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Abstract

The nitrogen-fixing plant Medicago truncatula is an important model system for 

identifying legume genes and determining their functions. With over 255 megabases of 

the genome, representing about 85% of the euchromatic regions, having been 

sequenced, my analysis reveals 50,540 predicted protein-encoding genes, 632 tRNA 

genes, 45 miRNA precursor candidates, and repetitive elements covering 11% of the 

sequence. ~ 50% predicted genes are supported by ESTs or TCs. About 40% of the 

predicted genes are intronless and there is evidence for 55% of them being expressed. A 

comparison of the Medicago truncatula, Oryza sativa, Arabidopsis thaliana, Lotus 

japonicus, Glycine max, and Populus trichocarpa genomes shows that the Medicago 

genome uniquely contains a high number of very short genes encoded by predicted 

genes with fewer than 99 nucleotides. The Gene Ontology (GO) annotation of the 

predicted genes showed that the nucleic acid binding domains are the most abundant 

domains in M.truncatula. The comparison between GO the annotation of M.truncatula, 

O. sativa, A.thaliana, L. japonicus, G. max, and P. trichocarpa reveals that all the six 

genomes have similar percentage of each of the major functional domains. The 

comparison of the top 40 Interpro domains in M. truncatula with the corresponding 

domains in the other five plants also indicates that most of the overrepresenting 

domains are overrepresenting in all the six genomes although some species-specific 

domains, such those for late nodulation, only are present in M. truncatula.
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The in silico analysis of the Medicago Gene Index 9.0 revealed that 191 genes only are 

expressed in root nodules, with100 of them similar to known GenBank sequences. Of 

the several gene familys, my analysis of 50 nodule-specific cysteine-rich peptides 

(NCR) indicates that they have a conserved signal peptide, a conserved cysteine motif, 

and a highly divergent remaining sequence. Many of the NCR genes are clustered while 

others are dispersed throughout the Medicago genome, suggesting that they have 

ungone a recent tandem or segmental gene duplication. A Ka/Ks analysis of NCR genes 

indicates that although some NCR genes underwent positive selection, others underwent 

purifying selection. That the NCR intron sequence is highly conserved suggests it may 

act as an enhancer for nodule-specific NCR gene expression in combination with the 

conserved upstream cis-acting motifs. The phylogenetic tree of both defensin and NCR 

genes reveals that after gene duplication, some of the defensin genes still remained 

defensins as is the case with the five medicago defensins, while the other duplicated 

defensin genes mutated such that they now seem to function in symbiosis as NCR 

genes. 

I also analyzed the three members of the glycine-rich peptide (GRP) gene family that 

are encoded on chromosome 2. These studies reveal that the GRP1 gene that is 5.2 Mb 

from the GRP2-GRP3 cluster arose from tandem gene duplication followed by either a 

deletion or an insertion from a common ancestor, an idea that is supported by sequence 

conservation in the signal peptide, the glycine-motif, and the 200bp upstream DNA 

sequence. In addition, my Ka/Ks analysis indicates that positive selection played an 

XI



important role during GRP gene evolution. Furthermore, the Leghemoglobin (Lb) genes 

that originated from nonsymbiotic hemoglobins (Hb) seem to have undergone a 

purifying selection that has preserved their ability to function during oxygen transport. 

Finally, the nodule-specific genes all seem to contain one or both of two nodule-specific 

motifs (CTCCT and AAAGAT) in their promoter regions suggesting that nodule-

specific gene expression likely is co-regulated and about 50% of the predicted nodule-

specific genes are clustered and have corresponding EST, indicating that they are 

expressed in root nodules.
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1. Introduction

1.1 The importance of legumes

The legume family (Fabaceaea or Leguminosae) contains over 700 genera and 20,000 

species, making it the third largest family of flowering plant, after orchids and 

sunflowers (Doyle et al. 2003), and an important food source for humans and domestic 

livestock (Gepts et al. 2005). Legumes differ from most other plants in that they have 

the ability to fix atmospheric nitrogen in symbiosis with rhizobial bacteria and thus do 

not require nitrogen fertilizer for their growth and development. Grain legumes provide 

one third of the world’s dietary protein nitrogen and one third of its edible vegetable oil 

(Graham et al. 2003). Additionally, dietary legumes can reduce cholesterol levels in 

humans (Andersen et al. 1984) and help prevent cancer because they synthesize 

secondary compounds, including isoflavoids and triterpene sapoinins (Grusak et al. 

2002, Madar et al. 2002), which also protect plants from pathogens and pests (Dixon et 

al. 2002). Lastly, legumes also are used world-wide in soil replenishment via crop 

rotation to maintain agricultural sustainability. 

The legume family is a member of the dicot Eurosid clade that comprises three 

subfamilies: Caesalpinieae, Mimosoideae, and Papilionoideae (Gepts et al. 2005). 

These comprise economically important (Doyle et al. 2003), nutritious and versatile 

plants such as the cool-season legume Medicago truncatula (barrel medic), Lotus 

japonicus, Pisum sativum (pea), Medicago sativa (alfafa), and Vicia arietinum 
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(chickpea) and Glycine max (Soybean), Phaseolus spp. (common bean), and Vigna 

radiate (mungbean), the warm-season legumes. 

1.2 Medicago truncatula as a model plant for legumes

 Arabidopsis thaliana and Oryza sativa (rice) are model plants for dicotyledon and 

monocotyledon, respectively as their features are shared among a wide range of related 

taxa (Eckardt et al. 2001) . Although many of the agronomically and economically 

important genes in plants can be identified via homology with their counterparts in A. 

thaliana or O. sativa, since neither of these two model plants fixes nitrogen, they cannot 

be used as a model system to study this symbiotic process. In contrast, legumes do have 

the unique ability to fix nitrogen that the plant needs for the synthesis of its protein 

through symbiosis with rhizobia and in return, the host plant provides the rhizobia with 

all the nutrients they require, including a rich supply of reduced carbon (Fang et al. 

1998). Unfortunately, it is difficult to use most cultivated legumes (including pea, 

alfalfa, and soybean) in genomic studies because of their large genomes (the 4 billion 

base pair (bp) pea genome is slightly larger than the human genome), genome 

complexity (alfalfa is a tetraploid, soybean is a polyploid), large seeds, and long life 

cycles. Therefore, among legume species, Medicago truncatula recently has emerged as 

a model plant for legume genetics and genomics. It has a small diploid genome, good 

genetic and physical map resources, fast generation time, high transformation 
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efficiency, excellent collections of phenotypic mutants (especially in nodule formation 

and symbiotic nitrogen fixation), diverse, naturally occurring ecotypes, and extensive 

synteny with the genomes of larger legumes (Cook et al. 1999, Cannon et al. 2005). By 

comparing the existing previously small amount of genomic data from legumes, it has 

been observed that the M. truncatula genome is highly conserved with that of alfalfa 

and pea (Gualtieri et al. 2002, Endre et al. 2002), and moderately conserved with that of 

soybean, at both micro-syntenic and macro-syntenic levels (Yan et al. 2003). 

Consequently, knowledge of the genome organization and structure of M. truncatula 

will be useful to explore conserved genes, gene order and gene orientation of the other 

crop legume genomes through comparative genomics as, for example, microsyteny was 

utilized to clone M. truncatula DMI2 and its ortholog, NIN1 from M. sativa (Endre et 

al. 2002, Stracke et al. 2002), which are expressed in the early stages of rhizobial 

symbiosis.

1.2.1 Nodule formation

Much already is known about legume-rhizobia symbiosis. The procedure of nodule 

formation is schematically shown in Figure 1.1. The rihizobia receive the signal of 

flavonoid compounds released by legumes and then release lipochito-oligosacharrides 

(Lerouge et al. 1990), termed nodulation factors (Nod) (Peters et al. 1986). The curling 

of root hairs to trap the rhizobia, the first step of nodulation, is induced by nodulation 
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factors and facilitates the rhizobia binding to the root hairs, as a prelude to them 

entering the plant root through a special structure called the infection thread. The 

infection thread grows through the root towards the nodule primordia within the root 

cortex (Brewin et al. 1998). When the rhizobia reach the nodule primordia, they are 

released from the infection thread and surrounded by a plant-derived membrane known 

as symbiosome membrane (Brewin et al. 1998). The bacteria in these compartments 

continue to divide and differentiate into nitrogen fixing bacteroids (Vasse et al. 1990). 

Cell division continues in the root tissue, and eventually the nodule containing the 

infected plant cells will form. Photosynthetic products that provide the energy source 

for the bacteria as well as C-backbone during nitrogen fixation and assimilation are 

transported to nodules. In the bacteroids, N2 is reduced to ammonium by the nitrogenase 

complex in the following reaction (Scholte et al. 2002):

N2 +8H+ +8e-+16ATP+16H2O→2NH3 +H2+16ADP+16Pi

Ammonia then is transported to the plant cell cytoplasm, where it is assimilated by a 

glutamine synthetase/glutamate synthase cycle to form glutamine (Scholte et al. 2002). 

Glutamine, in turn, is converted to the N-containing amides or ureides that are 

transported via the xylem to the other organs of the plant.
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Figure 1.1 Schematic representation of nodule formation.  Taken from Rhizobium, Root 
Nodules  &  Nitrogen  Fixation,  A  post-16  resource  from  the  Society  for  General 
Microbology, United Kingdom (2002) 

1.2.2. Nodule-specific genes

All of the bacterial genes involved in symbiotic nitrogen fixation have been identified 
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(Gresshoff et al. 2003). However, our progress in understanding plant genes required for 

nodule development is slow because of the eukaryotic genome complexity and the 

absence of the plant genome sequence. For example, although it is well known that 

nodule specific genes were recruited from genes involved in plant growth and 

development, it is not known if these nodulation genes have common cis-regulatory 

elements or if they are co-regulated.  Also, little is known about the genome 

organization of these genes, how they evolved and their ancestral origin.  However, 

using differential screening, subtractive hybridization, and differential display, it has 

been possible to find nodule-specific related genes because their expression is specific 

for or greatly enhanced during symbiosis (Crespi et al. 2000). Nodulin genes can be 

divided into two groups: those induced at an early stage (such as ENOD2, ENOD12, 

ENOD16, ENOD20, and ENOD4 genes) and those expressed late and associated with 

nitrogen fixation (genes encode leghemoglobin, glutamine synthetase, and uricase) 

(Charon et al. 1999). Nodulin genes especially, the early nodulin genes were thought to 

be expressed exclusively in nodules. However, it is now clear that many of these genes 

also are expressed in nonsymbiotic tissues at low levels (Charon et al. 1999). Hirsch et 

al suggested many of the genes required in nodule development and nitrogen fixation 

were recruited from their original task in plant growth and development to function in 

the nodule (Hirsch et al. 2001). It now is apparent that while many nodulin genes have 

more than one function, some only are expressed in nodules. The nodulation gene, nin-

1, isolated from L. japonicus using transposon mutagenesis (Hirsch et al. 1999), 
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encodes a transcription factor that functions at the infection-thread stage. Recently, 

more than 300 putative nodule-specific genes have been identified in silico by the 

analysis of the appearance and frequency of ESTs from different cDNAs (Fedorova et 

al. 2002). However, if the nodule-specific genes have common cis-regulatory elements 

and how they evolved remain unclear. It is clear from gene prediction results in 

completely sequenced organisms such as human and A. thaliana that only about 60% of 

expressed genes can be discovered through cDNA sequencing (Eckardt et al. 2001). 

This is because many genes are expressed at very low levels and /or in tissues, 

developmental stages, or in response to external stimuli that have not yet been examined 

and thus are underrepresented in EST libraries. ESTs only provide a partial DNA 

sequence, as they lack information about promoters, introns, or other regulatory 

elements. cDNA sequencing also fails to reveal genome context, such as nearby 

repetitive elements or other features. Moreover, EST projects cannot provide any 

information about gene order that is important for comparative genomics. Only through 

genomic sequencing can we obtain data necessary for comparative mapping, determine 

macro- and micro-synteny, and study the gene evolutionary history among different 

organisms. Since genes with the similar functions often are clustered in plants, for 

example, many of the M. truncatula disease-resistant genes are clustered on 

chromosome 4 and 6 (Zhu et al. 2002), while many M. truncatula nodule-specific genes 

are clustered on chromosome 8 (Thoquet et al. 2002, Huguet et al. 2000), obtaining the 

complete sequence of the euchromatic region of this model legume genome will provide 
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information directly related to the makeup of these gene clusters and duplicated genes in 

genome.

Just as the complete genome sequencing and gene tagging revealed the bacterial genes 

needed for both nodulation and nitrogen fixation (Gresshoff et al. 2003), the genomic 

sequence of Medicago truncatula, in combination with other molecular genetic 

technologies, also may help us find additional genes involved in the nodulation process.

1.3 The Arabidopsis thaliana, Oryza sativa and Populus trichocarpa, 

Glycine max, and Lotus japonicus genomes 

Arabidopsis thaliana (mouse-ear cress or mustard weed), Oryza sativa (rice), and 

Populus trichocarpa (black cottonwood) were the first sequenced dicot, monocot, and 

tree respectively. Lotus japonicus and Glycine max are other legumes being sequenced 

besides Medicago truncatula. Their analysis provides insight to the organization and 

structure of the plant genome and genes and also facilitates research into the genetic 

systems of the plants.

1.3.1 The Arabidopsis thaliana genome

Arabidopsis thaliana, the first plant to have its genome completely sequence, is 

considered a model for dicotyledonous plants because it is a small plant with a short 

generation time and a small genome size (125Mb) (The Arabidopsis Genome Initiative, 

2000). The Arabidopsis Genome Initiative (AGI) began sequencing the A. thaliana 
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genome in 1996, and in 2000 the complete sequence was published (AGI, 2000). With a 

total length of sequenced genome from the telomeric region (rich in rDNA repeats) to 

centromeric region (180bp repeats) of about 115Mb, and unsequenced regions estimated 

at approximately 10 Mb, the total size of the A. thaliana genome is estimated as 125Mb. 

About 25,000 genes that code for proteins were predicted and grouped into 

approximately 11,000 families. Sixty-nine percent of the genes could be categorized 

into functional groups based on their sequence similarity to proteins of known function 

in other organisms. About 30% of the gene products were either plant-specific proteins 

or proteins similar to proteins from other organisms with unknown function. At that 

time, 35% of the classified genes were unique and 65% belonged to gene families, 

many of which were conserved in all eukaryotes. Approximately 150 gene families 

were annotated as plant-specific, including transcription factors, structure proteins, 

enzymes, and proteins of unknown function. Lateral gene transfer from a 

cyanobacterial-like plastid ancestor also was detected in the A. thaliana genome. One 

thousand five hundred twenty eight tandem arrays containing 17% of the genes were 

observed, along with 24 large duplicated segments of 100 kb or larger, that made up 

58% of the genome. Many of the segments seem to have undergone further shuffling. It 

was suggested that the A. thaliana genome evolved from a tetraploid ancestor ~112Myr 

ago, because majority of the genome occurs in duplicated segments. Approximately 

10% of the genome consists of transposons, with both class I (replicate trough an RNA 

intermediate) and class II (move directly through a DNA form) elements. The 
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transposon-rich regions are poor in genes and have lower rates of recombination and 

EST matches, indicating a correlation of high transposon density with low gene 

expression and low recombination. Heterochromatic regions surrounding the 

centromere are rich in transposons and other repetitive sequences, whereas the 

euchromatic arms are not. A. thaliana will be very important in the study of epigenetic 

inheritance and gene regulation, as it is the first sequenced methylated genome. As the 

first fully sequenced flowering plant, the analysis of the Arabidopsis genome has 

provided a better understanding of plant development and environmental responses, and 

the organization and dynamics of plant genomes. 

A. thaliana and Medicago truncatula belong to the dicot subclass Rosidae (Zhu, 2003). 

A comparative genome analysis between Arabidopsis and M. truncatula revealed that a 

degenerate network of microsynteny was observed between these two genomes. 

However, the macrosynteny was not obvious using genetic map-based and bacterial 

artificial chromosome (BAC) sequence-based methods (Zhu et al. 2003). In addition, 

genetically linked loci in M. truncatula often have several syntenic regions in 

Arabidopsis genome that is consistent with the conclusion that the Arabidopsis genome 

consists of a large number of segmental duplications. The degenerate microsynteny was 

suggested partially due to the lack of a small number of M. truncatula homologs in A. 

thaliana. 
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1.3.2 The Oryza sativa genome

Oryza sativa, or rice, one of the most important food plants in the world, is an ideal 

model plant for the grasses. It has the smallest genome size of the major cereals, dense 

genetic maps, ease of transformation, and synteny among the cereals (Sasaki et al. 

2002). The International Rice Genome Sequencing Project (IRGSP), established in 

1998, sequenced 95% of the 389 Mbp genome of a single inbred cultivar, Oryza sativa 

ssp.japonica cv. Nipponbare (IRGSP, 2005). This included all of the euchromatic 

regions and two complete centromeres. In total, 37,544 non-transposable-element-

related protein-coding genes were predicted, 71% of which were homologous to genes 

in A. thaliana. Twenty nine percent of the total predicted genes were from clustered 

families. About 60% of the 37,544 predicted genes had EST, or full-length cDNA 

support. The gene density is 9.9 kb/gene. 2,859 genes which can be transcribed were 

only found in rice and the other cereals. 0.38%-0.43% rice nuclear genome consists of 

organellar DNA fragments, indicating widespread and repeated DNA transfer from the 

organelles to the nuclear chromosomes. About 35% of the rice genome consists of 

transposons from all known transposon superfamilies. As with other eukaryotic 

centromeres, those of rice are rich in repetitive sequences that include satellite DNA at 

the center and retrotransposons and transoposons in the flanking regions. The 

centromeres of all rice chromosomes contain the highly repetitive 155-165 bp CentO 

satellite DNA, flanked by centromere-specific retrotransposons, as was demonstrated by 
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completely sequencing chromosomes 4 and 8 to reveal their 59 kb and 69 kb of 

clustered CentO repeats (Wu et al. 2004, Zhang et al. 2004, Guyot et al. 2004) that are 

distributed as head-to-tail tandem array. 

1.3.3 The Populus trichocarpa genome

The genome of the poplar tree, Populus trichocarpa, is the first sequenced tree genome. 

It was chosen as the model forest species because of its small genome, fast growth, ease 

of transformation and the availability of numerous genetic tools (Tuskan et al. 2006). 

The draft genome sequence was published in Science in 2006 (Tuskan et al. 2006). A 

whole genome shotgun sequencing strategy was used to obtain 7.5 fold genomic 

coverage, and the genome sequence was assembled into 2447 major scaffolds. The 

genome size, estimated to be 485+10 Mb, is about 30% heterochromatin. Among the 

45,555 predicted protein-coding genes, 89% were homologous to the proteins in 

nonredundant (NR) protein database from the National Center for Biotechnology 

Information (NCBI). Eight hundred seventeen putative tRNAs, 427 putative small 

nucleolar RNAs (snoRNAs) and 169 microRNA (miRNA) from 21 families also were 

identified in the Poplar genome. One thousand five hundred eighteen tandem duplicated 

arrays of two or more genes also were found in the genome. A whole genome 

duplication event was found by analyzing the Poplar genome. About 8000 pairs of 

paralogs survived from this event. Comparison between P. trichocarpa and A. thaliana 
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genomes showed that poplar has more protein-coding genes than A. thaliana, but that 

the relative frequency of protein domains in the two genomes is similar. Gene families 

involved in lignocellulosic wall biosynthesis, disease resistance, metabolite transport, 

and meristem development are overrepresented in P. trichocarpa.

1.3.4 The Lotus japonicus genome

Lotus japonicus was sequenced as the second model legume, in addition to Medicago 

truncatula because of its short life cycle, self-fertilization, a small genome size 

(472Mb), and a comparatively simple genome (2n=12) (Sato et al. 2008). About 315.1 

Mb genome sequences, 67% of the genome, have been determined, and they cover 

91.3% of the gene space (Sato et al. 2008). The sequenced lotus genome is composed of 

30,799 protein-encoding genes, 638 tRNA genes, two complete units of 18S-5.8S-26S 

ribosomal RNA genes, 207 snoRNA gene, 53 miRNA, and 38% of transposable 

elements. About 52% of the protein-encoding genes are supported by ESTs with 

sequence identity of over 95% for a 50 base-long stretch. The structure of protein-

encoding genes in L. japonicus is similar to that in A. thaliana except that both the 

average gene length (2917 vs. 1918 bp) and intron length (395 vs. 157bp) in lotus are 

longer than that in A. thaliana. The average gene length in L. japonicus and A. thaliana 

are estimated at 10.2 kb/gene and 4.5 kb/gene, respectively. 

The previous studies between 149 Mbp of M. truncatula and 121 Mbp of L. japonicus  

revealed that they share at least 10 large-scale synteny blocks that often extend to the 
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length of the whole genome arms (Cannon et al. 2006). These large-scale synteny 

blocks constitute about 67% of the M. truncatula genome and about 64% of L. 

japonicus. The genome sequences in internal duplications either in L. japonicus (6.8%) 

or in M. truncatula (9.7%) are much less than in synteny blocks between the two 

genomes. Further more, the synteny between M. truncatula and L. japonicus tends to be 

extensive with numerous paired syntenic blocks observed. All the above duplication 

analyses indicate that there is no recent large-scale genome duplication either in M. 

truncatula or L. japonicus and that a whole genome duplication (WGD) preceded 

speciation of L. japonicus and M. truncatula (Cannon et al. 2006). The synonymous 

substitution analysis and the phylogenetic analysis also proved the above conclusion. 

Phylogenetic analyses suggest that the WGD event occurred within the Rosid I clade, 

after the split of the legume family and the Salicaceae (poplar). 

1.3.5 The Glycine max genome sequence

Glycine max (soybean) belongs to the lineage Phaseoloids that split 50 million years 

ago (MYA) from the lineage Hologalegina containing L. japonicus and M. truncatula 

(Lavin et al. 2005). G. max was sequenced as the third model legume because of its 

economic importance, detailed and saturated genetic map, existing physical map, and 

medium-sized genome size (estimated as 1100 Mbp) (Jackson et al. 2006). The soybean 

genome, consisting of 20 chromosome pairs, is an ancient polyploidy that was thought 

to have undergone 2 to 3 times of genome duplication during the last 45 MY 
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(Shoemaker et al. 1996, Blanc and Wolfe 2004, Schlueter et al. 2004). The most recent 

duplication dates back to only 1-3 MYA and accounts for the low sequence drift and 

high sequence similarity between many duplicated blocks (Jackson et al. 2006). Thus, 

the present day G. max genome consists of highly conserved homeologous regions 

along with regions with high gene loss and rearrangement resulted from genomic 

reshuffling after multiple rounds of duplication (Jackson et al. 2006).

Even though the G. max genome is polyploidy, its genome structure still is organized 

like the M. truncatula genome, that is, euchromatin is located on the chromosome arms 

while heterochromatin is located on the centromeric and pericentromeric regions (Lin et 

al. 2005, Walling et al. 2006). Nearly 40-60% of the soybean genome is composed of 

repetitive elements based on DNA: DNA reassociation studies (Goldberg 1978, Gurley 

et al. 1979) and the gene space is estimated as about 24% of the genome (Mudge et al. 

2004). The average gene density in soybean genome was estimated as 5.8-6.7 kb per 

gene (Mudge et al. 2005). Although macrosyntenic relationship between soybean and 

other legumes are difficult to detect because of chromosome rearrangement or gene loss 

after genome duplication, several studies showed microsynteny is frequently maintained 

over small chromosome regions (Choi et al. 2004, Yan et al. 2003, Mudge et al. 2005). 

Choi et al (Choi et al. 2004) identified 11 syntenic blocks between soybean and M. 

truncatula by mapping 60 homologous markers. In Yan et al. (Yan et al. 2003), 27 out 

of 50 soybean contigs were shown to have microsynteny with M. truncatula to some 

extent. The analysis in Mudge et al. revealed two large soybean regions showed high 

15



synteny with two M. truncatula chromosomes (Mudge et al. 2005). The syntenic 

regions span 3 Mb and contain 500 predicted genes with 75% of these soybean genes 

collinear with M. truncatula. 

  

1.4 DNA, gene, and genome

What is a gene? What is the relationship between a gene and DNA? What is a genome 

and what is chromosome? Why do we need to sequence a genome? To address these 

questions, we need to have the following basic knowledge. 

A genome is the entire genetic material of an organism. Deoxyribonucleic acid (DNA) 

is the genetic material of most living things (Avery et al. 1944) except for some viruses 

that use ribonucleic acid (RNA) as genetic material. A genome exists in the form of 

chromosomes that consist of DNA. Some genomes are composed of a single 

chromosome while others are divided into multiple chromosomes. A gene is a segment 

of a chromosome that encodes RNA. In some cases this initial RNA transcript is 

translated into protein, while in other cases the RNA is a stable molecule. A gene is the 

fundamental unit of heredity. All of the genes encoded in a genome gives the genotype 

of the organism and their expression results in the specific characteristics or phenotype, 

of the organism. 

1.4.1 DNA structure and central dogma

DNA, a polymer that consists of nucleotide units, consists of three components: a 
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pentose sugar, a phosphate, and a nitrogenous base. There are four nitrogenous bases 

that carry genetic information: adenine, cytosine, guanine, and thymine, abbreviated as 

A, C, G, and T, respectively. RNA also has A, C, and G, and instead of T, a uracil (U). A 

and G are purines and C, T, and U are pyrimidines. Another difference between DNA 

and RNA is that the pentose in DNA is 2-deoxyribose but the pentose in RNA is ribose. 

Ribose has an OH group at the 2’ position while 2-deoxyribose does not. The 

nitrogenous base is attached to position 1’ of the pentose ring through a glycosidic bond 

from the N1 of pyrimidines or the N9 of purines. The structure of DNA was first 

correctly proposed in 1953 by Watson and Crick (Watson and Crick, 1953), in a 2-page 

Nature paper, where they suggested that DNA has two helical polynucleotide chains that 

wind around the same axis. Each polynucleotide chain is built by the 3’-5’ 

phosphodiester linkage that links the 3’ position of one pentose ring to the 5’ position of 

the next pentose ring by a phosphate group. Both chains are right-handed helices and 

their direction is opposite, i.e. one is 5’ to 3’, another is 3’to 5’. For each chain, the 

bases lie on the inside of the helix and the sugar-phosphate backbone is on the outside. 

The DNA helix makes a complete turn every 3.4 nm with 10 nucleotides per turn. 

According to Watson and Crick, the two DNA chains are joined by hydrogen bonding of 

the purine and pyrimidine bases with G hydrogen bound with C, and A hydrogen bound 

with T. 

Chargaff demonstrated that although DNAs in different organisms have the same sugar-

phosphate backbone, they differ in the amount of the 4 bases and likely the base order, 
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suggesting to him that the sequence of the bases carries genetic information (Chargaff 

1950). The “central dogma”, the process of duplicating and expressing the genome, was 

first described by Francis Crick in 1958 (Crick, 1958) where he pointed out “Once 

information has passed into a protein it cannot get out again”. In 1970, Crick further 

clarified this idea by proposing there are three classes of information transfer: general 

transfer, special transfer, and unknown transfer (Crick, 1970). A general transfer occurs 

in most cells that include transfer from DNA to DNA, from DNA to RNA and from 

RNA to protein. A special transfer can only happen in special circumstances, including 

transfer from RNA to DNA, from RNA to RNA, and from DNA to protein. The transfer 

of biological information from protein to protein, protein to DNA, or protein to RNA 

have yet to be described and likely never happens in cells. The information transfer 

from DNA to DNA is called DNA replication.  DNA is duplicated by a 

semiconservative replication (Meselson et al. 1958), as each of the polynucleotide 

parental strands of DNA acts as a template for the synthesis of a new daughter strand. 

The sequence of the daughter strand is determined by the parental strand as dictated by 

the base pairing rules (A pairs with T, G pairs with C). After replication, the parental 

DNA duplex forms two daughter duplexes that are identical to each other and contains 

one parental strand and a newly synthesized strand. The transfer of genetic information 

from DNA to RNA, called transcription, occurs in all cells. In retroviruses that have an 

RNA genome, the RNA can be reversely transcribed into DNA by reverse transcriptase 

enzymes or RNA-dependent DNA polymerase. The genome of retroviruses consists of 
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single-stranded RNA that is converted to a single-stranded DNA and subsequently to a 

double stranded DNA that is then inserted to the genome of a cell during infection 

cycle. Reverse transcription allows RNA to act as genetic information. Interestingly, 

some plant viruses have a double-stranded RNA genome that is not reverse transcribed 

to DNA but rather is replicated by an RNA dependent RNA polymerase (van Kammen 

1985).

The transfer of information from RNA to protein is called translation. Translation 

allows for the expression of genetic information in the form of proteins. Translation is 

unidirectional, meaning that the information flow from RNA to protein is irreversible.  

The central dogma has been developed in great details, as more and more discoveries 

are made in the field of gene expression (shown in Fig1.2). Gene expression is regulated 

at the transcriptional, posttranscriptional, translational, and posttranslational levels. In 

eukaryotes, precursor messenger RNAs (pre-mRNAs), synthesized using DNA template 

undergo a process called splicing. During splicing, introns of pre-mRNA are excised 

and the exons are joined. In alternative splicing, exons from the pre-mRNA are 

reconnected in alternative ways to produce mRNA variants. These variants then are 

translated into isoform proteins (Lalli et al. 2003). 

The process of chemical modification of a protein after translation is called 

posttranslational modification. In this process, biochemical functional groups such as 

the acetyl, methyl, phosphate, and glycosyl groups are attached to a protein or protein 

structure, and oxidation to form disulfide bridges.
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Epigenetics refers to the study of a phenomenon wherein gene function is changed 

genetically but the sequence of the DNA is not changed (Adrian, 2007). The widely 

studied epigenetic processes include DNA methylation and histone modification.

Figure1.2 The schematic diagram of updated Central dogma

1.4.2 Gene

In eukaryotes, the protein-coding gene consists of exons, introns, as well as 5’ non-

translated and 3’ non-translated regions. Exons are DNA regions in a gene that are 

present in the mature mRNA while introns are DNA sequences between exons that are 

transcribed into pre-mRNA but will be spliced out when the pre-mRNA is processed 

into a mature mRNA. Generally speaking, exons constitute the open reading frame 

(ORF) that encodes a protein, but they also contain untranslated regions (UTR) that are 

located in 5’end and 3’end of a gene. Introns are removed from pre-mRNA by an 
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enzymatic complex called the spliceosome. The number and size of introns in different 

species and in genes of the same species are different.  The introns of genes in higher 

organism, such as flowering plants, can be much longer than the nearby exons. Each 

gene has regulatory regions that can regulate gene expression. All genes are flanked by 

a regulatory region that includes a promoter that binds the RNA polymerase and 

numerous transcription factor binding sites necessary for transcription initiation. The 

promoter regions contain consensus sequences such as TATA box, CAAT box and GC 

box. TATA box is located in 25-35 base pairs upstream of the transcription start site and 

position RNA polymerase II to the transcription start site. Most house-keeping genes 

have GC boxes instead of a TATA box that is located within 100 base pairs upstream of 

the start site. Transcription in many eukaryotes can be up-regulated by regulatory 

elements, called enhancers that may be located upstream or downstream of a promoter, 

within an intron, or even downstream from the last exon of a gene.  

RNA genes, also called non-coding RNA (ncRNA) genes in a genome, are transcribed 

to structural, catalytic or regulatory non-coding RNA transcripts that do not encode 

proteins (Eddy et al. 2001). Non-coding RNAs mainly include tRNA, rRNA, small 

nuclear RNA (snRNA), small nucleolar RNA (snoRNA), and microRNA (mRNA).

  

1.4.3 Genome

A genome is the entire genetic material in an organism, i.e. DNA (or RNA in some 
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viruses) that is composed of genes and non-coding DNA.  As mentioned above, genes 

can be divided into protein-coding genes and stable RNA coding genes and therefore a 

gene is defined as a region of a genome that is transcribed into RNA. Some of the 

protein-coding genes that are transcribed into messenger RNA, or its precursor, are 

unique, in the genome, i.e., there is only one copy in a genome while other protein-

coding genes have multiple copies, with the former called singletons and the latter 

typically called gene families. A gene family is a set of genes that evolved from a single 

ancestral gene and arose from gene duplication. A protein family is a group of 

homologous proteins encoded by a gene family. Gene duplication may result from an 

unequal crossover recombination (Fitch et al. 1991), a retrotransposition event, or 

duplication from a whole chromosome (Zhang et al. 2003). Gene duplication is 

considered a very important evolutionary driving force after the emergence of the 

common ancestral gene (Taylor 2004, Ohno 1970). Genome duplication is common in 

all living organisms, especially in plants. For example, the genome of Medicago sativa, 

a tetraploid, was duplicated at least once. Some genes have similar sequences to 

functional genes but they are not functional; these genes are called pseudogenes. 

Pseudogenes may arise by gene duplication, but their function was lost during evolution 

after duplication due to frameshift and/or nonsense mutations (Mighell et al. 2000). 

Pseudogenes also may result from retrotransposition-related process when the mature 

mRNA is reversely transcribed and inserted back into the genome (Vanin 1985). 

Therefore, these kinds of pseudogenes lack introns and upstream promoter sequences.
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When a genome is sequenced, the focus is on finding protein-coding genes, stable 

coding RNA genes and their regulatory elements. However, repetitive DNA sequences 

cannot be ignored in a genome because they constitute a significant portion of the 

genome in higher eukaryotes. The amount of repetitive DNA is very high in plants. For 

example, in pea, over 95% of the DNA sequence is estimated to be repeats (Thompson 

et al. 1980). Therefore, the role of repetitive DNA is crucial in the determination of 

chromosome size and structure (Flavell 1986). There are two types of repetitive DNA 

sequences in genome: tandem repeats and interspersed repeats. Tandem repeats are a 

cluster of the same DNA sequence (2 or more nucleotides in length) located adjacent to 

each other. Tandemly arranged DNA sequences include different kinds of satellite DNA, 

the telomeric repeat, and the rDNA. They lie at specific positions of chromosomes, such 

as pericentromer, subtelomer or telomere (Kubis et al. 1998). Simple sequence repeats 

(SSRs) (Jacob et al. 1991) or microsatellites, one type of tandem repeats that are 

clusters of 2 to 6 nucleotides (usually di-, tri-, tetranucleotide repeats). They are 

repeated a few to hundreds of times in eukaryotic genomes. The repeat (TA)n is the 

largest group of SSR repeats in plants (Gianfranceschi 1998). SSRs are length 

polymorphic and are one of the most important molecular markers. The interspersed 

repeats are distributed throughout the genome and interspersed with other sequences. 

These types of DNA repeats mainly contain transposable DNA elements and their 

remnants (Kubis et al. 1998).  Transposable DNA elements, the first of which the Ac-Ds 

control element was observed in maize (McClintock 1951), are divided into class I and 
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class II based on the method of transposition (Schmidt 1999, Flavell et al. 1994). Class 

II elements are called transposons since they move through DNA intermediates and 

include the Ac-Ds, En-Spm, Mu transposons, and miniature inverted repeat transposable 

elements (MITEs). Class I transposable elements contain retrotransposons and other 

retroelements. Retrotransposons are DNA sequences that move in a genome via RNA 

intermediates. They constitute a large proportion of a plant genome. There are two 

major types of retrotransposon. One is long terminal repeats (LTR), and the other is the 

non-LTR retrotransposon. LTR retrotransposons can be divided into two subgroups: 

Ty1-copia-like and Ty3-gypsy-like retroelements. They contain up to three open reading 

frames (ORFs) and are flanked by LTRs. Non-LTR retrotransposons include long 

interspersed nuclear elements (LINEs) and short interspersed nuclear elements (SINEs). 

LINEs do not have LTRs but have a poly(A) tail at their 3’ termini. LINEs are several 

kilobases in length and consist of two ORFs that code for a gag protein, and 

endonuclease and reverse transcriptase, respectively. They have the ability for 

autonomous retrotransposition. LINEs are considered as a major component of plant 

genomes (Schwarz-sommer et al. 1987; Wright et al. 1996). SINEs are up to several 

hundred bases long and contain a tRNA-derived region, unrelated DNA sequence, and a 

LINE-related region. SINEs are dependent on the reverse transcriptase supplied by 

LINEs for retrotransposition (Luan et al. 1993). Most plant LINEs and SINEs are 

transcriptionally inactive.
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1.5 The history of DNA sequencing methods 

In 1977, two sequencing approaches were described by different groups (Maxam & 

Gilbert 1977; Sanger et al. 1977). The Maxam-Gilbert sequencing method utilizes 

different chemical reactions to cleave radioactively labeled double-stranded DNA at 

specific base positions. The Sanger, or chain termination method, utilizes 

dideoxynucleotides of the four nucleotides in the enzymatic DNA synthesis reaction to 

terminate DNA chain growth. The Sanger method is widely used today and was used 

during this dissertation research. Therefore, it will be discussed now.

1.5.1 The Sanger dideoxynucleotide DNA sequencing method 

Sanger’s chain termination sequencing method uses dideoxynucleotides (ddNTPs) to 

terminate the synthesis of DNA in the presence of a DNA template, the four 

deoxynucleotides (dNTPs), four ddNTPs, a primer, DNA polymerase, magnesium, and 

buffer.  The primers anneal specifically to the DNA template and function as a starting 

site for the synthesis of a new DNA strand. Then, a corresponding nucleotide is attached 

to the end of the primer in a reaction catalyzed by DNA polymerase to form a 3’, 5’ 

phosphodiester bond between the last nucleotide of primer and the newly added 

nucleotide. According to base pairing rules, since an A pairs with a T and a G pairs with 

a C, if the template DNA has an A at a position, then a T will be esterified to the 
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corresponding position of the new DNA strand and vise versa. The new synthesized 

DNA continues extending until a terminator ddNTP is attached to the end of the new 

DNA. The absence of oxygen in 3’ position of deoxyribose of ddNTP terminates the 

synthesis of the new DNA strand. 

Radioisotopes were used originally in both the Maxam-Gilbert and Sanger methods to 

label and detect DNA fragments. Later, fluorescence dyes were introduced to replace 

the radioactivity and allow for automation of DNA sequencing. The primer-labeling 

method and the terminator-labeling method are utilized to fluorescently label the 

products of the DNA sequencing reaction. In the primer-labeling method, the 5’ end of 

the primer is attached by fluorescent dyes. Four different dye-labeled primers were used 

initially. More recently, in the terminator-labeling method, the dyes are attached to the 

ddNTPs instead of to the primers. This approach only requires one reaction tube 

because each ddNTP has a different dye. 
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1.5.2 Massively parallel pyrosequencing, the GS20 and FLX systems
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Figure 1.3 The process of pyrosequencing reaction 

In 2005, Margulies M. et al (Margulies et al. 2005) described an ultra-high throughput 

automated DNA sequencing system based on massively parallel pyrosequencing that 

can generate over 20 M bases in a single 4.5-hour run. The software of this GS-20 

system performs mapping or de novo assembly for genomes up to 50 M bases. The 

system is fast, cost-effective, simple, efficient, and convenient compared to the 

conventional Sanger technology. In this system, several million DNA templates are 

immobilized on each bead after sample preparation. When the sequencing reaction 

occurs (shown in Figure 1.3), nucleotides complementary to the template strand are 
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added into the growing DNA strand by the DNA polymerase enzyme. Every addition of 

a nucleotide releases one pyrophosphate (PPi) molecule. PPi and adenosine 

phosphosulfate (APS) are converted into ATP by sulfurylase. Luciferase enzyme 

hydrolyzes ATP and oxidizes luciferin to produce light and oxy-luciferin. The intensity 

of the light is proportional to the number of nucleotides added. This light is captured by 

a charge-coupled device (CCD) camera and then converted into a digital signal. The 

computer of the sequencer then combines the signal intensity with the positional 

information on the PicoTiterPlate device to determine the sequence of hundreds of 

thousands of individual reactions at the same time and generate millions of nucleotides 

per hour. The whole process for this sequencing method includes DNA library 

preparation and titration, emulsion-based clonal PCR (emPCR) amplification, 

sequencing by synthesis, and data analysis. 

More recently, 454/Roche introduced the GS-FLX system that is more sensitive and 

powerful than GS20. It can generate reads up to 250 bp in length, compared to the 100 

bp generated by GS20 system.
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2. Materials and Methods

2.1 Sequencing strategies

In this present work, the mapped BAC-based shotgun sequencing strategies was used to 

sequence the euchromatic arms of chromosomes1, 4, 6, and 8 of Medicago truncatula. 

This procedure is illustrated in Fig 2.1. The construction of the BAC library (120kb 

HindIII library) and the mapping of the BAC clones into large contigs were done by the 

University of California-Davis group.

Figure 2.1 Idealized representation of the mapped BAC-by-BAC shotgun sequencing 
strategy 

One thousand BAC seed clones were obtained from the UC Davis group and sequenced 
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in our lab. These clones contain known markers, or regions, of biological interest. They 

were fingerprinted to create a physical map for M.trunctula, and many of them have 

already been anchored to the genetic map by linkage analysis of simple sequence 

repeats (SSRs) and the use of EST. BAC ends that correspond to the seed BACs were 

located in BACs that could extend into the gaps between contigs. Since our lab is 

sequencing chromosome 1, 4, 6 and 8 of Medicago and the location of many seed BACs 

are already known, after sequencing the 1000 seed BACs, additional BACs from these 4 

chromosomes were chosen for sequencing to extend contigs on these chromosomes. For 

most of the sequencing, we used the traditional Sanger sequencing technology, but more 

recently we have developed a combined Sanger-454 approach, which will be discussed 

later. 

2.1.1 Sanger sequencing

2.1.1.1 Large scale BAC DNA isolation

The purpose of this procedure is to isolate BAC DNA from the E. coli host by using 

modified alkaline lysis procedure (Birnboim et al. 1979) followed by ethanol 

precipitation. First, E. coli cells containing BAC DNA were grown in LB media to get a 

large amount of BAC DNA. The cells were streaked onto the small LB Petri dish 

containing 15 μg/ml chlorophenicol. After incubating at 37 oC overnight, colony smear 

was picked using a bioloop and incubated into a falcon tube containing 3 ml of LB 
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media plus chlorophenicol. The tube then was incubated for 8-10 hours at 37oC in a 

shaker shaking at 250 rpm. After incubation, 3 ml of culture was transferred into a flask 

containing 200 ml media and then shaken for 8-10 hours. Cells then were collected by 

centrifugation at 5,000 rpm for 15 min in the RC5-B centrifuge at 4 oC. The supernatant 

was discarded into a container to be autoclaved later and the cell pellets were stored at -

70 oC. 

The following steps were performed to isolate BAC DNA from the E.coli cells. The cell 

pellets were thawed and resuspended in 8 ml of 10 mM EDTA (pH 8.0) using an 

Eppendorf pipette. 16 ml of alkaline lysis solution (1% SDS and 0.2N NaOH) was 

added very gently to lyse cell membrane and release the cell contents.  The bottle was 

not shaken, so as to avoid shearing chromosomal DNA. The bottle was kept in an ice-

water bath for 5 min and then 12 ml cold 3 M potassium acetate (KOAc) was added. 

The bottle was incubated in an ice-water bath for 30 min. The KOAc precipitates 

proteins, cell membrane debris, and chromosomal DNA and neutralizes the pH to 

renature single-stranded DNA to double-stranded (chromosomal DNA precipitates with 

proteins though it can be partially renatured, however, plasmid DNA can completely be 

renatured into double strand and remains in solution). After centrifuged at 10,000 rpm 

for 15 min to pellet SDS, proteins, chromosomal DNA, and cell debris, the supernatant 

was filtered through double-layered cheesecloth into an autoclaved bottle, and an equal 

volume of isopropanol was added to precipitate the BAC DNA. After mixing and then 

standing for 5 min at room temperature, the sample was centrifuged at 5000 rpm for 15 
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min and then supernatant was discarded. The DNA pellet was dissolved in 3.6 ml of 

10:50 TE, transferred the solution into a 50 ml Sorval centrifuge tube and 1.8 ml of 7.5 

M KOAc was added to remove residual chromosomal DNA and proteins and stored at -

70 oC for at least half an hour. 

After thawing at room temperature and then centrifuging at 10,000 rpm for 10 min, the 

supernatant was transferred into a 50 ml Corning tube and then appropriate amount of 

RNase A and T1 was added to digest RNA. The sample then was incubated in a water 

bath for 1 hour at 37 oC followed by the addition of 30 ml of 95% ethanol to precipitate 

DNA. After centrifugation at 3000 rpm for 25 min to collect the DNA pellet, the 

supernatant was discarded and the pellet was washed with 30 ml 70% ethanol and dried 

in the vacuum dryer or on the bench overnight.

 

2.1.1.2  DNA Fragmentation,  size  selection  and  insertion  into  pUC 

vector

After isolation, large-sized BAC DNA (100-150 kb) was sheared into small-sized DNA 

in the hydroshear (made by Gene Machines) (Oefner et al. 1996). Here the DNA pellets 

were dissolved in 250 μl ddH2O. After electrophoresing 5-10 μl on an agarose gel to 

check the concentration of DNA (Studier 1973), the sample was centrifuged for 30 min 

at 12,000 rpm in the cold room and then the supernatant was transfered to a clean 

microcentrifuge tube. Next 100 μl of DNA solution was chilled to 0 oC and sheared at a 

speed code of 10 in the hydroshear for 20 cycles. The sheared DNA fragments were 
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precipitated with 2 volumes of 95% ethanol containing 0.12 M NaOAc and collected by 

centrifugation at 12,000 for 15 min in cold room. After washing the fragments with 70% 

ethanol, the sheared DNA was dried in vacuum dryer for at least 15 min.

After hydroshearing, DNA fragments have overhangs. Therefore, they needed to be 

end-repaired before they were ligated to blunt-ended vectors in the ligation step (Pan et 

al. 1994, Bankier et al. 1987). In the end-repair procedure, T4 DNA polynucleotide 

kinase and Klenow DNA polymerase were used to add phosphate group to 5’ end and 

add nucleotides to pair with overhangs, respectively. Here the sheared DNA was 

dissolved in 27 μl autoclaved ddH2O and 5 μl 10X kinase buffer, 5 μl 10 mM rATP, 7 μl 

0.25 mM dNTPs, 1μl T4 DNA polynucleotide kinase and 2 μl Klenow were added. 

After incubation in a 37 oC water bath for 30 min, the reaction was halted by heating the 

tubes in a 70 oC water bath for 10 min to denature enzymes. 

Since only 1-4 kb DNA fragments were needed, the DNA fragments were size selected 

on a low melting agarose gel after electrophoresis at 12 mA for 1-1.5 hours. Fragments 

in the 1-4 kb size range were excised with a sterile razor blade, placed into Eppendorf 

tube and frozen at -70 oC. 

The DNA was extracted from the low melt gel by phenol (Sambrook et al. 1989). Here 

the gel containing 1-4 kb DNA was melted in a 70 oC water bath. An equal volume of 

TE-saturated phenol was added and mixed on a vortexer for 30 seconds. After 

centrifugation at 12,000 rpm for 5 min, the upper 90% of the aqueous layer containing 

DNA was transferred into a new tube, and then an equal volume of water-saturated ether 
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was added. After vortexing, it was centrifuged at 12,000 rpm for 3 min. The upper ether 

layer was discarded and the ether extraction was repeated. The tube then was placed in a 

vacuum dryer until the total volume was less than 700 μl, at which time the DNA was 

ethanol precipitated and ligated into SMA1-CIP treated pUC18 vector. The total volume 

of the ligation mix was 10μl, including the following reagents: X μl of DNA, 1 μl of 

10X Ligase Buffer, 2 μl of pUC18 SMA1 vector, 1 μl of T4 DNA ligase 400 U/ul and Y 

μl of sterile ddH2O. X plus Y should be 6. The tube with the ligation mix was then 

centrifuged at 1000 rpm for 1-2 seconds and could be stored at 4 oC for 24-48 hours.

2.1.1.3 Subclone generation and isolation

The DNA was transformed into electro-competent E. coli cells by electroporation 

(Rakesh et al. 1996). Here 2.5μl of ligation mix was transferred into E.coli XL1blue-

MRF competent cells, mixed, and then transferred into an electroporation cuvette. The 

cuvette was placed in the electroporation chamber, and 2.5 kV was applied. After 

centrifugation at 2500 rpm for 5 min, the supernatant was discarded and 25 μl of X-gal 

and 25 μl of IPTG were added to each tube to resuspend the transformed cell pellets. 

Transformed cultures were plated on LB plus ampicillin agar plates. The LB plates were 

dried in a hood, inverted, and then incubated at 37 oC for 20 hours. After storing in the 

cold room to intensify the blue color, the Genetix colony picker was used to robotically 

pick the white, insert-containing colonies into 384-well microtiter plates containing TB 
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media and ampicillin. This was followed by shaking for 22 hours at 37 oC at 520 rpm 

with oxygen in a Genemachines HiGro incubator.

The DNA was automatically isolated from these cells after they were collected by 

centrifugation at 3000 rpm for 10 min, and stored at -80 oC for at least 30 min to 1hour. 

After thawing, 23 μl TE-RNase was added to each well using the Zymark station 

(Sciclone ACH500) and shaken at 1800 rpm for 8 min. Subsequently, 23 μl alkaline 

lysis solution was added and after shaking at 1800 rpm for 8 min, 23 μl 3 M NaOAc 

(pH4.5) was added and shaken at 1200rpm for 10 min. The plates were frozen at -80 oC 

overnight.

Next the plates were thawed and centrifuged at 3200 rpm for 45 min to clear the lysate. 

40 μl of the supernatant then was transferred into a new 384-well plate using the 

Velocity11Vprep and 40 μl of 100% isopropanol was added using the Vprep. After 

standing at room temperature for 5 min and centrifuged at 3000 rpm for 30 min, the 

supernatant was discarded invertedly on paper towel. 50 μl of 70% ethanol then was 

added using the Vprep, and the plates were centrifuged at 3000 rpm for 10 min, 

decanted, and dried on bench or in a vacuum dryer. The DNA then was dissolved in 20 

μl of ddH2O and a portion was analyzed by agarose gel electrophoresis. 

2.1.1.4 Subclone DNA sequencing

The Sanger chain-termination method (Sanger et al. 1977) was used to sequence the 
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DNA. Here 6 μl of DNA template was dispensed into a viper plate from 384-well 

microtiter plate using Hydra (Robins Scientific, Inc) or V-prep (Velocity 11. Inc.) 

robots. Then 2 μl of 1:16 BigDye or ET reaction mix (containing dNTPs, buffer, 

ddNTPs with dye attached, DNA polymerase, primers) was added to each well and the 

reaction mix was concentrated in the bottom of the tubes by centrifuging at 1000 rpm 

for 2-3 seconds. The plates were covered with a rubber plate sealer, placed into the 

thermocycler and incubated at 60 cycles consisting of a denaturation at 95 oC for 30 

second followed by rapid thermal ramp to 50 oC, and an annealing at 50 oC for 20 

second, rapid thermal ramp to 60 oC, and an extension at 60 oC for 4 min. 

Unreacted dNTPs, ddNTPs, primers were removed from the incubation mix by 

precipitating the resulted nested fragment set with 95% ethanol/0.12NaOAc followed 

by centrifuging 30 min at 3200 rpm. After washing the pellets with 70% ethanol and 

centrifuging 10 min at 3200 rpm, supernatant were decanted as before and the plates 

were covered with KimWipes and dried on bench after covering with KimWipes. The 

plates then were sealed and stored at -20 oC.

2.1.1.5 Sample loading and data analysis

Prior to loading the Applied Biosystem Inc (ABI) sequencers, 15 μl of 0.1 mM EDTA 

was added into each well using Hydra and then the plates were shaken for about 1.5 

hours. The sample then was loaded onto an ABI 3730 fluorescence-based capillary 
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sequencer (Deschamps et al. 2003). The DNA sequence data was collected and then 

transferred to Sun computer workstations for automated base-calling with Phred (Ewing 

et al. 1998). The data was assembled into contigs with Phrap and viewed and analyzed 

with both Consed (Gordon D. et al. 1998) and Exgap (Hua A et al. 2003).  

2.1.2 Massively parallel pyrosequencing on the 454 GS20 system

Massively parallel pyrosequencing on the 454 GS20 system includes 4 major steps: 

library preparation, emPCR, sequencing, and data analysis (Margulies et al. 2005). 

When this technology was first introduced in our lab, we made single-stranded libraries 

and purified them using Qiagen columns. However, more recently we have been making 

double-stranded libraries and purifying them using solid-phase reversible 

immobilization (SPRI) magnetic beads (DeAngelis et al. 1989). I will describe these 

two different approaches separately. The steps for emPCR and sequencing are almost 

the same for the two different libraries except for small details which I will discuss later.

2.1.2.1 Library preparation

2.1.2.1.1 Single-stranded template DNA (sstDNA) library 

A single-strand template DNA (sstDNA) library was prepared using several steps 

including nebulization, end polishing, adaptor ligation, library immobilization, fill-in 
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reaction, library isolation, and assessment using RNA 6000 Pico assay.

One sample preparation is enough for each genome despite its size and no cloning and 

colony picking were needed during library preparation. To make the library, the 

genomic DNA was sheared to 300-500 bp-long fragments by nebulization (Bodenteich 

et al. 1994), followed by purification on MinElute PCR purification columns. The 

nebulized DNA was end polished (blunt-ended and phosphorylated) by adding T4 

polynuleotide kinase, T4 DNA polymerase, dNTPs, ATP, BSA, and buffer. Adaptors A 

and B (44bp) then were attached to the ends of the end-polished DNA fragments under 

the catalysis of T4 ligase. 20 bp of the adaptor provides priming sequences for emPCR 

amplification, 20bp is sequencing primer and 4bp is base key that is used by the 

software for base calling. Adaptor B has a biotin tag at its 5’end that attaches the DNA 

library onto streptavidin-coated immobilization beads.  There are 4 kinds of fragments 

with different adaptors. Only the fragments with B adaptors could attach to the 

immobilization beads. After ligation, nebulized, end polished, and adaptor-ligated DNA 

fragments were immobilized on immobilization beads followed by fill-in reaction. 

During fill-in reaction, DNA polymerase, dNTPs, and buffer were added to make the 

DNA fragments blunt ended. Next, the melt solution (NaOH) was added to denature the 

double-stranded DNA, and then the non-biotinylated strand was released. These non-

biotinylated strands that have an A adaptor at one 5’end and a B adaptor at another 5’ 

end, were purified and used as an sstDNA library. The sstDNA library was assessed for 

its concentration and average size using the RNA 6000 Pico assay and then titrated to 
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determine the optimal amount (1 copy DNA per bead) required for emPCR.

2.1.2.1.2 Double-stranded template DNA (dstDNA) library preparation

For the preparation of dstDNA, DNA is nebulized, end-polished, and ligated with 

adaptors, as that in sstDNA library preparation. After being ligated with adaptors, 

overhangs on DNA fragments are fixed by fill-in reaction directly instead of being 

immobilized onto immobilization beads and denatured by alkaline solution. Another 

difference is that we use SPRI beads to purify dstDNA instead of MinElute PCR 

purification column used in sstDNA library preparation. After dstDNA library is made, 

it is analyzed by the Caliper AMS90. The number of DNA molecules per μl was 

computed from the concentration (ng/μl) resulting from the caliper AMS-90 using the 

molecules calculator spreadsheet. 

Molecules/μl= (sample conc.; ng/μl) X (6.022 X 10  23  mol./mole)  
            (656.6 X 109 gram/mole) X (fragment length; nt)
The dsDNA library stock then was diluted to the ratio of 1:4 and stored at -20oC for 

later use.

2.1.2.2 EmPCR (for both dsDNA and ssDNA libraries)

This step amplifies DNA using emulsion-based clonal DNA PCR. The purified and 

quantified sstDNA library was immobilized to the capture beads by hybridizing to the 
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complementary primers attached to the capture beads. For the dstDNA library, the 

above annealing step was omitted. The DNA concentration and bead number are 

optimized so that each bead contains 1 DNA segment or less on average. We use 

different equations to calculate DNA concentrations for dsDNA and sstDNA libraries. 

The capture beads attached by sstDNA library, or the beads and dstDNA mixture, were 

emulsified using the amplification mix including platinum HiFi Taq polymerase, 

pyrophosphotase, primer mix, MgSO4, and buffer in a water-in-oil mixture. Each bead 

stayed within its own microreactor containing the complete amplification reagents. The 

PCR amplification takes place in these microreactors. The forward PCR primer was 

biotinylated for later use. All microreactor reactions occurred in parallel, resulting in 

bead-immobilized clonal amplified DNA fragments. After amplification, the 

microreactors were broken by adding isoproponal, followed by centrifugation. Next, 

streptavitin-coated magnetic enrichment beads were added to catch the positive capture 

beads containing biotinylated primers. After the removal of the uncaptured waste beads 

on a magnetic particle collector (MPC), melt solution (NaOH) was added to release the 

captured positive beads from enrichment beads and denature the double stranded DNA 

bound to the capture beads to single stranded DNA. Then the beads rich in single-

stranded DNA were separated from the enrichment beads on MPC. Sequencing primers 

were annealed to the above DNA beads on thermocycler by running the annealing 

program. Then bead counting was performed for calculating the number of loading 

beads. The DNA beads then were mixed by vortexing. Five μl of beads were added into 

40



2 ml of Coulter Counter cuvette. After swirling the cuvette to mix and placing it on the 

station of Coulter, the beads were measured and the number of beads was used to 

calculate the volume of beads required to obtain 300,000 beads per region that was to be 

loaded onto the PicoTiterPlate.

2.1.2.3 Sequencing

To load DNA beads onto the PicoTiterPlate for sequencing, the DNA beads first were 

combined with enzyme beads and packing beads and then centrifuged into wells of 

PicoTiterPlate. The diameter of each well is designed to allow only one DNA bead to be 

deposited into each well. Sulfurylase and luciferase required for sequencing were 

located on the enzyme beads. To generate the 200,000 high quality sequencing reads on 

average for each PicoTiterPlate, the sequencing reagents (containing buffers and 

nucleotides) were flowed across the wells of the plate and nucleotides were flowed in a 

fixed order: TACG. Nucleotides complementary to the template strand were added into 

the growing DNA strand by DNA polymerase enzyme. Every addition of a nucleotide 

releases one pyrophosphate (PPi) molecule. PPi and adenosine phosphosulfate (APS) 

were converted into ATP by sulfurylase. Luciferase enzyme hydrolyzed ATP and 

oxidized luciferin to produce light and oxy-luciferin. The light then was captured by the 

CCD camera. The intensity of the light was proportional to the number of nucleotides 

added. The sequential flow of the four nucleotides was repeated for 42 cycles, and 

41



generated an average read per well of 100 bases for GS20 system (for FLX system, 

length was 250 bases per read). Twenty million bases (100bp x 200,000 reads) were 

generated in 5.5 hours. The FLX system, a more sensitive system, produced more than 

100 million bases per 7.5-hour run with the average yield of 400,000 reads per run.

2.1.2.4 Data analysis 

After the signal was captured by the CCD camera, it was processed. There the 

flowgrams and base-called sequences with corresponding quality scores were generated 

after image acquisition, image processing, and signal processing. A nucleotide sequence 

of each well was produced in the form of a flowgram. Every flowgram began from the 4 

base key sequences that were utilized to identify and calibrate the wells. The length of 

homopolymer could be determined because the signal strength is proportional to the 

number of based added. Flowgrams were used as input information for training, 

assembling, or mapping application. Final read sequences were generated by a training 

application to improve the base calling accuracy. The assembly application used in de 

novo sequencing assembled the final reads into contigs and produced a consensus 

sequence of the whole DNA sample. The mapping application used in resequencing 

maps the final reads to the reference sequence and produced the consensus DNA 

sequence and the final output.
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2.1.3 Paired end sequencing in GS20/FLX system

Although the GS20 system has many advantages over traditional sequencing methods, it 

does have some shortcomings. One of the shortcomings is that the contigs resulting 

from the GS20 are unoriented and unordered, which causes difficulty in closing gaps. 

To overcome this, a paired-end sequencing approach was developed that aids in 

ordering and orienting contigs (Javie 2006, Korbel et al. 2007) generated by sequencing 

shotgun genomic libraries. This method entails preparing a separate paired-end library 

from the same DNA sample used to produce shotgun DNA data. The paired-end library 

preparation differs from shotgun library preparation as it uses special adaptors, primers, 

and enzymes. The libraries then could be amplified using the same kit and protocol as 

for shotgun dsDNA emPCR and then sequenced using the GS20 sequencing kit, the GS 

PicoTiterPlate kit, and the GS20 or FLX instrument. The procedure of paired-end DNA 

library preparation was described briefly as follows. The DNA sample was cleaved into 

2-3 kb fragments using the hydroshear. The fragments then were methylated to protect 

internal EcoRI sites from digestion by EcoRI enzyme and made blunt ended by DNA 

fill-in polymerase. Biotinylated Hairpin adaptors with non-methylated EcoR I and Mme 

I sites were attached onto both ends and exonuclease was added to digest any remaining 

DNA without ligated hairpin structures.  EcoRI was added to cleave the hairpin 

structures and create sticky ends that then were ligated to circularize. The circular DNA 

then was sheared to about 500 bp fragments in the nebulizer. The 19 bp paired-end 
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adaptors were ligated onto either end to serve as priming sequences for both 

amplification and sequencing and as a 4 base key sequence utilized for base calling. 

Since there were gaps when adaptors were ligated with paired-end library DNA 

fragments because the ends of adaptors are not phosphorylated, a fill-in reaction using 

Bst DNA polymerase displaces the nicked strands and extends the strands to full length. 

The paired-end library then was amplified by PCR, quantitated on caliper and diluted to 

appropriate concentration for further emPCR.

2.1.4 Pooling strategies

To save money and labor, different pooling strategies were used during pyrosequencing 

(shown in Figure 2.2 A and B). For the first pooling strategy, we pooled BACs without 

adding tags. Taking 100 BACs as an example, 10 horizontal and 10 vertical pools were 

grown, nebulized, and 20 libraries were made as the steps in library preparation 

followed by emPCR and sequencing. In combination with the sequence data from 3730 

sequencer and/or the paired end sequencing, each horizontal pool was compared with 

each vertical pool and the sequences for the intersectional BAC were obtained. 

As to the second pooling strategy, each individual BAC was grown and nebulized. 

Library was made for each BAC as the steps in library preparation except that in 

adaptor ligation step, a multiple identifier (MID) adaptor containing a unique 10 

nucleotide sequence instead of a common adaptor was ligated to DNA fragments. After 

library preparation, 12 DNA libraries with 12 different MIDs were pooled together and 
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quantitated followed by emPCR and sequencing. The sequences for each BAC with a 

unique MID tag were separated by the GS FLX analysis software that allows for 

automated grouping and analysis of MID-containing reads.
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Figure 2.2 Pooling strategies in 454 technology: (A) BAC arrays in the first pooling 

strategy: VP stands for vertical pool and HP stand for horizontal pool; (B) The MID 

workflow in the second pooling strategy

2.2 Computational tools in DNA sequence analysis

After completely sequencing the Medicago genome, the genes were predicted using 

GENSCAN (Burge et al. 1997) and FGENESH (Salamov et al. 2000) after first masking 

out repeats using Repeatmasker (Smit and Green, 1999). Then, GeneSplicer (Pertea et 

al. 2001) or Splicepredictor was used to determine HnRNA processing splicing sites and 

tRNA scanSE (Lowe et al. 1997) was used to predict tRNA genes. The database of plant 

cis-acting regulatory DNA elements (PLACE) was used to recognize plant regulatory 

motifs conserved in several species (Higo et al. 1999). Programs such as RepeatMasker 

(Smit and Green, 1999), Signal Scan, and CpGFinder also were used to identify other 
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M.truncatula genomic features. To identify evolutionary conserved genomic features, 

tools such as Blast (Altschul et al. 1990), Crossmatch (Smith et al. 1981, Gordon et al. 

2001), and clustal W (Larkin et al. 2007) were used to compare the M. truncatula 

genome data with that from A. thaliana, Oryza sativa, Populus trichocarpa, Lotus 

japonicus, and Glycine max. Gene Ontology (GO) was annotated automatically using 

Blast2GO (Götz et al. 2008) on the M. truncatula protein-encoding genes by searching 

InterPro domains.

GENSCAN, an ab initio gene prediction program that is based on a probabilistic model 

of composition/gene structure properties (Burge et al. 1997), captures the general and 

specific compositional properties of a eukaryotic gene: exon, intron, splice site, 

promoter and provides information that is independent and complementary to that 

provided by homology-based gene identification methods such as BLASTX. The 

substantial differences in gene density and structure (e.g. intron length) that exist 

between different C+G% compositional regions were considered in this program. 

GENSCAN predicts multiple genes in a sequence, where genes can be partial or 

complete, and genes occurring on both DNA strands. It also indicates the reliability of 

each predicted exon. FGENESH (Salamov et al. 2000) is the HMM-based gene 

prediction program with the algorithm similar to GENSCAN. The difference between 

these two programs is that GENSCAN includes known sequence features that include 

splice sites and start sites. A gene with identity or high homology to a protein was 

classified as ‘putative’ and a ‘–like protein’ based upon the protein name. A gene 
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without similarity to other proteins but with EST homology was termed as ‘unknown’ 

protein. A gene predicted by two prediction programs but without protein or EST 

homology was defined as a ‘hypothetical’ protein according to IRGSP standard (Leung 

et al. 2002). Genes predicted by one prediction program also were termed possible 

hypothetical proteins.

Genesplicer (Pertea et al. 2001), a program that can identify splice sites in eukaryotic 

mRNA is useful for ab initio gene prediction, after the exons and introns first are 

located. In most eukarotes, GT (GU in mRNA) and AG are located in the 5’ boundary or 

donor site of introns and the 3’ boundary or the acceptor site of introns, respectively. 

Besides these dinucleotides, other consensus sequences also are found near the donor or 

acceptor site, such as a pymimidine-rich region preceding the AG at the acceptor site, or 

a shorter sequence following the GT at the donor site. The spliceosome complex 

recognizes these consensus sequences and removes the introns from the hn-mRNA to 

generate the mature RNA. Although several programs, such as NetPlantGene, 

Netgene2, HSPL, NNSplice, GENIO, SpliceView and GeneSplicer also could be used 

to predict these splice sites, GeneSplicer, considered the best predictor in terms of its 

accuracy and its efficiency, was chosen as there was no limit for input sequence length, 

for example it could process 20Mb of chrII of A.thaliana, whereas other programs limit 

the submitted sequence length to a few kilobases. The method in GeneSplicer was 

derived from the maximal dependence decomposition (MDD) (Burge et al. 1997) and 

was improved with Markov models.
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The program tRNAscan-SE (Lowe et al. 1997) combines three tRNA prediction 

approaches, i.e. tRNAscan1.3 (Fichant et al. 1991), Pavesi algorithm (Pavesi et al. 

1994), and covariance model search program covels (Eddy et al. 1994) to obtain the 

speed, sensitivity and specificity. tRNAscan1.3 (Fichant et al. 1991) was the most 

widely used RNA detection program in which each tRNA candidate must have two 

intragenic promoters and can form base pairings in tRNA stem-loop structure. Pavesi 

(Pavesi et al. 1994) et al designed a different algorithm that only looks for linear 

sequence signals existing as eukaryotic RNA polymeraseIII promoters and terminators. 

Covariance models (Pavesi et al. 1994) use both primary consensus and secondary 

structure information to find putative tRNAs and thus tRNAscan-SE can identify 99-

100% of transfer RNA genes in DNA sequence with a false positive rate of less than one 

per fifteen billion nucleotides. The first two programs were used to run input sequences 

to screen out the candidate tRNAs which then underwent the scrutiny of covels. Besides 

wild-type tRNA genes, tRNAscan-SE also could detect tRNA-derived SINEs and tRNA 

pseudogenes.

RepeatMasker, a program searching DNA sequence for repetitive elements and low 

complexity, was used to screen a query sequence before the query sequence was utilized 

to search against a database. After using RepeatMasker, a modified query sequence was 

generated in which all the identified repeats and low complexity sequences were 

masked by “N”s. A detailed table also was produced to annotate all identified repeats or 

low complexity sequence such as small RNA pseudogenes, LINEs, SINEs, LTR 
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elements. RepeatMasker was used in a database search to avoid producing misleading 

results, because a major proportion in plant genome comprises repetitive or low-

complexity sequences. 

Cross-match, a program designed for quickly comparing protein and nucleic acid 

sequences and for database search which used the slightly modified Smith-Waterman-

Gotoh algorithm (Smith et al. 1981, Gotoh 1982), was used to compare sequences in 

RepeatMasker. Cross-match also was utilized for several other tasks. First, it was used 

to compare reads to vector sequences to screen out the vector. Second, it was use to find 

the overlap or repeats between two sequences.  Third, it was used to search a profile 

against a database.

The  Basic  Local  Alignment  Search  Tool  (BLAST)  (Altschul  et  al  1990),  the  most 

widely  used  program  to  compare  sequences  and  search  for  their  similarity,  aligns 

sequences by measuring local similarity in the form of the maximal segment pair (MSP) 

score. BLAST is a robust sequence comparison tool, and it is one order of magnitude 

faster than other existing similar tools. Blast was used for DNA and protein sequence 

database  searches,  motif  searches  and  gene  identification  searches.  Since  BLAST 

generated a bit score and an expect value (E value) for each alignment using statistics, 

the higher  the  score,  the better  the alignment  and the lower the E value,  the more 

significant the homology was. Different BLAST programs were used when different 

query sequences were compared with different databases. BlastP was used to compare 

an  amino  acid  sequence  with  a  protein  database.  BlastN  was  used  to  compare  a 
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nucleotide  sequence  with  a  nucleotide  database.  BlastX  was  used  to  compare  a 

nucleotide translated into all reading frames with a protein database. TblastN was used 

to compare a protein sequence with a nucleotide database translated into all reading 

frames. TblastX was used to compare a nucleotide sequence translated into six reading 

frames with a nucleotide database translated in all reading frames.

Gene Ontology (GO) has been developed by the GO Consortium to attempt to 

consistently describe gene products in different databases based on the knowledge that 

many genes functioning in the core biological processes are shared by all eukaryotes 

(The Gene Ontology Consortium 2000). GO consists of three independent structured 

controlled vocabularies (ontologies) that describe gene products according to their 

biological process, molecular function, and cellular components. The building blocks of 

GO are GO terms that are made of a unique ID with the form GO:nnnnnnn and a term 

name, e.g. GO:0000166 nucleotide binding. Go terms are constructed as nodes of a 

network and a child term can be related to several parent terms. 

Blast2GO (B2G) is a tool designed to electronically assign GO terms to genomic 

sequences of non-model species based on similarity searches with statistic analysis 

(Conesa et al. 2005). Briefly, Blast is used in B2G to find homologs to query sequences. 

Mapping is then performed to obtain GO terms associated with the Blast hits. An 

annotation rule is applied to assign GO terms to the query sequence. Statistical analysis 

can be performed after GO annotation is available. Moreover, B2G provides different 

statistical charts describing the results obtained from blasting, mapping or annotation. 
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The alignment of multiple nucleotide or amino acid sequences is used to detect 

homology and evolutionary relationship among sequences and thus it is a very useful 

tool in molecular biological research. Most of the automatic alignments use 

‘progressive’ method that first aligns the most related sequences and then gradually 

adds in the less related ones devised by Feng and Doolittle (Feng et al. 1987). Clustal W 

is a program that improves the sensitivity of progressive multiple alignment approach 

without losing the speed and efficiency. The basic multiple alignment algorithm 

contains the following three major steps. Firstly, all sequences are aligned pairwisely to 

calculate a distance matrix that shows the divergence of each pair of sequences. 

Secondly, a guide tree is generated based on the distance matrix of step 1 using the 

Neighbor-Joining method (Saitou et al. 1987). Thirdly, the sequences are progressively 

aligned based on the branch order in the guide tree.
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3. Results and Discussion

3.1 Characteristics of the Medicago truncatula genome 

3.1.1 Repetitive sequences and transposable elements

When the M. truncatula genomic sequences were searched against the A. thaliana 

repeat database using Repeatmasker, about 11% of the genome was identified as 

repetitive sequence, which is comparable with that in A. thaliana (~10%) (Arabidopsis 

Genome Initiative 2000) and in G. max (~15%) but less than that in O. sativa (~35%) 

(International Rice Genome Sequencing Project 2005), L. japonicus (34.3%) (Sato et al. 

2008), and in P. trichocarpa (42%) (Tuskan et al. 2006). A total of 16,865 di-, tri-, and 

tetra-nucleotide simple sequence repeats (SSRs) were identified in Medicago genome 

with a frequency of occurrence estimated to be 1 SSR per 15.1kb when we consider the 

total length of the 8 pseudomolecules of the medicago genome is 255Mb. Di-, tri-, and 

tetra-nucleotide SSRs accounted for 56.6%, 30.6%, and 12.8% of the identified SSRs. 

The repeat (TA)n, the most abundant SSR in plants (Gianfranceschi 1998), accounted 

for 36% of the total SSRs with (TA)n, (TTA)n, and (TAAA)n each representing 63.62% 

of di-, 18.47% of tri-, and 23.27% of tetra-nucleotide repeat units, respectively in 

Medicago. A total of 8433 transposable elements were identified, among which the total 

copy number of class I TE subfamily is higher than that in A. thaliana, and P. 

trichocarpa but much lower than that in L. japonicus, G. max, and O. sativa and the 
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total copy number of class II is similar to that in A. thaliana, and P. trichocarpa but less 

than that in L. japonicus, G. max, and O. sativa (Table 3.1 and Table 3.2). Since, no 

SINEs could be identified in class I while searching against the A. thaliana repeat 

database, the SINE sequences from all other plants were retrieved and compared with 

the Medicago genomic sequence. As a result, 305 SINES were found.

Table 3.1 Transposon abundance on the Medicago truncatula chromosomes

Table 3.2  The comparison of the transposon copy numbers in  M. truncatula  (Mt), L.  
japonicus (Lj), G. max (Gm), P. trichocarpa (Pt), O. sativa (Os) and A. thaliana (At)

Transposons chr1 chr2 chr3 chr4 chr5 chr6 chr7 chr8
Class I
LTR-copia 348 389 564 577 633 327 472 517
LTR-gypsy 171 274 449 301 348 299 322 308
LINEs 77 95 105 90 130 37 74 87
SINEs 36 55 39 40 44 15 45 31
Class II
En_Spm 12 11 24 14 27 26 17 17
MuDR 34 37 50 53 45 16 40 49
Tcl-type 23 22 34 32 36 17 23 35
hobo-activator 19 10 25 37 37 21 20 33
Tourist/Harbinger 8 9 15 17 18 12 11 11
unclassified 57 63 111 97 100 49 63 62

Mt Lj Gm Pt Os At
Class I 7299 75343 ~58200 ~5000 61900 2109
Class II 1134 11786 ~7000 ~1000 163800 1385
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3.1.2 Genes encoding non-coding, stable RNAs

3.1.2.1 tRNA genes:

The program tRNAscan_SE 1.21 identified 632 putative transfer tRNA genes in 

Medicago truncatula genome including 523 genes that decode 20 standard amino acids 

(as shown in Table 3.3), 100 pseudogenes, 1 selenocysteine tRNA gene, 4 possible 

suppressor tRNAs, and 4 unknown isotypes. For those tRNA genes decoding the 20 

standard amino acids, the most abundant was tRNALeu with 39 copies, while the least 

abundant was tRNACys with only 9 copies. Chromosome 5 contains the most tRNA 

genes, with 91 encoded, while both chromosome 6 and 7 encode the fewest, 48 tRNA 

genes each.  Although some medicago tRNA genes are clustered, the majority of the 

genes are dispersed individually throughout the genome. The clustered tRNA genes 

contain 2 to 7 of the same or different genes, with the largest cluster encoding 7 tRNAAla 

genes within a 27 kb region on chromosome 6, which most likely arose from recent 

tandem duplication since they are highly conserved with over 90% identity. 

The total number of tRNA genes in A. thaliana) (629) and L. japonicus (638) are very 

similar to that in M. truncatula while the number is higher in P. trichocarpa (817) and in 

O. sativa (763), and the highest in G. max (1295). The genomic organization of the 

tRNA genes in the above organisms is similar to that in the Medciago genome in which 

most of the tRNA genes are dispersed individually through the genome except for some 

clusters.
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It is well established that the number of tRNA gene copies determine tRNA abundance 

(Itoh et al. 2007) as shown by a plot of the frequency of each amino acid obtained from 

the entire rice or Arabidopsis protein set against the number of corresponding tRNAs as 

well as observed in L. japonicus, P. trichocarpa, and G. max (Figure 3.1). The same 

tendency also was observed in C. elegans (Duret 2000), suggesting that the use of gene 

dosage to regulate tRNA gene expression levels likely appeared during the early stages 

of eukaryotic evolution (Itoh et al. 2007). In Medicago truncatula, this tendency also 

exists when the copy number of tRNA genes is plotted against amino acid frequency 

(shown in Fig 3.1).

As seen from Table 3.3, each tRNA gene has a preferred isotype. Does the preferred 

isotype correlate with the relative synonymous codon usage (RSCU) that represents the 

ratio of the observed frequency of a codon over the frequency expected (Duret 2000). 

In medicago, we also can observe a similar, although scattered, correlation between the 

number of isoacceptors and RSCU as reported for rice and Arabidopsis (Itoh et al. 

2007).
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Figure 3.1 Correlation between the number of tRNA gene copies and occurrence 
frequency of amino acids in (A) O. sativa, (B) A. thaliana, (C) P. trichocarpa, (D) G. 
max, (E) L. japonicus, and (F) M. truncatula (A and B were taken from Itoh et al, 2007).

D

E
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Table 3.3. Medicago truncatula isoacceptor tRNA gene copy number and the relative 

synonymous codon usage (RSCU)

Amino acidCodon Gene number RSCU Amino acid Codon Gene numberRSCU

Gly GGU 2 1.48 Arg AGA 9 2.16

GGC 18 0.52 AGG 6 1.45

GGA 14 1.39 CGU 13 0.9

GGG 3 0.61 CGC 0 0.45

Val GUU 13 1.78 CGA 4 0.62

GUC 4 0.55 CGG 3 0.42

GUA 5 0.67 Leu CUU 8 1.56

GUG 7 0.25 CUC 0 0.66

Lys AAA 16 1.04 CUA 9 0.63

AAG 16 0.96 CUG 3 0.57

Asn AAU 8 1.29 UUA 6 0.96

AAC 29 0.71 UUG 13 1.62

Gln CAA 15 1.27 Ser AGU 0 1.14

CAG 5 0.73 AGC 15 0.63

His CAU 0 1.36 UCU 9 1.64

CAC 17 0.64 UCC 1 0.71

Glu GAA 16 1.17 UCA 9 1.5

GAG 10 0.83 UCG 1 0.36

Asp GAU 0 1.46 Thr ACU 9 1.47

GAC 24 0.54 ACC 4 0.78

Tyr UAU 0 1.3 ACA 8 1.43

UAC 11 0.7 ACG 1 0.32

Cys UGU 0 1.26 Pro CCU 6 1.61

UGC 9 0.74 CCC 0 0.49

Phe UUU 0 1.25 CCA 10 1.48

UUC 24 0.74 CCG 1 0.42

Ile AUU 17 1.5 Ala GCU 16 1.77

AUC 0 0.72 GCC 0 0.58

AUA 5 0.78 GCA 11 1.34

Met AUG 38 GCG 5 0.31

Trp UGG 8

58



3.1.2.2 microRNA genes:

To identify the microRNA (miRNA) precursor candidates in Medicago genome, the 8 

Medicago truncatula pseudochromosomes were compared with the Arabidopsis  

thaliana mature miRNA sequences (203 miRNA) downloaded from the miRNA registry 

database (http://microrna.sanger.ac.uk/sequences/) using crossmatch. As a result, 45 

precursor candidates encoding 17 miRNA species were found with miR399 being the 

most abundant Medicago miRNA family with 5 members and 12 copies (shown in 

Table 3.4) and their putative target genes belong to ubiquitin-conjugating enzyme 

family. This number is comparable with that in Lotus japonicus where 53 miRNA were 

encoded on 6 Lotus chromosomes (Sato et al. 2008). The total number of miRNA genes 

in the A. thaliana (203), O. sativa (158), and P. trichocarpa (169) is much higher than 

that in G. max (120), M. truncatula (45) and L. japonicus (53) genomes, indicating that 

possibly the legume family has many legume-specific miRNAs that could not be 

identified here. Actually, 1312 miRNA legume-specific candidates were found in L.  

japonica (Sato et al. 2007). Recently, 8 novel microRNAs were identified from M. 

truncatula (Szittya et al. 2008) (Table 3.5). As seen from table3.6, 14 out of 17 miRNA 

gene families found in Medicago are conserved in A. thaliana, O. sativa, and P. 

trichocarpa, G. max, and L. japonicus, suggesting that a core set of miRNA gene 

families are conserved in angiosperms. 
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Plant microRNA Potential Target Finder (miRU) then was used to find the putative 

targets of the microRNAs by searching against the Dana Farber Cancer Institute (DFCI) 

Medicago gene index (http://compbio.dfci.harvard.edu/tgi/cgi-bin/tgi/gimain.pl?

gudb=medicago), which previously was available from The Institute for Genomic 

Research (TIGR) as the Medicago Gene Index (MtGI). The putative targets and the 

putative proteins encoded by the target genes were shown in Table 3.4. It seems that the 

potential target genes of the counterparts of most of the conserved miRNAs in the six 

plants are homologous (Tuskan et al. 2006, Table S7, Sato et al. 2008, Table S6). 
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Table 3.4 List of miRNA precursor genes and the putative targets

* The number in bracket indicated the copy number of the miRNA in one chromosome

Medicago
Chromosom
e Number

Conserved
Arabidopsis
miRNA

Putative
target

Annotation

1 Ath-miR167b TC115313 Auxin response factor 8
1 Ath-miR166c TC141583 Putative uncharacterized protein
1 Ath-miR408 TC116986 Basic blue copper protein
1 Ath-miR164b TC128769 NAC domain protein NAC1
1 Ath-miR160b TC135807 Auxin response factor 10
1 Ath-miR399c TC115486 ubiquitin-conjugating enzyme family
2 Ath-miR399f TC115486 ubiquitin-conjugating enzyme family
2 Ath-miR399d TC115486 ubiquitin-conjugating enzyme family
2 Ath-miR169f TC115415 Transcription factor
2 Ath-miR169b TC115415 Transcription factor
2 Ath-miR169e TC115415 Transcription factor
3 Ath-miR319b TC135610 Putative uncharacterized protein
3 Ath-miR393a TC115130 transport inhibitor response 1 (TIR1),
3 Ath-miR169j

(2)*
TC117738 Transcription factor

4 Ath-miR390b TC118766 Protein kinase
4 Ath-miR399f

(2)*
TC115486 ubiquitin-conjugating enzyme family

4 Ath-miR171a TC120850 Scarecrow-like protein
4 Ath-miR397a TC112793 Putative uncharacterized protein
4 Ath-miR167d TC115313 Auxin response factor 8
4 Ath-miR399a

(5)*
TC115486 ubiquitin-conjugating enzyme family

4 Ath-miR166a
(2)*

TC141583 Putative uncharacterized protein

4 Ath-miR169j TC117738 Transcription factor
5 Ath-miR319a

(2)*
TC135610 Putative uncharacterized protein

5 Ath-miR319c TC135610 Putative uncharacterized protein
5 Ath-miR393b TC115130 transport inhibitor response 1 (TIR1),
6 Ath-miR157b TC131038
6 Ath-miR399c TC115486 ubiquitin-conjugating enzyme family
6 Ath-miR399b TC115486 ubiquitin-conjugating enzyme family
7 Ath-miR164a

(2)*
TC128769 NAC domain protein NAC1

8 ath-miR166c TC141583 Putative uncharacterized protein
8 Ath-miR162b TC123701
8 Ath-miR171a TC114268 Scarecrow-like protein
8 Ath-miR396b TC116910 Cysteine protease precursor
8 Ath-miR396a TC116910 Cysteine protease precursor
8 Ath-miR829.1 TC128533 Helix-loop-helix DNA-binding
8 Ath-miR171c TC120850 Scarecrow-like protein
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Table 3.5 The novel microRNAs in M.truncatula

*Taken from (Szittya et al. 2008)

Table 3.6 Number of conserved microRNA families in 6 plant genomes

miRNA 
family

Arabidopsis Rice Poplar Soybea
n

Lotus Medicago

miR159/31
9

6 8 5 11 4 4

miR160 3 6 8 2 2 1
miR162 2 2 3 0 0 1
miR164 3 5 6 8 5 3
miR166 9 12 17 5 5 4
miR167 4 9 8 3 1 1
miR169 14 17 32 12 5 6
miR171 4 7 10 11 6 3
miR390 2 1 4 2 2 1
miR393 2 2 4 5 2 2
miR396 2 3 7 4 3 2
miR397 2 2 3 2 1 1
miR399 6 11 12 3 6 12
miR408 1 1 1 3 2 1
* The data for the first three plants are from (Tuskan et al, 2006, table S8), the data for lotus from (Sato et al, 2008, table S6)

3.1.2.3 rRNA genes:

Typically plant ribosomes contain four rRNAs, a 5S, 5.8S, 18S and 26S. The 

corresponding genes, 5S rRNA genes (5S rDNA) and 18-5.8-26 rDNA units tend to 

Novel microRNAs Putative targets Annotation

miR2086 TC125570 Ubiquitin carrier protein

miR2087 No target found N/A

miR2088 TC126233 Peptidyl-prolyl cis-trans isomerase

miR2089 TC112724 TIR; Disease resistance protein

miR1507 TC128248 Disease resistance protein

miR1509 TC131818 Beta-glucan-binding protein

miR1510a No target found N/A

miR1510b No target found N/A
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cluster on the telomeric or centromeric regions. In medicago, a cluster of 5S rDNA is 

located near the pericentromeric region on chromosome 4 while another 5S rDNA 

cluster is located near the telomeric region on chromosome 5. A locus containing 10 

copies 18S-5.8S-26S rDNA operons, 13 copies of lone 26S rDNA, and 12 copies of 

lone 18S rDNA spans 0.3 Mbp on chromosome 5 in the pericentromeric region. The 

similar rDNA distribution also was found in other plant genomes. In O. sativa, one 17S-

5.8S-25S locus was found at the telomeric end of the short arm of chromosome 9 and a 

second 17S-5.8S-25S rDNA locus at the end of the short arm of chromosome 10 while a 

single 5S cluster is present on chromosome 11 in the vicinity of the centromere 

(International Rice Genome Sequencing Project 2005). In A. thaliana, one 5S cluster 

was found in the telomere of chromosome 3 and the other was in the telomere of 

chromosome 1 while one complete 18S-5.8S-26S rDNA was found in the centromere of 

chromosome 3 and the other the centromeric region of chromosome 1(Salanoubat et al. 

2000, Theologis et al. 2000). In addition, two megabase-sized rDNA gene clusters are 

located at the tip of the short arms of chromosome 2 and 4, respectively (Mayer et al. 

1999). In P. trichocarpa, FISH indicated one 5S repeat cluster on LGXVII and two 18-

5.8-26 unit clusters, one of which is located on the telomere of LGXIV, other of which 

remains unlocated (Tuskan et al. 2006). Two copies of 18-5.8-26 unit and two or more 

copies of 5S rDNA are located together in L. japonicus, genome (Sato et al. 2008). In 

G. max,, three 5s rDNA clusters were identified: the first cluster containing 88 copies is 

located between 12.53 Mb and 12.57Mb on super contig 1 (near the centromere); the 
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second one containing 60 members is located in the beginning of the super contig 519; 

the third one containing 27 copies is clustered in the beginning of the super contig 872. 

As to the unit 18S-5.8S-26S in soybean, a large cluster containing 50 units was found 

between 11.41 Mb and 14.15 Mb on super contig 6 (near the centromere) and 46 small 

clusters including at least one unit were found in the beginning of their corresponding 

super contigs.

3.1.3. Characterization of the protein-coding genes

In total, 50,540 protein-encoding genes were identified within the latest updated 

assembly of the M. truncatula genome, with 23,175 genes (46%) having homology with 

sequences in the medicago EST database. The statistics for the 8 medicago 

chromosomes is shown below in Table 3.7. The percentage of GC content on each 

chromosome (~33%) is very similar to each other. Chromosome 5 has the highest gene 

number (8,802) and gene density (1 gene / 4.5 kb) while the chromosome 1 has the 

lowest gene density (1 gene / 5.5 kb). Chromosome 5 also encodes the highest number 

of short (<99 nucleotide) genes that may account for its high gene number and density 

and lowest average gene length (1,934 bp). As to exons, chromosome 1 has the highest 

average exon number per gene (3.64/gene) and the shortest average exon size (~240 bp/

exon) while chromosome 6 has the lowest exon number (2.98/gene) and the longest 

exon (~309 bp/exon). In contrast to the conservation of the average exon size, the 

average intron size varies on different chromosomes.
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Table 3.7 Medicago truncatula genome summary statistics

Feature Chr1 Chr2 Chr3 Chr4

Length 29,095,779 27,211,856 39,719,832 35,871,116
GC content (%)

Overall 33.33 33.19 33.43 33.32
Coding 41.19 41.29 41.25 41.16

Noncoding 31.19 30.92 31.16 30.95
Number of genes 5316 5350 7881 7178
Gene density 

(kb/gene) 5.5 5 5 5
Average gene length 2149.57 2026.22 2236.87 2127.8

Average aa length 290.44 299.89 313.97 293.01
Exons

Number of exons 19,325 18,564 27,002 24,918
Total length 4,647,819 4,829,217 7,446,900 6,331,251

Average per gene 3.64 3.47 3.43 3.47
Average size 240.51 260.14 275.79 254.08

Introns
Number on introns 14,010 13,215 19,122 17,741

Total length 6,793,310 6,024,274 10,200,998 8,959,837
Average size 484.9 455.9 533.5 505

Number (%) expressed genes  2446 (46%) 2448 (46%) 3698 (47%) 3307 (46%)

Chr5 Chr6 Chr7  Chr8

Length 39,917,350 19,087,130 30,489,780 33,703,334
GC content (%)

Overall 32.9 33.64 33.17 33.15
Coding 40.93 40.9 41.08 41.18

Noncoding 30.77 31.33 31.01 30.92
Number of genes 8802 3621 6082 6310
Gene density 

(kb/gene) 4.5 5.3 5 5.3
Average gene length 1934.38 2035.23 2117.12 2216.29

Average aa length 296.75 305.55 295.08 295.42
Exons

Number of exons 29,726 10,781 20,668 22,127
Total length 7,862,379 3,330,015 5,402,286 5,611,299

Average per gene 3.38 2.98 3.4 3.51
Average size 264.5 308.88 261.38 253.6

Introns
Number on introns 20,926 7,161 14,587 15,818

Total length 9,184,958 4,046,704 7,488,639 8,389,338
Average size 438.9 565.1 513.4 530.4

Number (%) expressed genes 3998 (45%) 1640 (45%) 2731 (45%) 2907 (46%)
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The M. truncatula genome was compared with the five other sequenced plant genomes, 

i.e. A. thaliana (Arabidopsis Genome Initiative 2000), O. sativa (International Rice 

Genome Sequencing Project 2005), P. trichocarpa (Tuskan et al. 2006), L. japonicus 

(Sato et al. 2008), and G. max and the results are shown in Figure 3.2. 

The gene number in Medicago is less than that in soybean but more than that in the 

remaining four plant genomes (Figure 3.2A). The gene density of the Medicago is 

similar to that in A. thaliana and it is almost twice as much as that in O. sativa, P. 

tricorcarpa, and L. japonicus and three times as much as that in G. max (Figure 3.2B). 

The average gene length of the Medicago genome is the second shortest while the lotus 

has the longest gene size (Figure 3.2C). The average exon sizes of the six organisms 

have no much difference (range in 247-282 bp) while the average intron sizes have 

distinct difference (range in 148-498 bp) (Figure 3.2D&E). The M. truncatula genome 

has the lowest GC content (29.5%) while the O. sativa has the highest (43.6%) (Fig. 

3.2F).The M. truncatula genome has the highest single-exon genes (around 40% and 

55% of them are expressed) that account for its shortest protein length (299 aa) (Figure 

3.2G&H). All the predicted proteins in medicago were compared with the proteins in 

the other five plant genomes and the results showed that 45.5%, 41.2%, 39.2%, 38.5%, 

and 36.6% of the medicago proteins are homologous to the proteins in G. max, L.  

japonicus, A. thaliana, P. trichocarpa, and O. sativa, respectively. 
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Figure 3.2 The comparison of the gene features in A. thaliana (At),  O. sativa (Os),  P. 
trichocarpa (Pt), G. max (Gm), L. japonicus (Lj), and M. truncatula (Mt)
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It was possible to classify the predicted protein-encoding genes into functional groups 

according to GO (The Gene Ontology Consortium 2000) based on their InterPro 

domains. As seen in Figure 3.3, the nucleic acid binding domain is the largest domain in 

M. truncatula (4251) as well as in A. thaliana (3848) and O.sativa (10065) while the 

nucleotide binding domain is the largest in L. japonicus (2601), G. max (6573), and P. 

trichocarpa (5065). As to the category of biological process, the largest group is the 

domains functioning in protein metabolic process in M. truncatula and this is also the 

case in the other five plants. The second largest group is the domain functioning in DNA 

metabolism in M. truncatula as well as in rice while the transport domain is the second 

largest domain in the remaining four organisms. 
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Figure 3.3 Gene Ontology (GO) category classifications. The results are shown for 10 
representative classes of ‘Molecular  function’ (A) and ‘Biological  process’ (B).  The 
predicted protein-encoding genes were automatically annotated by searching InterPro 
domains using program Blast2GO.  

The comparison of the functional classifications among the six plant genomes based on 

GO annotation (Figure 3.4) showed that the Medicago genome contains comparable 

percentage of the main domains to that in other five plant genomes. From the 40 

overrepresenting interpro domains in M. truncatula listed in Table 3.8 along with the 

corresponding domains in the other five genomes, we can see that most of the 

overrepresented domains in M.truncatula also were found overrepresented in the five 

other sequenced genomes with only a few exceptions. The most interesting domain 

among the exceptions is the late nodulin domain (IPR006810). This special domain was 
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only found in proteins of the galegoid group of legumes such as M.truncatula, M. 

sativa, and Vicia faba. G. max and L. japonicus don’t belong to this clade of legumes. 

The late nodulin protein family is composed of several plant specific late nodulin 

sequences that are similar to the ENOD3 protein in Pisium sativum which is 

homologous to the nodule-specific cysteine-rich (NCR) protein is expressed in the late 

stages of root nodule formation and contains a signal peptide at the N-terminus and a 

cysteine-rich mature peptide at the C-terminus (Scheres et al. 1990).

Figure  3.4  Percentage  of  functional  domains  in  the  six  plant  genomes  based  on 
InterProScan and Gene Ontology
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Table 3.8 The comparison of the overrepresenting interpro domains in six plant genome  

IPRID Name Mt Lj Gm Pt Os At

IPR001878 Zinc finger, CCHC-type 1215 171 336 260 3280 514

IPR017441 Protein kinase ATP binding, conserved site 861 724 2229 1996 975 697

IPR001611 Leucine-rich repeat 837 400 1289 1286 1285 554

IPR008271 Serine/threonine protein kinase, act ive site 766 460 1552 1334 624 435

IPR001810 Cyclin-like F-box 727 397 279 357 928 903

IPR001969 Peptidase aspart ic, active site 671 41 187 71 638 80

IPR002182 NB-ARC 482 122 373 556 594 160

IPR000767 Disease resistance protein 439 100 331 0 510 164

IPR013541 Protein of unknown function DUF1723 392 0 400 20 586 14

IPR002885 Pentatricopeptide repeat 366 433 921 633 626 481

IPR001128 Cytochrome P450 352 499 898 476 936 508

IPR001841 Zinc finger, RING-type 320 304 808 678 900 609

IPR013083 Zinc finger, RING/FYVE/PHD-type 313 313 799 692 846 518

IPR017451 F-box associated type 1 302 96 25 84 117 298

IPR013210 Leucine-rich repeat, N-terminal 255 182 487 522 742 304

IPR000209 Peptidase S8 and S53 248 109 224 143 317 113

IPR016040 NAD(P)-binding 236 329 801 619 715 121

IPR000157 Toll-Interleukin receptor 224 124 205 196 4 143

IPR012337 Polynucleotidyl transferase 217 120 347 154 4188 740

IPR012677 Nucleotide-binding, alpha-beta plait 181 237 545 370 568 256

IPR013242 Retroviral aspartyl protease 180 0 48 3 1110 45

IPR001650 DNA/RNA helicase, C-terminal 180 77 431 325 444 267

IPR000504 RNA recognit ion motif, RNP-1 180 218 540 363 556 267

IPR002213 UDP-glucuronosyl/UDP-glucosyltransferase 172 126 303 231 272 116

IPR010285 Protein of unknown function DUF889 170 3 316 5 127 0

IPR005135 Endonuclease/exonuclease/phosphatase 155 29 192 92 256 182

IPR005225  Small GTP-binding protein 150 118 514 340 350 253

IPR003137 Protease-associated PA 147 84 271 250 179 118

IPR002198 Short-chain dehydrogenase/reductase SDR 147 136 379 181 350 196

IPR004330 FAR1 146 14 111 66 277 34

IPR008906 HAT dimerisation 140 28 29 84 270 76

IPR005123 2OG-Fe(II) oxygenase 135 128 290 189 186 139

IPR011992 EF-Hand 132 114 320 229 283 186

IPR001806 Ras GTPase 131 155 413 128 262 187

IPR000637 HMG-I and HMG-Y, DNA-binding 125 35 107 53 132 88

IPR013101 Leucine-rich repeat 2 120 88 41 39 125 174

IPR009007  Peptidase aspartic, catalyt ic 119 78 262 111 1594 246

IPR009810 Late nodulin 117 0 0 0 0 0

IPR004332 Transposase, MuDR, plant 112 0 21 22 812 332

IPR006670 Cyclin 108 54 169 120 160 101

IPR003676 Auxin responsive SAUR protein 106 55 170 125 73 84
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3.2 In silico identification of nodule-specific Tentative Consensus 
sequences (TCs)

Expressed Sequence Tags (ESTs) are segments from either 5’ or 3’ end of a cDNA 

clone, usually 500-800 bp long, that are wildly used to identify expressed genes. 

Tentative Consensus sequences (TCs) are constructed by assembling ESTs into non-

redundant transcripts based on the standard “overlap for at least 40 bases with at least 

95% sequence identity” (Quackenbush et al. 2001).  Since TCs represent more of the 

original mRNA, they are more useful than ESTs and they often represent a complete 

transcript. Moreover, the relative abundance of ESTs in a TC in the different libraries 

indicates the expression pattern of the gene and often is called an “electronic northern”. 

The Dana Farber Cancer Institute database for medicago TCs (previously the TIGR 

MtGI) was constructed based on data from international Medicago truncatula EST 

sequencing and gene research projects (Quackenbush et al. 2001, Mergaert et al. 2003). 

When it was utilized to identify nodule specific genes, 340 TCs were identified that 

were expressed solely in root nodules (Federova et al. 2002). At that time, MtGI release 

4.0 only contained 140,000 ESTs from 30 cDNA libraries. However, MtGI release 9.0 

now contains 259,642 ESTs entries from 74 cDNA libraries and this new data could 

reveal new aspects about nodule-specific TCs, such as additional nodule-specific TCs, 

or TCs no longer nodule-specific. In addition, with the availability of about 75% 

Medicago truncatula genomic sequence, new insights about nodule-specific genes may 
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be revealed by study nodule-specific genes including their organization in Medicago 

truncatula genome, their evolution, and their regulatory regions.

Among the 74 cDNA libraries, 7 libraries now have been generated from nodules at 

different development stages (Table3.9).  MtSN4, MtBB, R108Mt, and NOLLY were 

prepared from emerging or young nodules, and additional cDNAs were obtained from a 

nodulated root library, from effectively nitrogen-fixing nodules (GVN) and senescent 

nodules (GVSN). It should be noted that the MtSN4, MtBB and nodulated root libraries 

likely also contain plant genes expressed in root tissue because they were prepared from 

the mixture of nodules and adjacent roots. 

Table3.9. The nodule libraries of Medicago truncatula 

Names of 
nodule libraries

Total No. 
of ESTs

Total No. 
of TC

Description of the libraries Library source

MtSN4 847 208 Nodules 4 days and 10 days after 
Sinorhizobium meliloti inoculation 
(pooled)

Centre National de la Recherche 
Scientifique (CNRS) (France)

MtBB 7785 2535 ESTs from  emerging nodules and 
adjacent root segments of 21-day-old 
plant harvested 4 days after inoculation 
with Sinorhizobium meliloti

Genoscope and Centre National dela 
Recherche Scientifique institut 
National de la Recherche 
Agronomique (France)

R108Mt 447 309 ESTs from symbiotic, developing young 
nodule

Institut des Sciences Vegetales 
(France)

GVN 6446 2619 ESTs from one -month-old nitrogen-
fixing root nodules

University of Minnesota

GVSN 2661 1491 ESTs from senescent nodules University of Minnesota
Nodulated root 3185 2014 Mixture of roots and nodules The Samuel Roberts Noble 

Foundation
NOLLY 3066 1696 ESTs from young nodules 4 to 8 days 

post infection with Sinorhizobium 
meliloti strain Sm41 

Centre National de la Recherche 
Scientifique (CNRS) (France)

Total 24437 10872
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Table3.10. Nodule-specific TCs encoding known proteins

TC no. Strong blast hit E value TC no. Strong blast hit E value

138811 Nodule-specific cysteine-rich peptide 10 E=10-35 118859 Carbonic anhydrase E=10-80

126333 Nodule-specific cysteine-rich peptide 19 E=10-34 114678 a-type carbonic anhydrase (Lotus japonicus) E=10-92

121233 Nodule-specific cysteine-rich peptide 19 E=10-20 118427 Calmodulin-like protein 6b E=10-46

139055 Nodule-specific cysteine-rich peptide 53 E=10-32 134855 Calmodulin-like protein 1 E=10-98

124823 Nodule-specific cysteine-rich peptide 54 E=10-27 114830 Calmodulin-like protein 2 E=10-95

135570 Nodule-specific cysteine-rich peptide 68 E=10-24 114792 Calmodulin-like protein 4 E=10-61

136099 Nodule-specific cysteine-rich peptide 74 E=10-27 125585 Calmodulin-like protein 5 E=10-76

116268 Nodule-specific cysteine-rich peptide 76 E=10-31 114830 Calmodulin-like protein 3 E=10-98

118128 Nodule-specific cysteine-rich peptide 324 E=10-28 119502 Putative cysteine proteinase 0

130739 Nodule-specific cysteine-rich peptide 94 E=10-32 124698 Putative cysteine protease E=10-106

126448 Nodule-specific cysteine-rich peptide 103 E=10-36 (Trifolium pratense)

132307 Nodule-specific cysteine-rich peptide 111 E=10-16 117139 Cysteine proteinase(Lotus japonicus) E=10-133

130698 Nodule-specific cysteine-rich peptide 144 E=10-25 113318 Putative cysteine proteinase 0

134562 Nodule-specific cysteine-rich peptide 147 E=10-31 134079 Lipoxygenase E=10-149

128830 Nodule-specific cysteine-rich peptide 159 E=10-33 113617 Lectin-related polypeptide E=10-64

131174 Nodule-specific cysteine-rich peptide 159 E=10-15 (Robinia pseudoacacia)legume

131588 Nodule-specific cysteine-rich peptide 201 E=10-32 115344 LCB3-ROBPS putative bark agglutinin E=10-19

136689 Nodule-specific cysteine-rich peptide 217 E=10-25 LECRPA3 precursor

135979 Nodule-specific cysteine-rich peptide 265 E=10-33 124863 Aspartyl protease family protein E=10-85

128856 Nodule-specific cysteine-rich peptide 301 E=10-20 (Arabidopsis)

134771 Nodule-specific cysteine-rich peptide 310 E=10-16 118074 Albumin1(Phaseolus vulgaris) E=10-32

120047 Leghemoglobin (Medicago sativa) E=10-52 124996 sst1 protein(Lotus japonicus) 0

139434 Leghemoglobin 1 E=10-65 131886 Hypothetical protein (Vitis vinifera) E=10-31

131798 Leghemoglobin 2 E=10-68 132384 Lupeol synthase (Lotus japonicus) 0

127422 Leghemoglobin (Medicago sativa) E=10-74 118824 Thioredoxin M-type,chloroplast precursor E=10-22

139029 Leghemoglobin (Medicago sativa) E=10-67 (Brassica nupus)

124562 Leghemoglobin (Medicago sativa) E=10-75 120929 Putative non-LTR retroelement E=10-126

131669 Leghemoglobin (Medicago sativa) E=10-66 reverse transcriptase

120047 Leghemoglobin 29 (Vacia faba) E=10-58 112566 Nodule-specific IRE-like protein 0

119713 Leghemoglobin 29 (Vicia faba) E=10-55 122801 Lectin-related polypeptide (Robinia pseudoacacia) E=10-25

133101 leghemoglobin E=10-14 124612 B12D-like protein (Phaseolus Valguris) E=10-33

126384 Nodule-specific glycine-rich peptide 2D E=10-32 116072 REMO_SOLTU Remorin (Solanum tuberosum) E=10-40

127188 Nodule-specific glycine-rich peptide 3B E=10-65 123589 Putative repetit ive prolin-rich protein E=10-22

119756 Nodule-specific glycine-rich protein 3A E=10-93 118528 Zinc finger (C3HC4-type RING finger) E=10-29

132746 MtN1 E=10-29 family protein

113105 MtN6 0 136882 Unnamed protein product (Medicago sativa) E=10-147

114236 MtN9 E=10-169 1134070 Unnamed protein product (Vitis vinifera) E=10-25

138204 MtN11 E=10-34 139724 Unnamed protein product (Vitis vinifera) E=10-66

134290 MtN15 E=10-42 130876 Unnamed protein product (Vitis vinifera) E=10-12

131451 MtN16 E=10-33 124823 Unknown protein (Arabidopsis) E=10-36

121205 MtN22 E=10-84 134887 ORF2 (Glycine max) E=10-24

115962 MtN22 E=10-96 137023 ORF2(Glycine max) E=10-39

115929 MtN22 E=10-107 126121 LATE BLOOMER (Pisum sativum) E=10-17

114025 MtN24 E=10-115 117825 Hexose transporter(Solanum lycopersicum) 0

131314 MtN25 E=10-16 114041 Putative purine permease (Oriza sativa) E=10-86

129897 MtN29 E=10-35 119349 Putative thioredoxin m2 [Pisum sativum] E=10-21

113188 Enod8.1 0 116878 CAF1 family ribonuclease E=10-14

127504 Early nodulin 12 precursor (N-12) E=10-24 117384 Peroxidase precursor E=10-92

114187 Early nodulin ENOD18 [Vicia faba] E=10-74 133034 Embryo-specific 3 E=10-96

114239 ENOD20 E=10-73 127962 Low affinity sulphate t ransporter E=10-60

113614 Nod25 E=10-139 121687 Homeodomain-like E=10-33

130836 Late nodulin E=10-29 121445 Basic blue protein (Medicago sativa) E=10-61

138028 Carbonic anhydrase E=10-130 137391 N8 protein E=10-32
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191 nodule-specific TCs were obtained from the in silico comparison of gene 

expression of all the medicago cDNA libraries using the “EST expression” web site 

under the DFCI Medicago gene index set to a likelihood statistic, R, of greater than 9, 

that indicates the expression variation was significant based on Stekel et al’s study 

(Stekel et al. 2000). To further identify the function of these TCs, the program blastX 

was used to search these TCs against non- redundant databases (nr) in NCBI with the E 

value less than 10-10. One hundred TCs were found similar to known GenBank 

sequences (shown in table 3.10). Ninety one TCs have no homology in GenBank.

3.2.1 Characterization of nodule-specific TCs

3.2.1.1 Nodule-specific cysteine-rich peptide

Among 100 TCs with strong similarity to known proteins, 21 were identified either as 

nodule-specific cysteine-rich peptides (NCRs) or cystein cluster proteins (CCPs) (see 

table 3.10). Interestingly, 29 more TCs similar to the NCR gene family were identified 

by aligning the remaining 91TCs with no homology in GenBank using ClustalW2.  In 

total, 50 NCR genes were identified in my study (shown in Fig3.4). Previously, 114 

CCPs and more than 311 NCRs were identified by two research groups, respectively 

(Fedorova et al. 2002, Mergaert et al. 2003). The number of NCRs identified in my 

research was much less because only TCs with R greater than 9 in the in silico gene 

expression analysis were chosen and considered as nodule-specific since the study 

(Stekel et al. 2000) showed when R>9, the identified genes in the computational gene 
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expression analysis represent genuine variation, and are not false positive results. Forty 

six out of 50 NCRs have more than 4 ESTs, among which, TC129888 contains the 

highest number of ESTs (138ESTs). TCs must contain more than 4 ESTs to be 

considered as a true differential expression when analyzing expression data in silico 

(Audic et al. 1997). Fedorova and the associates (Fedorova et al. 2002) also found that 

TCs identified as nodule specific and consisting of six of more ESTs could usually be 

confirmed by physical measurements of transcript abundance on microarray or northern 

blots. They also mentioned that only 40 of the 114 TCs identified as CCP transcripts 

were composed of more than 5 ESTs. 

The NCR genes were expressed at different developmental stages, 27 in young, mature 

and senescent libraries, 7 in mature and senescent libraries, 6 in young and mature 

libraries, and 1 in young and senescent libraries. Two TCs and 7 TCs were found solely 

expressed in young and mature libraries, respectively. Most of the NCR genes were 

mainly expressed at the mature stage.

The NCR protein family that contains a late nodulin domain also consists of short 

peptides (60-90 amino acids) with characteristic of a conserved signal peptide, and a 

conserved cysteine motif (Fodorova et al. 2002, Mergaert et al. 2003). Except for the 

conserved signal peptide and the conserved cysteine motif, the remainder of an NCR 

sequence shows extensive divergence. All NCR genes encode small mRNAs of about 

400 to 700 nucleotides long and encode for polypeptides of 60 to 70 amino acids. The 

highly conserved N-terminal region was composed of 20-29 hydrophobic amino acids 

76



and was predicted as a signal peptide by SignalP (Mergaert et al. 2003). In contrast to 

the conserved signal peptide, the remainder of the polypeptides was highly divergent 

except for conserved Cys with constant number of amino acids between them (shown in 

Fig3.5). C1 and C2 were spaced by 5 amino acids, while C3 and C4 were spaced by 4 

amino acids. Moreover, hydrophobic residues, located one amino acid N terminal to C1, 

an Asp and a Pro adjacent to C2, a basic amino acid (Arg or Lys) preceding and a 

hydrophobic amino acid after C3, the second Asp between C2 and C3, one or several 

Pro between C2 and C3, and one Gly between C3 and C4 were relatively well 

conserved. The alignment of the deduced amino acid from TC126333 could not show 

its conserved characteristics since it was 40-amino-acid longer than the other deduced 

NCR amino acids, although they did have a conserved signal peptide and a conserved 

cysteine motif. The deduced amino acid from TC121233 was 100% identical to partial 

of TC126333 and it was lack of the conserved signal peptide and the conserved C1 and 

C2 while the signal peptide in 5 of the 50NCR was not present.
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       Signal peptide                    C1    C2      C3  C4

Figure 3.5 Jalview of  ClustalW2 results  for  the deduced amino acids  from 50 TCs 
similar to the NCR gene family. Conserved signal peptide and cysteines were marked.

3.2.1.1.1 The genomic organization of NCR genes 

When the NCR genes were searched against each Medicago pseudochromosome using 

Chromosome Visualization Tool (CViT) to find the location of NCR genes, the results, 

as shown in Figure 3.6 reveal that although most of the NCR genes were clustered, 

others were dispersed throughout the genome. The genes in clusters were homologous 

to one or two NCR genes and likely evolved through tandem gene duplication, while 

genes dispersed on chromosomes most likely arose from segmental duplication.
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Figure 3.6 The positions  of  NCR genes  on different  chromosomes shown by CViT 
(http://www.medicago.org/genome/cvit_blast.php)
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3.2.1.1.2. Evolution of NCR genes in Medicago truncatula

To examine the evolutionary pressures on NCR genes, the rates of non-synonymous 

(Ka) substitutions and synonymous substitutions (Ks) were determined for these genes. 

A synonymous substitution means that the substitution of one base for another in an 

exon of a protein-coding gene doesn’t change the corresponding amino acid sequence 

while a non-synonymous substitution means a substitution in coding sequence change 

the amino acid sequence. A ratio of Ka/Ks greater than 1 indicates that a gene is under 

positive or diversifying selection that preserves the non-synonymous substitutions and 

thus may cause a protein has a new function or a protein binds a new substrate. When 

the ratio is less than 1, a gene is under purifying selection that preserves the 

synonymous substitutions and thus maintains the function of the gene product. When 

the ratio is 1, a gene is under neutral selection. A Ka/Ks tree based on the calculation of 

Ka and Ks is shown in Figure 3.7. From the tree, we can see that several NCR genes 

underwent purifying selection and others underwent positive selection as the Ka/Ks 

ratios of the purifying selection and positive selection ranged from 0.30 to 0.95 and 

from 1.1 to 3.4, respectively.
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Figure 3.7 Ka/Ks tree indicating the positive (red) and purifying selection (black)
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3.2.1.1.3 The gene features of NCR genes

All NCR TCs were searched against non-redundant nucleotide database in GenBank 

using BlastN to find the BACs containing these genes and the location of these genes on 

the BACs. Only those TCs with at least 99% identity to Medicago genomic sequence 

were chosen for the further analysis. By analyzing the blast result, NCR genes were 

found to contain only one intron and two exons. The names of TCs and the 

corresponding BAC clone, the position, the chromosome name and the size of gene and 

intron were listed in Table3.11. As can be seen in table 3.11, the size of most of NCR 

genes were in the range of 400 to 820 bp except for 3 genes that were somewhat longer 

(up to 1365 bp). The intron size was around 100 bp except for all but two longer introns. 

The 5’ splicing donor site (GT) and 3’ splicing acceptor site (AG) were found in 15 out 

of 18 introns. The remaining 3 introns without normal donor and acceptor sites may 

result from the TC assembly errors.

Since most of NCR genes were mainly expressed in the mature libraries, it is possible 

that all the gene expression were under the control of some common regulatory 

elements. To identify the common regulatory elements, 1000 bp upstream of the 18 

NCR genes were extracted and compared with the previously published cis-acting 

regulatory elements in the database of plant cis-acting regulatory DNA elements 

(PLACE). The result was shown in Table 3.12. The position of the base just prior to the 

first base of NCR TC was designated as -1. To compare the relative position of the 
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common motifs, the position of putative TATA box in the promoter region also was 

listed, and both strands were searched for the common regulatory elements using 

PLACE. 

Table 3.11. The location and gene feature of NCR genes

A

TC name Clone name Position Chr. No.Gene size Intron size

127782 CU302328 13437-12722 5 715 113
131053 CU459032 42728-42156 5 573 106
135979 CR932957 22813-23628 5 816 98
116268 AC152176 113512-114876 4 1365 99
130698 CR932039 118414-119417 5 1004 454
135101 AC161400 21723-21286 2 438 70
135570 AC146864 82310-81849 6 462 93
136099 AC152176 120032-119576 4 457 102
126333 CR962123 114844-113648 5 1197 602
124823 AC149493 70598-71336 1 739 102
139055 AC149493 83337-84009 1 673 109
132377 AC138527 99893-99347 3 547 105
124277 AC148657 21990-22736 5 747 102
136689 CR954192 74254-73647 5 608 138
138811 AC202469 12230-11773 4 458 105
128830 AC150703 92135-91518 6 618 102
126448 CT030243 5957-5144 3 814 83
130739 CT963114 128359-128988 5 630 104
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C
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Figure 3.8 The Jalview showed the conservation among the first exons (A), introns (B) 
and the second exons (C) 

Table 3.12 Common motifs found in NCR genes using PLACE

* indicated the motif from the reverse strand; different locations for the same motif 
were separated by slash /. 

Two short putative nodule-specific consensus sequence motifs, 5’-CTCCT and 5’-

TC name AAAGAT motif CTCTT motif TATA box libraries

127782 -28 -130*/-86/-78* -388* Mature
131053 -26/-255* -533* -58* Young
138811 -109* -320/-26* -68 Young
136099 -203/-248 -395*/-149* -72* Mature
130739 -239*/-13* -63 Mature
126448 -469* -311/-106* -43 Mature
128830 -420* -290/-401 -50 Mature
136689 -296* -253*/-197* -91* Mature
124277 -211 -544* -65 Mature
132377 -351*/-144*/-92* -79* Mature
139055 -411 -359 -119* Mature
124823 -218/-88/-111* -356* -541 Mature
135570 -996 -309 Mature
135101 -378/-399 -740 -52 Mature
130698 -105 -74*/439* -91* Mature
116268 -184/-266/-186* -5/-693 -31 Mature
135979 -144 -289 -94 Mature
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AAAGAT, first described in soybean nodulin 20, 22, 23, and 44 genes (Sandal et al. 

1987), were found present in the 5’ upstream region of most of the NCR genes. The 

sequence AAAGAT was located at approximately -95 in these genes, -130 in the 

Leghemoglobin gene (Lb) genes (Sandal et al. 1987) and -193 in nodulin 24 (Verma et 

al. 1978). The CTCCT sequence was located about at position -130 in nodulin 20, 22, 

23 and 44, while in the Lb genes it was at approximately positions -120 and -80 in the 

inverted form. In nodulin 24, this motif was observed at position -153 and -77 in the 

inverted form. The CTCCT motif located at -325 in soybean nodulin 23 promoter region 

was reported to be important for high-level organ specific expression (Stougaard et al. 

1990). Mutation analysis also was confirmed that the CTCCT and AAAGAT sequences 

were positive specific elements in the N23 promoter (Jørgensen et al. 1991). It also was 

pointed out that these two motifs could not direct nodule-specific transcription without 

the presence of distal positive elements such as PE-AB (Jørgensen et al. 1991). 

As seen in table 3.12, the reference sequence TATA box was found in the right position 

range in most of the sequences except for 3 (TC127782, TC124823 and TC135570) that 

may not contain this conserved box. The AAGAT sequence occurred in 15 out of 18 

NCR gene regulatory regions and the CTCCT sequence occurred in every gene except 

TC135101 and TC135570, where it was located further away from -1 position. 

Therefore, we can conclude that these two motifs are highly conserved in NCR 

regulatory regions and they mostly are located at the proximal promoter regions or even 

in the promoter regions and speculate that they likely act as positive nodule-specific 
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element as they did for soybean nodulin genes.

Other nodule-specific motifs also may exist in the NCR regulatory region besides 

AAAGAT and CTCCT.  Since only known cis-acting motifs can be found using 

PLACE, the WordSpy program was used to see if there is new nodule-specific motifs. 

The top five overrepresented motifs were TCCTT, TTGAA, TGTTG, TTTGTT and 

TTTCAT. Although not exprerimentaly confirmed, these motifs also likely play a role in 

nodule specific expression. 

In eukaryotes, positive cis-acting elements or enhancer may locate not only in the 

upstream of a gene, but also in downstream of a gene and in the introns. The intron 

sequence of NCR genes are highly conserved (Figure 3.8), indicating that the introns in 

the NCR genes likely act as an enhancers and determine nodule-specific NCR gene 

expression in combination with the conserved upstream cis-acting motifs.

3.2.1.1.4 The possible role of NCR genes in nodulation

The identification of 50 NCR genes indicates the existence of a large nodule-specific 

gene family in Medicago truncatula. Although these genes have diverged, they still can 

be grouped because of the presence of the conserved signal peptide, their small size, the 

conserved Cys motifs, and their nodule specificity, observations indicating that NCR 

genes most likely are functional related. What is the biological role they might play in 

nodulation with such high sequence divergence?  To address this question I investigated 
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several large multigene families in plants. For example, a large defensin-like gene 

family found in Arabidopsis thaliana is required to protect plants from wide-spectrum 

pathogens (Silverstein et al. 2005), plant receptor-like genes that are involved in 

different signaling processes (Shiu et al. 2001), resistance genes that recognize elicitors 

and protect plants from pathogen invasion (Bergelson et al. 2001), and pollen 

determinants for self-incompatibility (SCR) and pollen coat proteins (PCPs) (Schopfer 

et al. 1999, Vanoosthuyse et al. 2001). The underlying common property of these gene 

families is that they all are involved in recognition events, and thus it is possible that 

NCR genes also might be involved in recognition events as well (Mergaert et al. 2003) 

because NCR polypeptides are similar in structure to several known proteins, that 

include defensin and γ-thionin antimicrobial peptides (Broekaert et al. 1995, Zasloff 

2002), SCR proteins (Schopfer et al. 1999), and scorpion neurotoxins (Bontems et al. 

1991). The comparison between NCR TCs with the Medicago genomic sequence 

showed that the first exon corresponds approximately to the signal peptide and that the 

second exon corresponds to the mature NCR peptide, that is similar to the organization 

in the plant defensin, SCR, and in the scorpion toxin genes (Froy et al 1998, 

Vanoosthuyse et al. 2001). It is possible that these gene families arose from the same 

ancestor but they were highly diverged after duplication.

NCR genes are expressed in young, old, and mainly in mature nodule libraries. The 

abundance of NCR transcripts suggests large amount of encoded proteins are required 

in nodules, indicating there might be a gene dosage effect. The high expression level 
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shows that this gene family might play a very important role in nodule development. 

They also might act as antimicrobial defensins to avoid infections by other soil 

microorganisms during nodule formation or alternatively they act as signal molecules 

assuring communication between plant cells or between plant cells and rhizobial 

bacteria (Mergaert et al. 2003). Two nodule-specific NCRs were found to have 

antimicrobial activity against P. syringae and Clavibacter michiganensis but not against 

the growth of S. meliloti (Samac et al. 2007). That several of the NCR genes are under 

positive selection suggests that maintaining the nonsynonymous mutation may be 

needed to adapt to a fluid environment including different and changing 

microorganisms to more efficiently recognize and destroy these potential pathogens.

As discussed above, the plant defensins are similar to NCR genes with a conserved 

signal peptide, a highly diverged mature peptide and a conserved cysteine motif. The 

study of Silverstein et al (Silverstein et al. 2005) showed that more than 300 defensin-

like genes were found in Arabidopsis and their genomic organization and Ka /Ks pattern 

are similar to NCR genes. It is possible that the NCR genes originated from plant 

defensins but they highly diverged after duplication. To test this hypothesis, a 

phylogenetic tree was drawn using all the identified NCR genes (TC numbers), two near 

identical cysteine-rich defensin-like genes (Os1, Os2) in rice, the available cysteine-rich 

defensin-like genes in Arabidopsis from NCBI (gi numbers), and several cysteine-rich 

genes expressed as defensins in M truncatula (TC120449, TC124221, TC128939, 

TC138046, and TC132207) (Figure 3.9). Although there is a high divergence in the 
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mature NCR peptides, we still can see that the NCR genes belong to a large clade while 

the majority of the defensins in Arabidopsis, O. sativa, and M. truncatula belong to 

another clade that is more ancient than the NCR clade. Three Arabidopsis defensins are 

close to but are more ancient than the NCR genes. We can deduce from this 

phylogenetic tree that after the defensin gene duplication, some genes still remained 

defensins such as the five medicago defensins in the tree, while the other genes mutated 

such that they now seem to function in symbiosis. 

Figure 3.9 The phylogenetic tree of plant defensins and NCR genes
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It was found that only the members in galegoid group of legumes (containing M. 

truncatula, Pisum sativa, Vicia faba, Trifolium repens) have NCR genes (Mergaert et al. 

2003). Neither L. japonicus nor G. max has this gene family. Therefore, the NCR family 

could be specific to the galegoid group in legumes and other legumes could have 

different ways to deal with the functions performed by the NCR family.

3.2.1.2 Leghemoglobin

Ten leghemoglobin (Lb) TCs, one of the most abundant expressed nodule-specific 

genes, were observed. Each Lb-encoding TC was searched against the available M. 

truncatula genomic sequence using BlastN, and 5 Lb genes were found, 4 of which 

(Lb2, Lb3, Lb4 and Lb5) were on chromosome 5 and one (Lb1) was on chromosome 1. 

The identity ranged from 85% to 92% for the Lb cDNA sequence level and from 75% to 

93% at the protein level. Lb4 and Lb5 may have resulted from tandem duplication since 

they were only 7,169 bp apart. Other Lb genes may have evolved thought segmental 

duplication as microsynteny can be identified in their neighbor regions (shown in Figure 

3.9). To compare leghemoglobin genes in other legumes, the Lb genes in Glycine max 

(Gm) and Lotus japonicus (Lj) were identified by searching against the corresponding 

genome sequence using the corresponding leghemoglobin TCs. As a result, 3 Lb genes 

from L. japonicus and 4 Lb genes from G. max were found. Two lotus Lb genes were 

clustered and the 4 soybean Lb genes were found in two clusters.  To investigate how 
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Lb genes might have evolved among these legumes, the DNA regions of 100 kb 

upstream and 100 kb downstream of each gene (including the gene) were extracted, 

masked repeats by Repeatmasker, and annotated using FGENESH. Then, genes in each 

region of one Lb gene were compared with those of another Lb gene using blastP. The 

genes with the highest homology by a reciprocal blast were chosen to draw the resulting 

figure (Figure 3.10a and b). Several genes in the neighborhood of Lb3 genes were found 

very similar to the genes near Lb1 and Lb2 genes in Lotus japonicus (Figure3.10 b). 

Lb3 and Lb4 in Glycine max were not shown in Figure 3.9a because in current Gm 

genome sequence, only sequences of the two genes were available. Lb4 in Glycine max 

was a pseudogene probably since it was truncated.
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Figure  3.10 Microsynteny  of  leghemoglobin  genes:  (A)  showed  the  microsyntenic 
relationship among Glycine max, Lotus japonicus and Medicago truncatula; (B) showed 
microsynteny in Lotus japonicus.

From Figure 3.10, we can observe the Lb segmental gene duplication in Medicago 

truncatula, although the genes in the neighborhood of the medicago Lb genes were not 

highly conserved, likely because of gene loss or rearrangement after segmental gene 

duplication. The genomic regions of M. truncatula and L. japonicus considered here 

probably share a common origin and the Lotus and soybean genomic sequences 

probably also share a common origin since somewhat microsynteny can be detected. 

To further compare the evolution of leghemoglobin genes, the Ka/Ks ratio was 

calculated between the genes and the result Ka/Ks tree was shown in Figure 3.11. All 

the Ka/Ks ratios were less than 1, indicating that Lb gene was under purifying selection.

Leghemoglobin proteins predominantly have been found in legume nodules and Lb 

proteins function to help oxygen transport (Arredondo-Peter et al. 1998). Nonsymbiotic 

hemoglobins, another type of plant hemoglobins, are considered an ancestor of the Lb 
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proteins and have a high affinity for oxygen (Arredondo-Peter et al. 1998). To show the 

evolutionary relationship between these two types of plant hemoglobins, the Ka/Ks 

ratios were compared among the hemoglobins in A. thaliana, O. sativa and M. 

truncatula and the Lbs in M. truncatula, L. japonicus and G. max. The results shown in 

Figure 3.11 suggested that plant hemoglobins mostly underwent purifying selection 

although some positive selection was detected. The Lb genes in G. max are more 

closely related to the nonsymbiotic hemoglobins. 

Figure 3.11 Ka/Ks tree of plant hemoglobins
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To investigate the conservation of the cis-acting elements in Lb genes, 1000 bp 

regulatory regions upstream of Lb genes in M. truncatula, L. japonicus and G. max 

were searched against PLACE. The results, shown in Table 3.13, reveal that the putative 

nodule-specific consensus CTCCT motif could be found in all the regulatory regions of 

the Lb genes but the AAAGAT motif was less conserved as it could not be observed in 

two of the L. japonicus Lb genes and one of the M. truncatula, Lb genes. The lower 

conservation of the AAAGAT sequence might suggest it is less important than the 

CTCTT motif in the regulation of nodule-specific Lb gene expression. Another motif, 

AGATT, found in the promoter of O. sativa non-symbiotic haemoglobin-2 (NSHB) 

gene (Ross et al. 2004), also was detected upstream of all Lb genes. When the position 

of TATA box immediately upstream of Lb gene was used as a reference, the position of 

the CTCTT motif for the M. truncatula Lb gene was at approximately -50, and 

approximately -100 in Lotus, but less conserved in soybean as it was within 100 bp 

upstream of the gene. The positions of AAAGAT and AGATT also were much less 

conserved.

Table 3.13 Conserved motifs found in Lb genes from different organisms
(* indicates a motif that is located on the complementary strand)

Leghemoglobin 
Gene AAAGAT CTCTT AGATT TATA box

Lb1_Gm -92 -42* -482 -112
Lb2_Gm -86 -74/-39* -485 -106
Lb3_Gm -585 -91*/-312* -420* -32
Lb1_Lj -302 -106 -338 -42
Lb2_Lj -106/-194* -346 -182
Lb3_Lj -96 -172* -149
Lb1_Mt -52/-129 -57/-156/205 -30
Lb2_Mt -162 -73/-150 -160/-196/-220/-249 -53
Lb3_Mt -296 -53/-128 -360* -32
Lb4_Mt -141 -53 -91/-156/-257 -31
Lb5_Mt -159 -71/-147 -110/-157 -50

Motifs
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3.2.1.3 Nodule-specific glycine-rich proteins

Glycine-rich proteins (GRP) have diverse structures in plants, although they all contain 

quasi-repetitive glycine-rich domains, for example GGGX, GGXXXGG or GXGX 

(Sachetto-Martins et al. 2000). Different GRPs are involved in different physiological 

processes since they have diverse expression patterns and subcellular localizations. Five 

GRP genes (Vfnod-GRP1-5) isolated from Vicia faba and 4 GRP genes from Medicago 

sativa (alfalfa) showed nodule-specific expression (Schröder et al. 1997, Kevei et al. 

2002). Nodule-specific GRPs, as the NCR family, only were found in the galegoid 

group of legumes. In my study, 3 TCs (TC126384, TC127188 and TC119756) encoding 

nodule-specific glycine-rich proteins were identified. TC126384 (designated as GRP1), 

TC127188 (GRP2) and TC119756 (GRP3) mainly were expressed in the young nodule 

library, MtSN4, the senescent library, GVSN and mature library, GVN. All of the 

nodule-specific GRPs contain a putative hydrophobic N-terminal signal peptide 

predicted by SignalP 3.0 (Bendtsen et al. 2004) and a glycine-rich C-terminal. GRP1 

has little homology with GRP2 and GRP3 except that they are rich in glycines with 

GRP2 and GRP3 about 85% identical at protein level and about 60% identical at the 

coding nucleotide level. 

When these three GRPs were searched against the Medicago genomic sequence using 

BlastN to find their locations on chromosomes, all were found located on chromosome 

2. The GRP2 and GRP3 genes are only 3.8 kb apart, clustered on the reverse strand 
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while GRP1 gene is about 5.2 Mbp away from the GRP2 and GRP3 genes. Both the 

GRP1 and GRP 2 genes contain 2 exons but the GRP3 gene contains 4 exons. 

To further investigate the evolutionary relationship between GRP2 and GRP3 cluster, 

ClustalW was used to compare GRP2 and GRP3. The result showed that the major 

difference between these two GRPs was that there was an 80 amino acid deletion in 

GRP2 that makes it much shorter than GRP3 (Figure 3.12). Therefore, these two genes 

likely resulted from tandem duplication followed by either a gene deletion or an 

insertion. The alignment of GRP1, GRP2 and GRP3, in Figure 3.13, shows that the N-

terminal signal sequences, the sequences near the signal sequences and glycines in the 

C-terminal sequences are somewhat conserved but other sequences in GRP1 diverge 

greatly from GRP2 and GRP3. These results suggest that GRP1 and GRP2-GRP3 genes 

might have the same ancestor but that GRP1 diverged greatly from GRP2-GRP3 after 

gene duplication. 

97



Figure 3.12 Clustal W result showing the conservation and divergence of GRP2 and 
GRP3

Figure 3.13 Clustal W result to show the alignment among GRP1, GRP2 and GRP3

The 1  kb  upstream sequences  also  were  compared  and a  conserved  200 bp  region 

(Figure 3.14) was found. The conservation of the upstream sequence again suggested 
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GRP1, GRP2 and GRP3 might share a common ancestor. Nodule-specific regulatory 

motifs also were observed within 500 bp upstream of the genes (Table 3.14). However, 

both AAAGAT and CTCTT only could be found in GRP1, CTCTT only was found in 

GRP2, and AAAGAT only was found in GRP3.

Figure  3.14  The  conservation  among  the  upstream sequences  of  GRP1,  GRP2 and 
GRP3

Table 3.14 Nodule-specific regulatory motifs in GRP genes

To understand the evolution of nodule-specific GRP in different legumes, the GRPs in 

medicago  were  compared  with  GRPs  in  Vacia  faba and  in  Medicago  Sativa.  The 

Nodule
Name AAAGAT CTCTT TATA box library

GRP1 -447 -144 -71 Young
GRP2 -494 -105 Old
GRP3 -209* -33* Mature

Motifs
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resulting phylogenetic tree (Figure 3.15) revealed that GRP2 and GRP3 belong to one 

clade and while GRP1 belongs to another.

Figure 3.15 The phylogenetic tree of GRP genes in  Medicago truncatula,  Vacia faba, 
and Medicago sativa

To examine the evolutionary pressures on GRP genes, the rates of nonsynonymous (Ka) 

and synonymous (Ks) were determined among these genes. The resulting Ka/Ks tree 

(Figure 3.16) shows that positive selection plays a very important role in GRP gene 

evolution. The ratio for purifying selection ranged from 0.35 to 0.94 while the ratio for 

the positive selection ranged from 1.22 to 2.21(Table 3.15). 
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Figure 3.16 The Ka/Ks tree of GRP gene (the red line indicates positive selection and 
the black line indicates negative selection)

Table 3.15. Ka/Ks value for each node in the tree

Node# Ka/Ks 
branch 1

Ka 
branch1

Ks 
branch1

Ka/Ks 
branch 2

Ka 
branch2

Ks 
branch 2

1 0.7801 0.3677 0,4713 0.9367 0.2498 0.2667

2 0.9220 0.1322 0.1434 1.2527 0.3024 0.2414

3 1.2803 0.0186 0.0145 1.3492 0.0261 0.0194

4 0.5339 0.0219 0.0410 0.9983 0.0279 0.0280

5 0.7697 0.0871 0.1131 0.6763 0.1848 0.2733

6 1.3001 0.1250 0.0961 1.0088 0.0837 0.0830

7 0.3478 0.0741 0.2129 1.00665 0.1850 0.1735

8 0.6797 0.0619 0.0911 2.2166 0.0446 0.0201

9 0.8230 0.1494 0.1816 0.5659 0.1736 0.3067

10 0.6755 0.3519 0.5210 0.9407 0.2643 0.2809

11 1.9239 0.1490 0.0775 0.5603 0.1024 0.1828

12 1.4451 0.1201 0.0831 1.2224 0.1236 0.1011
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3.2.1.4 Nodulins
TC132746 encodes the M. truncatula nodulin 1gene, MtN1, which is similar to a 

defense protein in Pisum sativum (common pea) (Gamas et al. 1998). This 73 amino 

acid protein contains an N-terminal hydrophobic signal peptide and is rich in cysteine. 

The deduced amino acids from TC96169 are 100% identical to MtN6, a gene that was 

considered as a marker of a pathway involved in preparation to infection (Mathis et al. 

1999). The early nodulin 12 precursor (N-12) encoded by TC 127504 has been 

postulated to play a role in the pre-infection processes (Bauer et al. 1997) while 

TC114187 encodes a protein similar to ENOD18 in Vicia faba that belongs to a novel 

ATP-binding family in plants (Becker et al. 2001). TC114025, TC131314, TC129897 

and TC138204 encode MtN24, MtN25, MtN29, and MtN11, respectively. Although the 

functions of these three nodulins are not known, they are expressed in the early stages 

of nodulation.  None of the TCs mentioned above are present in the most recent M. 

truncatula genome assembly but other nodulation genes, such as TC134290, whose 

corresponding gene is located on chromosome 8, encodes the single copy of MtN15. 

The deduced amino acid sequence from TC131451 was similar to MtN16 and a portion 

of this gene is located on an incomplete BAC sequence from chromosome 5. 

TC115962, TC115929 and TC121205 encode the same nodulin MtN22 from a single 

MtN22 gene located on chromosome 3 that is mainly expressed in mature library GVN. 
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Nod25, encoded by TC113614, is located about 3.8 kb from MtN22 on chromosome 3. 

Interestingly, 6 copies of nodule-specific Calmodulin-like were found clustered with 

Nod25 and MtN22 within a 59-kb region. TC113188 was identified as the transcript of 

ENOD8.1 that encodes a nodule-specific esterase locating in symbiososme membrane 

or symbiosome space around the bacteriods in the infected nodule cells (Coque et al, 

2008). ENOD8.1 was highly expressed in nodules since TC113188 is composed of 145 

ESTs in which 60% came from young nodule library MtBB. A cluster of 6 Enod8 genes 

was found within 20 kb on chromosome 1 (Figure 3.17). Interestingly, only ENOD8.1 

was exclusively expressed in nodules at high level while ENOD8.2 gene (corresponding 

TC113207) was expressed in developing root, ENOD8.3 (TC113511) was expressed in 

aphid- infected shoots, and ENOD8.6 (TC122750) was expressed in pod walls (GPOD 

library) and pods with seeds (MTPOSE library) at low level. Their coding sequence 

identity ranged from 79% to 91% and their amino acid identity ranged from 53% to 

87%. ENOD8.1, ENOD8.5 and ENOD8.6 genes contain 5 exons, ENOD8.2 and 

ENOD8.3 have 6 exons and ENOD8.4 only has one exon that is most similar to the first 

exon and 40 bp of first intron of ENOD8.5 (Figure 3.18), suggesting that ENOD8.4 

originated from ENOD8.5 by unequal recombination crossover.
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Figure 3.17 ENOD8 gene cluster on chromosome 1

Figure 3.18 Clustal W alignment on ENOD8.4 with the first exon and partial first intron 
of ENOD8.5 (The arrow shows where the first exon ends)

To investigate evolutional history of ENOD8 gene, a phylogenetic tree was constructed 

from the amino acid sequence of ENOD8 from A. thaliana, O. sativa, L. japonicus, G. 

max, P. trichocarpa, and M. truncatula (shown in Figure 3.19). The tree indicates that 4 

ENOD8 genes in M. truncatula likely arose from a single ENOD8 progenitor. The step-

like pattern observed in the M. truncatula ENOD8 clade suggested these genes evolved 

by tandem duplication followed by divergence. ENOD8.4 is much shorter and not so 
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comparable with the rest of ENOD8 genes. It seemed like ENOD8.6 is more ancient 

than ENOD8.1, ENOD8.3, and ENOD8.5, suggesting that ENOD8.6 may be the 

ancestor of the 3 ENOD8 genes. These four genes may share a common ancestor with 

Enod8-like genes in Lotus and in soybean since they are in the same clade. Enod8.2 is 

close to Enod8-like gene in Populus. Since ENOD8-like genes can be detected in rice 

and in Arabidopsis, ENOD8 genes may come from the same ancestor preceding the 

separation of dicots and monocots.

Figure 3.19 Phylogenetic tree of ENOD8 genes

Ka/Ks ratios between ENOD8 genes mainly ranged from 0.17 to 0.72, indicating that 

ENOD8 genes were mostly under purifying selection although there was one Ka/Ks 
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value greater than 1 and also indicating that their function is conserved even though that 

they are expressed in different organs or tissues.

The analysis of 1000 bp upstream the above nodulins which could be located on the M. 

truncatula genome also found that the two nodule-specific motifs CTCCT and 

AAAGAT near or in the promoter regions.

3.2.2  Genes  expressed  in  nodules  tend  to  cluster  on  M.  truncatula 

chromosomes

When all the nodule-specific TCs were compared with the M. truncatula genomic 

sequence to find their locations using BlastN, the location of the genes for 96 TCs were 

found. When all 8 pseudomolecules were searched against all the M. truncatula TC and 

singleton ESTs sequences using BlastN, 47 out of 96 TCs were found on different 

chromosomes clustered with other nodule-specific TCs or ESTs expressed in nodule 

libraries and located within 50 kb of each other (Figure 3.20).

As seen below in figure 3.17, the neighboring co-expressed genes are oriented in three 

alternative combinations: parallel transcription (→→ or ←←), divergent transcription 

(← →), or convergent transcription (→←). The clustered genes in parallel direction are 

more common than in convergent or divergent direction. The members of gene clusters 

in nodulation may be expressed in different developmental stages but most of the 

neighboring genes are expressed in the same stage.
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Figure 3.20 The clusters or colocalization of nodule-specific genes in M.truncatula

In prokaryotes, genes functioning in the same pathway often are clustered into operons 

that then are transcribed into a single polycistronic mRNA. In eukaryotes, operons are 

very rare and only are found in nematodes and trypanosomes, although these operons 

function differently from those in prokaryotes (Blumenthal et al, 1998; Blumenthal et 
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al. 2002). Gene transcription in eukaryotes is controlled by trans-acting factors that do 

not require the co-transcribed genes to be located near each other (Niehrs et al. 1999). 

However, previous studies showed that gene order in eukaryotic genomes is not 

completely random and that genes with similar expression patterns tend to be clustered 

together (Bortoluzzi et al. 1998, Lercher et al. 2002, and Birnbaum et al. 2003). In 

Drosphila melanogaster, about 20% of genes are organized into clusters and range from 

10 to 30 genes within up to 200kb (Spellman et al. 2002). In the mouse genome, both 

housekeeping and immunogenic genes are clustered (Williams and Hurst, 2002), and in 

human genome, clusters of muscle-specific genes (Bortoluzzi et al. 1998), highly 

expressed genes (Caron et al. 2001) and housekeeping genes (Lercher et al. 2002) have 

been found. In plants, clustered genes in root development (Birnbaum et al. 2003) and 

mitochondrial function (Elo et al. 2003) have been identified in Arabidopsis thaliana. 

For example, Lee et al. (Lee et al. 2003) found that genes in a pathway are in closer 

proximity than would be expected by chance in five sequenced eukaryotic genomes. 

Why do coexpressed genes or genes in the same pathway tend to be clustered when 

colocalization in the genome is not generally necessary because the transcription factor 

system is sufficient for coregulation of widely dispersed genes in eukaryotes? There are 

some possible explanations to these apparent contradictory observations.  For example, 

the clustering of functionally related genes may result from recent tandem duplications 

and has nothing to do with aiding coregulation of gene expression as is the case with 7 

copies of nodule-specific calmodulin-like protein genes that are clustered within 40kb 
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on chromosome 3 (TC118427, TC114792, TC125585, 2 copies of TC114830, 

TC137669, and TC134855). However, since in most cases, clustered genes in the same 

pathway as seen in nodulation do not have sequence similarity, they likely are not the 

result of recent tandem duplication.  Since the eukaryotic genome needs to fold tightly 

to fit into the nucleus and energy must be expended to unfold regions of DNA when 

gene transcription occurs, keeping functionally related genes in close proximity, even if 

not adjacent, could reduce the amount of energy required to unfold larger regions of the 

genome during transcription of numerous genes involved in a single pathway (Lee et al. 

2003). Therefore, clustering must be advantageous as it often is preserved by nature 

selection. Another possibility is that the close proximity of genes in a pathway or a 

biological process might lead to sharing of cis-regulatory elements such as enhancers. 

Interestingly, it was found in Arabidopsis thaliana that gene pairs with divergent (← 

→) or parallel (→→ or ←←) orientation have a higher degree of coexpression than 

those genes with convergent (→←) orientation (Williams et al. 2004), which indicates 

the possibility of share cis-regulating elements. 
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4. Conclusions

4.1 The Medicago truncatula genomic sequence and predicted features 

About 255 Mbp of the euchromatic regions of the Medicago genome have been 

sequenced and analyzed, revealing that the genome encodes at least 50,540 putative 

protein-encoding genes and 11% repetitive elements. The gene density of the M. 

truncatula is similar to that in A. thaliana and it is almost twice as much as that in O. 

sativa, P. tricorcarpa, and L. japonicus and three times as much as that in G. max. 

Approximately 50% of the predicted genes had a high identity match with a plant EST 

or TC, which since it is less than that in O. sativa and in A. thaliana (both ~60%), 

indicates approximately 80% of the M .truncatula genes have been captured by the 

Medicago genome sequencing up to date and only about 50 Mbp more euchromatic 

regions still need to be sequenced. The M .truncatula proteins on average have a shorter 

amino acid sequence, likely due to a larger than normal number of small (<99 amino 

acid peptides, the lowest exon number, and the second lowest gene size in average 

among the M. truncatula, L. japonicus, G. max, P. trichocarpa, O. sativa, and 

A.thaliana genome. Nearly 40% of the predicted M .truncatula genes are intronless and 

about 55 % of them are expressed. A comparison of the average intron size and exon 

size among the above six organisms showed that the average exon size is quite 

conserved whereas the intron size differs, suggesting natural selection is acting on the 
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exon size and keep it conserved. Fourteen out of 17 miRNA families are conserved in 

the six plants, suggesting a core set of miRNAs are required for regulating the 

expression of similar plant genes. The comparison of the predicted proteins in M 

.truncatula with the predicted proteins in the other five plants revealed that the proteins 

are more conserved in the legumes but least conserved in rice, the monocot. 

The comparison between GO annotation results among M.truncatula, L. japonicus, G. 

max, P. trichocarpa, O. sativa, and A.thaliana genomes revealed that all the six 

genomes have similar percentage of each of the major functional domains. The 

comparison of the top 40 Interpro domain hits in M. truncatula with the corresponding 

domains in the other five plants also indicated that most of the overrepresenting 

domains are overrepresenting in all the six genomes. Therefore, we can conclude that in 

angiosperms, they all have a fixed percentage of major domains functioning in basic 

biological processes whether they are dicots or monocots. However, they also may 

contain species-specific domains functioning in species-specific biological processes 

such as late nodulin domain in M. truncatula.

4.2 Nodule-specific genes

The in silico analysis of the Medicago Gene Index 9.0 revealed that 191 genes only are 

expressed at nodules, 100 of which were found similar to sequences from known genes 

in GenBank. The analysis of 50 nodule-specific cysteine-rich peptides (NCR) showed 
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that they have a conserved signal peptide, a conserved cysteine motif, and a highly 

divergent remaining sequence. These NCR genes are clustered or dispersed on the M 

.truncatula genome, suggesting that they most probably underwent tandem or segmental 

gene duplication. The Ka/Ks analysis of NCR genes indicated that some NCR genes 

underwent positive selection and some underwent purifying selection. NCR genes were 

thought to have evolved from antimicrobial defensins to avoid infections by other soil 

microorganisms during nodule formation or alternatively they act as signal molecules 

assuring communication between plant cells or between plant cells and rhizobial 

bacteria (Mergaert et al. 2003). Therefore it is very likely that many NCR genes were 

under positive selection to adapt to the environment with wide-spectrum soil 

microorganisms and rather than prevent symbiotic relationships with selected microbes 

that the plant encouraged them. The maintaining of the nonsynonymous mutations of 

the NCR genes makes it possible that the legumes recognize the changing non-

symbiotic microbes in the environment and prevent the nodules from invading by them.

Two motifs (AAAGAT and CTCCT) are highly conserved in NCR regulatory regions 

and they mostly are located at the proximal promoter regions or even in the promoter 

regions. Thus, since the NCR introns are highly conserved, it may be that they act as an 

enhancer and determine nodule-specific NCR gene expression in combination with the 

conserved upstream cis-acting motifs.

All three glycine-rich genes in M .truncatula are located on chromosome 2. The close 

proximity and highly conserved sequence with a deletion between GRP2 and GRP3 
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indicate that they arose from tandem gene duplication followed by either a deletion or 

an insertion. GRP1 is highly diverged from GRP2 and GRP3 and the phylogenetic tree 

showed that GRP1 belong to a different clade from GRP2 and GRP3, however, the 

conservation of the signal peptide, the glycine-motif, and the 200bp upstream DNA 

sequence suggest that they share a common ancestor. The Ka/Ks analysis indicated that 

positive selection played an important role during GRP gene evolution. As GRP genes 

found in Medicago sativa (Kevei et al. 2002), GRP genes in M. truncatula also are 

expressed in different nodule developmental stages, suggesting GRPs might play 

distinct, nonredundant roles during nodule development.

Leghemoglobin (Lb) proteins that are found in nodules of legumes transport oxygen to 

nitrogen-fixing endosymbiotic bacteria (Trevaskis et al. 1997). Nonsymbiotic 

hemoglobins that are found in legumes and nonlegumes are believed to be the ancestor 

of Lbs (Arredondo-Peter et al. 1998). The analysis of Ka/Ks among Lb and Hb shows 

that plant hemoglobins underwent purifying selection, suggesting that natural selection 

conserves the important function of plant hemoglobins. Since NCR and GRP genes, and 

Lb genes have nodule-specific motifs (CTCCT and AAAGAT), almost all the nodule-

specific genes that could be located on the M .truncatula chromosomes contain these 

two nodule-specific motifs or either one of them, an observation suggesting that 

expressions of nodule-specific genes likely are co-regulated.

The analysis of the genome organization of all nodule-specific genes showed that about 

50% of them are clustered with each other or that the corresponding gene is expressed 
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in nodules. However, since most of the nodule-specific gene clusters do not have a high 

degree of sequence similarity, it may be that keeping functionally related genes in close 

proximity could be advantageous and thus the clusters are preserved by natural 

selection.

Finally, the study of the nodule-specific genes indicated that some of them evolved 

through duplication and modification of plant defense genes, as for example observed 

with the defensin genes. The phylogenetic tree of defensin and NCR genes revealed that 

after the defensin gene duplication, some genes still remained defensins such as the five 

medicago defensins in the tree, while the other genes mutated such that they now seem 

to function in symbiosis. 
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