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Abstract

Channel coding and source coding are two important problems in communications.

Although both channel coding and source coding (especially, the distributed source

coding (DSC)) can achieve their ultimate performance by knowing the perfect

knowledge of channel noise and source correlation, respectively, such information

may not be always available at the decoder side. The reasons might be because of

the time-varying characteristic of some communication systems and sources them-

selves, respectively. In this dissertation, I mainly focus on the study of online

channel noise estimation and correlation estimation by using both stochastic and

deterministic approximation inferences on factor graphs.

In channel coding, belief propagation (BP) is a powerful algorithm to decode

low-density parity check (LDPC) codes over additive white Gaussian noise (AWGN)

channels. However, the traditional BP algorithm cannot adapt efficiently to the

statistical change of SNR in an AWGN channel. To solve the problem, two com-

mon workarounds in approximate inference are stochastic methods (e.g. particle

filtering (PF)) and deterministic methods (e.g. expectation approximation (EP)).

Generally, deterministic methods are much faster than stochastic methods. In con-

trast, stochastic methods are more flexible and suitable for any distribution. In

this dissertation, I proposed two adaptive LDPC decoding schemes, which are able

to perform online estimation of time-varying channel state information (especially

signal to noise ratio (SNR)) at the bit-level by incorporating PF and EP algorithms.

Through experimental results, I compare the performance between the proposed PF

based and EP based approaches, which shows that the EP based approach obtains

the comparable estimation accuracy with less computational complexity than the

PF based method for both stationary and time-varying SNR, and enhances the BP

decoding performance simultaneously. Moreover, the EP estimator shows a very

xiv



fast convergence speed, and the additional computational overhead of the proposed

decoder is less than 10% of the standard BP decoder.

Moreover, since the close relationship between source coding and channel cod-

ing, the proposed ideas are extended to source correlation estimation. First, I

study the correlation estimation problem in lossless DSC setup, where I consider

both asymmetric and non-asymmetric SW coding of two binary correlated sources.

The aforementioned PF and EP based approaches are extended to handle the cor-

relation between two binary sources, where the relationship is modeled as a virtual

binary symmetric channel (BSC) with a time-varying crossover probability. Be-

sides, to handle the correlation estimation problem of Wyner-Ziv (WZ) coding, a

lossy DSC setup, I design a joint bit-plane model, by which the PF based approach

can be applied to tracking the correlation between non-binary sources. Through

experimental results, the proposed correlation estimation approaches significantly

improve the compression performance of DSC.

Finally, due to the property of ultra-low encoding complexity, DSC is a promis-

ing technique for many tasks, in which the encoder has only limited computing

and communication power, e.g. the space imaging systems. In this dissertation, I

consider a real-world application of the proposed correlation estimation scheme on

the onboard low-complexity compression of solar stereo images, since such solutions

are essential to reduce onboard storage, processing, and communication resources.

In this dissertation, I propose an adaptive distributed compression solution using

PF that tracks the correlation, as well as performs disparity estimation, at the de-

coder side. The proposed algorithm is tested on the stereo solar images captured

by the twin satellites system of NASAs STEREO project. The experimental re-

sults show the significant PSNR improvement over traditional separate bit-plane

decoding without dynamic correlation and disparity estimation.
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CHAPTER 1

INTRODUCTION

The abilities of sending information between senders and receivers are increasingly

demanded by the modern world. Given an input source (e.g. voice, video, image,

etc.), the sender produces a signal such that it can tolerate the transmission error

caused by noisy channel, as well as minimize channel bandwidth usage. Then, the

receiver can recover the original input source with the highest fidelity. The first goal

usually refers to the channel coding problem, in which redundancy is introduced

by a channel encoder, so that the transmission error caused by the noisy channel

can be corrected at the decoder side. In contrast, the compression of sources be-

longs to the source coding problem, in which the source redundancy is removed

by the source encoder, so that the required transmission bandwidth can be mini-

mized. Thus, both channel coding and source coding are two important problems in

communications. However, both channel coding and source coding (especially, the

distributed source coding (DSC)) can achieve their ultimate performance by know-

ing the perfect knowledge of channel noise and source correlation, respectively, such

information may not be always available at the decoder side. The reasons might

be because of the time-varying characteristic of some communication systems and

sources themselves, respectively. In this dissertation, I mainly focus on the study of

online channel noise estimation and correlation estimation by using both stochas-

tic and deterministic approximation inferences on factor graphs. In this chapter,

I briefly describe channel coding problems and DSC problems, and then show the

contributions and organization of this dissertation.

1
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Figure 1.1: Binary symmetric channel C = 1 − H(p) bits.

1.1 Channel Coding

In a point-to-point communication system, a source signal can be transmitted over

a physical channel from a sender to a receiver. However, such a channel is generally

imperfect and therefore leads to noisy output at the receiver side. To achieve a

high-fidelity communication, a channel encoder is used to introduce helpful redun-

dancy, with which the receiver can correct transmission errors caused by the noisy

channel and reconstruct the original source. In this section, I will introduce some

basic communication channels, such as the binary symmetric channel (BSC) and

Gaussian channel, and derive their channel capacities.

1.1.1 Channel Capacity

Binary Symmetric Channel

A BSC is a channel with binary input and binary output, and each input produces

an output with an error probability p. As shown in Fig.1.1, if the error occurs, the

input symbol 0 will produce output symbol 1, and vice versa. The channel capacity

of the BSC is evaluated by the mutual information as follows

2
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Figure 1.2: Gaussian channel.

I(X,Y ) = H(Y ) − H(Y |X)

= H(Y ) −
∑

p(x)H(Y |X = x)

= H(Y ) −
∑

p(x)H(p)

= H(Y ) − H(p)

≤ 1 − H(p)

(1.1)

Thus, the channel capacity of the BSC is C = max
p(x)

I(X; Y ) = 1 − H(p) bits.

Gaussian Channel

A Gaussian channel is one of the most important channels with continuous channel

input and output. As shown in Fig.1.2, the Gaussian channel is presented by a

series of discrete input Xi and discrete output Yi, where i is the index of discrete

time. The output Yi is the sum of the input Xi and noise, Zi, where Zi ∼ N(0, v)

satisfies a Gaussian distribution with zero mean and variance v and is assumed to

be independent of input Xi. Thus,

Yi = Xi + Zi Zi ∼ N(0, v). (1.2)

For many practical communication channels, such as radio and satellite links,

there are energy or power constraints on the input symbols. Usually, an average

3



power constraint for any codeword x1, · · · , xn is defined as 1
n

∑n
i=1 x2

i ≤ P . The

channel capacity of a Gaussian channel with power constraint P is defined as

C = max
p(x):EX2≤P

I(X; Y ). (1.3)

To calculate the capacity, I first derive the mutual information

I(X; Y ) = h(Y ) − h(Y |X)

= h(Y ) − h(X + Z|X)

= h(Y ) − h(Z|X)

= h(Y ) − h(Z)

(1.4)

where h(Z) = 1
2
log2πev. To obtain the higher bound of entropy of Y , I first calculate

E(Y 2) = E(X + Z)2 = EX2 + 2EXEZ + EZ2 = P + v, where EZ = 0. Given the

variance P + v for Y , the maximum entropy of Y is h(Y ) = 1
2
log2πe(P + v).

Then, the capacity of Gaussian channel is

C = maxI(X, Y )

=
1

2
log2πe(P + v) − 1

2
log2πev

=
1

2
log(1 +

P

v
).

(1.5)

where capacity C achieves the maximum value when X ∼ N(0, P ).

1.1.2 Channel Coding

During the past decades, numerous error-correcting codes have been proposed in

the channel coding area. Among these existing codes, low-density parity check

(LDPC) codes [3] have raised wide interests in the research community, because

4



the performance of LDPC codes can make the data transmission rates achieve near

Shannon’s limit [4, 5]. As a type of error-correcting code, LDPC codes were first

proposed by Gallager in the early 1960s [3] and revived by Mackay and Neal in

1996 [6]. LDPC codes can be decoded by using a powerful iterative algorithm known

as the belief propagation (BP) algorithm [6]. However, the decoding performance

of LDPC codes usually relies on the knowledge of channel noise statistics. Hence,

a better initial estimate of the channel noise statistics, e.g. the noise variance of

an additive white Gaussian noise (AWGN) channel or the crossover probability of

a BSC, would generate a better decoding performance of LDPC codes.

1.2 Distributed Source Coding

Sensor technology has grown tremendously in recent decades. The main objective

of a sensor network is to relay sensor observations back to a basestation efficiently.

Given the high constraint on bandwidth and power of a mesh network, it is im-

portant to reduce the transmission load and still obtain all observations with high

fidelity. However, in many scenarios, sensors can only transmit data to a bases-

tation and do not have the capability to communicate with each other. Hence,

joint encoding of sensor observations is often impossible (or impractical). Fortu-

nately, as sensor observations are usually correlated, it is possible to reduce the

communication loads by taking advantage of these correlations. The main enabling

technology to achieve this is DSC [7,8]. DSC is a technique to compress correlated

remote sources separately and decompress them jointly. Generally, DSC problems

can be classified into lossless and lossy setups, which are also known as Slepian-Wolf

(SW) [9] problems and Wyner-Ziv (WZ) [10] problems, respectively.

5
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Figure 1.3: SW coding (lossless DSC) of two sources.

1.2.1 Lossless DSC (SW Coding) Design

Slepian and Wolf proved a very surprising result, namely that, generally speaking,

it is possible to have no performance loss of separate encoding compared to the

case when joint encoding is allowed [9]. As shown in Fig.1.3, two sensor outputs

are separately compressed and transmitted to a basestation for joint decoding. Let

R1 and R2 be the corresponding compression rates for a source pair x1 and x2 as

shown in Fig.1.3. They show that lossless compression is possible if and only if

R1 ≥ H(x1|x2), R2 ≥ H(x2|x1), and R1 + R2 ≥ H(x1, x2), (1.6)

where H(x) denotes the entropy of variable x. For example, when x1 is compressed

independently, we will need R1 = H(x1) to achieve lossless compression. According

to the SW Theorem, it is sufficient to have R2 = H(x2|x1). And thus the total rate

is R1 + R2 = H(x1) + H(x2|x1) = H(x1, x2). This is equivalent to the rate required

even when joint compression is allowed. We usually refer to this no-performance-loss

feature as no rate loss.

Similar to Shannon’s channel coding theorem [11], the proof of the SW Theorem

is non-constructive in that Slepian and Wolf did not indicate how to implement

DSC efficiently. The research on practical algorithms for DSC was stagnant until
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Figure 1.4: WZ coding (lossy source coding with side information at the decoder).

the publication of the work by Pradhan and Ramchandran in 1999 [12]. They

rediscovered an early work by Wyner in which he suggested the use of channel codes

for asymmetric SW coding [13]. Here, we describe a SW problem as asymmetric

in the sense that only one of all correlated sources is compressed while the rest is

transmitted uncompressed as side information. Practical syndrome-based schemes

for SW coding using channel codes have been studied in [14–16, 16–25]. Notably,

the Wyner approach is further extended to the non-asymmetric case (i.e., sources

from more than one terminals will be compressed) [14,26].

1.2.2 Lossy DSC (WZ Coding) Design

Wyner and Ziv later considered a rate distortion problem closely related to DSC

[10, 27], namely, the rate distortion problem that occurs when side information is

given to the decoder but not the encoder. Indeed, WZ coding can be treated as

a degenerated case of DSC with sources at two different terminals. As shown in

Fig.1.4, one source is transmitted directly to the decoder whereas the source at the

other terminal is compressed and recovered with the help of the first source acting

as side information. On the other hand, this problem generalizes the SW setup in

which coding of the source is lossy with respect to a fidelity criterion, rather than

lossless.

7



1.3 The Dissertation Contributions

In channel coding problems, knowing the signal to noise ratio (SNR) is necessary

to achieve the best performance. Thus, in many previous studies, the SNR is as-

sumed to be perfectly known prior to decoding. In reality, however, the perfect

knowledge of the SNR may not always be available at the decoder, as the channel

SNR may vary over time. Although one may argue that the actual SNR may be

able to be obtained through a pilot signal or feedback channel under varying chan-

nel conditions, a fast varying channel implies potentially a large communication

overhead if we want to take full advantage of the channel state information. Sim-

ilarly, the performance of DSC depends on the knowledge of correlation between

sources. Nevertheless, in many real applications, such as a sensor network which is

widely used for environmental monitoring of temperature, pressure and humidity,

or real-time area video surveillance, the correlation statistics among sensors cannot

be obtained easily. In general, the correlations among sensors may vary over both

space and time. Thus, the implementation of DSC suffers the same “trouble” from

the inaccurate prior estimate of the correlation statistics as that of the channel cod-

ing. Since the decoding performances of channel coding and DSC highly rely on the

knowledge of SNR and correlation, respectively, the design of an online estimation

scheme of SNR for channel coding and correlation for sensor networks becomes a

significant task both in theoretical study and practical applications.

The contributions of this dissertation can be divided into three portions:

1. Two adaptive LDPC decoding schemes were proposed, which enable one to

perform online estimation of time-varying SNR at the bit-level by using the

stochastic method (i.e., PF) and the deterministic method (i.e., EP). Through

experimental results, I compare the performance between the proposed PF
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based and EP based approaches, which shows that the proposed EP based

approach obtains the comparable estimation accuracy with less computational

complexity than PF based method for both stationary and time-varying SNR,

and enhances the BP decoding performance simultaneously.

2. Due to the close relationship between source coding and channel coding, the

proposed ideas are extended to source correlation estimation. First, I study

the correlation estimation problem in lossless DSC setup, where I consider

both asymmetric and non-asymmetric SW coding of two binary correlated

sources. The aforementioned PF and EP based approaches are extended to

handle the correlation between two binary sources, where the relationship is

modeled as a virtual BSC with a time-varying crossover probability. More-

over, to handle the correlation estimation problem of WZ coding, a lossy DSC

setup, I design a joint bit-plane model, by which the PF based approach can

be applied to tracking the correlation between non-binary sources. Through

experimental results, the proposed correlation estimation approaches signifi-

cantly improve the compression performance of DSC.

3. A real-world application of the proposed correlation estimation scheme on

the onboard low-complexity compression of solar stereo images was consid-

ered, since low-complexity compression solutions are essential to reduce on-

board storage, processing, and communication resources. In this dissertation,

I propose an adaptive distributed compression solution using PF that tracks

correlation, as well as performs disparity estimation, at the decoder side. The

proposed algorithm is tested on the stereo solar images captured by the twin

satellites system of NASAs STEREO project. The experimental results show

the significant PSNR improvement over traditional separate bit-plane decod-
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ing without dynamic correlation and disparity estimation.

1.4 The Organization of The Dissertation

In Chapter 2, I will first review some background knowledge about probability

and graphical models. In Chapter 3, I will introduce approximation inference,

which includes both stochastic approximation and deterministic approximation.

Then, the SNR estimation in channel coding with PF and EP will be presented in

Chapter 4. Moreover, I will extend the ideas from channel coding problem to DSC

problem in Chapter 5, in which both SW coding and WZ coding problems with

correlation estimation are studied. In addition, I will present the implementation

of the proposed scheme on a real-world application, the onboard solar stereo images

compression in Chapter 6. Finally, I will draw our conclusion in Chapter 7.

Research in the dissertation has been published in several international journals

and conferences. In Chapter 4, the work of PF based SNR estimation over AWGN

channel has been published in IEEE Transactions on Communications [28]. The

study of EP based SNR estimation over AWGN channel is a part of a conference

paper in IEEE GLOBECOM 2011 [29] and a journal submission in IEEE Trans-

actions on Communications [30]. The work on PF based correlation estimation

in Chapter 5 has been published in IEEE Transactions on Communications [31],

IEEE Transactions on TCSVT [32] and conferences [33–35]. Regarding the EP

based correlation estimation work, one journal paper has been accepted by IEEE

Communications Letter [36]. Furthermore, Chapter 6 has been published in 2011

IEEE International Conference on Image Processing [37] and submitted to IEEE

Transactions on Image Processing [38].
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CHAPTER 2

GRAPHICAL MODELS

This chapter starts from the introduction to Bayesian probability theory, because

it plays a significant role in the field of probabilistic inference and is also the foun-

dation of the rest of this dissertation. Then, I discuss a powerful representation

of probabilistic models, called graphical models, which offer a great flexibility for

problem solving and system modeling (especially factor graph for LDPC codes).

This chapter is a concise review of the aforementioned concepts. For more detail

on graphical models, I direct readers to these references [39–41].

2.1 Bayesian Probabilities

Bayesian probability theory provides a theoretical framework for reasoning under

a probability. It has been widely used in many engineering disciplines such as

communications, artificial intelligence, etc. In this section, I discuss the basics of

Bayesian probability theory and provide a foundation of my later discussion.

2.1.1 Bayes’ Rule

In a probabilistic model, suppose y = {y1, y2, · · · , yN} is an observed data set, and

x = {x1, x2, · · · , xN ′} is a set of hidden variables/parameters, where N and N ′ are

some positive integer numbers. Then Bayes’s rule can be expressed as

p(x|y) =
p(y,x)

p(y)
=

p(x)p(y|x)

p(y)
. (2.1)

In (2.1), the probability p(x|y), also called the posterior distribution, allows us to

evaluate the probability distribution of x given the observed data y. The probability
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p(y,x) is called the joint distribution, and p(x) is called the prior distribution, which

captures the probability of the hidden variables in x before observing the data. The

quantity p(y|x) measures how likely the observed data set y is for different x and is

called the likelihood function. Moreover, p(y) can be interpreted as a normalization

constant and can be evaluated through the marginalization step as follows

p(y) =

∫

p(x)p(y|x)dx. (2.2)

2.1.2 Bayesian Inference

In a nutshell, Bayesian inference is a statistical inference method in which any

unknown is expressed in terms of probability. The fundamental differences between

Bayesian and non-Bayesian paradigms are the ways they use the hidden variables in

x. The non-Bayesian paradigm always considers fixed variables in x, whose values

are determined by some estimators, e.g. maximum likelihood (ML) estimator. Then,

the statistical accuracy of estimates (i.e. error bar) can be obtained by evaluating

different data sets sampled from p(y). By contrast, the Bayesian paradigm captures

the hidden variables in x through its posterior distribution directly. One advantage

of Bayesian inference is the inclusion of prior knowledge, which can avoid some

unreasonable conclusions made by the ML estimator. Moreover, based on new

observed data, Bayesian inference also offers an easier way to make predictions by

taking the ‘old’ posterior distribution as ‘new’ prior knowledge. Then, by using

Bayesian inference, one can decouple models from observed data.

2.2 Graphical Models

As mentioned in the previous section, Bayesian probability theory has played an

important role in the modern machine learning and the probabilistic inference.

12



In this section, I discuss a powerful representation of probabilistic models, called

graphical models, which offer a great flexibility for problem solving and system

modeling (especially factor graph for LDPC codes).

A graph G(V,E) is defined by a set of nodes V and a set of edges E connecting

these nodes, where each node represents a random variable or a group of random

variables, and each edge represents the statistical dependency between the connect-

ing variables. Then the decomposition of the joint probability over all the random

variables can be expressed by a graph, where the complex global algebraic calcu-

lation can be replaced by local graphical manipulations. In probabilistic graphical

models, there are mainly three different kinds of graphs, i.e. directed graph, undi-

rected graph and factor graph, where the directed and the undirected graphical

models are also known as Bayesian networks and Markov random fields, respec-

tively. In this dissertation, I focus on the discussion of factor graphs, since convert-

ing both directed and undirected graphs into factor graphs is often the canonical

way for solving inference problems.

2.2.1 Factor Graph

A factor graph is a bipartite graph, which comprises two different kinds of nodes

(i.e. factor node and variable node). In factor graphs, each edge must connect

a factor node and a variable node. Moreover, each factor node represents one of

the factors over subsets of some variables in a decomposed joint distribution. Each

variable node expresses a random variable. Suppose that the decomposition of the

joint distribution over a set of random variables has the form of a product of factors

p(x) =
∏

s

fs(xs), (2.3)
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Figure 2.1: Example of a factor graph.

where the bold x is a set of variables in the joint distribution, xs is a subset of

variables and fs(xs) is a function of all variables in xs. Moreover, xi denotes each

individual variable in the joint distribution.

For example, let us consider the factorization of a joint distribution p(x) as

p(x) = fa(x1)fb(x2)fc(x1, x2, x3)fd(x2, x3). (2.4)

Then the factorization of p(x) can be expressed by the factor graph in Fig 2.1. In

this dissertation, please note that I use circles and squares to represent variable

nodes and factor nodes in the factor graph, respectively.

2.2.2 The Sum-product Algorithm

The sum-product algorithm (or BP algorithm) is an efficient and exact inference

algorithm for computing local marginals over variables on tree-structured graphs.

For graphs with loops, a lot of applications (e.g. LDPC decoding [6] and image

processing [42]) show that BP algorithm (or loopy BP algorithm) still provides a

good performance.

To introduce the sum-product algorithm, let us take a look at the follow-

ing example first. Suppose that a system has a set of hidden variables x =
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Figure 2.2: The factor graph for the factorization of joint probability in (2.6).

{x1, x2, x3, x4, x5} and a set of observations y = {y1, y3, y4, y5}. We are interested

in the estimate of each hidden variable xi, i = 1, 2, · · · , 5, given the observed data

y. Thus, the estimate x̂i can be expressed as

x̂i = arg max
xi

p(xi|y)

= arg max
xi

p(xi,y)

p(y)

= arg max
xi

p(xi,y).

(2.5)

(2.5) require us to compute the marginal distribution p(xi,y) out of the joint dis-

tribution p(x,y). For this toy problem, we can compute the marginal distributions

for each variable independently. However, for a large-scale problem with hundred or

even thousand hidden variables, it is infeasible to independently marginalize each

variable, since the computational burden is very expensive. Fortunately, the BP

algorithm on factor graphs provides an efficient way to compute marginal distribu-

tions over hidden variables.
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Suppose that the factorization of joint probability p(x,y) takes the form

p(x,y) = p(y1|x1)p(x1, x2, x5)p(y5|x5)p(x3, x4|x2)p(y3|x3)p(y4|x4)

= fa(x1, y1)fb(x1, x2, x5)fc(x5, y5)fd(x3, x4, x2)fe(x3, y3)ff (x4, y4),

(2.6)

where each function fs(xs) corresponds to a factor with the same variables in the

joint distribution. According the above factorization, we can construct the corre-

sponding factor in Fig. 2.2. For example, let us compute the marginal probability

of the discrete variable x1 as follows

p(x1,y) = fa(x1, y1)
︸ ︷︷ ︸

mfa→X1
(x1)

∑

x1,x5

fb(x1, x2, x5) fc(x5, y5)
︸ ︷︷ ︸

mfc→X5
(x5)

∑

x3,x4

fd(x3, x4, x2) fe(x3, y3)
︸ ︷︷ ︸

mfe→X3
(x3)

ff (x4, y4)
︸ ︷︷ ︸

mff →X4
(x4)

︸ ︷︷ ︸

mfd→X2
(x2)

︸ ︷︷ ︸

mfb→X1
(x1)

,

(2.7)

where mfs→Xi
(xi) denotes a message sent from a factor node fs to a variable node

Xi. Moreover, let us introduce mXi→fs
(xi) as the message sent from a variable node

Xi to a factor node fs. By inspecting (2.7), we can conclude that the variable node

message update rule as

mXi→fs
(xi) ∝

∏

s′∈N(Xi)\s
mfs′→Xi

(xi), (2.8)

and the factor node update rule as

mfs→Xi
(xi) ∝

∑

xs\xi



fs (xs)
∏

j∈N(fs)\i
mXj→fs

(xj)



, (2.9)

where N (Xi) \s denotes the set of all neighbors’ indices of node Xi excluding the

index s of the factor node fs; fs(xs) is the factor function for the factor node fs;
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Figure 2.3: Factor graph of LDPC decoding.

∑

xs\xi

denotes a sum over all the variables in xs, that are arguments of fs(xs), except

xi. Loosely speaking, mfs→Xi
(xi) and mXi→fs

(xi) can be interpreted as the beliefs

of node Xi taking the value xi transmitting from node fs to Xi and vice versa.

Finally, the sum-product algorithm computes the marginal probability of variable

xi, also called the belief b(xi) at a variable node Xi, as follows

b(xi) ∝
∏

s∈N(Xi)

mfs→Xi
(xi). (2.10)

So far, we suppose that all of the variables are discrete, so the marginalization is

computed by summation. However, the sum-product algorithm is also applicable

to linear-Gaussian models by replacing summation by integration, e.g. Kalman

filtering.

2.2.3 LDPC Decoding using Sum-product Algorithm

I shall show how to make use of factor graphs and the sum-product algorithm

to perform LDPC decoding. Suppose that x = {x1, x2, · · · , xN} is a codeword

of length N and transmitted over a memoryless noise channel (e.g. AWGN or

BSC channel) with corresponding output y = {y1, y2, · · · , yN}. Then in Bayesian
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viewpoint, the channel decoding problem is equivalent to the evaluation of the

posterior probability p(xi|y) over each variable. Fig. 2.3 shows the factor graph of

LDPC decoding problem. LDPC codes are usually defined on an M × N sparse

parity check matrix H as

HxT = 0. (2.11)

Thus, factor nodes hk, k = 1, 2, . . . , M , connect the bit variable nodes Xi, i =

1, 2, . . . , N , and take into account the constraints imposed by the LDPC codes (see

(2.11)). Here xi, the variable of node Xi, is a candidate value of the i-th bit of the

channel input (coded message). The corresponding factor function hk (xk) is given

by

hk (xk) =







1 if there are even number of 1’s in arguments

0 otherwise,
(2.12)

where xk indicates all variables connecting to factor node hk, that is xk = (xi|i ∈

N(hk)), and N(hk) represents the set of neighbors’ indices for a node hk. Moreover,

factor node fi connects the bit variable node Xi and the observation variable node

Yi, where yi, the variable of node Yi, is the i-th bit of the channel output. The factor

node fi plays a role of providing a predetermined likelihood p(yi|xi, θ) to variable

node Xi for LDPC decoding, where θ is the channel parameter, e.g. the noise vari-

ance for AWGN channels or the crossover probability for BSC. The corresponding

factor function of fi is defined as

fi (yi; xi, θ) =







1√
2πθ

exp
(

− (yi−xi)
2

2θ

)

for AWGN channel

θxi⊕yi(1 − θ)1⊕xi⊕yi for BSC channel,
(2.13)

where ⊕ is a binary sum operator. With the factor functions and an accurate

channel parameter θ in place, the performance of BP based LDPC decoding scheme
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can be very close to the theoretical limit.
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CHAPTER 3

APPROXIMATE INFERENCE

As shown in the previous chapter, the sum-product algorithm is a powerful prob-

abilistic inference technique for efficiently computing posterior probabilities over

discrete variables of small alphabet sizes or continuous variables of linear Gaussian

distributions. However, it cannot handle a discrete variable with a medium alpha-

bet size as the computational complexities increase exponentially with the alphabet

size. Moreover, for continuous variables with non-linear Gaussian distribution, sum-

product is also infeasible as the integration may not have a closed-form solution.

Due to this fatal weakness of the sum-product algorithm, I cannot directly use it

in my research for channel or correlation estimation, since the channel statistics or

the source correlation is usually continuous and cannot be expressed by a linear

Gaussian model. Two common workarounds in approximate inference are either to

discretize the variable through sampling techniques or to parametrize the variables

through variational inference, where the sampling and the variational methods are

also known as stochastic and deterministic approximation schemes. In this chapter,

I will describe the stochastic approximation and deterministic approximation.

3.1 Stochastic Approximation

Stochastic approximation is an approximate technique based on numerical sam-

pling, which is also known as Monte Carlo techniques. In many applications, pos-

terior distributions are employed to make predictions by evaluating expectations.

For example, considering some function f(x) with continuous variable x, the ex-

pectation of function f(x) respects to probability distribution p(x) can be written
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as

E[f ] =

∫

f(x)p(x)dx, (3.1)

where the integral can be replaced by summation for discrete variables. However,

for arbitrary functions and probability distributions, the exact evaluation over the

integral may not be alway tractable. One workaround is to resort to stochastic

approximation method. The general idea of sampling method is to independently

draw a set of samples xl, l = 1, 2, · · · , L from the distribution p(x), and then (3.1)

can be approximated by a finite sum

f̂ =
1

L

L∑

l=1

f(xl), (3.2)

where the estimator f̂ has the correct mean E[f̂ ] = E[f ], and the variance var[f̂ ] =

1
L
E[(f − E[f ])2]. Since the estimator does not depend on the dimensionality of x,

usually a relatively small number (e.g. ten or twenty) of independent samples may

achieve a sufficient accuracy in principle. However, the problem is that samples

might not be alway independent in practice, thus the effective sample size might

be much smaller than the actual sample size. Therefore, to achieve sufficient accu-

racy, a relatively large sample size is usually required in stochastic approximation

technique. This is why stochastic approximation methods are highly computational

demanding.

In the rest of this section, I will concisely review some sampling strategies (i.e.,

important sampling and MCMC), with which I will develop my proposed algorithm.

This section starts from the review of importance sampling. Then I discuss a general

and powerful technique, MCMC, which could effectively avoid some limitations

within the important sampling method.
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3.1.1 Importance Sampling Methods

The general idea of important sampling is to draw samples from an easily sampling

proposal distribution q(x) instead of the distribution p(x). Then the expectation

form based on a finite sum in (3.2) can be rewritten as

E[f ] =

∫

f(x)p(x)dx

=

∫

f(x)
p(x)

q(x)
q(x)dx

≃ 1

L

L∑

l=1

p(xl)

q(xl)
f(xl)

=
1

L

L∑

l=1

rlf(xl)

(3.3)

where rl = p(xl)/q(xl) are important weight.

Considering the evaluation of p(x) and q(x) in terms of normalization constant,

(3.3) can be written as

E[f ] =

∫

f(x)p(x)dx

=
Zq

Zp

∫

f(x)
p̃(x)

q̃(x)
q(x)dx

≃ Zq

Zp

1

L

L∑

l−1

r̃lf(xl),

(3.4)

where r̃l = p̃(x)/q̃(x), and the ratio Zq/Zp can also be evaluated through the same

samples

Zp

Zq

=
1

Zq

∫

p̃(x)dx =

∫
p̃(x)

q̃(x)
q(x)dx ≃ 1

L

L∑

l−1

r̃l. (3.5)
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Thus,

E[f ] ≃
L∑

l=1

wlf(xl) (3.6)

with

wl =
r̃l

∑

m r̃m

=
p̃(xl)/q̃(xl)

∑

m p̃(xm)/q̃(xm)
. (3.7)

Since important sampling technology introduces a proposal distribution q(x),

from which it is much easer to draw samples, the expectation accuracy depends on

the selection of the proposal distribution. In the case that the p(x) has much of

their mass concentrated on a small region of x space, while the proposal distribution

is small or zero in the regions where p(x) has large weight, the expectation accuracy

will be severely wrong.

3.1.2 Markov Chain Monte Carlo

MCMC is a more general and powerful sampling technique, which overcomes the

limitation within the important sampling, and works for a large class of distribu-

tions. Before I talk about MCMC framework, I first review some general properties

of Markov chains.

Markov Chains

Let us denote by x1, · · · ,xt a series of random values. Then we say that the random

variables are treated as first-order Markov chain, as long as the following conditional

independence property holds

p(xt+1|x1, · · · ,xt) = p(xt+1|xt). (3.8)

23



The transition probability p(xt+1|xt) indicates that the future state of a random

variable only depends on the current state. Moreover, if the transition probabilities

are the same for all the states, the Markov chain is called homogeneous.

Markov Chain Monte Carlo

Similar to importance sampling methods, MCMC also chooses a proposal distri-

bution, with which one can draw samples much easier. However, in MCMC, the

proposal distribution q(x) = q(x|xt) depends on the current state xt, which satis-

fies the first-order Markov chain. In addition, the candidate sample drawn from the

proposal distribution is accepted with a probability. For example, in Metropolis al-

gorithm, where the proposal distribution is symmetric, the probability of accepting

a candidate sample can be expressed as

a(x∗,xt) = min

(

1,
p̃(x∗)

p̃(xt)

)

. (3.9)

If a candidate sample is accepted, then sample at the next state will take the

candidate sample value xt+1 = x∗; otherwise, the sample at the next state will take

the current state sample value xt+1 = xt. Then the next candidate sample can be

drawn from the updated distribution q(x|xt+1).

3.2 Deterministic Approximation

The existing deterministic approximation methods include Laplace approximation

(LA), variational Bayes (VB), Expectation Propagation (EP) and so on. In this

section, I will focus on the discussion of EP, since EP usually shows a higher ac-

curacy comparing with other deterministic approximation methods, if the selected

model matches the problem. This section contains three parts. First, I will review
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some preliminaries for EP. Then, EP algorithm will be described in the next sec-

tion. Finally, the relationship between EP and other variational methods will be

discussed.

3.2.1 Preliminaries

Exponential Family

The exponential family of distributions over x is a set of distributions with the form

p(x; θ) = h(x)g(θ)exp
(
θ

Tu(x)
)
, (3.10)

where measurement x may be scalar or vector, discrete or continuous, θ are param-

eters of the distribution, h(x) and u(x) are some functions of x, and the function

g(θ) is a normalization factor as

g(θ)

∫

h(x)exp
(
θ

Tu(x)
)
dx = 1. (3.11)

In addition, if the variables are discrete, just simply replace the integration with

summation.

Exponential family has many properties, which may simplify computations. For

example, if a likelihood function is one of the members in the exponential family,

the posterior can be expressed in a closed-form expression by choosing a conjugate

prior within the exponential family. Moreover, exponential family has a wide range

of members such as Gaussian, Bernoulli, discrete multinomial, Poisson and so on,

thus it is applicable to many different inference models.
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Kullback-Leibler Divergence

Kullback-Leibler (KL) divergence [43] is a measure to quantify the difference be-

tween a probabilistic distributions p(x) and an approximate distribution q(x). For

the distributions p(x) and q(x) over continuous variables, KL divergence is defined

as

DKL(p(x)‖q(x)) =

∫

p(x)log
p(x)

q(x)
dx, (3.12)

where for discrete variables, just replace integration with summation. Moreover,

KL divergence is non-symmetric, which means DKL(p(x)‖q(x)) 6= DKL(q(x)‖p(x)).

To give readers an intuitive view about the difference between the above two forms

of KL divergence, we assume that the true distribution p(x) is multimodal and

the candidate distribution q(x) is unimodal. By minimizing DKL(q(x)‖p(x)), the

approximate distribution q(x) will pick one of the modes in p(x), which is usu-

ally used in variational Bayes method. However, the best approximate distri-

bution q(x) obtained by minimizing DKL(p(x)‖q(x)) will be the average of all

modes. The later case is used in the approximate inference procedure of EP. Since

this section focus on the review of EP algorithm, I will study the property of

minimizing DKL(p(x)‖q(x)) first. Regarding the difference between minimizing

DKL(p(x)‖q(x)) and DKL(q(x)‖p(x)), I will discuss it later in this chapter.

To ensure a tractable solution for minimizing KL divergence DKL(p(x)‖q(x)),

the approximate distribution q(x) is usually restricted within a member of the

exponential family. Thus, according to (3.10), q(x) can be written as

q(x; θ) = h(x)g(θ)exp
(
θ

Tu(x)
)
, (3.13)

where θ are the parameters of the given distribution.
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By substituting q(x; θ) into the KL divergence DKL(p(x)‖q(x)), we get

DKL(p(x)‖q(x)) = −lng(θ) − θ
T
Ep(x)[u(x)] + const, (3.14)

where the const represents all the terms that are independent of parameters θ. To

minimize KL divergence, take the gradient of DKL(p(x)‖q(x)) with respect to θ to

zero, we get

−▽ lng(θ) = Ep(x)[u(x)]. (3.15)

Moreover, for (3.11), taking the gradient of both sides respect to θ, we get

▽g(θ)

∫

h(x)exp
{
θ

Tu(x)
}

dx + g(θ)

∫

h(x)exp
{
θ

Tu(x)
}
u(x)dx = 0. (3.16)

Then by rearranging and reusing (3.11) again, we get

−▽ lng(θ) = Eq(x)[u(x)]. (3.17)

By comparing (3.15) and (3.17), we obtain

Ep(x)[u(x)] = Eq(x)[u(x)]. (3.18)

Thus, from (3.18), we see that the minimization of KL divergence is equivalent

to matching the expected sufficient statistics. For example, for minimizing KL

divergence with a Gaussian distribution q(x; θ), we only need to find the mean

and covariance of q(x; θ) that are equal to the mean and covariance of p(x; θ),

respectively.
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Assumed-density Filtering (ADF)

ADF is a technique to construct a tractable approximation to complex probability

distribution. EP can be viewed as an extension on ADF. Thus, I first provide a

concise review of ADF and then extend it to EP algorithm.

Let us consider the same problem studied in Section 2.1.1. In this case, we

suppose that the factorization of (2.1) has the following form

p(x|y) =
p(x)p(y|x)

p(y)

=
1

Z
p0(x)

N∏

i=1

p(yi|x),

=
1

Z

N∏

i=0

pi(x),

(3.19)

where Z is a normalization constant, pi(x) is a simplified notation of each corre-

sponding factor in (3.19), where p0(x) = p0(x) and pi(x) = pi(yi|x) for i > 0.

If we assume that the likelihood function p(yi|x) has a complex form, the direct

evaluation of the posterior distribution would be infeasible. For example, if each

likelihood function is a mixture of two Gaussian distributions and there is total

N = 100 number of observed data. Then to get the posterior distribution, we need

to evaluate mixture of 2100 Gaussians.

To solve this problem, approximate inference methods try to seek an approxi-

mate posterior distribution that can be very close to the true posterior distribution

p(x|y). Usually, the approximate distributions are chosen within the exponential

family to ensure the computational feasibility. Then the best approximate distri-

bution can be found by minimizing KL divergence:

θ
∗ = arg min

θ
DKL(p(x)‖q(x; θ)). (3.20)
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However, we can see that it is difficult to solve (3.20) directly. ADF solves this

problem by iteratively including each factor function in the true posterior distri-

bution. Thus, at first, ADF chooses q(x; θ0) to best approximate factor function

p0(x) through

θ
0 = arg min

θ
DKL(p0(x)‖q(x; θ)). (3.21)

Then ADF will update the approximation by incorporating the next factor function

pi(yi|x) until all the factor functions have been involved, which gives us the following

update rule

θ
i = arg min

θ
DKL(pi(x)q(x; θi−1)‖q(x; θ)). (3.22)

As shown in Section 3.2.1, if q(x; θ) is chosen from the exponential family, the op-

timal solution of (3.22) is matching the expected sufficient statistics between the

approximate distribution q(x; θi) and the target distribution pi(x)q(x; θi−1). More-

over, according to (3.22), we can see that the current best approximation is based

on the previous best approximation. For this reason, the estimation performance of

ADF may be sensitive to the process order of factor functions, which may produce

an extremely poor approximation in some cases. In the next section, I will provide

another perspective of the ADF update rule, which results in the EP algorithm and

provides a way to avoid the drawback associated with ADF algorithm.

3.2.2 Expectation Propagation

By taking another perspective, ADF can be seen as sequentially approximating the

factor function pi(x) by the approximate factor function p̃i(x), which is restricted

within the exponential family, and then exactly updating the approximate distri-
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bution q(x; θ) by multiplying these approximate factor functions. This alternative

view of ADF can be described as:

p̃i(x) ∝ q(x; θi)

q(x; θi−1)
, (3.23)

which also produces the EP algorithm. EP algorithm initializes each factor func-

tion pi(x) by a corresponding approximate factor function p̃i(x). Then, at later

iterations, EP revisits each approximated factor function p̃i(x) and refined it by

multiplying all the current best estimate but one true factor function pi(x) of the

revisiting term. After multiple iterations, the approximation is obtained according

to (3.24).

q(x; θ∗) ∝
∏

i

p̃i(x). (3.24)

Since this procedure does not depend on the process order of the factor function,

EP provides a more accurate approximation than ADF.

The general process of EP is given as follows:

1. Initialize the term approximation p̃i(x), which can be chosen from one of

members in the exponential family based on the problem.

2. Compute the approximate distribution

q(x; θ) =
1

Z

∏

i

p̃i(x), (3.25)

where Z =
∫ ∏

i p̃i(x)dx.

3. Until all p̃i(x) converge:

(a) Choose p̃i(x) to refine the approximate.
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(b) Remove p̃i(x) from the current approximated distribution q(x; θ) with a

normalization factor:

q(x; θ\i) ∝ q(x; θ)

p̃i(x)
. (3.26)

(c) Update q(x; θ), where we first combine q(x; θ\i) , current pi(x) and a

normalizer Zi, and then minimize the KL divergence through moment

matching projection (3.18) (i.e. the Proj(·) operator):

q(x; θ) = Proj

(
1

Zi

q(x; θ\i)pi(x)

)

. (3.27)

(d) Update p̃i(x) as

p̃i(x) = Zi
q(x; θ)

q(x; θ
\i)

. (3.28)

4. Get the final approximate distribution through

p(x) ≈ q(x; θ∗) ∝
∏

i

p̃i(x). (3.29)

Relationship With BP

This section shows that BP algorithm is a special case of EP, where EP provides

an improved approximation for models in which BP is generally intractable.

Let us first take a quick review of BP algorithm discussed in Section 2.2.2. The

procedure of BP algorithm is iteratively updating all variables nodes, then updating

all factor nodes through sending messages in parallel, and finally update the belief of

each variable after each iteration. By taking another viewpoint, BP can be viewed

as updating the belief over a variable xi by incorporating one factor node at each
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time. Under this perspective, the belief of variable xi will be updated as

b(xi) =
mXi→fs

(xi) mfs→Xi
(xi)

Zi

, (3.30)

where Zi =
∫

mXi→fs
(xi) mfs→Xi

(xi) dxi is the normalization factor. Moreover,

we can loosely interpret mXi→fs
(xi) and mfs→Xi

(xi) as the prior and likelihood

message, respectively.

Let us suppose that each likelihood message mfs→Xi
(xi) has a complex form,

e.g. a mixture of multiple Gaussian distributions. Then the computational com-

plexity to evaluate the exact beliefs over all variables would be infeasible. Instead of

propagating exact likelihood message mfs→Xi
(xi), EP passes an approximate mes-

sage m̃fs→Xi
(xi), where m̃fs→Xi

(xi) is obtained by using the projection operation

as shown in the general process of EP. Moreover, m̃fs→Xi
(xi) is usually chosen from

exponential family to make the problem tractable. Thus, the approximate belief in

EP has the following form

b(xi) ≈ q(xi) ∝
∏

s∈N(Xi)

m̃fs→Xi
(xi). (3.31)

To show BP as a special case of EP, we further define the partial belief of a variable

node as

b(xi)
\fs =

b(xi)

m̃fs→Xi
(xi)

∝
∏

s′∈N(Xi)\s
m̃fs′→Xi

(xi), (3.32)

and the partial belief of a factor node as

b(fs)
\Xi =

b(fs)

m̃Xi→fs
(xi)

, (3.33)

where b(fs) =
∏

j∈N(fs)
m̃Xj→fs

(xj) is define as the belief of the factor node fs. By

32



comparing to (3.27) and (3.28), the factor node message updating rule in EP can

be written as

m̃fs→Xi
(xi) =

Proj
(
b(xi)

\fsmfs→Xi
(xi)

)

b(xi)\fs

=
Proj

(

b(xi)
\fs

∫

xs\xi
fs (xs) b(fs)

\Xi

)

b(xi)\fs

(3.34)

where the integral works over continuous variable. For discrete variable, one can

simply replace integral with summation. Furthermore, the new belief b(xi) will be

approximated as

b(xi) ≈ qi(xi) =
b(xi)

\fsm̃fs→Xi
(xi)

Zi

, (3.35)

where Zi =
∫

xi
b(xi)

\fsm̃fs→Xi
(xi).

Now, if the integral in (3.34) is tractable (e.g. a linear Gaussian model) even

without using the projection to approximate mfs→Xi
. Then b(xi)

\fs in (3.34) can

be canceled. Finally, the factor node message update rule in EP reduces to the

standard BP case.

3.2.3 Relationship With Other Variational Inference Methods

In this section, I will describe the relationship between EP and other variational

inference algorithms, e.g. VB. The problem considered here is the same as that

in Sections 2.1.1, where y are the observed data and x are some hidden variables.

The Bayesian probabilistic model specifies the joint distribution p(x,y), where all

the hidden variables in x are given prior distributions. The goal is to find the

best approximation for the posterior distribution p(x|y). Let us take a look at the

decomposition of the log joint distribution as follows

log p(x,y) = log p(x|y) + log p(y). (3.36)
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By rearranging (3.36) and taking the integral of the both sides of the rearranged

equation with respect to a given distribution q(x), we get the log model evidence

log p(y) =

∫

q(x) log(p(y))dx

=

∫

q(x) log(p(x,y)) −
∫

q(x) log(p(x|y))dx,

(3.37)

where
∫

q(x)dx = 1. Then, by reformatting (3.37), we get

log p(y) = L(q(x)) + DKL(q(x)||p(x)), (3.38)

where we define

L(q(x)) =

∫

q(x) log(
p(x,y)

q(x)
)dx, (3.39)

DKL(q(x)||p(x)) =

∫

q(x) log(
q(x)

p(x|y)
)dx. (3.40)

Since DKL(q(x)||p(x)) is a nonnegative functional, L(q(x)) gives the lower bound

of log p(y). Then the maximization of the lower bound L(q(x)) with respect to the

distribution q(x) is equivalent to minimizing DKL(q(x)||p(x)), which happens when

q(x) = p(x|y). However, working with the true posterior distribution p(x|y) may

be intractable. Thus, we assume that the elements of x can be partitioned into M

disjoint groups xi, i = 1, 2, · · · ,M . We then further assume that the factorization

of the approximate distribution q(x) with respect to these groups has the form

q(x) =
M∏

i

qi(xi). (3.41)

Please note that the factorized approximation corresponds to the mean filed theory,

which was developed in physics. Given the aforementioned assumptions, we now try
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to find any possible distribution q(x) over which the lower bound L(q(x)) is largest.

Since the direct maximization of (3.39) with respect to q(x) is difficult, we instead

to optimize (3.39) with respect to each of the factors in (3.41). By substituting

(3.41) into (3.39), we get

L(q(x)) =

∫

qj(xj)





∫

log (p(x,y))
∏

i 6=j

qi(xi)dxi



 dxj −
∫

qj(xj) log(qj(xj))dxj + const

= −
∫

qj(xj) log(
qj(xj)

p̃(xj ,y)
)dxj + const

= −DKL(qj(xj)||p̃(xj ,y)) + const,

(3.42)

where we define p̃(xj,y) as

p̃(xj,y) = exp

(
∫

log (p(x,y))
∏

i6=j

qi(xi)dxi

)

= exp (Ei6=j[log p(x,y)]) .

(3.43)

Thus, if we keep all the factors qi(xi) for i 6= j fixed, then the maximization of (3.42)

with respect to qj(xj) is equivalent to the minimization of DKL(qj(xj)||p̃(xj,y)).

In practices, we need to initialize all the factors qi(xi) first, and then iteratively

update each of the factor qj(xj) by minimizing the DKL(qj(xj)||p̃(xj,y)), until the

algorithm convergences.

Now we can see the key difference between EP and VB is the way to minimizing

the KL divergence. The advantage of VB is that it provides a lower bound during

each optimizing step, thus the convergence is guaranteed. However, VB may cause

under-estimate for variance. In EP, minimizing DKL(p(x)||q(x)) is equivalent to

the “moment matching”, but convergence is not guaranteed. However, EP has a

fix point and if it does converge, the approximation performance of EP usually

outperforms VB.
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CHAPTER 4

SNR ESTIMATION IN CHANNEL CODING

In this chapter, I will describe the two proposed adaptive LDPC decoding schemes,

which can perform online SNR estimation, by incorporating PF and EP algorithm.

First, I will introduce the proposed PF based approach, which extend BP algorithm

to handle continues variables. Moreover, the proposed method was denoted by

particle based BP (PBP) algorithm. Then, I will introduce the EP based approach.

4.1 Time-varying SNR Estimation using PBP over AWGN Channels

4.1.1 Noise Adaptive LDPC Decoding

The main idea of noise adaptive LDPC decoding with PF is illustrated in the factor

graph of Fig. 4.1 with three regions, where all circle nodes denote variable nodes

and all square nodes denote factor nodes. If an accurate estimation of the noise

variance v = σ2 is given, the standard BP algorithm can obtain a good decoding

performance by exchanging messages within Region III. In Region III, factor node

f III
l with l = 1, 2, . . . , M connects the bit variable nodes Xi, i = 1, 2, . . . , N and

takes into account the constraints imposed by the LDPC codes. The corresponding

factor function of f III
l is given by

f III
l

(

x
fIII

l

)

=







1 if even number of 1’s in arguments

0 otherwise
(4.1)

where x
fIII

l

indicate all variables connecting to factor node f III
l , that is x

fIII
l

=

(xi|i ∈ N(f III
l )), and N(f III

l ) represents the set of neighbors’ indices for a node f III
l .

Now, assuming that the noise variance is changing with time, I can model this

36



1∑
'N∑

Region I Region III

•
•
•

Region II

I
NNf ',1'−

IIIf1

IIIf2

III
Mf

IIf1

IIf2

3X
IIf3

NXII
Nf

•
•
•

•
•
•

•
•
•

1X

If 2,1

If 2,1

2X

2∑

Figure 4.1: Factor graph of adaptive LDPC decoding based on PBP.

using extra variable nodes corresponding to Σ1, Σ2, . . . , ΣN ′ , which are shown as

circles in Region I. For each variable σi′ , the realization of variable node Σi′ in

Region I, I model it with K particles, which are labeled as σ1
i′ , . . . , σ

K
i′ . Then these

particles are used to estimate the noise variance with the PBP algorithm (see details

in Section 4.1.2). Additionally, Region I and Region III are connected by factor

nodes f II
i in Region II. I call the number of factor nodes f II

i connecting to each Σi′

the connection ratio, which is equal to three in Fig.4.1. The higher the connection

ratio, the simpler the model and the fewer the number of hidden parameters 1. The

factor functions of f II
i are defined as

f II
i

(
x̂i, σ

k
i′ ; yi

)
=

1

σk
i′
e
− (yi−x̂i)

2

(σk
i′)

2

(4.2)

where yi and x̂i are the i-th input codeword and candidate codeword respectively,

1To estimate a constant noise variance, one can set the connection ratio equal to the code
length N .
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and the variables i = 1, 2, · · · , N and k = 1, 2, · · · , K. Furthermore, the correlation

between adjacent variable nodes is represented by additional factor node f I
i′,i′+1 in

Region I, where the corresponding factor function is defined as

f I
i′,i′+1

(
σk

i′ , σ
k
i′+1

)
= e

−(σk
i′+1

−σk
i′)

2

λ
i′,i′+1 (4.3)

where λi′,i′+1 is a parameter to reflect the correlation between adjacent variable

nodes. Generally, a small λi′,i′+1 means a strong correlation, while a large λi′,i′+1

reflects a weak/independent correlation. Moreover, the value of λi′,i′+1 can be esti-

mated simultaneously with decoding (see details in Section 4.1.4).

4.1.2 PBP Algorithm

In the standard BP algorithm [4], (2.9) is generally intractable when variables are

continuous or the alphabet sizes of variables are large, since the summation in (2.9)

will have an infinite number of terms. Thus, I introduce a PBP algorithm to solve

this problem by combining BP with particle methods. The key idea of PBP is

to model each continuous variable (or variable with large alphabet sizes) with K

number of particles with associated weights, which just corresponds to K number

of labels in the standard BP. Note that in standard BP only the belief of each label

will be updated after each iteration, but in PBP both the value (i.e., location) of

each label (i.e., particle) and the corresponding belief of each label will be updated

after each iteration. Please note that these changes do not affect the sum-product

message update rules described in the standard BP algorithm.

By introducing a distribution Wi′(σi′), which corresponds to the particle weights,

we can rewrite (2.9) as an expectation form, which can be considered as importance-
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sampling transform of (2.9), as follows 2.

m
fIIi →Xi

(xi) ∝
∑

σi′

f II
i (σi′ , xi)

m
Σi′→fIIi

(σi′)

Wi′(σi′)
Wi′(σi′)

∝ E

[

f II
i (σi′ , xi)

m
Σi′→fIIi

(σi′)

Wi′(σi′)

]

,

(4.4)

where E is the expectation with respect to the distribution Wi′(σi′). Then, the

above message can be approximated by a list of K particles as

m̂
fIIi →Xi

(xi) ∝
1

K

K∑

k=1

f II
i

(

σ
(k)
i′ , xi

) m̂
Σi′→fIIi

(

σ
(k)
i′

)

Wi′(σ
(k)
i′ )

. (4.5)

Moreover, the distribution Wi′(σi′) can be chosen from the marginal distribu-

tion of variable σi′ , which corresponds to the belief of this variable (see (2.10)).

Additionally, locations and corresponding weights of particles have to be adjusted

over time. This is achieved by using systematic resampling [44] and Metropolis-

Hastings (MH) [45] random walk perturbation after each message update. The

MH algorithm efficiently reduces the number of simulation iterations by half when

comparing to the standard Gaussian random walk. In the following, the workflow

of the PBP algorithm is described.

1. First, the weight of a particle σ
(k)
i′ will be computed as b(σ

(k)
i′ ), the belief of

σ
(k)
i′ from standard BP, where k = 1, 2, · · · , K.

2. Then K new samples, σ̃
(1)
i′ , · · · , σ̃

(K)
i′ , will be drawn with probabilities propor-

tional to b(σ
(k)
i′ ) using systematic resampling [44]. As a result, some σ

(k)
i′ that

have small probabilities will be likely to be discarded whereas those with high

probability will be repeatedly drawn.

2For ease exposition, I consider a factor function fII
i (σi′ , xi) with only two variables in this

analysis. It is easy to extend the analysis to a factor function with more variables.
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3. To maintain the diversity of the particles, the particle locations will be per-

turbed by an MH [45] based Gaussian random walk, which consists of two

basic stages. First, let the proposed new K particles at each iteration be

σ̂
(k)
i′ = σ̃

(k)
i′ + Zr, that is the current value plus a Gaussian random vari-

able Zr ∼ N(0, σ2
r). Second, decide whether the proposed values of new

particles are rejected or retained by computing the acceptance probability

a{σ̂(k)
i′ , σ̃

(k)
i′ } = min{1, p

(

σ̂
(k)

i′
)

p
(

σ̃
(k)

i′
)}, where

p
(

σ̂
(k)

i′
)

p
(

σ̃
(k)

i′
) is the ratio between the proposed

particle value and the previous particle value. When the proposed value has a

higher posterior probability than the current value σ̃
(k)
i′ , it is always accepted;

otherwise, it is accepted with probability a.

4. Based on the new particles, update messages and beliefs using standard BP.

5. Iterate steps 2 to 4 unless the maximum number of iterations is reached or

other exit conditions are satisfied.

4.1.3 Noise Model

As stated above, I consider the case that the noise variance σ2 varies continuously

over time. In [46], the authors assume that the noise variance varies sinusoidally.

In many other scenarios [47, 48], such as OFDM and CDMA systems, the noise

variance is changing as a random variable with a predetermined probability density

function (PDF). Here, I assume that the noise variance is Chi-square distributed

with R degrees of freedom, each of which is a Gaussian distribution with zero mean

and variance σ2
h. The PDF of the noise variance is:

p(σ2) =
2−R/2σ−R

h

Γ(R/2)
(σ2)

R
2
−1e−σ2/2σ2

h , (4.6)
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where Γ(·) denotes the Gamma function [49]. For various scenarios, the correspond-

ing PDF of noise variance can be obtained by adapting different values of R and

σ2
h.

4.1.4 Estimation of Parameter λi′,i′+1

Generally, λi′,i′+1 is taken as a predetermined value to simplify the problem. It may

be beneficial to estimate λi′,i′+1 for each factor node f I
i′,i′+1 in Region I to improve

decoding performance. In my study, I utilize a similar method used for σ2 estimation

(see section 4.1.2) to estimate λi′,i′+1 by sampling K particles λ1
i,i+1, · · · , λK

i′,i′+1, for

each factor node f I
i′,i′+1 in Region I. Here, I suppose that the change in λi′,i′+1 has

the same trend as the difference ∆σi′,i′+1 = |σ̄i′ − σ̄i′+1| between the variable node

of σi′ and σi′+1, where σ̄i′ = 1
K

∑K
k=1 σk

i′ is the mean of all the particles in variable

node of σi′ . A larger ∆σi′,i′+1 means a greater probability of λk
i′,i′+1 to take a larger

value. Thus, the weight of particles sampled for factor node f I
i′,i′+1 in Region I is

defined as

ωi′,i′+1

(
λk

i′,i′+1

)
∝ exp

(

−
(λk

i′,i′+1)
2

(σ̄i′ − σ̄i′+1)
2

)

. (4.7)

Then λi′,i′+1 = 1
K

∑K
k=1 λk

i′,i′+1 and σk
i′ can be estimated alternately. To increase the

stability, I perform one λi′,i′+1 estimation for every T number of iterations whereas

σ2 estimation is performed at each iteration as described in Section 4.1.2.

4.2 Results and Discussion

In this section, the decoding performances (in terms of bits error rate (BER)) of

standard BP and PBP decoders for LDPC codes were presented in the presence

of a SNR mismatch. For the SNR mismatch, I considered two different scenarios,

constant SNR mismatch and time varying SNR mismatch over an AWGN channel.
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In my simulation, irregular LDPC codes with code rate of 1
3

and degree profile

(λ⋆, ρ⋆) [50] were used, where the degree profile (λ⋆, ρ⋆) was given by,

λ⋆ = 0.216724x1 + 0.164615x2 + 0.106047x5 + 0.0935029x6

+ 0.000689685x12 + 0.0153518x13 + 0.0272307x14

+ 0.00743584x15 + 0.0882668x16 + 0.0180324x32

+ 0.0942067x33 + 0.000367395x40 + 0.16753x99

and

ρ⋆ = 0.8x6 + 0.2x7.

Furthermore, the connection ratio is equal to 1. For each variable node in Region

I, 16 particles were used. The initial value of λi′,i′+1 was equal to 0.01, and then

it was estimated online using the proposed algorithm, where the parameter T was

equal to 10. All the results were obtained by averaging 10,000 different codewords

and within 200 BP iterations.

In the experiments, first, I studied the decoding performance of the proposed

PBP decoder, where the SNR was constant within each codeword block. In Fig. 4.2,

the codeword block lengths of 103, 104, 105 were studied for LDPC codes, where the

initial SNRs for BP and PBP decoders were the true SNR and −2 dB away from the

true SNR, respectively. For LDPC codes, simulation results of different codeword

block lengths showed no obvious degradation of performance between the proposed

PBP decoder and the known SNR BP decoder. Also, the decoding performance

of Turbo codes using online estimation [1] was compared with the proposed PBP

decoder for LDPC codes. Fig. 4.2 showed that both of the online estimators for
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Figure 4.2: Performance of BER versus SNR for Turbo decoder and LDPC decoder
using 1) the SNR determined by online estimation and 2) knowledge of the true
SNR, where the SNR for each case was constant within a codeword block. The
codeword block lengths of 103, 104, 105 were studied for LDPC codes. The results
of Turbo codes were from [1].

Turbo codes and the proposed PBP decoder for LDPC codes manage to avoid the

decoding performance degradation caused by SNR mismatch. Furthermore, the

decoding performances of both Turbo and LDPC codes improves as the codeword

block lengths are increased. When the codeword block length was larger than 104,

the performances of LDPC codes became better than Turbo codes, which was also

observed in [50].

Secondly, I studied the time varying SNR mismatch case. I assumed that the

noise variance σ2 satisfied a Chi-square distribution with R = 2 degrees of freedom

and variance σ2
h. Additionally, I assumed that every 100 successive bits in each

codeword shared the same noise variance, which was sampled from a given Chi-

square distribution. Then different Chi-square distributions could be obtained by

varying σ2
h. In Fig. 4.3, the solid line showed the sampled values of time varying

noise variances for a codeword block with length 104, where σ2
h was equal to 1.6.

The dotted line showed the estimation result using the proposed PBP decoder.

Furthermore, the initial value σ̂, used for estimation, was always equal to the mean
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Figure 4.3: Estimation of time-varying σ2 using the proposed PBP decoder, where
a Chi-square distribution with σ2

h = 1.6 was used.

of sampled noise variances, which was shown by a dash dotted line. An accurate

estimation of the noise variance σ2 was found in Fig. 4.3, although the initial value

used for estimation was far away from the true σ2.

Finally, I investigated the decoding performances of BP decoder and PBP de-

coder with time varying SNR. By changing σ2
h from 0.5 to 2.3, different noise vari-

ance sequences with different mean values were sampled from the corresponding

Chi-square distribution. These mean values were then used as initial values in the

PBP decoder. Fig. 4.4 showed that the proposed PBP decoder obtained a much

better performance than the known mean of time-varying SNR BP decoder. The

gap between BP with and without the knowledge of true SNR was about 4 dB,

however, the gaps between a known true SNR BP decoder and a PBP decoder were

less than 0.5 dB and 0.1 dB at 10−4 and 10−5 BER levels, respectively. This result

indicated that knowing only the mean of the time-varying SNR was not enough for

a standard BP decoder to achieve its best decoding performance, if the SNR in a

channel varied in bit-level. Moreover, in Fig. 4.4, PBP using MH showed a faster

convergence speed and obtained about 0.1 dB performance gain compared with the

normal PBP decoder.
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Figure 4.5: Factor graph of adaptive LDPC decoding based on EP.

4.3 Time-varying SNR Estimation using EP over AWGN Channels

In this section, I will introduce adaptive LDPC decoding using EP algorithm. Sim-

ilar to Section 4.1.1 for the factor graph construction, to enable the online estima-

tion of time-varying noise variance vt, I introduce extra variable nodes Vj and factor

nodes gj, j = 1, 2, . . . , N ′ (see Region I of Fig. 4.5). Here, the connection ratio C,
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which is the number of factor nodes in Region II connecting to each variable node

Vj, is equal to four in Fig. 4.5. In Region I, each variable node Vj is used to model

the time-varying noise variance vt of a block of C number of code bits. Moreover,

the factor function gj(vj) of factor node gj corresponds to the a priori distribution

for variable vj and will be discussed in details later. Consequently, by introducing

noise variance estimation in Region I, likelihood factor function is defined as

fi (yi; xi, vj) =
1

√
2πvj

exp

(

−(yi − xi)
2

2vj

)

. (4.8)

In Bayesian inference, the estimation of noise variance vj corresponds to the

estimation of its posterior distribution, i.e. p(vj|yj), where yj = (yi|i ∈ N\gj(Vj)),

and N\gj(Vj) represents the set of neighbors’ indices for a variable node Vj except

the index of gj. For the LDPC-based codes, it is easy to verify that

p(vj|yj) =

∏

i∈N
\gj (Vj)

p(vj)p(yi|vj)
∫

vj

∏

i∈N
\gj (Vj)

p(vj)p(yi|vj)

=

∏

i∈N
\gj (Vj)

∫

xi
p(vj)p(xi)p(yi|xi; vj)

∫

vj

∏

i∈N
\gj (Vj)

∫

xi
p(vj)p(xi)p(yi|xi; vj)

,

(4.9)

where p(vj), the a priori distribution for vj, is modeled by the factor function gj(vj);

p(yi|xi; vj), the likelihood for yi, is modeled by the factor function f(yi; xi, vj); p(xi),

the a priori distribution for code bit xi, is captured by the message mXi→fi
(xi)

defined in [4]. Moreover, for binary sources in AWGN channels, variable xi only

takes ±1. Then the posterior distribution (4.9) can be written as

p(vj|yj) =
1

Zj

g(vj)
∏

i∈N
\gj (Vj)

∑

xi∈±1

f(yi; xi, vj)mXi→fi
(xi)

=
1

Zj

mgj→Vj
(vj)

∏

i∈N
\gj (Vj)

mfi→Vj
(vj),

(4.10)
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where Zj is a normalization constant, the value of message mXi→fi
(xi) is updated

iteratively by variable node Xi in Region III according to BP update rule (2.8),

message mgj→Vj
(vj) = g(vj) comes from prior factor node in Region I, and message

mfi→Vj
(vj) =

∑

xi∈±1 f(yi; xi, vj)mXi→fi
(xi) comes from likelihood factor node in

Region II according to the BP update rule (2.9).

Regarding to the selection of the prior function g(vj), it is reasonable to choose

a conjugate prior of the likelihood function in (4.8) to make the approximation

tractable. Since inverse gamma (IG) distribution is the conjugate prior to a likeli-

hood distribution with variance as the parameter, I choose g(vj) = IG(vj, α
0
j , β

0
j )

as the prior distribution for the likelihood function in (4.8). The IG distribution is

defined as

IG(vj, α, β) =
βα

Γ(α)
v−α−1

j exp

(

− β

vj

)

, (4.11)

where α and β are shape and scale parameters, respectively. Moreover, with respect

to vj, (4.8) can be written as

fi (yi; xi, vj) =
1√
2π

Γ(− 1
2 )

(
(yi−xi)2

2

)− 1
2

IG

(

vj ,−
1

2
,
(yi − xi)

2

2

)

. (4.12)

To calculate the posterior distribution (4.10), I cannot use BP directly, since

the belief state for vj is a mixture of 2C IG distributions, and C can be a large

number (e.g. 50 to 10, 000 in my study), where C = |N\gj(Vj)| is the connection

ratio. Fortunately, EP [41] provides a fast and accurate approximation method by

extending ADF to incorporate iterative refinement of approximations. Originally,

EP algorithm in [41] is proposed to approximate a mixture of Gaussian distribu-

tions. In Section 4.3.1, I will extend EP algorithm to also handle a mixture of IG

distributions, so that it can estimate the channel noise variance.
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4.3.1 Posterior Approximation using EP

As mentioned in Section 4.3, to capture the time-varying noise variance of the

AWGN channel while decoding, I introduced Region I (see Fig. 4.5) in the pro-

posed factor graph and derived the posterior distribution for the time-varying noise

variance. In this section, I propose a scheme based on the EP framework to speedily

and accurately approximate the posterior distribution.

The key idea of EP is to sequentially compute approximate message m̃fi→Vj
(vj)

in replace of true message mfi→Vj
(vj) in (4.10), then get a posterior on vj by combin-

ing these approximations together. The formula of EP for the problem of variance

estimation is given as follows:

1. Initialize the term approximation m̃gj→Vj
(vj) and m̃fi→Vj

(vj).

2. Compute the posterior approximation for vj as:

q(vj) =
1

Zj

m̃gj→Vj
(vj)

∏

i∈N
\gj (Vj)

m̃fi→Vj
(vj), (4.13)

where Zj =
∫

vj
m̃gj→Vj

(vj)
∏

i∈N
\gj (Vj)

m̃fi→Vj
(vj) is a normalization factor.

3. Until all m̃fi→Vj
(vj) converge:

For each variable node Vj:

For each factor node fi, where i ∈ N\gj(Vj)

(a) Remove the approximate message m̃fi→Vj
(vj) from the posterior approx-

imation q(vj) to generate

q\fi(vj) ∝
q(vj)

m̃fi→Vj
(vj)

. (4.14)
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(b) To update q(vj), combine q\fi(vj), the current message mfi→Vj
(vj) and

the normalization constant Zj to get a complex posterior p̂(vj). Then

minimize the KL-divergence D(p̂(vj)||q(vj)) by performing moment match-

ing (Proj(·)) (see Section 4.3.3 for more detail). Thus,

q(vj) = Proj(
1

Zj

q\fi(vj)mfi→Vj
(vj)), (4.15)

where Zj =
∫

vj
q\fi(vj)mfi→Vj

(vj).

(c) Set approximate message

m̃fi→Vj
(vj) =

Zjq(vj)

q\fi(vj)
. (4.16)

4.3.2 IG Distribution Approximation using EP

Each iteration of EP based IG distribution approximation for the variance estima-

tion problem proceeds as follows:

1. Initialize the prior messages for the noise variance variables

m̃gj→Vj
(vj) = z0

j v
−α0

j−1

j exp(−
β0

j

vj

) (4.17)

with α0
j = 1, β0

j = v0(α0
j + 1) and z0

j =
β0

j

α0
j

Γ(α0
j )

, where v0 is the initial variance

for LDPC decoding, and β0
j and α0

j are scale and shape parameters for IG

distribution, respectively3

3The selection of the initial values for the parameters guarantees the mode of prior distribution
equals to v0. Here, for a given v0, a larger value of the shape parameter α0

j means a sharper prior
distribution.
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2. Initialize the likelihood messages from the channel output

m̃fi→Vj
(vj) = zijv

−αij−1
j exp(−βij

vj

) (4.18)

with βij = 0, αij = −1 and zij = 1, where the values selection for the

above parameters guarantee that vj in (4.18) is equality likely before LDPC

decoding.

3. Initialize the posterior probability distributions of the noise variance variables

q(vj) = Zjv
−αnew

j −1

j exp(−
βnew

j

vj

) (4.19)

with αnew
j = α0

j , βnew
j = β0

j and Zj = z0
j .

4. Until all m̃fi→Vj
(vj) converge:

For each variable node Vj

For each factor node fi, where i ∈ N\gj(Vj)

(a) Remove m̃fi→Vj
(vj) from the posterior q(vj)

α
tmp
j = αnew

j − (αij + 1); β
tmp
j = βnew

j − βij. (4.20)

(b) Update αnew
j and βnew

j according to moment matching. (See Section

4.3.3 for more details.)

(c) Set approximate message

αij = αnew
j − (α

tmp
j + 1); βij = βnew

j − β
tmp
j

zij = Zj

βnew
j

αnew
j

Γ(αnew
j )

Γ(αtmp

j )

βtmp

j
αtmp

j

Γ(αij)

βij
αij

.
(4.21)
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4.3.3 Moment Matching

By the technique of moment matching [51], q(vj) is obtained by matching the

mean and variance of q(vj) to those of p̂(vj). Then I get αnew
j and βnew

j , the

parameters of q(vj). For the ease of exposition, I simplify the notations and let

α = αnew
j , β = βnew

j , α′ = α
tmp
j , β′ = β

tmp
j , v = vj, p̂(v) = 1

Zj
q\Vj(vj)mfi→Vj

(vj),

Z = Zj =
∫

vj
q\Vj(vj)mfi→Vj

(vj), and q(v) = q(vj).

The mean and variance of IG distribution are matched by the following updates

m1 =
Lr(x) + (A−1

A1
)−α′+ 1

2

(α′ − 1
2 )

(

A−1
1 Lr(x) + (A−1

A1
)−α′+ 1

2 (A−1)−1
) (4.22)

m2 =
Lr(x) + (A−1

A1
)−α′+ 3

2

(α′ − 1
2 )(α′ − 3

2 )
(

A−2
1 Lr(x) + (A−1

A1
)−α′+ 3

2 (A−1)−2
) − (m1)

2
(4.23)

α =
(m1)

2

m2
+ 2 β = m1

(
(m1)

2

m2
+ 1

)

(4.24)

where A1 = β′ + (y−1)2

2
and A−1 = β′ + (y+1)2

2
.

4.4 Results and Discussion

In this section, the decoding performances (in terms of bits error rate (BER)) of

standard BP and EP based BP decoders are presented in the presence of a SNR

mismatch. Here, I consider two different scenarios, constant SNR mismatch and

time varying SNR mismatch over an AWGN channel.

I first study the performance of the proposed EP estimator for different values

of constant channel SNR in Fig. 4.6. In this case, a (3, 6)-regular LDPC code with

code length N = 1000 is used in the simulation. Since I consider the estimation of

constant SNR, there is only one variable node in Region I, which means that the

connection ratio C is set to 1000. All the results are obtained over 100 trials. Initial

SNRs used for BP decoding are always −2 dB away from the true SNRs. Moreover,

51



1 2 3 4 5
10

−4

10
−3

10
−2

10
−1

10
0

Iterations

M
S

E

True SNR: 2.5 dB
True SNR: 2.0 dB
True SNR: 1.5 dB
True SNR: 1.0 dB
True SNR: 0.5 dB

Figure 4.6: The performance of the EP estimator for different values of constant
channel SNR.

the maximum number of iterations for BP decoding is TBP = 50. Since I only focus

on the study of estimation accuracy in this experiment, the EP estimator is only

used once at the end of the BP decoding. To achieve the best decoding performance,

new estimates can be sent back to LDPC decoder periodically, and this setup will be

studied later in this section. In Fig. 4.6, it shows that the EP estimator can always

converge within 3 or 4 iterations. Similar to the results in [1, 52], the estimation

accuracy of the proposed EP estimator, in terms of MSE, increases as the true SNR

increases. It is because that for a given LDPC code, a smaller true SNR may yield

a larger number of BP decoding errors, which degrade the performance of the EP

estimator.

Second, I study the performance of the proposed EP estimator for time-varying

SNR in Fig. 4.7. In this section, since I consider an AWGN channel with PBSK

modulation, the time-varying SNR is modeled as 10log10

(
1

2vtR

)

[1] and vt = (σ0 +

N(0, σ2
noise))

2, where the code rate R = 0.5 is used in the simulation, σ0 is a constant,

and N(0, σ2
noise), a Gaussian noise with parameter σnoise, models the fluctuation on σ0.

Fig. 4.7 shows the estimate of a time-varying SNR, where σ0 = 0.8318, σnoise = 0.1,

N = 10, 000 and C = 50. Note that, other settings in this case are the same as the
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Figure 4.7: Estimation of time-varying SNR using the proposed EP estimator,
where the initial SNR for BP decoding is −2 dB away from the mean of the time-
varying SNR.

study in Fig. 4.6. It can be seen that the proposed EP estimator provides a precise

estimate of the time-varying SNR, even though the initial SNR is far away from the

mean of the time-varying SNR. Compared to [46], particle estimator usually needs a

large number of iterations (> 200) to converge, however, the proposed EP estimator

usually converges within 3 iterations. Moreover, the computation complexities of

each iteration for both EP estimator and BP estimator are quite similar. Thus, the

proposed EP estimator can approximate the correlation much more rapidly.

Third, in Fig. 4.8, I study the decoding performances of LDPC decoder with

and without EP estimator. In this case, I assume that the channel SNR is constant

for each simulation. The following results are obtained over 10,000 trials. The

codeword lengths of 103 and 104 are studied, where the initial SNRs are −2 dB away

from the true SNRs for both BP decoder and EP based BP decoders. In Fig. 4.8,

a big performance gap between BP decoder and EP based BP decoder is observed

in the presence of SNR mismatch. Moreover, the performance curve of BP decoder

with knowledge of the true SNR is provided as the benchmark. Simulation results

of different codeword block lengths showed no obvious degradation of performance
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Figure 4.9: Performance of BER versus SNR for LDPC decoder using 1) knowledge
of the true SNR, 2) knowledge of the initial SNR with the mean of the true SNR
and 3) the SNR determined by EP estimator, where the time-varying SNR for each
simulation varies according to the aforementioned model in the study of Fig. 4.7
by using different σ0. The codeword length of 104 is studied.

between the proposed EP based BP decoder and the known SNR BP decoder.

Finally, I investigate the decoding performances of BP decoder and EP based

BP decoder with time-varying SNR, where σnoise = 0.2. By changing σ0, different

time-varying SNRs are sampled from the aforementioned model in the study of Fig.
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4.7. The mean values of different time-varying SNRs used in this study change from

0.9 dB to 1.75 dB, and these mean values were then used as initial values in BP

decoder and EP based BP decoder. In this case, the EP estimator starts working

after 50 BP iterations. Moreover, I perform EP estimator periodically for every

20 BP iterations until BP decoder successfully decodes the codeword or reaches

its maximum number of iterations (i.e. 150 in this experiment). Since EP and

BP steps have similar complexity, the additional computational overhead of the

proposed decoder is less than 10% of the standard BP decoder. Fig. 4.9 shows that

the proposed EP based BP decoder obtained a much better performance than BP

decoder with the known mean of time-varying SNR. The gap between BP with and

without the knowledge of true SNR is about 0.55 dB, however, the gap between a

known true SNR BP decoder and the EP based BP decoder is less than 0.06 dB.

This result indicates that knowing only the mean of the time-varying SNR is not

enough for a standard BP decoder to achieve its best decoding performance, if the

SNR in a channel varies at the bit-level.

4.5 Summary

This chapter presents an adaptive LDPC decoding over stationary and time-varying

AWGN channels by incorporating PF algorithm and EP algorithm, respectively. For

both algorithms, not only the stationary, but also the time-varying channel SNR

can be precisely tracked. Thus, the proposed algorithm is not sensitive to the initial

estimation of the channel SNR, and therefore yields a better decoding performance

(in terms of lower BER) than the standard BP algorithm. Moreover, the proposed

EP estimator has the same decoding performance with PBP estimator, however,

EP estimator shows a much faster convergence speed and lower computational

complexity than PBP estimator.
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CHAPTER 5

CORRELATION ESTIMATION IN DISTRIBUTED SOURCE

CODING

DSC is a technique to compress correlated remote sources separately and decom-

press them jointly, which was first introduced by Slepian and Wolf [9] and then was

studied by Wyner and Ziv [10, 27]. Due to the contributions of Slepian-Wolf and

Wyner-Ziv, we usually refer lossless DSC to as an SW problem and lossy source

coding with side information as a WZ problem. As mentioned in the introduction,

since the decoding performance of DSC relies on the knowledge of correlation very

much, the design of an online correlation estimation scheme becomes a significant

task both in theoretical studies and practical applications. Moreover, it has been

proven that channel coding can be used to implement DSC coding [53]. Thus in

this chapter, I will discuss the correlation estimation in SW problem using PBP

and EP, respectively, by extending the discussion in Chapter 4.

5.1 SW Decoding with Time-varying Correlation Estimation using

PBP

5.1.1 PBP for Asymmetric SW Coding

In this section, I talk about adaptive SW decoding based on PBP for asymmetric

SW case. The proposed approach is based on the syndrome based approach using

LDPC code [54] as shown in Fig. 5.1 (see Regions II and III). At the encoder, a block

of N input bits, x1, x2, · · · , xN , is compressed into M syndrome bits, s1, s2, · · · , sM ,

thus resulting in M : N compression. The factor nodes f III
l , l = 1, 2, · · · ,M as

shown in Region III of Fig. 5.1 take into account the constraint imposed by the
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received syndrome bits. For a factor node f III
l in Region III, the corresponding

factor function f III
l (xf III

l
) is defined as

f III
l (xf III

l
) =







1, If sl ⊕
⊕

i∈N(f III

l
) xi = 0,

0, otherwise,
(5.1)

where N(f III

l ) denotes the set of neighbors’ indices of factor node f III
l ,

⊕

i∈N(f III

l
)

represents the bitwise sum of all elements xi with i ∈ N(f III

l ), and for a factor node

f III
l , xf III

l
indicate all variables connecting to f III

l .

For the conventional SW coding, the correlation between a pair of sources, xi

and yi, is handled by a correlation factor node f II
i , i = 1, 2, · · · , N (see Region II

of Fig. 5.1), where the corresponding factor function f II
i (yi, xi, p) is defined as

f II
i (yi, xi, p) =







1 − p, If xi = yi,

p, otherwise.
(5.2)

With the variable and factor nodes defined and in place, one can estimate the

values of x using the BP algorithm. While the source X can be compressed very

closely to the SW limit H(X|Y ) in the classic BP approach [54], the crossover

probability p is assumed to be constant and known a priori. The main contribution

of the approach is to relax these constraints. Namely, I assume that p is unknown

and varies slowly over time. To model this, I connect the factor node f II
i to a

variable pi′ , where pi′ is now a variable instead of a constant. Thus, the factor

function f II
i (yi, xi, p) in (5.2) will be updated to

f II
i (yi, xi, pi′) =







1 − pi′ , if xi = yi,

pi′ , otherwise.
(5.3)
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Figure 5.1: Factor graph representation of the proposed PBP algorithm, where the
superscripts of f indicate the factor nodes in Regions I, II, III, respectively.

I call the number of correlation factor nodes connecting to each pi′ the connection

ratio, which is equal to three in Fig. 5.1.

Since I assume that p only varies slowly over time, the corresponding probability

of any two variable nodes Pi′ and Pi′+1 in Region I, should be close. This is captured

by the p-factor nodes f I
1,2, f

I
2,3, · · · , f I

N ′−1,N ′ as shown in Region I of Fig. 5.1, where

a p-factor function f I
i′,i′+1(pi′ , pi′+1) is defined as

f I
i′,i′+1(pi′ , pi′+1) = exp

(

−(pi′ − pi′+1)
2

λi′,i′+1

)

, (5.4)

where the process of estimating parameters λi′,i′+1 is the same as that in Section

4.1.4.

With the factor functions defined in (5.1), (5.3), and (5.4), it may appear that

the BP algorithm can be directly applied. However, p1, p2, · · · , pN ′ are continuous

and cannot be handled by standard BP. Nevertheless, by applying PBP, it is able
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to handle even continuous variables.

As described in Section 4.1.2, PBP can handle continuous variables by sampling

a list of particles. Corresponding to the factor graph in Fig. 5.1 of this section,

PBP is used to model each pi′ in Region I with K particles p
(1)
i′ , . . . , p

(K)
i′ and adjust

particle locations and weights according to systematic resampling and MH random

walk. Region II plays the role of connecting standard BP (Region III) and PBP

(Region I) to exchange information between each other. The factor node message

update from Region II to Region I can be written as

mf II

i →Pi′
(p

(k)
i′ ) ∝

∑

xi∈{0,1}
f II

i

(

yi, xi, p
(k)
i′

)

mXi→f II

i
(xi) , (5.5)

while the factor node message update from Region II to Region III can be written

as

mf II

i →Xi
(xi) ∝

1

K

K∑

k=1

f II
i

(

yi, xi, p
(k)
i′

) mPi′→f II

i

(

p
(k)
i′

)

Wi′(p
(k)
i′ )

, (5.6)

where f II
i (yi, xi, p

(k)
i′ ) =







1 − p
(k)
i′ , if xi = yi

p
(k)
i′ , otherwise

, and Wi′(p
(k)
i′ ) corresponds to the be-

lief of particle p
(k)
i′ . On one hand, we can see that the message mXi→f II

i
(xi) from

Region III is used to update the message mf II

i →Pi′
(p

(k)
i′ ) to Region I. Furthermore,

the updated message in Region I can be used to update the value of each particle

according to the belief b
(
pk

i′
)
∝ ∏

f II

i ∈N(i′) mf II

i →Pi′

(

p
(k)
i′

)

. On the other hand, for

Region III, not only the message from mPi′→f II

i

(

p
(k)
i′

)

is used to update the mes-

sage mf II

i →Xi
(xi), but also, more importantly, the updated value of each particle

p
(k)
i′ , which corresponds to the crossover probability, has played a role for updat-

ing the message mf II

i →Xi
(xi). Actually, updating message mf II

i →Xi
(xi) equals to

the update of estimate of source correlation. Finally, by performing the aforemen-
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tioned scheme iteratively, the source decoding and correlation estimation can be

done simultaneously.

Complexity Discussion

The complexity of BP increases linearly with the degree of a variable node but

exponentially with the degree of a factor node. However, we can easily incorporate

the “method” of passing log-likelihood ratios Lf III

i Xi
, log

m
fIII

i
→Xi

(0)

m
fIII

i
→Xi

(1)
instead of

probabilities as messages to reduce the complexity for the factor node updates

in Region III [55]. The resulting complexity will be linear with respect to code

length [56]. Note that the same method cannot be used in general for factor nodes

in Regions I and II since the method can only be used to variables with alphabet

size of two and there are generally more than two labels for the variable there. For

example, I generally use more than two particles to represent pi′ (i.e., each pi′ can

take more than two values). However, this does not have a significant impact to

the complexity of the overall algorithm since the node degrees of the factor nodes

in Regions I and II are only two as shown in Fig. 5.1.

5.1.2 PBP for Non-asymmetric SW Coding

Different attempts have been made to implement non-asymmetric SW coding, which

includes: time-sharing, source splitting [57], and code partitioning [14,26]. However,

like all aforementioned work, they assume the correlation statistics between the two

sources is constant and known a priori.

The code partitioning approach effectively converts a SW coding problem into

a channel coding problem. In [14], the code partitioning approach is implemented

using irregular repeated accumulat (IRA) codes [58], a special case of LDPC codes.

Being a form of LDPC codes, the IRA based SW coding can be decoded using BP,
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and the proposed PBP method can be directly applied. For completeness, a brief

description about code partitioning approach is given as follows.

Let H = [P |I] = [P1P2|I] be the parity check matrix of a systematic linear block

code, where the widths of P1 and P2 are N1 and N2, respectively, and I is an identity

matrix of size M × M . Therefore, H is of size M × N , where N = N1 + N2 + M .

Now, we can partition the code into two subcodes with parity check matrices

H1 =





I 0 0

0 P2 I



 and H2 =





0 I 0

P1 0 I



 . Length-N blocks drawn separately from the

two correlated sources, x and y, will be compressed to u = H1x and v = H2y,

respectively. For the ease of explanation, let us split x into x1, x2 and x3, where

their lengths are N1, N2 and M , respectively, and split u into u1 and u2 with

lengths N1 and M . Therefore, we have u1 = x1 and u2 = P2x
2 + x3. Similarly, y

is split into y1, y2 and y3, and v is split into v1 and v2. This gives us v1 = y2 and

v2 = P1y
1 + y3.

At the decoder, the received bits of u and v will be rearranged and padded

with zeros into t1 =











u1

0N2×1

u2











and t2 =











0N1×1

v1

v2











. Then, it can be easily verified that

t′ , t1 + t2 + x + y =




I

P









x2

y1



. Note that




I

P



 is actually a generator matrix of

the original code. Thus, t′ = t1 + t2 + x + y is the codeword encoded from the

message





x2

y1



. We can rewrite t′ as t′ = t + z, where t = t1 + t2 and z = x + y.

Therefore, given t (corresponding to the side information used in asymmetric case),

the decoder can recover t′ by taking t as a corrupted codeword passing through

a channel with noise z. Given x2 and y1 (obtained from the decoded t′), x3 and

y3 can be solved accordingly from u2 = P2x
2 + x3 and v2 = P1y

1 + y3, whereas

x1 and y2 can be read out from u1 and v1 directly. Finally, by combining all

the decoded information, both sources x and y can be recovered. According to

the aforementioned description, we can see the factor graphs used for the non-

asymmetric case are the same as the asymmetric case, except replacing the side
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Figure 5.2: Estimation of crossover probabilities for sinusoidal changing correla-
tions.

information y by t, the decoding codeword x by t′ and setting all the syndrome

bits equal to 0. Then the inference problem for non-asymmetric case can be solved

similarly as the asymmetric problem. More details about the implementation of

non-asymmetric setup can be found in [35].

5.2 Results and Discussion

I first studied the asymmetric case, where SW codes were randomly generated by a

6000× 10240 parity check matrix and the variable node degree is equal to 3. More-

over, 16 particles were assigned to each variable node in Region I. For the random

walk step, I assumed σ2
r = 0.0001. The following results were obtained by averaging

the estimated crossover probability of 200 different codewords. Fig. 5.2 shows the

estimated results of a sinusoidally changing correlation, where the crossover prob-

ability p changes sinusoidally from 0.05 to 0.3 for each input codeword bit. The

results verified that the proposed algorithm can generate a good estimation of a

complexly changing correlation.

Next I analyzed how different settings of parameters effected the decoding per-

formance of the proposed PBP algorithms. The following performance results were

obtained by averaging 10000 independent simulations, where the code length was
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Figure 5.3: Decoding bit error rate for a sinusoidal changing correlation.

equal to 10240. Moreover, the theoretical capacity is calculated according to the

equation C = 1
N

N∑

i=1

1 − H(pi), where H(pi) = −pi log(pi) − (1 − pi)log(1 − pi) and

N = 10240. The value of crossover probability pi changed sinusoidally from 0.05 to

0.3 in the BSC. The number of particles was also equal to 16.

In Fig. 5.3, I compared the decoding performance between the proposed PBP

algorithm and standard BP algorithm by using different initial estimations of p,

namely, p = 0.05, 0.15 or 0.3. It shows that the gain was relatively small when

the initial estimation is close to the true value of the crossover probability (e.g.

p = 0.15, which was roughly equal to the mean of the time changing crossover

probability). However, when the initial estimation was far away from the true

value, the observed gain was significant. In comparison, we can see that the PBP

algorithm is not sensitive to the initial estimation of p, since the results showed

that all the PBP simulations yielded similar decoding performance.

I then proceeded to study the non-asymmetric case. I tried to compare the

performance of the adaptive decoding algorithm with conventional IRA decoding.

I fixed the code rates for both X and Y to be 0.75. I then compared decoding

performance of the two schemes while varying the correlation parameter p. Unlike

the first case, I let p to be a constant over all samples. Initial estimations of p

were set 0.1 and 0.2. As shown in Fig. 5.4, the gain was relatively small when the
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estimation p was not too far from its true value. However, when the estimation

deviated significantly from its true value, the observed gain was substantial.

Finally, I compared the two algorithms for the case when there was some minor

fluctuation in p, where p varies sinusoidally from 0.05 to 0.07. I approximated the

sum rate where lossless compression was achieved when the probability of error fell

below 10−4. The result is shown in Fig. 5.5. We can see that the gain is rather

significant even when the fluctuation of p is rather small.
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5.3 WZ Decoding with Time-varying Correlation Estimation using

PBP

5.3.1 WZ Problem

WZ coding [10] generalizes the SW setup in which coding of the source X is lossy

with respect to a fidelity criterion rather than lossless. WZ coding can be treated as

a degenerated case of DSC with two sources X and Y , where source Y is transmitted

perfectly to the decoder and source X is then compressed and recovered with the

help of the source Y acting as side information. For both discrete and continuous

alphabets of X for the source X, side information Y and general distortion metrics

d (·), the rate distortion function for this setup RWZ (D) is

RWZ(D) = inf I(U ; X) − I(U ; Y ), (5.7)

where U is an auxiliary random variable satisfying the Markov chain Y → X → U

and there exists a function X̂ = X̂(U, S) satisfying E
{

d
(

X, X̂
)}

≤ D. More-

over, when the side information is available at both encoder and decoder, the rate-

distortion function is

RX|Y (D) = inf
X̂∈X:Ed(X,X̂)≤D

I(X; X̂ | Y ), (5.8)

In general, there is a rate loss with WZ coding that RWZ(D) ≥ RX|Y (D). How-

ever, if the sources are jointly Gaussian and mean square difference is taken as the

distortion measure (quadratic Gaussian case), there is no rate loss as in the lossless

(SW) case, that is RWZ(D) = RX|Y (D).
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Figure 5.6: Factor graph of the joint WZ decoder.

5.3.2 Joint Source-channel Decoder that Combines SW Decoding and

Dequantizing in a Single Step using BP

Let X and Y be two correlated continuous sources and the correlation between

them can be modeled as a virtual channel, that is X = Y + Z, where Z ∼ N(0, σ2
z)

is an i.i.d. Gaussian random variable independent of Y . xi and yi, i = 1, . . . , N

are sampled sequences of X and Y . For WZ coding, xi is first quantized into Q[xi]

using 2q level quantization, and yi is given at the decoder. Denote x1
i , x

2
i , . . . , x

q
i as

the binary format of the index Q[xi], and denote Bj = xj
1, x

j
2, . . . , x

j
N is the j − th

significant bit-plane. In the following description, the superscript j, j = 1, . . . , q

represents the j − th quantized bit or the j − th bit-plane. In this work, each

bit-plane is encoded independently by using LDPC codes, which are employed to

implement SW coding for compressing Bj, j = 1, . . . , q, and compute the syndrome

bits of each block.

The main idea of the proposed joint source-channel decoding scheme is illus-

trated in Region II, the subgraph of Fig. 5.6, where all circle nodes denote variable

nodes and all square nodes denote factor nodes. The proposed approach is based on

the syndrome based approach using LDPC codes. At the encoder, for the j−th bit-
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plane, the input bits Bj are compressed into Mj syndrome bits, Sj = sj
1, s

j
2 . . . , sj

Mj
,

thus resulting in N : Mj compression. The factor nodes f j
1 , f

j
2 . . . , f j

Mj
as shown

in the Region II of Fig. 5.6, take into account the constraint imposed by the re-

ceived syndrome bits. For the factor node f j
a , a = 1, . . . ,Mj, j = 1, . . . , q, the

corresponding factor function is defined as

f j
a(x̃j

a, s
j
a) =







1, if sj
a ⊕

⊕
x̃j

a = 0,

0, otherwise.
(5.9)

where x̃j
a denotes the set of neighbors of factor node f j

a , and
⊕

x̃j
a denotes the

binary sum of all elements of the set x̃j
a.

On the other hand, the correlation between a candidate quantized source Q[xi] =

I{x1
i , x

2
i . . . , xq

i} and side information yi is handled by a factor function fi, i =

1, . . . , N

fi(Q[xi], yi, σz) =

∫ P (Q[xi]+1)

P (Q[xi])

1
√

2πσ2
z

e
−

(

x−yi√
2σz

)2

dx

=
1

2
erfc(−P (Q[xi] + 1) − yi√

2σz

) (5.10)

−1

2
erfc(−P (Q[xi]) − yi√

2σz

)

where I{x1
i , x

2
i . . . , xq

i}, a binary to decimal conversion of x1
i , x

2
i . . . , xq

i , is equivalent

to the quantization index of xi, and P (•) denotes the lower boundary of quantization

partition at index “•”, e.g. if a sampled source xi satisfies P (•) ≤ xi < P (• + 1),

the quantization index Q[xi] of source xi is equal to “•”.

According to the factor functions defined above, one can decode the values of

Q[x̂i] = I{x̂1
i , x̂

2
i . . . , x̂q

i} using the BP algorithm, and finally estimate the source xi
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according to

x̂i =

∫ P (Q[x̂i]+1)

P (Q[x̂i])

x̂
1

√

2πσ2
z

e
−

(

x̂−yi√
2σz

)2

dx̂ (5.11)

5.3.3 Adaptive Joint-source WZ Coding

To compress the source X close to the WZ bound in the standard BP approach,

the correlation variance σ2
z must be assumed to be constant and known a priori. In

practice, the correlation among the sources may vary over time. In this section, I

will explain how to extend the proposed decoding algorithm to perform online cor-

relation estimation by incorporating PBP [33]. Moreover, The proposed framework

is universal and can be applied to any parametric correlation model.

Namely, I assume that σz is unknown and varies slowly over time. To model

this, I introduce extra variable nodes σ1, σ2, . . . , σN ′ , which are shown as circles in

Region I of Fig. 5.6. Each factor node fi in Region II is connected to an additional

variable node corresponding to σi′ , i
′ = 1, . . . , N ′ in Region I. Moreover, the factor

function fi(Q[xi], yi, σi′) of fi between Region I and Region II is the same as (5.10).

Here, the connection ratio is also defined as the number of factor nodes fi in Region

II that each variable node σi′ has connected, e.g. the connection ratio is equal to 3

in Fig. 5.6.

Since I assume that the correlation variance σ2
z only varies slowly over time,

it is expected that adjacent variable nodes σi′ will not differ much in value. This

characteristic is captured by additional factor nodes fi′,i′+1, i
′ = 1, . . . , N ′ − 1 in

Region I, which is defined as

fi′,i′+1 (σi′ , σi′+1) = e−
(σ

i′+1−σ
i′)

2

λ (5.12)
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where λ is a hyper-prior which can be chosen rather arbitrarily or estimated as in

Section 4.1.4.

With the factor functions defined in (5.9), (5.10), (5.12) and dequantization

function (5.11), I can estimate the values of xi using BP algorithm. However, as

mentioned before, standard BP algorithm, as an approximate technique for comput-

ing marginal probabilities by exchanging the message between adjacent neighboring

nodes, can only handle discrete variables. Therefore, by incorporating PBP algo-

rithm, which is described in Section 4.1.2, I can solve the problem and estimate the

continuous correlation variance based on the factor graph show in Fig. 5.6.

5.4 Results and Discussion

In the simulation, I experimented the proposed scheme with a Gaussian correlation

model. I generated a discrete, i.i.d. random Gaussian source Y ∼ N(0, 1). Source

X = Y + Z was a noisy version of Y , where the correlation Z ∼ Z(0, σ2
z) was

independent to Y . Moreover, I set the input source length N equal to 1, 000 and

different quantization bits q = 1, 2, . . . , 6 were used to quantize the input source.

For LDPC coding, I used a regular parity check matrix with variable node degree

equal to 2. 200 BP iterations and 10 particles for each variable node in Region I

were used in the simulation. Moreover, each data point was averaged over 10,000

different codewords.

Fig. 5.7 plotted the rate-distortion performance of the proposed joint decoder

when σ2
z = 0.01. I also gave the WZ rate-distortion function R∗(D)(= RX|Y (D))

of X. I additionally included results based on Cheng’s layered WZC scheme in [2]

to benchmark the performance of the proposed joint decoder designs. Fig. 5.8

showed similar results when σ2
z = 0.1. According to the results in Fig. 5.7 and

Fig. 5.8, the proposed joint “source-channel” decoder that combined SW decoding
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Figure 5.7: Rate-distortion performance of proposed WZ schemes and Cheng’s WZ
schemes [2], when σ2

z = 0.01. The WZ rate-distortion function R∗(D) is also plotted
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Figure 5.8: Rate-distortion performance of proposed WZ schemes and Cheng’s WZ
schemes [2], when σ2

z = 0.1. The WZ rate-distortion function R∗(D) is also plotted
for comparisons.

and dequantizing in a single step showed similar performance to Cheng’s layered

WZC scheme in [2], in which different bit-planes were decoded separately. I should

note that the code length was 105 and well designed irregular profiles for different

bit-planes are used in [2]. However, to reach a similar performance in the simulation,

the code length was only 1, 000 and only a regular LDPC code design with a variable

node degree 2 was used, which meant that the proposed joint decoder was more

suitable for practical implementation.

Furthermore, I proceeded to study the decoding performance of the proposed

joint decoder with a particle-based BP estimator. Here, I set λ = 0.01, σ2
r = 0.005,

and the connection ratio equal to 16. For different decoding schemes, I set σ̂ = 0.1
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as the prior knowledge of σz. In this simulation, I assumed that σz was changed

sinusoidally from 0.2 to 0.3 between each pair of sources xi and yi, which was shown

in the sub-figure of Fig. 5.9. Fig. 5.9 showed that the joint decoder using a particle-

based BP estimator obtained better performance than the joint decoder using a

standard BP without known σz, since the proposed particle-based BP estimator

offered an online estimation of the source correlation. Moreover, we can see the

performance of the joint decoder with a correlation estimator was very close to the

performance of the decoder with a perfect knowledge σz, which meant the proposed

estimator offered a accurate estimation of the true source correlation.

Finally, in Fig. 5.10, I presented the estimation accuracy of the proposed particle-

based BP estimator. I set the initial value σ̂ = 0.1, while the true value was sinu-

soidally changed from 0.2 to 0.3. We can see the adaptive decoding algorithm can

quite faithfully estimate the true value of σz.
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5.5 SW Decoding with Time-varying Correlation Estimation using EP

In this section, I talk about the adaptive SW decoding with correlation estimation

based on EP algorithm (see the factor graph in Fig. 5.11). Here, I also let X and

Y be two correlated binary sources (taking values 0 and 1) and the correlation

between them be symmetric in such a way that Y can be considered as the output
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of X passing through a BSC with unknown crossover probability ρt, That is,

Y =







X with probability 1 − ρt

X ⊕ 1 with probability ρt,
(5.13)

I assume that the crossover probability ρt may drift over time.

Note that if ρt is known a priori, X can be compressed very close to the SW

limit H(X|Y ) using syndrome based approach and LDPC codes [3]. At the SW

encoder, the syndrome s of one source block x is computed and transmitted to the

decoder. At the SW decoder, the other source block y is treated as the output of x

passing through a correlation channel. SW decoding is almost identical to conven-

tional LDPC decoding. However, rather than decoding to a codeword, the decoder

approximates the estimated source block x as a code vector with the received syn-

drome. Thus, just as channel decoding, the source block x can be reconstructed

using BP algorithm over the corresponding factor as shown in Region II and III

of Fig. 5.11. Since we need to take into the constraint imposed by the received

syndrome, the factor function in Region III is redefined as follows

hk (xk) =







1 if sk ⊕
⊕

i∈N(hk) xi = 0,

0 otherwise,
(5.14)

where sk is the k-th bit of the received syndrome s.

In addition, since I consider binary SW coding, where correlation is modeled as

a virtual BSC, the likelihood factor function in Region II need to be modified as

follows

fi(ρj, xi, yi) = ρxi⊕yi

j (1 − ρj)
1⊕xi⊕yi . (5.15)

To perform correlation estimation, I also introduce additional factor nodes to model
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the time-varying crossover probability in Region I of Fig. 5.11. In this case, I also

need to choose a conjugate prior of likelihood function to make the approximation

tractable. Since beta distribution is the conjugate prior of likelihood function in

(5.15), the corresponding factor function in Region I should be changed into beta

distribution, which is defined as Beta(ρ, α, β) = 1

beta(α,β)
ρα−1(1− ρ)β−1 with shape

parameters α and β. Then, the factor function in Region I has the following form

g(ρj, αj, βj) = Beta(ρj, αj, βj). (5.16)

Finally, with these new defined factor functions, SW decoding with time-varying

correlation estimation using EP can be implemented according to the similar work-

flow of LDPC decoding with time-varying AWGN channel estimation using EP in

Chapter 4.

5.6 Results and Discussion

In this section, the decoding performances (in terms of bits error rate (BER)) of

standard BP and EP based BP decoders are presented in the presence of a crossover

probability mismatch. Here, I consider two different scenarios, constant crossover

probability mismatch and time-varying crossover probability mismatch of the BSC

modeling the correlation between two binary sources.

I first study the performance of the proposed EP estimator for different values

of constant crossover probability in Fig. 5.12. In this case, SW coding based on

an irregular LDPC code with the degree profile in [50], code length N = 1000 and

code rate R = 0.5 is used in the simulation. Since I consider the estimation of

constant crossover probability, there is only one variable node in Region I, which

means that the connection ratio C is set to 1000. All the results are obtained over
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Figure 5.12: The performance of the EP estimator for different values of constant
crossover probability.

100 trials. Initial crossover probabilities used for BP decoding are always 0.1 above

true crossover probabilities. Moreover, the maximum number of iterations for BP

decoding is TBP = 50. Since I only focus on the study of estimation accuracy in

this case, the EP estimator is only used once at the end of the BP decoding. To

achieve the best decoding performance, new estimates can be sent back to LDPC

based SW decoder periodically, and this setup will be studied later in this section.

In Fig. 5.12, we can see that the EP estimator can always converge within 3 or

4 iterations. The estimation accuracy of the proposed EP estimator, in terms of

MSE, increases as the true crossover probability decreases. It is because that for

a given LDPC based SW decoder, a larger true crossover probability may yield a

larger number of BP decoding errors, which degrade the performance of the EP

estimator.

Second, I study the performance of the proposed EP estimator for time-varying

crossover probability in Fig. 5.13. In this section, since I consider a BSC mod-

eled correlation, the time-varying crossover probability is modeled as ρt = ρ0 +

N(0, σ2
noise), where the code rate R = 0.5 is used in the simulation, ρ0 is a constant,
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Figure 5.13: Estimation of time-varying crossover probability using the proposed
EP estimator, where the initial crossover probability for BP decoding is 0.1 above
the mean of the time-varying crossover probability.

and N(0, σ2
noise), a Gaussian noise with parameter σnoise, models the fluctuation on

ρ0. Fig. 5.13 shows the estimate of a time-varying crossover probability, where

ρ0 = 0.09, σnoise = 0.01, N = 10, 000 and C = 50. Note that, other settings in

this case are the same as the study in Fig. 5.12. It can be seen that the proposed

EP estimator provides a precise estimate of the time-varying crossover probability,

even though the initial crossover probability is far away from the mean of the time-

varying crossover probability. Compared to [33], particle estimator usually needs a

large number of iterations (> 200) to converge, however, the proposed EP estimator

usually converges within 3 iterations. Moreover, the computation complexities of

each iteration for both EP estimator and BP estimator are quite similar. Thus, the

proposed EP estimator can approximate the correlation much more rapidly.

Third, in Fig. 5.14, I study the decoding performances of LDPC based SW de-

coder with and without EP estimator. In this case, I assume that the crossover

probability is constant for each simulation. The following results are obtained over

10,000 trials. The codeword lengths of 103 and 104 are studied, where the initial

crossover probabilities are 0.1 above the true crossover probabilities for both BP
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Figure 5.14: Performance of BER versus H(ρ) for LDPC decoder using 1) knowledge
of the true crossover probability, 2) knowledge of the initial crossover probability
with +0.1 mismatch and 3) the crossover probability determined by EP estimator,
where the crossover probability for each simulation is a constant. The codeword
lengths of 103 (dashed-dot) and 104 (solid) were studied.

decoder and EP based BP decoders. In Fig. 5.14, we can see that a big performance

gap between BP decoder and EP based BP decoder is observed in the presence of

crossover probability mismatch. Moreover, the performance curve of BP decoder

with knowledge of the true crossover probability is provided as the benchmark.

Simulation results of different codeword block lengths showed no obvious degrada-

tion of performance between the proposed EP based BP decoder and BP decoder

with known crossover probability.

Finally, I investigate the decoding performances of BP decoder and EP based BP

decoder with time-varying crossover probability, where σnoise = 0.03. By changing

ρ0, different time-varying crossover probabilities are sampled from the aforemen-

tioned model in the study of Fig. 5.13. The mean values of different time-varying

crossover probabilities used in this study change from 0.079 to 0.11. The initial

values in BP decoder and EP based BP decoder are 0.1 above these mean values.

In this case, the EP estimator starts working after 50 BP iterations. Moreover, I
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Figure 5.15: Performance of BER versus H(ρ) for LDPC decoder using 1) knowledge
of the true crossover probability, 2) knowledge of the initial crossover probability 0.1
above the mean of the true crossover probability and 3) the crossover probability
determined by EP estimator, where the time-varying crossover probability for each
simulation varies according to the aforementioned model in the study of Fig. 5.13
by using different ρ0. The codeword length of 104 is studied.

perform EP estimator periodically for every 20 BP iterations until BP decoder suc-

cessfully decodes the codeword or reaches its maximum number of iterations (i.e.

150 in the experiment). Fig. 5.15 shows that the proposed EP based BP decoder

obtained a much better performance than BP decoder with the known 0.1 mismatch

of the mean of time-varying crossover probability. The gap between BP with and

without the knowledge of true crossover probability is about 0.024 bits, however,

the gap between a known true SNR BP decoder and the EP based BP decoder is

less than 0.01 bits.

5.7 Summary

In this chapter, I first proposed an adaptive decoding scheme for SW coding us-

ing PBP. The scheme has been tested on both asymmetric SW coding and non-

asymmetric SW coding A precise estimation of correlation between the two sources

using the adaptive decoding algorithm has been observed from the experiments.
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Moreover, I have observed a significant gain of my algorithm over the standard BP

algorithm even when there is a slight fluctuation of the correlation among sources.

Second, to handle the correlation estimation problem of WZ coding, I design

a joint bit-plane model, by which the PBP algorithm can be applied to tracking

the correlation between non-binary sources. Through experimental results, the

proposed correlation estimation approaches significantly improve the compression

performance of DSC.

Finally, I designed an adaptive SW decoding scheme using EP algorithm. By

comparing the proposed EP based approach with PBP algorithm, the results show

that the proposed EP estimator obtains the comparable estimation accuracy with

less computational complexity than the PBP method.
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CHAPTER 6

APPLICATIONS ON ONBOARD SOLAR IMAGES

Acquiring and processing astronomical images is becoming increasingly important

for accurate space weather prediction and expanding our understanding about the

Sun and the Universe. These images are often rich in content, large in size and

dynamic range. Efficient, low-complexity compression solutions are essential to re-

duce onboard storage, processing, and communication resources. Distributed com-

pression is a promising technique for onboard coding of solar images by exploiting

correlation between successively acquired images. In this section, the idea of the

proposed algorithm in Section 5.3 is tested on the stereo solar images captured

by the twin satellites system of NASA’s STEREO project, where an adaptive dis-

tributed compression solution using PBP is used to track correlation, as well as

perform disparity estimation, at the decoder side.

6.1 Background

Onboard data processing has always been a challenging and critical task in remote-

sensing applications due to severe computational and/or power limitations of on-

board equipment. This is especially the case in deep-space applications, where mis-

sion spacecrafts are collecting a vast amount of image data that is stored and/or

communicated to the observation center. In such emerging applications, efficient

low-complexity image compression is a must. While conventional solutions, such as

JPEG, have been successfully used in many prior missions, demand for increasing

image volume and resolution as well as increased space resolution and wide-swath

imaging calls for a larger coding efficiency at reduced encoding complexity.
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NASA’s STEREO (Solar TErrestrial RElations Observatory), launched in Oct.

2006, has very recently and still is providing ground-breaking images of the Sun

using two space-based observatories [59]. These images aim to reveal the processes

in the solar surface (photosphere), through the transition region into the corona

and provide the 3D structure of coronal mass ejections (CME). CMEs are violent

eruptions solar plasma into space, which, if directed towards the Earth and reaches

it as an interplanetary CME along with solar flares of other origins, are known to

have catastrophic effects on the radio transmissions, satellites, power grids resulting

in large-scale and long-lasting power outages, and on humans travelling in airplanes

at high altitude.

The data streams that are transmitted 24 hours per day as weather beacon

telemetry from each spacecraft have to be heavily compressed [59]. The recon-

structed images are available online, immediately after reception. Due to compres-

sion, many image artifacts have been spotted that led to wrong conclusions (see

e.g., [60]). Another, scientific stream is recorded and transmitted daily using NASA

Deep Space Network lightly compressed. These images are becoming available 2-3

days after arrival in the Flexible Image Transport System (FITS) and/or JPEG

format.

A variety of image compression tools are currently used in deep-space missions,

ranging from Rice and lossy wavelet-based compression tools (used in PICARD

mission by CNES2009), Discrete Cosine Transform (DCT) + scalar quantization +

Huffman coding (Clementine, NASA1994), ICER (a low-complexity wavelet-based

progressive compression algorithm used in Mars mission, NASA2003) to (12-bit)

JPEG-baseline (Trace NASA1998, Solar-B JAXA2006) [61]. The compression al-

gorithms have mainly been implemented in hardware (ASIC or FPGA implemen-

tation), but some of them run as software on DSP processors (e.g., ICER). The key
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characteristics of these algorithms are relatively-low encoding power consumption,

coding efficiency, and error resilience features. Latest Earth observation satellites

usually employ JPEG2000 [62] or similar wavelet-based bitplane coding methods im-

plemented on FPGA, which might be too prohibitive for deep-space missions. Note

that all current missions, including STEREO, use 2D, mono-view image compres-

sion trading off computational cost and compression performance. Since STEREO

images are essentially multi-view images, with high inter-view correlation, current

compression tools do not provide an optimum approach. Thus, in this chapter,

I propose a distributed multi-view image compression (DMIC) scheme for such

emerging remote-sensing set-ups.

When an encoder can access images from multiple views, a joint coding scheme

[63] achieves higher compression performance than schemes with separate coding,

since multi-view images are usually highly correlated. However, due to the limited

computing and communication power of space imaging systems, it is not feasible to

perform high-complexity, power-hungry onboard joint encoding of captured solar

images. Although, intuitively, this restriction of separate encoding seems to com-

promise the compression performance of the system, DSC theory [9,10] proves that

distributed independent encoding can be designed as efficiently as joint encoding as

long as joint decoding is allowed, propelling DSC as an attractive low-complexity

onboard source coding alternative.

The proposed DMIC image codec is characterised by low-complexity image en-

coding, and relatively more complex decoding meant to be performed on the ground.

A novel joint bit-plane decoder is described, that integrates PF with standard BP

decoding to perform inference on a single joint 2-D factor graph. I test the lossy

DMIC setup with grayscale stereo solar images obtained from NASA’s STEREO

mission [59] to demonstrate high compression efficiency with low encoding com-
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plexity and non power-hungry onboard encoding, brought about by DSC. DSC

has been used for onboard compression of multispectral and hyperspectral images

in [64], [65], where DSC is used to exploit efficiently inter-band correlation. In [65],

for example, a low-complexity solution robust to errors is proposed using scalar

coset codes to encode the current band and the previous bands as decoder side

information. The algorithms of [65] are implemented using FPGA, and simulations

on AVIRIS images show promising results.

The key contributions of this chapter can be summarized as:

• An adaptive distributed multi-view image decoding scheme, which can esti-

mate the blockwise correlation and disparity change between two correlated

images, and also recover the images simultaneously;

• A PBP decoder to estimate blockwise correlation changes, since standard BP

cannot handle continuous variables (except linear Gaussian model) such as

the correlation parameter. This extends my previous work [34], [66] from 1-D

correlation estimation to 2-D and from time varying correlation estimation to

spatial varying correlation estimation;

• A joint bit-plane decoder (compared to the traditional separate bit-plane de-

coder [2]), that allows the estimation of the correlation and the disparity

between two pixels directly rather than just the correlation between a corre-

sponding pair of bits of the pixels;

• A decoding scheme that offers greater feasibility for rate selection than the

joint bit-plane encoder/decoder design used in [67] since the received syn-

dromes of each bit-plane are independent due to separate bit-plane encoding.
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Figure 6.1: Lossy DMIC setup with disparity and correlation estimation.

6.2 Related Work

Since the proposed DMIC scheme intersects several research topics, I group prior

work into three categories.

The first category relates to work in the area of low-complexity onboard/remote

multi-view image coding. This area is still in its infancy, and I found only two

relevant contributions. In [68], lossy compression of Earth orbital stereo imagery

used for height detection with three or four views based on motion compensation

and JPEG-2000 [62] and JPEG-LS is proposed. Note that motion compensation+

JPEG-2000 might still be considered as power expensive for remote sensing, in-

cluding deep-space missions. In [69], a modification of the mono-view ICER image

coder, employed in the Mars Exploration mission, is proposed. The proposed coder

optimizes a novel distortion metric that reflects better stereoscopic effects rather

than conventional mean-square error (MSE) distortion. The results reported in [69]

show improved stereo ranging quality despite the fact that correlation information

between the left and right image pair was not exploited in any way or form. See

also [70].

The second relevant topic is correlation tracking in DSC applications. Most

DSC designs, including Distributed Video Coding (DVC), so far (with few excep-

tions) usually simplify the problem by modeling correlation noise, i.e., the difference
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between the source and side information, as Laplacian random variables and esti-

mate the distribution parameters either based on training sequences or previously

decoded data. This imposes certain loss especially for images or sequences that are

very different or non-stationary. Non-stationarity of the scene has been dealt mainly

by estimating correlation noise (e.g., on the pixel or block level) from previously de-

coded data and different initial reliability is assigned to different pixels based on the

amount of noise estimated both in pixel- and transform-domains [71–75]. In [66],

we proposed an efficient way of estimating correlation between the source and side

information for pixel-domain DVC by tightly incorporating the process within the

SW decoder via SW code factor graph augmentation to include correlation variable

nodes with particles such that particle filtering is performed jointly with BP over

the augmented factor graph during the SW decoding process. Note that the BP-

based SW decoding and correlation statistics estimation are considered jointly. The

proposed correlation estimation design was tested on a transform-domain DVC [76]

with a feedback channel, but with joint bit-plane coding. This work extends this

result from mono-view to low-encoding complexity multi-view coding.

The third relevant topic is multi-view image coding using DSC principles. De-

spite the potential of DSC, attaining its ultimate performance relies on the assump-

tion that both the correlation and the disparity among multi-view images are known

a priori at the decoder. Direct measurement of the correlation and the disparity at

the encoder side is both expensive in terms of computation and impossible without

communication among imaging sensors. Thus, estimating correlation and disparity

at the decoder becomes the main challenge in DMIC. For disparity estimation in

DMIC, the idea of motion compensation [77], [78] used in DVC offers a possible

solution. However, these motion compensation methods usually require an exces-

sive amount of computation. Thus, some low complexity disparity learning schemes

85



for DMIC have been proposed in the literature. In [67], Varodayan et. al. devel-

oped an Expectation Maximization (EM) based algorithm at the decoder to learn

block-based disparity for lossless compression [67] and then extended it to lossy

case [79]. In comparison with the system without disparity compensation, a better

compression performance is observed when disparity compensation is employed at

the decoder [67,79].

Thus, knowing the correlation among multi-view images is a key factor in deter-

mining the performance of a DMIC scheme. This correlation is generally nonsta-

tionary (spatially varying) and should be handled adaptively. For example, in [80]

an edge-based correlation assignment method is proposed, where the correlation

parameters of blocks with and without edges are assigned to different values. How-

ever, even the aforementioned work is based on the assumption that the correlation

among images is known a priori. Similarly to disparity compensation, dynamic cor-

relation estimation given at the decoder could also yield significant improvement in

performance. However, most studies of correlation estimation in DSC focus on the

correlation estimation of stationary binary sources [81], [82], which are not suitable

for the non-binary image sources in the DMIC case.

Several other approaches were proposed in literature [83–86], neither of which

uses correlation tracking. A review on multiview-video coding based on DSC prin-

ciples can be found in [87,88].

6.3 Distributed Multi-view Image Coding

Let X and Y be a pair of correlated multi-view images with size M by N . Assuming

that a horizontal disparity shift D exists between pixels of X and pixels of Y , the
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relationship between X and Y can be modeled as

X(x,y) = Y(x−D(x,y),y) + Z(x,y), (6.1)

where x = 1, 2, . . . , M and y = 1, 2, . . . , N denote the coordinates of pixels, and

Z(x,y) satisfies a Laplace distribution L(Z(x,y)|σ) = 1
2σ

exp
(

− |Z(x,y)|
σ

)

.

I consider a lossy DMIC setup as shown in Fig. 6.1, where image Y , the side

information, is perfectly known at the decoder through a conventional image coding.

At the encoder side, image X is first quantized into Q[X(x,y)] using 2q level uniform

nested scalar quantization (NSQ) [89] and then is encoded based on LDPC codes [2],

where each bit-plane is independently encoded into syndrome bits of an LDPC

code. Denote X1
(x,y), X

2
(x,y), . . . , X

q
(x,y) as the binary format of the index Q[X(x,y)],

and denote Bj = Xj
(1,1), X

j
(1,2), . . . , Xj

(M,N) as the jth significant bit-plane, where the

superscript j = 1, . . . , q is used to represent the jth quantized bit or the jth bit-plane

in the rest of this chapter. At the LDPC decoder, the BP algorithm is employed to

decode image X using the received syndrome bits, the given correlation, and the

side information Y reordered by the given disparity information. Finally, when the

BP algorithm converges, image X can be recovered based on the output belief for

each pixel [2].

6.4 Adaptive Joint Bit-plane WZ Decoding of Multi-view Images with

Disparity Estimation

6.4.1 Joint Bit-plane WZ Decoding

In popular layer WZ approaches such as [2], each bit plane of the quantized source

is recovered sequentially and this makes it difficult and inefficient for the decoder to

perform the disparity and correlation estimation. In order to facilitate the disparity
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Figure 6.2: Factor graph of joint bit-plane decoder with disparity and correlation
estimation.

and the correlation estimation, I introduce a joint bit-plane WZ decoding scheme,

which can adaptively exploit the disparity and the correlation between a non-binary

source and side information during the decoding process. The main idea of the

proposed joint bit-plane WZ decoding scheme is illustrated in Regions II and III of

Fig. 6.2, where all circle nodes denote variable nodes and all square nodes denote

factor nodes. The encoder used in this chapter is the traditional syndrome-based

approach using LDPC codes [2]. At the encoder side, a given bit plane Bj is

compressed into Lj number of syndrome bits, Sj = sj
1, s

j
2 . . . , sj

Lj , thus resulting in

(M × N) : Lj compression.

At the joint bit-plane decoder, the factor nodes f j
1 , f

j
2 . . . , f j

Lj as shown in the

Region III of Fig. 6.2, take into account the constraint imposed by the received

syndrome bits. For a factor node f j
a , a = 1, . . . , Lj, j = 1, . . . , q, the corresponding
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factor function is defined as

f j
a(X̃j

a, s
j
a) =







1, if sj
a ⊕

⊕
X̃j

a = 0,

0, otherwise.
(6.2)

where X̃j
a denotes the set of neighbors of the factor node f j

a , ⊕ represents the bitwise

addition and
⊕

X̃j
a denotes the bitwise sum of all elements of the set X̃j

a.

Then in Region II, the relationship among a candidate quantized source Q[X(x,y)],

side information Y(x,y) and disparity compensation D(x,y) can be modeled by the fac-

tor function

h(x,y)(Q[X(x,y)], Y(x,y), σ,D(x,y)) =
∫ P(Q[X(x,y)]+1)

P(Q[X(x,y)])

1

2σ
exp

( |X − Y(x−D(x,y),y)|
σ

)

dX, (6.3)

where P (Q) denotes the lower boundary of quantization partition at index “Q”, e.g.,

if a pixel X(x,y) satisfies P (Q) ≤ X(x,y) < P (Q+1), the quantization index Q[X(x,y)]

of pixel X(x,y) is equal to “Q”. Then given the estimation of the correlation σ and

the disparity D(x,y), standard BP can be used to perform joint bit-plane decoding

based on the proposed factor graph (see Regions II and III in Fig. 6.2) and the

corresponding factor functions (6.2) and (6.3).

6.4.2 Joint Bit-plane WZ Decoding with Disparity Estimation

I assume that each block includes n×n pixels and shares the same disparity, which

yields
⌈

M
n

⌉
×

⌈
N
n

⌉
number of blocks for an M ×N image, where ⌈•⌉ represents the

ceiling of “•” that rounds “•” toward positive infinity. Then the horizontal disparity

field is a constant within a block and will be denoted as D(x′,y′) ∈ {−l, · · · , 0, · · · , l},

where x′ = 1, · · · ,
⌈

M
n

⌉
and y′ = 1, · · · ,

⌈
N
n

⌉
are the block indices. Thus, in the rest
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mh(x,y)→φ(x′,y′)

(
D(x′,y′)

)
∝ (6.4)

∑

Q[X(x,y)]∈[0,2q ]

h(x,y)(Q[X(x,y)], Y(x,y), σ,D(x′,y′))

q
∏

j=1

mXj

(x,y)
→φ(x′,y′)

(

X
j
(x,y)

)

,

mh(x,y)→Xj

(x,y)

(

X
j
(x,y)

)

∝ (6.5)

∑

D(x′,y′)

h(x,y)(Q[X(x,y)], Y(x,y), σ,D(x′,y′))mφ(x′,y′)→h(x,y)

(
D(x′,y′)

) ∏

j′∈[1,q]/j

m
Xj′

(x,y)
→h(x,y)

(

X
j′

(x,y)

)

,

of this chaper, I will use D(x′,y′) to represent the disparity D(x,y) of a pixel X(x,y)

that lies inside the Block(x′, y′). For example, in the 2-D factor graph of Fig. 6.2,

a 6× 6 image is divided into 3× 3 number of blocks with 2× 2 pixels in each block.

In order to estimate the disparity between images, I introduce extra variable

nodes φ(x′,y′) in Region I (see the 2-D factor graph in Fig. 6.2). Each factor node

h(x,y) in Region II is connected to an additional variable node φ(x′,y′) in Region I.

Here, I define the connection ratio as the number of factor nodes h(x,y) in Region

II which each variable node φ(x′,y′) is connected to, e.g., the connection ratio is

equal to 4 in Fig. 6.2. According to the BP update rules, the factor node update

from Region II to the variable node φ(x′,y′) in Region I can be written as (6.4),

where N(φ(x′,y′))/h(x,y) denotes all the neighboring factor nodes of a variable node

φ(x′,y′) except h(x,y). Moreover, (6.4) can be interpreted as the E-step algorithm

used in [67]. Similarly, the factor node update from Region II to Region III can be

written as (6.5), where (6.5) can also be interpreted to the M-step algorithm used

in [67].

6.4.3 Joint Bit-plane Wyner-Ziv Decoding with Correlation Estimation

To compress image X close to the WZ bound in the standard BP approach, the

correlation parameter σ must be known a priori. However, in practice, the cor-
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relation between the colocated pixels of the pair of correlated images X and Y

is unknown, and making the situation even more challenging, this correlation may

vary over space. Thus, besides the proposed disparity estimation, I introduce an ad-

ditional correlation estimation algorithm to perform online correlation tracking by

extending my previous correlation estimation model [34] from 1-D to 2-D and from

time-varying to spatial varying. Moreover, the proposed framework is universal and

can be applied to any parametric correlation model.

Namely, I assume that σ is unknown and varies block-by-block over space,

where the same blockwise assumption is also used in Section 6.4.2. To model

this, I introduce another set of extra variable nodes σ(x′,y′) in Region I (see the

2-D factor graph in Fig. 6.2). Now, each factor node h(x,y) in Region II will be

connected to an additional variable node σ(x′,y′) in Region I. Here the connection

ratio used for correlation estimation is the same as that for disparity estimation in

Section 6.4.2. Moreover, the correlation parameter σ used in the factor function

hx,y(Q[X(x,y)], Y(x,y), σ,D(x′,y′))can be modified accordingly by replacing σ as σ(x′,y′),

since I assume σ varies over space.

Furthermore, the correlation changes among adjacent blocks may not be arbi-

trary [80]. The ability to capture correlation changes among adjacent blocks can

significantly increase the stability of correlation tracking of each block. To achieve

this, I introduce additional factor nodes g(x′′,y′′) in Region I (see the 2-D factor

graph in Fig. 6.2), where x′′ = 1, · · · ,
⌈

M
n

⌉
− 1 and y′′ = 1, · · · ,

⌈
N
n

⌉
− 1 denote

block indices just as x′ and y′. The corresponding factor function can then be

modeled as

g(x′′,y′′)

(
σ(x′′,y′′), σ(x′′+c,y′′+d)

)
= exp

(

−
(
σ(x′′,y′′) − σ(x′′+c,y′′+d)

)2

λ

)

, (6.6)
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where the offset (c, d) is restricted to {(0, 1), (0,−1), (1, 0), (−1, 0)} according to

the defined 2-D factor graph, and λ is a hyper-prior and can be chosen rather

arbitrarily.

Since standard BP can only handle discrete variables with small alphabet sizes

or continuous variables with linear Gaussian model, it cannot be applied directly

for estimating the continuous correlation parameters. However, by incorporating

PF with BP shown in Section 4.1.2, BP can be extended to handle continuous

variables. Then the proposed factor graph model can be used to estimate the

continuous correlation.

6.5 Results and Discussion

To verify the effect of correlation and disparity tracking for DMIC, I tested the

above setup with grayscale stereo solar images [59] captured by two satellites of

the NASA’s STEREO project, where the twin satellites are about 30 million miles

apart, and the viewing angle is about 6−8 degrees. For the purposes of illustrating

accurate tracking of the correlation and the disparity, the simulations for the SW

code use only a low-complexity regular LDPC code with variable node degree 5.

More complex irregular codes would further improve the overall peak signal-to-noise

ratio (PSNR) performance.

The following constant parameters are used in the simulations: image height

M = 128 pixels, image width N = 72, maximum horizontal shift l = 5, block size

n = 4, hyper-prior λ = 10, initial correlation for Laplace distribution σ = 5 and

initial distribution of disparity

p(D(x′,y′)) =







0.75, if D(x′,y′) = 0;

0.025, otherwise;
,
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Figure 6.3: Residual histogram for solar images in SET 1.

where the selection of initial values follows [67]. Moreover, I have tested two sets

of solar images in the simulation results, where I refer to as solar image SET 1 and

solar image SET 2, respectively.

First, I verified the Laplacian assumption of the correlation between correlated

images X and Y in Fig. 6.3. By setting α = 0.23, Laplace distribution provides an

accurate approximate to the residual between images X and Y .

Then, I examine the rate-distortion performance of the proposed adaptive DMIC

scheme, where PSNR of the reconstructed image is calculated as an indicator of the

distortion. I consider the following five different setups.

a). Adaptive correlation DMIC with a known disparity, which is used as the

benchmark performance.

b). Adaptive correlation and disparity DMIC, which is the proposed scheme in

this chapter.

c). Adaptive disparity DMIC with a known fixed correlation, which corresponds

to the setup used in [67], [79].
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d). Non-adaptive joint bit-plane DMIC with known fixed correlation only, where

the correlation and disparity estimators are not available at the decoder.

e). Non-adaptive separate bit-plane DMIC with known fixed correlation only,

which corresponds to the setup used in [2].

In Fig. 6.4 and Fig. 6.5 (corresponding to solar images in SET 1 and SET 2, respec-

tively), as expected, the benchmark setup in case a) shows the best rate-distortion

performance, since the reference disparity is known before decoding. Comparing

cases b) and c), I find a significant performance gain due to the improved knowl-

edge of correlation statistics due to dynamic estimation. Moreover, all the adaptive

DMIC schemes (cases a), b) and c)) outperform the non-adaptive schemes (cases d)

and e)). Besides, in the case without adaptive decoding, I find that the performance

of joint bit-plane DMIC in case d) is still better than separate bit-plane DMIC in

case e). One possible reason for this is that the joint bit-plane DMIC in case d) can

exploit the correlation between two non-binary sources much better, since in case

e), each bit-plane is decoded separately.

The performance of JPEG2000 codec is also shown as references in Fig. 6.4 and

Fig. 6.5. One can see that JPEG2000 is still unreachable due to its high com-

pression efficiency and used arithmetic entropy coding at the cost of high encoding

complexity. Note that in contrast to JPEG2000, the proposed DMIC scheme does

not employ any transform. In addition, I also plot the theoretical rate as in [2].

Fig. 6.6 and Fig. 6.7 show the final estimate of the correlation and the disparity

for solar images in SET 1 and SET 2, respectively, where the reference disparity and

residual after 4×4 block matching between source and side information are provided

as references. We can see that the proposed adaptive DMIC scheme outputs a

good estimate for both correlation and disparity. This also explains why the rate-
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Figure 6.4: Rate-distortion performance of the proposed adaptive DMIC scheme
for solar images in SET 1.
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Figure 6.5: Rate-distortion performance of the proposed adaptive DMIC scheme
for solar images in SET 2.
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Figure 6.6: The final estimate of the correlation and the disparity for solar images
in SET 1, where the true disparity and residual after 4× 4 block matching between
source and side information are provided as references.

distortion performance of adaptive decoding outperforms the non-adaptive decoding

scheme in Fig. 6.4 and Fig. 6.5.

95



Image X

20 40 60 80 100 120

20

40

60

Image Y

20 40 60 80 100 120

20

40

60

Residual

10 20 30

5

10

15

0

5

10

15

Estimated Correlation

10 20 30

5

10

15

0

5

10

15

Reference Disparity

10 20 30

5

10

15

−5

0

5
Estimated Disparity

10 20 30

5

10

15

−5

0

5
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6.6 Summary

This chapter is motivated by the limited onboard processing and communications

requirements of correlated images captured by different telescopes or satellites.

Traditionally, these images are compressed independently using state-of-the-art,

low-complexity compression algorithms such as JPEG without considering the spa-

tial and temporal correlation among images captured by deep-space satellites. In

order to exploit the correlation among the multiple views acquired from a solar

event and enhance compression without jeopardizing the encoding onboard com-

plexity and independent encoding process to minimize communication complexity,

I proposed an adaptive DMIC algorithm, which can estimate the correlation and

disparity between stereo images, and decode image sources simultaneously. To han-

dle spatially-varying correlation between stereo images, I extend my previous PBP

work [34] for correlation estimation to the 2-D case. Moreover, the correlation

and disparity estimation algorithms are all based on an augmented factor graph,

which offers great flexibility for problem modeling in remote-sensing applications.

Through the results, a significant decoding performance gain has been observed

by using the proposed adaptive scheme, when comparing with the non-adaptive
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decoding scheme. While the proposed scheme performs worse than JPEG2000, the

latter has significantly higher encoding complexity comparing to mine.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

In this dissertation, I mainly focus on the study of online channel noise estimation

and correlation estimation by using both stochastic and deterministic approxima-

tion inference on factor graphs.

In channel coding, BP is a powerful algorithm to decode LDPC codes over

AWGN channels. However, the traditional BP algorithm cannot adapt efficiently

to the statistical change of SNR in an AWGN channel. To solve the problem, two

common workarounds in approximate inference are stochastic methods (e.g. PF)

and deterministic approximation methods (e.g. EP). Generally, deterministic ap-

proximation methods are much faster than stochastic methods. However, stochastic

methods are much more flexible and suitable for any distribution. In this disserta-

tion, I proposed two adaptive LDPC decoding schemes, which are able to perform

online estimation of time-varying SNR at the bit-level by incorporating PF and

EP algorithms. Through experimental results, I compare the performance between

the proposed PF based and EP based approaches, which shows that the proposed

EP based approach obtains the comparable estimation accuracy with less compu-

tational complexity than PF based method for both stationary and time-varying

SNR, and enhances the BP decoding performance simultaneously. Moreover, the

proposed EP estimator shows a very fast convergence speed, and the additional

computational overhead of the proposed decoder is less than 10% of the standard

BP decoder.

Moreover, since the close relationship between source coding and channel coding,

98



the proposed ideas are extended to source correlation estimation. First, I study

the correlation estimation problem in lossless DSC setup, where I consider both

asymmetric and non-asymmetric SW coding of two binary correlated sources. The

aforementioned PF and EP based approaches are extended to handle the correlation

between two binary sources, where the relationship is modeled as a virtual BSC with

a time-varying crossover probability. Moreover, to handle the correlation estimation

problem of WZ coding, a lossy DSC setup, I design a joint bit-plane model, by which

the PF based approach can be applied to tracking the correlation between non-

binary sources. Through experimental results, the proposed correlation estimation

approaches significantly improve the compression performance of DSC.

Finally, due to the property of ultra-low encoding complexity, DSC is a promis-

ing technique for many tasks, in which the encoder has only limited computing and

communication power, e.g. the space imaging systems. In this dissertation, I con-

sider a real-world application of the proposed correlation estimation scheme on the

onboard low-complexity compression of solar stereo images, since low-complexity

compression solutions are essential to reduce onboard storage, processing, and com-

munication resources. In this dissertation, I propose an adaptive distributed com-

pression solution using particle filtering that tracks correlation, as well as perform-

ing disparity estimation, at the decoder side. The proposed algorithm is tested on

the stereo solar images captured by the twin satellites system of NASAs STEREO

project. The results show the significant PSNR improvement over traditional sep-

arate bit-plane decoding without dynamic correlation and disparity estimation.

7.2 Further Work

The idea of time/spatially-varying correlation estimation using EP can be easily

extended to improve the decoding performance of other distributed coding system,
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such as distributed video coding (DVC), distributed multi-view coding (DMVC)

and so on. Moreover, similar idea would be extended to estimate other hidden

parameters, e.g. the disparity of among stereo images. The further implementation

of EP for distributed coding system will be studied in the future research work.
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