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Abstract 
 
 

The intestinal ecosystem is comprised of bacteria that are both beneficial and 

detrimental to human health.  The opportunistic pathogens residing within the 

gastrointestinal tract typically function as commensal members of the human microbiota.  

However, in certain circumstances these bacteria are able to escape the intestine and 

cause severe infections throughout the host.  This dissertation defines the transcriptional 

adaptation within macrophages and elucidates the role of transcriptional regulation during 

pathogenicity in the opportunistic pathogen, Enterococcus faecalis. 
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Chapter 1:  Literature review and thesis overview 
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The work presented in this thesis originates from a question that has intrigued scientists 

since the discovery of pathogenic bacteria; that is, how are bacteria that predominately 

function as commensals also able to cause serious infections?   

 
E. faecalis as a commensal.  The enterococci are found in nearly every human 

gastrointestinal (GI) tract and predominately function as commensal members of this 

ecosystem.  The GI tract typically represents a harsh environment for growth, as 

metabolic substrates are frequently limited yet competition for these resources is often 

stiff.  When presented with nutrient limitation, those bacteria that are able to efficiently 

metabolize an assortment of substrates may fare better than those who cannot.  E. faecalis 

has evolved the ability to metabolize many substrates found in the intestine, including a 

wide variety of fermentable carbohydrates, amino acids and mucin (16, 21).  This 

metabolic flexibility permits E. faecalis to survive in the highly competitive intestinal 

environment, yet these bacteria represent less than 1 % of the microbiota in an adult GI 

tract (57).  Despite their relatively low abundance, E. faecalis is a leading cause of 

hospital-acquired infections suggesting that the enterococci may be more important 

medically than as commensals within the intestine.   

 The initial bacterial inhabitants of the neonatal GI tract are comprised of 

numerous facultative anaerobes, including staphylococci, enterococci and Escherichia 

coli, which were presumably acquired from the mother during birth.  The enterococcal 

populations that reside within a developing GI tract are not static, but rather they change 

in size and composition as the intestinal microbiota matures (61).  The infant intestinal 

microbiota is largely devoid of an obligate anaerobic population, as these bacteria do not 

flourish in the GI tract until milk is supplemented with a solid diet.  The absence of 
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anaerobes provides open niches for colonization, and by approximately 10 days post-birth 

the enterococci have achieved a large population size (108 bacteria per g of intestinal 

contents) (61).  Upon the introduction of solid food, biological succession within the 

intestine begins, and the anaerobic population increases to numbers approaching 1010 

bacteria per g of intestinal contents concomitant with a decrease in the facultative 

anaerobe community.  This shift in GI microbiota composition continues until 4-5 years 

post-birth when the climax community finally develops (61).   

 The role of the enterococci in the GI tract is poorly understood, however there is 

some evidence that suggests these bacteria have an impact on immune system function.  

In a study by Roach et al., conventional mice pre-inoculated with E. faecalis were 

challenged with Salmonella typhimurium.  Five days post-inoculation, the spleens were 

removed and homogenized to determine the bacterial load.  Spleens collected from mice 

pre-inoculated with E. faecalis contained significantly less S. typhimurium than did 

spleens obtained from control mice (53).  Though the mechanisms controlling these 

observations are currently unknown, the data suggest some enterococci may serve to 

prevent or mitigate infections caused by some pathogenic bacteria.  Furthermore, some 

enterococcal strains produce bacteriostatic bacteriocins.  Bayoub et al. have shown that 

these bacteriocins inhibit the grown of Listeria monocytogenes, the causative agent of 

listeriosis (4).  Having a healthy population of enterococci in the intestine may aid in the 

proper function of the immune system and inhibit the growth of human pathogens.   

 For bacteria that have dual roles, such as E. faecalis, the distinction between 

commensal and pathogen is often blurred: the young, elderly and immune-compromised 

may develop infections from commensal strains.  However, the virulent enterococci are 



	   4	  

frequently distinguished from commensal strains by their ability to cause infections in 

multiple individuals during hospital ward outbreaks (33, 46).  These pathogenic isolates 

are genetically different from commensal strains in that they usually harbor mobile 

genetic elements comprised of genes that act to interfere with the host/bacteria 

commensal relationship and cause infection (30).   

 
E. faecalis as a pathogen.  In addition to being successful colonizers of the GI tract, the 

enterococci are opportunistic pathogens capable of causing multiple-site infections.  

Antibiotic resistance through intrinsic or acquired mechanisms has contributed to the 

emergence of E. faecalis as a leading cause of nosocomial infections.  E. faecalis is 

intrinsically resistant to various β-lactam antibiotics (especially resistant to 

cephalosporins) and exhibits a low-level resistance to aminoglycosides (36).  

Furthermore, the enterococci have evolved resistance to a broad range of antibiotics by 

acquiring plasmids or transposons comprised of antibiotic resistant loci or through 

spontaneous mutations that result in an increased resistance (31, 38).  Particularly 

confounding from a medical standpoint is the relative ease with which E. faecalis 

acquires resistance to antibiotics of “last resort”, such as vancomycin (48).   

 Though the antibiotic resistant enterococci possess a selective advantage in the 

hospital environment (38), the debate regarding the increase in occurrence of 

enterococcal infections due to antibiotic resistance continues.  For example, the rates of 

infective endocarditis attributed to enterococcus before the advent of antibiotics is the 

same as those observed after the introduction of antibiotics (44, 50).  However, it is clear 

that the acquisition and spread of antibiotic resistance make the enterococci particularly 

difficult to treat; the enterococci are now the first, second and third leading cause of 
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surgical site, bloodstream and urinary tract infections, respectively (52).  It is unclear if 

antibiotic resistance directly leads to an increase in enterococcal infections, however the 

use of antibiotics may perturb the intestinal microbiota thereby permitting the 

colonization of strains capable of nosocomial infections.  In this scenario, the intestine 

would serve as a source of dissemination for pathogenic bacteria.  

 In addition to acquiring mobile elements that confer antibiotic resistance, many 

enterococcal strains possess loci arranged on a pathogenicity island (PAI) with the 

potential to disrupt the commensal/host relationship.  A 153 kb PAI consisting of 129 

open reading frames was discovered in E. faecalis MMH594 (58).  This PAI contains 

many loci with roles in virulence as well as factors potentially involved in horizontal 

transfer and gastrointestinal tract colonization (58).  Perhaps the most studied PAI 

virulence traits are esp (encodes enterococcal surface protein) and cytolysin toxin.  Esp is 

an adhesin that contributes to the colonization of the urinary tract and mediates biofilm 

formation in many enterococcal strains. (32, 59, 63).  There is a distinct correlation 

between esp and virulence as the esp gene is enriched in enterococcal isolates collected 

from infections of the bloodstream and heart but rarely obtained from stool samples (60).  

Additionally esp is absent in environmental isolates yet this gene is present in the 

majority of vancomycin sensitive or resistant clinical isolates, suggesting the link 

between esp and virulence is independent of antibiotic resistance (3, 68).     

 Many virulent enterococcal strains harbor an operon encoding the cytolysin toxin.  

This toxin is unique among bacterial toxins in that it exhibits both hemolytic (active 

against erythrocytes) and bacteriocin (antibacterial activity) in a single toxin (8, 28).  

Cytolysin toxin is an important determinant of virulence in murine lethality models and 
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contributes to endocarditis in a rabbit model of infection (11, 35).  Furthermore this toxin 

is active against invertebrates, as cytolysin-producing E. faecalis is lethal in a 

Caenorhabditis elegans infection model (24).  Taken together, these studies establish the 

role of cytolysin toxin in enterococcal pathogenicity and reveal that this toxin increases 

virulence in a wide range of hosts (from C. elegans to rabbits) and is active against 

eukaryotic and prokaryotic cells.    

 The cytolysin operon and esp gene are adjacent to each other on the E. faecalis 

PAI (58).  This organization (i.e., the close proximity of an adhesion gene to a toxin 

gene) is common in many PAI, particularly those found in E. coli (29, 30).  It is thought 

that the adhesin and toxin act in concert with each other, where Esp would aid in the 

binding to host cells and expression of the cytolysin toxin would damage host tissues 

(27).  The synergistic activity between Esp and cytolysin toxin has yet to be studied.  

However, the expression of another adhesin (aggregation substance) concomitant with 

the production of cytolysin toxin results in a greater lethality than the production of either 

trait alone (11).   

 The increase in lethality afforded by producing an adhesin and a toxin might drive 

evolution within the E. faecalis PAI.  Overtly toxic strains may face increased stresses 

from the host immune response; likewise, surface proteins (such as Esp) could be targets 

of the immune response (27).  It appears that some strains modify these regions of the 

PAI by eliminating esp, the cytolysin toxin or both in order to maintain infections within 

the host (58).  The evolution of the E. faecalis PAI can be observed by comparing strains 

MMH594, V586 and V583.  MMH594 was isolated from a hospital ward outbreak, 

carries an increased risk of death, and expresses both esp and the cytolysin toxin (34).  
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V586 was obtained from a chronically infected patient and has been shown to express esp 

but not cytolysin; the cytolysin operon is insertionally inactivated in V586 (55, 58).  

V583 was isolated from the same patient as V586 yet does not express either esp or 

cytolysin toxin due to a 17 kb deletion in this region of the PAI (55, 58).  These findings 

highlight the dynamic nature of the E. faecalis PAI and provide a mechanism for 

persistence within a host.   

 The E. faecalis PAI contains a gene that encodes an AraC-type transcriptional 

regulator designated perA (pathogenicity island-encoded regulator) (12).  PerA is 

enriched among clinical enterococcal isolates and influences biofilm formation in the 

urinary tract-isolate, E. faecalis E99 (12, 58).  Additionally, PerA contributes to 

pathogenesis in a mouse peritonitis model and survival within macrophages (12).  Given 

that PerA is important for virulence, it was of interest to determine the full set of genes 

controlled by this transcriptional regulator.  Using microarrays, I determined the PerA 

regulon in E. faecalis E99 and highlight the findings in chapter 3.   

 
The macrophage.  Bacteria that are able to evade the immune system may be more 

successful at causing infections and persisting within a host.  Components of the 

enterococcal gram-positive cell wall elicit the monocyte-derived inflammatory response 

(7).  Despite the activation of monocytes and macrophages, E. faecalis fail to be 

eliminated from host tissues, which suggests the bacteria subjugate immune clearance 

functions (66).  Using mouse peritoneal macrophages, Gentry-Weeks et al. showed that 

E. faecalis is able to survive phagocytosis and subsequently persists within immune cells 

(26).  The ramifications of intracellular survival are two fold.  First, survival within the 

macrophage effectively eliminates an important component of the innate immune 
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response.  Though the macrophages are still capable of activating other components of 

the immune response through antigen presentation, further recruitment of macrophages 

would prove futile.  Second, during intracellular survival E. faecalis could use the 

macrophage as a vehicle to facilitate entrance into extra-intestinal sites, such as 

mesenteric lymph nodes or the blood.  Indeed, it is thought that survival within 

macrophages is the primary way in which E. faecalis that have translocated across the 

intestinal epithelial barrier subsequently spread to other sites (67).   

 Prior to phagocytosis, the macrophage must first recognize the presence of a 

pathogen.  Macrophages determine the presence of pathogens by detecting conserved 

microbial patterns called PAMPs (pathogen-associated molecular patterns) present on 

microbial pathogens yet absent in eukaryotes (42, 43).  Microbial PAMPs are recognized 

by Toll-like receptors (TLRs) displayed on the surface of the macrophages (42).  These 

pattern recognition receptors not only aid in the detection of pathogens, but in 

coordination with the intracellular adaptor MyD88, also serve to activate the cytokine and 

chemokine-dependent proinflammatory response (1, 6).   Among the 10 human TLRs 

identified, TLR2 is responsible for identifying gram-positive bacteria by recognizing 

components of the gram-positive cell wall including peptidoglycan, lipoteichoic acid, and 

lipoproteins (56, 69).  Accordingly, the TLR2-dependent signaling pathway is critical to 

the host immune response to enterococcal infections (39).    

 After recognition has occurred, the pathogen is internalized within the 

macrophage in a modified phagosomal vacuole.  Through a series of fusion and fission 

events, the phagosome combines with endosomes and lysosomes to form a mature 

phagolysosome.  The rate at which the phagosome matures into the phagolysosome 
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varies, and in the case of Mycobacteria maturation is inhibited (47, 49, 65).  Concomitant 

with phagosomal maturation the macrophage produce reactive oxygen species (ROS) and 

reactive nitrogen species (RNS) as part of the respiratory burst.  The ROS are produced 

by phagocyte NADPH oxidase, an enzyme that reduces molecular oxygen to superoxide 

(O2
�-).  The resulting O2

�- can subsequently act as precursors for hydrogen peroxide 

(H2O2), hydroxyl radicals (OH-) and peroxynitrite (20, 45, 64).  The RNS are produced 

by the inducible nitric oxide synthase (iNOS) and includes nitric oxide, nitrogen dioxide, 

dinitrogen trioxide, and nitrosothiols (20, 45, 64).  ROS and RNS exert cytotoxicity by 

oxidizing nucleotides, nitrosylating proteins and damaging membranes (45).  

Additionally, the macrophage acidifies the phagosome in an attempt to destroy the 

phagocytosed bacteria (41).  The mechanisms used by the macrophage to destroy 

pathogens are similar regardless of bacterial species ingested, however it is clear that 

many intracellular pathogens persist within the macrophage by circumventing these 

mechanisms (17, 40, 65).   

 Macrophages infected with Salmonella typhimurium form a modified 

phagolysosome, called the Salmonella-containing vacuole (SCV).  The SCVs are 

deficient in their antibacterial activity, as is evidenced by the replication of Salmonella 

within these modified vacuoles (2, 10, 23).  The formation of the SCV is mediated 

through the production of bacterial virulence factors during intracellular survival.  For 

example, components of the NADPH oxidase are excluded or removed from the SCV, an 

occurrence that is dependent on Salmonella genes located on the SPI-2 pathogenicity 

island (23).  The Salmonella-directed exclusion of NADPH oxidase on the SCV 

membrane inhibits ROS production, thus permitting bacterial replication within the 
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phagolysosome (23).  In a similar manner, SPI-2 genes prevent iNOS from localizing to 

the SCV resulting in a vacuole lacking RNS (10).   Although Salmonella-infected 

macrophages are incapable of fumigating the SCV with ROS or RNS these phagocytic 

cells should still have other bactericidal strategies at their disposal, namely the 

acidification of the phagolysosome.  Indeed, acidification does occur, however the drop 

in pH in the SCV is delayed by up to 4 hours (2).  This attenuation in SCV acidification 

permits Salmonella survival within the macrophage (2).  These results provide an 

example of how some intracellular pathogens can modify the macrophage from a hostile 

environment into one supportive of bacterial survival and growth.   

 Another strategy used by bacteria to survive within the macrophage is to escape 

the phagosome, a tactic used by Listeria monocytogenes.  During infection of 

macrophage, L. monocytogenes must transit from the phagosome into the macrophage 

cytoplasm in order to grow.  In fact, L. monocytogenes that are unable to reach the 

cytoplasm are nonviolent (14, 37).  To destroy the phagosome, Listeria produce a 

hemolysin called Listeriolysin O (LLO).  LLO works in concert with two phospholipases 

(PI-PLC and PC-PLC) to hydrolyze the vacuole membrane, thus providing L. 

monocytogenes access to nutrients contained within the host cell (9, 25).  However it is 

important that the macrophage remain intact, as L. monocytogenes polymerize actin 

filaments within the host cell to facilitate cell-to-cell spread (13, 62).  Therefore the 

production of LLO must be tightly regulated, such that LLO is produced in the 

phagosome to degrade the vacuole membrane yet inhibited once the bacteria have been 

released into the cytoplasm to avoid lysing the host cell.  One environmental signal that 

triggers the production of LLO is pH.  The optimal pore-forming activity of LLO occurs 
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in slightly acidic environments (pH 5.5 – 6.0), such as those found in the early 

phagosome (5).  Once the bacteria have been released from the phagosome, enzymes 

produced by the macrophage degrade LLO released into the cytoplasm (15).  

Interestingly, this shows how L. monocytogenes uses phagocytosis as a signal to produce 

proteins that enable the bacterium to escape the phagosome, gain access to host nutrients 

and subsequently spread to other macrophages.  

 Although many pathogens are able to survive within the macrophage perhaps the 

most successful intracellular pathogen is Mycobacterium tuberculosis.  Despite activating 

an immune response, M. tuberculosis persists for the lifetime of the host within modified 

phagosomes (22).  This accounts for the estimate that nearly a third of humans are 

latently infected with this bacterium (18).  To cause an infection, M. tuberculosis must be 

inhaled into the lung and subsequently phagocytosed into alveolar macrophages.  During 

the early stages of phagocytosis, the bacteria modify the phagosome (much like 

Salmonella) to prevent the formation of a mature phagolysosome (54).  Furthermore, M. 

tuberculosis-containing phagosomes exclude proton-ATPase pumps thereby preventing 

acidification of this vacuole (65).  The conditions within the naïve phagosome permit M. 

tuberculosis replication until the onset of cell-mediated immunity.  Cytokine production 

finally stimulates the maturation of the phagosome through phagosome-lysosome fusion, 

which results in the production of antimicrobial ROS and RNS (22, 65).   Bacteria that 

survive phagosomal maturation enter a dormant (non-replicating) stage until a decline in 

the host immune response permits bacterial replication.  This provides an example of how 

bacteria can adapt to the maturation of the phagosome and latently persist within a host 

indefinitely.    
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 A review of published literature regarding facultative intracellular pathogens 

reveals many studies pertaining to the aforementioned bacteria (in addition to many 

others not mentioned here).  However, relatively little is known about the intracellular 

survival strategy of E. faecalis.  This was surprising to me as 1) this opportunistic 

pathogen is capable of prolonged survival within a macrophage (26), and 2) E. faecalis is 

the leading cause of surgical site infections, the second leading cause of bloodstream 

infections and the third leading cause of nosocomial urinary tract infections (51).  A 

better understanding of how E. faecalis coordinately regulates genes during macrophage 

survival and subsequent infection of host tissues could be useful in treating infections 

caused by this pathogen.   

 Since my first microbiology course taught by Dr. David Elmendorf, I have been 

fascinated by how ‘simple’ bacteria regulate the expression of virulent traits during the 

process of infection.  Even more intriguing to me are the opportunistic pathogens that live 

a Dr. Jekyll and Mr. Hyde existence; functioning at times as a commensal or harmless 

member of the human microbiota, yet capable of causing severe or life-threating 

infections in certain circumstances. My interest in the commensal vs. pathogen 

relationship shaped the questions addressed in the work presented here.  Specifically, 

how does E. faecalis, a commensal colonizer of the human GI tract, cause multiple-site 

infections throughout the body?  To achieve this, E. faecalis must perform two related 

tasks; escape the intestine and coordinately regulate virulence traits.  At the outset, the 

first task seems relatively straightforward.  E. faecalis occupies a niche within the GI 

tract as a small portion of the intestinal microbiota.  However if the intestine is perturbed, 

the enterococci can expand to newly unoccupied niches thereby causing inflammation of 
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the epithelial lining of the GI tract.  The immune inflammatory response includes 

macrophages that phagocytose bacteria and subsequently translocate to the lymph 

system, liver or spleen.  This provides a mechanism that E. faecalis can use to escape the 

intestine.  Although this scenario seems clear, many unanswered questions remain.  The 

most interesting to me involved survival within the macrophage, a topic highlighted in 

chapter two.  

 
Preamble to Chapter two:  The Enterococcus faecalis V583 Transcriptional Profile 

During Survival Within Macrophages.  I entered Dr. Conway’s lab in the fall semester 

of 2005.  Soon after I began a collaborative research project, including Dr. Nathan 

Shankar and Dr. Phillip Coburn, with the goal of determining the E. faecalis intracellular 

survival strategy.  To do this, I relied heavily on the work previously published by Dr. 

Jay Hinton, specifically the seminal intracellular transcriptome paper entitled ‘Unraveling 

the biology of macrophage infection by gene expression profiling of intracellular 

Salmonella enterica’ (19).   This paper provides a robust technique for extracting 

bacterial RNA out of a cell that is inside of another cell, the audacity of which still 

fascinates me today.  This technique, combined with improved microarray platforms, 

allowed me to determine the E. faecalis V583 transcriptional profile during intracellular 

survival.  We found that the V583 response to phagocytosis includes nearly half of the 

genome, with a large portion of these genes encoding proteins of unknown function.  

Furthermore, numerous genes involved in the oxidative stress, heat shock and SOS 

responses were up-regulated during intracellular survival.  Finally the V583-containing 

phagosome was limited for glycolytic substrates, nucleotides, amino acids and numerous 

ions necessary for growth and protein function.  This work illuminates not only the 
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environment encountered within the macrophage but also the E. faecalis genes important 

for intracellular survival.   

 
Preamble to Chapter three:  Transcriptional Regulator PerA Responds to 

Bicarbonate and Regulates Biofilm-Associated, Platelet Binding and Metabolic 

Genes in Enterococcus faecalis.  The impetus for this chapter is rooted in previous work 

by Coburn et al (12).  Dr. Coburn identified and characterized an AraC-type 

transcriptional regulator (designated PerA) residing on the E. faecalis PAI.  PerA 

influences pathogenesis and the ability of E. faecalis to survive within a macrophage.  

Additionally, PerA contributes to biofilm formation in a medium-specific manner (12).  It 

was our goal to determine the PerA regulon; that is, the total set of genes directly or 

indirectly controlled by this transcriptional regulator.  I determined the PerA regulon by 

comparing the transcriptional profile of an E. faecalis wild-type strain to an isogenic 

strain lacking perA.  Our findings reveal that PerA coordinately regulates genes important 

for metabolism, amino acid degradation, and pathogenicity.  Further transcriptional 

analysis revealed that PerA is influenced by bicarbonate.  Additionally, PerA influences 

the ability of E. faecalis to bind to human platelets.  Our results suggest that PerA is a 

global transcriptional regulator that coordinately regulates genes responsible for 

enterococcal pathogenicity. 
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Abstract 

 Enterococcus faecalis is an opportunistic pathogen capable of surviving within 

macrophages for extended periods.  The bacterial survival strategy during phagocytosis is 

thought to involve the restructuring of gene expression in response to the harsh 

intracellular environment.  However, the E. faecalis transcriptional profile during 

intracellular survival has, until now, not been investigated.  In this study we report the 

complete intracellular E. faecalis V583 transcriptome following infection of RAW264.7 

macrophages.  During intracellular survival, approximately 45% of the V583 genome 

was differentially regulated including numerous genes involved in the oxidative stress, 

heat shock and SOS responses.  We observed that the E. faecalis-containing phagosome 

was limited for glycolytic substrates, nucleotides, amino acids and numerous ions 

necessary for growth and protein function.   Approximately 35% of the genes 

differentially regulated during survival within macrophages were of 

hypothetical/unknown function, suggesting that the V583 response to phagocytosis 

involves many previously unstudied loci.  Here, we provide the first comprehensive study 

elucidating the transcriptional response of E. faecalis to phagocytosis, which may provide 

new targets for future studies.  
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Introduction 
 
 
 Enterococcus faecalis is a member of the human gastrointestinal (GI) tract and is 

relatively harmless in healthy individuals.  However in patients subjected to frequent 

antibiotic treatment, and in individuals with compromised immune systems, this 

opportunistic pathogen is capable of causing severe infections of the bloodstream, urinary 

tract, liver and spleen (33).  Furthermore E. faecalis is quickly becoming a leading cause 

of infective endocarditis, an accumulation of bacteria on damaged cardiac tissue that 

often leads to heart failure or death (20, 33).  The intrinsic or acquired antibiotic 

resistance found within the enterococci frequently complicates the treatment of these 

infections.  Likewise, the use of antibiotics to which indigenous members of the intestinal 

microflora are sensitive could open intestinal niches and cause a proliferation of resistant 

E. faecalis.  Therefore, alternative antimicrobial strategies are continually sought in an 

effort to treat, and ultimately prevent, infections from pathogenic bacteria.   

Macrophages are important components of the innate immune response, often 

participating in the first line of host defense by scavenging foreign particles.  

Additionally, these cells stimulate the adaptive immune response through antigen 

presentation and cytokine production.  Macrophages exert antimicrobial activity first by 

phagocytizing infective bacteria, then by delivering toxic reactive oxygen species (ROS), 

reactive nitrogen species (RNS) and antimicrobial peptides to the bacteria-containing 

phagosome (24, 25, 54).  Furthermore, macrophages acidify the phagosome in an effort 

to destroy the phagocytosed bacteria (54).  Though these compounds provide the 

macrophage with an impressive arsenal, many pathogens, including E. faecalis, are able 

to survive and even flourish in this harsh environment (11, 23, 31, 80).  The ability of E. 
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faecalis to persist within the macrophage is thought to contribute to the translocation of 

this opportunistic pathogen from the intestine to extra-intestinal sites (98).   Once free 

from the intestine the bacteria are capable of infecting the blood, liver and spleen (12).  

Therefore, discovering the strategy used to survive within the macrophage would not 

only aid in our understanding of host-pathogen interaction, but it could be used to 

develop therapeutic treatments aimed at preventing enterococcal infections.  Since the 

discovery that E. faecalis survives within host cells researchers have sought to elucidate 

intracellular survival mechanisms (12, 97).  

 As the oxidative burst is one of the primary tools used by a macrophage to kill 

phagocytosed bacteria, studies elucidating the E. faecalis intracellular survival strategies 

predominately concentrate on the response to macrophage-induced oxidative stress.  La 

Carbona et al. have shown that three loci (npr, NADH peroxidase; ahpC, alkyl 

hydroperoxide reductase; tpx, thiol peroxidase) protect E. faecalis against exogenous 

sources of oxidative stress, and that tpx is critical for persistence within the macrophage 

(45).  Superoxide dismutase (SodA), an enzyme that detoxifies superoxide radicals (O2
�-) 

by converting them to hydrogen peroxide (H2O2) and oxygen, is important for persistence 

within the macrophage as a ΔsodA mutant strain is attenuated for intracellular survival 

(95).  Finally, the oxidative stress response is comprised of loci that repair damaged 

proteins and include the methionine sulfoxide reductases (msr).  In E. faecalis, msrA and 

msrB aid in survival within phagocytes stimulated with gamma interferon (106).  

However, the role of these loci in enterococcal virulence is unclear as ΔmsrA and ΔmsrB 

strains persist within naïve phagocytes (106).  While these studies further our 
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understanding of the mechanisms necessary for intracellular survival, a complete E. 

faecalis transcriptional profile during infection of macrophage is missing.   

 Advances in global transcriptional profiling and new methods of obtaining 

bacterial RNA from infected cells now permit the interrogation of pathogenesis during 

intracellular survival at the whole-genome scale (23).  Using bacterial RNA extracted 

during macrophage infection and Affymetrix GeneChip microarrays, we obtained the E. 

faecalis V583 global transcriptional profile in response to phagocytosis and intracellular 

persistence.  Our results reveal that throughout intracellular survival the E. faecalis 

transcriptome is drastically restructured, and that a large portion of this response (~ 35%) 

is comprised of genes of unknown function.  Further analysis suggests that despite 

induction of oxidative stress response and repair mechanisms, important bacterial cell 

components are damaged during survival in the macrophage as is evidenced by induction 

of the bacterial SOS response.  The down-regulation of genes involved in transcription, 

translation and cell division suggest the V583 stringent response is activated upon 

phagocytosis.  Finally our data suggest that the E. faecalis-containing phagosome lacks 

glycolytic carbon sources and is devoid of the amino acids and nucleotides required for 

growth.  With these data we now have new insights into the E. faecalis strategy utilized 

to persist inside the macrophage.  This information should not only further our 

understanding of host-pathogen interactions but also illuminate mechanisms of 

enterococcal pathogenicity.   
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Materials and Methods 
 
 
Bacterial strains, media, and reagents.  The strain used in this study was Enterococcus 

faecalis V583 (78).  E. faecalis V583 was routinely cultured in Todd-Hewitt broth (THB) 

containing 1% glucose and gentamicin (500 µg/ml) (Sigma Chemical, St. Louis, MO).  

Growth was monitored as absorbance at 600 nm using a Beckman-Coulter DU800 

spectrophotometer. 

Macrophage survival assay.  Macrophages were infected as previously described with 

modifications (12, 23).  Briefly, RAW264.7 (ATCC TIB-71) macrophage were grown in 

Dulbecco’s Modification of Eagle’s Medium (DMEM) supplemented with 10% fetal 

bovine serum, glucose (4.5 g/L), L-glutamine (4.0 mM), and sodium pyruvate (1.0 mM) 

(Mediatech, Manassas, VA.).  For each V583 RNA extraction, 6-well cell culture plates 

(120 wells total; Becton Dickinson, Franklin Lakes, NJ.) were seeded with 108 

RAW264.7 cells per well and incubated for 16 h at 37oC under 5% CO2.  Following 

incubation the cells were washed twice with phosphate buffered saline (PBS) infected 

with E. faecalis V583 at a multiplicity of infection (MOI) of 100:1 (bacteria:cells), after 

which the plates were centrifuged at 1000 g for 5 min, which defined time 0 h.  After 1 h 

incubation, extracellular bacteria were killed by changing the medium to DMEM 

supplemented with streptomycin (100 µg/ml) and ampicillin (10 µg/ml).  Incubations 

were continued to desired time points (4 h, 8 h, 12 h post-infection).   

RNA extraction and microarray analysis.  At 4 h, 8 h and 12 h post-infection, infected 

RAW264.7 cells were lysed on ice for 30 min in 0.1% SDS, 1% acidic phenol and 19% 

ethanol in water as previously described (23).  Macrophage lysates were separated from 

bacteria by centrifugation at 1000 g for 10 min.  The remaining bacterial pellets were 
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collected following further centrifugation at 10000 g for 15 min.  RNA was prepared 

using the Qiagen RNeasy Minikit (Valencia, CA) with optional on-column DNase 

treatment according to the manufacturer’s specifications.  RNA integrity was checked by 

gel electrophoresis and stored in 2 volumes of ethanol at -80oC.  RNA from control 

samples was obtained from E. faecalis V583 grown to mid-log phase (OD 600nm = 0.05) 

in Dulbecco’s Modification of Eagle’s Medium (DMEM) supplemented with 10% fetal 

bovine serum, glucose (4.5 g/L), L-glutamine (4.0 mM), and sodium pyruvate (1.0 mM) 

while incubated at 37oC under 5% CO2.  cDNA was generated by first strand synthesis 

using Superscript II (Invitrogen, Carlsbad, CA) and random hexamers according to the 

manufacturer’s specifications.  Fragmentation and biotinylation of cDNA proceeded 

according to the Affymetrix prokaryotic labeling protocol using the ENZO Kit from 

Roche Diagnostics (Indianapolis, IN).  Biotinylated cDNA was hybridized to custom E. 

faecalis V583 Affymetrix GeneChips (GEO Accession number: GPL6702) for 16 h at 

45oC.  Affymetrix protocol ProkGE_WS2v2-450 was used to stain the hybridized arrays.  

Following scanning, raw data files (.cel) were analyzed using RMA processing with 

quartile normalization (40).  Each macrophage infection assay was performed twice.  

Biological replicates were averaged, and genes were considered to be significantly 

induced or repressed if the intracellular:control expression ratio was greater than twofold 

(103).  Heatmaps were generated using DecisionSite for Functional Genomics (Spotfire; 

Somerville, MA).  



	   30	  

Results	  and	  Discussion	  
	  
	  
The intracellular transcriptional profile.  The E. faecalis V583 intracellular 

transcriptome was defined by comparing the transcriptional profiles from bacteria during 

infection of macrophages to that of bacteria grown in culture medium.  Total bacterial 

RNA was extracted from infected macrophages at 4 h, 8 h, or 12 h post-infection and 

from control samples during mid-log phase (OD 600nm = 0.05).  The RNA was reverse 

transcribed and hybrized to Affymetrix E. faecalis V583 whole-genome microarrays.  All 

array data shown are expressed at ratios (intracellular : control) and are considered to be 

significant if gene expression was induced or repressed greater than twofold.  The V583 

genetic response to phagocytosis and subsequent persistence in the intracellular 

environment included a total of 1405 genes representing ~ 45% of the genome (Fig. 1).  

Strikingly, 35% (492) of the 1405 genes differentially regulated during any intracellular 

time point tested encoded hypothetical proteins or proteins of unknown function.  This 

suggests the intra-phagosomal conditions sensed by V583 are profoundly different than 

that in the control sample, eliciting a drastic change and restructuring of the 

transcriptional profile.  Additionally, these data provide evidence that the E. faecalis 

response to phagocytosis involves numerous previously unstudied loci.  Furthermore, we 

observed variations in the intracellular transcriptome when comparing the 4 h, 8 h, and 12 

h samples (Fig. 2).  At 4 h post-infection 715 genes (~ 23% of the genome) were 

differentially regulated, while 1065 genes (~ 35% of the genome) and 1005 genes (~ 33% 

of the genome) were significantly up or down-regulated at 8 h and 12 h post-infection, 

respectively.  Comparisons of the intracellular transcriptomes revealed that 458 genes (~ 

15% of the genome) were similarly regulated in all time points (Fig. 2A).  Taken together 
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these results suggest that while a core set of genes are induced and required for 

persistence in all time points tested, the V583 transcriptional landscape fluctuates from 

the initial response to phagocytosis to prolonged intracellular persistence.  

Oxidative Stress Response.  In an effort to destroy phagocytosed bacteria macrophage 

produce reactive oxygen species (ROS) and reactive nitrogen species (RNS) as part of the 

respiratory burst.  The ROS are produced by phagocyte NADPH oxidase, an enzyme that 

reduces molecular oxygen to superoxide (O2
�-).  The resulting O2

�- can subsequently act as 

precursors for hydrogen peroxide (H2O2), hydroxyl radicals (OH-) and peroxynitrite (25, 

57, 94).  The RNS are produced by the inducible nitric oxide synthase (iNOS) and 

includes nitric oxide, nitrogen dioxide, dinitrogen trioxide, and nitrosothiols (25, 57, 94).  

ROS and RNS exert cytotoxicity by oxidizing nucleotides, nitrosylating proteins and 

damaging membranes (57).   

 E. faecalis is equipped with many antioxidant enzyme systems that respond to 

oxidative stress.  These include alkyl hydroperoxide reductase (ahpC), NADH peroxidase 

(npr), hydrogen peroxide regulator (hypR), superoxide dismutase (sodA), catalase (katA), 

thiol peroxidase (tpx), methionine sulfoxide reductase system (msrABC) and thioredoxin 

(trx).  Among these, sodA, tpx, npr, ahpC, hypR and msrAB have all been shown to 

contribute to survival inside the macrophage (45, 95, 96, 106).  To determine the 

expression of each of these oxidative stress genes during intracellular survival we 

compared the transcriptome of V583 inside the macrophage to that of control bacteria.  

During initial stages of infection (4 h post-infection) npr, ahpC, hypR and sodA transcript 

levels are similar to that of the control samples (Fig. 3).  Upon intracellular persistence 

(8-12 h post-infection) the expression of these genes is down-regulated (Fig. 3). This 
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suggests that npr, ahpC, hypR and sodA expression is most important during early stages 

of phagocytosis.  Although npr, ahpC, hypR and sodA transcription is the same as the 

control samples 4 h post-infection, we do not assume this means the transcript is in low 

abundance.  E. faecalis produces O2
�- during growth and presumably expresses genes 

with antioxidant properties to prevent cellular damage during growth (39).  Furthermore 

RAW264.7 cells produce high levels of O2
�- from 0-4 h post-infection, yet at 10 h post-

infection O2
�- levels are undetectable (56).  The decrease in npr, ahpC, hypR and sodA 

expression reflects this decrease in O2
�- produced by the macrophage.  

 Approximately 8 h post-infection, macrophages produce nitric oxide (NO) that 

inhibits bacterial DNA replication and respiration (21, 63, 79).  When present with H2O2 

NO participates in the Fenton reaction, which increases oxidative stress by producing 

OH- (102).  One way to prevent an increase in oxidative stress through the Fenton 

reaction would be to remove H2O2 from the environment.  Catalase reduces H2O2 to H2O 

and at 8 h post-infection the E. faecalis katA gene is highly induced (Fig. 3).   

 Another consequence of oxidative stress is the induction of systems that repair 

cellular damage.  During oxidative stress, proteins containing methionine residues are 

especially vulnerable to damage.  When oxidized, the methionine residues form 

methionine sulfoxides that render the protein useless.  In an effort to restore protein 

function, repair systems are induced to reduce the oxidized residues (4).  We found that 

the E. faecalis methionine sulfoxide reductase system (msrABC) is highly induced 

throughout all intracellular time points tested (Fig. 3).  The msr system uses electrons 

derived from thioredoxin to reduce methionine sulfoxide residues to methionine (5, 6).  

Concomitant with msrABC induction during intracellular survival is induction of the E. 
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faecalis thioredoxin (trx) (Fig. 3).  The msr system was recently shown to contribute to 

the E. faecalis oxidative stress response, and therefore is important for macrophage 

survival and virulence (106).   Additionally, our results suggest that E. faecalis uses the 

methionine sulfoxide reductase and thioredoxin systems to repair proteins damaged 

during intracellular survival.  Taken together, these data suggest that though the majority 

of the oxidative stress response is not highly induced, V583 experiences oxidative stress 

inside the macrophage and uses the methionine sulfoxide reductase and thioredoxin 

pathways to repair damage from ROS and RNS.  

The Fsr system.  The E. faecalis fsr system is similar to the argABCD operon found in 

Staphylococcus aureus (60).  fsr is a quorum-sensing system that mediates the production 

of a cyclic peptide termed gelatinase-biosynthesis activating pheromone (GBAP) (60, 

61).  Through the production of GBAP, fsr activates two genes encoding a gelatinase 

(gelE) and a serine protease (sprE) resulting in biofilm formation (38, 72, 73).  

Furthermore, GelE has been shown to contribute to pathogenesis in endocarditis (90).  

Upon phagocytosis and throughout intracellular persistence, fsr, gelE and sprE 

expression is significantly induced (Fig. 3).  SprE contributes to pathogenesis during 

infection and GelE is capable of inhibiting the immune complement system (64, 65, 73, 

90).  Though the functions of these proteins during macrophage survival is poorly 

understood, each could enhance survival inside the macrophage or aid in persistence 

inside host tissues once the bacteria have escaped the intracellular environment.  In the 

former scenario GelE released by V583 could interrupt the immune complement cascade, 

thereby modulating the host response to intracellular E. faecalis.  In the latter scenario 



	   34	  

intracellular bacteria released from the macrophage into the liver, spleen, and lymph 

system could persist through SprE production. 

Lysin production.  E. faecalis reside within a phagocytic vacuole during early stages of 

macrophage survival, yet by 24 h post-infection the vacuole membrane degrades 

followed by release of the bacterial cells into the cytoplasm (31).  Approximately 48 h 

post-infection the macrophage are destroyed and bacteria are released from their 

intracellular compartment into the surrounding environment (31).  The mechanisms 

employed by E. faecalis to escape the intracellular vacuole and destroy the macrophage 

are poorly understood.  During intracellular survival, Listeria monocytogenes produces 

cytolysins that degrade the macrophage phagosomal compartment (30, 69).  Prompted by 

these observations we mined the V583 transcriptome for induction of annotated lysin 

genes.  We found the majority of lysins were either down-regulated or showed no 

significant difference in gene expression while inside the macrophage (Fig. 3).  A notable 

exception was hly-3, a gene encoding a putative hemolysin in V583.  This gene was 

significantly induced throughout intracellular persistence (Fig. 3).  Intriguingly E. 

faecalis hemolytic culture supernatant has been shown to lyse neutrophils and 

macrophages (58).  Hly-3 could be produced by V583 inside the macrophage as a means 

of escaping the phagocytic vacuole and subsequently destroying the macrophage.  A 

BLASTN search revealed >97% identity among all sequenced E. faecalis genomes, 

suggesting that hly-3 is a highly conserved gene found in strains of various origins. 

SOS and heat-shock stress response.  The SOS response is a highly conserved DNA 

repair system induced during conditions that cause DNA damage or stalled DNA 

replication (101).  At the apex of SOS regulation is RecA and LexA.  During DNA 
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damage, the formation of single stranded DNA (ssDNA) stimulates the production of 

RecA.  This protein binds to ssDNA forming the RecA nucleoprotein filament (RecA*), 

the active form of the RecA enzyme (43).  RecA* promotes self-cleavage of the repressor 

of the SOS response, LexA, causing an induction of the SOS response (42).  Since free 

radicals produced during phagocytosis are known to induce the bacterial SOS response 

(8, 41), we sought to determine which genes within the E. faecalis SOS regulon were 

induced during macrophage survival.  Our microarray analyses revealed a significant 

induction of lexA and recA, as well as the DNA damage repair genes dinJ, dinP, uvrA and 

uvrB (Fig. 3).  The induction of the SOS response is common among intracellular 

pathogens.  Listeria monocytogenes induces genes of the SOS regulon during growth 

within the host cell cytosol (11).  Mycobacterium tuberculosis induces the SOS response 

inside the phagosome, yet this response appears to be independent of NO production as 

the SOS regulon was also upregulated in NOS2-deficient macrophages (80).  Finally, the 

Salmonella enterica SOS response is induced during macrophage survival at a level that 

permits both bacterial replication and DNA repair (23).  Our data suggest that while 

inside the macrophage E. faecalis encounters conditions leading to considerable 

induction of the SOS response. 

 The bacterial heat shock response to a variety of environmental insults consists of 

induced proteins with proteolytic and chaperone functions.  Class I heat shock genes 

encode for the classical molecular chaperones (DnaJ, DnaK, GroEL, GroES, GrpE) and 

are responsible for folding and refolding of damaged proteins.  The class I response is 

negatively regulated by HrcA.  During macrophage survival E. faecalis highly 

upregulated many of the class I heat shock genes, including dnaJ, grpE, and hrcA (Fig. 
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3).  The class III heat shock response is comprised of proteolytic proteins that function to 

degrade abnormal proteins formed during stress conditions and recycle amino acids 

during starvation (35, 74).  CtsR, a DNA-binding protein, controls the class III heat shock 

in gram-positive bacteria by regulating clp expression (17).  Intracellular E. faecalis 

induced many class III heat shock genes including ctsR, clpP, clpC and clpE (Fig. 3).  

The importance of clp expression during intracellular survival has been elucidated in 

other pathogens.  In L. monocytogenes, ClpP is critical for intracellular parasitism and 

expression of virulent traits (27, 28).  Additionally, clp is required for intracellular 

replication of Staphylococcus aureus within epithelial cells (26).  The high up-regulation 

of heat shock genes suggests this stress response is critical to repair and recycle damaged 

proteins in E. faecalis during intracellular survival.   

Ion transport.  Metal ions are needed for many bacterial systems as they act as cofactors 

critical for protein function.  The availability of ions during intracellular survival differs 

depending on the infective organism and the characteristics of the vacuole (11, 23, 80).  

We analyzed the expression of ion transport systems to determine ion abundance within 

the E. faecalis-infected macrophage.  Three genes involved in copper transport were 

initially down-regulated 4 h post-infection, yet expression of these genes increased 

significantly 12 h post-infection (Fig. 3).  These genes are copY (encodes a transcriptional 

repressor of cop genes), copZ (encodes a copper transport protein) and EF0298 (copper-

translocating P-type ATPase) and, together, are responsible for maintaining an 

appropriate copper concentration through copper influx and efflux (86) (Fig. 3).  Copper 

is critical for cellular respiration and protects the cell from free radicals (53, 68).  

However copper accumulation becomes cytotoxic, hence cytosolic copper concentrations 



	   37	  

are tightly controlled (105).  In addition to cop, E. faecalis contains cutC to achieve 

copper homeostasis (47).  CutC appears to contribute to copper efflux and is induced 

upon prolonged exposure to elevated copper levels (47).  During intracellular survival E. 

faecalis cutC is not differentially regulated at any time point (data not shown).  Taken 

together we interpret these results to mean that upon phagocytosis V583 does not 

experience copper starvation, yet during intracellular persistence copper becomes limited 

which leads to induction of the cop system.   

 Phosphate is another ion critical to bacterial survival, as this ion is essential for 

nucleotide synthesis and DNA replication.  Intracellular E. faecalis induced two 

phosphate-responsive genes, psiE and phoZ, at all intracellular time points (Fig. 3).  psiE 

is a ubiquitous phosphate starvation-inducible gene known to be up-regulated by S. 

typhimurium during macrophage survival (93). phoZ encodes an alkaline phosphatase, an 

exported enzyme induced during phosphate starvation that hydrolyzes various 

compounds to yield inorganic phosphate (13, 50).  Therefore, our data suggests that E. 

faecalis is limited for phosphate while inside the macrophage and induces genes in an 

attempt to sequester any free phosphate from the surrounding environment.  Induction of 

phosphate acquisition systems is critical during macrophage survival and is a common 

mechanism amongst many intracellular pathogens such as S. enterica and M. tuberculosis 

(23, 75, 76).  

 Further analysis of the V583 intracellular transcriptome revealed that a number of 

genes corresponding to potassium uptake were significantly up-regulated (Fig. 3).  

Among these are kdpABC that encode a primary potassium uptake system and kdpD-

EF0571 (EF0571 is orthologous to E. coli kdpE) that encode a potassium-responsive two-
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component system (TCS) in E. faecalis (36, 67) (Fig. 3).  When an appropriate stimulus 

is received KdpD initiates a signaling cascade resulting in the KdpE-dependent activation 

of kdpABC (36).  KdpABC then facilitates the transport of potassium into the bacterial 

cell (36).  Our data suggests E. faecalis encounters significant potassium starvation upon 

phagocytosis, since kdpABC is only expressed under severe potassium limitation (46).  

Further data suggesting potassium is limiting in the E. faecalis intracellular environment 

is the observation that V583 also induced EF2910 during intracellular survival, a gene 

encoding a putative potassium uptake protein (Fig. 3).     

Interestingly the kdp potassium uptake and TCS system is among the few V583 

pathogenicity island (PAI)-encoded genes differentially regulated within the macrophage 

(Fig. 3).  Since the PAI is enriched among virulent E. faecalis yet absent in commensal 

strains, kdp may aid in E. faecalis pathogenicity in certain environments while being 

dispensable for commensal E. faecalis (49, 81, 89).  However kdp does not appear to be 

critical for intracellular persistence, as this locus is absent from other E. faecalis strains 

capable of macrophage survival.  

Iron is critical for both the macrophage and bacteria during phagocytosis.  For the 

macrophage, iron is an indispensible ion that contributes to the production of both the 

ROS and RNS (2, 19).  For an intracellular pathogen, iron is essential for the proper 

function of peroxidases and cytochromes.  If the intracellular iron concentration is too 

low, ROS and RNS production is impaired, yet if the intracellular iron concentration is 

too high, excess iron could be used for bacterial persistence.  Therefore the macrophage 

must tightly control the iron concentration within the phagosome; a feat accomplished 

using two iron translocation proteins, Nramp1 and Nramp2.  Nramp2 transports iron from 
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the phagosome into the cytoplasm during the early stages of phagocytosis.  Nramp1 is 

capable of transporting iron into or out of the phagosome during the latter stages of 

macrophage infection (34).  At 8 h and 12 h post-infection intracellular V583 induced 

EF0188, EF0191, EF0192 and fhuG, genes that show similarity to the ferric hydroxymate 

siderophore (Fhu) system in Staphylococcus aureus (87) (Fig. 3).   As the cell only 

produces siderophores during iron limitation, our results suggest the E. faecalis 

intracellular environment is iron deprived.  RAW264.7 macrophage cell lines are derived 

from BALB/c mice, which carry a mutation in Nramp1, and have been shown to recycle 

iron less efficiently than macrophage containing functional Nramp1 (85).  The iron 

starvation response observed during intracellular survival could reflect this phenomenon.   

However based on the oxidative stress response generated by phagocytosed E. faecalis 

(Fig. 3), there appears to be sufficient concentrations of iron to elicit ROS and RNS.  

Magnesium is an ion important for the replication of many pathogens during 

intracellular survival (7, 55).  Accordingly, bacteria residing within macrophages have 

evolved mechanisms to acquire this essential ion.  For example, S. typhimurium induces 

genes involved in magnesium transport (mgtABC) in magnesium limiting conditions and 

within macrophages (22, 83, 84).  These observations suggest the SCV is limited for 

magnesium.  E. faecalis V583 has 4 loci putatively involved in magnesium transport 

(mgtE, mgtC, EF1304 and EF1352) (67).  To determine the availability of magnesium in 

the E. faecalis-containing phagosome, we mined the intracellular transcriptome for 

expression of these magnesium-transporting genes.  We found that none of these genes 

were differentially regulated at any intracellular time point tested (data not shown).  

These data could suggest that V583 is not limited for magnesium during macrophage 
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survival.  Unfortunately little is currently known about the regulation of any of these 

magnesium-transporting genes in E. faecalis.  It is possible that basal levels are sufficient 

for intracellular survival, or it is possible that these genes are constitutively expressed.  In 

regards to this latter possibility, mgtC is thought to be constitutively expressed M. 

tuberculosis (3, 92). 

Two-component systems.  Bacteria use two-component regulatory systems (TCS) to 

modulate gene expression in response to environmental stimuli (88).  Frequently 

pathogenic bacteria use TCS to control virulence, thereby accurately timing the 

expression of virulence traits only when in the correct environment (14, 62).  The V583 

genome contains 18 TCS elements that mediate a genetic response to heat shock, bile and 

pH (37, 49).  Furthermore Muller et al. screened strains containing deletions within TCS 

loci and found numerous E. faecalis TCS contribute to macrophage survival (59).  We 

mined the V583 intracellular transcriptome and found many TCS systems were up-

regulated (Fig. 3).  Interestingly the majority of the TCS induced in the macrophage 

showed the greatest induction at the 4 h time point (Fig. 3).  Corroborating Muller et al., 

we found EF1260-EF1261 (err06-ehk06) and EF3289-EF3290 (croSR) to be induced 

during macrophage survival (Fig. 3).  While croSR was up-regulated at all time points, 

EF1260-EF1261 showed differential regulation only at the 4 h time point.  EF1260-

EF1261 has been shown to protect the cell from H2O2-mediated oxidative stress and is 

induced in the presence of H2O2 (59).  Our results suggest V583 uses EF1260-EF1261 to 

sense the oxidative landscape upon phagocytosis, a finding that is in accordance with the 

timing of RAW264.7 production of oxidative radicals (56). 
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 Other E. faecalis TCS induced during intracellular survival include EF0372-

EF0373 (ehk13-err13) and EF2911-EF2912 (Fig. 3).  Le Breton et al. have shown that 

EF0372-EF0373 is induced during heat shock, yet the role of this TCS in macrophage 

survival remains to be studied (48).  EF2911-EF2912 is a poorly studied TCS that 

showed the highest induction through all intracellular time points (Fig. 3) suggesting this 

locus is important during intracellular survival, yet serves an unknown role inside the 

macrophage.  The EF1050-EF1051 TCS (ehk10-err10) is known to respond to acidic 

conditions (48).  Interestingly, this TCS was not differentially regulated during 

intracellular survival (data not shown), indicating that the E. faecalis phagosomal 

environment is perhaps not acidified.  The data presented here corroborates previous 

results of TCS systems known to function during intracellular survival (59) while 

expanding the list of TCS differentially regulated during E. faecalis persistence within 

macrophages.   

Transcription/translation apparatus.  Intracellular survival assays reveal that E. 

faecalis is able to persist within the macrophage yet does not appear to grow appreciably 

(12, 31).  These observations lead us to examine the expression of transcriptional and 

translational genes during intracellular survival.  Strikingly, many aminoacyl tRNA 

synthetase genes, including serS, hisS, thrS, aspS, glyS, pheS, tryS, csyS, ileS, leuS, valS, 

alaS, and argS, were significantly down-regulated at all time points tested (Fig. 2).  

These enzymes use free amino acids to charge the tRNA during translation.  Concomitant 

with the down-regulation of the tRNA synthetase genes was the induction of peptide and 

amino acid transport systems (Fig. 3).  These transporters provide amino acids to the cell 

and are essential for the growth of the auxotrophic lactic acid bacteria (18).  Furthermore, 
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ATP-binding cassette (ABC) amino acid transporters are repressed by amino acids and 

maximally induced during nutrient limitation (82).  Taken together our data suggests an 

amino acid limiting environment in the E. faecalis-containing phagosome.   

 A consequence of amino acid starvation would be the binding of uncharged 

tRNAs to the ribosomal A site, a condition that induces the stringent response (99).  The 

stringent response reprograms the cellular genetic response from that of growth to 

survival and typically involves the down-regulation of the translational apparatus (66, 

91).  Accordingly, the stringent response involves the cessation of ribosome and 

macromolecule synthesis, and DNA replication (10, 91).  Coordination of the stringent 

response occurs through the alarmone ppGpp (guanosine 5`,3` bispyrophosphate) (9).  In 

E. faecalis ppGpp is produced through the activity of RelA and RelQ, where RelQ 

produces ppGpp at basal levels while the bifunctional synthetase/hydrolase RelA is 

responsible for both ppGpp accumulation and degradation (1).  ppGpp coordinates the 

adaptation to various environmental stresses, contributes to antibiotic resistance, and is 

important in E. faecalis virulence (1, 104).  Though the ppGpp-mediated regulon is 

currently unknown in E. faecalis, we observed that several hallmarks of the bacterial 

stringent response are differentially regulated during intracellular survival.  Down-

regulated genes included several involved in the transcription and translation apparatus 

(39 genes), ribosome synthesis (16 genes), cell wall synthesis (5 genes) and DNA 

replication (3 genes) (Figs. 2 and 3).  The stringent response is critical for intracellular 

survival of many pathogens, including Helicobacter pylori, Francisella novidica and 

Mycobacterium tuberculosis (16, 71, 107).  Our data suggests the E. faecalis stringent 
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response is activated during macrophage survival, which results in the repression of 

genes involved transcription, translation and growth (Figs. 2 and 3).   

Metabolic gene expression.  We analyzed the expression of metabolic genes to elucidate 

the availability of carbohydrates within the E. faecalis-containing phagosome.  

Throughout all of the intracellular time points tested, genes involved in intermediary 

metabolism and energy production were down-regulated (Fig. 2).  In particular, genes 

encoding enzymes involved in both the first half (the conversion of glucose to 

glyceraldehyde-3-phosphate) and second half (the conversion of glyceraldehyde-3-

phosphate to pyruvate) of the Embden-Meyerhof-Parnas (EMP) pathway were down-

regulated.  These included glcK (glucokinase), pfk (phosphofructokinase), fba (fructose 

bisphosphate aldolase), tpiA (triosephosphate isomerase), gap (glyceraldehyde-3-

phosphate dehydrogenase), pgk (phosphoglycerate kinase), gpm (phosphoglycerate 

mutase) and eno (enolase) (Fig. 2).  These data suggest glycolytic substrates are limiting 

in the E. faecalis-containing phagosome: a common theme amongst intracellular 

pathogens is down-regulation of EMP pathway in L. monocytogenes and S. enterica 

during macrophage survival (11, 23).  

 Carbon sources used during macrophage infection could be incorporated into E. 

faecalis as phosphorylated compounds via the phosphotransferase (PTS) system.  To 

further determine available growth substrates within the phagosome, we mined the V583 

intracellular transcriptional data for differentially regulated genes encoding members of 

the PTS system.  We found 5 genes encoding PTS proteins (EF0019, EF0021, EF0028, 

EF0717 and EF3307) were down-regulated throughout intracellular survival (Fig. 2).  

Based on annotated sequences EF0019 appears to encode a generic PTS component, 
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EF0021 encodes a mannose-specific transporter, EF0028 encodes PTS transport subunits 

specific to maltose and glucose, while EF0717 and EF3307 participate in the uptake of 

fructose and sorbitol, respectively.  In addition to being under global regulatory control 

based on ATP and phosphate concentrations, PTS systems are substrate-induced (70).  

Based on these data, we conclude that the E. faecalis intracellular environment is devoid 

of carbon sources, particularly hexose sugars.  

Nucleotide biosynthesis.  When mining the V583 intracellular transcriptome for 

differentially regulated genes, we observed the up-regulation of numerous loci involved 

in purine and pyrimidine nucleotide biosynthesis (Fig. 2).  Throughout all intracellular 

time points, purEKCSQLFMNHD expression was up-regulated, while the gene encoding 

a putative repressor of purine synthesis, purR, was down-regulated (Fig. 2). The pathway 

and regulatory mechanisms for purine biosynthesis are poorly studied in E. faecalis, 

however the V583 PurR protein shares 79% similarity to PurR in Bacillus subtilis.  The 

B. subtilis PurR represses pur expression in the presence of purine nucleotides, thereby 

preventing induction of this pathway when exogenous purines are available (100).  If the 

V583 PurR regulates pur expression in the same manner, our data suggests the E. faecalis 

intra-phagosomal environment is purine nucleotide limited.  Similarly genes involved in 

pyrimidine nucleotide biosynthesis, pyrC-pyraA, pyrD-2 and pyrE, were up-regulated 

during intracellular survival (Fig. 2).  In contrast to purine biosynthesis, the regulation of 

pyrimidine nucleotides in E. faecalis is relatively well studied (32, 52).  Ghim et al. have 

shown the pyr genes are repressed in the presence of uracil (32).  Thus, our data suggest 

that V583 encounters pyrimidine starvation conditions within the macrophage. 
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Conclusions 
 
 
 The quest to discover the mechanisms used by E. faecalis to survive within the 

macrophage has spanned the better part of a decade.  During this time numerous studies 

have begun to elucidate not only the environment sensed within the E. faecalis-

containing phagosome, but also the coordinated response elicited to harsh conditions.  

However, these studies do not provide a comprehensive view of the in vivo mechanisms 

used during intracellular survival.  Here we determined the E. faecalis V583 genome-

wide transcriptional profile in the macrophage with the goal of expanding our current 

understanding of the intracellular survival strategy.    

 Paramount to survival in a changing environment is the ability to accurately sense 

conditions and coordinate an appropriate response.  The detection of environmental 

stimuli is often mediated through two-component systems (37, 59).  Analysis of the 

microarray data revealed that 12 members of E. faecalis TCS systems respond during 

intracellular survival (Fig. 3).  These data not only corroborate previously published data 

(59), but also increase the number of TCS systems thought to coordinate intracellular 

survival.  Interestingly, the findings from our study provide clues about the in vivo 

environment sensed during enterococcal infection of the macrophage.  Our data suggest 

that life inside the macrophage is anything but luxuriant, as E. faecalis appears to be 

starved for glycolytic substrates, nucleotides, amino acids and numerous ions necessary 

for growth and protein function (Figs. 2 and 3).  The limiting conditions encountered 

within the macrophage appear to induce the V583 stringent response, as evidenced by the 

down-regulation of the transcription and translational apparatus (Fig. 2).  Furthermore, E. 

faecalis induces a robust response to the oxidative environment, particularly during the 
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earliest stages of intracellular persistence, and appears to prefer the methionine sulfoxide 

reductase and thioredoxin pathways for repairing damaged proteins (Fig. 3).  In spite of 

these repair mechanism it is clear that bacterial cell components are damaged, as V583 

strongly induces both the SOS and heat shock responses inside of macrophages (Fig. 3).   

 Some of the more intriguing findings from our study include the induction within 

the macrophage of the fsr system and hemolysins.  To our knowledge this is the first 

study to show induction of the fsr system, including gelE and sprE, during intracellular 

survival.  The quorum-sensing fsr system activates gelE and sprE expression through the 

production of gelatinase-biosynthesis activating pheromone (GBAP) in cell-density 

dependent manner (in late log or early stationary phase) (60, 61).  From our data we are 

not able to determine what causes the activation of fsr within the macrophage, as the 

density of E. faecalis in the macrophage is undoubtedly less than that in stationary phase 

cultures, nor are the roles of fsr, gelE or sprE during intracellular survival understood.  

However, since SprE contributes to pathogenesis (73) and GelE is capable of destroying 

the immune compliment system (64, 65), we propose that they contribute to the 

pathogenicity of E. faecalis once this pathogen is released from the macrophage.  In this 

scenario, the intracellular production of SprE may aid in the V583 infection of host 

tissues while the concomitant production of GelE could participate in immune-avoidance 

by hydrolyzing components of the complement system.   

 Many intracellular pathogens, including Salmonella typhimurium and 

Mycobacterium tuberculosis reside within a modified vacuole or phagosome during 

macrophage survival (29, 77).  Yet others, such as Listeria monocytogenes, are able to 

exploit the macrophage cytosol by escaping the phagosome through the production of the 
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cyolysin LLO (30, 69).  Though the intracellular trafficking of E. faecalis is poorly 

understood, it is clear that E. faecalis can be released from the phagosome into the 

cytosol (31) and that culture supernatant lyses the macrophage (58).  Our finding that 

V583 expresses a gene encoding a hemolysin (hly-3) throughout all intracellular survival 

time points tested (Fig. 3) suggests a mechanism by which E. faecalis escapes the 

phagosome and/or the macrophage.  The regulation of hly-3 in V583 is virtually 

unknown.  However in L. monocytogenes, LLO production is tightly regulated by the 

transcriptional regulator PfrA and is induced in response to nutrient limitation and heat 

shock (15, 44, 51).  It is possible that hly-3 is induced under similar conditions as LLO, 

as nutrient limitation and the heat shock response were observed in the E. faecalis-

containing phagosome (Figs. 2 and 3).   

 In conclusion, this study provides the first comprehensive study elucidating the 

transcriptional response of E. faecalis to phagocytosis, a significant proportion of which 

is comprised of loci with unknown function.  These data should provide new targets for 

future studies.   
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Figure legends 
 
 
Figure 1.  Comparisons of microarray results during intracellular survival at 4 h, 8 

h and 12 h post-infection.  Control RNA was used to normalize RNA extracted from 

bacteria during macrophage survival (intracellular : control).  All data presented here are 

shown as fold change in gene expression.  (A) Venn diagram comparing differentially 

regulated genes (induced or repressed > 2 fold) at 4 h, 8 h and 12 h post-infection.  (B) 

Hierarchically-clustered heat map of all genes differentially regulated during infection. 

 

Figure 2.  Heat maps of log2 expression ratios for intracellular bacteria at 4 h, 8 h 

and 12 h post-infection.  All intracellular array data were normalized to control array 

data before analysis (intracellular : control).  All genes shown were differentially 

regulated (induced or repressed) > 2 fold.  Genes involved in metabolism and nucleotide 

biosynthesis were up and down-regulated.  The transcriptional and translational apparatus 

were down-regulated.   

 

Figure 3.  Intracellular expression profiles of genes with various functions.  

Intracellular array data were collected at 4 h, 8 h and 12 h post-infection.  Expression 

profiles show genes altered for expression > 2 fold.    
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Figure 1.  
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Figure 2.  
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Figure 3. 
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Abstract 
 

 Enterococcus faecalis is an opportunistic pathogen and a leading cause of 

nosocomial infections, traits facilitated by the ability to quickly acquire and transfer 

virulence determinants.  A 150 kb pathogenicity island (PAI) comprised of genes 

contributing to virulence is found in many enterococcal isolates and is known to undergo 

horizontal transfer.  We have shown that the PAI-encoded transcriptional regulator PerA 

contributes to pathogenicity in the mouse peritonitis infection model.  In this study, we 

used whole-genome microarrays to determine the PerA regulon.  Our findings reveal that 

PerA coordinately regulates genes important for metabolism, amino acid degradation, and 

pathogenicity.  Further transcriptional analysis revealed that PerA is influenced by 

bicarbonate.  Additionally, PerA influences the ability of E. faecalis to bind to human 

platelets.  Our results suggest that PerA is a global transcriptional regulator that 

coordinately regulates genes responsible for enterococcal pathogenicity.   
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Introduction  
 
 
As a commensal member of the intestinal microbiota, the enterococci play an important 

role in establishing a healthy GI tract and typically coexist in the host as a relatively 

small, yet stable, population.  Alternatively if the delicately balanced host/commensal 

relationship is disrupted, if specific environmental cues are detected, or if virulence traits 

are acquired, enterococci can act as opportunist pathogens capable of multiple-site 

infections, including infections of the heart, urinary tract, and bloodstream (25, 44, 64).  

In an effort to better understand the differences between commensal and pathogenic 

enterococci, studies of pathogenic enterococci increasingly seek to discover which traits 

promote virulence, how these traits are inherited and what mechanisms are used to 

coordinately regulate these traits to achieve pathogenicity.  

While the enterococci have been known as infective agents for more than 100 

years (41), the majority of information regarding the acquisition and deployment of 

virulence traits has been gathered in the last few decades (33, 55, 74).  As a result of 

these studies, we have a clearer picture of how the enterococci successfully transition 

from a commensal to a pathogen.  At the heart of this transition is enterococcal 

promiscuity: the ease and frequency with which many strains acquire and transmit mobile 

genetic elements harboring loci that contribute to pathogenesis.  In addition to being 

intrinsically resistant to a broad range of antimicrobial agents, enterococci have evolved 

resistance to many antibiotics by acquiring plasmids or transposons comprised of genes 

that confer resistance.  Developing antibiotic resistance has increased the pathogenic 

potential of the enterococci, as is evident by these organisms becoming the leading cause 

of surgical site infections, the second leading cause of bloodstream infections and the 
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third leading cause of nosocomial urinary tract infections (61).  Furthermore, antibiotic 

resistant strains are more likely to contain mobile genetic elements that may harbor 

virulence traits (54).   Especially problematic are strains that acquire both antibiotic 

resistance and virulence traits, as the concurrence of these factors is correlated with 

strains capable of producing infection outbreaks on a global scale (43).  

Facilitating the spread of virulence traits in a particularly efficient manner are 

pathogenicity islands (PAI).  PAI’s are characterized as clusters of genes encoding 

proteins with roles involving transfer functions, virulence, stress survival, and 

transcriptional regulation (30).  Furthermore these mobile genetic elements can be 

distinguished from the native chromosome by a significantly different G + C content 

(30).  While first discovered in pathogenic Escherichia coli (31, 40), these mobile genetic 

elements are disseminated throughout many bacterial genera (30).  A 153 kb PAI 

consisting of 129 open reading frames was discovered in Enterococcus faecalis 

MMH594 and shown to disperse to many E. faecalis strains of various origins (15, 43, 

63).  This PAI contains many loci with roles in virulence, including esp (encodes 

enterococcal surface protein), cytolysin toxin, and aggregation substance, as well as 

factors potentially involved in horizontal transfer and gastrointestinal tract colonization 

(63).  Esp is enriched among infection-derived isolates and has been shown to increase in 

vitro biofilm formation (65, 70).  The eight genes comprising the cytolysin operon 

(cylR1, cylR2, cylLL, cylLS, cylMBAI) form a two-peptide lytic toxin (8, 28).  Cytolysin 

toxin is effective against both prokaryotic and eukaryotic cells (18, 19), and contributes 

to mortality in various pathogenic models of infection (14, 27, 36).  A pheromone-

inducible aggregation substance (AS) can also be found in many enterococcal strains.   
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AS promotes aggregation and conjugation (53, 75), increases enterococcal adherence to 

and uptake in eukaryotic cells (39, 52) and increases bacterial survival inside the 

macrophage (69).   

Frequently, PAI’s contain genes encoding transcriptional regulators with various 

regulatory schemes, and the E. faecalis PAI is no exception (30, 63).  The E. faecalis PAI 

encodes an AraC-type regulator, named PerA (for pathogenicity island-encoded 

regulator) (17, 63).  PerA is enriched among clinical E. faecalis isolates and lies adjacent 

to the aforementioned PAI-encoded virulence traits, which suggests PerA-dependent 

regulation of these genes (63).  Through mutational analysis, we have previously shown 

that PerA influences biofilm formation in a medium-specific manner and contributes to 

virulence in a mouse peritonitis model (17).  Additionally, the PerA-deficient strain was 

significantly attenuated during macrophage survival, further supporting the role of PerA 

as an important regulator of E. faecalis pathogenesis (17).   

Prompted by the observation that PerA coordinates E. faecalis virulence in the 

mouse peritonitis infection model, we sought to identify the genes that are regulated 

directly or indirectly by PerA.  We used Affymetrix GeneChip microarrays to 

experimentally define the PerA regulon throughout exponential growth, upon transition 

into stationary phase and during stationary phase persistence.  Our results suggest that 

PerA primarily regulates genes located outside of the PAI in a growth phase-dependent 

manner.  These PerA-regulated genes are located throughout the E. faecalis chromosome 

and include loci responsible for amino acid metabolism, biofilm formation and phage-

associated genes putatively involved in platelet binding.  Further experimentation 

revealed that PerA influences the ability of E. faecalis to bind human platelets and 
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respond to the presence of bicarbonate. Taken together with our previous findings (17), 

we interpret these results to mean that PerA acts as a global transcriptional regulator to 

coordinately regulate genes responsible for enterococcal pathogenicity.  

 
Material and Methods 

 
 

Bacterial strains, media, and reagents.  The strains used in this study were E. faecalis 

E99 (71) and an isogenic ∆perA::ermR mutant (DBS01) (17).  The strains were routinely 

cultured in Todd-Hewitt broth (THB) containing 1% glucose or THB + 1% glucose 

supplemented with 100mM sodium bicarbonate when appropriate.  Antibiotics used for 

selection included kanamycin (25 µg/ml) and erythromycin (50 µg/ml) (Sigma Chemical, 

St. Louis, MO).  Growth was monitored as absorbance at 600nm using a Beckman-

Coulter DU800 spectrophotometer.   

RNA isolation and Microarray analysis.  RNA extraction and microarray analysis 

proceeded as previously described (73) with a few modifications.   Briefly, strains E99 

and DBS01 were grown at 37oC overnight in THB + 1% glucose in appropriate 

antibiotics.  The bacteria were diluted 1:10,000 into fresh, pre-warmed medium and 

incubated at 37oC.  At predetermined optical densities (600 nm; 0.05 for mid-exponential, 

0.5 for late-exponential, and 1.0 for stationary phase) cells were sampled directly into ice-

cold RNAlater (Ambion, Foster City, CA).  Total RNA was extracted using Qiagen 

RNeasy Minikits (Valencia, CA) with optional on-column DNase treatment steps 

according to the manufacturer’s specifications.  RNA integrity was checked by gel 

electrophoresis and stored in 2 volumes of ethanol at -80oC.  cDNA was generated by 

first strand synthesis using Superscript II (Invitrogen, Carlsbad, CA) and random 
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hexamers according to the manufacturer’s specifications.  Fragmentation and 

biotinylation of cDNA proceeded according to the Affymetrix prokaryotic labeling 

protocol using the ENZO Kit from Roche Diagnostics (Indianapolis, IN).  Biotinylated 

cDNA was hybridized to custom Affymetrix GeneChips for 16 h at 45oC.  The custom 

microarrays used in this study contained probes for several prokaryotic genomes 

including Enterococcus faecalis V583 (GEO Accession number: GPL6702).  Affymetrix 

protocol ProkGE_WS2v2-450 was used to stain the hybridized arrays.  Following 

scanning, raw data files (.cel) were analyzed using RMA processing with quartile 

normalization (37).  Biological and technical replicates were averaged, and genes were 

considered to be significantly induced or repressed if the DBS01 : E99 expression ratio 

was greater than twofold (76).  Heatmaps were generated using DecisionSite for 

Functional Genomics (Spotfire, Somerville, MA).  The microarray data has been 

deposited at GEO (GEO accession number, GSE31538).  

qRT-PCR.  Transcript levels were confirmed by qRT-PCR using RNA extracted from 

cells harvested during mid-exponential, late-exponential, and stationary phase.  Primers 

were designed using Primer Express software provided with the ABI Prism 7000 

sequence detector (Applied Biosystems, Foster City, CA).  Amplicon lengths were 100 

bp.  Quantification of 16S rRNA levels was used as an internal control and to normalize 

RNA.  Amplification was detected using SYBR Green PCR Master Mix (Applied 

Biosystems) with automatic calculation of threshold value.  Analysis was repeated in 

triplicate on two biological replicates for each time point.  Replicates were averaged and 

the results are presented in Table 2.    
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Assessment of Platelet Binding.  The ability of E. faecalis cultures to bind human 

platelets was assessed as previously described (45).  Briefly, human platelets were 

washed, fixed and immobilized on poly-L-lysine-coated 22-mm-diameter tissue culture 

wells at a concentration of 1 x 108 platelets per well.  Following 30 min incubation at 

37oC, unbound platelets were removed by aspiration.  The remaining bound platelets 

were subsequently incubated in a 1% casein solution for 1 h at 37oC to reduce non-

specific adherence.  Following removal of the blocking solution, each well was 

inoculated with 1 x 108 of E. faecalis E99, DBS01, or DBS01 (pGT101) suspended in 

PBS and further incubated with gentle rocking.  After 1 h unbound bacteria were 

removed by washing each well twice with PBS and the bound bacteria were collected by 

scraping and resuspending them in PBS.  The number of bacteria bound to platelets was 

determined by plating suspensions on THB supplemented with appropriate antibiotics.  

Binding was expressed as a percentage of the inoculum.  Platelet binding assays were 

performed three times, each assay replicated in triplicate (n=9) using blood from 

multiple, healthy volunteers.  Differences in platelet binding efficiencies were determined 

using an unpaired t-test, as shown in Fig. 7. 

Ethics Statement.  This study was performed under the supervision and approval of the 

Institutional Review Board at the University of Oklahoma.  The platelets used in this 

study were purchased from Bioreclamation (Long Island, NY) and obtained from a blood 

bank supplied by healthy volunteers.  
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Results 
 
 
Overview of microarray data.  PerA is an AraC-type transcriptional regulator that 

contributes to pathogenesis in E. faecalis (17).  To define the PerA regulon, 

transcriptional profiling was performed on E. faecalis E99 and an isogenic ∆perA mutant 

strain (designated DBS01) using RNA extracted from both strains at time points 

corresponding to mid-exponential, late-exponential, and stationary phase (O.D. 600nm ~ 

0.05, 0.5, and 1.0, respectively) (Figs. 1A and 1B).  The RNA was reverse-transcribed 

and subsequently hybridized to E. faecalis V583 genome microarrays.  All array data 

shown are expressed as ratios (DBS01 : E99) and considered to be significant if gene 

expression was induced or repressed in the mutant strain greater than twofold.   The PerA 

regulon is extensive, as transcriptional analysis revealed 151 genes differentially 

regulated > twofold (log2 = 1) in DBS01.  Of these 151 genes, 98 were up-regulated and 

53 were down-regulated.  Nearly one-third (46 of 151) of the differentially regulated 

genes have unknown function, 20 are involved in metabolic functions, and 19 encode 

transport-related genes.  Of the 98 up-regulated genes, 19 are up-regulated in mid-

exponential phase only, 6 are up-regulated in late-exponential phase only, and 57 are up-

regulated only in stationary phase (Figs. 2A and 2B).  Of the 53 down-regulated genes 10 

are down-regulated only in mid-exponential phase, 11 are down-regulated only in late-

exponential phase, and 27 are down-regulated only in stationary phase (Fig. 2A).  These 

data suggest that while PerA is primarily a negative regulator, it can also act as a dual 

regulator, as a positive influence on gene expression is also noted (Figs. 2A and 2B).  

Additionally, the PerA target genes show a high degree of growth-phase dependent 
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regulation, with the highest degree of influence occurring in stationary phase (Figs. 2A 

and 2B).   

DBS01 shows altered expression of PAI-related genes.  The 153 kb PAI carries 

virulence determinants (including cytolysin, Esp, and aggregation substance) adjacent to 

perA (17, 63).  The proximity of the perA gene to genes with ascribed roles in virulence 

is suggestive of PerA regulation of PAI genes.  In DBS01, 5 PAI genes were 

differentially regulated in any of the time points studied (Figs. 2B and 3).  During mid-

exponential growth the EF0579 gene was induced (Fig. 2B).  This locus encodes a 

putative TetR-family protein with unknown function in E. faecalis.  Four genes encoding 

hypothetical proteins (EF0488, EF0531, EF0532, EF0533) were down-regulated between 

2 and 4 fold in DBS01 at late-exponential phase (Fig. 2B).  In stationary phase the 

EF0579 gene was again induced, while the EF0488 gene was no longer differentially 

regulated (Fig. 2B).  The microarrays used in this study were developed using the strain 

V583 sequenced genome.  V583 is missing portions of the cytolysin operon, nsr and 

gls24-like genes, and the entire esp gene due to a spontaneous 17 kb deletion within the 

PAI (63).  Therefore, quantitative reverse transcription PCR (qRT-PCR) was used to 

determine the expression of these PAI genes found in strain E99 but absent in V583.  

qRT-PCR revealed no differential regulation of these genes in DBS01 at any time point 

tested (data not shown).   The differential regulation of PAI hypothetical genes, but not 

genes with previously ascribed roles in virulence, may indicate PerA-dependent control 

of genes with an unknown function in enterococcal pathogenicity; however this 

possibility remains to be studied.      
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The transcription of many housekeeping genes is altered in DBS01.  AraC-type 

regulators are known to control a variety of cellular processes, including metabolism and 

other housekeeping functions.  We mined the transcriptome to determine if any 

housekeeping genes were regulated by PerA, and found a number of genes differentially 

expressed in DBS01.  A number of genes involved in basic cellular metabolism were 

down-regulated in DBS01, including galK, rbsK (EF2961) and rbsD (EF2960) (Fig. 2B).  

galK encodes for galactokinase, while rbsK and rbsD encode for ribokinase and a ribose 

transporter, respectively, and are required for transport and metabolism of galactose and 

ribose.  Many housekeeping genes are induced in DBS01, including genes encoding 

ribosomal proteins (rplQ, rpsP, rpsD [EF3070], rpmB [EF3116] and rpmH [EF3333]) 

and pyrimidine nucleotide biosynthetic genes (purA, EF0014) (Fig. 2B).  Lastly, putative 

peptide ATP-binding cassette (ABC) transporters were significantly induced in DBS01.  

While poorly studied in E. faecalis, these peptide transporters generally provide nutrients 

to bacteria in the form of amino acids or short peptides (23, 47) 

PerA regulates biofilm-related genes in E99.  E. faecalis E99 is a urinary-tract isolate 

possessing a high biofilm phenotype (71).  Recently a ubiquitous enterococcal locus was 

characterized and named ebp (51).  The ebpABC operon encodes the enterococcal 

biofilm-associated pilus and contributes to endocarditis, urinary tract infections (UTI), 

and biofilm formation (51, 66).  The EbpABC proteins are polymerized through the 

activity of Bps (formerly, SrtC), and together are required for maximal biofilm 

production in E. faecalis (51).  EbpR acts as a transcriptional activator of ebpABC and 

positively influences biofilm formation (10).  As previously shown, the PerA regulator 

influences E99 biofilm formation in a medium-dependent manner (17).  To determine if 
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PerA regulates ebpABC and bps gene expression, we compared the transcriptome of 

DBS01 to E99 during mid-exponential, late-exponential, and stationary phase.  In 

DBS01, the ebpABC operon and associated bps gene was induced between 4 and 8-fold 

during mid-exponential and stationary phases (average operon induction = 6.2-fold) (Fig. 

4).  The transition from mid-exponential to late-exponential growth was concomitant with 

an increase in expression of the ebpABC operon (average operon induction = 8.8-fold) 

(Fig. 4).  Induction of the ebpABC and bps genes was confirmed by using qRT-PCR 

(Table 2).  The high degree of ebpABC up-regulation shown here, as well as the increase 

in biofilm formation previously shown in DBS01 (17), suggests that PerA may act as a 

repressor of the ebpABC operon and associated bps gene in E99.   

  Next we sought to examine if PerA regulates other biofilm-related genes found in 

E99, including esp, the bee locus, and fsrABCD operon.  esp encodes for enterococcal 

surface protein, a high-molecular weight protein that is enriched among infection-derived 

enterococcal isolates (72).  The esp gene has been shown to enhance biofilm formation 

(70).  The bee locus is a unique five-gene system that contributes to the high biofilm 

phenotype found in E99 (71).  The bee locus is located on a large (~80 kb) plasmid, and 

can transfer at high frequencies by conjugation (71).  The microarrays used for this 

experiment were derived from the E. faecalis V583 sequenced genome.  V583 is missing 

the esp gene due to a 17 kb PAI deletion (63), and does not contain the conjugative 

plasmid harboring the bee locus (unpublished results).  Therefore it was impossible to 

examine gene expression of these by using microarrays.  qRT-PCR was used to 

determine possible changes in gene expression for the esp and bee loci.  When comparing 
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DBS01 and E99 using qRT-PCR, no significant differential regulation of the esp or bee 

loci in any of the three growth phases tested was observed (data not shown).   

The fsr system, encoded by the fsrABCD operon, is similar to the argABCD 

operon found in Staphylococcus aureus (48).  fsr is a quorum-sensing system that 

mediates the production of a cyclic peptide termed gelatinase-biosynthesis activating 

pheromone (GBAP) (48, 49).  Through the production of GBAP, fsr activates two genes 

encoding a gelatinase (gelE) and a serine protease (sprE) resulting in biofilm formation 

(32, 57, 58). Though little is known about the fsr or gelE-sprE loci in E99, approximately 

60% of E. faecalis clinical isolates produce gelatinase (20).  We searched the microarray 

data and found no differentially regulated genes in either the fsr or gelE-sprE loci in 

DBS01.  Taken together these data suggest that PerA may act to repress the ebpABC 

operon and associated sortase while having little to no influence on the expression of the 

esp, bee or fsr loci under the conditions tested.  

perA and ebpABC respond to the presence of bicarbonate in E99.  Using β-gal assays 

and qRT-PCR, Bourgogne et al. have recently shown that E. faecalis OG1RF ebpABC 

expression increases when grown in sodium bicarbonate in an ebpR-dependent manner 

(11).  Our data suggest that PerA acts as a repressor of the ebpABC locus (Figs. 2B and 

4).  Furthermore, AraC-type regulators are known to respond to bicarbonate, including 

RegA in Citrobacter rodentium and ToxT in Vibrio cholerae (3, 77).  Given that OG1RF 

lacks the E. faecalis PAI, including perA, we were curious to determine the effects of 

bicarbonate on ebpABC expression in E99.  To do this we analyzed the transcriptome of 

E99 grown in THB supplemented with 100mM sodium bicarbonate.  When compared to 

E99 grown in THB, perA was down-regulated in the presence of bicarbonate while ebpR 
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(the activator of ebpABC) was moderately induced (Fig. 5).  Furthermore, the average 

ebpABC expression increased approximately 7-fold (ebpA = 8.0, ebpB = 7.7, ebpC = 4.9), 

with the biofilm and pilus-associated sortase (bps) being induced 4-fold (Fig. 5).   

We reasoned that if PerA represses the ebpABC locus, a down-regulation of perA 

in the presence of bicarbonate would cause a response similar to that seen in DBS01 

(ΔperA).  When comparing the transcriptome of E99 grown in THB supplemented with 

100mM sodium bicarbonate to DBS01 grown in THB, similar trends in perA, ebpR-

ebpABC and bps gene expression are observed (Fig. 5).  These results suggest that perA 

is down-regulated in the presence of bicarbonate, concomitant with an induction of the 

ebpR-ebpABC and bps loci.   

Effect of the perA mutation on expression of ADI pathway.  The arginine deiminase 

(ADI) system is used by many microorganisms to generate ATP via arginine 

fermentation (22).  Genes comprising the ADI pathway in E. faecalis are arranged as the 

arcABCRD operon (ArcA, arginine deiminase, ArcB, ornithine carbamolytransferase; 

ArcC, carbamate kinase; ArcR, Crp/Fnr regulator, ArcD arginine/ornithine antiporter), 

and are known to be transcribed in the presence of arginine (6).  The ADI pathway has a 

complex regulatory scheme with binding sites for two arginine-sensitive regulators 

(ArgR1 and ArgR2), a catabolite control protein (CcpA), as well as a protein involved in 

E. faecalis pathogenicity (Ers) (6, 60).  In DBS01 the arcABCRD operon is highly up-

regulated in all time points tested (Fig. 4).  On average, the arcABCRD operon is induced 

7.6-fold during mid-exponential growth and plateaus upon entrance into late exponential 

phase induced 11-fold.  The average expression of the arcABCRD genes is up-regulated 

3-fold during stationary phase.  This pattern of ADI pathway regulation is similar to that 
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previously observed in E. faecalis.  Bourgogne et al. found that the enterococcal FsrB 

transcriptional regulator negatively influences arcABC expression during transition from 

exponential to stationary phase; though it is unclear if this regulation is direct or indirect 

(9).   Riboulet-Bisson et al. have shown that the Ers regulator activates arcABC 

expression by binding upstream of the arcA gene (60).    For unknown reasons and in 

contrast to this study, arcRD gene expression was not differentially regulated by FsrB or 

Ers (9, 60).  In DBS01 argR1 gene expression was induced at all time points tested (Fig. 

4) while the argR2 gene was not differentially regulated (data not shown).  The argR1 

and arcABCRD genes account for 60% (6 out of 10) of the genes up-regulated in all time 

points tested (Figs. 2A and 4), suggesting the PerA regulator may act as a repressor of 

arginine catabolism in E. faecalis. 

PerA regulates a putative temperate bacteriophage in E99.  Temperate 

bacteriophages are disseminated throughout many gram-positive bacteria, including E. 

faecalis.  The E. faecalis V583 sequenced genome contains seven regions arising from 

integrated phages (56).  Though the role of these phages in E. faecalis virulence has yet 

to be discovered, each of these mobile elements contains homologs of virulence 

determinants from Streptococcus mitis phage SM1 (56, 78).  We mined the microarray 

data for each of these putative phage-related genes, and found a cluster of genes similar 

to phage 04 in V583 that was differentially regulated in DBS01 (Figs. 3 and 6).  This 

element spans ef1985-ef2043 and contains putative replication, integration and virulence 

functions.  The majority of genes on the phage display either no change or non-

significant induction or repression in DBS01 throughout all growth phases.  However a 

group of genes show significant growth phase-independent repression in DBS01, 
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including homologs of pblA, pblB and a gene encoding a putative lysin (Fig. 6).  PblA 

and PblB mediate bacterial attachment to platelets in S. mitis (7).  The lysin protein 

serves a dual purpose: permeablizing the bacterial cell wall, thus permitting release of 

PblA and PblB, and binding to platelets through interaction with fibrinogen and 

fibrinogen receptors (45, 62).  E. faecalis is known to aggregate human platelets, yet the 

molecular mechanisms coordinating this process have not been discovered (59).  The 

repression of pblA, pblB and lysin in DBS01 suggests that PerA influences the expression 

of genes putatively involved in platelet binding and cell wall permeability residing on a 

temperature bacteriophage in E99.   

PerA influences the binding to human platelets.  PerA differentially regulates two 

distinct loci potentially important in bacterial attachment to human platelets.  First are the 

putative pblA, pblB and lysin genes residing on a temperate bacteriophage.  Next is the 

Ebp pilus, which has recently been shown to mediate bacterial attachment to human 

platelets (50).  Given that genes potentially involved in platelet binding were both 

induced and repressed in DBS01 (the ebp and phage-related loci, respectively), we sought 

to determine if DBS01 showed an altered ability to bind human platelets. To assess this 

we compared the ability of E99 and DBS01 to adhere to human platelets immobilized in 

microtiter plates.  As shown in Fig. 7, DBS01 binds human platelets significantly (P < 

0.0005, unpaired t-test) better than the E99 wild-type strain.  DBS01 bound platelets 

approximately 5-fold better than E99.  When DBS01 contained a plasmid-encoded copy 

of perA (pGT101), platelet-binding abilities were restored to the wild-type levels (Fig. 7).  

These results suggest that the inactivation of perA increases platelet binding in DBS01, 

possibly through the derepression of the ebpABC locus.  
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Discussion 
 
 

The perA gene is located on the E. faecalis PAI, adjacent to loci with ascribed 

roles in virulence and genes with putative metabolic functions (63).  Given its location, it 

was our hypothesis that the primary function of PerA was to regulate the expression of 

PAI genes in E. faecalis.  However, transcriptional analysis revealed that in DBS01 only 

5 PAI genes of unknown function were altered in gene expression during the time course 

study.  To our surprise the overwhelming majority of genes regulated by PerA were 

chromosomally located yet not residing within the PAI.  McBride et al. (43) have recently 

suggested that the enterococcal PAI is comprised of clusters of genes that likely undergo 

horizontal transfer as modules.  Additionally, portions of the enterococcal PAI have been 

shown to conjugatively transfer both in vitro and in vivo (15).  These findings raise the 

possibility that PerA is able to transfer to strains lacking the PAI and subsequently exert 

alien control of native genes.  In this scenario, the acquisition of the transcriptional 

regulator PerA could effect a rapid physiological change in the recipient.  In Salmonella, 

HilD, a transcriptional regulator encoded on the Salmonella pathogenicity island SPI-1, 

has been shown to regulate genes on the evolutionary distinct SPI-2 pathogenicity island 

(12).  Furthermore, E. coli strain K12 genes can be regulated by Ler, a regulator located 

on the locus for enterocyte effacement (LEE) pathogenicity island of strain O157:H7 (1).  

Our data suggest that PerA may have the ability to control native chromosomal genes 

upon entry into a recipient; however, the ability of PerA to transfer into an enterococcal 

strain lacking the PAI and regulate native genes remains to be tested.   

Biofilm formation is often a key component of bacterial pathogenesis (42, 46, 79).  

Though not necessarily a virulence trait, as biofilms are also produced by many avirulent 
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bacteria, biofilms contribute to pathogenicity by increasing resistance to antibiotics and 

environmental stresses (21).  In E. faecalis, biofilms are correlated with infective 

endocarditis (10) and urinary tract infections (66), and promote bacterial survival inside 

phagocytes (5).  PerA has been shown to influence biofilm formation in a medium 

specific manner, as a perA-deficient strain designated DBS01 produced more biofilm 

than the WT strain E99 (17).  Transcriptional profiling revealed that PerA negatively 

regulates the enterococcal biofilm associated pilus (ebp) locus, a ubiquitous determinant 

important for maximal biofilm production (51).  This makes possible the interesting 

scenario where the PAI-residing perA could transfer to recipient strains and influence 

biofilm formation through regulation of the ebp locus.  

E. faecalis is known to aggregate platelets (59) a phenotype mediated, at least in 

part, by the Ebp pilus (50).   When comparing the ability of DBS01 and E99 to bind 

human platelets, DBS01 was found to adhere to platelets significantly (~ 5 fold) better 

than E99 (Fig. 7).  This ability to bind platelets is frequently implicated in promoting 

infective endocarditis (26, 68).  When the heart valves become damaged, platelet 

aggregation on the damaged tissue can serve as binding foci for circulating bacteria.  In 

animal studies, these vegetations cause the further accumulation of platelets and bacteria 

onto the infected surface, a condition that may lead to heart failure or death (24).  

PerA influenced the expression of a number of genes involved in amino acid 

metabolism.  The majority of these genes comprise the ADI pathway (arcABCRD) in E. 

faecalis.  The ADI pathway is used by E. faecalis to produce ATP via arginine 

fermentation (35, 67).  Expression of arcABCRD is tightly controlled as the ADI 

promoter region contains multiple binding sites for transcriptional regulators and 
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catabolite repression elements (6).  Riboulet-Bisson et al. (60) recently identified an Ers 

(enterococcal regulator of survival) binding site upstream of the arcA gene, and 

suggested an activator role for this protein.  In the current work, microarray analysis 

revealed that the ADI pathway is highly induced in DBS01, which is suggestive of PerA 

repression of these genes.  Of interest is the increase in arcABCRD gene expression 

concomitant with the induction of the ebp locus in DBS01 (17).  During an infection, it is 

possible that these coordinately PerA-regulated genes perform a related function.  In the 

presence of host proteins or amino acids, the de-repression of the arcABCRD operon 

would permit the transport and degradation of liberated arginine.  In this scenario 

arginine fermentation may provide energy for biofilm formation during pathogenesis.  

The biofilms could then serve to increase bacterial persistence inside the host and further 

the invasion of nutrient-rich host tissue.  Furthermore, the PerA regulon comprises genes 

encoding a putative peptide ABC transport system (Fig. 3).  These peptide transport 

systems provide nutrients to the cell by internalizing amino acids and short peptides, and 

are often critical for the survival of auxotrophic lactic acid bacteria (23).  Zhu et al. (79) 

found that clinical isolates of Staphylococcus aureus selectively extracted arginine from 

growth media during biofilm formation.  Chaussee et al. (13) found that in Streptococcus 

pyogenes the expression of virulence factors is coordinately regulated with amino acid 

catabolism.  In this work, we show that PerA regulates genes involved in amino acid 

catabolism and biofilm formation, which further suggests a regulatory, if not functional, 

correlation between amino acid degradation and biofilm formation.   While intriguing, the 

correlation between arginine metabolism and biofilm formation in E. faecalis remains to 

be studied.  
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Bicarbonate production is important for maintaining pH homeostasis in the small 

intestine, as it neutralizes acid in the intestinal lumen and prevents damage to the 

adherent mucus layer (4, 38).  Many pathogens use the presence of bicarbonate as an 

environmental signal to coordinate the expression of virulence traits and frequently 

AraC-type regulators are involved (2, 3, 77).  Bourgogne et al. have shown that the 

transcription of the E. faecalis OG1RF ebp locus is enhanced in the presence of 

bicarbonate, yet the regulatory cascade linking bicarbonate to ebp expression is unclear.  

In E99, PerA appears to be a repressor of ebpABC expression (Figs 2B and 4).  In the 

presence of bicarbonate perA was down-regulated concomitant with an induction of 

ebpR-ebpABC and bps expression (Fig. 5).  This suggests that in E99, PerA may be part 

of the regulatory cascade controlling ebp expression in response to bicarbonate whereby 

the production of bicarbonate in the intestine causes a down-regulation of perA, which 

leads to the production of the Ebp pilus.  In this scenario, the sensing of environmental 

bicarbonate ultimately stimulates the production of an adhesin that could aid in 

colonization of the intestine.  

From our data we are unable to determine if PerA directly responds to bicarbonate 

or if it is influenced by other regulatory mechanisms that detect bicarbonate.  AraC-type 

regulators are comprised of a conserved C-terminal DNA-binding domain and a N-

terminal domain important for ligand binding.  Comparisons of the PerA sequence to 

other AraC-type regulators that are known to detect bicarbonate (C. rodentium RegA and 

V. cholerae ToxT) reveal that PerA exhibits C-terminus similarity, yet virtually no N-

terminus sequence similarity exists (data not shown).  Furthermore, we have previously 

shown that the PerA N-terminus contains no similarities with other AraC-type regulators 
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(17).  It is possible that PerA senses bicarbonate using a unique bicarbonate-binding 

motif, however it is also possible that other regulators that sense bicarbonate may control 

perA expression.  In regards to the latter possibility, E. coli MarA and SoxS are AraC-

type regulators known to regulate transcription without directly detecting a ligand (29, 

34).   

PerA also appears to influence the expression of a number of housekeeping genes.  

Perhaps most notably is the down-regulation of genes in DBS01 involved in the basic 

metabolism of the cell, concomitant with an induction of genes responsible for biofilm 

formation and attachment to host cells (Fig. 2B).   It is possible that at the site of infection 

E99 uses PerA as a global dual-regulator to orchestrate the down-regulation of many 

housekeeping genes non-essential to pathogenicity while inducing genes responsible for 

colonization and infection of the host. 

We have previously shown that PerA contributes to E. faecalis survival in the 

macrophage (17).  However, finding the PerA-regulated genes that coordinate 

macrophage survival using our current strategy has, thus far, proven inconclusive.  We 

are keen to realize the harsh phagosomal environment encountered by E. faecalis during 

phagocytosis is almost certainly drastically different than the conditions in this study.  

Though studies seeking to determine the E. faecalis intracellular survival strategy have 

increased our understanding of the challenges faced upon phagocytosis, the whole-

genome transcriptional response used by E. faecalis during macrophage survival has yet 

to be revealed.  This information would not only yield a better understanding of the 

phagosomal landscape during E. faecalis infection, but it would also illuminate the E. 

faecalis macrophage survival strategy.  During intracellular survival, it is possible that 
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basal (or perhaps enhanced) expression of perA influences the transcription of 

hypothetical function genes, thus impacting persistence within the macrophage.  

In the current study we used whole-genome E. faecalis V583 microarrays to 

determine the PerA regulon in E99.  Though we used qRT-PCR to interrogate PAI genes 

in E99 that are missing from V583, we realize there could be other genes present in E99 

yet absent from the V583 microarray.  E99 contains a large, conjugative plasmid 

(pBEE99) comprised of genes that confer a high biofilm phenotype and increased 

ultraviolet radiation resistance (16).  Additionally pBEE99 contains genes putatively 

encoding an aggregation substance and a two-component bacteriocin (16).  Under the 

conditions tested PerA did not regulate either the PAI genes or the bee locus.  However, 

the expression of the remaining pBEE99 genes in DBS01 remains to be determined.  

Furthermore, since the E99 genome has yet to be sequenced, this strain could possess 

unknown loci that are potentially regulated by PerA and contribute to virulence.  

In conclusion, our data suggests that PerA is a global transcriptional regulator that 

coordinately controls genes important for pathogenicity.  We can now propose a 

mechanism of how E99 achieves pathogenicity by using PerA as part of a regulatory 

network controlling expression of virulence genes.  When appropriate environmental 

signals are sensed (quite possibly the presence of bicarbonate), the cell quickly and 

efficiently creates a rapid physiological change by down-regulating one gene: perA.   In 

response to the environmental signal, the reduced levels of PerA would alleviate 

repression of genes important for biofilm formation and colonization of host tissues.  

Concurrently, metabolic and substrate transport pathways critical for cell nutrition are 
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induced while unnecessary housekeeping genes are repressed, thus ensuring the cell has 

the proper nutrients for pathogenicity.   
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Table 1. qRT-PCR primers used in this study 
Primer Sequence (5` - 3`) 
arcA-F AAGCCAATATTCGCAGCGAA 
arcA-R AATGCCTGCAATCGCTTTTT 
arcB-F TTTGACGGGATTGAGTTCCG 
arcB-R TGCCATTGATCCGTTAAACCA 
arcC-F ATGATGCTAGCGCACATGCA 
arcC-R GCCATGTGAAACAATCAACCG 
arcR-F TCCGAGAATCGGACTGTTTCA 
arcR-R AACGCTCAAACAGTTTAACTGGC 
ebpA-F ACCGCGGATGAAAGCTATCA 
ebpA-R CCAGGAACTGCTAATTCACGG 
ebpB-F CGTACAGGCGGCAAGTCTTT 
ebpB-R AGGTATTCCCCCGCTTGATT 
ebpC-F GAATTTTACGAGCAACGAGCG 
ebpC-R TCGGTGGTTCCTTGAGCAAC 
bps-F CATTTCAGGCCATCGTGGTC 
bps-R GCGTCTTCCCATTGACTTCG 
16S-F AGCCGGAATCGCTAGTAATCG 
16S-R TCGGGTGTTACAAACTCTCGTG 
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Table 2.  Members of the PerA regulon confirmed by qRT-PCR 

  
Fold-Change* 

Gene Product 0.05 0.5 1.0 
ebpA von Willebrand factor 7.8 30.0 21.1 
ebpB Cell wall surface protein 14.0 30.0 19.7 
ebpC Cell wall surface protein 14.0 27.9 19.7 
bps Sortase 2.6 2.8 2.0 
arcA Arginine deiminase 30.0 274.4 9.8 
arcB Ornithine carbamoyltransferase 24.3 181.0 13.9 
arcC Carbamate kinase 8.0 73.5 19.7 
arcR Transcriptional regulator Crp/Fnr 4.3 64.0 18.4 
* Change in DBS01 gene expression (DBS01 : E99) at OD600 = 0.05, 0.5 and 1.0 
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Figure legends 

Figure 1.  Growth curves for E99 (A) and the ∆perA derivative DBS01 (B).  Arrows 

indicate sampling times for microarray analysis and correspond to mid-exponential, late-

exponential, and stationary phases (OD600 of 0.05, 0.5 and 1.0, respectively).  OD600, 

optical density at 600 nm.   

 

Figure 2.  Comparisons of microarray results for E99 and DBS01.  Control RNA was 

extracted from E99 and used to normalize the test RNA extracted from DBS01 (DBS01 : 

E99).  All data presented here shown as fold change in gene expression (test : control).  

(A) Upper diagram: Venn diagram comparing significantly up-regulated genes (> 2 fold) 

in DBS01 during mid-exponential, late-exponential and stationary phase.  Lower 

diagram: Venn diagram comparing significantly down-regulated genes (> 2 fold) in 

DBS01 during mid-exponential, late-exponential, and stationary phase.  (B) 

Hierarchically-clustered heat map of all genes differentially regulated > twofold between 

DBS01 and E99.    

 

Figure 3.  All genes differently regulated in DBS01 mapped onto the E. faecalis 

chromosome.  The outer ring displays those genes differentially regulated during mid-

exponential phase.  The middle ring displays those genes differentially regulated during 

late-exponential phase.  The inner ring displays those genes differentially regulated 

during stationary phase.  The innermost circle displays the location relative to position 

zero in millions of base pairs of the E. faecalis V583 genome.  The locations of the 
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arginine deiminase (ADI) and enterococcal biofilm-associated pilus (Ebp) operons, the E. 

faecalis pathogenicity island (PAI), and a phage related element are indicated.   

 

Figure 4.  Plots comparing the log2 expression ratios of the arginine deiminase (ADI) 

and enterococcal biofilm associated pilus (Ebp) operons in DBS01.   

 

Figure 5.  perA, ebpR-ebpABC and bps gene expression in E99 grown in THB 

supplemented with 100 mM sodium bicarbonate (dark bars) or DBS01 grown in 

THB (light bars).  The values shown are mean expression intensities (mean ± SD). 

 

Figure 6.  Map of E. faecalis V583 phage 04.  The putative proteins were compiled 

using the annotated V583 sequence.  The direction of transcription is shown in blue 

(reverse) and red (forward).  Heat maps of expression ratios (fold change) for DBS01 are 

shown for mid-exponential (O.D. 600 = 0.05), late-exponential (O.D. 600 = 0.5) and 

stationary phase (O.D. 600 = 1.0).   

 

Figure 7.  Platelet binding activity of E99 and DBS01.  The values shown are percent 

of wild-type (E99) binding (mean ± SD).  Asterisks indicate binding activities that were 

significantly different than E99 (P = 0.05).  Platelet binding assays were performed in 

triplicate and each experiment was repeated twice (n = 6).   
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The experiments described in this thesis have detailed the E. faecalis V583 

intracellular transcriptome and identified genes regulated by the AraC-type 

transcriptional regulator, PerA.  In this final chapter, the main points from of the previous 

chapters are reviewed and general trends discussed.  Additionally, outstanding questions 

that warrant future study are addressed.   

 
Chapter two summary.  The experiments presented in Chapter two examined the 

response of E. faecalis V583 to the intracellular environment within a macrophage.  By 

interrogating the bacterial transcriptome during macrophage survival we are able to 

determine not only the E. faecalis-containing phagosomal environment but also the 

genetic response to such harsh conditions.  We found that a macrophage infected with E. 

faecalis is limited for substrates required for growth, including sources of carbon, amino 

acids and nucleotides.  These conditions were sufficient to elicit the stringent response in 

V583, which resulted in the down-regulation of genes comprising the transcriptional and 

translational apparatus.  Furthermore, we found the phagosome to be devoid of copper, 

phosphate, iron and potassium.  The macrophage produced a robust oxidative burst 

following phagocytosis, as was evidenced by the induction of E. faecalis oxidative stress 

response genes. The induction of the bacterial SOS and heat-shock stress responses 

suggest that cellular components were damaged.  These findings provide a detailed 

analysis of the intracellular environment and the bacterial systems used during survival 

within macrophages.   
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Chapter three summary.  The experiments presented in Chapter three determined the 

PerA regulon.  PerA resides on a mobile PAI yet the overwhelming majority of PerA-

regulated genes are chromosomally located (not on the PAI).  PerA coordinately 

regulates genes involved in metabolism, amino acid degradation, biofilm formation and 

platelet binding.  Using an in vitro platelet-binding assay, we showed that PerA mediates 

the binding of E. faecalis to human platelets.  Finally, we show that PerA responds to 

bicarbonate, an intestinal ion frequently used by pathogens to determine the site of 

infection.  These results indicate that PerA is a global transcriptional regulator that 

coordinately regulates genes responsible for enterococcal pathogenicity.  Given the 

ability of the E. faecalis PAI to undergo horizontal transfer into recipients that lack the 

PAI, this likely represents a novel strategy for coordinate regulation of genes in the core 

genome by a PAI-encoded regulator.  

 
Synthesis and Outstanding questions.  When analyzing the E. faecalis intracellular 

transcriptome, it was my goal to describe the V583 response to phagocytosis in light of 

what is known about other intracellular pathogens (specifically L. monocytogenes, S. 

typhimurium and M. tuberculosis).  In each comparison similarities and differences were 

observed.  For example, E. faecalis and S. typhimurium both experience oxidative stress 

within the macrophage and repair oxidized protein using homologous systems (Chapter 3, 

Fig. 3) (6).  Furthermore, each induce members of the bacterial SOS response, suggesting 

that cellular components were damaged during intracellular survival (Chapter 3, Fig. 3) 

(6).  However, S. typhimurium replicates within the SCV using energy obtained through 

the metabolism of carbohydrates via the Entner-Doudoroff pathway (6), while V583 does 

not appear to replicate or metabolize within the macrophage (Chapter 2, Fig. 3) (9).  In 
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contrast to S. typhimurium and M. tuberculosis (intracellular pathogens that persist within 

modified phagosomes), L. monocytogenes produces a lysin to escape the phagsome and 

enter into the macrophage cytoplasm (8, 13).  Here, the bacteria find conditions suitable 

for replication and eventually commandeer host proteins to facilitate cell-to-cell spread 

(4, 16).  Unfortunately, the amount of information known about the E. faecalis 

intracellular survival strategy trails that of other intracellular pathogens.  While it is clear 

that the E. faecalis-containing phagosome fuses with lysosomes (1), we do not know if 

this fusion is delayed, as occurs in macrophages infected with M. tuberculosis (14).  Also, 

E. faecalis induces a gene encoding a hemolysin (Chapter 3, Fig. 3) and is able to escape 

the phagosome and enter the cytoplasm (much like L. monocytogenes) (9). Yet unlike L. 

monocytogenes, E. faecalis is apparently unable to replicate within the macrophage (9).  

Why not?  

 The enterococci are fastidious bacteria that require relatively rich growth 

conditions; in fact, there is currently no chemically defined minimal medium that 

supports growth of E. faecalis.  Furthermore, like most lactic acid bacteria, E. faecalis is 

auxotrophic for many amino acids and, therefore, must obtain them from the surrounding 

environment.  Previous studies have determined that macrophage infected with other 

intracellular pathogens vary in regards to carbohydrate and amino acid availability (2, 5, 

15).  The data presented in this thesis (specifically in Chapter 2) suggest that the 

macrophage infected with E. faecalis is devoid of carbohydrates and amino acids.  

Whether the lack of enterococcal replication during intracellular survival can be directly 

attributed to the lack of carbon and amino acids remains to be studied.  However, the data 

in Chapter 2 suggest 1) that the macrophage is limited for key compounds required for 
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growth of E. faecalis, and 2) the intracellular environment varies depending upon the 

pathogen phagocytosed.  I’d like to think that Dirk Schnappinger was right when he 

stated, “There is no one phagosome.  Phagosomes differ depending on the cell in which 

they arise, their point along the developmental cycle of the organelle, and the nature of 

the microbe resident within them” (15).   

 On the other hand, perhaps E. faecalis does not need to replicate within the 

macrophage to cause disease, unlike other intracellular pathogens.  The genes expressed 

during intracellular survival, combined with intrinsic survivability in harsh conditions, 

may permit E. faecalis to remain quiescent in the macrophage.  Thus, this opportunistic 

pathogen may simply persist in the macrophage, thereby using an immune cell as a 

vehicle for translocation to extra-intestinal sites.   

 I have often been told that in science the quest to answer one question often leads 

to many others.  That was certainly the case in the experiments highlighted in Chapter 3.  

It was our goal to define the PerA regulon, which led to the interesting discovery that this 

PAI-encoded transcriptional regulator primarily influences the expression of genes not 

located on the PAI.  Also surprising were the findings that PerA contributes to platelet 

binding and responds to bicarbonate.  Despite this advance in the understanding of 

coordinate regulation in E. faecalis, many unanswered questions remain.  We currently 

do not know the set of genes directly regulated by PerA.  Undoubtedly the PerA regulon 

defined in Chapter 3 is comprised of genes that are both directly and indirectly PerA-

regulated.  Knowing the set of genes directly regulated by PerA would allow us to 

determine a consensus PerA-binding motif.  With this information we could then mine 
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the E. faecalis genome for potential PerA-regulated genes that did not respond in our 

growth conditions.  

 Coburn et al. showed that PerA contributes to the survival of E. faecalis within a 

macrophage (3).  The experiments outlined in Chapter 3 defined the PerA regulon.  

However, from our data we are unable to determine which PerA-regulated genes are 

important for intracellular survival as the growth conditions used in this study in no way 

mimic the intracellular environment.  Obtaining the intracellular transcriptome of E99 or 

DBS01 (ΔperA) would provide clues as to which PerA-regulated genes are important for 

survival in the macrophage.  We are keen to realize that the numerous PerA-regulated 

genes of unknown function might contribute to intracellular survival, yet this possibility 

remains to be studied.   

Although PerA is clearly important for the survival of E. faecalis E99 in the 

macrophage (3), many strains lacking the perA gene persist during intracellular survival 

(9).  There are many potential explanations for this observation; a few are discussed 

below.  PerA is an AraC-type protein and as such it is one of the most common 

transcriptional regulators found in bacteria (7).  In fact, the V583 genome contains 9 

AraC-type regulators (12).  It is possible that other AraC-type regulators function in place 

of PerA in E. faecalis strains lacking this protein.  For this to occur it would be necessary 

for the DNA-binding domains to be very similar.  Fortunately, the N-terminal DNA-

binding domains are highly conserved amongst AraC-type regulators (7).   Another 

possibility is that other E. faecalis strains capable of intracellular survival possess loci not 

found in E99.  These loci might contribute to persistence within the macrophage 

regardless of the presence of PerA.   
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E. faecalis strains lacking PerA have a decreased bacterial load in the liver and 

spleen (3).  Though it is possible the decreased bacterial load of DBS01 in the liver and 

spleen is due to the attenuated survival of this strain in the macrophage, it is also possible 

PerA-regulated genes are critical for infection of these tissues.  It is not known if perA is 

expressed in the liver or spleen, however obtaining this information would provide clues 

as to the role of PerA and its regulon in these sites.   

The data presented in Chapter 3 (specifically those regarding the response of PerA 

in the presence of bicarbonate) suggest PerA does not directly detect bicarbonate, but 

rather is influenced by other regulators.  Additionally, AraC-type regulators are capable 

of directly sensing environmental stimuli, however these proteins are also known to 

regulate transcription without directly detecting a ligand (10, 11).  perA is down-

regulated in bicarbonate concomitant with the induction of members of the PerA regulon 

(Chapter 3, Fig. 5).  We reason that if PerA were auto-regulating its own expression, the 

perA transcript would increase in abundance under PerA de-repression conditions.  We 

observed the opposite.  Furthermore, the PerA C-terminus contains no known 

bicarbonate-binding domains (data not shown), further suggesting another cellular 

component senses ion concentration then influences perA transcription.  Defining the 

position of PerA within the E. faecalis E99 regulatory network would not only increase 

our understanding of transcriptional regulation in this pathogen, but also permit the 

search of regulators with similar functions in other strains.   

Clearly many questions remain.  However, I hope the data presented here 

advances the understanding of enterococcal pathogenicity.  More broadly, it is my hope 
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that the information provided here can be used to further delineate commensal vs. 

pathogen relationships.   
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