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Abstract

The main purpose of this dissertation is to give an alternate proof of de Branges’

theorem on canonical systems and to prove Remling’s theorem on canonical sys-

tems.

In order to prove de Branges theorem, first we show that, in the limit-circle

case, the defect index of a symmetric relation induced by a canonical system is

constant on C. Then this follows de Branges’ theorem that a canonical system

with trH ≡ 1 implies the limit-point case. As such, we develop spectral theory

of a linear relation in a Hilbert space as a tool and use the theory to discuss

spectral theory of a relation induced by a canonical system.

Next, we prove Remling’s theorem on canonical systems. We follow the sim-

ilar techniques of Remling from [14]. More precisely, we first prove Breimesser-

Pearson theorem on canonical systems, following the similar techniques from [3].

Then, we present the proof of Remling’s theorem on canonical systems. We also

show the connection between Jacobi and Schrödinger equations and canonical

systems.
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Introduction

The Jacobi and Schrödinger equations are the fundamental equations in quantum

mechanics which can be used to describe quantum dynamics of many-particle

systems under the influence of a variety of forces. A Schrödinger equation in one

dimensional space is given by

−y′′ + V (x)y = zy, z ∈ C (0.0.1)

where a function V : R → R is called a potential. In the discrete case, a Jacobi

equation is given by

a(n)u(n+ 1) + a(n− 1)u(n− 1) + b(n)u(n) = zu(n), z ∈ C. (0.0.2)

Here a(n) and b(n) are bounded sequences of real numbers. The corresponding

operators

T = − d2

dx2
+ V (x), J =



. . . . . . . . .

a−2 b−1 a−1

a−1 b0 a0

a0 b1 a1

. . . . . . . . .


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act on L2(R) and `2(Z) respectively. The equations (0.0.1) and (0.0.2) can be

written as

Ty = zy and Ju = zu

respectively and can be considered as eigenvalue equations. Here T and J act on

infinite dimensional spaces as such the eigenvalue problem can become compli-

cated. Indeed, the eigenvalue equations can have solutions which do not decay

at infinity but instead are bounded or grow at infinity. The behavior at infinity

crucially depends on the spectrum of the operators. This leads to the spectral

theory of Schrödinger and Jacobi operators.

A canonical system is a family of differential equations of the form

Ju′(x) = zH(x)u(x), z ∈ C (0.0.3)

where J =

 0 −1

1 0

 and H(x) is a 2 × 2 positive semidefinite matrix whose

entries are locally integrable. We also assume that there is no non-empty open

interval I so that H ≡ 0 a.e. on I. The complex number z ∈ C involved in (0.0.3)

is a spectral parameter. For fixed z, a function u(., z) : [0, N ] → C2 is called a

solution if u is absolutely continuous and satisfies (0.0.3). Consider the Hilbert

space

L2(H,R+) =
{
f(x) =

 f1(x)

f2(x)

 :

∫ ∞
0

f(x)∗H(x)f(x)dx <∞
}

with an inner product
〈
f, g
〉

=
∫∞

0
f(x)∗H(x)g(x)dx. Such canonical systems

on the Hilbert space L2(H,R+) have been studied by De snoo, Hassi, Remling

and Winkler in [10, 11, 15, 18]. The Jacobi and Schrödinger equations can be

written into canonical systems with appropriate choice of H(x), see Section 3.5.
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In addition, canonical systems are closely connected with the theory of de Branges

spaces and the inverse spectral theory of one dimensional Schrödinger operators,

see [15]. We always get positive Borel measures, as the spectral measures, from

Schrödinger operators. However, it is not always possible to get a potential

that defines a Schrödinger operator, from a given positive Borel measure. This

situation has been dealt in the inverse spectral theory of Schrödinger operators.

There is a one to one correspondence between positive Borel measures and

canonical systems with trH(x) ≡ 1, see [18]. As Schrödinger equations can be

written into canonical systems, we believe that canonical systems with trH(x) ≡

1 can be useful tools for inverse spectral theory of one dimensional Schrödinger

operators. Thus, it is a natural context to consider the spectral theory of such sys-

tems and we believe that the extension of the theories form Jacobi and Schrödinger

operators to canonical systems is to be of general interest.

For any z ∈ C, the solution space of the canonical system (0.0.3) is a two

dimensional vector space. For any z ∈ C+, we want to define a coefficient m(z)

such that f(x, z) = u(x, z) + m(z)v(x, z) ∈ L2(H,R+) for any linearly indepen-

dent solutions u(x, z), v(x, z) of (0.0.3). This leads us defining Weyl m functions

mN(z) on compact interval [0, N ]. These are holomorphic functions which map

upper half-plane to itself. Moreover, these are fractional linear transformations

which describe Weyl circles say CN(z). The Weyl discs, consisting of CN(z) and

the interior, have nested property. Therefore the sequence of Weyl circles CN(z)

converges either to a point, called a limit-point case or to a circle, called a limit-

circle case. For z ∈ C+, it also follows from Weyl theory that in the limit-circle

case all solutions of the system (0.0.3) are in L2(H,R+) and in the limit-point

case there is unique solution in L2(H,R+). One of the main results in this text is

that the canonical system (0.0.3) with trH(x) ≡ 1 prevails the limit-point case.
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This results was first proved by L. de Branges in his paper [2] using function

theoretic approach. We give an alternate proof of the result by using completely

different approach.

Recently, in the spectral theory of Jacobi and Schrödinger operators, Rem-

ling’s theorem, published in the Annals of Math in 2011 (see [14]), has been one of

the most popular results. It has revealed some new fundamental properties of ab-

solutely continuous spectrum of Jacobi and Schrödinger operators that changed

the perspective of many mathematicians about the absolutely continuous spec-

trum. In this text, we will generalize Remling’s theorem on canonical systems

when trH(x) ≡ 1.

We may think of writing the system (0.0.3) in the form

H(x)−1Ju′ = zu

and consider as an operator on L2(H,R+). But H(x) is not invertible in general

that prevents us to work as an eigen value problem of an operator. Instead, the

system (0.0.3) induces a linear relation that may have a multi-valued part. There-

fore, we will discuss spectral theory of such linear relation induced by (0.0.3) on

L2(H,R+). In order to do this, we need to develop a theory of a linear relation

on any Hilbert space and then we use the theory to discuss spectral theory of a

relation induced by the canonical system (0.0.3).

Organization of the text : In Chapter 1, we will discuss about some

standard results from functional analysis, real analysis and complex analysis.

More precisely, we will present basic definitions and state the theorems without

giving proofs which can be found in any standard book on those areas. We will

mainly focus on the spectral theory of a linear operator on a Hilbert space, basics
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of measure theory and some notion of Herglotz functions and related theorems.

Chapter 2 is devoted to prove de Branges theorem: a canonical system (0.0.3)

with trH(x) ≡ 1 prevails the limit-point case. In order to prove this theorem,

we develop a theory of linear relation in a Hilbert space as a tool following the

analogous treatment of operator theory from [17]. In Section 2.1, we obtain

the conditions for symmetric relations to have self-adjoint extensions. Then we

discuss spectral theory of such self-adjoint relations in Section 2.2. We will use

the theory to discuss spectral theory of a relation induced by the canonical system

(0.0.3) which is used to prove de Branges theorem.

Our main goal in Chapter 3 is to prove Remling’s theorem on canonical sys-

tems. We will use similar techniques from [14]. In Section 3.1, we discuss the

Weyl theory of canonical systems following the analogous treatment of Weyl the-

ory of Jacobi and Schrödinger operators. In Section 3.2, we consider the space

of Hamiltonians H(x) and a suitable topology on it so that the space is metriz-

able. Then we will define the ω limit set of a Hamiltonian which is an important

object in the theorem. We will discuss the notion of reflectionless Hamiltonians

and state the theorem in Section 3.3. We will also discuss basics of harmonic

measures, and value distribution in Section 3.3 which are the basic tools there in.

Then we prove Breimesser-Pearson theorem on canonical systems which is in fact

the foundation for Remling’s theorem. This, finally follows the proof of Remling’s

theorem on canonical systems. At the end, we will show the connection between

Jacobi and Schrödinger operators and canonical systems in Section 3.5.
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Chapter 1

Preliminaries

In this chapter, we present some basic definitions and some important theorems

from functional analysis, real analysis and complex analysis. We assume that a

reader has some basic knowledge on each subjects. We also believe that a reader

can find the proof of the theorems that we mention here in any standard text

book on above mentioned areas, for example [8, 9, 16, 17].

We will consider a Hilbert space H over C in which the inner product 〈f, g〉

is linear in the second parameter and conjugate linear in the first parameter.

Let T ∈ B(H), the adjoint of T is an operator T ∗ : H → H such that

〈h, Tf〉 = 〈T ∗h, f〉 for all f, h ∈ H.

Definition 1.1. Let T ∈ B(H). We call T self-adjoint if T = T ∗, unitary if

TT ∗ = T ∗T = 1 and normal if TT ∗ = T ∗T.

Notice that T is unitary precisely if T is invertible and T−1 = T ∗ and the

following statements are equivalent:

• T is unitary;

• T is bijective and 〈Tf, Th〉 = 〈f, h〉 for all f, h ∈ H;
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• T is surjective and isometry ( i.e. ‖Tf‖ = ‖f‖ for all f ∈ H ).

Let N(T ) = {f ∈ H : Tf = 0} and R(T ) = {Tf : f ∈ H}.

An operator P ∈ B(H) is a projection on a closed subspace M ⊂ H precisely

if P 2 = P and R(P ) = M. Observe that the following statements are equivalent:

• P is a projection;

• I − P is a projection;

• P 2 = P and R(P ) = N(P )⊥

• P 2 = P and P is self-adjoint;

• P 2 = P and P is normal.

Proposition 1.2. Let P1 and P2 are the projections on a Hilbert space H, then

‖P1 − P2‖ = max {ρ12, ρ21}, where ρij = sup{‖Pjh‖ : h ∈ R(Pk)
⊥, ‖h‖ ≤ 1}.

Proposition 1.3. If P and Q are orthogonal projection on a Hilbert space H

such that ‖P −Q‖ < 1, then

dimR(P ) = dimR(Q),
(

dimR(I − P ) = dimR(I −Q)
)
.

Definition 1.4. For T ∈ B(H), define

ρ(T ) = {z ∈ C : T − z is invertible in B(H)}

σ(T ) = C− ρ(T ).

We call ρ(T ) a resolvent set of T and σ(T ) is the spectrum of T .

Call z ∈ C an eigenvalue of T ∈ B(H) if there exists f ∈ H, f 6= 0 such

that Tf = zf. Denote the set of all eigenvalues of T by σp(T ); called the point
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spectrum of T. Notice that σp(T ) ⊂ σ(T ). Now we would like to present spec-

tral theorem of normal operators, one of the most fundamental theorems in the

spectral theory.

Theorem 1.5 (Spectral representation of normal operators). Let T ∈ B(H) be

a normal operator. Then there exists a collection {ρα : α ∈ I} of finite positive

Borel measures on σ(T ) and a unitary map U : H →
⊕

α L
2(σ(T ), dρα) so that

UTU−1 = Mz, (Mzf)α = zfα(z).

The minimal cardinality of the index set I is called the spectral multiplicity

of T . If T is self-adjoint on a separable Hilbert space H then I is countable. The

measures ρα are called the spectral measures and are not uniquely determined

by T . The pair ({ρα}, U) is called the spectral representation of T . There are

different versions of spectral theorem and the proofs of the theorems can be found

in [8].

Definition 1.6. For a self-adjoint operator T on a Hilbert space H and a vector

f ∈ H, the subspace

CT (f) = span{(T − z)−1f : z ∈ C}

is called the cyclic subspace of f . A vector f is cyclic if and only if CT (f) = H.

If there is a cyclic vector f in a Hilbert space H, then for any self-adjoint

operator T on H, there is a unique positive Borel measure ρ in Theorem 1.5; and

also for all z ∈ C+,

〈f, (T − z)−1f〉 =

∫
1

x− z
dρ(x).

This is of particular interest because Jacobi and Schrödinger operators have

cyclic vectors therefore they have unique corresponding spectral measures. The

8



following theorem provides a characterization of spectrum of a self-adjoint oper-

ator in terms of topological supports of corresponding spectral measures.

Theorem 1.7. Let T be a self-adjoint operator. The spectrum of T is given by

σ(T ) = ∪Nn=1 supp ρn.

Moreover, T is bounded if and only if there is r > 0, σ(T ) ⊂ [−r, r] in which case,

‖T‖ = sup{|x| : x ∈ σ(T )}.

In particular, if T has a cyclic vector, then

σ(T ) = supp ρ.

Next, we want to mention the spectral theorem for compact operators.

Definition 1.8. An operator T on H is called compact if T (B) is a compact set,

where B = {f ∈ H : ‖f‖ < 1}.

Theorem 1.9. Let T ∈ B(H) be a compact, normal operator. Then σ(T ) is

countable. Write σ(T )−{0} = {zn}. Then each zn is an eigenvalue of T of finite

multiplicity: 1 ≤ dimN(T − z) <∞. Moreover, zn → 0 if zn is infinite.

We will use this theorem to show that the spectrum of self-adjoint relations

induced by the canonical system (0.0.3) is a discrete set.

Recall that a Borel measure ρ on R is called absolutely continuous if ρ(B) = 0

for all Borel sets B ⊂ R of Lebesgue measure zero. By the Radon-Nikodym

theorem, ρ is absolutely continuous if and only if dρ = f(t)dt for some density

f ∈ L1
loc(R), f ≥ 0. If ρ is supported by a Lebesgue null set, that is, there exists

a Borel set B ⊂ R with |B| = ρ(Bc) = 0, then we say that ρ is singular. By

9



Lebesgue’s decomposition theorem, any Borel measure ρ on R can uniquely be

decomposed into absolutely continuous and singular parts:

ρ = ρac + ρs.

The singular measure ρs can be further decomposed into singular continuous

measure ρsc and pure point measure ρpp. Hence the decomposition becomes

dρ = dρac + dρsc + dρpp.

This inspires the decomposition of spectrum into the absolutely continuous, sin-

gular continuous and pure point parts.

Definition 1.10. If ({ρn}Nn=1, U) is a spectral representation of T the absolutely

continuous, singular continuous and pure point spectra, denoted by σac(T ), σsc(T )

and σpp(T ) respectively and are defined by

σ∗(T ) = ∪Nn=1 supp ρn,∗

where ∗ stands for ac, sc or pp .

Note that the three spectra need not be disjoint, but their union is all of σ(T ):

σ(T ) = σac(T ) ∪ σsc(T ) ∪ σpp(T ).

Note that this decomposition is independent of choice of spectral representation.

Now, we want to mention one of the most important objects from complex

analysis, called Herglotz function. Herglotz functions are holomorphic functions

that map upper half-plane to itself. The theory of Herglotz functions play a key

role in the spectral theory of Jacobi and Schrödinger operators. These functions

have been widely use in the theory of value distribution as well, see [12].
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Definition 1.11. A holomorphic function F : C+ → C+ is called a Herglotz

function.

These functions are also known as Nevanlinna or Pick functions. These func-

tions are important as they have a connection with positive Borel measures on

R. This is due to Borel and Stieltjes.

By the Herglotz representation theorem, every Herglotz function F ∈ H has

the integral representation of the form,

F (z) = a+

∫
R∞

(1 + tz

t− z

)
dν(t) (1.0.1)

with a ∈ R and ν 6= 0 is a finite, positive Borel measure on R∞ = R∪{∞}. Here,

we equip R∞ with the topology of the 1-point compactification of R. Both a and

ν are uniquely determined by F ∈ H.

If we let

b = ν({∞}), dρ(t) = (1 + t2)χR(t)dν(t),

then (1.0.1) takes the form

F (z) = a+ bz +

∫
R

( 1

t− z
− t

t2 + 1

)
dρ(t). (1.0.2)

Theorem 1.12 (Stieltjes representation). Let F be a Herglotz function. Then

there exists a unique positive measure ρ on R such that

F (z) = a+ bz +

∫
R

( 1

t− z
− t

t2 + 1

)
dρ(t), z ∈ C+

with
∫

1
t2+1

dρ <∞ and numbers a ∈ R, b ≥ 0.

The proof of this theorem can be found in [1, 5].

11



If F ∈ H, then F (t) = lim
y→0+

F (t+ iy) exists for almost every t ∈ R.

We are particularly interested on this theorem because the Weyl m functions

m(z) corresponding to Jacobi and Schrödinger operators and canonical systems

are Herglotz functions. More interestingly, the positive measure ρ in the integral

representation of m(z) from the above theorem play the same role as the spectral

measures of corresponding operators.

12



Chapter 2

Theory of linear relations in

Hilbert spaces.

In this chapter, we develop a theory of linear relations in Hilbert spaces as a tool.

These linear relations were first studied by Coddington, Dijksma, and De Snoo,

see [4, 6]. Our will concentrate on establishing the conditions for a symmetric

relations to have self-adjoint extensions and the spectral theory of such self-

adjoint relations. This in fact, is an analysis, analogous to the operator theory

from [17].

Let H be a Hilbert space over C and denote by H2 the Hilbert space H⊕H.

A linear relation R = {(f, g) : f, g ∈ H} on H is a subspace of H2.

D(R) = {f ∈ H : (f, g) ∈ R} and R(R) = {g ∈ H : (f, g) ∈ R} are

respectively defined as the domain and range of the relation R.

R−1 = {(g, f) : (f, g) ∈ R} denotes the inverse relation. The adjoint of R on H

is a closed linear relation defined by

R∗ = {(h, k) ∈ H2 : 〈g, h〉 = 〈f, k〉 for all (f, g) ∈ R}.

13



A linear relation S is called symmetric if S ⊂ S∗ and self-adjoint if S = S∗. From

now on we write relation to mean linear relation.

A relation R is called isometry if

〈f1, f2〉 = 〈g1, g2〉 for all (f1, g1), (f2, g2) ∈ R

and R is unitary if it is isometry and D(R) = R(R) = H.

Let (z − R) = {(f, zf − g) : (f, g) ∈ R}, N(R, z) = {f : (f, zf) ∈ R} and

Rz = R(z −R).

Lemma 2.1. For any relation R, on a Hilbert space H, N(R∗, z̄) = R⊥z .

Proof.

u ∈ N(R∗, z̄)⇔ (u, z̄u) ∈ R∗

⇔ for any (f, g) ∈ R, 〈g, u〉 = 〈f, z̄u〉

⇔ 〈zf, u〉 − 〈g, u〉 = 0

⇔ 〈zf − g, u〉 = 0.⇔ u ∈ R⊥z .

2.1 Defect indices and self-adjoint extension

Let R be a relation on a Hilbert space H. The set

Γ(R) = {z ∈ C : there exists a C(z) > 0 such that

‖(zf − g)‖ ≥ C(z)‖f‖ for all (f, g) ∈ R}

is defined as the regularity domain of R and S(R) = C− Γ(R) is defined as the

Spectral Kernal of R.

14



Theorem 2.2. 1. z ∈ Γ(R) if and only if (z − R)−1 is a bounded linear

operator on H.

2. If R is symmetric, then C− R ⊂ Γ(R).

3. Γ(R) is open.

Proof. 1. If z ∈ Γ(R) then for any (f, g) ∈ R, there is a constat C(z) > 0 such

that

‖(zf − g)‖ ≥ C(z)‖f‖.

This implies that (z − R)−1 is a single valued relation. Clearly it is linear and

bounded. Converse is obvious.

2. Suppose R is symmetric, then for any z ∈ C− R, z = x+ iy and (f, g) ∈ R,

‖zf − g‖2 = ‖(xf − g)‖2 + y2‖f‖2 ≥ y2‖f‖2

which implies z ∈ Γ(R).

3. Let z0 ∈ Γ(R). Then there is a constat C(z0) > 0 such that ‖(z0f − g)‖ ≥

C(z0)‖f‖ for all (f, g) ∈ R. If z ∈ C such that |z − z0| < C(z0), then for all

(f, g) ∈ R,

‖(zf − g)‖ ≥ ‖z0f − g‖ − |z − z0|‖f‖ >
(
C(z0)− |z − z0|

)
‖f‖.

This implies that z ∈ Γ(R).

The subspace R⊥z is called the defect space of R and z. The cardinal number

β(R, z) = dim R⊥z is called the defect index of R and z.

Theorem 2.3. The defect index β(R, z) is constant on each connected subset

of Γ(R). If R is symmetric, then the defect index is constant on the upper and

lower half-planes.
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Proof. Let Qz denotes the orthogonal projection onto R̄z. We first show that

‖Qz − Qz0‖ → 0 as z → z0, for any z0 ∈ Γ(R). Let z0 ∈ Γ(R), then there is a

constant C(z0) > 0 such that

‖f‖ ≤ C(z0)‖z0f − g‖,

for all (f, g) ∈ R. For |z − z0| < 1
2C(z0)

and all (f, g) ∈ R, we have,

‖f‖ ≤ C(z0)‖z0f − g‖ ≤
(
‖zf − g‖+ |z − z0|‖f‖

)
≤ C(z0)‖zf − g‖+

1

2
‖f‖

∴ ‖f‖ ≤ C(z0)‖zf − g‖.

For h ∈ R(Qz0)⊥ = R⊥z0 ,

‖Qzh‖ = sup{|〈h, zf − g〉| : zf − g ∈ Rz, ‖zf − g‖ ≤ 1}

= sup{|〈h, (z − z0)f〉| : zf − g ∈ Rz, ‖zf − g‖ ≤ 1}.

∴ ‖Qzh‖ ≤ ‖h‖|z − z0|C(z0).

Similarly for h ∈ R(Qz)
⊥ = R⊥z

‖Qz0h‖ ≤ ‖h‖|z − z0|C(z0).

Now by Proposition 1.2,

‖Qz −Qz0‖ ≤ |z − z0|C(z0).

Let Pz denotes an orthogonal projection onto R̄⊥z then

‖pz − pz0‖ = ‖Qz −Qz0‖ ≤ |z − z0|C(z0)→ 0 as z → z0.

Hence, if we choose ε > 0 such that ‖pz − pz0‖ < 1, for |z − z0| < ε then by

Proposition 1.3, dimR⊥z = dimR⊥z0 . It follows that

β(R, z) = β(R, z0) for |z − z0| < ε.
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If R is symmetric, then the upper and lower half-planes are connected subsets of

Γ(R); therefore, the defect index is constant there.

Let R is a symmetric relation on a Hilbert space, for z ∈ C+, the defect index

m = β(R, z) and for w ∈ C−, the defect index n = β(R, w) are written as a pair

(m,n) and are called the defect indices of R.

The Cayley trnsform of a symmetric relationR onH is defined by the relation

V = {(g + if, g − if) : (f, g) ∈ R}.

Then clearly D(V) = R(R+ i) and R(V) = R(R− i).

Theorem 2.4. If R be a Symmetric relation on H and V is the Cayley transform

of R then,

1. V is isometry

2. R(I − V) = D(R) and R = {(f − g, i(f + g)) : (f, g) ∈ V}.

3. R is multi-valued if and only if N(I − V) 6= {0}

Proof. 1. Let (u1, v1), (u2, v2) ∈ V then ui = gi + ifi and vi = gi − ifi, for

(fi, gi) ∈ R, i = 1, 2 then

〈u1, u2〉 = 〈g1 + if1, g2 + if2〉

= 〈g1, g2〉+ 〈g1, if2〉+ 〈if1, g2〉+ 〈if1, if2〉

= 〈g1, g2〉+ i〈g1, f2〉 − i〈f1, g2〉 − i2〈f1, f2〉

= 〈g1 − if1, g2 − if2〉

= 〈v1, v2〉.

2. This is clear.

3. Suppose R is multi-valued then there is g ∈ H, g 6= 0 such that (0, g) ∈ R.
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It follows by definition of V that (g, g) ∈ V . Hence, g ∈ N(I − V). On the other

hand , let g ∈ N(I − V), g 6= 0 then (g, g) ∈ V then by 2, (0, 2ig) ∈ R. Hence R

is multi-valued .

Theorem 2.5. A relation V on H is the Cayley transform of a symmetric relation

R if and only if V has the following properties.

1. V is an isometric relation.

2. R(I − V) = D(R).

The relation R is given by R = {(f − g, i(f + g)) : (f, g) ∈ V}.

Proof. If V is the Cayley transform of R, then by Theorem 2.3.1, V satisfies the

properties 1 and 2. Conversely suppose V has properties 1 and 2, we show that

R = {(f − g, i(f + g)) : (f, g) ∈ V} is a symmetric relation.

Suppose (f1 − g1, i(f1 + g1)), (f2 − g2, i(f2 + g2)) ∈ R then

〈i(f1 + g1), (f2 − g2)〉 = −i
(
〈f1, f2〉 − 〈f1, g2〉+ 〈g1, f2〉 − 〈g1, g2〉

)
.

Since V is an isometry, for any (f1, g1), (f2, g2) ∈ V , 〈f1, f2〉 = 〈g1, g2〉. This implies

that

〈i(f1 + g1), (f2 − g2)〉 = −i〈g1, g2〉+ i〈f1, g2〉 − i〈g1, f2〉+ i〈f1, f2〉

= −i
(
〈g1 − f1, g2〉+ 〈g1 − f1, f2〉

)
= 〈f1 − g1, i(f2 + g2)〉.

Hence R is symmetric.

Theorem 2.6. A symmetric relation R is self-adjoint if and only if V is unitary.
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Proof. We show that the R is self-adjoint if and only if

R(R+ i) = R(R− i) = H.

Since R is symmetric we always have R ⊂ R∗. Let (f, g) ∈ R∗ then if − g ∈ H

and R(R− i) = H implies that there is (h, k) ∈ R such that k − ih = if − g. So

i(f + h) = k + g. So that (f + h, i(f + h)) ∈ R∗. That is

(f + h) ∈ N(R∗, i) = R((R+ i)⊥) = {0}.

This implies f = −h ∈ D(R). Hence R is self-adjoint.

Conversely suppose R is self-adjoint. Let

h ∈ R(R− i)⊥ = N(R∗,−i) = N(R,−i).

So (h,−ih) ∈ R. But

〈−ih, h〉 = 〈h, ih〉 ⇒ i〈h, h〉 = −i〈h, h〉.

Hence we must have h = 0. So R(R− i) = H. Similarly, R(R+ i) = H.

Theorem 2.7. Let R be a closed symmetric relation on a Hilbert space H and

V denotes its Cayley transform.

1. V ′ is the Cayley transform of a closed symmetric extension R′ of R if and

only if the following holds: There exists closed subspaces F− of R(R− i)⊥

and F+ of R(R+ i)⊥ and an isometric relation Ṽ on F+ ⊕ F− for which

V ′ = {(f + h, g + k) : (f, g) ∈ V , (h, k) ∈ Ṽ} and

D(V ′) = R(R′ + i) = R(R+ i)⊕ F+,

R(V ′) = R(R′ − i) = R(R− i)⊕ F−.

The spaces F+ and F− have the same dimension.
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2. The relation V ′ in part 1 is unitary if and only if F− = R(R − i)⊥ and

F+ = R(R+ i)⊥.

3. R possess self-adjoint extension if and only if its defect indices are equal.

Proof. 1. Suppose V ′ has the given form. Then V ′ is isometric relation, since for

any (f + h, g + k) ∈ V ′ we have,

‖g + k‖2 = ‖g‖2 + ‖k‖2 = ‖f‖2 + ‖h‖2 = ‖f + h‖2.

Hence we can define a symmetric extension R′ such that V ′ is its Cayley trans-

form. Conversely if V ′ is the Cayley transform of a symmetric extension R′ of R,

then put F− = R(R′−i)	R(R−i), F+ = R(R′+i)	R(R+i) and Ṽ = V ′|F+⊕F− .

Then we have the desired properties.

2. Here we have V ′ is unitary if and only if

D(V ′) = R(V ′) = H.

That is, if and only if F− = R(R− i)⊥ and F+ = R(R+ i)⊥.

3. By 1 and 2, V posses unitary extension if and only if there exists an isometry

relation Ṽ onto R(R+ i)⊥ ⊕R(R− i)⊥. This happens if and only if

dim(R(R+ i)⊥) = dim(R(R− i)⊥).

By definition of Cayley transform, it is clear that if V1 and V2 are the Cayley

transforms of any two symmetric relations R1 and R2 then

R1 ⊂ R2 if and only if V1 ⊂ V2.

Theorem 2.8. Let R be a closed symmetric relation on a Hilbert space with

defect indices (m,m).
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1. R′ be a symmetric extension of R if and only if the following holds: There

are closed subspaces F+ of R(i+R)⊥ and F− of R(i−R)⊥ and an isometric

mapping V̂ of F+ onto F− such that

D(R′) = D(R) + {g + V̂g : g ∈ F+}.

2. R′ is self-adjoint if and only if R′ is an m−dimensional extension of R

.

Proof. (1). Let V and V ′ be the Cayley transforms of the closed symmetric relation

R and its symmetric extension R′, respectively. By Theorem 2.7, there exist

closed subspaces F− of R(R− i)⊥ and F+ of R(R+ i)⊥ and an isometric relation

Ṽ on F+ ⊕ F− for which

V ′ = {(f + h, g + k) : (f, g) ∈ V , (h, k) ∈ Ṽ} and

D(V ′) = R(R′ + i) = R(R+ i)⊕ F+,

R(V ′) = R(R′ − i) = R(R− i)⊕ F−.

Then by definition of the Cayley transform we see that,

D(R′) = R(I − V ′) = (I − V ′)D(V ′)

= (I − V ′)R(i+R′)

= (I − V ′)(R(i+R)⊕ F+)

= (I − V ′)(D(V)⊕ F+)

= (I − V)D(V) + (I − V ′)F+

= D(R) + {g − Ṽg : g ∈ F+}.

The converse is similar.

(2). By Theorem 2.7, R′ is self-adjoint if and only if V ′ is unitary. This happens
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if and only if F+ = R(R + i)⊥. So by 1, R′ is self-adjoint if and only if it is a

m−dimensional extension of R.

Theorem 2.9. Suppose T is a self-adjoint relation and suppose z ∈ Γ(T ) then

H = {zf − g : (f, g) ∈ T }.

Proof. We will show that R(z−T ) = {zf − g : (f, g) ∈ T } is a closed subspace

of H. Since z ∈ Γ(T ), there is a constant C(z) such that

‖zf − g‖ ≥ C(z)‖f‖.

Let vn ∈ R(z − T ) and vn → v in H. Suppose fn ∈ D(T ) such that (fn, gn) ∈ T

and vn = zfn − gn so that (fn, vn) ∈ z − T . But from above relation we have

‖vn − vm‖ = ‖z(fn − fm)− (gn − gm)‖ ≥ C‖fn − fm‖.

It follows that fn is a Cauchy sequence in H, and it converges to some f in H.

Hence (fn, vn) → (f, v). Since T is closed , f ∈ D(T ) and (f, v) ∈ z − T and

v ∈ R(z − T ). Hence R(z − T ) is closed. So we have

H = R(z − T )⊕R(z − T )⊥.

We next show that R(z − T )⊥ = {0}. Let h ∈ R(z − T )⊥ = N(T , z̄) then

(h, z̄h) ∈ T . But 0 = ‖z̄h− z̄h‖ ≥ C(z̄)‖h‖ implies h = 0 a. e. .

Let T be a self-adjoint relation on H and z ∈ Γ(T ). Define T : H → H by

T (zf − g) = f. That is T = (z −T )−1 = {(zf − g, f) : (f, g) ∈ T }. Then T is a

bounded linear operator since

‖T‖ = sup
‖zf−g‖=1

‖T (zf − g)‖ = sup
‖zf−g‖=1

‖f‖ ≤ 1

C(z)

and T is given by

T = {(Tf, zTf − f) : f ∈ H}.
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2.2 Spectral theory of a linear relation

Definition 2.10. Let R be a closed relation on a Hilbert space H. We define

ρ(R) = {z ∈ C : ∃ T ∈ B(H),R = {(Tf, zTf − f) : f ∈ H}}

to be the resolvent set and σ(R) = C− ρ(R) to be the spectrum of R.

Remark 2.11. When a relation R is an operator on H then

ρ(R) = {z ∈ C : (z −R)−1 ∈ B(H)}

Proof. Suppose R is an operator. If z ∈ C be such that (z −R)−1 ∈ B(H) then

take T = (z −R)−1 so that for any (f, g) ∈ R, zf − g ∈ H and

(f, g) = (T (zf − g), zT (zf − g)− (zf − g)).

Also for any f ∈ H,

(z −R)(z −R)−1f = f

⇒ (z −R)Tf = f

⇒ RTf = zTf − f

⇒ (Tf, zTf − f) ∈ R.

Hence {z ∈ C : (z −R)−1 ∈ B(H)} ⊂ ρ(R). On the other hand , let z ∈ ρ(R)

want to show that (z − R) is bijective. Let f1, f2 ∈ H such that Tf1 6= Tf2.

If (z − R)Tf1 = (z − R)Tf2 then this implies f1 = f2. This is not possible

because T is an operator and Tf1 6= Tf2 . So (z−R) is one to one. Also for any

f ∈ H, T f ∈ H and (z−R)Tf = zTf − zTf + f = f . This implies that (z−R)

is onto. Now for any f ∈ H,

‖(z −R)−1f‖ ≤ ‖Tf‖ ≤ C‖f‖.

This implies (z −R)−1 ∈ B(H).
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A complex number z ∈ C is called an eigenvalue of a relation R if there exists

a f ∈ H, f 6= 0 such that (f, zf) ∈ R. The set of all eigenvalues of R is called

the point spectrum of R and is denoted by σp(R).

Lemma 2.12. For any closed relation R on a Hilbert space H, σp(R) ⊂ σ(R).

Proof. Let z ∈ σp(R). Then there exists f ∈ H, f 6= 0 such that (f, zf) ∈ R.

Suppose z /∈ σ(R) then z ∈ ρ(R) so there exists T ∈ B(H) such that R =

{(Tf, zTf − f) : f ∈ H}. Since (f, zf) ∈ R there is some u ∈ H such that

f = Tu and zf = zTu− u. This implies that u = 0 and hence f = Tu = 0. This

contradicts the fact that f 6= 0. So z ∈ σ(R). It follows that σp(R) ⊂ σ(R).

Let Z = {(0, g) ∈ R} and Z = {g : (0, g) ∈ R} be the multi-valued part of

a relation R. Clearly Z is a closed subspace of H. Note that D(R) is not dense

if R is multi-valued. Now define the quotient space Hs = H/Z. We know that

this quotient space is also a Hilbert space with the norm defined by

‖[f ]‖ = inf
g∈Z
‖f + g‖.

Define a relation Rs on Hs ⊕ Hs by Rs = {([f ], [g]) : (f, g) ∈ R}. We consider

the relation Rs as the restriction of R on Hs. By natural isomorphism, the space

Hs is identified as H 	 Z and the relation Rs as R	 Z. Then clearly Rs is an

operator on Hs with D(Rs) = D(R).

Theorem 2.13. If T is a self-adjoint relation on H then

S(T ) = σ(T ) = σ(Ts)

.

Proof. Let z ∈ Γ(T ), then there exists a constant C > 0 such that

‖zf − g‖ ≥ C‖f‖, for all (f, g) ∈ T .
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For such z, we can define T = (z−T )−1 a bounded linear operator onH such that

T = {(Th, zTh − h) : h ∈ H}. So z ∈ ρ(T ). On the other hand, let z ∈ ρ(T )

then there exists T ∈ B(H) such that T = {(Th, zTh − h) : h ∈ H}. For any

(f, g) ∈ T , there is h ∈ H such that Th = f and zTh− h = g. So

‖zf − g‖ = ‖zTh− zTh+ h‖ = ‖h‖ ≥ C‖Th‖ = C‖f‖

for some C > 0 and hence z ∈ Γ(T ). Hence, S(T ) = σ(T ).

Next assume that z ∈ Γ(Ts) then for any ([f ], [g]) ∈ Ts, there exists a constant

C > 0 such that

‖z[f ]− [g]‖ ≥ C‖[f ]‖.

For any (f, g) ∈ T we have

‖zf − g‖ ≥ ‖z[f ]− [g]‖ ≥ C‖[f ]‖ = C‖f‖.

Hence z ∈ Γ(T ). On the other hand suppose z ∈ Γ(T ) then there is a constant

C > 0 such that

‖zf − g‖ ≥ C‖f‖.

For any ([f ], [g]) ∈ Ts we have

‖z[f ]−[g]‖ = inf
u∈Z
‖zf−g+u‖ = inf

u∈Z

(
‖zf−g‖+‖u‖

)
≥ ‖zf−g‖ ≥ C‖f‖ = C‖[f ]‖.

This implies that z ∈ Γ(Ts). Thus S(Ts) = S(T ). Hence S(T ) = σ(T ) = σ(Ts).

Remark 2.14. If T is a self-adjoint relation on H then σ(T ) ⊂ R.

Theorem 2.15. Let z ∈ Γ(T ) and T = (z − T )−1.

1. If λ ∈ Γ(T ) then (z − 1
λ
) ∈ Γ(T ).
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2. If λ ∈ S(T ) then 1
z−λ ∈ S(T ).

3. S(T ) ⊂ σ(T ).

Proof. (1). Let λ ∈ Γ(T ) then by definition there exists C(λ) > 0 such that

‖λ(zf − g)− f‖ ≥ C(λ)‖zf − g‖ for all (f, g) ∈ T .

Note that λ 6= 0. For any (f, g) ∈ T we have,

‖(z − 1

λ
)f − g‖ =

1

|λ|
‖zλf − f − λg‖

=
1

|λ|
‖λ(zf − g)− f‖

≥ C(λ)

|λ|
‖zf − g‖ ≥ C(λ)C(z)

|λ|
‖f‖.

So (z − 1
λ
) ∈ Γ(T ).

(2). Let λ ∈ S(T ) and suppose 1
z−λ /∈ S(T ). Then 1

z−λ ∈ Γ(T ). But by (1),

(z − 1
1

z−λ
) ∈ Γ(T ). This implies that λ ∈ Γ(T ) which is a contradiction.

(3). Let λ ∈ ρ(T ) then (λ− T )−1 is bounded and is defined on all of H then for

any (f, g) ∈ T

‖zf − g‖ = ‖(λ− T )−1(λ− T )(zf − g)‖ ≤ ‖(λ− T )−1‖‖λ(zf − g)− T (zf − g)‖

⇒ ‖λ(zf − g)− T (zf − g)‖ ≥ 1

‖(λ− T )−1‖
‖zf − g‖.

⇒ λ ∈ Γ(T ). This shows that S(T ) ⊂ σ(T ).

2.3 Spectral theory of a canonical system

Consider a relation R on L2(H,R+) given by

R = {(f, g) ∈
(
L2(H,R+)

)2
: f ∈ AC, Jf ′ = Hg}.
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Call this relation R, a maximal relation. This relation is made up of pairs (f, g)

of equivalence classes, such that there exists a locally absolutely continuous rep-

resentative of f again denoted by f , and a representative of g, again denoted by

g, such that Jf ′ = Hg a.e. on R+. The adjoint relation R0 = R∗ is called the

minimal relation. These relations are discussed in details in [10, 11, 15, 18]. We

will present some of the results about these relations from [11]. Let

Rc = {(f, g) ∈ R : f has a compact support}.

Lemma 2.16 ([11]). Let [a, b] ⊂ R+ be a compact interval. If (φ, ψ) ∈ Rc and

suppφ ⊂ [a, b], then ψ satisfies:

suppHψ ⊂ [a, b],

∫ b

a

H(t)ψ(t)dt = 0. (2.3.1)

Conversely, if the function ψ ∈ L2(H,R+) satisfies relation (2.3.1), then there

exists φ, such that (φ, ψ) ∈ Rc and suppφ ⊂ [a, b].

Proof. If (φ, ψ) ∈ Rc, then φ, ψ ∈ L2(H,R+) and φ′ = −JHψ. Hence suppHψ ⊂

[a, b]. Since φ(a) = 0, φ(x) = −
∫ x
a
JH(t)ψ(t)dt. Moreover, φ(b) = 0 implies

−
∫ b
a
JH(t)ψ(t)dt = 0 ⇒

∫ b
a
H(t)ψ(t)dt = 0. To see the converse, let ψ ∈

L2(H,R+) satisfying the (2.3.1) and define,

φ(x) = −
∫ x

a

JH(t)ψ(t)dt.

Then suppφ ⊂ [a, b] and Jφ′ = Hψ. Hence (φ, ψ) ∈ Rc and suppφ ⊂ [a, b].

Lemma 2.17 ([11]). The relation Rc is symmetric and R∗c = R.
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Proof. Let (f, g) ∈ R and (φ, ψ) ∈ Rc, then

〈g, φ〉 − 〈f, ψ〉 =

∫ b

a

g∗Hφdt−
∫ b

a

f ∗Hψdt

=

∫ b

a

(Jf ′)∗φdt−
∫ b

a

f ∗Jφ′dt

=−
∫ b

a

f ′∗Jφdt−
∫ b

a

f ∗Jφ′dt

=− f ∗Jφ|ba +

∫ b

a

f ∗Jφ′dt−
∫ b

a

f ∗Jφ′dt

=0.

Hence (f, g) ∈ R∗c and R ⊂ R∗c . To show the reverse, let (h, k) ∈ R∗c then

h, k ∈ L2(H,R+). Let u be a solution of the equation Ju′ = Hk. Suppose [a, b]

be a compact interval. For ψ ∈ L2(H,R+) satisfying (2.3.1), and φ as in Lemma

2.16 so that (φ, ψ) ∈ Rc, then 〈h, ψ〉 − 〈k, φ〉 = 0. That is∫ b

a

h(t)∗H(t)ψ(t)dt =

∫ b

a

k(t)∗H(t)φ(t)dt

= −
∫ b

a

u′(t)∗Jφ(t)dt

=

∫ b

a

u(t)∗Jφ′dt

=

∫ b

a

u(t)∗H(t)ψdt

⇒
∫ b

a

(
h(t)− u(t)

)∗
H(t)ψ(t)dt = 0

By Lemma 2.16, the function ψ(t) span the orthogonal complement of constants

on [a, b]. Hence h(t)− u(t) is equivalent to a constant on [a, b]. Therefore, h has

a representative again denoted by h, which is absolutely continuous and satisfies

Jh′ = Ju′ = Hk a.e. on [a, b]. Suppose I ⊂ [a, b] is a compact subinterval of

positive type then the absolutely continuous representative does not depend on

I ⊂ [a, b]. Since [a, b] was arbitrary, it follows that (h, k) ∈ R. Hence R∗c = R, so

that Rc is symmetric.
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Corollary 2.18 ([11]). The relation R is closed and R0 is closed and symmetric.

Proof. Since R = R∗c and R0 = R∗, R and R0 are closed. To show R0 is

symmetric, let (h, k) ∈ R0, then by definition, 〈f, k〉 − 〈g, h〉 = 0 for all (f, g) ∈

R. So for (φ, ψ) ∈ Rc ⊂ R we see that 〈φ, k〉 − 〈ψ, h〉 = 0 for all (φ, ψ) ∈ Rc.

This implies that (h, k) ∈ R∗c = R. So R0 ⊂ R∗0 = R.

Lemma 2.19 ([11]). For each c ∈ C2 there exists (φ, ψ) ∈ R such that φ has

compact support and φ(0+) = c.

Proof. Choose [0, N ] so that it contains an open subinterval of positive type.

Then the matrix
∫ N

0
H(t)dt is invertible. Hence there exists a vector u ∈ C2 such

that (∫ N

0

H(t)dt
)
u = −Jc.

Define ψ ∈ L2(H,R+) by

ψ(t) = u, 0 ≤ t ≤ N, ψ(t) = 0, t > N,

and define φ by

φ(x) = c−
∫ x

0

JH(t)ψ(x)dt.

Then φ is in L2(H,R+), is absolutely continuous and suppφ ⊂ [0, N ]. Moreover,

φ(0+) = c and Jφ′ = Hψ so that (φ, ψ) ∈ R.

Lemma 2.20 ([11]). Let (f, g), (h, k) ∈ R. Then the following limit exists:

lim
x→∞

h(x)Jf(x) = h(0+)Jf(0+)− [〈f, k〉 − 〈g, h〉]. (2.3.2)

Lemma 2.21. The minimal relation R0 is given by

R0 = {(f, g) ∈ R : f(0+) = 0, lim
x→∞

f ∗(x)Jh(x) = 0 for all (h, k) ∈ R}.
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Proof. By Lemma 2.20, we get

{(f, g) ∈ R : f(0+) = 0, lim
x→∞

f ∗(x)Jh(x) = 0 for all (h, k) ∈ R} ⊂ R0.

On the other hand let (f, g) ∈ R0. By Lemma 2.19, for any u ∈ C2 there exists

(φ, ψ) ∈ R such that φ has compact support and φ(0+) = c. So

0 = 〈f, ψ〉 − 〈g, φ〉

= lim
x→∞

f ∗(x)Jφ(x)− φ(0+)Jf(0+)

= uJf(0+).

This implies that f(0+) = 0. This would also forces that

lim
x→∞

f ∗(x)Jh(x) = 0 for all (h, k) ∈ R.

Remark 2.22. For fixed z ∈ C, the dimension of the solution space of system

(0.0.3) is two.

Lemma 2.23. The defect index β(R0) of the minimal relation R0 is equal to the

number of linearly independent solutions of the system (0.0.3) of whose class lie

in L2(H,R+) .

Proof. First we show that any two different solutions of the system (0.0.3) for

some fixed z ∈ C belongs to the different class of functions. Let u and v be any

two different solutions of the system (0.0.3), ie Ju′ = zHu and Jv′ = zHv. Then

J(u′ − v′) = zH(u− v). Suppose u and v lie on the same class so that

H(u− v) = 0, ⇒ J(u′ − v′) = 0, ⇒ u− v = C,

some constat C. But H(u− v) = HC = 0⇒ C = 0. It follows that u ≡ v. Next

we show that, any two solutions u, v are linearly independent if and only if their
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corresponding class [u], [v] are linearly independent. Suppose [u], [v] are linearly

independent and let u, v be any representative of [u], [v] respectively such that

au + bv = 0 for some a, b ∈ R. Then 0 = [au + bv] = a[u] + b[v] ⇒ a = 0, b = 0.

So u and v are linearly independent. Conversely suppose u and v are linearly

independent. If [u] = a[v] for some a ∈ R then u = ah for some h ∈ [v]. This

shows that h is also a solution of the system (0.0.3) that lie in [v] but this implies

that h ≡ v. Hence u = av which is a contradiction. This completes the proof of

the lemma.

Remark 2.24. In the limit-circle case, the defect indices of the minimal relation

R0 are (2, 2).

Since R0 has equal defect indices, by Theorem 2.7, it has self-adjoint exten-

sions. In order to describe self-adjoint extensions first consider the system (0.0.3)

on a large compact interval [0, N ] and define

T α,β = {(f, g) ∈ R : f1(0) sinα + f2(0) cosα = 0,

f1(N) sin β + f2(N) cos β = 0, α, β ∈ (0, π]}.

Lemma 2.25. T α,β is a self-adjoint relation.

Proof. Clearly T α,β is a symmetric relation because of the boundary conditions

at 0 and N . We will show that T α,β is a 2-dimensional extension of R0. Then by

Theorem 2.8, T α,β is a self-adjoint relation. By Lemma 2.19, for c =

− cosα

sinα


and w =

− cos β

sin β

 ∈ C2 there exists φ0 and φN in D(R) such that φ0(0+) = c

and φN(N−) = w and the support of φ0 and φN are contained in [0, N ]. Clearly

φ0 , φN are linearly independent but φ0 , φN are not in D(R0). This shows that
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D(R0) ⊂ D(R0) + L(φ0, φN) ⊂ D(T α,β). Because of the boundary conditions

at 0 and N , D(T α,β) is a 2-dimensional restriction of D(R). Hence D(T α,β) =

D(R0) + L(φ0, φN). Therefore, T α,β is a 2-dimensional extension of R0 so that

T α,β is a self-adjoint relation.

Let u(x, z) and v(x, z) be the solutions of the system (0.0.3) on [0, N ] with

the initial values

u(0, z) =

 1

0

 and v(0, z) =

 0

1

 .

For z ∈ C+ there is a unique m(z) such that f(x, z) = u(x, z) + m(z)v(x, z)

satisfying

f1(N, z) sin β + f2(N, z) cos β = 0.

The coefficient m(z) is called Weyl m function and is well explained in Chapter

3. Next, we describe the spectrum of T α,β. Let

T (x, z) =

u1(x, z) v1(x, z)

u2(x, z) v2(x, z)

 , T (0, z) =

1 0

0 1


and define

wα(x, z) =
1

sinα +m(z) cosα
T (x, z)

 cosα

− sinα


Lemma 2.26. Using the notations above we have

f(x, z)wα(x, z̄)∗ − wα(x, z)f(x, z̄)∗ = T (x, z)JT (x, z̄)∗ = J.
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Proof. Here,

f(x, z)wα(x, z̄)∗

= T (x, z)

 1

m(z)

 (cosα,− sinα)
1

sinα +m(z) cosα
T (x, z̄)∗

=
1

sinα +m(z) cosα
T (x, z)

 cosα − sinα

m(z) cosα −m(z) sinα


 0 1

−1 0

 JT (x, z̄)∗

=
1

sinα +m(z) cosα
T (x, z)

 sinα cosα

m(z) sinα m(z) cosα

 JT (x, z̄)∗.

wα(x, z)f(x, z̄)∗

=
1

sinα +m(z) cosα
T (x, z)

 cosα

− sinα

 (1,m(z))T (x, z̄)∗

=
1

sinα +m(z) cosα
T (x, z)

 cosα

− sinα

 (1,m(z))

 0 1

−1 0

 JT (x, z̄)∗

=
1

sinα +m(z) cosα
T (x, z)

 cosα m(z) cosα

− sinα −m(z) cosα


 0 1

−1 0

 JT (x, z̄)∗

=
1

sinα +m(z) cosα
T (x, z)

−m(z) cosα cosα

m(z) sinα − sinα

 JT (x, z̄)∗.
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Then

f(x, z)wα(x, z̄)∗ − wα(x, z)f(x, z̄)∗

=
1

sinα +m(z) cosα
T (x, z)

sinα +m(z) cosα 0

0 sinα +m(z) cosα

 JT (x, z̄)∗.

= T (x, z)JT (x, z̄)∗

= J.

Lemma 2.27. Let z ∈ Γ(T α,β) then (T α,β − z)−1 is a bounded linear operator

and is defined by

(T α,β − z)−1h(x) =

∫ N

0

G(x, t, z)H(t)h(t)dt,

where G(x, t, z) =

 f(x, z)wα(t, z̄0)∗ if 0 < t ≤ x

wα(t, z̄)f(x, z̄0) if x < t ≤ N.

Proof. Let y(x, z) =
∫ N

0
G(x, t, z)H(t)h(t)dt. We show that y(x, z) solves the

inhomogeneous equation

Jy′ = zHy −Hh

for a.e. x > 0. Here

y(x, z) =

∫ x

0

f(x, z)wα(t, z̄)∗H(t)h(t)dt+

∫ N

x

wα(x, z)f(t, z̄)∗H(t)h(t)dt

and Jf ′ = zHf, Jw′α = zHwα. Then on differentiation we get,

y′(x, z) = f(x, z)wα(x, z̄)∗H(x)h(x) + f ′(x, z)

∫ x

0

wα(t, z̄)∗H(t)h(t)dt

−wα(x, z)f(x, z̄)∗H(x)h(x) + w′α(x, z)

∫ N

x

f(t, z̄)∗H(t)h(t)dt.

34



Then

Jy′(x, z) = Jf(x, z)wα(x, z̄)∗H(x)h(x) + Jf ′(x, z)

∫ x

0

wα(t, z̄)∗H(t)h(t)dt

−Jwα(x, z)f(x, z̄)∗H(x)h(x) + Jw′α(x, z)

∫ N

x

f(t, z̄)∗H(t)h(t)dt

= Jf(x, z)wα(x, z̄)∗H(x)h(x) + zHf(x, z)

∫ x

0

wα(t, z̄)∗H(t)h(t)dt

−Jwα(x, z)f(x, z̄)∗H(x)h(x) + zHwα(x, z)

∫ N

x

f(t, z̄)∗H(t)h(t)dt.

= J
(
f(x, z)wα(x, z̄)∗ − wα(x, z)f(x, z̄)∗

)
Hh+

zH
(∫ x

0

f(x, z)wα(t, z̄)∗H(t)h(t)dt+

∫ N

x

wα(x, z)f(t, z̄)∗H(t)h(t)dt
)

= JJHh+ zHy

= zHy −Hh.

On the other hand, denote g(x, z) as

g(x, z) = (T α,β − z)−1h(x)

then by Theorem 2.9, h(x) = zu− v for some (u, v) ∈ T α,β so that (g, zg − h) ∈

T α,β. So g(x, z) also satisfies the inhomogeneous problem and g(x, z) ∈ D(T α,β),

it satisfies the boundary condition which implies that g(0, z) =

 cosα

− sinα

 c(z)

for some scalar c(z). We have

y(0, z) =
1

sinα +m(z) cosα

 cosα

− sinα

 〈f(x, z̄), h〉
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Now

〈f(., z̄), h〉 = 〈f(., z̄), h〉 − 〈f(., z̄), zg〉+ 〈f(., z̄), zg〉

= 〈f(., z̄), h− zg〉+ z〈f(., z̄), g〉

= −
∫ N

0

f(x, z̄)∗H(zg − h)dx+ z

∫ N

0

f(x, z̄)∗Hgdx

= −
∫ N

0

f(x, z̄)∗Jg′dx−
∫ N

0

f ′(x, z̄)∗Jgdx

= f(0, z̄)∗Jg(0, z)− f(N, z̄)∗Jg(N, z).

Since both f(x, z) and g(x, z) satisfies the same boundary condition at N,

f(N, z̄)∗Jg(N, z) = 0. Now

f(0, z̄)∗Jg(0, z) = (1,m(z))

0 −1

1 0


 cosα

− sinα

 c(z).

So

y(0, z) =
1

sinα +m(z) cosα

 cosα

− sinα

 (1,m(z))

0 −1

1 0


 cosα

− sinα

 c(z)

=
1

sinα +m(z) cosα

 cosα

− sinα

 (m(z),−1)

 cosα

− sinα

 c(z)

=

 cosα

− sinα

 c(z)

= g(0, z).

By uniqueness we must have, g(x, z) = y(x, z). We have already shown in

Theorem 2.2 that (T α,β − z)−1 is a bounded linear operator.
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Now define a map V : L2(H, [0, N ])→ L2(I, [0, N ]) by

V y = H
1
2 (x)y(x).

Here H
1
2 (x) is the unique positive semi-definite square root of H(x). Then V is

an isometry and hence maps L2(H, [0, N ]) unitarily onto the range

R(V ) ⊂ L2(I, [0, N ]). Define an integral operator L on L2(I, [0, N ]) as

(Lf)(x) =

∫ N

0

L(x, t)f(t)dt, L(x, t) = H
1
2 (x)G(x, t)H

1
2 (t).

The kernel L is square integrable since∫ N

0

∫ N

0

‖L∗L‖dxdt ≤
∫ N

0

∫ N

0

‖V G∗‖‖(V G)∗‖dxdt

≤
∫ N

0

∫ N

0

‖G∗‖‖G‖dxdt <∞.

So L is a Hilbert-Schmidt operator and thus compact.

Since L(x, t) = L∗(t, x),L is also self-adjoint.

Lemma 2.28 ([15]). Let f ∈ L2(I, [0, N ]), λ 6= 0, then the following statements

are equivalent:

1. Lf = λ−1f.

2. f ∈ R(V ), and the unique y ∈ L2(H, [0, N ]) with V y = f solves (T α,β −

z)−1y = λy.

Proof. For all g ∈ L2(I, [0, N ]) we have,

(Lg)(x) = H
1
2 (x)w(x) where w(x) =

∫ N

0

G(x, t)H
1
2 (t)g(t)dt,

lies in L2(H, [0, N ]). Then R(L) ⊂ R(V ). Now if (1) holds then f = λLf ∈ R(V ).

So f = V (y) for unique y ∈ L2(H, [0, N ]) and

f(x) = H
1
2 (x)y(x) = λLy(x) = λH

1
2 (x)

∫ N

0

G(x, t)H(t)y(t)dt
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for a.e.x ∈ [0, N ]. In other words,

H
1
2 (x)

(
y(x)− λ

∫ N

0

G(x, t)H(t)y(t)dt
)

= 0.

Conversely if (2) holds,

λy =

∫ N

0

G(x, t)H(t)y(t)dt

then H
1
2 (x)y = 1

λ

∫ N
0
H

1
2 (x)G(x, t)H(t)y(t)dt.

Lemma 2.29. Let z ∈ C. For any λ 6= z, if (f, λf) ∈ T α,β then f solves (T α,β−

z)−1y = 1
λ−zy. Conversely, if y ∈ L2(H, [0, N ]) and y solves (Tα,β − z)−1y = λy

then (y, (z + 1
λ
)y) ∈ T α,β.

Proof. Let (f, λf) ∈ T α,β then (f, λf − zf) ∈ (T α,β − z). It follows that

((λ− z)f, f) ∈ (T α,β − z)−1 ⇒
(
f,

1

(λ− z)

)
∈ (T α,β − z)−1.

This means that f solves

(T α,β − z)−1y =
1

λ− z
y.

Conversely suppose y ∈ L2(H, [0, N ]) and y solves

(T α,β − z)−1y = λy.

That is (y, λy) ∈ (T α,β−z)−1 so that (λy, y) ∈ (T α,β−z). So there is (f, g) ∈ T α,β

such that λy = f and

g − zf = y ⇒ g = y + zλy.

Hence (λy, y + zλy) ∈ T α,β. It follows that
(
y, (z + 1

λ
y)
)
∈ T α,β.
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By Lemma 2.28, we see that there is a one to one correspondence of eigenvalues

(eigenfunctions) for the operator L and (T α,β − z)−1. As L is compact operator,

it has only discrete spectrum consisting of only eigenvalues. Since (T α,β − z)−1

is unitarily equivalent with L �R(V ), that is

V −1L �R(V ) V = (T α,β − z)−1,

(T α,β − z)−1 has only discrete spectrum consisting of only eigenvalues. Then by

Theorem 2.15, T α,β has only discrete spectrum. By Lemma 2.29, the spectrum

of T α,β consists only eigenvalues.

We would like to extend this idea over the half line R+. First note that we

are considering the limit-circle case of the system (0.0.3). That implies that

the deficect indices of R0 are (2, 2). Suppose p ∈ D(R) r D(R0) such that

lim
x→∞

p(x)∗Jp(x) = 0. Such function clearly exists.

Consider the relation

T α,p = {(f, g) ∈ R : f1(0) sinα + f2(0, z) cosα = 0

and lim
x→∞

f(x)∗Jp(x) = 0}.

Lemma 2.30. T α,p defines a self-adjoint extension of R0.

Proof. Clearly the relation T α,p is a symmetric relation. Also because of the

boundary conditions, it is a 2-dimensional restriction of R. On the other hand,

let u0(x) = u(x) and u0(x) = 0 near the neighborhood of∞ ie lim
x→∞

u0(x) = 0, and

p0(x) = 0 in the neighborhood of 0 and p0(x) = f(x) otherwise. Then u0, p0 /∈

D(R0) and are linearly independent. Moreover, D(R0) +L(u0, p0) ⊂ D(T α,p). It

follows that

D(T α,p) = D(R0) + L(u0, p0).

39



So D(T α,p) is a 2-dimensional extension of D(R0). Hence T α,p is a self-adjoint

relation.

Now we discuss the spectrum of T α,p. Let u(x, z) and v(x, z) be two linearly

independent solutions of the system (0.0.3) with

u(0, z) =

1

0

 , v(0, z) =

0

1

 .

Let z ∈ C+ and as above write f(x, z) = u(x, z) + m(z)v(x, z) ∈ L2(H,R+)

satisfying lim
x→∞

f(x, z)∗JP (x) = 0. Let T (x, z) =

u1 v1

u2 v2

 and

wα(x, z) =
1

sinα +m(z) cosα
T (x, z)

 cosα

− sinα

 .

Then as in Lemma 2.26 we have,

f(x, z)wα(x, z̄)∗ − wα(x, z)f(x, z̄)∗ = T (x, z)JT (x, z̄)∗ = J.

Lemma 2.31. Let z ∈ ρ(T α,p) then the resolvent operator (T α,p − z)−1 is given

by

(T α,p − z)−1h(x) =

∫ ∞
0

G(x, t, z)H(t)h(t)dt

where G(x, t, z) =

 f(x, z)wα(t, z̄)∗ if 0 < t ≤ x

wα(t, z̄)f(x, z̄) if x < t ≤ ∞

Proof. Let y(x, z) =
∫∞

0
G(x, t, z)H(t)h(t)dt then y solves the inhomogeneous

equation

Jy′ = zHy −Hh.

This is clear by differentiating

y(x, z) =

∫ x

0

f(x, z)wα(t, z̄)∗H(t)h(t)dt+

∫ ∞
x

wα(x, z)f(t, z̄)∗H(t)h(t)dt.
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On the other hand let g(x, z) = (T α,p − z)−1h(x), then by Theorem 2.9, h(x) =

zu− v for some (u, v) ∈ T α,p so that (g, zg − h) ∈ T α,p and hence g satisfies the

inhomogeneous equation. Since g ∈ D(T α,p),

g1(0, z) sinα + g2(0, z) cosα = 0, lim
x→∞

g∗(x, z)Jp(x, z) = 0.

We also have lim
x→∞

f ∗(x, z)Jg(x, z) = 0 and g(0, z) =

 cosα

− sinα

 c(z) for some

scalar c(z). But also we have

y(0, z) =
1

(m(z) cosα + sinα)

cosα

sinα

 〈f(z̄), h〉.

Here

〈f(z̄), h〉 = 〈f(z̄), h〉 − 〈f(z̄), zg〉 − 〈z̄f(z̄), g〉

= 〈f(z̄), h+ zg〉 − 〈z̄f(z̄), g〉

= f ∗(0, z̄)Jg(0, z)− lim
x→∞

f ∗(x, z)Jg(x, z)

= f ∗(0, z̄)Jg(0, z).

Hence y(0, z) = g(0, z). By uniqueness we have y(x, z) = g(x, z).

Lemma 2.32 ([15]). Let f ∈ L2(I, R+), λ 6= 0, then the following statements are

equivalent:

1. Lf = λ−1f.

2. f ∈ R(V ), and the unique y ∈ L2(H,R+) with V y = f solves (T α,p −

z)−1y = λy.

Proof. Similar to the proof of Lemma 2.28.
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Lemma 2.33. Let z ∈ C. For any λ 6= z, if (y, λy) ∈ T α,p then y solves

(T α,p− z)−1y = 1
λ−zy. Conversely, if y ∈ L2(H,R+) and y solves (Tα,p− z)−1y =

λy then (y, (z + 1
λ
)y) ∈ T α,p.

Proof. Similar to the proof of Lemma 2.29.

Now define a map V : L2(H,R+) → L2(I,R+) by V y = H
1
2 (x)y(x). V is

isometry and maps unitarily onto the range R(V ) ⊂ L2(I,R+).

Define an integral operator L on L2(I,R+) by

(Lg)(x) =

∫ ∞
0

L(x, t)g(t)dt, L(x, t) = H
1
2 (x)G(x, t, z)H

1
2 (t).

Then as before the kernel L is square integrable. This means that∫ ∞
0

∫ ∞
0

‖ L∗L ‖<∞.

Hence L is a Hilbert Schmidt a operator and so is a compact operator.

Again by Lemma 2.32, we have a one to one correspondence of eigenvalues

(eigenfunctions) for the operator L and (T α,p−z)−1. As L is compact operator, it

has only discrete spectrum consisting of only eigenvalues converging to 0. Since

(T α,p− z)−1 is unitarily equivalent with L �R(V ), that is V −1L �R(V ) V = (T α,p−

z)−1, (T α,p−z)−1 has only discrete spectrum consisting of only eigenvalues. Then

by Theorem 2.15, T α,p has only discrete spectrum. By Lemma 2.33, the spectrum

of T α,p consists of only eigenvalues.

Theorem 2.34. In the limit-circle case, the defect index β(R0, z) = dimN(R, z̄)

of R0 is constant on C.

Proof. SinceR0 is a symmetric relation, by Theorem 2.3, the defect index β(R0, z)

is constant on upper and lower half-planes. In the limit-circle case, if z is in up-

per or lower half-planes, β(R0, z) = 2. Suppose β(R0, λ) < 2 for some λ ∈ R.
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Since Γ(R0) is open, λ /∈ Γ(R0) and hence λ ∈ S(R0). Since for each α ∈ (0, π],

T α,p is self-adjoint extension of R0, λ ∈ S(T α,p) = σ(T α,p). In the limit-circle

case, σ(T α,p) consists of only eigenvalues. Therefore, λ is an eigenvalue for all

boundary conditions α at 0. However, this is impossible unless β(R0, λ) = 2.

Theorem 2.35. A canonical system (0.0.3) with trH ≡ 1 prevails limit-point

case.

Proof. Suppose it prevails the limit-circle case. By Theorem 2.34, the defect

index β(R0, z) = dimN(R, z̄) = 2 for all z ∈ C. In other words, for any

z ∈ C, all solutions of (0.0.3) are in L2(H,R+). In particular, the constant

solutions u(x) =

1

0

 and v(x) =

0

1

 of (0.0.3) when z = 0, are in L2(H,R+).

But this is not possible because

∫ ∞
0

u(x)∗H(x)u(x)dx+

∫ ∞
0

v(x)∗H(x)v(x)dx =∫ ∞
0

trH(x)dx =∞.
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Chapter 3

Remling’s theorem on canonical

systems

In this chapter, we will prove Remling’s theorem on canonical systems. We begin

with the Weyl theory of a canonical system in the following section.

3.1 Weyl theory of a canonical system

Let uα, vα be the linearly independent solutions of (0.0.3) with the initial values

uα(0, z) =

 cosα

− sinα

 and vα(0, z) =

 sinα

cosα

 .

For z ∈ C+, want to define mα(z) as the unique coefficient for which

fα = uα +mα(z)vα ∈ L2(H,R+).

Consider a compact interval [0, N ] and let z ∈ C+, define the unique coefficient

mβ
N(z) such that f(x, z) = u(x, z) +mβ

N(z)v(x, z) satisfying

f1(N, z) sin β + f2(N, z) cos β = 0.
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It follows from boundary condition f1(N, z) sin β + f2(N, z) cos β = 0 at N that

mβ
N(z) = −u1(N, z) sin β + u2(N, z) cos β

v1(N, z) sin β + v2(N, z) cos β
.

As z,N, β variesmβ
N(z) becomes a funtion of these arguments, and since u1, u2, v1, v2

are entire functions of z, mβ
N(z) is meromorphic function of z. Let

mβ
N(z) = −u1t+ u2

v1t+ v2

, t = tan β, t ∈ R ∪ {∞}.

This is a fractional linear transformation. As a function of t ∈ R, it maps real

line to a circle. So for fixed z ∈ C+, CN(z) = {mβ
N(z) : 0 ≤ β < π} is a circle.

For any complex number m ∈ C

m ∈ CN(z)⇔ Im
u2 +mv2

u1 +mv1

= 0

From this identity, the equation of the circle CN(z) is given by

|m− c|2 = r2, c =
WN(u, v̄)

WN(v̄, v)
, & r =

1

|WN(v̄, v)|
. (3.1.1)

Suppose f(x, z) = u(x, z) + mβ
N(z)v(x, z), then m = mβ

N is an interior of CN

if and only if

|m− c|2 < r2 ⇔ WN(f̄ , f)

WN(v̄, v)
< 0 (3.1.2)

Let us write τy = zy if and only if Jy′ = zH(x)y. Suppose f and g are

the solutions of (0.0.3) then we have the following identity, called the Green’s

Identity.∫ N

0

(f ∗H(x)τg − (τf)∗H(x)g(x))dx = W0(f̄ , g)−WN(f̄ , g) (3.1.3)
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Using the Green’s identity

WN(f̄ , f) = W0(f̄ , f)− 2i Imz

∫ N

0

f ∗(x)H(x)f(x)dx

= W0(ū+ m̄v̄, u+mv)− 2i Imz

∫ N

0

f ∗(x)H(x)f(x)dx

= m− m̄− 2i Imz

∫ N

0

f ∗(x)H(x)f(x)dx

= 2i Im m(z)− 2i Imz

∫ N

0

f ∗(x)H(x)f(x)dx.

WN(f̄ , f) = 2i Im m(z)− 2i Imz

∫ N

0

f ∗(x)H(x)f(x)dx. (3.1.4)

WN(v̄, v) = −2i Imz

∫ N

0

v∗(x)H(x)v(x)dx.

WN(f̄ , f)

WN(v̄, v)
=

2i Im m(z)− 2i Imz
∫ N

0
f ∗(x)H(x)f(x)dx

−2i Imz
∫ N

0
v∗(x)H(x)v(x)dx

=
− Im m(z) + Imz

∫ N
0
f ∗(x)H(x)f(x)dx

Imz
∫ N

0
v∗(x)H(x)v(x)dx

.

Hence from (3.1.2) we see that WN (f̄ ,f)
WN (v̄,v)

< 0 if and only if

− Imm(z)

Imz
+

∫ N

0

f ∗(x)H(x)f(x)dx < 0.

⇒
∫ N

0

f ∗(x)H(x)f(x)dx <
Imm(z)

Imz
.

Thus it follows that m is an interior of CN if and only if∫ N

0

f ∗(x)H(x)f(x)dx <
Imm(z)

Imz
(3.1.5)

and m ∈ CN(z) if and only if
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∫ N

0

f ∗(x)H(x)f(x)dx =
Im m(z)

Im z
. (3.1.6)

For z ∈ C+, the radius of the circle CN(z) is given by

rN(z) =
1

|WN(v̄, v)|
=

1

2 Im z
∫ N

0
v∗(x)H(x)v(x)dx

. (3.1.7)

Now let 0 < N1 < N2 <∞. Then if m is inside or on CN2∫ N1

0

f ∗(x, z)H(x)f(x, z)dx <

∫ N2

0

f(x, z)∗H(x)f(x, z)dx ≤ Im m

Im z

and therefore m is inside CN1 . Let us denote the interior of CN(z) by IntCN(z)

and suppose DN(z) = CN(z)∪ IntCN(z). These are called the Wyle Disks. These

Wyle Disks are nested, that is, DN+ε(z) ⊂ DN(z) for any ε > 0, from the following

identity

m ∈ DN(z)⇔
∫ N

0

f ∗(x)H(x)f(x)dx ≤ Im m(z)

Im z
.

From (3.1.7), we see that rN(z) > 0, and rN(z) decreases as N → ∞. So

lim
N→∞

rN(z) exists and

lim
N→∞

rN(z) = 0⇔ v /∈ L2(H,R+).

Thus for a given z ∈ C+ as N → ∞ the circles CN(z) converges either to a

circle C∞(z) or to a point m∞(z). If CN(z) converges to a circle, then its radius

r∞ = lim rN is positive and (3.1.7) implies that v ∈ L2(H,R+). If m̃∞ is any

point on C∞(z) then m̃∞ is inside any CN(z) for N > 0. Hence∫ N

0

(u+ m̃∞v)∗H(u+ m̃∞v) <
Im m̃∞

Im z

and letting N →∞ one sees that f(x, z) = u+ m̃∞v ∈ L2(H,R+). The same

argument holds if m̃∞ reduces to a point m∞. Therefore, if Im z 6= 0, there

always exists a solution of (0.0.3) of class ∈ L2(H,R+).
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In the case CN(z) → C∞(z) all solutions are in L2(H,R+) for Im z 6= 0

and this identifies the limit-circle case with the existence of the circle C∞(z) .

Correspondingly, the limit-point case is identified with the existence of the point

m∞(z). In this case CN(z) → m∞ there results lim rN = 0 and (3.1.7) implies

that v is not of class L2(H,R+). Therefore in this situation there is only one

linearly independent solution of class L2(H,R+).

In the limit-circle case, m ∈ CN if and only (3.1.6) holds. Since f(x, z) =

u(x, z) +mv(x, z), it follows that m is on C∞ if and only if∫ ∞
0

f(x, z)∗Hf(x, z)dx =
Imm(z)

Imz
. (3.1.8)

From (3.1.4), it follows that m is on the limit-circle if and only if lim
N→∞

WN(f̄ , f) =

0. For z ∈ C+, the following theorem has been proved.

Theorem 3.1 ([4]). 1. The limit-point case (r∞ = 0) implies that (0.0.3) has

precisely one L2(H,R+) solution.

2. The limit-circle case (r∞ > 0) implies all solutions of (0.0.3) are in L2(H,R+).

The identity (3.1.6) shows that mβ
N(z) are holomorphic functions mapping

upper half-plane to itself. The poles and zeros of these functions lie on the real

line and are simple.

Theorem 3.2 ([4]). In the limit-point case, the limit m∞(z) is a holomorphic

function mapping upper half-plane to itself.

Proof. From (3.1.1) we see that the center and radius of the circle C1 are contin-

uous functions of z for Im z > 0. Thus , since CN is interior to C1 for N > 1, it

follows that if z is restricted to compact subset K ⊂ C+ then the points mβ
N(z) on

CN are uniformly bounded as N →∞. The functions mβ
N(z) being meromorphic
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and bounded on K are analytic there. Hence by Cauchy’s theorem, the functions

mβ
N constitute an equicontinuous set on K, and mβ

N converges uniformly to m∞.

Being the uniform limit of analytic functions, m∞ itself is analytic on K and

hence on C+. Since m∞ is inside CN , it follows from (3.1.5) that Im m∞ > 0 for

Im z > 0.

In limit-circle case, each circle CN(z) is traced by the points m = mβ
N(z) as

β ranges over 0 ≤ β < π for fixed N and z. Let z0C+ be fixed. A point m̃∞(z0)

on the circle C∞(z0) is the limit-point of a sequence m
βj
Nj

(z) with Nj → ∞ as

j →∞.

Theorem 3.3 ([4]). Let m̃∞(z0) be a point on C∞(z0) and (Nj, βj) a sequence

such that mj(z0) = m
βj
Nj

(z0)→ m̃∞(z0). Then for all z ∈ C+,

lim
j→∞

mj(z) = m̃∞(z)

and m̃∞(z) is a holomorphic function mapping upper half-plane to itself.

Proof. Let

fj(x, z) = u(x, z) +mj(z)v(x, z). (3.1.9)

Applying the Green’s formula to fj(x, z) and f̄j(x, z0) and noting that both

fj(x, z) and f̄j(x, z0) satisfies the boundary condition at Nj we get,

mj(z)−mj(z0) = (z − z0)

∫ Nj

0

f̄j(x, z0)∗Hfj(x, z)dx. (3.1.10)

Using (3.1.9) and (3.1.10),

mj(z) =
mj(z0) + (z − z0)

∫ Nj
0

f̄j(x, z0)∗Hu(x, z)dx

1− (z − z0)
∫ Nj

0
f̄j(x, z0)∗Hv(x, z)dx

. (3.1.11)
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In the limit-circle case all the solutions of (0.0.3) are in L2(H,R+). Therefore, as

j →∞ , the holomorphic function of z whose value at z is given by∫ Nj

0

f̄j(x, z0)∗Hu(x, z)dx =

∫ Nj

0

(ū(x, z0) + m̄j(z0)v̄(x, z0))∗Hu(x, z)dx

which appears in the numerator of (3.1.11), tends to the limit∫ ∞
0

(ū(x, z0) + ¯̃m∞(z0)v̄(x, z0))∗Hu(x, z)dx. (3.1.12)

If z is restricted to some compact subset K of C+ the norm ‖u‖, ‖v‖ in L2(H,R+)

are uniformly bounded in K, Thus by Schwarz inequality the integral in (3.1.12)

are uniformly convergent in z over K. This implies that (3.1.12) defines an

analytic function of z. The same is true for the integral in the denominator of

3.1.11. Thus, as j →∞ , the holomorphic function mj tends to a limit m̃∞ which

is also a holomorphic function . The property Im m̃∞(z) > 0, z ∈ C+ follows

from (3.1.8) that Im m∞(z)
Im z

> 0.

In Chapter 2, we showed that trH ≡ 1 implies the limit-point case. By a

change of variable

t(x) =

∫ x

0

trH(s)ds. (3.1.13)

a canonical system (0.0.3) can be reduced to a system with trH ≡ 1 which imply

limit-point case. For if, H̃(t) = 1
trH(x)

H(x(t)) so that tr H̃(t) ≡ 1. Further, let

u(x, z) be a solution of

Ju′ = zHu

and put ũ(t, z) = u(x(t), z). Then ũ(t, z) solves

Jũ′ = zH̃ũ.
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Their corresponding Weyl m functions on [0, N ] are related as follows,

m̃β
N(z) = − ũ1(N, z) sin β + ũ2(N, z) cos β

ṽ1(N, z) sin β + ṽ2(N, z) cos β

= −u1(x(N), z) sin β + u2(x(N), z) cos β

v1(x(N), z) sin β + v2(x(N), z) cos β

= mβ
x(N)(z)

This shows that we get same Weyl circles even after changing the variable. The

m function m̃β
N(z) of new system is obtained by changing the point of boundary

condition from N to x(N) of original system.

From now onward we will consider a canonical system with trH ≡ 1.

3.2 Space of Hamiltonians.

We need to consider the space of Hamiltonians and a suitable topology on it so

that the space is compact. With the topology we have, we want to work with

Weyl m functions of the canonical systems. We will again use the ideas from [14].

Let M(R) denotes the set of Borel measures on R. Consider the space

VC = {µ ∈M(R) : |µ|(I) ≤ C.max{|I|, 1}for all intervals I ⊂ R}.

We would like to define a metric on VC . Let Cc(R) denotes the space of all con-

tinuous functions on R with compact support, the continuous functions vanishing

outside of a bounded interval. This space Cc(R) is complete with respect to the

‖.‖∞ norm. Pick a countable dense subset {fn : n ∈ N} ⊂ Cc(R), the continuous

functions of compact support, and let

ρn(µ, ν) =
∣∣∣ ∫ fnd(µ− ν)(x)

∣∣∣.
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Define a metric d as

d(µ, ν) =
∞∑
n=1

2−n
ρn(µ, ν)

1 + ρn(µ, ν)
.

Then
(
VC , d

)
is a compact space. Let

VC2×2 =
{
µ =

µ11 µ12

µ21 µ22

 ∈M(R)2×2 : µij ≥ 0 for i = j, µij = µji for all i, j ,

trµ(I) ≤ C.max{|I|, 1}, for all I ⊂ R
}
.

We now define a metric on VC2×2. Let

ρn(µ, ν) =
∑

1≤i,j≤2

∣∣∣ ∫ fnd(µij − νij)(x)
∣∣∣.

Then define d as

d(µ, ν) =
∞∑
n=1

2−n
ρn(µ, ν)

1 + ρn(µ, ν)
.

Clearly d is a metric on VC2×2. Also we have d(µj, µ)→ 0⇔
∫
f(x)dµj →

∫
f(x)dµ

for all f ∈ Cc(R). We show that
(
VC2×2, d

)
is compact.

Let µn =

µn11 µn12

µn21 µn22

 ∈ VC2×2 then, |µnij|(I) ≤ C.max{|I|, 1} for all I ⊂

R. So for each i, j, µnij ∈ VC . Since
(
VC , d

)
is compact, µnij has a convergent

subsequence µnkij . Since the convergence is equivalent between the spaces
(
VC2×2, d

)
and

(
VC , d

)
, we get a convergent subsequence µnj .

We now consider a canonical system with measure as Hamiltonian,

Ju′ = zµu, µ ∈ VC2×2. (3.2.1)

If I ⊂ R is an compact interval and B(I) denotes the space of all complex

valued bounded Borel measurable functions on I.Then B(I) is complete with
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respect to the metric given by ρ(f, g) = ||f − g||u where the norm on B(I) is

||f ||u = supx∈I |f(x)|. Let B(I)2 =
{
f =

f1

f2

 f1, f2 ∈ B(I)
}
. Clearly the

space B(I)2 is complete with respect to the metric given by ρ(f, g) = ||f − g||u

where ||f ||u = supx∈I |f1(x)|+ supx∈I |f2(x)|. Let f ∈ B(I)2, we call f a solution

to the equation (3.2.1) if and only if

J(u(x)− u(a+)) = z

∫
(a,x)

dµ(t)u(t) if x ≥ a ≥ 0 and

J(u(x)− u(a−)) = −z
∫

(x,a)

dµ(t)u(t) if x ≤ a ≤ 0.

In order to show the existence of a solution of the system (3.2.1), define a map

on B(I)2

Tu(x) = u(0)− zJ
∫ x

0

µ(t)u(t) ≤ 0.

and show that T is a contraction mapping.

‖Tu− Tv‖u = supx∈I

∣∣∣z ∫ x

0

(u1 − v1)dµ11 + (u2 − v2)dµ12

∣∣∣
+ supx∈I

∣∣∣z ∫ x

0

(u1 − v1)dµ21 + (u2 − v2)dµ22

∣∣∣
≤ supx∈I

[
|z|
∫ x

0

|u1 − v1|dµ11 + |z||u2 − v2|dµ12

+ supx∈I |z|
∫ x

0

|u1 − v1|dµ21 + |z||u2 − v2|dµ22

]
≤ c

2
supx∈I

[
supt∈[0,x]|u1 − v1|+ supt∈[0,x]|u2 − v2|

]
+
c

2
supt∈[0,x]

[
supt∈[0,x]|u1 − v1|+ supt∈[0,x]|u2 − v2|

]
≤ c

2

[
2supx∈I |u1 − v1|+ 2supx∈I |u2 − v2|

]
= c‖u− v‖u.
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This shows that T is a contraction mapping, so it has a unique fixed point

say u(x) in B(I)2 such that Tu(x) = u(x). So there is a solution in B(I)2 that

satisfy u(x) = u(0)− zJ
∫ x

0
µ(t)u(t).

Now consider the space

V2×2 =
{
µ ∈M(R)2×2 : dµ = H(x)dx,H(x) ≥ 0, trH(x) ≡ 1, H(x) ∈ L1

loc

}
.

Then
(
V2×2, d

)
is compact. For if µn → µ then µ ∈ V2×2 since

∫
f(x)

(
(0, 1)dµn

0

1

+ (1, 0)dµn

1

0

)→ ∫
f(x)

(
(0, 1)dµ

0

1

+ (1, 0)dµ

1

0

)

⇒
∫
f(x)d(µ11 + µ22) =

∫
f(x)d(x) for all f(x) ∈ Cc(R).

So (µ11 + µ22)(B) = |B| for any Borel set B which implies thatµ11 + µ22, µ22

are absolutely continuous measures and hence µij are all absolutely continuous.

Hence µ ∈ V2×2. Moreover, trµ ≡ 1.

As already seen that trH(x) ≡ 1 implies the limit-point case. This means

that for z ∈ C+ there exist (unique up to a factor) solutions f±(x, z) = u(x, z)±

m±(z)v(x, z) of (3.2.1) such that f− ∈ L2(H,R−), f+ ∈ L2(H,R+) where u(x, z)

and v(x, z) are any two linearly independent solutions of (3.2.1). Let x ∈ R, and

consider boundary conditions at x, u1(x, z) = v2(x, z) = 1, v1(x, z) = u2(x, z) =

0, the Titchmarsh-Weyl m functions of the system (3.2.1) are alternately defined

as m±(x, z) = ±f±2 (x,z)

f±1 (x,z)
. Recall that m±(x, z) are Herglotz functions. So the

boundary values of these m functions are defined by m±(x, t) ≡ limy→0m±(x, t+

iy).

Definition 3.4. Let A ⊂ R be a Borel set. We call a Hamiltonian µ ∈ V2×2
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reflectionless on A if

m+(x, t) = −m−(x, t) (3.2.2)

for almost every t ∈ A and for some x ∈ R.

The set of reflectionless hamiltonian on A is denoted by R(A). Notice that

the equation (3.2.2) is independent of the choice of boundary condition and the

choice of a point. Suppose (3.2.2) is true for a boundary condition α at 0.

vα(0, z) =

 cosα

sinα

 and uα(0, z) =

 sinα

− cosα

 .

Let mα
+(z) be such that f(x, z) = uα(x, z) + mα

+(z)vα(x, z) ∈ L2(H,R+). Sup-

pose Tα(x, z) =

uα1(x, z) vα1(x, z)

uα2(x, z) vα2(x, z)

 with Tα(0, z) =

 sinα cosα

− cosα sinα

 and

Tβ(x, z) =

uβ1(x, z) vβ1(x, z)

uβ2(x, z) vβ2(x, z)

 with Tβ(0, z) =

 sin β cos β

− cos β sin β

 .

Then Tα(x, z) = Tβ(x, z)

 cos γ sin γ

− sin γ cos γ

, where γ = β − α.

Here mα
+(z) ∈ C is a unique number such that

Tα(x, z)

 1

mα
+(z)

 ∈ L2(H,R+)

⇒ Tβ(x, z)

 cos γ sin γ

− sin γ cos γ


 1

mα
+(z)

 ∈ L2(H,R+)

⇒ Tβ(x, z)

 cos γ +mα
+(z) sin γ

− sin γ +mα
+(z) cos γ

 ∈ L2(H,R+)

⇒ (cos γ +mα
+(z) sin γ)Tβ(x, z)

 1

− sin γ+mα+(z) cos γ

cos γ+mα+(z) sin γ

 ∈ L2(H,R+).
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Since mβ
+(z) be the unique coefficient such that

Tβ(x, z)

 1

mβ
+(z)

 ∈ L2(H,R+) we must have,

mβ
+(z) =

− sin γ+mα+(z) cos γ

cos γ+mα+(z) sin γ

⇒ mβ
+(z) =

cos γ − sin γ

sin γ cos γ

mα
+(z). On the other hand,

Tα(x, z)

 1

−mα
−(z)

 ∈ L2(H,R−)

⇒ Tβ(x, z)

 cos γ sin γ

− sin γ cos γ


 1

−mα
−(z)

 ∈ L2(H,R−), γ = β − α

⇒ Tβ(x, z)

 cos γ −mα
−(z) sin γ

− sin γ −mα
−(z) cos γ

 ∈ L2(H, (−∞, 0])

⇒ (cos γ −mα
−(z) sin γ)Tβ(x, z)

 1

− sin γ−mα−(z) cos γ

cos γ−mα−(z) sin γ

 ∈ L2(H,R−)

⇒ −mβ
−(z) =

− sin γ −mα
−(z) cos γ

cos γ −mα
−(z) sin γ

=

 cos γ sin γ

− sin γ cos γ

mα
−(z).

Let

P+(0, z) =

cos γ − sin γ

sin γ cos γ

 and P−(0, z) =

cos γ − sin γ

sin γ cos γ

 ,

so that

mβ
−(z) = P−(0, z)mα

−(z), mβ
+(z) = P+(0, z)mα

+(z) and1 0

0 −1

P+(0, z) = P−(0, z)

1 0

0 −1

 .
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Now

−mβ
+(t) =

1 0

0 −1

mβ
+(t)

=

1 0

0 −1

P+(0, z)mα
+(t)

=

1 0

0 −1

P+(0, z)(−mα
−(t))

=

1 0

0 −1

P+(0, z)

1 0

0 −1

mα
−(t)

=P−(0, z)mα
−(t)

=mβ
+(t)

⇒ mβ
+(t) = −mβ

−(t).

Similarly, equation (3.2.2) is independent of the choice of the point. Suppose

T0(x, z) =

u1(x, z) v1(x, z)

u2(x, z) v2(x, z)


be solutions with the boundary conditions at 0. Then

T0(x, z) = Ta(x, z)

u1(a, z) v1(a, z)

u2(a, z) v2(a, z)

 .

Suppose m±(0, z) ∈ C be the unique coefficients such that

f±(x, z) = u(x, z)±m±(0, z)v(x, z) ∈ L2(H,R±).
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In another way, T0(x, z)

 1

±m±(0, z)

 ∈ L2(H,R±).

⇒ Ta(x, z)

u1(a, z) v1(a, z)

u2(a, z) v2(a, z)


 1

±m±(0, z)

 ∈ L2(H,R±).

⇒ m±(a, z) =
u2(a, z)±m±(0, z)v2(a, z)

u1(a, z)±m±(0, z)v1(a, z)
.

=

 v2(a, z) ±u2(a, z)

±v1(a, z) u1(a, z)

m±(0, z).

Let T±(z) =

 v2(a, z) ±u2(a, z)

±v1(a, z) u1(a, z)

, then

1 0

0 −1

T+(z) = T−(z)

1 0

0 −1

 .

Now

−m+(a, t) =

1 0

0 −1

m+(a, t)

=

1 0

0 −1

T+(z)m+(0, t)

=

1 0

0 −1

T+(z)(−m−(0, t))

=

1 0

0 −1

T+(z)

1 0

0 −1

m−(0, t)

=T−(z)m−(0, t)

=m−(a, t)

⇒ m+(a, t) = −m−(a, t).

Now by the Herglotz representation theorem the Weyl m functions m(x, z) have
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unique integral representation of the form,

m(x, z) = a+ bz +

∫
R

( 1

t− z
− t

t2 + 1

)
dν(t), z ∈ C+

for some positive Borel measure ν on R with
∫

1
t2+1

dν < ∞ and numbers a ∈

R, b ≥ 0.We call the measure ν in above integral representation ofm(z) = m(0, z)

as spectral measure of the system (0.0.3).

The shift by x of a measure µ on R, denoted by Sxµ, is defined by∫
R
f(t)d(Sxµ) =

∫
R
f(t− x)dµ(t).

For µ ∈ V2×2, dµ = H(t)dt then this reduces to the shift map (SxH)(t) = H(x+t).

Definition 3.5. The ω limit set of the Hamiltonian µ ∈ V2×2 under the shift

map is defined as,

ω(µ) = {ν ∈ V2×2 : there exist xn →∞ so that d(Sxnµ, ν)→ 0}.

Note that ω(µ) ⊂ V2×2 is compact, non-empty and S is a homeomorphism on

ω(µ). Moreover, ω(µ) is connected.

3.3 Remling’s theorem on canonical systems

We are now ready to state the Remling’s theorem on canonical systems on R+.

Theorem 3.6 (Remling’s Theorem). Let µ ∈ V2×2 be a (half line) Hamiltonian,

and let Σac be the essential support of the absolutely continuously part of the

spectral measure. Then

ω(µ) ⊂ R(Σac).

In order to prove this theorem we use the techniques from [13, 14].
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Let µ ∈ V2×2 is a whole line Hamiltonian. We write µ± for the restrictions of

µ to R±.

Denote the set of restrictions by V± = {µ± : µ ∈ V2×2} and M± = mµ
±(0, z)

so {M± = mµ
±(0, z)} ⊂ H.

Lemma 3.7. The maps V± 7−→ H, µ± 7−→ M± = mµ
±(0, z) are homeomorphism

onto their images.

Proof. We have µ+ = H+(x)dx. By Theorem 1 in [18], for every canonical system

with Hamiltonian H+ with trH(x)+ ≡ 1 there is unique m+(0, z). Conversely

for every m+ ∈ H there exists a unique Hamiltonian H+ on R+ such that m+

is a Weyl coefficient of the canonical system corresponding to H+. So µ+ 7→

M+ is one-to-one. Next we show that the map is homeomorphism. Suppose

µn → µ in V+. That is Hn(x)dx → H(x)dx for some Hamiltonian Hn(x), H(x).

Let un be the solutions of canonical systems with Hamiltonian Hn(x). Let K

be a compact subset of C+ contained in a ball B(0, R). We claim that un has

convergent subsequence on [0, N ]. Suppose a subinterval [0, η] be such that η =

1
8R
. Define the operators Tn : C[0, η] −→ C[0, η] by

Tnu(x) = −zJ
∫ x

0

Hn(t)u(t)dt.

Since

‖Tn‖ = sup
‖u‖∞=1

‖ − zJ
∫ x

0

Hn(t)u(t)dt‖

≤|z|‖u‖∞
∫ x

0

|Hn(t)|dt

≤ R4η = R4
1

8R
=

1

2
,

‖Tn‖ are uniformly bounded. So the Neumann series (1 − Tn)−1 =
∞∑
k=0

T kn is
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convergent. Here un(x) = (1− Tn)−1(u0), u0 =

1

0

 .

‖un‖ ≤ ‖(1 − Tn)−1‖‖u0‖ = ‖(1 − Tn)−1‖ ≤
∞∑
k=0

‖Tn‖k =
∞∑
k=0

(
1

2
)k = 2. So

{un(x) = n ∈ N} is uniformly bounded in n on [0, η] and locally uniformly in

z. Similar argument shows that un remains bounded on [η, η + p] so that un are

eventually bounded uniformly on [0, N ]. Moreover, un are equicontinuous. Let

ε > 0 be given. Since un are solutions for the system (0.0.3) we have,

un(x)− un(x0) = −zJ
∫ x

x0

Hn(t)un(t)dt.

‖un(x)− un(x0)‖ ≤ |z|‖un‖
∫ x

x0

|Hn(t)|dt

= |z|‖un‖4η‖x− x0‖

≤ R2.4η‖x− x0‖.

Let δ = ε
8Rη

then ‖un(x) − un(x0)‖ < ε, if ‖x − x0‖ < δ for all n . By Arzella-

Ascolli Theorem {un} has convergent subsequence say unj → u. We show that u

satisfies the canonical system corresponding to H(x).

unj(x)− unj(0) = −zJ
∫ x

0

Hnj(t)unj(t)dt

= −zJ
∫ x

0

Hnj

(
(t)unj(t)− u(t)

)
dt− zJ

∫ x

0

Hnj(t)u(t)dt.

Since ‖ −zJ
∫ x

0
Hnj

(
(t)unj(t)− u(t)

)
dt ‖≤ |z|‖Hnj‖L1(0,x)‖unj − u‖ ,

lim
j→∞
−zJ

∫ x

0

Hnj

(
(t)unj(t) − u(t)

)
dt = 0. Hence, taking the limit as j → ∞ we

get, u(x) − u(0) =
∫ x

0
H(t)u(t)dt. So µn → µ and so un → u ⇒ mµn

+ (0, z) →

m+(0, z). This proves the continuity of the map on the interval [0, N ]. Inverse of

a continuous map on compact set is also continuous. Hence the map is homeo-

morphic. Exactly, the same way µ− ←→M− is also a homeomorphism.
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For z = x+ iy ∈ C+, ωz(S) = 1
π

∫
S

y
(t−x)2+y2dt, denotes the harmonic measure

in the upper half-plane. For any G ∈ H and t ∈ R we define ωG(t)(S) as the limit

ωG(t)(S) = lim
y→0+

ωG(t+iy)(S).

This limit exists almost everywhere on R because the map z 7→ ωz(S) is a non-

negative harmonic function on C+. Note that if Im G(t) > 0, this limit coincides

with the direct definition of ωG(t)(S) where we just substitute G(t):

ωG(t)(S) = lim
y→0+

ωG(t+iy)(S)

= lim
y→0+

1

π

∫
S

Im G(t+ iy)

(u− Re G(t+ iy))2 + ( Im G(t+ iy))2
du.

Then by dominated convergence theorem we have

ωG(t)(S) =
1

π

∫
S

Im G(t)

(u− Re G(t))2 + ( Im G(t))2
du.

On the other hand, if G(t) is real, then

lim
y→0+

ωG(t+iy)(S) =
{ 1 : G(t) ∈ S̄

0 : G(t) /∈ S̊
. (3.3.1)

So for a nice set S, ωG(t+iy)(S) is essentially χS(G(t)) if G(t) ∈ R.

Lemma 3.8 ([13]). Let A ⊂ R be a Borel set with |A| <∞. Then

lim
y→0+

sup
F∈H;S⊂R

∣∣∣ ∫
A

ωF (t+iy)(S)dt−
∫
A

ωF (t)(S)dt
∣∣∣ = 0

.

Proof. First observe that

ωF (z)(S) =

∫ ∞
−∞

ωF (u)(S)dωz(u) (3.3.2)
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for all Borel sets S ⊂ R and z ∈ C+. For this observation, it suffices to show that

both sides of (3.3.2) are bounded, non-negative harmonic function of z ∈ C+ with

the same boundary values ωF (t)(S) for a.e t ∈ R. Clearly they are bounded and

non-negative. For any z = t + iy ∈ C+, limy→0+ ωF (z)(S) = ωF (t)(S) a.e. t ∈ R

and ∫ ∞
−∞

ωF (u)(S)dωz(u) =

∫ ∞
−∞

ωF (u)(S)
1

π

y

(u− t)2 + y2
du = ωF (t)(S).

Since z 7→ ωF (z)(S) is non-negative harmonic function, both sides of (3.3.2) are

identical. For fixed F the statement follows from (3) of Theorem 3.10. By (3.3.2),∫
A

ωF (t)(S)dt =

∫
A

[ ∫ ∞
−∞

ωF (u)(S)dωt+iy)(u)
]
dt

=

∫
A

∫ ∞
−∞

ωF (u)(S)
1

π

y

(u− t)2 + y2
dudt

=

∫ ∞
−∞

ωF (u)(S)

∫
A

1

π

y

(u− t)2 + y2
dtdu

=

∫ ∞
−∞

ωu+iy(A)ωF (u)(S)du.

Therefore,∣∣∣ ∫
A

ωF (t+iy)(S)dt−
∫
A

ωF (t)(S)dt
∣∣∣ =

∣∣∣ ∫ ∞
−∞

ωF (t)(S)(ωt+iy(A)− χA(t))dt
∣∣∣......(I)

. We know that, 0 ≤ ωF (t)(S) ≤ 1. For t ∈ Ac, ωt+iy(A) − χA(t) ≥ 0 and for

t ∈ A, ωt+iy(A)− χA(t) ≤ 0.

I ≤
∫
A

(ωt+iy(A)− χA(t))dt+

∫
Ac

(ωt+iy(A)− χA(t))dt

=
∣∣∣ ∫

A

(ωt+iy(A)− 1)dt+

∫
Ac

(ωt+iy(A))dt
∣∣∣

≤ max
{∫

Ac
(ωt+iy(A))dt,

∫
A

(ωt+iy(A
c))dt

}
= max

B=A,Ac

∫
B

(ωt+iy(B
c))dt.
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But by Fubini∫
A

(ωt+iy(A
c))dt =

∫
A

∫
Ac

1

π

y2

(u− t)2 + y2
dudt =

∫
Ac

(ωt+iy(A))dt.

Hence I ≤ εA(y) =
∫
Ac

(ωt+iy(A))dt, a quantity that is independent of both F

and S. Next we show that εA(y) → 0 as y → 0+. By Lebesgue’s differentiation

theorem we have that |Ac ∩ (t− h, t+ h)| = ◦(h) for a.e. t ∈ A. For such a t, we

obtain that

ωt+iy(A
c) ≤ 1

π

∫
Ac∩(t−Ny,t+Ny)

y

(s− t)2 + y2
ds+

1

π

∫
|s−t|≥Ny

y

(s− t)2 + y2
ds

= N ◦ (1) + 1− 2

π
arctanN, y → 0 + .

By taking y small enough and noting that N > 0 is arbitrary, we see that

ωt+iy(A
c)→ 0 for a.e. t ∈ A and thus εA(y)→ 0. This completes the proof.

Definition 3.9. If Fn, F ∈ H, we say that Fn → F in value distribution if

lim
n→∞

∫
A

ωFn(t)(S)dt =

∫
A

ωF (t)(S)dt (3.3.3)

for all Borel set A, S ⊂ R, |A| <∞.

Notice that if the limit in the value distribution exists, it is unique : Suppose

Fn → F and Fn → G in value distribution . That is

lim
n→∞

∫
A

ωFn(t)(S)dt =

∫
A

ωF (t)(S)dt and lim
n→∞

∫
A

ωFn(t)(S)dt =

∫
A

ωG(t)(S)dt

for all Borel sets A, S ⊂ R, |A| < ∞. Then for A = B(r, t), r > 0. Let f(t) =

ωF (t)(S) − ωG(t)(S) we have
∫
A
f(t)dt = 0. Since f ∈ L1

loc, by Lebesgue differen-

tiation theorem for almost every t ∈ R, lim
r→0

1

|B(r, t)|

∫
B(r,t)

f(s)ds = f(t). This

implies that for fixed S, ωF (t)(S) = ωG(t)(S) a. e. and hence F (t) = G(t) for

a. e. on R. Since Herglotz functions are uniquely determined by their boundary

values on a set of positive measure, it follows that F = G on C+.
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Theorem 3.10 ([13]). Suppose Fn, F ∈ H, and let an, a, and νn, ν be the as-

sociated numbers and measures, respectively, from the integral representation of

Herglotz function. Then the following are equivalent:

1. Fn(z)→ F (z) uniformly on compact subsets of C+;

2. an → a and νn → ν weak * on M(R∞), that is,

lim
n→∞

∫
R∞

f(t)dνn(t) =

∫
R∞

f(t)dν(t)

for all f ∈ C(R∞);

3. Fn → F in value distribution.

4. 3.3.3 hold for all open, bounded intervals A = (a, b), S = (c, d).

Proof. (1⇔ 2) : Observe that F (i) = a+ iν(R∞), so if (1) holds then an → a and

the νn form a bounded sequence in M(R∞). By the Banach-Alaoglu Theorem,

we can extract a weak * convergence subsequence νnj → µ. We can then pass to

the limit in the Herglotz representation 1.0.1 of the Fnj and use the uniqueness

of such representation that to conclude that µ = ν. In particular, this is the only

limit point of νn and thus it was not necessary to pass a subsequence.

Conversely, suppose (2) holds. Since for fixed z ∈ C, f(t) = 1+tz
1−z is continuous

function on R∞ , in the Herglotz representation we can pass to the limit and get

the pointwise convergence. In order to see the locally uniform convergence, we

use the the normal family argument and we obtain (1).

(4 → 3) : Suppose (4) holds. We show that if (3.3.3) holds for for all A = (a, b)

and fixed S then (3.3.3) holds for all Borel sets A of finite Lebesgue measure.

Fix S, and to simplify the notation, abbreviate ωFn(t)(S) = ωn, ωF (t)(S) = ω.
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Suppose that (3.3.3) holds for all A = (a, b). Then if we are given disjoint intervals

Ij with | ∪ Ij| <∞, then by dominated and monotone convergence,∫
∪Ij

ωndt =
∑
j

∫
Ij

ωndt→
∑
j

∫
Ij

ωdt =

∫
∪Ij

ωndt

because 0 ≤ ωn ≤ 1, thus 0 ≤
∫
Ij
ωndt ≤ |Ij| and

∑
|Ij| < ∞. Let A be a Borel

set of finite measure. Then by the regularity of Lebesgue measure, for given ε > 0

we can find disjoint open intervals Ij so that

A ⊂ ∪Ij, | ∪ Ij r A| < ε.

Then ∫
∪Ij

ωndt− ε <
∫
A

ωndt ≤
∫
∪Ij

ωndt,∫
A

ωdt ≤
∫
∪Ij

ωdt <

∫
A

ωdt+ ε.

As above we have, ∫
∪Ij

ωndt→
∫
∪Ij

ωdt.

So

lim sup

∫
A

ωndt ≤ lim sup

∫
∪Ij

ωndt =

∫
∪Ij

ωdt <

∫
A

ωdt+ ε,

lim inf

∫
A

ωndt ≥ lim inf

∫
∪Ij

ωndt− ε =

∫
∪Ij

ωdt− ε ≥
∫
A

ωdt− ε.

We see that lim inf, lim sup
∫
A
ωndt both differ from

∫
A
ωdt by at most ε, but ε > 0

was arbitrary, so we obtain that∫
A

ωndt→
∫
A

ωdt

as desired.

(1→ 3) : Given F ∈ H let

F (y)(z) =
1 + yF (z)

y − F (z)
(y ∈ R∞).

66



F (y) ∈ H since

(1 + yF (z))(y − F (z))

|y − F (z)|2
=
y − y|F (z)|2 + y2F (z)− F (z)

|y − F (z)|2
,

Im F (y)(z) =
(1 + y2) Im F (z)

|y − F (z)|2
> 0.

Next we observe the Spectral Averaging formula from [3]. If A, S ⊂ R are Borel

sets, |A| <∞, then ∫
A

ωF (t)(S)dt =

∫
S

ρ(y)(A)
dy

1 + y2

where dρ(y)(t) = (1 + t2)χR(t)dν(y), and ν(y) is the measure from the Herglotz

representation of F (y).

∫
A

ωF (t)(S)dt =

∫
A

lim
u→0+

∫
S

1

π

Im F (t+ iu)

(y − Re F )2 + ( Im F )2
dydt

=

∫
A

lim
u→0+

∫
S

1

π
Im F (y)(t+ iu)

dy

(1 + y2)
dt(

since Im F (y)(z) =
(1 + y2) Im F (z)

|y − F (z)|2
)

=

∫
S

lim
u→0+

∫
A

1

π
Im F (y)(t+ iu)

dy

(1 + y2)
dt, ( by Fubini Theorem )

=

∫
S

lim
u→0+

∫
R

1

π
Im F (y)(t+ iu)χA

dy

(1 + y2)
dt

=

∫
S

ρ(y)(A)
dy

1 + y2
.

Since (4→ 3), we may assume that A = (a, b). Let R = max(|a|, |b|). Then

ρ(y)(A) ≤ (1 +R2)ν(y)(A) ≤ (1 +R2)ν(y)(R∞) = (1 +R2) Im F (y)(i).

Claim1 :

ρ(y)
n (A) ≤ C (n ∈ N, y ∈ R∞)
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Proof of the Claim 1 :

ρ(y)
n (A) ≤ (1 +R2) Im F (y)

n (i)

= (1 +R2)
(1 + y2) Im Fn(i)

|y − Fn(i)|2

= (1 +R2)
(1 + y2)

(y − an)2 + ( Im Fn(i))2
Im Fn(i)

= (1 +R2)
(1 + y2)

(y − an)2 + (νn(R∞))2
νn(R∞).

Since νn(R∞) → ν(R∞), νn(R∞) form a bounded sequence and (1+y2)
(y−an)2+(νn(R∞))2

is a continuous function of y on R∞, ρ
(y)
n (A) is uniformly bounded.

Since F
(y)
n → F (y) locally uniformly, we have the weak * convergence of the

measures by (1⇔ 2) and thus,

ρ(y)
n (A)→ ρ(y)(A) (3.3.4)

except for those values of y for which ρ(y)({a, b}) 6= 0. By Claim 1, (3.3.4) and the

Spectral Averaging formula; using the dominated convergence theorem we have

lim
n→∞

∫
A

ωFn(t)(S)dt = lim
n→∞

∫
S

ρ(y)
n (A)

dy

1 + y2

=

∫
S

ρ(y)
n (A)

dy

1 + y2

=

∫
A

ωF (t)(S)dt.

Finally, we show that (4→ 1). In order to show this we will use the compactness

and uniqueness. For this, pick a subsequence, denoting again by Fn for conve-

nience, that converges locally uniformly to G. Here, either G ∈ H or G ≡ a ∈ R∞.

The second case is not possible because: If, Fn → a ∈ R then for every R > 0,

ρ(y)
n ([−R,R])→ 0 (n→∞),

uniformly in |y − a| ≥ δ > 0. Therefore by Spectral Averaging formula,∫ R

−R
ωFn(t)((a−R, a− δ) ∪ (a+ δ, a+R)) = 0
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for almost every t ∈ (−R,R). This is not possible if F (t) ≡ limF (t + iy) ∈ C+

and if F (t) exists and is real, then, since R, δ > 0 are arbitrary, it follows that

F (t) = a. In other words, F (t) = a almost everywhere, but this is not a possible

boundary value of an F ∈ H. Similarly we can show that it is also not possible

to have |Fn| → ∞. In fact we can also work with Gn = − 1
Fn

and run the exact

argument again. Thus Fn → G ∈ H, uniformly on compact sets. But by (1→ 3),

Fn → G in value distribution, and since such a limit is unique, G = F. Now every

subsequence of {Fn} has a locally uniformly convergent sub-subsequence, but the

corresponding limit can only be F , so in fact Fn → F locally uniformly without

the need of passing to a subsequence and hence we obtain (1).

3.4 Breimesser-Pearson theorem on canonical

systems

In this section we will prove Breimesser-Pearson theorem on canonical systems.

We will follow the similar techniques from [3].

Theorem 3.11 (Breimesser-Pearson). Consider a half-line canonical system. Let

Σac denotes the essential support of absolutely continuous part of the spectral

measure then for any A ⊂ Σac, |A| <∞ and S ⊂ R, we have

lim
N→∞

(∫
A

ωm−(N,t)(−S)dt−
∫
A

ωm+(N,t)(S)dt
)

= 0.

Moreover, the convergence is uniform in S.

Here m−(N, t) = −v2(N,z)
v1(N,z)

is a m function on [0, N ].

The hyperbolic distance of two points w, z ∈ C+ is defined as

γ(w, z) =
|w − z|√

Imw
√

Imz
.
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For fixed, S ⊂ R the map z 7→ ωz(S) is a positive harmonic function on C+. This

function has a harmonic conjugate α(z) so that F (z) = α(z)+iωz(S) is a Herglotz

function. The relation between the harmonic measure and the hyperbolic distance

is given by

|ωw(S)− ωz(S)| ≤ |ωw(S)− ωz(S)|√
ωw(S)

√
ωz(S)

≤ γ(F (w), F (z)) ≤ γ(w, z). (3.4.1)

Lemma 3.12. Let u(., z), v(., z) be the solutions of the canonical system (0.0.3),

subject to the condition u(0, z) =

1

0

 , v(0, z) =

0

1

 . Let w be any constant

such that Im w ≥ 0, for any N > 0, and all z ∈ C+, we have the estimate,

γ
(
− v2(N, z)

v1(N, z)
,−u2(N, z) + w̄v2(N, z)

u1(N, z) + w̄v1(N, z)

)
≤ 1√

I(I + 1)
,

where I = I(N, z) is the integral defined by I(N, z) = ( Imz)
∫ N

0
Im(u∗Hv)dx.

Proof. Denote the wronskian WN(f, g) = f1(N)g2(N) − f2(N)g1(N). Using the

Greens’s identity we have,∫ N

0

v∗Hvdx =
1

2i Imz
WN(v, v̄), (3.4.2)

∫ N

0

Im(u∗Hv)dx = − 1

2 Imz

(
1− ReWN(ū, v)

)
=

1

2 Imz

(
1− ReWN(u, v̄)

)
,

(3.4.3)

|W (u, v̄)|2 = 1−W (u, ū)W (v, v̄). (3.4.4)

70



Now at x = N we have,

γ2
(
− v2

v1

,−u2 + w̄v2

u1 + w̄v1

)
=

∣∣− v2

v1
+ u2+w̄v2

u1+w̄v1

∣∣2
Im
(
− v2

v1

)
Im
(
− u2+w̄v2

u1+w̄v1

)
=

1∣∣v1(u1+w̄v1)

∣∣2
1
2i

(− v2
v1

+
v̄2
v̄1

) 1
2i

(.....)

=
1

−1
4
|v1(u1 + w̄v1)|2 (−v2v̄1+v1v̄2)

|v1|2

(
−(u2+w̄v2)(ū1+wv̄1)+(u1+w̄v1)(ū2+wv̄2)

)
|u1+w̄v1|2

= − 4

W (v, v̄)W (u+ w̄v, ū+ wv̄)
.

Therefore,

γ2
(
− v2

v1

,−u2 + w̄v2

u1 + w̄v1

)
≤ − 4

W (v, v̄)W (u+ w̄v, ū+ wv̄)
.

Let w be real. The denominator on the right side is of the form A+Bw +Cw2,

where A ≥ 0, C ≥ 0 and B is real. The denominator has minimum value A− B2

4C
.

Hence,

γ2 ≤ 4

−W (v, v̄)W (u, ū)−
(
W (v,v̄)(W (u,v̄)−W (ū,v))

)2

4(−W (v,v̄)2)

=
4

−W (v, v̄)W (u, ū)−
(

2i Im(W (u,v̄)
)2

−4

≤ −4

W (v, v̄)(W (u, v̄) + Im(W (u, v̄)
)2 .

Using equation (3.4.4) we get,

γ2 ≤ − 4

1− |W (u, v̄)|2 + ( Im(W (u, v̄)
)2

)

=
−4

1− (ReW (u, v̄))2
.
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Here,

1− (ReW (u, v̄))2 = (1− (ReW (u, v̄)))(1 + (ReW (u, v̄)))

=
(
− 2 Imz

∫ N

0

Im(u∗Hv)dx
)(

1 + 2 Imz

∫ N

0

Im(u∗Hv)dx
)
.

Therefore,

γ2 ≤ 1

I(1 + I)
where I = Imz

∫ N

0

Im(u∗Hv)dx.

If w is not real, w = Rew + iY, Y > 0 then u − iY v is also a solution and we

have,

|W (u− iY v, v̄)|2 = 1−W (u− iY v, ū+ iY v̄)W (v, v̄).

Also from above equation,

γ2 ≤ −4

W (v, v̄)W (u, ū) + ( Im(W (u, v̄)
)2

) + Y 2W (v, v̄)2 + 2iY ReW (u, v̄)W (v, v̄)

≤ −4

W (u− iY v, ū+ iY v̄)W (v, v̄) +
(

ImW (u− iY v, v̄)
)2 .

Since the equation (3.4.4) is valid for u− iY v we get,

γ2
(
− v2

v1

,−u2 + w̄v2

u1 + w̄v1

)
≤ −4

1−
(

ReW (u− iY v, v̄)
)2

=
−4(

1 + ReW (u− iY v, v̄)
)(

1− ReW (u− iY v, v̄)
)

=
−4(

1 + Re
(
W (u, v̄)− iY W (v, v̄)

))(
1− Re

(
W (u, v̄)− iY W (v, v̄)

))
=

−4(
1− ReW (u, v̄)− Y ImW (v, v̄)

)(
1 + ReW (u, v̄) + Y ImW (v, v̄)

)
=

−4(
− 2 Imz

∫ N
0

Im(u∗Hv)dx− Y
i
W (v, v̄)

)(
2 Imz

∫ N
0

Im(u∗Hv)dx+ 2 + Y
i
W (v, v̄)

)
=

1

I ′(I ′ + 1)
,
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where I ′ = Imz
∫ N

0
Im(u∗Hv)dx + 2 + Y

2i
W (v, v̄). Notice that I ′ ≥ I since

W (v, v̄) = 2i Imz
∫ N

0
v∗Hvdx ≥ 0. Hence the lemma is proved for general case.

Corollary 3.13. With the notation above, we have

lim
N→∞

γ
(
− v2(N, z)

v1(N, z)
,−u2(N, z) + w̄v2(N, z)

u1(N, z) + w̄v1(N, z)

)
= 0

Proof. From above lemma we have

γ
(
− v2(N, z)

v1(N, z)
,−u2(N, z) + w̄v2(N, z)

u1(N, z) + w̄v1(N, z)

)
≤ 1√

I(I + 1)
,

where I = I(N, z) is the integral defined by I(N, z) = ( Imz)
∫ N

0
Im(u∗Hv)dx.

Want to show that I →∞ as N →∞. We have,∫ N

0

v∗Hvdx =
1

2i Imz
WN(v, v̄)

∫ N

0

Im(u∗Hv)dx = − 1

2i Im z

(
1− ReWN(u, v̄)

)
.

Now lets look at the ratio

2 Imz
∫ N

0
Im(u∗Hv)dx+ 1

2i Imz
∫ N

0
v∗Hvdx

=
WN(u, v̄) +WN(ū, v)

2iWN(v, v̄)

=
WN(u, v̄)

2iWN(v, v̄)
− WN(ū, v)

2iWN(v̄, v)

= ImC(z)

where C(z) is the center of a Weyl circle. Since C(z) is a continuous function of

z, it is uniformly bounded on a compact subset of C+. So,∫ N

0

Im (u∗Hv)dx+ 1 = ImC

∫ N

0

v∗Hvdx→∞ as N →∞.

This implies that I →∞ as n→∞.
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We are now ready to prove Theorem 3.11. We follow the similar approach for

the proof of Theorem 3.11 as in [3].

Proof of Theorem 3.11 : Let A ⊂ Σac, |A| <∞ and let ε > 0 be given. We

first define a partition A = A0 ∪ A1 ∪ A2, .... ∪ AN of disjoint subsets such that

|A0| < ε,Aj is bounded for j ≥ 1. We also require that m+(t) ≡ limy→0+m+(t+

iy) exists and m+(t) ∈ C+ on
⋃N
j=1 Aj. To find Aj’s with these properties, first

of all put all t ∈ A for which m+(t) does not exist or does not lie in C+ into

A0. Then pick (sufficiently large) compact subset K ⊂ C+, K ′ ⊂ R so that

A0 = {t ∈ A : m+(t) /∈ K or t /∈ K ′} satisfies |A0| < ε. Subdivide K into finitely

many subsets of hyperbolic diameter less than ε, then take the inverse images

under m+ of these subsets, and finally intersect with K ′ to obtain the Aj for

j ≥ 1. It is then true that m+(N, t) exists and lies in C+ for arbitrary N ∈ R if

t ∈
⋃N
j=1Aj. Moreover, we need mj ∈ C+ such that

γ(m+(t),mj) < ε, (3.4.5)

such mj can be defined as mj = m+(tj) for any fixed tj ∈ Aj. By Lemma 3.8,

there is a number y > 0 such that , for arbitrary Herglotz function F , for any

Borel subset S of R and for all j = 1, 2, ......., n we have the estimate∣∣∣ ∫
Aj

ωF (t+iy)(S)dt−
∫
Aj

ωF (t)(S)dt
∣∣∣ ≤ ε|Aj|. (3.4.6)

We can define y for each value of j ; so y is a function of j. However, by taking

the minimum value of y(j) as j runs from 1 to n we my assume y is independent

of j. Let Mj(N, z) =
u2(N,z)+m̄jv2(N,z)

u1(N,z)+m̄jv1(N,z)
for any z ∈ C+. We shall complete the

proof of the theorem by showing that, for j ≥ 1,

(i):
∫
Aj
wm+(N,t)(S)dt is close to the integral

∫
Aj
ωMj(N,t)

(S)dt

where Mj(N, t) =
u2(N,t)+m̄jv2(N,t)

u1(N,t)+m̄jv1(N,t)
and that
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(ii):
∫
A
ωm−(N,t)(−S)dt is close to the same integral for all N sufficiently large.

Proof of (i): We have

m+(N, t) =
u2(N, t) +m+(t)v2(N, t)

u1(N, t) +m+(t)v1(N, t).

Hence, for fixed N and t, the mapping from m+(t) to m+(N, t) is a Mobius

transformation with real coefficients and discriminant u1v2 − v1u2 = 1. and γ is

invariant under Mobius transformations. Now from (3.4.5) we see that

γ
(
m+(N, t),

u2(N, t) +mjv2(N, t)

u1(N, t) +mjv1(N, t)

)
≤ ε for j ≥ 1 and t ∈ Aj.

By equation (3.4.1) we see that,∣∣∣ωm+(N,t)(S)− ωMj(N,t)(S)
∣∣∣ ≤ ε,

and integration with respect to t over Aj gives the estimate

∣∣∣ ∫
Aj

ωm+(N,t)(S)dt−
∫
Aj

ωMj(N,t)
(S)dt

∣∣∣ ≤ ε|Aj|. (3.4.7)

This holds for all j = 1, 2, .....n.

Proof of (ii): For j ≥ 1, define the subset Ayj of C+, consisting of all z ∈ C+ of

the form z = t + iy, for t ∈ Aj. Thus Ayj is the translation of Aj by distance y

above the real z-axis. Since Aj is bounded, Ayj is contained in a compact subset

of C+. Hence by Corollary 3.13, there is a positive number N0 such that for

j ≥ 1, N ≥ N0 and z ∈ Ayj we have the estimate

γ
(
− v2(N, z)

v1(N, z)
,−u2(N, z) + m̄jv2(N, z)

u1(N, z) + m̄jv1(N, z)

)
≤ ε. (3.4.8)

As in the case of y we may choose N0 to be independent of j. Let m−(N, z) =

−v2(N,z)
v1(N,z)

. Following the similar argument to that in the proof of (i), for any
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z = t+ iy we have the estimate∣∣∣ ∫
Aj

ωm−(N,z)(−S)dt−
∫
Aj

ω−Mj(N,z)(−S)dt
∣∣∣ ≤ ε|Aj|,

valid for j ≥ 1 and N ≥ N0. Now by Lemma 3.8, equation (3.4.6) we have,∣∣∣ ∫
Aj

ωm−(N,t)(−S)dt−
∫
Aj

ω−Mj(N,t)(−S)dt
∣∣∣ ≤ 3ε|Aj|.

Now using the identity ω−w(S) = ωw̄(S)∣∣∣ ∫
Aj

ωm−(N,t)(−S)dt−
∫
Aj

ωMj(N,t)
(S)dt

∣∣∣ ≤ 3ε|Aj|, (3.4.9)

which holds for all j ≥ 1 and N ≥ N0 and completes the proof of (ii). Combining

the inequalities (3.4.7) and (3.4.9) now yields, for j ≥ 1 and N ≥ N0,∣∣∣ ∫
Aj

ωm−(N,t)(−S)dt−
∫
Aj

ωm+(N,t)(S)dt
∣∣∣ ≤ 4ε|Aj|. (3.4.10)

Noting that A0 was chosen such that |A0| ≤ ε|A| we now have for all N ≥ N0,

∣∣∣ ∫
A

ωm−(N,t)(−S)dt−
∫
A

ωm+(N,t)(S)dt
∣∣∣

≤
n∑
j=0

∣∣∣ ∫
Aj

ωm−(N,t)(−S)dt−
∫
Aj

ωm+(N,t)(S)dt
∣∣∣

≤ 2|A0|+ 4ε
n∑
j=0

|Aj| ≤ ε|Aj| ≤ 6ε|A|.

Since ε was arbitrary, the theorem follows.

Proof of Theorem 3.6:

Let ν ∈ ω(µ). Then there exists a sequence xn →∞ such that d(Sxnµ, ν)→ 0.

Then by Lemma 3.7 we have that

m±(xn, z)→M±(z) (n→∞),
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uniformly on compact subset of C+. Here M±(z) = mν
±(0, z) are the m functions

of the whole line Hamiltonian ν. By Theorem 3.10 we see that

m±(xn, z)→M±(z) (n→∞),

in value distribution. That is

lim
n→∞

∫
A

ωm±(xn,t)(S)dt =

∫
A

ωM±(t)(S)dt

for all Borel sets A, S ⊂ R, |A| <∞. Also by Theorem 3.11 we have∫
A

ωM−(t)(−S)dt =

∫
A

ωM+(t)(S)dt.

By Lebesgue differentiation theorem,

ωM−(t)(−S) = ωM+(t)(S) (3.4.11)

for t ∈ ΣacN, |N | = 0 and all intervals S with rational end points. We can also

assume that M±(t) = limy→0+M(t+ iy) exists for these t. If M−(t) ∈ R, then, by

choosing small intervals about this value for −S, we see that M+(t) = −M−(t).

If M−(t) ∈ C, M−(t) = u + iv then −M−(t) = −u + iv, we can define ωM−(t)

directly as

ωM−(t)(−S) =

∫
(−S)

v

(t− u)2 + v2
dt

= −
∫

(S)

v

(t+ u)2 + v2
dt

= ω−M−(t)(S).

By (3.4.11) we get,

M+(t) = −M−(t). (3.4.12)

In the case when M−(t) ∈ R we already have M+(t) = −M−(t). So (3.4.12) holds

for almost every t ∈ Σac, that is ν ∈ R(Σac).
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3.5 Relation between Schrödinger and Jacobi

equations and canonical systems

In this section we will show the connection between Schrödinger and Jacobi equa-

tions and canonical systems.

3.5.1 Reduction of a Schrödinger equation into a canoni-

cal system

Let

−y′′ + V (x)y = zy (3.5.1)

be a Schrödinger equation. Suppose u(z, z) and v(x, z) are the linearly inde-

pendent solutions of (3.5.1), satisfying some boundary condition α at 0. Then

u0 = u(x, 0) and v0 = v0(x, 0) are the solutions of −y′′ + V (x)y = 0. Let

H(x) =

 u2
0 u0v0

u0v0 v2
0


then the Schrödinger equation (3.5.1) is equivalent with the canonical system

Jy′ = zHy (3.5.2)

If y solves equation (3.5.1) then U(x, z) = T−1(x)

y(x, z)

y′(x, z)

 solves a canon-
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ical system (3.5.2). Here

U(x, z) = T−1(x)

y(x, z)

y′(x, z)


=

 v′0 −v0

−u′0 u0


y(x, z)

y′(x, z)


=

 v′0y − v0y
′

−u′0y + u0y
′

 .

Then

zH(x)U(x, z) = z

 u2
0 u0v0

u0v0 v2
0


 v′0y − v0y

′

−u′0y + u0y
′


= z

u2
0v
′
0y − u2

0v0y
′ − u0v0u

′
0y + u2

0v0y
′

u0v0v
′
0y − u0v

2
0y
′ − v2

0u
′
0y + v2

0u0y
′


= z

u0y(u0v
′
0 − u′0v′0)

v0y(u0v
′
0 − u′0v′0)


= z

u0y

v0y

 .

On the other hand,

JU ′ =

0 −1

1 0


 (v′0y − v0y

′)′

(−u′0y + u0y
′)′


=

−u′′0y + u0y
′′

−v′′0y + v0y
′′


= z

u0y

v0y

 .
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Alternative Approach : Let

−y′′ + V (x)y = z2y (3.5.3)

be a Schrödinger equation such that − d2

dx2 +V (x) ≥ 0 and y(x, z) be its solution.

Then y0 = y(x, 0) be a solution of −y′′ + V (x)y = 0. Let W (x) =
y′0
y0

then

W 2(x) +W ′(x) = V (x) so that equation (3.5.3) becomes

−y′′ + (W 2 +W ′)y = z2y. (3.5.4)

Claim that the equation (3.5.4) is equivalent with the Dirac system

Ju′ =

 z W

W z

u. (3.5.5)

If y is a solution of (3.5.4) then u =

 y

−1
z
(−y′ +Wy)

 is a solution of (3.5.5).

Also if u =

u1

u2

 is a solution of (3.5.5) then u1 is a solution of (3.5.4). Next

we show that the Dirac system (3.5.5) is equivalent with the Canonical System

Ju′(x) = zH(x)u(x), H(x) =

e2
∫ x
0 W (t)dt 0

0 e−2
∫ x
0 W (t)dt

 . (3.5.6)

For if u is a solution of (3.5.5) then T0u, where T0 =

e− ∫ x
0 W (t)dt 0

0 e
∫ x
0 W (t)dt

 is

a solution of (3.5.6).

If we consider a Schrödinger equation of the form,

−y′′ + (W 2 −W ′)y = z2y (3.5.7)
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then it is equivalent with the Dirac system

Ju′ =

 z −W

−W z

u. (3.5.8)

In other words, if y is a solution of Schrödinger equation (3.5.7) then u = zy

y′ +Wy

 is a solution of the Dirac system (3.5.8). Conversely, if u =

u1

u2


is a solution of the Dirac system (3.5.8) then u1 is a solution to the Schrödinger

equation (3.5.7).

Proof. Let y is a solution of the Schrödinger equation (3.5.7) then for u = zy

y′ +Wy

 we have

u′ =

 zy′

y′′ +Wy′ +W ′y

 =

 zy′

W 2y − z2y +Wy′

 .

Then Ju′ =

z2y −W 2y −Wy′

zy′

 . On the other hand,

 z −W

−W z


 zy

y′ +Wy

 =

z2y −W 2y −Wy′

zy′

 .

Conversely, let u =

u1

u2

 is a solution of the Dirac system 3.5.8 then

0 −1

1 0


u′1
u′2

 =

 z −W

−W z


u1

u2

 .
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From this equation we get u′1 = −Wu1 + zu2 and −u′2 = zu1 −Wu2. Then

u′′1 = −W ′u1 −Wu′1 + zu′2

= −W ′u1 −W (−Wu1 + zu2) + zu′2

= −W ′u1 +W 2u1 − zWu2 + z(−zu1 +Wu2)

= (W 2 −W ′)u1 − z2u1

−u′′1 + (W 2 −W ′)u1 = z2u1.

The Dirac system (3.5.8) is equivalent with the canonical system,

Ju′(x) = zH(x)u(x) (3.5.9)

where H(x) =

e−2
∫ x
0 W (t)dt 0

0 e2
∫ x
0 W (t)dt

 . If u is a solution of the Dirac system

(3.5.8) then y = T0u, T0 =

e∫ x0 W (t)dt 0

0 e−
∫ x
0 W (t)dt

 is a solution of the canon-

ical system (3.5.9). Conversely if u is a solution of the canonical system (3.5.9)

then T−1
0 u is a solution of the Dirac system (3.5.8).

3.5.2 Reduction of a Jacobi equation into a canonical sys-

tem.

Let a Jacobi equation be

a(n)u(n+ 1) + a(n− 1)u(n) + b(n)u(n) = zu(n). (3.5.10)
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This equation can be written as u(n)

u(n+ 1)

 =

 0 1

−a(n−1)
a(n)

z−b(n)
a(n)

 .

u(n− 1)

u(n)


= [B(n) + zA(n)]

u(n− 1)

u(n)



where B(n) =

 0 1

−a(n−1)
a(n)

−b(n)
a(n)

 and A(n) =

0 0

0 1
a(n)

 . Suppose p(n, z) and

q(n, z) be solutions of (3.5.10) such that p(0, z) = 1, p(1, z) = 1 and q(0, z) =

0, q(1, z) = 1. So that p0(n) = p(n, 0) and q0(n) = q(n, 0) be solutions of equation

(3.5.10) when z = 0. Then p0(n)

p0(n+ 1)

 =

 0 1

−a(n−1)
a(n)

−b(n)
a(n)


p0(n− 1)

p0(n)

 .

(similar expression for q0(n).) Let T (n) =

p0(n− 1) q0(n− 1)

p0(n) q0(n)

 , T (1) = 1.

Then T (n+ 1) = B(n)T (n). Define U(n, z) = T (n+ 1)−1Y (n, z),

Y (n, z) =

p(n− 1, z) q(n− 1, z)

p(n, z) q(n, z)

 . Then U(n, z) solves an equation of the

form

J
(
U(n+ 1, z)− U(n, z)

)
= zH(n)U(n, z) (3.5.11)
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where H(n) = JT (n+ 1)−1A(n)T (n).

[
Proof: zH(n)U(n, z) = zJT (n+ 1)−1A(n)T (n)T (n)−1Y (n, z)

= zJT (n+ 1)−1A(n)Y (n, z)

= zJT (n+ 1)−1
(
Y (n+ 1, z)−B(n)Y (n, z)

)
= J

(
T (n+ 1)−1Y (n+ 1, z)− T (n+ 1)−1B(n)Y (n, z)

)
= J

(
T (n+ 1)−1Y (n+ 1, z)− T (n)−1Y (n, z)

)
= J

(
U(n+ 1, z)− U(n, z)

)]
.

Suppose for each n ∈ Z, on (n, n+ 1), H has the form

H(x) = h(x)Pφ, Pφ =

 cos2 φ sinφ cosφ

sinφ cosφ sin2 φ


for some φ ∈ [0, π) and some h ∈ L1(n, n + 1), h ≥ 0 (we may choose h(x) ≡ 1

on (n, n+ 1) for each n ∈ Z). Then the canonical system (0.0.3) becomes

u′(x) = −zh(x)JPφu(x).

Since the matrices on the right-hand side commute with one another for different

values of x, the solution is given by

u(x) = exp
(
− z

∫ x

a

h(t)dtJPφ

)
u(a).

However, PφJPφ = 0, we see that the exponential terminates and we get

u(x) =
(

1− z
∫ x

a

h(t)dtJPφ

)
u(a). (3.5.12)

Clearly equation (3.5.12) is equivalent with the equation (3.5.11).
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3.5.3 Relation between Weyl m functions

We next observe the relation between the Weyl m functions for Shrodinger equa-

tions and canonical systems.

Lemma 3.14. For z ∈ C+, let ms(z),mc(z) denote the Weyl m functions cor-

responding to the Schrödinger equation (3.5.1) and the canonical system (3.5.2)

respectively. Then ms(z) = mc(z).

Proof. Let Ts(x, z) =

u(x, z) v(x, z)

u′(x, z) v′(x, z)

 and Tc(x, z) =

u1(x, z) v1(x, z)

u2(x, z) v2(x, z)


are the transfer matrices corresponding to the Schrödinger equation (3.5.1) and

the canonical system (3.5.2) respectively. Let T0(x) = Ts(x, 0) then in (3.5.2),

H(x) = T ∗0

1 0

0 0

T0. Here ms(z) is such that (1, 0)Ts(x, z)

 1

ms(z)

 ∈ L2(R+)

and mc(z) is such that Tc(x, z)

 1

mc(z)

 ∈ L2(H,R+). Note that here, Ts(x, z) =

T0(x)Tc(x, z)

It follows that,

∫ ∞
0

(1, m̄s)T
∗
s (x, z)

1 0

0 0

Ts(x, z)

 1

ms(z)

 dx <∞.

⇒
∫ ∞

0

(1, m̄s)T
∗
c (x, z)T ∗0 (x)

1 0

0 0

T0(x)Tc(x, z)

 1

ms(z)

 dx <∞.

⇒
∫ ∞

0

(1, m̄s)T
∗
c (x, z)HTc(x, z)

 1

ms(z)

 dx <∞.

⇒
∫ ∞

0

(1, m̄s)T
∗
c (x, z)HTc(x, z)

 1

ms(z)

 dx <∞.
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Since the Weyl m function mc(z) is uniquely defined we must have ms(z) =

mc(z).

Theorem 3.15. Let ω(V ) and ω(H) be ω limit set corresponding to a Schrödinger

equation (3.5.1) and its canonical system (3.5.2) respectively. Then if W ∈ ω(V )

then K ∈ ω(H) where K is the Hamiltonian corresponding to a canonical system

of the Schrödinger equation with W as potential. Conversely, if K ∈ ω(H) then

K is a Hamiltonian for a canonical system of a Schrödinger equation for some

potential W ∈ ω(V ).

Proof. Suppose W ∈ ω(V ) then by definition of ω limit set there exists a sequence

xn → ∞ such that V (x + xn) → W. Then the corresponding Weyl m functions

also converge, ie mVn
s (z) → mW

s (z). Let Hn be the Hamiltonian of the canonical

system obtained from the Schrödinger equation with the potential V (x+xn) then

Hn = H(x + xn) then by Lemma 3.14 mVn
s (z) = mHn

c (z). and mW
s (z) = mH

c (z).

Now apply the change of variable by (3.1.13) and obtain H̃n and the corresponding

mfunction is mH̃n
c (z). After the change of variable the corresponding Weyl m

functions are the same up to the change of the point of boundary condition. So

the convergence of mVn
s (z) = mHn

c (z) implies the convergence of mH̃n
c (z). It follows

that mH̃n
c (z)→ mW

s (z). But by Lemma 3.7 mW
s (z) = mH̃

c (z) where mH̃
c (z) is the

Weyl mfunction for some Hamiltonian H̃. It follows that mH̃n
c (z) → mH̃

c (z).

Again by Lemma 3.7, we get H̃n → H̃ using the change of variable on the

canonical system with Hamiltonian H̃ we obtain a Hamiltonian K such that

mH̃
c (z) = mK

c (z) up to the change of point of boundary condition. It follows that

Hn → K and so K ∈ ω(H). Converse is similar.

Lemma 3.16. For z ∈ C+, let ms(z
2),mc(z) denote the Weyl m functions cor-

responding to the Schrödinger equation (3.5.7) and the canonical system (3.5.9)
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respectively. Then ms(z
2) = zmc(z).

Proof. Note that, since H(x) =

e2
∫ x
0 W (t)dt 0

0 e−2
∫ x
0 W (t)dt

 , f ∈ L2(H,R+) if

and only if ∫ ∞
0

|f1|2e2
∫ x
0 W (t)dtdx <∞,

∫ ∞
0

|f2|2e−2
∫ x
0 W (t)dtdx <∞.

Let Ts(x, z
2), Td(x, z) and Tc(x, z) denote the transfer matrices of the Schrödinger

equation (3.5.4), the Dirac system (3.5.5) and the canonical system (3.5.6) re-

spectively. Then,

Ts(x, z
2) =

u(x, z2) v(x, z2)

u′(x, z2) v′(x, z2)

 ,

Td(x, z) =

 u(x, z2) zv(x, z2)

u′(x,z2)−W (x)u(x,z2)
z

v′(x, z)−W (x)v(x, z),


Tc(x, z) = T0Td(x, z).

It follows that

Td(x, z) =

 z 0

−W 1

Ts(x, z
2)

1
z

0

0 1

 .

So Td(x, z) = T−1
0 Tc(x, z) and

Ts(x, z
2) =

1

z

 1 0

W z

Td(x, z)

z 0

0 1

 .

Now we have,
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∫ ∞
0

(1, m̄c(z))T ∗c (x, z)H(x)Tc(x, z)

 1

mc(z)

 dx <∞

⇒
∫ ∞

0

(1, m̄c(z))T ∗c (x, z)
[
T−1

0 (x)

1 0

0 0

T0(x)−1+

T0(x)−1

0 0

0 1

T0(x)−1
]
Tc(x, z)

 1

ms(z)

 dx <∞.

⇒
∫ ∞

0

(1, m̄c(z))T ∗d (x, z)T0(x)T0(x)−1

1 0

0 0

 .

T0(x)−1T0(x)Td(x, z)

 1

mc(z)

 dx <∞.

⇒
∫ ∞

0

(1, m̄c)

1
z

0

0 1

T ∗s (x, z2)

z̄ W

0 1

 .

0 0

0 1


 z 0

−W 1

Ts(x, z
2)

1
z

0

0 1


 1

mc(z)

 dx <∞.

⇒
∫ ∞

0

(
1
z

m̄c

)
T ∗s (x, z2)

0 0

0 1

Ts(x, z
2)

 1
z

mc(z)

 dx <∞.

Since the Weyl m function mc(z) is uniquely defined we must have

ms(z
2) = zmc(z).

Suppose

H+ =

e2
∫ x
0 W (t)dt 0

0 e−2
∫ x
0 W (t)dt

 , H− =

e−2
∫ x
0 W (t)dt 0

0 e2
∫ x
0 W (t)dt


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in the canonical system (3.5.6) and (3.5.9) respectively. The following lemma

shows the relation between their Weyl m functions.

Lemma 3.17. If mc+ and mc− are the Weyl m functions corresponding to the

canonical systems (3.5.6) and (3.5.9) respectively then mc+ = −1
mc−

.

Proof. Notice that,

−JH+J = H−.

For if

−JH+J =

 0 1

−1 0


e2

∫ x
0 W (t)dt 0

0 e−2
∫ x
0 W (t)dt


0 −1

1 0


=

e−2
∫ x
0 W (t)dt 0

0 e2
∫ x
0 W (t)dt


= H−.

u is a solution of

Ju′ = zH+u

if and only if Ju is a solution of

Ju′ = zH−u.

For if

J [Ju]′ = JJu′

= zJH+u

= zJH+J
−1Ju

= −zJH+JJu

= zH−[Ju].
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Let Tc+(x) and Tc−(x) be the transfer matrices and mc+ and mc− are the Weyl m

functions of the canonical systems with the HamiltoniansH+ andH− respectively.

Then Tc−(x) = −JTc+(x)J and

∫ ∞
0

(1, m̄c−)T ∗c−(x)H−Tc−(x)

 1

mc−

 dx <∞.

⇒
∫ ∞

0

(1, m̄c−)(−JTc+(x)J)∗H−(−JTc+(x)J)

 1

mc−

 dx <∞.

⇒
∫ ∞

0

(1, m̄c−)(−J)T ∗c+(x)(−JH−J)Tc+(x)J

 1

mc−

 dx <∞.

⇒
∫ ∞

0

(m̄c− ,−1)T ∗c+(x)(−JH−J)Tc+(x)

mc−

−1

 dx <∞.

⇒
∫ ∞

0

(
1, −1

m̄c−

)
T ∗c+(x)H+Tc+(x)

 1

−1
m̄c−

 dx <∞.

Since mc+ is the unique coefficient such that

∫ ∞
0

(1, m̄c+)T ∗c+(x)H+Tc+(x)

 1

mc+

 dx <∞

we have

mc+ =
−1

mc−

.
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