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ABSTRACT 

 
Water is extensively used in industry and due to its increasing cost and the 

continuous quality deterioration of the available freshwater sources; its use is becoming 

also a cost concern in industries. An alternative to reduce costs associate to water 

consumption is the integration of the water system through reuses and recycles. This 

problem is often called Water Allocation Problem (WAP) and has been studied in the 

past three decades and several approaches to solve it have been presented. A 

comprehensive review of methods presented up to 2000 is given by Bagajewicz (2000); 

additional overviews can be found in a few books (Mann and Liu, 1999; Sikdar and El-

Halwagi, 2001).  

The methods to solve the WAP can be divided into two big classes: those based 

on mathematical programming, and those based on graphical, heuristic or algorithmic 

methods. The most promising class is the one based on mathematical programming, 

which is being increasingly used, especially because of the inability of graphical, 

heuristic or algorithmic procedures to effectively provide rigorous solutions to multiple 

contaminant problems. Additionally, more elaborate objective functions (cost, number of 

connections, etc.) are easier to handle using mathematical programming approaches.  

Although this problem has been studied for three decades, some conceptual issues 

have been overlooked.  The WAP first defined by Takama et al.(1980) considered two 

water subsystems commonly seen in the industry, the water-using subsystem and the 

wastewater treating subsystem, but left the water pre-treatment subsystem out of the 

systems integration. This work proves that the absence of this third subsystem has a 

strong effect on freshwater consumption targets and, in many cases, the use of the former 



xviii 

definition creates systems that are “impossible” to reach zero liquid discharge.  

In the mathematical optimization group, approaches using LP, NLP, MILP, and 

MINLP have been presented. Aside from the linear models presented, which are only 

able to find the optimum solution for particular situations, the biggest challenge on the 

mathematical procedures is to overcome the difficulties generated by the non-linear and 

non-convex terms that arise from the contaminants balance (mixers and splitters). Such 

problems require good start points to find a feasible solution and most of the available 

solvers cannot guarantee global optimality if a solution is found. On the other hand, 

methodologies based on mathematical optimization are much easier to describe the 

problem in more detail and thus more complex problems can be approached.  

Although the integrated water system problem has been solved by other authors 

for minimum freshwater consumption and cost (Takama et al., 1980; Alva-Argaez et al., 

1998; Huang et al., 1999; Karuppiah and Grossmann, 2006; Bagajewicz and Faria, 2009; 

Faria and Bagajewicz, 2009), robust methods to find optimum and sub-optimum 

solutions, present the option of investigating alternative solutions and are able to analyze 

the problem from different perspectives are needed. To overcome this drawback, 

different global optimization methods to solve the WAP using the complete water system 

are presented. Additionally, a method to find several alternative solutions is described 

and a planning model is suggested.    
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1. INTRODUCTION 

 

The first chapter aims to give a general overview of different approaches 

and methods used to address the water allocation problem (WAP). 

Additionally, the objectives of this work are presented. 

 

Water is an indispensable component in processes plant especially because of its 

characteristic of being a good heat and/or mass transfer agent without being hazardous 

and being relatively cheap. However, nowadays its cost is increasing and its quality is 

becoming poorer, which makes the costs associated to its treatment also increase. Several 

industries, including refineries, hydrometallurgy, iron and steel, sugar factories, dairy 

facilities, breweries, the textile industry, pulp and paper, pharmaceuticals and electronics, 

among other, intensively use water in their processes and, in some of these cases, need 

high quality water to feed their processes. 

In general, the conventional water cycle in processes plants includes a pre-

conditioning step to make it suitable for being used in processes (which are often referred 

as water-using units), and after used, it is sent to an end-of-pipe treatment, which treats 

the water to appropriate environmental discharge limits. A scheme of this general water 

cycle is given in Figure 1.1. 

The water pre-treatment subsystem normally treats water to different qualities and 

its size and complexity are much related to the quality of the water source available. 
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Figure 1.1 - Typical water cycle in process plants. 

 

The water-using subsystem is composed by processes that need water, normally 

as a washing agent or steam. Some of the common contaminants in petroleum refineries 

for example are: hydrogen sulfide, suspended matter, ammonia, salts, organic matter, and 

hydrocarbons (Speight, 2005).   

The wastewater treatment subsystem aims the conditioning of the stream to be 

discharged in the environment. In many instances, this subsystem is known as “end-of-

pipe” treatment, which commonly consists in three types of operations: primary, 

secondary and tertiary.   

Primary processes have the purpose of protecting the subsequent treatments from 

fouling by mechanically removing floatable and settleable solids.  Secondary operations 

normally bring the wastewater to a desire quality level through biological oxidation 

processes.  The tertiary process is responsible for polishing the wastewater. Common 

tertiary treatments are: membrane technologies, advanced oxidation methods, ozonation, 

distillation, electro-deionization, ion exchange, among others.  More details regarding 

wastewater treatment subsystem and it primary, secondary and tertiary systems can be 

found in several books (Celenza, 1999; Tchobanoglous et al., 2003; Asano, 2007; among 

others). 

Looking at these subsystems together, opportunities like minimizing freshwater 
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consumption and/or costs can be achieved when they are optimized.  The optimization of 

industrial water systems has been extensively studied and several approaches to solve it 

have been presented. A comprehensive review of methods presented up to 2000 can be 

found in Bagajewicz (2000). Additional overviews can be also found in a few books 

(Mann and Liu, 1999; Sikdar and El-Halwagi, 2001).  

This class of optimization problems is often called Water Allocation Problem 

(WAP) and it can be generally defined as follows: Given a set of process systems in need 

of water (water-using units), a set of freshwater sources and a set of potential 

regeneration processes, determine the optimum network that satisfies the system 

constraints. 

In fact, this problem statement has several variations depending especially on 

assumptions (conceptual and modeling) and the definition of “optimum network”, that is 

the objective function.  These variations do not only interfere on the kind of solution one 

is looking for, but they strongly influence the ability of finding its solution using different 

methods. 

In these optimization problems, the water-using units are often described as 

quality controlled or quantity controlled (Polley and Polley, 2000). As quality controlled 

water-using units have been modeled as mass exchanger units with a fixed mass load and 

variable flowrates (Wang and Smith, 1994). When water-using units are defined as a 

combination of quality and quantity controlled units, they are modeled as mass exchanger 

units as well, but now with fixed flowrates (Takama et al., 1980; Wang and Smith, 1995). 

Another case of mass exchanger units is presented by Doyle and Smith (1997): they 

assume some water-using units are modeled by fixed outlet concentrations. This would 
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be the case in which contaminants have limited solubility. Some works have assumed 

quantity controlled only in which outlet concentrations and flowrates are fixed (Polley 

and Polley, 2000). These models are often known as sources-sinks models. The two last 

classes of water-using unit models have the big advantages of allowing the use of a linear 

model if no other non-linearity exists. In reality, many water-using units have to be 

modeled using the first two alternatives and consequently non-linearities will appear.  

Although the models used to describe water-using units have been extensively 

applied and are very acceptable, it is assumed that process conditions are given 

beforehand.  

One of the weaknesses in currently methods for optimizing WAP in process 

plants is a lack of accurate modeling of water regeneration processes. In general, two 

kinds of model assumptions are made: regeneration processes have a fixed outlet 

concentrations (Koppol et al., 2003); and, regeneration processes have a fixed rate of 

removal (Takama et al, 1980; Guanaratnam, 2005; Karuppiah and Grossmann, 2006; 

Alva-Argáez, 2007). In reality, outlet concentration and/or rate of removal of 

regeneration process may vary with inlet concentrations and flowrates. This issue was 

approached by Lili et al. (2006), which show that when removal efficiency is variable, 

different solutions can be obtained.  

In addition to how the processes are modeled, how these problems are solved is 

also an extremely important issue in WAP. Most of the methods presented can be divided 

into two big classes: those based on mathematical programming, and those based on 

graphical, heuristic or algorithmic methods. The most promising class is the one based on 

mathematical programming (Bagajewicz, 2000; Faria and Bagajewicz, 2009), originally 
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proposed by Takama et al. (1980). The use of mathematical programming is being 

increasingly used, especially because of the inability of graphical, heuristic or algorithmic 

procedures to effectively provide rigorous solutions to multiple contaminant problems. 

Additionally, more elaborate objective functions (cost, number of connections, etc.) are 

easier to handle using mathematical programming approaches. In reality, sometimes, it is 

not that it is easier, but it is the only way to rigorously solve such problems.  

The WAP was first defined by Takama et al.(1980) as the integration of two water 

subsystems commonly seen in the industry: the water-using subsystem and the 

wastewater treating subsystem. Before Takama and co-workers’ paper, efforts were made 

to individually optimize the wastewater subsystem (see a review presented by Mishra et 

al, 1975). In this case, the sub-optimum conditions (amount of wastewater and 

concentrations of contaminants) of the water-using subsystem are used as input data in 

the optimization of the wastewater treating subsystem. Clearly, the integration of these 

two subsystems can generate important alternatives for the optimum design as shown by 

some authors (Kuo and Smith, 1998; Huang et al., 1999; Karuppiah and Grossmann, 

2006; Alva-Argaz et al., 2007; Bagajewicz and Faria, 2009; Faria and Bagajewicz, 2009). 

After Takama et al. (1980), which solved the problem using mathematical optimization, 

different approaches have been presented. These approaches can generally be split in two 

big groups: one based on graphical methods; and another based on mathematical 

optimization.  

The graphical methods, first presented by Wang and Smith (1994), are based on 

the well known pinch analysis for heat/mass integration problems and so called water 

pinch. Although many authors claim that these approaches can give “good insights” to 
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the designers, they can be extremely time-consuming and very inefficient when multi-

contaminants problems and/or complex networks are addressed. Moreover, minimum 

cost targets are virtually impossible to be solved with these methods and the supposed 

“good insights” are fairly obvious. Unexpected solutions, which are many times found 

using mathematical programming, are pretty much out of the scope of graphical methods 

and can represent interesting alternatives. 

In the mathematical optimization group, approaches using LP, NLP, MILP, and 

MINLP have been presented (Takama et al., 1980; Huang et al. 1999; Gunaratnam et al., 

2005; Karuppiah and Grossmann, 2006; Alva-Argaez et al., 2007). Aside from the linear 

models (Bagajewicz et al., 2000; Salveski and Bagajewicz, 2000), which are only able to 

find the optimum solution for particular situations, the biggest challenge on the 

mathematical procedures is to overcome the difficulties generated by the non-linear and 

non-convex terms that arise from the contaminants balance (mixers and splitters). Such 

problems require good start points to find a feasible solution and most of the available 

solvers cannot guarantee global optimality if a solution is found. On the other hand, 

methodologies based on mathematical optimization are much easier to describe the 

problem in more detail and thus more complex problems can be approached. More details 

about particularities of graphical methods and mathematical procedures and can be found 

in a review presented by Bagajewicz (2000). 

Although the integrated water system problem has been solved by other authors 

for minimum freshwater consumption and cost (Takama et al., 1980; Alva-Argaez et al., 

1998; Huang et al., 1999; Karuppiah and Grossmann, 2006; Bagajewicz and Faria, 2009; 

Faria and Bagajewicz, 2009), robust methods to find optimum and sub-optimum 
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solutions, present the option of investigating alternative solutions and are able to analyze 

the problem from different perspectives are needed. To overcome this drawback, not only 

does a specific method have to be developed but also current concepts involving the 

WAP should be re-evaluated.  

  To achieve this end, this work approaches some of the different aspects of the 

WAP: 

• The validity of simplifying assumptions in current models: the use of 

optimality conditions;  

• Optimization of current models using different criteria (objective functions);  

• Structures of current models (conceptual issues); 

• A robust and reliable optimization method;  

• The degeneracy of WAP; 

• A planning model able to handle future expansions. 

These issues are going to be presented and discussed throughout the chapters as 

summarized next.  

Chapter 2 discusses a common assumption used in the design of water/wastewater 

systems for single components. This assumption is common used for single contaminant 

problems and fix the water-using units outlet concentrations of the pollutant to their 

maximum allowed value. This converts the problem from one with nonlinear constraints 

into one with linear constraints. For problems minimizing freshwater consumption in 

single contaminant systems, this assumption has been proven to lead to global optimal 

solutions (Savelski and Bagajewicz, 2000). However, it is shown in chapter 2 that the use 

of this assumption may not lead to global optimal solutions in certain cases, specifically 
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when the number of connections is minimized and when the cost is minimized. 

Chapter 3 evaluates the choice of different objective functions and presents a 

methodology to analyze the WAP using profit-based optimization criteria for both, 

grassroots design and/or retrofit of water systems. The maximization of Net Present 

Value (NPV) and/or Return of investment (ROI) is proposed and the examples show that 

the solutions where savings and/or profit are maximized can be different from those 

where freshwater is minimized. They also differ from each other when ROI or NPV are 

used. In addition, when the NPV objective is used, the optimum solutions also vary 

depending on the interest rate used to calculate the discount factor. 

Chapter 4 re-evaluates the definition of the water/wastewater allocation problem 

as it was originally defined by Takama et al. (1980), how this concept was modified, and 

sometimes simplified through time, as well as additional issues that were still not 

properly addressed as the inclusion a the water pre-treatment system in the WAP 

optimization framework, which create a complete water system. Then the mathematical 

model of the complete integrated water system, which is based on the modifications 

discussed, is presented.  

Chapter 5 presents optimization methods and discusses the issue of global 

optimality of WAP. The biggest challenges in solving these problems are rooted in the 

nonlinearities and non-convexities that arise from bilinear terms corresponding to 

component material balances and concave cost functions. Different approaches to address 

this issue are presented.  

Chapter 6 discusses the degeneracy of WAP, the inability of graphical methods, 

how degeneracy may affect the robustness of optimization methods and how it can be 
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reduced. 

Chapter 7 presents a planning model for industrial water systems to address 

expected future changes in the system such as stricter environmental regulations, 

increasing costs of freshwater, variability on the quality of the available freshwater 

source, bottlenecks caused by expansion of the capacity plant, etc.  

Finally, Chapter 8 concludes this work giving the main remarks obtained from the 

results and discussing important issues that should be approached in future works. 
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2. DIFFERENT ASSUMPTION FOR SIMPLIFIED WAP MODELS 

 

One common assumption used in the design of water/wastewater systems 

for single components is to fix the process outlet concentrations of the 

pollutant to their maximum allowed value. This converts the problem from 

one with nonlinear constraints into one with linear constraints. For 

problems minimizing freshwater consumption in single contaminant 

systems, this assumption has been proven to lead to global optimality 

(Savelski and Bagajewicz, 2000). In this chapter, the effect of using this 

assumption in cases where it may not lead to global optimal solutions is 

investigated, namely when the number of connections is minimized and 

when the cost is minimized.  

 

2.1. Overview 

The water/wastewater allocation problem has been widely formulated as a 

freshwater intake minimization problem. In addition, although there are several 

graphical/conceptual and also algorithmic methods that can be used, the problem has 

been efficiently addressed using mathematical programming, which is the focus of this 

work.  Minimization of freshwater consumption can be achieved using reuse/recycle 

structures with the eventual addition of intermediate regeneration processes (Wang and 

Smith, 1994; Kuo and Smith, 1997; Feng et al., 2007; Ng et al., 2007a, b; Alva-Argaez et 

al., 2007).  

The biggest challenge on the mathematical procedures is the presence of non-
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linearities. Aside from stochastic approaches (Genetic algorithms; Xu et al.(2003), 

Prakotpol and Srinophakun (2004)), which do not guarantee global optimality, many 

mathematical programming approaches using linear programming (LP), non-linear 

programming (NLP), mixed integer linear programming (MILP), and mixed integer non-

linear programming (MINLP) were developed for this problem (Takama et al., 1980; El-

Halwagi and Manousiouthakis, 1990; Galan and Grossmann, 1998; Alva-Argaez et al., 

1998; Bagajewicz et al. 2000; Bagajewicz and Savelski, 2001; Karuppiah and Grossman, 

2006).  

For single contaminant cases in which water-using units are handled as mass 

exchangers, many methodologies are based on the optimality conditions proved by 

Savelski and Bagajewicz (2000). One of these necessary optimality conditions states that 

the outlet concentrations in each process are at their maximum value.  The other one is a 

condition of monotonicity in the outlet concentrations, which is useful when using 

algorithmic methods (Savelski and Bagajewicz, 2001). This last condition is not relevant 

for mathematical programming approaches, although it can be used as aid to exclude 

connections that do not comply with the monotonicity and thus accelerate computations. 

Both conditions are added in the appendix in more detail.  

Using the maximum concentration condition allows transforming non-linear 

models into linear ones. However, it will be shown that the optimality conditions 

presented by Savelski and Bagajewicz (2000) are only valid when the objective function 

is freshwater consumption minimization and no structural constraints, like forbidden 

connections and/or combination of connections, exist. This was also pointed out by Doyle 

and Smith (1997), who focused on the multiple contaminant case.  
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Thus, this chapter analyzes the effects of using these particular conditions on 

problems involving costs and/or structural constraints. The original MINLP and the 

particular MILP models are presented and compared. The results prove that the necessary 

optimality conditions (every process at its maximum outlet pollutant concentration) 

cannot be used to optimize costs or freshwater when structural constraints exist. 

Additionally, we show that connections between units based on the monotonicity 

conditions should not be pre-excluded in these cases.  

Similarly to the problem statement given in chapter 1, the problem to be analyzed 

in this chapter can be defined as: Given a set of water-using units, a freshwater source, a 

wastewater discharge sink and an available regeneration process (with a fixed outlet 

concentration), the optimum solution for different objectives are sought. Additionally, 

self recycle in water-using units is excluded, which is also an assumption used by several 

previous papers. The superstructure used to build these models is presented in Figure 2.2.  

 

 
Figure 2.2 – Superstructure used in the models. 
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2.2. Non-Linear Model 

 

The corresponding non-linear model to solve the water/wastewater allocation 

problem (WAP) previously defined is given by the following set of equations: 

 

Balance of water on the units: 

*
*

*,**
*

*,** mFUUFSFUNFUUFNUFW
mm

mmmm
mm

mmmm ∀++=++ ∑∑
≠≠                    (2-1) 

where *mFW  is the freshwater consumption of unit  *m , *mFNU is the flowrate 

from the regeneration process to unit *m , , *m mFUU  is the flowrate from unit m  to unit 

*m , *mFUN  is the flowrate from unit *m to the regeneration process, and *mFS  is the 

flowrate from unit *m  to the discharge. 

 

Balance of water on the regeneration process (without loss of generality, we 

assume only one is needed): 

m m
m m

FUN FNS FNU= +∑ ∑
                                                                                    (2-2) 

where FNS is the water discharge to end-of pipe treatment from the regeneration 

process (we assume that the regeneration process has outlet concentration larger than the 

disposal limits). Thus, the mixture of all the streams sent to wastewater disposal has to be 

further treated by the end-of-pipe treatment. 

 

 

 



 

16 

Balance of the contaminant on the units: 

* * , * *
*

* * *, *
*

*

ws n out
m m m m m m

m m

out
m m m m m

m m

FW C FNU C FUU C m
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≠

+ + + ∆ =
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+ + ∀ 
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∑

∑
       (2-3) 

where wsC  is the contaminant concentration of freshwater ws, nC  is the outlet 

contaminant concentration of the regeneration process (which is a pre-defined 

parameter), *
out
mC  is the outlet concentration of unit *m  and *mm∆  is the contaminant 

mass load of unit *m . 

 

Limit of inlet concentration on the units: 

* * , *
*

max,
* * , * *

*

*

ws n out
m m m m m

m m

in
m m m m m

m m

FW C FNU C FUU C

FW FNU FUU C m

≠

≠

+ + ≤

 
+ + ∀ 

 

∑

∑
         (2-4) 

where max,
*

in
mC is the inlet maximum contaminant concentration for unit  *m .  

 

Limit of outlet concentration on the units:  

*max,
** mCC out

m
out
m ∀≤                                                                                                     (2-5) 

Binary variables are added to identify the existence of connections and be used in 

cost objective functions: 

m mFW U YW m≤ ∀                                                                                  (2-6) 

m mFUN U YUN m≤ ∀                                                                                  (2-7) 

m mFNU U YNU m≤ ∀                                                                                  (2-8) 
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*, *, *,m m m mFUU U YUU m m≤ ∀
                                                                          (2-9) 

FNS U YNS≤                                                                                                        (2-10) 

m mFS U YS m≤ ∀                                                                               (2-11) 

 

In these equations, mYW , *,m mYUU , mYUN , mYNU YNSand mYS  are binary 

variables used to determine the existence of flowrates going from the freshwater source 

to the units, from a unit to another unit, from a unit to the regeneration process, from the 

regeneration process to a unit, from the regeneration process and a unit to the discharge 

unit, respectively. U is the maximum value (upper bound) of flowrate allowed in the 

connections. 

 

Objective Functions 

Because it is known that the water allocation problem generally presents 

degenerate solutions (different sets of decision variables giving the same objective 

values) when freshwater is minimized (Bagajewicz and Savelski, 2000), it is possible to 

further use some economic objectives to sort the best solution among these degenerate 

ones. Some of the possible objective functions are presented below. 

Minimum number of connections: 

, *
*

m m m m m m
m m m

Min YWU YS YUN YNU YUU YNS
≠

  
+ + + + +  

  
∑ ∑                                     (2-12) 

Minimum capital cost: 
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          (2-13) 

where mICWU , mICS  , , *m mICUU , mICUN , mICNU , ICNS are the investment cost 

with connections. The cost of the regeneration unit  RegCost can be either a function 

of the treated flowrate (which can be linear or non-linear) or a constant value. The 

equations used to calculate the capital investment of the regeneration process is presented 

in each example. 

In addition, the use of the maximum outlet concentrations assumption when total 

annualized cost is minimized is investigated:  

Minimum annualized cost: 

( ), * , *
*

n

m m m m

m m m m m m
m m m m m

m m m m
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   
   + +     +  

∑ ∑ ∑ ∑          (2-14) 

where α  is the freshwater cost, β  is the operating cost of the regeneration process and 

af  is the annual discount factor. 

 

2.3. Linear Models 

Savelski and Bagajewicz (2000) proved that when minimum freshwater is sought, 

then, there is an optimum solution in which the outlet concentration of each water-using 

units reaches its maximum value. As a result, equations (2-3) and (2-4) can be rewritten 
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as follows (Bagajewicz and Savelski, 2001):  
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Next, the use of this assumption is investigated solving examples using different 

objective functions and/or structural constraints. The examples were implemented in 

GAMS (Brooke et al., 1998). The linear model is solved using GAMS/CPLEX and the 

non-linear model using GAMS/DICOPT. 

 

2.4. Illustrations 

Example 1 

The first example involves a small-scale problem using the one posed by Wang 

and Smith (1994) with four water-using units. The configuration of the network without 

reuse (which we call conventional network) and its respective limiting data are presented 

in Figure 2.3. 

Minimization of freshwater consumption using both models, linear and non-

linear, renders the same minimum freshwater usage (90 t/h). However, there are 

degenerate solutions in which the maximum outlet concentration is reached and others in 

which the outlet concentration is lower than the maximum.  
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Figure 2.3 – Network configuration without reuse and its limiting data. 

 

Minimizing the number of connections among degenerate solutions:  

Both models were used to analyze the validity of the maximum outlet 

concentration condition when the minimum number of connections is used as the 

objective. In both cases, the freshwater consumption is set to be 90 t/h, which is the 

minimum that can be calculated using the water pinch and several other different 

methodologies. 

The number of connections of the solution obtained by the linear model is 8 

(Figure 2.4) while the non-linear model renders 6 connections (Figure 2.5). Note that the 

non-linear model also has a simpler structure. 

 
Figure 2.4 – Solution with minimum number of connections - linear model. 
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Figure 2.5 – Solution with minimum number of connections (non-linear model). 

(*: Concentrations lower than the maximum) 
 

Because the outlet concentration is fixed in the linear model, every unit that 

requires an inlet concentration lower than the minimum outlet concentration among the 

units has to be supplied by freshwater. In this example one can see that this happens for 

Units 2 and 3. Their maximum allowed inlet concentration is 50 ppm and the minimum 

outlet concentration among all the units is 100 ppm. Thus, there is no other option for 

these units than to be totally or partially supplied by freshwater. In other words, these two 

connections must exist when the maximum outlet concentration condition is used. 

Conversely, the nonlinear model can lower the outlet concentration of one (or more) 

unit(s) and remove the need for dilution. Indeed, Figure 2.5 shows that Unit 1 does not 

reach its maximum concentration and thus feeds Unit 3 without dilution.  This issue can 

become significant when the physical distance between the freshwater source and the 

units is a concern (layout and/or cost issues).  

 

Minimizing the cost of connections among degenerate solutions:  

The cost of connections is now minimized maintaining the freshwater 

consumption at the minimum of 90 t/h. We set all costs to zero except the costs of 

connections between freshwater source and Units 2 and 3 ($10,000 each). As expected, 

the linear model reached a minimum cost of $20,000. This is the same solution found 
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when the number of connection was minimized (Figure 2.4). The nonlinear model, in 

turn, shows a network with no costs, that is, both connections that had a cost were 

avoided. Figure 2.6 shows this solution. Note that Unit 1 reaches an outlet concentration 

(lower than its maximum and the one found in Figure 2.5) that allows the absence of 

connections between freshwater and Units 2 and 3. 

 
Figure 2.6 – Solution with minimum cost of connections - non-linear model. 

(*: Concentrations lower than the maximum) 
 

Feasible flowrate ranges feeding water-using units: 

The flexibility given by the non-linear model is shown next.  The nonlinear model 

has larger flexibility to vary flowrates in the water using units, which can have an impact 

on costs. To do that, the feasible regions are investigated.  

In the case of Unit 1 (Figure 2.7), only one inlet concentration is possible (0 ppm). 

Then, a graph directly relating outlet concentration and flowrate is presented. The 

contaminant balance for the units (Equation 2-3) shows that the outlet concentration 

decreases when the flowrate through the unit increases. When the linear model is used, 

there is only one feasible flowrate for Unit 1 (20 t/h). Otherwise, the model with free 

outlet concentration can have a variety of flowrates, which will reduce the outlet 

concentration.  
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Figure 2.7 – Feasible flowrates through Unit 1 

 

 Figure 2.8 shows the outlet concentration as a function of the inlet concentration 

at different flowrates of Unit 2. The inlet concentration of Unit 2 was varied from zero to 

its maximum allowed inlet concentration. Note that the feasible solutions for the linear 

model are limited by a maximum flowrate (100 t/h). This does not happen when the 

outlet concentration is free (nonlinear model). Moreover, in the linear case each feasible 

flowrate has a unique inlet concentration, which does not happen in the nonlinear case. 

Indeed, the flexibility of the model when maximum outlet concentration condition is not 

applied can be observed by the larger feasible region (shadow region). Similar behavior is 

found for Units 3 and 4.  
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Figure 2.8 – Feasible flowrates through Unit 2. 

 

Example 2 

In example 2, the addition of a regeneration process in the problem studied in 

example 1 is allowed. The regeneration process added has a fixed outlet concentration of 

10 ppm. When freshwater consumption is minimized, both models reach the same 

minimum flowrate (20 t/h) and obtain the same network structure. The solution is shown 

in Figure 2.9. The required connections between freshwater source and Units 2 and 3 are 

no longer needed. This is because now there is an option of using water coming from the 

regeneration process, which has outlet concentration (10 ppm) lower than the maximum 

allowed inlet concentration in Units 2 and 3 (50 ppm). 
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Figure 2.9 – Optimal solution for Example 2 - both models. 

 

These observations characterize the existence of degenerate solutions, which can 

provide economical advantages for the design. Thus, the freshwater flowrate is fixed at 

20 t/h and the following analyses are made: 

 

a - Minimizing the number of connections among degenerate solutions:  

The linear model shows a minimum of 8 connections (Figure 2.10) while the 

nonlinear model requires only 7 connections (Figure 2.11). Interestingly, both solutions 

present isolated zero discharge cycles, which is not always convenient due to 

control/flexibility reasons (the load in the units might vary and there is no freshwater to 

add to respond to the changes) and the need to prevent the accumulation of compounds 

that are not removed in the regeneration processes. In fact, this is not a situation that is 

often seen in industry, and, while feasible there are many impediments to implement 

them.  It is not unthinkable that in the future, the pressure to reduce water consumption 

will increase and these impediments will be sorted out.  
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Figure 2.10 – Minimum number of connections for Example 2 - linear model. 

 
 

 
Figure 2.11 – Minimum number of connections for Example 2 - non-linear model. 

(*: Concentrations lower than the maximum) 
  

b - Elimination of Closed Cycles: 

To avoid closed cycles, forbidden connections constraints are added to the 

models. The following constraint forbids a closed cycle between one unit and the 

regeneration process.  

                                                 1m mYUN YNU m+ ≤ ∀                                               (2-17) 

Note that the idea here is not to forbid the recycles involving a unit and a 

regeneration process, but to avoid the isolated cycles. The suggested constraint cannot 

guarantee the non existence of these cycles since one involving two units and the 

regeneration process still can exist. However, it reduces the possibility of the existence of 
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these cycles. If this constraint does not work for this example, a new one can be added. In 

the above solution, this constraint would forbid the loop between the regeneration process 

and Unit 3.  Now, only isolated loops involving the regeneration and two units can exist. 

In such a case constraints similar to (2-17) can be written.   

The minimum freshwater consumption is solved first. As a result, the linear model 

does not give the same minimum freshwater consumption than the nonlinear model. The 

first one gives 40 t/h of freshwater usage, while the nonlinear model renders 20 t/h of 

freshwater usage. These networks are shown in Figure 2.12 and Figure 2.13. 

 
Figure 2.12 – Minimum freshwater usage for Example 2, forbidding cycles - linear 

model. 
 

 
Figure 2.13 – Minimum freshwater use for Example 2, forbidding cycles - non-linear 

model. 
(*: Concentrations lower than the maximum) 
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These results show that the maximum outlet concentration assumption does not 

only fail when other objective functions (cost or number of connections) are used, but 

also when minimum freshwater is targeted under structural constraints. 

 

c - Minimizing the number of connections among degenerate solutions with 

forbidden cyclic connections:   

The linear model solution finds the network presented in Figure 2.12, which was 

obtained by eliminating cycles. This network has 10 connections and does not have 

disconnected zero discharge cycles. Figure 2.14 shows the solution of minimizing the 

number of connections using the non-linear model with forbidden cycles between the 

regeneration process and units. The found solution has 8 connections and no isolated 

cycles.  

 

 
Figure 2.14 – Minimum number of connection (forbidding disconnected closed cycles) - 

non-linear model. (*: Concentrations lower than the maximum) 
 

 

Note, that the nonlinear model renders a smaller number of connections (8 

compared to 10 in the network found using the linear model) but a larger regeneration 

capacity (90.56 t/h compared to 55.56 t/h in the network found using the linear model).  
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d - Minimizing Capital cost among degenerate solutions with forbidden 

connections:   

In this example the cost of the regeneration process is given by:  

0.716,800RegCost RegCap=                                                                            (2-18) 

where RegCap is the capacity of the regeneration process, which is in turn given by:  

= m
m

RegCap FUN∑
                                                                                               (2-19) 

The capital costs of connections between the regeneration process and units, 

among units and between units and the end-of-pipe treatment are presented in Table 2-1. 

Both models (with forbidden connections) were applied over their range of reuse. Note 

that because the capital cost of the regeneration process is non-linear, both models need 

to be solved using a non-linear solver. The difference here is that in one case all outlet 

concentrations are fixed to be the maximum value. The solutions are presented in Figure 

2.15. 

 
Table 2-1 - Capital costs of the connections. 

 Unit 1 Unit 2 Unit 3 Unit 4 Reg. 
EoP 

treatment 
FW $30,000 $45,000 $25,000 $60,000   

Unit 1 - $150,000 $110,000 $45,000 $145,000 $15,000 
Unit 2 $50,000 - $134,000 $40,000 $37,000 $30,000 
Unit 3 $180,000 $35,000 - $42,000 $91,000 $20,000 
Unit 4 $163,000 $130,000 $90,000 - $132,000 $34,000 
Reg. $33,000 $130,000 $50,000 $98,000 - $45,000 
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Figure 2.15 – Comparison of capital cost of networks of example 2 that operate at 

different freshwater consumption (forbidding disconnected closed cycles). 
 

The solutions show that the use of maximum outlet concentration condition 

generates networks with higher capital costs for every freshwater flowrate inside its 

feasible range. Also, the linear model with forbidden connections cannot reach the same 

minimum freshwater consumption reached by the non-linear model. 

 An interesting observation here is that the nonlinear model is able to generate a 

network with a capital cost lower than the conventional one (network without reuse as in 

Figure 2.3), which is the minimum capital cost solution for the linear model. In both 

cases, the minimum capital cost corresponds to the network with the maximum flowrate 

(112.5 t/h). For this maximum flowrate, the capital cost of the network generated by the 

linear model is $259,000 and the one obtained by the non-linear model is $209,000. 

Additionally, it is worth noting the network generated by the non-linear model can 

operate with lower freshwater consumption. That is, the last 6 freshwater consumption 
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points generated by the non-linear model (Figure 2.15) represent the same network, The 

optimum network at the last freshwater consumption point (112.5 t/h) for the linear 

model corresponds to the one presented in Figure 2.3 (no reuse). This network cannot 

operate at a freshwater consumption lower than 112.5 t/h. However, using a variable 

outlet concentration allows finding an optimum network at the same freshwater 

consumption that is not only cheaper, but also can operate at lower flowrates. This is only 

possible because the outlet concentrations are not set to their maximum value. This 

network is presented in Figure 2.16. 

 
Figure 2.16 –  Network with the lowest capital cost generated by the nonlinear model 

(*: Concentrations lower than the maximum) 
 

Example 3 

Example 3 presents the analysis of a larger scale network presented by 

Bagajewicz and Savelski (2001).  This network has ten water-using units and the 

corresponding limiting data are presented in Table 2-2. Since this example was 

previously solved by Bagajewicz and Savelski (2001) applying the maximum outlet 

concentration conditions, both results are compared and discussed.  It is worth noting that 

if the maximum outlet concentration condition is applied, one could already detect that 

processes 1 to 5 and 8 to 9 would need freshwater since their maximum inlet 

concentration is lower than the minimum outlet concentration of all processes. Using the 
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non-linear model (outlet concentration as a variable), this conclusion cannot be made and, 

consequently, the feasible region is not reduced (as shown in previous example – Figure 

2.7 and Figure 2.8).  

The freshwater usage of the analyzed network was minimized and both models 

achieved 165.94 t/h as expected (Figure 2.17).  This represents the same solution 

presented by Savelski and Bagajewicz (2000). The degenerate solutions are analyzed 

next. 

Table 2-2 – Limiting data for example 3. 
Process 
Number 

Mass load of 
contaminant (kg/h) 

Cin 
(ppm) 

Cout 
(ppm) 

Minimum freshwater flowrate 
(ton/h) 

1 2.00 25 80 25.00 
2 2.88 25 90 32.00 
3 4.00 25 200 20.00 
4 3.00 50 100 30.00 
5 30.00 50 800 37.50 
6 5.00 400 800 6.25 
7 2.00 400 600 3.33 
8 1.00 0 100 10.00 
9 20.00 50 300 66.67 
10 6.50 150 300 21.67 

 

 
Figure 2.17 – Minimum freshwater consumption – Solution from both linear and 

nonlinear model. 
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Minimizing the number of connections among degenerate solutions:   

The minimum number of connection of the network that features the minimum 

freshwater consumption is analyzed first. Thus, both models were run and the networks 

presented in Figure 2.18 and Figure 2.19 were found using the linear and non-linear 

model respectively. The minimum number of connections found by the linear model is 

22. Conversely, the non-linear model is able to reduce this number to 21. Note that in the 

non-linear model (Figure 2.19) units 1, 2, 6, 7 and 10 do not reach their maximum outlet 

concentration. 

 
Figure 2.18 – Solution with minimum number of connections – linear model. 

 
 



 

34 

 
Figure 2.19 – Solution with minimum number of connections – non-linear model. 

(*: Concentrations lower than the maximum) 
 

Minimizing cost of connections among degenerate solutions:   

The minimum cost of connections was also analyzed. The cost data proposed by 

Bagajewicz and Savelski (2001) are presented in Table 2-3. They pre-excluded some of 

the connections (the ones without costs associated) using the monotonicity condition 

proved by Savelski and Bagajewicz (2000). However, this condition may not be valid for 

the cases when one lets the outlet concentrations vary. In fact, the solution for the 

minimum number of connection previously shown (Figure 2.19) has connections that 

were excluded by the monotonicity conditions. To evaluate the validity of this condition 

on the minimization of costs and forbidden connections, the problem is solved first 

considering this pre-exclusion and then not considering it. The authors also excluded the 

costs between freshwater source and units claiming that connection from the freshwater 

source cannot be different from the ones gotten before (minimization of freshwater). 

However, as discussed in Example 1, these connections are always required only when 

the linear model is used. The non-linear model may not render some of these connections.  
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Table 2-3 – Cost of connections for example 3 ($ per year). 
UNIT 1 2 3 4 5 6 7 8 9 10 WWT 

1 - 2.42 2.98 3.17 3.54 3.54 3.54 - 2.98 2.79 5.42 
2 - - 2.79 2.98 3.54 3.54 3.54 - 3.17 2.98 5.42 
3 - - - - 2.98 3.17 3.54 - 3.54 3.54 4.67 
4 - - 2.42 - 2.79 2.98 3.54 - 3.54 3.54 4.67 
5 - - - - - - - - - - 3.92 
6 - - - - - - - - - - 3.92 
7 - - - - 2.98 2.79 - - - - 3.92 
8 - - 3.54 - 3.17 2.98 2.42 - 2.79 2.98 3.92 
9 - - - - 3.54 3.54 2.98 - - - 4.67 
10 - - - - 3.54 3.54 3.17 - - - 4.67 

 
 

The solutions obtained when the exclusion of some connections (by the 

monotonicity condition) is applied are presented first. The minimization of capital cost at 

the minimum flowrate (165.94 t/h) using the linear model gives a cost with connections 

of $53.16, where 22 connections are needed. This is the same solution found by 

Bagajewicz and Savelski (2001). The corresponding network is presented in Figure 2.20. 

For the nonlinear model, the minimum cost is $39.72, which is 25% lower. Note that the 

outlet concentrations of units 1, 2, 6, 7 and 10 did not reach their maximum outlet 

concentration. The network that represents the found solution, together with the outlet 

concentrations of the units, is presented in Figure 2.21. This solution has also 21 

connections, which is the minimum obtained when the number of connections is 

minimized. Even when some of the connections are excluded by the monotonicity 

condition, the non-linear model is capable of reaching 21 connections. 
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Figure 2.20 – Solution with minimum connections cost considering pre-defined 

connections –linear model. 
 

 
Figure 2.21 – Minimum connections cost considering pre-excluded connections – non-

linear model. (*: Concentrations lower than the maximum) 
 

Additionally, the minimum connection cost when all the possible combinations of 

connections are allowed is sought. To guarantee an analysis capable of only investigate 

the possibility of existence and not the decision due to cost, the cost of these previously 

excluded connections (the connections without the costs of Table 2-3) are set to zero. The 

solution obtained using the linear and non-linear model are presented in Figure 2.22 and 
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Figure 2.23 respectively. Interestingly, the linear model could now reach a lower cost of 

connections ($49.80) than when some connections were excluded by the monotonicity 

condition. This solution shows a connection from unit 8 to unit 4 that was excluded in the 

previous case and it substitutes the connection from unit 2 to unit 4 in the previous case. 

The non-linear model also reaches a lower cost ($38.40) and units 1, 6, 7 and 10 do not 

reach their maximum concentration. 

 

 
Figure 2.22 – Solution with minimum connections cost considering all possible 

connections –linear model. 
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Figure 2.23 – Solution with minimum connections cost considering all possible 
connections –non-linear model) (*: Concentrations lower than the maximum) 

 
 

Minimizing Total Annualized Cost:   

Now, using the objective function presented in equation (2-14), the total annual 

cost is minimized. It is assumed the freshwater cost (α ) is $0.3/t and the annual discount 

factor (af) is 0.1 (over 10 years). 

The linear model gives a minimum total annual cost of $54.82 at 167.70 t/h. This 

solution (Figure 2.24) consumes slightly more freshwater than the minimum possible.   

The minimum annual cost obtained using the non-linear model is $53.60 for a 

network that consumes 166.74 ton of freshwater per hour. The found network is 

presented in Figure 2.25. Once again, units 1, 2, 6, 7 and 10 do not reach their maximum 

outlet concentration. 
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Figure 2.24 – Solution with minimum total cost considering all possible connections – 

linear model. 
 
 

 
Figure 2.25 – Solution with minimum total cost considering all possible connections – 

non-linear model. (*: Concentrations lower than the maximum) 
 
 

2.5. Conclusions 

 A comparative analysis of results obtained using the water allocation original 

MINLP model and a model that applies particular conditions to design single 

contaminants water networks was made.  The comparison is based on the application of 
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the optimality conditions (maximum outlet concentration and monotonicity conditions) to 

minimize objective functions other than minimum freshwater. The influence of structural 

constraints was also analyzed. Results show that in both cases these conditions should not 

be used. 
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3. NETWORKS BASED ON A PROFIT-BASED OPTIMIZATION CRITERIA 

 

In this chapter, profit-based optimization criteria are investigated and 

compared with the most used ones: freshwater consumption and total cost. 

A methodology for the grassroots design and/or retrofit of water systems 

using mathematical optimization to maximize Net Present Value (NPV) 

and/or Return of investment (ROI) is proposed. The examples show that 

the solutions where savings and/or profit are maximized can be different 

from those where freshwater is minimized. They also differ from each 

other when ROI or NPV are used. In addition, when the NPV objective is 

used, the optimum solutions also vary depending on the interest rate used 

to calculate the discount factor. 

 

3.1. Overview 

Consumption of water in the process industry, especially water re-use and 

regeneration, is a very well known and studied problem. Several review papers were 

recently written on the subject (Bagajewicz, 2000; Liu et al., 2004, Yoo et al, 2006), and 

a book (Mann and Liu; 1999). In order to design these systems, the tendency has been to 

minimize freshwater usage, sometimes as a true objective and sometimes as a substitute 

for a cost objective function using the assumption that freshwater costs is the dominant 

portion of the cost function. 

Despite the aforementioned tendency to focus on freshwater consumption there 

are several articles that deal with minimizing cost objectives for grassroots design. Total 
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annualized cost is used as the objective function by Chang and Li (2005), Guanaratnam et 

al. (2005), Karuppiah and Grossmann (2006), and Alva-Argáez et al. (2007).  

Articles that discuss profitability objectives explicitly for grassroots design are: 

Zhelev (2005), Wan Alwi and Manan (2006, 2007) and Lim et al. (2006, 2007).  

Zhelev (2005) uses a grid diagram analogous to Water Pinch, but targets optimum 

profitability.  They applied the method for an energy recovery project and examples on 

water network systems are not explored. In the case study they analyze three options that 

generates the same energy saving and then they seek for the most profitable one.   

Wan Alwi and Manan (2006) search for a cost-effective grassroots design of 

water networks involving a single contaminant. Their method is applied both for 

municipal and industrial sites and is not based on mathematical optimization. Instead, 

they suggest a hierarchical procedure in which a sequence of proprietary water 

management steps is established: after a payback limit is set, several water network 

options are investigated. In this sequential procedure, the maximum water recovery of 

each option is determined and the plot of investment vs. annual savings is generated. If 

the total payback period does not agree with the one previously set, some processes can 

be replaced in order to achieve the desired payback period. Wan Alwi et al. (2007) extend 

their previously presented hierarchical method to account for other steps of the hierarchy, 

which includes process changes. 

Lim et al. (2006) consider an economic evaluation of a freshwater consumption-

optimized water network. They analyze the profitability of the optimized network having 

the conventional water network as a baselined and applying incremental costs and 

benefits to rearrange the given network to a more operational friendly one. No 
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regeneration processes are considered. Some insights of major contributors to the costs 

and benefits are presented. However, these findings cannot be necessarily generalized 

since they are based on a specific case example.  In a second paper, Lim et at. (2007), the 

optimized water network is found directly by optimizing the net present value (NPV) 

using an NLP model (using MINOS). The formulation of the NPV equation is based on 

the principal contributors of the incremental costs and benefits found in their previous 

work. The addition of regeneration processes is not considered either and a maximum 

allowed flowrate is imposed for each water-using unit.  Their results confirm that a 

network obtained minimizing costs or freshwater consumption is not necessarily the most 

profitable one. 

 In turn, retrofit projects for water systems are motivated by the need for capacity 

increase, product quality improvement, environmental regulations, among others. In 

particular, one of the important issues concerning retrofit projects of water/wastewater 

systems are new environmental targets. Sometimes, there are economic incentives that 

come from cost reductions. While performing a retrofit to meet environmental targets 

could be mandated, retrofits to reduce freshwater costs as well as water treatment costs 

are not. In the latter case, profit drives the decision making. Setting aside the need to 

approach the retrofit problem trying to meet environmental targets or maximize savings, 

the cost and finances management point of view (maximum profit) is still very important 

in any industrial competitive environment. 

In retrofit projects there is the same need for profitable alternatives. A cost 

effective retrofit project looking at reducing the environmental impact should have a 

precise description of the plant, be realizable in practice and the pollution impact should 
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be fully defined in practical terms (Nourai et al., 2001). Even if the physical features are 

very well defined, relatively precise cost estimation is still primordial to reach the best 

retrofit alternative. This important implication is discussed in detail by Taal et al. (2003), 

who conclude that the use of complex methods does not guarantee the success of a 

retrofit design if reliable cost estimation is not available.   

Bagajewicz et al. (2000) proposed a retrofit method that minimizes total cost 

(including cost with freshwater, capital cost and pumping cost) using mathematical 

programming. Later, Tan and Manan (2004) adapted the mass exchangers networks 

retrofit methodology presented by Fraser and Hallale (2000). This is a systematic 

methodology in which the targets are obtained before the network is designed. However, 

the targeting step involves uses water pinch analysis to obtain a grassroots design. The 

retrofit is then proposed by comparing the existing network and the suggestions inferred 

by the targeting technique. The design rules applied follows the ones presented by Wang 

and Smith (1994) for a single contaminant. Later, Tan and Manan (2006) presented 

another systematic methodology for the retrofit of single contaminant water networks 

through the optimization of existing regeneration units. The methodology is based on 

pinch analysis and the addition of new regeneration processes is not allowed. As the 

majority of graphical methods, the procedure consists of two stages, with a targeting step 

followed by the network design step. The problem is solved maximizing savings in 

operating cost under certain limits on minimum payback period and/or maximum capital 

expenditure. Tan et al. (2007) extended their approach to consider the optimum capacity 

and/or outlet concentration of the regeneration process as targets. This is also done using 

a two step technique (targeting and design) based on pinch analysis. The procedure 
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assumes both mass transfer and non mass transfer based water-using units, a single 

contaminant network and only one type of regeneration. 

Finally, Hul et al. (2007) presented LP and MILP models to handle the retrofit of 

water networks where only source-sink type units are considered (fixed flowrates and 

outlet concentrations). Their approach evaluates different criteria in the optimization of 

water networks: Maximum water recovery with and without investment limits; 

wastewater reduction targets; processes constraint as forbidden connections; and, the 

combination of these criteria. The model cannot be applied for mass transfer type of 

water using units.   To handle their combined objective they use fuzzy optimization.  

Although successful methodologies have been presented by previous work, there 

is a lack of a methodology that can provide alternative designs so one can analyze them 

in a more comprehensive and profit related way and have a better understanding of the 

opportunities of each option as well as their costs and benefits.  

This chapter is an extension of the methodology presented by Faria and 

Bagajewicz (2006), which presents a procedure for the grassroots design and retrofit of 

single and multi-components water networks using cost, consumption and profitability as 

objectives. In both cases, the addition of regeneration processes is allowed.  

 

3.2. Problem Statement 

To define the problem, definitions that are similar to those used in previous work 

and presented in chapters 2 are applied.  

 

Grassroots: Given a set of process systems in need of water for washing 
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operations, a set of freshwater sources of different pollutants concentration and, a set of 

potential regeneration processes to be installed, it is desired to determine what 

freshwater use is needed in each process, what water reusing connections are needed and 

what capacity of regeneration processes (if any) is needed to maximize profit or minimize 

cost. 

It is assumed that any regeneration process has a fixed outlet concentration of at 

least one contaminant (sometimes a maximum capacity limitation for this process is 

added).  This is particularly true for certain operations, like the removal of solids. 

Additionally, capital for investment may be limited.   

 

 Retrofit: Given an existing water network (water-using units, freshwater 

sources, regeneration processes and end-of-pipe treatment), a set of new processes in 

need of water for washing operations to be added (if any), a set of required capacity 

expansions of existing processes, a set of regeneration processes that are available for 

installation (if needed) and, new freshwater sources available, it is desired to determine 

what re-piping and what capacity of a new treatment process (if any) is needed to 

maximize targets (profit or savings). 

 Maximum inlet and outlet concentrations as well as fixed mass loads of the 

water-using units and freshwater concentrations are used. The economic parameters 

include the cost of freshwater, operational costs of the end-of-pipe treatment and the 

regeneration process, the capital cost of the new potential connections and the new 

potential regeneration processes. 
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3.3. Mathematical Model 

The constraints of the mathematical model for both grassroots design and retrofit 

of water networks with multiple contaminants are the following WAP standard ones:  

 

Balance of water in the units: 

, * , * , *
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*, * *,
*;

*

w m r m m m
w W r R m m M

m r m m m
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Balance of water in treatment/regeneration processes: 

, * , * * , * *,
*; *;

*m r r r r m r r r
m M r r r R m M r r r R

FUN FNN FNS FNU FNN r R
∈ ≠ ∈ ∈ ≠ ∈

+ = + + ∀ ∈∑ ∑ ∑ ∑
            (3-2) 

Balance of contaminant in the units: 
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Limit of inlet concentration of contaminants in the units: 
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Limit of outlet concentration of contaminants in the units:  

max,
*, *, * ,out out

m j m jC C m M j J≤ ∀ ∈ ∀ ∈
                                                                                 (3-5) 

 

Balance of contaminants in treatment/regeneration processes: A material balance 

at the inlet of the regeneration process is needed to identify the outlet concentrations of 
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the contaminants that are not being treated by the respective regeneration process. 

Additionally, an equation using a connective binary parameter XNCr,j  equal to one if 

treatment/regeneration process  r  treats contaminant j; and, 0 otherwise,  is necessary to 

establish what is the outlet concentration of that particular contaminant.  

, * , , * *,
*;

*, , * , *
*;

* *
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( ), , , , ,* 1 * ,out in fixed
r j m j r j m j r jCR CR XNC CR XNC r R j J= − + ∀ ∈ ∀ ∈

            (3-7) 

 

Existence of new connections: Binary variables (Y) are used to determine if a new 

connection is established and the following classical “big M” constraints are used to 

count the capital cost of the new connections. 

( , )
, ,* ,w m
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( ) *m
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( ) *r
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When connections already exist the binary variables are set to one and the 
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respective capital cost set to zero.  

 

Treatment/Regeneration Capacity:  The flowrate through the 

treatment/regeneration unit is limited by the unit capacity:   

, * , * *
*;

*m r r r r
m M r r r R

FUN FNN RegCap r R
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+ ≤ ∀ ∈∑ ∑                                                      (3-15) 

As in the case of existing connections, the capacities of an existing 

treatment/regeneration processes are set and the capital cost parameters are zero. For the 

cases in which the new regeneration processes can be added, the regeneration capacity 

(RegCapr) is in some instances treated as a variable (design mode) or as a parameter 

(evaluation mode), as described below. 

 

Objective Functions: 

The case of retrofit is considered because it is more general and then how the 

objectives can be derived to the grassroots case is shown. Let FWold be the existing 

system freshwater consumption, which is a fixed value and assume that operating costs 

are direct function of flowrates (freshwater and regenerated flowrate); then, the following 

objective function maximizes net savings: 
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In the case of grassroots design, we have FWold=0, *, 0old
r rFNN =

 
and , 0old

m rFUN = , 
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which makes the problem one of minimizing costs.  

The first part of the equation represents the savings obtained from freshwater and 

end-of-pipe treatment flowrate reduction. In this expression, FWm and α are the flowrate 

and cost of freshwater, respectively. The model can be extended to make these costs 

function of inlet concentrations of pollutants. The next term is devoted to regeneration 

costs, where new
rOPN  and old

rOPN  are the operating cost of the regeneration processes 

(new and old), FUNm,r are the flowrates between the water-using units and the 

regeneration process r and FNNr*,r  are the flowrates between two regeneration processes.  

Finally, OP represents the hours of operation per year. The last term is the annualized 

capital cost invested in the retrofit, where FCI is the fixed capital cost and af is any factor 

that annualizes the capital cost (usually 1/N, where N is the number of years of 

depreciation). The fixed capital of investment is calculated using the sum of the piping 

costs and the new regeneration units costs as follows: 
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  (3-17)

 

 

The first term represents the capital costs with connections between the 

regeneration process and water-using units, and the capital cost associated to connections 

between two water-using units and end-of-pipe treatment. The second term corresponds 

to the capital costs of the connections between two new regeneration processes, between 
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the new regeneration processes and the end-of-pipe treatment and the capital cost of the 

new regeneration treatments. The cost of the regeneration units is assumed to be a 

function of the regeneration process capacity only. 

Note that for the retrofit case and a single source of water, when there is no 

capital investment to depreciate (af=0), old
FTOPN = new

FTOPN (unchanged end of pipe 

treatment) and no regeneration is used, then equation (3-16) reduces to minimizing 

freshwater consumption. However, even if the end-of-pipe treatment cost does not 

change, when regeneration is present, even if new
rOPN = old

rOPN  the objective is not 

equivalent to minimizing freshwater consumption. Indeed, under these conditions, 

equation (3-16) becomes: 
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which can be rewritten as follows when water from the final treatment is not 

recycled but entirely disposed of (the usual assumption in many methods):   
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This last expression cannot be argued to be equivalent to minimizing freshwater 

consumption. The reason stems from the costing, which in this expression is not tied to 

the amount of pollutant removal, but to flows. In other words, if the operating costs 

would be only the cost of chemicals needed to remove the pollutants, then this would be a 

fixed amount because the amount of pollutants to remove in the whole network is fixed. 

However, even if the same amount of chemicals is used, the treatment units may receive 
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water at different concentrations, and therefore require to manipulate larger or smaller 

flows. The operating cost related to moving fluids, which is what is assumed here, can 

therefore vary. This invalidates arguments that freshwater consumption minimization is a 

valid economic goal when regeneration is used.  

An alternative objective function for retrofit is the Net Present Value (NPV) 
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where the discount factor df is the sum over N years of the different discount factors, that 

is:  
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Finally, the return of investment (ROI) for retrofit is given by:   
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In the case of grassroots design old
wFW =0, *, 0old

r rFNN =  and , 0old
m rFUN = , which in 

the case of equation (3-20), makes the problem one of minimizing the net present costs 
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(NPC). In the case of ROI, equation (3-22) turns into a minimization of operating costs 

per unit capital invested.  One would not use ROI in a grassroots context because there is 

no profit to talk about, and therefore equation (3-22) leads to such an unusual concept. 

Thus, for grassroots design, ROI is redefined with respect to a reference network and it is 

here named return on extra investment (ROEI). More details about ROEI will be 

presented together with the examples.   

 

3.4. Solution Methodology 

The methodology consists of maximizing Net Savings first (Equation 3-16) 

subject to the set of constraints given by Equations 3-1 to 3-15 and then calculating NPV 

(Equation 3-20) and ROI (Equation 3-22). To do this, the range of feasible freshwater 

consumption is determined first. This range is defined as the interval from the minimum 

possible freshwater consumption of the network to its maximum freshwater consumption, 

which is considered to be the consumption under no reuse conditions (conventional 

network). The freshwater consumption under no reuse conditions, which is the maximum 

value of the range, considers that the water using units are operating under their 

minimum flowrate. The minimum consumption is obtained minimizing the freshwater 

consumption using the same model as above (equations (3-1) through (3-15) and the 

following objective: 

,w m
w W m M

Min FW
∈ ∈
∑ ∑

                                                      (3-23) 

In turn, the maximum freshwater consumption is given by the consumption of a 

conventional network in which all the water-using units are fed by freshwater and operate 

at their minimum freshwater consumption (FWold for the retrofit case, which is the 
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flowrate of the existing network). 

Subsequently, when savings (Equation 3-16) are maximized for fixed freshwater 

consumption inside the aforementioned range, the respective capital investments 

(Equation 3-17) are calculated and the corresponding NPV (Equation 3-20) and ROI 

(Equation 3-22) are obtained.  When plotting these results (Savings, FCI, NPV or ROI vs. 

Freshwater flowrate), different points correspond to different networks and also different 

capacities of the new regeneration process (if any) are found.  Once the networks are 

identified, they are ranked according to different criteria. Finally, incremental analysis is 

performed.  

The following results are obtained using the MINLP formulation previously 

presented, which was solved using DICOPT (CONOPT/CPLEX) as the solver in the 

GAMS platform. 

 

3.5. Illustrations 

 

Example 1: Single Contaminant Case 

The following one component example was adapted from Example 1 of Wang 

and Smith (1994). The limiting process data for this problem are shown in Table 3-1 and 

it has a freshwater consumption without reuse (conventional network configuration) of 

112.5 t/h.  

The cost of freshwater is αi($/t)=0.3 and the system operates OP(h/year)=8600. 

The freshwater concentration was assumed to be equal to zero. The end-of-pipe treatment 

has an operating cost ($ / )rOPN t =1.0067 and an investment cost 0.7($ / )rICN t = 19,400.  
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Table 3-1 – Limiting process water data. 
Process Number Mass load of contaminant Cin(ppm) Cout(ppm) 

1 2 kg/h 0 100 
2 5 kg/h 50 100 
3 30 kg/h 50 800 
4 4 kg/h 400 800 

 

A potential new regeneration process is available for the grassroots design and the 

retrofit case.  Its capital cost is 0.7($ / )ICN t = 16,800 and the operating cost is assumed 

to be ($ / )OCN t =1.00. Only one regeneration unit with outlet concentration of 10ppm is 

considered. Finally, in the profitability analysis a 10 years period (af = 0.1) is used. 

 

Grassroots design case:  

The costs of connections for the superstructure of this network are presented in 

Table 3-2.  Other cost data were presented above.   

The feasible range of freshwater usage of this system is determined to be between 

the minimum freshwater consumption (20 t/h) and the consumption required by a 

network with no reuse (112.5 t/h). Figure 3.1 gives the optimum annualized total cost 

profile obtained when it is minimized (Equation 3-16) through the range of freshwater 

usage. This MINLP problem has 59 constraints, 38 continuous variables and 29 binary 

variables.  

Table 3-2 – Capital costs of the connections. 

 Unit 1 Unit 2 Unit 3 Unit 4 Reg. 
End of pipe 
treatment 

FW $39,000 $76,000 $47,000 $92,000 - - 

Unit 1 - $150,000 $110,000 $45,000 $145,000 $83,000 
Unit 2 $50,000 - $134,000 $40,000 $37,000 $102,500 
Unit 3 $180,000 $35,000 - $42,000 $91,000 $98,000 
Unit 4 $163,000 $130,000 $90,000 - $132,000 $124,000 
Reg. $33,000 $130,000 $50,000 $98,000 - $45,000 
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Figure 3.1 – Annualized total cost as a function of Freshwater flowrate for the grassroots 

design. 
 

Ten different networks were found as optimum as a function of freshwater 

consumptions as shown by those profiles. The networks are summarized in Table 3-3, by 

indicating their connections and the minimum freshwater consumption they can reach. 

Network A represents the optimum solution when annualized total cost is minimized. For 

this case, it also represents a network that is able to reach the minimum consumption.  

Figure 3.2 shows networks A, B, H and I because they will become relevant in the 

discussion that follows.  Network B exhibits one interesting feature: it is disconnected 

and exhibits a loop involving two units and a regeneration without discharge. Usually, 

because of possible build up of undesired contaminants, one would tend to disregard such 

a network. For the sake of completeness, it can be considered acceptable, assuming that 

all these other contaminants are somehow taken care of in the regeneration unit.  
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Table 3-3 – Networks for grassroots design (reuse of end-of-pipe wastewater not 
allowed) 

Network Connections Min 
consumption 

A W-U1, U1-U3, U1-U4, U2-U4, U3-U4, N1-U2, N1-U3, U3-
EoPT, U4-N1, EoPT-S 20 t/h 

B W-U1, W-U3, U1-U3, U2-U4, N1-U2, U3-EoPT, U4-N1, EoPT-
S 40 t/h 

C W-U1, W-U2, W-U3, U1-U3, U2-U4, U3-U4, N1-U2, U4-N1, 
U4-EoPT, EoPT-S 40 t/h 

D W-U1, W-U2, W-U3, U1-U3, U2-U4, N1-U2, U3-N1, U4-EoPT, 
EoPT-S 54 t/h 

E W-U1, W-U2, W-U3, U1-U3, U2-U4, U3-U4, N1-U2, U3-N1, 
U4-EoPT, EoPT-S 54 t/h 

F W-U1, W-U2, U1-U3, U1-U4, U2-U4, N1-U3, U2-N1, U3-
EoPT, U4-EoPT, EoPT-S 70 t/h 

G W-U1, W-U2, W-U3, U1-U3, U1-U4, U2-U4, N1-U3, U2-N1, 
U3-EoPT, U4-EoPT, EoPT-S 70 t/h 

H W-U1, W-U2, U1-U3, U2-U4, U3-EoPT, U4-EoPT, EoPT-S 90 t/h 
I W-U1, W-U2, U1-U3, U2-U4, U3-U4, U4-EoPT, EoPT-S 92.5 t/h 
J W-U1, W-U2,W-U3, U1-U4, U2-U4, U3-U4, U4-EoPT, EoPT-S 107.5 t/h 

Abbreviations: W: freshwater, Ui: Unit i, N1: Treatment/Regeneration unit 1, EoPT: End 
of Pipe treatment, S: sink 

 

 
(a) Network A 

 
(b) Network B 
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(c) Network H 

 
(d) Network I 

Figure 3.2 –   Selected networks from Table 3. 
 

If freshwater consumption is not a primordial issue (i.e. when freshwater is 

largely available and is cheap) and/or there are limitations in the investments, one may 

want to analyze this graph together with the FCI graph. Figure 3.3 shows the fixed capital 

cost profiles of the networks presented in Figure 3.1 along the range of freshwater usage. 

Although the costs of connections are constant for each network, the capital cost of the 

regeneration process and the end-of-pipe treatment vary. In fact as one increases the other 

decreases (Figure 3.4). From the FCI graph we can note that network C is the one in 

which the highest investment cost is required. If budget is an important issue for the 

project, network C may become an unattractive option. The effects of budgets limitations 

will be further discussed later. 
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Figure 3.3 – FCI as a function of Freshwater flowrate grassroots design. 

 

The same solutions are obtained when the NPC (Equation 20) is directly 

optimized (Figure 3.5). Variation on the rate of discount points at different optimal 

networks.  The difference between the minimum and maximum NPC when a 5% rate of 

discount is used is around MM$2.6. When a 20% rate of discount is used, this difference 

reduces to approximately MM$1.3. Although larger discount rates are unlikely, their 

effects are investigated to analyze if the optimal solution might change (Figure 3.6) and it 

does in favor of solutions with lower FCI as one might expect. 
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Figure 3.4 – Regeneration and end-of-pipe treatment capacities as a function of 

freshwater consumption. 
 

 
Figure 3.5 – NPC using different rates of interest as a function of Freshwater flowrate in 

the grassroots design. 
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Figure 3.6 – NPC and FCI as a function of rate of discount. 

 

Next, the cost and profitability of the network options previously suggested in 

comparison to the initial investments is investigated. For that, a typical rate of discount of 

9% is considered. In both cases (annualized total cost and NPC), network A shows the 

lowest objective value. However, if one considers also the initial investment (FCI), 

additional conclusions can be obtained. Figure 3.7 shows the Annualized total cost vs. 

FCI and NPC vs. FCI. The optimum capacities of the regeneration process and end-of-

pipe treatment for each of the networks are presented in Table 3-4. 
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Table 3-4 – Regeneration and end-of-pipe treatment capacity of the networks analyzed in 
Figure 5. 

 Regeneration Capacity EOP Capacity 
Network A 77.8 t/h 20 t/h 
Network B 55.6 t/h 40 t/h 
Network C 55.6 t/h 40 t/h 
Network D 40 t/h 54 t/h 
Network E 40 t/h 54 t/h 
Network F 22.3 t/h 70 t/h 
Network G 22.3 t/h 70 t/h 
Network H - 90 t/h 
Network I - 92.5 t/h 
Network J - 107.5 t/h 

 
 

 
(a) 
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(b) 

Figure 3.7 – a - Annualized total cost as function of FCI. b - NPC as a function of FCI. 
 

 

Evaluation of Budget limitations: 

Considering the solutions previously obtained, note that if the budget is 

constrained to be lower than $1,190,000, the optimum solution (minimum NPC) is 

network B instead network A. Network B has a NPC of $7,112,219 (for a 9% discount 

rate). This network does not use the whole budget since it has an FCI around $1,134,000. 

Due to its isolated loop without discharge (or any other reason), one may not consider 

network B. In this case other options can be analyzed. To better organize this 

information, the marginal values of annualized total cost and NPC are calculated and 

presented in Figure 3.7.  Network B is chosen as the reference network because it is the 

optimum solution for a $1,190,000 budget limit case. Thus, marginal values of the other 

suggested networks can be calculated by simply computing the change in costs (cost of a 
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given network minus the optimum network). The first quadrant contains the solutions that 

do not give any advantages in terms of the analyzed objective, the second shows 

networks in which the budget constraint is violated, but they provide a better solution in 

terms of the objective function and, the third one is always empty since the graph is done 

using the optimum solution of a budget limited case. Finally, the last quadrant provides 

information of networks that require a lower investment, but result in a larger objective 

function. The second and fourth quadrants are the ones with interest in this analysis and 

will be discussed further. 

First, we note that networks C, D, E, F and G do not give any advantage in terms 

of either annualized total cost or NPC. Then, one can look at the issue of how much one 

is losing for not having a higher budget (second quadrant). In this case the investment is 

$64,000 higher (which represents only $8,000 more than the budget), but it is able to 

decrease the annualized cost by $30,000 and NPC by $177,000 (network A). 

Now if we look the graph considering the former discussion (how much more you 

are investing to gain a certain delta in NPC – fourth quadrant) and assuming that no more 

money can be put in this project (the maximum is $1,190,00), another interesting point 

can be made. In this case, network H would give an annualized total cost $64,000 higher 

and would increase the NPC by $343,000. On the other hand, network H has a lower 

investment ($193,000 lower than network B and $249,285 lower than the budget). 
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(a) 

 
 

 
(b) 

Figure 3.8 – a- Marginal annualized total cost.  b – Marginal (grassroots case when reuse 
of end-of-pipe wastewater is not allowed). 
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A similar analysis can also be done considering a measurement of return on 

investment. Because this is a grassroots design, no direct profit can be calculated. 

However, it is known that one important objective function used by previous works 

(Hallale and Fraser, 19997, 2000a,b) is the minimization of capital cost (FCI). To 

evaluate this choice, one can now consider the optimum solution obtained when FCI is 

minimized (Equation 3-17) and use it as a reference solution. Thus, the Return on Extra 

Investment (ROEI) can be calculated as follows: 

 

ref

ref

OperatingCost OperatingCost
ROEI

FCI FCI

−
=

−                                    (3-23) 

 

This analysis is important when minimum freshwater is not an essential issue and 

capital cost is the main concern. In this case, one may think at first that the minimum 

capital of investment is the best choice. However, we show that some better opportunities 

can be missed.   

For this example, network I presents the minimum FCI and accordingly is the 

reference network. Figure 3.9 shows the ROEI as function of the freshwater flowrate 

considering the optimum ranges found from the minimization of annualized total cost 

(Figure 3.1 to Figure 3.4). 

The maximum ROEI as function of incremental FCI is shown in Figure 3.9. 

Because of its negative value (- 457%), network J was excluded from the figure. Now, 

from the ROEI point of view, the optimum network is network H, which gives a 67% 

return on extra investment. This network also corresponds to the one with the lowest 

extra investment. Note that network J represents a bad choice from the return on extra 
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investment perspective since it has a higher FCI and a higher operating cost. 

 

 
Figure 3.9 – Return on extra investment - grassroots case. 

 
 

Table 3-5 summarizes the results (the FCI, Total cost, NPC and ROEI are 

calculated at the minimum freshwater consumption). One can see the importance of 

looking at this problem from a more comprehensive view of the opportunities, which 

allows the designer to make a decision based on the level of importance and priorities of 

the project, current financial situation of the company, available budget, etc.  
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Figure 3.10 – Return on extra investment - grassroots case. 

 
 

Table 3-5 – Summary of results - grassroots case. 

Network 
Minimum 
Freshwater 

Consumption 
FCI Total Cost NPC ROEI 

A 20 t/h $1,197,873 $1,013,429 $6,935,050 50% 
B 40 t/h $1,133,814 $1,044,597 $7,112,219 48% 
C 40 t/h $1,276,442 $1,055,516 $7,233,376 31% 
D 54 t/h $1,196,702 $1,073,030 $7,317,272 31% 
E 54 t/h $1,237729 $1,074,983 $7,344,497 28% 
F 70 t/h $1,145,154 $1,094,624 $7,437,454 26% 
G 70 t/h $1,191,666 $1,098,383 $7,478,235 22% 
H 90 t/h $940,715 $1,108,829 $7,455,456 67% 
I 92.5 t/h $894,431 $1,135,385 $7,609,375 Reference 
J 107.5 t/h $926,861 $1,304,944 $8,709,560 -513% 

 
 

Retrofit case: 

For the retrofit case, a conventional network (no water reuse) in which no 

regeneration process exists is assumed. That is, the current network has only the 
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connection between the water source and water-using units and between water-using 

units and the end-of-pipe treatment. The investment costs of new connections and 

potential regeneration processes are needed. The costs previously presented are used in 

this case as well.  However, the capital cost of existing connections (between freshwater 

and water using units and water using units and end of pipe treatment) and processes (in 

this case the end of pipe treatment) are set to zero.  

The feasible range of freshwater usage found for the studied water network is 

between 20 t/h (the minimum flowrate using a regeneration process) and 112.5 t/h 

(flowrate of the current network). Figure 3.10 depicts the savings as a function of 

flowrate, where networks A through D make use of a regeneration unit and networks E, F 

and G do not use regeneration.  Note that each point corresponds to a different 

regeneration unit capacity (when this applies). 

 The ranges of freshwater where each network is the economical optimal solution 

(maximum Net Savings – Equation 16), are shown in Table 3-6. Selected configurations 

(networks A, C, E and F) are presented in Figure 3.11. The thicker lines in the figures 

represent new connections and the values inside the boxes represent altered flowrates and 

concentration. The flowrates and concentrations shown in the figures correspond to the 

operating conditions to reach the maximum savings of each network.  

The FCI as well as the ROI and NPV profiles corresponding to the savings 

presented in Figure 3.13 are shown in Figure 3.14 and Figure 3.15, respectively. Savings 

and FCI go down in a discontinuous manner. The ROI, however, increases.  Therefore, 

one can conclude that maximizing savings does not necessarily generate the most 

profitable solution from the ROI point of view. Indeed, the most profitable option from 
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the ROI point of view happens at the limit of 95 t/h (Network F), where no regeneration 

process is needed. Conversely, Network A exhibits the highest savings.  

 
Figure 3.11 – Savings as a function of Freshwater flowrate for the retrofit design. 

 
 

Table 3-6 – Network and corresponding range of freshwater flowrate  (Figure 10). 

Network 
Range of freshwater 

usage (discrete values) 
New Connections 

FCI of New 
Connections 

A 20.00 to 39.621 t/h 
U1-U3, U2-U4, N1-U2, 
N1-U3, U2-N1, U3-N1 

$458,000.00 

B 40.556 to 45.227 t/h 
U1-U3, U2-U4, N1-U2, 

U2-N1, U3-N1 
$408,000.00 

C 46.162 to 69.520 t/h 
U1-U3, U2-U4, N1-U2, 

U2-N1 
$317,000.00 

D 70.455 to 89.141 t/h 
U1-U3, U2-U4, N1-U3, 

U2-N1 
$237,000.00 

E 90.076  to 94.747 t/h U1-U3, U2-U4 $150,000.00 
F 95.682 to 106.894 t/h U1-U3 $110,000.00 
G 107.828 to 111.566 t/h U2-U4 $40,000.00 
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(a) Network A 

 

 
(b) Network C 

 

 
(c) Network E 

 

 
(d) Network F 

Figure 3.12 – Selected networks for the retrofit example. 
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Figure 3.13 – FCI as a function of freshwater flowrate - retrofit. 

 
 

 
Figure 3.14 – ROI as a function of freshwater flowrate - retrofit. 

 

Next, the net present value (NPV) is used as mean of looking at profitability. The 

same solutions are obtained optimizing either savings (Equation 3-16) or NPV (Equation 
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3-20). In this case, note that we are looking at true profitability of the retrofit, as opposed 

to using the net present cost as in the case of grassroots design. Figure 3.15 shows the 

NPV profiles of all the aforementioned solutions for different discount rates. The 

optimum solution varies according to the discount rate used. The 20% rate of discount 

gives network E as the one with the maximum NPV. On the other hand, the 10% rate of 

discount shows network A as having the maximum NPV. However, networks C and F 

also exhibit fairly good NPVs. For the 5% discount rate case, network A would be the 

best network from the NPV profitability based point of view. A better evaluation of what 

happens with the optimum solutions from the NPV point of view as function of rate of 

discount is shown in Figure 3.16.  It is worth reminding the reader that each point has a 

different regeneration unit capacity (when this applies).  

 

 
Figure 3.15 – NPV as a function of freshwater flowrate - retrofit design. 
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Figure 3.16 – NPC and FCI as a function of rate of discount - retrofit design. 

 
 

Operability Range of the Networks: 

The purpose of this section is to show the operability range (feasible variations of 

freshwater consumption) of each network and their relation with a chosen regeneration 

capacity. This can help in identifying adequate capacities of the regeneration process in 

each network and better understand the tradeoff between freshwater savings and cost with 

regeneration.  

To make the operability range analysis, the feasibility range of each network is 

extended beyond the interval in which they are optimal by solving the same problem 

again for each of the networks. We fix the network connections (but not the size of the 

regeneration unit yet) and maximize savings (Equation 3-16) for each fixed freshwater 
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flowrate. Unlike the previous problem, an NLP solver (GAMS/CONOPT) can be used 

here since the binary variables are now fixed. The results are shown in Figure 3.16.  

Note the existence of overlapping solutions for all networks, which indicates that 

different networks can operate at certain same freshwater consumption. There is a linear 

relation between the regeneration capacity and the freshwater flowrate, which is also 

shown in the top scale of the figure. The interesting point to make here is that at certain 

freshwater flowrate, the network with maximum saving obeys this linear relationship and, 

all the other feasible networks with the same freshwater consumption have the same 

regeneration capacity. Another issue worth pointing out is that to construct the curves the 

minimum freshwater flowrate obtained for a fixed network may not coincide with the 

original minimum value of the freshwater usage range at maximum savings. When this 

happens, one may get isolated points like the one shown in Figure 3.16 for network C.  

This isolated point of network C represents a feasible operating condition of this network 

where it operates economically worse than at least another network. Since this point does 

not represent the maximum savings at this freshwater consumption, the regeneration 

flowrate scale is no longer valid for it. The corresponding ROI and NPV profiles for these 

extended ranges are shown in Figure 3.17 and Figure 3.18 respectively.  
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Figure 3.17 – Savings profile of the suggested networks. 

 
 

 
Figure 3.18 – ROI profile of the suggested networks - retrofit. 
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Figure 3.19 – NPV profile of the suggested networks for 9% rate of discount - retrofit 

design. 
 

In the next step, the size of the regeneration ( rRegCap is fixed in Equation 3-15) 

is fixed in addition to the connections. The sizes that correspond to the capacity obtained 

for the point with maximum savings of each network are chosen. Moreover, an additional 

lower size can be found using information of the other networks. For example, the lower 

size of network C is the capacity corresponding to the point where at least one other 

network can reach the same savings (in this case network D). The savings are now linear 

for the whole feasible freshwater consumption range, as shown in Figure 3.19. In this 

figure, the previous curves of the networks with regeneration are included for reference. 

The capacities of the regeneration units correspond to where the straight line touches its 

curved savings profile. Once the regeneration capacity is defined, the minimum 

freshwater consumption is determined by the freshwater flowrate scale (in the bottom). 
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Figure 3.20 – Savings profile for fixed sizes of the regeneration process - retrofit design. 

 

This evaluation is useful to define economical limit sizes of the regeneration 

process for the different networks. For each network, a regeneration process with 

capacity higher than the maximum values used to construct Figure 3.19 does not decrease 

the freshwater consumption without generating a saving that is lower than one of another 

network. Consequently, in the best case (when freshwater consumption does not 

decrease), the part of the savings equation related to operating cost does not change while 

FCI increases.  Thus, a higher regeneration capacity generates economic loss.   

In Figure 3.20 the lower limit of the regeneration capacities are analyzed. One can 

see that a regeneration process with capacity of 22.222 t/h will be economically superior 

when used in network D than when used in network C. This also happens with Network 

A and B with 22.222 t/h capacity.  If we draw the profile, they will be below the one in 

network D. Similarly, a regeneration process with capacity of 49.206 t/h is economically 
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superior when used in network C than when used by network B and one with 55.556 t/h 

capacity is economically superior in network B than in network A. Further, from the 

economical point of view, network A should not work with a regeneration process with 

capacity lower than 61.345 t/h and, as suggested before, it should not work with a 

regeneration process with capacity higher than 77.778 t/h. This lower capacity limit 

represents the regeneration capacity in network A that generates the same savings than 

the maximum savings generates by other network (in this case, network C) that can 

operate at the same freshwater consumption. This point is also the economically optimum 

upper limit of network C (49.206 t/h). Additionally, network B does not present any 

economical advantages. The only reason that it could be considered is due to freshwater 

consumption issues when compared to network C. Similarly, the limits for network C are 

between 49.206 t/h and 29.695 t/h (this lower limit generates the same savings as network 

D at its maximum savings). In turn, network D has the limit between 22.222 t/h and 

12.104 t/h (this lower limit generates the same savings as the maximum savings in 

network E – the highest savings between the options without regeneration). Finally, the 

use of a regeneration process with capacity outside these intervals generates economical 

losses. This process of thought is illustrated in Figure 3.20.  

The ROI and NPV profiles of the networks A to D with fixed size of regeneration 

process are presented in Figure 3.22 and Figure 3.23 respectively. The largest advisable 

sizes from the savings point of view are used in these profiles. The pattern of straight 

lines repeats, but they are not parallel anymore.  
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Figure 3.21 – Analysis of regeneration capacity - retrofit design. 

 
 

 
Figure 3.22 – ROI profile for the limit sizes of regeneration process - retrofit. 
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Figure 3.23 – NPV profile for the limit sizes of regeneration process - retrofit design. 

 

 Table 3-7 shows the summary of the results for the retrofit case of the single 

contaminant example. As before, all economics is computed for the minimum freshwater 

consumption.  

Table 3-7 – Summary of results – retrofit design. 

Network 
Minimum 
Freshwater 

Consumption 
FCI Savings 

NPV 
(i=10%) 

ROI 

A 20 t/h $811,922 $289,398 $1,465,194 45.6% 
B 40 t/h $685,473 $267,467 $1,379,189 49.0% 
C 45 t/h $589,494 $236,631 $1,226,719 50.1% 
D 70 t/h $381,901 $247,533 $1,373,743 74.8% 
E 90 t/h $150,000 $236,995 $1,398,400 168.0% 
F 95 t/h $110,000 $177,996 $1,051,298 171.8% 
G 107.5 t/h $40,000 $48,499 $282,583 131.2% 

 
 

Example 2: Multi Contaminant Case 

To address the multi-contaminant case, the refinery example presented by Koppol 

et al. (2003) is investigated. It consists of six water using units and four key 



 

83 

contaminants, which operates 8600 hours per year. Table 3-8 gives the limiting data of 

the six water-using units.  

The cost of freshwater is $0.32/t and its concentration is assumed to be zero. The 

operating cost of the end of pipe treatment is $1.68/t and its capital cost factor is 

$30,000/t0.7. The financial analysis of the project is done for a period of 10 years (N=10 

years and af = 0.1). This problem has 215 constraints, 139 continuous variables and 87 

binary variables. 

  Table 3-8 – Limiting process water data for multi contaminant example. 

Process Contaminant 
Mass Load 

(kg/h) 
Cin,max 
(ppm) 

Cout,max 
(ppm) 

1 - CausticTreating 

Salts 0.18 300 500 
Organics 1.2 50 500 

H2S 0.75 5000 11000 
Ammonia 0.1 1500 3000 

2 - Distillation 

Salts 3.61 10 200 
Organics 100 1 4000 

H2S 0.25 0 500 
Ammonia 0.8 0 1000 

3 – Amine Sweetening 

Salts 0.6 10 1000 
Organics 30 1 3500 

H2S 1.5 0 2000 
Ammonia 1 0 3500 

4 - Merox-I 
Sweetening 

Salts 2 100 400 
Organics 60 200 6000 

H2S 0.8 50 2000 
Ammonia 1 1000 3500 

5 - Hydrotreating 

Salts 3.8 85 350 
Organics 45 200 1800 

H2S 1.1 300 6500 
Ammonia 2 200 1000 

6 - Desalting 

Salts 120 1000 9500 
Organics 480 1000 6500 

H2S 1.5 150 450 
Ammonia 0 200 400 
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Grassroots  case: 

For the grassroots case all design decisions need to be made. The capital costs of 

connections between processes are presented in Table 3-9. 

Three intermediary regeneration processes are available (API separator followed 

by ACA, which reduces organics to 50 ppm; Reverse osmosis, which reduces salts to 20 

ppm; and, Chevron wastewater treatment, which reduces H2S to 5 ppm and ammonia to 

30 ppm). The capital cost factor ICNr and the operation cost OPNr are presented in Table 

3-10. 

 

Table 3-9 – Capital costs of the connections. 
$(x103) U1 U2 U3 U4 U5 U6 R1 R2 R3 EOP 

W1 23 50 18 63 16 25 - - - - 
U1 - 50 110 45 70 42 23 15 11 53 
U2 50 - 34 40 11 35 50 12 34 51 
U3 110 34 - 42 60 18 18 35 47 62 
U4 45 40 42 - 23 34 63 13 50 78 
U5 70 11 60 23 - 28 16 21 19 58 
U6 42 35 18 34 28 - 25 33 24 22 
R1 23 50 18 63 16 25 - 50 31 44 
R2 15 12 35 13 21 33 50 - 34 40 
R3 11 34 47 50 19 24 31 34 - 52 

EOP 53 51 62 78 58 22 44 40 52 - 
 
 

The range of freshwater usage of this network is defined between its minimum 

consumption (33.6 t/h) and its freshwater consumption without reuse (144.8 t/h).  Figure 

3.24 shows the annualized total cost as function of freshwater consumption when the 

annualized total cost is minimized (Equation 3-16). The optimum solution from the 

annualized total cost point of view is network A, which can reach the minimum 

freshwater consumption.  
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Table 3-10 – Capital cost factor and operation cost for the regeneration processes. 

Regeneration Process ICNr ($/ton0.7) OPNr ($/ton) 

1 - API separator followed by ACA $25,000 0.12 
2 - Reverse osmosis $20,100 0.56 

3 - Chevron wastewater treatment $16,800 1.00 
 
 

 
Figure 3.24 – Annualized total cost as a function of freshwater flowrate for the grassroots 

case of the multi contaminant example. 
 

Table 3-11 shows the connections of all these networks and their corresponding 

minimum values of freshwater consumption (even when they are not optimal for those 

values). Relevant networks (A, B, C and F) are presented in Figure 3.24. Note that Table 

3-11 indicates that network A has a connection between the freshwater source and water-

using unit 4 (Merox I). In Figure 3.24a, however, this connection is not shown because 

this connection is not active at the specific condition of minimum freshwater 

consumption.  
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Table 3-11 – Network connections and minimum freshwater consumption of the 
networks – multi contaminant case. 

Network Connections 
Min 

Consumption 

A 
W-U2, W-U3, W-U4, U1-U4, U2-U5, U5-U6, N1-U1, 

N1-U5, N1-U6, N3-U4, U1-N3, U2-N1, U2-N2, U3-N1, 
U4-N1, U5-EoPT, U6-N2, U6-EoPT, N2-N1, EoPT-S 

33.6 ton/h 

B 
W-U2, W-U3, W-U4, U1-U6, U2-U6, U5-U6, N1-U1, 

N1-U5, N1-U6, U2-N1, U2-N2, U3-N1, U4-N1, U6-N2, 
U6-EoPT, N2-N1, EoPT-S 

43.6 ton/h 

C 
W-U1, W-U2, W-U3, W-U4, W-U5, U1-U5, U1-U6, 

U5-U4, U5-U6, N1-U1, U2-N1, U3-N1, U4-N1, U5-N1, 
U6-N1, U6-EoPT, N1-EoPT, EoPT-S 

68.1 ton/h 

D 
W-U2, W-U3, W-U4, W-U5, W-U6, U1-U6, U3-U6, 
U5-U6, N1-U1, N1-U5, U2-N1, U4-N1, U6-N1, U6-

EoPT, EoPT-S 
78.7 ton/h 

E 
W-U1, W-U2, W-U3, W-U4, W-U5, U1-U6, U2-U5, 
U3-U6, U5-U6, N1-U6, U2-EoPT, U4-N1, U6-EoPT, 

EoPT-S 
85.8 ton/h 

F 
W-U1, W-U2, W-U3, W-U4, W-U5, U1-U6, U3-U6, 

U5-U6, U2-EoPT, U4-EoPT, U6-EoPT, EoPT-S 
120.6  ton/h 

* N1 – API separator; N2 – RO; N3 – Chevron treatment; EoPT – End-of-pipe treatment. 
 

 Figure 3.25 shows the regeneration capacities needed as function of the 

freshwater consumption of the networks previously found. The only regeneration process 

that is always used through the whole range of freshwater usage is the end-of-pipe 

treatment. API separator is used up to 120 t/h freshwater consumption (networks A to E), 

the reverse osmosis up to about 66 t/h (networks A and B) and the Chevron wastewater 

treatment is used only by network A (up to approximately 40 t/h). Note that only an 

extremely small capacity of Chevron treatment is needed, what is not acceptable in 

practice. As another option in which the total cost does not significantly increase, 

network B can be considered.   
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(a)  Network A 

 
(b)  Network B 

 
(c)  Network C 

 
(d)  Network F 

Figure 3.25 – Selected networks from Table 3-11. 
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The FCI of the networks presented in Figure 3.23 as function of the freshwater 

flowrate is presented in Figure 3.26. The discontinuities of the curves are caused by the 

different piping configurations, and the curvatures are due to the different regeneration 

capacities for each fixed freshwater consumption. 

 Figure 3.27 shows minimum NPC of those networks for different rates of 

discount as function of freshwater consumption. Note the optimum solution depends on 

the discount rate applied. At a 10% discount rate network A is the optimum solution. 

However, for rates of discount of 15% or 20%, the network B presents the lowest NPC. 

Figure 3.28 shows the minimum NPC for a rate of discount of 10% of each 

network as function of FCI. The freshwater consumption where the minimum NPC 

happens is also presented in the graph.  

 

 
Figure 3.26 – Regeneration capacities as a function of freshwater flowrate for the 

grassroots case of the multi contaminant example. 
 
 



 

89 

 
Figure 3.27 – FCI as a function of freshwater flowrate for the grassroots case of the multi 

contaminant example. 
 

 
Figure 3.28 – NPC as a function of freshwater flowrate for the grassroots case of the 

multi contaminant example. 
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Figure 3.29 – NPC as a function of FCI for the grassroots case of the multi contaminant 

example (for rate of discount of 10%). 
 

 

The return on extra investment is analyzed next. Network G features the 

minimum FCI operating at its minimum freshwater consumption (120.1 t/h). This 

network has a FCI of $1,267,987 and an annualized total cost of $2,200,590. Using this 

network as reference, the ROEI vs. freshwater consumption is calculated using Equation 

3-23 and the solution is presented in Figure 3.29. Note that network G generates a 

negative ROEI. From the ROEI perspective, network C is the optimum solution when it 

is designed for a freshwater consumption of 68.1 t/h, which has an API regeneration 

process with capacity for 74.5 t/h. 

A summary of the results for the multi contaminant example is presented in Table 

3-12. Costs correspond to minimum freshwater consumption when the network is 

optimum. Network C has the highest ROEI (540%) when designed for a freshwater 

consumption of 67.3 t/h. The optimum solutions of each criterion are bolded.   
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Figure 3.30 –   Savings as a function of freshwater flowrate for the grassroots case of the 

multi contaminant example. 
 

Table 3-12 – Summary of results for the multi contaminant case. 

Network 
Freshwater 

Consumption 
FCI Total Cost NPC ROEI 

A 33.6 t/h $1,917,204 $1,182,217 $8,024,198 155% 
B 43.6t/h $1,770,753 $1,194,671 $8,039,440 210% 
C 68.1 t/h $1,415,986 $1,415,986 $9,246,542 540% 
D 79.6 t/h $1,505,614 $1,575,265 $10,259,802 273% 
E 87.5 t/h $1,452,112 $1,683,807 $10,906,119 291% 
F 120.6 t/h $1,267,987 $2,200,590 $14,010,534 Reference 

 
 

3.6. Conclusions 

This chapter presented a methodology to perform the grassroots design and 

retrofit of water/wastewater systems based on mathematical optimization and profitability 

insights. The results point some important conclusions: Targeting maximum savings (or 

total annualized cost) does not necessarily generate the most profitable solution. In 

addition, different measurements for profitability can give different solutions. Moreover, 
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when NPV is used as the measurement, the used discount rate can alter the optimum 

solution.  
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4. WATER SYSTEMS CORRECT STRUCTURES 

 

This chapter discusses the definition of the water/wastewater allocation 

problem as it was originally defined by Takama et al. (1980), how this 

concept was modified, and sometimes simplified through time, as well as 

additional issues that were still not properly addressed. Different 

architectures and assumptions used to model water system are discussed, 

a modification is suggested and the impact of proper modeling is 

investigated. A modified mathematical model is then presented. 

 

4.1. Overview 

Takama et al. (1980) discussed the architecture of the WAP and they made sure to 

include a wastewater treatment system and discharge concentration limits. Moreover, 

their model considers that a recycle of the water treated by these treatment units can be 

used to feed the water-using units. Later, Wang and Smith (1994), the work that gave rise 

to the “water pinch” method, ignored the discharge limits requirements. Thus, to comply 

with these requirements an implicit End-of-Pipe treatment (EoPT) had to be assumed.  

Because Wang and Smith (1994) only implicitly assumed it (it is not part of the model), 

they did not consider discussing the reuse and/or recycle of the stream treated by the 

EoPT. Several subsequent papers (Doyle and Smith, 1997; Polley and Polley, 2000; 

Bagajewicz et al., 2000; Hallale, 2002; Koppol et al., 2003; Prakotpol and Srinophakun, 

2004; Teles et al., 2008), including the review made by Bagajewicz (2000), have also 

omitted using discharge concentration limits, implicitly assuming that the End-of-pipe-
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Treatment is able to bring the concentration of the contaminants down to these discharge 

limits. In addition, many of these papers used the regeneration processes as means of 

reducing freshwater consumption, but none explicitly assumed that an EoPT was present 

and its treated stream could be reused/recycled. This is the first issue investigated in this 

chapter. 

Aside from these methodologies that model the units as mass exchangers, Gabriel 

and El-Halwagi (2005) used a source-sink model (El-Halwagi and Spriggs, 1998) in 

which “interceptors” were included to act as regeneration processes. They assumed that 

each interceptor could receive water from only one source, that is, that there is no mixing 

before interception. This assumption allowed discretizing the efficiency of each 

interceptor as function of the source only, something that rendered a linear model. In 

reality, the efficiency of each interceptor should be discretized as also function of 

possible range of concentration when sources are mixed, but this was not included in 

their model. 

Much in the same way as it was suggested by Takama et al. (1980), it can be 

argued that if an end-of-pipe treatment has to be part of the water system, then its effluent 

should also be available as an option for reuse/recycle. In fact, there is no water system 

without any kind of regeneration process (even those that were classified as “end-of-

pipe”). Thus, all water allocation problems must at least include one treatment unit in 

which its treated stream can be reused/recycled.  When discussing regeneration, other 

articles (Takama et al., 1980; Wang and Smith, 1994; Kuo and Smith, 1998; Koppol et 

al., 2003; Gunaratnam et al., 2005; Karuppiah and Grossmann, 2006; Alva-Argáez et al., 

2007; Ng et al., 2007a,b; Putra and Amminudin, 2008, among others)  touch on this issue 
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but do not explicitly come with this conclusion. Because of the lack of a discussion of the 

effect of implicitly assuming the EoPT and consequently ignoring a recycle from it, there 

is no established knowledge, rule, as of when this practice is appropriate, and when it is 

not. In this chapter, the intricacies and consequences of ignoring the existence of at least 

one end-of-pipe treatment (and consequently the reuse/recycle of the stream treated by it) 

and the different architectures the WAP problem models should be based on are 

discussed.  

 Then, a second issue is point out regarding appropriate modeling. Most of the 

papers, including Takama et al. (1980), have assumed that one source of freshwater was 

available, usually with zero contaminant concentration, and have not included the pre-

treatments used to bring the freshwater to such quality. Occasionally, multiple sources of 

different contaminant concentration are mentioned, but rarely their use is discussed in 

detail, much less modeled.   

Freshwater is usually sequentially processed in different pre-treatment units, some 

producing freshwater of stringent purities (like boiler water), and some producing water 

with less stringent qualities. However, to have a complete structure, the pre-treatment 

should be included when modeling the WAP. This system does not have to be necessarily 

a sequential set of treatment units where water of different quality is drawn from 

intermediate units, but it could be a distributed and/or decentralized system. Both the 

wastewater treatment system and the pre-treatment have to be modeled assuming a 

distributed configuration.  Because the addition of these pre-treatment units has not been 

explicitly included in the WAP previously, the impact of considering it is discussed.  

Finally, in addition to allowing water from the wastewater treatments 
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(regeneration and/or EoPT) to be recycled to the water-using units, one could additionally 

include interaction with the pre-treatment units. Ultimately, it can be said that only when 

complete decentralization of the system is allowed, one is sure that the global optimum of 

the system is achieved, although such global optimum may feature centralized solutions. 

Moreover, when seeking zero liquid discharge cycles, this is the appropriate route to 

adopt.  Indeed, it will be shown in the examples that some consumption targets presented 

in the literature are not true anymore if pre-treatment units are included.  Even if only one 

pre-treatment is considered, and its output is a stream free of contaminants, water from 

any water-using unit could be recycled back to the pre-treatment to reduce the amount of 

freshwater needed. What determines how much smaller freshwater usage can be achieved 

are the constraints at the inlet of this pre-treatment unit (maximum allowed inlet 

concentrations and/or pre-treatment capacity). If these constraints allow this pre-

treatment process receive some amount of water from any other process, this will reduce 

the minimum consumption. 

 

4.2. Water Systems Architectures 

A Complete Water System (CWS) in process plants is typically composed of three 

subsystems (water pre-treatment, water-using and wastewater treatment). A conventional, 

sequentially ordered, non-integrated CWS is shown in Figure 4.. Note that freshwater is 

treated in different units in a sequential manner, lowering the concentration of key 

contaminants after each treatment. All units receive freshwater of a quality that 

corresponds to its maximum inlet concentration and therefore, the corresponding water is 

taken after each treatment. For example, WU3 may be a steam consumer and WPT3 
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could be a boiler preceded by a boiler-feed treatment unit. In turn, WU4 could be a 

scrubbing unit that does not require boiler quality water and WU1, WU2 could be units 

that have less stringent quality requirements, like for example, desalters. In some cases, 

freshwater, purchased or taken from natural sources can be directly used. This is 

illustrated by unit WU5.  

Another feature of the current architecture is that all wastewaters are mixed and 

sent to EoPT, which is usually sequential, as indicated. Water is cleaned to below 

discharge limits and usually not recycled. 

 

 
Figure 4.1 - Typical complete water system in process plants. 

 
 
 

The WAP can be modeled in various forms depending on:  

• The boundaries of the problem (i.e., which subsystems are considered and 

where are their boundaries),  

• The architecture of the subsystems (i.e., how their units are arranged: in 

series, parallel, distributed, etc).   

• Whether the recycle and reuse within subsystems is or isn’t allowed.   

• Whether the recycle between subsystems is or isn’t allowed 

• The level of detail of the model (fixed loads vs. variable loads, fixed vs. 
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variable flowrates through the units, etc.) and, 

• The nature of the objective function.  

 

  The simplest form of the problem is simply a freshwater fed and the water-using 

subsystem followed by an assumed end-of-pipe treatment to adjust the wastewater to the 

discharge limits. This simplified version of water system is presented in Figure 4.2.  The 

problem solved using this definition of the WAP is the one limited by the dashed line. 

Inside this line all the possible reuses among the water-using units are allowed. Here, the 

wastewater subsystem is treated as a single EoPT, which is not part of the optimization 

problem but has to exist to bring the contaminants concentration down to the discharge 

limits. This is the first problem addressed by the popular technology called “water pinch” 

(Wang and Smith, 1994), which is very useful when a single component is assumed, and 

several other methods (Doyle and Smith, 1997; Polley and Polley, 2000; Bagajewicz et 

al, 2000; Savelski and Bagajewicz, 2003; Teles et al, 2008;, among others), some also 

used for the multicontaminant case. The objective is usually not cost, but freshwater 

consumption.  

 
Figure 4.2 - Water-using units with an implicit end-of-pipe treatment.  

 
 

Wang and Smith (1994) also discussed the possibility of having regeneration 

processes, but they did not include a discharge limit. Thus they implicitly assumed that an 
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end-of-pipe treatment would help reaching these limits. We illustrate this system in 

Figure 4.3. In this case the interaction of the water-using units and some regeneration 

processes are allowed through three different options, reuse, regeneration-reuse and 

regeneration recycle. As in Wang and Smith (1994), several subsequent papers (Doyle 

and Smith, 1997; Polley and Polley, 2000; Bagajewicz et al., 2000; Koppol et al., 2003; 

Prakotpol and Srinophakun, 2004; Teles et al., 2008; among others) have also used this 

implicit end-of-pipe treatment assumption. 

 
Figure 4.3 - Water-using units and regeneration processes with an implicit end-of-pipe 

treatment.  
 

Thus, in its simplest form, the problem does not explicitly consider re-using the 

water that is ready for discharge.  It is worth pointing out, however, that the seminal 

paper of the water management problem (Takama et al., 1980) had already included such 

a recycle when they introduced the existence of a wastewater treatment subsystem and 

added discharge limits to the whole system. They state that the system showed in Figure 

4.4 is a typical system used in refineries and is formed by two subsystems, water-using 

subsystem and wastewater treating subsystem, which are often individually optimized 

regardless of the interaction introduced by the recycle. In reality, their definition of the 

wastewater subsystem together with the addition of discharge limits integrates all the 

possibilities of regeneration without clearly defining or singling out specifically an end-
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of-pipe treatment. In other words, this definition considers that the regeneration processes 

and the end-of-pipe treatment are part of a unique subsystem called wastewater treatment. 

Additionally, note that their system does not consider the existence of a water pre-

treatment subsystem. 

 

 
Figure 4.4 - Independently distributed freshwater and wastewater networks (Following 

Takama et al., 1980). 
 

 

Thus, when considering only these two subsystems, Takama et al. (1980) suggest 

their integration in a total system (or integrated system). Their model handled the water-

using units and wastewater treatment processes assuming a decentralized model, one that 

has no subsystem boundaries. Although their model allows connections from any process 

(water-using or treatment units) to any other process, the solution they presented did not 

show any recycle from a regeneration unit to a water using process. The solution to their 

example has a water reuse subsystem followed by a wastewater treatment subsystem that 

is distributed.  

 Later, Kuo and Smith (1998) reminded of the importance of the interaction 

between water-using units, regeneration processes and effluent treatment system. They 

presented an improvement of Wang and Smith’s (1994) method, which had only 
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considered the interaction between water-using units and regeneration processes. On the 

other hand, some authors (Gunaratnam et al., 2005; Karuppiah and Grossmann, 2006; 

Alva-Argáez et al., 2007; Ng et al., 2007a,b; Putra and Amminudin, 2008) have used the 

structure proposed by Takama et al. (1980) to solve the  multiple component  WAP, that 

is, they solved the problem that is often called total water system. 

The use of the stream treated by the end-of-pipe treatment (or the addition of 

discharge limits) starts to play an important role not only from the freshwater 

consumption point of view, but also from the cost of the whole system point of view. 

Increasing freshwater costs, declining of water quality in the available freshwater sources 

and costs ratio between end-of-pipe treatment and intermediate regeneration processes 

can influence the trade-offs of recycling the stream treated by the end-of-pipe treatment. 

End-of-pipe treatment recycling can also show enormous advantages when retrofit 

projects are analyzed. For this case an end-of-pipe treatment already exists and therefore 

eventually no or very small capital cost is required.  

As we stated above, Takama et al. (1980) consider the total water system, which 

the water-using units and wastewater treatment processes individually interact. However 

the way the subsystems interact is also important and different subsystems structures may 

be preferred for technical and/or layout issues. The discussion of some of these 

possibilities is presented next using the water system structure presented by Takama et al. 

(1980): Water-using subsystem and wastewater subsystem (Figure 4.4).  

First, let us consider a water-using subsystem and a centralized/sequential 

wastewater treatment subsystem with a recycle of water that complies with discharge 

limits (Figure 4.5). In fact, this is the problem that should be solved when only water-
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using units are optimized. Note that the wastewater treatment subsystem is here 

understood as a single system (that could be what was previously called end-of-pipe 

treatment), but now the recycle of the discharge stream is allowed.  

Figure 4.6 shows a centralized/distributed wastewater treatment subsystem. In 

both centralized cases, the centralization is more than geographical: it includes collecting 

all wastewaters and mixing them in one single stream before treatment.   

As an alternative, one can envision a centralized and distributed wastewater 

treatment subsystem in the sense that no mixing of all wastewaters takes place and 

multiple streams feed it. This is shown in Figure 4.7.   

 
Figure 4.5 - Water Reuse and Sequential Centralized Treatment System. 

(WU: water using unit; R: regeneration unit) 
 

 
Figure 4.6 - Water Reuse and End-of-pipe Distributed Centralized Treatment System.  

(WU: water using unit; R: regeneration unit) 
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Figure 4.7 - Water Reuse and Distributed Centralized Treatment System.  

(WU: water using unit; R: regeneration unit) 
 

Finally, Figure 4.8 shows a completely decentralized wastewater treatment 

subsystem, which is often called as integrated system (or total water system).   Note that 

allowing flows from any treatment unit in Figure 4.7 to be recycled is equivalent to the 

system of Figure 4.8.  In the limit, Figure 4.8 can be a zero-liquid discharge cycle. These 

are extensions of the classification proposed by Bagajewicz (2000). 

 
Figure 4.8 - Water Reuse and Decentralized Water/Wastewater System (integrated 

system).  
(WU: water using unit; R: regeneration unit) 

 

However, to achieve zero-liquid discharge cycle in the type of system presented 

in Figure 4.8, which is the most general case presented so far in the literature (including 

the model presented by Takama et al., 1980), one needs to achieve certain conditions:  

• Every contaminant in all water-using units must have the maximum inlet 

concentration higher than the freshwater source with the lowest concentrations, 
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and/or; 

• Regeneration processes should be able to bring the concentration of the 

contaminants down to at least the lowest maximum inlet concentration among the 

water-using units.  

These are conditions that are not often seen in the WAP. Current models often 

assume only the highest quality of freshwater available. Even when other qualities are 

assumed, the pre-treatment processes producing the available freshwater are not 

considered. This is a very important opportunity when zero-liquid discharge is targeted. 

Note that pre-treatment processes exist in the water pre-treatment subsystem shown in 

Figure 4. and they are responsible for producing freshwater at different qualities. When 

considering the complete water system, the water pre-treatment subsystem can receive 

water/wastewater from the water-using subsystem and/or from the wastewater treatment 

subsystem. Indeed, Figure 4.9a shows the architecture as it is understood nowadays, and 

Figure 4.9b shows the proposed architecture. This new architecture allows the used water 

to pass through the pre-treatment again and so comply with the quality required by some 

(or all) of the water-using units. This is how the zero-liquid discharge cycle can be more 

easily identified. 
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Figure 4.9 - a - Water pre-treatment subsystem sequential scheme; b – Recycles to the 

water pre-treatment subsystem. 
 

Figure 4.10 shows the different definitions of the water allocation problem in 

relation to the boundary assumed for the analysis of the whole system, the architecture of 

each subsystem and the interaction among the subsystems. In other words, each of the 

subsystems can exhibit different options of reuse/recycle among their own units (or 

processes), i.e. they can be distributed systems within their own boundaries.  

Figure 4.10a represents the optimization of the water-using subsystem only. This 

corresponds to the architecture presented in Figure 4.2. Thus, one could state this 

problem as follows: 

Given a set of water-using units, a set of freshwater sources with corresponding 

contaminant concentrations (some usually zero), one wants to obtain a water-using 

network that optimizes a given objective (freshwater consumption, cost, etc.)  
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Figure 4.10b represents the optimization of the water using and treatment 

subsystems simultaneously. This is similar to the architectures presented in Figure 4.3 

and Figure 4.4. In the first case (Figure 4.3), discharge limits are not imposed and the 

problem could be stated as follows: 

Given a set of water-using units, a set of freshwater sources with corresponding 

contaminant concentrations (some usually zero) and potential intermediate regeneration 

processes, one wants to obtain a water-using/wastewater treatment system network that 

optimizes a given objective (freshwater consumption, cost, etc.)  

 

For the case presented in Figure 4.4 we would have the following definition: 

Given a set of water-using units, a set of freshwater sources with corresponding 

contaminant concentrations (some usually zero), potential intermediate regeneration 

processes and/or a wastewater end-of-pipe treatment unit, one wants to obtain a water-

using/wastewater treatment system network that complies with the discharge limits and 

optimizes a given objective (freshwater consumption, cost, etc.)  

 

 Note that in this later case, discharge limits are imposed and the regeneration 

processes are not used only for reuse/recycle purpose but also to condition the wastewater 

stream to be discharged. In the literature, the dotted box around the water using and water 

treatment subsystem presented in Figure 4.10b is known and total water system.  As 

stated above, this was solved by Gunaratnam et al., 2005; Karuppiah and Grossmann, 

2006; Alva-Argáez et al., 2007; Putra and Amminudin, 2008, using different 



 

108 

methodologies and assumptions.  

Although all these definitions of the problem state that a set of freshwater sources 

is available, the issue of having more than one freshwater quality sources with different 

processes associated to them has not been studied yet. In fact, we can define these 

different freshwater qualities as part of another subsystem: the water pre-treatment 

subsystem. The addition of this subsystem has not been investigated and can generate 

further trade-offs in the water allocation problem and consequently new opportunities. 

Figure 4.10c exemplifies the suggested new water allocation problem structure that we 

believe should be solved to completely include all the possibilities of water integration. 

Thus, this problem can be stated as follows: 

Given a set of water pre-treatment processes with corresponding their 

corresponding specifications, a set of water-using units, potential intermediate 

regeneration processes and/or a set of wastewater treatment units, one wants to obtain a 

water system network that complies with the discharge limits and optimizes a given 

objective (freshwater consumption, cost, etc.)  

 

As in the wastewater treatment subsystem, both capital and operating cost are 

associated to the existence and capacity of water pre-treatments that determine the 

availability of each quality of freshwater. One of the reasons for omitting this subsystem 

is the fact that such analysis only becomes relevant when cost is considered as an 

objective. Otherwise, when freshwater consumption is the target, the source with highest 

quality (that is, lowest contaminant concentration) is the preferred one and this issue 

becomes irrelevant. It is also important to note here that the different freshwater sources 
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are not only competing with each other, but they are competing with water reuse and/or 

recycles from regeneration processes.  

 
Figure 4.10 - Evolution of water allocation problem regarding the boundary of the water 
system (a – Optimization of the water-using subsystem; b – Optimization of the water-

using/wastewater treatment subsystems; c – Optimization of the complete water system). 
 

In conclusion, it can be said that the complete integration of water system is 

obtained breaking the boundaries of the subsystems and making use of all available 

regeneration processes, including the ones available in the water pre-treatment system. 

This follows the same idea of the total water system (or integrated system) previously 

discussed, but now we include the water pre-treatment subsystem to generate a complete 

integrated water system.  
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4.3. Mathematical Model of the Complete Integrated Water System 

Based on the complete integrated water system structure previously discussed, a 

modified mathematical model is proposed to describe the WAP. Aside from the inclusion 

of the water pre-treatment sub-system, this model is well known and uses simple model 

to describe the water-using units and the regeneration processes. Later, the issue of 

proper modeling these units/processes is discussed. 

A general non-liner model to solve the water allocation problem is given by the 

following set of equations:  

Water balance at the water-using units 

, *, , , , * ,
* *

w u u u r u u s u u u r
w u r s u r

FWU FUU FRU FUS FUU FUR u+ + = + + ∀∑ ∑ ∑ ∑ ∑ ∑
    (4-1) 

where 
,w uFWU  is the flowrate from freshwater source w to the unit u, 

*,u uFUU  is the 

flowrates between units u* and u, 
,r uFRU is the flowrate from regeneration process r to 

unit u,  
,u sFUS  

is the flowrate from unit u to sink s and 
*,u rFUR  is the flowrate from unit 

u to regeneration process r.  

 

Water balance at the regeneration processes 

, , *, , , * ,
* *

w r u r r r r u r r r s
w u r u r s

FWR FUR FRR FRU FRR FRS r+ + = + + ∀∑ ∑ ∑ ∑ ∑ ∑
             (4-2) 

where 
,w rFWR  is the flowrate from freshwater source w to the regeneration process r,

*,r rFRR is the flowrate from regeneration process r*  to regeneration process r and 
,r sFRS

is the flowrate from regeneration process r to sink s.  In fact, we assume here that the set 

of regeneration processes existing in the system is formed by the set of water pre-
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treatments and the set of wastewater treatments. If one wants to differentiate between 

these two categories of regeneration processes, two subsets for the regeneration processes 

set can be easily created and different constraints applied to each subset.  

 

Contaminant balance at the water-using units 

( ) ( ) ( )

( ) ( ) ( )

, , *, , *, , , , ,
*

, *, , , , , , , ,
*

,

out out
w c w u u u c u c r u c r c u c
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u u c u c u s c u c u r c u c

u s r
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FUU C FUS C FUR C u c

+ + + ∆



= + + ∀ 


∑ ∑ ∑

∑ ∑ ∑

   

(4-3) 

 

where 
,w cCW is concentration of contaminant c in the freshwater source w, 

,u cM∆ is the 

mass load of contaminant c extracted in unit u, ,
out
u cC  is the outlet concentration of 

contaminant c in unit u, and ,
out
r cCR  is the outlet concentration of the not treated 

contaminant c in regeneration r
 
. 

 

Maximum inlet concentration at the water-using units 

( ) ( ) ( ), , *, , * , , ,
*

, *, ,
*

,

out out
w c w u u u c u ,c r u c r c

w u r

in, max
u,c w u u u r u

w u r

CW FW FUU C FRU CR

C FUW FUU FRU u c

+ +

  ≤ + + ∀    

∑ ∑ ∑

∑ ∑ ∑
                    (4-4) 

where in, max
u,cC is the maximum allowed concentration of contaminant c at the inlet of unit 

u. 

 

Maximum outlet concentration at the water-using units 

* ,out out, max
u ,c u,cC C u c≤ ∀                                                                                                       (4-5) 



 

112 

where out, max
u,cC is the maximum allowed concentration of contaminant c at the outlet of 

unit u. 

 

Flowrate through the regeneration processes 

 

, , *,
*

r w r u r r r
w u r

FR FWR FUR FRR r= + + ∀∑ ∑ ∑
                                                                     (4-6) 

where rFR  is  the flowrate through the regeneration process r. 

 

Contaminant balance at the regeneration processes 

( ) ( ) ( ), , , , , , *, *,
*

,in out out
r c r c w r w c u r u c r r r c

w u r

FR CR FWR CW FUR C FRR CR r c= + + ∀∑ ∑ ∑
      (4-7) 

, , , , ,(1 ) ,out in out
r c r c r c r c r cCR CR XCR CRF XCR r c= − + ∀

                                                        (4-8) 

where ,
in
r cCR is the concentration of contaminant c at the inlet of regeneration process r, 

,
out

r cCRF is the outlet concentration of contaminant c in regeneration process r and 
,r cXC R  

is a binary parameter that indicates if contaminant c is treated by regeneration process r. 

We assume that ,
out

r cCRF , the concentration of the treated contaminant is known and 

constant.  

 

Maximum inlet concentration of the regeneration processes 

, ,in in , max
r c r,cCR CR r c≤ ∀

                                                                                                 (4-9) 

where ,max
,

in
r cCR is the maximum concentration of contaminant c allowed at the inlet of 

regeneration process r. 
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Maximum allowed discharge concentration 

( ) ( ), , , , , , ,out out discharge, max
u s c u,c r s c r,c s,c u s r s

u r u r

FUS C FRS CR C FUS FRS s c
 

+ ≤ + ∀ 
 

∑ ∑ ∑ ∑   (4-10) 

where discharge, max
s,cC  is the maximum allowed concentration at sink s.  

 

Minimum flowrates 

It is well known that many solutions of the water problem may include small 

flowrates that are impractical. To avoid these we use the following constraints: 

, , , ,Min
w u w u w uFWU FWU YWU w u≥ ∀                                                                                  (4-11) 

, , , ,Min
w r w r w rFWR FWR YWR w r≥ ∀                                                                                     (4-12) 

, * , * , * , *Min
u u u u u uFUU FUU YUU u u≥ ∀                                                                                 (4-13)   

, , , ,Min
u s u s u sFUS FUS YUS u s≥ ∀                                                                                        (4-14)  

, , , ,Min
u r u r u rFUR FUR YUR u r≥ ∀                                                                                     (4-15)  

, , , ,Min
r u r u r uFRU FRU YRU r u≥ ∀                                                                                       (4-16)  

, * , * , * , *Min
r r r r r rFRR FRR YRR r r≥ ∀                                                                                     (4-17)  

, , , ,Min
r s r s r sFRS FRS YRS r s≥ ∀                                                                                         (4-18) 

which uses a set of binary variables ( ,w uYWU , ,w rYWR , *u uYUU , ,u sYUS , ,u rYUR , ,r uYRU ,

, *r rYRR and ,r sYRS ) that are equal to one when the corresponding flowrate is different from 

zero and zero otherwise.  
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Maximum flowrates 

To ensure that the connections do not surpass maximum values, we use the 

following constraints:  

, , , ,Max
w u w u w uFWU FWU YWU w u≤ ∀                                                                                  (4-19) 

, , , ,Max
w r w r w rFWR FWR YWR w r≤ ∀                                                                                      (4-20) 

, * , * , * , *Max
u u u u u uFUU FUU YUU u u≤ ∀                                                                               (4-21)  

, , , ,Max
u s u s u sFUS FUS YUS u s≤ ∀                                                                                        (4-22) 

 , , , ,Max
u r u r u rFUR FUR YUR u r≤ ∀                                                                                    (4-23)  

, , , ,Max
r u r u r uFRU FRU YRU r u≤ ∀                                                                                    (4-24)  

, * , * , * , *Max
r r r r r rFRR FRR YRR r r≤ ∀                                                                                   (4-25)  

, , , ,Max
r s r s r sFRS FRS YRS r s≤ ∀                                                                                        (4-26) 

 

Objective functions 

  Minimum freshwater consumption:  

, ,w u w r
w u r

Min FWU FWR
 

+ 
 

∑ ∑ ∑                                                                                   (4-27) 

   

  Minimum total annual cost:  

, ,w w m w r r r
w u r r

Max OP FWU FWR OPN FR af FCIα
   

+ + −   
    

∑ ∑ ∑ ∑
                   

(4-28) 
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where rOPN  are the operational cost of the regeneration processes,  OP is the hours of 

operation per year. The last term is the annualized capital cost, where FCI is the fixed 

capital cost and af is any factor that annualizes the capital cost (usually 1/N, where N is 

the number of years of depreciation). The fixed capital of investment is calculated using 

the sum of the piping costs and the new regeneration units costs as follows: 

( )

, , , ,

, * , * , ,
*

, , , * , *
*

0.7

, ,

w u w u u r u r
w r

u u u u u u s u s
u u s

w r w r r r r r
w r r

r u u r s r s r r
u s

YWU CCWU YUR CCUR

FCI
YUU CCUU YUS CCUS

YWR CCWR YRR CCRR

YRU CCRU YRS CCRS CCR FR

≠

≠

 +
 

=  + +    


 + + 
  +   + +    

∑ ∑
∑

∑ ∑

∑ ∑
∑

∑ ∑                          

(4-29) 

 

which uses a set of capital cost parameters to assign cost to the connections ( ,w uCCWU ,

,w rCCWR , *u uCCUU , ,u sCCUS , ,u rCCUR , ,r uCCRU , , *r rCCRR and ,r sCCRS ) and to the 

regeneration processes ( rCCR ). 

All the above equations need to be tailored to the specifics of each system. If one 

considers the conventional problem stated by Takama et al. (1980), that is, the one in 

which the water pre-treatment subsystem is not considered, ,w rFWR does not exist and 

thus should be set to zero. In this case all the regeneration processes are part of the 

wastewater treatment subsystem. In the same way, when only the water-using units are 

considered, all the parameters that relate regeneration processes should be set as zero. 

    Another point that should be made here is related to the interactions among the 

subsystems and their boundaries. Again, we take the case in which we have the only 

water-using subsystem and the wastewater treatment subsystem (Figure 4.5 to Figure 
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4.8). 

• In the case of the system of Figure 4.5, that is, for a centralized treatment system with 

fixed structure, but now with the recycle allowed, we set  ,u sFUS  to zero and we 

consider only one treatment with all fixed outlet concentrations, which can be the 

called end-of-pipe treatment.   Thus, considering the end-of-pipe treats all the 

involved contaminants, equations (4-7) and (4-8) are not necessary and ,
out
r cCR  

can be 

substitute by ,
out

r cCRF , which is a parameter.  

• In the case of the system of Figure 4.6, the treatment is centralized but it can be 

individually optimized. In fact, for this system the water using subsystem could be 

first optimized and then the treatment subsystem is optimized using the output of the 

water subsystem as input of the treatment subsystem. However a better procedure 

would be to individually optimize both systems while a connection between then still 

exist. To achieve that, we introduce a fictitious unit uf can be introduced. This unit is 

actually a mixer and have all , 0
fu cM∆ = =0. The connection between the two systems 

is done allowing only the fictitious unit to send water/wastewater to the regenerations:
 

, 0 ,u sFUS u s= ∀ , , 0 ,u r fFUR u u r= ∀ ≠ . 
In addition, the distributed treatment 

system has also to be individually optimized and may render concentrations that are 

smaller than the discharge limits. Thus we introduce a fictitious regeneration unit rT 

with all  ,Tr cXCR =0 (no treatment) and we then make , 0 ,Max
r s TFRS r r s= ∀ ≠  

as well as  

, 0 ,Max
r u TFRU r r u= ∀ ≠ . 

 

• In the case of Figure 4.7, we keep the concepts presented for Figure 4.3, but the 

fictitious unit is no longer needed. On the other hand, the fictitious regeneration is 
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still needed. In the case of Figure 4.8, we keep all our equations.  

 

 
4.4. Illustrations 

A single contaminant case that was originally solved as a water-using unit 

subsystem problem (no regeneration processes – pre-treatment and/or wastewater 

treatment - and consequently no discharge limits) is presented first. This example shows 

that freshwater consumption can be reduced if the recycle of the end-of-pipe treatment is 

allowed.  

Example 2 is an extension of the previous one, but allowing the addition of a 

regeneration process from the wastewater treatment subsystem. In this example it is 

possible to verify that even if the recycle of the end-of-pipe treatment does not show any 

advantage from the freshwater consumption point of view, it can sometimes bring 

reductions in costs. 

In a third example, the single contaminant case is modified to include the water 

pre-treatment subsystem. Thus, the impact of considering this subsystem is analyzed.  

Example 4 shows a small multi-contaminant water-using subsystem example in 

which there is a reduction in freshwater consumption when the reuse/recycle of the EoPT 

is considered. 

Then a lager multiple contaminant problem is analyzed (examples 5 to 7). This 

problem was originally solved without discharge limits. Different networks that have 

different arrangements of the pre-treatment subsystem, water-using subsystem and 

wastewater treatment subsystem are presented. It is also shown that the recycle of the 

stream treated by the end-of-pipe treatment can reduce costs and the addition of the pre-
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treatment subsystem can generate more realistic possibilities of zero discharge cycles. 

The examples were solved using GAMS/DICOPT. Because some of the examples 

could not be solved directly in DICOPT, starting points were generated using a linear 

relaxation of the non-linear model. The relaxed model was built using the convex and 

concave envelopes of the bilinear terms (McCormick, 1976) and linear underestimators 

for the concave terms, and was solved using GAMS/CPLEX.     

 

Example 1 

Example 1 is a single contaminant network adapted from Wang and Smith (1994), 

which they solved using pinch analysis. The limiting process data for this problem are 

shown in Table 4-1 and it has a freshwater consumption without reuse (conventional 

network configuration) of 112.5 t/h.  

 

Table 4-1 - Limiting data for example 1. 
Process Number Mass load of contaminant  Cin (ppm) Cout (ppm) 

1 2 kg/hr 0 100 
2 5 kg/hr 50 100 
3 30 kg/hr 50 800 
4 4 kg/hr 400 800 

 
 

When the end-of-pipe recycling is not allowed, the freshwater consumption can 

reach a minimum of 90 t/h. With the recycle (assuming an end-of-pipe exit concentration 

of 5 ppm), the minimum consumption is 20 t/h.  This minimum consumption could also 

be calculated using the “water-pinch” graphical method as shown by Wang and Smith 

(1994). Although the water pinch is also able to perform the design of this single 

component network complying with minimum consumption, costs cannot be used to 
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drive the design. One could consider several network possibilities (degenerate solutions, 

that is, different network structures that are able to achieve minimum consumption) and 

then compare their costs, but in this case there is no guarantee that all possibilities are 

analyzed. Moreover, if one wants the optimum network from the cost point of view the 

resulting network does not have to operate at minimum freshwater consumption. 

Therefore, the number of options to be analyzed is much larger and the likelihood to miss 

the optimal network is smaller, not to mention the amount of work involved.  

For an analysis of this problem using economic objectives freshwater cost is 

assumed to be αi($/ton)=0.3 and the system operates 8600 hours/year. There is one 

freshwater source, which is free of contaminants, and the end-of-pipe treatment has an 

outlet concentration of 5 ppm, which is the maximum concentration allowed for disposal. 

The operating cost of the end of pipe treatment is ($ / )rOPN ton = 1.0067 and the 

investment cost is ���� � $
���	.�� 
 19,400. The capital costs with connections are 

presented in Table 4-2. 

Both the grassroots design and the retrofit of this network are analyzed in this first 

example. 

 

 

Table 4-2 - Capital costs of the connections. 

 Unit 1 Unit 2 Unit 3 Unit 4 
End of pipe 
treatment 

FW $39,000 $76,000 $47,000 $92,000 - 

Unit 1 - $150,000 $110,000 $45,000 $83,000 
Unit 2 $50,000 - $134,000 $40,000 $102,500 
Unit 3 $180,000 $35,000 - $42,000 $98,000 
Unit 4 $163,000 $130,000 $90,000 - $124,000 
EoPT $83,000 $102,500 $98,000 $124,000 - 
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For the retrofit case, it is assumed that a conventional network (no water reuse) is 

the starting point, that is, the current network has only the connection between the water 

source and units and between units and the end-of-pipe treatment without any reuse 

among units or recycle of the water treated by the end-of-pipe treatment. The costs 

previously presented are used in the retrofit case as well. However, the capital cost of 

existing connections (between freshwater and water using units and water using units and 

end-of-pipe treatment) and processes (in this case the end-of-pipe treatment) are set to 

zero. Finally, when retrofitting, one has to assume that any increase in water throughput 

in the EoPT is possible (there is extra capacity installed), or has to put a limit to the 

maximum capacity, especially when recycles that were not present in the first place are 

now allowed. In this problem, the capacity of the EoPT is considered to be the volume of 

wastewater treated by the conventional network (112.5 t/h). First, the networks are 

obtained for minimum cost (TAC) using equations (4-28) and (4-29), but featuring the 

minimum freshwater consumption without recycle. Notice that in this situation the 

operating costs are fixed because the freshwater consumption and the EoPT flowrates 

have been fixed (there is no recycle).  The networks obtained for the grassroots design 

and retrofit case are presented in Figure 4.11 and Figure 4.12 respectively.   

 
Figure 4.11 - Grassroots network design for Example 1 – no EoPT recycle- Minimum 

TAC at minimum consumption.  
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Figure 4.12 - Retrofit network design for Example 1 – no EoPT recycle- Minimum TAC 

at minimum consumption.  
 
 

Allowing the option of recycling the stream treated by the end-of-pipe treatment 

reduces the minimum freshwater consumption to 20 t/h. This represents a reduction of 

approximately 78% in freshwater consumption, which is very significant. Figure 4.13 and 

Figure 4.14 show the minimum TAC networks at their minimum consumption (20 t/h) for 

grassroots design and retrofit case respectively. 

 
Figure 4.13 - Grassroots network design for Example 1 –EoPT recycle allowed- 

Minimum TAC at minimum consumption. 
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Figure 4.14 - Retrofit network design for Example 1 –EoPT recycle allowed- Minimum 

TAC at minimum consumption.  
 
 
 
 

Example 2 

Example 2 is a special case of Example 1 in which the addition of a regeneration 

process is allowed. It has a capital cost of ���� � $
���	.�� 
 16,800 and the operational 

cost is assumed to be ($ / )OCN ton =1.00. This regeneration process has a fixed outlet 

concentration of 10ppm.  

The capital costs of connections involving the regeneration process are presented 

in Figure 4.3 and the minimum TAC is calculated the same way as in example 1.  

 

Table 4-3 - Capital costs of the connections. 

 Unit 1 Unit 2 Unit 3 Unit 4 Reg. 
End of pipe 
treatment 

FW $39,000 $76,000 $47,000 $92,000 - - 

Unit 1 - $150,000 $110,000 $45,000 $145,000 $83,000 
Unit 2 $50,000 - $134,000 $40,000 $37,000 $102,500 
Unit 3 $180,000 $35,000 - $42,000 $91,000 $98,000 
Unit 4 $163,000 $130,000 $90,000 - $132,000 $124,000 
Reg. $33,000 $130,000 $50,000 $98,000 - $45,000 
EoPT $83,000 $102,500 $98,000 $124,000 $45,000 - 
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The grassroots design case is investigated first. Now, both cases of allowing and 

not allowing the recycle of the end-of-pipe treatment stream, can reach the minimum 

freshwater consumption of 20 t/h. Unlike Example 1, this example does not show any 

advantage of allowing end-of-pipe recycling when looked from the minimum freshwater 

consumption perspective. However, advantages may be seen when the total annualized 

cost (TAC) is minimized. The minimum TAC obtained for the case in which the end-of-

pipe recycling is not allowed (Figure 4.15) is $1,013,429 per year. When the end-of-pipe 

recycle is allowed, the minimum TAC decreases to $969,237 per year, which is 4.4% less 

than the former case. This is the network presented in Figure 4.13, obtained when 

consumption was minimized. 

 
Figure 4.15 - Grassroots network design for Example 2 – no EoPT recycle- Minimum 

TAC at minimum consumption. 
 

  
Note that when the recycle of the stream treated by the end-of-pipe treatment is 

allowed, the minimum freshwater consumption can be achieved without using the 

availible regeneration process.  

Next, the retrofit design for the given network is analyzed. As before, a 

conventional network (no water reuse) is assumed.   In this case, the current network does 

not have the regeneration process and so the only existing connections are the ones 

between the water source and water-using units and between water-using units and the 
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end-of-pipe treatment. As expected, both cases (with and without end-of-pipe recycle) 

can reach the minimum freshwater consumption of 20 t/h. As presented by Faria and 

Bagajewicz (2009), for the retrofit case we maximize savings instead minimize total 

annualized cost. The maximum savings at the minimum consumption of the network 

presented in Figure 4.16 (no EOP treatment allowed) is $289,399 per year. If recycle of 

end-of-pipe is allowed (Figure 4.17), the saving goes up to $366,550 per year, which is 

approximately 27% higher.  

 
Figure 4.16 - Retrofit network design for Example 2 – no EoPT recycle- Minimum TAC 

at minimum consumption. 
 
 
 

 
Figure 4.17 - Retrofit network design for Example 2 –EoPT recycle allowed- Minimum 

TAC at minimum consumption. 
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Example 3 

This example discusses the suggested complete water system using a single 

contaminant problem. The simplest form of the complete water system, which assumes 

that the water pre-treatment subsystem cannot receive water from the other two 

subsystems, is analyzed first. In this case, the pre-treatment subsystem is added without 

allowing it to receive streams from the other two subsystems. However, the water-using 

subsystem and wastewater treatment subsystem are handled as in the total water system 

previously discussed. The limiting data is presented in Table 4-4 - Limiting data for 

example 3. Note that unit two has a maximum outlet concentration of 20 ppm and the 

end-of-pipe treatment has an outlet concentration of 25 ppm, which coincides with the 

discharge limit. The same capital and operating cost of the end-of-pipe treatment as well 

as connection costs of Example 1 are applied.  

 

Table 4-4 - Limiting data for example 3. 
Process Number Mass load of contaminant Cin (ppm) Cout (ppm) 

1 2 kg/hr 0 100 
2 5 kg/hr 20 100 
3 30 kg/hr 50 800 
4 4 kg/hr 400 800 

 
 

One external freshwater source is used, but two water treatment units are 

considered thus providing two different qualities of freshwater. In other words, the pre-

treatment subsystem is a sequential system that does not necessarily need to treat all 

freshwater to the highest quality. This is the scheme presented in Figure 4.9a. 

Note that there is also the possibility of recycling water from the water-using 

subsystem and/or wastewater treatment subsystem to the water pre-treatment subsystem 
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(Figure 4.9b). However, this is analyzed later in this example. 

In this first case it is assumed that pre-treatment 1 can bring the freshwater down 

to 10 ppm and pre-treatment 2 can further treat it down to 0ppm. Pre-treatment 1 has an 

operating cost of $0.30/ton and a capital cost of $8,500/ton0.7.  The maximum inlet 

concentration of this pre-treatment is 500 ppm. The operating cost of pre-treatment 2 is 

$0.50/ton and the capital cost is $10,500/ton0.7. Pre-treatment 2 has a maximum inlet 

concentration of 20 ppm. With the exception of capital cost, this problem could be solved 

using the conventional Total Water System model: equations (4-1) through (4-27) and 

TAC given by the sum of operating costs (4-28) and the annualized FCI, in turn given by 

equation (4-29).  Then, one would have to consider two sources of water with different 

qualities and different costs. Thus, the two pre-treatment units would be eliminated from 

the problem description and the only regeneration processes existing in this problem 

would be the ones that are part of the wastewater treatment subsystem.  

Figure 4.18 shows the solution found when the complete water system is solved 

assuming a sequential water pre-treatment and the total annual cost is minimized. 

Recycles from the water-using units to the water pre-treatment units are not allowed here. 

Figure 4.18 shows that both types of freshwater are used and that freshwater treated by 

only pre-treatment 1 is mixed with the recycle of the end-of-pie treatment before it feeds 

unit 2. This network has a TAC of $1,275,915.  

The same problem can be solved using the common assumption of one freshwater 

source free of contaminants. This is accomplished by disallowing any split after WPT 1 

and forcing the use of water from WPT 2.  
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Figure 4.18 - Grassroots network design for Example 3 –EoPT recycle allowed- 
Wastewater recycle to pre-treatment units not allowed- Two freshwater sources-

Minimum TAC.  
 

The minimum TAC found was $1,309,950 and the network found is shown in 

Figure 4.19. It is the same as in the case of Figure 4.18 (except of course for the pre-

treatment, which has been forced to be sequential). The two networks, however, differ 

substantially in the freshwater consumption. If one looks at this problem from the 

freshwater consumption point of view, the solution presented in Figure 4.19 is better than 

the one in Figure 4.18. However, in Figure 4.19 the overall cost of the water pre-

treatment system is higher the one in Figure 4.18. This new trade-off created by the 

addition of the water pre-treatment subsystem is one of the reasons why the complete 

water system becomes very important when costs are analyzed. 

 
Figure 4.19 - Grassroots network design for Example 3 – EoPT recycle allowed- 

Wastewater recycle to pre-treatment units not allowed - One freshwater source used-
Minimum TAC.  

 
 

Here one can conclude that ignoring the modeling and constraints emerging from 
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pre-treatment and seeking minimum freshwater consumption, or even minimum TAC, 

leads to the wrong solution.  

We also investigated forbidding the recycle of the end-of-pipe treatment in the 

previous cases. Figure 4.20 shows the solution, which features a total annual cost of 

$1,314,652. For the integrated system scheme case, the optimum network found has a 

TAC of $1,536,684 and consumes 90t/h of freshwater. This network has the same 

structure presented in example 1 (Figure 4.11).  

 

 
Figure 4.20 - Grassroots network design for Example 3 – no EoPT recycle - Wastewater 
recycle to pre-treatment units not allowed - Two freshwater sources - Minimum TAC.  

  

 

Now the Complete Integrated Water System, which allows all interactions within 

subsystems and between subsystems, is considered. In other words, this case considers 

each pre-treatment, water-using unit and wastewater treatment as a single process inside 

one only boundary that is the Complete Water System. The solution of this case is 

presented in Figure 4.21. This network has a zero liquid discharge cycle and a total 

annualized cost of $410,277. Note that allowing the integration of the water pre-treatment 

subsystem eliminates the existence of the end-of-pipe treatment.  
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Figure 4.21 - Zero Liquid discharge solution for Example 3 obtained using a  Complete 

Integrated Water System Model. 
 

 Example 4 

Example 4 presents a simple multi-contaminant example from Wang and Smith 

(1994). This example has two water-using units and two contaminants and minimum 

freshwater consumption is the target. The example is meant to show that the same effects 

as in single contaminant cases are observed.  

Table 4-5 presents the limiting data of this problem. The minimum freshwater 

consumption of this network without reuse is 63.33 t/h.  

 

Table 4-5 – Limiting data of example 4. 
Process Contaminant Mass Load (kg/h) Cin,max (ppm) Cout,max (ppm) 

1 
A 4 0 100 
B 2 25 75 

2 
A 5.6 80 240 
B 2.1 30 90 

 
 

Because no regeneration process exists in this example, only two cases are 

analyzed: first, the case in which there is no recycle of the end-of-pipe treatment; and 

second the case where the stream treated by the end-of-pipe treatment can be reused by 

the water using units. 

For the end-of-pipe treatment is assumed outlet concentration of 10 ppm for both 
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contaminants. These concentrations are in agreement with the maximum allowed to 

disposal.  

Consider the first case where no recycle of end-of-pipe treatment is allowed. The 

minimum freshwater consumption is 54 t/h, which is approximately 15% less than the 

freshwater usage without integration (straight use of freshwater in all units). The 54 t/h 

freshwater consumption network is presented in Figure 4.22. 

 
Figure 4.22 - Grassroots network design for Example 4 – no EoPT recycle.   

 

The minimum freshwater consumption can be further reduced when the recycle of 

the stream treated by the end-of-pipe treatment is allowed. Indeed, the answer is that 40 

t/h freshwater are only needed. This is 26% lower than the previous case (and 36.8% 

lower than the consumption without reuse). The network corresponding to 40 t/h 

freshwater consumption is presented in Figure 4.23. 

 

 
Figure 4.23 - Grassroots network design for Example 4 – EoPT recycle allowed.   

 

Note that this example is focused on the minimum freshwater consumption. It 

shows clearly the advantage of allowing the recycle of the stream treated by the end-of-
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pipe treatment: a reduction of 26%%.  However, one could argue that the capacity of the 

end-of-pipe treatment is larger when the freshwater consumption is reduced by means of 

adding the recycle and therefore it has a higher capital cost and may have also a higher 

operating cost.  

The increase in capital cost due to the increase of end-of-pipe treatment capacity 

can be an important factor for networks. The influence of this increase can only in reality 

be observed when all the portions of capital cost (other regeneration processes, piping, 

etc) are also simultaneously considered. In this example, the influence seems to be 

significant (the end of pipe treatment now treats 9.34 t/h more than in the case of reuse 

without recycle). In addition, both options have the same number of connections. On the 

other hand, if this is a retrofit project and the end-of-pipe treatment already exists, the 

capital cost would only be related to new connections (assuming the original network had 

no reuse and therefore the available end-of-pipe treatment would be 63.33 t/h). In this 

case, the option allowing end-of-pipe treatment recycling needs only one extra pipe, 

which may not be a significant extra capital. The importance of having a capital cost 

should be investigated together with the benefits obtained with each option, which 

economically can be related to the operating cost. Here, the operating cost favors the non-

recycling option once the ratio between cost of freshwater and end-of-pipe treatment cost 

decreases. In fact, when economics is the driven factor, all these issues should be 

considered together in a more general measurement such as total annualized cost, net 

present value (NPV) and/or return on investment (ROI). Some of these objectives will be 

addressed in the next few examples.  
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Example 5 

Example 5 is applied to a refinery case presented by Koppol et al. (2003). This 

example has four key contaminants (salts, H2S, Organics and ammonia) and six water-

using units. The limiting data of the water-using units are shown in Table 4-6. This 

network without reuse (conventional network) consumes 144.8 t/h of freshwater. The 

discharge limits are: 15 ppm for salts, 5 ppm for H2S, 45 ppm for organics and 20 ppm 

for ammonia. The existing end-of-pipe treatment is able to reduce the contaminant to 

these discharge limits and no concentration limit is imposed at the treatment inlet.  

Table 4-6 – Water-using units data of example 5. 

Process Contaminant 
Mass Load 

(kg/hr) 
Cin,max 
(ppm) 

Cout,max 
(ppm) 

1 - Caustic Treating 

Salts 0.18 300 500 
Organics 1.2 50 500 

H2S 0.75 5000 11000 
Ammonia 0.1 1500 3000 

2 - Distillation 

Salts 3.61 10 200 
Organics 100 1 4000 

H2S 0.25 0 500 
Ammonia 0.8 0 1000 

3 – Amine Sweetening 

Salts 0.6 10 1000 
Organics 30 1 3500 

H2S 1.5 0 2000 
Ammonia 1 0 3500 

4 - Merox-I Sweetening 

Salts 2 100 400 
Organics 60 200 6000 

H2S 0.8 50 2000 
Ammonia 1 1000 3500 

5 - Hydrotreating 

Salts 3.8 85 350 
Organics 45 200 1800 

H2S 1.1 300 6500 
Ammonia 2 200 1000 

6 - Desalting 

Salts 120 1000 9500 
Organics 480 1000 6500 

H2S 1.5 150 450 
Ammonia 0 200 400 
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Some of the different cases previously described are discussed in this example: 

First, only the water-using subsystem is considered.  Then, interactions with the 

wastewater subsystem are included. Finally, the pre-treatment subsystem is considered 

and the Complete Water System is investigated. Consideration of recycling (or not) the 

stream treated by an End-of-pipe treatment are also made for all the aforementioned 

cases.  

 

Case 1: Water-using Subsystem only: In this case only the water-using units and 

the conventional end-of-pipe treatment are assumed. The original problem solved by 

Koppol et al. (2003) had an implicit end-of-pipe treatment, that is, it did not include it in 

the problem and so the recycle of the stream treated by the EoPT was not considered. 

Here both cases are investigated. 

 The minimum freshwater consumption achieved when end-of-pipe recycling is 

not allowed is 119.332 t/h. The minimum total annual cost (TAC) is found to be 

$2,291,652, which is also a network that consumes 119.332 t/h of freshwater. The 

solution is presented in Figure 4.24.  

 

 
Figure 4.24 - Grassroots network design for Example 5 - No regeneration processes 

included- no EoPT recycle – Minimum TAC. 
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When end-of-pipe recycling is allowed, the minimum consumption is 33.571 t/h, 

which is approximately 72% lower than the earlier solution. The minimum TAC 

($2,062,797) for this case is also found featuring the minimum freshwater consumption 

(33.571 ton/h). Figure 4.25 shows the network correspondent to this solution. 

 

 
Figure 4.25 - Grassroots network design for Example 5 - No regeneration processes 

included - EoPT recycle allowed – Minimum TAC. 
 
 

Case 2: Interaction between Water-using and Wastewater Treatment Subsystems 

allowed: The previous example is now solved for the case in which the wastewater 

treatment subsystem is also included. There are other three regeneration processes 

available in this wastewater treatment subsystem: Reverse osmosis, which reduces salts 

to 20 ppm; API separator followed by ACA, which reduces organics to 50 ppm; and, 

Chevron wastewater treatment, which reduces H2S to 5 ppm and ammonia to 30 ppm.  

Solutions for a centralized sequential wastewater treatment system (as in Figure 

5) are presented first. For both solutions (allowing and not allowing the end-of-pipe 

recycling) the minimum freshwater consumption is 33.571 t/h. Freshwater cost is $0.32/t 

and the plant operates 8600 hours/year. The end-of-pipe treatment has a capital cost of 

$30,000/t0.7 and an operating cost of $1.80/t. The costs of the potential additional 

regeneration processes are presented in Table 4-7. 
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Table 4-7 – Costs of the wastewater treatments for example 5. 

Wastewater treatments Capital Cost ($/ton0.7) Operating Cost ($/ton) 

API separator followed by ACA $25,000 0.12 
Reverse osmosis $20,100 0.56 

Chevron wastewater treatment $16,800 1.00 
 
 

The costs of connections are presented in Table 4-8.  Only the costs from the units 

to the centralized system are considered. The costs of connections between regeneration 

processes are ignored. 

 

Table 4-8 – Capital costs of the connections for example 5 
$(x103) U1 U2 U3 U4 U5 U6 Centralized System EOP 

W1 23 50 18 63 16 25 10 10 
U1 - 50 110 45 70 42 5.3 5.3 
U2 50 - 34 40 11 35 5.1 5.1 
U3 110 34 - 42 60 18 6.2 6.2 
U4 45 40 42 - 23 34 7.8 7.8 
U5 70 11 60 23 - 28 5.8 5.8 
U6 42 35 18 34 28 - 2.2 2.2 

Centralized System 5.3 5.1 6.2 7.8 5.8 2.2 - - 
EOP 5.3 5.1 6.2 7.8 5.8 2.2 - - 

 
 

Next the case in which the wastewater treatment subsystem is sequential and 

centralized is analyzed. The minimum total annual cost of the networks that are able to 

operate at minimum freshwater consumption is obtained both when end-of-pipe recycling 

is allowed and when it is not. Figure 4.26 shows the centralized sequential regeneration 

system network in which end-of-pipe recycling is not allowed. This network has a total 

annual cost of $2,065,383. When end-of-pipe recycling is allowed (Figure 4.27), the total 

annual cost goes down to $1,292,425, which represents only 37% of the previous value. 

Note that, allowing the end-of-pipe recylcing, only API separator is needed as additional 
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regeneration process.  

The minimum TAC is also obtained without forcing the minimum consumption. 

The same solution is found for the case in which the end-of-pipe recycling is allowed 

(Figure 4.27). However, for the case in which the recycle of the end-of-pipe treatment is 

not allowed, the minimum TAC happens at a freshwater consumption larger than the 

minimum (38.983 t/h). This network is presented in Figure 4.28. It has a total annual cost 

of $1,351,259 and uses two of the three available additional regeneration processes.   

 

 
Figure 4.26 - Grassroots network design for Example 5 –Centralized sequential  

regeneration processes –no EoPT recycle– Minimum TAC at minimum consumption. 
 
 

Now, the centralized distributed system is analyzed (as in Figure 4.6). The 

solution for minimum TAC without recycle of the end-of-pipe treatment is presented in 

Figure 4.29. Note that again the minimum TAC for this case does not happen at the 

minimum freshwater consumption of the system. This network also operates at 38.983 t/h 

and has a TAC of $1,330,142. Like the previous case, the suggested network has two 

regeneration processes. The major difference is due to the distributed system that allows 
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different flowrates to be treated by the different regeneration processes. 

 

 
Figure 4.27 - Grassroots network design for Example 5 – Centralized sequential 
regeneration processes – EoPT recycle allowed – Minimum TAC at minimum 

consumption. 
 
 

  

Figure 4.28 - Grassroots network design for Example 5 – Centralized sequential 
regeneration processes – no EoPT recycle – Minimum TAC.  

 
 

When end-of-pipe recycling is allowed, the minimum TAC is found to feature the 

minimum consumption. This network is the same found when centralized sequential 

system was analyzed (Figure 4.27). 
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Figure 4.29 - Grassroots network design for Example 5 –Centralized distributed 

regeneration processes –no EoPT recycle– Minimum TAC.  
 
 

Analyzing the network presented in Figure 4.29, the minimum TAC is also 

minimized maintaining the freshwater consumption at the minimum possible. This 

solution is presented in Figure 4.30 and has a total annual cost of $1,476,784. All the 

three additional regeneration processes are needed in this case. 

 
 

Figure 4.30 - Grassroots network design for Example 5 – Centralized distributed 
regeneration processes – no EoPT recycle – Minimum TAC at minimum freshwater 

consumption. 
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Now the integrated system is considered (as in Figure 4.8). Both cases, allowing 

and not allowing the recycle of the stream treated by the end-of-pipe treatment, can reach 

a minimum freshwater consumption of 33.58 t/h.   

Networks corresponding to the case in which end-of-pipe recycling is not allowed 

are presented in Figure 4.31 and Figure 4.32 respectively. The first one has the minimum 

total annual cost ($1,093,011), which has a freshwater consumption (38.876 t/h) higher 

than the minimum possible. The second (Figure 4.32) gives the minimum TAC of 

$1,123,957. This solution is found for a network that operates at the minimum freshwater 

consumption that can be obtained for this system. Once again, the former case requires 

only two of the three regeneration process while the later needs all of the three 

regeneration processes to allow the minimum freshwater consumption. 

 

 

Figure 4.31 - Grassroots network design for Example 5 – Integrated Case –no EoPT 
recycle– Minimum TAC.  

 
When end-of-pipe recycling is allowed in the Total Water System scheme, the 

minimum total annualized cost becomes $1,065,451. This solution is referred to a 

network that operates at the minimum freshwater consumption of the system. This 
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network has two regeneration system that treat different flowrates. 

 
 

Figure 4.32 - Grassroots network design for Example 5 – Integrated Case – no EoPT 
recycle – Minimum TAC at minimum consumption. 

 
 

 
Figure 4.33 - Grassroots network design for Example 5 – Integrated Case –EoPT recycle 

allowed– Minimum TAC. 
 

Table 4-9 presents a summary of all the costs and freshwater consumptions for 

this problem when only the water-using units subsystem is considered and when it is 
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considered together with the wastewater subsystem. These results will be later analyzed 

considering the water pre-treatment subsystem. 

 

Table 4-9 - Costs and Freshwater consumption comparison of the different options in 
which only water-using subsystem is considered; or, water-using and wastewater 

subsystems are simultaneously considered. 

System 
Recycle 
of EoPT 

TAC 
($/year) 

Freshwater 
consumption 

Water-using Subsystem only No $2,291,652 119.332 t/h 
Centralized sequential WWT subsystem at 

minimum consumption (WUU-WWT) 
No $2,065,383 33.571 t/h 

Water-using Subsystem only Yes $2,062,797 33.571 t/h 
Centralized distributed WWT subsystem 
at minimum consumption (WUU-WWT) 

No $1,476,784 33.571 t/h 

Centralized sequential WWT subsystem 
(WUU-WWT) 

No $1,351,259 38.983 t/h 

Centralized distributed WWT subsystem 
(WUU-WWT) 

No $1,330,142 38.983 t/h 

Centralized sequential WWT subsystem* 
(WUU-WWT) 

Yes $1,292,425 33.571 t/h 

Centralized distributed WWT subsystem* 
(WUU-WWT) 

Yes $1,292,425 33.571 t/h 

Integrated Water System at minimum 
consumption (WUU-WWT) 

No $1,123,957 33.571 t/h 

Integrated Water System (WUU-WWT) No $1,093,011 38.876 t/h 
Integrated Water System* (WUU-WWT) Yes $1,065,451 33.571 t/h 
WUU-WWT : Case 2 - Interaction between Water-using and Wastewater Treatment 

Subsystems 
* Same solution was fond either forcing or not the minimum freshwater consumption 

 

 

Case 3: Complete Water System: Along with the water-using units data of Table 

4-6 and the wastewater treatment data of Table 4-7, case 3 uses the water pre-treatment 

subsystem data of Table 4-10, which considers two regeneration processes. 

There is one freshwater source that contains 150 ppm of salts, 200 ppm of 

organics, 3 ppm of H2S and 2 ppm of ammonia. The connection costs applied here are the 
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same ones presented in Table 4-8. Connections between freshwater source and pre-

treatments and between pre-treatments are not considered. The cost for the connection 

between pre-treatments and any other processes (water-using units and wastewater 

treatments) are assumed to be the same as the ones from freshwater source and these 

other processes as presented in Table 4-8.  

 

Table 4-10 – Data for the water pre-treatment subsystem. 

  
CRin, max 
(ppm) 

CRout 

(ppm) 
Capital Cost 

($/t0.7) 
Operating Cost 

($/t) 

Pre-
Treatment 1 

Salts 2000 10 

$10,000 0.10 
Organics 2000 10 

H2S 500 N/A 
Ammonia 1000 N/A 

Pre-
Treatment 2 

Salts 10 0 

$25,300 1.15 
Organics 10 0 

H2S 5 0 
Ammonia 5 0 

 
 

If this problem is solved considering an implicit freshwater source with 0 ppm for 

all the contaminants, (that is, a total water system - no recycles to water pre-treatment is 

allowed) the best found solution has a TAC of $1,467,640. This network is the same 

presented in Figure 4.33, but now it includes the water pre-treatment subsystem and the 

costs associated to it. 

If we still consider only one quality of water (free of contaminants), but we have 

an explicit water pre-treatment subsystem (that is, the whole water pre-treatment 

subsystem is part of the model and thus recycling to the WPT is allowed), we are able to 

achieve a TAC of $1,422,786. This solution is presented in Figure 4.34. Note that not 

only the TAC is lower, but the freshwater consumption is also reduced to 31.256 t/h. 
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Figure 4.34 - Grassroots network design for Example 5 – Integrated Case with an explicit 

water pre-treatment–Minimum TAC. 
 

Additionally, one also can assume the different water pre-treatments as individual 

regeneration process to which recycling can take place. When this case was analyzed, the 

optimum found solution was the same as the one found in the previous case where the 

recycles are to each pre-treatment individually was not considered. In fact, the previous 

solution is a special case and the found solutions indicate that, for this set of cost data, 

there is no advantage on considering individual water pre-treatments instead of 

considering the water pre-treatment subsystem as a “black box”. Example 3 had shown a 

different situation in which assuming individual water pre-treatment rendered advantages 

to the complete water system. We will later show that a few changes in cost data may 

show advantages on considering individual water pre-treatment. 

Moreover, the system presented in Example 5 is able to achieve zero discharge 

when consumption is minimized. However, zero discharge cycles are not always wanted 

from the cost point of view. Figure 4.35 shows he best solution found for a zero discharge 

option of this system when TAC is minimized. This network has a TAC of $2,526,620. In 

this network ,water from WPT 2, which is free of contaminants, is used to dilute the 
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water from the EoPT with the purpose of bringing the concentration of this mixing down 

to the maximum allowed inlet concentration in WPT1.   

 

 
Figure 4.35 - Grassroots network design for Example 5 – Integrated Case with pre-

treatment-–Minimum TAC at zero liquid discharge 
 
 

Note that because self recycle is not allowed, the dilution happens before WPT 1. 

In reality, this dilution is necessary to bring the ammonia concentration of the other 

stream (EoPT) from 30 ppm down to 5 ppm, which is the maximum concentration 

allowed in WPT 2. To eliminate this issue, we also investigate the case in which self 

recycle of regeneration processes as well as pre-treatment processes are allowed. The 

network correspondent to the best found solution is presented in Figure 4.36, which has 

self recycle in both WPT 1 and WPT 2. 
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Figure 4.36 - Grassroots network design for Example 5 – Integrated Case with pre-

treatment – Minimum TAC at zero liquid discharge – Self recycle on regeneration and 
pre-treatment allowed. 

 

Table 4-11 presents a summary of all the costs and freshwater consumptions for 

this problem considering the water pre-treatment costs (even if they were not included in 

the model). Thus, for the networks presented in Table 4-9, the extra cost with water pre-

treatment to have freshwater free of contaminants was added. 

As previously mentioned, depending on the costs, a split up of the water pre-

treatment subsystem in individual water pre-treatments, allowing recycles to each of them 

individually and allowing self recycles can be advantageous. Here the only altered data 

was the freshwater cost. Instead of considering a cost of $0.32/t, it is assumed that water 

is free. In this case, the best found solution indicates the use of the intermediate water 

quality from WPT 1. This network is presented in Figure 4.37. Note that now WPT 1 

send water to water-using unit 4. 
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Table 4-11 – Costs and Freshwater consumption comparison of the different options - 
considering the complete water system. 

System 
Recycle 
of EoPT 

TAC** 
($/year) 

Freshwater 
consumption 

Water-using Subsystem only No $3,674,818 119.332 t/h 
Complete Water System (Zero Liquid 

Discharge) 
Yes $2,526,620 0 t/h 

Centralized sequential WWT subsystem at 
minimum consumption (WUU-WWT) 

No $2,467,571 33.571 t/h 

Water-using Subsystem only Yes $2,464,985 33.571 t/h 
Centralized distributed WWT subsystem 
at minimum consumption (WUU-WWT) 

No $1,878,971 33.571 t/h 

Centralized sequential WWT subsystem 
(WUU-WWT) 

No $1,816,182 38.983 t/h 

Centralized distributed WWT subsystem 
(WUU-WWT) 

No $1,795,064 38.983 t/h 

Centralized sequential WWT subsystem* 
(WUU-WWT) 

Yes $1,694,613 33.571 t/h 

Centralized distributed WWT subsystem* 
(WUU-WWT) 

Yes $1,694,613 33.571 t/h 

Integrated Water System (WUU-WWT) No $1,556,695 38.876 t/h 
Integrated Water System at minimum 

consumption (WUU-WWT) 
No $1,526,146 33.571 t/h 

Integrated Water System* (WUU-WWT) Yes $1,467,640 33.571 t/h 
Complete Water System Yes $1,422,786 31.256 t/h 

Complete Water System (one water 
quality) 

Yes $1,422,786 31.256 t/h 

WUU-WWT : Case 2 - Interaction between Water-using and Wastewater Treatment 
Subsystems 

* Same solution was fond either forcing or not the minimum freshwater consumption 
**Considering the costs for the Complete Water System 

 

 
Figure 4.37 - Grassroots network design for Example 5 – Integrated Case that uses more 

than one pre-treatment water quality. 
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4.5. Final Remarks 

This chapter discussed some of the different structures used to model the water 

allocation problem. These structures vary according to the different assumption used in 

each of the subsystems as well as with the interaction among the subsystems. It was 

shown through examples that different structural choices can make significant changes. 

Additionally, the inclusion of one more subsystem, the water pre-treatment subsystem, to 

form a Complete Water System, was suggested and the examples showed the importance 

of considering it. 

In essence, it was concluded that when the proper architecture is used, i.e. all 

subsystem and all recycles among these subsystems are allowed, then the boundaries 

among these subsystems can be erased, reducing the problem to one big superstructure 

where all connections are allowed. This is, in many instances, an essential route to 

achieve zero liquid discharge cycles.  
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5. GLOBAL OPTIMIZATION METHODS 

 

One of the biggest challenges in solving the water allocation problems are 

rooted in the nonlinearities and non-convexities that arise from bilinear 

terms corresponding to component material balances and concave cost 

functions. To address these issues, an approach that discretizes the 

feasible region resulting in a lower bound MILP model is presented in this 

chapter. To reduce the gap between the lower bound and an upper bound 

(which can be found using the original NLP or MINLP model), different 

procedures are discussed.  

 

5.1. Overview 

The use of mathematical programming in the water allocation problems was first 

presented by Takama et al. (1980). This problem is usually modeled using non-linear 

programming (NLP) and it involves non-convexities in the contaminants mass balances. 

Although mathematical programming has been used for a long time to solve these 

problems, several methods do not guarantee global optimality and many times cannot 

find a feasible solution. This is one of the drawbacks in the WAP that has not received 

much attention. Except for a few papers (Karuppiah and Grossmann, 2006a,b; Meyer and 

Floudas, 2006; Bergamini et al., 2008) that solve this problem to global optimality, all the 

other work done on multi-component WAP can only guarantee local solutions (Galan and 

Grossmann, 1998; Koppol et al., 2003; Gunaratnam et al., 2005; Alva-Argaez et al., 

2007; Teles et al., 2008 to name a few). In fact, the biggest challenges of solving these 
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problems to global optimality are the non-convex bilinear terms arisen from the 

contaminant balances (mixer and splitters) and other nonlinear terms stemming from 

concave cost functions. 

In this chapter different optimization strategies are presented and global 

optimization is discussed. Global optimization methods are important not only to 

guarantee global optimality, but also because they are able to generate lower bounds that 

allow us to know how far we can be from the global optimum solution and, in many 

instances, generate good starting points for non-linear solvers.  Although in some cases 

there is no strict need of finding the global optimum solution, it is very important to have 

at least an idea of how much better the solution could be. Another important advantage of 

global optimization methods is that initial starting points are often not required and a 

good solution is many times found in the first iterations of the method (Galan and 

Grossmann, 1998).  

To address bilinear terms in generalized pooling problems, which are similar in 

nature to water management problems and also include wastewater treatment network 

problems, Meyer and Floudas (2006) proposed a piece-wise linear formulation based on 

reformulation-linearization technique (RLT). They first use partitioning of the continuous 

space (applied to the flowrates) to generate a MINLP and then they apply the RLT to 

linearize the model. Some constraints generated by the RLT that are redundant in the 

original problem and non-redundant in the MILP are also added to the relaxed model, 

which is a lower bound. The method is used just to verify the gap relative to the best 

known optimum solution and no procedure is presented to reduce the gap between lower 

and upper bounds. Different numbers of partitions of the continuous variables are 
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considered to obtain the best lower bound.  The method is able to generate very tight 

lower bounds at a cost of significant computational efforts due to the increase in numbers 

of binary variables and additional constraints. 

Karuppiah and Grossmann (2006a), in turn, presented a methodology to globally 

optimize an integrated water system. The problem is formulated as a non-convex NLP 

problem and solved using a deterministic spatial branch and contract algorithm. To obtain 

a lower bound for the original NLP model, the bilinear terms are relaxed using the 

convex and concave envelopes (McCormick, 1976) and the concave terms of the 

objective function are replaced by underestimators generated by the secant of the concave 

term. To improve the tightness of the lower bound, piece-wise underestimators generated 

from partitioning of the flow variables are used to construct tighter envelopes and 

concave underestimators. As in Meyer and Floudas (2006), the number of partitions can 

make the lower bound tighter, but extra computational effort is needed. In an additional 

step, Karuppiah and Grossmann (2006) perform a bound contraction, which is a relaxed 

version of the bound contraction method presented by Zamora and Grossmann (1999).  

In a second paper, Karuppiah and Grossmann (2006b) extended the previous 

method to solve the multi-scenario case of the integrated water systems. In both cases, the 

relaxed model, which renders a lower bound, is used in a LB/UB framework. In the first 

case (Karuppiah and Grossmann, 2006a) a spatial branch and bound procedure is used. 

For the multi-scenario case (Karuppiah and Grossmann, 2006b), a spatial branch and cut 

algorithm is applied. The cuts are generated using a decomposition based on Lagrangean 

relaxation.  

An example of total water system previously presented in the literature is globally 
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optimized by Bergamini et al. (2008). They present an improvement of their previous 

outer approximation method (OA) for global optimization (Bergamini et al., 2005). The 

major modifications are related to a new formulation of the underestimators (which 

replace the concave and bilinear terms) using delta-method of piecewise functions (see 

Padberd, 2000); and, the replacement of the most expensive step (global solution of the 

bounding problem) by a strategy based on the mathematical structure of the problem, 

which searches for better feasible solutions of fixed network structures. The improved 

outer approximation method relies in three sub-problems that need to be solved to 

feasibility instead to optimality. In turn, the model always look for solutions that are 

strictly lower (using a tolerance) than the current optimum solution. 

 Aside from the global optimization methods directly applied to water problems, 

other approaches to globally solve generic bilinear problems have been presented, many 

of which became popular in the chemical engineering community (Quesada and 

Grossmann, 1995; Adhyla, Tawarmalani and Sahinidis 1999; Zamora and Grossmann, 

1999; Bergamini et al., 2005; Meyer and Floudas, 2006), some having reached 

commercial status, like BARON (Sahinidis, 1996), COCOS, GlobSol, ICOS, LGO, 

LINGO, OQNLP, Premium Solver, or others that are well-known like the αBB 

(Androulakis, et al., 1995).  

 

5.2. GO Method Using Interval Elimination on Discretized Variables 

Here a discretization methodology to obtain lower bounds and a new bound 

contraction procedure is suggested. The lower bound model uses some modified versions 

of well-known over and underestimators (some of which used in the literature review 
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above), to obtain MILP models. Our procedure differs from previous approaches based 

on LB/UB schemes because the branch and bound strategy is not the most important step 

and a different interval elimination strategy is attempted to contract the bounds of the 

variables. A B&B is only used as a last resort in difficult cases where bounds cannot be 

further contracted. In essence, the suggested bound contraction procedure eliminates 

intervals from a range for each discretized variable.  

 

5.2.1. Solution Strategy 

After discretizing one of the variables in the bilinear terms, the method consists of 

a bound contraction using a procedure of eliminating intervals. Once the bound 

contraction is exhausted, the method relies on increasing the number of intervals, or on a 

branch and bound strategy in which the interval elimination takes place at each node. The 

discretization methodology (outlined below), generates linear models that guarantee to be 

lower bounds of the problem. Upper bounds are needed for the bound contraction 

procedure. These upper bounds can be usually obtained using the original MINLP model 

often initialized by the results of the lower bound model, although upper bounds can 

sometimes also be obtained using linear models.  

Before the strategy is outlined, some important variables are defined:  

 

Discretizing Variables: These are the variables that are discretized into intervals 

and used to construct linear relaxations of bilinear terms. The resulting models are MILP. 

Bound Contracted Variables: These are the variables that are discretized into 

intervals, only for the purpose of performing their bound contraction. The lower bound 

model will simply identify the interval in which the variable to be bound contracted lies 
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and use this information in the elimination procedure. Clearly, these variables need not be 

the same as the discretizing variables. 

Branch and Bound Variables: These are the variables for which a branch and 

bound procedure is tried. It need not be the same set as the other two variables.  

 

For example, in water management problems the bilinear terms are composed of 

the product of flowrates and concentrations. Thus, one can have a problem in which the 

discretizing variables are all or part of the concentrations, the bound contracted variables, 

be the flowrates and the B&B variables the flowrates as well. As discussed below, the 

B&B is more efficient when the variables used are different from the discretizing 

variables when using McCormick’s envelopes, which has information of the non-

discretized variable.  Alternatively, one can use concentrations for both the discretizing 

and BC variables, with flowrates for B&B, or the discretizing variables could be both 

flowrates and concentrations (in which case the LB model is more efficient), the BC 

variables as well as the B&B variables  the flowrates or the concentrations or both, and so 

on.  

Although the bound contract variable and branch and bound variable do not need 

to be the same as the discretized one it is normal to have them being bound contracted or 

branched, as opposed to picking other variables. In some cases, picking the variable to 

bound contract different form the one to discretize renders tighter lower bounds as bound 

contraction takes place.  However, it is important to point out that the feasible region of 

the lower bound model can only become entirely close to the feasible region of the upper 

bound when the discretized variables have discrete values within an ε tolerance and this 
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can only be done through bound contraction and/or branching.   

Then, the global optimization strategy is now summarized as follows:  

• Construct a lower bound model discretizing bilinear and quadratic terms, 

relaxing the bilinear terms as well as adding piece-wise linear 

underestimators of concave terms of the objective function. If the concave 

terms are not part of the objective function, then overestimators can be 

used, but this is not included in our current paper.  

• The lower bound model is run identifying certain intervals as containing 

the solution for specific variables that are to be bound contracted. These 

variables need not be the same variables as the ones using to construct the 

lower bound. 

• Based on this information the value of the upper bound found by running 

the original MINLP using the information obtained by solving the lower 

bound model to obtain a good starting point.  Other ad-hoc upper bounds 

can be constructed. 

• A strategy based on the successive running of lower bounds where certain 

intervals are temporarily forbidden is used to eliminate regions of the 

feasible space. This is the bound contraction part.  

• The process is repeated with new bounds until convergence or until the 

bounds cannot be contracted anymore.  

• If the bound contraction is exhausted, there are two possibilities to 

guarantee global optimality: 

o Increase the discretization of the variables to a level in which the 
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discrete sizes are small enough to generate a lower bound within a 

given acceptable tolerance to the upper bound; or, 

o Recursively split the problem in two or more sub-problems using a 

strategy such as the ones based on branch and bound procedure.  

 

The first option of increasing discretization will not lead to further improvement 

in bound contraction if degenerate solutions (or very close to the global solutions) exist 

for different values of the discrete variables.  

 

5.2.2. Discretization Methodology 

We show here two different discretization strategies. The proposed approach 

consists of discretizing one of the variables of the bilinear terms, but one could also 

discretize both.  

 

Bilinear Terms: 

There are different ways to linearize the bilinear terms using discrete points of 

one (or both) given variable(s). Two alternatives are presented:  

- Direct Discretization (our nomenclature). Some details of this technique 

were presented earlier (Faria and Bagajewicz, 2008).  

- Convex Envelopes (McCormick, 1976) as used by Karuppiah and 

Grossmann (2006a).   

To deal with the product of continuous variables and binary variables, three 

variants of each procedure are considered.  

Consider z to be the product of two continuous variables x and y:   
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z x y=                                                            (5-1) 

where both x and y subject to certain bounds:    

L Ux x x≤ ≤                                                         (5-2) 

L Uy y y≤ ≤                                                         (5-3) 

Assume now that variable y is discretized using D-1 intervals. The starting point 

of each interval is given by.  

( )
( )

ˆ 1 1..
1

U L

L
d

y y
y y d d D

D

−
= + − ∀ =

−          
L Uy y y≤ ≤

            

(5-4) 

In the case of the direct discretization, we simply substitute the variable y by its 

discrete values and allow the bilinear term (z) to be inside of one of the intervals, that is, 

between two successive discrete values. Binary variables (vd) are used to assure that only 

one interval is picked.  

1 1

1
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ˆ ˆ
D D

d d d d
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d d
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z x y v
−

+
=

≤ ∑                                                        (5-7)

 
1

1

ˆ
D

d d
d

z x y v
−

=

≥ ∑                                                          (5-8) 

Equation (5-5) states that y falls within the interval corresponding to the binary 

variable vd, of which only one is equal to one (Equation (5-6) enforces this). This is done 

for the discretization variables, but if x (or a subset of it) is the BC variable, then a similar 

discretization as the one in (5-5) and (5-6) is included.  
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In turn, equations (5-6) and (5-7) bound the value of z to correspond to a value of 

y in the given interval.  
 

In the case of using McCormick’s envelopes for each interval, the equations are:  
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≤ + −∑                                       (5-11)

 ( )
1

1

ˆ ˆ
D

U U
d d d d

d

z x y x y v x y v
−

=

≤ + −∑                                       (5-12)

 
which are used in conjunction with equations (5-5) and (5-6).  

When x (or a subset of it) is the BC variable, then we only add equations (5-5) and 

(5-6) for these variables, but do not incorporate the bounds of each interval in the above 

equations (5-9) through (5-12).  

Note that even if the bilinearity generated by the multiplication of y and x was 

eliminated, we still have variable x being multiplied by the binary variable vd in both 

cases. Once again there are different ways to linearize the product of a continuous and 

binary variable. These methods, in various forms, are very well known and we present 

next our implementation.  

Direct Discretization Variants: 

When using the direct discretization, the linearization of the product of x and the 

binary variable vd can be done using three different procedures. 
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Direct Discretization Procedure 1, (DDP1); Let wd be a positive variable ( 0dw ≥

), such that wd =x vd. Then (7) and (8) are substituted by:  

1

1
1

ˆ
D

d d
d

z y w
−

+
=

≤∑                                                         (5-13)

 
1

1

ˆ
D

d d
d

z y w
−

=

≥∑                                                           (5-14) 

and wd is now obtained from the following linear equations:  

0U
d dw x v− ≤                                           (5-15) 

( ) (1 ) 0U
d dx w x v− − − ≤                                           (5-16) 

0dx w− ≥                                                      (5-17) 

Indeed, if dv =0, equation (5-15) together with the fact that 0dw ≥ renders, 0dw = . 

Conversely, if dv =1, equations (5-16) and (5-17) render dw x= , which is what is desired. 

There is, however, an alternative more compact way of writing the linearization: Indeed, 

the following equations accomplish the same linearization.  

 

Direct Discretization Procedure 2 (DDP2): In this case, the product of the binary 

variable and the continuous variable is linearized as follows: 

1.. 1U
d dw x v d D≤ ∀ = −                                            (5-18) 

1.. 1L
d dw x v d D≥ ∀ = −                                           (5-19) 

1

1

D

d
d

x w
−

=

=∑                                                         (5-20) 

Equations (5-18) and (5-19) guarantee that only one value of dw  (when dv =1) can 

be greater than zero and in between bounds (all other dw , for when dv =0, are zero). Thus, 
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equation (5-20) sets dw  to the value of x.   

 

Direct Discretization Procedure 3 (DDP3): This procedure uses the following 

equations to linearize equations (5-7) and (5-8): 

( )( )1 1ˆ ˆ 1 1.. 1U U
d d dz x y x y y v d D+ +≤ + − − ∀ = −

                          

(5-21)

 

( )ˆ ˆ 1 1.. 1U
d d dz x y x y v d D≥ − − ∀ = −

                         

(5-22) 

Uz x y≤

                                                     

(5-23) 

Equations (5-21) and (5-22) force  z  to be inside a chosen interval d* (the one for 

which *d
v =1). Indeed, when *d

v =1, (5-21) and (5-22) reduces to the following 

inequalities: * * 1
ˆ ˆ

d d
x y z x y

+
≤ ≤ . In turn, equations (5-5) and (5-23) reduce to 

*

*

1
ˆU U

d
z x y x y

+
≤ ≤  (we use *y to denote the optimal value of y).  In the other intervals 

where dv =0, equations (5-22) and (5-23) reduce to ( ) *
*

1
ˆ ˆU U U

d d
x x y z x y x y

+
− ≤ ≤ ≤ , which 

puts z between a lower negative bound and the right upper bound.  Finally, equation (5-

21) reduces to 1 1ˆ ˆ( )U U
d dz x y x y y+ +≤ + − , which is a valid inequality. We now need to show 

that equation (5-22) is also satisfied. For this, we recall that * * 1
ˆ ˆ

d d
x y z x y

+
≤ ≤ . Then, for d 

≥d* we have * 11
ˆ ˆdd
y y ++

≤  and then, *
1 1 1 1ˆ ˆ ˆ ˆ( ) ( )U U U U

d d d dz x y x y y xy x y y+ + + +≤ + − ≤ + − , which 

is a valid upper bound for that d. Conversely, when d<d*, we have * 11
ˆ ˆdd
y y ++

>  and then, 

*
1 1 1 1ˆ ˆ ˆ ˆ( ) ( )U U U U

d d d dz x y x y y xy x y y+ + + +≤ + − ≤ + − . Adding and subtracting *
1ˆdxy +  to the last 

term and rearranging, we get * * *
1 1 1 1ˆ ˆ ˆ ˆ( ) ( )U U

d d d dz xy x y y x y y+ + + +≤ + − − − . Finally, noticing that 

1ˆ U
dy y+ ≤ , one can write * *

1 1ˆ ˆ( )( )U U
d dz xy x x y y+ +≤ + + −  



 

162 

With all these substitution any MINLP model containing bilinearity is 

transformed into an MILP, which is a lower bound of the original problem; this is 

because of the relaxation introduced.   

 

McCormick Envelopes Variants: 

In this case, equations (5-9) through (5-12) are substituted by the following 

equations: 
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and several variants of how to linearize d dw xv= follow:     

 

McCormick’s Envelopes Procedure 1 (MCP1):  It is when equations (5-15) to (5-

17) are used.  

 

McCormick’s Envelopes Procedure 2 (MCP2):  In this case equations (5-18) to 

(5-20) are used instead of equations (5-15) to (5-17).  

 

McCormick’s Envelopes Procedure 3 (MCP3): In this case, equations (5-5) and 
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(5-6) are still used, but equations (5-9) to (5-12) are substituted by: 

( )( )ˆ ˆ ˆ 1 1.. 1L L L U U
d d d d dz x y x y x y v x y x y v d D≥ + − − + − ∀ = −

          

(5-28)

 

( ) ( )1 1 1ˆ ˆ ˆ 1 1.. 1U U U U
d d d d dz x y x y x y v x y y v d D+ + +≥ + − − + − ∀ = −

        (5-29)

 

( )( )( )1 1 1ˆ ˆ ˆ 1 1.. 1L L U U L L
d d d d dz x y x y x y v x y x y y v d D+ + +≤ + − + − + − ∀ = −

         

(5-30)

 

( )( )( )ˆ ˆ ˆ 1 1.. 1U U U U L L
d d d d dz x y x y x y v x y y x y v d D≤ + − + − − − ∀ = −

        (5-31) 

Uz x y≤                                                                                                         (5-32) 

 

 The case Lx =0 is a very common situation in flowsheet superstructure 

optimization where connections between units exist formally but a flowrate of zero 

through some of these connections is almost always part of the optimal solution. If x 

represents the flowrates and y the composition of the stream, (5-28) would reduce to 

( )ˆ ˆ 1U
d d dz x y x y v≥ − −  and (5-30) would reduce to ( )1ˆ 1U U

d dz x y x y v+≤ + − . It is obvious 

that (5-28) is equal to (5-22), but when dv =0,  (5-22) would be tighter than (5-30), which 

can help computationally when the MILP code tries to solve a relaxed problem.     

 

As in the case of the direct discretization, when these equations are substituted in 

the original MINLP, they transform it into an MILP, which is a lower bound of the 

original problem.  

In addition, it is worth point out that the decision of which variables should be 

discretized in a bilinear term is also not straightforward. In many cases, the number of 

binary variables is much higher for one variable, but the solution could be found faster.  

This is the case of problems with component balances: flowrates participate in all the 
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balances, whereas each balance contains its own composition. Conversely, discretizing 

flowrates may render a smaller number of integers but may affect speed of convergence. 

This is discussed in more detail below when the method is illustrated.  

 

Concave Terms: 

Univariate functions used to estimate capital cost are often concave and expressed 

as functions of equipment sizes as follows: 

      z yα= Ω

                                                              

(5-33) 

where α is often a value between 0 and 1, and y is the equipment capacity.  

Let us first consider that variable y is discretized in several intervals as shown in 

equation (5-4). Then the linearizization of this concave function in each interval can be 

done following Karuppiah and Grossmann (2006): 
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(5-34) 

      z y= Ω

                                                              

(5-35) 

which we use in conjunction with (5-5) and (5-6).  

Note that, again, we have the product of a binary variable (vd) and a continuous 

variable (y).  The linearization of equation (34) is the following:  
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(5-36) 
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$
1 1.. 1d ddy v d Dβ +≤ ∀ = −                                          (5-38) 
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$ 1.. 1d ddy v d Dβ ≥ ∀ = −                                           (5-39) 

which is again used in conjunction with (5-5) and (5-6). When substituted in the 

original MINLP, they transform it into an MILP. Such MILP is a lower bound of the 

original problem if z only appears in the objective function as an additive term, together 

with the equation defining it (equation 5-33).  Conversely, when z shows up in some 

constraint of the problem, but not in the objective as an additive term, then one would 

have to add an overestimator like the following:  
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∑

                 

(5-40) 

which uses the tangent line at the middle of the interval as an upper bound.   

 

5.2.3. Internal Elimination Strategy (Bound Contraction) 

Once a problem has been linearized and solved, the solution from this LB is used 

to obtain good guesses for solving the upper bound problem (the original problem is used 

in most cases). Once a lower bound and an upper bound have been found there is a need 

to identify which intervals can be eliminated from consideration. The lower bound 

solution points at a set of intervals, one per variable. This solution is used to find an 

upper bound and also to guide the elimination of certain intervals. The procedure is as 

follows:  

Step 1: Run the lower bound model with no forbidden intervals and re-discretized 

variables over the range that survived. 

Step 2: Use the solution from the lower bound as an initial point to solve the full 

NLP or MINLP problem to obtain an Upper Bound.  
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Step 3: If the gap between the upper bound and the lower bound is lower than the 

tolerance, the solution was found. Otherwise go to Step 4.  

Step 4: Run the lower bound model, this time forbidding the interval that contains 

the answer for the first discretized variable.  

Step 5: If the new problem is infeasible, or if feasible and the objective function is 

higher than the current upper bound, then all the intervals of this variable, except the 

original one that was forbidden, are eliminated. The surviving feasible region between the 

new bounds is discretized again. 

Step 6: Repeat the procedure for all the other variables, one at a time.  

Step 7: Go back to Step 1.  

 

Note that to guarantee the optimality, not all of the lower bound models need to 

be solved to zero gap. The only problems that need to have zero gap are the ones in 

which the lower bound of the problem (or sub-problems) are obtained, which is done in 

step 1. The lower bound models used to eliminate intervals (step 4) can be solved to 

feasibility between its lower bound and the current upper bound, which is always set as 

the upper bound of the whole procedure.  

In some cases, a pre-processing step using bound arithmetic to reduce the initial 

bounds of certain variables can be performed. This issue is discussed together with the 

results.     

The above is the standard version of the suggested interval elimination (bound 

contraction) procedure, which we call One-pass with one forbidden interval elimination 

because the elimination process takes place sequentially, only one variable at a time and 
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only once for each variable.  

Variations to the above elimination strategy are possible:  

- Options related to the amount of times all variables are considered for bound 

contraction:  

o One-Pass Elimination: In Step 6, each variable is visited only once 

before a new lower bound of the whole problem is obtained.  

o Cyclic Elimination: In Step 6, once all variables are visited, the 

method returns to the first variable and starts the process again, as 

many times as needed, until no more bound contraction is achieved.   

- Options related to the amount of times each variable is bound contracted:  

o Exhaustive elimination: In Step 6, once each variable is contracted, the 

process is repeated again for that same variable until no bound 

contraction takes place. Only then, the process moves to the next 

variable. Each variable is visited only once before a new lower 

o Non-Exhaustive elimination: In Step 6, once each variable is 

contracted once, the process moves to the next variable.  

- Options related to the updating of the UB/LB: 

o Active Upper Bounding: Each time an elimination takes place, the 

upper bound is calculated again.  This helps when the gap between 

lower and upper bound (feasible solution) improves too slowly.  

o Active Lower Bounding: Each time an elimination takes place, the 

lower bound solution calculated again. In such case, one would allow 

all surviving intervals, and rediscretize them. If the gap between LB 
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and UB is within tolerance one can terminate the entire procedure. 

This option could be really attractive if several variables are used.  

- Options related to the the amount of intervals used for forbidding: 

o Single interval forbidding: This consists of forbidding only the interval 

that brackets the solution 

o Extended interval forbidding: This consists of forbidding the interval 

identified originally plus some number of adjacent ones. This is 

efficient when a large number of intervals are used to obtain lower 

bounds. Adjacent intervals, if left not forbidden, may render lower 

bounds that are not larger than the current upper bound. Thus, by 

forbidding them, other intervals are forced to be picked and those may 

render larger LB and lead to elimination.  

- Options related to the the amount of variables that are forbidden: 

o Single Variable Elimination: This procedure is the one outlined above. 

o Collective Elimination: This procedure consists of forbidding the 

combination of the intervals identified in the lower bound. We 

anticipate having problems with this strategy when the size of the 

problem is large. 

 

When no interval is eliminated and the lower bound-upper bound gap is still 

larger than the tolerance, one can resort to increase the number of intervals and start over. 

This procedure normally renders better lower bounds and more efficient eliminations 

when the Extended interval forbidding is applied. When the standard option, the One-
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pass with one forbidden interval elimination, is used, an increase in the number of 

intervals will select a smaller part of the feasible range of each variable. If this smaller 

selected interval was part of the previously selected, no elimination occurs again. 

However, using the guided option, the interval selected by the more discretized lower 

bound may not be part of the larger one previously chosen. Then, in such a case, an 

elimination may be observed. Thus, increasing the number of intervals helps because it 

provides tighter lower bounds. However, a large number of intervals can also 

significantly increase the running time. A maximum number of intervals needs to be 

established, but one needs to recognize this maximum depends on the size of the 

problem.   

5.2.4. Branch and Bound Procedure  

It is possible that the above interval elimination procedure fails to reduce the gap 

that is even using the maximum number of intervals, no interval eliminations are 

possible. In such a situation, we resort to a branch bound procedure. In many methods 

addressing bilinear terms directly (Adhyla et al., 1999; Karuppiah and Grossmann, 

2006a) or others like Zamora and Grossmann (1999), the branching is normally done in 

the variable that is being discretized. However one can branch on the other or on both.  In 

our case, we branch on the continuous variables by splitting their interval from lower to 

upper bound in two intervals.  As the non-discretized variables participate on the lower 

bound models and thus influence their tightness, the generation of sub-problems with 

different non-discretized variables bounds can speed up the procedure.  

The following two criteria can be used on the branching and bound procedure:  

• The new continuous variable that is split in two is the one that has the largest 
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deviation between the value of ,
LB
i jz  in the parent node and the product of the 

corresponding variables LB
ix  and LB

jy , that is choose the variable i that 

satisfies the following.       

{ },
LB LB LB

i i j i jMax z x y−                                          (5-41) 

• Using information of the current upper bound solution: We do this by 

choosing the variable that contributes to the largest gap between z’s from the 

lower and upper bound, that is, we choose the variable i that satisfies the 

following       

      { }, ,
LB UB

i i j i jMax z z−

                                                          

(5-42) 

In addition to the B&B procedure, at each node we perform as many interval 

eliminations (bound contractions) as possible.   

 

5.2.5. Similarities and Differences with other Methods 

The presented methodology borrows and intersects several other previously 

presented discretization and underestimation methods that render lower bounds.  For 

example, we are considering the use of direct discretization instead of McCormick 

(which is supposedly tighter).  The advantages would be to verify if it runs faster and 

consequently is able to find the solution faster (even if using more iterations). However, 

the elimination procedure is different the ones used in previous methods. 

 

5.2.6. Implementation issues 

The complete method requires making several choices. These choices are:  

• Variables to be discretized. In water management and pooling problems these 
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could be concentrations, flowrates, or both. 

• Number of discrete intervals per variable: It does not need to be the same for 

all variables.  

• LB model: DDP1, DDP2, DDP3, MCP1, MCP2, or MCP3. 

• Variables chosen to perform Bound Contraction: They need not be the same 

as the once chosen to be discretized. For example, one can discretize 

concentrations and build a DDP1-LB model based on these discretization, but 

perform bound contraction on flowrates. For this, one needs to discretize the 

flowrates as well. The LB-Model, however, would not consider other than 

continuous flowrates, only including equation (5-5) for flowrates to bracket 

the flowrate value and to be able to forbid it.  

• Elimination strategy: The standard One-pass with one forbidden interval 

elimination, or the variants (One pass or Cyclic Elimination, Exhaustive or not 

Exhaustive Elimination, Active Upper/Lower Bounding or not, Single vs. 

Extended Intervals forbidding, or Collective elimination, ).  

• Variables to partition in the Branch and bound procedure.  

 

With such a large amount of options, it is cumbersome to explore all of them. In 

the examples, some of the possibilities are reported. An effort was made to show some 

variant’s success, even though they are less efficient. For the examples for which the 

method is not as quick and efficient, the best result obtained by the presented method is 

presented.  
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5.2.7. Results 

 

Example 1: Illustration of the Interval Elimination procedure  

The illustration of the elimination procedure is performed for the One-pass with 

one forbidden interval elimination procedure using a simple water network example from 

Wang and Smith (1994). This example optimizes only the water-using subsystem, which 

targets minimum freshwater consumption and has two water-using units and two 

contaminants. Table 5-1 presents the limiting data of this problem.  

 

Table 5-1 – Limiting data of example 1. 
Process Contaminant Mass Load (Kg/h) Cin,max (ppm) Cout,max (ppm) 

1 
A 4 0 100 
B 2 25 75 

2 
A 5.6 80 240 
B 2.1 30 90 

 

For the illustration of this example, the pure discrete concentration lower bound is 

used with two initial intervals (Figure 5.1) and the elimination procedure is applied on the 

outlet concentrations of the water-using units.  The standard strategy (one-pass non-

exhaustive elimination) is used.  

In the upper part of Figure 5.2 the results of the lower bound using the pre-

processed bounds, which corresponds to a value of 52.89 t/h, are depicted. Using the 

results from this lower bound as initial points, the full problem was run and the solution 

obtained (54 t/h) corresponds to the first upper bound of the problem.  
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Figure 5.1 – Illustrative example of the discrete approach - initialization. 

 

When the lower bound model is re-run forbidding the interval corresponding to 

Unit 1/Contaminant A, that is, the interval 70 to 100 ppm is forbidden, the interval from 

40 to 70 ppm is eliminated because forcing the lower bound in this interval renders a 

value of the LB higher than 54 t/h. The remaining part (70ppm to 100ppm) is 

rediscretized in two new intervals. Then the lower bound model is run forbidding the 

interval corresponding to Unit 1/Contaminant B, which is the interval 47.5 to 75 ppm. 

The solution is again higher than 54 t/h. Thus, the interval between 20ppm and 47.5 ppm 

is eliminated and the remaining is rediscretized. Applying this procedure to the rest of the 

variables renders eliminating the intervals shown in Figure 5.2.   

 

 
Figure 5.2 – Illustrative example of the discrete approach – 1st iteration. 
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After the first iteration the lower and upper bound do not change (LB = 52.90 t/h 

and UB = 54 t/h). The second iteration of the illustrative example is shown in Figure 5.3. 

The elimination procedure is repeated again, one variable at a time, and in all cases, the 

solutions found are larger than the current upper bound. Therefore, each time the 

corresponding interval in each variable is eliminated, the selected interval is re-

discretized and the procedure moves to the next variable.  

 

 
Figure 5.3 – Illustrative example of the discrete approach – 2nd iteration. 

 

This procedure is repeated until the lower bound solution is equal (or has a given 

tolerance difference) to the upper bound solution. This illustrative example, using the 

DDP3 and discretizing concentrations in two intervals, is solved in 3 iterations and 0.60 

seconds using a relative tolerance of 1%. The actual solution reaches 0.65% gap.  All the 
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report solving times do not including pre-processing/compilation times.  

Table 5-2 presents the progress of the solution through the iterations. The upper 

bound (54 t/h) is identified in the first iteration and is the global solution. The lower 

bound solution, however, does not improve until the third iteration. The optimum 

network of this example is presented in Figure 5.4. 

The other option for the elimination step is cyclic non-exhaustive elimination. 

Table 5-3 and Table 5-4 show the progress of the solution when the cyclic non-

exhaustive elimination is applied.  

 

Table 5-2 – Solution progress of the illustrative example. 

Iteration 
Lower 
Bound  

Upper 
Bound 

Relative 
error 

Intervals 
eliminated 

0 52.90 t/h 54.00 t/h 2.02% NA 
1 52.90 t/h 54.00 t/h 2.02% 4 
2 52.90 t/h 54.00 t/h 2.02% 4 
3 53.65 t/h 54.00 t/h 0.65% 4 

 
 

 
Figure 5.4 – Optimum network of example 1. 

 

Table 5-3 – Solution progress of the illustrative example – using cyclic non-exhaustive 
elimination. 

Iteration 
Lower 
Bound  

Upper 
Bound  

Relative 
error 

Number of 
cycles 

Eliminations 

0 52.90 t/h 54.00 t/h 2.02% NA NA 
1 52.90 t/h 54.00 t/h 2.02% 4 10 
2 53.67 t/h 54.00 t/h 0.62% 5 8 
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 Table 5-4 – Number of elimination in each cycle – using cyclic non-exhaustive 
elimination. 

Iteration Cycle 1  Cycle 2  Cycle 3 Cycle 4 Cycle 5 
1 4 3 2 1 NA 
2 1 3 2 1 1 

 

Despite the fact that this procedure takes a smaller number of iterations, the 

overall running time for this example was higher (2.26 s against 0.60 s using the one-pass 

elimination). This is expected because this is a small problem, in which the lower 

bounding (step 2) is not computationally expensive. Thus, unnecessary elimination (more 

than the needed to achieve the given tolerance gap) may occur if the lower bound is not 

often verified. 

The solution using one-pass exhaustive elimination is also investigated. Table 5-5 

shows the progress of the iterations and Table 5-6 shows which variable had its bounds 

contracted and how many eliminations existed in each iteration. This strategy took 1.30 

seconds. 

 

 Table 5-5 – Solution progress of the illustrative example – using one-pass exhaustive 
elimination. 

Iteration 
Lower 
Bound  

Upper 
Bound  

Relative 
error 

Eliminations 

0 52.89 t/h 54.00 t/h 2.02% NA 
1 52.89 t/h 54.00 t/h 2.02% 10 
2 53.67 t/h 54.00 t/h 0.62% 6 

 
 

 Table 5-6 – Exhaustive eliminations progress of the illustrative example – using one-
pass exhaustive elimination. 

Iteration 
Cout 

Unit 1 
Contaminant A 

Unit 1 
Contaminant B 

Unit 2  
Contaminant A 

Unit 2 
Contaminant B 

1 4 2 1 3 
2 - 1 3 2 
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Effect of the Number of Intervals: 

The number of initial intervals has also influence on the performance of the 

proposed methodology. Since it is known that a continuous variable can be substituted by 

discrete values when the number of discrete values goes to infinity, it is expected that less 

iterations are needed when more discrete intervals are added. On the other hand, this 

generates a higher number of integer variables (what means a lager MILP model), and 

might make the problem computationally very expensive (increase the overall time to run 

it). 

This influence is analyzed only for the cases of one-pass non-exhaustive 

elimination, which have presented the best option when only 2 intervals are considered. 

Additionally, the influence of the Extended interval forbidding option is also verified. 

This option represents two main advantages: reduce the number of binary in the 

elimination step; and, facilitate eliminations. On the other hand, when only one interval is 

forbidden and an elimination takes place, the discharged portion of the variable is lager 

then if the Extended interval forbidding option was used and the stopping criteria is when 

the tolerance is satisfied. The results are shown in Figure 5.5 and Figure 5.6. The number 

of intervals is increased until twenty two intervals are reached.  
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Figure 5.5 – Influence of the number of initial intervals and the use of Extended interval 
forbidding option – CPU time. 

 
 

For the One-pass with one forbidden interval elimination option, the quickest 

solution (0.07s) is found when the procedure is initialized with 7 intervals. This is the 

point in which the solution is first found at the root node. For the Extended interval 

forbidding case,  very similar CPU times are found for the cases in which the solution is 

found at the root node (7, 9, 11 and 13 to 18 intervals), that is, computational times of 

approximately 0.15 s. 
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Figure 5.6 – Influence of the number of initial intervals and the use of Extended interval 
forbidding option - Iterations. 

 
 

One of the decisions that have to be made is regarding the variable of that bilinear 

term that is being discretized. This decision strongly depends on the problem that is being 

approached. The bilinear terms generated by the splitters are formed by the following 

variables: Outlet concentration of the processes (water-using units and regeneration 

processes); and, flowrates. The choice of discretizing outlet concentrations of processes, 

the flowrates or both represents trade-offs among the tightness of the lower bound, the 

increase in number of binaries due to discretizations/linearizations and the efficiency of 

the MILP formulation. Table 5-7 show a comparison of the number of variables that need 

to be discretized in each case, comparing discretization of flowrates using McCormick 

envelopes and discretization of concentrations using the direct discretization method.  
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Table 5-7 – Comparison of number of discretized variables. 

Number of units Flows 
C

out
 (number of contaminants)  

1 2 3 4 5 6 7 8 9 10 

2 4 2 4 6 8 10 12 14 16 18 20 

3 9 3 6 9 12 15 18 21 24 27 30 

4 16 4 8 12 16 20 24 28 32 36 40 

5 25 5 10 15 20 25 30 35 40 45 50 

6 36 6 12 18 24 30 36 42 48 54 60 

7 49 7 14 21 28 35 42 49 56 63 70 

8 64 8 16 24 32 40 48 56 64 72 80 

9 81 9 18 27 36 45 54 63 72 81 90 

10 100 10 20 30 40 50 60 70 80 90 100 

11 121 11 22 33 44 55 66 77 88 99 110 

12 144 12 24 36 48 60 72 84 96 108 120 

13 169 13 26 39 52 65 78 91 104 117 130 

14 196 14 28 42 56 70 84 98 112 126 140 

15 225 15 30 45 60 75 90 105 120 135 150 

16 256 16 32 48 64 80 96 112 128 144 160 

17 289 17 34 51 68 85 102 119 136 153 170 

18 324 18 36 54 72 90 108 126 144 162 180 

19 361 19 38 57 76 95 114 133 152 171 190 

20 400 20 40 60 80 100 120 140 160 180 200 

 

Note that the number of flowrate variables is usually higher than the number of 

outlet concentrations variables (only the highlighted ones are not). Thus, depending on 

the problem one can applied more discretization in the concentration variables and obtain 

the same number of integers. For example, consider the problem with 20 units and 5 

contaminants, which has 400 flow variables and 100 outlet concentration variables. If the 

flowrates are discretized in two intervals, we would need 800 binaries. In this case, 

keeping the same problem size, one can discretize the concentrations in 8 intervals 

instead of 2. A recursive formula to calculate the amount of binaries is 

Nintervals(Nunits+Nregenerations)
2  when flowrates are discretized and Nintervals 

Ncontaminants(Nunits+Nregenerations) when concentrations are discretized. 
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Although the increase of number of binaries can suggest how the problem 

increases, the efficiency of the MILP formulations may show that the discretization of 

one of the variable is not a good option. This analysis can only be done when both 

formulations are investigated and compared. 

Another characteristic of the suggested discrete method compared to the 

McCormick envelopes is its generality for monotonic functions and not specific for 

bilinear terms. 

To evaluate the efficiency of the method several examples are presented. 

Examples 2, 3 and 4 are multicomponent refinery examples; the first and the second 

without regeneration processes and the third with regeneration units, all three solving for 

minimum freshwater. All these three examples do not require any elimination procedure 

because they find the solution at the first LB.  Example 5 is added to compare the 

performance of the proposed method with that of Karuppiah and Grossmann (2006). In 

this case, the elimination procedure requires more than one iteration, so it is used to 

illustrate the performance of different options. Examples 6 to 8 are added to illustrate the 

performance of the method when cost is minimized. Example 9 shows the design of a 

complex wastewater treatment system, in which treatment processes should be selected 

among several options. Finally, example 10 presents an attempt of solving a challenging 

total water system problem, which considers several other aspects not consider in the 

previous examples. 

Example 2: A Refinery Example 

Example 2 is the classical small refinery example presented by Wang and Smith 

(1994). The objective is to minimize the freshwater consumption of a water system with 
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three water-using units, three contaminants and one regeneration process. The limiting 

data of the water-using units used in this example is presented in Table 5-8. Note that 

these water-using units do not have fixed flowrate pre-defined by the problem.  

 
Table 5-8 – Limiting data of example 2. 

Process Contaminant Mass Load (Kg/h) Cin,max (ppm) Cout,max (ppm) 

1 - 
Distillation 

HC 0.675 0 15 
H2S 18 0 400 
Salts 1.575 0 35 

2 - HDS 
HC 3.4 20 120 
H2S 414.8 300 12,500 
Salts 4.59 45 180 

3 - 
Desalter 

HC 5.6 120 220 
H2S 1.4 20 45 
Salts 520.8 200 9,500 

 
 

The available freshwater source is free of contaminants and the available 

regeneration process is a foul water stripper with a rate of removal of 0.999 for H2S.  

Wang and Smith (1994) used a graphical approach to obtain the solution of this 

problem (55.5 t/h).  Here concentrations are discretized concentrations and several 

different numbers of intervals are used, from 1 interval, to many more. In addition both 

types of discretization methods are applied: Direct discretization and McCormick’s 

envelopes. The three different linearization procedures to linearize the product of 

continuous and binary variables of both lower bound models are attempted as well. 

Finally, discretized flowrates cases are run as well. All of these alternatives find the 

global optimum solution (55.47 t/h) at the root node. 

In the case of 1 interval and direct discretization of flowrates using procedure 2 

(DDP2) the model has 32 binary variables and 264 continuous variables. Conversely, in 

the case of 1 interval and direct discretization of concentration using DDP2, the model 
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has 13 binary variables and 145 original continuous variables.  Because there are no 

lower and upper bounds for the flows in this problem, the above counts do not consider 

the binaries corresponding to equations (4-11) through (4-26). The number of continuous 

variables is increased from the original value to a larger one because of the linearization 

procedure, which is different depending of which one is used.  

Applying the suggested methodology using one interval, the optimum solution 

(55.47 t/h) is found in 0.10 s and 0.16 s, for discretized concentrations and discretized 

flowrates using DDP2, respectively. As stated above, in all these examples we only report 

the running time, not including the model pre-processing/generation time, which is about 

1.6 sec  and the solution reporting time, which is about 0.7 seconds (slightly larger for 

larger problems). The solution is actually obtained at the root node as the lower bound 

renders an objective function equal to the global minimum. In other words, there is no 

need for an interval elimination procedure.  Although the solution value found is nearly 

the same (ours is slightly lower), the network is different. Figure 5.7compares both. 

 
 

 
(a) 
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(b) 
Figure 5.7 – Optimum network of example 2. (a) Wang and Smith’s (1994) solution and 

(b) Discretization Method. 
 
 
 
Example 3:  Multicontaminant Water-using System without Regeneration - Freshwater 

minimization  

This example is the refinery case presented by Koppol et al. (2003). This example 

has four key contaminants (salts, H2S, Organics and ammonia) and six water-using units. 

The limiting data of the water-using units are shown in Table 5-9. This network without 

reuse consumes 144.8 t/h of freshwater and the objective is to minimize freshwater 

consumption. The flowrate through the water-using units are not pre-defined and they can 

vary from the limiting low flowrate to a maximum allowed flowrate. The minimum 

freshwater consumption found by Koppol et al. (2003) is 119.33 t/h, which they did not 

solve to guaranteed global optimality.   

In this problem, the same options of number of intervals, discretization methods 

and discretized variables as in example 2 were tried. A global optimum solution (119.33 

t/h) is found in 0.14 s. The lower bound gives the optimum solution and thus it is found at 

the root node when McCormick’s envelopes and when Direct discretization of 

concentrations are used. A LB that is different from the optimum solution is obtained 

when Direct discretization of flowrates are applied for less than 10 intervals. The 

minimum freshwater consumption is the same as that of Koppol et al. (2003), but the 

network obtained is different, which indicates that this problem is degenerate. Both 

networks are presented in Figure 5.8. The same comments regarding the time reported as 

in example 2 hold.  
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Table 5-9 – Limiting data of example 3. 

Process Contaminant Mass Load (kg/h) 
Cin,max 
(ppm) 

Cout,max 
(ppm) 

1 - Caustic Treating 

Salts 0.18 300 500 
Organics 1.2 50 500 

H2S 0.75 5000 11000 
Ammonia 0.1 1500 3000 

2 - Distillation 

Salts 3.61 10 200 
Organics 100 1 4000 

H2S 0.25 0 500 
Ammonia 0.8 0 1000 

3 – Amine Sweetening 

Salts 0.6 10 1000 
Organics 30 1 3500 

H2S 1.5 0 2000 
Ammonia 1 0 3500 

4 - Merox-I 
Sweetening 

Salts 2 100 400 
Organics 60 200 6000 

H2S 0.8 50 2000 
Ammonia 1 1000 3500 

5 - Hydrotreating 

Salts 3.8 85 350 
Organics 45 200 1800 

H2S 1.1 300 6500 
Ammonia 2 200 1000 

6 - Desalting 

Salts 120 1000 9500 
Organics 480 1000 6500 

H2S 1.5 150 450 
Ammonia 0 200 400 
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(a) 
 

 
(b) 

Figure 5.8 – Optimum network of example 3. (a) Koppol et a. (2003) and (b) 
Discretization Method. 

 
 
 

Example 4:  Multicontaminant Water using System with Regeneration- Freshwater 

minimization  

In this example the network presented in example 3 is solved with the addition of 

potential regeneration processes that are modeled as processes with fixed outlet 

concentrations. Three regeneration processes are available: Reverse osmosis, which 

reduces salts to 20 ppm; API separator followed by ACA, which reduces organics to 50 

ppm; and, Chevron wastewater treatment, which reduces H2S to 5 ppm and ammonia to 

30 ppm. The optimum solution obtained by Koppol et al. (2003) reaches a minimum 

freshwater consumption of 33.571 t/h. As in the previous case, they did not solve 

guaranteeing global optimality. 

Different options of number of intervals, discretization methods and discretized 

variables were tried. In all cases in which concentrations are discretized or flowrates are 

discretized using McCormick’s envelopes, the same result was obtained: a lower bound 

solution of 33.571 t/h at the root node with only one interval. This solution corresponds 
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to the global optimum solution of this problem. The best solution (fastest one) is found in 

approximately 0.56 s using MCP2 with discrete concentrations. The minimum freshwater 

consumption is the same as that of Koppol et al. (2003).  

Although the minimum freshwater consumption is obtained, the found network 

presents very small flowrates such as 0.06 t/h. To avoid these small flowrates a minimum 

allowed flowrates of 1 t/h for the connections (equations 4-11 to 4-18) was added. In this 

case a lower bound equal to the global solution is also found at the root node, but the 

original model (upper bound model) does not find a feasible solution at the root node. 

Thus, the method has to keep looking for a solution and eliminating parts of the feasible 

region until the upper bound model finds the global optimum solution. Thus, the solution 

is found in 75.71 s using the standard elimination procedure with active upper bounding 

discretizing concentrations (2 intervals) through MCP2.  

The networks obtained by Koppol et al. (2003) and ours are presented in Figure 

5.9. The same comments regarding the time reported as in example 3 hold.  

 

 
(a) 
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(b) 

Figure 5.9 – Optimum network of example 4. (a) Koppol et al. (2003) and (b) 
Discretization method. 

 
 

When flowrates are discretized using Direct discretization, the lower bound is no 

longer equal to the global optimum solution and interval elimination is needed. In fact, 

the lower bound generated by this option is equal to zero. However, the lower bound can 

be further improved when a pre-processing step includes forbidden connections that 

cannot exist. In the WAP the following rule is used: 

,max min
*, ,0Max in

u u u c cFUU if C C= <                                                                                        (5-43) 

,max min
, ,0Max in

r u u c cFRU if C C= <                                                                                         (5-44) 

where min
cC  is the minimum concentration of contaminant c in the system, which is 

defined by: 

{ } { } { }{ }min ,min ,min
, , ,, ,out out

c u u c r r c w w cC Min Min C Min CR Min CW=                                       (5-45) 

Now, adding the forbidden connections, the Direct discretization discretizing 

flowrates is tighter but still not as tight as the options that discretize flowrates or when 

flowrates are discretized using the McCormick’s envelopes. Without a required minimum 

flowrates through the connections these lower bounds keep constant (16.1185 t/h) for up 

to 10 intervals.  
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Example 5: Multicontaminant Water using System without Regeneration - Freshwater + 

Regeneration flowrate Minimization  

 
This example was proposed by Karuppiah and Grossmann (2006). It is a network 

involving two water using units, two treatment processes and two contaminants. Unlike 

the previous examples, in this case the water-using units have fixed flowrates, the 

treatment processes are modeled having a fixed efficiency and the objective is to 

minimize the summation of freshwater flowrate and the flowrate treated by the 

regeneration processes. The rationale for such an objective, according to the authors, is 

that the integrated system is being solved and a network with minimum freshwater 

consumption would have a higher combined freshwater and treated flowrate. There is a 

maximum discharge of the effluents to the sink (10ppm for both contaminant A and B). 

Tables Figure 5.10 and Figure 5.11 show the data of this example. 

The global optimal solution (117.05 t/h) is found by Karuppiah and Grossmann 

(2006) in 37.72 s. In our case, the solution is not always found at the root node.   

Table 5-10 – Water using units limiting data of example 5. 
Process Contaminant Mass Load (Kg/h) Cin,max (ppm) F (t/h) 

1 
A 1 0 

40 
B 1.5 0 

2 
A 1 50 

50 
B 1 50 

 
 

Table 5-11 – Regeneration processes data of example 5. 
Process Contaminant Removal ratio (%) 

1 
A 95 
B 0 

2 
A 0 
B 95 
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Both lower bound models (Direct discretization and McCormick’s envelopes) 

were analyzed discretizing concentrations and flowrates. The lower bound objectives as a 

function of the number of intervals used are presented in Figure 5.10. It is worth 

reminding here that the type of linearization used to represent the product of continuous 

and discrete variables does not alter the objective function.     

Note that the lower bound models for discrete concentrations always give the 

same solution independent of whether one uses Direct discretization or McCormick’s 

envelopes. Moreover, discretizing concentrations generates a tighter lower bound than 

discretizing flowrates for the same number of intervals. When flowrates are discretized, 

the choice of using Direct discretization or McCormick’s envelopes makes a difference. 

This behavior was already observed in examples 3 and 4. 

Additionally, as previously showed the lower bounds can be further improved 

when the pre-processing step includes forbidden connections that cannot exist. Figure 

5.11 shows the lower bound obtained when the pre-exclusion of infeasible connections 

are added to the pre-processing step. Note that the lower bounds generated by the models 

that discretize concentration and the McCormick’s envelopes with discrete flowrates are 

slightly improved, and the Direct discretization of flowrates keeps constant up to a 

certain level of discretization (7 intervals) before it starts to fell the influence of number 

of intervals.  
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Figure 5.10 – Lower bound models objective function values as a function of the number 

of intervals. 
 
 

In addition to the tightness of the lower bounds, the running time is an important 

issue to investigate. In this case it is not only the fact that we need to compare the Direct 

discretization model and McCormick’s envelopes model (both for discrete concentration 

and discrete flowrates), but also the procedure used to linearize the product of the binary 

and continuous variables. Figure 5.12 and Figure 5.13 show the running times when 

forbidden connections are used or not, respectively.  
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Figure 5.11 – Lower bound models objective function values as a function of the number 

of intervals – using pre-exclusion of infeasible connection. 
 

 
The running times presented in Figure 5.12 and Figure 5.13 also reveal 

information about the different linearization procedures for the product of a binary and a 

continuous variable. Procedure DDP1-C presents much higher running time than the 

others. This procedure is no longer used in the rest of the paper for the different 

comparisons. Note that MCP3 is also less efficient when the pre-exclusion of connections 

is not applied (Figure 5.12). 

In comparing procedures DDP2 and DDP3 in Figure 5.13, procedure DDP3 gives 

better results for this problem, but not significantly different. Thus, the use of procedure 2 

is still considered in the following discussions. 

Figure 5.14 shows the number of binary variables. The number of binary variables 

needed to discretize flowrate in this problem is always higher than the number of binary 

variables needed to discretize concentrations using the same number of intervals. This is 
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a problem dependent characteristic as discussed above (in the Effect of the Number of 

Intervals section). 

 

 
Figure 5.12 – Lower bound models computation time - no pre-exclusion of infeasible 

connection. 
 

 
Figure 5.13 – Lower bound models computation time - using pre-exclusion of infeasible 

connection. 
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Figure 5.14 – Lower bound models analysis – Number of binary variables. 

 
 

Because this is the first example that does not find the answer at the root node, the 

use of different elimination procedures is analyzed. Direct discretization of flowrates is 

not used here because the lower bounds generated by these models are significantly 

poorer than the McCormick’s envelopes of flowrates (Figure 5.10 and Figure 5.11) 

although they have compatible computational time (Figure 5.12). 

The problem is run using the one-pass, non-exhaustive, no active upper bounding 

and using the extended interval forbidding. Figure 5.15 shows the running time vs. the 

number of initial intervals chosen when the pre-exclusion of the infeasible connections 

are not used and when they are used. Note in Figure 5.15 that for most of the initial 

number of intervals, the pre-exclusion of infeasible connections improves the efficiency 

of the method. However, when the procedure starts with 10 intervals and the solution is 

found at the root node, the pre-exclusion of the infeasible connections does not favor the 

speed of the solution.  
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(a) 

 

 
(b) 

 
Figure 5.15 – GO procedure analysis – Running time – Discrete concentrations. a) 

Without pre-exclusion of infeasible connections; b) with pre-exclusion of infeasible 
connections. 
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(a) 

 
 

 
(b) 

Figure 5.16 – GO procedure analysis – Number of iterations – Discrete concentrations. a) 
Without pre-exclusion of infeasible connections; b) with pre-exclusion of infeasible 

connections. 
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Table 5-12 presents the solution of this problem using the different lower bound 

models when outlet concentrations are discretized. These solutions are the ones that give 

the lowest computational time.  

 
Table 5-12 – Summary of results for discrete concentration of example 5. 

LB Model 
Discretized 
Variable 

First LB 
 

Initial # of 
intervals 

Linearization 
procedure 

Iterations Time 

Direct 
Discrete 

Conc. 
116.31 

t/h 
10 P2 0 1.59 s 

McCormick 
envelopes 

Conc. 
116.31 

t/h 
10 P2 0 1.57 s 

 
 
The solution discretizing flowrates in 2 intervals and using McCormick’s 

envelopes took 11,795 s and 35 iterations when the standard procedure was used. The 

option of split the problem in sub-problems (branch-and-bound) after an elimination pass 

does not perform any elimination is now investigated. If one branches on concentrations 

(the non-discretized variables), the solution is found in 23.73 s, which investigates 4 sub-

problems. Figure 5.17 shows an illustration of the procedure: At the root node an upper 

bound of 117.453 t/h is obtained and 3 eliminations iterations are performed; the lower 

bound is improved from 97.582 t/h to 100.027 t/h. In the first iteration 7 eliminations are 

performed and in the second 1 elimination takes place. As the third iteration does not 

make any elimination, the problem is divided in two sub-problems that are generated by 

splitting the outlet concentration of contaminant 1 in regeneration process 2:  

Sub-problem 1 performs 6 elimination iterations and brings the lower bound from 

108.133 t/h to 114.997 t/h. At this node the upper bound is still 117.453 t/h. Sub-problem 

2 starts with a lower bound of 104.672 t/h and finds a better upper bound (117.053 t/h ). 

After 4 iterations it reaches 116.316 t/h, which is less than 1% lower than the current 

upper bound. Thus, this node is no longer active. 
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The only active node (sub-problem 1) is further split in two other sub-problems 

through a bisection rule of the outlet concentration of contaminant 2 of regeneration 

process 1. As a result, sub-problem 3 is infeasible and sub-problem 4 has a lower bound 

value of 115.225 t/h, which is increased to 116.061 t/h after one iteration that performs 10 

eliminations. This value is 0.85% lower than the current upper bound, which satisfies the 

given tolerance (1%) and consequently deactivated this node. As there are no more active 

nodes, the procedure stops and the global solution is equal to the current upper bound 

(117.053 t/h). 

 

 
Figure 5.17 – illustration of the branch-and-bound procedure. 

 
 
When the procedure branches on flowrates, it also investigates 4 sub-problems, 

but it takes 40.93 s. Table 5-13 presents the solution of this problem using the different 

branching variable when flowrates are discretized. The optimum network is presented in 

Figure 5.18. 
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Table 5-13 – Summary of results for discrete flowrates of example 5. 

Branching Variable 
Investigated sub-

problems 
Linearization 

procedure 
Time 

Outlet 
Concentrations 

4 MCP2 23.73 s 

Flowrates 4 MCP2 40.93 s 
 
 

 
Figure 5.18 – Optimum network of example 5. 

 
 
 
Example 6: Multicontaminant Water using System with Regeneration- Cost minimization  

 
This example is a two contaminants, three water-using units and three 

regeneration processes problem proposed and solved by Karuppiah and Grossmann 

(2006). This problem minimizes total annual cost and assumes fixed flowrates through 

the water-using units and regeneration processes with fixed rate of removal.  Maximum 

concentration at the disposal is 10 ppm for both contaminants. The data used for example 

6 is presented in Table 5-14 and Table 5-15. The cost of freshwater is $1/t, the annualized 

factor is 0.1 and the plant runs 8000 h/year. The authors found the global optimal solution 

($381,751.35/year) in 13.21 s. Later, Bergamini et al. (2008) solved the same problem to 

proven global optimality in 3.75 s. 
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Table 5-14 – Water using units limiting data of example 6. 
Process Contaminant Mass Load (Kg/h) Cin,max (ppm) F (t/h) 

1 
A 1 0 

40 
B 1.5 0 

2 
A 1 50 

50 
B 1 50 

3 
A 1 50 

60 
B 1 50 

 
 

Table 5-15 – Regeneration processes data of example 6. 
Process Contaminant Removal ratio (%) OPNr VRCr 

1 
A 95 

1 16,800 
B 0 

2 
A 80 

0.003 24,000 
B 90 

3 
A 0 

0.0067 12,600 
B 95 

 
 

Here, outlet concentrations of the water using units and flowrates through the 

regeneration processes (due to the concave objective function) are discretized 4 intervals, 

resulting in a model (MCP2) that has 52 binary variables and 585 continuous variables. 

With the presented method pre-excluding the infeasible connections, the optimal solution 

is found in 0.41 s at the root node. This lower bound model (4 intervals) generates an 

objective function of $378,215.14 per year, which is 0.93% lower than the objective 

function and thus complies with the required tolerance (1%). If forbidding of infeasible 

connections is not used, the same lower bound model (MCP2 with discrete 

concentrations and 4 intervals) generates a value of $168,140.03 per year. The global 

solution is the same as that of Karuppiah and Grossmann (2006) and Bergamini et al. 

(2008). The obtained network is presented in Figure 5.19.  
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Figure 5.19 – Optimum network of example 6. 

 
 
Example 7: 

Example 7 is also taken from Karuppiah and Grossman (2006). It involves two 

contaminants and has four water-using units and two regeneration processes. Data related 

to the water-using units and regeneration processes are presented in Table 5-16 and Table 

5-17. The same economic data and discharge limits (10 ppm) are applied for this 

problem.  

 
Table 5-16 – Water using units limiting data of example 7. 

Process Contaminant Mass Load (Kg/h) Cin,max (ppm) F (t/h) 

1 
A 1 0 

40 
B 1.5 0 

2 
A 1 50 

50 
B 1 50 

3 
A 1 50 

50 
B 1 50 

4 
A 2 50 

50 
B 2 50 

 
 

Table 5-17 – Regeneration processes data of example 7. 

 
 

Process Contaminant Removal ratio (%) OPNr VRCr 

1 
A 95 

1 16,800 
B 0 

2 
A 0 

0.0067 12,600 
B 90 
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Concentrations and flowrates through the regeneration processes are discretized 

as in example 6 using 2 intervals. All the models (DDP2, DDP3, MCP2 and MCP3) that 

discretize concentrations in 2 intervals have a lower bound of $871,572.22 (wich is 

0.28% lower than the global solution) and thus find the optimal solution 

($874,057.37/year) in approximately 0.25 s at the root node. The resulting model has 24 

binary variables and 408 continuous variables (DDP2 and MCP2) or 254 continuous 

variables (DDP3 and MCP3). The solution is presented in Figure 5.20.  

 
 

 
Figure 5.20 – Optimum network of example 7. 

 
 
Example 8 

This example is a large system presented by Karuppiah and Grossmann (2006). It 

involves three contaminants and has five water-using units with fixed flowrates and three 

regeneration processes. The data for this example is presented in Table 5-18 and Table 5-

19. Additionally, the discharge limit of all the contaminants is 10 ppm.   

Again, concentrations and flowrates through the regeneration processes are 

discretized and the interval elimination procedure is active for both sets of variables. Note 

that even without applying the reduction procedure in the flowrates through the 
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connection, of their bounds may be influenced by the contraction of the regenerated 

flowrate’s bounds due to the bounds arithmetic.  

 
Table 5-18 – Water using units limiting data of example 8. 

Process Contaminant Mass Load (Kg/h) Cin,max (ppm) Fmax (t/h) 

1 
A 1 0 

40 B 1.5 0 
C 1 0 

2 
A 1 50 

50 B 1 50 
C 1 50 

3 
A 1 50 

50 B 1 50 
C 1 50 

4 
A 2 50 

50 B 2 50 
C 2 50 

5 
A 1 25 

25 B 1 25 
C 0 25 

 
 

Table 5-19 – Regeneration processes data of example 8. 
Process Contaminant Removal ratio (%) OPNr VRCr 

1 
A 95 

1 16,800 B 0 
C 0 

2 
A 0 

0.04 9,500 B 0 
C 95 

3 
A 0 

0.0067 12,600 B 95 
C 0 

 
 

 Instead of using the standard procedure, the one-pass, extended interval 

forbidding, exhaustive elimination with active upper bounding is used in this example.  

 Karuppiah and Grossmann (2006) found the minimum TAC (global solution) of 

this of $1,033,810.95/year. Here, the same network was found in 30.15 s in the first 
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iteration using the McCormick’s envelopes model. This lower bound model (2 intervals) 

has 48 binary variables and 919 continuous variables. This network also has a small 

flowrate (0.04 t/h). Thus, the problem is solved using the MINLP formulation, which 

requires a minimum flowrate of 1 t/h through the connection. With this new constraint 

the found minimum TAC is $1,033,859.85, which is achieved in 73.79s after the first 

iteration. The network corresponding to this solution is presented in Figure 5.21. 

Although the small flowrates were eliminated, this network contains many recycles, 

which form the practical point of view could be rejected as too complex. However, if one 

also wants to avoid the complexity of networks, one could look for alternative solution, 

which could be degenerated or sub-optimum. 

 
Figure 5.21 – Optimum network of example 8. 

 
 
Example 9: Complex Wastewater Treatment Network 

Example 9 is a complex wastewater treatment subsystem problem that was 

originally presented by Meyer and Floudas (2006) as a g generalized pooling problem. 
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The input data for this problem is slightly different from the ones presented so far, but it 

can also be solved using the model presented in chapter 4. A statement for this problem 

can be given by: 

Given a set of wastewater sources w contaminated by different contaminants c 

that need to be removed, a set of regeneration processes r with given rate of removal for 

each contaminant, and a set of disposal sinks s with maximum allowed disposal 

concentration, one wants to minimize the cost of the wastewater system. 

The data for this problem is presented in Table 5-20 to Table 5-22. 

Table 5-20 – Sources data - example 9. 
 W1 W2 W3 W4 W5 W6 W7 

Flow 20 50 47.5 28 100 30 25 
CWw,c1 100 800 400 1200 500 50 1000 
CWw,c2 500 1750 80 1000 700 100 50 
CWw,c3 500 2000 100 400 250 50 150 

 
Table 5-21 – Data of Regeneration processes - example 9. 

 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 
C1 90 87.5 99 0 90 0 0 99.5 10 70 
C2 95 50 90 75 90 0 87 0 99 20 
C3 0 50 95 75 20 95 90 0 0 30 

FRCr 48,901 36,676 13,972 48,901 48,901 48,901 36,676 36,676 13,972 13,972 
VRCr 3,860.3 2,895.2 1,102.9 3,860.3 3,860.3 3,860.3 2,895.2 2,895.2 1,102.9 1,102.9 

 
Table 5-22 – Distances matrix for example 9. 

di,j R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 S1 
W1 40 65 75 100 120 110 150 210 280 245 150 
W2 15 40 55 75 90 90 125 180 260 215 135 
W3 40 35 30 65 100 85 115 170 240 220 100 
W4 85 80 55 100 140 120 140 180 245 245 90 
W5 95 70 55 45 75 45 40 75 150 150 40 
W6 80 70 40 90 125 100 120 150 230 230 70 
W7 70 45 30 40 75 50 60 100 175 165 45 
R1 - 20 40 50 70 70 100 160 230 190 120 
R2 20 - 30 30 60 50 80 140 215 180 95 
R3 40 30 - 40 80 60 80 140 210 190 75 
R4 50 30 40 - 40 15 50 110 180 150 85 
R5 70 60 80 40 - 25 50 110 180 120 120 
R6 70 50 60 15 25 - 30 100 170 130 90 
R7 100 80 80 50 50 30 - 60 130 100 80 
R8 160 140 140 110 110 100 60 - 70 100 95 
R9 230 215 210 180 180 170 130 70 - 110 160 
R10 190 180 190 150 120 130 100 100 110 - 190 
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The discharge limits of this system are 5 ppm, 5 ppm and 10 ppm for C1, C2 and 

C3 respectively. Table 5-22 shows the distances among processes.  

Thus, the piping costs assuming a velocity of 1 m/s are given by: 

{ } { }, ,124.6 , , , , , ,i j i jFIJC d i W U R j W U R S= ∀ ∈ ∈                                               (5-46) 

{ } { }, ,1.001 , , , , , ,i j i jVIJC d i W U R j W U R S= ∀ ∈ ∈                                                 (5-47) 

The best known solution for was given by Meyer and Floudas as $1.08643 × 106. 

They found a lower bound solution, which has a 1.2% gap from this given best known 

solution in 285,449 CPUs. Using the global optimization solver Baron, the optimum 

solutions is not found after 120 hours. The best solution found by BARON was 

$1,107,905. 

 

 
Figure 5.22 – Optimum network of example 9. 

 
 

Minimizing the total cost using the presented method, the network presented in 

Figure 5.22, which has a total cost of $1,086,187 was found in 16,336 CPUs. Table 5-23 
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shows the different procedures that were attempted. The lowest time that the solution was 

obtained is 16,336 CPUs. 

 
Table 5-23 – Summary of the options tried in example 9. 

Variable 
Discretized 
(Intervals) 

LB 
Model 

Variables for 
Bound 

Contraction 
BC settings 

Variables  
for B&B 

Time** 

(CPUs) 
Analyzed sub-

problems 

Conc.  
(2 intervals) 

MCP2 

Concentrations  
(2 intervals) 
Reg. Flows  
(2 intervals) 

Guided 
One pass 

Exhaustive 
UB updating 

Connections  
Reg. Flows 

 
16,336 

16 
(Optimum 

solution found 
in the 1st 

subproblem) 

Conc.  
(2 intervals) 

MCP2 
Concentrations  

(2 intervals) 

Guided 
One pass 

Exhaustive 
UB updating 

Connections  
Reg. Flows 

 
25,722 

34 
(Optimum 

solution found 
in the 8th 

subproblem) 

Conc.  
(2 intervals) 

MCP2 

Concentrations  
(2 intervals) 
Reg. Flows  
 (2 intervals) 

Guided 
One pass 

Exhaustive 
UB updating 
LB updating 

Connections  
Reg. Flows 

 
21,420 

16 
(Optimum 

solution found 
in the 2nd 

subproblem) 

Conc.  
(2 intervals) 

MCP2 
Concentrations  

(2 intervals) 

Guided 
One pass 

Exhaustive 
UB updating 
LB updating 

Connections  
Reg. Flows 

 
28,590 

34 
(Optimum 

solution found 
in the 9th 

subproblem) 

Flows  
(2 intervals) 

MCP2 

Connections 
flowrates  

(2 intervals) 
Reg. Flows  
 (2 intervals) 

Guided 
One pass 

Exhaustive 
UB updating 

Connections  
Reg. Flows 

 
28,930 

28 
(Optimum 

solution found 
at the root 

node) 
 

Example 10: Refinery example 

This problem was presented by Kuo and Smith (1997), which was solved using 

graphical approach for the design of effluent system and the cost evaluation considered 

freshwater cost and regeneration costs. Later, Gunaratnam et al. (2005) and Alva-Argaez 

et al. (2007) introduced piping costs and solved the problem using mathematical 

programming and minimizing the total annual cost considering freshwater cost, operating 

cost of regeneration processes and capital cost of regeneration processes and piping. The 

data is shown in Table 5-24 to Table 5-26.  
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Table 5-24 – Water using units limiting data of example 10. 

Process Contaminant Mass Load (Kg/h) Cin,max 
(ppm) 

Cout,max 
(ppm) 

(1) 
Steam stripping 

HC 0.75 0 15 
H2S 20 0 400 
SS 1.75 0 35 

(2) 
HDS-1 

HC 3.4 20 120 
H2S 414.8 300 12500 
SS 4.59 45 180 

(3) 
Desalter 

HC 5.6 120 220 
H2S 1.4 20 45 
SS 520.8 200 9500 

(4) 
VDU 

HC 0.16 0 20 
H2S 0.48 0 60 
SS 0.16 0 20 

(5) 
HDS-2 

HC 0.8 50 150 
H2S 60.8 400 8000 
SS 0.48 60 120 

 
 

Table 5-25 – Regeneration processes data of example 10. 
Process Contaminant Removal ratio (%) OPNr VRCr 

(1) 
Steam stripping 

HC 0 
1 16,800 H2S 99.9 

SS 0 

(2) 
Biological treatment 

HC 70 
0.0067 12,600 H2S 90 

SS 98 

(3) 
API separator 

HC 95 
0 4,800 H2S 0 

SS 50 
 

 

The discharge limits of this system are 20 ppm for HC, 5 ppm for H2S and 100 

ppm for SS. The freshwater cost is $0.2/t and the system operates 8600 hours per year. A 

10% rate of discount is assumed. Table 5-26 shows the distances among processes. Thus, 

the piping costs are calculated as in equations (5-46) and (5-47). 

The best solution for this problem minimizing TAC presented in the literature is 

$616,824 (Alva-Argaez et al., 2007). This problem is included because it presents several 

challenges: fixed and variable cost for connection and minimum allowed flowrates 
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through the connections, which makes it a MINLP problem; water-using units with 

variable flowrates; and, competing regeneration processes (more than one process is able 

to treat the same contaminant). The minimum allowed flowrate through connection and 

units is considered to be 5 t/h and the maximum 200 t/h. 

 
Table 5-26 – Distances matrix for example 10. 

di,j WU 1 WU 2 WU 3 WU 4 WU 5 RG 1 RG 2 RG 3 Discharge 
FW 30 25 70 50 90 200 500 600 2000 

WU 1 0 30 80 150 400 90 150 200 1200 
WU 2 30 0 60 100 165 100 150 150 1000 
WU 3 80 60 0 50 75 120 90 350 800 
WU 4 150 100 50 0 150 250 170 400 650 
WU 5 400 165 75 150 0 300 120 200 300 
RG 1 90 100 120 250 300 0 125 80 250 
RG 2 150 150 90 170 120 125 0 35 100 
RG 3 200 150 350 400 200 80 35 0 100 

 
 

This problem can be solved to global optimality (1% gap) using BARON in 7 

hours. The minimum TAC obtained id $574,155.  

Using the GO method with elimination on discretized variable presented in this 

section, the lowest time achieved to guarantee the 1% tolerance solution was 25,293 

CPUs. This procedure used MCP2 with 5 interval on concentrations and 2 on 

regeneration flows. Although the presented method takes longer than BARON to find the 

GO solution, it finds it at the root node. The optimum network found has a TAC of 

$578,183.  

 
 
 

5.2.1. Summary of the results obtained by the discretization method  

The results obtained above are summarized in Table 5-27 and Table 5.28. Table 

5-27 summarizes the results of different option tried in each example. Note that among 

the solutions obtained using different options, most of the examples have their smallest 
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CUP time when the number of intervals is increased and the global solution is obtained at 

the root node.  

Next, in Table 5-28, the solutions obtained with the discretization method are 

compared to previous work as well the iterations needed and the best time.  

 
 

Table 5-27 – Summary of the options tried in each example using the discretization 
method 

Example 
Variable 

Discretized 
(Intervals) 

LB 
Model 

Variables for 
Bound Contraction 

Strategy 
Variab
les for 
B&B  

Time** 

(CPUs) 

1 

Concent. 
2 intervals 

DDP3 Concent. 
One-pass 

Non-exhaustive 
Not 

needed 
0.6 

Concent. 
2 intervals 

DDP3 Concent. 
Cyclic 

Non-exhaustive 
Not 

needed 
2.26 

Concent. 
2 interval 

DDP3 Concent. 
One-pass  

Exhaustive 
Not 

needed 
1.30 

Concent. 
7 intervals 

DDP3 Concent. 

One-pass 
Non-exhaustive  

One. inter. 
Forbid 

Not 
needed 

0.07 

Concent. 
(9,11,13,18) 

intervals 
DDP3 Concent. 

One-pass 
Non-exhaustive  

Ext. inter. 
Forbid. 

Not 
needed 

0.15 

2 

Concent. 
1 interval 

DDP2 
Not needed 

Solved at root node 
Not needed 

Not 
needed 

0.10 

Flowrate 
1 interval 

DDP2 
Not needed 

Solved at root node 
Not needed 

Not 
needed 

0.16 

3 

Flowrates 
2 intervals 

DDP2 
Not needed 

Solved at root node 
One-pass 

Non-exhaustive 
Not 

needed 
10.67 

Flowrates 
1 intervals 

MCP2 
Not needed 

Solved at root node 
Not needed 

Not 
needed 

0.19 

Concent. 
1 interval 

DDP2 
Not needed 

Solved at root node 
Not needed 

Not 
needed 

0.17 

Concent. 
1 interval 

MCP2 
Not needed 

Solved at root node 
Not needed 

Not 
needed 

0.14 

4 
NLP 

Flowrates 
2 intervals 

DDP2 Flowrates 
One-pass 

Non-exhaustive 

Not 
Neede

d 
 

Flowrates 
1 intervals 

MCP2 
Not needed 

Solved at root node 
Not needed 

Not 
needed 

0.53 

Concent. 
1 interval 

DDP2 
Not needed 

Solved at root node 
Not needed 

Not 
needed 

0.57 

Concent. 
1 interval 

MCP2 
Not needed 

Solved at root node 
Not needed 

Not 
needed 

0.56 

4 
 MINLP 

Concent. 
2 intervals 

MCP2 Concent. 
One-pass 

Non-exhaustive 
Active UB 

Not 
Neede

d 
75.71 
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5 

Concent. 
10 intervals 

MCP2 Concent. Not needed 
Not 

Neede
d 

1.57 

Concent. 
10 intervals 

DDP2 Concent. Not needed 
Not 

Neede
d 

1.59 

Flowrates 
2 intervals 

MCP2 
Flowrates 

 

One-pass 
Non-exhaustive 

One inter. 
Forbid 

Not 
Neede

d 
11,795 

Flowrates 
2 intervals 

MCP2 Flowrates 

One-pass 
Non-exhaustive 

One inter. 
Forbid 

Conc. 23.73 

Flowrates 
2 intervals 

MCP2 Flowrates 

One-pass 
Non-exhaustive 

One inter. 
Forbid 

Flows 40.93 

6 
Concent. 

4 intervals 
MCP2 

Concent. 
Regeneration 

flowrates 
Not needed 

Not 
Neede

d 
0.41 

7 
Concent. 

2 intervals 

DDP2 
DDP3 
MCP2 
MCP3 

Concent. Not needed 
Not 

Neede
d 

0.25 

8 
Concent. 

2 intervals 
MCP2 

Concent. 
Regeneration 

flowrates 

One-pass 
Ext. inter. 

Forbid 
Exhaustive 
Active UB 

Not 
Neede

d 
30.15 

8 
MINLP 

Concent. 
2 intervals 

MCP2 
Concent. 

Regeneration 
flowrates 

One-pass 
Ext. inter. 

Forbid 
Exhaustive 
Active UB 

Not 
Neede

d 
73.79 

10 

Concent. 
5 intervals 
Reg. Flow 
2 intervals 

MCP2 

Concent. 
Reg. Flows 
WU Flow 

 

One-pass 
One inter. 

Forbid 
Exhaustive 
Active UB 
Active LB 

Flows 25,293 

** Only execution time.  
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Table 5-28 – Summary of the best results for the water networks. 

Example Original Solution 
Our Global 

Solution 
Iterations Time*** 

1 – Wang and Smith (1994) 54.00 t/h 54.00 t/h 0 0.07 s 
2 – Wang and Smith (1994) 55.50 t/h 55.47 t/h 0 0.1 s 

3 – Koppol et al. (2003) 119.33 t/h 119.33 t/h 0 0.14 s 
4 – Koppol et al. (2003) - 

NLP 
33.57 t/h 33.57 t/h 0 0.56 s 

4 – Koppol et al. (2003) - 
MINLP 

33.57 t/h 33.57 t/h 1 75.71 s 

5 – Karuppiah and 
Grossmann (2006)* 

117.5 t/h 
(37.72 s) 

117.05 t/h 0 1.57 s 

6 – Karuppiah and 
Grossmann (2006)* 

$381,751.35 
(13.21 s/3.75 s** ) 

$381,751.35 0 0.41 s 

7 – Karuppiah and 
Grossmann (2006)* 

$874,057.37 
(0.9 s) 

$874,057.37 0 0.25 s 

8 – Karuppiah and 
Grossmann (2006)* 

$1,033,810.95 
(231.37 s) 

$1,033,810.95 1 30.15 s 

8 – Karuppiah and 
Grossmann (2006) - MINLP 

N/A $1,033,859.85 1 73.79 s 

9 – Meyer and Floudas 
(2006) 

$1.08643×106 

(285,449 s)**** 
$1,086,187 

16 
subproblems 

16,336 s 

10 – Alva-Argaez et. al 
(2007) 

$616,824 $578,183 
62 

subproblems 
25,293 s 

* Problem originally solved for global optimality. 
** The second time reported corresponds to Bergamini et al. (2008).    

*** We show the Execution time only.  
**** The solution was not found in the procedure, but compared to a lower bound that 

gives 1.2% gap from their best known solution. 
 
 

 
In conclusion, it seems that using the larger number of intervals possible reduces 

the number of iterations when the problems are relatively small, which many times don’t 

need any iteration because the solution can be found at the root node. This observation is 

not necessarily related to the size of the problem, but the tightness of the lower bound 

model. Note that example 8 and 9 have the same size, however the later showed to be 

much more difficult to solve for global optimality. The main difference can be attributed 

to the poor lower bound generated for the latter case.  

Additionally, in some problems we observed that when concentration is 
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discretized, the LB of the Direct discretization is as tight as the McCormick’s envelopes, 

and discretization of concentrations normally generates tighter lower bounds than 

discretization of flowrates. 

 

5.3. GO Method Using Interval Elimination on Non-Discretized 

Variables 

An alternative method to obtain the global optimum solution of MINLP problems 

containing bilinearities is proposed here. The method can use a special relaxation to 

generate lower bounds or one of the relaxation previously discussed. The main difference 

of this method is related to the elimination procedure (bound contraction), which does not 

rely on discretization of any variable. Once the bound contraction procedure is finished, 

that is, no bounds can be contracted anymore, the method also follows the previous 

procedure of split the problem in subproblems using a branch and bound scheme at each 

node.  

 

5.3.1. Relaxation Methodology 

 
Consider z to be the product of two continuous variables x and y:   

1,..., ; 1,...,ij i jz x y i n j m= ∀ = ∀ =                                         (5-48) 

where both xi and yj are subject to certain bounds:    

1,...,L U
i ix x x i n≤ ≤ ∀ =                                                 (5-49) 

1,...,L U
j jy y y j m≤ ≤ ∀ =                                                (5-50) 

Then, equation (5-48) is replaced by the following two equations:  
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1,..., ; 1,...,L
ij i jz x y i n j m≥ ∀ = ∀ =                                        (5-51) 

1,..., ; 1,...,U
ij i jz x y i n j m≤ ∀ = ∀ =                                        (5-52) 

where updated bounds are used for xi ( L
ix and U

ix ).  Note that (5-50) is still 

included in the problem.  

 

Because equation (5-48) is replaced by the relaxation equations (5-51) and (5-52), 

the proposed problem is MILP and is also a lower bound of the original problem. The 

method updates the bounds of one variable at a time. 

For reasons that will become clear later, reference values are introduced. These 

values are calculated after a lower bound is obtained using the relaxed model. Let ̂ijz  and  

îx  be the results of running the lower bound problem. Then, reference values for xi (
ref
ix ) 

that represent the most likely value of xi are obtained as follows:  

( )
1 2 1 2ˆ ˆ ˆˆ ˆ ˆ( , ,..., ; , ,..., ) 1,...,ref i

i x i i im mx f z z z y y y i n= ∀ =

                    

   (5-53) 

The function f ( )i
x  (●) can have different forms, which are:  

 1,...(1)
1 2 1 2

1,...

ˆ

ˆ ˆ ˆˆ ˆ ˆ( , ,..., ; , ,..., ) 1,...,
ˆ

ij
j m

x i i im m
j

j m

z

f z z z y y y i n
y

=

=

= ∀ =
∑

∑
                            

   (5-54) 

 (2)
1 2 1 2

1,...

ˆ
ˆ ˆ ˆˆ ˆ ˆ( , ,..., ; , ,..., ) 1,...,

ˆ
ij

x i i im m
j m

j

z
f z z z y y y Max i n

y∀ =

  
= ∀ = 

  
                         

   (5-55) 

 (3)
1 2 1 2

1,...

ˆ
ˆ ˆ ˆˆ ˆ ˆ( , ,..., ; , ,..., ) 1,...,

ˆ
ij

x i i im m
j m

j

z
f z z z y y y Min i n

y∀ =

  
= ∀ = 

  
                         

   (5-56) 

Distances to the bounds, called lower and upper departure, are also defined as 

follows:  
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1,...,L ref L
i i id x x i n= − ∀ =                                              (5-57) 

1,...,U U ref
i i id x x i n= − ∀ =                                             (5-58) 

 

5.3.2. Bound Contraction Procedure  

The methodology is based on updating the bounds L
ix and U

ix  for each variable 

one at a time. First, the Auxiliary Linear  model  ALBL
r  is defined as the one where the 

original bilinear constraint (5-48) for all variables is replaced by equations (5-51) and (5-

52), with the exception of  equation (5-48) for rjz , which is replaced by equation (5-52) as 

above and a modified equation (5-51) as follows:   

In turn, L
rα  is given by:     

L
rα  = 

ref U
r rx s d+ , 

                                                

   (5-59) 

 

where s can vary from 0 to 0.99.  

The variable to be analyzed r is defined by lowest departure is Lrd , that is, ref
rx  is 

closer to L
rx  than  to U

rx .  

Thus, problem ALBL
r  is run for different incremental increasing values of s ( s∆ ) 

until one reaches a point where the problem is infeasible or this lower bound is higher 

than the current upper bound for a certain s=s*. This is illustrated in Figure 5.23.  

 
 
 
 
 

 
 

*L ref U
r r rx s dα = +  

U
rx  

L
rx  

Excluded interval 

ref
rx  
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Figure 5.23 –  Interval exclusion for bound contraction 

 

 
Several different strategies can be implemented to determine s*. One could start 

with s=0 and keep increasing s until s* is identified or s is equal a pre-defined smax. 

However, this strategy may take too many steps, especially when s∆  is small. One 

alternative is to start with some value of s, say  s=ε and ref
rx  equal to (2)

xf . The reason for 

this is that (2)
xf is the best estimate of the largest reference value for xi and therefore the 

excluded interval may contain all the possible solutions for xi. Alternatively one can set 

ref
rx  equal to (1)

xf  or 
(2)

xf  but in this case some of the relaxed terms may have values on 

the non forbidden portion of xi. Quite clearly, there is a compromise between the size of  

s∆  ,or the chosen 
ref
rx  and the strategy to use. In the latter case the value of (3)ref

r xx f=  

may be too low and too many steps may be needed until an interval bound contraction is 

performed.  However, if and contraction happens earlier, the procedure improves quickly 

because of the procedure is more efficient. In the former case, the chances of eliminations 

in earlier iterations are higher, but the improvement of the bound contraction is slower 

due to eliminations of smaller portions of the xi. The simple case of starting with the 

suggested value of (3)ref
r xx f= , starting with s=ε , and march forward if needed is chosen 

here. Note that ref
rx must never be smaller than (3)

xf . 

Thus, at this point one can say that with all the current bounds in place for all 

variables, one can be certain that the solution of the problem does not contain a value of  

x1 in the interval [ ref U
i ix s d+ , U

rx ]  and therefore that portion of the feasible space can be 

eliminated. In other words one should update the upper bound as follows: 
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U ref U
r i ix x s d← + .  

When the lowest departure is 
U
rd , that is, 

ref
rx  is closer to

U
rx  than to 

L
rx , we 

define the Auxiliary Linear  model  ALB
U
r , where instead of modifying equation (5-52) 

for i=r, we modify equation (5-52) as follows:  

1,...,U
rj r jz y j mα≤ ∀ =                                                     (5-60) 

Where U
rα = ref L

r rx s d−  is used to improve the lower bound of xr (
L
rx ). Again, in 

this equation s is a value between 0 and 1, and L
rd is the distance paramenter  previously 

defined.  Thus, running ALB1
U  repeatedly until the problem is either infeasible of has a 

solution higher than the current upper bound for certain s* one identifies new lower 

bound as follows L ref L
r r rx x s d← − . In this case, one could start with s=0 or with a value 

of s such that ref L
r rx s d− (2)

rxf< . 

The algorithm then can proceed with this bound contraction until upper and lower 

bounds are close within a tolerance. If no further contraction can be made, the procedure 

needs to use a decomposition strategy of some sort where sub-problems are created. One 

such procedure could be a branch and bound scheme. 

 
5.3.3. Global Optimization Algorithm 

The bound contraction algorithm for contraction on one of the variables of the 

bilinear term is the following:  

Assume that L L
i ix x=  , 

U U
i ix x=  

Run the LB model to get îjz , îx  and ˆ jy .  Calculate 
ref
ix  and ref

jy . 

Use îjz , îx  and ˆ jy as initial values to calculate the UB by running the original 
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MINLP.  Alternatively, if this gives an infeasible answer, one can try some problem 

specific ad-hoc upper bound versions of the problem.  

Calculate all the distances Lid and U
id . Determine the variable r that has the 

smallest distance. If L U
r rd d<  go to step 5. Otherwise, go to step 6.  

Run problem ALBL
r  for different values of s until it is infeasible or it has an 

objective larger than the current upper bound of the problem. Set   *U L U
r r rx x s d← +  . 

Go to step 7. 

Run problem ALBU
r  for different values of s until it is infeasible or it has an 

objective larger than the current upper bound of the problem. Set   *L U L
r r rx x s d← −  . 

Go to step 7. 

If U L
i ix x ε− < (the tolerance) for ALL i I∈  or (UB-LB)/UB<tolerance, then 

stop. Otherwise go to step 8.  

If no variable was contracted in the previous pass, split the problem in sub-

problems and repeat 1 to 7 for each sub-problem.  

 

5.3.4. Extended Bound Contraction Procedure 

The above bound contraction algorithm can also be run when both variables are 

involved in the procedure. We present now this extended bound contraction notion. In 

this case, for the lower bound, equation (5-48) is substituted by equations (5-51) and (5-

52) as shown above plus the following two constraints.  

1,..., ; 1,...,L
ij i jz x y i n j m≥ ∀ = ∀ =                                           (5-61) 

1,..., ; 1,...,U
ij i jz x y i n j m≤ ∀ = ∀ =                                           (5-62) 
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where we use updated bounds for yj (
L
jy and U

jy ).  Now, because both xi and  yj  

are part of the model, we add the following constraints: 

1,...,L U
j j jy y y j m≤ ≤ ∀ =                                              (5-63) 

1,...,L U
i i ix x x i n≤ ≤ ∀ =                                              (5-64) 

Once this LB model is solved we define reference values for xi (
ref
ix ) as above, 

and we also define distances for yj (
ref
jy ) as follows:  

( )
1 2 1 2ˆ ˆ ˆˆ ˆ ˆ( , ,..., ; , ,..., ) 1,...,ref i

j y i i im ny f z z z x x x j m= ∀ =

                    

   (5-65) 

With the same options for f (●), namely:  

 

1,...(1)
1 2 1 2

1,...

ˆ

ˆ ˆ ˆˆ ˆ ˆ( , ,..., ; , ,..., ) 1,...,
ˆ

ij
i n

y i i im n
j

i n

z

f z z z x x x j m
x

=

=

= ∀ =
∑

∑

                       

   (5-66) 

 (2)
1 2 1 2

1,...

ˆ
ˆ ˆ ˆˆ ˆ ˆ( , ,..., ; , ,..., ) 1,...,

ˆ
ij

y i i im n
i n

i

z
f z z z x x x Max j m

x∀ =

 
= ∀ = 

 
                    

   (5-67) 

The same distances and bounds updates are applied here and the algorithm is run 

exactly as described above, except that all variables of the bilinear terms are considered 

for contraction. In addition, the presence of both variables as candidates for contraction 

may prompt the addition of some ad-hoc problem specific.  

 

5.3.5. Results using interval elimination on non discretized variables 

This method was applied to some of the problem presented earlier in this chapter. 

Problem that were solved at the root node were not test here.  

The MINLP version of Koppol et al. (2003), which is example 4 from the 

previous section, was solved using the method of interval elimination on non discretized 



 

220 

variables. The solving time for this problem was reduced from 75 CPUs to 32 CPUs. 

The solving time of example 8 (NLP case) could be reduced from 30 CPUs to 7 

CPUs. For that, the relaxed lower bound model presented in section 5.3.2 (no integers) 

was used and bound contraction (elimination procedure) was performed only on the 

flowrates through the regeneration processes and it was assumed an initial s equal 0.1, 

and s∆ =0.45. The procedure finds the solution after the first iteration, which 

significantly contracts the regeneration flowrates bounds and brings the lower bound of 

this problem from $1,016,955 to $1,023,546, which has a 0.99% gap from the optimum 

solution. The same network with small flowrates was with this method.  

As previously discussed, these flowrates (0.042 t/h) are unpractical. The solution 

for the MINLP version of this problem was reduced from 73 CPUs to 39 CPUs. This 

solution used the relaxed model without discretization bound contracting the flowrates of 

regeneration processes using s equal 0.1 without increments option. The minimum TAC 

was found in the first iteration as being $1,033,870, which is slightly higher than the 

solution found using the method of elimination on discretized variables. 

 

5.4. GO Method Using Subspace Analysis 

The global optimization strategy using subspace analysis is based on the partition 

of the feasible region in boxed sub-spaces defined by the partition of specific variables 

into intervals.  Using any valid lower bound model, a master problem is created. This 

master problem determines several sub-spaces where the global optimum may exist, 

disregarding the others. Each sub-space is then explored using any other global 

optimization methodology (one of the bound interval elimination methods previously 
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presented, spatial B&B, among others).  

 

5.4.1. Methodology 

 Consider the following MINLP problem:  

, ,
( , , )

x y Y
Min f x y K

                                                                      (5-68) 

                               s.t        

( , , ) 0g x y K ≤                                                                 (5-69) 

L U
i i ix x x i≤ ≤ ∀                                                             (5-70) 

L U
j j jy y y i≤ ≤ ∀                                                            (5-71) 

2( , ) , {0,1}mx y K∈ ∈¡                                                        (5-72) 

In this problem the continuous variables are separated in two sets, the set of 

“space partitioning variables” { }iX x=  and the rest of the variables { }jY y=  

The partitions variables X need to be divided following a given rule. Here they 

are divided in Dx-1 identical intervals defined as follows:   

( ) ( )
,

ˆ 1 , 1..
1

x
i

U L
i iL x x x

i i i i ixi d
i

x x
x x d x X d D

D

−
= + − ∀ ∈ =

−

     
             

(5-73) 

Using the partition, the solution of the master problem need to be tracked to 

identify in which box the solution is located. Thus, a set of binary variables (
, x

ii d
λ ) 

associated to each partition is needed together with the following equations:  

1 1

, , , 1 ,
11

ˆ ˆ
x x
i i

x x x x
i i i ix

i

D D

i ii d i d i d i d
dd

x x x x Xλ λ
− −

+
==

≤ ≤ ∀ ∈∑ ∑                               (5-74)
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1

,
1

1
x
i

x
ix

i

D

ii d
d

x Xλ
−

=

= ∀ ∈∑                                                   (5-75) 

Consider now that a lower bound model of the original problem is constructed. 

Such a model is usually an MILP model obtained by performing certain relaxations of the 

different terms in the objective function and constraints. When constraints (5-74) and (5-

75) are added to this LB model, the problem LB0 is created.  

Assume now that LB0 is solved and a certain solution (0 0 0 0( , , , )x y K λ ) is 

obtained. Thus, the first subspace (0)Ω was identified. This subspace is then associated to 

a certain box defined by (0) 0

, ,x x
i ii d i d

λΩ = . If one wants to identify another lower bound and its 

associated subspace (1)Ω different from (0)Ω , the following integer cut is added:  

(0) (0)

, , ,
| |

1x x x
i i i

i i

i d i d i d
i x X i x X

λ
∈ ∈

 
Ω ≤ Ω −  

 
∑ ∑                                   (5-76) 

 In turn, the addition of this integer cut creates the master problem (LB-

MASTER(1)).  Generalizing, the LB-MASTER(t) is defined as the optimization problem 

defined by LB0 and the following constraints: 

( ) ( )

, , ,
| |

1 1,2,..., 1x x x
i i i

i i

r r

i d i d i d
i x X i x X

r tλ
∈ ∈

 
Ω ≤ Ω − ∀ = −  

 
∑ ∑

                        

(5-77) 

where  
,

( )
, x i

r
i dΩ  is a vector of optimal values of 

, x
ii d

λ  for  the rth problem.    

Thus, if LB-MASTER(r) is run recursively one can construct a sequence of 

different subspaces of the partition variables, namely

1 1 1

(0) (0) (1) (1) ( ) ( )

1, , 1, , 1, ,
,..., , ,..., ,..., ,...,y y y y y y

y y yr r ry y y

t t

d r d d r d d r d

      Ω Ω Ω Ω Ω Ω      
      

. This sequence stops at 

iteration t, when the gap between the LB and any known UB becomes negative (that is, 
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LB>UB).  

   

 

Consider a very simple problem of two partition variables. Figure 5.24 shows 4 

boxes corresponding to the partition variables.  

 
Figure 5.24 – Sub-space of the partition variable. 

 

Assume, now that the lower bound model is run, and box 2 is identified as 

optimal. Assume further that box 3 is identified as the second lower bound. Finally 

assume that the third problem gives a solution with negative gap. Thus only two 

subspaces have been identifies as potentially containing the global optimum. This is 

shown in Figure 5.25.  

 
Figure 5.25 – Illustration of surviving sub-spaces  
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Suppose now that after running this problem, instead of box 2 and 3, only boxes 2 

and 4 are identified. This means that boxes 1 and 3 fathom and one can perform a bound 

contraction on variable x1. This procedure is named “bound contraction through sub-

space fathoming”.   

Therefore, several variants of this procedure can be proposed:  

Sub-space enumeration first: In this procedure, all boxes are identified, one after 

another. The procedure is the following:  

Step 1 - (Optional) Run a bound contraction procedure using the solution as 

starting point for the original model.  

Step 2 - Set r=0 

Step 3 - Run the LB-MASTER(r) model.  

Step 4 - If the LB is higher than the current global UB, go to step 10.  

Step 5 - Use the solution of the LB model as a starting point of the upper bound 

model, thus (eventually) obtaining a new updated global UB. 

Step 6 - Run the LB model again confining the partition variables to the current 

selected box. We call this LBr.  If LBr is larger than the current global UB, fathom 

the present box. Likewise, fathom all previous boxes for which LBr is larger than 

the current updated global upper bound.  

Step 7 - (Optional) Run the UB model confining all variables to the box found. At 

this point one can use the box for partition variables only, or even add the box for 

the discretized variables. The aim here is to obtain a better upper bound when step 

4 failed to produce a feasible solution.  If the UB model is too time consuming, 

one can omit this step, if step 4 produced a feasible point. 
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Step 8 - Add an integer cut to remove the current sub-space from consideration. 

Go to step 2. 

Step 9 - Fathom all boxes for which LBr is higher than the new UB. Go to step. 

Perform bound contraction through sub-space fathoming. If bound contraction is 

possible, update the bounds, partition the space again, set r=r+1 and go to step 3. 

Otherwise go to step 10.  

Step 10 - Pick the box with the smallest LBr. Attempt global optimization inside 

this box, considering the current global UB when the UB is updated. The search 

should stop when the local LB is higher that the global UB.  

Step 11 - If no new box is available, stop. The the Global Optimum was found 

 

Global Optimization inside each Sub-space first: In this procedure, boxes are 

identified and the global optimum (or infeasibility for the current UB) in each box is 

found before proceed to the next box. The procedure is:  

Step 1 - (Optional) Run bound contraction procedure using the solution as starting 

point for the original model. 

Step 2 - Set r=0 

Step 3 - Run the LB-MASTER(r) model.  

Step 4 - If the LB is higher than the current global UB, Stop.   

Step 5 - Use the solution of the LB model as a starting point of the upper bound 

model, thus (eventually) obtaining a new updated global UB. 

Step 6 - Obtain the global optimum inside the current box. Update the global UB 

if needed. In this step, any global optimization method can be used with on small 
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variant. Any update of the UB should consider the current global UB. 

Step 7 - Set r=r+1 and go to step 3.  

 

The choice of what variable should be partitioned is related to the improvement of 

the objective function of the LB-MASTER(r) when sub-spaces are forbidden. This can be 

heuristically done choosing different alternatives and analyzing the improvement. 

 

5.4.2. The special Case of Bilinear MINLP Problems 

This section addresses in more detail how to apply the above method to the case 

of bilinear MINLP problems. For completeness, let us define the set Y as a union of three 

sets:
 
X Y V W Z R∪ = ∪ ∪ ∪ .

 
Here { }jV v= ,

 { }kW w=  ,
 { },j kZ z= ,and { }lR r= .

 
Thus, all 

variables participating in bilinear terms are included in V, W and Z, and the rest, in R.  

Thus,   

 , ,j k j kz v w j k= ∀                                                    (5-78) 

The use of discrete models to generate valid lower bounds is a common practice 

in global optimization. In the previous sections, different discretization methods were 

discussed and bound contraction procedures were presented. Thus it is common practice 

to discretize one of the variables, say vj.  In turn, the lower bound model LB0 can be 

constructed partitioning X and discretizing V.  

It is important to notice that X and V do not need to have an empty intersection. 

In fact, all variants for X can be chosen as completely separate from Y. As presented 

above, that is X Y∩ =∅, or  X=R or a subset of R, X=V or a subset of V, X=W or a 

subset of W or any combination thereof.   
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Some variations of this method were investigated for the two larger problems 

solved in section 5.2.  

Table 5-29 shows the results obtained for the wastewater subsystem problem from 

Meyer and Floudas (2006), which is the example 9 in section 5.2. This problem was run 

by picking the concentrations of the pools as discretization variables and the flow of the 

pools as partition variables using the following options: guided, one interval forbidden 

exhaustive elimination and active upper bound updating. The solving time could be 

reduced from 16,336 CPUs to 14,498 CPUs. Only one option was tried for Alva-Argaez 

et al. (2007) problem. The solution was presented in Table 5-30. The method did not 

show improvement in the solving time found using the elimination procedure on 

discretized variables. 

 
 

Table 5-29 – Summary of the options tried for the generalized pooling problem (Meyer 
and Floudas, 2006). 

LB 
Model 

Boxes 
variables 

Variables for 
Bound Contraction 

Variables for 
Branch and 

Bound 

Time** 

(CPUs) 

MCP2-C 
Concentrations 

(2 intervals) 
Reg. Flows 
(2 intervals) 

Reg. Flows 
(2 intervals) 

Concentrations 
Reg. Flow 

 

All Flowrates 
 

14,498 

MCP2-C 
Concentrations 

(2 intervals) 
Reg. Flows 
(2 intervals) 

Reg. Flows 
(2 intervals) 

Concentrations 
Reg. Flow 

 

Concentrations 
 

22,224 

MCP2-C 
Concentrations 

(2 intervals) 
Reg. Flows 
(2 intervals) 

Reg. Flows 
(3 intervals) 

Concentrations 
Reg. Flow 

 

All Flowrates 
 

17,071 
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Table 5-30 – Summary of the options tried for the generalized pooling problem (Alva-
Argaez et al., 2007). 

LB 
Model 

Boxes 
variables 

Variables for 
Bound 

Contraction 

Variables for 
Branch and Bound 

Time** 

(CPUs) 

MCP2-C 
Concentrations 

(5 intervals) 
Reg. Flows 
(2 intervals) 

Reg. Flows 
(2 intervals) 

Concentrations 
WU Flow 
Reg. Flow 

 

All Flowrates 
 

36,394 
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6. DEGENERACY OF WATER ALLOCATION PROBLEMS 

 

Degeneracy is an important issue to be analyzed in optimization problems 

for several reasons. From the modeling point of view they can be caused 

by the lack of details addressed in the model, and thus some solutions can 

be in reality unpractical. On the other side, degeneracy generates 

alternative solutions in which opportunities related to other objectives or 

constraints may be sought allowing a better evaluation of different 

options. 

 
 
6.1. Overview 

Putra and Amminudin (2008) approached the existence of what they call “class of 

good solutions”. These solutions are different design options that find the same optimum 

(or near optimum solutions), but show different perspectives concerning cost, layout 

(complexity) or efficiency of the regeneration processes. They find the “class of good 

solutions” by fixing the maximum number of connection to an operation or existence of 

regeneration-recycling, and then minimizing the freshwater consumption. They find four 

“good solutions” and compare them with three others found by previous works (Kuo, 

1996; Alva-Argaéz, 1999; Gunaratnam, 2003).  

As in Putra and Amminudin (2008), several other methodologies for designing 

water systems in process plants are based on minimizing freshwater consumption. The 

objective makes sense, even on its own because in several situations water scarcity 

suggests minimizing water regarding of costs. In other cases, freshwater consumption is 
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used as a substitute for the cost function in the belief that water costs overwhelm other 

fixed capital costs. Some of these methods are graphical and algorithmic; others are based 

on mathematical programming. Among the first, there is the popular “Pinch 

Technology”-based procedure, whose early proponents and contemporary advocates 

consider and defend as a good method to provide “insights” into the right answer.  

 

6.2. Degeneracy and Sub-Optimal Solutions 

With the exception of Putra and Amminudin (2008), who present an approach to 

generate what they call “class of good solutions”, no other work has presented a 

methodology to find degenerate and sub-optimum solutions of water allocation problems. 

Putra and Amminudin (2008) proposed a two-step approach to find the multiple 

solutions. In the first step the structure of the network is defined using an MILP model, 

and then a NLP model is used to find the conditions for the found structure. They claim 

this strategy renders a global optimum, but they offer no proof of this assertion. Because 

of the two step strategy proposed, we doubt it is. The “class of good solutions” is found 

fixing the piping connections, which can be related to the number of water reuse streams, 

maximum number of connection to an operation or existence of regeneration-recycling, 

and minimizing the freshwater consumption. Even if degeneracy and sub-optimum 

solutions can be found using this procedure, there can still exist other alternative 

solutions for the same piping network.  

To ameliorate the above problems, an automatic method to find a significant 

higher number of options, if not all of them, is proposed. The search for alternative 

solutions is done in a matter in which a new network configuration (connections among 
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freshwater source, water using units, regeneration processes and sink) is successively 

found with respect to a certain objective function. At each new search the previous found 

network are excluded from the feasible solution. In a problem with high degeneracy, the 

optimum solution (objective function value) will be repeated for many of the found 

structures and the alternative solutions provide a more flexible scope in the decision 

making process. On the other hand, when the problem is not highly degenerated, the 

alternative solutions can provide non optimum solutions in which present other 

advantages such as much lower investment costs, easier operability, etc.  The alternative 

solutions are found as follows:  

 

Step 1: Run the model presented in section 3. 

Step 2: Forbid the networks previously found.  

Step 3: Go back to Step 1.  

 

To forbid the networks, the following constraint is added to the model: 

 

( )( )
( ) { }

, , , , , ,
( , ),( , *),( , ),, ( , ),( , ),( , *),( , )

1 1 ( ) 1n i j i j n i j i j found
w u u u u ri j u s r u r r r s

NYIJ YIJ NYIJ YIJ CARD NYIJ n n
∈

+ − − ≤ − ∀ <∑

  

(6-79) 

where n corresponds to the nth network previously found. nfound is the number of 

networks previously found and  NYIJn,i,j are the values of the binary variables obtained in 

run n, which define the configuration of each network. In turn, CARD(NYIJ) is the 

cardinality of the set  of  binary variables  NYIJ. Thus, the network exclusion constraints 

forbid combinations of possible connections found all previous iterations. The left hand 

side of the equation is used to account for existing (first term) and non-existing 
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connections (second term) in the nth solution. In other words, all the previously found 

combinations will have the summation equal to CARD(NYIJ) and therefore cannot be 

repeated. Thus, to generate a new network, at least one of the connections needs to be 

included or excluded.   

 
6.3. Results 

 
Results have showed that for some problems present a significant number of 

degenerate solutions regarding minimum freshwater consumption. On the other hand, 

there are problems in which degeneracy is not present or is very small.  A single 

contaminant case is analyzed first and then multiple contaminant cases are analyzed. 

 
6.3.1. Example 1 

 
This example corresponds to the water-using subsystem example presented by 

Wang and Smith (1994), which has four water-using units. The data for this problem is 

shown in Table 6-1. 

 
Table 6-1 – Limiting data of example 1. 

Process Mass Load (kg/h) Cin,max (ppm) Cout,max (ppm) 
1 2 0 100 
2 5 25 75 
3 30 80 240 
4 40 30 90 

 
 

The problem minimizing freshwater consumption is solved to global optimality to 

find the 100 first networks.  A minimum flowrate of 1 t/h is required for all connections. 

Here, the minimum flowrate is not only related to practical issues, but also to avoid the 

existence of combinations of networks that, in reality, have zero flowrate through the 
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connections. To solve this problem, the global optimization approach presented in section 

5.2 with a 1% tolerance was used.   

Figure 6.1 illustrates the freshwater consumption and the number of connections 

for the first 100 solutions, the first 96 featuring the minimum consumption of 90 t/h and 

the last four exhibiting a slightly higher value. All solutions were obtained minimizing 

freshwater adding the corresponding connections exclusion constraint (30). Note that all 

the 100 solutions were found using an Intel Xeon 2.67 GHz and 2.5 GB of RAM  in 1 

hour (wall clock time).    

 

 

 
Figure 6.1 – Hundred first solutions for minimum freshwater consumption of the water-

using subsystem single contaminant example from Wang and Smith (1994). 
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To determine what the right network is, one needs to add cost. This can be done 

by: 

• Making an assessment of the cost of each network after they are found, a 

strategy that may work well if the number of networks is small.  

• Solving the problem again, fixing the flowrate to its minimum and minimizing 

capital cost, or cost of regeneration, or both.  

 

Note that only in the case where the effluent from the end-of-pipe treatment is not 

recycled and totally disposed of, the cost of regeneration is proportional to the cost of 

freshwater and therefore treatment costs cannot be used as an economical objective (see 

Faria and Bagajewicz, 2009).  

These results show that pinch-technology-based methods as well as other 

graphical and algorithmic procedures are in principle incapable of performing the above 

proposed sorting and therefore they fail to provide proper insights beyond identifying the 

value of minimum consumption, something that mathematical programming can also 

easily determine.   

 
 

6.3.2. Example 2 

 
This is the case of water-using subsystem optimization presented by Wang and 

Smith (1994), which involves two water-using units and two contaminants and minimizes 

freshwater. 

Table 6-2 presents the limiting data of this problem. The minimum freshwater 

consumption of this network without reuse is 63.33 ton/h.
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Table 6-2 – Limiting data of example 1. 
Process Contaminant Mass Load (Kg/h) Cin,max (ppm) Cout,max (ppm) 

1 
A 4 0 100 
B 2 25 75 

2 
A 5.6 80 240 
B 2.1 30 90 

 
  

As no regeneration process is used in this example, only two cases are analyzed:  

• No recycle of the end-of-pipe treatment (optimization of  water-using 

subsystem); 

• The effluent stream from the end-of-pipe treatment can be reused by the 

water-using units (total water system). 

 

For the end-of-pipe treatment, it is assumed that an outlet concentration of 10 ppm 

for both contaminants, which are in agreement with the maximum allowed to disposal.  

In the first case (no recycle of end-of-pipe treatment allowed) the minimum 

freshwater consumption can be reduced to 54 t/h, which is approximately 15% less than 

the current consumption obtained when no water reuse is considered. When alternative 

solutions are investigated, it indicates the existence of a unique solution (no-degeneracy) 

at 54 t/h, that is, no degeneracy. The next possible solution identified when the first is 

excluded features 63.33 t/h, which is the network without reuse and is not degenerate 

either.  

If for some reason (cost for example, as it was explored previous chapters) one 

would want to explore higher consumptions, 3 possible networks consuming 66.67 ton/h 

are found. Note that if one wants to minimize number of connection, the optimum 

network is network 5, which is a network in series and has the largest consumption. All 
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these networks are presented in Table 6-3. 

 
Table 6-3 – Alternative network configurations for the water-using subsystem of the 

multiple contaminants example from Wang and Smith (1994). 
  Unit 1 Unit 2 EOP 

Network 1 
54 ton/h 

Freshwater 40  14 t/h - 
Unit 1 - 21 t/h 19 t/h 
Unit 2 - - 35 t/h 

Network 2 
63.33 ton/h 

Freshwater 40 t/h 23.33 t/h - 
Unit 1 - - 40 t/h 
Unit 2 - - 23.33 t/h 

Network 3 
66.67 ton/h 

Freshwater 57.143 t/h 9.524 t/h - 
Unit 1 - 57.143 t/h - 
Unit 2 - - 66.667 t/h 

Network 4 
66.67 ton/h 

Freshwater 66.667 t/h - - 
Unit 1 - 44.094 t/h 22.572 t/h 
Unit 2 - - 44.094 t/h 

Network 5 
66.67 ton/h 

Freshwater 66.667 t/h - - 
Unit 1 - 66.667 t/h - 
Unit 2 - - 66.667 t/h 

*A minimum flowrate of 1 t/h was used. 
 
 

Next, the case in which the recycle of the effluent stream from the end-of-pipe 

treatment is allowed is analyzed.  In such case, the minimum freshwater consumption can 

be further reduced to 40 ton/h freshwater consumption network. This is 26% lower than 

the previous case (and 36.8% lower than the consumption without reuse).  

Eleven feasible alternative networks were found in this case, in which the first 

three solutions obtained consume 40 t/h of freshwater and the next three 41 t/h. The 

eleven feasible solutions are summarized in Figure 6.2. The 3 solutions at minimum 

consumption and the subsequent 3 slightly higher are presented in Table 6-4. Quite 

clearly, in this case, the networks use a very small flowrate in some connections and will 

not be even considered. Others, like network 3, exhibit independent cycles, which are 

usually avoided.  
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Figure 6.2 – Feasible networks for the total water system of the multiple contaminants 

from Wang and Smith (1994). 
 

 
At the risk of stating the obvious, the inability or difficulty of methods other than 

mathematical programming to solve for cost is reiterated.  That pinch technology is not 

designed to look for cost, and moreover, has large difficulties handling multicomponent 

cases, is known, but we also want to mention that this class of methods cannot perform 

the above exercise either.  
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Table 6-4 – Alternative solutions at minimum consumptions for the total water system of 

the multiple contaminants from Wang and Smith (1994). 
  Unit 1 Unit 2 EOP 

Network 1 
40 ton/h 

Freshwater 40 t/h - - 
Unit 1 - 40 t/h - 
Unit 2 - - 85 t/h 
EOP - 45 t/h - 

Network 2 
40 ton/h 

Freshwater 40 t/h - - 
Unit 1 - 18.56 t/h 21.44 t/h 
Unit 2 - - 38.56 t/h 
EOP - 20 t/h - 

Network 3 
40 ton/h 

Freshwater 40 t/h - - 
Unit 1 - - 40 t/h 
Unit 2 - - 46.33 t/h 
EOP - 46.33 t/h - 

Network 4 
41 ton/h 

Freshwater 40 t/h 1 t/h - 
Unit 1 - 39 t/h 1 t/h 
Unit 2 - - 99 t/h 
EOP - 59 t/h - 

Network 5 
41 ton/h 

Freshwater 40 t/h 1 t/h - 
Unit 1 - - 40 t/h 
Unit 2 - - 26.418 t/h 
EOP - 25.418 t/h - 

Network 6 
41 ton/h 

Freshwater 40 t/h 1 t/h - 
Unit 1 - 40 t/h 40 t/h 
Unit 2 - - 100 t/h 
EOP - 59 t/h - 

       *A minimum flowrate of 1 ton/h was used. 
 

 
 

6.3.3. Example 3 

This example discuses larger degeneracy and cost issues in the example analyzed 

by Putra and Amminudin (2008). This example is a larger refinery problem, which was 

originally presented by Kuo and Smith (1996, 1998) and later also investigated by 

Gunaratman et al. (2003, 2005) and Alva-Argaez et al. (1998, 1999, 2007). This is a total 

water system problem that has five water-using units, three regeneration processes and 

considers three contaminants. Putra and Amminudin (2008) showed four alternative 



 

240 

solutions for this problem and compared them with the results previously obtained by 

others. Guanaratman et al. (2006) and Alva-Argaez et al. (2007) solved for total 

annualized cost, including piping cost. Table 6-5 to Table 6-7 show the data used in this 

example. The discharge limits of this system are 20 ppm for HC, 5 ppm for H2S and 100 

ppm for suspended solids (SS). The freshwater cost is $0.2/t and the system operates 

8600 hours per year. A 10% rate of discount is assumed. The minimum flowrate allowed 

through the connection is 5 t/h and a maximum through the connection and processes is 

200 t/h. 

 
Table 6-5 – Water using units limiting data of example 3. 

Water units Contaminant Mass Load (Kg/h) 
Cin,max 
(ppm) 

Cout,max (ppm) 

(U1) 
Steam stripping 

HC 0.75 0 15 
H2S 20 0 400 
SS 1.75 0 35 

(U2) 
HDS-1 

HC 3.4 20 120 
H2S 414.8 300 12500 
SS 4.59 45 180 

(U3) 
Desalter 

HC 5.6 120 220 
H2S 1.4 20 45 
SS 520.8 200 9500 

(U4) 
VDU 

HC 0.16 0 20 
H2S 0.48 0 60 
SS 0.16 0 20 

(U5) 
HDS-2 

HC 0.8 50 150 
H2S 60.8 400 8000 
SS 0.48 60 120 
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Table 6-6 –  Regeneration processes data of example 3. 
Regeneration Process Contaminant Removal ratio (%) OPNr VRCr 

(R1) 
Steam stripping 

HC 0 
1 16,800 H2S 99.9 

SS 0 

(R2) 
Biological treatment 

HC 70 
0.0067 12,600 H2S 90 

SS 98 

(R3) 
API separator 

HC 95 
0 4,800 H2S 0 

SS 50 
 
 

Table 6-7 – Distances for example 3. 

di,j WU 1 
WU 

2 
WU 

3 WU 4 
WU 5 RG 1 RG 2 RG 3 Dischar

ge 
FW 30 25 70 50 90 200 500 600 2000 

WU 1 0 30 80 150 400 90 150 200 1200 
WU 2 30 0 60 100 165 100 150 150 1000 
WU 3 80 60 0 50 75 120 90 350 800 
WU 4 150 100 50 0 150 250 170 400 650 
WU 5 400 165 75 150 0 300 120 200 300 
RG 1 90 100 120 250 300 0 125 80 250 
RG 2 150 150 90 170 120 125 0 35 100 
RG 3 200 150 350 400 200 80 35 0 100 

 
 

Using the distances given in Table 6-7 and assuming a velocity of 1 m/s, the 

piping costs are given by: 

{ } { }, ,124.6 , , , , , ,i j i jFIJC d i W U R j W U R S= ∀ ∈ ∈                            (6-1) 

{ } { }, ,1.001 , , , , , ,i j i jVIJC d i W U R j W U R S= ∀ ∈ ∈                              (6-2) 

The best known solution for this problem minimizing TAC is $616,824 (Alva-

Argaez et al., 2007). In the suggested procedure, the minimum consumption (58 t/h) is 

identifiefd by solving the problem without costs. The minimum total annual cost (without 

fixing the freshwater flowrate) was also found to global optimality using Baron and 

specifying 1% tolerance.  The run took 7 hours and 5 minutes and rendered a network 
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featuring a minimum total annual cost of $574,155, which happens to feature the 

previously identified minimum consumption of 58 t/h.  

To analyze the degeneracy of this problem at the minimum consumption, the 

consumption is fixed at its minimum (58 t/h) and 100 feasible solutions networks were 

sought. This was done by using a minimum cost objective function, and a 99% gap for 

the global method presented in chapter 5. This is different from what was done in 

Example 1 and 2. Here we are having the explicit purpose of saving computational time. 

Indeed, if one runs minimizing freshwater and forbids previously foud networks, the 

computational time is higher. Finally, one could try to run only once in order to identify 

the network with  lowest cost. Such a run takes much longer than the presented 

alternative (7 hours vs. 1 hour and 40 minutes to find100 feasible networks).  Note that 

the minimum cost network that one would identify if one runs to 0% gap features a set of 

connections that is eventually identified later, as long as all degenerate solutions are 

explored and one does not stop earlier.  That said, one can be certain that the optimum 

network is found, but not necessarily the optimum flows.  

This method does not guarante that the global solution featuring minimum cost is 

obtained when a maximum number of network is previously set. The main objective here 

is simply obtain alternative networks featuring the same freshwater consumption.  

The results for the netwoks identified in example 3 are presented in Figure 6.3. 

They are presenetd in a increasing cost order of total annualized cost, which is not 

necessarily the order they are found. In addition, operating cost, annualized capital cost 

and number of connections are shown for completeness. The overall running time of this 

method to find the hundred degenerate solutions is 2,525 CPUs.  It is worth pointing out 
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that the first 20 are fast and then, because of the network exclusion constraints, the 

running time per run increases for some of them.  

Note that the lowest TAC found among these 100 solutions is $572,767, which is 

lower than the one found by BARON using 1% global optimality tolerance. This best 

solution, which was found among the 100 options, was the 5th network to be found, 

which took 76 CPUs. The flows through the water-using units and regeneration processes 

corresponding to these solutions are presented in Figure 6.4 and Figure 6.5 respectively.   

Even is the procedure does not guarantee global optimality of costs, it identifies 

good solutions when we compare to the ONLY solution one can find using a global 

optimization approach.  

 

 
Figure 6.3 – Hundred minimum consumption (58 t/h) alternative network configurations 

of refinery example from Kuo and Smith (1994). 
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Figure 6.4 – Water-using unit flowrates - Hundred alternative network configurations at 
minimum consumption (58 t/h) for the refinery example from Kuo and Smith (1994). 

 
 

 
Figure 6.5 – Regeneration processes flowrates - Hundred alternative network 

configurations at minimum consumption (58 t/h) for the refinery example from Kuo and 
Smith (1994). 
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Additionally, if one wants to look at different criteria (always operating at 

minimum consumption), one can chose the network with minimum TAC, or minimum 

operating cost, minimum capital cost or smaller complexity (here identified  as the 

number of connections). Table 6-8 compares these options (the bold numbers are the ones 

corresponding to the minimum value of the optimization). Note that the network with 

minimum TAC has also the minimum operating cost. However, among the 100 found 

solutions there are other 14 networks that have the same operating costs. Figure 6.6 to 

Figure 6.8 show the three networks presented in Table 6-8.  

 
  

Table 6-8 – Networks with best criteria. 

Criteria 
TAC 

($/year) 
Operating 

cost ($/year) 
Capital 
cost ($) 

Number of 
connections 

TAC 572,767 472,073 1,006,944 14 
Operating cost 572,767 472,073 1,006,944 14 

Capital cost 1,062,126 962,963 991,626 14 
Number of connections 1,141,479 1,012,617 1,288,623 13 

 
 
 
 

 
Figure 6.6 – Network with minimum TAC (and minimum operating cost). 
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Figure 6.7 – Network with minimum capital cost. 

 
 

 
Figure 6.8 – Network with minimum number of connections. 

 
 

The results presented so far do not considered structural constraints or practical 

considerations other than the ones given by the input data. Putra and Amminudin (2008) 

discuss some of these issues. Their concerns were regarding the following two practical 

issues: 

• The API separator should be placed in the upstream of biological treatment 

due to increase in performance (higher inlet concentration) and to guarantee 

that oil is not sent to the biological treatment; 

• Regeneration recycling shouldn’t be allowed to avoid accumulation of certain 



 

247 

contaminants. In other words, the regeneration process cannot send treated 

water back to the units that sent wastewater to it.  

 

Applying these criteria, they eliminate 2 of the 4 alternative solutions found by 

their procedure. Here, these issues are included in the model. For the first one, a 

maximum inlet concentration of 66 ppm of HC is added to the biological treatment. This 

value corresponds to the maximum value that makes the biological treatment able to 

bring the concentration down to the HC environmental limit (20 ppm). For the second 

issue, a constraint to forbid all direct recycles, reuse recycling and regeneration recycling 

is added. This constraint is presented next: 

 ( ) { }, , 1 , ( , *),( , ),( , ),( , *)i j j iYIJ YJI i j u u u r r u r r+ ≤ ∀ ∈

                         

(6-3) 

The minimum freshwater consumption obtained using this modified problem is 

also 58 t/h. As before, the consumption is fixed and the first 100 alternative solutions are 

found. The costs are presented in Figure 6.9 and the minimum TAC found among the 100 

solution is $592,573. This optimum network is presented in Figure 6.10. 

Note that incorporating this constraint forced the network to avoid a direct recycle 

to the same regeneration process, but it found a recycle through another unit. In reality 

additional constraints should be added to avoid any kind of recycle. Although this might 

be unwanted due to possible accumulation, it is not necessarily the correct way to 

approach this issue. To keep the design under desired operating conditions one can add 

more contaminants and stricter inlet limitations, not only for the units but also to 

regeneration processes.   

 
 



 

248 

 
Figure 6.9 – Hundred minimum consumption (58 t/h) alternative network configurations 
of refinery example from Kuo and Smith (1994) including the practical issues pointed out 

by Putra and Amminudin (2008). 
 
 
 

 
Figure 6.10 – Network with minimum TAC of Example 3 considering practical issues. 
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6.3.4. Example 4 

In this example we want to find the first 50 solutions minimizing TAC without 

fixing the freshwater consumption at its minimum. The example is the total water system 

presented as example 4 by Karuppiah and Grossmann (2006), which was previously 

presented in chapter 5 as example 8. The data for this example is presented in Table 5-18 

and Table 5-19.  

Karuppiah and Grossmann (2006) solved the problem as an NLP problem.  

However, setting aside the fact that the NLP model for this problem renders a solution 

with unpractical small flowrates, to consistently forbid networks we need to impose a 

minimum allowed flowrate through the connection so the connection only exists if there 

is a flowrate different than zero. Thus, our problem becomes an MINLP.  

The optimum solution (within 1% tolerance) of this MINLP problem was 

presented in chapter 4 and it features a cost of $1,033,859.85 when the minimum flowrate 

through connections is set as 1 ton/h.  In turn, Baron found a minimum TAC of 

$1,036,384 in 287 s using a 1% tolerance. The lowest TAC found using the proposed 

procedure is $1,033,832, which is also slightly lower than both 1% tolerance global 

solution found here and Baron. The reason for this is that the network with TAC of 

$1,033,832 is not the first network found with 1% tolerance. In reality it is found in after 

forbidden the 4 first networks found for 1% tolerance.  At this exact cost there are other 7 

alternatives and the 50th largest TAC is $1,035,288. Note that this high degeneracy in 

TAC can be attributed to the absence of connection costs. In this problem the only 

variables that account for the TAC are the freshwater consumption and flowrates through 

regeneration processes.  

Figure 6.11 and Figure 6.12 show the costs and regeneration flowrates for the 50 
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lowest TAC solution obtained for this problem. Because this procedure was done to find 

the global solutions every time a network is forbidden, it takes much longer than the 

previous one (20 hrs). However, when this problem is run with 99% gap with the purpose 

of only find feasible networks, identify 500 networks are identified in 12 hours and 30 

min. Note that the first 50 alternative networks were found in 25 minutes.     

 

 
Figure 6.11 – Costs - Fifty alternative network configurations at minimum TAC for the 

modified example 4 from Karuppiah and Grossmann (2006). 
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Figure 6.12 – Regeneration processes flowrates - Fifty alternative network configurations 

at minimum TAC for the modified example 4 from Karuppiah and Grossmann (2006). 
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regeneration processes are considers the same independent of what are the inlet 

conditions. If more detailed relations are imposed to the model, some of these alternative 

solutions will become infeasible.  
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7. PLANNING MODEL FOR INDUSTRIAL WATER SYSTEMS 

 

Planning models for industrial water systems are needed to address future 

environmental regulations, increasing costs of freshwater, variability on 

the quality of the available freshwater source, bottlenecks caused by 

expansion of the capacity plant, etc. This chapter presents the case of 

retrofit to address increase in plant capacity associated to new water-

using units planned to be added through time and/or an increase on the 

mass load of existing water-using units. The model can be used for both 

grassroots designs and retrofits. 

 

7.1. Overview 

Retrofit designs in water systems become important to be addressed 

systematically in many situations, such as: adjusting the system to new environmental 

regulation, increased costs of freshwater, variability and/or changes on the quality of the 

available freshwater source, bottlenecks caused by expansion of the capacity plant, etc. 

Because these plants many times have already a water system installed, a model to find 

the best retrofit solution should consider its operability and economic aspects as well. In 

addition, a timeline that takes into account when new constraints and requirements will 

take place needs to be considered, so that one can consider and decide upon actions that 

anticipate to those, or simply actions that respond to these changes.  

Although many methodologies dealing with grassroots of water systems have 

been proposed (see Bagajewicz, 2000 for articles up to 2000; Savelski and Bagajewicz, 

2001; Koppol et al., 2003; Gunaratnam et al., 2005; Karuppiah and Grossmann, 2006; 
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Alva-Argaez et al., 2007; among others), only few presented a methodology for the 

retrofit design of existing water networks (Fraser and Hallale, 2000; Bagajewicz et al., 

2000; Jodicke et al.,2001; Nourai et al.,2001; Tan and Manan, 2006; Dvarioniene and 

Stasiskiene, 2007; Tan et al.,2008; Faria and Bagajewicz, 2006, 2009).  

Here only the case of retrofit due to an increase in plant capacity is presented. 

Specifically, the installation of new water-using units and/or the increase on the mass 

load of existing water-using units is addressed, which is usually caused by modifications 

of process conditions for economic reasons, different production plans or for changes in 

raw materials processed.  However, the presented model does not loss its generality and 

can be easily extended to the other cases.  

 

7.2. Problem Statement 

The planning model is concerned with future expansions and environmental 

regulations.  

 This problem can be stated as follows: Given a system with different situations 

in time, it is desired to determine where, when and what capacity of connections are 

needed; which, when and what capacity of treatment processes (if any) need to be 

installed to obtain an optimum network. 

 The planning model is based on the water allocation problem model presented in 

chapter 4, but it includes the time dimension. For different points in time, one may have 

different instances that can be caused by an increase in mass loads, a planned addition of 

water-using units in the future, a future reduction of discharge limits, etc. Certainly this 

problem could be solved without the need of a planning model, but the optimum solution 

could be missed. Without a planning model, one could solve the problem first for the 
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current needs and then solve a retrofit problem for the next point in time. Another option 

would be to solve the problem with consideration of this specific future situation (worst 

case scenario). In both cases, better solutions may be found if the different instances are 

simultaneously solved.  

 

7.3. Mathematical Model  

Water balance at the water-using units: the water balance through the units has to 

be done for every analyzed period of time.  

, , *, , , ,
*

, , , *, , ,
*

,

w u t u u t r u t
w u r

u s t u u t u r t
s u r

FWU FUU FRU

FUS FUU FUR u t

+ + =

+ + ∀

∑ ∑ ∑

∑ ∑ ∑
           (7-4) 

In this balance, , ,w u tFWU  is the flowrate from water source w to water-using unit 

u for period  t; , *,u u tFUU  is the flowrate from water-using unit u to water-using unit u* at 

time t; , ,r u tFRU  is the flowrate from regeneration process r to water-using unit u at time 

t; , ,u s tFUS  is the flowrate from water-using unit u to wastewater discharge s at time t; 

and, , ,u r tFUR  is the flowrate from water-using unit u to regeneration process r at time t. 

 

Water balance at the regeneration processes: the water balance through the 

regeneration processes for every time is also needed:  

, , , , *, ,
*

, , , *, , , ,
*

,

w r t u r t r r t
w u r

r u t r r t r s t r t
u r s

FWR FUR FRR

FRU FRR FRS FL r t

+ + =

+ + + ∀

∑ ∑ ∑

∑ ∑ ∑
         (7-5) 

In this balance, , ,w r tFWR  is the flowrate from water source w to regeneration 
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process r for period t and ,r tFL are the water losses in regeneration r. 

 

Contaminant balance at the water-using units:  

( ), , , *, , , , , , , ,
*

, *, , , , , , , ,
*

, ,

w c w u t u u c t r u c t u c t
w u r

u u c t u s c t u r c t
u s r

CW FWU ZUU ZRU M

ZUU ZUS ZUR u c t

+ + + ∆

= + + ∀

∑ ∑ ∑

∑ ∑ ∑
       (7-6) 

Here, ,w cCW  is concentration of contaminant c in water source w; , *, ,u u c tZUU  is 

the mass flow of contaminant c from water-using unit u to water-using unit u* at time t; 

, , ,r u c tZRU  is the mass flow of contaminant c from regeneration process r to water-using 

unit u at time t; , , ,u s c tZUS  is the mass flow of contaminant c from water-using unit u to 

wastewater discharge s at time t; and, , , ,u r c tZUR  is the mass flow of contaminant c from 

water-using unit u to regeneration process r for period t. 

 

Maximum inlet concentration at the water-using units: Aside from driving force 

restrictions, this constraint is also used to limit the total flowrate through the unit to be 

larger than a certain minimum.  

( ), , , *, , , , , ,
*

, , , *, , , ,
*

, ,

w c w u t u u c t r u c t
w u r

in, max
u,c t w u t u u t r u t

w u r

CW FWU ZUU ZRU

C FUW FUU FRU u c t

+ +

 
≤ + + ∀ 

 

∑ ∑ ∑

∑ ∑ ∑
    (7-7) 

Here ,
in, max
u,c tC is the maximum allowed inlet concentration of contaminant c in 

water-using unit u for period t. 
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Maximum outlet concentration at the water-using units: This is established by 

mass transfer driving force considerations. 

( ), , , *, , , , , , , ,
*

, , *, , , , *, , ,
* *

, ,

w c w u t u u c t r u c t u c t
w u r

out, max
u,c t u u t u r t u u t u s t

u r u s

CW FWU ZUU ZRU M

C FUU FUR FUU FUS u c t

+ + + ∆

 
≤ + + + ∀ 

 

∑ ∑ ∑

∑ ∑ ∑ ∑
   

 (7-8) 

Here ,
out, max
u,c tC is the maximum allowed outlet concentration of contaminant c in 

water-using unit u for period t. 

 

Treated flowrate and capacity of the regeneration processes: the flowrate treated 

by the regeneration processes is computed using equation (7-6) and (7-7) for every 

period. Equation (7-8) gives the capacity of the installed regeneration process, which 

consequently constraints the flowrates of every time after the regeneration process is 

installed.  Equation (7-9) gives the time in which the regeneration process is installed and 

equation (7-10) controls the maximum allowed number of regeneration process r to be 

installed.  

, , , , , *, ,
*

,in
r t w r t u r t r r t

w u r

FR FWR FUR FRR r t= + + ∀∑ ∑ ∑
                                                           (7-9) 
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FR FRU FRR FRS r t= + + ∀∑ ∑ ∑
                                                         (7-10) 

, , *
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,in
r t r t r

t t

FR RegCap ECap r t
≤

≤ + ∀∑                                                                            (7-11) 

, , ,MAX
r t r r tRegCap RegCap YR r t≤ ∀

                                                                               (7-12) 

,r t r
t

YR MaxYR r≤ ∀∑
                                                                                                (7-13) 

In these equations, ,
in
r tFR and ,

out
r tFR

 
are  respectively the inlet and outlet flowrate 
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through regeneration process r for period  t, ,r tRegCap is the capacity of regeneration 

process r installed for period  t, MAX
rRegCap is the maximum capacity of regeneration 

process r at every installation; rECap is the existing capacity of regeneration r (retrofit 

case); ,r tYR is the binary variable related to the existence and installation timing of 

regeneration process r, and  rMaxYR is maximum number of expansion of regeneration 

process r. 

 

Contaminant balance at the regeneration processes mixer:  The mass flows of 

contaminants feeding the regeneration unit , ,
in
r c tZR  are computed in equation (7-11) using 

also contaminants mass flows from other units ( , , ,u r c tZUR ) and from other regeneration 

processes ( *, , ,r r c tZRR ). These contaminant mass flows are defined later.  In turn, equation 

(12) also establishes a balance between the flow of contaminant coming out of the 

regeneration unit ( , ,
out
r c tZR ) and the mass flows to units ( , , ,r u c tZRU ), the mass flows to 

other regeneration units ( , *, ,r r c tZRR ) and the discharged water ( , , ,r s c tZRS ). 

( ), , , , , , , , *, , ,
*

, ,in
r c t w r t w c u r c t r r c t

w u r

ZR FWR CW ZUR ZRR r c t= + + ∀∑ ∑ ∑
              (7-14) 

, , , , , , *, , , , ,
*

, ,out
r c t r u c t r r c t r s c t

u r s

ZR ZRU ZRR ZRS r c t= + + ∀∑ ∑ ∑
                       (7-15) 

 

Performance of the regeneration processes: we include two classes of 

regeneration processes:  Those that have defined (and fixed) outlet concentration and 

those that are based on a removal efficiency. Equation (7-13) and (7-14) are used to 
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represent both cases by introducing a binary variable  ,r cXCR  that defines when 

regeneration process r has its performance defined by a fixed outlet concentration (

, 1r cXCR = ) or by efficiency ( , 0r cXCR = ). 

( ), , , , , , , , ,1 , ,out in out
r c t r c t r c t r c r c r cCR CR XCR CRF XCR r c tϕ= − + ∀

                                          (7-16) 

, , , , ,( , ) , ,in in
r c t r c t r tf CR FR r c tϕ = ∀

                                                                                 (7-17) 

In equation (7-13), , ,
out
r c tCR is the outlet concentration of regeneration process r for 

period t, , ,
in
r c tCR is the inlet concentration of regeneration process r for period t, and  , ,r c tϕ

is the efficiency of regeneration process r for period t. In equation (13), , , ,( , )in in
r c t r tf CR FR  

defines the efficiency. In some cases, this efficiency can be defined as a constant, which 

is the option used in this paper.    

 

Maximum allowed discharge concentration: 

, , , , , , , , , , , , ,max
u s c t r s c t s,c t u s t r s t

u r u r

ZUS ZRS CS FUS FRS s c t
 
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 

∑ ∑ ∑ ∑
                        (7-18) 

Here, ,
max
s,c tCS is the maximum discharge concentration of disposal s at time t. 

 

Minimum and maximum flowrates: 
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Where ,i jECapFIJ  is the existing capacity of the connection between process I 
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and process j; and , , *i j tCapFIJ  is the capacity of the connection between process I and 

process j to be installed in time t. 

 

Capacity of connections: 

( ), , , , ,
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, , ,
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(7-21) 

Contaminant mass loads: 

{ } { }, , , , , , ,* , , , , , ,i j c t i j t i j tZIJ FIJ Cout i U R j U R S c t= ∀ ∈ ∈
                                              (7-22) 

, , , , , , ,in in in
r c t r t r c tZR FR CR r c t= ∀                                                                             (7-23) 

, , , , , , ,out out out
r c t r t r c tZR FR CR r c t= ∀                                                                            (7-24) 

 

Objective functions: we have 4 different objective functions. Equation (7-22) 

represents freshwater consumption, equation (7-23) represents operating cost, equation 

(7-24) computes capital costs and equation (7-25) computes net present cost.  
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7.4. Results 

 
To illustrate the methodology the refinery example from Wang and Smith (1994) 

with the addition of the pre-treatment system is used. Table 7-1 presents the limiting data 

for the base case, which represents the first period of time analyzed. 

  

Table 7-1 – Limiting data – Planning problem. 

Process Contaminant Mass load 
Cin 

(ppm) 
Cout 

(ppm) 

1 - Distillation 
HC 0.675 kg/h 0 15 
H2S 180 kg/h 0 400 
Salts 1.575 kg/h 0 35 

2 - HDS 
HC 4.08 kg/hr 20 120 
H2S 425 kg/hr 300 12500 
Salts 6.12 kg/h 45 180 

3 - Desalter 
HC 12.32 kg/hr 120 220 
H2S 2.52 kg/hr 20 45 
Salts 532 kg/hr 200 9500 

 
 

One external freshwater source with 200 ppm of HC, 3 ppm of H2S and 150 ppm 

is considered to feed this system. Besides the regeneration process (foulwater stripper) 

and end-of-pipe treatment included by Wang and Smith, there also available two water 

pre-treatment units. The end-of-pipe treatment is able to bring the concentration down to 

environmental limits (10 ppm for all contaminant) and is allowed to recycle. The data for 

these regeneration processes are presented in Table 7-2.  

The system operates 8600 hours/year and we assume an interest rate of 10%. The 

cost of connection are FCCi,j=$125 and VCCi,j=$1/t. 
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Table 7-2 – Regeneration processes data – Planning problem. 

Process Contaminant 
CR (ppm) 
or RR (%) 

Cin,max 
(ppm) 

OPNr 

($/t) 
VCRPr($/t0.7) 

WPT 1 
HC 10 ppm 500 

0.30 8,500 H2S NA 200 
Salts NA 200 

WPT 2 
HC 0 ppm 20 

0.50 10,500 H2S 0 ppm 200 
Salts 0 ppm 200 

Regenerative 
foulwater 
stripper 

HC 0 % NA 
1.00 16,800 H2S 0.999 % NA 

Salts 0 % NA 

EOPT 
HC 10 NA 

1.0067 34,200 H2S 10 NA 
Salts 10 NA 

 
 

 
7.4.1.  Increasing in mass load of existing units 

In this first case it is considered that due to future changes in production planning, 

the mass loads of hydrocarbon will increase in every water-using units as shown in Table 

7-3.  

 
Table 7-3 – Increasing in the mass load of hydrocarbons. 

Process 1 - Distillation 2 - HDS 3 - Desalter 
Mass load 1.467 kg/h 10.08 kg/h 18.32 kg/h 

 
 
 

It is considered that the changes will happen after 5 years and we want to 

determine which regeneration processes should be installed and when. To solve this 

problem one could use alternatives other than building a planning model: 

Solve the problem for the “worst case”, that is, the one with the largest mass 

loads, or; 

Solve the problem for the first period and the retrofit the plant after 5 years, which 

is, solve for the first period, fix the decided connections and set their cost as zero, and 
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then run for the latter case. 

To compare the advantages of the planning model, both alternatives were solved. 

The first one gives a total cost of $3,777,798, which can be split as $1,644,939 of capital 

cost and $2,132,859 of operating cost. This solution is presented in Figure 7.1 and was 

found to global optimality in 1.5 CPUs. Note that assuming the design using the worst 

case, one would consider that this found network would be build at the beginning of the 

operation. Thus, in addition to this cost, we still need to compute the operating cost of the 

periods before the changes. Minimizing this operating cost considering the given design, 

we found it to be $1,162,048. This solution was found to global optimality in 1.6 CPUs. 

Thus, adding up the cost to calculate the net present cost, we found a NPC of $4,129,360. 

 

 
Figure 7.1 – Solution using the first alternative procedure – design using the worst case. 

 

 

In the second alternative the problem minimizing total cost for the first periods is 

solved first. This network is presented in Figure 7.2 and has a total cost of $2,251,176 in 

which is $1,072,004 of capital cost and $1,179,173 of operating cost. This solution was 
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found to global optimality in 39.3 CPUs. 

 

 
Figure 7.2 – Solution using the second alternative procedure – before expansion. 

 

 

However, due to the future increase in mass load, this network will need to be 

retrofitted in 5 years. Thus, the retrofit model is run. The cost of existing connection and 

regeneration processes are set to zero. In addition to the two available processes that were 

not used at the beginning of the operations, the existing regeneration processes were also 

allowed to be expanded. The minimum total cost found for the retrofitted network is $ 

2,748,213, which is $622,409 of capital cost and $ 2,125,804 of operating cost. Summing 

up these costs, a net present cost of $3,955,068 is found. Note that regenerations 1 and 3 

were added and regeneration 2 had an expansion of 24.914 t/h. The retrofitted network is 

presented in Figure 7.3. The ticker lines are connection that already existed. However, 

they may have been expanded when needed.  
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Figure 7.3 – Solution using the second alternative procedure – retrofitted network. 
 

 

Finally the problem is solved using the planning model. The best found solution 

has a NPC of $3,939,928. The planning model chooses to install regenerations 2 

(capacity of 97.8 t/h) and 4 (capacity of 100 t/h) at the beginning of operation. After 5 

years the plant is expanded and regenerations 1 (capacity of 76.403 t/h) and 3 (capacity of 

74.696 t/h) are installed together with few new connections. In Figure 7.4b the ticker 

lines represent connections that already existed and the dotted lines connections that are 

no longer used. The other lines are connection installed during the expansion. 
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(a) 

 

 
(b) 

Figure 7.4 – Solution using the planning model – a) First period. b) Future Expansion. 
 
 
 
7.5. Conclusions 

The planning model showed the importance of considering expected future 

changes in the system before it is design, even if changes are not implemented when the 

plant starts operations. A wrong decision at the beginning of operation many generate a 

significant cost when changes have to be made. 
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8. CONCLUSIONS AND FUTURE WORK 

This work discussed and presented several intricacies of optimization of process 

plants water networks using mathematical programming.  

First, assumptions that could eventually make these models less complex to solve 

were investigated. In turn, it was showed that those assumptions have limitations and 

therefore cannot be used to general cases of WAP. 

Also, the objective function choices were analyzed and a methodology to find 

most profitable solutions was presented in chapter 3. Besides the intrinsic value of the 

presented method, few conclusions could be made from the results:   

• Minimum freshwater consumption is not always the best target 

• Different measurements of profitability may lead to different optimum 

networks 

• It is extremely important to also look at alternative solutions in a costs-

benefits type of analysis 

Next, conceptual changes on the definition of WAP were proposed and compared 

with the existing definitions. These changes are based on the inclusion of the water pre-

treatment subsystem, which has been left out of the WAP definition for almost three 

decades. With the new WAP definition, it was shown that several consumption targets 

were in reality overestimated and, including the water pre-treatment, these targets can 

actually achieve zero-liquid discharge cycles. 

Several optimization methods to solve WAP were presented in chapter 5. 

Although the main objective of all of them was to find a robust method to solve the WAP 

to global optimality, the wanted robustness was not achieved. However, the methods 
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showed good results for all examples of WAP solved to global optimality in the 

literature. Additionally, they were able to find better solution than the best solution 

presented in the literature within the first iterations.  

Alternatively, a method to find several alternative solutions was presented in 

chapter 6. The method showed that it is not only able to find the optimum solution (and 

sometimes a better one found for 1% global optimality tolerance), but also to given 

innumerous suboptimum options. Some of the conclusions made from these results can 

be highlighted: 

• Graphical methods cannot handle this amount of information and so 

mathematical programming is definitely the right route to solve the WAP; 

• The minimum consumption WAP can be extremely degenerate and a single 

solution may not capture some interesting alternatives given by other 

solutions; 

• Depending on how the minimum cost WAP is approached, it can also be very 

degenerate; 

• Problems in which are difficult to find the global solution presented 

degenerate solutions (or sub-optimum solutions) for many different operating 

conditions. This issue is directly related to the bound contraction step of GO 

methods. 

• More details need to be used to narrow down the amount of these degenerate 

solutions.   

 Using the optimization methods presented, a planning model could be solved. 

The results showed the importance of considering expected future changes in the system 
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before it is design, even if changes are not implemented when the plant starts operations. 

A wrong decision at the beginning of operation many generate a significant cost when 

changes have to be made. 

 

Although the WAP has being studied for three decades and it considered 

completely solved by many authors, the biggest challenges at the present moment are 

related to a robust global optimization method, the simplified assumption used for the 

water-using units and regeneration processes and analysis of flexibility and uncertainty.     

As in the conceptual analysis of the WAP definition presented in chapter 4, the 

simplified modeling assumption of water-using units and regeneration process in current 

WAP models may be putting in risk the reliability of these solutions. In turn, the two last 

issues, flexibility and uncertainty, are very important analysis to be performed in any 

design of process plants. However, they should be sought after these detail models are 

included in WAP. 
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APPENDIX – Summary of the optimality conditions  

(Savelski and Bagajewicz, 2000) 

Definitions: 

Head Processes: Water-using units that receive only freshwater. 
 
Intermediate Processes: Water-using units that receive water previously used by 
other(s) water-using unit(s) and also sent their used water to other(s) water-using 
unit(s) 
 
Terminal Processes: Water-using units that receive water previously used by 
other(s) water-using unit(s) and also sent their used water to only to treatment 
 
Partial Wastewater Provider: Water-using units that send part or their used water 
to other(s) water-using unit(s) and another part to treatment. 
 
Theorem 1: (Necessary condition of concentration monotonicity). If a solution to 
the WAP is optimal, then at every Partial Wastewater Provider, the outlet 
concentrations are not lower than the concentration of the combined wastewater 
stream coming from all the precursors. 
 
Theorem 2 (Necessary condition of maximum concentration for head processes). 
If a solution of the WAP problem is optimal, then the outlet concentration of a 
Head Process is equal to its maximum or an equivalent solution with the same 
overall freshwater consumption exists in which the concentration is at its 
maximum. 
 
Theorem 3 (Necessary condition of maximum concentration for intermediate 
processes). If the solution of the WAP problem is optimal then the outlet 
concentration of an Intermediate Process reaches its maximum or an equivalent 
solution with the same overall freshwater consumption exists where the 
concentration is at its maximum. 
 
Theorem 4 (Necessary condition of maximum concentration for terminal 
processes). If the solution of the WAP problem is optimal then the outlet 
concentration of a Terminal Fresh Water User Process reaches its possible 
maximum or an equivalent solution with the same overall freshwater 
consumption exists. 
 

 


