
UNIVERSITY OF OKLAHOMA 

GRADUATE COLLEGE 

 

 

 

AN EVALUATION OF THE INFLAMMATORY TIME COURSE RESPONSE 

FOLLOWING TRADITIONAL AND BLOOD FLOW RESTRICTION RESISTANCE 

EXERCISE MEASURED BY PERIPHERAL QUANTITATIVE COMPUTED 

TOMOGRAPHY 

 

 

 

A DISSERTATION 

SUBMITTED TO THE GRADUATE FACULTY 

in partial fulfillment of the requirements for the 

Degree of 

DOCTOR OF PHILOSOPHY 

 

 

 

 

By 

 

CHRISTOPHER POOLE 

Norman, Oklahoma 

2012 



 

 

AN EVALUATION OF THE INFLAMMATORY TIME COURSE RESPONSE 

FOLLOWING TRADITIONAL AND BLOOD FLOW RESTRICTION RESISTANCE 

EXERCISE MEASURED BY PERIPHERAL QUANTITATIVE COMPUTED 

TOMOGRAPHY 

 

A DISSERTATION APPROVED FOR THE  

DEPARTMENT OF HEALTH AND EXERCISE SCIENCE 

 

 

 

 

 

 

 

 

 

 

BY 

 

 

 

 

________________________________ 

Dr. Michael Bemben, Chair 

 

 

________________________________ 

Dr. Debra Bemben 

 

 

________________________________ 

Dr. Travis Beck 

 

 

________________________________ 

Dr. Allen Knehans 

 

 

________________________________ 

Dr. Howard Crowson 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by CHRISTOPHER POOLE 2012 

All Rights Reserved.



iv 

 

ACKNOWLEDGEMENTS 

 Without the dedication and service of many others, this research project would 

never have been achievable.  I would like to thank the young men that took the time out 

of their busy schedules to participate as subjects in this project.  You guys are awesome, 

and I am indebted to each one of you.  I owe many thanks to the group of graduate 

students and fellow lab-mates that volunteered their time to help this project run as 

smoothly as it did: Kaelin Young, Lindy Rossow, Chris Fahs, and Jeremy Loenneke.  

Rob Thiebaud and Xin Ye, you guys always put me in a better mood when I came in 

your office to visit while waiting on subjects.  To all of you, if you ever need anything 

in the future, I will be there. 

 I would also like to give thanks to each of my committee members for their 

assistance and time commitment throughout the dissertation process.  Dr. Crowson, I 

enjoyed your statistic classes, which I definitely got my money’s worth out of.  Thank 

you for agreeing to sit on my committee as the outside member.  Dr. Knehans, thank 

you for providing the nutritional knowledge and input that you did.  You stimulated my 

mind on ways to control for dietary intake, which could have alone affected the 

outcomes of this investigation.  Dr. Beck, thank you for all the knowledge and advice 

that you have provided me with over the past few years.  You were never too busy to 

chat or spot me when I was lifting outside of your office.  I look up to you as a 

professional in our field, but more importantly as a friend.  Dr. Deb, I could have in no 

way successfully completed this project without you.  You sincerely offered your 

laboratory space and equipment for me to use at my discretion, as well as methodology 

insight that allotted the study to run efficiently.  Thank you for your generosity and 



v 

 

support.  Dr. Mike, you have helped me along my pursuit of this degree more than you 

will ever know.  You took me under your wing when I needed direction, and you were 

never too busy to assist me with any scholarly or personal issue.  I cannot put into 

words the gratitude and respect that I have for you as a person. 

 I would also like to thank my family, for they have been the backbone 

throughout my entire educational journey.  Ryan and Jaclyn, I could not have asked for 

a better brother and sister to grow up with, as you both have always been there for me, 

no questions asked.  I love you both.  Mom and Dad, thank you for instilling great 

values and a relentless work ethic in me at such an early age.  You have shaped me into 

the man I have become, and I never would be where I stand today without the guidance, 

support, and encouragement that you have persistently given me throughout my entire 

life.  I love you and thank you both very much.  Lastly, I give all thanks and praise to 

God for the blessings He has given me.  “Now to him who is able to do immeasurably 

more than all we ask or imagine, according to his power this is at work within us,” 

(Ephesians 3:20). 

 

 

 

 

 

 

 

 



vi 

 

TABLE OF CONTENTS 

CHAPTER I INTRODUCTION ......................................................................................... 1 

 Purpose ............................................................................................................................ 5 

Research Questions .......................................................................................................... 6 

Hypotheses ....................................................................................................................... 6 

Subquestions .................................................................................................................... 6 

Subhypotheses ................................................................................................................. 6 

Significance of the Study ................................................................................................. 7 

Assumptions ..................................................................................................................... 8 

Delimitations .................................................................................................................... 8 

Limitations ....................................................................................................................... 8 

Operational Definitions .................................................................................................... 9 

CHAPTER II REVIEW OF LITERATURE ..................................................................... 12 

Introduction .................................................................................................................... 12 

Muscle Structure, Physiology, and Function ................................................................. 14 

Factors Initiating Skeletal Muscle Hypertrophy ............................................................ 16 

Exercise Prescription for Muscle Hypertrophy ............................................................. 19 

Blood Flow Restriction Training ................................................................................... 21 

Measurement Techniques for Assessing Body Composition ........................................ 26 

Assessing Inflammation in Response to Exercise ......................................................... 28 

Summary ........................................................................................................................ 29 

CHAPTER III METHODOLOGY .................................................................................... 30 

Subjects .......................................................................................................................... 30 

Inclusion Criteria ........................................................................................................... 30 

Exclusion Criteria .......................................................................................................... 31 

Research Design ............................................................................................................ 32 

Exercise Protocols .......................................................................................................... 33 

Questionnaires ............................................................................................................... 34 

Body Composition ......................................................................................................... 35 

Systolic and Diastolic Blood Pressure ........................................................................... 38 

Strength Testing ............................................................................................................. 38 

Blood Sampling ............................................................................................................. 39 

Dietary Monitoring ........................................................................................................ 39 



vii 

 

Data Analyses ................................................................................................................ 39 

CHAPTER IV RESULTS AND DISCUSSION ............................................................... 41 

Subject Characteristics ................................................................................................... 41 

Total Caloric and Macronutrient Intakes ....................................................................... 42 

Muscle Thickness .......................................................................................................... 43 

Hematocrit and Plasma Volume .................................................................................... 45 

Thigh Muscle Cross-Sectional Area .............................................................................. 47 

Thigh Circumference ..................................................................................................... 48 

DISCUSSION .................................................................................................................... 50 

CHAPTER V CONCLUSIONS ........................................................................................ 63 

Research Hypothesis 1 ................................................................................................... 63 

Subhypothesis 1 ............................................................................................................. 64 

Subhypothesis 2 ............................................................................................................. 64 

Significance of the Study ............................................................................................... 65 

Future Research ............................................................................................................. 66 

 REFERENCES ................................................................................................................. 67 

APPENDICES ................................................................................................................... 78 

  

 

 

 

 

 

 

 

 

 

 



viii 

 

LIST OF TABLES 

Table 1.  Baseline Subject Characteristics ........................................................................ 42 

Table 2.  Three Day Caloric and Macronutrient Intake…… ........................................... .43 

Table 3.  Muscle Thickness Values ...............................................................................  119 

Table 4.  Hematocrit and Plasma Volume ........................................................................ 46 

Table 5.  mCSA and Thigh Circumfence ....................................................................... 121 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ix 

 

LIST OF FIGURES 

Figure 1.  Muscle Thickness Quadriceps .......................................................................... 44 

Figure 2.  Muscle Thickness Hamstrings ......................................................................... 45 

Figure 3.  Hematocrit as Percent of Blood Volume........................................................ 120 

Figure 4.  Plasma Volume Percent Changes ..................................................................... 47 

Figure 5.  mCSA Changes ................................................................................................ 48 

Figure 6.  Thigh Circumference Changes ......................................................................... 49 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



x 

 

ABSTRACT 

Acute muscle swelling following resistance exercise can increase mCSA when 

assessed by pQCT.  This swelling does not reflect muscle hypertrophy, but rather a fluid 

shift in and around the exercised musculature that may stimulate protein synthesis.  This 

creates a need for determining the inflammatory time course response following a bout 

of resistance exercise to pinpoint the earliest a pQCT scan can be performed to predict 

mCSA with minimal error.  Furthermore, the degree of muscle swelling following 

traditional resistance exercise and blood flow restriction resistance exercise has yet to 

be compared.  PURPOSE: The purpose of this investigation was to determine the time 

course of increased intramuscular fluid following a traditional high-intensity resistance 

exercise bout and a low-intensity combined with blood flow restriction resistance 

exercise bout.  METHODS: Ten men, aged 18-30 years, completed three experimental 

conditions in random order separated by at least one week: traditional resistance 

exercise [TRE], blood flow restriction resistance exercise [BFR], and a non-exercise 

control [CON].  For TRE subjects completed three sets of 8-10 repetitions on leg press, 

leg extension, and leg curl machines at an intensity of 75%-80% 1RM with two minutes 

of rest allowed between sets and exercises. For BFR, subjects wore five cm wide 

electronically controlled elastic pressure cuffs around their upper thighs during the 

exercise bout at a restrictive pressure of 160 mmHg.  The same three exercises were 

completed during BFR but at an intensity of 20% 1RM.  Subjects completed 30 

repetitions for their first set, followed by three sets of 15 thereafter.  Rest intervals were 

set at 30 seconds.  For TRE, subjects remained in resting state, seated for approximately 

20 minutes.  Prior to exercise and 15 minutes, 75 minutes, 24h, 48h, 72h, and 96h after 
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exercise in TRE and BFR protocols, subjects underwent a pQCT scan and thigh 

circumference measurement.  Additionally, blood samples were collected via finger 

prick prior to, immediately after, and 1h after exercise to assess plasma volume.  

Muscle thickness of the quadriceps and hamstring were determined prior to exercise and 

immediately, 30 min, and 1h after exercise via ultrasound.  RESULTS:  MTQ for BFR 

was significantly greater immediately post-exercise (p < 0.001) and 30 minutes post-

exercise (p = 0.001) when compared to pre-exercise.  MTQ for TRE was significantly 

greater immediately post-exercise (p = 0.010), 30 minutes post-exercise (p = 0.007), and 

60 minutes post-exercise (p = 0.019) when compared to pre-exercise.  MTQ for BFR 

was significantly greater than TRE immediately post-exercise (p = 0.016).  MTH for 

BFR was significantly greater immediately post-exercise (p = 0.036) when compared to 

pre-exercise.  PV%Δ significantly decreased from pre- to immediately post-exercise in 

both BFR (p < 0.001) and TRE (p < 0.001) conditions.  In BFR, mCSA was 

significantly greater at 15 minutes post-exercise (p < 0.001) and 75 minutes post-

exercise when compared to pre-exercise mCSA.  In TRE, mCSA was significantly 

greater at 15 minutes post-exercise compared to pre-exercise mCSA.  Thigh 

circumference was significantly greater at 15 minutes post-exercise in BFR (p < 0.001), 

TRE (p = 0.002), and CON (p = 0.016) compared to their respective pre-exercise thigh 

circumference values.  Additionally, thigh circumference was significantly greater at 75 

minutes post-exercise in BFR (p = 0.032) and TRE (p = 0.007) compared to their 

respective pre-exercise thigh circumference values.  CONCLUSION:  Muscle swelling 

returns to pre-exercise levels within 24 hours after completing a moderate to high 



xii 

 

volume heavy-resistance exercise bout and a low-intensity coupled with blood flow 

restriction resistance exercise bout.
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CHAPTER I 

INTRODUCTION 

Sarcopenia, meaning loss of flesh, is characterized by a loss of skeletal 

muscle mass and muscular strength that accompanies the ageing process.  

Physiological changes associated with a decline in muscle mass and strength 

include:  1) a decrease in type II muscle fibers (66), 2) a decrease in type II motor 

units (70), 3) impairments in protein synthesis (104), increased skeletal muscle 

proteolysis of contractile proteins (105), and a decrease in the production of the 

anabolic hormones testosterone (57), insulin-like growth factor 1 (IGF-1) (57), and 

growth hormone (GH) (89) .  Additionally, exogenous factors such as an 

insufficient dietary protein intake (16) and a lack of or decrease in daily physical 

activity/exercise (40) can influence the rate of sacropenia.  Collectively, the 

aforementioned events contribute to and reflect the 20% - 30% loss in skeletal 

muscle mass observed between the third and eighth decades of life (64).  In the year 

2000, health care costs directly related to sarcopenia were estimated at $18.5 

billion, and a 10% reduction in the prevalence of sarcopenia would save 

approximately $1 billion annually (51).  As a result, there is a need for the 

development of therapeutic and/or exercise interventions intended to reduce and 

possibly reverse the progression of sarcopenia not only improve the quality of life 

with ageing, but to diminish the astronomical health care costs associated with this 

condition. 
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 Resistance exercise of adequate intensity (60% - 90% of the one-repetition 

maximum [1RM]) has been demonstrated to induce phenotypic outcomes that can 

improve muscle quality and function during biological ageing.  For example, 

Yarasheski and colleagues (110) showed a discrepancy in resting fractional rates of 

muscle protein synthesis in older men and women (63-66 yrs) when compared to 

younger (24 yrs) counterparts.  After two weeks of 5 d/wk moderate to high 

intensity resistance exercise consisting of exercises that load both the upper and 

lower body musculature, fractional muscle protein synthesis rates were similar 

amongst young and older subjects (110), suggesting that chronic resistance exercise 

may increase resting rates of muscle protein synthesis in older individuals.  Pyka et 

al. (86)  implemented a one year resistance training program comprised of 12 

exercises at an intensity of 75% 1RM to 25 older (68 ± 1 yrs) men and women.  

Muscular strength increases ranged between 30% (hip extensors) and 90% (hip 

flexors), depending on the specific muscle group, and type I and type II muscle 

fiber cross-sectional area increased by 59% and 67%, respectively, after 30 weeks 

of training (86).  These results indicate that older, healthy adults can participate in 

moderate to high-intensity resistance exercise and experience increases in muscular 

strength and hypertrophy. 

 Over the last two decades, a novel form of resistance exercise intended to 

reduce blood flow to the exercising muscles has gained popularity among the 

research community as a complementary exercise modality.  Blood flow restriction 

(BFR) exercise, also known as KAATSU training, uses electronically controlled, 
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pneumatic air pressure cuffs (similar to blood pressure cuffs) placed around the 

most proximal segment of an exercising limb to reduce arterial blood flow and 

occlude venous return, resulting in venous pooling around the working muscles.  

BFR resistance exercise utilizes low to moderate exercise intensities (20% - 50% 

1RM), and has been demonstrated to elicit muscular hypertrophic adaptations once 

thought to occur exclusively through the implementation of high-intensity 

resistance exercise (72).  Consequently, BFR exercise has the potential to provide 

health-related benefits to certain populations that are unable to place heavy external 

loads on the body’s musculature.  Although incompletely understood at this time, 

several mechanisms contributing to the effectiveness of BFR training have been 

proposed: 1) acute (83, 87) and chronic (2) increases in anabolic hormone 

secretion, 2) increased motor unit recruitment/muscle activation during exercise 

(111), and 3) cell swelling (11), all of which have the potential to influence skeletal 

muscle protein synthesis and related signaling pathways (35).  Gaining a better 

understanding of these mechanisms will result in more efficacious BFR exercise 

prescription.  Of interest to the proposed investigation is the significance of cell 

swelling (muscle swelling) and the role it may serve in the remodeling/hypertrophic 

response to exercise. 

 Resistance exercise is also a widely accepted and utilized training modality 

for athletes, and it is often the focal point of many strength and conditioning 

programs.  The evolution of research in the strength and conditioning field over the 

last 20 years has led to the development of year round resistance exercise practices.  
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Periodized resistance exercise programs are those that modify the acute training 

variables (exercise load, number of sets, number of repetitions, length of rest 

periods, and training frequency) throughout the year based on the current sport 

season (off-season, pre-season, in-season).  By combining the principles of 

periodization with a year round resistance exercise program, athletes are able 

maximize the benefits of resistance exercise while reducing the chance of 

experiencing a reversal in training adaptations (58). 

 In terms of sport performance, resistance exercise has a profound effect on 

several key variables including muscular strength, muscular power/speed, muscle 

hypertrophy, and muscular endurance (54).  The importance of muscle hypertrophy 

to athletic success cannot be understated, as muscle hypertrophy is closely related 

to other variables associated with athletic success, such as maximal strength (71) 

and muscular power during anaerobic (82) and aerobic (50) modes of exercise.  

Because of this, many athletes participate in resistance exercise programs to 

increase muscle mass with the intent of enhancing sport performance. 

 Since increasing muscle mass has positive implications on health, quality of 

life, and athletic performance, it is critical that scientists can accurately access 

muscle mass as well as track changes throughout ageing or across an exercise 

program.  Some of the commonly used field based methods for tracking changes in 

muscle mass are not sensitive enough to detect small changes in muscle 

morphology, thus warranting the use of technologically advanced body 

composition equipment.  Peripheral quantitative computed tomography (pQCT) has 
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recently become prevalent in the scientific community for analyzing the health and 

bone and soft tissues.  In relation to muscle mass assessment, the pQCT scanner 

demonstrated to be a valid and reliable assessment of mCSA when compared with 

magnetic resonance imaging (MRI) (23), the current gold standard in body 

composition assessment.  A potential limiting factor however, is that the pQCT 

scanner is unable to distinguish between an increase in muscle tissue and an 

increase intramuscular fluid when measuring muscle cross-sectional area (mCSA).  

Therefore, an increase in intramuscular fluid following a resistance exercise bout 

could artificially inflate/increase mCSA as determined by pQCT (supported by 

unpublished data), which would decrease the validity of the pQCT for predicting 

mCSA after one or more bouts of resistance exercise.  This creates a need for 

determining the inflammatory time course response following a bout of resistance 

exercise to pinpoint the earliest a pQCT scan can be performed to predict mCSA 

with minimal error.      

Purpose 

The purpose of this investigation was to determine the time course of 

increased intramuscular fluid following a traditional high-intensity resistance 

exercise bout and a low-intensity combined with blood flow restriction resistance 

exercise bout.  Specifically, it was our objective to decipher the post-exercise time 

point at which increased intramuscular fluid, as a result of inflammation from 

resistance exercise, is returned to baseline (resting) levels. 
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Research Question 

1. How long will muscle swelling remain above baseline levels after 

performing a traditional high-intensity resistance exercise bout and a low-

intensity combined with blood flow restriction resistance exercise bout? 

Hypothesis 

1. Muscle swelling will return to baseline levels within 96 hours after 

performing the traditional high-intensity resistance exercise bout and low-

intensity combined with blood flow restriction resistance exercise bout. 

Subquestions 

1. Will there be a difference in the degree of muscle swelling between a 

traditional high-intensity resistance exercise bout and low-intensity with 

blood flow restriction resistance exercise bout? 

2. Will there be differences in the degree of muscle thickness changes in 

response to a traditional high-intensity resistance exercise bout compared to 

a low-intensity with blood flow restriction resistance exercise bout? 

Subhypotheses 

1. Muscle swelling will be greater in response to the low-intensity with blood 

flow restriction resistance exercise bout compared to the traditional high-

intensity resistance exercise bout. 

2. Muscle thickness changes in response to the low-intensity with blood flow 

restriction resistance exercise bout will be greater than the muscle thickness 
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changes experienced after performing the traditional high-intensity 

resistance exercise bout. 

Significance 

 By determining the inflammatory (muscle swelling) time course in response 

to a traditional bout of resistance exercise and low-intensity with blood flow 

restriction resistance exercise bout via pQCT, researchers interested in examining 

mCSA at multiple time points over the duration of a resistance exercise training 

study may know the earliest a pQCT measurement can be obtained following 

exercise to most accurately predict mCSA.  Specifically, the pQCT scanner detects 

muscle swelling as an increase in mCSA (i.e., muscle hypertrophy), which 

decreases the validity of this body composition assessment technique when 

tracking muscle mass changes over time.  Therefore, knowing when muscle 

swelling returns to baseline levels after resistance exercise will provide researchers 

a time frame when the pQCT can be utilized to assess mCSA with minimal error. 

 Several mechanisms have been proposed regarding the musculoskeletal 

adaptations that occur with blood flow restriction training, one of which is cell 

swelling.  By examining the degree and duration of muscle swelling after 

performing a bout of resistance exercise with blood flow restriction as well as a 

traditional bout of resistance exercise, further insight concerning the effects of cell 

swelling on the hypertrophic response to exercise may be provided. 
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Assumptions 

1. Subjects gave 100% effort during1-RM testing and during each of the 

exercise bouts. 

2. Subjects did not participate in any exercise or physical activity within 72 

hours prior to baseline testing. 

3. Subjects did not participate in any exercise outside of what the study 

entailed while they participated in this investigation. 

4. Subjects answered and filled out questionnaires and paperwork truthfully. 

Delimitations 

1. The findings of this study are only applicable to young men between the 

ages of 18-30 not participating in a structured resistance or aerobic exercise 

program that were from the Norman, Oklahoma and surrounding areas.  

However, it can be assumed that the findings of this investigation are 

applicable to individuals currently participating in a resistance exercise 

program, since the inflammatory and muscle damage response from 

exercise lessens with more training experience. 

2. Subjects were free of any physical or medical conditions that could prevent 

them from exercising.   

Limitations 

1. Exercise outside of the study protocol was not strictly monitored.  However, 

all subjects were asked to refrain from participating in any additional 

exercise. 
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2. Dietary intake may affect the inflammatory response from exercise.  

Therefore, 3-day food logs were collected from all subjects across each 

experimental condition. 

3. A potential for the “repeated bout effect” existed.  To limit this possibility, 

subjects performed each condition in random order. 

4. Since normal fluctuation in bodily fluid shifts may affect the measurement 

precision of dependent variables, a control condition was used to account 

for any such fluctuation in fluid shifts. 

Operational Definitions 

Blood Flow Restriction training (BFR) - Exercise involving the use of 

electronically controlled pneumatic air pressure cuff placed around the most 

proximal portion of an extremity and inflated during exercise, also called KAATSU 

training.  

Diastolic Blood Pressure (DBP) – The brachial diastolic blood pressure or the 

pressure blood exerts on the brachial arterial walls during diastole. 

Dual Energy X-ray Absorptiometry (DXA) – Bone and soft tissue assessment till 

that uses two x-ray beams to generate a two-dimensional replica of the skeleton and 

surrounding tissues. DXA calculates the attenuation values of photons that travel 

from the x-ray tube through the measurement site. 

Lancet Device – A hand-held device containing a lancet that is used collect a 

droplet of capillary blood via finger prick. 
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Mammalian Target of Rapamycin (mTOR) Pathway - Thought to be the critical 

pathway necessary to be activated in order for skeletal muscle protein synthesis to 

occur. 

Mitogen Activated Protein Kinases (MAPK’s) – A group of protein kinases that are 

activated by different cellular stimuli that play a role in skeletal muscle growth. 

Muscle Cross-Sectional Area (mCSA) – The area of a cross section of muscle that 

is perpendicular to its longitudinal fiber arrangement. 

Muscle Thickness – As measured by ultrasound, the distance from the adipose 

tissue-muscle interface to the muscle-bone interface. 

One-Repetition Maximum (1-RM) – The maximal amount of weight that can be 

lifted through a full range of motion with proper form. 

Peripheral Quantitative Computed Tomography (pQCT) – Bone and soft tissue 

measurement tool that generates a three-dimensional representation of a 

measurement site.  pQCT measures the amount of radiation attenuated as it passes 

from the source through the measurement site, and it classifies tissue based on a 

density measurement. 

Sarcopenia – The age related loss of muscle mass and strength. 

Systolic Blood Pressure (SBP) – The brachial systolic blood pressure or the 

pressure blood exerts on the brachial arterial walls during systole. 

Ultrasound – A medical imaging technique that uses ultrasonic waves to capture 

images of underlying tissues in the body.  
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Upper Leg Circumference – The distance between the lateral epicondyle and the 

greater trochanter is measured, and a mark will be made on the leg halfway 

between the two landmarks to serve as the circumference measurement site.  A tape 

measure is then wrapped around the leg at this location to obtain a measurement. 
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CHAPTER II 

LITERATURE REVIEW 

Introduction 

Resistance exercise provides many health and performance-related benefits 

to individuals that regularly participate in this form of exercise.  Favorably altering 

body composition (i.e., increasing lean tissue mass and decreasing fat mass) is one 

such desired outcome that can positively influence quality of life as well as athletic 

performance.  Thus, the ability to accurately assess body composition has become 

of upmost importance in the scientific community to not only determine an 

individual’s body composition with precision, but to enable physiologists to 

properly prescribe diet and exercise and other therapeutic interventions that will 

improve athletic performance and promote a healthy lifestyle. 

It is well established that biological ageing is associated with, or potentiates 

an array of physiological changes that adversely affect risk factors for chronic 

diseases/conditions, physical activity levels, and functionality during normal, 

everyday activities.  One such physiological change is the age associated loss of 

skeletal muscle mass and muscular strength, known as sarcopenia, which can 

manifest itself as early as the third decade of life in some individuals. The 

development and progression of this condition during biological ageing is 

amplified if a sedentary lifestyle is pursed and certain lifestyle changes are not 

employed. 
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As one ages, the participation in weight bearing physical activity that places 

mechanical strain to the skeletal musculature becomes vital for maintaining muscle 

mass, muscle quality, and overall functionality (19).  The American College of 

Sports Medicine and the American Heart Association recommend older adults to 

participate in resistance exercise of moderate (5-6) to vigorous (7-8) intensity on a 

10 point scale (79).  This level of exercise intensity may be feasible for many older 

adults.  However, some older individuals may be physically unable to partake in 

heavy resistance exercise due to frailty, previous musculoskeletal injuries, and 

other health-related issues.  Therefore, the need for an alternative mode of exercise 

that results in similar skeletal muscle adaptations would be of extreme value.  BFR 

training may be a possible exercise substitute that can be performed by individuals 

who are unable to lift heavy loads while still placing a sufficient, anabolic stimulus 

to the working muscles.  Despite the musculoskeletal benefits observed with BFR 

training, the mechanisms responsible for generating these phenotypic changes are 

unclear at this point in time.  Gaining a better understanding of these mechanisms 

will result in more efficacious BFR exercise prescription. 

This literature review discusses the structure, physiology and function of 

muscle, factors initiating and exercise prescription for muscle hypertrophy, blood 

flow restriction training, measurement techniques for assessing body composition, 

and current ways for determining inflammation in response to exercise. 
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Muscle Structure, Physiology, and Function 

Skeletal muscle is the bodily tissue that facilitates biomechanical movement 

of the skeletal components.  It is very unique in nature by possessing the ability to 

adapt to a wide variety of stimuli, repair itself when trauma or damage occurs, and 

serve as an energy reservoir for the body in extreme circumstances.  Each muscle in 

the body contains a vascular network that provides the surrounding fibers with 

oxygen and nutrients to maintain a constant cellular environment during rest and 

times of stress, such as exercise. 

Muscle is composed of a network of proteins organized into primary, 

secondary, tertiary, and quaternary structures.  Muscle proteins are constructed by 

the linking of amino acids by polypeptide bonds.  From an entire muscle belly to 

the skeletal muscle microstructure, layers of connective tissue surround and protect 

the various layers of muscle tissue.  Each muscle cell (or muscle fiber) possesses 

both structural and functional units.  The cytoskeleton maintains the shape and 

integrity of the muscle fiber during muscle contraction and relaxation.  Protein 

complexes (i.e., dystrophin complex) anchored by the sarcolemma attach to the z-

discs of the contractile elements and organelles within the cytosol of the muscle 

fiber to ensure their stability.  The smallest functional unit of a muscle fiber is the 

sarcomere, which contains the two myofibrils responsible for muscle contraction, 

actin and myosin.  Actin is a thin protein arranged in a double helix that is located 

on both ends of a sarcomere.  The actin filament contains two additional proteins, 

troponin and tropomyosin, that play integral parts during muscle contraction.  



15 

 

Myosin is the thicker of the two myofilaments and it is distinguished by the 

presence of two globular heads.  In a resting state, the actin and myosin filaments 

partially overlap with one another and are not connected in any way.  During 

contraction, the myosin globular heads attach to the actin filaments and pull them 

toward the center of the sarcomere, thereby shortening the distance between the z-

discs located on either of the sarcomere.  Sarcomeres are aligned in adjacent series 

throughout a muscle belly, and as the contraction process takes place, force is 

transmitted from the sarcomeres through the structural proteins and layers of 

connective tissue within the muscle to the myotendinous junction at the ends of the 

muscle belly where the bone is attached and movement is generated. 

The myosin heavy chain protein can exist as one of two primary isoforms, 

each of which is differentiated by structural, metabolic, and contractile properties.  

Thus, it is the myosin proteins contained within a muscle fiber that dictates the 

fiber’s properties and overall function.  Type I muscle fibers are characterized by 

small fiber diameters, high mitochondrial and capillary densities, high resistance to 

fatigue during muscular work, and low force production capabilities.  Type II 

muscle fibers have larger fiber diameters, lower mitochondrial and capillary 

densities, low resistance to fatigue, and high force production capabilities.  Muscle 

fibers are therefore recruited to perform muscular work based on the demands of 

the activity.  During light to moderate intensity exercise requiring aerobic 

metabolism, type I muscle fibers are primarily utilized, whereas high intensity 

exercise relying on the phosphocreatine and/or glycolytic energy systems utilizes 
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type II muscle fibers in addition to type I fibers.  The architecture and functional 

capabilities of muscle fibers can be manipulated by external stimuli such as 

exercise or dieting habits.  In particular, aerobic exercise can improve the oxygen 

consumption and utilization capacity of muscle fibers (46), and resistance exercise 

can increase the force production capabilities and overall size (i.e., muscle 

hypertrophy) of muscle fibers (86).  These phenotypic changes are beneficial for 

athletic success at recreational and elite levels alike and the maintenance of 

functionality during biological ageing.                                          

Factors Initiating Skeletal Muscle Hypertrophy 

 Mechanical tension, that is the result of force generation and induced 

stretch, is considered a primary contributor of skeletal muscle growth.  The buildup 

of tension that accompanies resistance exercise disturbs the structural integrity of 

muscle fibers causing a cascade of events initiated by mechanosensors within the 

affected muscle tissue.  The resulting signals are mediated through the Akt/mTOR 

protein synthesis pathway via direct or indirect activation (47).  The involvement of 

the Akt/mTOR (mammalian target of rapamycin) pathway in muscle growth and 

cell cycle regulation is well-studied, but its role in modulating the effects of 

resistance exercise (i.e. mechanical tension) has more recently been documented.  

Barr and Esser (6) were the first to demonstrate that the extent of p706K (a 

downstream protein kinase of mTOR) phosphorylation after an initial bout of 

resistance exercise is highly correlated with the amount of muscle hypertrophy in 

rodents after six weeks of resistance exercise training.  Similarly, Terzis et al. (101) 
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saw the same correlation in human subjects after 14 weeks of resistance training.  

Further support for the Akt/mTOR pathway in having a primary function in 

anabolic signaling in response to mechanical tension comes from a series of studies 

by Kubica and colleagues (62, 63).  In these investigations, rats performed a bout of 

lower-body resistance exercise, and it was determined that protein translation (as 

measured by monosomal to polysomal RNA changes) was increased in the 

gastrocnemius 16 hours following the bout.  When rapamycin, an inhibitor of 

mTOR, was administered to the rats two hours prior to exercise, protein translation 

measured after the exercise bout was inhibited.  This collection of data shows that 

mTOR phosphorlyation, and downstream signaling leading to protein translation, 

are highly responsive to mechanical tension, and mTOR inhibition results in a 

decrease in protein synthesis.  

 Exercise training can produce localized trauma and damage to skeletal 

muscle that is hypothesized to influence tissue remodeling and hypertrophy (30).  

Muscle damage, specifically microtears in the membranes of myofibers, is 

suggested to commence the cascade of inflammatory events necessary for restoring 

a homeostatic environment.  The perception of damage by the body causes 

neutrophils to migrate to the injured area.  Macrophages and lymphocytes are then 

signaled to the area to clear debris and produce cytokines that activate  immune 

cells which produce growth factors, including IGF-1, involved with the repair of 

damaged muscle tissue (69).  IGF-1 is a very diverse hormone that exerts its 

anabolic effects in several distinct ways.  Mechano growth factor (MGF), a splice 
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variant of IGF-1, activates satellite cells to undergo proliferation and differentiation 

(45), and another splice variant, IGF-1Ea, is thought to aid the fusion of satellite 

cells with mature muscle fibers (103).  The myonuclear domain theory states that a 

nucleus within a mature myofiber controls mRNA production for a fixed 

sarcoplasmic volume, and any increase in fiber size necessitates additional 

myonuclei to help manage the increase in cell volume.  Thus, satellite cells, 

through IGF-1 stimulation, donate themselves to the myogenic lineage to aid in 

tissue repair and hypertrophy (103).  IGF-1 can also directly stimulate muscle 

protein synthesis (9), and its anabolic effects have been observed for up to 72 hours 

following a bout of damaging resistance exercise in humans (75). 

 A large body of evidence supports exercise-induced metabolic stress as a 

regulator of muscle hypertrophy.  This stress occurs as the result of exercise 

utilizing the glycolytic energy system to derive adenosine triphosphate (ATP).  An 

exercise stimulus (moderate to heavy resistance) such as this causes a local buildup 

of lactate, inorganic phosphates, hydrogen ions, free creatine, and other metabolites 

(102).  Performing exercise under ischemic conditions with light exercise loads 

also induces the accumulation of metabolic byproducts (98).  Metabolite buildup 

caused by exercise is proposed to alter anabolic hormonal concentrations, cell 

swelling, free radical production, and the recruitment patterns of motor units, all of 

which may trigger the inflammatory cascade previously discussed and  hypertrophy 

of skeletal muscle (38, 72).     
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Exercise Prescription for Muscle Hypertrophy 

 Resistance exercise program design, specifically the manipulation of acute 

training variables (intensity, volume, rest intervals), exercise selection, and 

program length, dictate the acute inflammatory response and chronic adaptations 

observed within skeletal muscle. 

     Exercise intensity (i.e. load) may very well be the primary variable for 

stimulating muscle hypertrophy.  It is generally believed that the use of light loads 

does not provide enough of a stimulus the working muscles to initiate muscle 

growth, whereas the use of moderate (6-12 1-RM loads) and heavy (1-5 1-RM 

loads) loads have demonstrated elicit considerable gains in muscle size (17).  With 

the exception of blood flow restriction training, exercising with loads less than 65% 

of 1-RM minimally affect the physiological processes that drive hypertrophy (74).  

It is currently believed that moderate loads optimize the hypertrophic response to 

resistance exercise, as such loads have shown to increase metabolic byproducts 

(102) that influence anabolic processes leading to muscle growth (59).   

 Training volume, which is the product of total repetitions, sets, and load 

performed during a training session, is another contributing factor regulating 

muscle hypertrophy.  Resistance exercise that incorporates high volume, multiple 

set regimens are consistently shown to increase hypertrophy to a greater extent than 

single set protocols (60).  Anabolic hormones (testosterone and growth hormone) 

thought to play a role in muscle hypertrophy are elevated more so during multiple 

set resistance exercise protocols when compared to single set protocols (22, 56). 
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 Rest intervals, or the time taken between working sets, can also influence 

the hypertrophic response to resistance exercise, and can be categorized as short 

(30 seconds or less), moderate (60-90 seconds), or long (3 minutes or more).  Short 

rest intervals can maximize the metabolic response to resistance exercise (37), but 

muscular strength decrements are observed over multiple sets which can offset the 

positive effects of minimal rest.  Long rest intervals maximize the mechanical 

tension experienced during a training session due to the ability to complete more 

repetitions across multiple sets at moderate to heavy exercise loads (26).  However, 

the hypertrophic benefits of metabolic stress resulting from short rest intervals are 

compromised when rest periods are extended to several minutes, thus leading to the 

belief that long rest periods are not favorable for increasing muscle size. 

 Therefore, moderate rest intervals seem to be an effective solution for 

obtaining the unique benefits of both short and long rest periods.  Moderate rest 

periods allow individuals to regain the majority of their strength capacity between 

sets (97) as well as maintain a higher percentage of the 1-RM over the course of a 

training session (55).  

 While manipulation of acute resistance exercise training variables is 

important for regulating the outcomes of a training program, exercise selection 

must also be considered.  It is advantageous to include both multi- and single-joint 

exercises into a training program to maximize the hypertrophic response.  Multi-

joint exercise recruit two or more muscle groups during mechanical work, which 

results in the recruitment of more motor units and subsequently additional muscle 
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fibers during multi-joint exercises when compared to single-joint exercises.  

Contrarily, single-joint exercises allow for enhanced focus toward a particular 

muscle group that may be utilized to a lesser extent when recruited during a multi-

joint exercise.  In this instance, single-joint exercise may be used to elicit different 

motor unit recruitment patterns (5) in an attempt to amplify the overall 

hypertrophic response. 

 The cohort of variables mentioned up to this point can singularly or 

collectively impact the amount of time necessary for muscle hypertrophy to occur.  

It is currently thought and preached that a sufficient number of exercise bouts over 

the course of several weeks to months must be completed before muscle 

hypertrophy is observed (76, 96).  This belief is predicated on the notion that neural 

changes are thought to precede hypertrophic changes during the course of a 

resistance exercise program.  However, there is no evidence to suggest that muscle 

hypertrophy is not simultaneously occurring with neurological changes.  In fact, 

recent evidence suggests that muscle hypertrophy can occur earlier than once 

thought utilizing both traditional resistance exercise (28) and a novel form of 

resistance exercise coupled with blood flow restriction (2).    

Blood Flow Restriction Training 

Over the last two decades, a novel form of resistance exercise intended to 

reduce blood flow to the exercising muscles has gained popularity among the 

research community as a complementary exercise modality.  Blood flow restriction 

(BFR) exercise, also known as KAATSU training, uses electronically controlled, 



22 

 

pneumatic air pressure cuffs (similar to blood pressure cuffs) placed around the 

most proximal segment of an exercising limb to reduce arterial blood flow and 

occlude venous return, resulting in venous pooling around the working muscles.  

BFR resistance exercise utilizes low to moderate exercise intensities (20% - 50% 

1RM), and has been demonstrated to elicit muscular hypertrophic adaptations once 

thought to occur exclusively through the implementation of high-intensity 

resistance exercise (72).  Consequently, BFR exercise has the potential to provide 

health-related benefits to certain populations that are unable to place heavy external 

loads on the body’s musculature.  Although incompletely understood at this time, 

several mechanisms contributing to the effectiveness of BFR training have been 

proposed: 1) acute (83, 87) and chronic (2) increases in anabolic hormone 

secretion, 2) increased motor unit recruitment/muscle activation during exercise 

(111), and 3) cell swelling (11), all of which have the potential to influence skeletal 

muscle protein synthesis and related signaling pathways (35).  These mechanisms 

are described in detail below. 

The proposed mechanism currently with the most supportive evidence is the 

endocrine response to BFR training.  Takarada and colleagues (100) showed nearly 

a 300-fold increase in growth hormone (GH) concentrations 15 minutes after 

completing five sets of bilateral leg extension to failure at 20% 1-RM coupled with 

thigh compression (214 mmHg).  Likewise, Pierce et al. (83) saw a marked 

increase in GH levels at 20 minutes and up to 50 minutes following leg extension 

exercise at approximately 20% maximal voluntary contraction with BFR at a mean 
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pressure of 280 mmHg.  Furthermore, BFR exercise resulted in significantly greater 

GH levels than the ischemia without BFR condition (5 minutes inflate and 3 

minutes off, 5 total sets) starting at 30 minutes post-exercise and lasting until 80 

minutes post-exercise.  Reeves et al. (87) compared moderate intensity (70% 1-

RM) resistance exercise (MR) versus low-intensity resistance exercise coupled with 

BFR to determine the anabolic hormone response.  Subjects completed 3 sets of 

single-arm bicep curls and single-leg calf extensions with and without BFR on 

separate occasions.  Growth hormone concentrations in the BFR condition 

measured immediately following exercise were significantly higher than respective 

pre-exercise levels and post-exercise GH levels in MR.  These results indicate that 

BFR coupled with resistance exercise has the potential to increase the anabolic 

hormone response to an exercise bout that is traditionally thought to have no effect 

on hormone concentrations due to the small amount of muscle involvement.  

Together, these studies, and others (49, 99) reveal that BFR exercise can acutely 

increase GH, which is thought to play a significant role in muscle protein synthesis 

(15, 59). 

Other researchers have analyzed the effects of BFR training on acute and 

chronic insulin-like growth factor-1 (IGF-1) changes.  Takano et al. (99) observed a 

12%  post-exercise increase in IGF-1 levels after completing 4 sets of bilateral leg 

extensions at 20% 1-RM with BFR, while others (35) have reported no such 

increase in IGF-1 after a similar BFR exercise protocol.  Abe and colleagues (2) 

employed a two week BFR exercise program consisting of twice daily squat and 
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leg curl exercise (3 sets at 20% 1-RM) performed by young men.  From baseline to 

post-training, resting serum IGF-1 levels increased 24%, which is a similar increase 

seen in IGF-1 levels after high-intensity resistance exercise programs (13, 73).  

These findings suggest that low-intensity BFR resistance exercise may acutely and 

chronically increase circulating IGF-1 levels, which has positive implications on 

protein synthesis pathways and satellite cell activity (95).  

 Other research has focused on investigating muscle activation/recruitment 

during BFR resistance exercise.  Yasuda et al. (111) examined muscle fiber 

activation during 4 sets of bicep curls at 20% 1-RM on four separate occasions, 

each using a different occlusive pressure.  Results displayed increased muscle 

activation with each subsequent set, regardless of occlusive pressure, and greater 

muscle activation during the overall exercise bout as occlusive pressure was 

increased (0 mmHg vs. 98 mmHg vs. 121 mmHg vs. 147 mmHg).  In another 

study, Krustrup et al. (61) determined the amount of ATP and creatine phosphate 

(CP) depletion in type I and type II muscle fibers in response to low-intensity, low-

intensity with BFR, and high-intensity resistance exercise using the knee extensors.  

The authors found comparable decreases in ATP and CP concentrations in both 

muscle fiber types in the low-intensity BFR and high-intensity conditions.  No such 

changes were seen in the low-intensity resistance exercise condition.  Because the 

extent of ATP and CP depletion during exercise resembles the involvement of 

anaerobic metabolism and type II muscle fiber recruitment, it can be concluded that 

low-intensity BFR exercise activates a similar proportion of anaerobic muscle 
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fibers as high-intensity resistance exercise.  Results from other studies (61, 112) 

showing increases in metabolic byproducts of anaerobic metabolism after 

performing BFR exercise support the above findings illustrating a shift from 

aerobic to anaerobic metabolism when occlusion is added to low-intensity exercise. 

The last proposed mechanism relevant to the hypertrophic response to BFR 

exercise is muscle or cell swelling.  It is well established that exercise, particularly 

forms that contain eccentric muscle action, causes swelling within the utilized 

muscle tissue (18, 81, 85) due to alterations in extra- and intracellular water 

concentration (93).  Cell swelling seems to be potentiated by exercise regimens that 

tax the glycolytic energy system, as lactate accumulation has been suggested to 

regulate fluid shifts within skeletal muscle (32, 94).  Interestingly, Haussinger and 

colleagues (41) showed a close relationship between intracellular water content and 

the extent of proteolysis in cells of isolated perfused rat liver.  Specifically, they 

noticed as intracellular water increased, proteolysis within liver cells decreased, 

thereby resembling an anti-catabolic effect.  Furthermore, when cellular 

dehydration was induced, muscle proteolysis increased.  A more recent study (11) 

analyzed whole body protein turnover in humans under  hypo- and hyperosmolar 

conditions previously shown to cause cell swelling and cell shrinkage, respectively 

(25).  Leucine release from endogenous proteins (representing protein breakdown) 

and leucine oxidation (representing irreversible catabolism) were diminished in the 

hypoosmolar condition even though markers of protein synthesis were not affected.  

The authors concluded that overall protein balance was improved during the 
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hypoosmolar state.  The findings from these studies suggest that cell swelling may 

have an anti-catabolic effect within skeletal muscle.  Because low-intensity BFR 

exercise acutely increases lactate (35) and muscle swelling for 24 to 48 hours (106), 

the anti-catabolic effect of cell swelling described above may play a role in the 

hypertrophic response seen in BFR resistance (2) and aerobic (3) exercise 

programs.  However, it has yet to be determined if BFR resistance exercise induces 

greater muscle swelling than a traditional resistance exercise bout.  

Measurement Techniques for Assessing Body Composition 

Several laboratory measurement techniques/devices, such as underwater 

weighing, dual energy x-ray absorptiometry (DXA), bioelectric impedance 

spectroscopy (BIS), air displacement plethysmography, and skin fold 

measurements are commonly used and relied upon to assess body composition for 

research purposes.   When tracking changes in body composition where repeated 

measurements over time are required, some of these techniques may be less 

sensitive to change (78) than the current technology, especially since recent 

evidence demonstrates that muscle hypertrophy can occur much earlier during the 

course of a resistance exercise program than once thought (2, 76).   

pQCT has become a popular alternative to the DXA for measuring clinical 

markers related to bone health and osteoporosis.  Computed tomography is based 

on the attenuation of x-ray beams as it passes through an object, and the resulting 

images denote volumetric tissue slice with which measurements are taken from.  

pQCT is exclusively used to measure appendicular bone characteristics (7, 29, 39, 
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109) whereby cortical and trabecular bone can be independently evaluated.  While 

pQCT is conventionally used for examining bone health indices, researchers have 

begun to use its technology for assessing muscle cross-sectional area of the upper 

(80) and lower extremeties (65).  When compared with the magnetic resonance 

imaging (MRI) scanner, Cramer and colleagues (23) demonstrated that the pQCT 

offers a valid and reliable assessment of mCSA.  Sherk et al. (91) provides further 

supportive evidence, as this research group showed that pQCT scan images at the 

mid-thigh displayed a 3.1% difference than mid-thigh MRI images when a strong 

measurement filter was used.  Thus, the pQCT may be a highly sensitive technique 

that can be utilized for tracking changes in bone and muscle tissue parameters alike.   

A potential limiting factor of the pQCT is that it is unable to distinguish 

between an increase in muscle tissue and an increase intramuscular fluid when 

measuring muscle cross-sectional area (mCSA).  Therefore, an increase in 

intramuscular fluid following a resistance exercise bout could artificially 

inflate/increase mCSA as determined by pQCT (supported by unpublished data), 

which would decrease the validity of the pQCT for predicting mCSA after one or 

more bouts of resistance exercise.  This creates a need for determining the 

inflammatory time course response following a bout of resistance exercise to 

pinpoint the earliest a pQCT scan can be performed to predict mCSA with minimal 

error. 
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Assessing Inflammation in Response to Exercise 

Over the last two decades, numerous studies have been conducted 

examining the inflammatory/damage response following various modes of exercise.  

Because eccentric muscle action exacerbates the amount of muscle damage 

occurring from exercise, researchers will typically use an exercise bout focusing on 

eccentric action if markers of muscle damage are of interest (20).  Such exercise 

bouts may involve isolated muscle groups (i.e., elbow flexors or knee extensors), a 

high volume of work without rest (50+ eccentric contractions), performing 

negatives with greater than 100% 1-RM, or downhill walking.  Little research 

assessing muscle damage has used an exercise bout that is practical in nature , 

specifically one that a recreational weightlifter would perform during a resistance 

exercise session to induce muscle hypertrophy (31). 

 Direct assessment of muscle damage is a difficult task due to the limited 

number and accessibility of techniques, for instance, analyzing tissue from a 

muscle biopsy sample.  However, a small muscle sample may not be an accurate 

representation of the damage within an entire muscle belly.  Therefore, the majority 

of researchers interested in quantifying muscle damage do so via indirect measures.  

Warren and colleagues (108) determined that the three most commonly used 

indices of muscle damage are subjective muscle soreness scales, analyzing proteins 

in the blood indicative of muscle damage, and by evaluating maximal voluntary 

contractions (MVC) before and after a damaging exercise bout.  Measuring the 

amount of swelling within the exercised muscle(s) is another commonly used 
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method for ascertaining damage or inflammation.  Using a pQCT scanner, our 

research group detected an increase in muscle cross-sectional area (mCSA) after 

performing a high volume lower-body resistance exercise bout and after wearing 

pneumatic pressure cuffs around the most proximal portion of each leg for 10 

minutes without performing exercise (unpublished data).  Both of these pilot tests 

imply that the pQCT scanner is sensitive enough to detect muscle swelling acutely 

after resistance exercise or following blood flow occlusion without exercise.  As a 

result, the pQCT scanner may be a feasible tool to accurately measure 

inflammation/muscle swelling following exercise. 

Summary 

             From the body of literature, it appears that few studies have investigated 

the inflammatory time course response following a traditional bout of resistance 

exercise via pQCT.  Furthermore, the underlying mechanisms causing skeletal 

muscle hypertrophy in response to BFR training are incompletely understood.  The 

potential for cell swelling to augment muscle hypertrophy still exists, and it has yet 

to be determined if the amount or duration of muscle/cell swelling in response to 

BFR training is different from that of a traditional resistance exercise bout.    
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CHAPTER III 

METHODOLOGY 

The purpose of this investigation was to determine the time course of 

increased intramuscular fluid following a traditional high-intensity resistance 

exercise bout and a low-intensity combined with blood flow restriction resistance 

exercise bout.  Specifically, it was our objective to decipher the post-exercise time 

point at which increased intramuscular fluid, as a result of inflammation from 

resistance exercise, is returned to baseline (resting) levels. 

Subjects 

 Ten recreationally active, but non-resistance trained men between the ages 

of 18-30 from the University of Oklahoma and city of Norman, OK and its 

surrounding area were recruited to participate in this study.  Recruiting was carried 

out via posting university approved fliers in appropriate posting areas on the 

University of Oklahoma Norman campus and visiting classrooms within the 

Department of Health and Exercise Science and other academic departments on the 

Norman campus. 

Inclusion Criteria 

1. Male between the ages of 18-30 years. 

2. Not currently participating in a structured resistance exercise program 

(within the last 3 months). 

3. Not currently participating in moderate to high intensity aerobic exercise 

more than 2 days per week within the last 3 months. 
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4. Free of orthopedic problems/injuries limiting exercise ability. 

Exclusion Criteria 

1. Outside the age range of 18-30 years. 

2. Female. 

3. Regular use of tobacco products (cigarettes, cigars, chew/snuff etc.). 

4. Structured resistance exercise within the past 3 months or moderate to high 

intensity aerobic exercise more than 2 days per week within the last 3 

months. 

5. Taking medications known to affect bone metabolism such as heparin, 

thyroid, cyclosporine, or glucocorticoids. 

6. Taking any prescription medication. 

7. Having a history of cardiovascular disease or thromboembolic disease. 

8. Are currently students in Dr. Michael Bemben’s class(es). 

9. Are identified as a moderate-to-high risk individual as described by the 

American College of Sports Medicine: 

a. At least two of the following: Father or brother, or mother or sister 

that has had a sudden death before 55 or 65 years of age, 

respectively; Is a current cigarette smoker or has quit smoking 

within the previous 6 months; Is on hypertensive medication or has a 

confirmed systolic or diastolic blood pressure ≥ 140 or 90 mmHg, 

respectively; Is on lipid lowering medication or has a total 
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cholesterol level ≥200 mg/dL; Has a confirmed fasting blood 

glucose of ≥100 mg/dL; is clinically obese. 

10. Having more than one risk factor for thromboembolisms: 

a. Classified as Obese based on a Body Mass Index of  > 30 (kg/m
2
). 

b. Diagnosed Crohn’s or Inflammatory Bowel Disease. 

c. Past fracture of a hip, pelvis, or femur. 

d. Major Surgery within the last 6 months. 

e. Varicose veins. 

f. Family history of Deep Vein Thrombosis or Pulmonary Embolism. 

11. Having a Body Mass Index of > 30 (kg/m
2
). 

Research Design 

 The current study was a crossover design that was conducted at the 

University of Oklahoma’s Neuromuscular and Bone Density laboratories located in 

the Department of Health and Exercise Science.  The total duration of the study 

was approximately four months.  However, each subject was only required to visit 

the laboratory 16 times over the course of four weeks.  Ten men aged 18-30 years 

from the University of Oklahoma and city of Norman, OK and its surrounding area 

were screened (questionnaires) and consented prior to participation.  Subjects were 

scheduled for a second visit to undergo height and weight assessments, a DXA 

scan, and strength testing on exercise equipment.  Approximately one week after 

strength testing, subjects were randomly assigned to complete one of the 

experimental conditions (traditional resistance exercise [TRE], blood flow 

restriction resistance exercise [BFR], or control [CON]).  Subjects then, in random 
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order, completed the additional two study conditions under investigation during 

weeks three and four.     

Exercise Protocols 

For TRE, subjects warmed-up for five minutes on a stationary bike prior to 

performing resistance exercise.  Subjects then completed three sets of 8-10 

repetitions on a supine leg press machine at an intensity of 75%-80% 1RM with 

two minutes of rest allowed between sets and exercises.  If subjects were able to 

complete more than 10 repetitions, or cannot complete a minimum of eight 

repetitions for a given set, the weight was adjusted accordingly so that the subject 

would reach muscular failure (point at which no more repetitions can be completed 

through a full range of motion with proper form) between 8-10 repetitions.  

Subjects completed the same routine for the leg extension and leg curl exercises as 

described above.  For BFR, subjects warmed-up for five minutes on a stationary 

bike prior to performing resistance exercise.  Before the session began, subjects 

were seated and 5 cm, elastic pressure cuffs (Kaatsu-Mini, Tokyo, Japan) were 

placed on the upper most portions of their legs and inflated to 120 mmHg for 30 

seconds and then deflated. This process was repeated by adding 10 mmHg of 

pressure until the target exercise pressure was reached (160 mmHg).  This process 

of slowly reaching the exercise pressure took approximately five minutes.  Subjects 

then completed one set of 30 repetitions, and three sets of 15 repetitions at an 

exercise intensity of 20% 1RM on the supine leg press, leg extension, and leg curl 

exercise machines while wearing the inflated cuffs.  Thirty (30) seconds of rest was 
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allowed between sets and exercises.  If subjects were unable to complete the 

desired number of repetitions for a given set, the weight was not changed and 

subjects were instructed to complete as many repetitions as possible with proper 

form for subsequent sets.  The cuffs were deflated and removed after obtaining 

immediate post-exercise ultrasound measurements.  During the CON trial, subjects 

did not complete any exercise and remained in a resting state (seated position).  

Prior to exercise and 15 minutes, 75 minutes, 24h, 48h, 72h, and 96h after exercise 

in TRE and BFR protocols, subjects underwent a pQCT scan and thigh 

circumference measurement.  Additionally, blood samples were collected via finger 

prick prior to, immediately after, and 1h after exercise to assess plasma volume.  

Muscle thickness of the quadriceps and hamstring were determined prior to 

exercise and immediately, 30 min, and 1h after exercise via ultrasound.  During the 

control condition, subjects completed all tests on the exact time course as the 

exercise conditions.  Subjects recorded all nutrient intake the day prior to, the day 

of, and the day after each experimental condition. 

Questionnaires 

All potential subjects first completed an informed consent form.  Once 

consent had been granted, each potential subject filled out a health status 

questionnaire, Physical Activity Readiness Questionnaire (PAR-Q), and a research 

privacy form.  The health status questionnaire and PAR-Q were used to determine 

any additional exclusion criteria, and the research privacy form was used to inform 

subjects about data confidentiality. 
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Body Composition 

1. Dual Energy X-Ray Absorptiometry (DXA) 

Subjects completed a total body DXA (GE Medical Systems, Lunar Prodigy 

encore software version 10.50.086, Madison, WI) scan to evaluate percent body fat.  

Quality assurance testing (QA) was performed each day prior to testing to ensure 

the DXA was functioning properly.  The QA for the DXA involved scanning a 

calibration block of known density along with a series of mechanical functioning 

tests, which the DXA software performed automatically.  All tests had to pass in 

order for the overall QA to pass.   

Prior to each DXA scan, subjects were instructed to refrain from wearing 

metal-containing clothing and jewelry.  Subjects were asked to lie supine on the 

DXA table centered within the scanning area with hands placed at the side of the 

hips/legs in a prone position. Velcro straps were wrapped around the ankles and 

knees so that the subject did not have to hold his/her feet together for the duration 

of the scan.  Scan speed for the total body scan was determined by the thickness of 

the subject at the naval (Thick = > 25 cm; Standard = 13-25 cm, and Thin = < 13 

cm).  All scans were performed by a single, trained technician.  One scan was 

performed on each subject during their initial visit.  

2. peripheral Quantitative Computed Tomography (pQCT) 

 Subjects had mCSA at 50% site of the femur assessed via a peripheral 

quantitative computed tomography scanner, XCT 3000 with software version 6.00 

(Stratec Medizintechnik GmbH, Pforzheim, Germany) by a trained pQCT 
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technician.  Quality assurances assessments were completed each day prior to 

testing which consisted of performing a scout view scan followed by additional 

scans on a phantom (cone and cortical) of known densities.  The densities must 

have been within 99% accuracy in order for the quality assurance test to pass. 

Scans were performed on each subject with a voxel size of 0.4 mm, slice thickness 

of 2.2 mm, and a scan speed of 20 mm/sec.   Subjects were positioned with their 

right upper leg centered in the gantry of the pQCT machine.  A scout scan was then 

performed to visualize and mark a reference line at the distal end of the femur.  A 

tomographic slice at the 50% femur site was then taken in accordance to the 

reference line (femur length was assessed prior to the scan as the distance from the 

lateral epicondyle to the greater trochanter).  Analysis of CSA slices was executed 

by drawing a region of interest around the total CSA scan, then using custom 

macros created within the XCT software and the median smoothing filter 

F01F06U01.  Analysis thresholds were selected to separate 1) fat from bone and 

muscle and 2) bone (cortical and marrow) from muscle.  Thresholds used for 

mCSA analysis at the 50% femur site are Contmode 31, Peelmode 2, Threshold1 

40, Threshold2 40, Cortmode 4, Threshcrt1 710, and Threshcrt2 40.  All scans were 

performed by a single, trained technician, and in vivo precision for determining 

mCSA in the Bone Density Research Laboratory is 0.9%.  Scans were performed 

prior to each condition and 15 minutes, 75 minutes, 24h, 48h, 72h, and 96h after 

each condition.  

3. Thigh circumference  
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Each subject had their right, upper leg circumference assessed using a tape 

measure at the 50% femur site.  The distance between the lateral epicondyle and the 

greater was measured prior to the initial pQCT scan, and a mark was made on the 

leg halfway between the two landmarks as determined by the pQCT machine to 

serve as the circumference measurement site.  Thigh circumference was measured 

to the nearest tenth of a centimeter and, two measurements within two millimeters 

of each other were obtained at each time point and averaged.  This assessment was 

completed immediately before/after each pQCT scan.  In vivo precision for 

determining thigh circumference in the Neuromuscular Laboratory is 0.28% at the 

50% femur site. 

4. Ultrasound 

  Subjects were also measured both anteriorly and posteriorly for muscle 

tissue thickness at the 50% femur site of the right leg using a Fukuda Denshii 4500 

ultrasound machine.  A 5-MHz scanning head was covered with transmission gel 

and subsequently placed over the sites of measurement (perpendicular to the tissue 

interface) to create acoustic contact without causing indentation of the dermal 

surface.  Once an appropriate image was obtained, it was printed for later analysis.  

Muscle thickness was defined as the distance from the adipose tissue-muscle 

interface to the muscle-bone interface.  The quadriceps and hamstring muscle 

groups were assessed for overall muscle thickness.  Ultrasound measurements were 

performed before each condition and immediately, 30 minutes, and 1h after each 

condition, and all measurements were performed by a single, trained technician. In 
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vitro precision for determining muscle thickness in the Neuromuscular Laboratory 

is 2.71% for the quadriceps and 3.01% for the hamsrings. 

Systolic and Diastolic Blood Pressure 

 Systolic blood pressure (SBP) and diastolic blood pressure (DBP) were 

determined using an automated blood pressure cuff (Omron, Model HEM-773).  

Blood pressure was taken in duplicate in attempt to obtain two SBP values within 5 

mmHg.  A third measurement was taken if the initial measurements were not 

within the desired range.  The closest two blood pressure values were averaged for 

analysis. 

Strength Testing 

 Subjects performed one-repetition maximum (1-RM) tests at baseline to 

determine lower-body muscular strength using the leg press, leg extension, and leg 

curl weight machines.  Subjects first warmed-up for five minutes on a stationary 

exercise bike.  Subjects then performed two warm up sets of 8-10 repetitions and 3-

4 repetitions at submaximal loads (estimated 50% 1-RM and 80% 1-RM, 

respectively).  Following the warm-up, subjects completed one repetition of a given 

load through the full range of motion.  The load was increased until the participant 

was unable to complete the subsequent repetition, or the load was decreased if the 

1-RM was overestimated.  The greatest load lifted through the full range of motion 

was considered the 1-RM.  Two minutes of recovery was allowed between attempts 

and exercises. 
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Blood Sampling 

Each subject’s index finger was first sterilized with an alcohol pad.  The 

subject’s finger was then pricked with a Microlet lancet device.  A drop of blood 

was then collected into a heparinized plastic micro-hematocrit tube and 

subsequently centrifuged to separate hematocrit from plasma.  A digital hematocrit 

reader was used to determine the percent of hematocrit to plasma in each sample.  

Percent change in plasma volume (PV%Δ) was determined by the following 

equation described (107) and utilized (92) previously by our research group: 

PV%Δ = (100/(100 – Hct Pre) x 100 ((Hct Pre – Hct Post)/Hct Post)  

This procedure was performed in all three experimental conditions before, 

immediately after, and 1h after exercise/control (precision is 2.13%). 

Dietary Monitoring 

To determine habitual nutritional habits, subjects completed a 3-day 

nutritional log, consisting of the day prior, the day of, and the day after each 

experimental condition; nutritional intake during the course of this study was 

determined from this nutritional log.  This log was used to ensure dietary habits 

remained constant across the study duration by assessing total kilocalorie and 

individual macronutrient intakes.  

Data Analyses 

 Data were analyzed using PASW Statistics 18 for Windows (Chicago, IL).  

The Kolmogorov Smirnov test was performed on all variables to determine 

normality distribution.  Condition (TRE, BFR, CON) x time (pre-exercise and post-



40 

 

exercise measurement points) repeated measures analysis of variance (ANOVA) 

were utilized to determine significant changes in quadriceps and hamstring muscle 

thickness, percent hematocrit/plasma volume, mCSA,  and thigh circumference.  In 

the event that a significant condition x time interaction occurred for any dependent 

variable, the statistical model was decomposed by examining the simple main 

effects with separate one-way repeated measures ANOVAs with Bonferroni 

correction factors for each condition and time point.  Additional repeated measure 

ANOVAs were used to determine if any differences existed in total caloric or 

macronutrient intakes across conditions.  For all statistical methods, an alpha-level 

of 0.05 was used to ascertain significant differences between group means.  Data 

are reported as mean ± SD for all dependent variables.   
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CHAPTER IV 

RESULTS AND DISCUSSION 

The purpose of this investigation was to determine the time course of 

increased intramuscular fluid following a traditional high-intensity resistance 

exercise bout and a low-intensity combined with blood flow restriction resistance 

exercise bout.  Specifically, it was our objective to decipher the post-exercise time 

point at which increased intramuscular fluid, as a result of inflammation from 

resistance exercise, is returned to baseline (resting) levels. 

Subject Characteristics 

 A total of 10 subjects originally qualified for the study and were randomly 

assigned to the order in which they completed each of the three experimental 

conditions.  Seven of the 10 subjects completed all facets of the study protocol.  Of 

the three that failed to do so, one subject failed to complete a three-day food log, 

one subject did not return to the laboratory at his designated time to complete a 

pQCT scan and thigh circumference assessment, and the other did not complete a 

pQCT scan and thigh circumference assessment due to experiencing 

lightheadedness from one of the exercise bouts.  However, these three subjects 

were still included in the analysis.  Baseline demographic characteristics and 

strength measures are presented in Table 1. 
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Table 1. Baseline Subject Characteristics (n = 10) 

Demographics:  

Age (yrs) 22.1 ± 3.0 

Height (cm) 180.7 ± 5.7 

Weight (kg) 80.2 ± 15.9 

Body Fat (%) 23.2 ± 5.9 

  

Muscular Strength:  

Leg Press 1RM (lbs) 374.0 ± 87.5 

Leg Extension 1RM (lbs) 221.3 ± 44.1 

Leg Curl 1RM (lbs) 207.5 ± 44.6 

Values are mean ± SD.  1RM: One-repetition maximum. lbs: pounds  

 

Total Caloric and Macronutrient Intakes 

 Three-day average total caloric intake, macronutrient intake, and 

macronutrient percentages of total caloric intake for each condition are presented in 

Table 2.  A significant condition difference was found for carbohydrate intake (p = 

0.024).  However, follow-up comparisons revealed no such group difference (p > 

0.05).  No significant condition differences were detected for total caloric intake (p 

= 0.111), protein intake (p = 0.280), or fat intake (p = 0.293).   
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Table 2. Three day average total caloric intake, macronutrient intake, and percentages of 

total daily caloric intake across each experimental condition. 

 Condition 

 BFR (n = 9) TRE (n = 9) CON (n = 9) 

3-Day Avg:    

Total CI (kcal) 2110.9 ± 452.4 1870.6 ± 625.7 1689.4 ± 836.7 

CHO Intake (g) 279.4 ± 104.8 204.0 ± 72.6 200.0 ± 98.3 

Protein Intake (g) 87.6 ± 16.0 101.0 ± 32.5 84.6 ± 39.6 

Fat Intake (g) 71.5 ± 19.9 75.8 ± 34.4 58.8 ± 35.7 

    

% TDCI:    

Carbohydrate 51.5 ± 10.6 43.6 ± 8.2 47.5 ± 7.0 

Protein 17.6 ± 6.8 21.6 ± 12.4 20.3 ± 6.0 

Fat 31.1 ± 7.9 36.5 ± 8.8 31.6 ± 7.1 

Values are ± SD. BFR: Low-Intensity Resistance Exercise with Blood Flow Restriction. 

TRE: Traditional Resistance Exercise. CON: Non-exercise control. CI: Caloric Intake. 

CHO: Carbohydrate. TDCI: Total Daily Caloric Intake.  

 

Muscle Thickness 

Figure 1 illustrates quadriceps muscle thickness (MTQ) values for each of 

the three experimental conditions (mean values for each condition are presented in 

Table 3 on p. 112 in Appendix G).  A significant condition x time interaction (p < 

0.001), main effect for time (p < 0.001), and main effect for condition (p < 0.001) 

were detected for MTQ.  Follow-up analyses showed that MTQ for BFR was 

significantly greater immediately post-exercise (p < 0.001) and 30 minutes post-

exercise (p = 0.001) when compared to pre-exercise.  MTQ for TRE was 

significantly greater immediately post-exercise (p = 0.010), 30 minutes post-

exercise (p = 0.007), and 60 minutes post-exercise (p = 0.019) when compared to 

pre-exercise.  However, the mean value at 60 min post-exercise fell within the 

minimal difference (0.42 cm) needed to be considered a real change.  MTQ did not 

significantly change (p > 0.05) in response to CON.  No significant group 
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differences (p > 0.05) in MTQ were seen at pre-exercise.  MTQ for BFR and TRE 

were significantly greater than CON immediately post-exercise (BFR: p < 0.001, 

TRE: p = 0.021) and 30 minutes post-exercise (BFR: p = 0.003, TRE: p = 0.009).  

Additionally, MTQ for BFR was significantly greater than TRE immediately post-

exercise (p = 0.016).   

      

Figure 2 illustrates hamstring muscle thickness (MTQ) values for each of 

the three experimental conditions (mean values for each condition are presented in 

Table 3 on p. 112 in Appendix G).  A significant condition x time interaction (p = 

0.034) and main effect for time (p < 0.001), were detected for MTH.  Follow-up 

analyses showed that MTH for BFR was significantly greater immediately post-

exercise (p = 0.036) when compared to pre-exercise.  No significant changes over 

time were observed in CON for MTH (p > 0.05).  Furthermore, no significant 
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differences in MTH (p > 0.05) were seen across conditions at any measured time 

point. 

       

Hematocrit and Plasma Volume 

 Table 4 presents the percent of blood volume consisting of red blood cells 

across all three experimental conditions (also presented in figure 3 located on p. 

113 in Appendix G).  A significant condition x time interaction (p = 0.003), main 

effect for time (p < 0.001), and main effect for condition (p = 0.026) were observed 

for hematocrit.  Follow-up analyses revealed that hematocrit was significantly 

greater immediately post-exercise in both BFR (p < 0.001) and TRE (p = 0.001) 

conditions.  No pre-exercise differences across conditions were seen for hematocrit 

(p > 0.05).  Contrarily, hematocrit was significantly greater in BFR (p = 0.002) and 

TRE (p = 0.003) when compared to CON immediately post-exercise.   
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Table 4. Hematocrit values expressed as percent of blood volume and plasma 

volume percent changes expressed relative to baseline values. 

 Condition 

 BFR (n = 10) TRE (n = 10) CON (n = 10) 

Hematocrit (%):    

Pre-Exercise 41.4 ± 3.7  42.5 ± 3.6 41.4 ± 3.2 

Im Post-Ex 44.7 ± 3.5*† 45.5 ± 3.2*† 41.9 ± 2.7 

60 min Post-Ex 41.9 ± 3.8 43.0 ± 3.5 41.3 ± 2.6 

    

PV %Δ:    

Pre-Exercise N/A N/A N/A 

Im Post-Ex -12.3 ± 5.7*† -11.6 ± 5.9*† -2.1 ±  5.8  

60 min Post-Ex -1.7 ± 8.0 -3.1 ± 5.8  0.5 ± 5.3 

Values are ± SD. BFR: Low-Intensity Resistance Exercise with Blood Flow 

Restriction. TRE: Traditional Resistance Exercise. CON: Non-exercise control. PV 

%Δ: Plasma Volume percent change. *Significant change from Pre (p < 0.05). 

†Significantly different from CON at respective time point (p < 0.05). 

 Table 4 and figure 4 present the PV%Δ seen across each experimental 

condition.  A significant condition x time interaction (p = 0.002), main effect for 

time (p < 0.001), and main effect for condition (p = 0.026) were noted for PV%Δ.  

Follow-up analyses showed that PV%Δ significantly decreased from pre- to 

immediately post-exercise in both BFR (p < 0.001) and TRE (p < 0.001) 

conditions.  Furthermore, PV%Δ immediately post-exercise was significantly 

greater in BFR (p = 0.002) and TRE (p = 0.003) when compared to CON. 
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Thigh Muscle Cross-Sectional Area 

Figure 5 presents thigh mCSA at 50% femur length across conditions (also 

presented in Table 5 on page 114 in Appendix G).  A significant condition x time 

interaction (p < 0.001), main effect for time (p < 0.001), and main effect for 

condition (p = 0.031) were found for mCSA.  No baseline differences in mCSA 

were seen across conditions (p > 0.05).  In BFR, mCSA was significantly greater at 

15 minutes post-exercise (p < 0.001) and 75 minutes post-exercise when compared 

to pre-exercise mCSA.  However, the mCSA at 75 minutes post-exercise is within 

the minimal difference ( MD = 407.9 mm
2
) considered to be a real change.  From 

24 hours to 96 hours post-exercise in BFR, mCSA was not significantly different 

from pre-exercise mCSA (p > 0.05).  In TRE, mCSA was significantly greater at 15 

minutes post-exercise compared to pre-exercise mCSA, but returned and remained 

similar to pre-exercise mCSA from 75 minutes to 96 hours post-exercise (p > 0.05).  
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No significant changes in mCSA were observed in CON (p > 0.05).  There were no 

significant differences in mCSA at baseline across conditions (p > 0.05).  At 15 

minutes post-exercise, mCSA was significantly greater in BFR (p = 0.001) and 

TRE (p = 0.002) when compared to CON.  Likewise, mCSA was significantly 

greater in TRE (p = 0.019) compared to CON at 48 hours post-exercise.  No other 

within or between condition significant differences were seen for mCSA.   

   

Thigh Circumference 

Figure 5 presents thigh circumference at 50% femur length across 

conditions (also presented in Table 5 on page 114 in Appendix G).  A significant 

condition x time interaction (p < 0.001) and main effect for time (p < 0.001) were 

observed for thigh circumference.  No baseline differences in thigh circumference 

were seen across conditions (p > 0.05). Follow-up analyses displayed that thigh 
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circumference was significantly greater at 15 minutes post-exercise in BFR (p < 

0.001), TRE (p = 0.002), and CON (p = 0.016) compared to their respective pre-

exercise thigh circumference values.  Additionally, thigh circumference was 

significantly greater at 75 minutes post-exercise in BFR (p = 0.032) and TRE (p = 

0.007) compared to their respective pre-exercise thigh circumference values.  Thigh 

circumference was also significantly greater in BFR (p = 0.022) and TRE (p = 

0.003) at 15 minutes post-exercise when compared to CON.  No other within or 

between condition significant differences were observed for thigh circumference.  
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DISCUSSION 

The primary objective of this investigation was to determine the time course 

of increased intramuscular fluid following a traditional high-intensity resistance 

exercise bout and a low-intensity combined with blood flow restriction resistance 

exercise bout.  Specifically, it was our objective to decipher the post-exercise time 

point at which increased intramuscular fluid, as a result of inflammation from 

resistance exercise, is returned to baseline (resting) levels.  Secondary objectives 

were to analyze the response of quadriceps and hamstring muscle thickness, plasma 

volume, and thigh circumference to a traditional high-intensity resistance exercise 

bout and a low-intensity combined with blood flow restriction resistance exercise 

bout.  The time course of skeletal muscle hypertrophy is well documented in the 

literature, and recent evidence (2, 28) suggests that this physiological adaptation 

can occur much sooner than once thought.  Technological advancements have 

improved the precision of body composition analytical devices, which may 

partially explain the recent findings indicating an earlier time course of muscle 

hypertrophy.  The pQCT scanner used in the current study is one such 

technological advancement in body composition analysis, and it has been 

demonstrated to accurately predict mCSA when compared to the gold standard, 

MRI (91).  However, the pQCT cannot distinguish between acute muscle swelling 

that can occur from exercise and the actual addition of contractile proteins (i.e., 

muscle hypertrophy).  Therefore, it is imperative to determine the time course of 

muscle swelling from a traditional bout of resistance exercise via pQCT to pinpoint 
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the earliest a pQCT scan can be performed following exercise to predict mCSA 

with minimal error.  To our knowledge, the current investigation was the first to do 

so.  Muscle swelling, or cell swelling, is one of the proposed mechanisms 

attempting to explain the effectiveness of BFR training, which has the potential to 

provide health-related benefits to certain populations that are unable to place heavy 

external loads on the body’s musculature.  Evidence supporting the anabolic 

potential of muscle swelling is promising, especially since some of the original 

theories explaining the hypertrophic adaptations observed with BFR exercise have 

recently been questioned.  Therefore, the current investigation sought to determine 

the degree and time course of muscle swelling in response to a bout of low-

intensity BFR resistance exercise, and how this muscle swelling response compared 

to a bout of traditional, high intensity resistance exercise.  To our knowledge, this 

study was the first to investigate this comparison. 

Muscle Cross-Sectional Area 

 mCSA is a widely utilized measure indicative of skeletal muscle size, and it 

is considered the gold standard in regards to assessing skeletal muscle mass 

changes in exercise intervention and unloading studies alike.  mCSA primarily 

increases when there is an addition of sarcoplasmic proteins, or contractile proteins, 

within a muscle cell (36).  However, an acute bout of exercise has been 

demonstrated to decrease plasma volume while subsequently increasing mCSA of 

actively involved muscles (84).  Such an increase in mCSA does not accurately 

reflect a true increase in contractile protein content, but rather a fluid shift from the 
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vascular space to the exercised musculature.  This fluid shift induced muscle 

swelling was the principal variable of interest in the current investigation.  mCSA 

was analyzed prior to, and 15 minutes, 75 minutes, 24, 48, 72, and 96 hours 

following each experimental condition.  Significant changes over time were 

detected for mCSA at 50% femur length in both exercise conditions.  Specifically, 

mCSA significantly increased following BFR at 15 minutes post-exercise and 

remained elevated through 75 minutes post-exercise (even though it was not 

considered to be a real change at the 75 min time point).  mCSA significantly 

increased following TRE at 15 minutes post-exercise only, and no significant 

differences in mCSA between exercise conditions were noticed.  Therefore, these 

results indicate that mCSA increased similarly following BFR and TRE measured 

at 15 minutes post-exercise, and returned to baseline in a similar fashion.  To 

answer our original research question of at what time point does mCSA return to 

baseline or a non-significant level of change after a TRE and BFR exercise bout, it 

does so within 24 hours.  Both the BFR and TRE exercise protocols were of 

moderate to high volume, and the subjects in the current study that completed them 

were not currently participating in a resistance exercise program.  Hence, the higher 

the exercise volume or muscle involvement (84) and the less resistance exercise 

experience an individual has, the greater the inflammatory and muscle swelling 

response would be expected to accrue.  It would then be plausible to assume that 

individuals with resistance training experience beyond that of the subjects in the 

current study, and exercise protocols that consist of comparable or less volume 
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would also experience similar or less muscle swelling following exercise as 

measured by pQCT.   

In terms of BFR exercise, Loenneke and colleagues (68) established that the 

restriction pressure and extent of arterial occlusion is largely related to  thigh 

circumference and the composition of the underlying tissue.  On this notion, 

subjects in the current study whose thigh circumferences were larger than others 

may not have restricted blood flow to the same degree at 160 mmHg of pressure 

and blunted the overall muscle swelling response. A higher restriction pressure 

used by these subjects may have produced a similar degree of blood flow restriction 

to the exercising muscles as 160 mmHg did for the subjects with smaller thigh 

circumferences.  Further insight into regulating exercise restriction pressure based 

on the subject’s limb size and composition is necessary in order to more closely 

compare the muscle swelling response between BFR and TRE exercise protocols.  

Since the restriction pressure utilized can affect the actual amount of blood flow 

restriction within the exercising musculature, it is reasonable to believe that a 

greater restriction pressure may produce a greater degree of muscle swelling and 

subsequent anabolic potential.  As mentioned previously, cell swelling can inhibit 

protein catabolism triggering a protein sparing effect, which fluxes the overall 

protein balance toward anabolism (11, 42).  The mechanisms responsible for 

stimulating the anabolic response from cell swelling via BFR are inconclusive at 

this time, but rational theories have been proposed by our research group (67).  

Briefly, BFR may alter the intra- to extracellular pressure gradient thereby driving 
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water into cells, and the reestablishment of blood flow following BFR may also 

provide the force necessary to influx water into cells due to a shift in the pressure 

gradient.  In addition, a membrane channel known as aquaporin 4 found in 

anaerobic muscle fibers seems to balance osmotic gradients caused by intense 

activity (33).  Aquaporin 4 is thought to transfer water into muscle cells that have 

accumulated metabolic by products, thus causing an increase in muscle cell 

volume.  This increase in volume is then intrinsically sensed (based on 

Haussinger’s hypothetical cell swelling model (43)), thereby activating a G-protein 

and tyrosine kinase, which facilitates the activation of mTOR and mitogen-

activated protein-kinase (MAPK) pathways.  Both of these pathways are thought to 

play integral roles during protein synthesis and skeletal muscle growth (12, 88) and 

have both shown to be upregulated in response to BFR exercise (34).  Thus, the 

degree of muscle swelling may be an important factor driving protein synthesis and 

muscle growth.  Since muscle swelling increased similarly in response to both BFR 

and TRE and acute responses to exercise lead to long-term training adaptations, it 

is possible that BFR can stimulate muscle hypertrophy to comparable levels as 

TRE in young males that are currently not participating in resistance exercise.  

However, post-exercise muscle swelling from BFR exercise may be affected by 

restriction pressure, exercise intensity (percent of 1-RM), and time under 

restriction, all of which could influence the hypertrophic potential of BFR.           
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Muscle Thickness 

 Muscle thickness, as measured by ultrasound, is an index of mCSA and is 

generally used to assess muscle mass changes in exercise training (1) and 

disuse/unloading (53) studies.  Furthermore, muscle thickness has been measured 

acutely following a single exercise bout to evaluate muscle swelling and indirectly 

to assess fluid shifts (8, 31, 77), as was the case in the current study.  Specifically, 

MTQ and MTH were measured at baseline and immediately, 30 minutes, and 60 

minutes following each experimental condition.  Significant changes in MTQ were 

observed in response to both TRE and BFR exercise protocols, while MTH 

experienced significant change after BFR only.  Distinctively, MTQ was 

significantly increased from pre-exercise at immediately post-exercise and at 30 

minutes post-exercise in BFR and immediately post-exercise through 60 minutes 

post-exercise in TRE (60 min post-exercise mean was within the minimal 

difference).  MTQ was significantly greater in BFR compared to TRE measured 

immediately post-exercise.  Collectively, these results display that BFR caused a 

greater initial increase in MTQ post-exercise, while MTQ remained above pre-

exercise levels similarly in both conditions.  It is assumed that since the immediate 

post-exercise muscle thickness assessments were completed with the cuffs still 

inflated in the BFR condition, venous blood pooling contributed some degree to the 

greater increase in MTQ when compared to TRE.  Regarding MTH, BFR 

experienced a significant increase immediately post-exercise, again with the cuffs 

still inflated, while no changes were found in TRE.  It is likely that the quadriceps 
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experienced a greater response in muscle thickness compared to the hamstrings, 

because the exercises employed in our protocol placed a greater stress and recruited 

the quadriceps more so than the hamstrings.  This was also in agreement with the 

subjects’ perception of which muscle groups, the quadriceps, were most fatigued 

following both exercise bouts (unpublished data).   

 The majority of studies analyzing the acute inflammatory or muscle 

swelling response after resistance exercise have used exercise protocols comprised 

of extremely high volume or primarily eccentric muscle actions which cause 

excessive muscle damage.  However, two recent studies have assessed muscle 

swelling via ultrasound using resistance exercise bouts that are more practical in 

nature.  Ahtiainen and colleagues (4) found a significant increase in vastus lateralis 

muscle thickness in resistance-trained men at 24 and 48 hours post-exercise after 

completing five sets of leg press and four sets of squats, each with a 10RM load.   

Umbel et al. (106) had subjects complete three sets of unilateral leg extensions at 

35% MVC  to failure under restriction (30% above brachial systolic pressure), 

without restriction, under restriction performing only eccentric muscle actions, and 

under restriction performing only concentric muscle actions.  The authors found a 

significant main effect for time (p = 0.02) when collapsed across exercise 

conditions for vastus lateralis CSA at 24 and 48 hours post exercise.   Both of the 

above studies are in agreement with the current study in the fact that they also 

experienced increases in quadriceps muscle swelling in response to heavy 

resistance exercise (4) and low-intensity with blood flow restriction resistance 
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exercise (106).  Unlike the current investigation which only saw quadriceps muscle 

thickness increases up to 30 minutes post exercise, the Ahtiainen and Umbel 

studies saw quadriceps muscle swelling last up to 48 hours post exercise in the 

vastus lateralis.  The exercise protocol in the Ahtiainen study (4) used a similar 

exercise intensity as the protocol for the TRE condition in the current study, but 

performed two additional sets of exercise stressing the quadriceps musculature, 

which may partially explain the difference in results.  Furthermore, our ultrasound 

measurements represented the entire quadriceps musculature, rather than just the 

vastus lateralis.  Therefore, it is possible that the anterior position of our ultrasound 

measurement did not include the entire or part of the vastus lateralis muscle, which 

may have been stressed more than the other quadriceps muscles and was not 

reflected in our results.  The participants in the Umbel study (106) used 6 cm 

Hokanson cuffs to restrict blood flow, and a relative restriction pressure (30% 

above systolic pressure) for each subject, whereas the present study used 5 cm 

Kaatsu-Mini cuffs to restrict pressure and a standard restriction pressure (160 

mmHg).  Loenneke and colleagues (68) showed that cuff width, thigh 

circumference, and underlying tissue composition all can influence the degree of 

blood flow restriction at a given restrictive pressure.  It is unknown whether the 

thigh circumferences of our subjects differed significantly from Umbel’s subjects, 

but nonetheless, it is an influential variable that should be addressed.  Also, the 

Hokanson cuffs are not elastic and do not give or stretch to any degree when 

surrounding a contracting muscle like the Kaatsu-Mini cuffs used in the current 
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study do.  In theory, the Hokanson cuffs may have restricted more blood flow than 

the Kaatsu-Mini cuffs during exercise simply by their non-elastic properties.  In 

summary, the summation of these factors may have influenced the muscle swelling 

response and therefore could explain the muscle swelling differences observed 

between our study and the Umbel investigation.                

Hematocrit and Plasma Volume 

The alteration of the hematocrit to plasma volume ratio or simply plasma 

volume shifts can occur in response to various stimuli, two being a change in 

hydration status and exercise (52).  In the present study, the percent of hematocrit 

and plasma volume in the blood were measured prior to, immediately following, 

and one hour after each experimental condition.  Precisely, the percent of 

hematocrit in the blood significantly increased in BFR and TRE immediately post-

exercise, but returned to non-statistically significant level within one hour of both 

exercise bouts.  Likewise, the PV%Δ from pre-exercise to immediately post-

exercise was statistically significant (decrease in plasma volume) in both BFR and 

TRE, while the PV%Δ from pre-exercise to one hour post-exercise in both exercise 

conditions was non-significant (no change in plasma volume).   

Previous studies have analyzed the effect of resistance exercise on plasma 

volume changes.  Collins et al. (21) measured plasma volume change before, and 

over a one hour recovery period after completing three sets to failure at 70% 1RM 

of arm curl, bench press, bent-arm row, and squat exercises.  The authors found a 

14.3% decrease in plasma volume (p < 0.05) immediately following the exercise 
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protocol, but it had returned to baseline levels 30 minutes into the recovery period.  

Ploutz-Snyder and colleagues (84) observed a 22% change in plasma volume 

immediately after subjects completed six sets to failure of 10 RM barbell squats.  

The percent change in plasma volume had returned to a non-significant change by 

30 minutes post-exercise and entirely back to pre-exercise levels within one hour 

after the exercise bout.  The current investigation, like the Collins and Ploutz-

Snyder studies, noted a significant decrease in PV%Δ in response to resistance 

exercise which returned to non-significant levels within one hour of each of the 

exercise bouts.  However, the current study detected a smaller PV%Δ, than the 

above two mentioned studies.  The exercise protocol employed by Collins et al. 

(21) stressed muscle groups in both the upper and lower body, where the current 

study only exercised muscles in the lower body.   Therefore, it is plausible to 

assume that more plasma would leave the blood in a case where more skeletal 

muscle tissue is activated.  The Ploutz-Snyder (84) exercise protocol, which 

consisted of barbell squats only, elicited a greater PV%Δ than the exercise 

protocols used in the present study as well as the Collins study.  Even though the 

barbell squat is considered a primarily lower-body exercise, additional muscle 

groups are activated to stabilize the weight as it rests on the trapezius/upper back 

muscles during the entire range of motion.  These supplementary muscle groups 

may cause a further decrease in plasma volume, which is supported by Ploutz-

Snyder and colleagues’ findings.  In conclusion, the BFR and TRE exercise 

protocols in the current study were able to prompt significant plasma volume shifts 
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that are comparable to those in previously conducted studies.  Moreover, low-

intensity BFR resistance exercise was as effective at inducing a decrease in plasma 

volume as TRE, which suggests that BFR may stimulate any anabolic response 

similar to that of heavy resistance exercise. 

Thigh Circumference 

 Circumference is a widely used, inexpensive field measurement tool that 

has previously been utilized as an indirect assessment of mCSA changes over the 

course of a resistance exercise program (24).  More recently, circumference 

measures, in conjunction with other laboratory techniques to form prediction 

equations, have demonstrated to be a reliable and accurate estimation of mCSA 

(10, 27).  In the current investigation, thigh circumference was used as an indirect 

measurement of muscle swelling.  Thigh circumference at the 50% femur site was 

analyzed prior to, and 15 minutes, 75 minutes, 24, 48, 72, and 96 hours following 

each experimental condition.  Results indicated that thigh circumference 

significantly increased from pre-exercise to 15 minutes post-exercise in all 

experimental conditions, and up to 75 minutes post-exercise in BFR and TRE.  The 

significant increase observed in CON is not considered real, as the minimal 

difference score must be > 0.4 cm.   

 As a measure of muscle swelling, thigh circumference changes followed a 

similar trend to the changes in mCSA in the current study.  For both mCSA and 

thigh circumference measures, significant increases occurred from pre-exercise to 

15 minutes post-exercise in BFR and TRE.  However, thigh circumference was 
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significantly greater at 75 minutes post-exercise in BFR and TRE when compared 

to pre-exercise circumference, which was not the case for mCSA analyses in BFR 

and TRE for the same respective time course.  Hayashi et al. (44) found that thigh 

circumference peaked approximately five minutes following isokinetic knee 

exercise and returned to pre-exercise levels within 40 minutes.  These authors also 

went on to show that muscle swelling as measured by thigh circumference closely 

correlated with the MR images obtained at the rectus femoris (r = 0.930, p < 0.01) 

and gracilis (r = 0.946, p < 0.01) over the same time course.  The results of this 

study along with the similar pattern of thigh circumference and mCSA changes 

noticed in the present study suggest that thigh circumference may be a valid and 

reliable measurement tool used to assess acute muscle swelling following exercise 

when expensive laboratory methodologies are an unavailable resource.  However, 

further insight is warranted to support this notion.  Finally, the thigh circumference 

findings of the present study also suggest that low-intensity BFR resistance 

exercise may be as effective as heavy resistance exercise at inducing muscle 

swelling and its potential anabolic effects.   

Dietary Intake 

 Dietary intake, specifically macro- and micronutrients, are capable of 

alleviating markers of muscle damage arising from intense and strenuous forms of 

exercise (48).  Micronutrients such as vitamins C and E are often required to be 

supplemented with over a period of several days to weeks prior to and following 

exercise before beneficial effects are observable (14, 90).  Therefore, in the current 
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investigation, only macronutrient intakes were analyzed the day before, the day of, 

and the day following each experimental condition, since nutrient timing of 

macronutrients around a bout of exercise have been shown to reduce markers of 

inflammation and muscle damage during recovery (48).  The macronutrient intakes 

across the three recorded days for BFR, TRE, and CON were averaged and 

compared across conditions.  No significant within or between condition 

differences for carbohydrate, protein, and fat intake were detected, implying that 

the subjects’ dietary intakes remained similar across each condition and did not 

influence the outcome of any dependent variables.       
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CHAPTER V 

CONCLUSIONS 

The purpose of this investigation was to determine the time course of 

increased intramuscular fluid following a traditional high-intensity resistance 

exercise bout and a low-intensity combined with blood flow restriction resistance 

exercise bout.  Specifically, it was our objective to decipher the post-exercise time 

point at which increased intramuscular fluid, as a result of inflammation from 

resistance exercise, is returned to baseline (resting) levels.  The following research 

questions addressed: 1) How long will muscle swelling remain above baseline 

levels after performing a traditional high-intensity resistance exercise bout and a 

low-intensity combined with blood flow restriction resistance exercise bout? 2) 

Will there be a difference in the degree of muscle swelling between a traditional 

high-intensity resistance exercise bout and low-intensity with blood flow restriction 

resistance exercise bout? 3) Will there be differences in the degree of muscle 

thickness changes in response to a traditional high-intensity resistance exercise 

bout compared to a low-intensity with blood flow restriction resistance exercise 

bout? 

Research Hypothesis 1. Muscle swelling will return to baseline levels within 96 

hours after performing the traditional high-intensity resistance exercise bout 

and low-intensity combined with blood flow restriction resistance exercise 

bout. 
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 Yes, the results of the study support this hypothesis.  Muscle swelling 

returned to resting levels within 24 hours as measured by pQCT and thigh 

circumference after performing traditional high-intensity resistance exercise and 

low-intensity combined with blood flow restriction resistance exercise. 

Subhypothesis 1. Muscle swelling will be greater in response to the low-

intensity with blood flow restriction resistance exercise bout compared to the 

traditional high-intensity resistance exercise bout.  

 No, the results of the current study do not support this hypothesis.  Muscle 

swelling as measured by pQCT increased similarly from pre-exercise to 15 minutes 

post-exercise after TRE and BFR with no between condition differences and 

returned to baseline values in a similar time frame.  Muscle swelling measured by 

thigh circumferences increased similarly from pre-exercise to 75 minutes post 

exercise in BFR and TRE, with no between condition differences. 

Subhypothesis 2. Muscle thickness changes in response to the low-intensity 

with blood flow restriction resistance exercise bout will be greater than the 

muscle thickness changes experienced after performing the traditional high-

intensity resistance exercise bout. 

 The results of the current study somewhat support this hypothesis.  MTQ 

was increased to a greater extent immediately post-exercise in BFR, but MTQ 

remained elevated similarly after TRE and BFR when compared to pre-exercise 

MTQ.  MTH was significantly increased immediately post-exercise in BFR, while 

no significantly changes were observed in TRE.   
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Significance of the Study 

 The results of the current study suggest that muscle swelling returns to pre-

exercise levels within 24 hours after completing a moderate to high volume heavy-

resistance exercise bout and a low-intensity coupled with blood flow restriction 

resistance exercise bout.  Therefore, it may be possible to measure mCSA via 

pQCT 24 hours after completing a resistance exercise bout without swelling 

contributing to the measurement error.  This would allow researchers to frequently 

track mCSA changes via pQCT over the course of a training program without 

having to account for long rest intervals between measurements.  The present study 

was the first to demonstrate the time course of muscle swelling from exercise as 

measured by pQCT, and future studies are warranted to build upon these results.  

Furthermore, the findings of the current investigation suggest that low-intensity 

resistance exercise with blood flow restriction may result in a similar muscle 

swelling response to traditional, heavy resistance exercise of similar volume.  If in 

fact cell swelling initiates an anabolic environment by reducing muscle protein 

breakdown, increasing muscle protein synthesis, or a combination of the two, low 

intensity resistance exercise coupled with blood flow restriction may be an 

efficacious alternative for stimulating protein synthesis, and possibly muscle 

hypertrophy, for individuals who are unable to apply heavy external loads to the 

body’s tissues.  However, there is not enough evidence at this time to support the 

cell swelling theory.    
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Future Research 

 Future studies aimed at expanding on our findings should take into account 

hydration status when measuring muscle swelling.  Water accounts for a large 

percentage of muscle tissue, and therefore could provide a source of measurement 

error if not taken into account.  Also, researchers could experiment with acute 

training variables (intensity, number of sets, number of repetitions per set, and rest 

intervals between sets) to determine their influence on muscle swelling.  If muscle 

swelling is a variable of interest, researchers should closely monitor the rest 

intervals between exercise bouts, if more than one exercise bout is employed, to 

account for any effect that rest time may have on the subsequent exercise recovery 

response.  In the current study, not all rest intervals were the same across 

conditions for each subject.  Moreover, researchers should explore the ability of the 

pQCT to determine muscle density.  If this were possible, swelling due to water, as 

well as contractile protein content, could be indirectly measured.  In regards to BFR 

exercise, exercise restriction pressures must be considered.  It is probable that 

prescribed restrictive pressures need to be relative to the individual’s limb 

composition, rather than utilizing a universal pressure, or one relative to systolic 

blood pressure.  Therefore, more consistent comparisons could be made between 

heavy resistance exercise protocols and BFR exercise, along with comparing the 

effects of BFR exercise to other studies using BFR exercise protocols.  Lastly, the 

cell swelling theory should be further analyzed to determine its mechanistic role, if 

any, in stimulating muscle anabolism.              
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Male Participants 

Needed 
 
The Neuromuscular Laboratory is looking for males 
between 18-30 yrs who currently do not strength train to 
participate in some ongoing research looking at the effects 
of two types of resistance exercise on inflammation.  
Participation will last approximately 4 weeks.  IRB# 16052 

 
Benefits Include: 

 Muscular Strength Analysis 

 Body Composition Analysis 

 Dietary Analysis 

 

Contact Chris Poole at cpoole@ou.edu or 

call (405) 325-5211 
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Verbal Recruitment Script 
 

Hello, my name is ------------, and I am a graduate student in the Department of Health and 

Exercise Science at the University of Oklahoma. I am inviting you to participate in a research 

study we are conducting. The title of the study is “An evaluation of the inflammatory time course 

response following traditional and blood flow reduction resistance exercise measured by 

peripheral quantitative computed tomography.”  We are specifically looking for men between the 

ages of 18-30 years who are not currently weight training or participating in moderate to high 

intensity aerobic exercise more than 2 days per week. We are performing this research study to 

determine the time course of increased intramuscular fluid following a traditional high-intensity 

resistance exercise bout and a low-intensity combined with blood flow reduction resistance 

exercise bout. Blood flow reduction during exercise is a new training technique using a specially 

designed cuff (50 mm width) placed around the most upper portion of the leg to reduce blood 

flow during exercise. 

 

If you decide to participate, you will complete 3 experimental conditions: traditional high-

intensity resistance exercise, low-intensity resistance exercise with blood flow reduction, and a 

non-exercise control condition. 

 

The total time commitment for this study is 4 weeks.  The two exercise conditions consist of 

completing resistance exercise using 3 lower-body exercise machines. During the control 

condition, you will remain sedentary. During pre and post testing, we will measure your height 

and weight, bone density, lower-body strength, lean and fat body mass, muscle cross-sectional 

area, muscle thickness, thigh circumference, dietary habits, and you will have your blood 

sampled.  

 

The pre and post testing sessions will involve exposure to low-dose radiation (DXA and 

peripheral quantitative computerized tomography) to obtain measures of muscle mass, fat, bone 

density, and thigh muscle cross-sectional area.  

 

There is a possibility of mild soreness because of the testing and exercise, but any discomfort 

should be gone within a couple of days. Additionally, there may be some discomfort and mild 

subcutaneous bruising associated with the blood draws that will be performed by a trained 

research assistant.   

 

No financial compensation will be provided if you decide to participate. I would be happy to 

answer any questions that you may have about the study.
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Informed Consent and Authorization to use or Disclose Protected Health 
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Appendix D 

Study Questionnaires 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



96 

 

 

 

 

 

 



97 

 

 

 

 

 

 



98 

 

 

 

 

 

 



99 

 

 

 

 

 

 



100 

 

Appendix E 

Nutritional Information Sheet 
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Neuromuscular Research Laboratory 

OU Department of Health and Exercise Science 

3-Day Dietary Log 

 
 

Subject ID_____________________________        

Date__________________________ 

 

 

Instructions:  

Please record everything that you eat for the day prior to exercise, 

the day you exercise, and the day after exercise. Include the 

food/drink item with brand names if applicable, the amount ingested 

(serving size), and method of preparation (baked, fried etc), if 

applicable. Please be sure to include all beverages including protein/ 

meal replacements and alcoholic beverages. Please be as specific as 

possible. 

 

 

Serving Size Handy Guide: See Attached Appendix 
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Day 1: __________ 

Meal/Time Food/Drink Amount  
(1 cup, 8 oz, number 
of slices, etc.) 

How Prepared 
(fried, baked, etc.) 

Breakfast 
 
 

 
 
 
 
 
 
 
 

  

Snack 
 
 

 
 
 
 
 

  

Lunch  
 
 
 
 
 
 
 

  

Snack  
 
 
 
 

  

Dinner  
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Snack  
 
 
 
 

  

Day 2: __________ 

Meal/Time Food/Drink Amount  
(1 cup, 8 oz, number 
of slices, etc.) 

How Prepared 
(fried, baked, etc.) 

Breakfast 
 
 

 
 
 
 
 
 
 
 

  

Snack 
 
 

 
 
 
 
 

  

Lunch  
 
 
 
 
 
 
 

  

Snack  
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Dinner  
 
 
 
 
 
 
 

  

Snack  
 
 
 
 

  

Day 3: __________ 

Meal/Time Food/Drink Amount  
(1 cup, 8 oz, number 
of slices, etc.) 

How Prepared 
(fried, baked, 
grilled, etc.) 

Breakfast 
 
 

 
 
 
 
 
 
 
 

  

Snack 
 
 

 
 
 
 
 

  

Lunch  
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Snack  
 
 
 
 

  

Dinner  
 
 
 
 
 
 
 

  

Snack 
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Raw Data 
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Appendix G 

Additional Tables/Figures 
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Table 3. Muscle thickness values before and after exercise across conditions.  

 Condition 

 BFR (n = 10) TRE (n = 10) CON (n = 10) 

MTQ:    

Pre-Exercise 5.3 ± 0.7  5.3 ± 0.7 5.3 ± 0.7  

Im Post-Ex 6.3 ± 0.6*†‡ 5.8 ± 0.6*† 5.4 ± 0.7 

30 min Post-Ex 5.7 ± 0.7*† 5.7 ± 0.7*† 5.3 ± 0.7 

60 min Post-Ex 5.4 ± 0.7 5.6 ± 0.6* 5.4 ± 0.7 

    

MTH:    

Pre-Exercise 5.3 ± 0.6 5.4 ± 0.8  5.3 ± 0.8 

Im Post-Ex 5.9 ± 0.8* 5.6 ± 0.8   5.4 ± 0.7 

30 min Post-Ex 5.5 ± 0.6 5.5 ± 0.9  5.3 ± 0.7 

60 min Post-Ex 5.4 ± 0.5 5.4 ± 0.7  5.3 ± 0.7 

Values are ± SD. BFR: Low-Intensity Resistance Exercise with Blood Flow 

Restriction. TRE: Traditional Resistance Exercise. CON: Non-exercise control. MTQ: 

Muscle Thickness Quadriceps. MTH: Muscle Thickness Hamstrings *Significant 

increase from Pre (p < 0.05). †Significantly greater than CON at respective time point 

(p < 0.05). ‡Significantly greater than TRE at respective time point (p < 0.05).   
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Table 5. mCSA and thigh circumference at the 50% femur site before and after 

exercise across conditions.  

 Condition 

 BFR (n = 7) TRE (n = 7) CON (n = 7) 

mCSA (mm
2
):    

Pre-Exercise 16529.5 ± 3404.2 16681.7 ± 3404.5 16361.1 ± 3314.9 

15 min Post-Ex 17399.3 ± 

3374.4*† 

17499.0 ± 

3521.0*† 

16329.6 ± 3299.2 

75 min Post-Ex 16818.2 ± 3419.0* 16888.3 ± 3533.9 16419.6 ± 3266.7  

24 hr Post-Ex 16680.4 ± 3362.1 16663.4 ± 3295.6 16403.0 ±3222.8 

48 hr Post-Ex 16567.8 ± 3437.3 16811.9 ± 3392.3† 16362.4 ± 3304.5 

72 hr Post-Ex 16485.6 ± 3251.5 16719.9 ± 3261.4 16386.1 ± 3208.2 

96 hr Post-Ex 16568.4 ± 3411.4 16751.3 ± 3353.2 16425.2 ± 3195.7 

    

Thigh cir (cm):    

Pre-Exercise 55.5 ± 7.0  55.2 ± 6.6 55.1 ± 6.1 

15 min Post-Ex 56.7 ± 6.9*† 57.0 ± 6.7*† 55.2 ± 6.1* 

75 min Post-Ex 56.0 ± 6.9* 56.1 ± 6.7* 55.2 ± 6.1 

24 hr Post-Ex 55.7 ± 6.8 55.5 ± 6.7 55.1 ± 6.1 

48 hr Post-Ex 55.7 ± 6.9 55.3 ± 6.5 55.0 ± 6.1 

72 hr Post-Ex 55.4 ± 6.8 55.2 ± 6.6 55.2 ± 6.1 

96 hr Post-Ex 55.3 ± 6.7 55.3 ± 6.5 55.1 ± 6.1 

Values are ± SD. BFR: Low-Intensity Resistance Exercise with Blood Flow 

Restriction. TRE: Traditional Resistance Exercise. CON: Non-exercise control. 

mCSA: Muscle Cross-Sectional Area. Thigh Cir: Thigh Circumference. *Significant 

increase from Pre (p < 0.05). †Significantly greater than CON at respective time point 

(p < 0.05). 

 

 

 

 

 

 

 


