement. The slit camera is placed with an angle α from the positive direction

of the i axis.

For the imaging of the slit camera, the exposure level needs to fall within the

linear response region of the imaging system, otherwise the requirement that the

imaging system should be an LSI system will not be met. The linear response region

is the range of exposures in which the output intensity of the system has a linear

relationship with the exposure level.

In the following example MTF experiments on a CCD based x-ray imaging system

(MX-20, Faxitron X-Ray Corporation, Wheeling, IL), a 10 µm wide slit camera is

placed on the detector as described above. The slit image was taken under 26 kVp,

0.3 mA and 5 seconds of exposure time (2.19 mR of entrance exposure), and Fig. 6.2

shows the resultant slit image.
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Figure 6.2: X-ray image of a slit camera, taken with the CCD-based x-ray imaging

system at 26 kVp, 0.3 mA, 5s.

6.2.2 Determination of the slit line function

After the slit image is obtained, the first thing is to find the line function of the slit

on the image:

j = a · i + b. (6.2)

Linear fitting is often used to determine the parameters in Eq. (6.2) based on the

least square error method [66]. The coordinates (in, jn) of pixels with the maximum

intensity in each row are first found out, shown in Fig. 6.3. Then these coordinates
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are analyzed in the following manner to find the slope a and the intercept b:

a =

n
N∑

n=1

injn −
(

N∑
n=1

in

)(
N∑

n=1

jn

)

n

(
N∑

n=1

i2n

)
−

(
N∑

n=1

in

)2 , (6.3)

b = j̄ − āi, (6.4)

where ī and j̄ are the mean values of the coordinates (in, jn), N is the total number

of pixels involved in the linear fitting. As can be seen in Fig. 6.1, the tangent value

of the angle α equals the slope of the a. Hereafter α, which is the angle from the

positive direction of the i axis to the slit line, if referred as the “slit angle”.

Fig. 6.3 illustrates the slit line determined from the slit image in Fig. 6.2. The slit

angle α was determined as 0.42 degrees.

Figure 6.3: Illustration of the slit line determined from the slit image in Fig. 6.2.
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6.2.3 Selection of the region of interest

With the knowledge of the position and the orientation of the slit line, we can set a

specially selected region containing the slit as the region of interest (ROI) to calculate

the LSF. The number of rows in the ROI should be the cotangent value of the slit

angle α so that the slit line just passes through one column of pixels, which is shown

in Fig. 6.1. In the ideal case, the number of rows in the region of interest equals

to (cotan(α)), and the number of columns in the region of interest should be large

enough to cover the tails of the line spread function. Fig. 6.4 shows an example of

the region of interest used in the algorithm. If the cotangent value of the slit angle α

is not exactly an integer, then there will be some variation in the effective sampling

distance.

Figure 6.4: Region of Interest in the LSF acquisition algorithm. The shaded area is

the Region of Interest.

The reason to choose the number of rows as cotan(α), which is a limited number

compared to the real slit length, is that if a larger number of rows is selected, there

will be some redundant pixels whose distance from the slit line are the same. This is
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shown in Fig. 6.5.

Figure 6.5: Illustration of the reason why the fixed number of rows is selected.

In Fig. 6.5, the ROI covers the 1st to the 6th row, and we can see that if the 7th

row is selected, there will be some redundant data. For example, the distance from

the pixel (1, 6) to the slit line and the distance from (7, 7) to the slit line are actually

the same, which is 2.5 pixel pitches. So the pixel (1, 6) and (7, 7) are redundant in

the calculation of LSF that is the curve of the pixel intensity values vs. the distances

from the pixels to the slit line.

6.2.4 The scanning procedure

When we scan through the ROI to determine the LSF, some consideration about the

direction of scanning should be taken, since it is desirable to have the distance from

each pixel to the slit line in an increasing order or a decreasing order. Take the slit in

Fig. 6.5 as an example, we apply the scanning from the 6th pixel of the 1st column

(6,1) all the way to the 1st pixel in the 1st column (1,1), and then to the 6th pixel

of the 2nd column (6,2)... This procedure is illustrated in Fig.6.6. If this scanning

strategy is not taken, then a sorting through the scanning result of the LSF data pairs
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(distance, intensity) is needed so that the data pairs are sorted into an ascending or

descending order according to the distances.

Figure 6.6: Illustration of the scanning procedure for the LSF calculation.

After the scanning procedure, LSF is generated as the pixel values in the ROI vs.

the distances from the pixels to the slit line determined in Section 6.2.2. Fig.6.7 shows

the LSF that is generated based on the slit image in Fig. 6.2, the curve is normalized

to its maximum value.
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Figure 6.7: Normalized LSF curve. LSF is generated as the pixel values in the region

of interest vs. the distances from the pixels to the slit line illustrated in Fig. 6.3.

6.2.5 Relationship between the slit angle α, the effective sampling dis-

tance, and the pixel pitch of the imaging system

When we calculate the distance from each pixel in the ROI to the slit line, the impact

of the slit angle α on the pixel-to-slit distance should be considered. For example, in

Fig.6.8, the pixel-to-slit distance of the pixel C (3, 7) (hereafter referred as CB) can

be calculated from the horizontal distance from the pixel C to the slit line (hereafter

referred as CA):

CA = [jc − (a · ic + b)] ·∆x, (6.5)

where a and b are the slope and the intercept of the slit function in Eq. (6.2), ∆x is

the pixel pitch of the detector.

Then the pixel-to-slit distance of the pixel C is:

CB = CA · cos(α) = (jc − (a · ic + b)) ·∆x · cos(α), (6.6)
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where α is the slit angle mentioned in Section 6.2.2.

Figure 6.8: Illustration of the pixel-to-slit distance and the effective sampling distance.

The difference between the pixel-to-slit distance of two adjacent pixels in the

scanning route (Fig. 6.6), such as (3, 7) and (4, 7), is the “effective sampling distance”

in the LSF calculation. We denote the system pixel pitch as ∆x, and the effective

sampling distance as ∆l. The relationship between the effective sampling distance

and the system pitch can be derived as follows. In Fig. 6.8, the pixel-to-slit distance

of the pixel D is:

DE = (jd − (a · id + b)) ·∆x · cos(α). (6.7)

So the effective sampling distance ∆l is:

∆l = CB −DE

= (jc − (a · ic + b)) ·∆x · cos(α)− (jd − (a · id + b)) ·∆x · cos(α)

jc=jd= a · (id − ic) ·∆x · cos(α)

= tan(α) · cos(α) ·∆x

= sin(α) ·∆x.

(6.8)

As shown in Eq. (6.8), the effective sampling distance ∆l is much smaller than the
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sampling distance of the detector (the pixel pitch), and this enables the measurement

of LSF in a much more detailed manner.

6.3 Determination of MTF from LSF

According to Eq. (6.1), the MTF is equal to the normalized modulus of the Fourier

transform of the LSF. Therefore the practical algorithm for the calculation of MTF (f)

from lsf(x) is:

MTF (m) =
abs(fft(lsf(n)))

max(abs(fft(lsf(n))))
, (6.9)

where fft() stands for Fast Fourier Transform; m is the index of the resultant FFT

sequence fft(lsf(n)); −N/2 + 1 ≤ m ≤ N/2, and N is the number of data points in

lsf(n); abs() takes the complex modulus of the result of the FFT on the LSF data

lsf(n); MTF is normalized to the max of the resultant complex modulus of the FFT

sequence, which occurs at the zero frequency m = 0.

As the result of the above calculation is based on the index m, a conversion is

needed to change m into spatial frequency f (with the unit of lp/mm). Since the

oversampling method [39] is utilized in the LSF measurement, the effective sampling

distance is used in the scanning of the slit image, which means the continuous line

spread function is sampled at the effective sampling distance. According to the sam-

pling theory, the frequency interval equals to the reciprocal of the physical length of

the input array, which is the product of the sampling distance and the number of

samples:

∆f =
1

L
=

1

N ·∆L
, (6.10)

where N is the number of samples in the data sequence; ∆l is the sampling distance

in the unit of mm; ∆f is the frequency interval in the unit of lp/mm.

Therefore the relationship between the index of the result FFT sequence and the
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spatial frequency is:

f = m ·∆f

= m · 1
N ·∆l

= m
N/2

· 1
2∆l

,

(6.11)

where m is the index of the resultant FFT sequence fft(lsf(n)); −N/2 + 1 ≤ m ≤
N/2, and N is the number of data points in lsf(n).

Since the resultant FFT sequence contains both the positive frequency compo-

nents and the negative frequency components, the index corresponding to the highest

frequency is N/2. Therefore from Eq. (6.11) the maximum frequency for the result

MTF (f) should be

fmax =
1

2 ·∆l
, (6.12)

where N is the number of samples in lsf(n), which is also equal to the number of the

result FFT sequence; 1
2·∆l

is often called the Nyquist frequency corresponding to the

effective sampling distance ∆l.

Eq. (6.12) explains why we set the maximum frequency of the FFT result as the

Nyquist frequency, it also indicates that why we use the effective sampling distance

instead of the system pixel pitch to calculate the highest frequency of the result

MTF (f) in the case of oversampling. From this point we can also find relationship

between the new Nyquist frequency (f
′
Nyquist) corresponding to the effective sampling

distance and the original Nyquist frequency (fNyquist) corresponding to the system

pixel pitch:

f
′
Nyquist

= 1
2·∆l

= 1
2·sin(α)·∆x

= 1
sin(α)

· fNyquist,

(6.13)

where f
′
Nyquist is the Nyquist frequency corresponding to the effective sampling dis-

tance ∆l, and fNyqist is the original Nyquist frequency corresponding to the pixel
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pitch of the imaging system ∆x.

We can see that after we calculate the MTF (f) from the LSF obtained using

the oversampling algorithm, the highest frequency reaches far beyond the original

Nyquist frequency of the imaging system. And therefore we have to truncate the

result MTF (f) back into the frequency range [0, fNyquist]. As mentioned in Section

6.2.2, the slit angle α was determined as 0.42 degrees, and the system pixel pitch is

0.048 mm. Then the effective sampling distance is

∆l = sin(α) ·∆x

= 0.0073903 ∗ 0.048

= 3.5473 ∗ 10−3(mm).

(6.14)

After the LSF was obtained, 2K of the LSF data points was taken out as the input

for the subsequent FFT calculation as described in Eq. (6.9). The data points were

selected around the peak point of the LSF sequence. For example, in the LSF shown

in Fig. 6.7, 2048 points were selected out of the total 3000 data points around the

peak data point whose index is 1504, i.e., the data with the index from (1504-1023)

to (1504+1024) were employed. So the result of the FFT also has 2048 data points.

After saving only the positive frequency components of the resultant MTF sequence,

the indexes were converted to the spatial frequency corresponding to the effective

sampling distance using Eq. (6.11). The MTF of 2048 points is shown in Fig. 6.9.
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Figure 6.9: MTF curve calculated from 2048 data points taken out of the LSF in

Fig. 6.7; the indexes have already been converted into spatial frequencies.

The next step after the acquisition of MTF based on the oversampled LSF is to

truncate it bake into the frequency range [0, fNyquist]. In this example experiment,

fNyquist = 1/(2 ∗ 0.048) ≈ 10.417lp/mm. As can be seen in Fig. 6.9, the largest index

corresponds to f
′
Nyquist = 1/(2∗3.5473∗10−3) ≈ 141lp/mm, which is about 13.3 times

of the system Nyquist frequency fNyquist.

After truncating the MTF based on the oversampled LSF back in the frequency

range [0, fNyquist], the final MTF result is generated. The resultant MTF curve is

shown in Fig.6.10.
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Figure 6.10: MTF truncated back into the frequency range [0, fNyquist].

6.4 Chapter conclusion

The goal of this chapter is to provide a detailed measurement procedure of another

constituent part of DQE–MTF–based on the slit method. As a widely-accepted mea-

surement of system performance in the sense of contrast transfer and spatial resolu-

tion, MTF demonstrates the resolving power of an imaging system as a function of

spatial frequency.

The measurement is detailed in three major steps: the acquisition of the slit image,

scanning of the slit image to generate LSF, and the data processing to calculate MTF.

The algorithm is summarized in Fig. 6.11.
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Acquire a slit image

Read the slit image

Recognize the skeleton of the slit from the maximum

gray values in each row perpendicular to the slit

Determine the ideal slit as a straight line by least-

Convert the index of the MTF sequence into spatial

frequency, then truncate the MTF curve to make it 

fall in the frequencyrange [0, 1/(2*Δx)]

Acquire a slit image

Read the slit image

Recognize the skeleton of the slit from the maximum

gray values in each row perpendicular to the slit

Recognize the skeleton of the slit from the maximum

pixel values in each row perpendicular to the slit

squares fitting of the skeleton points

Scan the ROI in the slit line image to generate LSF 

Perform Fourier transform on LSF and calculate the 

MTF by normalizing its modulus to 1 at zero frequency

Perform FFT on LSF and calculate the MTF by 

normalizing its modulus to 1 at zero frequency

Figure 6.11: Flow chart for the MTF measurement.
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CHAPTER 7

The impact of additive noise on the performance of a CCD

based x-ray imaging system–an NPS based study

7.1 Chapter Introduction

NPS is a widely accepted system characteristic for quantitative evaluation of image

quality and noise performance of an imaging system. A number of NPS measurement

methods have been developed particularly for x-ray imaging systems [7,8,12,32,50,94].

For a digital x-ray imaging system, such as the CCD-based system employed

in this study, the electrical detector system introduces noise to the x-ray imaging

process. While the quantum noise from the fluctuation of incident photons per pixel

is integrated within the x-ray signal, the noise from the electrical detector system is

added to the signal. Sources of additive noise from the CCD include transfer loss

noise, background charge generation noise, amplifier noise, and fast interface state

noise [95]. The additive noise of an x-ray system usually increases with the operation

time of the detector (exposure time in the case of x-ray imaging), particularly when

the system is not cooled. When the exposure time exceeds a certain threshold, the

system would no longer be quantum noise limited, which means that the quantum

noise is no longer dominant in the overall noise level [15]. The NPS of the system

and the quantum noise limit threshold are two important quantities of a system.

In this chapter, the measurement of NPS is firstly introduced, then the NPS of

the additive noise of the aforementioned CCD system, particularly the growth trend

of the additive noise with exposure time, was investigated. Moreover, DQE of the
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system was measured and the quantum noise limit threshold was also determined.

7.2 NPS measurement

As introduced in Chapter 2, Noise Power Spectrum (NPS) is the power spectrum

density function of a wide sense stationary random process. As discussed in Section

2.3.3 and 2.3.4, it is customary to assume ergodicity of the output random process

[8, 22, 23, 26, 29, 33, 34, 37], and the NPS for the output images is often estimated

through the periodogram approach [8, 11, 12, 22, 23, 26, 29, 33, 34, 37]. The traditional

periodogram estimator for the 2D output NPS is [12,29,34]

N̂p(u, v) =
∆x2

MN
|D{∆P (i, j)}|2, (7.1)

where M and N are the number of pixels on the two dimensions of the fluctuation

image ∆P (i, j) = P (i, j) − p; D{} denotes the 2D Discrete Time Fourier Transform

(DTFT); u, v are the spatial frequencies ranging in [− 1
2∆x

, 1
2∆x

].

The computational formula to calculate the 2D output NPS is:

N̂p(m,n) =
∆x2

MN
|FFT{∆P (i, j)}|2, (7.2)

where FFT{} denotes the Fast Fourier Transform; where M and N are the number

of pixels on the two dimensions of the fluctuation image ∆P (i, j) = P (i, j) − p;

m ∈ [−M
2

+ 1, M
2

], n ∈ [−N
2

+ 1, N
2
] are the indexes of the resultant 2D FFT array,

and (m,n) need to be mapped to the spatial frequencies (u, v) by:

u = m · 1
M ·∆x

,

v = n · 1
N ·∆x

.
(7.3)

As mentioned in Section 2.3.4, the periodogram estimator N̂p is as an asymptot-
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ically unbiased estimator [8, 22, 23, 26, 29, 33], which means when the dimensions of

the fluctuation image are infinitely large, the ensemble average of the periodogram

estimator (N̂p(u, v)) converge to the true NPS Np(u, v):

lim
M,N→∞

E{N̂p(u, v)} = Np(u, v). (7.4)

Although the mean of N̂p(u, v) converges to the true output NPS as the size of the

image data used in the periodogram estimator increases, the variance of the estimator

does not reduce as the size increases [12, 23]. Therefore, ensemble averaging of the

estimator N̂p(u, v) is necessary to reduce the variance and to improve the quality of

the NPS measurements [12, 23]. A common practice to reduce the variance of the

periodogram results is to partition a fluctuation image into a number of sub-images,

and then average the periodograms calculated from the sub-images to acquire the

mean periodogram [12, 16, 22, 23]. If altogether K uniformly exposed x-ray images

are taken repeatedly under consistent conditions, and each image is partitioned into

S × T sub-images, then the averaged NPS is:

NPS(u, v) =
1

K · S · T
K∑

k=1

S∑
s=1

T∑
t=1

NPSk,s,t(u, v), (7.5)

where NPSk,s,t denotes the NPS estimated from the sub-image on sth row and tth

column in the kth image.

As compared to NPSk,s,t, the variance of the averaged NPS is reduced by a factor

of K ·S ·T . For example, if 50 images are taken under consistent conditions, the ROI of

image contains 1024×1024 pixels, and each image is partitioned into 128×128−pixel

sub-images, then NPS from altogether 50×(1024/128)×(1024/128) = 320 sub-images

are used for the averaging, and the variance of the averaged NPS is 1/320 of that in

the NPS estimated based on a single sub-image.

If the noise pattern of the images is isotropic, then 1D NPS could fully represent
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the noise characteristics. In this case, the 1D NPS could be obtained by circularly

averaging the 2D NPS [10–12,27]:

NPS(f) =
1

Nf


 ∑

f≤√u2+v2<f+∆f

NPS(u, v)


 , (7.6)

where NPS(u, v) and NPS(f) are the 2D NPS and 1D NPS, respectively. Nf is the

number of data points in NPS(u, v) within the interval f ≤ √
u2 + v2 < f + ∆f .

 

f+Δf  

µ

ν

f

Figure 7.1: Illustration of the circular averaging algorithm used to obtain 1D NPS

from 2D NPS

Fig. 7.2 and 7.3 demonstrated the 2D NPS and the corresponding 1D NPS (data

published in [11]).
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Figure 7.2: 2D NPS obtained with a CCD based x-ray imaging system at 26KV,

0.3mA, 6s
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Figure 7.3: 1D NPS obtained from the 2D NPS in Fig. 7.2 through the circular

averaging technique

The algorithm of the NPS calculation can be summarized in Fig. 7.4.
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Take a series of uniformly exposed images

with the same exposure level.

Obtain the fluctuation image by subtracting 

the mean pixel value of all images

Partition the noise-only image into P Q sub-images.

Compute the 1D NPS(f)  by averaging the 2D NPS values

located in a circular path at radius f from the origin (zero

frequency) of the 2D NPS.

Take the average of all 2D NPSs to get a smoother

estimation of 2D NPS.

Compute the 1D NPS(f)  by averaging the 2D NPS values

located in a circular path at radius f from the origin (zero

frequency) of the 2D NPS.

Take the average of all 2D NPSs to get a smoother

estimation of 2D NPS.

Compute the 1D NPS(f)  by averaging the 2D NPS values

located in a circular path at radius f from the origin (zero

frequency) of the 2D NPS.

Take the average of all 2D NPSs to get a smoother

estimation of 2D NPS.

Partition each fluctuation image into S*T sub-images

Obtain the periodogram based on each sub-image

 

Figure 7.4: Flow chart of the NPS calculation algorithm

7.3 Impact of additive noise on the system performance of

an CCD-based x-ray imaging system

7.3.1 Description of the imaging system

The imaging system employed in this study is a unique digital x-ray specimen pro-

totype system that was designed for small animal studies (MX-20, Faxitron X-ray

Corporation, IL). This system has an extremely small tungsten-target x-ray source

with a 20 − µm focal spot, and the output window is covered by a 0.25-mm thick

beryllium window. The source-to-object distance (SOD) can be adjusted over the

range of 57.2 cm to 11.4cm. The detector used in this system consists of two CCD

arrays (KAF-1001E, Eastman-Kodak, New York) which are abutted together. Each
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CCD has a 24.5 mm x 24.5 mm photo active area with 1024 x 1024 pixels which are

24µm× 24µm in size. An optical fiber taper is used to couple the CCDs to a Min-R

scintillating screen (Eastman-Kodak, New York). The light photons converted by the

scintillating screen are conveyed to the CCD detectors via the fiber taper at a demag-

nification ratio of 2:1. Finally the CCD detectors convert the light photons into 12-bit

digital data which are transmitted to and processed by a computer. The CCDs in

this system are not cooled, and the advantages of using an un-cooled detector include

reduced cost, compactness of the system, and less maintenance for both clinical and

experimental environments. The schematic of the imaging system is shown in Fig.7.5.

Figure 7.5: Schematic of the digital X-ray imaging system. The BR-12 phantom is

placed near the X-ray source. The two CCDs are abutted together and connected to

the scintillator through optical fiber tapers.

During the experiments, the x-ray system worked at 0.3 mA, 26 kVp, over various

exposure times ranging from 3s, 7s, 9s, 10s, 15s, 20s, 30s, 40s, and 50s. In our

experiments, a 3-cm-thick BR-12 phantom (50% water and 50% adipose, Nuclear

Associate, New York) was placed on a shelf with an SOD of 11.4 cm in order to
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ensure the detector worked in its linear response range for all the exposure times

employed in this study.

7.3.2 Assumption of the quantum limited condition in x-ray imaging

For x-ray imaging systems, most noise can be divided into two groups. One is quantum

noise which is inherent in the x-ray beam and is caused by the variation of the number

of x-ray photons received per pixel. For well-designed x-ray imaging systems, the noise

properties of the images should be governed by the x-ray quanta, which means that

the noise of imaging system should be dominated by the x-ray quantum noise (often

referred as “quantum noise limited”) [6,15]. The other group of noise is the additive

noise introduced by the electronic devices in the system; the level of additive noise

depends significantly on the operating temperature of the electronic devices. When

the sensor of the imaging system is cooled, the thermal noise can be reduced [96].

However, the x-ray imaging system under the current study does not employ a cooling

system. Therefore, the temperature-related noise of this system is expected to become

unacceptably high with extended exposure time.

7.3.3 Experimental design

It is known that the thermal noise in an electronic device increases with the operat-

ing temperature which rises as a result of extended exposure time. Our hypothesis

is that when the exposure time of a system is long enough, the thermal noise will

increase significantly, eventually making the assumption of x-ray quantum noise lim-

ited condition invalid and therefore degrading the DQE of the system. To test this

hypothesis, the following experiments were conducted. NPS of the additive noise and

DQE were obtained at the exposure time varying from 3s to 50s. The NPS of the

additive noise was compared with that of the system noise, i.e., the noise of the entire

imaging system, to determine the increase and the impacts of the additive noise.
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Selection of the Phantom Thickness and the Linear Response Range of the

System

As limited by the MX-20 x-ray imaging system employed in the study, there is only

one tube current available (0.3 mA). In order to carry out the experiments designed to

evaluate the DQE of the system with extended exposure time, the 3-cm-thick BR-12

phantom was used in order to extend the response range in which the intensity of

output images has a linear relationship with the exposure time. The phantom was

used because it can attenuate a part of the x-ray beam, reducing the x-ray quanta

on the detector, hence requiring a longer exposure time for the CCDs to reach their

integration limit. To determine the linear response range, under 26 kVp and 0.3 mA,

two series of exposure time were selected for a 2.5-cm phantom and a 3-cm phantom.

At different exposure times, uniformly exposed images were taken. A region of interest

(ROI) of 512 x 512 pixels was selected at the center of the left CCD area to avoid the

edge effect of the detector. Fig. 7.6 shows the two curves of pixel-value vs. exposure

time taken with the 2.5-cm thick phantom and the 3-cm thick phantom.

Figure 7.6: Testing the linear response range of the imaging system.
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As can be seen in Fig. 7.6, with the 3-cm phantom, the linear response region

extends from the very short exposure time (2s) to a long exposure time (50s). With

the 2.5-cm phantom, longer exposure time (> 40s) makes the system response out of

the linear range; with a much thicker phantom, such as a 6-cm phantom, too many

x-ray quanta would be attenuated to make the system response at the short exposure

time (2 ∼ 4s) out of the linear range (data not shown). Therefore the 3-cm phantom

was utilized in the experiments.

Measurement of the additive noise level

To investigate the level of the additive noise of this x-ray imaging system under pro-

longed exposures, for each exposure time 50 “additive noise images”, which contained

no input signal but only additive noise, were acquired. When taking the images, the

detector window was covered by 4 1-mm-thick lead sheets in order to prevent the

x-ray photons from reaching the detector. Our system calibrations under different

conditions showed that there was no x-ray leakages when the lead sheets were used

(data not shown). The NPS curves of the “additive noise images” were then obtained.

7.3.4 Experimental results

NPS of the additive noise

The NPS of the additive noise was measured at 26 kVp, 0.3 mA, and with exposure

times of 3s, 7s, 9s, 10s, 15s, 20s, 30s, 40s, and 50s. When the exposure time exceeds

a certain range, which is 10s in this study, the additive noise increased considerably

(Fig. 7.7).
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Figure 7.7: NPS(f) for the additive noise at different exposure time at 26 kVp and

0.3 mA, plotted in a linear scale.

To compare the NPS curves of the additive in a more detailed manner, the same

data used in Fig. 7.7 was plotted using a base 10 logarithmic scale for the y-axis and

a linear scale for the x-axis in Fig. 7.8.
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Table 7.1: Comparison of NPS(0) of the additive noise and NPS(0) of the system
noise at different exposure time.
Exposure Time (s) 3 7 9 10 15
NPSadd(0) (mm2) 0.0032 0.0088 0.0131 0.0135 0.0663
NPSsys(0) (mm2) 0.7071 1.8574 2.3541 2.8096 5.4693

NPSadd(0)
NPSsys(0)

(%) 0.4540 0.4726 0.5547 0.4797 1.2122

Exposure Time (s) 20 30 40 50
NPSadd(0) (mm2) 0.2633 0.5372 3.2858 3.6651
NPSsys(0) (mm2) 6.1874 9.4831 14.0576 15.6634

NPSadd(0)
NPSsys(0)

(%) 4.2551 5.6644 23.3740 23.3994
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Figure 7.8: NPS(f) for the additive noise at different exposure time at 26 kVp and

0.3 mA. The diagram was plotted using a base 10 logarithmic scale for the y-axis and

a linear scale for the x-axis.

NPS at zero frequency at the exposure time of 3s, 7s, 9s, 10s, 15s, 20s, 30s, 40s

and 50s are given in Table 7.1. It is shown clearly that within 10s, the values of the

zero frequency NPS of the additive noise NPSadd(0) are small, but the NPSadd(0)

increased by a factor of almost 20 from the 10s exposure to the 20s exposure.
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Additive noise compared with the system noise

NPS of the entire system, “system noise”, were obtained from the output images.

The NPS of the system at different exposure times are given in Fig. 7.9, Fig. 7.10,

and Fig. 7.11, along with the NPS of the additive noise for comparison. As can be

seen, when the exposure time exceeds 10s the additive noise is no longer negligible

when compared with the system noise.

In Fig. 7.11, the shape of the NPS curve of the system noise at 50s becomes

somewhat different than those in Fig. 7.9 and Fig. 7.10. And this trend can also be

noticed in the NPS of the system noise at 20, 30s, and 40s, as shown in Fig. 7.10. A

“shoulder” forms gradually in the NPS curves of the system noise from 20s to 50s.

Although the detailed reason is not clear, it is apparent that when the exposure time

is beyond this range, the system performance becomes degraded.

The ratio of NPS of additive noise to the NPS of the system noise at zero frequency,

NPSadd(0)/NPSsys(0), is given in Table 7.1. The ratio increased from 0.48% to 4.26%

between 10s and 20s. Beyond 20s the additive noise increases rapidly and the system

becomes no longer x-ray quantum limited.
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Figure 7.9: NPS of the system noise compared with NPS of additive noise at the

exposure time of 3s, 7s, 9s and 10s.
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Figure 7.10: NPS of the system noise compared with NPS of additive noise at the

exposure time of 15s, 20s, 30s, 40s.

Figure 7.11: NPS of the system noise compared with NPS of additive noise at the

exposure time of 50s.
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Degraded DQE under Extended Exposure Due to the Rapid Increase of

the Additive Noise

In this study, DQE was determined according to Eq. 1.9: MTF (f) in was obtained

using the slit camera method introduced in Chapter 6; NPS(f) is acquired using the

procedures described in Section 7.2; S(0) was obtained through the spatial average in

the region of interest through a series of uniformly exposed images; Φ was calculated

by multiplying the radiation dose with the averaged photon fluence per unit radiation.

The radiation dose was measured by placing the dose meter (Rad Check Plus Model

06-526, Nuclear Associates) in the center of the beam on the detector plane, and the

measured results were calibrated according to the inverse square law. Photon fluence

per unit radiation was measured as 4.7904x104 photon/ (mm2-mR) using the method

detailed in Chapter 4.

The DQE curves at the exposure time of 3s, 7s, 9s, 10s, 15s, 20s, 30s, 40s and 50s

with 26 kVp, 0.3 mA, 3-cm BR-12 filtered beam, are given in Fig. 7.12 and Fig. 7.13.

It is also observed in Fig. 7.12 and Fig. 7.13 that there is a significant drop from

the DQE at 10s to the DQE at 20s, which is in agreement with the increase in the

additive noise from 10s to 20s.
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Figure 7.12: Detailed comparisons between DQE curves at the exposure time of 3s,

7s, 9s, 10s and 15s.
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Figure 7.13: Detailed comparisons between DQE curves at the exposure time of 15s,

20s, 30s, 40s and 50s.

7.3.5 Discussion

The impact of additive noise and system noise on the performance of an x-ray imaging

system for small animal studies was investigated in this study. The noise power

spectra of the additive noise increased with the operating time of the system, due to

the noise introduced by the electronic devices in the system, as shown by the NPS

curves in Fig. 7.7 and Fig. 7.8. For both the system noise and the additive noise,

the NPS at zero frequency is of particular interest because of its largest magnitude;

the system performance at lower frequency range is important for evaluating design

tradeoffs for electronic X-ray imaging systems [15]. The NPS(0) of different operating

times are shown in Table 7.1. The results show that when the operating time exceeds
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10 s, the additive noise increases significantly.

Under normal operating conditions, the additive noise should be negligible when

compared with the quantum noise which should be the dominant part of the entire

system noise according to the X-ray quantum limitation assumption. The compar-

isons between additive noise and system noise are given in Fig. 7.9, 7.10, and 7.11.

Indeed, when the operating time is less than 10 s, the additive noise is rather small

(approximately 0.5% at 10s); but when the time is extended beyond 10 s, the contri-

bution from the additive noise becomes significant (approximately 5% at 20 s, 6% at

30 s, 23% at 40 s and 50 s).

The DQE curves obtained at different exposure times fall into two distinctive

groups. When the exposure time is less than 10 s, the values of the DQE curves

are fairly consistent; the DQE values drop rapidly when the exposure time exceeds

a certain point, 10 s in this study, as shown in Fig. 7.12 and Fig. 7.13. When

the additive noise is much smaller than the quantum noise, the DQE of the X-ray

imaging system is approximately equal to its highest obtainable value (0.26) under

current configuration. However, when the additive noise becomes comparable to the

quantum noise, which also means that the additive noise is comparable to the system

noise, DQE decreases and the system performance was degraded. The DQE curves

obtained in our study clearly demonstrated this phenomenon.

7.4 Chapter conclusion

The measurement techniques of NPS are introduced at the beginning of this chapter.

The acquisition of NPS involves partitioning the output images into sub-blocks, av-

eraging the NPS calculated from sub-blocks, and generating 1D NPS from 2D NPS,

as discussed in Section 7.2. After the description of the general NPS methodology,

a NPS-based study on the influence of additive noise on the performance of a CCD-

based x-ray imaging system is reported to demonstrate the NPS measurements. The
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study investigated the increase of the additive noise, the rise of its proportion in the

entire system noise with extended exposure time, and their impact on the system

performance. Within a certain range of the exposure time (2 to 10s in this investiga-

tion), the additive noise is low and negligible, but when the exposure time exceeds the

range (approximately 10s in this study), the additive noise increases rapidly, which

causes the x-ray imaging system to be no longer x-ray quantum limited and degrades

the system performance. Part of the content of this chapter was published in [11].
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CHAPTER 8

DQE analysis on a dual detector phase x-ray imaging system

8.1 Chapter introduction

In the previous chapters the theory of DQE and the measurement techniques of

photon fluence, MTF, and NPS have been discussed. An NPS-based investigation

about the impact of the additive noise on the performance of a CCD-based x-ray

imaging system is also included in the Chapter 7, as an example of the application

of the DQE methodology. In this chapter, a DQE analysis that was used to validate

the system design of a prototype imaging system is reported, as another example

application of the methodology.

This study presents the characterization results of a newly developed dual detector

in-line phase x-ray imaging prototype. Phase contrast x-ray imaging and quantita-

tive x-ray phase imaging have drawn increasing popularity in recent years due to

their demonstrated improved image quality and extraordinary potential in clinical

applications [4, 97–101]. Several studies have been carried out to demonstrate the

clinical feasibility of phase imaging [102–106]. Based on a comprehensive theory for

clinical x-ray phase imaging [105,107–109], a dual detector approach has been inves-

tigated [80–82]. In this approach, two detectors are aligned with a micro focus x-ray

source: detector1 is placed in contact with the object, with a distance R1 from the x-

ray source; detector2 is positioned with a distance R2 from detector1 (See figure8.1).

During a single x-ray exposure, an attenuation image of the object is acquired on de-

tector1 and a phase contrast image on detector2. The two images are then processed

to retrieve a quantitative phase map of the object [80–82].
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A prototype was assembled and tested for the parameters such as the logarithm

linearity of the detectors and the transmittance of the detector1 under different x-

ray techniques [80, 82]. The purpose of this study is to objectively characterize the

system based on the DQE methodology: comparisons of MTF, NPS and DQE for

both detectors were conducted when they worked in the dual detection mode in which

two images are acquired simultaneously at a single exposure.

8.2 Materials and methods

8.2.1 System configuration and experimental setup

The prototype system consists of a micro-focus x-ray source and two computed ra-

diography (CR) detectors. The source, detectors and other imaging and measuring

components are mounted on a horizontally placed optical rail, and the positions of

the detectors and other components could be adjusted conveniently.

The x-ray source has a Mo-Be target output window combination, and it operates

at 20-60kVp with an output power of 10-60W. The focus spot size is around 12-15

µm at 10W and grows to 35-40 µm at 60W [101]. The imaging size and pixel pitch of

the CR detectors are 18cm×24cm and 43.75 µm, respectively. A detailed description

of the prototype could be found in [80].

During the MTF, NPS and DQE measurements, the distance from source to de-

tector1 (R1) was fixed at 0.91m (36inch), the distance from detector1 to detector2

(R2) varied among 0.61m (24inch), 0.91m (36inch), 1.22m (48inch), 1.52m (60inch)

and 1.83m (72inch), resulting in a magnification factor from 1.67 to 3.0.
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Figure 8.1: The schematic of the dual detector x-ray imaging system. The

attenuation-based image is formed on detector1, which is placed in contact with the

object. A phase-contrast image is acquired at detector2 which is R2 away from the

object. With these two images, phase map of the object may be retrieved.

8.2.2 Exposure, logarithm linearity and data linearization

The mean pixel value (PV) of the output CR images has a logarithm linear relation-

ship with the incident x-ray exposure level:

PV = a · log10(Exposure) + b, (8.1)

where PV is the mean pixel value.

With the knowledge of the parameter a in equation 8.1, data conversion can be

conducted to obtain a linear relationship between the output pixel values and the

input exposure level [10,13,57]

PV ′(i, j) = N · 10
PV (i,j)−M

a , (8.2)

where PV ′(i, j) is the resultant pixel value at (i, j), and it is linear to the amount of

exposure. M and N are the maximum values of the PV and PV ′, respectively. For

the specific settings in our study, M and N are both set as 4095 because of the 12-bit

digitization of the CR system.

The data conversion process is not only of critical importance for phase map
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reconstruction [80], but also necessary for MTF, NPS and DQE measurements because

all of them assume the system to have a linear input-output relationship [10,13,57].

Since the parameters of the logarithm linear relationship depends on the tube

voltage and beam spectra [80], measurements of the incident exposure levels and the

corresponding mean pixel values were necessary for determining the parameters for

each detector and for each beam filtration setting.

Exposure levels were measured with a dosimeter system (Radcal 9095 system,

Radcal Corp., Monrovia, CA). An ion chamber (Radcal 10x9-180) was placed with

the same distance from the source as the target detector was placed with. For each

imaging condition and for each detector, the exposure level was measured 20 times

and then averaged to reduce the statistical uncertainty of the measurement. The

exposure levels were measured with constant exposure time but different SID for

detector2, and with constant SID but different exposure time for detector1.

Table 8.1: Exposure on detector1 with 4 cm thick BR-12 phantom filtered beam at

different exposure times. Exposures were taken at 40kVp and 0.5mA, with R1 =

36inch.

exp time (s) 10 15 20 25 30 35

exposure (mR) 3.0 6.5 10.0 13.6 17.1 20.6

Table 8.2: Exposure on detector2 with 4 cm thick BR-12 phantom filtered beam at

different SIDs (SID = R1+R2 for detector2). Exposures were taken at 40kVp, 0.5mA,

25s, with R1 fixed at 36inch.

SID (inch) 60 72 84 96 108

exposure (µR) 1591.1 1096.6 798.4 602.7 471.4

The mean pixel values (PV) were obtained by averaging the mean PVs from the

central 2048px-by-2048px ROIs of 5 repeatedly acquired images. They were then
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plotted against log10(Exposure) and fitted linearly to obtain the parameters in equa-

tion 8.1.

−2 −1 0 1 2 3

500

1000

1500

2000

2500

3000

3.0mR

PV: 1660.6

6.5mR

PV: 2003.8

10.0mR

PV: 2191.8

13.6mR

PV: 2321.8

17.1mR

PV: 2424.0

20.6mR

PV: 2503.7

0.47mR

PV: 923.1

0.60mR

PV: 1031.3

0.80mR

PV: 1151.5

1.10mR

PV: 1287.8

1.59mR

PV: 1453.0

Characteristic Response Curve (log−linear) of the two detectors

Log
10

(Exposure), exposure unit: mR

M
ea

n
 P

ix
el

 V
al

u
e

 

 

Det1

Det2Detector1:

PV = a*lg(exp) + b

      = 999.33 * lg(exp) +1190.9 

Norm of residuals = 2.4332

Detector2 :

PV = a*lg(exp) + b

      =1000.1 * lg(exp) + 1249.9

Norm of residuals = 2.9455

Figure 8.2: Logarithm linear relationship between the incident exposure level and

mean pixel values for detector1 and detector2 with the 40kVp, 0.5mA, and 4-cm-

thick BR-12 phantom filtered beam.

8.2.3 MTF analysis

MTF were measured under 40kVp and 0.5mA with a 4-cm-thick BR-12 phantom

placed right in front of the output window of the tube for both detector1 and detec-

tor2, in an effort to examine the blurring effect and the difference in beam quality

introduced by detector1 on the image quality of detector2. The beam quality was

the same as in the NPS and DQE measurements, and the reason to choose this beam

quality will be discussed in Section 8.2.4. R1 and R2 were all fixed to 36inch (0.91m)

during the experiments, resulting in a magnification factor (M = R1/(R1 + R2)) of

2, which is a frequently used magnification setting for our phase contrast and phase

imaging experiments.
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The slit method [16, 39] was employed for the MTF measurement, with the help

of a 10µm wide slit camera (IIE GmbH, Aachen, Germany). The slit camera was

placed in contact with each of the CR detectors under evaluation, and was oriented

in a near-vertical/subscan or a near-horizontal/scan direction in order to measure the

MTF on the horizontal/scan (laser scan) or vertical/subscan (plate scan) direction

of the CR system [10, 16]. A lead sheet was placed around the slit to reduce the

background level on the resultant images. Before calculation of the MTF, the images

were converted
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Figure 8.3: System MTF at detector1 and detector2 at configurations of 40kVp,

0.5mA, and 4-cm-thick BR-12 filtered beam

8.2.4 NPS analysis

During the measurements of NPS, exposures of 40kVp, 12.5mAs, and with additional

filtration of 4-cm-thick BR-12 phantom were employed for both detector1 and detec-

tor2. This combination of the tube potential and beam filtration was chosen for two

reasons. Firstly, hardened x-ray could improve the transmittance of detector1 [80],

so that detector2 could still receive enough radiation while the entrance exposure
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on detector1 was not excessively high. For example, with R1 = R2 = 36 inch,

Expdet1 = 13.6mR, and Expdet2 = 1.1mR. Secondly, the BR-12 phantom was used to

simulate the beam filtration in clinical applications such as mammography. Five NPS

measurements were conducted for detector2 with the five aforementioned R2 settings

(24, 36, 48, 60 and 72inch), and one NPS measurement was performed for detector1

with R1 = 36inch.

In order to obtain reproducible positioning of the target CR plate between expo-

sures, a specially designed holding device consisting of a supporting bench plate and

two one-axis micro-positioning stages was utilized. And it could control the position

of the CR detector with a precision of 10 microns on both horizontal and vertical

directions. The center of the CR detector was aligned with the center of the x-ray

beam, through the help of two laser pointers. In order to reduce back scatter, a

1.6mm-thick lead sheet was spread between the bench plate and the CR plate.

The central portion of 2048 by 2048 pixels on each image was chosen as the region

of interest (ROI) for NPS calculations, in order to avoid non-uniformities near the

margin area of the CR plates. This ROI was then divided into 256 sub-images of 128

by 128 pixels for the calculation of 2D NPS of each image through [12,16]:

NPSd(u, v) =
∆x2

NxNy

〈|FT (u, v)|2〉 (8.3)

where Nx and Ny are the number of pixels on each dimension respectively in the

sub-image, which equal to 128 in this study, ∆x is the pixel pitch (0.048 mm), and
〈|FT (u, v)|2〉 is the ensemble average of the squares of the Fourier amplitudes from

all the sub-images. Before calculation, the 2048px-by-2048px ROIs were corrected

against background trends and fixed pattern noise by flat fielding and background

subtraction [44], and for each imaging condition 20 flat images were averaged to obtain

the flat-field image.
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Figure 8.4: 2D NPS of detector1 and detector2 obtained at 40kVp, 12.5mAs, with

R1=36inch and R2=24, 36, 48, 60 and 72inch. The beam was filtered by a 4-cm-thick

BR-12 phantom. The same contrast enhancement technique with same parameters

was applied to the 2D NPS images to improve the visibility.

Furthermore, twenty images were obtained for each exposure setting, and NPS

results calculated from each image were then averaged to get the final NPS result for

the corresponding exposure settings. Therefore altogether 256×20 = 5120 ensembles

of 2D NPS were averaged for each exposure setting, in an effort to reduce the statis-

tical variance of the NPS results. 1D NPS on scan and subscan directions of the CR

system were obtained by averaging the 2D NPS data points on thick slices which are

parallel and immediately adjacent to the axes [12,13,16,32,43].
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Figure 8.5: Normalized NPS of detector1 and detector2 on scan direction. The mea-

surements were taken with the 40kVp, 12.5mAs, and 4-cm-thick BR-12 phantom

filtered beam. R1=36inch and R2=24, 36, 48, 60 and 72inch. Each NPS curve was

normalized by the square of the corresponding large area signal (mean pixel value of

the images).
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Figure 8.6: Normalized NPS of detector1 and detector2 on subscan direction. The

measurements were taken with the 40kVp, 12.5mAs, and 4-cm-thick BR-12 phantom

filtered beam. R1=36inch and R2=24, 36, 48, 60 and 72inch. Each NPS curve was

normalized by the square of the corresponding large area signal (mean pixel value of

the images).

8.2.5 Incident spectra and photon fluence per unit exposure

In order to examine beam filtration effect of detector1, the incident spectra on de-

tector1 and detector2 were measured and compared with the aid of a spectrometer

(Amptek Inc., MA). The photon fluence per unit exposure on detector1 and de-

tector2 were then calculated based on the measured x-ray spectra for further DQE

calculations [32, 43]. The photon fluence per unit radiation was measured as 56747

photon/(mm2 ·mR) for detector1, and 63203 photon/(mm2 ·mR) for detector2. This

number is higher for detector2 because the beam incident on detector2 is harder than

that on detector1, due to the additional filtration introduced by detector1.
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Figure 8.7: Incident spectra on detector1 and detector2 with the 40kVp, 0.5mA, and

4-cm-thick BR-12 phantom filtered beam. Each spectrum was normalized by their

total number of counts.

8.2.6 DQE Analysis

Based on the results of MTF, NPS, and exposure and incident x-ray spectra, DQE

was determined by [8, 11,15,16]:

DQE(f) =
S(0)2 ·MTF (f)2

NPS(f) · q , (8.4)

where S(0) is the large area signal, and it is the mean pixel value of the output images

in the NPS measurement. MTF(f) and NPS(f) are the modulation transfer function

and noise power spectrum, respectively. q is the number of x-ray quanta per mm2 at

the detector input, which was calculated by multiplying the exposure with the photon

fluence per unit exposure.
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Figure 8.8: DQE on scan direction for detector1 and detector2 at 40kVp 12.5mAs

with R1=36inch and R2=24, 36, 48, 60 and 72inch. The beam was filtered by a

4-cm-thick BR-12 phantom.
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Figure 8.9: DQE on the sub scan direction for detector1 and detector2 at 40kVp,

12.5mAs, with R1=36inch and R2=24, 36, 48, 60 and 72inch. The beam was filtered

by a 4-cm-thick BR-12 phantom.

8.3 Results and discussions

Table 8.1 and Table 8.2 show the entrance exposure levels on detector1 and detector2

with the 40kVp, 4-cm-thick BR-12 filtered beam. Each data point in table 8.1 and

table 8.2 was the mean of 20 measurements. The sample standard deviations of

the measurements are all below 1% of the corresponding exposures, and therefore the

relative standard deviations for all the mean exposures are below 0.05%. The exposure

measurements were then used to determine the logarithm linearity parameters, as

shown in figure 8.2. The measured data in Table 8.2 do not perfectly match the

calculated exposure value according to the inverse square law, and this is probably

due to the variation of measurements at low exposure level.

The transmittance of detector1 was determined as approximately 32% based on
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the entrance exposures on the two detectors:

transmittance = exp2 ·M2/exp1 = 1.1× 22/13.6 ≈ 0.32 (8.5)

where M = (R1+R2)/R1 is the magnification factor, exp1 and exp2 are the entrance

exposure levels on detector1 and detector2, respectively. The exposure levels used

in this calculation was acquired at R1=R2=36inch. Similar result can be obtained

using other R1 and R2 settings.

The logarithm linearity curves of the CR detectors at the 40kVp, 4-cm-thick BR-

12 phantom filtered beam are shown in figure 8.2. As can be observed, the two curves

demonstrated high similarity. However, it should be noted that the logarithm lin-

earity at other beam filtration and kVp settings can be significantly different those

in figure 8.2. For example, for a 40kVp x-ray beam without added filtration, the

logarithm linearity is: PV = 1180.5lg(exp) + 216.91. The similarity between the

logarithm linearity for detector1 and detector2 in figure 8.2 shows that the two detec-

tors worked in a consistent manner, which could be attributed to the similar incident

spectral shapes (in figure 8.7), as a result of the beam hardening introduced by the

BR-12 phantom before the beam reached the two detectors.

The MTFs of detector1 and detector2 at 40kVp, 0.5mA, 4-cm-thick BR-12 filtered

beam and with R1=R2=36inch are presented in figure 8.3. For both detectors, the

MTF curves on scan (horizontal) direction are lower than those on subscan (vertical)

direction. The difference between MTFs on the two directions is probably due to

the slight difference between the sampling distances on the two directions. Similar

observations were also found in previous studies [11,16]. One can see that the MTFs

of the two detectors on both directions are almost identical (with difference less than

0.01). The MTF of detector2 with other R2 settings were not measured, since we

considered that different SIDs under our experimental settings do not cause much
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difference in the MTFs of the detector2, which was based on our previous experimental

results of detector2’s MTF at different SIDs under 40kVp 0.25mA with R1=24inch

and R2=24, 36, 42 and 60inch.

Fig. 8.5 and 8.6 manifested the normalized NPS curves (NPS/(LAS)2) on scan

(horizontal) direction and subscan (vertical) direction. LAS stands for large area

signal, which is calculated as the mean pixel value of the images. The noise power

spectra were obtained with the 40kVp, 12.5mAs, 4-cm-thick BR-12 phantom filtered

beam. R1 was fixed as 36inch, while R2 changed from 24inch to 72inch. Since

the entrance exposure levels were different for the above conditions, the normalized

NPS varied in their scales. The NPS curves on subscan direction showed a bigger

tail at high frequencies than the NPS curves on scan direction: for instance, the

normalized NPS of detector2 on scan direction with R2=24inch reaches 1.0× 10−5 at

1.5 lp/mm, compared to 1.8 lp/mm for the NPS on subscan direction; at 10 lp/mm,

the normalized NPS on the scan direction has a value of 8.05 × 10−7, while the one

on the subscan direction has a value of 1.67× 10−6. As can be seen from the 2D NPS

images (figure 8.4), the background near the vertical axis is brighter than that near

the horizontal axis. And the asymmetric shape of the 2D NPS results coincides with

the asymmetric MTFs of the CR detectors. The artifacts observed on the horizontal

and vertical axes correspond to the stripes-like structural noise of the CR detectors.

Two bright lines were found parallel to the vertical axis on the 2D NPS of detector2

but not on detector1. This phenomenon might be explained as the structural noise

represented by the bright lines was present on the 2D NPS of both detectors but they

were drowned out by the much brighter background on the 2D NPS of detector1.

Fig. 8.7 shows the incident x-ray spectra obtained for both detector1 and detector2

with the 40kVp, 4-cm-thick BR-12 filtered beam. The effect of beam hardening

of detector1 can be seen directly by comparing the two spectra. The average x-

ray photon energy was 23.75 keV on detector1 and was increased to 25.27 keV on
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detector2.

DQE curves of detector2 obtained with different R2 settings almost overlapped

together in figure 8.8 and 8.9. The high level of agreement among these DQE mea-

surements indicates that the performance of detector2, in respect of the efficiency of

x-ray photon utilization, is stable with the five different R2 settings and the corre-

sponding exposure levels. All of the DQE curves had a top value ranging from 50

∼ 53% at very low frequency (0.5 lp/mm), and dropped to 10% at about 5 lp/mm.

The consistency of the DQE curves again indicates similar and well behaved imaging

performance of both detectors in respect of the efficiencies of x-ray photon utilization.

8.4 Chapter conclusion

In this chapter, the imaging characteristics of a uniquely designed dual detector phase

imaging prototype was investigated, as an example application of the DQE method-

ology.

The selection of CR for detector1 is critical in the design of the prototype sys-

tem, and it allows the x-ray photons exiting from detector1 to be recorded by de-

tector2 [80–82]. With this design, both attenuation-based and phase-contrast-based

images can be acquired simultaneously at a single exposure. As compared with tak-

ing multiple separate exposures for attenuation and phase contrast images, this dual

detection technique could potentially reduce patient dose and avoid motion blurs and

other errors that may be introduced by multiple exposures. One of the key consid-

erations in this dual detector configuration is to make sure the entrance exposure

on both detectors are large enough to ensure that both detectors operate in x-ray

quantum noise limited condition and with equivalent imaging performance. There-

fore, measurements including the entrance exposure level, logarithm linearity, MTF,

NPS, incident spectra, and DQE were conducted and compared for both detectors

when they worked in the dual detection mode. Through experimental trials, a 40kVp,
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12.5mAs, and 4-cm-thick BR-12 filtered beam settings was determined to be satis-

factory, under which the detector1’s transmittance was about 32%, resulting in an

exposure levels of 13.6mR on detector1 and exposures from 0.5mR to 1.6 mR on

detector2 for the five different R2 settings.

The characteristic responses of the two detectors are highly agreed, showing that

they worked in a similar manner. Furthermore, the MTF of the two detectors showed

only slight difference of about 0.01 ∼ 0.02, implying that the blurring introduced by

detector1 did not weaken the resolving power of detector2 significantly. The DQE

values for the two detectors at very low frequency (≈ 0.5 lp/mm) are all above 50%,

showing a highly efficient utilization of x-ray photons in the imaging processes. The

DQE curves on detector2 with the five R2 settings almost coincide exactly, which

means that an elongated R2 and the resultant reduced exposure levels did not de-

grade the imaging performance significantly under the experimental settings. The

DQE curves of detector1 also demonstrated appreciable agreement with those of de-

tector2, which indicates similar system performance of both detectors and implies

both detectors operating in quantum noise limited condition. And the settings of

kVp, mA, exposure time, and beam filtration utilized in this study can be employed

as a guideline for future experimental designs of quantitative phase imaging based on

the dual detector system.

In summary, the experiments and measurements in this study validated the design

of the dual detector system for x-ray phase imaging, which has potential for improving

the accuracy of diagnostics at clinically acceptable radiation dose. Part of the content

of this chapter was published in [41] and [82].
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CHAPTER 9

Summary

The primary objective of the research of this dissertation is to investigate the theory,

the measurement techniques and the applications of Detective Quantum Efficiency

(DQE) for digital x-ray imaging systems. DQE is widely accepted as the “golden

rule” for objectively evaluating the performances of x-ray based medical imaging

systems. DQE combines several important image-quality-related measurements such

as contrast, resolution, and noise, and measures the efficiency of the utilization x-ray

photons in the imaging process.

In order to clarify several confusing aspects of the current DQE methodology as

stated in Chapter 1, the theory of DQE is re-derived in Chapter 2, based on the

conditions of digital x-ray imaging. As compared with the traditional DQE theory

that is originally established on a continuous and analogue foundation, the newly

derived DQE theory is established on the theories of digital signal processing and

discrete stochastic processes.

In Chapter 2, the theory of DQE for linear digital x-ray imaging systems was

derived based on 2D DTFT. The imaging system is considered as a black box with

signal power spectrum and noise power spectrum both the input end and the output

end. By applying the theory of power spectrum density analysis for linear systems,

DQE could be expressed as the ratio between the input signal-to-noise spectrum and

the output signal-to-noise spectrum. As compared with the traditional interpretation

of DQE as the ratio between the output SNR spectrum and the input SNR (a scalar),

this newly derived DQE is more theoretically solid. Through the derivation, the issue
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of frequency resolution in the DQE measurements can be explained clearly, as shown

in Chapter 2. Given a limited amount of image data, there is a trade-off between

the statistical variance of the NPS and DQE resultant spectra and the frequency

resolution of the spectra: if a small cutting window is used to obtain the ROI for the

NPS calculation, more NPS spectra can be averaged to reduce statistical variance

in the final NPS, but at the cost of lower frequency resolution of the NPS curve.

Zero-padding can be utilized to increase the frequency sampling rate, and therefore

improves the frequency resolution. If the spectra are smooth in nature, it is preferable

to use a smaller sub-image size with zero-padding to obtain high frequency resolution

as well as small statistical variance in the spectra. At the end of Chapter 2, the

assumptions and conditions employed in this derivation of the DQE theory were

emphasized, and several methodological suggestions were made in an effort to guide

the implementation of the DQE measurements.

After the introduction of the general DQE theory in Chapter 2, several aspects of

the DQE measurement are discussed respectively in the following chapters. The mea-

surement techniques of DQE in magnification radiography are introduced in Chapter

3, the estimation of x-ray photon fluence and the x-ray spectral measurements are

discussed in Chapter 4. An error analysis on the propagation of the calibration

uncertainty in x-ray spectral measurements and photon fluence estimation is also

investigated in Chapter 4, in an effort to improve the accuracy of the photon flu-

ence measurements. Moreover, an innovative alignment procedure designed to reduce

the measurement error in the spectral measurement and imaging experiments is in-

troduced in Chapter 5. Measurement techniques for MTF and NPS are detailed in

Chapter 6, and in the first part of Chapter 7, respectively.

Two example studies based on the DQE methodology are included after the dis-

cussions on the measurement techniques. In Chapter 7, the influence of additive

noise on the performance of a CCD-based x-ray imaging system is investigated based
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on NPS and DQE measurements. The NPS of the additive noise of this system,

particularly the growth trend of the additive noise with exposure time, was investi-

gated. Moreover, DQE of the system was measured and the threshold exposure time

beyond which the quantum noise limited condition is violated was also determined.

In Chapter 8, the characterization results of a newly developed dual detector in-line

phase x-ray imaging prototype is presented. Comparisons of MTF, NPS and DQE

for both detectors were conducted when they worked in the dual detection mode in

which two images are acquired simultaneously at a single exposure. The resultant

MTF and DQE curves of the two detectors are in good agreement, showing that the

two detectors have similar imaging performance under the imaging conditions of the

study. The study answered the key question that if both detectors could operate

with equivalent imaging performance, and validated the design of the dual detection

configuration for the phase x-ray imaging.

The next steps in the research of the DQE methodology may involve two different

aspects. The first aspect is to apply uncertainty analysis to the measurement of MTF

and NPS, and to establish a complete uncertainty measurement for the DQE spectra,

by combing them with the uncertainty analysis on the photon fluence measurements.

The challenges in this aspect lie in the fact that the uncertainty for spectra that

are generated following complex procedures is very difficult to analyze theoretically

and numerically, and that there is no such standard to follow. The second aspect is

to apply the DQE concept and method to x-ray phase imaging. The challenges on

this direction is that the imaging mechanism of phase x-ray imaging is completely

different from attenuation-based x-ray imaging, and the underlying assumptions and

theoretical foundations for applying the DQE in this application need to be carefully

investigated.
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