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Abstract 

Many examples of turbulent motion of particles in nature can be better perceived 

through the concept of backwards turbulent dispersion. Some examples include 

pollutants in atmosphere or oceans reaching populated human or marine life, mixing 

scenarios where components are moving towards the mixing location, or temperature 

noise at a certain downwind location.  In these scenarios, turbulent dispersion occurs as 

the particles diffuse towards a particular location. The combined direct numerical 

simulation/Lagrangian scalar tracking (DNS/LST) approach is used to obtain 

Lagrangian statistics of turbulent scalar field. This provides a natural and convenient 

framework to compute statistics for turbulent backwards scalar dispersion. Using this 

method, the forwards and backwards single particle and relative dispersion statistics are 

calculated. The rates of dispersion and the principal direction of transport of heat are 

studied. Four main regions of the channel, namely, viscous sub-layer, transition region, 

logarithmic region and center of the channel, are studied with interest. The dispersion 

characteristics are also analyzed for different types of fluids, including but not limited 

to, Pr = 0.1 (liquid metal regime), Pr = 0.7 (air), Pr = 10 (water), Pr = 100 to 50000 

(heavy oils, engine oils). The results of the study show clear differences in the rates and 

direction of heat transport for the forwards and backwards dispersion. A term called 

“turbulent dispersive ratio” is established as a parameter to capture the differences in 

the direction of forwards and backwards scalar transport. 

A vast DNS/LST database generated over the years in the cases of different Re 

and Pr is utilized to propose and verify a scaling parameter to capture turbulent heat 

transport. This scaling parameters, identified as the location and the value of the 
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maximum normal turbulent heat flux, capture all the inner scales, which are the scales 

of turbulent flows in the near wall regions of the channel, while exhibiting universality 

in capturing the scalar profiles of mean, fluctuations, and scalar flux. 

Finally, the versatile DNS/LST particle method is used to translate the 

theoretical framework of Churchill to calculate the turbulent Prandtl number (Prt). The 

study provides the first-of-a-kind dependency data for Prt for different wall normal 

locations and different molecular Pr. The results reveal a dependence of Prt on the Pr, 

especially very close to the wall. 
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Chapter 1: INTRODUCTION 

 Turbulent transport from solid boundaries has a wide variety of natural and 

industrial applications. Gaining understanding of such turbulent flows, which can in 

turn help in actively or passively modifying any such flow system, can be of immense 

technological importance. Turbulent dispersion is one of the defining characteristics of 

turbulence and plays a major role in industrial applications, such as heat exchange, 

mixing, flow in reactors or catalyst regeneration units. The trajectories of fluid particles 

that move erratically due to dispersion can be analyzed, and their statistics can be 

helpful in characterizing the turbulence in that flow field. Since turbulent dispersion is a 

result of the turbulence in the flow field, it is also a random or stochastic process. The 

majority of our knowledge about turbulent dispersion comes from Eulerian 

measurements, where a frame of reference that is fixed in space is used. However, 

Lagrangian computations and measurements, where the system of reference follows the 

motion of individual fluid elements, can lead to valuable insights about the process of 

turbulent dispersion and in turn about the mechanism of turbulent transport. Since 

laminar flows provide weak transport mechanisms, turbulent dispersion is quite 

important for mixing dispersed phases. In fact, one of the defining characteristics of 

turbulence is the enhancement of mixing [1].  

The literature in the case of turbulent flows inside channels has vastly expanded 

over the past few decades. Numerical experimentation using the direct numerical 

simulation technique has been implemented by Lyons [2], Kim et al. [3] and later 

Papavassiliou [4] to understand some of the finer details of turbulent channel flows. 
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These studies have classified the different regimes in turbulent channel flows based on 

the velocity profiles while also identifying the presence of a variety of coherent 

structures that drive these turbulent flows. Many experimental and computational works 

have focused on turbulent dispersion in isotropic, homogenous turbulence. However, 

how does turbulent dispersion behave in anisotropic turbulent channel flow? Is there an 

interlinking between the coherent structures and the characteristics of turbulent 

dispersion? Research in the area of turbulent dispersion has not focused on these 

questions.  

Understanding how heat or mass is transported due to turbulent dispersion in 

channels can also be of practical significance in cases where one needs to determine the 

locations of hotspots and identifying the positions to place thermal sensors inside heat 

exchangers, and to calculate locations of maximum or efficient mixing inside mixing 

vessels. Several different experiments and numerical simulations have aimed at 

identifying dispersion characteristics in wind tunnels, isotropic turbulence, and in wall 

turbulence. Most of the data obtained have been for dispersion in case of particles of the 

fluid dispersing from an initial location at a particular initial time. However, it is not 

always that particles of the dispersing fluid tend to move away from one another in case 

of turbulent dispersion. For example, in mixing, ensembles of particles of the fluid 

move towards the point of mixing and the dispersion carries these particles towards the 

location at a particular final time of reference. It is important to identify the nature of 

these two types of dispersion. What is the driving force behind these two types of 

dispersion and how do they differ in characteristics? The results of such a study can be 

valuable in improving the existing dispersion models available for mixing applications.     
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 Wall bounded turbulent flows with their relevance in turbulent boundary layers 

and significance in aerospace, naval and other industrial applications have been studied 

with vast interest. There has been plenty of research in turbulent boundary layer flows 

and channel flows aimed at understanding unique parameters to scale turbulent flow 

parameters. Because of the recent availability of extensive databases for different types 

of flow and flow conditions, several studies over the past few years have investigated 

scaling of turbulent momentum transport.  While the literature related to scaling of 

turbulent momentum transport grows, rather few studies have aimed at understanding 

the scaling and dynamics behind turbulent scalar transport. The direct applicability of 

the wall parameter scaling of turbulent momentum transport to turbulent scalar transport 

needs considerable deliberation. Studies have recently established the tenuous and 

rationally unjustified analogy between momentum and heat transport [5]. Other studies 

[6] have established further proof of failures of some of the basic transport analogies 

proposed over the years and plenty of questions remain unanswered with respect to the 

scaling of turbulent scalar transport. 

 The failures of the theoretically established analogies [7] have increased the 

interest of researchers to better understand turbulent heat/mass transport. Since most of 

the past works have restricted themselves to momentum transport and assumed an 

analogous relationship to heat transport, to this day, relating the scalar fluctuations to 

the fluctuations in velocity is a major theoretical problem. The challenge remains to 

essentially calculate the identified parameters like the Reynolds stress, turbulent heat 

flux, to close the combined system of equations relating both the momentum and heat 

transfer.  
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 This dissertation aims to answer some of the unanswered questions outlined 

above, in the area of turbulent flow research. The research work is focused on fully 

developed turbulent flow inside turbulent channels. The first objective of this 

dissertation is to understand the concept of turbulent backwards dispersion and 

differentiate it from the forwards dispersion. The focus is then shifted to study the 

scaling characteristics of scalar turbulence. Finally, momentum transport is related to 

heat/mass transport by obtaining the values for the turbulent Prandtl number.  

1.1 Turbulent dispersion 

Depending on whether one analyzes a single particle or pairs of particles 

selected from a particle cloud undergoing dispersion, single or relative dispersion, 

respectively, are of interest. Studying turbulent relative dispersion is of practical 

importance, since there is a fundamental link between pair dispersion and problems like 

growth of contaminant clouds in the atmosphere [8, 9], mixing of chemical species in a 

chemical reactor [10, 11], and even industrial production of nanoparticles [12]. 

Furthermore, a clear understanding of turbulent dispersion helps in better describing 

concentration fluctuations of a particular particle cloud [13, 14] and in determining 

reaction rates in turbulent chemical reactors and in analysis of turbulent combustion 

[15, 16].  

Two different forms of turbulent dispersion can be distinguished. The 

classification takes into account the timeframe of the dispersion process and the initial 

and final location of the particles being dispersed. The forwards dispersion is related to 

how fluid particles, all at the same initial location (point, line or plane) at an initial time, 

diffuse away from this source; this is, for example, the case of how smoke moves away 
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from a chimney.  On the other hand, if one considers the case of turbulent mixing, it 

will occur when material from two different locations, carrying fluid with different 

scalar concentrations, is brought together by turbulent motion. In this case, the 

dispersion of interest occurs prior to the particles arriving at a particular final location 

(point, line or plane) at the final time of interest. This process is termed backwards 

dispersion. Similar to the concept of turbulent forwards and backwards scalar single 

particle dispersion, one can also study two different cases of turbulent relative 

dispersion, “forwards relative dispersion” and “backwards relative dispersion”. 

1.2 Scaling of heat transport – wall turbulence 

 With the complexity that turbulence poses and its prevalence in a variety of 

flows, there has always been the need to simply it to capture some of its important 

characteristics.  For example, some of the concepts like similarity analyses, dimensional 

analysis, scaling analysis, that have been introduced over the years have enabled 

researchers to identify some of the main variables and study the behavior of flow 

characteristics with respect to these variables. Such studies can be advantageous as they 

can help in reducing the number of variables needed to describe a particular flow. The 

relatively recent two-fold improvement, first, in developing experimental facilities 

capable of performing high Reynolds number turbulence experimentation [17-27], and 

second, in manufacturing high performance supercomputers that enable medium to high 

Reynolds number direct numerical simulation (DNS) studies [3, 28-34], has helped in 

accumulating a relatively large database of turbulence statistics. Hence, the use of 

similarity analysis, dimensional analysis, and the scaling of the turbulent flow statistics 

has been the subject of increasing interest in the past few years. 
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A review of the literature developed over the years about the “classical” scaling 

of turbulent flow close to a solid interface, which uses the wall parameters, namely, 

friction velocity, u
*
, and fluid kinematic viscosity ν, has been presented by Gad-el-Hak 

and Bandyopadhyay [35].The question of the universality of this classical scaling, 

however, has been open for debate [36-45]. The main issues voiced in these works and 

the key points behind these differing opinions have been succinctly summarized by 

Marusic et al. [46]. While various studies establish the scaling characteristics of 

momentum transport, there has been a relative lack of studies that aim to understand the 

same for heat transport (from hereon, any reference to heat transport in the rest of the 

dissertation will also apply to mass transport. The dimensionless number, Prandtl 

Number, Pr, for heat transport, will automatically correspond to the dimensionless 

number, Schmidt Number, Sc, in case of mass transport). One can trace this lack of 

extensive scaling studies of heat transport to the establishment of empirical analogies 

that relate momentum to heat transport. Researchers have long believed that the 

established analogies can help in easily identifying heat transport scaling from the 

corresponding momentum transport scaling. However, studies have recently shown that 

the various momentum-heat transport analogies are not always true and sometimes 

break down [5, 6]. 

A first-of-a-kind comprehensive, semi-empirical correlation for the mean 

temperature profile was derived by Kader [47]. The Kader correlation utilized the 

classical scaling to predict the mean temperature as a function of the Prandtl number 

(Pr) in turbulent flow between infinitely long parallel plates as follows 
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where y
+
 is the dimensionless distance from the wall, and h

+
 represents the 

dimensionless half-channel height. The dimensionless temperature in wall units, T
+
, is 

defined as 

 
p

w

T c uT
T

T q

 




         (1.2) 

where qw is the wall heat flux,  is the fluid density, cp is the fluid heat capacity, Γw is 

the wall shear stress, wu


 
  is the friction velocity, and y

+
 is given as 

yu
y




  . 

The Prandtl number of the fluid is given by Pr
pc

k


 , where μ is the dynamic viscosity 

of the fluid, and k is the thermal conductivity of the fluid. The use of the friction 

velocity, the viscosity and the wall heat flux is the essence of the classical scaling, or 

also known as “viscous” or “wall” scaling. This approach is referred to as classical 

scaling in the remainder of the dissertation. In Equation (1.1) the parameters  and ξare 

given as follows: 

   Prln2.23.1Pr85.3(Pr)
23/1      (1.3) 

and 
 

4
2

3

10 Pr

1 5Pr

y

y


 





      (1.4) 

It is important to mention here that the Kader’s temperature profile is semi-empirical 

and it was derived under the assumption that temperature scales with a single parameter 

in the overlap region between the inner and outer regions of the channel. The region 
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close to the wall is called the “inner region”, while the region in the center of the 

channel is called the “outer region”. Equation (1.1) is a significant result as it helps to 

completely describe the temperature profile through the entire height of the channel.  

1.3 Turbulent boundary layer parameter – turbulent Prandtl number 

The uncertainty associated with calculating the momentum and heat flux in the 

momentum and heat transport equations make it hard to solve the latter in case of 

turbulent wall bounded flows.  The important fundamental parameter that relates these 

two quantities is the turbulent Prandtl number (Prt) (or turbulent Schmidt number, Sct), 

which relates the eddy diffusivity of heat (or eddy diffusivity of mass) to eddy 

diffusivity of momentum. Regarding turbulence modeling, the prediction of Prt is 

necessary to close the system of equations for heat transfer when eddy viscosity-based 

models (such as    models) are utilized. Churchill [48], in his AIChE Institute 

Lecture, stated that “The development of a comprehensive predictive correlative 

expression for the turbulent Prandtl number is the principal remaining challenge with 

respect to the prediction of turbulent forced convection.” In analogy to its molecular 

counterpart, the Prt is defined as the ratio of eddy diffusivity of momentum, νt to eddy 

diffusivity of heat, αt, while the Sct is defined as the ratio of eddy diffusivity of 

momentum to eddy diffusivity of mass (recall that any reference to Prt and to heat 

transfer applies to the case of mass transfer and for Sct)  

t

t
t




Pr         (1.5) 

The Prt is given as 
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Where, u’ and v’ are the velocity fluctuations in the streamwise, x, and normal, y, 

directions, respectively. T’ is the fluctuation temperature, ' 'u v  and ' 'T v  is the 

Reynolds stress and turbulent flux, respectively. The evaluation of Prt at any point in 

the turbulent flow field requires the measurement of four quantities, i.e., the turbulent 

Reynolds stress, the velocity gradient, the turbulent heat flux, and the temperature 

gradient at that point. The difficulty of determining these four quantities accurately and 

concurrently at any given point makes data for Prt scarce. Most prior studies have 

reported that the Prt strongly depends on the Pr. In addition, for cases of turbulent flow 

through ducts, pipes or channels, the Prt has shown strong dependence on the distance 

from the wall.  
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Chapter 2: REVIEW OF LITERATURE 

2.1 Turbulent dispersion 

2.1.1 Single particle turbulent dispersion 

The dispersion of particles by molecular means (i.e., Brownian motion) from the 

source in x-direction has been described in Einstein’s work [49], who formulated the 

following relation:  

dt
DXd 2

2

        (2.1)                                                                                                                                                                                   

where D represents the molecular diffusivity and X  is the particle displacement. For 

dispersion of fluid particles from a point source in a homogenous, isotropic turbulence, 

Taylor [50] proposed the following equation, in analogy to Einstein’s Brownian 

movement correlation: 

dt

dRuXd
t

L


0

2
2

)(2       (2.2) 

where, 2u is the mean square of the x-component of the velocity of fluid particles and 

LR is the Lagrangian correlation coefficient. According to Taylor, the coefficient LR  

takes into account the history of the particle motion. The value of the Lagrangian 

correlation coefficient is close to one at very small times, and, as a result, the dispersion 

2X  increases with time to the second power. The value of LR  becomes zero at larger 

times, and the dispersion increases linearly with time. At large times, the dispersion rate 

is a constant given by 
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dt

Xd
2

2

2        (2.3) 

where the Lagrangian time scale is defined as  





0

)(  dR LL       (2.4) 

Early reviews by Batchelor and Townsend [51], Monin and Yaglom [52], and 

Hinze [53] discussed the advances in studies of dispersion since Taylor. Recent reviews 

by Sawford [54], Warhaft [5] and Dimotakis [11] discussed the importance of 

understanding turbulent dispersion in analyzing turbulent mixing. The review by 

Warhaft [5] detailed the study of turbulent mixing using passive scalars. Dimotakis [11] 

reviewed turbulent mixing by classifying it into three main categories, namely, level-1 

mixing, which is similar to mixing of passive scalars, level-2 mixing, akin to coupled 

dynamic mixing, and level-3 mixing, which produces changes to the mixing fluids. 

Sawford [54] reviewed the stochastic modeling, two-point closures, and kinematic 

simulation approaches to model turbulent relative dispersion. The review also entailed 

the connection of relative dispersion to turbulent mixing.  

Corrsin obtained results [55, 56] for line source diffusion in homogenous shear 

flows with constant mean velocity gradient in which the Lagrangian dispersion in the 

direction of the flow, x, was different than the dispersion in the direction of the velocity 

gradient, y, which is described by Taylor’s analysis. 

Describing the dispersion of scalars instead of fluid particles turbulence 

introduces additional complications. This happens because the trajectory of a scalar 

marker in the flow field does not coincide with the trajectory of a fluid particle, since 

scalar markers can move off (due to molecular diffusion) of the fluid particle on which 
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they travel. Therefore, fluids with different Pr exhibit different behavior. A further 

advancement in the theory of dispersion came through Saffman [57], who defined the 

material autocorrelation function, L

dR , and showed that 

 

t

DtdRtuX
0

22 2)()(2 

    

(2.5) 
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
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
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where, ),( 00 txVi


 is the i

th
 component of the fluid velocity at the location ),( 00 txX


of a 

marker that was released at location 0x


at t = 0. The main difference between the 

material autocorrelation and the Lagrangian correlation is that the former correlates 

fluid velocity components along a scalar marker trajectory, instead of along the 

trajectory of fluid particles. The theories developed by Taylor and Saffman were for 

homogenous and isotropic turbulence. Turbulent dispersion in a wind tunnel has been 

studied by Shlien and Corrsin [58], while Fackrell and Robins [59] have studied 

turbulent mass dispersion using propane gas as the tracer.  

The behavior of a large number of passive scalar markers, as described by 

Saffman, is fundamental to passive scalar transport using the Lagrangian framework. 

For the case of turbulent heat transfer in wall turbulence, Hanratty [60] devised a 

methodology using Taylor’s theory, in which he used the dispersion of heat particles 

from an infinite number of continuous line sources of heat at one wall to describe a hot 

plane and an infinite number of continuous line heat sinks along the other wall to 

describe a cold plane. 
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2.1.2 Turbulent relative dispersion 

The concept of relative dispersion, which involves studying the dispersion of a 

particle with respect to another particle, was introduced by Richardson [61]. Richardson 

studied the mean squared separation of particle pairs and concluded that only eddies 

that are comparable in size with the separation of these particle pairs are effective in 

increasing dispersion. The mean squared relative displacement of two fluid elements in 

a static flow dominated by molecular diffusion can be described by the expression 

provided by Einstein [49] as 

 
 

D
dt

Xd
2

2




       (2.7) 

where D is the molecular diffusivity and ΔX is the relative separation of the fluid 

elements. Early studies [62] of mean squared relative dispersion in homogenous 

turbulence showed varied behavior in different intervals of time. Batchelor also found 

that, at very large times, the particle pairs move independent of each other and the rate 

of increase of mean squared displacement is not dependent on time. However, at 

intermediate times, Batchelor [62], Ogura et al. [63], and Obukhov [64], independently, 

derived an expression for the rate of mean squared relative displacement in homogenous 

turbulence, given as 

  2
2

3 tg
dt

Xd



      (2.8) 

The term g is called the Richardson constant, and ε is the rate of dissipation of the 

turbulent kinetic energy. Comprehensive details of the development of various relative 

dispersion models have been well documented in the classical text of Monin and 

Yaglom [65]. Following the works of Richardson, Batchelor and Obukhov, 
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considerable amount of research has been done to document the behavior of relative 

dispersion in different flow regimes. A review of the various stochastic models 

implemented to understand the behavior of relative dispersion can be found in the work 

of Sawford [54]. A complementary review by Salazar and Collins [66] focused recently 

on various experimental and simulation data of turbulent relative dispersion based on 

the different scaling regimes. These reviews highlight the importance of DNS and 

laboratory experiments in obtaining pertinent relative dispersion data. 

 Relative dispersion plays a vital role in characterizing the concentration 

fluctuations in a smoke cloud or the temperature variance in a heat exchanger or a 

reactor. In these cases, however, the focus is on the scalar statistics rather than the fluid 

element. Modeling the motion of scalar markers adds an additional complication, as 

these passive markers can move off a fluid element due to molecular diffusion. 

Batchelor [67, 68], derived the equations describing the scalar relative dispersion. These 

equations, relating scalar statistics with the displacement of a passive scalar, have also 

been derived by Egbert and Baker [69], Lundgren [70] and Borgas et al. [71]. 

Observations from these studies point out the difference between concentration statistics 

of scalars with non-zero and zero diffusivity that are a direct result of the corresponding 

difference between the displacement statistics of the diffusing scalar and the fluid 

particle. At high Re and high Sc, the difference in the mean concentration has been 

found to be negligible [57]. Even at high Re and high Sc the concentration variance is 

marginally different, since the dissipation of scalar fluctuations is influenced by the 

molecular diffusivity.  
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Though plenty of research has been aimed at understanding relative dispersion 

[54, 66], rather few studies have focused on the rates of mean squared relative 

displacement when the forwards and backwards perspectives of relative dispersion are 

considered separately. Bernard and Rovelstad [72] were the first to perform direct 

numerical simulation to study single-particle backwards dispersion in a turbulent 

channel flow. They looked at an ensemble of fluid particles having common end points 

and studied the scalar transport correlations. Not until recently, the first effort to study 

the differences between forwards and backwards relative dispersion was made by 

Sawford et al. [73]. Lagrangian stochastic models and DNS were used in stationary, 

isotropic turbulence to calculate forwards and backwards relative dispersion statistics. 

Even at low Re, where there is a very small inertial sublayer, they found that the 

backwards relative dispersion proceeds at a faster rate than its forwards counterpart. 

The results of Sawford et al. also showed clear differences in the particle separation 

probability density function (pdf) for the forwards and backwards relative dispersion. 

Sawford et al. observed that the differences vanish when the fluctuating velocity field is 

symmetric and Gaussian. Experimental evidence of the differences between forwards 

and backwards relative dispersion have been reported in the work of Berg et al. [74]. A 

particle tracking velocimetry (PTV) technique was used to obtain Lagrangian 

trajectories of fluid elements in water for a flow generated using eight rotating 

propellers. The results obtained showed that the backwards relative dispersion proceeds 

twice as fast as the forwards relative dispersion. Berg et al. utilized the DNS data of 

Biferale et al. [75, 76] to compare their experimental work with a direct numerical 

simulation and found similar results. Berg et al. concluded that the replication of the 
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results, considering the physical differences existing between the experiment and DNS, 

pointed to the robustness of the results and also validated the use of DNS to perform 

turbulent dispersion studies.  

2.2 Coherent structures and primary directions of turbulent scalar transport 

A physical description of turbulent transport near channel walls can be achieved 

by a better understanding of the coherent structures that exist in these regions [24]. 

Theodorsen [77] and Townsend [78] were pioneers in this area, establishing the 

existence of organized, statistically important motions in turbulent shear flows. 

Robinson extensively reviewed the literature about coherent motions and discussed the 

importance of these coherent structures in sustaining turbulence [79].  Over the years, a 

lot of research has been dedicated to the understanding and prediction of these coherent 

structures in turbulent flows [80]. These studies have identified a wide range of 

structures existing in the turbulent boundary layer starting from hairpin vortices [81], 

hairpin packets [82], horseshoe vortices [77], funnel vortices [83], and near wall 

longitudinal vortices [84]. The logarithmic layer and the outer region of channel flow 

have also been studied to analyze the shape of coherent structures existing in these 

regions. Hanratty and Papavassiliou [85] found the existence of jet-like sheets while Na 

et al. [86] found structures that they called 'superbursts', which have also been observed 

by the Particle Image Velocimetry (PIV) studies of Hutchins et al. [87].  

Such experimental [82, 83, 88, 89] and numerical studies [90, 91] have also 

outlined the interlinking of these different coherent structures and the similarity with 

which these structures are spatially oriented. Previous works [92, 93] have outlined the 

importance of these coherent structures in characterizing scalar heat or mass transfer. 
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The proper orthogonal decomposition (POD) technique, which was first proposed by 

Lumley [94], has been found to be very useful and effective in extracting the nature of 

coherent structures. The method involves the decomposition of the fluctuating velocity 

fields into the sum of mutually orthogonal eigenfunctions of the two-point correlation 

tensor, weighted by coefficients that can be later determined from these eigenfunctions. 

The most dominant eddy is obtained from the eigenfunction with the highest 

eigenvalue. For statistically inhomogeneous turbulence, the Karhunen-Loeve [95, 96] 

expansion is used to extract coherent structures. The Lumley POD technique was 

validated by Bakewell and Lumley [97], who applied this principle to find the most 

energetic eddy structure in the wall region (y
+ 

< 40) of a turbulent pipe flow. Only the 

streamwise velocity component of the two-point correlation was measured, while the 

other components were obtained by mixing length assumptions and using the equation 

of continuity. The results obtained suggested that the largest eddy carried more than 

90% of the total turbulent streamwise intensity. Moin [98] performed a numerical 

simulation of turbulent channel flow using large eddy simulation (LES) techniques and 

obtained the full correlation tensor. The decomposition of this correlation tensor in one 

and two dimensions showed that the dominant eddy carried about 64% of the turbulent 

kinetic energy. Applying POD to an axisymmetric turbulent jet, Glauser et al. [99] 

established that the dominant eigenfunction carried about 40% of the total streamwise 

turbulent intensity. Further, the works of Herzog [100] and Moin and Moser [101] also 

involved the use of POD to find the most dominating eigenvalue. 

Few studies have explored scalar transport from the viewpoint of correlation 

tensors. However, understanding the direction of scalar gradient transport by 
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decomposing the rate of strain tensor has garnered attention over the years. Kerr [102] 

obtained correlation statistics between the scalar gradient and the vorticity of the flow in 

three dimensional, forced turbulence and found a strong de-correlation between the two 

quantities at relatively high Reynolds number. The work also showed evidence by 

pictorial representations of the normal orientation of scalar gradient with respect to the 

vorticity and concluded that the scalar markers are wound around the core of the vortex. 

Ashurst et al. [103] calculated the probabilities of the orientation of the vorticity and 

scalar gradient with the three different eigenvectors, α (most extensional), β 

(intermediate), γ (most compressive), of the rate of strain tensor and found a preferential 

orientation of the vorticity with the intermediate eigenvector, while also observing the 

scalar gradient to be oriented with the most compressive eigenvector. Vedula et al. 

[104] have also found a preferential alignment of the scalar gradient with the most 

compressive eigenvector of the rate of strain eigenvector. Increasing the Reynolds and 

Schmidt number in their study showed more favorable shift towards this behavior.  

2.3 Scaling of heat/mass transport 

2.3.1 Model based on scaling patches 

 The classical scaling that uses the friction velocity, u
*
, and the kinematic 

viscosity, ν, as inner scaling parameters and the half channel height, h
+
, as the outer 

scale parameter, has been used to describe momentum transport. Early works of Afzal 

[105-107] and Panton [108] established the presence of an overlap region, which has the 

same inner and outer forms of the mean velocity profile. In trying to understand the 

classical scaling from a different perspective, Wei et al. [38] and Klewicki et al. [109], 
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used the classification of the turbulent wall flows into different regions, namely, viscous 

sub-layer, buffer layer, logarithmic region and wake region based on the mean velocity 

profile as a starting point. They recognized that accurately identifying the properties of 

the mean velocity profiles and the extent of the corresponding wall layers can be related 

to the momentum transport dynamics and their scaling with Re. The streamwise mean 

momentum balance equation for fully developed two-dimensional channel flow 

normalized by classical scaling variables is given by 

2

2

1 ( ' ')
0

d U d u v

h dy dy

 

  
        (2.9) 

Wei et al. and Klewicki et al. focused on the physical mechanisms represented by each 

term of Equation (2.9). The first term is the normalized pressure gradient, acting as the 

driving force of transport. The second term is the gradient of the viscous stress, and the 

third and final term is the gradient of the Reynolds stress. So, using this differential 

form of the momentum balance equation, they concluded that either all three gradients 

need to be at a balance or two of the gradients need to balance each other with the third 

being very small. Plotting the ratio of viscous to Reynolds stress gradients close to the 

channel walls, they found a thin sublayer where viscous and pressure gradients are 

dominant, while the Reynolds stress gradients are absent. Outside this thin region, they 

found a region where there was a near perfect balance between the viscous and 

Reynolds stress gradients. This stress gradient balance layer extended farther into the 

logarithmic region with increasing Re. For farther distances from the channel wall, the 

Reynolds stress gradient showed a change in sign with the viscous stress gradients 

becoming very small in comparison with Reynolds stress and pressure gradients at these 

distances. So, using these arguments, Wei et al.  and Klewicki et al. classified the 



20 

 

turbulent channel into four different layers: Layer I, or viscous/advection balance layer; 

Layer II, or stress-gradient balance layer; Layer III, or meso viscous/advection balance 

layer, and Layer IV, or inertial/advection balance layer. Work of Wei et al. [110] 

extended this meso-layer theory from momentum to heat transport. In addition to the 

classical scaling parameters for momentum transport, they used a new scaling with 

(T
*
Pe) for temperature instead of just T

*
, where Pe is the Peclet number given by RePr, 

and defined a variable Φ given by 

Pr

w wT T T T

PeT h T  

 
        (2.10) 

The scaling with T
*
Pe helps in taking into account the effects of both the Reynolds 

number as well as the Prandtl number. Using this variable, the 2D heat equation for 

fully developed channel flow is given by 

 
d2F

dh2
+
dT

dh
+ r(h) = 0      (2.11) 

where, η = y
+
/h

+
 and r(η) = U(η)/UB

 
 and UB is the bulk velocity calculated as 
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
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
  . Similar to the case for momentum transport, Wei et al. split the 

heat transfer domain using the ratio of molecular diffusion flux to turbulent transport 

flux, RHF, given as  

RHF =

d 2F

dh2

dT

dh

       (2.12) 

The layer closest to the channel wall, where the molecular diffusion and mean advection 

are dominant and the turbulent term is negligible, was termed Layer I (molecular 
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diffusion/mean advection balance layer). This is followed by Layer II, where the 

molecular diffusion and the turbulent transport are the main components and they 

balance each other yielding RHF = -1, (heat flux gradient balance layer). The next layer, 

Layer III (meso-layer) is where all the three terms contribute to the heat equation, and 

Layer IV (inertial layer) is the layer where the heat balance is between the advection 

term and the turbulent transport term with the molecular diffusion nearly zero. Wei et 

al. studied the new scaled temperature, Φ, using DNS data from Kawamura’s laboratory 

[111] and found that for a fixed Re, the values of Φ monotonically decrease with 

increasing Pe. Plotting the centerline values of Φ, Φ∞, as a function of Pe, they found 

that Φ∞  0 as Pe  ∞ and that Φ∞  O(1) as Pe  0. So, generalizing the Φ∞ 

behavior to Φ behavior, Wei et al. reduced the partial differential equation (2.11) to an 

ordinary differential equation for high Re in the case of low Pr fluids. However, for 

high Pr, Equation (2.11) reduced to an ordinary differential equation form only outside 

the narrow wall layer (meso-layer), with Wei et al. proposing a rescaling in this narrow 

region. This new rescaling, called the mesonormalization, was proposed to be 

associated to the location of the maximum turbulent heat flux. A collapse of the results 

of the inner normalization and the “mesorenormalization” of the turbulent heat flux for 

different Re and Pr is shown in the work of Klewicki et al. [112]. Previous work [113] 

in our laboratory has aimed at utilizing our direct numerical simulation/Lagrangian 

scalar tracking data for Poiseuille channel flow and plane Couette flow to explore the 

scaling patches proposed by Wei et al. It was found that the location of the extent of the 

mesolayer was varying with Pr
(-1/4)

  for both Poiseuille and Couette flow. The 

maximum value of the temperature at the center of the channel (Φ∞) scaled using the 
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Wei et al. scaling, was found to change with Pe
-0.5

 both for the Poiseuille and Couette 

flow cases.   

2.3.2 Equilibrium similarity analysis for temperature scaling 

George et al. [114] in their early works applied similarity analysis to study 

forced convection in turbulent boundary layers. They proposed an inner and an outer 

scaling for the mean temperature profile in turbulent boundary layer flows, but did not 

study the effects of Pr or the adverse pressure gradients in such flows. According to 

their analysis, the inner and outer length scales for a zero pressure gradient (ZPG) 

boundary layer turbulence and convection were proposed to scale with 
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coefficient, and St is the Stanton number defined as  
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      (2.13) 

and, for channel flow, T∞ and U∞ are the mean temperature and mean velocity at the 

center of the channel, respectively. More recent work by Wang and Castillo [115] 

explored an application of the equilibrium similarity analysis (according to which the 

scales of both inner and outer flows are dictated by equations of motion and their 

boundary layer conditions alone) to the case of adverse pressure gradient (APG) 
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boundary layer flows. They also proposed [36] and utilized the asymptotic invariance 

principle (AIP), according to which the invariance of the boundary layer equations with 

the dependence of Re as Re  ∞ should imply the independence of the scaling 

parameters with the local Re. Similar to their previous ZPG studies [114], for this 

adverse pressure gradient study they developed an inner and an outer scaling for the 

mean temperature profile based on the AIP. In terms of the inner and outer variables, 

the mean temperature profile is a function of the inner and outer length scales and the 

boundary layer thickness as follows:  

( ; )w
si is T

si

T T
g y

T
 

       (2.14) 

and  ( ; )so os T

so

T T
g y

T
 

       (2.15) 

Substituting these into the inner and outer boundary layer equations in the limit Re  

∞, they obtained the following inner and outer scaling expressions for the mean 

temperatures: 

 )(Pr  TTStT wsi       (2.16) 

and  
*

( )T
so w

T

T T T



        (2.17) 

The term *

T in the case of outer scaling stood for the thermal displacement thickness 

given by the equation *

0

T

w

T T
dy

T T











 . The inner and outer similarity length scales 

were found to be 
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yU
y St



        (2.18) 
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and  
os

T

y
y







 , respectively.     (2.19) 

To verify the accuracy of the scaling parameters proposed, Wang and Castillo 

[115] utilized the ZPG and APG experimental data of Blackwell et al. [116], ZPG data 

of Blom [117], APG experimental data of Orlando et al. [118] and the favorable 

pressure gradient (FPG) data of Thielbahr et al. [119] to provide a comparative study of 

the classical Reynolds scaling, the scaling for the ZPG boundary layer flow proposed by 

George et al.[114] and the new proposed scaling given by Equations (2.16-2.19). For all 

the three types (ZPG, APG and FPG) of thermal boundary layer flow data, only the 

proposed inner and outer scaling given by equations (2.16-2.19), which for the sake of 

simplicity is referred to as the WC (Wang and Castillo) scaling in the remainder of this 

manuscript, caused the mean temperature profiles to collapse into a single asymptotic 

curve. Further works of Wang et al. [120] showcased the robustness of the WC scaling 

by using it to obtain a  power law solution for the temperature profile in the overlap 

region, where it was found to be having 5% less error than using Kader’s equation [47] 

(see 1.1).  

2.4 Turbulent Prandtl number 

Reynolds [121] provided an extensive review of prior work to determine Prt. 

Kays [122] also discussed available results for Prt for different fluid systems (air, 

water), in a two dimensional boundary layer and in flow through a circular tube or a flat 

duct. The simplest model for determining Prt was proposed by Osborne Reynolds, who 

assumed that tt   , resulting to the value of unity for the Prt. This is the well-known 

Reynolds analogy [123], which is by all means an oversimplification. Several 
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investigators have pointed out the inadequacy of the Reynolds analogy, including 

Churchill [6, 124] who examined the numerical and functional errors associated in 

using the Reynolds analogy and put together a simplified model to overcome its 

inadequacies. The widely used computational fluid dynamics software FLUENT uses a 

constant value of Prt = 0.85 [125], irrespective of the wall distance or the Pr. Notter and 

Sleicher [126] developed the following correlating expression for Prt:  
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t

t   (2.20) 

Azer and Chao [127] put forward a correlation of Prt for 0.6 ≤ Pr ≤ 15 and 

another for the case of liquid metal fluids. The correlations predicted a dependence of 

Prt on the Pr, Re and the radial distance from the pipe wall. Jischa and Rieke [128] 

developed a model for Prt from the modeled transport equations for the turbulent kinetic 

energy and for the turbulent heat flux. They concluded that the dependence of the Prt on 

Re and distance from wall, though possible, is of second order importance and put forth 

the following simple expression for Prt : 

Pr

015.0
85.0Pr t        (2.21) 

Among the numerous correlations proposed for Prt, two of the most interesting 

and intuitive correlations were presented by Yakhot et al. [129], and by Kays and 

Crawford [130]. Yakhot et al. presented an analytical solution for finding Prt based on 

the renormalization group method. The equation given by Yakhot et al. is 
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where,  

























Pr

1

Pr

1

1

Pr

t

t

t

eff









      (2.23) 

Equation (2.22) was suggested to be applicable for all Prandtl numbers, and at high Pr 

and high values of  /t it converges to the value 0.85.  

The next important breakthrough in the prediction of Prt came with the 

empirical model of Kays and Crawford [130]. The turbulent Prandtl number according 

to this model is given as  
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(2.24) 

Both models presented above indicate that Prt is a function of kinematic viscosity and 

eddy viscosity, and it does not depend on the eddy diffusivity of heat. Kays [122] 

reviewed the renormalization group theory put forward by Yakhot et al. and concluded 

that it may be applied only in the region of overlap (the logarithmic regime of the mean 

velocity profile). Kays proposed an expression for Prt that can be written as 

85.0

Pr

0.2
Pr 
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 t

t       (2.25) 
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The coefficient 2.0 above was suggested to work better for Pr < 1 fluids, while a 

coefficient of 0.7 is appropriate for higher Pr fluids. This equation indicates that as the 

Pr increases, the Prt decreases and for higher Pr, it approaches the value of 0.85. On the 

basis of the Prt equation developed by Kays and Crawford, as shown in Equation (2.24), 

Weigand et al. [131] extended the model as follows: 

 
2

1
Pr

1 1 1
1 exp

2Pr Pr Pr

t

t t

t t t t
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 (2.26) 

where,  

v
Pe t

t


Pr         (2.27) 

and tPr is the value of Prandtl number far away from the wall, and A = 0.3 is a constant 

prescribing the spatial distribution of Prt vs Pet. Also, Prt∞ was calculated by Weigand 

et al. by the expression 

0.888
Pr 0.85

Pr Re
t

d
        (2.28) 

According to Weigand et al. the value of d is 100, and when Equation (2.26) is applied, 

at the wall (where Pet = 0), Prt → 2Prt∞, while at large distances from the wall, where 

Pet → ∞, it is Prt → Prt∞. In the original model of Kays and Crawford as shown in 

Equation (2.24), Prt∞ is fixed at a constant value of 0.85, which introduces an undesired 

behavior into the model. This model was found to do comparatively better in predicting 

the Prt for a range of Pr.  

Although much work has been done to study the Prt for lower Pr’s, very few 

studies have explored the effects of higher Pr number on the Prt. Only recently have 
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computational results with direct numerical simulation (DNS) or hybrid DNS – large 

eddy simulation have become available for medium and high Pr. Schwertfirm and 

Manhart [132] have studied cases of Pr ≤ 49 and observed that in the outer region (y
+
 > 

20), the eddy conductivity is the same irrespective of the Pr. They also observed the 

eddy conductivity to decrease near the wall for higher Pr. Kasagi et al. [28, 133] have 

used Eulerian direct numerical simulations to estimate Prt. The recent study of Prt by 

Hasegawa and Kasagi [134] for high Pr (namely 1, 100, 200, 400) was focused on the 

investigation of the asymptotic behavior of the eddy diffusivity close to the wall. It 

showed that there is an increase of Prt for increasing Pr in the viscous sublayer, but it 

did not present the Prt  behavior far from the channel walls.  

2.4.1 Turbulent Prandtl number as a ratio of length scales 

 Crimaldi et al. [135] proposed a model for Prt based on Prandtl’s concept of 

mixing length. The turbulent Prandtl number was calculated as the ratio of the mixing 

length of momentum to the mixing length of heat, as follows: 

T

M
t

L

L
Pr

       

(2.29) 

where, ML and TL  stand for the mixing length for momentum and heat transfer, 

respectively. Le and Papavassiliou [93] used a Lagrangian approach in conjunction with 

DNS to study the correlation between the velocity and temperature fields in wall 

turbulence. They obtained characteristic length scales for flow structures that contribute 

to the transfer of heat away from the wall and characteristic length scales for 

momentum transfer. Assuming further that these characteristic length scales were 

proportional to the mixing length scales and the ratio of the proportionality constant is 
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of order one, they used the Crimaldi et al.
 
interpretation of Prt, given by Equation 

(2.29), to determine the Prt. They concluded that the Prt showed dependence on 

distance from the wall. However, they did not find any significant changes of the Prt 

with increase of Pr for higher Prandtl numbers (Pr ≥ 0.7). The estimate of the values of 

the Prt by Le and Papavassiliou was not claimed to be precise enough to distinguish 

effects of Pr on Prt. 

2.5 Scaling considerations and the physical interpretation of the turbulent 

Prandtl number using Churchill’s turbulent transport model 

Churchill [7] through his early works has articulated criticisms about the validity 

of algebraic analogies that link transport of energy with transport of momentum in 

turbulent channel flows. His concerns were threefold, firstly, in the energy balance 

equation, the ratio of kinematic viscosity to thermal diffusivity (i.e., the Prandtl number, 

Pr), appears as an additional parameter, which lacks a corresponding counterpart in the 

momentum balance equation. Secondly, Churchill recognized the complexities involved 

in the thermal boundary conditions compared to the momentum transport boundary 

conditions. For example, Churchill provided examples of momentum transport, where 

the velocity at each wall was always presumed to be equal to the velocity of the wall. 

However, in the case of heat transport, the channel walls were assigned either a 

temperature distribution or a heat flux distribution as the boundary condition. Finally, 

Churchill cited the variability of the heat flux density distribution based on the velocity 

distribution and mode of heating, which in turn varied as a function of the distance from 

the channel walls. Early work by Abbrecht and Churchill [1], based on experiments of 

flow of air in round tubes, determined the eddy viscosity and eddy diffusivity. On the 
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basis of the ratio of these two quantities, it was concluded that the Prt was only a 

function of  /t and Pr. Churchill’s goal was to understand and eliminate the 

empiricisms involved in estimating some of the turbulent flow parameters. The initial 

efforts in this direction by Churchill et al. [136-138] were aimed at understanding 

turbulent momentum transport. In these works, Churchill et al. showed that the basic 

models proposed for the closure of the time-averaged momentum equations, like the κ-ε 

and the mixing length models, broke down fundamentally in different regions of flow 

through tubes, parallel plates or annuli. The time-averaged equation for momentum 

transfer is given by  
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 Where U
+
 is the mean velocity in the streamwise direction, ''vu  is the Reynolds 

stress and u′ and v′ are the velocity fluctuations in the streamwise, x, and wall-normal 

direction, y, respectively. Equation (2.30) can be made dimensionless using   
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So, instead of using Γw/ρ to make Equation (2.30) dimensionless, Churchill introduced a 

new dimensionless quantity  
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Based on this line of thought, Churchill [48] [124, 139, 140] developed a 

theoretical framework, based on turbulence scaling other than the conventional scaling 

based on viscous units (i.e., scaling based on the friction velocity and the friction 

temperature) to describe turbulent scalar transport. Churchill proposed that the local 

fraction of shear stress due to fluctuations in velocity is a superior dimensionless 

variable for the modeling of turbulent flows than using dimensionless velocity obtained 

by scaling with the friction velocity. This local fraction of the shear stress is defined as  

' '
( ' ')

u v
u v

  
   

    (2.33) 

The scaling parameter of Equation (2.33) is the local fraction of shear stress at 

any location due to turbulence. The local fraction of shear stress at any location due to 

viscous effects is therefore given by [   

 ''1 vu ]. Hence, Churchill established a scaling 

based on turbulence-related parameters rather than the viscous wall units in order to 

avoid empiricisms and heuristic arguments associated with modeling momentum 

transfer. The ingenuity and reliability of this model, however, was established further 

when Churchill [124] seamlessly extended this model to heat (and mass) transfer. In 

analogy with momentum transfer, Churchill proposed a local fraction of normal (radial 

in case of pipe flow) heat flux density due to turbulence given by 
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where T′ is the temperature fluctuation.  Using the above theory, the eddy viscosity to 

viscosity ratio (  /t ) has to be equal to the ratio of the local fraction of momentum 

transfer due to turbulent fluctuations, to that due to molecular motions, and, thus, the 
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eddy viscosity obtained a physical meaning that is independent of its diffusive origin. 

Similarly, Churchill defined the eddy diffusivity over molecular diffusivity ratio to be 

equal to the local fraction of heat flux density due to the turbulent fluctuations to that of 

local heat flux density due to molecular motion. In this way, the eddy diffusivity can 

also be interpreted as a physical quantity that is independent of its heuristic diffusive 

origin. Accordingly, the mathematical expressions suggested by Churchill for the eddy 

viscosity and eddy diffusivity are  
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where   )''(1 vu  represents the local fraction of shear stress due to molecular motion, 

and 
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where )''( vT and   )''(1 vT  represent the local fraction of heat flux density due to 

turbulence and the local fraction of heat flux density due to molecular motion, 

respectively. Finally, the Prt in terms of the local fraction of fluctuations is expressed as  
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Within this framework, the Prt assumes an interesting and quite intuitive physical 

meaning. Based on Churchill’s interpretation, an estimate of the local fraction of shear 

stresses due to turbulence and due to molecular motion, along with the local fraction of 

heat flux density due to turbulence and molecular motion, are the quantities required to 

predict the values of Prt. Equation (2.37) suggests that Prt is a function of Pr, and a 
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function of the distance from the wall, as are the local fractions of transport due to 

turbulence.  

With regards to incite on using this as the scaling parameter, Churchill 

concluded that this scaling provided a more appropriate model for understanding heat 

transfer, as the main challenge of developing correlations for αt/α is replaced by the task 

of developing predictive correlations for )''( vu and Prt. Utilizing these scaling 

arguments further, Churchill derived expressions for the Nusselt number (Nu, which 

incorporates the heat transfer coefficient) in terms of Prt and )''( vu  noting that the 

resulting expressions showed deviations from those obtained using standard momentum 

and heat transfer analogies. Comparing with the simplest analogy between momentum 

and heat transfer, i.e., the Reynolds analogy, it was shown that it matches Churchill’s 

formulation only in the special case where Pr = Prt ≈ 0.86 and even then by only 

accounting for an error factor. Churchill revisited some of the analogies that are based 

on simplistic empiricisms (like the Colburn analogy and the Prandtl-Taylor analogy). 

He also considered analogies like the one proposed by Kader and Yaglom that was 

based on the correlating equations of the velocity and temperature profiles, and 

analogies that were derived based on the differential energy balance (like that of Von 

Karman and of Martinelli). The resulting comparisons presented in detail the 

inadequacies of such well-known turbulent transport analogies.  

The scaling based on the fraction of the heat flux that is due to turbulence, as 

proposed by Churchill, also established a firm connection between momentum and heat 

transfer: the proposed choices for momentum and heat transfer scales led to simpler and 

more transparent formulations than previous models, and also helped in completely 
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eliminating empirical or heuristic formulations. They also brought to light the actual 

analogy that existed between the momentum and heat transport in turbulent wall 

bounded flows, and provided a sound interpretation of Prt based on physical arguments. 

A parametric sensitivity analysis [141] of the Churchill model with respect to the 

various parameters showed that the values were insensitive to changes in )''( vu but 

appeared to depend on the accurate prediction of the Prt.  

Prior work in our laboratory utilized DNS and Lagrangian scalar tracking (LST) 

as tools to generate statistical data for turbulent flow and heat transport [142] and to 

validate Churchill’s theories [143].  Comparisons showed that the case of using 

DNS/LST data for both )''( vu and Prt provide good predictions for the mean 

temperature profile. Using the empirical correlations of Danov et al. [144] for 

)''( vu and Kays [122] for Prt, however, led to large percentage errors in the mean 

temperatures values, especially for the cases of high Pr (Pr ≥ 100), suggesting a high 

sensitivity of the mean temperature profile to the values of )''( vu and Prt.    
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Chapter 3: NUMERICAL METHODOLOGY 

3.1 Direct numerical simulation 

 The direct numerical simulation (DNS) technique is used to solve numerically 

the Navier-Stokes equation by resolving the different spatial and temporal scales 

existing in a turbulent flow [3, 28, 145, 146]. Lyons et al. [29] used a pseudospectral 

algorithm to determine the turbulent velocity field and the results obtained have been 

validated with experiments by Gunther et al. [147]. In this algorithm, the rotational form 

of the Navier-Stokes equation was first made dimensionless by using the wall variables, 

i.e., the kinematic viscosity, ν, and the friction velocity, u
*
 = (Γw/ρ)

1/2
. The rest of the 

variables, like the length, time etc, were expressed in terms of these wall variables, and 

hence these quantities were scaled with the so-called viscous wall units. Another 

interesting case considered here was the plane Couette flow, where the walls of the 

channel move relative to each other. The algorithm of Lyons et al. was suitably 

modified to account for the wall behavior [148-150]. The fluid in both cases was 

considered to be an incompressible Newtonian fluid with constant density, constant 

viscosity and constant thermal conductivity. The assumption that the viscous heating 

effects and the body forces are negligible was also made. The mean pressure gradient 

acted as the driving force for the Poiseuille channel flow, while the motion of the 

channel walls in opposite directions (which generates a region of constant shear stress) 

acted as the driving force for flow in plane Couette flow. The streamwise component of 

the velocity vector at the channel walls, which was set to zero in Poiseuille flow due to 
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stationary walls, is set to ± 17.74 for the case of plane Couette flow. The bottom wall 

moved in the negative x direction, while the top wall moved in the positive x direction.     

 In Poiseuille channel flow, the simulation was carried out in a computational 

box with dimensions (4πh
+
, 2h

+
, 2πh

+
), where h

+
 = 150 or 300 viscous wall units, in the 

x, y and z directions. The box was meshed to carry out numerical calculations in the x, y, 

z directions with 128 × 65 × 128 and 256 × 129 × 256 mesh points, respectively, for h
+
 

= 150 and 300, respectively. The Reynolds number for the Poiseuille channel was 2660 

and 5320, for h
+
 = 150 and 300, obtained using the mean centerline velocity and the half 

channel height. Simulations carried out in plane Couette flow have reported [150] 

longer flow structures in the streamwise direction. Hence, the length of the box is 

doubled in the x direction, with the computational box in the case of plane Couette flow 

measuring 8πh
+
, 2h

+
, 2πh

+
 in x, y and z directions, respectively, with 256 × 65 × 128 

grid points for h
+
 = 150. The Re in this case, measured using half the relative velocity of 

the wall and half channel height, was 2660, which was the same as that of the lower Re 

Poiseuille channel flow case. In both Poiseuille and Couette flow cases, the channel was 

simulated as infinitely long in the streamwise and spanwise directions by imposing 

periodic boundary conditions. The transport equations were expanded in terms of 

Fourier series in these two directions. The periodicity lengths (χx, χz) were 4πh
+
, 2πh

+
 in 

the x, z directions, respectively for Poiseuille flow, while they were 8πh
+
, 2πh

+
 in the x, 

z directions, respectively for plane Couette flow. The no-slip, no-penetration boundary 

conditions were imposed at the walls of the channels and the vertical velocity and 

pressure head were expanded in terms of Chebyshev polynomial series. Variety of time 

steps were used to advance the simulation, ranging from Δt
+
 = 0.125, 0.15, 0.2 and 0.25 



37 

 

in viscous wall units. The Figures 3.1 and 3.2 depict the picture of turbulent Poiseuille 

and plane Coeutte flow, respectively. The general description of the DNS is universal to 

all the studies in this dissertation. Some of the specific details of each study will be 

described briefly in the corresponding Chapter. 

 

 

 

 

 

 

 

 

Figure 3.1: Plane Poiseuille flow configuration 

 

 

 

 

 

 

 

 

 

Figure 3.2: Plane Couette flow configuration 
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3.2 Lagrangian scalar tracking (LST) 

 Turbulent diffusion in the Lagrangian framework, was described by Taylor [50] 

as the dispersion of fluid particles from a point source in homogenous, isotropic 

turbulence. An extension to this theory was provided by Saffman [57] in the case of 

heat or mass markers by considering that the markers can move off of a fluid particle as 

a results of molecular diffusion. The basic framework of the Lagrangian scalar tracking 

was constructed by imagining a heated surface to be formed by an infinite number of 

continuous sources of heat markers, such as those described by Saffman, and a cooled 

surface to be formed by an infinite number of continuous sinks of heat, or, alternatively, 

sources of cold (i.e., negative) heat markers. Hanratty [60] introduced this concept to 

describe theoretically the transfer of heat from a hot to a cold wall in a turbulent channel 

flow. Papavassiliou and Hanratty [151] used a direct numerical simulation in 

conjunction with the tracking of scalar markers to study heat transfer based on direct 

calculations of the behavior of such wall sources. Further details regarding the 

validation and implementation of the LST methodology can be found in works of 

Papavassiliou and Hanratty [151], Ponoth and McLaughlin [152], Papavassiliou [153], 

Mito and Hanratty [154], Mitrovic and Papavassiliou [155]. However, since LST is not 

a mainstream, widely used approach, a brief description of the method will be presented 

here for completeness of this dissertation.  

 The method of stochastic tracking of heat or mass markers in a turbulent flow 

field, and the statistical post-processing of the results to obtain scalar profiles is termed 

as Lagrangian scalar tracking (LST). The passive scalar markers released into the flow 

field are assumed to be point markers with no size and mass. There are no interactions 
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between the markers. Hence, the trajectory of a marker does not affect the trajectories of 

other markers, and it does not affect the flow. Therefore, the case of what is called 

“passive scalar transport” is simulated. A direct numerical simulation in conjunction 

with the tracking of scalar markers, LST, has been used in our laboratory (and 

elsewhere) to study scalar transfer based on direct calculations of the behavior of such 

sources [72, 154, 156, 157], [148, 158-160]. The tracking algorithm of Kontomaris et al. 

[159] was used to trace the trajectories of heat markers in the flow field created by the 

DNS. A mixed Lagrangian-Chebyshev interpolation scheme was used to calculate the 

velocity between the grid points. The marker motion was split into two parts, namely a 

convective part and a molecular diffusion part. The convective part was determined by 

the velocity of the fluid at the marker position, yielding for the equation of the marker 

motion   ttxXtxV  /),(),( 00 , where the Lagrangian velocity of a marker released at 

location 0x  is given as  ttxXUtxV ),,(),( 00   (U is the Eulerian velocity of the fluid at 

the location of the marker at time t). Molecular diffusion effects follow from Einstein’s 

theory of Brownian motion (Equation 2.1), and were simulated by adding a 3D random 

walk on the particle motion at the end of every convective step. A Gaussian distribution 

with zero mean and standard deviation Pr/)(2   t  in viscous wall units was used 

to decide the size of the random jumps in each of the three space directions. The Pr 

effects on the process were therefore studied by changing the value of σ
+
. Thus, the LST 

methodology can be used to simulate flows with an extensive range of Pr [142, 149].  

Besides the common error due to discretization, the numerical error with the 

LST methodology can be caused by the number of markers considered. Papavassiliou 

and Hanratty [156] and Papavassiliou [153, 157] have addressed this issue by 
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examining the statistics of marker trajectories with databases of 16,129 markers and 

repeating the calculations with the half the number of markers. They have found that 

results of acceptable accuracy can be obtained with half the number of markers. 

Mitrovic [161] had further the investigation with a set of 16,129 markers and a set of 

almost one order of magnitude larger, 145,161 markers. The study showed that the 

average difference in the statistical behavior of runs with the same Pr and different 

number of markers is less than 1.5%. The study stated that the use of samples with an 

order of 10
4
 markers can provide accurate results for the generation of first order 

statistics. A balance between the computational cost that is associated with the creating 

of large data sets and acceptable accuracy of the results should be considered when 

employing the LST methodology. In each study, different Pr’s and different number of 

scalar markers are released. Also, the orientation of the release is unique to the different 

studies. Hence, a brief description of the flow and marker parameters, specific to the 

particular study, has been provided in the corresponding Chapters. In the rest of the 

dissertation, in most of the cases, temperature is the scalar under discussion and the 

Prandtl number, Pr, is used as the dimensionless number associated with the 

temperature field. All the corresponding discussion applies to the case of turbulent mass 

transfer without any chemical reaction (i.e., the case where there is no production or 

consumption of mass). In that case, concentration would replace the temperature as the 

scalar field, and the Schmidt number would take the place of Pr.  
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Chapter 4: BACKWARDS AND FORWARDS TURBULENT SINGLE-PARTICLE 

DISPERSION
*
 

4.1 Simulation parameters and procedure 

For this study, the DNS flow field was obtained for Poiseuille channel flow at Reτ 

= 150. Simulations for heat transport included Pr = 0.1, 0.7, 6, 10, 50, 100, 500 and 

1000. The simulation time step was Δt
+
 = 0.125. A total of 145,161 markers were 

released instantaneously and randomly from a plane normal to the flow direction (i.e., 

on the yz plane) at the entrance of the channel. The initial positions of the markers 

where distributed uniformly and randomly across this plane. A schematic of the 

computational box is shown in Figure 4.1. The simulation was allowed to run for 900 

viscous wall time units.  To explore the differences between the backwards and 

forwards dispersion, the material autocorrelation coefficients for the backwards and 

forwards dispersion were determined in all three x, y and z directions. Figure 4.2 

provides a view of the x-y cross section of the turbulent channel and depicts the concept 

of forwards and backwards dispersion with the process of the markers being captured 

and released, respectively, in vertical bins. Using Saffman’s definition of the material 

correlation, the material autocorrelation coefficient was calculated as follows: 
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*
 Most of the material in this Chapter has been published in the International Journal of Heat and Mass 

Transfer, 53, 1023-1035 (2010)  
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The overbar denotes the ensemble average over the selected number of markers in the 

flow field, and the prime denotes the Lagrangian velocity fluctuations, 

)()()(' tVtVtV iii  . 

The study was carried out at four locations in the flow, each one at a different 

distance from the channel wall. The height of the channel, which was 2h
+
 = 300 in 

viscous wall units, was divided into 101 equal bins, as shown in Figure 4.1. The four 

chosen locations were the bins that included (a) the edge of the viscous sub-layer (y
+

 = 

5); (b) the transition region between the viscous sub-layer and the logarithmic layer (y
+

 

= 37); (c) the logarithmic layer (y
+

 = 75); and (d) the center of channel (y
+
 = 150). For 

example, at the logarithmic layer, the markers in bins 26 and 75 were used to determine 

the correlation coefficient as follows: the forwards correlation coefficient was 

determined by tracking these markers in time for 300 viscous wall time units, while the 

backwards correlation coefficient was calculated by tracking the markers backwards for 

300 viscous wall time units. (The value 300 was determined based on previous results 

for elevated sources of heat in the channel [148] where the Lagrangian material 

timescale was found to be less than 300 t
+
.)  Since the total simulation time was 900 t

+
, 

the markers that were traced forwards were those found in bin 51 at simulation times 0, 

100, 200, 300, 400, 500, and 600, while those traced backwards in time were those 

found in bins 26 and 75 at simulation times 300, 400, 500, 600, 700, 800, and 900. This 

procedure was repeated at each different location studied.  

For Prandtl numbers of 0.1, 0.7, 6, 10, 100, and for the viscous sub-layer, 

transition and logarithmic region, six values of the correlation coefficients were 

obtained by tracking markers moving in bins located below the center of the channel. 
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Six more values were obtained using the markers in bins located symmetrically above 

the center of the channel, so that twelve total values of the correlation coefficient were 

obtained from data generated with Δt
+
 = 0.125. For the center of the channel, only six 

values of the correlation coefficients were calculated for the above mentioned Prandtl 

numbers. Additional values of the correlation coefficients were calculated using the 

database that had been previously developed by Nguyen and Papavassiliou [162] with 

Δt
+ 

= 0.25 (six additional values for the center of the channel and twelve additional 

values for the other three flow regions). Thus, the reported correlation coefficients are 

an average of twenty four values, in the case of the viscous sub-layer, transition and 

logarithmic region, while they are an average of twelve values for the center of the 

channel.  For Prandtl numbers of 50, 500 and 1000, only the Nguyen and Papavassiliou 

data were used, so the reported results are an average of twelve calculations in the case 

of the viscous sub-layer, transition and logarithmic regions, and an average of six values 

for the center of the channel. On average, around 34800 markers were considered for 

the viscous sub-layer, transition and logarithmic regions, in calculating the correlation 

coefficients for Prandtl numbers of 0.1, 0.7, 6, 10, 100, while on average, 17400 

markers were used for the center of the channel. The higher Prandtl numbers of 50, 500, 

1000 involved 8700 and 17400 markers, in the center of the channel and in the other 

three regions, respectively. 
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4.2 Results and discussion 

4.2.1 Correlation coefficients  

 The material autocorrelation coefficients for the scalar markers were determined 

first, according to Equation (4.1). The correlation coefficients for the velocity in the x, y 

and z directions, wwvvuu RRR ,, , at different heights are shown in Figures 4.3 to 4.6. The 

forwards and backwards correlation coefficient for the markers at the center of the 

channel (h
+
 = 150) are shown in Figures 4.3(a)-(c). This is the region of channel flow 

that is more akin to isotropic turbulence. For the correlation coefficient in the x-

direction, uuR , the forwards correlation coefficient (which is represented by uufR from 

here on) is lower than the backwards correlation coefficient (which is denoted by uubR ), 

for Pr < 6. Increase in Pr increases the value of both uufR and uubR  up to what appears 

to be an upper limit. For Pr ≥ 50 the changes in uufR  are not noticeable, while for Pr ≥  

6 the changes in uubR  are not noticeable. This shows that the markers get correlated the 

same way, irrespective of the Prandtl number for high Pr. For any Pr, the tail of the 

uubR  coefficient is always longer and higher compared to uufR . The molecular diffusion 

effects, which differentiate the behavior of markers at different Pr, is small for Pr ≥ 6 

and the markers follow a correlation that is similar to that for fluid particles. From this 

point on only the graphs for the low Pr and one high Pr are presented, in order to avoid 

clutter when presenting the results on the Figures. The lines for Pr > 6 are all 

represented by the line for Pr = 1000. The tail of the forwards correlation coefficient 

vvfR  for the y-direction velocity is higher than the backwards correlation 
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coefficient vvbR . For the velocity in the z-direction, the wwbR  is slightly higher than the 

wwfR  for low Pr, but this behavior is reversed for high Pr, where the wwfR  becomes 

higher than wwbR . 

The comparison between the forwards and backwards correlation coefficient for 

markers captured and correlated in the logarithmic layer (y
+
 = 75) is shown in Figures 

4.4(a)-(c). The uufR is clearly less than the uubR for the correlation coefficient of the x-

velocity. Increasing the Prandtl number causes an increase in the value of the 

correlation coefficient till Pr = 6, after which it remains constant. The vvfR  is slightly 

higher than vvbR  for the correlation coefficient of the y-velocity, and the same trend is 

observed for the z-direction for higher Pr where the correlation coefficient wwfR is 

higher than the wwbR coefficient, while for Pr of 0.1 and 0.7, we find negligible 

differences.  

The forwards and backwards correlation coefficients for markers captured and 

correlated in the location between the viscous sub-layer and the logarithmic layer (y
+
 = 

37) are shown in Figures 4.5(a)-(c). The uufR is clearly less than the uubR and an 

increasing Pr causes an increase in the value of the correlation coefficient up to Pr = 6, 

beyond which the correlation coefficients do not change. The vvfR  is higher than vvbR  

and, like in the case for y
+
 = 75, the correlation coefficient of the z-velocity forwards in 

time, wwfR , is higher than the correlation coefficient backwards in time wwbR . 

The comparison between the forwards and backwards correlation coefficient for 

markers captured and correlated at the edge of the viscous sub-layer (y
+
 = 5) is 
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presented in Figures 4.6(a)-(c). The uufR  is clearly less than the uubR , but the difference is 

smaller when compared with the difference between uufR  and uubR  for the logarithmic 

layer and for the transition region between the viscous sub-layer and the logarithmic 

layer. Increasing Pr causes an increase in value of the correlation coefficient up to Pr = 

50, beyond which there are no notable differences between different Pr. We find that 

the differences between vvfR  and  vvbR  are small for low Pr, while for the Pr = 1000 

vvfR   is less than vvbR  for the correlation coefficient of the y-velocity. The forwards 

correlation coefficient wwfR is less than the backwards wwbR for the z-velocity for all Pr.  

4.2.2 Dispersion time scales  

 The correlation coefficients as calculated above provide an outline of the 

behavior of forwards and backwards dispersion at different regions of the flow. A more 

comprehensive picture of the forwards and backwards dispersion is obtained by 

evaluating the timescales associated with the correlation coefficients. A timescale, say 

in the x-direction, can be calculated as 

0

0( , )x uu

t

R t t dt


        (4.2) 

This timescale can be called the material timescale to differentiate it from the term 

Lagrangian timescale, which is usually reserved for the timescales of fluid particles 

moving without molecular diffusion effects. The material timescales for both forwards 

and backwards dispersion are presented in Figures 4.7(a)-(c), for markers correlated at 

different layers in the turbulent channel. For all cases, the material timescale increases 
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with Pr for both forwards and backwards dispersion, and appears to reach a constant 

value at very high Pr. 

For the streamwise velocity, the material timescales for the forwards and 

backwards dispersion show minimum difference at the center of the channel. The center 

of the channel is the area of the channel flow field that is closer to Gaussian turbulence 

than any other region of the channel flow, so this finding is expected given the findings 

for Gaussian isotropic turbulence by Sawford et al. [73] The maximum difference 

between the material timescales for the forwards and backwards dispersion appears in 

the transition region (between the viscous sub-layer and the logarithmic layer), followed 

closely by the logarithmic region. In all cases, however, the material timescale for the 

forwards dispersion is less than that for the backwards dispersion. 

For the y-velocity, at the center of the channel, the forwards and the backwards 

material timescales are nearly equal, while in the logarithmic region, at lower Pr (0.1, 

0.7) the timescales are the same, while for the higher Pr (≥ 6) the forwards timescales 

have higher values. In the transition region, for lower Pr = 0.1, the forwards timescale is 

larger, while for higher Pr, the timescales have very small differences. However, at the 

viscous sub-layer, the material timescale for the backwards dispersion is slightly higher 

than that for the forwards for Pr ≥ 6, while for Pr  = 0.1, 0.7, the timescales are nearly 

the same. 

Considering the spanwise velocity, at the center of the channel the material 

timescales for the forwards and backwards dispersion are very close to one another. In 

the logarithmic region, except for Pr 0.1, where there is no difference in the timescale, 

the forwards timescale is higher than the backwards timescale. The forwards timescales 
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are also higher in value than the backwards timescales in the transition region. At the 

edge of the viscous sub-layer, the material timescale for the forwards dispersion is less 

than that for the backwards dispersion. 

The material timescale defined using the streamwise velocity is larger than the 

material timescale in the other two directions [see the scale used in Figures 4.7(a)-

4.7(c)]. The smaller material timescale is observed in the direction normal to the 

channel walls, indicating the highly anisotropic character of the dispersion in channel 

flow. This is true for both the forwards and the backwards dispersion.  

The ratios of the values of the material timescales for the forwards to the 

backwards dispersion are shown in Table 4.1, which is a summary of the behavior of 

the forwards and backwards timescales relative to each other for all three velocities. In 

all three directions of the flow at the center of the channel, the ratio is nearly one for all 

Pr. The /f b   ratio for the streamwise directions in the other regions, namely, 

logarithmic region, transition region and viscous sub-layer is well below one. In the 

normal direction, in the logarithmic region, the ratio /f b 
 
is greater than one. It is 

almost one in the transition region and is smaller than one at the edge of the viscous 

sub-layer. In the spanwise direction, the ratio /f b  is close to one in the logarithmic 

region, it is above one in the transition region and below one in the viscous sub-layer. 

The material timescales in the streamwise and spanwise directions for both 

forwards and backwards dispersion increase with increasing distances from the wall. 

This trend becomes more evident when the forwards and backwards dispersion material 

timescales for Pr ≥ 6 are grouped together and averaged (since we found that the 

timescales do not change much for Pr ≥ 6 an average like this is more meaningful than 
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examining individual values), the forwards and backwards material timescales increase 

with increasing distance from the wall. The trend is consistent to the trend observed by 

Mito and Hanratty [154] and by Le and Papavassiliou [148] but not with the results of 

Bernard and Rovelstad [72]. The backwards timescale in the streamwise direction, 

however, exhibits a maximum at y
+
 = 37. This is likely due to the contributions of 

strong and well-correlated ejection and sweep coherent structures that contribute to the 

movement of markers towards that location, while structures that move markers to the 

center of the channel are not so well correlated. 

The behavior of the Lagrangian timescales determines the rate of dispersion for 

fluid particles in homogenous, isotropic turbulence, as shown in Equations 2.2 and 2.3, 

but, in the present study, where the flow is anisotropic and molecular effects contribute 

to dispersion in addition to convection, the material timescales cannot be solely used to 

determine the rate of forwards and backwards dispersion. The mean square marker 

displacement can be used to directly visualize the dispersion rate. The difference 

between the forwards and the backwards dispersion in the y direction as a function of 

forwards or backwards time is presented in Figures 4.8(a)-(d) for the markers captured 

in different regions of the channel. Table 4.2 is a summary of the findings of this 

analysis, and it includes the results for the other two directions. Looking at Figure 4.8, 

the difference between forwards and backwards dispersion is very small at the center of 

the channel for Pr = 0.1, while for higher Pr, the mean square displacement for 

backwards dispersion is larger than that for the forwards dispersion. In the logarithmic 

region, for Pr ≥ 0.7, forwards mean square dispersion is higher, as is the case for the 

transition region and the viscous sub-layer.  
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4.2.3 Effects of the velocity field structure on forwards and backwards scalar 

dispersion  

Examining Table 4.2, one can see where the departure from the behavior for 

isotropic turbulence occurs: it occurs where the forwards dispersion is higher than the 

backwards. In the streamwise direction, for all Pr, the forwards dispersion is larger 

compared to the backwards dispersion in the center of the channel and in the 

logarithmic layer. In the vertical direction, for Pr higher than 0.1 and for all locations 

other than the center of the channel, the forwards dispersion is larger. Similar results are 

found for the dispersion in the spanwise direction. However, the difference between the 

forwards and the backwards dispersion is much smaller as a percentage of spanwise 

dispersion, than the difference in the vertical direction. The obvious question that arises 

now is how can the dominance of either forwards or backwards dispersion at particular 

regions in the turbulent flow field be explained?  

 Sawford et al. [73] found out that, for homogenous isotropic turbulence, the 

backwards relative dispersion was several times larger than the forwards relative 

dispersion. This finding was true when the turbulence was not Gaussian, while for 

Gaussian turbulence there did not appear any difference between the backwards and 

forwards relative dispersion. Furthermore, asymmetry of the probability density 

function (pdf) of the particle separation distances was found to cause the differences in 

the backwards and forwards dispersion.  One can then speculate that the fact that 

turbulence is non-Gaussian in the case of channel flow can result in differences in 

backwards and forwards dispersion. Combining this speculation with the observations 

of the previous paragraph leads to the need for a close examination of the probability 
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density function of the fluctuating velocity fields, and specifically the skewness of the 

pdf, which is a measure of the pdf asymmetry. Coherent flow structures, like ejection 

and sweep events, characterize the flow close to the wall and affect the pdf skewness. 

Further motivation for the need to examine the pdfs of the velocity fields arises when 

one considers that dispersion characteristics for intermediate and high Pr (Pr ≥ 6) do 

not appear to change much. At these Pr, the convective effects dominate transport 

compared to molecular diffusion effects.   

The backwards dispersion is related to the “history” of the markers or, in other 

words, their memory of the structure of the velocity field at the point from where they 

originated before they arrived at a particular location.  The forwards dispersion is 

related to the “future” of the markers. In order to examine the history and future of the 

markers, the average position from which the markers originate (designated as a 

trajectory in negative time) and the average position to which the markers disperse 

forwards (a trajectory in positive time) in the vertical direction,Y ,  is presented in 

Figures 4.9(a)-(d).  

As seen in Figure 4.9(a), the markers at the center of the channel on average 

arrive there from origins that are very close to the center of channel. The forwards 

dispersion is higher in the streamwise direction, because the forwards dispersing 

markers have higher initial velocities with which they move out, since the maximum 

mean velocity is at the center of the channel. The markers arriving at the center region 

originate from regions that have smaller mean velocities. Considering the vertical and 

spanwise direction there is no mean velocity to drive the markers, and the skewness of 

the velocity fluctuation pdf is zero in the vertical and spanwise direction (see Figure 
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4.10). In the case of backwards dispersion, the markers arrive from locations above or 

below the center of the channel, where they have some finite skewness. This finite 

skewness (indicating asymmetric velocity fluctuations) helps in dispersing the markers 

faster than compared to the forwards dispersion. Hence we find that for higher Pr, 

backwards dispersion is higher in the vertical and spanwise direction.  For Pr = 0.1, the 

convective and molecular diffusion effects are nearly comparable; the pdf of the 

velocity fluctuations in this case does not play a dominant role in the dispersion, and the 

backwards dispersion is only slightly higher than the forwards dispersion (see Fig 

4.8(a)). 

The average normal positions from where the markers arrive and leave the 

logarithmic region is seen in Figure 4.10(b) as a function of time. In the streamwise 

direction, for Pr = 0.1, the markers arrive from y
+
 ≈ 102, while for Pr ≥ 0.7, the markers 

arrive on average from y
+
 ≈ 93. The mean velocity is still an important factor at this 

region of flow. The mean streamwise velocity decreases as the markers reach the 

logarithmic region. So the dispersion reduces as the markers decelerate in the 

streamwise direction. On the other hand, markers dispersing away from the logarithmic 

region move on average towards regions of higher mean velocity. The markers 

accelerate in this case, explaining why forwards dispersion is higher than backwards 

dispersion in this region. In the vertical direction, in the logarithmic region, backwards 

dispersion is higher for Pr = 0.1, while for Pr ≥ 0.7, the forwards dispersion is higher. 

For Pr ≥ 0.7, a look at Table 4.1 shows that /f b   is greater than one. This means that 

the forwards moving markers are correlated for a longer time. Also, as seen in Figure 

4.9(b), the forwards dispersing markers advance to locations farther from the wall, 
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experiencing larger velocity fluctuation spikes (since they move to area of higher 

negative skewness). As a result of all these contributions the forwards dispersion is 

higher than the backwards dispersion. For Pr = 0.1, the markers come on average from 

higher locations compared to forwards dispersion due to large molecular diffusion and 

due to the presence of the wall, so that backwards dispersion is higher than forwards 

dispersion. Considering the spanwise direction, there is no wall to affect the dispersion 

forwards, so the forwards dispersion is higher as the markers move to regions of more 

asymmetric velocity fluctuations.  

In the transition region, in the streamwise direction, coherent structures in the 

form of sweep and ejection events start playing a vital role. The skewness of the 

velocity pdfs experienced by the markers arriving at this location has higher magnitude 

compared to those that originate from this location. Added to this effect, the higher 

length and frequency of the sweep events (which are defined as fluid structures that 

move faster than the mean velocity and move fluid from the outer regions towards the 

wall regions, [163]) compared to the ejection events (which are defined as fluid 

structures that move low momentum fluid away from the wall region) cause the 

backwards dispersion to be higher than the forwards dispersion. (Quantitative 

characteristics of the ejection and sweep events close to the wall for the presently 

simulated field can be found in Spencer et al. [164]). In the vertical direction, for Pr = 

0.1, it is seen in Figure 4.9(c) that the markers move on average to the same location 

where they come from. In addition, molecular diffusion effects are large, diminishing 

the effects of the convective transfer and causing the dispersion to be almost equal in 

both directions. For Pr ≥ 6 the markers arrive on average from the same location to 
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which they move out. Also as Table 4.1 indicates, the ratio /f b   is nearly one, 

indicating that the markers dispersing forwards stay together the same amount of time 

as the markers arriving to the transition region. Considering the skewness of the 

velocity fluctuations of the arriving markers, it decreases as they arrive at the transition 

region, while the forwards markers move away with increasing skewness. Since these 

markers are correlated for approximately the same amount of time, the forwards 

markers will experience higher velocity fluctuation spikes (higher skewness) and 

disperse to a larger extent as compared to the backwards dispersing markers. In the 

spanwise direction, for all Pr, the forwards dispersion is larger, as the markers stay 

closer together and allow turbulence to disperse them for longer times indicated by the 

fact that /f b   is greater than one.  

In the viscous sub-layer, the backwards dispersion is higher than the forwards 

dispersion in the streamwise direction, for all Pr. Coherent structures, which are 

frequent in this region determine the dispersion. The sweep events, which have a higher 

mean length and frequency over the ejection events [164], cause the backwards 

dispersion to be higher than the forwards dispersion. In the vertical direction the 

material timescales are really small, so that the distances from where the markers arrive 

and where they disperse are nearly the same. Markers arriving to the viscous sub-layer 

slow down considerably and the skewness becomes smaller as they approach the 

channel walls [see Figure 4.10(b)]. The forwards dispersing markers, as seen in Figure 

4.9(d), move on average towards the transition region, where they find higher 

asymmetry of velocity fluctuations, as evidenced by the higher magnitude of skewness. 

This causes the forwards dispersion in this region to be higher than the backwards 
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dispersion. In the spanwise direction, the skewness is nearly zero in the viscous sub-

layer, but b f 
 
causing the backwards dispersion to be higher. Only for Pr = 0.1, 

where the molecular effects are dominant in transferring heat, the forwards dispersion is 

a higher.  

4.3 Conclusions 

 A combined direct numerical simulation/Lagrangian scalar tracking approach 

was utilized to study the differences in the behavior of forwards and backwards 

dispersion in all directions for a turbulent channel flow. The study was carried out at 

four important regions of the flow, namely the edge of the viscous sub-layer at distance 

of y
+
 = 5, the transition region (between the viscous sub-layer and the logarithmic layer) 

at y
+
 = 37, the logarithmic layer at y

+
 = 75, and the center of the channel at y

+
 = 150. 

The simulation runs covered the range of Prandtl numbers, Pr = 0.1, 0.7, 6, 10, 50, 100, 

500 and 1000.  The analysis involved calculations of the behavior of the material 

autocorrelation coefficient and of the associated Lagrangian timescales. The mean 

square dispersion was calculated to study the dispersion.  

The material timescales increased with increasing molecular Prandtl number for 

small Prandtl numbers, reaching constant values for Prandtl numbers larger than six. 

The simulation results showed that Pr = 0.1 always provides a different scenario 

compared with the higher Pr (that is Pr ≥ 6), since molecular diffusion effects are the 

dominant mechanism of transport. For higher Pr we find that in the streamwise 

direction, the backwards dispersion is higher near the channel walls, while forwards 

dispersion becomes higher at the logarithmic layer and the center of the channel. In the 
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vertical direction, the forwards dispersion is higher for all regions except the center of 

the channel. In the spanwise direction, the backwards dispersion is higher in the center 

and viscous sub-layers, while forwards dispersion dominates in the other two regions. 

For both forwards and backwards dispersion, the material timescale is shorter in the 

direction normal to the channel walls and longer in the streamwise direction.   

In light of the above discussion, there are different cases that arise in the 

examination of the forwards and backwards dispersion in wall turbulence: The case of 

the streamwise dispersion, where the difference in the forwards and backwards 

dispersion is due to the variation of the mean streamwise velocity profile at different 

distances from the wall, and the case of the vertical and spanwise dispersion. The 

vertical direction is of particular importance, because this is the direction of transfer 

when there is heat transfer from or to the wall. The presence of the wall, which limits 

the range from where markers can arrive at a specific location, in conjunction with the 

relative importance of molecular versus convective transport, are the main reasons for 

the observed behavior. When convection is important, the time direction of higher 

dispersion is the direction in which the material timescale is large and the direction 

where the velocity skewness is larger. 
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Table 4.1: Ratio of the forwards material time scale to the backwards material time scale in all three directions of flow for center of 

the channel, logarithmic region, transition region (between the logarithmic region and the viscous sub-layer) and the viscous sub-layer. 

 

 

 

 

  

 

 

 

 

 

 

 

 center of channel Logarithmic layer Transition region Viscous sub-layer 

Prandtl 

number 

(Pr) 

direction direction Direction 

 

direction 

 

x y z x y z x y z x y z 

0.1 0.90 1.00 0.95 0.36 0.97 1.02 0.35 1.30 1.25 0.45 1.18 0.64 

0.7 0.92 1.01 0.97 0.29 1.02 1.07 0.19 1.00 1.05 0.36 1.06 0.75 

6 0.99 0.98 0.97 0.29 1.08 1.08 0.19 0.99 1.09 0.28 0.96 0.65 

10 0.93 1.00 0.99 0.32 1.07 1.03 0.19 0.98 1.12 0.28 0.77 0.69 

50 1.00 0.99 1.00 0.29 1.06 1.02 0.20 1.00 1.14 0.31 0.85 0.76 

100 1.03 1.01 0.99 0.29 1.05 0.97 0.20 1.00 1.15 0.32 0.83 0.69 

500 0.99 0.98 1.05 0.28 1.09 0.99 0.21 1.02 1.18 0.33 0.96 0.83 

1000 0.99 1.03 1.04 0.29 1.04 0.96 0.21 0.98 1.19 0.32 0.89 0.67 
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Table 4.2: Summary of findings about whether forwards or backwards dispersion is 

higher at different regions in the channel flow at very long times. (The Pr = 1000 here 

summarizes the results of all Pr including 10, 50, 100, 500 and 1000.) 

Direction Pr y
+
 = 150 y

+
 = 75, 225 y

+
 = 37, 263 y

+
 = 5, 295 

Streamwise 

0.1 

Forwards Forwards Backwards Backwards 
0.7 

6 

1000 

Vertical 

0.1 

Backwards 

Backwards 
Forwards ≈ 

Backwards 

Forwards 0.7  

Forwards 

 

Forwards 6 

1000 

Spanwise 

0.1 

Backwards 

 

Forwards 

 

 

Forwards 

 

Forwards 

0.7 

Backwards 6 

1000 
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Figure 4.1: Schematic showing the xy cross-section of the simulation box, with markers 

uniformly and randomly released from one plane, as well as the bins in the vertical 

direction. 

 

Figure 4.2: Schematic showing the x-y cross sectional view of the simulation box with 

markers being captured at a particular bin for backwards turbulent dispersion and 

markers dispersing from the same bin for forwards turbulent dispersion. 
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Figure 4.3: Material correlation coefficient as a function of time in cases of forwards 

and backwards dispersion for markers captured at the center of the channel, and for 

different Prandtl numbers: (a) Streamwise velocity, Ruu ; (b) normal velocity, Rvv ; (c) 

spanwise velocity, Rww. In Figures (b) and (c), the lines for Pr ≥ 10 are all represented 

by the line for Pr = 1,000. 
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Figure 4.4: Material correlation coefficient as a function of time in cases of forwards 

and backwards dispersion for markers captured at the logarithmic region of the 

turbulent channel flow, and for different Prandtl numbers: (a) Streamwise velocity, Ruu; 

(b) normal velocity, Rvv; (c) spanwise velocity, Rww. In order to clearly present the 

results, the lines for Pr ≥ 10 are all represented by the line for Pr = 1,000. 
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Figure 4.5: Material correlation coefficient as a function of time in cases of forwards 

and backwards dispersion for markers captured at the transition region between the 

viscous sub-layer and the logarithmic layer, and for different Prandtl numbers: (a) 

Streamwise velocity, Ruu; (b) normal velocity, Rvv; (c) spanwise velocity, Rww. In order 

to clearly present the results, the lines for Pr ≥ 10 are all represented by the line for Pr = 

1,000. 
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Figure 4.6: Material correlation coefficient as a function of time in cases of forwards 

and backwards dispersion for markers captured at the edge of the viscous sub-layer, and 

for different Prandtl numbers: (a) Streamwise velocity, Ruu; (b) normal velocity, Rvv; (c) 

spanwise velocity, Rww. In order to clearly present the results, in the streamwise 

direction, the line for Pr = 6 represents the data for 6 ≤ Pr < 50, while the line for Pr = 

1000 represents the data for 50 ≤ Pr ≤ 1000, while in the case of normal and spanwise 

velocities, the lines for Pr ≥ 10 are all represented by the line for Pr = 1,000. 
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Figure 4.7: Lagrangian time scale as a function of Prandtl number in different regions of 

the turbulent channel flow for forwards and backwards dispersion: (a) streamwise 

direction; (b) normal direction; (c) spanwise direction. 
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Figure 4.8: Differences between forwards and backwards mean square displacement in 

the normal direction as a function of time for different Prandtl numbers, in cases of 

markers captured in different regions of flow (a) center of channel  (y
+
 = 150) ; (b) 

Logarithmic region of the turbulent channel flow (y
+
 = 75, 225) ; (c) Transition region 

of the channel turbulent flow (y
+
 = 37, 263) ; (d) edge of the viscous sub-layer (y

+
 = 5, 

295). 
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        (c)                 (d) 

Figure 4.9: Mean vertical position of the markers as a function of time in cases of 

forwards and backwards dispersion for different Prandtl numbers, and for markers 

captured in different regions of flow: (a) center of the channel (y
+
 = 150) ; (b) 

Logarithmic region of the turbulent channel flow (y
+
 = 75, 225) ; (c) Transition region 

of the channel turbulent flow (y
+
 = 37, 263) ; (d) edge of the viscous sub-layer (y

+
 = 5, 

295). 
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Figure 4.10: Skewness of the velocity fluctuations as a function of distance from the 

channel walls: (a) Streamwise; (b) normal direction; (c) spanwise direction. 
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Chapter 5: FORWARDS AND BACKWARDS RELATIVE SCALAR DISPERSION
†
 

5.1 Simulation parameters and procedure 

In this Study, the DNS is used to obtain the flow field of Poiseuille channel flow 

at Reτ = 300, and for plane Couette flow, at Reτ = 150. The complementary LST 

techniques is used to for the simulation of Pr = 0.1, 0.7, 6, 20, 50, in the case of 

Poiseuille channel flow, and Pr = 0.1, 0.7, 3, 6, 10 in the case of plane Couette flow. 

The number of scalar markers is 260100 and 145161, and they are released uniformly 

from an xz plane in the Poiseuille channel and plane Couette flow cases, respectively. 

The time step with which the simulation is advanced for both cases is Δt
+
 = 0.2 in 

viscous wall units. Different regions of the channel present different scenarios and 

different physics in cases of forwards and backwards turbulent dispersion. In order to 

concentrate on a region, the channel in the vertical direction for Poiseuille flow is 

divided into 201 equally sized bins, while in the case of plane Couette flow it is divided 

into 101 bins. Bins corresponding to four regions of turbulent channel flow, the viscous 

sub-layer, the transition region, the logarithmic region and the center of the channel, are 

chosen for capturing and tracking of markers. In the Poiseuille flow, the bins chosen are 

at distances of (a) y
+
 = 5 (and also at y

+
 = 595, due to the symmetry of the channel about 

the center plane at y
+
 = 300) for the edge of the viscous sub-layer; (b) at y

+
 = 60 and y

+
 

= 540 for the transition region; (c) at y
+
 = 120 and 480 for the logarithmic region; and at 

(d) y
+
 = 300 for the center of the channel. In the Couette flow, the channel height is half 

                                                 
†
 Most of the material in this Chapter has been published in the International Journal of Heat and Mass 

Transfer, 55, 5650-5664 (2012) 
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that of the Poiseuille flow and hence the bins include (a) the edge of viscous sub-layer 

at y
+
 = 5 and 295 (due to channel symmetry in this case along the center plane at y

+
 = 

150); (b) the transition region at y
+
 = 37 and 263; (c) logarithmic region at y

+
 = 75 and 

225 and the (d) center of the channel at y
+
 = 150. In order to calculate forwards and 

backwards dispersion statistics, position and velocity of all the markers in the flow field 

at each time are stored in a database. At a particular time, the time of interest, and a 

particular bin of interest, the total number of markers present in the bin and the 

associated marker identity of each marker are determined. The trajectory of each of 

these markers prior to arriving in the bin can be obtained from previously stored data, 

and backwards relative dispersion statistics are obtained. The forwards relative 

dispersion statistics are obtained by tracking the markers captured in the particular bin 

at the time of interest as they continue to move into the flow field. 

In both flow cases, the markers are tracked in time only after they get uniformly 

distributed in the channel. We determined that the distribution of markers in the vertical 

direction was uniform when the average vertical marker position was equal to the 

channel half-height, and when the variance of the distribution of the marker positions in 

the normal direction was equal to that predicted for a uniform distribution between zero 

and the channel height, 2h
+
. For a uniform distribution between 0 and 2h

+
, the variance 

is expected to be (2h
+
-0)

2
/12, i.e., for the low Re channel it is expected to be 7500, 

while for h
+
 = 300 it is expected to be 30000. The time at which this occurs at time t

+
 = 

5000 and 2000 in case of Poiseuille channel and Couette flow, respectively. The 

markers are traced for a time period of t
+
 = 300 (which is much larger than the 

Lagrangian material time scale obtained in previous results [148, 165]) for both the 
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cases of forwards and backwards dispersion. For the Poiseuille flow, for each bin, there 

are several realizations of forwards and backwards dispersion obtained as follows: The 

time of capture is chosen at t
+
 = 5800, and then every 100 time units there is a new 

starting point for dispersion at t
+
 = 5900, 6000, …. to 7700, thus yielding a total of 20 

different realizations. Since there are two bins with identical statistics in the case of the 

edge of the viscous sub-layer, the transition region, and the logarithmic region due to 

channel symmetry, as mentioned previously, for these regions the data obtained is a 

result of average trajectories obtained from 40 realizations. The behavior at the center of 

the channel has been obtained with only 20 averages. Similarly, for plane Couette flow, 

the initial time of capture is chosen at t
+
 = 2500,  and then the process is repeated every 

100 time units (at t
+
 = 2600, 2700,… to 3700) so as to yield 12 averages, which results 

in 24 averages for the edge of the viscous sub-layer, the transition and the logarithmic 

regions with symmetry. On an average, 1300 and 1450 markers are captured in 

Poiseuille channel and plane Couette flow cases, respectively, resulting in about 844350 

and 1050525 marker pairs in each respective case. In Poiseuille channel flow, on an 

average 1.5×10
8
 and 3×10

8 
marker pairs are used in the calculations for the center of the 

channel and for the other three regions, respectively. For the plane Couette flow, on an 

average 1×10
8 

and 2×10
8 

marker pairs are utilized in the statistical calculations for the 

center of the channel and the other three regions. 
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5.2 Results and discussion 

5.2.1 Poiseuille flow 

In the case of flow restricted by channel walls, the direction normal to the 

channel walls is the direction of interest. For the remainder of the text, any reference to 

velocity or distance is always in the vertical direction, perpendicular to the channel 

walls. The difference between the forwards and backwards mean squared relative 

displacement in case of Poiseuille channel flow is plotted in Figure 5.1 as a function of 

time for different Pr. Calculating the differences in the mean squared relative 

displacement in the case of forwards and backwards relative dispersion clearly depicts 

the differences in the rate of dispersion between these two types of dispersion. It is seen 

in Figure 5.1 that the difference is positive and is increasing with time for all Pr in the 

case of viscous sublayer, the transition region and the logarithmic region, indicating the 

higher rate of forwards relative dispersion in these regions of the channel. The center of 

the channel is the only area of channel flow that can be considered to resemble isotropic 

turbulence. It is seen that, in this region, the backwards relative dispersion is faster than 

forwards relative dispersion, in agreement with the results for isotropic turbulence, 

where Sawford et al. [73] and Berg et al. [74] documented that backwards relative 

dispersion is faster than forwards relative dispersion. An interesting behavior is also 

seen in Figure 5.1; the values of the difference between forwards and backwards 

relative dispersion increase with increasing Pr in regions where convection dominates 

molecular diffusion, while in the viscous sublayer the differences of the relative mean 

squared displacement increases with decreasing Pr highlighting the dominance of 

molecular diffusion compared to turbulent convection very close to channel walls.  
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The marker pair separation probability density functions (pdfs) at a particular 

time for the forwards and backwards relative dispersion are presented in Figures 5.2-

5.5. The distribution of the marker pair distance is plotted in Figure 5.2 for the case of 

the viscous sub-layer with the lower Pr = 0.1 behavior plotted in Figure 5.2(a) and the 

higher Pr = 50 behavior plotted in Figure 5.2(b). The marker pair distance distribution 

for the transition region, the logarithmic region and the center of the channel are shown 

in Figures 5.3, 5.4 and 5.5, respectively, with Pr = 0.1 results as (a) and Pr = 50 results 

as (b). In the viscous sublayer, the transition region and the logarithmic region, and at 

larger times, there are more pairs with shorter separation distance in case of backwards 

relative dispersion, while there are more marker pairs with larger separation in case of 

forwards relative dispersion. This behavior seems to be correlated to the dispersion rate, 

with faster forwards relative dispersion rates corresponding to more marker pairs that 

diffuse farther from each other in this type of dispersion. In the center of the channel, 

however, the higher rate of backwards relative dispersion is reflected in the higher 

number of largely separated marker pairs for backwards relative dispersion. Comparing 

the distribution of marker pair distances between different Pr cases, the Pr = 50 always 

has a higher number of marker pairs with smaller separation at all times in all the 

regions of the flow. The large molecular diffusion for Pr = 0.1 (Pr is inversely 

proportional to the molecular diffusion) causes greater separation of marker pairs and 

hence the separation distribution of Pr = 0.1 is shifted towards higher values of 

separation of the marker pairs at all times. For a particular Pr, the behavior of the 

separation pdf with different distances from the channel wall is also interesting, in that 

the frequency of pairs with small separation decreases with increasing distance from the 
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channel walls. Such behavior, caused by the differences in Pr, for single particle 

dispersion has been observed and documented in Chapter 4 for Poiseuille channel flow 

at half the Re used herein. 

 The Poiseuille channel flow data presented here show very consistent 

differences between the rates of forwards and backwards relative dispersion. So, why do 

the forwards and backwards relative dispersion exhibit different rates at different 

regions of the channel for different Pr? A starting point to answer this question is to 

investigate the velocity fluctuations that the markers experience as they disperse in the 

vertical direction for different Pr and to quantify the differences in the marker pair 

velocity fluctuations. The relative velocity distribution of the marker pairs for different 

times for the forwards and backwards relative dispersion is plotted for the viscous sub-

layer, the transition region, the logarithmic region and the center of the channel, in 

Figures 5.6, 5.7, 5.8, and 5.9, respectively, for Pr = 0.1 in (a) and Pr = 50 in (b). The 

viscous sub-layer, the transition region and the logarithmic region show larger number 

of marker pairs exhibiting greater velocity differences in the case of forwards relative 

dispersion, while there are more marker pairs showing smaller velocity differences in 

the case of backwards relative dispersion.  

Motivated by the work of Sawford et al. [73], who found that the “Gaussianity” 

and symmetry of turbulence caused the differences between forwards and backwards 

relative dispersion to vanish, the nature of the asymmetry of the pdf of the velocity 

fluctuations, in other words, the skewness, is also analyzed to possibly explain the 

differences between forwards and backwards relative dispersion rates. Figure 5.10 is a 

plot of the skewness of the pdf of the y-velocity fluctuations as a function of the 
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distance from the channel wall. If one traces the variation of the skewness from a y 

location forwards, it is seen that marker pairs dispersing forwards from that location 

will travel through areas of pdfs of velocity fluctuations with changing asymmetry, 

causing them to drift farther from each other. In contrast, marker pairs travelling 

towards that same y location (as in backwards relative dispersion), start to increasingly 

experience similar pdfs of velocity fluctuations, causing them to move in concert to 

each other and closer to each other. This simple but intuitive analysis shows that the 

inherent imposition of initial and final conditions for forwards and backwards relative 

dispersion, respectively, plays a major role in the different rates observed in these two 

cases.  

The behavior at the center of the channel is not interpreted by this argument, 

since backwards relative dispersion at the center of the channel is faster than forwards 

relative dispersion. It is seen in Figure 5.9, that there is a larger number of marker pairs 

with larger velocity differences in backwards relative dispersion than in forwards 

dispersion, in agreement with the finding that there is a larger separation between 

markers in backwards dispersing pairs than in pairs moving forwards from the center of 

the channel. So, why would backwards-dispersing markers moving closer towards each 

other, as they also move towards the center of the channel and as they experience 

similar skewness of the velocity fluctuation pdf, not disperse slower than their forwards 

dispersing counterparts? A possible explanation could be the zero skewness (i.e., the 

symmetric pdf of vertical velocity fluctuations) that the forwards dispersing markers 

begin to experience as they move out of the center region of the channel (the center is 

the only region in the channel where the skewness is zero). Another way to interpret this 
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result is to consider the effect of the coherent structures on particle dispersion, and the 

differences in the behavior of the coherent structures in this part of the channel 

compared to the other regions of the channel. It is rather well established that coherent 

vortical structures, often called ejection and sweep events [79, 163], are generated close 

to the channel walls and the near-wall region and extend towards the logarithmic layer. 

Such structures also contribute to the asymmetry of the velocity pdfs.  These structures 

extend only till the edge of the logarithmic regions and become scarce at the center of 

the channel. Now, correlating this behavior with the relative forwards and backwards 

dispersion of markers, one can see a consistent pattern in that forwards moving markers 

from the viscous wall region, the transition and the logarithmic region are aided by 

these vortical structures in separating from each other. These structures play a role only 

in transporting markers from the viscous wall region and the logarithmic region towards 

the center of the channel, in case of backwards relative dispersion. The forwards 

relative dispersing markers from the center of the channel do not receive any help from 

these vortical structures due to their absence in the center region of the channel, which 

is also expressed with the symmetry of the velocity pdf. 

This analysis clarifies the reasons behind the differences between the forwards 

and backwards relative dispersion. However, what is the reason behind the effects of Pr 

on the rates of forwards and backwards relative dispersion? In order to explain this, it is 

important to consider the effect that the Pr has on the rates of scalar dispersion. Earlier 

work [148, 157] has depicted three Pr-dependent zones of scalar dispersion for markers 

released from the channel walls in case of Poiseuille channel flow, namely, zone 1, a 

region close to the wall where the molecular diffusion dominates, zone 2, an 
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intermediate region where there is an interaction between molecular and turbulent 

diffusion and finally zone 3, a region where turbulent diffusion dominates. So, 

comparing two cases of Pr, such as Pr = 0.1 and 50, for markers released at the channel 

walls or the viscous subregion, the markers with Pr = 0.1 spend less time in zone 1 and 

spend the majority of their time in zone 3. Because molecular diffusion steps are very 

small for Pr = 50 markers, they spend a large amount of time in zone 1, in the molecular 

diffusion dominated region of the channel, before moving to zone 2 and then 3. Now, 

the only situation in our study which can be compared to markers released close to the 

wall is the case of forwards dispersion of markers moving away from the viscous 

subregion. In that case alone, one finds that the differences between the forwards and 

backwards relative dispersion are lower for higher Pr in agreement with the fact that the 

higher Pr markers spend a lot of time in the viscous subregion before dispersing into 

different regions of the channel. In the other regions of the channel, since the higher Pr 

markers are already in the turbulence-dominated regimes of the flow, they diffuse faster 

than the lower Pr markers causing increased differences with increased Pr.  

5.2.2 Plane Couette flow 

 In this type of flow, the channel walls move relative to each other. This results 

in a constant stress region, which extends from the edge of the viscous sublayer of the 

bottom wall to the edge of the viscous sublayer of the top wall, nearly a distance of 220 

wall units, similar to the logarithmic region of the Poiseuille channel flow. Thus, this 

type of flow, which has a very well established logarithmic region and different types of 

flow structures, compared to Poiseuille channel flow, provides us with a different 

velocity structure to analyze the differences between forwards and backwards relative 
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dispersion characteristics. It is important in this context to note that these two flow 

configurations are not as similar in structure as one might imagine, but are in fact two 

different types of flow, where the Poiseuille flow is driven by pressure gradient while 

the plane Couette flow is driven by shear stress due to the motion of the channel walls. 

Any occurrence of common behavior of relative turbulent dispersion between the 

Poiseuille channel and plane Couette flow cases will, thus, indicate a universal 

behavior. The differences in the mean squared forwards and backwards relative 

displacement, which in turn indicate the rates of dispersion, for the case of viscous sub-

layer, the transition region, the logarithmic region and the center of the channel, are 

presented in Figures 5.11(a), (b), (c) and (d), respectively. The center of the channel and 

the logarithmic region in the case of plane Couette flow are the same, since the 

movement of the wall produces an extensive constant stress region, which extends from 

the transition region of one wall to the other, going through the center of the channel. 

Hence, the near-isotropic region in the center of the Poiseuille channel is not replicated 

in plane Couette flow. It is seen that forwards relative dispersion proceeds at a faster 

rate in the logarithmic region and the center of the channel. In the viscous sublayer and 

the transition region there is a reversal of this trend with the backwards relative 

dispersion showing faster rates, on an average, compared to forwards relative 

dispersion. Since the Re is smaller compared to the Poiseuille channel flow case, the 

values seem to be noisier.  

The trend of the skewness plot seems very similar to that of the Poiseuille 

channel flow, however, the magnitude of the skewness is smaller compared to the 

Poiseuille flow environment (see Figure 5.12). The marker pair separation distribution 
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is plotted for the case of viscous sublayer, the transition region, the logarithmic region  

and the center of the channel in Figures 5.13, 5.14, 5.15 and 5.16, respectively, with 

data for Pr = 0.1 as part (a) and Pr = 10 as part (b). It can be seen that in the case of the 

logarithmic region and the center of the channel, there are more marker pairs with large 

separation distance in forwards relative dispersion, while there are more marker pairs 

with smaller separation distance in the case of backwards relative dispersion. This is in 

agreement with the results that the forwards relative dispersion is faster. This trend is 

reversed in the cases of the viscous sublayer and the transition region, which show 

opposite dispersion rate trends compared to the other two regions.  

Increase in Pr results in increased differences for the logarithmic region and the 

center of the channel, as seen on Figures 5.15 and 5.16, and decreased differences for 

the viscous sub-layer and the transition regions. The marker separation pdfs show 

similar trends to those observed in Poiseuille channel flow in cases of different Pr, with 

the Pr = 0.1 showing higher large separation frequency and the Pr = 10 showing higher 

small separation frequency. The frequency of small separation also decreases with 

increase in the distance from the Couette walls.  

 To interpret these results, as with the case of Poiseuille channel flow, the 

velocity differences between the marker pairs are studied first. In Figures 5.17, 5.18, 

5.19 and 5.20, with data for Pr = 0.1 shown in part (a) and Pr = 10 shown in part (b) of 

the figures, we plot the marker distribution of the velocity differences of the marker 

pairs in different regions of the channel. The logarithmic region and the center of the 

channel (see Figures 5.19, 5.20) show more pairs with large velocity differences in the 

case of forwards relative dispersion, consistent with the results of faster forwards 
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relative dispersion in these regions of the plane Couette flow. The transition region and 

the viscous sub-layer, however, show more marker pairs with large velocity differences 

in the case of forwards relative dispersion at some times and at other times show large 

velocity differences in the case of backwards relative dispersion. At first glance these 

results seem to be inconsistent with the analysis of velocity differences carried out for 

the Poiseuille channel flow case. This different behavior can be understood more clearly 

by considering the root mean squared (rms) y-velocity fluctuation profile in the case of 

plane Couette flow as a function of the distance from the channel wall, shown in Figure 

2 of Papavassiliou and Hanratty [150], and comparing it with that of Poiseuille flow 

shown in Figure 4 in Moser et al. [30]. This comparison shows that, firstly, the profiles 

of the rms y-velocity fluctuations are very different in the cases of Poiseuille and plane 

Couette flows, with Poiseuille flow showing a local maximum of the y-velocity 

fluctuations closer to the channel walls (in the viscous wall region), while this 

maximum occurs at the center of the channel for the plane Couette flow. Also, another 

important observation is that the gradient of the rms y-velocity fluctuation at the center 

of the channel for Poiseuille flow is non-zero, while it is very close to zero for the plane 

Couette flow. In fact, for plane Couette flow, the rms velocity fluctuations are almost 

constant between y
+
 ≈ 50 and y

+
 ≈ 250 at the other half of the channel. Now, relating 

this observation back to the values of the velocity differences for the forwards and 

backwards relative dispersion, one can imagine a marker pair undergoing forwards 

dispersion. Assuming that one of the markers is close to the center and the other marker 

is at the edge of the viscous wall layer, they have very small velocity differences, due to 

near zero gradients, but their net separation (and, thus, dispersion) is large. This shows 
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that the one-on-one correspondence between the differences in velocity fluctuation and 

the dispersion rates, which existed in the Poiseuille channel flow case, no longer exists 

in the case of plane Couette flow. Hence, calling on the velocity difference distribution 

might not help in outlining the differences between the forwards and backwards relative 

dispersion in plane Couette flow.  

The next property to help explain the result is the skewness of the pdf of the y-

velocity fluctuations. From this, and consistent with the analysis of Poiseuille flow, it is 

expected that the forwards relative dispersion should show increased rates compared to 

backwards relative dispersion, as the former type of markers start moving towards 

regions of increasing differences in velocity pdf compared to the converging markers of 

backwards relative dispersion, which experience increasingly similar velocity 

fluctuations as they move towards their common destination. While this analysis works 

well for the logarithmic region and the center region of the Couette flow channel, it 

does not apply in the viscous subregion or the transition region.  One needs to also 

consider the coherent structures in Couette flow to explain the near-wall behavior. It has 

been found that coherent structures in plane Couette flow are different than those of 

Poiseuille channel flow. Turbulence producing velocity structures existing in plane 

Couette flow are very large and can extend across the channel from one wall to the 

other wall [150, 166]. To understand the effect of the large-scale coherent structures in 

scalar dispersion for plane Couette flow and how it is different from the case of 

Poiseuille channel flow, an analysis is performed to compare the effect of these 

structures on the scales of the turbulence close to the channel walls. In Figure 5.21 we 

plot the average displacement of the mean location of the center of mass of the marker 
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pairs for forwards and backwards relative dispersion for two Pr, Pr = 0.1 and 6 in case 

of Poiseuille flow and Pr = 0.1 and 10 in the case of plane Couette flow, as a function 

of time. The backwards relative dispersion is represented with negative time, indicating 

the fact that the dispersion occurs prior to the markers arriving at a location. The 

viscous sublayer is presented in Figure 4.21(a) and the transition region in Figure 

5.21(b). The inset numbers in Figure 5.21(a) indicate the corresponding Lagrangian 

material timescale for that particular case. It is important to understand that the material 

timescale is correlated with the time a marker spent following a particular flow structure 

and is related to the distance that the marker traversed with that particular eddy. 

Obvious from  Figure 5.21 are the following facts: (i) For a common Pr considered, for 

both forwards and backwards relative dispersion, the plane Couette flow has higher 

mean displacements in the vertical directions, indicating the larger and more dominant 

vortex structures in this particular type of flow; (ii) though not clearly observable, the 

mean displacement for backwards relative dispersion for higher Pr, with y = 76.03 at 

t
+
 = 300, is nearly 7% higher than for forwards relative dispersion, with y = 71.30 at t

+
 

= 300; and (iii) the Lagrangian material timescale for the backwards relative dispersion 

is comparatively higher than the forwards relative dispersion for plane Couette flow, 

while very small differences are found for Poiseuille channel flow. These three results 

in combination show that the plane Couette flow in effect has large vortical structures 

extending through the channel, sweeping markers to the near-wall regions. Also, the 

backwards dispersing markers moving towards the near-wall regions ride on the same 

velocity structure for a longer duration, hence moving themselves from larger normal 

distances towards the channel walls compared to the forwards dispersing markers.   If 
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one imagines velocity structures extending through the channel, they would have a two-

fold effect: they would help carry forwards dispersing markers away from the center 

and the logarithmic regions, while at the same time they would be moving backwards 

dispersing markers towards the channel walls. This is reflected in the rates of forwards 

and backwards relative dispersion observed for plane Couette flow. Thus, considering 

coherent flow structures helps in the interpretation of the details of the differences 

between forwards and backwards relative dispersion. 

For both Poiseuille channel and plane Couette flow cases, a comparable number 

of marker pairs are correlated, but the difference between the forwards and backwards 

mean squared relative displacement in the plane Couette flow seems to be smaller and 

more noisier compared to the Poiseuille channel flow. The contributing factors behind 

these differences appear to be the smaller Re in the case of plane Couette flow, and also 

the smaller skewness values experienced by the markers in plane Couette flow case, 

causing less asymmetry of the vertical velocity fluctuation pdf compared to the 

Poiseuille channel flow. In addition, a larger Re means larger range of length scales and 

a wider inertial subrange. At a higher Re than the one used here, one would expect even 

larger differences in the rates of forwards and backwards relative dispersion. 

5.3 Conclusions 

 Computational studies of turbulent relative dispersion have been carried out 

using a DNS/LST technique for Poiseuille channel and plane Couette flows. The 

Reynolds number of the turbulent Poiseuille flow is twice of that reported in previous 

single-particle dispersion studies. Turbulent relative dispersion calculations reveal 

differences in the values of mean squared relative displacement between forwards and 
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backwards relative dispersion in the direction normal to the channel walls. The viscous 

sub-layer, the transition region and the logarithmic region show higher rates of forwards 

relative dispersion. However, the center of the Poiseuille channel, which is the area that 

resembles the case of isotropic turbulence the most, shows higher rates of backwards 

relative dispersion, consistent with prior literature results for isotropic turbulence. The 

distribution of marker pair vertical velocity difference, the skewness of the pdf of 

vertical velocity fluctuations, and the nature of the coherent structures existing in such 

flows help in identifying the underlying reasons behind these differences in the rates of 

forwards and backwards relative dispersion. In the viscous sub-layer, the transition 

region and the logarithmic region, the forwards dispersing markers experience different 

skewness as they disperse in time, while the backwards dispersing markers that move 

towards a particular region move towards similar velocity structures and experience 

more and more similar velocity skewness as they approach their common destination. 

This along with the fact that there are higher number of markers with larger velocity 

differences and the behavior of the coherent structures that transport the marker pairs 

from the near-wall regions to the edge of the logarithmic region cause the result of 

higher number of marker pairs with larger vertical separation in the case of forwards 

relative dispersion. The center of the channel presents a unique case where the markers 

dispersing forwards initially experience symmetric pdfs of velocity distributions due to 

the zero skewness. Also, owing to the absence of coherent structures at the center of the 

Poiseuille channel flow, and the help that the backwards dispersing markers moving 

towards the center of the channel receive from the coherent structures that extend from 

the channel walls, the results show a higher number of marker pairs with large 
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separation in the case of backwards relative dispersion for the channel center. The rates 

of forwards relative dispersion increase with increasing Pr in the transition and 

logarithmic regions, while they decrease with increasing Pr in the viscous sub-layer. 

The rate of backwards relative dispersion increases with increasing Pr at the center of 

the channel. 

 The rates and behavior of dispersion are different in the case of plane Couette 

flow, owing to the different nature of that flow compared to the Poiseuille channel flow. 

The forwards relative dispersion proceeds at a faster pace in the case of logarithmic 

region and the center of the channel in plane Couette flow. The backwards relative 

dispersion, however, occurs at faster rates in the viscous sub-layer and transition 

regions. The marker pair velocity differences, which helped in explaining the 

differences for Poiseuille flow, do not do justice in explaining the results for the plane 

Couette flow. This is attributed to the fact that the gradient of the vertical velocity 

fluctuations in this case is very small from the edge of the viscous wall layer from the 

lower to the upper part of the channel. The asymmetry of the pdf of the vertical velocity 

fluctuations having small skewness values because of the small Re simulated also does 

not help in explaining the results observed. It is the coherent structures of the velocity, 

in the case of plane Couette flow, that help in understanding the differences between 

forwards and backwards relative dispersion. The large scale structures extending 

through the outer region of the channel to the channel walls help in transporting the 

forwards dispersing markers for the center of the channel and the logarithmic region, 

while aiding in the relative dispersion of the backwards dispersing markers for the 

transition and the viscous subregion. Finally, an increase in Pr causes increased 
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differences between the forwards and backwards relative dispersion. Results from the 

two different Re used in the study indicate that a higher Re flow exhibits more 

consistent trends and accelerated rates of turbulent relative dispersion mainly due to a 

larger range of length scales. 

To summarize, the following important points result from the study: 

(i) The imposition of essentially initial conditions for forwards dispersion and 

final conditions for backwards dispersion on the marker trajectories affects the rate of 

dispersion experienced by the markers in the case of anisotropic turbulent flow.  

(ii) This is true irrespective of the type of flow, the Re and the Pr of the flow. 

(iii) The results show that in Poiseuille flow the pdfs of the vertical velocity 

fluctuation is sufficient to provide valuable insights into the rate of dispersion, while 

they fail in cases like the outer region in plane Couette flow, where there is a zero 

gradient in the rms of the vertical velocity fluctuations.  

(iv) The skewness of the pdf of the vertical velocity fluctuations in combination 

with the nature of coherent structures traipsing the flow, irrespective of the type of flow, 

help in providing an interpretation of the behavior of the dispersion.  
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          (c)        (d) 

Figure 5.1: Difference between mean squared forwards and backwards relative 

displacement in the normal direction as a function of time for different Prandtl numbers, 

in cases of markers captured in different regions of Poiseuille channel flow (a) viscous 

sub-layer (y
+
 = 5 and 595); (b) transition region (y

+
 = 60 and 540); (c) logarithmic 

region (y
+
 = 120 and 480): (d) center of the channel (y

+
 = 300). 
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Figure 5.2: Marker pair distribution based on the marker pair vertical separation, in the 

case of forwards and backwards relative dispersion, for those markers captured in the 

viscous sub-layer, plotted at different instantaneous time of dispersion in Poiseuille 

channel flow for different Prandtl numbers: (a) Pr = 0.1; (b) Pr = 50. 
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Figure 5.3: Marker pair distribution based on the marker pair vertical separation, in the 

case of forwards and backwards relative dispersion, for those markers captured in the 

transition region, plotted at different instantaneous time of dispersion in Poiseuille 

channel flow for different Prandtl numbers: (a) Pr = 0.1; (b) Pr = 50. 
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Figure 5.4: Marker pair distribution based on the marker pair vertical separation, in the 

case of forwards and backwards relative dispersion, for those markers captured in the 

logarithmic region, plotted at different instantaneous time of dispersion in Poiseuille 

channel flow for different Prandtl numbers: (a) Pr = 0.1; (b) Pr = 50. 
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Figure 5.5: Marker pair distribution based on the marker pair vertical separation, in the 

case of forwards and backwards relative dispersion, for those markers captured in the 

center of the channel, plotted at different instantaneous time of dispersion in Poiseuille 

channel flow for different Prandtl numbers: (a) Pr = 0.1; (b) Pr = 50. 
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Figure 5.6: Marker pair distribution based on the vertical velocity difference of the 

marker pair, in the case of forwards and backwards relative dispersion, for those 

markers captured in the viscous sub-layer, plotted at different instantaneous times of 

dispersion in Poiseuille channel flow for different Prandtl numbers: (a) Pr = 0.1; (b) Pr 

= 50. 
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Figure 5.7: Marker pair distribution based on the vertical velocity difference of the 

marker pair, in the case of forwards and backwards relative dispersion, for those 

markers captured in the transition region, plotted at different instantaneous times of 

dispersion in Poiseuille channel flow for different Prandtl numbers: (a) Pr = 0.1; (b) Pr 

= 50. 
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Figure 5.8: Marker pair distribution based on the vertical velocity difference of the 

marker pair, in the case of forwards and backwards relative dispersion, for those 

markers captured in the logarithmic region, plotted at different instantaneous times of 

dispersion in Poiseuille channel flow for different Prandtl numbers: (a) Pr = 0.1; (b) Pr 

= 50. 
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Figure 5.9: Marker pair distribution based on the vertical velocity difference of the 

marker pair, in the case of forwards and backwards relative dispersion, for those 

markers captured in the center of the channel, plotted at different instantaneous times of 

dispersion in Poiseuille channel flow for different Prandtl numbers: (a) Pr = 0.1; (b) Pr 

= 50. 
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Figure 5.10: Skewness of the velocity fluctuations in the vertical direction as a function 

of the normal distance from the channel wall in the case of Poiseuille channel flow. 
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         (c)                                                                        (d)         

Figure 5.11: Difference between mean squared forwards and backwards relative 

displacement in the normal direction as a function of time for different Prandtl numbers, 

in cases of markers captured in different regions of plane Couette flow: (a) viscous sub-

layer (y
+
 = 5 and 295); (b) transition region (y

+
 = 37 and 263); (c) logarithmic region (y

+
 

= 75 and 225): (d) center of the channel (y
+
 = 150). 
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Figure 5.12: Skewness of the velocity fluctuations in the vertical direction as a function 

of the normal distance from the channel wall in the case of plane Couette flow. 
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Figure 5.13: Marker pair distribution based on the marker pair vertical separation, in the 

case of forwards and backwards relative dispersion, for those markers captured in the 

viscous sub-layer, plotted at different instantaneous time of dispersion in plane Couette 

flow for different Prandtl numbers: (a) Pr = 0.1; (b) Pr = 10. 
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Figure 5.14: Marker pair distribution based on the marker pair vertical separation, in the 

case of forwards and backwards relative dispersion, for those markers captured in the 

transition region, plotted at different instantaneous time of dispersion in plane Couette 

flow for different Prandtl numbers: (a) Pr = 0.1; (b) Pr = 10. 
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Figure 5.15: Marker pair distribution based on the marker pair vertical separation, in the 

case of forwards and backwards relative dispersion, for those markers captured in the 

logarithmic region, plotted at different instantaneous time of dispersion in plane Couette 

flow for different Prandtl numbers: (a) Pr = 0.1; (b) Pr = 10. 
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Figure 5.16: Marker pair distribution based on the marker pair vertical separation, in the 

case of forwards and backwards relative dispersion, for those markers captured in the 

center of the channel, plotted at different instantaneous time of dispersion in plane 

Couette flow for different Prandtl numbers: (a) Pr = 0.1; (b) Pr = 10. 
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Figure 5.17: Marker pair distribution based on the vertical velocity difference of the 

marker pair, in the case of forwards and backwards relative dispersion, for those 

markers captured in the viscous sub-layer, plotted at different instantaneous times of 

dispersion in plane Couette flow for different Prandtl numbers: (a) Pr = 0.1; (b) Pr = 10. 
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Figure 5.18: Marker pair distribution based on the vertical velocity difference of the 

marker pair, in the case of forwards and backwards relative dispersion, for those 

markers captured in the transition region, plotted at different instantaneous times of 

dispersion in plane Couette flow for different Prandtl numbers: (a) Pr = 0.1; (b) Pr = 10. 
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Figure 5.19: Marker pair distribution based on the vertical velocity difference of the 

marker pair, in the case of forwards and backwards relative dispersion, for those 

markers captured in the logarithmic region, plotted at different instantaneous times of 

dispersion in plane Couette flow for different Prandtl numbers: (a) Pr = 0.1; (b) Pr = 10. 
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Figure 5.20: Marker pair distribution based on the vertical velocity difference of the 

marker pair, in the case of forwards and backwards relative dispersion, for those 

markers captured in the center of the channel, plotted at different instantaneous times of 

dispersion in plane Couette flow for different Prandtl numbers: (a) Pr = 0.1; (b) Pr = 10. 
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Figure 5.21: Average displacement of the mean location of the center of mass of the 

marker pairs as a function of time for forwards and backwards relative dispersion for (a)  

Pr = 0.1 and 6 in case of Poiseuille flow, and (b) Pr = 0.1 and 10 in the case of plane 

Couette flow.  (a) Viscous sublayer – the arrows and numbers appearing on the figure 

indicate the Lagrangian material time scale. (b) Transition layer. 
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Chapter 6: DIRECTIONS OF SCALAR FORWARDS AND BACKWARDS SINGLE 

PARTICLE DISPERSION
‡
 

6.1 Simulation parameters and procedure  

In this study, the DNS flow field is obtained for both Poiseuille channel and 

plane Couette flow at Reτ = 150. Variety of Pr = 0.1, 0.7, 6, 10, 50, 100, 500, and 1000 

for Poiseuille channel flow case and Pr = 0.1, 0.7, 3, 6, 10, 200, 500, 2400, 7500 and 

15000 for the Couette flow case are simulated for this particular study. Four different 

sets of simulations are carried out to obtain the data for the various case of Pr: (a) lower 

Pr for Poiseuille channel flow (Pr = 0.1, 0.7, 6, 10 and 50), (b) higher Pr for Poiseuille 

channel flow [162]  (Pr = 50, 100, 500 and 1000), (c) lower Pr for plane Couette flow 

(Pr = 0.1, 0.7, 3, 6 and 10), and (d) higher Pr for plane Couette flow [149] (Pr = 200, 

500, 2400, 7500 and 15000).
 
These four sets are simulated with different initial velocity 

fields, but within each set the initial velocity is common for all Pr within that set. It 

takes approximately 1400CPU hours on a single processor of an SGI altix (cobalt at 

national center for supercomputing applications (NCSA)), to simulate one of the sets of 

5 different Pr (0.1, 0.7, 6, 10 and 100), for Poiseuille channel flow. The simulation 

timestep (Δt
+
) is 0.125 and 0.2 for Poiseuille and for Couette flow, respectively. 

A technique that is loosely similar to Lumley’s POD technique (see Section 2.2) 

is used herein to obtain the directions of scalar transfer in a turbulent channel flow. The 

directions of scalar transport in different regions of the turbulent channel flow, which 

are known to contain different types of coherent structures, namely, the viscous sub-

                                                 
‡
 Most of the material in this Chapter has been published in the Physics of Fluids, 23, 115105 (2011) 
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layer, the transition region, the logarithmic region and the center of the channel, are 

studied. In turbulent plane Couette flow, the same regions, except for the center of the 

channel (since the logarithmic layer extends through the center of channel), are 

investigated. In all cases, single particle dispersion is considered. The direction of scalar 

transport both from a point forwards in time and towards a point (i.e., backwards in 

time), is considered. The differentiation in the directions of scalar transport between the 

two types of dispersion can help in better understanding the nature of coherent 

structures that are dominant in the transport of heat. The simulations also cover a range 

of five orders of magnitude of Prandtl number fluids (0.1 ≤ Pr ≤ 15,000).  

 The heat markers, in our study, drifting in the flow field, can be useful in 

understanding the scalar transport directions in space. The velocity correlation 

coefficient of a heat marker, obtained as a function of time in a particular direction, 

indicates the extent the velocity influences the motion of that heat marker in that 

direction as the flow field develops. The material time scale, which can be determined 

from this correlation coefficient, is a measure of the time period during which the heat 

marker is effectively transported in that particular direction, due to turbulence. To 

identify the primary direction of scalar transport of heat, with the fluctuating velocities 

in the x, y and z directions, the nine material auto and cross-correlation coefficients are 

determined. The 3×3 material correlation coefficient matrix is then decomposed to find 

the eigenvalues and the corresponding eigenvectors. Now, borrowing ideas from POD, 

the eigenvector corresponding to the highest eigenvalue would represent the direction of 

maximum transfer of heat and is presented as the principal direction of scalar transport 

of heat.  
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  The release of the scalar markers is initiated from points between the grid nodes 

in the x-z plane, for a total of 145161 markers at time t
+ 

= 0. The simulation is allowed 

to run for 4000 viscous wall time units for both plane Poiseuille flow cases. After the 

markers moving into the flow field get uniformly dispersed (which is at 2000 viscous 

wall time units), the marker velocities are correlated in time to calculate various 

parameters. To determine the direction of scalar heat or mass transport, the material 

auto and cross-correlation coefficients are initially determined for both forwards and 

backwards dispersion in all three directions x, y and z. Using a material correlation 

coefficient similar to Saffman, the material correlation coefficients are determined using 

the equation  

   2

1

0

22

1

0

2

00

0

)(')('

)(')('
),(

tVttV

tVttV
ttR

ji

ji

VV ji




 ,  i, j = x, y, z (6.1) 

The ensemble average over the selected number of markers is denoted by the overbar, 

while the prime denotes the Lagrangian velocity fluctuation )()()(' tVtVtV iii  . 

 The channel is binned in the vertical direction with 101 bins and four different 

regions are considered for the study. The edge of the viscous sub-layer (y
+
 = 5, which 

also includes y
+
 = 295 since the channel is symmetrical about the center plane), the 

transition region between the viscous sub-layer and the logarithmic region (y
+
 = 37 and 

263), the logarithmic region (y
+
 = 75 and 225) and the center of the channel (y

+
 = 150) 

are the four regions under study. The markers captured at a particular instant of time, at 

one of the bins that include the above locations in the vertical direction of the channel, 

for any Pr, lying anywhere in the xz plane are correlated both forwards and backwards 

in time. The procedure is repeated after times of 100, 200, 300, 400, 500, 600 wall time 
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units allowing us to capture a fresh set of markers travelling through that particular 

region. A similar procedure is carried out for the upper half of the channel, in order to 

take advantage of the symmetry of the channel. Complete details of the modeling for 

channel Poiseuille flow have been presented in Chapter 4. The Couette flow analysis is 

carried out in a similar way, for example, in the logarithmic region, in case of forwards 

dispersion, the markers in bins 26 and 75 at viscous wall times of 2500, 2600, 2700, 

3000, 3100, 3200, 3500, 3600, 3700 are traced forwards and backwards in time to 

determine the correlation coefficients. The procedure is similarly repeated for other 

regions of study. As in the channel flow case, around 1500 markers are captured in each 

timestep. Following the above procedure, we obtain eighteen values of the correlation 

coefficients. So, on an average, 27000 markers are correlated in the forwards and 

backwards direction for these three regions of flow.  

 The material auto- and cross-correlation coefficients are estimated in all three 

directions x, y and z of the turbulent channel and Couette flow to construct the complete 

correlation coefficient matrix  



















wwwvwu

vwvvvu

uwuvuu

RRR

RRR

RRR

R      (6.2) 

(The more convenient notation of u, v, w is used above instead of Vx, Vy, and Vz, 

respectively) This matrix is then decomposed to find out the eigenvalues and respective 

eigenvectors.  

GGR         (6.3) 
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where, λ and G  are the eigenvalue and corresponding eigenvector of the velocity 

correlation coefficient matrix. The eigenvalues and the eigenvectors are determined, to 

find out the dominant direction of transfer of heat (λ1, λ2 and λ3 are the three eigenvalues 

in decreasing order of magnitude). In addition, the correlation coefficient is also utilized 

to determine the turbulent scalar spectra. The Lagrangian scalar spectrum (represented 

in this study as E) is also calculated from the Fourier transform of the material 

correlation coefficients.  

6.2 Results and discussion 

6.2.1 Cross-correlation coefficients for Poiseuille flow 

 The results obtained for the cross-correlations in all three directions for 

Poiseuille channel flow, at y
+
 = 5 are shown in Figures 6.1(a) – 6.1(f) (The diagonal 

components of the autocorrelation coefficient have been reported in Chapter 4 and are 

not repeated herein). It should be noted here that even though it would be more natural 

to represent the results for backwards dispersion as time increases from negative values 

to zero, the latter corresponding to the time the markers get captured in the bin, all the 

figures for backwards dispersion in this current study are plotted with a positive time 

axis after reflection around time 0, to facilitate pictorial comparisons with forwards 

dispersion data. Out of the 6 cross-correlations determined at this distance, namely, Ruv, 

Rvu, Ruw, Rwu, Rvw, Rwv, only the Ruv and Rvu seem to produce a significant result with the 

rest having values of zero, or very close to zero, for both forwards and backwards 

dispersion. The markers captured in different regions, in cases of both forwards and 

backwards dispersion have equal probabilities to move in positive or negative spanwise 
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directions. So, correlating the spanwise velocity of these markers to either the 

streamwise or vertical velocity produces cross-correlation coefficients that are on an 

average close to zero. The cross-correlation coefficients of the markers captured and 

correlated in the transition region, logarithmic region and the center of the channel of 

turbulent Poiseuille flow, for different Pr, as a function of time are presented in Figures 

6.2, 6.3 and 6.4 respectively. The graphs of Ruv are presented, as Figures 6.2(a), 6.3(a), 

and 6.4(a), while the graphs of Rvu are presented as Figures 6.2(b), 6.3(b), and 6.4(b), 

since the rest of the cross-correlations are effectively zero. 

Except for the case of outer layer flow at the center of the channel, the Ruv and 

Rvu, for a particular Pr, are equal and show values in between -0.4 and -0.5 at the time 

of capture for both forwards and backwards dispersion, in agreement with previous data 

[167] in the literature.  As seen in Figure 6.1(a), the cross-correlation coefficient, Ruv, 

for forwards dispersion in the viscous sub-layer, exhibits a behavior consistent with 

transport due to quadrant 2 (Q2) or quadrant 4 (Q4) flow events (i.e., u´ < 0, v´ > 0 or u´ 

> 0, v´ < 0). For backwards dispersion, the markers seem to be carried towards the 

viscous sub-layer by quadrant 1 (Q1) or quadrant 3 (Q3) events (i.e., u´ > 0, v´ > 0 or u´ 

< 0, v´ < 0) at large times and by Q2/Q4 events at small times. The Pr has an effect on 

the behavior of Ruv for both forwards and backwards dispersion. Increasing Pr causes an 

increase in the transition time (time at which the cross-correlation coefficient shifts 

from Q2/Q4 to Q1/Q3 quadrants) for backwards dispersion. It is interesting to note that, 

even though Pr of 0.1, 0.7, and 6 has slightly differing behaviors, the higher Pr (Pr > 6) 

all follow the same trend, as is observable in Figure 6.1(a) for both forwards and 

backwards dispersion. Earlier results in Chapter 4 have also indicated that the higher Pr 
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behaviors are all clustered together. To avoid clutter, in the rest of the figures, having 

discovered that the higher Pr (> 6) all have similar behaviors, only four cases (i.e., Pr = 

0.1, 0.7, 6 and 1000) are presented. The data for Pr = 1000 in essence represent the 

behavior of all cases for Pr > 6. The cross-correlation coefficient, Ruv, for markers 

captured in the transition and logarithmic regions shows a reversal in trend, with 

backwards dispersion predominantly showing Q2/Q4 events, while there is a transition 

from Q2/Q4 at initial times to Q1/Q3 for forwards dispersion, as seen in Figures 6.2(a) 

and 6.3(a).  

These differences can be attributed to the characteristics of the flow structures 

and vortices that dominate the viscous sub-layer, the transition and the logarithmic 

regions of flow, combined with the contrasting dynamics that arise when observing 

dispersion from the viewpoint of transport of markers towards or away from a region of 

the channel flow. In channel flow, it has been previously [85, 86, 168] observed that the 

viscous sub-layer is mainly agitated by quasi-streamwise vortices that carry low 

velocity fluid away from the wall or high velocity fluid towards the wall, hence causing 

Q2/Q4 quadrant dominance for forward dispersing markers in these regions. However, 

the backwards dispersion markers are mainly transported to the viscous sub-layer by the 

downward traveling vertical structures, which, by notions of continuity, compensate for 

transport away from the wall. The existence of superbursts, identified in channel flows 

[86], as one of the salient features in pumping fluid towards the transition and 

logarithmic regions, support the existence of backwards dispersion Ruv correlations in 

the Q2/Q4 regions. The forwards dispersion is dictated by flow structures existing in the 

transition and the logarithmic regions, which are known [168] to be large vortices, 
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primarily oriented in the streamwise direction, leading to smaller cross-correlation of 

Ruv in this case. The increase in Pr, which can be associated with lesser effect of 

molecular diffusion and more vigorous turbulent transport of these markers by the 

associated vortical structures, causes a variation in the values of Ruv.  

The velocity cross-correlation coefficient Rvu shows uniform trend for all flow 

regions for both forwards and backwards dispersion, as seen in Figures 6.1(b), 6.2(b) 

and 6.3(b). The dynamics of the flow structures in the various regions are once again 

important in the behavior observed. The transport of the passive scalars in case of 

backwards dispersion is the result of sweeping by high velocity structures transporting 

fluid towards the wall, in the case of viscous sub-layer, and the bursting of low velocity 

streaks carrying fluid away from the wall, in the case of the logarithmic layer. In the 

case of forwards dispersion, the vortices observed in the channel have large streamwise 

length scales [168] and even though at initial times the markers are transported by the 

Q2/Q4 events, due to prolonged streamwise transport, they get eventually caught by 

Q1/Q3 events.  

It is also quite interesting to note that the transition times slightly increase as the 

distance of capture of these markers increases, indicating a larger length of the 

structures that aid in transport at larger distances from the channel wall. The data of Rvu  

for the lower Pr clearly show the possibility of transport structures that are 

comparatively smaller than those for the higher Pr. The difference in values of Rvu 

between forwards and backwards dispersion in absolute value is higher for higher Pr. 

The difference in absolute values between the forwards and backwards dispersion Rvu 

also increases as the distance from the channel wall increases, so the viscous sub-layer 
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exhibits the least, while the logarithmic region exhibits the highest difference, for a 

specific Pr. The center of the channel is the location that can be considered to be the 

closest to the case of isotropic turbulence. The value of the cross-correlation coefficient 

in both cases, for forwards and backwards dispersion, for a variety of Pr, is very close 

to zero.  

6.2.2 Cross-correlation coefficients for plane Couette flow 

 In plane Couette flow, the walls of the channel move relative to each other. The 

total stress is constant across the channel, creating an extensive constant stress region, 

similar to the logarithmic region in Poiseuille channel flow. Thus, we can examine the 

dispersion characteristics in a flow field that has a much better established logarithmic 

region than that of the plane channel flow, and has flow structures different than those 

in plane channel flow. If any structures that contribute to dispersion were common, that 

would indicate a universal behavior. The cross-correlation coefficients, Ruv and Rvu, are 

presented as (a) and (b), respectively, in cases of forwards and backwards dispersion for 

the viscous sub-layer, the transition region and the logarithmic region in Figures 6.5, 6.6 

and 6.7, respectively. Figure 6.5(a), is a presentation of Ruv for markers captured in the 

viscous sub-layer for Pr = 0.1, 0.7, 6, 10, 200, 500, 2400, 7500, and 15000. As observed 

in the case of Poiseuille channel flow, Ruv has different trends for Pr = 0.1 and 0.7 and 

to an extent for Pr = 6. The higher Pr cases correspond to curves that fell exactly over 

each other. Hence for the other regions of the plane Couette flow, the cross-correlation 

graphs of Pr > 6 are all represented by the case for Pr = 500. The trends for Ruv and Rvu, 

observed for forwards and backwards dispersion, for all Pr, in the viscous sub-layer are 

similar to those obtained for Poiseuille channel flow. There is also qualitative similarity 
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in the rest of the statistics of Ruv and Rvu between the two types of flow, for both 

forwards and backwards dispersion, pointing to the existence of universal structures that 

help in transport in both of these flow cases.    

Summarizing the findings of this Section, in all three regions of both Poiseuille 

and Couette flow, backwards and forwards dispersion appear to be dominated by 

different flow structures. Also the behavior observed in both flows seems to be similar, 

pointing to the universality of these results. The cross-correlation of vertical velocity 

fluctuations with time to the streamwise velocity fluctuations at initial time, Ruv, for 

markers captured in the viscous sub-layer exhibits a unique behavior, where the strong 

velocity bursts and sweeps help the scalar transport, for forwards and backwards 

dispersion. In the other two regions, and in all three regions when considering Rvu, the 

cross-correlation of streamwise velocity fluctuations with time to the vertical velocity 

fluctuations at initial time, there is a different behavior. In these cases, the Q2/Q4 events 

help backwards scalar transport while Q1/Q3 events eventually dominate forwards 

marker transport. The Pr also affects the dispersion, especially at Pr ≤ 0.7. 

6.2.3 Direction of heat transport 

6.2.3.1 Largest eigenvalues 

6.2.3.1.1 Poiseuille flow   

 The dominant direction of heat transfer is essentially the direction of the 

eigenvector (primary eigenvector) that corresponds to the highest eigenvalue (primary 

eigenvalue). Since the values of all the elements of R have been estimated, the 
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eigenvalues and the eigenvectors of the matrix can be estimated. The eigenvalue 

essentially quantifies the amount of turbulent heat transport, while the eigenvector 

points out the direction of turbulent heat transport.  

The primary eigenvalues of the correlation coefficient matrix for the markers 

captured and correlated at the viscous sub-layer, the transition region and the 

logarithmic region of the Poiseuille channel flow for both forwards and backwards 

dispersion are shown in Figures 6.8(a), 6.8(b) and 6.8(c), respectively. The primary 

eigenvalues for backwards dispersion for a given Pr have higher values compared to the 

forwards dispersion, indicating pronounced amount of turbulent heat transfer for the 

case of backwards dispersion along the primary direction of transport. Also, the primary 

eigenvalues for backwards dispersion have significant values for a larger time compared 

to the forwards dispersion, whose eigenvalues decay to zero relatively quickly with 

time. The higher Pr, as one might expect, show higher values of primary eigenvalues 

compared to lower Pr for both forwards and backwards dispersion. The primary 

eigenvalues are higher for the logarithmic region compared to the transition region or 

the viscous sub-layer, indicating higher rates of mixing and hence more effective heat 

transfer in these regions of turbulent flow.  

When one considers these differences in behavior of forwards and backwards 

dispersion for turbulent heat transport, it is logical to conclude (as with the discussion of 

cross-correlation coefficient before) that two different types of coherent structures, one 

headed towards the region and another headed away from the region, might be 

responsible for the different behaviors observed. The trends of the primary eigenvalues 

lead to the  hypothesis that the markers moving towards a region primarily get 
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transported by a set of eddies having similar orientation, which are relatively long lived 

and lengthier, causing pronounced amount of turbulent heat transfer in that direction 

persistent in time. However, for the case of markers transported forwards, there seems 

to be a set of short lived, smaller sized eddies, having similar orientation. This leads to a 

shorter time period of turbulent heat transfer and less turbulent heat transport in this 

case. The study of the primary eigenvalue at the various regions for forwards and 

backwards dispersion also shows that as the distance from the channel wall increases, 

flow structures of larger length and duration are involved in the transport. The behavior 

of the eigenvalues for markers captured at the center of the channel is different than the 

rest of the regions, as shown in Figure 6.8(d). The values for forwards and backwards 

dispersion are very close for Pr = 0.1, while for Pr > 0.1, the eigenvalues for forwards 

dispersion are higher up to a time of 110 wall units, after which the backwards 

dispersion eigenvalues are higher.  

6.2.3.1.2 Plane Couette flow 

 For the case of plane Couette flow, the primary eigenvalues for the case of 

markers captured and correlated at the viscous sub-layer, the transition region and the 

logarithmic region are shown in Figures 6.9(a), 6.9(b) and 6.9(c), respectively. At the 

viscous sub-layer, for Pr = 0.1, the values are very close. In this region the turbulent 

velocity fluctuations are rather small and the molecular diffusion is dominating the 

dispersion. For the rest of the cases, as with the Poiseuille channel flow, there is 

universality in the behavior with the primary eigenvalues for backwards dispersion 

being comparatively larger than for forwards dispersion. Interestingly, when comparing 

the results in Figures 6.8 and 6.9, the values of primary eigenvalues are always higher 
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for the case of plane Couette flow compared to Poiseuille channel flow, irrespective of 

the Pr or the region in the channel for the case of forwards dispersion, while for 

backwards dispersion, this is true for all Pr ≤ 6. This can be thought of as the strength of 

turbulence mixing, which seems to be more intense in the case of plane Couette flow 

compared to Poiseuille channel flow.   

6.2.3.2 Principal directions of heat transfer 

 The eigenvector directions corresponding to the primary eigenvalues for the case 

of markers captured in the four different regions, for Pr = 0.1, for Poiseuille channel 

flow are shown in Figure 6.10. The forwards and backwards dispersion heat transfer 

directions are shown in Figures 6.10(a) and (b), respectively. At the center of the 

channel for Pr = 0.1, the direction of heat transfer is predominantly parallel to the z axis 

for both forwards and backwards dispersion. This is expected, since at the center of the 

channel there is no preference of the markers to move towards the top or the bottom of 

the channel. For the case of plane Couette flow, for Pr = 0.1, the direction of 

eigenvector corresponding to the highest eigenvalue is shown in Figure 6.11 as (a) and 

(b), for forwards and backwards dispersion, respectively. The directions of heat transfer 

are mostly oriented at very small angles to the vertical direction, indicating the 

importance of the normal direction in the role of heat transfer. Comparing the results for 

the two types of flow, the plane Couette flow with the better established turbulence 

regime shows more consistent and sustained heat transport over larger time intervals. If 

one considers the flow field, an eddy will likely transfer heat in the direction that is 

perpendicular to the axis of the eddy. Coherent structures observed in the turbulent 
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Poiseuille and plane Couette flows at the transition regions [163, 164], like ejection or 

sweep events, have structures that have axes with small inclinations to the xz plane. 

Also, the coherent structures observed in the various flow regions [88, 90, 91, 169] are 

known to be initially oriented with angles of inclination of 45° with the wall. So, these 

eddies are probably responsible for the heat transfer directions observed in Figures 6.10 

- 6.11. Principal heat transport directions for higher Pr for both Poiseuille channel flow 

and plane Couette flow cases can be found in the Appendix B of the dissertation.  

 The angle of inclination of the primary eigenvectors with the normal to the xy, 

yz and zx planes, presented as θxy, θyz and θzx, respectively, from here on, and measured 

with different planes as shown in Figure 6.12, can further help in visualizing the 

direction of heat transport. One can imagine the angle that the primary eigenvector 

makes with the normal to the plane for backwards dispersion, to be analogous to the 

angle of incidence in the case of dispersion of light. Correspondingly, the angle made 

by the primary eigenvector for the forwards dispersion with the normal to the plane can 

be imagined as the angle of refraction. A schematic of the analogy between the 

backwards and forwards dispersion with the physics of optics is shown in Figure 6.13.  

The angle of inclination of the primary eigenvectors for both forwards and 

backwards dispersion as a function of time with the normal to the three different planes, 

xy, yz and zx are presented as Figures (a), (b) and (c), for the markers captured in the 

viscous sublayer, the transition region and the logarithmic region of the Poiseuille 

channel flow in Figures 6.14, 6.15 and 6.16, respectively. In the case of plane Couette 

flow, these angles for the same three regions are shown in Figures 6.17, 6.18 and 6.19. 
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Looking at these figures, one can clearly notice differences in the direction of primary 

eigenvectors between the case of forwards and backwards dispersion.  

The spanwise direction, as has been observed in 6.2.1 above and in Chapter 4, 

plays a minor role in the case of heat transport, which can be observed from the almost 

parallel inclination of angle of incidence and refraction with the xy plane. Some 

variations from these parallel orientations are observed, especially in the case of lower 

Pr with the angle of incidence. However, these have no significant meaning, and are 

just a manifestation of the random orientations of the small scale eddies, which seem to 

be associated with the forwards dispersion and also of the molecular diffusion effects 

that dominate dispersion for lower Pr.  

In the viscous sub-layer, the transition and the logarithmic regions, the angles of 

incidence and refraction with the normal to the yz and zx planes, in both Poiseuille and 

Couette flow and for all Pr, are at 45° at t = 0. Imagining an eddy transferring heat in a 

direction of 45° with the normal of the zx plane, then the axis of the eddy should be 

perpendicular to this direction (i.e., about  135°, or -45° with the zx plane), which 

matches the orientation of observed coherent structures [88, 90, 91, 169]. For the 

viscous sub-layer, however, the behavior with time strongly depends on the Pr. The 

lower Pr (0.1, 0.7) show random decreases and increases of the angles of incidence and 

refraction with the yz plane and zx plane, for both Poiseuille channel and Couette flow. 

The viscous sublayer is the region that has the smallest turbulent structures than any 

region of turbulent channel flow, so at lower Pr, where molecular diffusion dominates 

dispersion close to the wall, it leads to a random behavior of the angles. In the case of 

higher Pr, the variation of the angle of refraction of the primary eigenvector with the 
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normal to the yz and zx plane, for the viscous sub-layer, the transition and logarithmic 

region, in both Poiseuille and Couette flow, clearly indicates transport by a rotating 

eddy extending through that particular region. The interesting part of the study, 

however, is the differences in these angles when compared to the angles of incidence of 

the primary eigenvector. The angles of incidence calculated from the average set of 

markers arriving at a particular location, indicate that these markers move primarily by 

the same set of eddies which are prevalent in the flow field for a longer time and have 

stable orientations. Combining these results with those observed for the eigenvalues, it 

can be concluded that the forwards dispersing heat markers move through a set of short 

lived eddies that change orientation rapidly with time, while the relatively long lived 

eddies causing transport for a longer time in a particular direction contribute to 

backwards dispersion. These results also seem to be consistent with the higher [164] 

mean length and spacing intervals associated with sweep events as compared to ejection 

events.  In case of Poiseuille channel flow, the angles of incidence and refraction with 

the yz and zx plane for Pr = 6, 1000 follow a similar pattern, while in Couette flow, the 

angles for Pr = 0.7, 6, 500 are grouped together.  

However, it is quite puzzling as to why the eddies causing backwards scalar 

transport show less tumbling and more uniform orientations compared to the eddies 

causing forwards scalar transport. In the study of single particle dispersion in Chapter 4, 

it was found that in the vertical direction (where the turbulence is anisotropic) forwards 

dispersion proceeds at a faster rate compared to the backwards dispersion in the viscous 

sub-layer, the transition region and the logarithmic region. This is in agreement with the 

physical picture that the eddies carrying the markers disperse and spread faster during 
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the process of forwards dispersion, compared to backwards dispersion (which shows a 

fixed dispersion angle over a longer period of time). The scalar markers moving 

forwards can be dispersed with Q1/Q3 events in addition to Q2/Q4 events, while 

markers arriving at one location arrive there predominantly by Q2/Q4 events.  

 The angles of incidence and refraction of the primary eigenvectors with different 

planes were presented as a function of dispersion time in the discussion above. One 

could then examine their relative magnitude using a ratio similar to the ratio of 

refractive indices used in Snell's law in optics. Since the angles are obtained from 

turbulent dispersion, this ratio can be named the turbulent dispersive ratio. This ratio 

changes with time, so if one wanted to examine the incidence and refraction angles at a 

specific time, that time would be the Lagrangian material time scale. One could actually 

calculate the ratio of the turbulent dispersive indices (forwards dispersion index divided 

by the backwards dispersion index) from the sine of backwards dispersion primary 

eigenvector angle to the sine of the forwards dispersion primary eigenvector angle, in 

analogy to Snell’s law for optics. The material scale in the vertical direction calculated 

from the material correlation coefficient Rvv for Poiseuille channel and plane Couette 

flow is presented in Tables 6.1 and 6.2, respectively. The angles of incidence and 

refraction at these Lagrangian material time scales, averaged between τ(f/b)-2 and τ(f/b)+2 

to obtain better statistics, are presented in Tables 6.3 and 6.4, for Poiseuille and Couette 

flow, respectively. For Poiseuille channel flow, the turbulent dispersive ratio is 

presented in Table 6.5, while the same is presented in Table 6.6 for plane Couette flow.  

The turbulent dispersive ratio captures the differences between the flow 

structures that carry scalar markers towards a particular location and at a particular 
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distance from the wall, which on average have different orientation than the structures 

that move scalars away from that location. The turbulent dispersive ratio shows a 

behavior that depends on the Pr. However, irrespective of the Pr, the calculated 

turbulent dispersive ratio still helps in envisioning the differences between scalar 

transport directions for forwards and backwards dispersion.  

6.2.4 Lagrangian scalar spectrum 

The Lagrangian material correlation coefficient data can be helpful in 

understanding the behavior of the scalar spectra and estimate any differences that exist 

between forwards and backwards scalar dispersion. The spectra Evv(ω) of the vertical 

material autocorrelation coefficient (Rvv) as a function of frequency, ω for markers 

captured reaching the viscous sub-layer and moving out of the region, in cases of 

Poiseuille channel and Couette flow, respectively, are shown in Figures 6.20(a) and (b). 

The spectra presented in Figures 6.21(a) and (b) are obtained from the vertical material 

autocorrelation coefficient for cases of markers captured in the logarithmic regions for 

Poiseuille channel and Couette flow cases, respectively. The material autocorrelation 

coefficient for the case of homogenous, isotropic turbulence is known [154] to have an 

exponential decay given by )/exp( tRvv  , where Rvv becomes equal to 0.368 when t = 

τ. The spectrum calculated using this relation for the autocorrelation coefficient 

(designated as “analytical” in Figures 6.20 and 6.21), when it is plotted along with the 

spectrum obtained from anisotropic turbulence, demonstrates the effect that the 

presence of the walls has on the spectrum.   
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The spectrum close to walls shows variation with Pr, while the Pr effects seem 

less pronounced in the logarithmic region, in both Poiseuille and Couette flows. The 

effect of the anisotropies introduced by the wall is noticed at lower frequencies when 

comparing the actual spectrum and the spectrum obtained from the analytical 

correlation, for markers captured at the viscous sub-layer. In the case of markers 

captured in the logarithmic region, the differences are pronounced even at higher 

frequency and in case of Poiseuille channel flow, while the differences are negligible in 

plane Couette flow.  

 Plotting the Lagrangian scalar spectrum obtained from the auto-correlation 

coefficient in the three directions, x, y and z, for different regions of the channel, for all 

the Pr, the slopes at the intermediate frequency range are calculated and tabulated in 

Tables 6.7 and 6.8, for Poiseuille channel and plane Couette flow, respectively. The 

Appendix B is presentation of plots of the slope of the spectra as a function of Pr. 

Irrespective of the type of flow or the region of the channel under consideration, the 

Lagrangian scalar spectrum exhibits a universal behavior with slope p = -1, for all Pr > 

0.7, for both forwards and backwards dispersion. Differences in turbulent scalar 

transport behavior arising due to different turbulent structures between forwards and 

backwards dispersion seem to have minimal effects on the turbulent scalar spectrum in 

these intermediate frequency ranges. For lower Pr, (Pr ≤ 0.7), the spectrum scales with 

a coefficient greater than -1, in both flow situations. This indicates that at the viscous 

sub-layer, at lower Pr, different turbulent scales contribute to heat transfer when 

compared to the scales existing in the regions away from the channel walls. This could 

be intuitively expected as the scales of motion are limited close to the channel walls, 



 

126 

 

and moreover, at lower Pr, molecular diffusion plays a vital role in controlling transport 

restricting the effect of large scale turbulent structures.  

6.3 Conclusions 

The predominant direction of turbulent heat transport for forwards and 

backwards dispersion is comparatively studied for two different types of channel flow, 

Poiseuille and Couette flow, as a function of the distance from the wall, and for various 

Pr fluids. The dominant direction of heat transport is obtained by calculating the 

eigenvectors and eigenvalues of the matrix constructed by the velocity auto- and cross-

correlation coefficients. After analysis of the results obtained in cases of forwards and 

backwards dispersion for both flows, it is clear that there is a universality of behavior, 

irrespective of the type of flow.  

The main findings of this analysis are as follows:  

(a) Forwards dispersion is different than backwards dispersion and the 

difference depends on the Pr and on the distance from the wall, indicating that forwards 

and backwards dispersion in anisotropic turbulence exhibit different behavior than they 

do in isotropic turbulence, where the backwards dispersion is faster for asymmetric 

turbulence [73].  

(b) There are coherent structures that mainly contribute to transport towards a 

location in the inner region of the flow field, and these are different than the structures 

that mainly contribute to transport forwards from a location in the flow field. The 

backwards dispersion is carried out by a set of relatively long-lived, stably oriented flow 

structures influenced primarily by strong bursting and sweep (Q2/Q4) events, while the 
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forwards scalar transport is caused by a set of short-lived, constantly tumbling eddies, 

as the transport is influenced both by Q2/Q4 events and Q1/Q3 events;  

(c) The differences in the direction of scalar transport towards a location and 

away from it can be represented with the help of a newly defined quantity, the 

turbulence dispersive ratio, which is based on the analogy with optics where the angle at 

which heat is carried to a point in the flow field by backwards dispersion is considered 

analogous to the angle of incidence of light, while the angle at which heat is released 

from a point during forwards dispersion is analogous to the angle of refraction;  

(d) Even low Pr fluids, where molecular dispersion is dominant close to the 

wall, have preferred directions of transfer, but more dominant and sustained heat 

transport, in cases of both forwards and backwards dispersion, is found in all regions of 

the flow as Pr increases. The intensity of heat transport in the direction of the primary 

eigenvector increases with increasing distance from the channel wall; 

(e)  The Lagrangian frequency spectrum obtained from the correlation 

coefficients for high Pr and at all regions in the Poiseuille and Couette flows shows the 

existence of a regime with a slope of -1. This is true for both forwards and backwards 

dispersion. Only in the viscous sub-layer and at lower Pr (Pr = 0.1 and 0.7) the slope 

increases, indicating smaller scales of turbulence that contribute to transport in this 

region and these Pr.  
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Table 6.1: Lagrangian material time scale in the vertical direction presented for the 

cases of different Pr, at different regions of Poiseuille channel flow, for both forwards 

and backwards turbulent dispersion. 

Pr 

Viscous sublayer (y
+
 = 

5, 295) 

Transition region (y
+
 = 

37, 263) 

Logarithmic region (y
+
 

= 75, 225) 

forwards backwards forwards backwards forwards backwards 

0.1 4.6 3.9 9.9 7.6 16.1 16.6 

0.7 7.4 6.9 12.1 12.1 21.9 21.4 

6 10.3 11.9 12 12.1 23 21.4 

1000 11 13 12 12 23 21 

 

 

Table 6.2: Lagrangian material time scale in the vertical direction presented for the 

cases of different Pr, at different regions of plane Couette flow, for both forwards and 

backwards turbulent dispersion. 

Pr 

Viscous sublayer (y
+
 = 

5, 295) 

Transition region (y
+
 = 

37, 263) 

Logarithmic region (y
+
 

= 75, 225) 

Forwards Backwards Forwards Backwards Forwards Backwards 

0.1 4 4 11 10 18 19 

0.7 6 7 13 12 20 21 

6 9 10 12 14 21 22 

500 10 11 10 13 19 19 
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Table 6.3: Angles of inclinations of the eigenvector directions corresponding to the 

highest eigenvalue with the normal to the different planes, similar to the angles in 

optics, at the vertical Lagrangian material scales, for different regions of Poiseuille 

channel flow for both forwards and backwards dispersion, with changes in Pr. 

  

Angle with normal to 

the xy plane 

Angle with normal to 

the yz plane 

Angle with normal to 

the zx plane 

 
Pr forwards Backwards forwards Backwards forwards Backwards 

y
+
 = 

5, 

295 

0.1 39 25 64 73 64 73 

0.7 14 88 80 27 80 63 

6 90 89 15 23 75 67 

1000 88 90 15 25 75 65 

y
+
 = 

37, 

263 

0.1 74 86 69 39 58 51 

0.7 90 89 30 31 60 59 

6 87 88 31 28 60 62 

1000 88 90 32 30 58 60 

y
+
 = 

75, 

225 

0.1 87 90 28 39 63 51 

0.7 89 88 20 35 70 55 

6 88 89 20 34 70 56 

1000 88 90 22 35 69 55 
 

Table 6.4: Angles of inclinations of the eigenvector directions corresponding to the 

highest eigenvalue with the normal to the different planes, similar to the angles in 

optics, at the vertical Lagrangian material scales, for different regions of plane Couette 

flow for both forwards and backwards dispersion, with changes in Pr. 

  

Angle with normal to 

the xy plane 

Angle with normal to 

the yz plane 

Angle with normal to 

the zx plane 

 
Pr forwards backwards forwards backwards forwards backwards 

y
+
 = 

5, 

295 

0.1 3 5 90 87 89 87 

0.7 5 86 86 26 88 64 

6 89 87 69 23 87 68 

500 90 89 4 22 88 68 

y
+
 = 

37, 

263 

0.1 58 90 73 35 83 55 

0.7 89 90 18 29 72 61 

6 88 90 22 26 68 64 

500 90 89 26 27 64 63 

y
+
 = 

75, 

225 

0.1 88 90 24 34 66 56 

0.7 90 89 24 33 66 57 

6 90 89 24 32 66 58 

500 83 89 21 35 70 55 
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Table 6.5: Measure of the turbulent dispersive ratio (forwards dispersive index to the 

backwards dispersive index), obtained from the ratio of sine of the angle of backwards 

dispersion primary eigenvector to the sine of the angle of forwards dispersion primary 

eigenvector, with the three different planes, for different Pr, at various regions of the 

Poiseuille channel flow. 

 Pr 

Turbulent 

dispersive ratio 

(with xy plane) 

Turbulent 

dispersive ratio 

(with yz plane) 

Turbulent 

dispersive ratio 

(with zx plane) 

y
+
 = 5, 295 

0.1  1.06 1.06 

0.7  0.46 0.91 

6 1.00 1.55 0.95 

1000 1.00 1.66 0.94 

y
+
 = 37, 263 

0.1 1.04 0.67 0.91 

0.7 1.00 1.02 0.99 

6 1.00 0.93 1.02 

1000 1.00 0.94 1.02 

y
+
 = 75, 225 

0.1 1.00 1.36 0.87 

0.7 1.00 1.66 0.87 

6 1.00 1.65 0.88 

1000 1.00 1.55 0.88 
 

Table 6.6: Measure of the turbulent dispersive ratio (forwards dispersive index to the 

backwards dispersive index), obtained from the ratio of sine of the angle of backwards 

dispersion primary eigenvector to the sine of the angle of forwards dispersion primary 

eigenvector, with the three different planes, for different Pr, at various regions of the 

plane Couette flow. 

 Pr 

Turbulent 

dispersive ratio 

(with xy plane) 

Turbulent 

dispersive ratio 

(with yz plane) 

Turbulent 

dispersive ratio 

(with zx plane) 

y
+
 = 5, 295 

0.1  1.00 1.00 

0.7  0.44 0.90 

6 1.00 0.41 0.93 

500 1.00 5.46 0.93 

y
+
 = 37, 263 

0.1 1.18 0.59 0.83 

0.7 1.00 1.61 0.91 

6 1.00 1.17 0.97 

500 1.00 1.03 0.99 

y
+
 = 75, 225 

0.1 1.00 1.38 0.91 

0.7 1.00 1.32 0.92 

6 1.00 1.30 0.93 

500 1.01 1.56 0.88 
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Table 6.7: Measure of the slopes of the Lagrangian scalar spectrum at the intermediate 

frequency range obtained from the forwards and backwards auto-correlation coefficient 

in the x, y, z directions, for different Pr, at various regions of the Poiseuille channel 

flow. 

  Slope of Euu(ω) vs ω Slope of Evv(ω) vs ω Slope of Eww(ω) vs ω 

 Pr Forwards Backwards Forwards Backwards Forwards Backwards 

y
+
 = 

5, 

295 

0.1 -0.70 -0.70 -0.77 -0.72 -0.84 -0.86 

0.7 -0.82 -0.85 -0.87 -0.88 -0.99 -1.00 

6 -1.01 -0.98 -0.94 -0.97 -1.08 -1.06 

1000 -0.96 -0.94 -0.91 -0.88 -1.03 -1.01 

y
+
 = 

37, 

263 

0.1 -0.96 -0.95 -0.92 -0.93 -0.96 -0.93 

0.7 -1.02 -1.00 -1.07 -1.08 -1.04 -1.03 

6 -1.02 -1.01 -1.10 -1.10 -1.07 -1.06 

1000 -0.94 -0.94 -1.03 -1.02 -1.01 -0.98 

y
+
 = 

75, 

225 

0.1 -0.99 -0.95 -1.00 -0.98 -1.00 -0.96 

0.7 -1.01 -1.02 -1.02 -1.02 -1.05 -1.04 

6 -1.02 -1.02 -1.03 -1.05 -1.03 -1.05 

1000 -0.94 -0.95 -0.96 -0.98 -0.96 -0.96 
 

Table 6.8: Measure of the slopes of the Lagrangian scalar spectrum at the intermediate 

frequency range obtained from the forwards and backwards auto-correlation coefficient 

in the x, y, z directions, for different Pr, at various regions of plane Couette flow. 

  Slope of Euu(ω) vs ω Slope of Evv(ω) vs ω Slope of Eww(ω) vs ω 

 Pr Forwards Backwards Forwards Backwards Forwards Backwards 

y
+
 = 

5, 

295 

0.1 -0.49 -0.49 -0.58 -0.60 -0.77 -0.76 

0.7 -0.75 -0.74 -0.79 -0.81 -0.93 -0.93 

6 -0.93 -0.91 -0.85 -0.87 -1.00 -0.98 

1000 -0.98 -0.94 -0.86 -0.88 -1.03 -0.97 

y
+
 = 

37, 

263 

0.1 -0.92 -0.91 -0.85 -0.86 -0.87 -0.85 

0.7 -0.96 -0.95 -0.97 -0.97 -0.95 -0.97 

6 -0.94 -0.95 -1.03 -1.02 -0.97 -0.97 

1000 -0.95 -0.94 -1.02 -1.00 -0.99 -0.96 

y
+
 = 

75, 

225 

0.1 -0.91 -0.90 -0.89 -0.90 -0.90 -0.92 

0.7 -0.94 -0.94 -0.96 -0.96 -0.95 -0.97 

6 -0.95 -0.94 -0.98 -0.98 -0.98 -0.97 

1000 -0.95 -0.95 -0.97 -1.00 -0.97 -0.97 
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Figure 6.1: Material cross-correlation coefficients plotted as a function of time for 

different Pr, in cases of forwards and backwards dispersion of markers captured and 

correlated in the viscous sub-layer of Poiseuille channel flow: (a) Ruv, y
+
 = 5; (b) Rvu, y

+
 

= 5; (c) Ruw, y
+
 = 5; (d) Rwu, y

+
 = 5; (e) Rvw, y

+
 = 5; (f) Rwv, y

+
 = 5. In Figures (b) through 

(f), in order to clearly present the results, the curves for Pr > 6 are all represented by the 

curve for Pr = 1000. 
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Figure 6.2: Material cross-correlation coefficients plotted as a function of time for 

different Pr, in cases of forwards and backwards dispersion for markers captured and 

correlated in the transition region of Poiseuille channel flow: (a) Ruv, y
+
 = 37; (b) Rvu, y

+
 

= 37. In order to clearly present the results, the curves for Pr > 6 are all represented by 

the curve for Pr = 1000. Also, since the material cross-correlation coefficients obtained 

from correlations with the spanwise velocities are zero, they are not presented for the 

transition regions of Poiseuille channel flow. 
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Figure 6.3: Material cross-correlation coefficients plotted as a function of time for 

different Pr, in cases of forwards and backwards dispersion for markers captured and 

correlated in the logarithmic region of Poiseuille channel flow: (a) Ruv, y
+
 = 75; (b) Rvu, 

y
+
 = 75. In order to clearly present the results, the curves for Pr > 6 are all represented 

by the curve for Pr = 1000. Also, since the material cross-correlation coefficients 

obtained from correlations with the spanwise velocities are zero, they are not presented 

for the logarithmic regions of Poiseuille channel flow. 



 

136 

 

(a)

-1

-0.5

0

0.5

1

0 50 100 150 200 250 300

Pr

0.1
0.7
6
1000

0.1
0.7
6
1000

R
u
v

t
+

Forwards

Dispersion

 Backwards

Dispersion

 

(b)

-1

-0.5

0

0.5

1

0 50 100 150 200 250 300

Pr

0.1
0.7
6
1000

0.1
0.7
6
1000

R
vu

t
+

Forwards

  Dispersion

 Backwards

  Dispersion

 

Figure 6.4: Material cross-correlation coefficients plotted as a function of time for 

different Pr, in cases of forwards and backwards dispersion for markers captured and 

correlated in the center of the channel for Poiseuille channel flow: (a) Ruv, y
+
 = 150; (b) 

Rvu, y
+
 = 150. In order to clearly present the results, the curves for Pr > 6 are all 

represented by the curve for Pr = 1000. Also, since the material cross-correlation 

coefficients obtained from correlations with the spanwise velocities are zero, they are 

not presented for the center of the Poiseuille channel flow. 
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Figure 6.5: Material cross-correlation coefficients plotted as a function of time for 

different Pr, in cases of forwards and backwards dispersion of markers captured and 

correlated in the viscous sub-layer of plane Couette flow: (a) Ruv, y
+
 = 5; (b) Rvu, y

+
 = 5. 

In Figure (b), to clearly present the results, the curves for Pr > 6 are all represented by 

the curve for Pr = 500. Also, since the material cross-correlation coefficients obtained 

from correlations with the spanwise velocities are zero, they are not presented for the 

viscous region of plane Couette flow. 
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Figure 6.6: Material cross-correlation coefficients plotted as a function of time for 

different Pr, in cases of forwards and backwards dispersion of markers captured and 

correlated in the transition region of plane Couette flow: (a) Ruv, y
+
 = 37; (b) Rvu, y

+
 = 

37. In order to clearly present the results, the curves for Pr > 6 are all represented by the 

curve for Pr = 500. Also, since the material cross-correlation coefficients obtained from 

correlations with the spanwise velocities are zero, they are not presented for the 

transition region of plane Couette flow. 
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Figure 6.7: Material cross-correlation coefficients plotted as a function of time for 

different Pr, in cases of forwards and backwards dispersion of markers captured and 

correlated in the logarithmic region of plane Couette flow: (a) Ruv, y
+
 = 75; (b) Rvu, y

+
 = 

75. In order to clearly present the results, the curves for Pr > 6 are all represented by the 

curve for Pr = 500. Also, since the material cross-correlation coefficients obtained from 

correlations with the spanwise velocities are zero, they are not presented for the 

logarithmic region of plane Couette flow. 
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   (c)                                                                             (d) 

Figure 6.8: Highest eigenvalues obtained from the correlation coefficient matrix for 

both forwards and backwards dispersion plotted as a function of time for different Pr in 

case of Poiseuille channel flow: (a) y
+
 = 5; (b) y

+
 = 37; (c) y

+
 = 75; (d) y

+
 =150. In order 

to present the plot with clarity, the curves for Pr > 6 are all represented by the curve for 

Pr = 1000. 
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Figure 6.9: Highest eigenvalues obtained from the correlation coefficient matrix for 

both forwards and backwards dispersion plotted as a function of time for different Pr in 

case of plane Couette flow: (a) y
+
 = 5; (b) y

+
 = 37; (c) y

+
 = 75. In order to present the 

plot with clarity, the curves for Pr > 6 are all represented by the curve for Pr = 500. 
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(a)  

(b)   

Figure 6.10: Orientation of the eigenvectors corresponding to the highest eigenvalues, 

plotted in three dimensions in a domain comparable to the computational box, not to 

exact scale, as a function of time, for a Pr = 0.1 in all four regions of Poiseuille channel 

flow: (a) forwards dispersion; (b) backwards dispersion. 
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(a)   

(b)   

Figure 6.11: Orientation of the eigenvectors corresponding to the highest eigenvalues, 

plotted in three dimensions in a domain comparable to the computational box, not to 

exact scale, as a function of time, for a Pr = 0.1 in all three regions of plane Couette 

flow: (a) forwards dispersion; (b) backwards dispersion. 
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Figure 6.12: Representation of the different angles the primary eigenvector makes with 

the normal of the three different planes in our current study. 

 

Figure 6.13: Schematic of the suggested analogy between optics and turbulent 

backwards and forwards dispersion. The angle of incidence of light in medium 1 (θ1) is 

similar to the angle that the direction of backwards dispersion of heat makes with the 

normal of the plane (presented also as θ1 in the right panel), while the angle of 

refraction in medium 2 (θ2) is comparable to that of the forwards dispersion with the 

normal of the plane (presented as θ2 in the right panel of the figure). 
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Figure 6.14: Direction of the eigenvector corresponding to the highest eigenvalue 

obtained for markers captured and correlated in the viscous sub-layer with forwards and 

backwards dispersion plotted as a function of time, for the case of different Pr in 

Poiseuille channel flow: (a) angle with the xy plane; (b) angle with the yz plane; and (c) 

angle with the zx plane. In order to present the plot with clarity, the curves for Pr > 6 

are all represented by the curve for Pr = 1000. 
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Figure 6.15: Direction of the eigenvector corresponding to the highest eigenvalue 

obtained for markers captured and correlated in the transition region with forwards and 

backwards dispersion plotted as a function of time, for the case of different Pr in 

Poiseuille channel flow: (a) angle with the xy plane; (b) angle with the yz plane; and (c) 

angle with the zx plane. In order to present the plot with clarity, the curves for Pr > 6 

are all represented by the curve for Pr = 1000. 
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Figure 6.16: Direction of the eigenvector corresponding to the highest eigenvalue 

obtained for markers captured and correlated in the log-layer with forwards and 

backwards dispersion plotted as a function of time, for the case of different Pr in 

Poiseuille channel flow: (a) angle with the xy plane; (b) angle with the yz plane; and (c) 

angle with the zx plane. In order to present the plot with clarity, the curves for Pr > 6 

are all represented by the curve for Pr = 1000. 
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Figure 6.17: Direction of the eigenvector corresponding to the highest eigenvalue 

obtained for markers captured and correlated in the viscous sub-layer with forwards and 

backwards dispersion plotted as a function of time, for the case of different Pr in plane 

Couette flow: (a) angle with the xy plane; (b) angle with the yz plane; and (c) angle with 

the zx plane. In order to present the plot with clarity, the curves for Pr > 6 are all 

represented by the curve for Pr = 500. 
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Figure 6.18: Direction of the eigenvector corresponding to the highest eigenvalue 

obtained for markers captured and correlated in the transition region with forwards and 

backwards dispersion plotted as a function of time, for the case of different Pr in plane 

Couette flow: (a) angle with the xy plane; (b) angle with the yz plane; and (c) angle with 

the zx plane. In order to present the plot with clarity, the curves for Pr > 6 are all 

represented by the curve for Pr = 500. 
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Figure 6.19: Direction of the eigenvector corresponding to the highest eigenvalue 

obtained for markers captured and correlated in the log-layer with forwards and 

backwards dispersion plotted as a function of time, for the case of different Pr in plane 

Couette flow: (a) angle with the xy plane; (b) angle with the yz plane; and (c) angle with 

the zx plane. In order to present the plot with clarity, the curves for Pr > 6 are all 

represented by the curve for Pr = 500. 
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Figure 6.20: Spectrum of the material autocorrelation coefficient Rvv in case of forwards 

and backwards dispersion of markers captured and correlated in the viscous sub-layer 

for a low and a high Pr: (a) Poiseuille channel flow; (b) plane Couette flow. The lines 

marked "Analytical" show the spectrum of the material autocorrelation coefficient of 

Rvv = exp(-t/τy). 
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Figure 6.21: Spectrum of the material autocorrelation coefficient Rvv in case of forwards 

and backwards dispersion of markers captured and correlated in the log-layer for a low 

and a high Pr: (a) Poiseuille channel flow; (b) plane Couette flow. The lines marked 

"Analytical" show the spectrum of the material autocorrelation coefficient of Rvv = exp(-

t/τy). 
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Chapter 7: SCALING OF HEAT/MASS TRANSPORT  

7.1 A new scaling argument   

 It is apparent from literature review in Chapter 2 that the classical scaling does 

not do justice in capturing the scales of thermal turbulent transport and that any new 

scaling proposed must take into consideration the role that turbulence and diffusivity 

play in altering the turbulence field. Churchill [124] accounted for the turbulence by 

using the contributing fraction of the turbulent flow to the heat flux, while Wei et al. 

[110] compartmentalized their scaling by using a term, RHF, which the reflects the ratio 

of molecular to turbulent fluxes.  

In addition, the newly developed scaling parameters from other groups describe 

mainly the mean scalar profile and also do not take the effects of the fluid diffusivity 

into account. This work aims at utilizing the extensive database obtained using the 

DNS/LST approach to propose a scaling that could be universal in capturing both the 

mean and fluctuating scalar turbulence data. For momentum transfer, Finnicum and 

Hanratty [170] proposed that the turbulent velocity at the outer edge of the viscous wall 

region could be scaled with a particular value of the Reynolds stress and they chose the 

location at which the Reynolds stress is 0.9 of the total stress. Now, understanding that 

turbulence is a feature of the fluid flow and not of the fluid itself, it is understandable 

why Finnicum and Hanratty chose the Reynolds stress as the scaling parameter for 

stress instead of the viscous stress at the wall, Γw. In a similar fashion, when considering 

the case of turbulent heat (or mass) transfer in wall turbulence, the rate at which 

turbulent heat (or mass) is transported can be used as an appropriate parameter to 
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capture the scales of turbulence transport. For the case of heat transport in channels with 

uniform heat flux applied to channel walls, the normal turbulent heat flux has a peak 

value, 

max)''( vT , which accounts for the nature of the turbulent flow, while it includes 

the effect of the type of fluid on heat transport. It can then be accepted that the different 

scales of scalar transport in different regions of the channel can be related to this 

particular maximum value of the normal turbulent heat flux. Hence, a logical scaling 

parameter for length might be the distance from the wall in the wall-normal direction 

where the normal turbulent heat flux reaches a maximum, 

maxTv

y , and a scaling parameter 

for heat flux can be its corresponding maximum value, 

max)''( vT . In cases where the 

maximum normal turbulent heat flux (MNTHF) has a maximum in the center of the 

channel (for example in cases of constant wall temperature), one can choose a value at 

which the normal turbulent heat flux becomes a specified percentage (say 90%) of the 

total normal heat flux, similar to the choice of Finnicum and Hanratty. For the scaling 

of the distance from the wall, in addition to the location of the MNTHF, an additional 

correction is chosen as 4

1

4

1

PrSt , where St is the Stanton number represented in Equation 

(2.13). Re-writing this definition using wall variables, the St is calculated as 

* * *

*

1

( ) ( ) ( ) ( )

w w

p w p w w w

q q u T u
St

c U T T c u U T T T T U T T U   

       

   
   

         (7.1) 

In our implementation of the scaling, the inner length scaling is given by 

 

max

1 1

4 4Pr

Tv

si

y
y St

y





       (7.2) 

and the inner temperature scaling  by 
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 







max
''vTT

T
Tsi       (7.3) 

where, the superscript + denotes the variables scaled with the classical viscous wall 

scaling. It should be noted here that the inner scaling proposed in Equations (7.2) and 

(7.3) is shown as a function of quantities already scaled in viscous wall units – of course 

the concept applies when the temperature is scaled any other way.  

The newly proposed scaling, which uses the MNTHF as a scaling parameter has 

some inherent advantages. First and foremost, since turbulence is a feature of the flow, 

this choice of maximum normal turbulent heat flux, which is a turbulent flow dependent 

parameter, is an appropriate scaling parameter. Using the MNTHF avoids the explicit 

use of the Re as a scaling parameter, since it is implicitly accounted for within the 

values of 

maxTv

y and 

max)''( vT . In addition to this, using MNTHF as a scaling parameter, 

which is neither a wall-dependent or viscous-based scaling, provides a scaling that is 

not necessarily restricted to the immediate vicinity of the channel walls. Furthermore, 

since turbulent heat transport is also dependent on the type of fluid, the maximum 

normal turbulent heat flux as a proposed scaling parameter can account for the different 

molecular diffusivities and, thus, successfully help in capturing the thermal field scales 

of different Pr fluids. Finally, the choice of scaling with MNTHF makes this scaling 

parameter universally applicable to both the mean and fluctuating scalar statistics.  

7.2 Simulation parameters and procedure 

Calculations using DNS for two Reτ values (150 and 300) are used for the case 

of Poiseuille channel flow. In the LST part of the simulation, the cases of Pr = 0.7, 3, 6, 
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10, 200, 500, 2400, 7000, 15000 and 50000 for the low Reτ case are simulated. The 

simulation consider Pr = 0.1, 0.7, 6, 20, 50, 200, 2400, 7000, 15000 and 50000 for the 

high Reτ case. Each of the simulations is carried out as two sets of simulations, one for 

the lower values of Pr and the other consisting of higher Pr. The simulations are 

categorized as A, B, C and D. Complete details of these simulations are provided in 

Table 7.2. The mean temperature profile in a channel can be obtained by using the 

combined DNS/LST approach. The basic idea involves the description of the behavior 

of an instantaneous line source of markers released at the wall of the channel. This 

behavior is expressed by the joint and conditional probability density function for a 

marker to be at a location (x, y) in the channel at time t, given that the marker was 

released at location x0 at time t0, 1 0 0 0 0( , , , )P x x y t t x t  . The trajectories of all the 

markers released into the flow field are used as the ensemble to obtain this conditional 

probability density function, which physically represents a concentration or a snapshot 

of a cloud of contaminants released from x0 = 0 at t0. The mean temperature profile in a 

channel, where heat is added to the fluid from the bottom wall at a constant rate (isoflux 

condition), can be obtained from P1 by integrating over time and over the streamwise 

direction [142, 157]. In discrete form, the integral is:  

0 0

1 0 0 0 0( ) ( , , , )
f fx t

x x t t

T y P X x y t t x t
 

      (7.4) 

Equation (7.4) provides the mean temperature profile at a distance xf-x0 downstream 

from a step change in heat flux at the channel walls at x0. Also, this mean temperature is 

with respect to a step change in wall heat flux provided to only one wall (bottom wall in 

our case) with the other wall kept adiabatic. For simplicity this case is referred to as 



 

157 

 

Case 1 for the rest of this study. Knowing that the channel is symmetric along the 

center-plane, one can find the mean temperature profile in the channel for the case of 

heat flux applied to both top and bottom walls at x0 by using the following equation, 

where y=0 is the bottom channel wall:  

1 1( ) ( ) (2 )T y T y T h y          (7.5) 

where, T1 in Equation (7.5) is the temperature calculated using Equation (7.4). This case 

of both the channel walls being heated with constant uniform heat flux is referred to as 

Case 2. Combining Cases 1 and 2 with four different simulation cases A, B, C and D, 

appearing in Table 7.2, leads to 8 different scenarios. It should be noted here, however, 

that in Cases 2A, 2B, 2C and 2D, the number of markers tracked during numerical 

simulation is double that of Cases 1A, 1B, 1C and 1D, respectively.  

7.3 Results and discussion 

In the literature review, the origins of the different temperature scaling ideas that 

have been proposed over the years, notably in the works of Churchill et al. [124, 138], 

Wei et al. [110] and Wang et al. [115, 120] have been presented. The different scaling 

concepts are tabulated in Table 7.1. Each idea, innovative in its own way, has addressed 

some issues of scaling, while leaving some other questions unanswered.  

The framework of Churchill et al. was motivated by the author’s philosophy to 

remove empiricisms associated with the theoretical momentum and heat transport 

models. This framework accurately prescribes the functional forms of correlating 

equations for different momentum and heat transport parameters, but as opposed to 

works of Wei et al. does not explore the dynamics behind the different scales in the 
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scalar turbulence field. Works of Wei et al. explored the principal layer structure of the 

thermal field while expounding on the associated flow physics. However, the limitation 

with this approach is the fact that different principal layer structures emerge for 

different ranges of Re and Pr. This necessitates the use of different scaling parameters 

for different Peclet numbers. In addition, using these scaling parameters, though a clear 

picture of the dynamics of the thermal field emerges, it does not help in describing the 

fluctuating thermal quantities. The similarity analysis of Wang et al. addressed the 

former issue of Wei et al., as they devised inner and outer scaling parameters that help 

in capturing all the scales of the mean thermal field in one single profile for different 

pressure gradient flows. Similar to the scaling analysis of Wei et al., however, this 

scaling analysis is also limited to the mean thermal quantity and it does not take into 

consideration the effects that Pr, as an extra parameter in case of heat transport, adds to 

the scaling of the thermal field. 

The scaling by Churchill et al. and by Wei et al., have been previously addressed 

in our laboratory [113, 143]. The results of this present work primarily focuses on 

comparisons of data from the classical scaling, the scaling of Wang et al. and the 

scaling that has been proposed herein in Section 7.1. As set forth in the discussion in 

Section 7.1, the normal turbulent heat flux is central to the scaling arguments we put 

forward in this work. So, the results of the wall-normal turbulent heat flux as a function 

of normal distance from the channel walls are first presented. The procedure outlined in 

references [139, 143] is used to obtain the normal turbulent heat flux. Two sets of mean 

temperature data, from the DNS/LST approach outlined above and from the semi-
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empirical mean temperature equation of Kader [47], are used for calculating the normal 

turbulent heat flux.  

In Figure 7.1 we present the variation of normal turbulent heat flux in the 

vertical direction when one wall (bottom wall) is heated with constant heat flux, for a 

flow with Reτ = 150 (referred to as “low Re” from here on), with low Pr’s, Pr  = 0.7, 3, 

6, 10, 200, Case 1A, plotted in (a), and high Prandtl numbers (Pr = 500, 2400, 7000, 

15000, 50000), Case 1C, plotted in (b). The normal turbulent heat fluxes become 

dominant as one travels away from the near wall region towards the channel core, 

where all the contribution to the total heat flux is from the turbulent heat flux. The 

diffusive contribution to the total normal heat flux becomes smaller with increasing Pr, 

because of the thinner diffusive sublayers. Due to the constant heating of one wall and 

the adiabatic nature of the other, the normal turbulent heat flux has a finite value ≈ 0.55 

at the center of the channel. In the case of Reτ = 300 (referred to “high Re” from here 

on), the values of the normal heat flux as the function of normal distance is shown in 

Figure 7.2, for lower Pr’s (0.7, 6, 20, 50), Case 1B, plotted in (a), and higher Pr’s (200, 

2400, 7000, 15000, 50000), Case 1D, plotted in (b). The data for the high Re indicate 

that all the characteristics of normal heat flux found in the low Re flow, are replicated.  

The same results for the normal turbulent heat flux for Case 2, where both 

channel walls are heated with the same heat flux, is presented in Figures 7.3 and 7.4, for 

low and high Re, respectively. The results show the same trends observed in the case of 

one heated channel wall, with the main difference arising in the center of the channel 

(where the heat flux balance leads to a zero value of the normal turbulent heat flux). 

The results for both cases of wall heating, for different Re and Pr show good agreement 
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between data from the DNS/LST and from Kader’s equation. It is of significance to 

mention here that the Lagrangian tracking approach of calculating mean temperature 

profile, just for the low Pr (0.7 and 3) cases results in some data noise. Hence, this noise 

is transferred to the normal turbulent heat flux values through the mean temperature 

gradients. The curves for the low Pr, in the previous figures are thus a polynomial fit of 

the corresponding data. As a result, there are small deviations in the normal turbulent 

heat flux values at low Pr from Kader’s data. Results for the low Re data, with uniform 

heat flux boundary conditions at the channel walls, have also been previously 

documented in our laboratory [143], as well as in the works of Kasagi et al. [28] and 

Kim and Moin [171]. The high Re results shown here also compare well with the data 

of Kawamura et al. [172]. 

It is interesting to comparatively look at Figures 7.1 and 7.2, or Figures 7.3 and 

7.4, to notice any effect that the Re has on the values of the normal turbulent heat flux. 

Such a comparison is shown in Figures 7.5(a) and (b), for uniform heat flux applied 

from one wall and both walls, respectively. In order to notice differences arising for the 

high Pr cases, the graphs are plotted in semi-log scale, with the different Pr indicated 

by the pointed arrows. For low Pr’s (0.7 and 6), in the thermal buffer layer, there is 

clear increase in the values with increase in Re. This behavior has been observed 

previously in the works of Kawamura et al. [172], for Pr = 0.025, 0.2 and 0.7, though 

they used a slightly different set of Re, Reτ = 180 and 395, in their study. For the high Pr 

cases, shown in Figures 7.5(a) and (b), in the thermal buffer regions, one can notice 

only small differences in the values of the normal turbulent heat flux. As a relative 

percentage, these differences are very small and do not reflect a trend of the normal 
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turbulent heat flux with Re. The normal turbulent heat flux in the diffusive sublayer 

shows a clear characteristic behavior with respect to Re and Pr. At low Pr, Pr = 0.7 and 

6 for Case 1 heating and Pr = 0.7 for Case 2, there is a clear increase in normal 

turbulent heat flux with an increase in Re. This result was also reported in the work of 

Kawamura et al. where they found a slight increase in the slope of the normal turbulent 

heat flux normalized with the Pr and wall-normal distance. The large Pr results, Pr > 

200, for one heated wall and Pr > 6 for two heated walls, in the diffusive sublayer, 

however, show that the normal turbulent heat flux decreases with increasing Re in these 

regions.  

The early works of Shaw and Hanratty [173], studying high Pr, suggested that 

the rate of heat transfer, controlled by convective motion, is greatly dampened close to 

wall surface by the effects of molecular diffusion. They observed that the viscous 

sublayer acts as a low-pass filter, allowing only the low frequency velocity fluctuations 

while filtering out the high-frequency velocity fluctuations. The “low-pass filtering 

effect” has also been reported in the works of Hasegawa and Kasagi [174], and Na and 

Hanratty [175]. This low-pass filtering effect could be the reason behind the decrease in 

the normal turbulent heat flux with increasing Re in the diffusive sublayer. 

Comparatively imagining the large and small scales of turbulent transport in the low 

and high Re, the high Re would have a higher number of large convective scales 

compared to the low Re. However, these get filtered out by the viscous sublayer 

resulting in smaller values of normal turbulent heat flux for the high Re. Now, the 

question arises as to why is this behavior observed only for the high Pr and not for the 

low Pr? The work of Abe et al. [31] helps shed some light into the results. Studying the 
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transport near the wall for low Pr, Pr = 0.025, 0.71, Abe et al. found first that large 

scale velocity fluctuations are reported mostly in the outer regions of the flow for such 

small Pr. Also, they found that for small Pr due to increased molecular diffusion 

effects, the contribution of turbulent flux to transport in these layers decreases. So, it is 

understandable that when Re increases for the low Pr, the convection effects slightly 

increase causing the normal turbulent heat flux to increase in value. 

The balance equation for the total normal heat flux was can be found in Teitel 

and Antonia [176] for fully developed turbulent channel flow. For the case of one of the 

channel walls being heated with constant heat flux while the other wall is adiabatic 

(Case 1), the equation is given as 

 
1

( ' ') 1 1
Pr 2

dT y
T v

dy h


 


 

 
    

 
    (7.6) 

In equation (7.6), ( ' ')T v  is the heat flux normalized by the heat flux at the wall, 

( ' ')
( ' ')

p

w

c T v
T v

q


   and γ is a small correction term suggested in the works of 

Churchill et al. [48, 137, 138, 144] to take into account the turbulent velocity profile. 

The corresponding equation for the case of both channel walls heated with constant heat 

flux (Case 2) is given by 

 
1

( ' ') 1 1
Pr

dT y
T v

dy h


 


 

 
    

 
    (7.7) 

The maximum normal turbulent heat flux can be theoretically calculated from 

Equation (7.6) and Equation (7.7), for the respective cases. For simplicity we make two 

assumptions, first, that the correction term, γ, is negligible and secondly, the mean 

temperature in the wall-normal regions where the normal heat flux reaches maximum is 
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assumed to be logarithmic. The second assumption leads to the temperature gradient 

given as 

1

k

dT

dy V y



 
        (7.8) 

where, Vk is the von Karman constant of the mean temperature profile. The normal 

turbulent heat flux, thus, for Case 1 becomes 

1
( ' ') (1 ) 1

Pr k

y
T v

h V y





 

 
    

 
    (7.9) 

Now, neglecting γ and differentiating Equation (7.9) yields 

2

( ' ') 1 1 1

Pr 2k

d T v

dy V hy



 
       (7.10) 

which leads to the location of the maximum normal turbulent heat flux to be 

approximately 

max

2 2Re

Pr PrTv
k k

h
y

V V



        (7.11) 

which then gives the peak value of the normal turbulent heat flux to be 

max

2 2
( ' ') 1 1

Pr Rek k

T v
V V Pe

        (7.12) 

For Case (2) a similar analysis yields 

max

Re

PrTv
k

y
V



        (7.13) 

and  max

2
( ' ') 1

k

T v
V Pe

        (7.14) 
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 A similar derivation for Case 2 alone has also been presented by Kawamura et 

al. [172]. However, Kawamura et al. assumed an approximated correction function, γ, 

from the velocity profile. Neglecting higher order terms arising for the normal turbulent 

heat flux, they derived that the location of the maximum normal turbulent heat flux 

should be 

max

Re

(1 ) PrTv
k

y
b V



 


      (7.15) 

where b in their expression was an empirical constant appearing in the correction 

function with a constant value of 0.4. The peak value of the normal turbulent heat flux 

was then given as 

max 3 3

2 2

1 2 1 1
( ' ') 1 2

1
(1 ) ( )k k

k

b b b
T v

V Pe b V Pe
b V Pe

 
   




 (7.16) 

We present in Figures 7.6 and 7.7 the wall-normal location of the peak turbulent 

heat flux as (a) and the peak turbulent heat flux as (b) for Cases 1 and 2, respectively, 

plotted as a function of the Pr and for different Re. For both cases the results from the 

theoretical calculation are presented along with the DNS/LST and Kader results. In 

Case 2, the results from the theoretical calculation of Kawamura et al. are also presented 

for comparison. For both cases, the locations of the peak normal turbulent heat flux 

agree very well between the DNS/LST and the Kader data. But there are considerable 

variations between the DNS/LST data and the theoretically predicted values. A power 

law fit of the normal location of maximum normal turbulent flux obtained from both 

DNS/LST and Kader reveals that it varies approximately with Pr
-1/4

 for both cases. 

However, the theoretically predicted equations from this study and that of Kawamura et 
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al. show a Pr
-1/2

 variation. The possible reason behind this behavior could be the 

assumption of the logarithmic behavior of the mean temperature profile.  

The values of the MNTHF, for both Reτ, increase asymptotically with Pr, 

approaching the value of one as Pr  ∞. The value of the maximum normal turbulent 

heat flux shows good agreement between the results of the DNS/LST and Kader’s. 

Also, there is good agreement, especially, for the medium and high Pr, between the 

DNS/LST results and the values obtained from the theoretical formulae. We list in 

Tables 7.3 and 7.4 the location of the peak normal turbulent heat flux and its values, 

respectively, for Case 1, obtained in three different data sets, namely, DNS/LST, 

Kader’s formula and the theoretical formula. The tables also include the percent 

differences between the DNS/LST and Kader data, and DNS/LST and theoretical 

formulae. Similar data are presented in Tables 7.5 and 7.6, for Case 2. Clearly 

observable are the high percent differences between the theoretically predicted values of 

the location of the peak normal turbulent heat flux and those from the DNS/LST 

studies. However, for the value of the peak normal turbulent heat flux, even though the 

low Pr cases show some differences, the percent differences are extremely small for the 

medium and high Pr cases. This is because varying values of the peak location of the 

wall-normal turbulent heat flux do not imply changes in the values of the peak normal 

turbulent heat flux for high Pr. 

The mean temperature profile scaled with the viscous wall scaling (T scaled 

with T
*
 and y with ν/u

*
),

 
for different Pr, with lower Pr cases in (a) and higher Pr cases 

in (b), for a flow with Reτ = 150 in the wall heating Case 1 is presented in Figure 7.8. 

The same case for Reτ = 300 is shown in Figure 7.9(a) and (b).  The same low Re and 
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high Re cases are presented in Figures 7.10 and 7.11 for the wall heating Case 2. The 

behavior of the mean temperature profile in turbulent channel flow at low Re has been 

documented in previous works from our laboratory [143, 157]. The data for Reτ = 300, 

however, are novel, and similar to the low Re, show good agreement with Kader’s 

profile. From the profiles shown in Figures 7.8-7.11, it is apparent that using the friction 

temperature and the friction velocity does not capture the turbulent scalar scales in the 

flow. The only collapse in the scaling of the temperature variables using classical 

scaling has been noticed at very close regions to the boundary walls by scaling the 

variables using Prandtl number [172]. Hence, scaling with the classical scales does not 

show any collapse in the mean temperature profile in the channel.  

In order to understand the nature of the WC scaling, the mean temperature data 

are used to present the WC inner scaling. In Figure 7.12, with low Re in (a) and high Re 

in (b), we show the mean temperature scaled using the WC inner scaling for Case 1, 

where one wall is heated while the other wall is being adiabatic, for a variety of Pr. 

Results for the WC inner scaling are presented in Figure 7.13 for Case 2. In both 

Figures, only the DNS/LST data is shown, since it has been clear from the previously 

presented data that Kader’s formula exhibits similar behavior. For both the wall heating 

scenarios, this WC scaling, keeping in mind that it has been proposed with respect to 

adverse pressure gradient studies, shows a good collapse of the mean temperature 

profiles for different Pr very close to the channel walls. However, from the buffer 

region to the outer region of the channel, for both Re, the mean temperature profiles 

show systematic variations with the Pr of the fluid. This is reflected in the decrease in 

the values of scaled mean temperature with the increase in Pr. The results indicate that 
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the WC inner scaling captures the small scales of turbulent scalar transport in the 

diffusive sublayer, which exhibit similar scales irrespective of the Pr of the fluid. 

However, the scaling fails to account for the variations in scales that become important 

to heat transfer with the variation in Pr in the buffer and outer regions of the channel. 

So, in effect, even though the WC inner scaling has been shown to account for the 

effects of ZPG, APG and FPG in the turbulent scalar field [115], in the turbulent 

regions of the channel, it fails to capture the effects of different fluid Pr. 

The scaling proposed in this work (i.e, the maximum normal turbulent heat flux, 

MNTHF, scaling) is presented for Case 1 of wall heating in Figure 7.14 with low Re 

data in (a) and high Re in (b). The corresponding Case 2 results are presented in Figure 

7.15. From the scaling results, it can be confirmed that the value of maximum normal 

turbulent heat flux, 

max)''( vT , is a viable parameter for capturing the turbulent scalar 

scales while the location of the normal turbulent heat flux, 
maxTv

y 

 , with fluid parameters 

factored in it, can help in doing the same for the turbulent length scales. Utilizing the 

peak location and the peak values of the normal turbulent heat flux for the scaling, one 

would expect that they are applicable in regions where there are increased contributions 

due to the dominance of convective transport. The results here verify this conjecture by 

showing that the collapse in the mean temperature is very good in the inner and buffer 

regions of the channel. The average of the scaled mean temperature profiles calculated 

from all the different cases of Pr is represented in Figures 7.14 and 7.15 by an orange 

dark line and the error bars are represented by the cyan colored lines. Admittedly, in 

some cases of Pr, at some regions of the channel, the values of the scaled mean 

temperature profile show deviations from the averaged value, with values being outside 
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the error bars. This could be due to the sensitivity of the scaled data to the peak location 

and value of the normal turbulent heat flux. To analyze this effect, the data for the peak 

value and location of the normal turbulent heat flux obtained from the theoretical 

correlations in Equations (7.14) and (7.15), respectively, just for Case 2, are used to 

scale the mean temperature. Figure 7.16, with low Re in (a) and high Re in (b), is a 

picture of how the mean temperature profiles scaled with these values. Large variations 

of the scaled data with the effects of Pr are observed. In Tables 7.3 and 7.4, when 

comparing the locations and values of the MNTHF between the DNS/LST and the 

theoretical correlations, it was seen that there were large variations between the 

locations of the peak between the two different methods, while the variations between 

the peak values were comparatively small. This observation combined with the results 

from Figure 7.16 indicate that the MNTHF scaling proposed in this analysis is sensitive 

to the location of the peak normal turbulent heat flux more than it is to the values of the 

peak normal turbulent heat flux. Large variations in the location of the MNTHF, as 

reported earlier, result in high variations in the scaled mean temperature profile. The 

mean temperature is also scaled by the results of the location and value of the maximum 

normal turbulent heat flux obtained from the theoretical correlations of Kawamura et al. 

[172] given by Equations (7.16) and (7.17), respectively. Figure 7.17(a) and (b) is a plot 

of the scaled temperature profile for the low and high Re. The results again show the 

poor collapse of the data for this case as expected. This is due to the fact that the values 

of both the theoretical correlations proposed in this paper and those obtained by 

Kawamura et al. are very similar and show large deviations from that of DNS/LST data. 
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Having found that the determination of the location of the maximum normal 

turbulent heat flux can help in obtaining better scaling results, it is important to 

represent the DNS/LST values of the predicted location of the maximum normal 

turbulent flux in a functional form. The variation of the location of the MNTHF as a 

function of the friction Peclet number is shown in Figure 7.18. By using a power law fit, 

the equations for the location of the maximum normal turbulent heat flux for Case 1 of 

heating are given as 

max

0.24140
Tv

y Pe

        (7.17) 

and for the case where both walls are heated (Case 2) by 

max

0.23107
Tv

y Pe

        (7.18) 

Now, using these values for the location of the maximum normal turbulent heat flux and 

using Equations (7.6) and (7.7), respectively, for Cases 1 and 2, it is possible to estimate 

the values of the maximum normal turbulent heat flux. Such values are obtained and 

shown in Tables 7.7 and 7.8 for Cases 1 and 2, respectively. The main observation from 

this table is the fact that comparisons of the values of the location of the MNTHF from 

the power law fit with the DNS/LST data show small differences. Even though, there 

are still differences between the power law fit and the data from DNS/LST, these 

differences are comparatively smaller than the differences between the DNS/LST data 

and the empirical correlations for location and values of MNTHF developed in this 

paper. 

The mean temperature profile scaled using the MNTHF scaling is shown in 

Figures 7.19 and 7.20, for Cases 1 and 2, respectively. As previously, the lower Re data 

are shown in (a), while the higher Re data are shown in (b). The results show 
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remarkably good collapse of the mean temperature profiles in the near wall and buffer 

regions. This proves that better estimates of the location of the maximum normal heat 

flux help in better collapse of the scaled results. The lower Pr cases (especially Pr = 

0.7) shows some outlier characteristics. This can be attributed to high fluctuations in 

data for the normal turbulent heat flux profiles at such low Pr using our DNS/LST 

method. Owing to this, as mentioned before, one needs to fit the profile to obtain a 

smooth curve for the normal turbulent heat flux and the values of location and values of 

the MNTHF are not completely accurate. The large percent errors of the maximum 

normal turbulent heat flux for the low Pr case, the Pr = 0.7 which demonstrates outlier 

characteristics, further strengthens the hypothesis that the scaling analysis depends on 

accurate determination of both the location and the values of the maximum normal 

turbulent heat flux. 

To further examine the scaling of the scalar turbulence statistics, the MNTHF 

scaling is implemented on the profiles of the normal turbulent heat flux presented 

previously in Figures 7.1-7.4. The same parameters, the value of MNTHF and the 

location of the MNTHF obtained from the DNS/LST study and factored by the Stanton 

and Prandtl numbers to a power of 0.25 are used for the scaling. In Figure 7.21 we show 

the normal turbulent heat flux for the wall heating Case 1 with (a) presenting the low Re 

data and (b) showing the higher Re data. The corresponding case for the wall heating 

Case 2 is shown in Figure 7.22. Observable from the graphs is the collapse of the 

normal turbulent heat flux in the regions near the channel walls. One can also notice 

that the scaling is not as smooth as that for the temperature, with wide error bars shown 

in some cases. This indicates that the normal turbulent heat flux values are more 
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sensitive to the peak values and location of the normal turbulent heat flux than the mean 

temperature.  

To explore further the scaling analysis, the same scaling is applied to the root 

mean square of the temperature fluctuations. The root mean square (rms) of the 

temperature fluctuations as a function of the normal distance from the channel walls is 

shown in Figure 7.23. The data shown are Eulerian simulation data from the works of 

Schwertfirm and Manhart [132]  and Dong et al. [177, 178]. The results are for the case 

of Reτ = 180, with two channel walls maintained at two different constant temperatures. 

Now, the normal turbulent heat flux profile behaves in a different manner in the case of 

constant temperature or constant heat flux boundary conditions [28, 132, 172, 177]. It 

could be inaccurate to use the normal turbulent heat flux data for the case of constant 

heat flux conditions to scale the rms of the temperature fluctuations (since the data is 

from the case of constant temperature boundary conditions). Instead, the normal 

turbulent heat flux values are obtained from the same work of Schwertfirm and Manhart 

given in their Figure 5. In the case of constant temperature boundary condition, the 

normal turbulent heat flux does not show asymptotic decreases after the maximum 

value. Hence, the point at which the profile attains 90% of the asymptotic value is 

chosen as the value of the MNTHF. The scaling of the rms of the temperature 

fluctuations using these values is shown in Figure 7.24. Remarkably, the profiles for the 

various Pr collapse in the near wall and buffer regions of the channel. For the high Pr = 

100 data, due to the unavailability of normal turbulent heat flux data, the data from our 

constant wall heat flux condition is used for the location and the value of the maximum 

turbulent heat flux. This results in a slight deviation of the scaling from the collapse of 
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other data. These results show that the normal turbulent heat flux is a versatile 

parameter that can be used to capture not only the mean, but also the fluctuating 

characteristics of scalar turbulence.  

7.4 Conclusions 

 The DNS/LST method is implemented for Poiseuille channel flow to obtain a 

wide range of scalar transport data for different Re (150 and 300) and for Pr spanning 

six orders of magnitude. Such data have been obtained for two different wall heating 

scenarios, first, with just one wall being heated with constant heat flux while the other 

was maintained adiabatic, and second, with the both walls being heated with constant 

heat flux. Such a database has enabled us to examine the features of turbulent scalar 

transport. The normal turbulent heat flux was found to vary with the Pr and with the Re. 

Since the normal turbulent heat flux parameter accounts for the variation in the flow and 

scalar characteristic of turbulence, the location and the value of the peak normal 

turbulent heat flux were chosen as the two main parameters for scaling the mean 

temperature, the normal turbulent heat flux, and the root mean square of the temperature 

fluctuations. The obtained results show that the maximum normal turbulent heat flux, 

used as a scaling parameter, captures most, if not all, the mean and fluctuating scalar 

turbulence characteristics. The scaled profiles of the mean temperature, normal 

turbulent heat flux and the rms of the temperature fluctuations all show good collapse in 

the near wall and buffer regions of the channel.  

 A theoretical model inspired by Kawamura et al.[172], has also been presented. 

The theoretically model for the normal turbulent heat flux does a good job in predicting 

the values of the maximum normal turbulent heat flux (MNTHF) within reasonable 
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error percentages. However, prediction for the location of the maximum normal 

turbulent heat fluxes (MNTHF) deviates from the DNS/LST results.  

A sensitivity analysis was performed to size up the effect of the location and 

values of the MNTHF, on capturing the turbulent scalar behavior. The results show that 

obtaining the location values of the MNTHF with accuracy is more important while 

there is less sensitivity of the scaled data to the values of the MNTHF. Using our 

DNS/LST data for the location and values of the MNTHF for variety of Pr and for two 

different Re, a power law fit is obtained for the location of the MNTHF as a function of 

the Pe. The mean temperature profiles are scaled with data for the location of the 

MNTHF from these power law fits. These values can then be used to determine the 

values of the MNTHF. The results show good collapse of the scaled data enabling one 

to use these power law fits to obtain peak locations of the normal turbulent heat flux. 

Since the normal turbulent heat flux, especially for medium and high Pr, occurs closer 

and closer to the walls, it is important to obtain its value and location with accuracy in 

order to precisely define the scaling. In addition to the DNS/LST approach utilized here 

for obtaining the scalar transport characteristics, Eulerian DNS or large eddy simulation 

data can help in obtaining accurate results of locations and values of maximum normal 

turbulent heat flux, as they become available for high Re and Pr.  
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Table 7.1: Scaling parameters used in different studies for scalar transport in turbulence. 
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Table 7.2: Simulation conditions for numerical marker-tracking experiments. 

Ca-

se 

Reyno

lds 

Numb

er 

(Re) 

Prandtl Number (Pr) 

Numb

er of 

Marke

rs 

time step 

advanceme

nt (Δt) 

Simulat

-ion 

time (t) 

a b c d e    

A 150 0.7 3 6 10 200 145161 0.25 4000 

B 300 0.1 0.7 6 20 50 260100 0.2 8000 

C 150 500 2400 7000 15000 50000 16129 0.25 13000 

D 300 200 2400 7000 15000 50000 260100 0.2 8000 
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Table 7.3: Values of the peak location of the normal turbulent heat flux obtained using the DNS/LST method, Kader’s data and 

theoretical correlation of Srinivasan and Papavassiliou in equation (7.11) for the case of one channel wall heated with constant heat 

flux. The corresponding percentage differences between the DNS/LST and Kader’s value along with the percentage differences 

between DNS/LST and values from equation (7.11) are also presented. The two flow cases with Reτ = 150 and 300 are presented. 

 
Reτ = 150 Reτ = 300 

Pr DNS/LST Kader 

% 

difference 

between 

DNS/LST 

and 

Kader 

Eqn 

(7.11) 

% 

difference 

between 

DNS/LST 

and Eqn 

(7.11) 

DNS/LST Kader 

% 

difference 

between 

DNS/LST 

and 

Kader 

Eqn 

(7.11) 

% 

difference 

between 

DNS/LST 

and Eqn 

(7.11) 

0.7 44.500 40.500 8.99 32.331 27.35 53.500 56.500 -5.61 45.723 14.54 

3 31.500 25.500 19.05 15.617 50.42 
     

6 22.500 20.500 8.89 11.043 50.92 34.500 27.500 20.29 15.617 54.73 

10 19.500 17.500 10.26 8.554 56.13 
     

20 
     

20.500 20.000 2.44 8.554 58.27 

50 
     

16.500 16.000 3.03 5.410 67.21 

200 9.622 8.419 12.50 1.913 80.12 10.606 10.223 3.61 2.705 74.50 

500 7.056 6.943 1.60 1.210 82.86 
     

2400 5.703 4.795 15.92 0.552 90.32 6.482 5.725 11.67 0.7 81 87.95 

7000 4.263 3.695 13.33 0.323 92.42 5.408 4.511 16.59 0.457 91.55 

15000 4.263 3.195 25.05 0.221 94.82 4.230 3.695 12.66 0.312 92.62 

50000 2.985 2.514 15.76 0.121 95.95 3.441 2.732 20.59 0.171 95.03 
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Table 7.4: Values of the peak normal turbulent heat flux obtained using the DNS/LST method, Kader’s data and theoretical correlation 

of Srinivasan and Papavassiliou in equation (7.12) for the case of one channel wall being with constant heat flux. The corresponding 

percentage differences between the DNS/LST and Kader’s value along with the percentage differences between DNS/LST and values 

from equation (7.12) are also presented. The two flow cases with Reτ = 150 and 300 are presented. 

 
Reτ = 150 Reτ = 300 

Pr DNS/LST Kader 

% 

difference 

between 

DNS/LST 

and 

Kader 

Eqn 

(7.12) 

% 

difference 

between 

DNS/LST 

and Eqn 

(7.12) 

DNS/LST Kader 

% 

difference 

between 

DNS/LST 

and 

Kader 

Eqn 

(7.12) 

% 

difference 

between 

DNS/LST 

and Eqn 

(7.12) 

0.7   0.814 0.94 0.787 4.20 0.912 0.896 1.77 0.849 6.84 

3 0.940 0.917 2.42 0.897 4.57 
     

6 0.935 0.943 -0.89 0.927 0.78 0.965 0.974 -0.93 0.949 1.67 

10 0.947 0.956 -0.92 0.944 0.40 
     

20 
     

0.969 0.988 -1.00 0.972 0.65 

50 
     

0.980 0.994 -0.84 0.982 0.31 

200 0.987 0.989 -0.23 0.987 -0.04 0.989 0.994 -0.24 0.991 0.00 

500 0.991 0.993 -0.20 0.992 -0.10 
     

2400 0.995 0.997 -0.16 0.996 -0.14 0.996 0.998 -0.10 0.997 -0.05 

7000 0.997 0.998 -0.11 0.998 -0.10 0.998 0.999 -0.07 0.999 -0.05 

15000 0.998 0.999 -0.08 0.999 -0.09 0.998 0.999 -0.05 0.999 -0.03 

50000 0.999 0.999 -0.05 0.999 -0.06 0.999 0.999 -0.02 0.999 -0.02 
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Table 7.5: Values of the peak location of the normal turbulent heat flux obtained using the DNS/LST method, Kader’s data, theoretical 

correlation of Srinivasan and Papavassiliou in equation (7.13) and theoretical correlation of Kawamura et al. [172] in equation (7.15) 

for the case of both the channel walls heated with constant heat flux. The corresponding percentage differences between the DNS/LST 

and Kader’s, DNS/LST and values from equation (7.13) and DNS/LST and values from equation (7.15) are also presented. The two 

flow cases with Reτ = 150 and 300 are presented. 

 
Reτ = 150 Reτ = 300 

Pr 
DNS/ 

LST 
Kader 

DNS/ 

LST 

and 

Kader 

(%) 

Eqn 

(7.13) 

DNS/ 

LST 

and 

Eqn 

(7.13) 

(%) 

Eqn 

(7.15) 

DNS/ 

LST 

and 

Eqn 

(7.15) 

(%) 

DNS/ 

LST 
Kader 

   

DNS/ 

LST  

and 

Kader 

(%) 

Eqn 

(7.13) 

DNS/ 

LST 

and 

Eqn 

(7.13) 

(%) 

Eqn 

(7.15) 

DNS/ 

LST 

and 

Eqn 

(7.15) 

(%) 

0.7 34.500 31.500 8.70 22.862 33.73 29.514 14.45 48.500 41.000 15.46 32.331 33.34 41.740 13.94 

3 18.500 20.500 -10.81 11.043 40.31 14.257 22.94 
     

  

6 16.500 17.500 -6.06 7.809 52.67 10.081 38.90 24.500 21.000 14.29 11.043 54.93 14.257 41.81 

10 17.500 15.500 11.43 6.049 65.44 7.809 55.38 
     

  

20 
     

  16.500 15.000 9.09 6.049 63.34 7.809 52.67 

50 
     

  13.500 12.000 11.11 3.826 71.66 4.939 63.42 

200 8.036 7.419 7.67 1.353 83.17 1.746 78.27 10.036 8.582 14.49 1.913 80.94 2.469 75.40 

500 6.589 6.037 8.39 0.855 87.02 1.104 83.24 
     

  

2400 4.491 4.046 9.91 0.390 91.31 0.504 88.78 5.193 4.801 7.55 0.552 89.37 0.713 86.27 

7000 3.469 3.195 7.89 0.229 93.41 0.295 91.49 4.511 3.695 18.10 0.323 92.83 0.417 90.75 

15000 2.985 2.732 8.46 0.156 94.77 0.202 93.24 3.695 3.195 13.51 0.221 94.02 0.285 92.28 

50000 2.124 2.105 0.89 0.086 95.97 0.110 94.80 2.959 2.305 22.11 0.121 95.91 0.156 94.72 
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Table 7.6: Values of the peak normal turbulent heat flux obtained using the DNS/LST method, Kader’s data, theoretical correlation of 

Srinivasan and Papavassiliou in equation (7.14) and theoretical correlation of Kawamura et al. [172] in equation (7.16) for the case of 

both the channel walls heated with constant heat flux. The corresponding percentage differences between the DNS/LST and Kader’s, 

DNS/LST and values from equation (7.14) and DNS/LST and values from equation (7.16) are also presented. The two flow cases with 

Reτ = 150 and 300 are presented. 

 
Reτ = 150 Reτ = 300 

Pr 
DNS/ 

LST 
Kader 

DNS/ 

LST 

and 

Kader 

(%) 

Eqn 

(7.14) 

DNS/ 

LST 

and 

Eqn 

(7.14) 

(%) 

Eqn 

(7.16) 

DNS/ 

LST 

and 

Eqn 

(7.16) 

(%) 

DNS/ 

LST 
Kader 

   

DNS/ 

LST  

and 

Kader 

(%) 

Eqn 

(7.14) 

DNS/ 

LST 

and 

Eqn 

(7.14) 

(%) 

Eqn 

(7.16) 

DNS/ 

LST 

and 

Eqn 

(7.16) 

(%) 

0.7 0.759 0.822 3.90 0.699 7.89 0.736 2.99 0.849 0.824 2.92 0.787 7.32 0.819 3.60 

3 0.884 0.940 1.12 0.855 3.37 0.879 0.59 
     

  

6 0.880 0.935 -3.60 0.897 -1.98 0.916 -4.11 0.938 0.944 -0.66 0.927 1.12 0.941 -0.36 

10 0.899 0.947 -3.62 0.920 -2.43 0.935 -4.11 
     

  

20 
     

  0.964 0.969 -0.56 0.960 0.39 0.968 -0.45 

50 
     

  0.977 0.980 -0.32 0.975 0.25 0.980 -0.28 

200 0.961 0.987 -2.21 0.982 -2.20 0.986 -2.59 0.985 0.989 -0.38 0.987 -0.23 0.990 -0.50 

500 0.972 0.991 -1.67 0.989 -1.72 0.991 -1.97 
     

  

2400 0.981 0.995 -1.35 0.995 -1.41 0.996 -1.52 0.995 0.996 -0.16 0.996 -0.15 0.997 -0.23 

7000 0.985 0.997 -1.16 0.997 -1.23 0.998 -1.29 0.997 0.998 -0.12 0.998 -0.12 0.998 -0.17 

15000 0.987 0.998 -1.02 0.998 -1.07 0.998 -1.12 0.998 0.998 -0.08 0.999 -0.09 0.999 -0.12 

50000 0.991 0.999 -0.77 0.999 -0.81 0.999 -0.83 0.999 0.999 -0.04 0.999 -0.05 0.999 -0.07 
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Table 7.7: Values of the peak location of the normal turbulent heat flux obtained using a power law fit of the DNS/LST results, shown 

by equation (7.17), and the corresponding peak values of the normal turbulent heat flux obtained using correlation of Srinivasan and 

Papavassiliou shown in equation (7.12) for the two different Re, Reτ = 150 and Reτ = 300, cases, and for a variety of Pr in the case 1 of 

one wall of the channel heated with constant wall heat flux. The percentage errors between these value and DNS/LST data are also 

presented. 

 
Reτ = 150 Reτ = 300 

 maxTv
y 

  
maxTv  

maxTv
y 

  
maxTv  

Pr 
DNS/L

ST 

Power 

Fit 
% error 

DNS/L

ST 

Power 

Fit 

% 

error 

DNS/LS

T 

Power 

Fit 

% 

error 

DNS/LS

T 

Power 

Fit 
% error 

0.7 44.500 46.489 -4.47 0.822 0.770 6.26 53.500 39.456 26.25 0.912 0.846 7.23 

3 31.500 32.945 -4.59 0.940 0.866 7.94 
      

6 22.500 27.961 -24.27 0.935 0.892 4.52 34.500 23.731 31.22 0.965 0.943 2.21 

10 19.500 24.777 -27.06 0.947 0.908 4.21 
      

20 
      

20.500 17.848 12.94 0.978 0.963 1.51 

50 
      

16.500 14.369 12.92 0.985 0.973 1.28 

200 9.622 12.195 -26.74 0.987 0.958 2.90 10.606 10.350 2.41 0.991 0.982 0.96 

500 7.056 9.818 -39.14 0.991 0.967 2.44 
      

2400 5.703 6.773 -18.77 0.995 0.977 1.78 6.482 5.749 11.31 0.997 0.990 0.67 

7000 4.263 5.258 -23.33 0.997 0.982 1.45 5.408 4.462 17.49 0.998 0.993 0.56 

15000 4.263 4.390 -2.98 0.998 0.985 1.24 4.230 3.726 11.92 0.999 0.994 0.49 

50000 2.985 3.302 -10.62 0.999 0.989 0.96 3.441 2.802 18.56 0.999 0.995 0.39 
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Table 7.8: Values of the peak location of the normal turbulent heat flux obtained using a power law fit of the DNS/LST results, shown 

by equation (7.18), and the corresponding peak values of the normal turbulent heat flux obtained using correlation of Srinivasan and 

Papavassiliou shown in equation (7.14) for the two different Re, Reτ = 150 and Reτ = 300, cases, and for a variety of Pr in the case 2 of 

both the walls of the channel heated with constant wall heat flux. The percentage errors between these value and DNS/LST data are 

also presented. 

 
Reτ = 150 Reτ = 300 

 maxTv
y 

  
maxTv  

maxTv
y 

  
maxTv  

Pr 
DNS/L

ST 

Power 

Fit 

% 

error 

DNS/L

ST 

Power 

Fit 

% 

error 

DNS/L

ST 

Power 

Fit 

% 

error 

DNS/L

ST 

Power 

Fit 

% 

error 

0.7 34.500 30.212 12.43 0.759 0.683 9.94 48.500 30.831 36.43 0.850 0.784 7.65 

3 
18.500 21.459 

-

16.00 0.884 0.819 7.38       

6 
16.500 18.233 

-

10.50 0.880 0.856 2.67 24.500 18.732 23.54 0.938 0.916 2.34 

10 17.500 16.170 7.60 0.899 0.877 2.38       

20       16.500 14.168 14.14 0.964 0.944 2.05 

50       13.500 11.455 15.15 0.977 0.958 2.02 

200 8.036 7.996 0.50 0.961 0.945 1.65 10.036 8.305 17.24 0.985 0.971 1.45 

500 6.589 6.447 2.17 0.972 0.956 1.62       

2400 4.491 4.459 0.73 0.981 0.970 1.12 5.193 4.667 10.13 0.995 0.984 1.07 

7000 3.469 3.467 0.06 0.985 0.977 0.83 4.511 3.641 19.29 0.997 0.988 0.89 

15000 2.985 2.898 2.89 0.987 0.981 0.68 3.695 3.051 17.42 0.998 0.990 0.79 

50000 2.124 2.184 -2.81 0.991 0.985 0.55 2.959 2.308 22.02 0.999 0.992 0.64 
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Figure 7.1: Values of the normal turbulent heat flux as a function of the wall-normal 

distance with a constant heat flux applied to one channel wall while maintaining the 

other adiabatic, in flow with Reτ = 150, obtained from the DNS/LST data and Kader’s 

equation: (a) for small Pr, Pr = 0.7, 3, 6, 10 and 200 and (b) high Pr, Pr = 500, 2400, 

7000, 15000, 50000. 
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Figure 7.2: Values of the normal turbulent heat flux as a function of the wall-normal 

distance with a constant heat flux applied to one channel wall while maintaining the 

other adiabatic, in flow with Reτ = 300, obtained from the DNS/LST data and Kader’s 

equation: (a) for small Pr, Pr = 0.7, 6, 20 and 50 and (b) high Pr, Pr = 200, 2400, 7000, 

15000, 50000. 

 



 

183 

 

(a)

0

0.2

0.4

0.6

0.8

1

0 50 100 150

Pr

0.7
3
6
10
200

0.7
3
6
10
200

(T
'v

')
+

y
+

DNS/LST Kader

 

(b)

0

0.2

0.4

0.6

0.8

1

0 50 100 150

Pr

500
2400
7000
15000
50000

500
2400
7000
15000
50000

(T
'v

')
+

y
+

DNS/LST Kader

 

Figure 7.3: Values of the normal turbulent heat flux as a function of the wall-normal 

distance with a constant and uniform heat flux applied to both channel walls in flow 

with Reτ = 150, obtained from the DNS/LST data and Kader’s equation: (a) for small 

Pr, Pr = 0.7, 3, 6, 10 and 200 and (b) high Pr, Pr = 500, 2400, 7000, 15000, 50000. 
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Figure 7.4: Values of the normal turbulent heat flux as a function of the wall-normal 

distance with a constant and uniform heat flux applied to both channel walls in flow 

with Reτ = 300, obtained from the DNS/LST data and Kader’s equation: (a) for small 

Pr, Pr = 0.7, 6, 20 and 50 and (b) high Pr, Pr = 200, 2400, 7000, 15000, 50000. 
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Figure 7.5: Comparisons of the values of the normal turbulent heat flux as a function of 

the wall-normal distance for two different Re, Reτ = 150 and 300, for different Pr, Pr = 

0.7, 6, 200, 2400, 7000, 15000 and 50000 with: (a) constant uniform heat flux applied 

to only bottom wall and (b) constant uniform heat flux applied to both walls. 
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Figure 7.6: Location and values of the peak normal turbulent heat flux plotted as a 

function of the fluid Pr in two different Reτ, Reτ = 150 and 300 cases, obtained using 

three different methods, namely, the DNS/LST, Kader’s and the theoretical correlations 

of Equations (7.11) and (7.12), for the uniform constant heat flux boundary condition 

applied to one channel wall represented as (a) peak location and (b) peak value. 
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Figure 7.7: Location and values of the peak normal turbulent heat flux plotted as a 

function of the fluid Pr in two different Reτ, Reτ = 150 and 300 cases, obtained using 

four different methods, namely, the DNS/LST, Kader’s and the theoretical correlations 

of Srinivasan and Papavassiliou given in Equations (7.13) and (7.14), and theoretical 

correlations of Kawamura et al. [172] given in Equations (7.14) and (7.16), for the 

uniform constant heat flux boundary condition applied to both channel walls 

represented as (a) peak location and (b) peak value. 
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Figure 7.8: Mean temperature profile plotted as a function of the wall-normal distance 

for the case of one wall of the channel heated with constant heat flux. Results from 

DNS/LST and Kader’s equation at Reτ = 150, obtained for different Pr: (a) Pr = 0.7, 3, 

6, 10 and 200 and (b) Pr = 500, 2400, 7000, 15000 and 50000. 
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Figure 7.9: Mean temperature profile plotted as a function of the wall-normal distance 

for the case of one wall of the channel heated with constant heat flux. Results from 

DNS/LST and Kader’s equation at Reτ = 300, obtained for different Pr: (a) Pr = 0.7, 6, 

20 and 50 and (b) Pr = 200, 2400, 7000, 15000 and 50000. 
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Figure 7.10: Mean temperature profile plotted as a function of the wall-normal distance 

for the case of both the walls of the channel heated with constant heat flux. Results from 

DNS/LST and Kader’s equation at Reτ = 150, obtained for different Pr: (a) Pr = 0.7, 3, 

6, 10 and 200 and (b) Pr = 500, 2400, 7000, 15000 and 50000. 



 

191 

 

(a) 

0.1

1

10

100

1000

1 10 100

Pr

0.7
6
20
50

0.7
6
20
50

T
+

y
+

DNS/LST Kader

 

(b) 

1

10

100

1000

10000

100000

0.01 0.1 1 10 100 1000

Pr

200
2400
7000
15000
50000

200
2400
7000
15000
50000

T
+

y
+

DNS/LST Kader

 

Figure 7.11: Mean temperature profile plotted as a function of the wall-normal distance 

for the case of both the walls of the channel heated with constant heat flux. Results from 

DNS/LST and Kader’s equation at Reτ = 300, obtained for different Pr: (a) Pr = 0.7, 6, 

20 and 50 and (b) Pr = 200, 2400, 7000, 15000 and 50000. 
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Figure 7.12: Values of the mean temperature scaled using the Wang et al. scaling 

plotted as a function of the scaled wall-normal location for the case where one channel 

wall is heated with constant heat flux, plotted for different Pr in flow cases with 

different Reτ: (a) Reτ = 150 and (b) Reτ = 300. 
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Figure 7.13: Values of the mean temperature scaled using the Wang et al. scaling 

plotted as a function of the scaled wall-normal location for the case where both the 

channel walls are heated with constant heat flux, plotted for different Pr in flow cases 

with different Reτ: (a) Reτ = 150 and (b) Reτ = 300. 
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Figure 7.14: Values of the mean temperature scaled using the Srinivasan and 

Papavassiliou scaling plotted as a function of the scaled wall-normal location with 

scaling values of the maximum normal turbulent heat flux obtained from DNS/LST, for 

the case where one channel wall is heated with constant heat flux, plotted for different 

Pr in flow cases with different Reτ: (a) Reτ = 150 and (b) Reτ = 300. The orange line 

indicates the average obtained for all the Pr data while the blue bars represent the error 

bars with plus/minus one standard deviation. 
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Figure 7.15: Values of the mean temperature scaled using the Srinivasan and 

Papavassiliou scaling plotted as a function of the scaled wall-normal location with 

scaling values of the maximum normal turbulent heat flux obtained from DNS/LST, for 

the case where both the channel walls are heated with constant heat flux, plotted for 

different Pr in flow cases with different Reτ: (a) Reτ = 150 and (b) Reτ = 300. The orange 

line indicates the average obtained for all the Pr data while the blue bars represent the 

error bars with plus/minus one standard deviation. 
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Figure 7.16: Values of the mean temperature scaled using the Srinivasan and 

Papavassiliou scaling plotted as a function of the scaled wall-normal location with 

scaling values of the maximum normal turbulent heat flux obtained from theoretical 

correlations of Srinivasan and Papavassiliou presented in equation (7.14) and (7.15), for 

the case where both the channel walls are heated with constant heat flux, plotted for 

different Pr in flow cases with different Reτ: (a) Reτ = 150 and (b) Reτ = 300. 
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Figure 7.17: Values of the mean temperature scaled using the Srinivasan and 

Papavassiliou scaling plotted as a function of the scaled wall-normal location with 

scaling values of the maximum normal turbulent heat flux obtained from theoretical 

correlations of Kawamura et al. [172] presented in equation (7.16) and (7.17), for the 

case where both the channel walls are heated with constant heat flux, plotted for 

different Pr in flow cases with different Reτ: (a) Reτ = 150 and (b) Reτ = 300. 
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Figure 7.18: Value of the locations of the peak normal turbulent heat flux plotted as a 

function of the Peτ in both the wall heating cases. 
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Figure 7.19: Values of the mean temperature scaled using the Srinivasan and 

Papavassiliou scaling plotted as a function of the scaled wall-normal location with 

scaling values of the maximum normal turbulent heat flux used from table 7.7, for the 

case where one channel wall is heated with constant heat flux, plotted for different Pr in 

flow cases with different Reτ: (a) Reτ = 150 and (b) Reτ = 300. The orange line indicates 

the average obtained for all the Pr data while the blue bars represent the error bars with 

plus/minus one standard deviation. 
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Figure 7.20: Values of the mean temperature scaled using the Srinivasan and 

Papavassiliou scaling plotted as a function of the scaled wall-normal location with 

scaling values of the maximum normal turbulent heat flux used from table 7.8, for the 

case where both channel walls are heated with constant heat flux, plotted for different 

Pr in flow cases with different Reτ: (a) Reτ = 150 and (b) Reτ = 300. The orange line 

indicates the average obtained for all the Pr data while the blue bars represent the error 

bars with plus/minus one standard deviation. 
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Figure 7.21: Values of the normal turbulent heat flux scaled using the Srinivasan and 

Papavassiliou scaling plotted as a function of the scaled wall-normal location with 

scaling values of the maximum normal turbulent heat flux obtained from DNS/LST, for 

the case where one channel wall is heated with constant heat flux, plotted for different 

Pr in flow cases with different Reτ: (a) Reτ = 150 and (b) Reτ = 300. The orange line 

indicates the average obtained for all the Pr data while the blue bars represent the error 

bars with plus/minus one standard deviation. 
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Figure 7.22: Values of the normal turbulent heat flux scaled using the Srinivasan and 

Papavassiliou scaling plotted as a function of the scaled wall-normal location with 

scaling values of the maximum normal turbulent heat flux obtained from DNS/LST, for 

the case where both the channel walls are heated with constant heat flux, plotted for 

different Pr in flow cases with different Reτ: (a) Reτ = 150 and (b) Reτ = 300. The orange 

line indicates the average obtained for all the Pr data while the blue bars represent the 

error bars with plus/minus one standard deviation. 
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Figure 7.23: Values of the root mean square of the temperature varying as a function of 

the wall normal distance obtained from works of Schwertfirm and Manhart [132] and 

Dong et al. [177] for different Pr at Reτ = 180. 
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Figure 7.24: Scaled values of the root mean square of the temperature varying as a 

function of the scaled wall normal distance obtained using the scaling of Srinivasan and 

Papavassiliou shown for different Pr at Reτ = 180. 
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Chapter 8: PREDICTION OF TURBULENT PRANDTL NUMBER
§
  

8.1 Simulation parameters and procedure  

The goal of this work is to determine the Prt for different molecular Prandtl 

number fluids and the behavior of the Prt at different distance from the wall. Using 

DNS and a Lagrangian approach, the Prt was calculated using Churchill’s [139] 
 

interpretation of eddy diffusivities of momentum and heat.
 
The turbulent Pr was 

estimated with different molecular Pr and at different distances from the channel walls 

by two approaches. The first approach utilized the Lagrangian scalar tracking database 

developed in our laboratory to generate Eulerian type mean velocity and temperature 

profiles. From these profiles the variation of the local fraction of shear stress due to 

turbulence )''( vu and the local fraction of heat flux density due to turbulence 

)''( vT were determined. The details of the simulation can be found in Le and 

Papavassiliou [143]. The corresponding local fractions of shear stress and heat flux 

density due to molecular motions were also calculated and from these values the Prt was 

calculated. The other approach involved determining the local fractions of shear stresses 

and normal heat flux density using the Lagrangian data directly in conjunction with 

Churchill’s physical interpretation without synthesizing any Eulerian temperature 

profile. This means that Prt can be estimated by finding the contributions of turbulent 

fluctuations to the transport of momentum and heat in the direction normal to the walls. 

Translating this interpretation in the Lagrangian framework, the number of fluid or heat 

                                                 
§
 Most of the material in this Chapter has been published in the Industrial Engineering and Chemistry 

Research, 50, 8881-8891 (2011) 
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markers that arrived at particular distance from the wall (or a bin of appropriate width 

centered at that location) due to turbulence, would provide an estimate for the 

turbulence contributions to the transport of momentum or heat, while those that arrived 

due to molecular motion would help in calculating the molecular contributions to the 

transport of momentum or heat, respectively. A calculation of the ratio, hence, provided 

the value of Prt. 

The DNS is used to obtain the velocity field for the Poiseuille channel and plane 

Couette flows at Reτ = 2660. In the first method of determining Prt, for Poiseuille 

channel flow, fluids with Pr of 0.7, 3, 6, 10 and 100 were simulated whereas for plane 

Couette flow, the Pr was 0.7, 6, 10 and 200. In both Poiseuille channel flow (these were 

referred to as run E, in Table 1 of Ref. [142]) and plane Couette flow (which were 

referred to as run A in Ref. [149]), 145,161 markers were released at y0 = 0 at t
+
 = 0. 

The time step Δt
+
 is 0.25 and 0.2 for the Poiseuille and Couette flow cases, respectively. 

The complete details to obtain the Prt using the second – Lagrangian method is 

presented below. 

8.1.1 Incorporating Churchill’s model into the Lagrangian framework – local 

fraction of normal heat flux 

Two sets of simulations were carried out to determine Prt, for each of the 

Poiseuille and Couette flow cases. The first part of the simulation involved finding the 

local contributions of turbulence and molecular motions to normal heat flux density. 

The Prandtl numbers of 0.1, 0.7, 6, 10 and 100 were studied for Poiseuille channel flow 

while for Couette flow Prandtl numbers of 0.1, 0.7, 3, 6, 10 and 200 were studied. In 

both the Poiseuille channel flow and the plane Couette flow, 145,161 heat markers were 
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released in the flow field. The time step Δt for the simulation was 0.125 and 0.2 for the 

Poiseuille and Couette flow cases, respectively. The heat markers were released at y
+
 = 

0 at t
+
 = 0 into the flow field. The channel width was divided in 300 bins, each one of 

width equal to one viscous unit. After the markers were uniformly dispersed in the y 

direction, which occurred at large simulation times, the markers that were within each 

of the 300 bins were identified and captured. Let us denote this time by tc. Each of the 

heat markers captured at tc in a bin contributed to the normal heat flux in that bin; 

however, there needs to be a way to differentiate the ones that contributed to turbulent 

heat flux from those that contributed to molecular normal heat flux. The position
ct

y , 

and the velocity, 
ct

V , of all the heat markers in each of the bins at tc was known from the 

DNS/LST simulations as mentioned earlier. Note that only the vertical direction was 

considered, as the methodology tried to estimate the fraction of heat flux in the direction 

normal to the wall. As the markers moved during each timestep of Δt, the 

position ttc
y  and the velocity ttc

V  of each heat marker, were also known from the 

estimates of DNS/LST. The total distance a heat marker moved in that timestep can be 

estimated as )(
cc ttttot yyy   . Using values of 

ct
V and ttc

V  and substituting them in 

Equation (8.1) below yields the distance traveled due to convection as shown in 

Equation (8.2):  

0 1 0 0 0 1

3 1
( , ) ( , ) ( , ) ( , )

2 2
i n i n i n i ny x t y x t V x t V x t t 

 
    

 
 (8.1) 

tVVyyy ttttttturb cccc








 

2

1

2

3
   (8.2) 
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The distance the heat marker moved due to turbulence alone can thus be 

estimated. The motion of each heat marker due to molecular means can be calculated 

as turbtotmol yyy  . So, the values of Δymol and Δyturb, for each heat marker, were 

compared, and depending on which was larger, a marker was labeled as a turbulent or a 

molecular marker. For example, if there were 2500 turbulent markers and 35000 

molecular markers found in one bin, the respective turbulent and molecular distances 

moved by these markers would be summed up to find the contributions of turbulent and 

molecular normal heat fluxes, respectively. 

 Figure 8.1 is a schematic representation of the method used to calculate the local 

fraction of turbulent normal heat flux for an example of 3 heat markers. The ratio of the 

turbulent to molecular normal heat fluxes, thus, provided an estimate of
( ' ')

1 ( ' ')

T v

T v




. 

Now, the problem arose with the estimation of the time interval required for these 

calculations. This time interval was assumed to be related to the Lagrangian time scale 

associated with the movement of the heat markers, and more specifically it was 

assumed that it was proportional, i.e., a multiple, of the Lagrangian time scale. In 

addition, since the different regions of flow in the channel have different time scales, 

one common time interval for all distances from the channel wall could produce 

erroneous results. The Lagrangian material time scale provided a good idea of the 

different time intervals that need to be considered for different vertical location in the 

channel. The expressions used were those obtained by Le and Papavassiliou [148]  

 Poiseuille Flow 
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 Couette Flow 
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 for Pr > 3   (8.6) 

 As a first approach, the time intervals were calculated with substituting different 

values of y0 (corresponding to locations at the center of the bins in the range 0.5 to 

149.5) in Equations 8.3 – 8.6. With these values of time intervals, the local turbulent 

fractions of normal heat flux were determined and compared with Eulerian results 

for ( ' ')T v  . Even though the trend observed for the local fraction of normal heat flux 

due to turbulence matched the results obtained from Eulerian data, there were 

discrepancies in the actual values. So, a calibration procedure was implemented to 

determine the time interval over which the movement of a heat marker should be 

evaluated in order to classify it as molecular or as turbulent. Two Pr, 0.7 and 10 for 

Poiseuille flow, were considered. The time interval was increased to twice and then to 

three times the Lagrangian material scale to no avail.  When the time interval was fixed 

at four times the Lagrangian material scale, the results matched the Eulerian results. The 

time interval was further increased to 5 times and then to 10 times the Lagrangian 

material time scale, but the resulting fraction of turbulent heat flux showed no 
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variations. So, the time interval was determined to be four times the Lagrangian 

material scale and, for all other Pr and the case of plane Couette flow, the results were 

also in agreement with Eulerian results. The data used to obtain the results, in case of 

Poiseuille channel flow, spanned a time tc of 2900 wall time units to 4100 wall time 

units, while for Couette flow it was between 3500 and 4500 wall time units . In order to 

decrease noise, different initial time steps were used within these time ranges. For 

example, in the case of Poiseuille flow, for Pr = 100, at y
+
 = 149.5, the time interval 

was 150 (4 times 37.5, which is the Lagrangian material time scale at y
+
 = 149.5). In 

this case, 1050 different initial times starting from 2900 to 3950 were used, and the 

results were then averaged. Similarly, in case of Couette flow, for Pr = 0.1, at y
+
 = 

134.5, where the time interval was 83 (4 times 20.75), 917 different initial times were 

used. Also, the channel symmetry along the centerline at y
+
 = 150 was utilized, and 

results for the top half of the channel were added to the results for the bottom half to 

further reduce statistical noise. It must be noted here that the values of Prt calculated 

were very sensitive to the values of ( ' ')T v  obtained using the above procedure, 

especially for the higher Pr. For example, for the case of Poiseuille flow, with Pr = 100, 

assume that the ( ' ')T v  value can be either  0.993 or 0.998, which is a difference of 

0.5%. Using a value of ( ' ')u v  equal to 0.91, the Prt calculated utilizing Equation 

(2.37) results in values of 7.128 and 2.026, respectively.  This indicates that Prt given 

by Equation (2.37) is very sensitive to the values of ( ' ')T v  , especially for higher Pr. 

This is an important observation, because Churchill’s model for turbulent convection is 

insensitive to reasonable changes in the numerical and empirical functions that appear 

in the model equations [141]. This finding has been further corroborated with data from 
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our laboratory [143], but it is true for the prediction of the mean temperature profile. 

The prediction of Prt appears to be very sensitive to even very small changes 

in ( ' ')T v  .   

8.1.2 Incorporating Churchill’s model into the Lagrangian framework – local 

fraction of shear stress 

 Is it possible to apply the same methodology to fluid particles (these are similar 

to heat markers, but their motion was simulated with no Brownian motion), and to 

determine the local fraction of shear stresses in the normal direction due to turbulent 

and molecular contributions? To resolve this question, 145,161 fluid markers were 

released uniformly from the y-z plane at time t
+ 

= 0. The timesteps for the Poiseuille 

channel and plane Couette flow simulations were 0.125 and 0.2, respectively. The 

channel width was again separated into 300 bins of equal size, and the fluid markers 

that were found within each one of these bins at time tc were identified. Similar to the 

estimation of the local fraction of normal heat flux, the distances traveled by turbulent 

and molecular fluid markers were summed up and the ratio was used to calculate the 

local fraction of turbulent shear stress.  

However, there were a few details that needed attention before proceeding to the 

calculation of the local fraction of shear stresses. Firstly, for the motion of fluid 

markers, there were no diffusion effects, so the criteria to classify turbulent and 

molecular markers needed modification. In order to address this issue, the assumption 

made was that if a fluid marker left a particular bin, after moving some distance during 

an appropriately determined time interval, then it would be considered a turbulent 
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marker, while if it moved from one location  to another within the same bin, it would be 

assigned a molecular status. Hence, the number of bins (or, in other words, the bin size) 

is important and should be fixed. 

Second, in the previous case, the Lagrangian material scale played a vital role 

and helped in estimating the appropriate time interval in different vertical locations of 

the channel. But, the same formulae cannot be applied in the case of fluid markers. This 

essentially left us in the dark with regards to the time interval needed. To determine the 

time interval, a calibration approach, as was utilized with the turbulent fraction of heat 

flux, was implemented. For Poiseuille channel flow, an arbitrary time interval of Δt
  
= 2 

was tried, and, interestingly, the results of the local fraction of shear stress in the normal 

direction due to turbulence matched those from Eulerian simulations, at about y
+
 = 70.5. 

So, for regions at y
+ 

≥ 70.5, the value of 2 wall time units was used to carry out the 

analysis and determine the local fraction of turbulent shear stress. For distances in the 

range 0 ≤ y
+ 

≤ 70.5, the use of a time interval of 2 over-estimated the values; hence, the 

time interval needed to be smaller when compared to that at y
+ 

= 70.5. In order to 

determine the different time intervals, the time intervals were reduced, starting from Δt
  

= 2 at y
+ 

= 70.5, proportional to the Lagrangian material scales for Poiseuille channel 

flow in the vertical direction. Similarly, it was found that for plane Couette flow a time 

interval of 2 matched Eulerian results at y
+
 ≥ 80.5. The different ratios of Lagrangian 

material scales for different y
+ 

for plane Couette flow were used to determine the time 

intervals at distances y
+
 < 80.5. A total of 50 and 250 different initial times for the cases 

of Poiseuille and plane Couette flows, respectively, were used, and the results averaged 

to decrease statistical noise. The channel symmetry along y
+
 = 150 once again was 
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utilized to further reduce noise. The data obtained for the local fraction of turbulent 

shear stress for both Poiseuille and plane Couette flows seemed to agree well with the 

Eulerian results reported by Le and Papavassiliou.  

8.2 Results and discussion 

8.2.1 Turbulent Prandtl number obtained using Eulerian equations 

 The local fraction of shear stress due to turbulence, )''( vu , can be obtained 

using the DNS results as follows: 

1 ( ' ')
w

dU
u v

dy








   

     (8.7)  

where y
+
 is the distance from the wall in viscous wall units (y

+
 = yu

*
/ν), and 



U is the 

dimensionless mean velocity *( / )U U u


 . The value of the local fraction of shear 

stress due to turbulence as obtained using Equation (8.7), for both Poiseuille [164] 

channel and plane Couette [143] flows is presented in Figure 8.2. It starts from zero at 

the channel wall and goes up to nearly 1, while reaching a plateau value, at y
+
 ≈ 55-60.  

The local fraction of heat flux density for the case of both walls of the channel 

being heated is given by 

  




 
dy

Td
vT

q

q

w

)''(1      (8.8) 

The results obtained can be found in Figures 8.5(a) and (b) in reference [143].  

The values of ( ' ')u v  presented in Figure 8.2, for Poiseuille and Couette flow 

with the respective values of ( ' ')T v   (from Le and Papavassiliou [143]) are substituted 
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into Equation (2.37) and the Prt is determined as a function of the distance from the 

channel wall and for a range of Pr’s. 

The results are presented in Figures 8.3(a) and (b), for Poiseuille channel and 

plane Couette flow, respectively. For Poiseuille channel flow, the Prt does not show any 

systematic change and has values between 0.8 and 1, at large distances from channel 

wall, while the value increases above one 1 near the channel wall. Also, the Prt 

increases with increase in Pr near the channel wall. For the case of plane Couette flow, 

the Prt at large distances from the channel wall also does not exhibit systematic change, 

and it is between 0.7 and 1 for Pr = 0.7 and 200, while it is between 1 and 1.5 for Pr = 6 

and 10. At regions close to the channel walls, the Prt, shows lower values compared to 

the values at the center of the channel.  

8.2.2 Turbulent Prandtl number using Lagrangian arguments 

The local fraction of turbulent shear stresses for Poiseuille and Couette flow 

calculated using the method described above is shown in Figure 8.2. The values 

obtained are a little higher than those from Eulerian calculations till y
+
 = 5.5 and y

+
 = 

13.5, for Poiseuille flow and plane Couette flow, respectively. At distances greater than 

these, the values obtained for the local fraction of turbulent shear stress are always a bit 

lower than those from Eulerian results. However, the trend is similar for both methods, 

and, as can be expected, the fraction of turbulent shear stress is higher near the center of 

the channel when compared to near the channel walls. Interestingly, for Couette flow, 

the fraction of turbulent shear stress is larger as compared to the Poiseuille channel 

flow. Such result is in line with the fact that the turbulence intensity (i.e., the root mean 
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squared of the velocity fluctuations) is higher for Couette flow than for Poiseuille flow 

at the same Re. 

The turbulent contribution to the local fraction of normal heat flux is presented 

in Figures 8.4 (a) and (b), for Poiseuille channel and plane Couette flow, respectively, 

as a function of normal distance from the channel wall.  

The details of the simulation methodology used to obtain these results have been 

discussed in Section 8.1. The schematic shown in Figure 8.1 is an illustration of the idea 

behind the calculation of the turbulent heat flux. For both types of flows, there is zero 

contribution to the local fraction of normal heat flux due to turbulence at the channel 

walls. So, for all Pr’s, the curves rise from zero to values very close to one for medium-

high Pr (Pr ≥ 3). It is also observed that the fraction of normal heat flux due to 

turbulence rises faster to values close to one for higher Pr’s, indicating that for these 

Pr’s the normal heat flux is mainly due to turbulence. For lower Pr’s, this is true at 

large distances from the wall, while closer to the wall there are both turbulent and 

molecular contributions to normal heat flux. As was observed earlier for the transport of 

momentum, the Couette flow exhibits a higher level of turbulent contribution to the 

total normal heat flux than the Poiseuille channel flow. Since the Couette flow field is 

under constant shear stress, it can be viewed as a rather extended logarithmic layer of a 

turbulent velocity field. It can be, thus, inferred that the logarithmic layer is a region 

that promotes turbulent mixing.   

Figures 8.5(a) and (b) are plots of the Prt calculated using the values of the shear 

stress and heat flux density from the DNS/LST. The Prt increases for increasing 

molecular Pr close to the wall in both Poiseuille and Couette flow. This behavior of 
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increasing Prt near the wall with Pr has been observed previously in the DNS results of 

Schwertfirm and Manhart [132], and Hasegawa and Kasagi [174]. For Pr ≥ 3, in both 

Poiseuille and Couette flow, the Prt starts from high values near the channel walls 

(similar to the results of Schwertfirm and Manhart, and Hasegawa and Kasagi) and 

decreases as the distance from the wall increases. In case of lower Pr (i.e., 0.1, 0.7), the 

Prt starts from lower values. An insight can be obtained by referring to Figure 18 of 

Bergant and Tiselj [179], which showed the Prt profile as a function of distance from 

the wall, for different boundary conditions. Bergant and Tiselj observed that the Prt 

showed trends of reaching a minimum near channel walls when a constant heat flux 

boundary condition was utilized. This boundary condition allowed temperature 

fluctuations at the wall. The value of Prt, on the other hand, increased asymptotically 

near channel walls, when a constant temperature boundary condition was enforced. 

Considering the simulation conditions of the present study, for lower Pr’s (i.e., Pr = 0.1, 

0.7), the molecular diffusion effects are large compared to convective effects. So, the 

heat markers travel larger distances in the vertical direction, as was seen from previous 

results for forwards dispersion in Chapter 4, and the number of markers that cross the 

center of the bins, which can be viewed in this case as a temperature fluctuation, is 

higher. For larger Pr’s (≥ 3), convective and diffusive effects are comparable to one 

other, so fewer markers move from bin to bin near the channel wall than for lower Pr, 

which translates to smaller temperature fluctuations in this case.  

A comparison of the results for turbulent Pr using the two methods discussed 

here, with available data for turbulent Pr from earlier DNS works of Kasagi’s group 

[133, 174, 180], Kawamura et al. [172, 181]
 
and Schwertfirm and Manhart [132] is 
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presented in Figures 8.6(a) and (b). The results show good agreement with the previous 

data available for Prt. A comparison of the Prt∞ calculated using the current method 

with the results from various analytical expressions discussed in the literature review in 

Chapter 2, as a function of Pr, is presented in Figure 8.7. There is qualitative agreement 

between the present results and these expressions. A further comparison with analytical 

results, not only for Prt∞ but for the Prt as a function of y
+
, is shown in Figure 8.8. The 

results were obtained with a consistent methodology for Prandtl numbers ranging from 

low to high values. So, this methodology, using Churchill’s theory provides an 

alternative and consistent approach to determining the Prt in turbulent channel flows. 

8.3 Conclusions 

 Two methods were utilized to calculate the Prt. Both the methods involved 

Churchill’s model for scaling of shear stress and heat flux in estimating the turbulent 

Prandtl number. The first methodology used Lagrangian data to reconstruct the Eulerian 

mean temperature profiles and, on the basis of Eulerian equations of the Churchill 

model, yielded the local fraction of the shear stress and of the heat flux density that was 

attributed to turbulent effects. The second methodology involved determining the local 

rates of transfer utilizing a Lagrangian interpretation of Churchill’s theoretical 

framework. 

  The Eulerian method gave a good estimate of the turbulent Prandtl number, and 

for both channel and Couette flow cases the Prt was seen to be nearly constant at large 

distances from channel walls. The Prt obtained from this method did not show 

definitive variations with Pr. However, near channel walls, the Prt increased with 



 

217 

 

increasing Pr, for Poiseuille channel flow, while for Couette flow there was no 

observable near-wall behavior.  

The Lagrangian method provided a consistent approach to modeling and 

calculating the Prt, and it provided a physical interpretation of turbulent transport. The 

local fraction of normal heat flux, obtained by translating Churchill’s theory into scalar 

marker motions, was found to be in good agreement with Eulerian results. It must be 

emphasized that the Lagrangian material scales play a vital role in estimating the time 

interval that needs to be considered for the simulation at different distances from the 

channel walls. The fraction of turbulent normal heat flux was higher for plane Couette 

flow compared to Poiseuille channel flow, indicating the importance of turbulence in a 

constant stress region, like the logarithmic layer. The local turbulent fraction of shear 

stresses obtained using an analogous application of Churchill’s theory also matched 

previous Eulerian results. For both Poiseuille and Couette flow, similar to previous 

results in the literature, there was an increase of Prt near the walls with increasing Pr. 

For channel flow, at large distances from channel walls, the Prt decreased with 

increasing Pr till a Pr = 6, while for Pr = 6, 10, 100, the values were very close 

together, considering the error bars. The same trend was observed for plane Couette 

flow, as for Pr ≤ 3 there was a decrease in Prt with increase in Pr, while Pr = 6, 10 and 

200 were difficult to differentiate. This shows that Pr is important for Prt calculations 

for lower Pr, while for higher Pr, the differences are hardly felt. Even though present 

DNS is at a relatively low Re, future advances in computer power will allow the 

conduction of DNS at much higher Re’s. The methodology outlined in this paper would 

be expected to produce more accurate results as the Re increases, since Churchill’s 
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model was developed utilizing the theoretical correlations and coefficients obtained 

from higher Re flow studies.    

 

 

 

 

  

 

Figure 8.1: Schematic showing the simulation box and an example of classifying three 

markers that leave bin i and arrive at three other bins after a time interval Δt
+
. Markers 1 

and 3 in the example travel longer because of turbulence, so they would be classified as 

arriving to bins j and m due to turbulent motion, contributing thus to the turbulent heat 

flux. Marker 2, on the other hand, travels a longer distance due to molecular diffusion 

towards bin k, and would be classified as arriving to bin k due to molecular motion (x is 

the direction of the mean flow). 
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Figure 8.2: Local fraction of shear stress due to turbulence in Poiseuille channel and 

Couette flow plotted as a function of normal distance from the wall. 
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Figure 8.3: Turbulent Prandtl number calculated using Equation (2.37) plotted as a 

function of distance from the channel wall, for the case of different molecular Prandtl 

numbers for (a) Poiseuille channel flow, (b) plane Couette flow. 
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Figure 8.4: Local fraction of radial heat flux density due to turbulence calculated using 

DNS/LST and utilizing Churchill’s concept plotted as a function of normal distance 

from the channel wall, for the case of different molecular Prandtl numbers for (a) 

Poiseuille channel flow and (b) plane Couette flow. 
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Figure 8.5: Turbulent Prandtl number calculated using Equation (2.37) with data of 

local shear stress and radial heat flux obtained from DNS/LST and Churchill’s concept 

plotted as a function of normal distance from the channel wall for different molecular 

Prandtl numbers for (a) Poiseuille channel flow and (b) plane Couette flow. 
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Figure 8.6: Turbulent Prandtl number for flow in a Poiseuille channel obtained herein 

compared with available data for turbulent Prandtl number and plotted as a function of 

normal distance from the wall for different molecular Prandtl number. (a) Present data 

obtained with Equation (2.37), (b) present data obtained with the process described in 

Section 8.1. 
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Figure 8.7: Value of turbulent Prandtl number far away from the wall obtained using the 

Lagrangian interpretation of Churchill’s model (Section 8.1) as a function of the 

molecular Prandtl number, along with results obtained by using previous correlations. 
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Figure 8.8: Turbulent Prandtl number plotted as a function of the normal distance from 

the wall, for a low (0.1) and high (100) molecular Prandtl number, for the present study 

and results obtained using correlations predicted in other previous studies. 
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Chapter 9: CONCLUSIONS 

9.1 Direct numerical simulation and Lagrangian scalar tracking 

 In this dissertation the direct numerical simulation technique is used in 

conjunction with the Lagrangian scalar tracking method. This combined approach 

provides a Lagrangian perspective to heat transport in turbulent flow. Its inherent 

advantages are revealed by the success of the models that have been implemented in 

these studies to calculate backwards dispersion, turbulent Prandtl number and mean 

temperature statistics. This approach provides a framework to analyze different regions 

of the channel and the behavior of scalar transport in case of different types of fluids in 

the system, or different types of flow such as Poiseuille and Couette flow. Some of the 

notable results from are summarized below. 

9.1.1 Forwards/backwards dispersion  

a) In Poiseuille channel flow, the Lagrangian material scales for single particle 

dispersion increase with increase in Pr but achieve a plateau value at Pr = 6. 

b) In Poiseuille channel for both single particle and relative particle dispersion, for all 

Pr, the forwards dispersion proceeds at faster rates in the viscous sub-layer, 

transition region and logarithmic regions. At the center of the channel, the 

backwards dispersion is faster than forwards dispersion 

 Increased differences between forwards and backwards dispersion are observed 

with increase in Pr, for small Pr, while there is a plateau achieved for Pr ≥ 6. 

 With an increase in Re of turbulent flow 
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1. The trends become even more consistent. 

2. The rates of both forwards and backwards dispersion are accelerated; hence 

the differences are increased too. 

c) The different behavior of forwards and backwards single particle dispersion can be 

interpreted by the combination of: 

 Asymmetry of the pdf of the vertical velocity fluctuations that the dispersing 

particles experience, as it is expressed by the skewness of the pdf. 

 The coherent structures that transport these dispersing particles. 

d) In addition to the above two properties, the differing behavior of forwards and 

backwards relative dispersion also depends on the distribution of marker pair 

relative velocity differences. 

e) For plane Couette flow, for turbulent relative dispersion, the forwards relative 

dispersion is faster in the logarithmic region and the center of the channel. In the 

viscous sub-layer and transition region, the backwards relative dispersion is faster.  

 The same behavior is observed for all Pr. 

 The coherent structures – namely the large scale structures extending through 

these channels, found in the works of Papavassiliou and Hanratty [150] and 

others help in explaining these differences. 

f) Different primary directions of turbulent heat transport are found for forwards and 

backwards dispersion. 

 Backwards dispersion shows more consistent and sustained directions of heat 

transport compared to forwards dispersion 
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 Backwards dispersion also shows increased intensity of heat transport in these 

directions compared to forwards dispersion 

1. This is true for all the regions of the turbulent Poiseuille and plane Couette 

flow. 

2. There is an increase in intensity with slight changes to the angle of primary 

directions of heat transport with an increase in the Pr of the fluid. 

 Results show that backward dispersion is carried out by a set of relatively long-

lived, stably oriented flow structures, while forwards dispersion is influenced by 

short-lived, constantly tumbling eddies. 

g) “Turbulent Dispersive Ratio”, a concept analogous to the “dispersive index” term in 

optics, is established as an important parameter in identifying the different primary 

directions of heat transport for forwards and backwards dispersion in a turbulent 

channel flow, for a particular type of fluid.  

h) Analysis of the Lagrangian spectrum shows the existence of a universal -1 regime 

for both forwards and backwards dispersion. 

 This spectrum is observed in all regions of the channel, for both channel and 

Couette flow, for all Pr. 

9.1.2 Scaling of heat/mass transport 

a) The location and the values of the maximum normal turbulent heat flux (MNTHF) 

are chosen as the two main parameters for scaling of heat transport quantities 

 
4

1

4

1

Pr

max

St

y
Tv



is used as the length scale while 


 max
TvT is used as the temperature scale 
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 This scaling shows collapse of mean temperature profiles, root mean square 

(rms) temperature fluctuation profiles and normal heat flux profiles for both Re 

and all Pr examined in the inner region. 

 The above mentioned profiles all collapse for different Re and Pr for both single 

wall heating and both wall heating scenarios.   

b) The sensitivity of the scaling to the scaling parameters shows that accurate values of 

location of MNTHF are vital to the better capture of the different quantities. 

However, a relatively rough estimate of the value of the MNTHF is adequate to 

obtain scaled results of various profiles.  

c) Power law fits for location and values of MNTHF are calculated for easier scaling 

calculations for variety of Re and Pr 
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9.1.3 Turbulent Prandtl number 

a) Churchill’s innovative idea is translated using an innovative particle tracking model. 

b) Lagrangian material scales help in estimating the time interval of tracking of 

particles. 
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c) Individual contributions of molecular motion and turbulence to the local fraction of 

normal shear stress and local fraction of normal heat flux, are calculated from the 

model 

 The local fraction of normal shear stress due to turbulence increases with 

increasing wall normal distance 

 The local fraction of normal heat flux due to turbulence also increases with 

increasing wall normal distance. This quantity also increases with increase in Pr. 

d) The turbulent Prandtl number (Prt) is observed to depend on the wall normal 

distance and the molecular Pr. 

 There is an increase in Prt with molecular Pr near channel walls, for both 

Poiseuille channel and plane Couette flow 

 For Poiseuille flow, the Prt at large wall normal distances decreases with 

increase in Pr, for small Pr, and achieves a plateau for Pr ≥ 6. 

 For plane Couette flow, the same trend is observed with plateau value achieved 

at Pr ≥ 3. 
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9.2 Future Work 

9.2.1 Variance of temperature fluctuations 

 There is a need to predict concentration and temperature variances with 

accuracy. In air pollution, for example, the variance of the concentration of the pollutant 

at a point in the atmosphere is of importance rather than the mean concentration, 

similarly, the prediction of ‘temperature noise’ downwind of heat sources in turbulent 

flows. Durbin [182] proposed a stochastic model based on two-particle dispersion and 

delineated a procedure to calculate the various concentration statistics including the 

concentration variance. The central idea of the calculations, however, was based on the 

concept of reversed dispersion. The procedure to obtain the concentration variance 

involves obtaining the two particle statistics at a particular point and given time from an 

ensemble of markers arriving at the particular location. The statistical equation used to 

calculate this has been delineated clearly by Durbin. In future, we aim to extend the 

ideas of backwards dispersion developed so far through the studies of Durbin to 

calculating the temperature and the concentration variances.  

9.2.2 Scalar mixing characteristics 

 The phenomenon of mixing of scalars (e.g., heat, mass, etc.) within turbulent 

flows has a wide variety of potential applications across areas, including meteorology, 

oceanic science, heat transfer, combustion, and environmental pollutant dispersion. A 

common assumption in prior studies of scalar transport in turbulence is that the 

advected substance is considered to be passive and does not have a back effect on the 

flow field. Reviews in the literature by Shraiman and Siggia [10], Warhaft [5], 
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Dimotakis [11], and Sreenivasan [183] have compiled some of the important 

fundamental characteristics of turbulent mixing. Depending on the type of the source, 

whether it is a point or line source, or if it is a discrete source (puff) or continuous 

source (plume), the scalar field downstream gets modified. Many studies tried to 

understand the behavior of thermal fields downstream of scalar sources [58, 184-191] . 

However, the majority of this literature is with respect to the case of homogenous, 

isotropic turbulence or grid turbulence. Work in our laboratory, analyzing anisotropic 

turbulent flows, inside turbulent channels has focused on the scalar characteristics 

downstream of a single puff or plume source [148, 153, 157, 192-194]. Recent works of 

Mydlarski et al.[195] have reported statistics of scalar quantities for line source release 

in a high-aspect channel flow. These studies provided the first real idea of mixing of 

scalars inside turbulent channel flows for different wall normal source locations and at 

different downstream locations. An idea for future work in this direction is to use the 

DNS/LST approach to complement this study of Mydlarski et al. The study will focus 

on identifying downstream mixing characteristics of two different scalar sources 

released at different wall-normal locations from the channel wall. The combined 

DNS/LST approach will be advantageous in studying scalar mixing of sources with 

different Pr and in flows at different Re.  

9.2.3 Batchelor and Richardson-Obukhov scaling in relative dispersion 

 The concept of turbulent relative dispersion was introduced by Richardson [61]. 

As the name suggests, it arises from understanding the motion of a particle in relation to 

another in the flow field. Sawford [54], Salazar and Collins [66], presented 
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comprehensive reviews of the theory, various models proposed, experimental and 

numerical findings for different statistics in the dissipative and the inertial subrange. 

However, it is apt to note here that the flows of interest in these reviews are isotropic in 

nature. The most famous theories of turbulent relative dispersion are the scaling of the 

mean square distance with time. Richardson [61] and Obukhov [64] separately 

predicted a scaling with the third power of time. However, Batchelor [62] later on 

predicted that within a certain timescale, the initial particle separation is quite important 

and the mean square distance for these times will depend on the two-thirds power of 

initial distance of separation. Over the last decade, these theories have been put to test 

for a wide variety of flows and the results obtained have indicated these scaling in a 

number of different cases [74, 196-201]. The idea proposed here for future research is to 

analyze our case of channel flow to obtain mean square dispersion statistics and validate 

whether the Batchelor, Richardson-Obukhov scaling are a feature even in cases of 

anisotropic flows. The study will also help in calculating the Richardson-Obukhov 

constants [73, 74, 202], reported values of which seem to vary a lot in the existing 

literature. The proposed research will also aim to incorporate the idea of backwards 

relative dispersion to characterize scaling in this type of dispersion. 
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Appendix A -  Nomenclature 

A empirical constant value 0.3 prescribing the spatial variation of Prt vs Pet 

appearing in equation (2.26) 

b  empirical constant with value 0.4 appearing in equation (7.16) 

cp  heat capacity at constant pressure 

Cf  coefficient of friction loss 

d  empirical constant appearing in equation (2.28) 

D  molecular diffusivity 

Dt  eddy diffusivity of mass 

E  Lagrangian scalar spectrum 

g  Richardson-Obukhov constant appearing in equation (2.8) 

G  Eigenvector obtained from the decomposition of the full material 

correlation coefficient tensor matrix 

h   half channel height 

j  heat flux density in the y direction 

k  thermal conductivity 

LM  mixing length scales of momentum transfer 

LT  mixing length scales of heat transfer 

P1 probability density function for a marker to be at a certain at a location 

(x,y) at time t, given that it was released at a known time at a known 

location at the wall 

Pe  Peclet Number 

Pet  turbulent Peclet number ( Pr / )t tPe     
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Pr  Prandtl number )/(Pr   

Preff  quantity appearing in equation (2.22) defined in equation (2.23) 

Prt  turbulent Prandtl number (Prt = νt/αt) 

Prt∞  turbulent Prandtl number far away from the wall 

Q  represents the Quadrants of the velocity components 

q   heat flux 

r  variable appearing in equation (2.11), given by ( ) ( ) / Br U U   

R  material correlation coefficient 

RHF quantity representing ratio of molecular diffusion flux to turbulent 

transport flux defined in equation (2.12) 

Re  Reynolds number based on mean centerline velocity 

Ret   Turbulent Reynolds number 

wwvvuu RRR ,,  Lagrangian material correlation coefficient in the x, y, z directions 

,uv vuR R  Lagrangian material cross correlation coefficients in the x, y directions 

,vw wvR R  Lagrangian material cross correlation coefficients in the y, z directions 

,uw wuR R  Lagrangian material cross correlation coefficients in the z, x directions 

R  Complete material auto- and cross-correlation tensor matrix in all three 

x, y, z directions 

s  similarity analysis parameter 

wvu SSS ,,  skewness of the velocity fluctuations in the x, y, z directions 

Sc   Schmidt number  DSc /  

Sct
  turbulent Schmidt number  tt DSc /  
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t   time 

T  temperature 

( ' ')T v   turbulent heat flux in the normal direction 



)''( vT  local fraction of radial heat flux density due to turbulence 

t   time 

t0, tf  initial and final time of tracking of markers 

tc  time of capture of markers 

UB  bulk velocity calculated as 
0

1
( )

h

BU U y dy
h



  


   

U   Eulerian velocity vector 

u
*
          friction velocity, 2/1)/(* wu   

wvu ,,          fluctuating velocity components in the x, y, z directions 

''vu   Reynolds stress 



)''( vu  local fraction of shear stress due to turbulence 

Vk  Von Karman constant appearing in equation (7.8) 

V                 Lagrangian velocity vector 

zyx ,,            streamwise, normal and spanwise coordinates 

X                 displacement of a marker from the source in the x direction 

X                 position vector of a marker 

0x                initial position vector of a marker 

Y   Average normal position of the markers 
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Greek symbols 

                  thermal diffusivity of heat 

αt  eddy diffusivity of heat 

β  variable appearing in equation (1.1) given by equation (1.3) 

γ  Churchill’s correction term appearing in equation (7.6) 

Γ  shear stress 

δ  Kronecker delta 

Δt                 time step 

Δy  difference in the y direction 

ε  rate of dissipation of turbulent kinetic energy 

ζT  thermal boundary layer thickness     

D

T   thermal displacement thickness given by 
0

D

T

w

T T
dy

T T











  

η  variable appearing in equation (2.11) /y h    

θ  angle the eigenvector makes with different planes 

κ  turbulent kinetic energy 

λ  eigenvalues obtained from the correlation coefficient tensor 

                    kinematic viscosity 

t   eddy viscosity 

ξ  variable appearing in equation (1.1) given by equation (1.4) 

                     trigonometric pi ...)14159.3(   

                    fluid density 

                   standard deviation of a probability density function 
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τ  material timescale 

L                    Lagrangian timescale 

v                    Lagrangian timescale in y-direction 

Φ  scaling variable defined by equation (2.10)  

χ  periodicity lengths in the turbulent channel 

Superscripts and Subscripts 

                    ensemble average 

 L   Lagrangian variable  

                  value made dimensionless with the wall parameters 

  
  local fraction of a quantity due to turbulence 

 
b
  value for backwards dispersion 

 
f

  value for forwards dispersion  

 
max

  maximum value of the variable 

 
si

  inner similarity scales 

 
so

  outer similarity scales 

 
t
  turbulent dimensionless number 

 
0
                value at the instant of marker release 

 
w

               value at the wall of the channel 

 


 value at the center of the channel or at the outer regions of boundary 

layers 
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Appendix B -  Primary directions of heat transport 

(a)   

(b)   

Figure B-1: Orientation of the eigenvectors corresponding to the highest eigenvalues, 

plotted in three dimensions in a domain comparable to the computational box, not to 

exact scale, as a function of time, for a Pr = 0.7 in all three regions of Poiseuille 

channel, namely, the viscous sub-layer, the transition region and the logarithmic region: 

(a) forwards dispersion; (b) backwards dispersion. Since for this case, at the center of 

channel the eigenvectors corresponding to the highest eigenvalues have random 

orientations, it is excluded from the figure. 
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(a)   

(b)   

Figure B-2: Orientation of the eigenvectors corresponding to the highest eigenvalues, 

plotted in three dimensions in a domain comparable to the computational box, not to 

exact scale, as a function of time, for a Pr = 6 in all three regions of Poiseuille channel, 

namely, the viscous sub-layer, the transition region and the logarithmic region: (a) 

forwards dispersion; (b) backwards dispersion. Since for this case, at the center of 

channel the eigenvectors corresponding to the highest eigenvalues have random 

orientation, it is excluded from the figure. 
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(a)  

(b)   

Figure B-3: Orientation of the eigenvectors corresponding to the highest eigenvalues, 

plotted in three dimensions in a domain comparable to the computational box, not to 

exact scale, as a function of time, for a Pr = 1000 in all three regions of Poiseuille 

channel, namely, the viscous sub-layer, the transition region and the logarithmic region: 

(a) forwards dispersion; (b) backwards dispersion. Since for this case, at the center of 

channel the eigenvectors corresponding to the highest eigenvalues have random 

orientation, it is excluded from the figure. 
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(a)   

(b)   

Figure B-4: Orientation of the eigenvectors corresponding to the highest eigenvalues, 

plotted in three dimensions in a domain comparable to the computational box, not to 

exact scale, as a function of time, for a Pr = 0.7 in all three regions of plane Couette 

flow: (a) forwards dispersion; (b) backwards dispersion. 
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(a)   

(b)   

Figure B-5: Orientation of the eigenvectors corresponding to the highest eigenvalues, 

plotted in three dimensions in a domain comparable to the computational box, not to 

exact scale, as a function of time, for a Pr = 6 in all three regions of plane Couette flow: 

(a) forwards dispersion; (b) backwards dispersion. 
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(a)   

(b)   

Figure B-6: Orientation of the eigenvectors corresponding to the highest eigenvalues, 

plotted in three dimensions in a domain comparable to the computational box, not to 

exact scale, as a function of time, for a Pr = 500 in all three regions of plane Couette 

flow: (a) forwards dispersion; (b) backwards dispersion. 
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Figure B-7: Slopes of the spectrum obtained from different correlation coefficient as a 

function of Pr for different regions of Poiseuille channel flow: (a) streamwise 

autocorrelation; (b) normal autocorrelation; (c) spanwise autocorrelation; (d) 

streamwise-normal cross correlation; (e) normal-streamwise cross correlation. In figures 

(d) and (e), the center of channel is excluded as the slopes are close to zero. 
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Figure B-8: Slopes of the spectrum obtained from different correlation coefficient as a 

function of Pr for different regions of plane Couette flow: (a) streamwise 

autocorrelation; (b) normal autocorrelation; (c) spanwise autocorrelation; (d) 

streamwise-normal cross correlation; (e) normal-streamwise cross correlation. 

 


