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ABSTRACT 

 

Friction at the cutting tool interface has been studied for 60 years, yet an 

accurate model of friction is largely unavailable, especially in operations such as 

turning, where the interface is inaccessible due the continuous contact between 

chip and tool. A historical perspective of friction in turning is provided to better 

understand the purpose of this thesis. The contradictions arising from different 

frictional boundary condition assumptions in machining were analyzed. 

Experimental observations were substantiated in the light of the literature review. 

Friction conditions at the tool chip interface were found to be more complex than 

the simple models of seizure followed by sliding, which is accepted in most 

machining models.  

This thesis investigated the surface topology of cutting tools in 

conventional turning operation, which is one of the oldest and common machining 

processes. Two different aluminum alloys Al-2024 and Al-6061 were used in 

turning experiments with carbide tools to define the frictional conditions as these 

alloys exhibited a wide range of frictional contacts at different machining 

conditions.  Experiments were conducted using carbide cutting tools at a range of 

speeds, feed rates, and depths of cut, which are commonly utilized in industrial 

applications. 

The analysis of tool chip interface at microscopic levels revealed further 

details of seizure and sliding zone formation. Newer techniques developed in 



 xvii 

microscopy and surface characterization were used to characterize the interface in 

a non-destructive manner. Scanning electron microscopy (SEM), surface 

profilometer and laser scanning confocal microscopy (LSCM) techniques helped 

us in the understanding of the frictional boundaries.  

Analysis of SEM images obtained by turning experiments revealed three 

distinct regions whose topology is closely related to turning parameters. These 

different zones were named as primary sticking zone, sliding zone and secondary 

sticking zone. Furthermore, with the assistance of a developed computer code, the 

real area of contact and each different contact area were determined numerically. 

Therefore, this study is the first attempt in literature both identifies the frictional 

contact areas and computes their exact numerical values.  

The SEM backscattering technique showed that the workpiece material 

behavior is different in the built up edge and sticking areas. This finding was 

especially used to identify the preliminary and secondary sticking areas. Thus, it 

has been showed first time that the deposited layers on frictional areas show 

different material characteristics. With the help of tool surface image analysis, 

area calculation algorithm, chemical composition identification,  and earlier 

efforts cited in the literature, we proposed a stress-model which accurately 

predicted experimental normal and shear forces in oblique cutting of aluminum 

alloys for most tested conditions.    
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CHAPTER 1  

INTRODUCTION 

 

 Machining is a generic term applied to all metal removal processes. Metal 

cutting process is one of the oldest and most fundamental metal removal 

processes used to form metal into functional parts by removing unwanted 

workpiece material to achieve the desired dimensions with accuracy.  Most 

practical machining operations, such as turning, drilling, and milling require 

energy to deform the workpiece material plastically by a harder tool and remove 

the deformed, unwanted material in terms of chips from the newly generated part.   

 The study of machining focuses on the features of cutting process, such as 

cutting conditions, tool and workpiece material behavior and cutting performance 

that have a direct effect on the efficiency of the process and the quality of the 

produced part. In spite of the fact that the metal cutting is the most widely used 

machining operation in industry, the fundamental principle of this process is not 

exactly known yet due to its complex nature. Extensive studies have been 

performed to understand the fundamentals of machining to increase the 

productivity and efficiency of the process.  

The objective of metal cutting study is to develop science-driven models 

that will predict the technical measures of cutting operations such as chip 

formation, cutting forces, temperature, tool wear, and finished part accuracy. 

Practical applications of such models in industry will contribute to progress of 
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performance and productivity of machining operation. However, to meet the 

diverse demands of industry, different models have been developed for different 

purposes by utilizing different principles and techniques. In most of the metal 

cutting studies, analytical models have been supported by experiments that have 

been conducted using limited practical cutting conditions that are applicable to a 

specific domain rather covering all the cutting conditions. This approach is time 

consuming, domain dependent and relies on limited and mostly empirical data. 

Therefore, the models differ according to the type of operation, the quantity 

predicted, the purpose of the model, and the modeling technique. As a result, 

there is no unique model that completely comprises all aspects of the mechanics 

of metal cutting.  

The majority of metal cutting studies has investigated orthogonal cutting 

because of its simplicity, where the cutting edge is perpendicular to the axis of 

feed motion and the cutting velocity direction. In other words, plastic deformation 

takes place under plain strain condition. However, nearly all practical cutting 

processes are oblique, i.e. the tool cutting edge is inclined to the feed and relative 

cutting velocity directions. Therefore, two-dimensional (orthogonal) cutting 

theory has to be extended and applied (broadened) to practical, three-dimensional 

cutting.  

  Also, much of the research in metal cutting has been concentrated on the 

primary shear zone, where big proportion of the cutting energy is used to deform 

the material. A noticeable amount of cutting energy is consumed in the secondary 
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shear zone to overcome the friction between tool and chip as the chip flows over 

the tool surface. The cutting conditions at this zone are so severe that the classical 

frictional theory fails to explain the physics of chip flow.  

 Frictional behavior at the tool chip interface has been studied by many 

researchers due to its profound yet inexact and undetermined effect on metal 

cutting performance. Frictional interaction between tool and chip does not only 

effect the chip formation process in terms of cutting forces, temperatures and 

wear rate, but it is also considered as a function of those variables. Moreover, the 

frictional boundary conditions consist of sticking and sliding interfaces, exhibiting 

variability in geometry depending on the cutting parameters, tools and workpiece 

material behavior. The classical model of fixed sticking and sliding geometry is 

questionable. Presently, a general and accurate description of the interface 

boundary conditions is not yet available. 

 This study aims to determine physical quantities such as cutting forces and 

tool chip contact areas both quantitatively and qualitatively in oblique cutting, so 

that a new frictional model that will serve for the improved productivity and 

effectiveness of the metal cutting practices can be developed. Therefore, the focus 

is the secondary deformation zone in oblique cutting, typically the turning 

operation. 

 In this study, the historical development of metal cutting is presented. The 

fundamentals and different theories of metal cutting were summarized. 

Preliminary experiments performed with different aluminum alloys were 
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introduced. The results of the preliminary experiments showed which techniques 

and methodologies will be performed for further analysis of the oblique cutting. 

After the methodology has been established, main experiments were designed and 

performed with two different aluminum alloys. Force measurements were 

recorded during cutting experiments. SEM images of tool chip contact area were 

obtained after the cutting experiments. Analysis of SEM images and 

metallographic studies of contact zones revealed the different contact zones on the 

cutting zone. Image processing technique was used to find the exact numerical 

values of frictional contact zones. Experimental data, investigation, and data 

analysis showed that different alloys could behave differently under the same 

cutting conditions.  

Finally, a mathematical stress model was developed and compared with 

the experimental data. Results and model fit is discussed at the end of the study.   

The following chapter represents the theory of metal cutting and the 

literature review. Chapter 3 documents preliminary studies and experiments, and 

Chapter 4 presents main experiments and their data analysis. A mathematical 

model of stress distribution on cutting tool and model verification is shown in 

Chapter 5. Investigations of the data analysis and modeling validation are 

summarized at the conclusion part of this thesis. 
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CHAPTER 2 

THEORY OF METAL CUTTING 

 

 Metal cutting operation is a metal removal process that produces chips. 

Therefore, analysis of chip formation is the basic understanding point in the metal 

cutting mechanics. However, it is not easy to understand chip formation 

mechanics due to the complexity of plastic deformation involved. 

 Simple orthogonal cutting represents all practical cutting operations 

reasonably well; therefore, it has been extensively studied. A simple two-

dimensional orthogonal cutting model is given in Figure 2.1.  

 

Figure 2.1. Two-dimensional orthogonal cutting model 
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 In orthogonal cutting, a tool with a plane cutting face and single, straight 

cutting edge, removes a layer of work material of an undeformed chip thickness 

of t1, and width of w. The cutting edge is always normal to the cutting velocity. 

The angle α between the tool cutting edge and the normal of the cutting velocity is 

defined as the rake angle, and it is measured positive if it is as shown in the 

figure. Rake angle has an important effect on cutting forces and other cutting 

variables. The angle θ between the clearance face and the finished work surface is 

called the clearance angle. Plastic deformation takes place by intense shear 

mechanism in the shear plane, inclined by the shear angle Φ with respect to the 

finished surface line. There are three deformation zones of interest in the cutting 

process. The primary shear zone extends from the tool tip to the free surface of 

the workpiece, separating the deformed and undeformed material through the 

shear plane. At low speeds, this zone gets thicker, and it becomes difficult to 

predict the plastic deformation behavior. The secondary shear zone is the contact 

zone between tool rake face and deformed chip material. Due to the severe cutting 

conditions and friction, high heat generation and deformation of tool matrix is 

possible. This results in tool wear and shortening of the tool life. Friction in this 

zone is not easy to predict, since it cannot be explained by classical frictional 

laws. During cutting, the contact load between tool and chip is very high, 

resulting in unpredictable behavior of frictional interaction between tool and chip. 

The tertiary zone is perpendicular to tool tip clearance face and consists of the 

tool machined surface and tool interaction through the clearance face. This zone is 
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mainly responsible for the surface roughness of the finished surface.  The 

mechanics of machining focuses in plastic deformation characteristics in the 

primary deformation zone and in the friction and wear characteristics at the tool-

chip interface in the secondary shear zone. Very often, the tertiary shear zone is 

neglected.  

 

Figure 2.2. Schematic representation of oblique cutting 

  

As a result of the difficulty in the analysis of three-dimensional plastic 

flow process, approximate methods have been developed to model the more 

general cutting process. A schematic representation of an oblique cutting chip 

formation is illustrated in Figure 2.2. 
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 The main difference between oblique and orthogonal machining is that the 

chip flow direction is no longer normal to the cutting edge, since the cutting edge 

is not set normal to the cutting velocity in the plane of the newly machined 

surface. It is inclined by an angle i, which is called the inclination angle. Because 

of this inclination, the chip curls into a helical rather than a spiral shape and is 

removed easily. In defining the rake angle in oblique cutting, different types of 

rake angles were introduced, such as effective rake angle αe, velocity rake angle 

αv and normal rake angle αn. The feed rate f and depth of cut d are representative 

of undeformed chip thickness h and width of cut w in orthogonal cutting, 

respectively. The aforementioned deformation zones are also valid in oblique 

cutting. 

 Turning is a special form of oblique cutting process mainly accomplished 

on a lathe, where a cylindrical workpiece is rotated, and a single point cutting tool 

is used to remove the unwanted material to produce the desired part. Figure 2.3 

shows a simple sketch of a single-point turning operation. 

 

Figure 2.3. Single-point turning operation   
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 Cutting speed V (fpm or m/min), the feed rate f (ipr or mm/rev) and depth 

of cut d (in or mm) are the main operational variables in a turning operation. The 

chip formation process is said to be plane strain, since the depth of cut d is usually 

larger than the feed rate f at least by five times. A single point cutting tool with its 

cutting edges and surfaces is shown in Figure 2.4. 

 

Figure 2.4. Single-point cutting tool geometry 

 

 The rake face is the surface on which the chip is flowing. The flank is the 

tool surfaces over which the surface produced on the workpiece passes. 

Intersection of major and minor flank surfaces with the rake face form the side 

cutting edge and end cutting edge, respectively. The corner of the cutting edges is 

mainly rounded with a nose radius to give strength to the tool. The geometry of 
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the tool is important in machining performance since it accommodates primary 

motion, feed motion, and chip disposal. Since in most cases the depth of cut to 

feed ratio is approximately 10, the main cutting action takes place at the side 

cutting edge, and the end cutting edge helps to remove the chip. Consequently, the 

end cutting edge is neglected most of the time. The important tool angles are the 

side cutting edge angle Cs, the end cutting edge angle Ce, the back rake angle αb, 

the side rake angle αs, and the clearance angles. The cross-sectional area of the 

layer material being removed (uncut chip cross-sectional area) is approximated by 

the formula: 

 

fdAc            (1) 

 

 Strong knowledge of engineering mechanics, material science, plasticity, 

tribology and thermodynamics is required to understand what happens during the 

cutting operation. Many models can be found in the literature to explain the 

mechanics of machining. Some of the popular ones are explained in the sequel 

below. 

 

 Shear Plane Model 

 

 The scientific approach that explains the principles of cutting mechanics 

started with Piispanen [1]. He defined the chip material as a pack of cards sliding 
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by a finite distance across its neighbor and assumed that shear stress on the shear 

plane would increase with normal stress (Figure 2.5). 

 

 

Figure 2.5. Piispanen’s card model 

 

 This was the same assumption of Ernst and Merchant [2, 3]. They defined 

the deformation process taking place on a single shear plane; hence, maximum 

shear stress and maximum shear strain are oriented along this shear plane 

direction. They defined the shear angle based on the minimum work principle:  

 

224


     (2) 

 

 Merchant’s analytical approach assumes straight, continuous chip 

formation with infinite tool-chip contact area, where classic sliding friction is the 

main mechanism. The frictional force along the rake face was assumed 

completely Coulombic. However, during machining, where high temperature, 
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pressure and deformation conditions exist, Coulombic friction does not hold. 

Therefore, although Merchant’s shear plane model is an important attempt to 

understand the mechanics of machining, the assumption of total sliding between 

tool and chip is incorrect. The shear plane model was further redefined by Trigger 

and Chao [4]. Their work is based on the heat generation in orthogonal 

machining, where they showed that the increase in the coefficient of sliding 

friction at the tool-chip interface is a result of the decrease of interface 

temperature. A decrease in the cutting forces was also observed for harder 

materials although the cutting temperatures increase due to the smaller chip-

contact area and higher stresses.  

 These approaches led many researchers to conduct experiments with 

different operating conditions using different materials. Lee and Shaffer [5] 

applied plasticity theory to the machining problem. They assumed the material 

above the shear plane to be in plastic stress state and the shear stress at the shear 

plane was assumed to be constant. This resulted in the shear angle formula as: 

 





4

    (3) 

 

 Shaw et al. [6] modified this equation to fit the experimental data they 

obtained. Kobayashi and Thomsen [7] introduced the concept of measure of the 

deviation from the minimum energy principle to have an agreement between the 

experimental and empirical results. Dewhurst [8] presented slip line fields to 
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account for the effect of chip curl. The main feature of this approach is the 

introduction of a curved shear plane to accommodate the required velocity 

gradient across the chip and tool-chip interface. Shaw [9] concluded that it is not 

possible to obtain a unique shear angle relationship. This conclusion is valid since 

in all shear plane models, work material is assumed to deform at constant flow 

stress. However, generally, the flow stress of metals varies with strain, strain-rate 

and temperature and it is essential to take into account all of these variables to 

develop a satisfactory machining theory.  

 

 Slip Line Field Solution 

 

 Another approach in chip formation modeling was to extrapolate material 

test results to the conditions occurring in metal cutting, i.e., large strain, strain rate 

and temperature values. Followers of this approach started with Oxley [10], who 

used experimental flow fields to model a slip line field. The experimental flow 

fields were obtained from magnified motion pictures and quick-stop photos. 

These slip line fields were then used to determine shear angle and other 

parameters. The traces of flow stream lines showed that the plastic deformation 

takes place in a narrow zone. Roth and Oxley [11] showed that the hydrostatic 

pressure across the length of the shear zone varies. Based on the slow cutting 

speed experiments, Oxley developed the predictive slip line field theory.  
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 Friction in Metal Cutting 

 

 Friction is defined as the resistant force one surface experiences when one 

solid body slides over another, and it is always directed opposite to the relative 

velocity. The principles of friction are summarized as Amonton’s laws and 

verified by Coulomb. These laws state that the frictional force F is proportional to 

the normal load N, and the ratio of these two forces is known as the coefficient of 

friction, which is independent of the area of contact between the contacting 

bodies, as given: 

 

N

F
     (4) 

 

 It is also proposed that the frictional force and coefficient of friction are 

independent of the sliding speed, temperature and surface finish of the contacting 

bodies. These laws are valid when real and apparent contact areas are different. 

 Bowden and Tabor [12] demonstrated that the real area of contact could be 

much smaller than the apparent area and vary with normal load and hardness of 

contacting surfaces. They explained this phenomenon by introducing an 

interfacial film separating the surfaces. Interfacial sliding would only occur if the 

tangential force overcame the shear strength of interfacial film. Up to that point, 

the junctions will deform under normal and shear forces, thus increasing the 
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contact area. As a result of this asperity deformation theory, the coefficient of 

fiction was modeled by: 

 

21221 )1(

1




f
     (5) 

 

where, f is normalized film strength given by f = τ/k, τ is the shear strength of the 

film, k is the shear flow stress of the deforming material, and δ is an empirical 

factor. This adhesion model does not take the surface roughness value into 

consideration.  

 The asperity deformation model was further analyzed by Green [13], 

applying plasticity theory. He claimed that during junction growth, different 

junctions being at various stages of development, the friction could be taken as 

the ratio of the average tangential and normal forces acting over the life cycle of a 

typical junction. Adhesion theory sheds some light to the understanding of the 

mechanism involved in friction, but it relies heavily on the formation and fracture 

of welds. It is also deficient in terms of wear and hardness consideration of 

contacting bodies. 

 Shaw et al. [9] investigated the variation of friction with the change in 

normal stress, as shown in Figure 2.6. Regime I is where Amonton’s law holds 

(µ=τ/σ= constant). In regime III, the apparent area of contact is equal to the real 

area of contact, and shear stress is independent of normal stress. Regime II is a 
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transition region, where the coefficient of friction decreases with increasing 

normal load. In that respect this region is more representative of the frictional 

conditions that occur at the tool chip interface. Zorev [14] developed a model 

which predicts the frictional conditions at the tool chip interface by suggesting a 

normal and shear stress distribution at the tool rake face as shown in Figure 2.7. 

He used controlled contact length cutting tools to measure the forces for different 

contact lengths, where he machined steel orthogonally at low and moderate 

cutting speeds (0.02, 0.7, 60, 70 and 80 m/min), at different depth of cuts using 

different rake angle tools. According to this model, the initial part of the interface 

is considered as sticking zone, where intense plastic shearing of weaker (chip) 

material occurs, and the rest of the contact zone is represented as sliding zone 

with relatively less severe frictional conditions. These zones were defined from 

the photomicrographs obtained by quick-stop mechanism. 

 

Figure 2.6. Three regimes of solid friction [9] 
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Figure 2.7. Zorev’s model 

 

 Zorev assumed a uniform shear stress in the sticking region  and a 

decreasing shear stress with a power law in the sliding zone. The normal stress 

distribution was modeled with the power law equation of σ =qx
y
, where x is the 

distance from the point where chip leaves the tool, and q and y are constants. 

Wallace and Boothroyd [15] also pointed out the defined regions as sticking and 

sliding friction at tool-chip interface, where they used a shaper to cut an 

aluminum alloy using different rake angle tools and at low and moderate cutting 

speeds (18, 28, 54, 70 m/min) as shown in Figure 2.8. They also used quick-stop 

mechanism to investigate the underside of the chip and interface. They introduced 

the variability of tool-chip interfacial friction and concluded the dependence of 

friction on the normal stress distribution on the rake face, shear strength of the 

chip material at the tool chip interface, and the coefficient of sliding friction.  
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 The terms sticking and sliding have been literally interpreted by Doyle et 

al. [16], where sticking and sliding were related to mean adhesion between chip 

and tool material. Seizure at the tool rake face was introduced by Trent [17] after 

viewing the sweeping back of chip material into a thin, parallel layer to the tool 

rake face, obtained at very low cutting speeds using high speed steel (HSS) tools, 

with the use of quick-stop mechanism. This condition favors the built up edge 

formation. Transparent sapphire cutting tools were used by Horne et al. [18] and 

Doyle et al. [16] to observe the frictional interactions at the tool-chip interface. 

When machining soft materials such us aluminum and lead a sliding region just 

behind the cutting edge was observed, followed by a sticking region.  

 

Figure 2.8. Average rake face stresses versus contact length ratio [15] 
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Experiments performed by Horne et al. [18] using sapphire tools to cut 

lead showed the sticking zone at the rear part of the contact length, which 

contradicts Zorev’s model. Sliding conditions dominate in the region just behind 

the cutting edge when comparatively soft materials (aluminum, lead) are 

machined with sapphire tools. On the other hand, sticking dominates in this region 

when hard materials (steel, iron) are machined with metal tools. Wright [19] 

concluded that sticking and sliding happen as a result of stress conditions and 

surface properties. In his experiments, single stroke planning was performed in 

air, with lubricants and under vacuum conditions. Sapphire tools are used to cut 

pure lead and aluminum. HSS planning tools with 10° and 40° rake angle were 

also used to machine pure copper, iron, and nickel. Maximum cutting speed was 

140 mm/s, resulting in a cutting time of 1.4 s. Depth of cut was 0.1 mm, and 

width of cut was 2.5 mm. At the end of his study, Wright concluded that the 

frictional conditions in machining vary according to tool-workpiece combination, 

surrounding environment, cutting time, and cutting speed. He also pointed out that 

sliding will occur when soft materials are machined for short cutting times with 

coated tools. On the other hand, seizure conditions were attributed at high cutting 

speeds, long cutting times, and low hardness values between tool and work 

materials. Later, Wright et al. [20] defined seizure as a solid phase weld between 

the primary atomic layers at the interface, where the last layer of atom is 

stationary, and the motion is by shear velocity, gradually increasing from zero to 

the chip velocity. A quantity “k” was defined as the ratio of the seized area to the 



 20 

real area of contact, where k lies between 0 and 1, and it is a function of tool-

workpiece combination, rake angle, cutting speed, time of cut, and other 

environmental conditions.  Some important conclusions by Wright can be 

summarized as: a) The actual cutting conditions are much more severe, so that 

experiments performed with soft-materials at low speeds will not characterize the 

real cutting conditions; b) experiments in vacuum favored seizure, which was 

attributed to the oxide free clean surfaces, c) three points are interesting in 

designing the cutting experiments to analyze the sticking and sliding behavior: 1) 

Steady state seizure pattern occurs after approximately 30 seconds, 2) Single 

stroke planning operations cannot represent turning operation, 3) Quick-stop 

mechanism does not allow a detailed examination of the interface boundary.  

 Oxley [10] claimed heavy frictional conditions cause the retardation of the 

chip velocity at the interface, thus, forming the heavily deformed thin seizure 

layer. However, the chip velocity never retarded completely. This thin layer was 

called plastic zone, and its thickness was referred as δt2. Another major 

contribution on modeling the frictional interactions at the interface was by 

Challen and Oxley [21], who developed a slip line field based on the asperity 

deformation model to explain the tribological interactions in metal cutting. This 

model is applicable to the sliding of a hard surface over a softer one, where the 

friction force is defined as the force needed to push waves of plastically deformed 

material along a soft surface ahead of the asperity on the hard one. In this 
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approach, no fracture mechanics is involved. Using the slip-line field theory, 

Challen and Oxley [21] proposed the coefficient of friction as: 
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angle of the hard asperity, and f  is the normalized strength of the interfacial film. 

According to them, the complex processes occurring during the chip formation 

and chip curl influence the behavior of the chip material.  

 

 Tool-Chip Contact Area 

 

 Tool-chip contact area is an extremely important parameter for predictive 

modeling of chip formation. The tool-chip contact occurs as a result of the 

frictional conditions at the interface, and it effects the deformation within the chip 

and curling away of the chip from the tool rake face. Early models did not pay 

attention to tool-chip contact length or area since the chip was assumed to be 

straight, continuous, and infinite [2]. A major disadvantage of studying tool-chip 

contact area is the difficulty in assessing the area in situ. Especially in orthogonal 

cutting experiments, quick-stop mechanism was used to bring the chip to stop and 
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investigate the interface and bottom of the chip. However, quick-stop mechanism 

technique does not allow a detailed examination of the interface boundary. 

 Traces of chip flow on the tool rake face are good signs in determining the 

magnitude of the contact area. Takeyama and Usui [22] did the pioneering study 

in determination of the tool-chip contact area. Brass tubes were machined by the 

restricted cutting tools orthogonally, since brass has tendency to produce slight 

built-up edge. The restricted tool chip area varied between zero and the normal 

value.  It was shown that the tangential force on the rake face is directly 

proportional to the tool-chip contact area regardless of the depth of cut, when the 

rake angle is zero. The frictional stress on the rake face is constant regardless of 

the depth of cut or rake angle and almost equal to the shearing strength of the 

brass. This is an indication of the fact that the apparent area of contact is equal to 

the real area of contact. The frictional force does not depend on the area of cut, 

only on the tool chip contact area. The situation is a little bit different when the 

rake angle is 30°, i.e., the tangential force on the rake face has a definite value, 

when the tool chip contact area is zero. This definite value cannot be a force 

originated by the tangential stress, but it is a singular point. A singular point exists 

at the tool edge, and the tangential component is the definite value of the 

tangential load. This singular load is a function of depth of cut and rake angle. 

However, when the rake angle is zero, the residual tangential load becomes zero, 

regardless of the depth of cut since the residual normal force is perpendicular to 

rake face.  So the normal force was modeled as: 
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AkNN  20      (7) 

 

where N is the normal force on the rake face; N0 is the residual normal force; k2 is 

a constant, and A is the tool-chip contact area. Furthermore, N0 is a function of 

area of cut and rake angle.  

 

cAkNN  110     (8) 

 

where N1 is the real residual normal force; k1 is a constant, and Ac is the area of 

cut. N1 does not contribute to the actual metal removal since it is related to the 

resistance against the elastic deformation of the material cut near the cutting edge 

or the rubbing force at the relief; k1 can be determined from the graph of normal 

force vs. area of cut and k2 from the graph of normal force vs. tool-chip contact 

area. The value of k2 is constant, which is almost independent of rake angle and 

depth of cut. 

 Takeyama concluded that the tool chip contact area per unit area of cut 

determines the shear angle and the other machineability characteristics. A higher 

speed or a larger rake angle can make the tool chip contact area smaller. Tool-

chip contact area is determined by the strain or stress field, or diffusibility of 

shearing fracture or slip ahead of the tool face, and also by the metallic affinity 

between the tool and work material. The strain and stress field is closely 

dependent on the cutting speed. Shear angle is also determined based on the fact 
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that the force on this tool-chip contact area is balanced with the forces within the 

workpiece material, i.e. the forces in the primary cutting area.  

 Usui and Hiroto [23] used energy method in orthogonal cutting and 

expressed the shear plane area and projected area of cutting cross-section and 

verified their cutting model by the experimental results obtained with different 

depth of cuts and rake angles. A very recent study performed by Guha [24] 

presents fractal analysis of tool-chip contact area. Raman et al. [25] further 

investigated the fractal nature of the sticking and sliding regions on the tool rake 

face. They concluded that fractal geometry of the contact region is a function of 

cutting speed, where the fractal dimension shows a decreasing trend with the 

increase in cutting speed. In using fractal analysis, they used SEM micrographs of 

cutting tools and image analysis.  

 

 Chip Flow 

 

 A well known chip flow model was represented by Colwell [26], where he 

assumed that the chip flow over the cutting face of the tool was perpendicular to 

the major axis of the projected area of cut (Figure 2.9).  

 Stabler [27] introduced his famous relationship that the chip-flow angle is 

equal to the inclination of the cutting edge. Armarego and Brown [28] established 

the new chip-flow equations based on general oblique cutting in their generalized 

cutting mechanics approach. 
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Figure 2.9. Chip flow direction model [26] 

 

 Young et al. [29] developed a chip-flow model for nose radius tools by 

considering the undeformed chip as a series of elements and summing up the 

friction forces along these elements to find the resultant chip-flow direction, 

where they used the experimental results of Armarego and Brown [28]. Effects of 

rake and inclination angles on chip flow direction were included by Wang and 

Mathew [30], where numerical integration methods were used along the length of 

the cutting edge. A simple method was employed by Arsecularatne [31] by 

separately taking the effects of nose radius and tool angles into consideration and 

using superposition of these effects. Similarly, Jawahir et al. [32] performed 

considerable work on modeling of cutting forces and chip flow in machining by 

dividing undeformed area of cut into small segments and using oblique cutting 

data to calculate cutting forces and chip-side flow. Ghosh [33] developed a chip 

flow model based on measured cutting forces and tool geometry. Cutting forces 

were assumed to act on the equivalent cutting edge.  
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 Normal and Shear Stress Models 

 

 The prediction of cutting forces on the tool face is dependent on the stress 

distribution model along the interface and the quantitative and qualitative 

description of contact type between chip and tool. Since all the studies rely on the 

experimental evidence, there is no exact solution in analyzing the stress 

distribution in the literature. In most of these studies, the interfacial contact 

conditions were investigated, and some form of stress distribution obtained from 

the experimental evidence was assumed. However, there are noticeable 

differences between reported studies about normal and shear stress models.  

 Researchers used different techniques to model the stress distributions 

along the tool chip interface. These techniques are photoelastic tool method, split 

tool method and slip-line field method. In all of these techniques, however, 

orthogonal cutting tests were utilized.  

 The determination of stress distribution in the photoelastic tool method 

relies on the analysis of the isochromatics and isoclinics produced inside the tool 

under the action of cutting forces during machining. Although its is easy to use, 

the disadvantage of this technique is that only soft metals such as lead can be 

machined at very low cutting speeds because of the cutting tool material, which is 

usually epoxy resin that has low strength and low hot-hardness values. Also, it is 

not possible to determine the stress distribution accurately close to the cutting 

edge since the flank face force creates distortion of the isochromatic fringes [34]. 
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The studies performed by different researchers using epoxy resin as the tool 

material show different stress distributions along the interface. The first studies on 

stress distribution were performed by Andreev [35] and Kattwinkel [36]. Andreev 

showed that shear stress distribution starts from zero at the chip separation point 

and reaches a constant value in the middle of the tool and remains constant until 

the cutting edge (Figure 2.10(a)-curve 2). He showed that the normal stress is 

increasing exponentially towards the cutting edge (Figure 2.10(b)-curve 1). 

Kattwinkel’s results show that the shear stress falls near the cutting edge (Figure 

2.10(a)-curve 3) after it reaches a maximum value in the middle part of the 

contact area. The normal stress distribution is the same as Andreev’s. Usui and 

Takeyama [37] machined lead at low speed, where the shear stress distribution is 

as given in Figure 2.10(a)-curve 2 and the normal stress distribution is as shown 

in Figure 2.10(b)-curve 2. Rice et al. [38] determined the normal stress 

distribution when machining lead at a cutting speed of 3.05 m/min, as shown in 

Figure 2.10(b)-curve 3. Chandrasekaran and Kapoor [39] machined lead at low 

cutting speeds with different rake angle tools. The shear stress distribution is 

similar to the one represented by curve 2 and curve 3 in Figure 2.10(a) for 

positive rake angles and for negative rake angles, respectively. For all rake angles, 

it is found that the maximum value of the shear stress approaches the shear yield 

strength of the chip material. The normal stress distribution was found to remain 

constant for a short distance near the cutting edge and then decreased to zero 

(Figure 2.10(b)-curve 3). Amini [40] showed that both shear and normal stress 
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increase in a non-linear way from the chip separation point to the tool edge 

(Figure 2.10(a)-curve 1 and Figure 2.10(b)-curve 1). 

 In order to make the cutting conditions more representative of the actual 

case, Baghci and Wright [41] used a sapphire cutting tool to machine mild steels 

and brass, and obtained consistent results in the form of stress distribution for all 

the workpiece materials. Their result is similar to the findings of Chandresekeran 

and Kapoor [39]. The results obtained and the experimental conditions employed 

in different photoelastic tool technique studies are listed in Table 2.1. The models 

developed by the studies are represented in Figure 2.10.  

Reference Tool 

Material 

Workpiece 

Material 

Rake 

Angle 

Cutting 

Speed 

(m/min) 

Result 

(Shear,Normal) 

Andrew [35] Epoxy  Lead 18 0.08  2 , 1 

Kattwinkel [36] Epoxy  Lead -5 0.024  3 , 1 

Usui and 

Takeyama [37] 

Epoxy  Lead 7 0.0018 2 , 2 

Rice et al. [38] Epoxy  Lead 17.5 3.05 - , 3 

Chandrasekeran 

& Kapoor [39] 

Epoxy  Lead 0,10,20 0.0024  2 , 3 

Chandrasekeran 

& Kapoor [39] 

Epoxy  Lead -10 0.0024  3 , 3 

Amini [40] Epoxy  Lead 10 Low  1 , 1 

Baghci and 

Wright [41] 

Sapphire 1020 Steel, 

Brass 

-5 10-75  3 , 3 

 

Table 2.1. Summary of photoelastic tool studies 



 29 

 Split tool method is another method used to determine stress distribution 

on the tool rake face. This method is based on the measurement of the forces 

acting on two separate parts of a composite cutting tool. The method of stress 

computation and split tool geometry is described by Arsecularatne [42].  

 

Figure 2.10. Shear and normal stress distribution models obtained by photoelestic 

tool and split tool methods 

 

Since there is no restriction on tool and workpiece materials with split tool 

technique, high strength materials were machined at moderate to high cutting 

speeds. Therefore this method is more representative of the actual cutting process. 

Kato et al. [43] machined aluminum, copper, zinc, and lead-tin alloy using 

positive rake angle HSS tools at a cutting speed of 50 m/min. The result for 

aluminum, copper and lead-tin alloy is given in Figure 2.10(a)-curve 2 and Figure 

2.10(b)-curve 3. For zinc, the normal stress appeared to increase continuously 

towards the cutting edge (Figure 2.10(b)-curve 1). Usui and Shirakashi [44] 

machined plain carbon steel at 200 m/min. Their results showed that the shear 
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stress was constant near the cutting edge (Figure 2.10(a)-curve 2), and the normal 

stress increased continuously towards the cutting edge (Figure 2.10(b)-curve 1). 

Barrow et al. [34] cut nickel-chromium steel at different moderate cutting speeds 

and different depth of cuts. Their result indicated, in all cases, that the general 

form of the shear and normal stress distribution is similar to the Figure 2.10(a)-

curve 2 and Figure 2.10(b)-curve 3. An interesting fact about their study is that, 

the length of the constant portion of the normal stress distribution is equal to that 

of constant shear stress distribution. Buryta et al. [45] used brass, stainless steel, 

medium carbon steel as the workpiece material at 130 m/min. In their study, they 

introduced the plowing force effect, which is the force acting in the very front 

portion of the cutting edge. It is believed that, although this force does not play a 

significant role in chip formation mechanics, it affects the stress distribution, 

especially at the cutting edge. The form of stress distribution after removing the 

plowing force effect is the same as Buryta’s. In another study, Childs and Mahdi 

[46] machined brass, aluminum, and mild steel and obtained the same type of 

stress distributions. They also showed that the constant portion of the shear stress 

distribution and constant portion of normal stress distribution are approximately 

same. The results obtained and the experimental conditions employed in different 

split tool technique studies are listed in Table 2.2. The models developed in these 

studies are depicted in Figure 2.10. Compared to photoelastic tool method, the 

studies performed by split tool method give more consistent and correct results. 
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 As evident from the studies above, normal and shear forces show 

considerably different patterns based on the method used, cutting conditions, and 

tool and workpiece materials. Although there are a number of studies on the 

interfacial cutting conditions in the literature, there is no strong foundation or 

model defining cutting forces and regions on which they act upon. Furthermore, 

all the information is experimental and the theories rely on the experimental 

evidence. 

Reference Tool 

Material 

Workpiece 

Material 

Rake 

Angle 

Cutting 

Speed 

(m/min) 

Result 

(Shear, 

Normal) 

Kato [43] HSS aluminum, 

copper, lead-tin 

20 50 2 , 3 

2 , 1 

Usui and 

Shirakashi [44] 

Carbide plain carbon 

steel 

- 200 2 , 1 

Barrow et al. 

[34] 

Carbide nickel-

chromium steel 

0 30, 45, 60, 

90, 129  

2 , 3 

Buryta [45] Carbide brass, stainless 

steel, medium 

carbon steel 

-5 130 2 , 3 

Childs and 

Mahdi [46] 

- brass, 

aluminum 

alloy mild steel 

- - 2 , 3 

 

Table 2.2. Summary of split tool method studies 

 

 As mentioned earlier, the slip line field technique was used to model the 

chip formation process. Roth and Oxley [11] used this technique to determine the 

shear and normal stress on the rake face. In analyzing the interface stresses, they 

used the experimental flow field to obtain the centre of the chip curvature. The 

total contact length was assumed as plastic and elastic contact. The normal stress 
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distribution was assumed to vary exponentially, following the photoelastic tool 

experiments. Within the elastic contact zone, the shear stress was assumed to be 

given by the product of a constant coefficient of friction and corresponding 

normal stress. Over the plastic contact zone, the shear stress was assumed to be 

constant and defined as the product of the coefficient of friction and the normal 

stress at the elastic-plastic contact boundary. The shear and normal stress 

distributions were determined so that they were consistent with the resultant 

forces on the rake face obtained from measured cutting forces. They conducted 

experiments with mild and free machining steels and at low cutting speeds. As a 

result, they concluded that the increase in flow stress of the workpiece material is 

caused by strain hardening after passing trough the plastic zone; whereas, along 

the tool-chip interface little strain hardening occurs, and the slip lines are 

consistent with those of constant flow stress material. In this model, they included 

the cutting edge effect, which is mainly the plowing force. The drawback of this 

model is that the experiments were performed at low cutting speeds since their 

aim was to minimize the strain-rate and temperature effects. 

 At high speeds under practical cutting conditions, the workpiece material’s 

flow stress properties change with strain, strain rate and temperature. Usui and 

Shirakashi [44] reported a simulation analysis based on a finite element method to 

include the variability of flow stress properties. The conditions at the tool-chip 

interface were assumed to be plastic near the cutting edge and elastic near the 
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separation point. Their results exhibit the same patterns observed in Figure 

2.10(a)-curve 2, and Figure 2.10(b)-curve 1. 

 Another method worth mentioning here is that of Wallace and Boothroyd 

[15] for its significance in determining the stress distribution on the rake face. 

Restricted contact tools were used in machining experiments, where the tool-chip 

contact length is restricted by removing the rear part of the tool rake face. 

However, this method is not valid since by restricting the tool contact area, the 

chip formation mechanism changes. This does not represent actual conditions. 

Consequently, the obtained stresses were different than the actual ones.  
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CHAPTER 3 

PRELIMINARY EXPERIMENTS 

 

 The following experimental tools and analysis techniques were used fully 

or partially in the preliminary cutting experiments. These experiments served to 

find the best methods and analysis techniques to further experiment and analyze 

the tool chip contact interface in cutting experiments. 

 

 Experimentation and Analysis Methods 

 

 Equipment: 

 

In all of the experiments an industry type lathe, capable of changing 

cutting speed and feed rate, was used. A Kistler type piezoelectric dynamometer 

was employed to measure the cutting forces during machining. Like other 

piezoelectric force transducers, the stacked piezoelectric crystals respond to the 

applied force and generate an electric current proportional to the force. An output 

voltage is sent to the voltage amplifier. The voltage values are recorded based on 

the sampling rate with the help of data acquisition software. After averaging and 

multiplying with a scaling factor, the cutting forces in 3-D coordinate system can 

be found. The force readings were in pounds-force (lbf) after scaling. A schematic 

representation of the lathe and force recording setup is shown in Figure 3.1. 
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Figure 3.1. Industrial lathe and data acquisition system 

  

 Cutting Tools and workmaterial: 

 

 Kennametal SNG 433-K68 cutting inserts were used in the experiments. 

The inserts were used on a tool holder type of CSRNR-164, which assures a 

cutting edge angle of 15°, an inclination angle of -5° and a rake angle of -5°. 

Aluminum alloys (Al 2024-T351, Al 6061-T6 and Al 7075-T6) were used as 

workpiece materials because of good adhesion characteristics to tool surface.  

 

 Scanning Electron Microscopy: 

 

 The tool surface, where chip and tool are in contact during cutting, 

exhibits mainly a 3-D topography. The aerial views of the contact area can be 
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obtained by scanning electron microscopy (SEM). After the experiments, tool-

chip contact zone was investigated by SEM at a magnification of 50x. The images 

were saved as grey scale image. Also, back-scattered images were taken to 

analyze the metallurgical composition of the tool chip area. The back-scattered 

image on a SEM image is based on the molecular weight of the material. The 

materials with higher molecular weight are lighter in grey shade than the elements 

with low molecular weight. The brightness and contrast of the images can be set 

on the SEM. For example, the white areas represent for the cutting tool (tungsten 

carbide), and black areas represent the workpiece (aluminum). The SEM images 

of the contact region, therefore, lead us to understand the mechanism of chip 

formation in terms of material transfer from the workpiece to the tool surface. The 

SEM images were taken at Sam Noble Research Center and Sarkeys Energy 

Center.  

 

 Surface Profilometer:  

 

 The third measuring device used in the experiments was a Tencor 

instrument P-1 long scan profilometer. This instrument uses a stylus to record 

points (in micrometers) based on a reference height as it travels horizontally. The 

scan length can be adjusted to cover all the contact area. Also, horizontal 

resolution can be set up to allow the scan to capture the actual surface profile. 

Then each scan point is recorded and saved in a Microsoft Excel document.  
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 Laser Scanning Confocal Microscopy: 

 

 Sticking and built up image differentiation was not easy from a 2-D image 

obtained by SEM. Therefore, Laser Scanning Confocal Microscopy (LSCM) was 

used. Confocal microscopy facilitates reproduction of three dimensional surfaces 

with the finest details. LSCM gives the actual three dimensional profile of the 

tool-chip interface. By using the confocal imaging in its required range and 

resolution, the tool surface could be reproduced in graphical environment. 

Analyzing the 3-D images, some topographical results can be obtained in terms of 

intensity and depth profiling.  

 The LSCM at OU Health Science Center was used to scan and analyze the 

surface topography of the cutting tools. This process was performed by scanning 

the samples by LCSM, followed by analyzing the scanned images by Leica 

Confocal Software (LCS Lite) developed by Leica™ for the LCSM. The results 

of LSCM analysis of deposited layers are represented in the following pages. 

 

 Nano-indentation: 

 

 The tool-chip interface was further investigated to determine the shear 

stress distribution at the interface. There is evidence in the literature [47] that 

there is a relationship between shear stress distribution and the hardness value of a 

fractured surface after plastic deformation. The study was initiated to observe the 
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existence of such a relationship in cutting experiments and to determine the use of 

this technique for future study. Nano-indentation tests were performed in 

Microphotonics Inc.  

 

 Image Processing : 

 

In order to find the numerical value of the areas of sticking and sliding on 

the cutting tool surface, image processing technique was used on the images 

obtained by SEM. A special software code was developed in MATLAB® to 

identify the areas of sticking and sliding zones. Original SEM images were 

cropped to the areas of interest and cleaned for unwanted debris. Then each 

individual image was processed by the MATLAB code.  

 

 

   

 

 

 

 

 

Figure 3.2. Original SEM image and the cropped and redefined image 
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An original SEM image showing the contact area is given in Figure 3.2. 

After the image size is cropped, the unwanted parts of the tool surface can be 

removed from the raw SEM images (Figure 3.2). In addition to the size 

adjustment, the brightness and contrast can be further adjusted to normalize the 

color values from tool to tool. The cropped and color adjusted images still contain 

all details and ambiguities in the sticking and sliding regions. An example of the 

cropped image obtained from the original SEM image is also shown in Figure 3.2. 

In order to obtain values for the distinct regions of sticking and sliding, the 

images were further processed. The developed MATLAB® code has two parts. 

Before the first code is run, a color scale is established using Adobe PhotoShop 

and Microsoft Paint so that the image can be categorized based on color intensity. 

The first code performs color converting and image cleaning operations. This is 

achieved by converting the sticking areas to black color and the sliding areas and 

the tool background areas to gray color. The background of the image is set to 

white. This mainly filters the areas of interest and redefines the color intensities 

for further analysis. This cleaning code sweeps the area pixel by pixel and checks 

the color values of the surrounding pixels. If the original pixel does not match the 

surrounding pixels, it is changed to the color value of the surrounding pixels. 

Several resolution options for simplification of the areas were tested. It is 

preferable to have a resolution that simplifies the classification, without losing the 

image details. For this reason, the code with the 5 pixel resolution-repeating twice 
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was chosen. An example of image processing methodology is shown in Figure 3.3 

for different resolution methods. 

 

 

Figure 3.3. Cleaning code results (left to right): 3 pixels, 1 run; 3 pixels, 2 runs; 5 

pixels, 1 run; 5 pixels, 2 runs 

  

After completion of first code, it was necessary to manually categorize the 

images into sticking and sliding zones. For this reason, previously obtained 

images were processed manually by Microsoft Paint. Because of the edge effects 

near the nose radius, and at the end of depth of cut, some judgment has to be 

made by the user to decide what is valid sticking and what is unwanted build up 

from the edge effects or chip spread out. In deciding whether the area belongs to 

primary sticking zone or secondary sticking zone, manual adjustments are done 

for the overlapping regions. Once the images are categorized, each region is color 

coded so that second MATLAB® could read each pixel with its color intensity. 

Primary sticking zone color was defined as black.  Sliding zone was represented 
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by light gray, and secondary sticking zone was colored as dark gray.  The tool 

background area and the image background area were set to gray and white, 

respectively (Figure 3.4-a). The second code then produces images for each of the 

specified regions: Sticking, Sliding, and Total Contact Areas. For the example 

given in Figure 3.3, the total contact area consists of a primary sticking zone just 

at the front part of cutting edge, a sliding zone and a secondary sticking zone at 

the rear end of the contact zone, as shown in Figure 4, respectively. The second 

code weighs the categorized regions according to color intensity and compares 

each pixel. In doing so, the code identifies each pixel, its color, and its 

neighboring pixels. Finally, the pixel count of each color intensity is found. A 

conversion factor was applied to change pixels to square inches or mm
2
 based on 

the cropped image size. As a result, the numerical values of desired regions were 

found. The generated MATLAB® code is provided in Appendix A. 

 

 

 

 

 

 

 

Figure 3.4.  Area identification by MATLAB® code 
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Preliminary Experiments and Data Analysis  

 

Repeatability Tests 

 

 These experiments were performed to validate the repeatability of cutting 

forces and SEM image readings. In the cutting experiments, Al-7075 material was 

machined by an uncoated cutting tool with 0.8 mm nose radius (SNG 432-K68) at 

a cutting velocity of 350 m/min. The average shear force was 5.23 N and the 

average normal force was 16.65 N. It was determined with 95% confidence that 

the measured shear force will fall between 5.11 and 5.36 N, and the measured 

normal force will fall between 16.44 and 16.87 N. After performing image 

analysis, numerical values of sticking, sliding and total area of contact were 

determined for the trial cuts (Figure 3.5). When comparing the types of contact 

area, the total contact area, sticking and sliding areas showed acceptable 

deviations in value - while the first sticking region and the sliding region showed 

significant deviations in area. The result of the area repeatability test was shown 

in Table 3.1, where the lower and upper boundaries are determined with 95% 

confidence. The deviation in the area values are due to image processing 

resolution and manual adjustments for the overlapping regions.  



 43 

Repeatability of Forces

0

4

8

12

16

20

0 2 4 6 8 10 12

Test Number

F
o

r
c
e
s 

(N
)

Normal

Forces

Shear

Forces

        

Repeatability of Areas

0

0.1

0.2

0.3

0.4

0.5

0.6

0 2 4 6 8 10 12

Test Number

A
re

a
 (

sq
 i

n
)

I Sticking Zone

II Sticking Zone

Sliding Zone

Total Contact Zone

 

Figure 3.5. Reliability test results for the cutting force and contact area values 

 

 Area 

Averages 

(in
2
) 

Lower 

Boundary 

(in
2
) 

Upper 

Boundary 

(in
2
) 

Percent 

Deviation from 

Average 

Total Contact 7.755x10
-4

 7.607x10
-4

 7.903x10
-4

 1.90 % 

Primary 

Sticking Zone 

9.021x10
-5

 7.671x10
-5

 1.037x10
-4

 14.91 % 

Sliding Zone 2.706x10
-4 

2.482x10
-4 

2.930x10
-4

 8.26 % 

Secondary 

Sticking Zone 

4.147x10
-4

 3.985x10
-4

 4.309x10
-4

 5.14 % 

 

Table 3.1. Numerical values of contact area-repeatability testing 
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This analysis leads us to conclude that the experimental force reading and 

area calculations can be the input parameters to the mathematical model within 

acceptable error margins. 

 

Identification of Frictional Conditions by Surface Profilometer 

 

 The chip deposited on the surface of the cutting tool was measured 

through the use of a surface profilometer, the cutting material being Al-7075. The 

general shapes observed were qualitatively categorized into three profile shapes, 

as can be seen in Figure 3.6.  

 

Figure 3.6. Profilometer results of tool-chip contact area for Al-7075 

 

It was determined that there is a relationship between cutting velocity and 

the general shape of the material deposit. Lower cutting speed exhibited Type I 

behavior, indicating a primary sticking zone, where the deposited layer thickness 

has maximum value. Higher velocities produced Type III behavior, characterized 

by the secondary sticking region. The deposited layer in this zone has the 

maximum thickness. Low cutting forces correspond to high velocities, and high 

cutting forces correspond to low velocities. The magnitude of the first sticking 
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region was observed to be smaller for the lower forces (higher cutting speeds) and 

larger for the higher forces (lower cutting speeds). The magnitude of the first 

sticking area increases as force increases. 

 

Identification of Frictional Conditions by LSCM 

 

 Another study was conducted to investigate and identify the sticking zone 

at the tool-chip interface using Al-2024 and Al-6061 as the workpiece material. 

This technique relies on confocal laser imaging as discussed earlier. The study 

focused on providing detailed information about different contact conditions and 

associated complex frictional mechanism at the tool-chip interface. The 

experiments were designed to investigate the chip tool interaction at different 

cutting speeds. The tool surfaces were analyzed under SEM and LSCM. The 

surface topography for each cutting surface was investigated and the sticking, 

sliding and built up edge areas were easily identified. Furthermore, LSCM 

verified SEM images in terms of areas of frictional contact conditions.  

 In situ observations were replaced by time dependent cutting experiments, 

i.e., the time of cut was chosen as 30 sec, 60 sec, and 90 sec and 120 sec. The 

experiments were conducted at cutting speeds of approximately 120, 180 and 240 

m/min. The feed rate and depth of cut was kept constant at 0.142 mm/rev and 0.25 

mm, respectively. The SEM images for Al-2024 for three different cutting speeds 

and four different cutting durations are shown in Figure 3.7. For the low cutting 
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speed, the built-up edge formation is obvious from the SEM images. For low-

speed and 30 sec and 90 sec experiments, the built-up edge was separated from 

the tool surface. Therefore, it can not be seen. As the cutting speed increases, 

built-up edge formation is decreased. Similarly, tool-chip contact area, sticking 

and sliding areas are decreased. However, the quantitative measure of built-up 

edge and the surface topography of the chip tool interface can not be obtained 

from SEM images. 

 

Figure 3.7.  SEM images for Al-2024 

SEM images for Al-6061 with the same cutting conditions are illustrated 

in Figure 3.8. For the low cutting speed, the built-up edge formation is obvious 

from the SEM images. A similar trend was observed for the built-up edge 

evolution, i.e., as the cutting speed increased, the built-up edge formation 

decreased. Total contact area, sticking and sliding areas are also decreased. 

Similarly, quantitative measure of built-up edge and the surface topography of the 
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chip tool interface can not be obtained from SEM images for Al-6061. Therefore, 

LSCM analysis was utilized. 

 

Figure 3.8. SEM images for Al-6061 

 Figure 3.9 shows the images obtained by LSCM for Al-2024 for different 

cutting speeds and cut duration. Figure 9(a) illustrates the 3-D surface topography 

of the tool surface at the cutting edge for low speed (120 m/min) and 60 sec 

cutting time. The built-up edge formation and its shape can be easily observed 

from that figure. Also the 2-D aerial view enables us to get the surface profile in 

the direction of the cut, as shown by the white line. The line starts on the inner 

part of tool face and ends at the edge of tool. From this profile, it can be seen that 

the built-up edge has occurred at the radius edge, and it has a thickness of 

approximately 245 μm. As the chip flows on the tool surface, the built-up edge 

decreased and the sticking areas thickness was measured as 55-70 μm. The 
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thickness value of sliding areas is 20 μm. The 3-D surface topography of the tool 

surface at the cutting edge for medium speed (180 m/min) and cutting time of 90 

sec is given in Figure 9(b).   

           

(a) Low Speed Cut (60 sec)                            (b) Moderate Speed Cut (90 sec) 

 

(c) High Speed Cut (90 sec) 

Figure 3.9. Surface topography analysis of Al-2024 at different cutting speed and 

cutting times 

 

The built-up edge formation and its shape are easily identified. The built-

up edge formation has a thickness value of 45-55 μm. As the chip flows on the 

tool surface, the built-up edge formation disappears and sticking takes place, 
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which shows a maximum thickness of 25 μm. The sliding areas have a thickness 

of 15 μm. Figure 9(c) shows the 3-D surface topography of the tool surface at the 

cutting edge for high speed (240 ft/min) and cutting time of 90 sec.  The built-up 

edge is limited to the nose radius again, with a built-up edge thickness of 30-45 

μm. As the chip flows on the tool surface, the built-up edge formation cheeses and 

sticking takes place with a thickness value of 20-25 μm. The sliding areas level at 

15 μm. 

             

(a) Low Speed Cut (60 sec)                             (b) Moderate Speed Cut (90 sec) 

 

(c) High Speed Cut (90 sec) 

Figure 3.10. Surface topography analysis for Al-6061 at different cutting speed 

and cutting times 
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 Figure 3.10 illustrates the surface topography images obtained by LSCM 

where the deposited layer is Al-6061. 3-D surface topography of the tool surface 

at the cutting edge for low speed (120 ft/min) and cutting time of 60 sec is shown 

in Figure 3.10(a).  The built-up edge formation and its shape are also easily 

identified for low speed cutting of Al-6061 as shown in that figure. The built-up 

edge formation has a thickness value of 45-65 μm. The sticking areas level off at 

25-30 μm, whereas the sliding areas show a thickness value of 15-20 μm. Similar 

behavior was observed with moderate and high cutting speeds, with the sticking 

and sliding zones having 25 μm and 15 μm thickness values, respectively for 

moderate cutting speed. The thickness values are 20-25 μm. in sticking region, 

and 15 μm in sliding region for high cutting speed (Figure 3.10(b)-(c)). The 

thickness values of corresponding areas for different cutting speeds cutting times 

and materials are summarized in Table 3.2. 

Material Speed Tool Chip Contact Explanation 

 (m/min) 

Built-Up 

(μm) 

Sticking 

(μm)  

Sliding 

(μm)   

AL-2024 

120 245 55-70 20 Large Built-Up 

180 115-135 25-50 20 Moderate Built-Up 

240 45-65 25-35 15-20 Low Built-Up 

AL-6061 

120 45-65 25-30 15-20 Large Built-Up 

180 45-55 25 15 Moderate Built-Up 

240 30-45 20-25 15 Low  Built-Up 

 

Table 3.2. Results of LSCM imaging 
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 The low speed cutting is very prone to built-up edge formation. As the 

cutting speed increases, the built-up edge formation decreases, which is as 

expected since there is not sufficient time for the chip to stick on a previously 

adhered surface when the cutting velocity is high. Moreover, with the increase in 

cutting speed, the compressive cutting forces decrease. Also, the high speed chip 

caries away the built-up layer. However, since the difference can not be obtained 

in a backscattered image in terms of topology, it is impossible to distinguish the 

sticking areas from the built-up edge areas. Therefore the samples further 

investigated by LSCM.  

The areas of sticking, sliding and built-up edge can easily be identified 

since LSCM gives the surface points in terms of its relative height with respect to 

the reference surface, i.e., tool surface. If the surface profiles are investigated 

carefully, it can be seen that the built-up edge formation of the two materials are 

different. At low speed, built-up edge of Al-2024 has a thickness value of 245 

μm, whereas Al-6061 has the peak value of 65 μm. Similar characteristic is 

observed for the moderate and high speed cuts. However, the difference between 

the peak values of built-ups for both materials is decreased at high speeds. The 

same phenomenon can also be seen in sticking zones, but the difference is not as 

large as it is in the built-up region. This means that Al-6061 and Al-2024 have 

tendency to adhere to the tool surface, and this characteristics is dependent on 

cutting parameters. This conclusion can also be obtained also when the pattern of 

each different zone is investigated for the two materials.  
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 3-D surface topography visualization, by itself, is satisfactory to 

distinguish the sticking area and built-up edge. All the 3-D pictures show built-up 

edge as high intensity colors compared to the sticking area. In that respect, LSCM 

has been found to be a promising tool to investigate the tool chip interface. 

 

SEM Backscattering 

   

 SEM images serve further to identify the metallographic analysis of 

contact zones. The tool-chip contact area is divided into three regions: a) primary 

sticking zone, close to the edge, b) sliding zone, and c) secondary sticking zone at 

the rear end of the contact, as shown in Figure 3.11. 

 

Figure 3.11. Backscattered image of tool-chip contact area, showing different 

frictional conditions 

 

When modeling interfacial frictional conditions at the tool-chip contact 

area, it is important to consider the changes in the structure and physical 

properties of workpiece material. The deposits on the cutting tools were further 
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analyzed by SEM backscattering tool to get the compositional differences at 

different locations. Al-2024 is an aluminum-copper alloy and its composition is: 

Si 0.50%, Fe 0.50%, Cu 4.90%, Mn 0.90%, Mg 1.50%, Cr 0.10%, Zn 0.25%, Ti 

0.15%. AL2024 is a soft material, but it gains its strength mainly from the 

presence of fine hard precipitates, which obstructs the dislocation in the material. 

Heat treatment and quenching of the alloy forms an unstable supersaturated solid 

solution and prevents the formation of large precipitates in it. These alloys are 

then aged at elevated temperatures, allowing the formation of fine precipitates in 

the alloy to impart strength to the material [48, 49].  CuAl2 and Mg2Si precipitates 

formed during age hardening are mainly responsible for the increase in strength of 

all Al-2024. The built-up on the tool rake face shows two distinct shades of grey 

of sticking work-material. The front end of the sticking material is dark grey and 

the later part is in lighter shade in the backscatter image, indicating a higher 

molecular weight as seen in Figure 3.12.  

The chemical composition of front and back part of the built-up areas is 

illustrated in Figure 3.12(a) and (b), respectively. When the chemical composition 

is analyzed, the secondary sticking zone shows a high concentration of copper 

(35.73 %) in weight (Figure 3.12(b)); whereas, the primary sticking zone has a 

copper concentration of only 4.41 % in weight (Figure 3.12(a)). After passing the 

plastic deformation zone, aluminum acts like a fluid. It carries the alloying 

elements inside the matrix which have higher melting points. It is speculated that 

as the chip flows on the tool surface, the chip loses heat and its temperature drops, 
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turning the fluidic metal into a solid, open to oxidation and prone to sticking with 

its alloying elements. Therefore, the copper concentration is higher than that was 

observed at the tool edge. 
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Figure 3.13. Elemental scan and chemical composition of sticking areas:  

(a) Primary sticking zone, (b) Secondary sticking zone 

 

Nano-indentation Test 

 

Nano-indentation tests were performed after the cutting experiments on 

the Al-6061 workmaterial adhered on the tool surface. The surface flatness plays 
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an important role in indentations. Finding a flat spot is the key element to obtain 

satisfactory results in indentation experiments. The surface of the built-up layer 

was searched for flat areas, and two indentations were performed. The indenter 

type was a Barkovic indenter. The depth of indentations was kept at 1 μm range. 

The results of the indentation tests are shown in Table 3.3. 

 The elastic modulus and surface hardness were determined at those two 

spots. The elastic modulus values at the surface are close to each other and to the 

bulk elastic modulus value; whereas, hardness values differ. This is an indication 

that the hardness profile differs on the surface and there is no evidence between 

hardness and shear stress. It is speculated in reference [47] that there is a 

relationship between hardness and shear stress values in a plastically deformed 

material. However, this initiated study failed since it did not give the relationship 

between the shear stress and hardness value over the tool-chip interface.  

Test # E 

Average  

GPa 

H 

Average  

GPa 

Modulus 

Unload 

GPa 

Hardness 

Unload 

GPa 

Drift 

Correction 

nm/s 

1 64.407 1.374 79.989 1.372 0.122 

2 71.109 1.956 105.012 2.405 0.108 

Mean 52.128 1.184 104.804 2.175 0.108 

Std. Dev. 27.278 0.883 24.711 0.716 0.015 

% COV 52.33 74.64 23.58 32.94 13.94 

 

Table 3.3. Elastic modulus and hardness values of Al-6061 at the tool-chip 

interface 
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CHAPTER 4 

MAIN EXPERIMENTS AND DATA ANALYSIS 

 

The results of preliminary experiments lead us to further investigate the 

cutting process at the microscopic level. Post-mortem experiments were 

conducted and analyzed by the feasible methods described in the previous section. 

These experiments were designed and conducted with the following variables: 

Control Variables:  

 Cutting Speed (m/min) : 110, 225, 335, 470 

 Feed rate (mm/rev): 0.071, 0.198, 0.325 

 Depth of Cut (mm): 0.51, 1.27, 2.03, 2.79 

 Material: Al-2024, Al-6061 

Response Variables:  

 Cutting Forces (N) 

 Tool-Chip Contact Area (SEM Images) 

Fixed Variables: 

 Cutting Tool 

 Auxiliary Cutting Conditions (time, dry cut) 

A total of 96 experiments were performed for further analysis. Cutting 

forces, contact surface area values and material composition of deposited layers 

on contact areas were compared with respect to uncut chip areas (Auc) and d/f 

ratio. Especially d/f ratio is a non-dimensional variable that combines depth of cut 
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and feed rate as a control variable. The following table shows the variation of 

uncut chip area and d/f ratio for the experiments performed in this study.  

     

Depth of 

Cut (mm
2
)   

Feed rate (mm/rev) 

0.071 0.198 0.305 

0.51 
Auc 0.0361 0.1006 0.1548 

d/f 7.1429 2.5641 1.6667 

1.27 
Auc 0.0903 0.2516 0.3871 

d/f 17.8571 6.4103 4.1667 

2.03 
Auc 0.1445 0.4026 0.6194 

d/f 28.5714 10.2564 6.6667 

2.79 
Auc 0.1987 0.5535 0.8516 

d/f 39.2857 14.1026 9.1667 

 

Table 4.1. Uncut cheap area and d/f ratio for the depth of cut and feed rates used 

in the experiments 

  

In the methodology of experiment, cutting forces were measured during 

the experiments continuously and tool-chip contact areas on the cutting tools were 

characterized by SEM methods after the experiments.  SEM image analysis was 

conducted for three purposes: 

 SEM images were helpful in visualizing the deposits on the tool 

surface which defines sticking and sliding zones and even identifying 

built-up edge formation.  
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 SEM images were further analyzed by the image analysis tool, as 

explained earlier. Numerical values of sticking and sliding area on the 

cutting tool surface were determined by image processing technique. 

The end result is numerical area values in mm
2
 or in

2
. 

 Additionally, the deposits on the cutting tools were analyzed by SEM 

backscattering technique to identify and quantify the compositional 

differences. The elemental mapping was constructed based on weight 

percentage. 

 

SEM Image Analysis 

 

Tool Chip Contact Area Quantification 

 

SEM images obtained after cutting experiments show how the cutting 

parameters effect the frictional contact zone formation. Since the tool surface has 

a finite surface roughness value and lay, the chip underneath surface fills the tool 

surface irregularities first. This was observed as continuous dark lines on the 

sliding zone and disregarded as sticking formation. The original SEM images of 

the contact zone for each cutting condition are shown in Appendix A. The noise 

data in SEM images were eliminated by manual processing after careful 

investigation of the chip contact zones.  As a result, modified chip contact area 

images were obtained.  
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AL-2024 Experiments 

 

Figure 4.1. Modified SEM images of tool-chip contact area for cutting 

experiments of AL-2024 at 110 m/min, different feed rates and depths of cut 
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Figure 4.2. Modified SEM images of tool-chip contact area for cutting 

experiments of AL-2024 at 225 m/min, different feed rates and depths of cut 
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Figure 4.3. Modified SEM images of tool-chip contact area for cutting 

experiments of AL-2024 at 335 m/min, different feed rates and depths of cut 
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Figure 4.4. Modified SEM images of tool-chip contact area for cutting 

experiments of AL-2024 at 470 m/min, different feed rates and depths of cut 
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Figures 4.1- 4.4 represent the modified images for Al-2024. According to 

these figures, the tool-chip contact area show a dynamic behavior at different 

cutting conditions. However, one obvious conclusion is the formation of different 

interfacial contact zones; namely primary sticking zone, close to edge; sliding 

zone following the primary sticking zone, and secondary sticking zone at the rear 

end of the contact.  

Depth of 

cut (mm) Zone 

Feed rate (mm/rev) 

0.071 0.198 0.305 

0.51 

Prim. Sticking 0.2727 0.3155 0.2990 

Sliding 0 0.0097 0.1444 

Sec. Sticking 0 0 0.0716 

1.27 

Prim. Sticking 0.5737 0.4903 0.5050 

Sliding 0 0.2021 0.3681 

Sec. Sticking 0 0.0464 0.1280 

2.03 

Prim. Sticking 0.9026 0.6615 0.6520 

Sliding 0 0.2960 0.6103 

Sec. Sticking 0 0.1324 0.1930 

2.79 

Prim. Sticking 1.1326 0.8654 0.8179 

Sliding 0 0.3950 0.7900 

Sec. Sticking 0 0.2847 0.2988 

 

Table 4.2. Primary sticking, sliding and secondary sticking area values for Al-

2024 at 110 m/min 

 

Analysis of the modified SEM images of Al-2024 revealed an interesting 

pattern in the magnitude and evolution of the frictional contact boundaries. 
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Numerical values of each contact zone is provided in Table 4.2 and shown in 

Figure 4.5. At low cutting speed (110 m/min), primary sticking zone has the 

largest magnitude. 

Frictional Contact Areas vs d/f (110 m/min) 
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Figure 4.5. Frictional contact areas vs d/f for Al-2024 at 110 m/min  

 

Furthermore, there is only sticking for low feed rate irrespective of depth 

of cut. This zone is mainly built-up layer because of low feed rate, depth of cut, 

and low speed.  As the feed rate increases, sliding is observed to emerge and 

enlarge in magnitude. At deeper cuts and higher feed rates, secondary sticking 

zone is observed as a narrow band.  

The chemical composition of material layer deposited on the preliminary 

and secondary sticking zones at 110 m/min cutting speed is given in Figure 4.6. 

This data supports the SEM images and different chemical composition of 

sticking zones on the contact area. In the primary sticking zone, sticking layer 

composition is very similar to chemical content of Al-2024 at room temperature. 
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However, the chemical composition changes on the secondary sticking zone. 

Copper content increases to approximately 48% and aluminum content decreases 

to 50% especially at high federates and depth of cuts.  
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Figure 4.6. Chemical composition of primary and secondary sticking zones for 

Al-2024 at 110 m/min  

 

 When the cutting speed increases (225 m/min), secondary sticking area 

starts to develop and enlarge with the increase in feed rate and depth of cut. The 

built-up layer spread seen in the primary sticking zone decreases when compared 
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to the results of low cutting speed experiments. This change can be seen in Figure 

4.7 and noted by comparing the area of each zone as tabulated in Table 4.3 with 

that of low cutting speed experiments. The chemical composition of material layer 

deposited on the primary and secondary sticking zones for 225 m/min cutting 

speed is given in Figure 4.8. The elemental analysis in the primary sticking zone 

is the same as it was in the low cutting speed. The chemical composition of 

adhesion layer in the preliminary sticking zone is observed as 93.5±1 % Al, 

4.5±0.5% Cu, 1.0±0.1 Mn and 1.0±0.1 other elements, which is typical for Al-

2024 material. 

Depth of 

cut (mm) Zone 

Feed rate (mm/rev) 

0.071 0.198 0.305 

0.51 

Prim. Sticking 0.0673 0.0696 0.1301 

Sliding 0.0191 0.1081 0.1164 

Sec. Sticking 0.0305 0.1670 0.1982 

1.27 

Prim. Sticking 0.1576 0.1523 0.2113 

Sliding 0.1047 0.2404 0.2559 

Sec. Sticking 0.1525 0.4159 0.4322 

2.03 

Prim. Sticking 0.2763 0.2572 0.3419 

Sliding 0.1573 0.3947 0.3832 

Sec. Sticking 0.2981 0.7200 0.7717 

2.79 

Prim. Sticking 0.4739 0.4618 0.4634 

Sliding 0.2098 0.5121 0.4844 

Sec. Sticking 0.4110 0.8733 1.1365 

 

Table 4.3. Primary sticking, sliding and secondary sticking area values for Al-

2024 at 225 m/min 
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Frictional Contact Areas vs d/f (225 m/min) 
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Figure 4.7. Frictional contact areas vs d/f for Al-2024 at 235 m/min 
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Figure 4.8. Chemical composition of primary and secondary sticking zones for 

Al-2024 at 225 m/min  
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A significant difference is observed in the secondary sticking zone. At low 

feed rate and small depth of cut, the base composition of Al-2024 does not 

change. With an increasing federate and depth of cut, aluminum content decreases 

to approximately 50% and copper content increases to approximately 49%, 

drastically. This is the effect of thermal softening with increasing speed. The 

original elemental composition is only observed for the minimum uncut chip area 

and feed rate.  

 

Depth of 

cut (mm) Zone 

Feed rate (mm/rev) 

0.071 0.198 0.305 

0.51 

Prim. Sticking 0.0451 0.0800 0.1044 

Sliding 0.0364 0.1131 0.1319 

Sec. Sticking 0.0672 0.1766 0.1895 

1.27 

Prim. Sticking 0.0802 0.1357 0.1759 

Sliding 0.1330 0.2530 0.3485 

Sec. Sticking 0.1178 0.2544 0.3225 

2.03 

Prim. Sticking 0.1568 0.1723 0.2210 

Sliding 0.2207 0.4028 0.5641 

Sec. Sticking 0.1253 0.5459 0.5109 

2.79 

Prim. Sticking 0.2494 0.2737 0.3106 

Sliding 0.2770 0.4715 0.6655 

Sec. Sticking 0.1841 0.7307 0.7757 

 

Table 4.4. Primary sticking, sliding and secondary sticking area values for Al-

2024 at 335 m/min 
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With a further increase in cutting speed 335 (m/min), primary sticking 

zone decreased slightly; the sliding zone moved to the front and secondary 

sticking zone increased. The modified SEM images shown in Figure 4.3 depict 

this change. Table 4.4 and Figure 4.8 show the difference in zone formation for 

this cutting speed.  

 

Frictional Contact Areas vs d/f (335 m/min) 

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20 25 30 35 40d/f 

A
re

a
 (

m
m

^
2
)

Primary Sticking Sliding Secondary Sticking
 

Figure 4.9.  Frictional contact areas vs d/f for Al-2024 at 335 m/min  

 

The elemental composition of the primary cutting zone does not change at 

335 m/min cutting experiments. The same observation with cutting speeds of 110 

m/min and 225 m/min are valid at this speed for the primary sticking zone. 

Secondary sticking zone, on the other hand exhibits a different result. Copper 

content drops to 34-36%, manganese content increases to 3.5%, and the 

composition of other elements increases slightly. This data is shown in Figure 4.9. 
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Chemical Composition vs Uncut Chip Area

(Preliminary Sticking Zone -335 m/min)
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Chemical Composition vs Uncut Chip Area

(Secondary Cutting Zone - 335 m/min) 
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Figure 4.10. Chemical composition of primary and secondary sticking zones for 

Al-2024 at 335 m/min 

 

Cutting experiments at 470 m/min show similar results as 335 m/min 

experiments. The area of preliminary zone decreases slightly, moving the sliding 

zone further to the cutting edge and secondary sticking zone further increases, as 

can be seen from Table 4.5 and Figure 4.10. The preliminary sticking zone 

chemical composition does not change and agrees with that of lower cutting speed 

experiments. However, the copper content in the secondary sticking zone further 
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decreases to 34% and manganese content increases to 4.3%. Figure 4.11 shows 

the chemical composition change of sticking zones at highest cutting speed 

Depth of 

cut (mm) Zone 

Feed rate (mm/rev) 

0.071 0.198 0.305 

0.51 

Prim. Sticking 0.0543 0.0484 0.0634 

Sliding 0.0444 0.0998 0.1553 

Sec. Sticking 0.1118 0.1880 0.2371 

1.27 

Prim. Sticking 0.1059 0.1150 0.1219 

Sliding 0.1284 0.2605 0.2949 

Sec. Sticking 0.1996 0.4329 0.4678 

2.03 

Prim. Sticking 0.1660 0.1859 0.2006 

Sliding 0.1929 0.3953 0.5666 

Sec. Sticking 0.3069 0.7380 0.6254 

2.79 

Prim. Sticking 0.2436 0.2872 0.3033 

Sliding 0.2593 0.5122 0.7557 

Sec. Sticking 0.3943 0.8626 0.7567 

 

Table 4.5. Primary sticking, sliding and secondary sticking area values for Al-

2024 at 470 m/min 

 

Chemical composition results show that with increasing speed the energy 

dissipated to the tool increases and the temperature on the contact zone increases. 

The increase in contact zone changes the phase structure of the aluminum. As 

known, aluminum forms hard and brittle metallic compounds with Cu, Mg and Fe 

into Al2Cu, Al3Mg2, Al3Fe. The phase diagram of aluminum alloys indicates that  
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Frictional Contact Areas vs d/f (470 m/min) 
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Figure  4.11. Frictional contact areas vs f/d for Al-2024 at 470 m/min  

Chemical Composition vs Uncut Chip Area

(Preliminary Sticking Zone - 470 m/min)
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Chemical Composition vs Uncut Chip Area

(Secondary Sticking Zone - 470 m/min)
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Figure 4.12. Chemical composition of primary and secondary sticking zones for 

Al-2024 at 470 m/min  
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microstructure of Al-2024 at room temperature or low cutting speeds consist of a 

mild, deformable alfa-solid solution. However, at elevated temperatures 

corresponding to high cutting speeds, depth of cut and feed rates, the 

microstructure changes; metallic compounds formed by aluminum and its 

alloying elements. These are the general observations from the cutting 

experiments of Al-2024. 

 

AL-6061 Experiments 

 

Modified SEM images for the experiments conducted with Al-6061 can be 

seen in Figures 4.12 - 4.15. In order to be consistent, the feed rate and depth of cut 

was kept as constant control variables, resulting in same uncut chip area and d/f 

ratio given in Table 4.1.  

Cutting speeds were adjusted such that the experimental results can be 

compared with the results of experiments with Al-2024. Analysis of the modified 

SEM images of Al-6061 shows a slightly different evolution of sticking and 

sliding zone pattern. At a low cutting speed (120 m/min), there is no secondary 

sticking zone observed. Also, for low feed rates, everything occurs on the primary 

sticking zone; even no sliding zone is the characteristics of this cutting condition. 

Built-up edge is more dominant in Al-6061 for low cutting speed.  
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Figure 4.13. Modified SEM images of tool-chip contact area for cutting 

experiments of AL-6061 at 120 m/min, different feed rates and depths of cuts. 
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Figure 4.14. Modified SEM images of tool-chip contact area for cutting 

experiments of AL-6061 at 230 m/min, different feed rates and depths of cuts. 
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Figure 4.15. Modified SEM images of tool-chip contact area for cutting 

experiments of AL-6061 at 345 m/min, different feed rates and depths of cut 
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Figure 4.16. Modified SEM images of tool-chip contact area for cutting 

experiments of AL-6061 at 490 m/min, different feed rates and depths of cut 
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Depth of 

cut (mm) Zone 

Feed rate (mm/rev) 

0.071 0.198 0.305 

0.51 

Prim. Sticking 0.3272 0.3155 0.3161 

Sliding 0 0 0.1427 

Sec. Sticking 0 0 0 

1.27 

Prim. Sticking 0.6139 0.5736 0.5352 

Sliding 0 0.1860 0.3820 

Sec. Sticking 0 0 0 

2.03 

Prim. Sticking 0.9657 0.7607 0.8019 

Sliding 0 0.2618 0.6067 

Sec. Sticking 0 0 0 

2.79 

Prim. Sticking 1.2798 0.9606 0.8833 

Sliding 0 0.3397 0.9023 

Sec. Sticking 0 0 0 

 

Table 4.6.  Primary sticking, sliding and secondary sticking area values for Al-

6061 at 120 m/min 

 

Numerical values of each contact zone is given in Table 4.6 and shown in 

Figure 4.16. Since there is no secondary sticking zone built in this cutting 

condition, chemical composition of material layer deposited on the primary 

sticking zone is given in Figure 4.17. This data shows an aluminum content of 

97%, magnesium content of 1.6% and silicon content of 0.5%, which is typical 

composition of Al-6061 at room temperature. 
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Frictional Contact Areas vs d/f (120 m/min)
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Figure 4.17. Frictional contact areas vs d/f for Al-6061 at 120 m/min  
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Figure 4.18. Chemical composition of primary sticking zone for Al-6061 at 120 

m/min  

 

When the cutting speed increases (230 m/min), secondary sticking area 

starts to develop.  In spite of small depth of cut and low feed rate, there is still no 

secondary sticking zone observed. The built-up layer spread seen in the primary 

sticking zone decreases compared to low cutting speed experiment results. This 
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change can be identified by comparing the area of each zone as tabulated in Table 

4.7 with the low cutting speed experiment. It is also shown graphically in Figure 

4.19.  It is concluded that 230 m/min is the transition speed from the built-up edge 

formation to normal frictional cutting conditions.  

 

Depth of 

cut (mm) Zone 

Feed rate (mm/rev) 

0.071 0.198 0.305 

0.51 

Prim. Sticking 0.1317 0.0876 0.1457 

Sliding 0 0.1330 0.1665 

Sec. Sticking 0 0 0 

1.27 

Prim. Sticking 0.2080 0.1782 0.3127 

Sliding 0.2115 0.3294 0.3019 

Sec. Sticking 0 0.0632 0.5748 

2.03 

Prim. Sticking 0.4035 0.2958 0.3693 

Sliding 0.2535 0.4973 0.4637 

Sec. Sticking 0 0.5966 0.8643 

2.79 

Prim. Sticking 0.5166 0.5265 0.5330 

Sliding 0.2959 0.6196 0.5861 

Sec. Sticking 0 0.7498 1.2843 

 

Table 4.7. Primary sticking, sliding and secondary sticking area values for Al-

6061 at 230 m/min 

 

The chemical composition of material layer deposited on the primary and 

secondary sticking zones for 230 m/min cutting speed is given in Figure 4.19. 
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Frictional Contact Areas vs d/f (235 m/min)
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Figure 4.19. Frictional contact areas vs d/f for Al-6061 at 230 m/min  

Chemical Composition vs Uncut Chip Area
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Chemical Composition vs Uncut Chip Area

(Secondary Sticking Zone - 230 m/min)
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Figure 4.20. Chemical composition of primary and secondary sticking zones for 

Al-6061 at 230 m/min  
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The elemental analysis in the primary sticking zone is same as it is in the 

low cutting speed. The chemical composition of adhesion layer in the primary 

sticking zone is observed approximately as 97.5% Al, 1.6% Mg and 0.4% Si, 

which is typical for Al-6061 material.  A considerable difference is observed in 

the secondary sticking zone. With increasing federate and depth of cut, the 

aluminum content decreases to approximately 59% and iron content increases to 

approximately 24%, and silicon content increases to 10%. As it was observed in 

Al-2024 cutting experiments, this is the effect of thermal softening with 

increasing speed.  

With further increase in cutting speed 345 m/min, primary sticking zone 

decreases slightly, sliding zone moves to the front and secondary sticking zone 

increases, as was observed for Al-2024, too. Modified SEM images shown in 

Figure 4.15 illustrate this change. Area values show the difference in zone 

formation also. Area values at 345 m/min cutting speed are tabulated in Table 4.8 

and shown in Figure 4.20. 

The primary cutting zone elemental composition does not change at 345 

m/min cutting experiments. This is in agreement with the experiments at cutting 

speeds of 120 m/min and 230 m/min. Secondary sticking zone, on the other hand 

exhibits a different result. Aluminum content drops to 60-65%, iron content 

increases to 20-25 %, and silicon remains same as 10%, and composition of other 

alloying elements increases. This data is shown in Figure 4.21.  
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Depth of 

cut (mm) Zone 

Feed rate (mm/rev) 

0.071 0.198 0.325 

0.51 

Prim. Sticking 0.0686 0.1040 0.1461 

Sliding 0.0949 0.1319 0.1935 

Sec. Sticking 0 0.1801 0 

1.27 

Prim. Sticking 0.1034 0.1887 0.2498 

Sliding 0.1626 0.2615 0.3787 

Sec. Sticking 0 0.4100 0.3645 

2.03 

Prim. Sticking 0.2054 0.2154 0.3160 

Sliding 0.2396 0.3919 0.5426 

Sec. Sticking 0 0.5716 0.5184 

2.79 

Prim. Sticking 0.3367 0.3667 0.4255 

Sliding 0.2988 0.4675 0.6550 

Sec. Sticking 0 0.72478 0.8006 

 

Table 4.8. Primary sticking, sliding and secondary sticking area values for Al-

6061 at 345 m/min 
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Figure 4.21.  Frictional contact areas vs d/f for Al-6061 at 345 m/min 
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Chemical Composition vs Uncut Chip Area
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Chemical Composition vs Uncut Chip Area

(Secondary Sticking Zone - 345 m/min)
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Figure 4.22. Chemical composition of primary and secondary sticking zones for 

Al-6061 at 345 m/min  

 

Cutting experiments at 490 m/min show similar results as experiments at 

335 m/min. The area of primary zone decreases slightly, moving the sliding zone 

further to the cutting edge, and the secondary sticking zone further increases. Still 

no secondary sticking zone is observed for low feed rates; even the cutting speed 

is high. The results of 490 m/min experiments are tabulated in Table 4.9 and 

shown in Figure 4.22. The primary sticking zone chemical composition does not 
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change and is in agreement with the composition found in lower cutting speed 

experiments. For the secondary sticking zone, aluminum content is 97% for the 

low feed rate and decreases to 60% at higher feed rate.  Iron content is 25%, and 

silicon is 10%, with other alloying elements remaining the same as 335 m/min 

cutting experiments results. Although a secondary sticking zone is observed for 

low feed rates, the chemical composition on this area shows that this layer 

behaves like a built-up edge formation for low feed rates. Figure 4.23 shows the 

chemical composition change of sticking zones at the highest cutting speed. 

 

Depth of 

cut (mm) Zone 

Feed rate (mm/rev) 

0.071 0.198 0.325 

0.51 

Prim. Sticking 0.0702 0.1038 0.1153 

Sliding 0.1573 0.1100 0.1219 

Sec. Sticking 0 0.1725 0.2125 

1.27 

Prim. Sticking 0.1331 0.1464 0.1585 

Sliding 0.3193 0.2273 0.2395 

Sec. Sticking 0 0.3849 0.5137 

2.03 

Prim. Sticking 0.1968 0.2510 0.1928 

Sliding 0.4400 0.3044 0.3683 

Sec. Sticking 0 0.5314 0.8744 

2.79 

Prim. Sticking 0.2588 0.2441 0.1809 

Sliding 0.4735 0.4505 0.5089 

Sec. Sticking 0 0.8626 1.1270 

 

Table 4.9. Primary sticking, sliding and secondary sticking area values for Al-

6061 at 490 m/min 
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Frictional Contact Areas vs d/f (490 m/min)
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Figure 4.23. Frictional contact areas vs f/d for Al-6061 at 490 m/min  
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Chemical Composition vs Uncut Chip Area

(Secondary Sticking Zone - 490 m/min)
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Figure 4.24. Chemical composition of primary and secondary sticking zones for 

Al-6061 at 490 m/min  
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 Al-6061 generally has an excess of Mg2Si as a phase constituent. After 

passing the primary shear zone and primary sticking zone, precipitates of Mg2Si 

are observed in the secondary sticking as the chip cools slowly. Also, iron-rich 

phases such as Fe3Si2Al12 are observed giving rise to iron and silicon content on 

the secondary sticking zone.    

No secondary sticking zone formation at low cutting speeds is the main 

difference of Al-6061 material from Al-2024. Also, at high cutting speeds and 

low feed rates, there is no secondary sticking zone in Al-6061. Built-up edge 

formation at low cutting speeds is more problematic when machining Al-6061. 

Al-6061 is rather soft and gummy, and it has a tendency to stick to the cutting tool 

when machining. This is what was observed from the SEM images of deposited 

layers on the cutting tool surface. Al-6061 is more prone to built-up edge 

formation and exhibits better sticking characteristics to the surface of cutting tool. 

Although both Al-2024 and Al-6061 are classified as free-machining aluminum 

alloys, Al-2024 has better machinability rating than Al-6061. 

 

 

Cutting Force Data Analysis 

 

Experiments were carried out on an industry type lathe, shown in Figure 

3.1. During each experiment, cutting forces were measured continuously by a 
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Kistler type piezoelectric dynamometer. The working principles of the 

piezoelectric type force transducers were explained in Chapter 3.  

 Cutting forces acting on the dynamometer are recorded in three mutually 

perpendicular axes as shown in Figure 4.25. 

 

Figure 4.25. Schematic of cutting force axes 

  

Forces acting on the tool are named based on the axes along which they 

act. These forces are described as follows: 

 Fx is the component of cutting force measured along the axial 

direction,  which is parallel to the Lathe axis, and opposite to the feed 

direction 

 Fy is the component of cutting force measured along the radial 

direction, which is perpendicular to the axial direction and acts radially 

outward 
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 Fz is the component of cutting force measured in tangential direction, 

which is perpendicular to both axial and radial directions, and acts 

opposite to the rotation of workpice. 

Due to the nose radius, the chip flow angle was calculated as described in 

[3]. To make the definition easier, the chip flow angle can be redefined with 

respect to the straight cutting edge of the tool. As a result of this definition and 

calculations, the chip flow angle (with respect to the straight cutting edge of the 

tool) was found to be 37.5°. With the help of SEM pictures, the chip flow 

direction was manually measured with a protractor. The measurements were taken 

on several cutting experiments with the same cutting conditions. The results of 

these measurements yielded the chip flow direction as 35°, which is very close to 

the theoretical prediction. 

This result shows that equivalent cutting edge model predicts the variables 

of actual cutting tool accurately. With the same approach the cutting forces can be 

redefined on the equivalent cutting edge. 

Assumptions: 

 Although the tool tip is sharp, plowing forces act on the tool tip 

 The resultant force acting on the chip at the shear plane is equal, opposite 

and collinear to the force acting on the chip at the rake face. 

After the equivalent edge assumption and the geometry of cutting edge are 

defined, the forces measured by the force dynamometer can be transformed to the 

new axes which are perpendicular to the rake face and tangential to the modified 
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side cutting edge and end cutting edge on the rake face. The schematic 

representation of this transformation is given in Figure 4.26. The transformation 

of measured forces to the forces acting normal and tangential to the cutting tool 

can be explained in three steps: 

 

Figure 4.26. Schematic showing force measurement axis, forces acting on the 

tool, and tool geometry 

 

 First Step: When looking from the cutting direction, i.e., z-direction, the 

forces and the tool geometry can be seen as shown in Figure 4.27. Here Fx and Fy 

are the measured forces and FA
’
 and FR

’
 are the forces acting along the plan view 

of side cutting edge and end cutting edge of the modified tool. The modified side 

cutting edge angle is labeled as CS
*
 in the figure. 
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Figure  4.27. Planar view of the cutting tool (xy plane) 

 

Mathematical model for the first transformation is: 

                                               

**'

**'

sincos

sincos

SxSyR

SySxA

ZC

CFCFF

CFCFF

FF







                                (9) 

 Second Step: When looking from modified axial direction (A
’
), the tool 

and forces can be seen as shown in Figure 4.28. Fz is the cutting force acting in C 

direction, which is not perpendicular to the tool rake face. Because of the 

inclination angle of the cutting tool, FR
’
 is not acting on the rake face. This second 

transformation will result in forces FC
’
 and FR

”
, which act perpendicular to the 

rake face and tangential to the rake face along the side cutting edge (R
’’
 direction), 

respectively. 
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Figure 4.28. Planar view of cutting tool when projected in the modified axial 

direction 

 

Mathematical model for the second transformation is: 
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                                     (10) 

 Third step: When looking in the direction of modified radial direction 

(R
”
), the tool and forces can be seen as shown in Figure 4.29. FC

’
 and FA

’
 are the 

two forces on the rake face. They need to be resolved as normal and tangential 

force components on the rake face.  A modified rake face angle is the key element 

in this transformation, which will result in FC
”
 and FA

”
. FC

” 
is the force acting 

perpendicular to rake face, and FA
”
 is the force acting tangentially on the rake face 

along the modified axial direction (A
”
). 
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Figure 4.29. Planar view of cutting tool when projected in the modified radial 

direction 

 

Mathematical model for the third transformation is: 

                                                     

*'*'"
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                                  (11) 

The forces on the rake face are dependent on the geometry of the tool and 

are shown in Figure 4.30 after transformation. These forces create the normal 

compressive stress and shear stress on the rake face.  There are two forces 

responsible for the frictional force on the tool rake face, namely FA
’’
 and FR

’’
. As 

seen from the figure, their resultant force will be the frictional force, which has to 

be in the same direction as the chip flow. The angle β can be defined as the ratio 

of the FR
’’
 to FA

’’
. It is measured from the end cutting edge of the cutting tool. 
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Figure 4.30. Frictional force on the rake face 

 

Figure 4.31. 3-D schematic representation of equivalent cutting tool with actual 

cutting forces 

 

The cutting forces measured during experiments were transferred to the 

normal and shear components on the tool rake face.  
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Al-2024 
110 m/min 

(400 rpm) 

225 m/min 

(558 rpm) 

335 m/min 

(765 rpm) 

470 m/min 

(1350 rpm) 

d / f Fn (N) Ff (N) Fn (N) Ff (N) Fn (N) Ff (N) Fn (N) Ff (N) 

1.667 168 142 159 106 133 84 136 75 

2.564 122 108 116 83 114 77 105 59 

4.167 401 298 335 194 352 175 318 157 

6.410 282 233 246 159 250 139 264 137 

6.667 619 447 567 319 568 276 493 238 

7.143 57 67 51 48 52 45 45 38 

9.167 848 613 749 405 706 343 660 317 

10.256 438 363 414 266 412 224 384 198 

14.103 590 507 545 348 524 292 504 271 

17.857 131 142 112 101 109 85 114 86 

28.571 202 221 189 172 180 140 168 124 

39.286 274 295 250 226 231 181 220 169 

 

Table 4.10. Normal and frictional forces on the cutting tool for Al-2024 at 

different cutting speeds, feed rate and depth of cut 

 

Normal force (Fn) is the force responsible for the main contributor to the 

cutting process and frictional force (Ff) is the frictional force between the chip and 

tool surface. Experimentally measured cutting forces (Fx, Fy, Fz), transformed 

cutting forces on the tool (Fr, Ft, Fa)  and the normal and shear force on the tool 
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(Fn, Ff) are tabulated in Appendix B for Al-2024 and Al-6061. The measured 

forces are recorded in US customery unit system as poundforce (lb-f) and 

converted to SI Unit system as Newton (N). Tables 4.10  and 4.11 summarizes the 

numerical values of the normal and frictional forces on the cutting tool for Al-

2024 and Al-6061 experiments, respectively 

Al-6061 
120 m/min  

(400 rpm) 

230 m/min  

(558 rpm) 

345 m/min  

(765 rpm) 

490 m/min  

(1350 rpm) 

d / f Fn (N) Ff (N) Fn (N) Ff (N) Fn (N) Ff (N) Fn (N) Ff (N) 

1.667 220 148 196 119 176 89 161 71 

2.564 155 106 142 92 129 76 114 58 

4.167 482 281 412 196 361 143 339 114 

6.410 347 221 301 172 267 135 251 102 

6.667 696 402 604 280 554 217 525 176 

7.143 68 50 66 47 64 46 57 39 

9.167 972 568 837 390 756 287 740 257 

10.256 511 327 449 255 408 202 389 157 

14.103 732 468 619 347 546 266 521 218 

17.857 158 110 143 100 130 91 125 81 

28.571 237 165 222 161 202 142 194 125 

39.286 335 236 294 210 279 196 258 169 

 

Table 4.11. Normal and frictional forces on the cutting tool for Al-6061 at 

different cutting speeds, feed rate and depth of cut 
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Furthermore the cutting force vs (d/f ) is graphed and some interesting 

conclusions are drawn. (d/f) value is a dimensionless quantity and represents the 

experimental control variables well. 
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Figure 4.32. Normal and frictional force vs d/f for Al-2024 at 110 m/min 
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Figure 4.33. Normal and frictional force vs d/f for Al-2024 at 225 m/min 
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Figure 4.34. Normal and frictional force vs d/f for Al-2024 at 335 m/min 
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Figure 4.35. Normal and frictional force vs d/f for Al-2024 at 470 m/min 

 

After careful investigation of these graphs following conclusions were 

made: 

 As the cutting speed increases, the cutting forces decrease 

 Effect of feed rate is more dominant than that of depth of cut   
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 For the same feed rate, cutting forces increase linearly with depth of 

cut 

 For low feed rate, normal and frictional force values are almost equal 

to each other. Normal force is larger than frictional force for higher 

feed rate values irrespective of depth of cut 
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Figure 4.36. Normal and frictional force vs d/f for Al-6061 at 120 m/min 
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Figure 4.37. Normal and frictional force vs d/f for Al-6061 at 230 m/min 
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Figure 4.38. Normal and frictional force vs d/f for Al-6061 at 345 m/min 
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Figure 4.39. Normal and frictional force vs d/f for Al-6061 at 490 m/min 

  

 The same observations are valid for Al-6061 workpiece material. 

However, we can make some conclusions between two materials by comparing 

the corresponding graphs for the same cutting speeds. Cutting speeds show a 

slight difference between Al-2024 and Al-6061. However, this difference is 



 101 

negligible and cannot be accounted for the force measurement differences 

between these two materials.     

 Normal force measurements are larger for Al-6061 compared to Al-

2024 for all cutting speeds and feed rates 

 Opposite is true for shear force measurements: Al-2024 show higher 

frictional forces than Al-6061.   

 

Plowing Force Determination 

 

The shape of uncut chip cross section is not rectangular when machining 

with a finite tool radius. One important aspect of this tool geometry is the plowing 

force. As the tool edge engages into the workpiece material, the force acting on 

the tool cutting edge forms a portion of the cutting force. This force acts on the 

tool edge and cannot be neglected. This is the normal plowing force, Fpn. 

Due to high stresses acting very near to cutting edge, deformation of the 

tool material may occur in this region. This deformation will cause contact 

between tool and new workpiece surface over a small area of the tool flank. 

Cutting with sharp edge tools, a frictional force component might occur due to 

this action. This force is called frictional plowing force, Fpf. Plowing forces acting 

on the tool edge is shown in Figure 4.40. 

However, the force acting on the tool edge and the force on the tool flank 

do not contribute to chip removal, and these forces are called the plowing forces.  
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Existence of plowing forces in our cutting experiments can be determined by 

extrapolation of the cutting force data. This approach relies on the nonexistence of 

cutting forces if the uncut chip area becomes zero. In other words, there will not 

be any forces if the tool is not engaged with the workpiece. Cutting force versus 

d/f graphs show that the forces are proportional with depth of cut, and as the depth 

of cut approaches to zero, cutting forces are not zero.   

 

Figure 4.40. Plowing force and contact regions on a cutting tool 

 

The finite value of these forces can be found by extrapolation of 

experimental relationship between the cutting force data and depth of cut or d/f. 

The existence and determination of plowing forces can be seen in Figure 4.41 as 

an example, for Al-2024 at 470 m/min. Normal and frictional forces on the 

cutting tool were graphed for low feed rate (0.071 mm/rev) and for four depths of 

cut. A line is fitted to the data points. The intercept of the fitted line with zero 
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depth of cut gives the so called “plowing force” for both normal and frictional 

forces. Plowing forces obtained by linear curve fitting method is shown in Tables 

4.12 and 4.13 for Al-2024 and Al-6061, respectively.  
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Figure 4.41. Graphical determination of plowing force for Al-2024 at 470 m/min 

and low feed rate 

Cutting Speed 

(m/min) 

Plowing 

Forces 

f=0.071 

mm/rev 

f=0.198 

mm/rev 

f=0.305 

mm/rev 

110 
Fpn 15.50 19.84 19.54 

Fpf 9.90 15.46 36.49 

225 
Fpn 4.52 14.89 18.56 

Fpf 5.86 18.12 34.95 

335 
Fpn 10.61 23.19 20.63 

Fpf 12.07 25.02 29.43 

470 
Fpn 11.63 28.60 23.60 

Fpf 11.03 15.04 21.59 

 

Table 4.12. Plowing forces for Al-2024 
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Cutting Speed 

(m/min) 

Plowing 

Forces 

f=0.071 

mm/rev 

f=0.198 

mm/rev 

f=0.305 

mm/rev 

120 
Fpn 9.03 25.46 57.03 

Fpf 7.40 22.77 50.26 

230 
Fpn 16.37 35.41 53.54 

Fpf 10.32 33.12 51.60 

345 
Fpn 13.42 35.73 43.94 

Fpf 10.24 31.70 39.28 

490 
Fpn 12.69 24.37 25.05 

Fpf 9.93 17.81 20.28 

 

Table 4.13 Plowing forces for Al-6061 

 

The plowing forces were subtracted from the measurement data to find the 

main contributing components of cutting forces. 
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Tables 4.14. and 4.15 show the forces contributing only to the cutting and 

material removal after the plowing effect is subtracted. These forces will be 

compared with the forces obtained by the stress model. 
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Al-2024 

110 m/min  

(400 rpm) 

225 m/min  

(558 rpm) 

335 m/min  

(765 rpm) 

470 m/min  

(1350 rpm) 

d / f Fn (N) Ff (N) Fn (N) Ff (N) Fn (N) Ff (N) Fn (N) Ff (N) 

1.667 148 106 141 71 112 54 112 53 

2.564 102 93 101 65 91 52 76 44 

4.167 381 262 316 159 331 146 295 135 

6.410 262 218 231 141 227 114 235 122 

6.667 599 410 548 284 547 247 470 217 

7.143 42 57 46 43 41 33 33 27 

9.167 828 577 731 370 686 313 636 295 

10.256 419 347 399 248 389 199 355 183 

14.103 570 491 530 330 501 267 476 256 

17.857 116 132 108 95 98 73 103 75 

28.571 186 211 184 166 169 128 156 113 

39.286 259 285 246 221 221 169 208 158 

 

Table 4.14. Normal and frictional forces on the cutting tool for Al-2024 at 

different cutting speeds, feed rate and depth of cut - after plowing force effect is 

removed 
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Al-6061 

120 m/min  

(400 rpm) 

230 m/min  

(558 rpm) 

345 m/min  

(765 rpm) 

490 m/min  

(1350 rpm) 

d / f Fn (N) Ff (N) Fn (N) Ff (N) Fn (N) Ff (N) Fn (N) Ff (N) 

1.667 163 97 142 67 132 50 136 51 

2.564 129 84 106 59 93 44 90 40 

4.167 425 231 358 144 317 104 314 94 

6.410 322 198 266 139 231 104 227 84 

6.667 639 352 551 231 511 177 500 156 

7.143 59 43 50 36 50 36 44 29 

9.167 915 518 783 339 710 248 715 237 

10.256 486 304 414 222 372 170 365 139 

14.103 706 445 584 314 510 235 497 200 

17.857 149 103 127 90 117 81 112 71 

28.571 228 158 206 150 189 131 181 115 

39.286 326 229 277 199 266 186 245 159 

 

Table 4.15. Normal and frictional forces on the cutting tool for Al-6061 at 

different cutting speeds, feed rate and depth of cut - after plowing force effect is 

removed 
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CHAPTER 5 

MATHEMATICAL MODEL OF TOOL STRESSES 

 

 There is no evidence on 3-D stress distribution profile in oblique cutting in 

the literature. Stress distribution on the rake face is modeled based on the different 

frictional conditions whose theoretical basis was proven by the experiments. Such 

a stress distribution model can be seen in Figure 5.1. This stress model relies on 

the experimental evidence of [10,17]. According to this model, the average stress 

values on the rake face can be determined by simple averaging method. The 

constant average values can be found by integrating the stress distribution profile 

over predefined zones and normalizing this value to the corresponding area. The 

validation of this model can be done by comparing the theoretically computed 

forces from the stress model with the measured and normalized forces obtained by 

experiments. 

 

 Stress Model 

 

 Without experimentation, it is very difficult to determine the normal and 

shear stress distribution over the rake face. In the literature, there is no proven 

method or model that satisfies the frictional boundary conditions and resembles to 

the exact stress distribution. However, some of the results obtained in the 

literature give good hints about possible stress distribution. These results were 
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presented in Chapter 2. Although the stress distributions show differences with 

respect to tool-workpiece material combination, cutting tool geometry, and 

cutting variables, the model developed by Lee et al. [51] is a satisfactory model. 

In this study stress state on the tool surface is assumed to behave as   shown in 

Figure 5.1.  

 

 

Figure 5.1. Lee’s model for normal and shear stresses [51] 

 

 In this model, there is a leveling of the frictional stress, but the leveling 

does not extend all the way to the tool edge. Instead, the shear stress rises towards 

the tool edge, the extent being varying under different conditions. The normal 

stress is also assumed to exhibit a flattening level at some point of the curve. In 

this model, the high value of normal stress at the cutting edge was attributed to the 

plowing force. Therefore, by eliminating the plowing force on the cutting edge the 
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stress distribution on the tool levels flat. The method of finding the plowing force 

is explained in Chapter 4.  

 Based on the literature review on stress distributions, and tool-chip contact 

zone observations the following model has been proposed. 

 In the near part of cutting edge, sticking is the main frictional interaction 

between tool and chip under high cutting forces and temperatures. Most of the 

time, built-up edge occurs in this zone and cheeses as the cutting speed, feed rate, 

and depth of cut increases. This is called the primary sticking zone. It is followed 

by the sliding zone, where the chip freely flows over the rake face without any 

sticking or shearing. The secondary sticking zone depends on the cutting variables 

such as cutting speed, cutting time, feed rate and geometry of the cutting tool. In 

those regions, the stress distribution is assumed to act like Lee et al. [51] 

proposed. 

 The forces acting on the tool rake face are the shearing force on the 

sticking areas, Fsst, frictional force on the sliding areas, Fssl, and the normal force 

on the total contact area, Fn. These theoretical forces can be mathematically 

modeled from stress-area relationship: 
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where ave  is the average shear yield strength of the chip material,   is the 

average (sliding) friction coefficient between chip and tool on the sliding zone, 

and ave  is the average compressive stress on the different proposed contact 

zones. The constant average values can be found by integrating the stress 

distribution profile over predefined zones and normalizing this value to the 

corresponding area. The validation of this model can be done by comparing the 

theoretically computed forces with the measured forces obtained by the force 

transformation. 

 Depending on the actual contact zone, the model will predict the normal 

and tangential force on the tool surface. If the plowing forces associated from the 

edge effect are removed, the stress state on the tool surface will be further 

simplified as shown in Figure 5.2.   

For the computation of forces from the stress model, the following 

assumptions are made: 

 Flow stress of the material is constant. For Al-2024 it is 374 MPa and 

for Al-6061 it is 300 MPa. These values are the material properties 

listed in the material certification of test materials.  

 Friction between tool and chip is taken as 0.7, as was stated 0.4-0.8 for 

dry cutting of aluminum alloys with tungsten carbide cutting tool. 
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Figure 5.2. Schematic of stress model 

  

Theoretical shear and normal forces on the cutting tool were determined 

from equation 19. Figures 5.3 - 5.6 compare theoretical frictional forces obtained 

from the stress model and experimental frictional forces for Al-2024.  
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Figure 5.3. Comparison of predicted and experimental frictional forces for Al-

2024 at 110 m/min 
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Comparison of Frictional Forces
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Figure 5.4. Comparison of predicted and experimental frictional forces for Al-

2024 at 225 m/min 
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Figure 5.5. Comparison of predicted and experimental frictional forces for Al-

2024 at 335 m/min 
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Comparison of Frictional Forces
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Figure 5.6. Comparison of predicted and experimental frictional forces for Al-

2024 at 470 m/min 

 

 The shear stress model predicts the frictional forces fairly well for all 

cutting speeds. However, the error estimate of the model is less at higher cutting 

speeds and feed rates. For low cutting speed, the shear stress model estimate is 

moderate such that it slightly underpredicts the experiments. However, the model 

still captures the trend of experimental data at low cutting speed.  

Comparison of theoretical normal forces obtained from the stress model 

and experimental normal forces are presented in Figures 5.7 – 5.10 for Al-2024.  

Compared to frictional force prediction, normal force predictions are 

moderately good and agree with the pattern given by the experimental data. 

Similar to shear force prediction, the normal stress model successfully predicts the 

normal forces, especially at higher cutting speeds. At higher feed rates and depths 

of cut, accuracy of the model decreases as was observed in the shear stress model. 
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Comparison of Normal Forces
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Figure 5.7. Comparison of predicted and experimental normal forces for Al-2024 

at 110 m/min 
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Figure 5.8. Comparison of predicted and experimental normal forces for Al-2024 

at 225 m/min 
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Comparison of Normal Forces

(335 m/min)

0

100

200

300

400

500

600

700

800

0 10 20 30 40
d/f

N
o

rm
a
l 
F

o
rc

e
 (

N
)

Fn (exp)

Fn (model)

 

Figure 5.9. Comparison of predicted and experimental normal forces for Al-2024 

at 335 m/min 
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Figure 5.10. Comparison of predicted and experimental normal forces for Al-2024 

at 470 m/min 

 

Applying the same procedure to the results of experiments with Al-6061, 

we can make the following comparisons. Figures 5.11 – 5.18 reveal that the 
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model predictions for both normal and shear forces are in good agreement with 

the experimental data obtained for Al-6061.  
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Figure 5.11. Comparison of predicted and experimental frictional forces for Al-

6061 at 120 m/min 
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Figure 5.12. Comparison of predicted and experimental frictional forces for Al-

6061 at 230 m/min 
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Comparison of Frictional Forces
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Figure 5.13. Comparison of predicted and experimental frictional forces for Al-

6061 at 335 m/min 
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Figure 5.14. Comparison of predicted and experimental frictional forces for Al-

6061 at 490 m/min 

  

The shear stress model predicts frictional forces acting on the tool face 

interestingly well. For high cutting speeds, the model estimates the cutting forces 
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with minimum error, especially for small to moderate depth of cuts. For low 

cutting speeds, the deviation of the model from the experimental data points gets 

slightly larger.  
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Figure 5.15. Comparison of predicted and experimental normal forces for Al-6061 

at 120 m/min 
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Figure 5.16. Comparison of predicted and experimental normal forces for Al-6061 

at 230 m/min 
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Comparison of Normal Forces
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Figure 5.17. Comparison of predicted and experimental normal forces for Al-6061 

at 345 m/min 
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Figure 5.18. Comparison of predicted and experimental normal forces for Al-6061 

at 490 m/min 

As a last comparison, normal forces predicted by the stress model show 

the largest discrepancy. The error of estimate is larger compared to Al-2024 

model estimates.   
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CHAPTER 6 

CONCLUSION 

 

It is well known that the macroscopic Coulombic law of friction is, in 

general, not applicable to the frictional interface conditions in machining because 

of the complex, and mostly unknown contact geometry. This thesis shows a 

detailed study at the microscopic level to gain an insight into this problem. The 

study was concentrated on oblique cutting of aluminum alloys due to the sticking 

characteristics of material. Oblique cutting was chosen to resemble the general 

machining process. The following observations and conclusions were made as a 

result of experimental analysis. 

Experimental analysis showed that near the cutting edge and towards the 

end of tool-chip contact, sticking is the dominant mechanism when cutting of 

aluminum alloys with carbide tools at practical cutting speeds. Following the 

sticking zone near the cutting edge, there exists a sliding zone. These observations 

of the frictional conditions demonstrate the general inadequacy of the 

conventionally accepted frictional models.  

 The tangential resistance forces generated between chip and tool, in 

sliding zone result from interfacial friction. They can be determined from the 

Coulombic law of friction as long as the normal force is known at a particular 

location on the tool chip interface.  
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 Sticking or adhesive friction results if the relative motion takes place 

within the chip material at some distance away from the interface. It is occurring 

as a form of shear of the contact asperities due to the tangential stress. The 

shearing action is observed as a deposited layer on the cutting tool.  

 Usually, both sticking and sliding friction occur simultaneously at the 

tool-chip interface. These physico-chemical processes are dynamic in nature, 

making the interfacial friction undetermined and complex.  

 Sticking can be defined as the strong chemical affinity of contact 

asperities, occurring as bond formation between the outermost layer atoms of 

undersurface of chip and tool surface. The types of intermolecular bonds and 

bond strength during the process are very difficult to determine with the available 

experimental methods. Friction depends on many internal and external 

parameters, such as oxide layer formation, cutting speed, and cutting time. The 

role of each parameter must be properly evaluated.  

 In this study, newer techniques were used to characterize the friction 

boundary conditions. Magnified images of tool chip interface obtained by SEM 

were very useful in identifying different friction zones. This method did not only 

serve to obtain the images, but with the backscattering technique, it also helped 

characterize the chemical composition of deposited layers. Furthermore, a 

computer code was generated to compute the area of the different zones within 

the SEM images. Consequently, the numerical values of sticking and sliding areas 
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and their relative positions were determined precisely. These results built the basis 

of a new friction model.  

Other techniques such as LSCM scans and surface profilometer 

measurements were found to be efficient to visualize and characterize the 3-D 

surface topography. LSCM pictures are particularly useful in identifying the 

sticking area and built-up edge formation.  

In the experiments, two different types of aluminum alloys, Al-2024 and 

Al-6061, were machined under the same cutting conditions with the same cutting 

tool geometry. A total of 96 experiments were carried out at four different cutting 

speeds, three different feed rates, and four different depths of cut. The cutting 

force dynamometer and data acquisition system were very effective in measuring 

and recording cutting forces.  

Experimentally obtained tool surface topography was captured by SEM 

images. Backscattered SEM measurements revealed different chemical 

compositions in the deposited layers. Such results were construed as the evidence 

for the distinct friction zones. As a result of this methodology, it is concluded that 

friction conditions behave differently in three distinct zones: 

1) Primary Sticking Zone: This zone is believed to occur as a result of the 

high normal force created by the edge effect or plowing force. At low cutting 

speeds, feed rates and shallow depths of cut, the primary sticking zone behaves as 

built-up edge. Plastically sheared metal in the primary shear plane contacts the 

tool surface in milliseconds. Material with low melting point tends to adhere to 
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the rake face. However, since the chip continuously moves, the adhesion layer 

shears of from the chip and builds-up. This phenomenon occurs very rapidly, so 

the material cannot find time to oxidize. Therefore, in this zone, material 

composition is very close to the raw aluminum material composition, irrespective 

of the cutting speed. As the cutting force, feed rate, and depth of cut increase, 

built-up edge formation disappears, and a profound sticking zone is observed. 

Experimental evidence showed that primary sticking area and cutting speed are 

inversely proportional. The primary sticking zone was observed in all 

experiments.  

2) Sliding Zone: In this zone, the chip moves freely on the tool without 

any adhesion and shear. SEM images showed very little or no workpiece material 

in this zone. The ones observed were just the residues of the chip that filled the 

tool surface irregularities as a result of finite surface finish of the tool. Since there 

is no seizure in this zone, the conventional friction force model is applicable to 

this area. Except for low cutting speed, low feed rates, and shallow depths of cut, 

the sliding zone was always observed following the primary sticking zone. 

3) Secondary Sticking Zone: Although the normal force is not as high as 

on the primary sticking zone, a secondary sticking zone was observed on the tool 

surface. The existence of this zone depends on the workpiece material, cutting 

speed, feed rate, and depth of cut, among which, cutting speed is the most 

dominant factor. Al-2024 exhibit no secondary sticking zone at low cutting speeds 

(110 m/min) and low feed rate; whereas, Al-6061 never showed secondary 
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sticking zone for all possible cutting speeds and low feed rates. This is a very 

remarkable observation of material effect on the friction evolution in our 

experiments. The secondary sticking zone occurred at moderate and high cutting 

speeds for Al-2024 no matter what the feed rate and depth of cut was. Al-6061 

exhibit a secondary sticking zone at moderate and high cutting speeds and at high 

feed rates. This indicates that the Al-6061 is more prone to formation of built-up 

edge than the Al-2024, which supports the idea of better machinability rating of 

Al-2024 compared to Al-6061. 

A difference in chemical composition on secondary sticking zone and the 

primary sticking zone is another intriguing observation that helped us to identify 

the built-up edge formation in primary and secondary sticking zone. It is a known 

fact that maximum tool temperatures occur at the back of the contact zone close to 

the separation point of chip and tool. Therefore, the chip temperature is higher on 

the secondary sticking zone compared to the primary sticking zone if a secondary 

zone exists. At elevated temperatures, the microstructure of aluminum alloys 

altered, and the metallic compounds formed by aluminum and its alloying 

elements were observed. This is the main reason of difference in chemical 

composition of deposits on seizure zones. Both Al-2024 and Al-6061 showed 

similar microstructural changes with different metallic compound formation.  

Cutting force measurements served as another method to support the 

quantitative verification of the interfacial friction areas. Two types of forces occur 

on the tool-chip interface during cutting: normal forces and frictional forces. High 
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normal and shear forces observed on the primary sticking zone are due to the 

plowing effect of the cutting edge. In order to compare the experimentally 

measured forces with the forces obtained from the stress-friction model, the 

plowing force effect was removed from the cutting forces. 

The proposed stress-friction model predicts the normal and friction force 

according to the frictional boundary conditions and associated stress values. Shear 

and normal stresses on the primary sticking zone and sliding zone are taken as 

constant after the plowing force is refined from the model. The frictional force 

associated in the primary sticking zone is the shear yield strength of the chip 

material. Accordingly, normal stress is taken as the yield strength of the material 

since the material is plastically deformed. This assumption does not take the 

plasticity effect into account. On the sliding zone, the normal stress is taken as the 

yield strength of the material; however, the frictional stress is due to pure sliding 

friction and is dependent on friction coefficient. In the secondary sticking zone, 

both normal and shear stress drops to zero at the chip separation point. Therefore, 

the stress is taken as the average value of the normal and shear stresses acting on 

primary sticking zone, assuming the decrease is linear.  

In the final part of the study, normal and frictional forces predicted by the 

mathematical model were compared with the experimental data. Frictional forces 

are in good quantitative agreement at all cutting speeds for Al-2024. Frictional 

model validation is proved to be releiable at higher cutting speeds and feed rates. 

For low cutting speeds, although the general trend was observed, model 
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underestimates the frictional forces. Similar results were obtained with Al-6061. 

A deviation of model prediction from the experimental data was noted at the low 

cutting speeds.  

Normal forces calculated by the model, and experimentally-measured 

normal forces, exhibit a larger discrepancy. At higher cutting speeds, the model 

predicts the normal forces. This probably happens due to the hardening effect of 

plastically deformed material having a larger flow stress than the yield strength. 

Compared to Al-6061, the normal force prediction is better for Al-2024.  

The difference between model and experimental results can be a result of:  

 Constant material properties assumption throughout the contact zone: This 

is a valid point since even experimental parameters, like cutting speed, 

feed rate and depth of cut might change the plastic flow stress. 

 Friction area computations: Although the method of computation is well 

established and shows a close resemblance with the cutting conditions, 

image processing and analysis rely on the assumptions made in defining 

zones either as primary sticking, sliding and secondary sticking zones, 

especially where the boundaries are difficult to distinguish. 

 Constant friction coefficient assumption and its numeric value used in the 

model. 

 Errors associated with the force measurement. 

 Errors in plowing force determination. 
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 Experimental errors due to difficulty in removing the chip during 

continuous chip formation 

Many of the studies on friction in machining have used orthogonal cutting 

conditions to determine the domains of seizure and sliding as well as shear and 

normal stresses. In this thesis, tool-chip contact area is investigated at microscopic 

level in oblique machining to look beyond the Zorev’s assumption of seizure 

followed by sliding. The model proposed in this study accounts for the 

nonlinearities associated in terms of frictional area determination and 

computations. Built-up edge formation, seizure and sliding vary for different 

cutting parameters, materials used, and cutting geometry. Even same materials 

with different alloying content show different interfacial contacts.  

The proposed model needs to be further investigated for different cutting 

parameters, for different workpiece-cutting tool pairs, and cutting tool geometries 

to be universally accepted.  

In conclusion, an experimental methodology was used to gain insight and 

better understanding about the friction phenomenon and the boundary conditions 

at the tool-chip interface in oblique cutting of aluminum alloys. The SEM 

technique was successfully used to identify and compute different frictional 

conditions precisely. The chemical composition identification of materials on 

different sticking zones proofed the necessity of multiple contact zone models. 

The developed model was accurately predicted the cutting forces for most tested 

conditions.  
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Coupling frictional boundary conditions with the stress model needs to be 

further studied in order to obtain a unified theory that will apply to various 

workpiece-tool combinations irrespective of cutting parameters and tool 

geometry. Mathematical relationships could be better defined to reflect these 

findings.  A comprehensive cost-benefit analysis could be performed to identify 

key factors and lead to automated tool replacement.  Multi-scale modeling of 

friction can also lead to better models for nano- and micro-machining. 
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APPENDIX A 

MATLAB CODE 

 

MATLAB®  Code (Cleaning Code) 

clear 

clc 

[im,map]=imread('T1C1(ML)','bmp'); 

 

% ####### DEFINING REGIONS ######################### 

 

for i=1:1900 

    for j=1:1300 

        if im(i,j) <= 150; 

           im(i,j) = 10; 

       end 

            if (im(i,j) > 150) & (im(i,j) < 253); 

                im(i,j)=200; 

            end 

                if im(i,j)>= 253; 

                    im(i,j)=255; 

                end 

    end 

end 

 

% ######## CLEAN UP IMAGE ################################### 

 

    for i=6:1895 

        for j=1:1300 

            if (im(i,j)==10 ); 

                 

if(((im(i+1,j)==200)||(im(i+2,j)==200)||(im(i+3,j)==200)||(im(i+4,j)==200)||(im(i+

5,j)==200))&&((im(i-1,j)==200)||(im(i-2,j)==200)||(im(i-3,j)==200)||(im(i-

4,j)==200)||(im(i-5,j)==200))); 

                    im(i,j)=200; 

                end 

            end 

        end 

    end 

 

    for i=1:1900 

        for j=6:1295 
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            if (im(i,j)==10 ); 

                 

if(((im(i,j+1)==200)||(im(i,j+2)==200)||(im(i,j+3)==200))&&((im(i,j-

1)==200)||(im(i,j-2)==200)||(im(i,j-3)==200))); 

                    im(i,j)=200; 

                end 

            end 

        end 

    end 

 

 

 

% ######## CREATING IMAGES ############################### 

 

for i=1:1900 

    for j=1:1300 

        if im(i,j) == 255; 

            u(i,j) = 255; 

        elseif im(i,j) == 200; 

            u(i,j) = 200; 

        else im(i,j) == 10; 

            u(i,j) = 10; 

        end 

    end 

end 

% read image may not be gray scale..hence assign 

map = colormap(gray(256)); 

figure(1) 

colormap(gray(256)) 

image(u) 

colormap(gray(256)) 

imwrite(u,map,'FirstRun.bmp'); 

 

clear 

clc 

[im,map]=imread('T2C4(ML2)','bmp'); 
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MATLAB®  Code (Area Calculation) 

 

% ######## COUNTING AREAS ##################################    

        

StickingA=0; 

StickingB=0; 

Sliding=0; 

ToolBackground=0; 

LineCnt=0; 

for i=1:1900 

    for j=1:1300 

        if im(i,j) == 9; 

            StickingA = StickingA + 1; 

        elseif im(i,j) == 225; 

             Sliding = Sliding + 1; 

        elseif im(i,j)==128; 

             StickingB=StickingB+1; 

        else (im(i,j) == 199)||(im(i,j)==100); 

             ToolBackground=ToolBackground+1; 

        end 

    end 

end 

Total = StickingA + StickingB+ Sliding + ToolBackground+LineCnt; 

c = (1580*10^(-3))/sqrt(1900*1300); 

StickingAreaA = c^2 * StickingA; 

StickingAreaB = c^2 * StickingB; 

SlidingArea = c^2 * Sliding; 

ToolBackgroundArea = c^2 * ToolBackground; 

CombinedStickingArea=StickingAreaA+StickingAreaB; 

CombinedStickingSliding = StickingAreaA+StickingAreaB+SlidingArea; 

TotalToolArea = CombinedStickingSliding + ToolBackgroundArea; 

 

% ######## CREATING IMAGES ############################### 

 

 

for i=1:1900 

    for j=1:1300 

     

        if im(i,j) >= 253; %white space 

            u(i,j) = 255; %All 

            v(i,j) = 255; %First Sticking 

            w(i,j) = 255; %Second Sticking 

            x(i,j) = 255; %Sliding 

            y(i,j) = 255; %Total Sticking 
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            z(i,j) = 255; %Total Contact Area  

        end 

        if (im(i,j) == 199)||(im(i,j)==100);%toolbackround 

            u(i,j) = 199; 

            v(i,j) =255; 

            w(i,j) = 255; 

            x(i,j) = 255; 

            y(i,j) = 255;  

            z(i,j) = 255;   

             

        end 

        if im(i,j) == 9; %first sticking 

            u(i,j) = 10; 

            v(i,j) =10; 

            w(i,j) = 255; 

            x(i,j) = 255; 

            y(i,j) = 10; 

            z(i,j) = 10; 

        end 

        if im(i,j)== 128; %second sticking 

            u(i,j) = 128; 

            v(i,j) = 255; 

            w(i,j) = 10; 

            x(i,j) = 255; 

            y(i,j) = 10;  

            z(i,j) = 10; 

        end 

        if im(i,j)==225; %sliding 

            u(i,j) = 225; 

            v(i,j) = 255; 

            w(i,j) = 255; 

            x(i,j) = 10; 

            y(i,j) = 255;  

            z(i,j) = 10; 

        end 

    end 

end 

% read image may not be gray scale..hence assign 

%Write Everything Image 

map = colormap(gray(256)); 

figure(1) 

colormap(gray(256)) 

image(u) 

colormap(gray(256)) 
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imwrite(u,map,'Run2All.bmp'); 

 

figure(2) 

colormap(gray(256)) 

image(v) 

imwrite(v,map,'Run2FirstSticking.bmp'); 

 

figure(3) 

colormap(gray(256)) 

image(w) 

imwrite(w,map,'Run2SecondSticking.bmp'); 

 

figure(4) 

colormap(gray(256)) 

image(x) 

imwrite(x,map,'Run2Sliding.bmp'); 

 

figure(5) 

colormap(gray(256)) 

image(y) 

imwrite(y,map,'Run2TotalSticking.bmp'); 

 

figure(6) 

colormap(gray(256)) 

image(z) 

imwrite(z,map,'Run2TotalContactRegion.bmp'); 

 

StickingAreaA 

StickingAreaB 

SlidingArea 

ToolBackgroundArea 

CombinedStickingArea 

CombinedStickingSliding 

TotalToolArea 
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APPENDIX B 
 
SEM Images for Al-2024 at 110 m/min   
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SEM Images for Al-2024 at 220 m/min             
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SEM Images for Al-2024 at 335 m/min             
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SEM Images for Al-2024 at 470 m/min             
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SEM Images for Al-6061 at 120 m/min 

             

d 
mm 

f = 0.071 
mm/rev 

f = 0.198 
mm/rev 

f = 0.305 
mm/rev 

0.51 

1.27 

2.03 

2.79 

 
 



 145

 
SEM Images for Al-6061 at 230 m/min 
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SEM Images for Al-6061 at 345 m/min 
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SEM Images for Al-6061 at 490 m/min 
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APPENDIX C 

CUTTING FORCE MEASUREMENTS 

 

110 m/min (400 rpm) 

d / f 

Fx  

(lbf) 

Fy  

(lbf) 

Fz  

(lbf) 

Fr  

(lbf) 

Ft  

(lbf) 

Fa  

(lbf) 

Fn  

(lbf) 

Ff  

(lbf) 

1.667 14.80 23.22 41.08 11.83 37.76 29.66 37.76 31.93 

2.564 12.32 17.14 29.92 10.04 27.32 22.22 27.32 24.38 

4.167 43.02 35.13 97.55 40.84 90.06 53.12 90.06 67.00 

6.410 35.76 26.00 69.38 33.76 63.45 40.05 63.45 52.38 

6.667 67.56 47.62 150.40 65.84 139.13 75.90 139.13 100.48 

7.143 8.19 10.56 14.53 6.43 12.90 13.50 12.90 14.95 

9.167 95.67 60.88 206.14 94.33 190.63 100.56 190.63 137.88 

10.256 58.67 35.90 107.82 56.60 98.55 58.68 98.55 81.52 

14.103 83.50 48.95 145.57 80.42 132.56 80.75 132.56 113.97 

17.857 22.51 16.70 33.21 20.25 29.53 24.63 29.53 31.88 

28.571 36.87 23.29 51.12 33.93 45.37 36.13 45.37 49.56 

39.286 50.61 28.66 69.37 47.36 61.69 46.33 61.69 66.26 

 

Cutting forces for Al-2024 at 110 m/min (rough data, transformed data) 

 

 

225 m/min (558 rpm) 

d / f 

Fx  

(lbf) 

Fy  

(lbf) 

Fz  

(lbf) 

Fr 

(lbf) 

Ft  

(lbf) 

Fa  

(lbf) 

Fn 

(lbf) 

Ff  

(lbf) 

1.667 10.86 16.47 38.22 9.53 35.76 21.92 35.76 23.90 

2.564 9.48 12.22 28.00 8.41 26.03 16.59 26.03 18.60 

4.167 24.49 24.11 79.96 24.32 75.26 36.32 75.26 43.71 

6.410 22.08 18.37 59.26 21.68 55.32 28.39 55.32 35.72 

6.667 42.84 35.40 135.13 43.87 127.36 56.60 127.36 71.61 

7.143 5.81 7.51 12.61 4.76 11.44 9.80 11.44 10.89 

9.167 57.87 38.90 178.35 61.20 168.44 67.48 168.44 91.10 

10.256 39.35 27.22 99.65 39.53 93.03 44.76 93.03 59.72 

14.103 52.73 33.86 131.19 53.44 122.49 57.25 122.49 78.32 

17.857 15.70 11.42 27.86 14.59 25.27 17.37 25.27 22.68 

28.571 28.77 16.44 46.88 27.53 42.44 27.13 42.44 38.65 

39.286 38.21 21.00 62.04 36.76 56.21 35.20 56.21 50.89 

 

Cutting forces for Al-2024 at 225 m/min (rough data, transformed data) 
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335 m/min (765 rpm) 

d / f 

Fx 

(lbf) 

Fy  

  (lbf) 

Fz  

(lbf) 

Fr  

(lbf) 

Ft  

(lbf) 

Fa  

(lbf) 

Fn  

(lbf) 

Ff  

(lbf) 

1.667 7.42 13.58 31.82 6.42 29.95 17.71 29.95 18.84 

2.564 7.96 11.95 27.40 6.97 25.61 15.90 25.61 17.35 

4.167 20.36 21.64 83.28 21.27 79.15 33.20 79.15 39.43 

6.410 18.38 15.70 59.58 18.83 56.20 24.91 56.20 31.23 

6.667 34.17 31.08 134.17 36.55 127.60 50.18 127.60 62.08 

7.143 6.07 6.04 12.73 5.39 11.62 8.45 11.62 10.02 

9.167 43.48 37.09 166.94 46.82 158.76 61.15 158.76 77.02 

10.256 30.69 23.66 98.17 31.99 92.69 39.03 92.69 50.46 

14.103 41.40 29.22 125.03 43.20 117.87 49.40 117.87 65.63 

17.857 12.47 9.99 26.55 11.74 24.41 15.06 24.41 19.09 

28.571 21.99 14.47 43.98 21.26 40.42 23.28 40.42 31.53 

39.286 29.52 16.79 56.62 29.01 52.01 28.50 52.01 40.67 

 

Cutting forces for Al-2024 at 335 m/min (rough data, transformed data) 

 

 

 

470 m/min (1350 rpm) 

d / f 

Fx  

(lbf) 

Fy  

(lbf) 

Fz  

(lbf) 

Fr  

(lbf) 

Ft  

(lbf) 

Fa  

(lbf) 

Fn  

(lbf) 

Ff  

(lbf) 

1.667 6.45 11.70 32.25 6.00 30.59 15.70 30.59 16.80 

2.564 6.65 7.95 24.96 6.52 23.58 11.50 23.58 13.22 

4.167 18.00 19.37 75.26 18.88 71.57 29.72 71.57 35.21 

6.410 17.73 15.22 62.62 18.59 59.31 24.55 59.31 30.80 

6.667 28.98 27.34 116.57 31.00 110.91 43.75 110.91 53.61 

7.143 4.67 5.76 11.07 3.98 10.13 7.69 10.13 8.65 

9.167 39.61 34.76 155.85 42.74 148.31 56.97 148.31 71.22 

10.256 26.50 20.79 91.14 28.08 86.34 34.59 86.34 44.56 

14.103 37.76 27.28 119.97 39.76 113.36 46.18 113.36 60.94 

17.857 12.78 9.56 27.84 12.26 25.68 14.84 25.68 19.25 

28.571 19.33 12.58 40.89 18.92 37.75 20.52 37.75 27.91 

39.286 27.28 16.14 53.66 26.76 49.36 27.06 49.36 38.06 

 

Cutting forces for Al-2024 at 470 m/min (rough data, transformed data) 
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120 m/min (400 rpm) 

d / f 

Fx  

(lbf) 

Fy  

(lbf) 

Fz  

(lbf) 

Fr  

(lbf) 

Ft  

(lbf) 

Fa  

(lbf) 

Fn  

(lbf) 

Ff  

(lbf) 

1.667 20.82 33.03 45.02 22.49 24.44 49.48 49.48 33.21 

2.564 16.29 22.76 31.55 14.95 18.67 34.73 34.73 23.92 

4.167 60.46 43.97 100.61 17.96 60.57 108.25 108.25 63.18 

6.410 47.52 33.20 72.16 13.40 47.87 78.08 78.08 49.71 

6.667 89.80 57.25 145.92 19.21 88.26 156.44 156.44 90.33 

7.143 8.28 10.06 13.85 6.34 9.30 15.32 15.32 11.26 

9.167 130.16 73.66 204.29 19.51 126.22 218.61 218.61 127.72 

10.256 73.63 42.68 106.66 12.79 72.42 114.94 114.94 73.54 

14.103 106.28 58.83 152.85 15.88 103.94 164.51 164.51 105.15 

17.857 23.62 15.90 32.67 6.36 23.92 35.57 35.57 24.75 

28.571 36.68 21.63 49.16 7.07 36.52 53.35 53.35 37.20 

39.286 53.52 28.25 69.57 7.33 52.64 75.35 75.35 53.15 

 

Cutting forces for Al-6061 at 120 m/min (rough data, transformed data) 

 

 

 

230 m/min (558 rpm) 

d / f 

Fx  

(lbf) 

Fy 

(lbf) 

Fz  

(lbf) 

Fr  

(lbf) 

Ft  

(lbf) 

Fa  

(lbf) 

Fn  

(lbf) 

Ff  

(lbf) 

1.667 17.37 26.71 40.34 17.71 19.93 43.95 43.95 26.67 

2.564 14.39 19.82 29.09 12.82 16.32 31.87 31.87 20.75 

4.167 43.18 32.57 87.11 12.61 42.23 92.58 92.58 44.07 

6.410 37.41 26.48 63.03 10.34 37.23 67.68 67.68 38.64 

6.667 64.59 43.51 128.16 14.05 62.05 135.80 135.80 63.62 

7.143 8.12 9.13 13.49 5.52 8.94 14.86 14.86 10.51 

9.167 91.66 54.83 177.98 13.62 86.66 188.12 188.12 87.72 

10.256 57.55 35.55 94.39 11.14 56.20 101.00 101.00 57.30 

14.103 79.93 45.22 130.43 11.54 77.08 139.18 139.18 77.93 

17.857 21.28 14.80 29.59 6.18 21.66 32.26 32.26 22.52 

28.571 35.83 20.16 45.95 6.16 35.61 49.95 49.95 36.14 

39.286 47.69 24.29 60.96 5.77 46.78 66.02 66.02 47.13 

 

Cutting forces for Al-6061 at 230 m/min (rough data, transformed data) 
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345 m/min (765 rpm) 

d / f 

Fx  

(lbf) 

Fy  

(lbf) 

Fz  

(lbf) 

Fr 

(lbf) 

Ft  

(lbf) 

Fa  

(lbf) 

Fn  

(lbf) 

Ff  

(lbf) 

1.667 14.01 20.43 36.86 12.83 15.43 39.61 39.61 20.07 

2.564 12.51 16.22 26.65 10.06 13.82 28.95 28.95 17.09 

4.167 32.09 25.51 76.96 9.56 30.65 81.07 81.07 32.11 

6.410 29.92 21.48 56.33 8.04 29.34 60.04 60.04 30.42 

6.667 50.71 35.53 118.64 10.78 47.50 124.65 124.65 48.70 

7.143 8.08 8.95 12.98 5.40 8.91 14.34 14.34 10.42 

9.167 69.35 43.76 161.70 10.14 63.79 169.41 169.41 64.59 

10.256 46.29 29.33 86.31 8.76 44.49 91.64 91.64 45.34 

14.103 62.25 36.80 115.86 9.26 59.19 122.74 122.74 59.91 

17.857 19.92 12.28 26.99 4.33 19.94 29.32 29.32 20.41 

28.571 31.58 18.02 41.91 5.54 31.32 45.46 45.46 31.81 

39.286 44.61 23.11 57.94 5.69 43.77 62.71 62.71 44.14 

 

Cutting forces for Al-6061 at 345 m/min (rough data, transformed data) 

 

 

 

490 m/min (1350 rpm) 

d / f 

Fx  

(lbf) 

Fy  

(lbf) 

Fz  

(lbf) 

Fr  

(lbf) 

Ft  

(lbf) 

Fa  

(lbf) 

Fn  

(lbf) 

Ff  

(lbf) 

1.667 10.52 17.40 34.06 11.06 11.55 36.30 36.30 15.99 

2.564 9.13 13.23 23.86 8.30 10.04 25.65 25.65 13.03 

4.167 26.05 22.17 72.77 8.28 24.35 76.18 76.18 25.72 

6.410 23.07 17.60 53.63 6.32 22.00 56.52 56.52 22.89 

6.667 42.01 30.98 112.99 9.14 38.46 118.03 118.03 39.53 

7.143 6.50 8.05 11.57 5.06 7.27 12.74 12.74 8.86 

9.167 62.67 41.44 159.25 9.84 56.98 166.32 166.32 57.82 

10.256 37.16 24.34 83.23 6.59 34.70 87.48 87.48 35.32 

14.103 52.17 31.31 111.53 6.96 48.46 117.23 117.23 48.96 

17.857 17.57 11.68 25.99 4.44 17.61 28.12 28.12 18.16 

28.571 28.27 16.08 40.44 4.66 27.77 43.59 43.59 28.16 

39.286 38.62 20.10 53.86 4.69 37.60 57.98 57.98 37.89 

 

Cutting forces for Al-6061 at 490 m/min (rough data, transformed data) 
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