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Abstract 
 

 Every year, natural hazards such as hurricanes, floods, wild fires, 

droughts, earthquakes, volcanic eruptions, and ice storms destroy millions of 

trees across the World and cause extensive damage to their species 

composition, structure, and dynamics.  Recently within the last decade, ice 

storms has caused catastrophic damage to trees, infrastructures, power lines 

in Oklahoma, and has taken over several dozen human lives. However, 

studies pertaining to the vulnerability and assessment of tree damage from 

ice storms in Oklahoma are almost non-existent. This study aims to fulfill that 

gap by first integrating remote sensing (RS) and geographic information 

systems (GIS) to assess and estimate tree damage caused by the December 8-

11, 2007 ice storm that struck the north-central part of Oklahoma. It also 

explores the factors that contributed to the tree damage and created multiple 

regression models based on the factors. Finally, it examines the vulnerability 

of trees to ice storms by creating an ice storm tree damage vulnerability index 

for the City of Norman, Oklahoma.  

 The integrated RS and GIS method assessed tree height and crown 

damage with high degree of accuracy.  The thickness of ice accumulation has 

emerged as the most important predictor, followed by tree branch angle and 

 xii



 xiii

pre-storm crown, wind, stem, and branch diameters for tree damage from ice 

storms. Results indicate that the vulnerability index accurately predicted 

several areas that are highly vulnerable.   

 Results from this study are significant from both theoretical, and 

methodological and implication perspectives. The present study contributes 

significantly by identifying the geographic conditions of the City of Norman 

that make its urban forestry vulnerable to ice storm damage. In doing so, it 

initiates steps for future tree vulnerability research. Methodologically, the 

study contributes significantly to geospatial technology paradigm in 

geography by integrating RS and GIS to assess tree damage not only on a 

change/no change basis, but also by quantifying the damage. Finally, the 

methods and techniques developed in this study can not only assess damage 

from future ice storms, but can also quantify damage from other natural 

disasters in other parts of the world as well.     



CHAPTER I 

INTRODUCTION 

Analysis of tree vulnerability and tree damage estimation are an 

integral part of sustainable forest management, urban landscaping, and 

environmental conservation. Every year, natural hazards such as hurricanes, 

floods, wild fires, droughts, earthquakes, volcanic eruptions, and ice storms 

destroy millions of trees across the World and cause extensive damage to 

their species composition, structure, and dynamics (Bragg et al. 2003). For 

trees, vulnerability to natural hazards varies over geographic regions with 

spatial variations of biological, climatic and edaphic conditions. “What makes 

tree species vulnerable to natural hazards?” and “How quickly and efficiently 

can their damage can be estimated?” are fundamental, yet unexplained 

questions.   

Contemporary natural hazard research has taken its widest diameter 

encompassing social, technologically built environments and has shifted its 

approach from traditional impact assessment to a broad environmental risk 

and vulnerability analysis. In this paradigm of geography, disaster damage 

risk is viewed as the function of the hazard, and social, economic, and 

technological vulnerability of a place (Mileti 1999; Tobin and Montz 1997;
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Turner et al. 2003; Wisner et al. 2004). Analysis of vulnerability and 

assessment of risks are necessary to predict the probability of damage, and to 

develop a viable emergency rescue and mitigation plan for future hazardous 

events. Geographers, along with other social and natural scientists, have 

played a vital role in understanding the impacts of hazards on people, place, 

society and environment, and in the formulation of hazard adjustment and 

mitigation strategies (Cutter 2002; White and Haas 1994).  

In North America, natural hazards such as hurricanes, floods, 

wildfires, and volcanic eruptions affect the urban trees and forests along 

coastal areas. However, ice storms cause substantial damage to trees in the 

sub-arctic and arctic climates of the North American “snow belt” that 

encompasses Canada and the northeastern and central parts of the United 

States (Bragg et al. 2003). Therefore, existing ice storm tree damage studies 

were mostly conducted in southern and southeastern Canada, and in the 

northern and northeastern United States. However, ice storm tree damage 

study in Oklahoma is virtually non-existent despite the fact that the annual 

catastrophic ice storms impacted the State in recent years (Table 1.1).  These 

individual storms caused millions of dollars worth of damages and injures 

and killed dozens of people (Bragg et al. 2003; Irland 2000; Smith 2000; Van 

Dyke 1999). The present study will examine the vulnerability of trees to ice 

storms in the City of Norman, Oklahoma. It will develop and test an 

integrated RS and GIS assessment methodology using a case study from tree  
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damage caused by the December 8-11, 2007 ice storm. It will utilize the case 

study to also explore the factors that contributed to ice storm tree damage in 

order to develop an index of tree vulnerability to ice storms. The study will be 

based on a conceptual framework that will encompass hazard risk and 

vulnerability research and geospatial technology with implications on 

geography and forestry.  

Although ice storm tree damage assessment began in the early 20th 

century (Harshberger 1904; Illick 1916), current tree damage assessment 

methods involve time consuming manual counting of individual damaged 

trees of certain species within sample areas. Since ice storms affect large 

geographic regions and large number of tree species, the manual damage 

assessment method yields limited database that is inadequate for predictive 

modeling of tree damage, an issue that is important for planning effective tree 

loss mitigation strategies. The motivation of this research stems from the 

potential geospatial technologies (GIS & Remote Sensing) can offer to this 

area of study, and this to enable a rapid and accurate assessment of ice storm 

tree damage over larger geographic regions. 

 

The Analysis of Risk: A Conceptual Framework 

One of the most important contributions of hazard research is the 

analysis of risk based on the nature of hazard, exposure, and vulnerability. 

The risk analysis exercise involves identification of hazard and elements 
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exposed, measurement of the consequences of exposure (damage 

assessment), search for indicators of vulnerability, mapping damage and 

index of vulnerability of place and element, and formulation of mitigation 

strategies (Figure 1.1). Hazard can be natural, and human induced 

(technological, famine due to entitlement failure, war, terrorism and 

violence); exposure includes the elements of human, social, and ecological 

systems; and vulnerability indicates the likelihood of an element to be 

impacted by hazards. People, flora and fauna, roads, building structures, 

economy are elements of exposure and they are vulnerable to hazards. 

Measurement of the consequence of hazard exposure involves the assessment 

of damage of elements by way of direct field assessment and analysis of 

remotely sensed images and mapping the damage area using geographic 

information systems (Hodgson and Cutter 2001). The computation of indices 

of vulnerability involves the identification of indicators of vulnerability and 

factors that make an element susceptible to the hazard. 

The term vulnerability refers to an extent to which a socio-ecological 

system, or its component elements, is likely to be damaged due to exposure to 

a hazard that originates either outside the system (purturbated) or within the 

system itself (stress/stressor) (Adger 2006; Turner et al. 2003). Theories of 

vulnerability fall into: risk and hazard (RH), pressure and release (PAR), 

human/political ecology (HPE), entitlement failure (EF), and place-based 

(PB) categories (Adger 2006; Rashed et al. 2007; Turner et al. 2003).  
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Figure 1.1: Conceptual framework of Ice Storm Tree Damage Analysis. 
 

 
  

Burton and colleagues developed the risk-hazard theory which assumes a 

process that begins with the hazard, experiences exposure and ends with its 

impacts; and contends that the impact of hazard is a function of exposure to 

the hazard and the dose-response (sensitivity and adaptability) of the entity 

exposed (Burton et al. 1993; Turner et al. 2003). In this theory, vulnerability is 

implicitly measured as a residual of impacts after adaptation (Adger 2006;  

Kelly and Adger 2000). Human ecologists Hewitt and Watts formulated the 

human/political ecology theory of vulnerability and explored a direct 
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relationship between political economy and vulnerability (Hewitt 1983; 

Hewitt 1997; Watts 1983). The theory contends that economic disparity 

increases the vulnerability of marginalized population to natural hazards.  

The pressure-and-release (PAR) theory proposed by Blaikie et al. 

(1994), synthesizes the natural hazard and human ecological perspectives and 

assumes that the risk is a product of hazard and vulnerability; and that 

disaster depends upon the conditions that produce vulnerability and increase 

pressure or stress on a system and the opportunity to release the pressure in 

the form of natural hazard event (Blaikie et al. 1994; Wisner et al. 2004). 

Vulnerability progresses from root causes and filters through a dynamic 

pressure from process and activities inherent in local geography and political 

economy that transforms the root cause into unsafe conditions under which the 

occurrence of a natural hazard will cause disaster. 

The entitlement theory of vulnerability, developed by Sen (1981, 1984), 

assumed a link between economic and institutional factors and captured the 

notion that the vulnerability of famine and food security is a result of failure 

of entitlement rather production shortfalls of food (Sen 1981; Sen 1984). The 

theory ignores the impact of physical environment as a cause of vulnerability 

to famine.  

Cutter (1996) and Cutter et al., (2003) proposed the place-based theory 

of vulnerability and argued that vulnerability of socio-ecological system to 

hazard should be analyzed in the context of place. The theory argued that 
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earlier vulnerability theories has been formalized either in the context of 

exposure (condition that make the element vulnerable to hazard) or in the 

context of social conditions (conditions that make the element resilient to 

hazard), and ignored the context of place (conditions of place that make the 

element vulnerable or resilient to hazard). Cutter et al (2003) suggested a 

synthesis of exposure and social resilience with a focus on place because the 

location of place significantly affects the degree of vulnerability of people to 

hazard (Cutter 2002; Cutter et al. 2003).  

The place-based theory has been extended to emphasize the hierarchy 

of place (global-national-regional-local) in which socio-ecological systems 

operate and are exposed to hazards. Rashed et al (2007) integrated basic 

components of risk-hazard, pressure and release, cultural ecological theories 

of vulnerability within the context of a hierarchy of place (in terms of scale 

e.g., neighborhood, city, region, country) in which hazard occurs, and affects 

the people who resides in those areas. They proposed the concept of urban 

vulnerability to examine the vulnerability of city as socio-ecological system 

having the capability of intervention, resistance and resilience to cope with 

hazards (Rashed et al. 2007).   

The existing risk analysis research has examined the vulnerability of 

people, economy and urban structures as elements of exposure to hazards. 

However, they have ignored the fact that both flora and fauna living in an 

ecosystem are also exposed to hazards, suffer damage, and cope with and 
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develop resilience to hazard. The analysis of risk of tree damage due to 

natural hazards is an important research question and should be examined in 

the context of place where they exist such as natural vegetation and urban 

forestry. The present study aims to examine tree vulnerability to ice storms in 

the City of Norman. The basic assumption underling this study is that trees 

are exposed to hazards; they suffer damage, cope with the post-hazard 

situation according to their adaptive capacity; they become resilient over time 

and continue to grow; and their vulnerability depends upon their biological 

characteristics and the bio-physical conditions of the place where they are 

located. This assumption demands a synthesis of the risk-hazard, pressure 

and release, ecology, place-based theories of vulnerability into a hybrid 

model.  

The proposed hybrid model of vulnerability of urban trees to natural 

hazards addresses the hazard (ice storm); trees which are exposed to the 

hazard and suffer damage; and the degree of damage resulting from 

biological and physical conditions that determine their degree of adaptation 

(dose-response or sensitivity). Vulnerability of trees progresses from root 

causes (thickness of ice, wind speed, etc.) and is filtered through a dynamic 

pressures embedded in local geography (soil, elevation, and slope) and 

biological characteristics that transform the root cause into unsafe conditions 

under which the occurrence of ice storms will cause substantial tree damage. 

The location of trees in the context of their ecological niche determines the 
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extent to which the trees will be vulnerable to hazard damage. Finally, tree 

vulnerability to hazard exposure varies with the hierarchy of place in which 

they live: trees of natural vegetation respond differently to hazards than the 

urban trees because the ecological conditions, species composition and tree 

structures of natural vegetation is different from those in urban areas.   

The study is organized into three components. The first component is 

devoted to estimate the magnitude of tree damage from the December 8-11, 

2007 ice storm in Norman Oklahoma by using an integrated RS and GIS 

technique. It utilizes Light Detection and Ranging (LiDAR) data to assess 

individual tree damages to answer:  

• How accurate would the ice storm tree damage assessment be 
using RS and GIS?  

 
Based on literature review and field research data, the second component of the 

study attempts to develop tree damage models in order to address the 

question:  

• “What factors affect tree damage and make urban trees vulnerable 
to ice storms?”  

 
Finally, based on an extensive review of literature on ice storm and tree 

damage, the third component addresses the question:  

• “Based upon the estimated tree damage data from the December, 
2007 ice storm and the factors affecting its magnitude, which areas 
of the City of Norman are vulnerable to ice storm tree damage; and 
which tree species are most vulnerable?”  
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Study Area 

The three components will all be addressed within approximately 18 

sq. km in the center of the city of Norman (Figure 1.2). The city was selected 

for this study because of its frequent exposure to ice storm in recent years that 

has increased its vulnerability of tree damage. Located in Cleveland County, 

about 32 km south of Oklahoma City, Norman is a small town with an area of 

492 sq. km and population of 102,827 (U.S. Census, 2006). The city is 

characterized by an undulating surface topography with an elevation ranging 

from 332-378 m above mean sea level. Several small creeks cut across the city 

creating slope and topographic variations. The city contains 9 major soil types 

that reach up to 2.14 m, with Kirkland soil covering the majority of the study 

area.  The average clay concentration among these soils is almost 40%.  The 

City enjoys a humid subtropical climate and annually receives about 15-12 cm 

of snow with freezing temperatures starting around the first week of 

November and ending during the first week of April (Oklahoma Mesonet, 

2009). Most of the ice storms typically affect the city during the months of 

December and January.  

Norman’s vegetation is characterized by a mosaic of Tallgrass prairie 

and Postoak-Blackjack Oak forest. A tree inventory conducted during 2000 

within 1.3 sq. km found a total of 48 tree species in which 13 species were 

found to be predominant (more than 1.5% of total sample) (Appendix I). 
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Significance of Study 

The study results are significant from both theoretical, methodological, 

and policy implication perspectives. First, the study examines the city of 

Norman’s vulnerability to ice storm tree damages. In the literature on natural 

hazard and vulnerability, geographers and other social scientists have 

attempted to identify human vulnerability to natural disaster by building 

models and identifying indicators of vulnerability. However, they have 

ignored the question of vulnerability of plant and animal species to natural 

disasters. Spatially, some geographic regions offer unsafe climatic and 

edaphic conditions that make trees more vulnerable or resilient to ice storm. 

Foresters, as pioneers in tree research, have developed ice storm 

sustainability index for various plant species (Mou 1999). However, they have 

not examined what geographic conditions make those species more 

vulnerable to ice storm. The present study contributes significantly by 

identifying the geographic conditions of the City of Norman that make its 

urban forestry vulnerable to ice storm damage. Although the study is limited 

to a small part of the state of Oklahoma, its underlying concept of 

vulnerability of tree species can be applied to examine vulnerability of forest 

in other parts of state and the country.    

Methodologically, the study makes a significant contribution to 

geospatial technology paradigm in geography. Previously, the LiDAR data 

has been successfully used to estimate tree heights, canopy sizes, crown 
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diameters, and tree volumes of individual and group trees in natural forest at 

a single time period. However, this technology has not been used to study 

tree damage in an urban setting where previous studies using passive RS data 

have yielded some confusing results. This study used airborne pre- and post-

ice storm LiDAR data to detect tree damage caused by the December, 2007 ice 

storm in the City of Norman. The accuracy of the LiDAR data is evaluated by 

comparing the LiDAR data results with the field data collected from the 

study area. Once evaluated its accuracy level, the estimated tree damage data 

will be mapped using GIS platform to identify the areas and trees species 

damaged by the ice storm. Thus, the proposed method will open a new venue 

to study tree damage by natural hazard. 

Third, form policy implication perspectives, an accurate measurement 

and mapping of the degree and areas of tree damage  immediately following 

a natural hazard will help city managers, state agencies, urban landscape 

planners, emergency respondents to plan the response operation fairly 

quickly and easily  after the occurrence of a natural hazard. The method will 

also help commercial forest growers to take inventory of trees, their growth 

and damage due to various disease, deforestation measurements, timber 

production, and forest planning. The State of Oklahoma has over 35,000 acres 

of pecan orchards that suffers severe damage after ice storm. The method 

developed here will help farmers to immediately identify those trees that are 

damaged and are at risk of dying. One concern of this method, however, 

 14 



would be the cost of obtaining LiDAR data from commercial LiDAR 

companies. With increasing users, newer instruments, and improving 

technologies, the collection of LiDAR data is expected to decrease 

significantly over the next decade. The method has greater advantage over 

the ground assessment of tree damage as the LiDAR sensors are able to 

collect data over larger geographic regions.    

 

Organization of the Dissertation 

This dissertation will be organized into five chapters. Chapter one has 

outlined the theoretical framework for this study and scope of this research. It 

has also outlined the research questions, and the significances of this study. 

The next three chapters are presented separately discussing the three separate 

components, their objectives, underlying hypotheses, methodology, results 

and their analysis in research paper formats that are ready for submission as 

three major scientific journal articles. Finally, chapter five summarizes the 

study and makes concluding remarks focusing on the objectives and the 

hypotheses and findings regarding tree damages due to ice storms in 

Oklahoma and provides directions for future research.    

The first paper presents the integrated RS-GIS method used in the 

assessment of ice storm tree damage from the December, 2007 ice storm 

within the study area. In this paper, various RS and GIS technologies are 

discussed and their advantage and disadvantages in estimating tree damage 
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due to natural disasters are outlined. In addition, the effectiveness of LiDAR 

data in estimating tree damage from ice storms is discussed by using Norman 

as a case study. This paper will be submitted to the International Journal of 

Remote Sensing for possible publication.   

The second paper identifies the factors affecting tree damage. It 

proposes and tests the ice storm tree damage model for the city, and identifies 

the factors and conditions affecting tree damage. It also identifies the 

indicators to vulnerability of tree damage from ice storm. This paper will be 

submitted to the Professional Geographer for possible publication.    

Using the regression coefficient weights gathered from 8 individual 

factors from the second paper, the third paper constructs and index of 

vulnerability to ice storm tree damage for Norman. It identifies the areas and 

tree species that are vulnerable to ice storm damage. The paper will be 

submitted to Natural Hazard Review for possible publication.   



CHAPTER II 
 

ICE STORM TREE DAMAGE ASSESSMENT USING AN 
INTEGRATED AIRBORNE LiDAR DATA AND GIS 

APPROACH 
 

An important component in risk analysis and hazard mitigation 

research is the assessment of damage of resource due to its exposure to 

natural hazard. Rapid and accurate assessment of damage is the key to 

launch successful relief and recovery operations. The integrated use of 

Remote Sensing (RS) and Geographic Information Systems (GIS) allows quick 

and accurate estimation of damage, identification and mapping of areas 

affected by the disaster, the spatial attributes of damage; and hence, 

contributes significantly to risk analysis (Hodgson and Cutter 2001). This 

technique is particularly useful when comparing pre- and post-hazard 

resource inventory data, thus allowing researchers to efficiently estimate the 

damage caused by natural hazards.    

Estimation of tree damage from natural hazards has received wide 

attention from biologists, foresters, bio-geographers, city planners and 

environmental geographers for creating inventories of trees in commercial 

forests and monitoring changes and its effects on the ecosystem and in the
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landscape. A natural hazard may affect small and/or large geographic areas 

but the degree of tree damage varies with tree characteristics, climatic, and 

edaphic conditions of the region. Tree damage estimation, which involves the 

collection of large quantity of data on factors affecting the degree of damage, 

poses a major methodological and technological challenge for hazard 

researchers. Despite its frequent use in hazard research, an integrated RS and 

GIS has not been used to estimate tree damage from ice storms. Various types 

of RS data are available to perform tree damage assessment, but each comes 

with certain advantages and limitations. For example, Landsat ETM+ data 

may be used, but the data is only available every 16 days during which severe 

changes can take place.  So, it is important for any RS-GIS methodology for 

tree damage assessment to incorporate a strategy for determining the ideal RS 

data source that will be useful for accurate estimation of tree damage from ice 

storms and other natural hazards. The present study develops an integrated 

RS-GIS methodology to estimate tree damage caused by the ice storm of 

December 8-11, 2007 in the City of Norman, Oklahoma.  

 

Objectives  

The present study examined the utility of an active LiDAR aided RS in 

the assessment of tree height and canopy damages caused by the above 

mentioned ice storm in Norman. It compared the pre- and post storm LiDAR 

data and analyzed tree damages from the 2007 ice storm by: identifying the 
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locations of individual trees; extracting the heights and crown diameters or 

outlines of those individual trees; and calculating the difference between pre- 

and post-storm tree heights and total canopy coverage of those trees. Once 

the tree height and canopy damages are assessed, the study performed a hot 

spot analysis to identify the areas where trees were completely damaged.     

Several studies have found tree heights derived from LiDAR data for 

forest areas to have RMSEs of less than 1 m while the accuracy for estimating 

canopy diameters is much lower (R2 values between 0.53 and 0.74) (Leckie et 

al. 2003; Maltamo et al. 2004; Persson et al. 2002; Popescu 2007; Falkowski et 

al. 2006; Næsset and Bjerknes 2001; Hyyppä et al. 2000).  Since this study was 

undertaken in an urban setting with variations in tree species and presence of 

buildings and infrastructures, it is expected that high degree of accuracy may 

still be achieved in detecting individual tree heights, crown diameter and 

canopy damage compared to previously used passive RS. Based on this 

assumption, the following two hypotheses were examined: 

I) In an urban setting, the LiDAR aided RS can detect tree height 
and canopy damage more accurately than a passive RS (possibly 
better than 70% accuracy as yielded in passive RS).  

 
II) In an urban setting, the LiDAR aided RS can detect tree canopy 

outline more accurately than the passive RS.  
 

The study is organized in three sections. First section is devoted to 

examining the existing studies those have used LiDAR and passive RS data to 

assess tree characteristics and their damage. Second section describes the 
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detailed methodology of two tree extraction techniques that were used in this 

study and integrated with GIS to isolate individual trees and calculate their 

trunk and canopy damage from the storm.  Finally, the last section explains 

the analyses and results that were obtained from the study. Concluding 

remarks and possible future studies are also given following this last section.    

 

Geospatial Techniques of Tree Damage Assessment 

Tree damage by natural hazards takes three major forms: breakage of 

branches and limbs, breakage of tree trunks, and complete breakage or 

uprooting. All three forms of damage result in decrease in height and crown 

diameter of an individual tree. Therefore, measurement of change in height 

and crown diameter of individual trees during the pre- and post-hazardous 

event is the most important task in tree damage assessment. Remote sensing 

allows detection and mapping of tree damages and monitoring of vegetation 

changes in forest and urban areas by capturing the vegetation reflectance for 

pre- and post-hazard periods over a large geographic area (Olthof et al., 

2004).  

Based upon their operational principles, remote sensing data can be of 

passive and active types. Passive remote sensing data (e.g., Landsat ETM+) 

are useful to detect forest cover change (growth or damage) within a large 

geographical region. Various studies have used passive remote sensing data 

to collect vegetation reflectance and create Normalized Difference Vegetation 
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Indices (NDVI) for an area. Taking the pre-hazard NDVIs as a base line and 

comparing them to the post hazard NDVIs has been found to have average 

accuracy level of approximately 70% in detection and mapping of damage 

and spatial patterns of changes in forest coverage due to various natural 

hazards (Cakir et al. 2006; Franklin et al. 2000; Olthof et al. 2004; Roberts et al. 

1999; Rogan et al. 2002). However, passive remote sensing data suffers from 

two major weaknesses in context of visibility and classification of objects 

which severely hinder its utility in tree damage assessment at the individual 

tree scale. First, the clouds, gases, aerosol and dust particles present in the 

atmosphere absorb and scatter electromagnetic radiation signals, and distort 

the vegetation reflectance of leaves. Such distortions cause significant losses 

of information when the pre- and post-hazard images are compared to detect 

forest damage (Song et al. 2001). Second, the availability of data at proper 

time intervals (i.e., temporal resolution of imagery) could hinder rapid 

damage assessment following a disaster. With their limited spectral and 

spatial resolutions, passive remote sensing data only classifies pixels on a 

change/no change basis and most importantly, fails to indicate the 

magnitude of loss of heights and/or canopy coverage. Therefore, their 

suitability in assessing damages of individual trees within an urban 

neighborhood scale is very limited (Olthof et al. 2004; Popescu 2007; Rogan et 

al. 2002). 
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Some of the above mentioned limitations of passive remote sensing 

data in tree damage assessment may be resolved by using active remote 

sensing data (e.g. LiDAR). LiDAR data can be collected for a large area within 

a very short time and allows the estimation of height and crown diameter of 

individual trees (Clark et al. 2004; Næsset and Økland 2002; Popescu 2007). 

The data are collected by a sensor attached to a small airplane flying at a low 

altitude (<3,000 m). The sensor emits laser energy pulses from the airplane, 

which reach the tree-tops, its understory branches, and the ground surface 

and then reflect back to the sensor (Arp et al. 1982; Lim and Treitz 2003; 

Ritchie et al. 1993). The LiDAR system records the amount of time it takes for 

the laser pulses to return back to the sensor and the time measurement is 

converted into distance using the speed of light. The distance measurements 

are used to derive a three-dimensional view (with x, y, and z coordinates) of 

the surface using the Differential Global Positioning Systems (DGPS). When 

plotted, the continuous wave of laser reflections forms a three-dimensional 

model with x, y, and z coordinates. Taking the differences between the first 

and last return LiDAR points produces a model with dome-shaped clouds 

with peaks. Each cloud peak represents an individual tree and the distance 

from ground to the top of the peak indicates their location and maximum 

height (Anderson et al. 2006; Clark et al. 2004; Leckie et al. 2003; McCombs et 

al. 2003; Næsset and Økland 2002; Persson et al. 2002; Popescu et al. 2003). 

The laser pulse reflectance at different heights forms individual domes 
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indicating canopy; and the width of the widest dome indicates the tree crown 

diameter (Maltamo et al. 2004; Popescu et al. 2003).  Researchers have also 

found direct relationships between tree heights obtained from LiDAR data 

and other individual tree and forest parameters including above-ground 

biomass (AGB), Leaf Area Index (LAI), basal area, crown closure, stem 

density, and timber volume (Holmgren and Holmgre 2004; Jensen et al. 2008; 

Næsset and Økland 2002; Popescu et al. 2003).  

 

LiDAR Data and Ice Storm Tree Damage Estimation 
 

LiDAR data has been used in numerous studies to estimate tree losses 

from natural disasters such as hurricanes (Parker and Evans 2009; 

Weishampel et al. 2007), forest fires (Wulder et al. 2009), and insect 

defoliation (Eklundh et al. 2009). However, the technology has not been used 

to assess tree damage from ice storms which can be assessed from LiDAR 

data by first extracting the location and crown outline (diameter) of 

individual trees from the pre-storm LiDAR data. Once the crown outlines are 

extracted, the pre- and post-storm LiDAR data could be compared and 

differences between the maximum heights and the summation of pixel values 

(to represent crown coverage) within the crown outer boundaries could 

accurately indicate the magnitude of height and crown damage for each tree. 

However, several situations and factors may influence the degree of accuracy. 

For example, in cases where a damaged tree stem/trunk is bifurcated into 
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two or more branches with same height, and or the highest tree top point is 

shifted, post-storm tree heights and canopy area may also shift creating some 

errors in height and canopy damage estimations. Also, in urban 

neighborhoods where groups of trees are often found with 

branches/canopies intertwined with each other, it may be difficult to extract 

the outline of individual tree canopies. Popescu (2008) used LiDAR data 

collected over a Sam Houston National Forest in southeastern Texas forest 

containing a mixture of hardwood and pine plantations and achieved about 

53% overall accuracy in measuring tree canopy diameters.  In urban areas, 

where individual trees with wide variety of species and tree characteristics 

are associated with buildings and other structures, tree heights and canopy 

diameters may be extracted with variable degrees of accuracies.  

 

The December, 2007 Ice Storm and the Study Area 

A massive ice storm struck and caused extensive damages in the state 

of Oklahoma and surrounding states between 8 to 11 December, 2007. The 

storm caused almost 2.54 to 3.81 cm thick ice to form on trees and power lines 

and the extra weight of the massive ice caused the branches of trees, power 

lines, and power poles to break, resulting in leaving over 1.5 million people 

without electricity for several days. The storm affected 48 out of Oklahoma’s 

77 counties; damaged property and crops valued over $250 million; and 
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killed 27 people across the state. Over 100 structural fires from broken power 

lines and hundreds of auto accidents were reported (NOAA). 

The storm severely affected trees and power lines in the city of 

Norman. Located about 32 km south of Oklahoma City in Cleveland County, 

Norman is a small city with an area of 492 sq. km and population of 102,827 

(U.S. Census, 2006). It was chosen for this study because of its frequent 

exposure to ice storms in recent years.  

The study site was in the center of the city with an area of 

approximately 18 sq. km (Figure 2.1). The area contains undulating surface 

topography with elevations ranging from 332 to 378 m above mean sea level. 

Several small creeks cut across the study area creating variations in the slope 

and topography. The City enjoys a humid subtropical climate and annually 

receives about 15-23 cm snow with freezing temperatures starting around the 

first week of November and ending during the first week of April (Oklahoma 

Mesonet, 2009). Most of the ice storms typically affect the City during the 

months of December and January.  

An inventory conducted during 2000 has found a total of 48 tree 

species within 1.3 sq. km in the center of the study area. The distribution of 

the major trees based on their percentages is given in Appendix I.  
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Data and Methods 

For this study, two primary LiDAR datasets (pre- and post-storm) 

were required and collected to assess tree damage from the ice storm. The 

pre-storm data was collected by Merrick & Company of Aurora, Colorado 

from February 27th through March 3rd of 2007 and was obtained from the City 

of Norman’s GIS Department. The data was accumulated from a 1978 Cessna 

402C plane with an attached Leica Geosystems ALS50 LiDAR sensor flying at 

an average altitude of 2100 m. The data was collected at pulse rates between 

100 Hz and 85 kHz, variable scanning frequencies, and scan angles between 5 

to 75o degrees. The average Ground Sample Distance (GSD) for the raw 

LiDAR data was about 1.0 m and it was processed with auto-filtering 

algorithms followed by hand-filtering to remove erroneous points. A digital 

elevation model (DEM) at 0.30 m resolution was generated based on the data 

points. A total of 60 survey control points were used to conduct accuracy 

assessment of the LiDAR data and Merrick and Company reported a Root 

Mean Square Error (RMSE) of <15 cm for the vertical and horizontal accuracy 

of the pre-storm data. 

 The post-storm data was collected by Airborne 1 Corporation of El 

Segundo, California on July 10, 2008 with an Optech Airborne Laser Mapping 

Technology (ALTM) 33k LiDAR system mounted in a Cessna Skymaster 

aircraft.  The aircraft flew at average approximate airspeed of 119 kts and at 

an average altitude of 1978 m on 15 separate flight lines.  The sensor collected 
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the data at a pulse rate of 33 kHz, scanning frequency of 21 Hz, and scan 

angle of 18o. Similar to the pre-storm data, the post-storm data GSD was also 

approximately 1.0 m with a vertical accuracy of 22 cm. All flight lines were 

combined to form the final data set. Each data point included a Global 

Positioning System (GPS) time stamp and intensity value, as well as the 

spatial coordinates in three dimensions.  

 

Integration of LiDAR aided RS and GIS 

The study integrated the airborne LiDAR data in an ArcGIS 9.3 GIS 

platform. The former was used to collect height information of structures and 

trees while the latter was used to process the LiDAR data in order to estimate 

and map tree damage caused by the ice storm. The procedure required 3 

major steps including (i) creation of the digital elevation model (DEM), digital 

surface model (DSM), and canopy height model (CHM); (ii) extraction of 

individual tree outlines along with their heights, and canopy coverage; and 

(iii) calculating the difference between pre-and post-storm tree heights, and 

canopy coverage to estimate damage. The detailed methodological procedure 

for each step is discussed below.   

 

a)  Creation of DEM, DSM and CHM 

The DEM of the bare ground for the City of Norman was prepared by 

Merrick & Company and was used in this study. The DSM, representing 
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elevations of the ground surface containing trees, buildings and other objects 

on it, was derived from the first return points received by the two LiDAR 

sensors. These points were then interpolated to create pre- and post-storm 

DSMs.  

Numerous studies have previously compared the accuracy in DEM 

and DSM production by various local and global interpolation methods 

including Inverse Distance Weight (IDW), Ordinary Kriging (OK), Natural 

Neighbor (NN), and Regularized Spline Technique (RST). Lloyd and 

Atkinson found Kriging to create the most accurate DSM when there are few 

data points (Lloyd and Atkinson 2002b). Chaplot et al. found Kriging to be 

best suitable in creating DEMs for mountains and rugged terrains. However, 

for relatively plain landscapes, RST was found to produce the best estimates 

(Chaplot et al. 2006). 

As the number of data points and sampling density increases (as in 

LiDAR data), there are no significant differences in accuracies between 

Kriging and IDW or NN (Lloyd and Atkinson 2002a; Liu 2008). Anderson et 

al. noted that use of IDW and smaller sample size of the LiDAR data can still 

produce accurate estimated elevations within 30cm (Anderson et al. 2005).  

Another important factor in producing accurate DSMs is the spatial 

resolution (grid size) of the data which determines the computing power 

requirement and the accuracy level that could be expected from the data. 

Very high-resolution data may produce detailed representation of the 
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landscape, but would require more computing time. Also, generating high-

resolution DSMs with sparse data will represent the shape of the applied 

interpolator, rather than the true landscape. On the contrary, a lower-

resolution DSM with high density elevation points will diminish the accuracy 

of the original data (Liu 2008).  McCullagh suggested that grid size should be 

the same as the sampling density of the LiDAR data (McCullagh 1988).    

To choose the interpolation method that would produce the most 

accurate DSMs within the study area, the above mentioned interpolation 

techniques were tested and compared.  From a 1000 x 1000 m LiDAR data tile 

from the center of the study area containing a total of 883,372 first return 

points, 45,648 points were randomly chosen and separated as reference 

points. The interpolation techniques were carried out with 0.3 m grid size 

with the remaining 837,724 test points.  Once the four DSMs were created by 

the four techniques, the interpolated values at the reference points were 

correlated and their RMSE with the actual LiDAR points were computed 

using the following formula: 

 

Where, n is the number of locations, EDEM and ERef are respectively actual and 

estimated elevations. The results are given in Table 2.1.   
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It was found that the OK and IDW had a correlation coefficient of 0.986 

with the differences in RMSEs of 0.25 m. The RMSEs are given in Table 2.2. 

Since both produced similar results with IDW requiring less time and 

computing power to create the DSM, it was preferred over OK for this study. 

The grid size was chosen by interpolating the data at 0.3 m, 0.61 m, and 1 m 

using the IDW, NN, and RST interpolation methods. It was observed that the 

DSM produced at 0.3 m grid size had the lowest RMSE when creating DSMs 

to estimate elevations of building roofs and tree-tops. Therefore, both the pre- 

and post-storm DSMs were created at this scale.  Finally, the pre- and post-

storm CHMs were created by subtracting the DEM from the DSMs using the 

raster calculator function of the ArcGIS software.   

 

Table 2.2: RMSE values of the three interpolation methods at 0.3, 0.61, and 1 m grid 
sizes. 

 

 

 

RMSE (m) Interpolation 
Method  0.3m   0.61m   1m 

IDW  3.23  3.24  3.24 

NN   3.27  3.28  3.29 

RST  5.51  5.54  5.49 
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b) Extraction of Individual Tree Heights 

The two techniques that were used for extracting individual pre-storm 

tree crown outlines were the Koukoulas and Blackburn Approach (KBA) and 

the Local Maxima Approach (LMA). In this section, some methodological 

procedures of these two methods are discussed in brief.  

i) Koukoulas and Blackburn Method 

The KBA was originally developed to utilize LiDAR data on a GIS 

software platform to map the locations and heights of individual trees in 

forested areas (Koukoulas and Blackburn 2005). The approach uses specific 

contour lines created from the CHM produced from step a. Contours of 0.3 m 

intervals were drawn and the length of each individual contours were 

calculated. As shown in Figure 2.2, the KBA uses specific parameters (i.e. 

contour length and polygon areas) to separate houses, and individual as well 

as grouped trees. However, the various parameters within the method were 

modified from the original method in order to detect and identify trees in the 

study area. These parameters were chosen based on field surveys conducted 

by the authors.      

It was found by the authors by manually surveying that the roofs of 

most residential houses in Norman are less than 6 m high. Lengths of each 

individual contours were calculated and in order to separate the houses from 

the trees, contours <1.3 m and between 1.9 and 5.5 m (indicating the base and 

the roof of the house) were selected and eliminated.  Contours >6 m with  
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Figure 2.2: Detailed methodological steps showing the integration of the KB and the 
LM methods. 
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length <91 m were selected and these trees were believed to be single 

individual trees. For extracting group trees with mixed branches, contours >6 

m, with contour lengths between 152 and 823 m were selected. The selected 

contours were converted into polygons, and only the large outermost 

polygon (representing the boundary of tree canopies that included all the 

smaller polygons within) was saved and the small polygons within the large 

polygons were dissolved.  The area and perimeter of each individual polygon 

were then calculated.  Polygons with areas <4.64 sq. m and perimeter <15.24 

m were selected and removed since they represented small bushes and other 

unknown objects. Polygons with areas between 4.64 and 92 sq. m were 

classified as bushes and small trees; between 92 and 464 sq. m indicated 

single trees; and mega-polygons with areas greater 464 sq. m indicated 

groups of trees with overlapping canopies which were then separated to be 

extracted by the LMA.    

ii) The Local-Maxima (LM) Method 

The LMA also utilizes LiDAR data and a CHM to estimate the height 

of individual trees (Popescu et al. 2002). However, to ascertain the location of 

individual trees, the LM used either square of n x n dimension and/or 

circular of n radius search windows. The premise of the LMA is that the 

reflectance of a tree crown is typically greatest at its apex. When used with 

LiDAR data, the LMA assumes that the apex is where the laser elevation has 

the highest value among laser hits of the same tree crown. Based on this 
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value, a successful identification of the tree location using this method  

requires careful selection of the filter window size; too large or too small filter 

size will create errors of commission or omission of trees (Koukoulas and 

Blackburn 2005; Popescu et al. 2002).  Field sampling of 100 random trees 

were conducted to create a linear functional relationship between the height 

of each tree and their respective crown diameters. The following linear 

function (where CW is the crown width and hgt is the height) was found to 

mathematically represent the best fit model and it was used for the LM 

individual tree extraction approach:  

CW = -0.006 hgt^2 + 0.895 hgt + 26.651 

The LMA data were processed by the TreeVaw software (Popescu et al. 2002). 

The software used the above model to select a window for searching the 

location of each maximum height corresponding to the summit of the tree 

crowns on the CHM. The locations of individual trees along with their 

respective heights and radii were identified and shown in the TreeVaw result 

file. The individual tree points were then opened in ArcGIS and tree points 

that fell within the mega-polygons from the KBA were selected. Erroneous 

points were manually removed and buffers (based on tree radius from the 

TreeVaw result file) were created to outline each individual tree with 

overlapping canopies.   

Both KBA and LMA initially required a canopy height model (CHM) 

to extract each individual tree, its height, and canopy diameter (see Figure 3.2 
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for details). However, their differences in algorithms produced different 

results. In particular, the KBA accurately identified individual trees but failed 

to separate grouped trees with overlapping canopies. In contrast, the LMA 

was capable of separating grouped trees into individual trees and calculated 

their canopy diameters based on their maximum heights. In urban areas, both 

single and grouped trees are associated with/among building structures; and 

for accurate assessments of tree damage, the canopy outlines of both 

individual and grouped trees should be identified accurately. Hence, a 

merger of the two methods were necessary and a hybrid of KB-LM method 

was used in this study to measure tree heights and canopy diameters for 

individual and grouped trees in the study area.  

 

c)  Calculation of Height and Crown Damage 

The polygons extracted from the KBA and LMA were used to measure 

the damage each tree suffered during the storm. Within each individual KBA 

and LMA buffered polygons, the zonal statistics function of ArcGIS was used 

to calculate the maximum value (assumed to represent the heights of the tree 

stems) and the sum of all the pixel values (representing canopy coverage) 

from the pre and post-storm CHMs. Their differences were calculated which 

indicated the amount of damage each tree sustained: negative change in 

maximum heights indicated tree stem damage while no change and positive 

changes in tree heights indicated its growth, sustainability, and resilience to 
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the ice storm. Similarly, the change in pre and post-storm sums of pixel 

values indicated tree canopy damage due to the storm (Figure 2.3). The 

changes were converted into percentages and interpreted in the following 

scenarios: 

• Scenario A: Decrease in tree height, but no change in canopy 
diameter would indicate damage of tree stems; 

 
• Scenario B: No change in tree height, but decrease in canopy 

diameter would indicate only canopy damage; 
 
• Scenario C: Decrease in both tree height and canopy diameter 

would refer to both stem and canopy damage; 
 
• Scenario D: Unchanged height and canopy diameter would 

indicate no tree damage; 
 

• Scenario E. 100% decrease in height and canopy diameter: total 
tree damage by uprooting or manual removal of the damaged tree. 

 
 

d)  Accuracy Assessment via Field Sampling  

The accuracy of the tree damage estimation depends on two factors: 

extraction of accurate crown outlines (diameters) and their heights. The 

accuracies of these two factors were tested through field surveys conducted 

between August of 2008 and September of 2009 in the following manner. 

First, a sample of 524 trees was randomly selected within the study area and 

their species types were recorded. The sampled trees contained both grouped 

and single trees. Their pre and post-storm heights and canopy diameters were  
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measured from the LiDAR data using both the KBA and LMA to obtain the 

test data; and percent changes in tree heights and canopy diameters were 

computed to obtain test tree damage data.  Because the LMA results showed 

the radius of the crowns, it was doubled to calculate the tree diameters.  For 

KBA, It was assumed the outline of the tree canopies were in the shape of a 

circle. Therefore, with their known perimeters, their diameters were 

calculated using the equation 

D = P / π  

Where D is the diameter of the tree crown and P is the calculated perimeter.  

  Second, the post-storm heights and canopy diameters of the sampled 

trees were manually measured in the field using a Brunton compass and a 

measuring tape to obtain the reference data. Due to financial restrictions and 

unavailability of laser hypsometers, tree heights were calculated by 

conventional method of measuring distance and angle to the top of trees and 

then using geometric equation (see Figure 2.4).  RMSEs were calculated based 

on the test and reference data. Third, the post-storm reference tree heights and 

canopy diameters were separately subtracted from the LiDAR extracted pre-

storm test heights and canopy diameters; and their percentage changes were 

computed to obtain the reference tree damage data. Finally, the reference tree 

damage data were correlated with test damage data to test the accuracy of the 

latter. High degree of positive correlation between the test and reference 
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damage data and high R2 value indicated high degree of accuracy of the 

LiDAR estimates.  

The accuracy of LMA in detecting the number of trees within a group 

was evaluated by manually counting the standing trees in the field within 40 

mega-polygons from the KBA. The accuracy of the delineated tree tops (or 

tree trunks) for the sampled trees were tested by determining the locations of 

the stems with a Trimble GeoExplorer 2005 GPS unit during the winter 

season when trees were in leaf-off conditions (in order to reduce the errors in 

the GPS measurements). 

 

Figure 2.4: Equation for detecting tree heights by field measurements. 

 
 

The distances between the tree-top center coordinates obtained by the LMA 

and the actual trunk coordinates obtained by the GPS unit were measured and the 
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RMSE was calculated. Finally, hot spot analysis was performed to isolate areas where 

large number of trees was completely destroyed.   

 

Results and Discussion 

a) Individual Tree Extraction 

 The combination of KBA and LMA outlined a total of 31,976 trees. 

Among them, the KBA extracted and classified 14,143 as bushes and small 

trees (BST) and 6,790 as medium to big trees (MBT). Very smaller BSTs were 

not considered significant in damage assessment and were manually 

removed. The BST species identified were Cypress, Callery and Bradford 

Pears with a pre-storm average height of 8.3 m and crown diameter of 9.0 m.  

The MBTs identified were large (≤ 25 m long) broadleaf trees including 

mature Shumard Oaks, Pin Oaks, Bur Oaks, Silver Maples, Sweetgums, 

American Elms, Hackberries, and Sycamores with an average height of 14 m 

and crown diameter of 21 m. About 73% of KBA extracted trees were 

accurately identified in the field samples as single trees. However, trees such 

as Loblolly Pines with small branches that often grow independently very 

close to each other were identified as one large tree by the KBA. Out of 47 

Pine tree species sampled, 74% were identified accurately. Problems also 

arose when the canopies and branches of two medium to large size broadleaf 

trees (e.g., Silver Maples or Siberian Elms) grew within 1-2 m from each other, 

or when these larger trees had smaller understory trees nearby, they were 
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identified as one single tree with very broad canopy coverage. It was found 

that the KBA identified 24% single trees that contained 2 to 3 individual trees; 

and 3% containing 4 to 5 individual trees.  

The KBA has failed to extract some trees that were possibly removed 

during any of two steps in the method’s algorithm. For example, when 

contours between 1.9 and 5.48 m were eliminated to remove residential 

houses, they also removed the trees whose canopy boundaries were outlined 

by these contours. Also, when large and group trees were extracted by 

selecting contours greater than 5.48 m with lengths greater than 153 m,  trees 

whose heights and contour lengths did not meet those requirements were 

automatically removed. By manually counting the number of trees that were 

visible in the CHM taken over 5 random 300 x 300 m grids, it was seen that 

nearly 18% of the trees were not classified as either BSTs or MBTs.   

The KBA extracted 1,189 large mega-group polygons. Field sampling 

indicated that each of these polygons contained groups of 7-13 trees mostly 

located in the backyards of the residential houses and along the sidewalks of 

city streets. The LMA was used to identify the individual trees within these 

large polygons. A total of 11,143 trees were extracted by the LMA and 69% of 

them were accurately counted and identified. Of the remaining trees, 4% 

were completely unrecognized; 16% contained two trees in each single large 

canopy; and 11% contained three or more trees in a single large canopy. On 

an average, these trees were 17 m tall; however, with overlapping branches, 
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their average canopy diameter was 11 m with RMSE of 8.27 m. The position 

of the tree stems identified in the LMA had a RMSE of 2.4 m. Shumard Oaks, 

Silver Maples, Sycamores, and Sweetgums were main species identified by 

the LMA. 

 
 
b) Tree Damage Estimation: Changing Tree Height and Canopy Coverage 

Once the outlines of all the trees were extracted for the pre-storm 

period any changes in their height and canopy coverage were calculated by 

measuring the difference between pre- and post-storm CHMs within the 

individual tree outlines. Of the total 31,976 trees that were extracted, 2,871 

(9%) were completely damaged or uprooted by the storm, and later on 

cleared by the city or its residents. Among the totally damaged trees, 1945 

(6%) were BSTs, 519 (1.6%) were MBTs, and 371 (1.2%) were grouped trees 

(Table 2.3 and Figure 2.5).  

Of the total 14,043 BSTs, 3,249 (23%) were found to have a decreased 

height (hence stem damage) and canopy damage. Nearly 31% of the damaged 

trees had experienced severe (>67% decrease) canopy and stem damage 

(CSD); 34% experienced moderate (26-67%) damage; and 36% experienced 

minor canopy and stem damage (<25%). Less than 2% of the BSTs had 

experienced stem damage but no canopy damage; almost 11% had suffered 

canopy damage but no stem damage; and 5% did not suffer any canopy or 

stem damage at all.  
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During this ice storm, about 8% MBTs suffered minor (<1%) stem 

damage but major (27%) canopy damage. The latter is attributed to the fact 

that the larger trees have wider canopy coverage or surface area that 

increases their risk of exposure to ice. The percentage of trees without any 

damage (8.4%) was also highest in this group. Similar to trees in the BSTs, 

23% of the MBTs had experienced CSD due to the storm.  Among them, 36% 

had severe (>67%), 37% had moderate (26-66%), and 27% had minor (<25%) 

damage.  About 6% of MBTs had suffered only canopy damage while their 

stem sustained the storm and grew since then; and about 2% of the trees had 

experienced canopy growth after the storm although their stem height 

declined during the storm. It appeared that MBTs had larger and stronger 

stems that were more storm resilient than the BSTs. However, their branches 

are very susceptible to breakage since their larger branches have greater 

surface areas resulting in the accumulation of more ice loadings.  

When identified by the LMA, the grouped trees were found to suffer 

least damage due to the ice storm: only 2% of all grouped trees had 

experienced decrease in heights; 18% had a decrease in canopy; and another 

18% had a decrease in both canopy and height. This significantly lower 

(compared to individual trees) magnitude of damage among grouped trees 

may be attributed to at least three situations: first, within the grouped trees, 

understory BSTs were well protected by the strong MBTs and suffered 

comparatively less damage; second, few stems and branches of MBTs were 

 47 
 



broken and fell on understory BSTs to cause their canopy damage; and 

finally, lesser degree of accuracy in extracting tree heights and canopy 

diameters among grouped trees by the LMA. This last possibility was also 

noted by Koukoulas and Blackburn (2005).   

The extracted data also revealed that 38% of BSTs has gained either 

height or canopy size or both. Of these, 22% trees gained <15%; 7% gained 

between 15-20%; 8% gained 20-40%; and 2% gained >40% in height and 

canopy size. On the other hand, 26% of MBTs had experienced up to 8% 

increase in height, and 11% increase in canopy size during the 16 months 

between the pre and post-storm LiDAR data collection. Such increment in 

tree height and canopy size can be attributed to biological characteristics and 

the tree extraction algorithms. First, as found in the study area, the BSTs were 

young trees that were approximately 8m tall and 9 m in canopy diameters; 

and the MBTs were around 14 m tall and 21 m in canopy diameters. From 

biological growth view point, 1-2 m height and canopy growth in 16 months, 

which results in 13-26% increase, is very natural for young plants among the 

BSTs. Similar 1-2 m growth in height and canopy diameter in 15 months, 

which results in 7-15% growth, which is less common but possible among the 

MBTs if they are not severely damaged by the storm. Growth difference 

among the BSTs vs. MBTs mentioned above well articulates this fact. Second, 

the young healthy BSTs are more resilient to ice storm damage than older 
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disease infected MBTs. Hence, growth among the former is more harmonic 

than the latter.  

Finally, from a technical viewpoint, the LMA used in this study 

assumes that the maximum height is the location of main tree stem and based 

on individual tree heights, tree canopy diameters are extracted. For 

coniferous trees, this assumption fits well. However, for deciduous trees, the 

LMA extracted maximum height may be simply a high branch growing away 

from the actual tree trunk creating major distortions in post-storm heights 

and canopy diameter measurements indicating their staggering increases. 

Such distortions may also occur due to variation in the data collection times. 

The pre-storm data were collected in February and March of 2007, when trees 

were in leaf-off conditions. Previous studies have shown that high degree of 

accuracy may be achieved when LiDAR data is used to determine maximum 

tree heights in leaf-off conditions (Brandtberg et al. 2003; Brandtberg 2007). 

However, Næsset found that while maximum canopy height determined 

from LiDAR data is not affected by tree being in leaf-off or leaf-on condition, 

the canopy height measures in the lower and intermediate parts of the 

canopy were significantly different in two conditions (Næsset 2005).  This 

factor can also affect the staggering increase in canopy diameters as shown by 

the results.   

In assessing the magnitude of tree damage by ice storm in the study 

area, the analysis of sample data provided much clearer picture. Of the 
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sampled 524 trees, 6% suffered severe (>67% decrease) stem damage; 13% 

experienced moderate (26-67%) stem damage; and 54% suffered minor 

(<25%) damage of them stem. Only 1% of the trees showed no change in stem 

heights while 27% showed an increase in heights. Thus, 28% of the sample 

trees sustained the ice storm damage and achieved growth in tree height in 

seven months (December, 2007 - July, 2008) and can be identified as resilient 

to ice storms.  On the other hand, 15% of the sampled trees had experienced 

severe (>67%) canopy damage; 36% had moderate (26-67%) damage; and 30% 

suffered minor (<25%) damage of their canopies due to the storm. Another 

15% sampled trees had experienced up to 25% increase; and 4% achieved 

over 25% growth in their canopy diameter after the storm. Approximately 11 

% of the sampled trees had complete damage of their stem and canopy.  The 

pre-storm CHM showed the existence of these trees with full blown 

individual branches whereas the post-storm CHM showed their location as 

empty spots; and when verified during field study, it was found that these 

trees were either uprooted or severely damaged during the ice storm and 

were cleared by the city or the owners of the residential properties. Personal 

interviews with the residential owners revealed that about 35% were cleared 

because they felt the trees were not attractive enough or they wanted to plant 

a new species of tree. The remaining 47% believed the trees were not capable 

of surviving and needed to be cleared. Within the city and government 

properties such as schools, hospitals, and parks and recreational areas, much 
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care were taken to preserve the trees. Between 5% and 10% of the trees in 

these areas were completely destroyed.  About 16% of the sampled trees 

experienced height increase but canopy damage; 8% experienced stem 

damage but canopy growth; about 20% of trees suffered  minor height and 

canopy damage by <25%; 10% experienced both height and canopy damage 

between 26-67%; 8% suffered severe stem and canopy damage by >67%; 17% 

experienced minor (<25%) stem height damage but moderate (26-67%) 

canopy damage; 8% experienced moderate (26-67%) height damage but 

severe (>67%) canopy damage; and 10% experienced growth in both stem 

height and canopy diameter. The latter growth in height and canopy 

diameter among the sample trees may be attributed to tree spacing, biological 

characteristics, time and technical algorithmic issues discussed earlier.  

There were several limitations that were found in both the KBA and 

LMA in detecting tree damage. For instance, both methods were incapable of 

detecting damage of very small or understory trees next to bigger trees. They 

were also incapable of measuring damage when the bottom branches of the 

tree near the ground were broken but the top branches were left intact.   

 

c) Ice Storm Tree Damage and Resilience among Species 

 There were 31 species identified in the sample of 524 trees. Of those, 10  

species were prominent and had at least 30 trees in the randomly chosen 

sample (Table 2.4). Comparison of the pre- and post-storm LiDAR data
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revealed that species such as Pin Oaks, Sycamores, and Silver Maples with 

stem heights ranging between 13-17 m, and canopy diameters ranging 

between 13-17 m suffered minor (stem damage <10%, and canopy damage 

<25%) and appeared to be the most ice storm resistant trees in the city. 

Several Pin Oak trees gained height by 10%, and canopy diameter by 30%; 

while several others had suffered severe stem and canopy damage by >80%. 

Hackberries, Shumard Oaks, and Sweetgums had average stem heights 

ranging between 9-13 m and canopy diameters between 12-21 m. They 

suffered between 11-19% stem damage and 19-36% canopy damage. Among 

each of these species, several trees had gained some height after the storm 

while several others were severely damaged in both stem and canopy. 

American Elms, Pines, Siberian Elms, and Sugar Maples with average height 

<12 m and canopy diameter ranging between 18 to 23 m suffered most severe 

stem damage (20-36%) and severe canopy damage (36-45%) among the 

sampled trees and thus these species appeared to be the most vulnerable to 

ice storm. Analyzing the species wise variations in the magnitude of both 

stem heights and canopy damage, it is revealed that the magnitude of 

damage depends on individual tree characteristics, and other spatial 

characteristics of individual tree locations. 
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Hot Spot Analysis 

Hot spot analysis was performed for all the trees that had high (>66%) 

amount of trunk and canopy damage (Figure 2.6). A total of 11 clusters were 

found when the criteria for selecting each cluster were 100 trees within 0.8 

km. The number of trees that were damaged within each hotspot is given in 

Table 2.5.  The hot spot analysis indicates that the highest number of trees 

was damaged in the northern part (clusters 3, 8, 9, 10, & 11) of the study area 

while the central and southern (clusters 1 & 7) and the central parts (clusters 

2, 4, 5, & 6) had the similar amount of total damage. This could be attributed 

to the spatial variation of ice amounts, wind speed, slope and local edaphic 

conditions, and tree characteristics that all contribute to tree damage.  

 

Table 2.5: Number of trees damaged within each hot spot cluster. 
Cluster Number  Number of Trees 

1  558 
2  185 
3  429 
4  226 
5  186 
6  163 
7  240 
8  115 
9  177 

10 & 11  114 
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Test of Accuracy of LiDAR Aided Tree Damage Assessment 

 As previously mentioned, the accuracy of tree damage estimation via 

LiDAR data depends on accurate extraction of tree height and crown outline 

(diameter). Both KB and LM methods extracted the same maximum heights (r 

= 0.99) for individual trees. When correlated with the post storm reference tree 

heights, both the KBA and LMA extracted test heights showed very strong 

positive correlations (r=0.90 for KB; r=0.92 for LM) indicating >81% (R2) 

degree of accuracy of height measurement by the LiDAR. In the second step, 

percentage changes were computed separately for (i) the KBA extracted pre- 

and post-storm test tree heights to estimate test tree height damages using the 

KBA; and (ii) the KBA extracted pre-storm test tree heights and manually 

measured post-storm reference tree heights to the estimate reference tree height 

damages; and finally, the percent change data on test tree heights was 

correlated with the percent change data on the reference tree heights.  The 

KBA extracted test tree height change estimates showed very strong positive 

correlation with KBA-manual estimates of reference tree height change 

indicating high degree (r=0.93; R2= 0.86; RMSE=1.08m) of accuracy of KB 

method in measuring tree height damage from ice storm in urban areas. 

Similar operation was repeated for the tree height damage assessment using 

LMA. 

  The LMA extracted test tree height change estimate also showed very 

strong positive correlation (r=0.90; R2 = 0.81; RMSE= 1.3m) with LMA-manual 
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estimate of reference tree height change indicating high degree (>81%) of 

accuracy of LMA in measuring tree height damage from ice storm in urban 

areas. In the third step, pre- and post-storm canopy diameters for reference 

trees were extracted by KBA and LMA for single and grouped trees; and their 

post-storm canopy diameters were measured manually during field survey. 

As expected, the KBA had failed to extract canopy diameters for grouped 

trees. Percent change in single tree canopy diameters were computed 

separately for (i) the KBA extracted pre- and post-storm test tree canopy 

diameters to estimate the test tree canopy change using the KBA; and (ii) the 

KBA extracted pre-storm canopy diameters and manually measured post-

storm reference canopy diameters to obtain the reference canopy diameters 

change data; and finally, the test canopy diameters change data was 

correlated with the reference canopy diameters change data. The test canopy 

diameters change data showed strong positive correlations with the reference 

canopy diameters change data (r=0.85; R2=0.721; and RMSE=2.05m) 

indicating the fact that the KBA provides 72% accurate assessment of tree 

canopy damage during the ice storm. Once again, the above operation was 

repeated for the LMA of canopy diameter measurement. The percent change 

in test canopy diameter (LMA extracted pre- and post-storm canopy diameter 

of grouped trees) showed moderately positive correlation with the percent 

change in reference canopy diameter data obtained from LMA extracted pre-

storm and manually measured post-storm canopy diameter (r= 0.65; R2=0.42; 
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and RMSE=3.65m) indicating the fact that the LMA is capable of estimating 

canopy damage of grouped tree with only 42% level of accuracy.  Similar 

results were also reported by Popescu et al. (2007) who used LM method and 

separate polynomial equations to extract height and canopy diameters of 

coniferous, deciduous, and mixed tree stands in Texas forest; and achieved 

higher degree of accuracy in measuring tree heights than crown diameters. 

This variation in accuracy level may be attributed to two factors. First, the 

circular search window used in this study to identify maximum points and 

tree diameters is based on a regressed equation representing a single tree 

height and canopy diameter ration. However, in this urban study area, there 

are 25 species each with different height to canopy diameter ration. They are 

also not spatially correlated (Moran’s I = 0.001864 and Geary’s C = 0.992170) 

indicating the different species of trees are randomly grouped together in 

different parts of the city.  Hence, a single regression equation would not be 

suitable to outline canopy diameters for all of the species.  Second, the 

locations of tree stems extracted by the LMA were also somewhat distorted 

(RMSE= of 2.4 m) due to the method’s inherent assumption that the 

maximum height is the location of the stem. Although this may usually be 

true for coniferous species, it may not be so for deciduous tree species where 

the maximum height may be the height of a branch that is very far from the 

stem. Therefore, it was noticed that among the sampled trees, the accuracy 

level for damage assessment for coniferous trees were higher than deciduous 
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trees. Despite somewhat lesser degree of accuracy in crown damage 

assessment, the present study results showed that both the KBA and LMA 

separately and in hybrid form provided over 85% accurate estimation of ice 

storm height/stem damage; and 42% accurate estimation of crown damage 

for wide range of urban tree species in the City of Norman. These findings 

provided strong support to accept the proposed hypothesis underlying this 

study.     

         

Conclusion  

This study has assessed tree damage caused by December 8-11, 2007 

ice storm in the city of Norman, Oklahoma. Instead of using traditional 

methods of tree damage assessment which requires more time and man-

power, the study attempted to examine the utility of an integrated approach 

of using active remote sensing and GIS in tree damage assessment in an 

urban setting. The study used pre- and post-ice storm LiDAR data to extract 

pre and post-storm tree heights and canopy diameters using a hybrid of KB 

and LM approaches. The study was conducted based on assumptions that 

both KBA and LMA would accurately extract the height and canopy outlines 

for a given time; and that computation and analyses of change (negative or 

positive) between pre- and post-ice storm tree heights and canopy diameters 

would provide a scope of estimation of tree damage and/or growth in 

relatively less time and effort. The results have indicated that both KBA and 
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LMA methods are unique in accurately estimating tree heights; however, the 

KBA method is not capable of extracting the outlines of canopies for group 

trees with overlapping branches. Since the vegetation of this study area 

(usually as well as other urban areas) are mixed in species composition and 

contains both individual and the group trees, a hybrid of KBA and LMA is 

necessary for height and canopy damage assessment for the entire city. 

 The study has yielded some significant results. First, the uses of LiDAR 

data allowed the classification of the City trees into BSTs and MBTs and into 

individual and grouped trees.  Second, the study results show that an 

integrated LiDAR aided RS and GIS platform can effectively measure and 

map urban tree damages due to ice storm and other natural hazards.  It also 

quantifies the amount of damage that the City of Norman suffered during the 

ice storm hazard under study. Third, when tested for accuracy of tree damage 

assessment, the study results show that both KB and LM methods assessed 

tree height damages with very high (>85%) level of accuracy; and tree canopy 

damage with moderate (42%) degree of accuracy. Such difference and 

variability in the level of accuracy between height and canopy damage is 

attributed to changing tree characteristics during the pre- and post-ice storm 

periods as well as the species wise variability of tree height-canopy diameter 

ratio which has significantly affected the accuracy level of canopy damage 

assessment by the LMA. Fourth, methodologically, the study results have 

identified some weaknesses in both the KB and LM approaches of using of 
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LiDAR data for measuring tree heights and canopy sizes. For example, in the 

original study, the KBA used LiDAR data with 2 m pixel size which was 

capable of extracting tree heights of individual trees with 80% accuracy while 

that for highly dense grouped trees with less than 50% accuracy (Koukoulas 

and Blackburn, 2005). Koukoulas and Blackburn suggested that using higher 

resolution data may improve the accuracy level. In the present study, 0.3m 

pixel sized data was used and much higher accuracy level was achieved, 

suggesting that increment in pixel size and higher resolution data may 

increase the accuracy level. However, detecting small groups of 3-4 

individual trees that are very close to each other were still problematic. 

Therefore, the KBA is suitable for extracting tree heights and canopy diameter 

of individual trees and not for grouped trees; whereas, the LMA method is 

capable of detecting canopy diameter of both individual and grouped trees, 

with the latter being done with less accuracy level. Finally, the study results 

revealed that an extraction of individual tree boundaries depends on the 

selection of contour length and area/perimeter, and spatial resolution/grid 

size of the LiDAR data. It also depends on the parameters underlining the 

regression equation used for selecting search radius in the CHM by the LMA.  

 In conclusion, this study is an attempt to examine the utility of LiDAR 

data in the assessment of tree damage due to ice storm and other natural 

hazards. The study has successfully established the fact that the LiDAR 

technology is very much useful in estimating tree damage. It is yet to be 
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examined whether it can be used for assessing changes in other tree 

parameters such as tree volume, biomass, and LAI.  It is also yet to be 

determined whether a leaf-off or leaf-on condition of the trees does in fact 

affect the accuracy of the damage assessment results.  This requires further 

research and hence forms the foundation for future research.     



CHAPTER III 
 

MODELLING FACTORS AFFECTING TREE DAMAGE IN 
NORMAN, OKLAHOMA  

 
One of the most essential impacts of natural hazards on environment is 

the damage they cause to tree species composition, tree structure, and plant 

succession through uprooting, breaking branches and stems, and destroying 

flowers, fruits, seeds, and pollens. Natural hazards are commonly exogenous 

and directly affect the exposed trees. However, there are numerous 

endogenous factors that transform a tree into vulnerable or resilient to 

damage even before the occurrence of the hazard event. And the degree of 

tree damage depends upon the dynamic pressures from local geography (soil, 

elevation, and slope) and biological characteristics of trees that form unsafe 

conditions under which the hazard will cause substantial damage. Factors that 

make trees vulnerable to damage vary with species and place.  

This study examines the factors that influence tree damage from ice 

storms. It will review the existing literature on the topic to identify: “What 

factors affect tree damage and make urban trees vulnerable to ice storms?” Once the 

factors are identified, the study will attempt to formulate and test ice storm
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 tree height and canopy damage models based on field data collected within 

the City of Norman, Oklahoma. The study will highlight the factors that make 

trees vulnerable to ice storm damage.  

 

Determinants of Ice Storm Tree Damage 

Studies dealing with ice storm tree damage can be grouped into three 

categories: those focusing on climatic drivers; those emphasizing biological 

and structural characteristics of trees; and those identifying edaphic (land 

elevation, slope, soil composition, thickness, and moisture content) conditions 

of ecosystems that contribute to damage of trees. Ice storm tree damage 

research began in the early 20th century as qualitative assessment of the 

nature and severity of damage caused by wind and ice accumulation during 

two specific ice storms (Harshberger 1904; Illick 1916).  Harshberger (1904), 

who was the pioneer in ice storm research, compared the catastrophic ice 

storms of 1902 and 1904 that severely affected the vegetation in Philadelphia. 

He reported that strong wind caused more tree damage during the first ice 

storm while weak wind speed and more ice accumulation caused less 

damage to trees and vegetation in the second ice storm. 

The first quantitative assessment of ice storm tree damage began in the 

early 1920s. Since then, a series of related studies explored the impacts of ice 

accumulations on specific tree species in various geographic regions within 

the United States (Rogers 1923; Croxton 1939; Deuber 1940). Several studies 
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had focused on the impact of various characteristics of glaze on the severity, 

nature and spatial variation of tree damage. Ice accumulation, direction and 

speed of wind, and wood strength to resist the combined effects of wind and 

glaze were identified as factors affecting tree damage. Lemon (1961) noted 

that in deciduous forest environments, where annual glaze is a recurring 

feature, damage occurs in a successive manner in accordance with the 

amount of ice accumulation which is directly proportional to the tree surface 

area produced by numerous small twigs and branches. He observed that 

accumulation of 0.6 - 1.3 cm causes “conspicuous” breakage in the faulty 

limbs of small branches and heavier accumulation (>2.5 cm) with gentle wind 

or low to moderate accumulation (1.3-2.5 cm) with strong wind causes 

“conspicuous” breakage of larger branches. Lemon also noted that the burden 

of falling broken branches of large trees on their younger or shorter under 

story trees can break off their stems (Lemon 1961). If the ground temperature 

at tree breast height (1.37 m) is above freezing and the tree tops are covered 

with heavy load of accumulated freezing ice, the trees cannot stand the load 

and becomes uprooted (Giuliano 2008). Review of the existing literature 

suggests that greater ice accumulations increase the weight of ice, which 

causes breakage of their branches when wood strength is exceeded. Strong 

wind during ice storms can also break tree stems and branches, and uproot 

trees. In order to examine the impact of wind speed and ice accumulation on 

damage to trees, it is hypothesized that (H1): the magnitude of tree damage 
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(percent change in tree height and crown diameter) of tree damage is positively 

related to the wind speed (WIND) and thickness of ice accumulation (ICE) during the 

storm.     

Several studies have noted that tree species and characteristics such as 

stem diameter, branch diameter, and branch angle influence the extent of 

their damage from ice storms. Among species, Black Cherry, suffered the 

most damage while Eastern Hemlock was found to be the most resistant to 

ice storms. McKeller (1942), from his examination of pine trees in the Georgia 

Piedmont region, observed that heavy foliage intercepts and holds large 

amount of ice and causes tree damage, and that there is a marked difference 

among Longleaf (Pinus palustris Mill), Loblolly (Pinus taeda L.) and Slash pines 

(Pinus elliottii Engelm) in terms of breaking trunks and limbs, bending and 

uprooting. He also noted that Loblolly Pines are most resistant to ice storms 

followed by Slash Pines and Longleaf Pines; and that the Slash Pines suffer 

the most broken limbs and bending; and Longleaf Pines are mostly uprooted.   

Abell (1934) examined the impacts of ice storms upon the hardwood 

forests in the Appalachian region. He reported that tree damage varied by 

tree sizes: larger trees lost branches within the crown. On the other hand, 

smaller trees were broken off below the crown; open grown shade trees 

suffered greater damage than fruit trees; and even crown canopies were more 

damaged than the irregular canopies. He found that White Pine and Hemlock 

were highly resistant to ice storms and suffered much less damage than 
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Scarlet Oak; and Red Maple and Black Locust were least resistant to ice storm 

damage.  

Tree age also affects the degree of tree damage. Downs (1938) studied 

the impacts of ice storm on softwood tree species (Birch-Beech-Hemlock) in 

Pennsylvania and New York. He found that secondary growth (21-40 years) 

and older growth trees (>40 years) with larger crown size suffered the 

greatest percentage of damage (21-39 %) because of presence of decay and 

decrease in flexibility of stem and limbs. Much less tree damage (7%) in 

young growth trees (<20 years) was attributed to lack of decay. Damages on 

smaller trees were due to “falling upon them of ice-weighted branches and 

tops of larger trees” (Downs 1938). Croxton (1939) who studied tree damage 

from ice storm in Central Illinois also reported that growth habit of trees in 

terms of the amount surface occupied by the branches determined the degree 

of damage from ice storms. The larger branched trees suffered greater 

damage due to accumulation of more ice than the smaller branched trees 

(Croxton 1939). 

Crown form (shape, surface area, and angle of branching) also 

influences the extent of tree damage by ice storms. Trees with cylindrical 

crown suffer less stem injury than those with conical crowns while long 

symmetrical crowns suffer less injury than short one-sided crowns (Croxton 

1939). Crown surface area, which determines the amount of ice accumulation, 

influences the degree of tree damage from ice storm. Bruderle and Stearns 
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(1985) noted that gymnosperm conifers with cone shaped crown and smaller 

surface area suffered less damage from ice storms. However, as a group, 

coniferous softwood species are highly susceptible to ice damage than 

hardwood trees (Whitney and Johnson 1984; Warrillow and Mou 1999). The 

broad crown angiosperms with larger surface area suffered greater damage 

from ice storms (Hauer et al. 1993).   

The angle of branching by determining the crown surface area, also 

determines the amount of glaze exposure. Branching at 90o angle (horizontal 

branching), which facilitates the growth of numerous small twigs and 

branches, produces large surface area that increases the glaze exposure and 

ice accumulation and thus, increases the ice damage (Bruederle and Stearn 

1985). Wherein the horizontal branching is suppressed, branches tend to grow 

perpendicular with acute angles creating less crown surface area that hinders 

ice deposits and cause less tree damage (Lemon 1961; Bruederle and Stearn 

1985).    

Physical resistance, the ability of an individual tree to withstand 

bending before collapse under ice loading, affects the degree of tree damage 

from ice storm. The resistance capacity is related to wood specific gravity and 

moisture content and any change in either of these two parameters can 

reduce the resistance capacity of tree (Panshin and de Zeeuw 1970; Bragg et 

al. 2003). Within the same species, wood specific gravity varies with tree age 

and along the dimension of an individual tree: young tree and bole wood in 
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the crown have lesser specific gravity than mature tree and bole wood at the 

tree base (Gibson et al. 1986).  Tree damage occurs when the weight of the 

accumulated ice exceeds the maximum bending capacity (or resilience) of the 

branches, boles, and roots (Hauer et al. 1993; Petty and Worrell 1981; Peltola 

et al. 1999; Bragg et al. 2003). Tree growth form also affects the tree’s 

maximum bending capacity and thus determines the degree of damage from 

ice storm. Heavy accumulation of ice on faulty, disease affected weak limbs 

increases the degree of tree damage from ice storms. The older insect affected 

decayed trees, with less wood specific gravity and more moisture content, 

suffer severe damages than younger and healthy trees (Bruederle and Stearn 

1985; Hauer et al. 1993). From the above literature, it is revealed that 

biological characteristics of trees such as species, tree age, crown shape, angle 

of branching affect the extent of tree damage from ice storm. To observe the 

effect of tree characteristics on ice storm tree damage, it is hypothesized here 

that (H2): the magnitude of tree damage is positively related to main stem/trunk 

diameter (SDBH), branch diameter (BRANCH), pre-ice storm crown diameter 

(CROWN), and angle of branching (BANGLE) of trees.  

Several local edaphic conditions such as elevation, slope, soil depth, 

soil texture, and soil moisture content contribute to uprooting while tree 

spacing and distance from forest edge also significantly affect the magnitude 

of understory tree damage during ice storms. Trees located at the lower 

elevation of the wind-ward side suffer greater ice damage because of stronger 
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wind and larger ice accumulation compared to those located at higher 

elevation particularly on the lee-ward side of mountain slopes (Nicholas and 

Zedaker 1989).  

Trees on steep slopes are more susceptible to ice storm damage than 

those on the plains (Bruederle and Stearn 1985; Seischab et al. 1993). Thin soil 

layers on steep slope support only shallow-rooted trees that are more 

vulnerable to ice damage (Warrillow and Mou 1999). In contrast, thick soil 

layers at the foot hills support deep rooted more ice resistant trees that suffer 

less tree damage.  The canopy exposure to ice storm is greater on steep slopes. 

Trees on steep slopes develop asymmetrical crowns that receive unbalanced 

ice loads which causes more damage to them. Trees on top of slopes and 

valley bottoms receive balanced ice loads and suffer less damage (Warrillow 

and Mou 1999). In the wind-ward side of mountains, where wind speed is 

stronger, trees suffer more glaze damage than those in the lee-ward side with 

weaker wind speed.  In order to examine the effect of slope and elevation of 

land on ice storm tree damage, it is hypothesized here that (H3): the magnitude 

of tree damage is positively related to slope at the tree locations.  

 Several soil characteristics such as soil depth, texture and moisture 

directly affect root area and contribute to tree uprooting during natural 

hazards. Thin clay rich soil, which often gets hard when dry, hinder 

penetration of tree roots making trees vulnerable to uprooting during windy 

storms (Lindemann and Baker 2002; Gratkowski 1956; Everham and Brokaw 
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1996). During ice storms, if the ground temperature is above freezing, the 

freezing rain droplets melt as they touch the ground; and the ice melt water 

percolates through the top soil increasing soil moisture content that decreases 

soil shear strength. Decreasing shear strength contributes to uprooting of ice 

loaded trees (Bromley 1939; Putz et al. 1983). To examine this relationship 

between soil depths, texture and moisture content, it is hypothesized here 

that (H4): the magnitude of tree damage is negatively related to soil depth and 

positively related to soil clay and moisture contents.  

Distance between two trees in urban neighborhoods determines the 

risk of falling of larger and higher trees on understory short young trees 

causing their damage during ice storms. Closely spaced trees suffer more 

damage than widely spaced trees located individually away from other trees 

(Whitney and Johnson 1984). To examine the effect of distance on the 

magnitude of tree damage, it is hypothesized that (H5): the magnitude of tree 

damage is inversely related to distance between trees in an urban neighborhood.  

For this study, an ice storm tree damage model is proposed for the City 

of Norman to examine the above hypotheses. The proposed model is a causal 

one that is based on input, status and output variables (Figure 3.1). The model 

specifies the maximum speed of wind (WIND) and the thickness of ice 

accumulation on trees (ICE) as two input variable directly representing the ice 

storm hazard. Variables representing tree biological characteristics, edaphic 

conditions, and human induced location and spacing of trees are considered  
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Figure 3.1: Ice storm tree damage model for the City of Norman, Oklahoma. 

 

as status variables that are endogenous and create unsafe conditions for trees 

and make them vulnerable to damage during ice storms. Tree biological 

characteristics included in the model are: pre-storm crown diameter 

(CROWN) which determines the amount of ice that could have accumulated 

on a tree; stem diameter at breast height (SDBH); branch diameter above 

breast height (BRANCH) which also determines the amount of ice 

accumulation on branches; and the angle of branching (BANGLE) indicating 

tree crown shape. Land slope (SLOPE), soil depth (SDEPTH), soil texture in 

terms of average percentage of clay content (CLAY), and soil moisture 

content (MOISTURE) will be included in the model to represent edaphic 

conditions of the tree locations. The last status variable to be included in the 

proposed model is the distance between the sample trees and their 

neighboring trees in an urban setting (DISTANCE). The magnitude of tree 
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damage is the output of ice storm and the dependent variable in the model. 

Three separate dependent damage variables were created to represent 

percent change (-) or damage: in tree height (HEIGHT); in crown diameter 

(CROWN), and in average tree damage (AVERAGE).  

The model assumes that the city is covered with large number of trees 

representing different species, ages, heights, stem and branch diameters, 

canopy shapes and branching patterns. The city has several types of soils and 

undulated terrains that form variable slopes of land. The trees are located 

around urban dwellings, and near and above the natural creeks that traversed 

the city, and on an undulated surface. Thin, moist clay rich soil on steeper 

slopes near the creeks, municipal sewage drains, as well as on undulated 

surface may have accelerated the process of tree bending and uprooting. 

Among the closely spaced urban trees, breakage of older large tree stems and 

branches would have broken understory young trees.  

 

Study Area, Data, and Methodology 

A total of 524 randomly sampled trees were selected by dividing the 

study area into 200 grid blocks.  The grid blocks measured 290 x 290 m and 

within each block, 3 to 4 random tree samples (with a minimum distance of 

60 m) were taken (Figure 3.2).  The approximate location of each tree was 

recorded using a Trimble GeoExplorer 2005 series GPS unit. Data on two 

separate dependent damage variables (HEIGHT, CROWN) were extracted  
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through comparison of pre- and post-storm LiDAR data of the study area (as 

discussed in Chapter III). And average tree damage (TREE) was computed by 

calculating the average of percentage of height and canopy damage. Data on 

wind speed was recorded by Oklahoma Mesonet for December 8 (beginning 

day) and December 11 (ending day) for Norman and surrounding cities and 

counties within 250 km in all directions from the city; and for those two days, 

the maximum wind speeds for the nearest 15 counties were used and 

interpolated to estimate the variation of wind speed within the study area. 

Thus, the maximum wind speed ranged from 32 to 56 kmh from northeast to 

southwest corner of the area. The data on ice accumulation were also not 

recorded at the time of storm because all the instruments were frozen during 

the storm. However, data on the amount of freezing rain that occurred on 

December 8-11, 2007 in the City of Norman and its surrounding 

cities/counties within 250 km in all directions were available and used to 

interpolate the thickness of accumulate ice on sample trees. Also, the Touring 

Video Network reported 6.22 cm of freezing rain in Norman during 

December 8-11, with temperature of -6.67OC which caused 2.54 cm of ice 

accumulations on trees. Reporters of NSW and Norman MESONET reported 

that 0.635 to 1.27 cm accumulation caused breakage of small branches and 

weak limbs; 1.27 to 2.54 cm accumulation caused breakage of large branches; 

and several large trees were uprooted after bending under the weight of 

accumulated ice. The ice storm approached the city from the northeast side 
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where heavy accumulation (about 2.54 cm) caused uprooting of large number 

of trees. Ice accumulation declined toward the southwest end of the city, 

where about 0.635 to 1.27 cm ice accumulation resulted in moderate to severe 

tree damage. Each of the sampled trees located in the north and northeastern 

part of the study area was assigned 2.54 cm of ice accumulations.  Trees 

located in the central part of the study area were assigned 1.27 cm of 

accumulations and those in the southern part were assigned 0.635 cm of ice 

accumulation. During field surveying, branch angles, and branch sizes were 

also recorded for the sampled trees. 

Data on pre-storm crown diameter (CROWN) were extracted from the 

pre-storm LiDAR data. Stem diameter (SDBH), branch diameter (BRANCH), 

angle of branching (BANGLE) measured using a Brunton compass, and 

distance (DISTANCE) was measured during the field survey. The digital 

elevation model (DEM) for the study area was obtained from the City of 

Norman’s GIS Department. The DEM was used to calculate the slope 

(SLOPE) of the study area in ENVI v. 4.4 software platform and were 

recorded for each sampled tree. Soil depth (SDEPTH), clay content (CLAY), 

and moisture content (MOISTURE) were extracted from the USDA’s 

SSURGO database for the county. The database was created based on 1 soil 

sample for every 10 acres of land (Oklahoma Soil Scientist). All the data were 

entered into ArcGIS v. 9.3 software platform as well as SPSS software to 

create the model.  
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 Bi-variate correlation statistics were computed by taking percent tree 

height and canopy damage as dependent variables against 10 independent 

variables identified in the review of literature. Based on the directions and 

magnitude of correlations as indicated by the correlation coefficients, the 

proposed five hypotheses underlying the study were tested.  

The proposed models are assumed to be linear in which the variation 

in the degree of ice storm tree damage (Y) is influenced by the independent 

variables. A multiple regression model was used to examine the models. The 

model is represented as follows: 

     Y = a + b1X1 +b2X2+……..+ξ  

The models were tested and key factors affecting tree damage during the 

December 8-11, 2007 ice storm were identified.  The models were created (for 

the entire study area samples as well as for each of the 10 predominant tree 

species) to find out what conditions make trees more vulnerable or resilient to 

ice storm damage.   

 

Results 

a)  Determinants of Tree Damage during Ice Storms 

Determinants of tree damage during ice storms in Norman, Oklahoma 

fall into three categories: climatic, biotic, and edaphic and locational 

characteristics. In this section, each factors affecting the magnitude of tree 

damage during and after ice storms are examined individually and based 
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upon the findings of field research, hypotheses relating to climatic, biotic, 

edaphic and location factors are tested.  

i) Climatic Factor 

          The maximum speed of wind (WIND) and the thickness of ice 

accumulation (ICE) were taken as two climatic factors inducing tree damage 

during the December ice storm in Norman. The interpolated maximum wind 

speed data showed that trees in the northeastern section of the study area 

experienced 34 kmh wind; and the wind speed increased gradually to 42 kmh 

toward the south and southwest section. The interpolated data also showed 

2.54 cm of ice accumulation on sample trees located in the northeastern part 

of the study area and the thickness decreased gradually toward southwest 

and southern part of the city.  

The maximum wind speed showed significant but moderate positive 

correlation (r =0.47) with the percent change in tree heights (HEIGHTS); and 

moderate positive correlation (r =0.51) with the percent change in tree crown 

diameter (CROWN). This relationship is expected because the wind speed 

was not stronger like a hurricane to cause more damage. Relationships 

between wind speed and tree height and canopy damage varied among tree 

species. The sample data contained 10 species of trees that were predominant 

in the study area. Among those, both height and canopy damage of American 

Elms, Pines, Hackberry, Pin Oak,  Siberian Elms, Silver Maples, Sweetgums, 

and Sycamores showed significant and moderate positive relationships with 
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the wind accompanying the ice storm indicating the fact that these species 

suffered much damage due to the combined effect of wind and ice 

accumulation. Shumard Oak and Sugar Maple trees showed weak positive 

correlations with the wind speed indicating that these species were stronger 

trees that suffered less damage due to wind effect.  

The thickness of ICE showed significant strong positive correlation (r= 

0.61) with the percent change in tree heights (HEIGHT); and strong positive 

correlation (r=0.60) with the percent change in tree canopy diameter (Table 

3.1). Relationships between the thickness of ice accumulation and tree height 

and canopy damage varied among tree species. Among those, both height 

and canopy damage of American Elms, Pines, Shumard Oaks, Siberian Elms, 

Silver Maples, Sweetgums, Sycamores, and Sugar Maples showed significant 

and very strong positive relationship with the thickness of ice accumulation. 

In contrast, height and canopy damage of Hackberries and Pin Oak trees 

showed significant but moderate positive correlation with the thickness of ice 

accumulations (Table 3.1).  

It is to be noted here that during an ice storm, tree height can be 

damaged in two ways: first, strong wind and associated freezing rain during 

the storm can bend and break the top part of the tree stem causing decrease in 

their height; and second, accumulations of ice on top tree branches can break 

those branches and thereby reduces the tree height. The extent of canopy 

damage is directly caused by strong wind and greater among of ice  
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accumulated on it. In this regard, the pre-storm canopy diameter (size of tree 

surface area) plays an important role. Large size canopy allows more wind 

exposure and ice accumulations which in turn cause breakage of limbs and 

branches that reduce the canopy size. Considering the magnitude and 

direction of relationships (correlation coefficients), the first hypothesis is 

accepted.    

ii) Biotic Factors   

Pre-storm crown diameter (CROWN), stem diameter at breast height 

(SDBH), branch diameter (BRANCH), and angle of branching (BANGLE) 

were the biotic factors examined in this study. These factors represent several 

fundamental tree characteristics that indicate tree age (crown, stem and 

branch diameter), and shape of crown (angle of branching) and surface area 

(crown diameter). While individual tree crown, branch diameter, and branch 

angle determines the amount of ice loading and accumulations during the 

storm, stem diameter controls the tree bending elasticity under ice loading. 

Older insect infected faulty stems would facilitate ice storm tree damage.  

The sample data collected from LiDAR and during the field study in 

Norman showed significant relationships between tree characteristics and 

tree height and canopy damages. In particular, crown diameters (CROWN) 

showed significant but moderately strong positive correlations with both tree 

heights (r=0.47) and canopy damages (r=0.45).  Stem diameters showed 

strong positive correlations with tree heights (r=0.55), and canopy damages 
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(r=0.55). Branch diameters showed significant moderate positive correlations 

with tree heights (r=0.44), and canopy damages (r=0.42). However, branch 

angles showed significant strong positive correlations with both tree heights 

(r=0.67) and canopy damage (r=0.66). Such relationships between tree biotic 

characteristics and height and canopy damage were also observed among all 

10 species in the study area except for Pine trees for which the crowns and 

stem diameters did not show any significant correlations with heights and 

canopy damages (Table 3.1).  These relationships were expected because, 

larger crown area, larger stem, branch thickness, and branch angle actually 

facilitates the accumulations of larger amount of ice on trees; and larger loads 

of ice causes breakage of branches and limbs on both tree tops and canopies. 

Based on the magnitude and direction of relationships expressed by the 

correlation coefficients, second hypothesis is accepted in this study.      

iii) Edaphic Factors  

Land slope gradient (SLOPE), soil depth (SDEPTH), soil clay content 

(CLAY), and soil moisture content (MOISTURE) at sample tree locations were 

selected as key edaphic factors that influences tree damage during ice storms. 

These factors showed variable degree of impacts on tree height and canopy 

damage. Steeper slope of land, which accelerates soil erosion at tree locations, 

make trees more vulnerable to damage during ice storms because trees on 

slope are usually tilted (inclined) and accumulation of ice on branches and 

stems creates an unbalanced weight on one side which increases the chance of 
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uprooting trees during and after the storm. This impact of slope on tree 

height and canopy damage is reflected in significant but moderately positive 

correlations between slope and tree height (r=0.49) and canopy (r=0.47) 

damage. Among species, height and canopy damage of American Elms, 

Pines, Silver Maples, and Sugar Maples showed significant but weak to 

moderate (r = 0.30 to 0.50) correlations with slope; while those of Hackberries, 

Pin Oaks, Shumard Oaks, Siberian Elms and Sweetgums showed strong 

positive (r >0.50) correlations with the slope. This variability in relationship is 

expected because of the near flatness and slightly undulated topography of 

the study area. Several sample trees, located near the small creeks and on top 

of undulated surfaces with somewhat minor to moderate steep slopes, 

coincidentally suffered major damage and uprooting; and hence yielded such 

moderate positive correlations with height and canopy damage. 

The study area is comprised of six types of soil, each with variable 

thickness of top soil layer. Each soil type has a uniform depth throughout the 

study area unless, as evidenced in numerous sample tree locations, the soil 

thickness is modified by human activities and decreased due to rainfall 

erosion since the last SSURGO soil survey was undertaken by the USDA. Soil 

depth (SDEPTH) had inversely affected tree damage in the study area. Depth 

of soil showed significantly but moderate inverse correlation with both 

decreased tree height (r=-0.49), and canopy diameter (r=-0.47). It is to be 

noted here that shallow soil layers make trees more unstable and vulnerable 
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to uprooting during ice storms and contributes to both tree height and 

canopy damages. Thickness of soil layer had significantly and inversely 

affected all 10 tree species in study area.  

Percent of clay content in soils also depends on and varied with soil 

type. Each soil type has a specific clay content which is consistent throughout 

the area occupied by that soil, and may occasionally vary due to local changes 

in slope and level of erosion. In the study area, soils are variably rich in clay 

(13-64%) content soil clay content and had some minor impact on tree 

damage during ice storm. In this study, in order to account for the effect of 

variability of range between the minimum and maximum clay content, an 

average percent of clay content (CLAY) was computed. The average percent 

of clay content of soil showed moderate positive correlation with the tree 

height damage (r=0.42) and canopy damage (r = 0.46) from ice storm. Among 

species, in cases of Pine, Hackberry, Shumard Oak, and Sweetgum trees, soil 

clay content showed strong positive correlations with tree height damage and 

canopy damage (r ≥0.60); whereas in American Elms, Siberian Elms, Silver 

Maples, Pin Oaks, Sycamores, and Sugar Maples, it showed weak to 

moderate positive correlations (r ≤ 0.50) with tree height and canopy damage. 

The extent of height and canopy damage in Pin Oak trees are not related to 

soil clay content. These variable relationships between clay content and tree 

damages may be attributed to root systems and tolerance of each species to 

clay and soil drainage system. For example, roots of American Elms are 
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greater in radius, and shallow in depth, and can have tap roots in dry areas; 

they grow better on moist but well drained soil and do not favor clay soil. 

Similarly, Hackberry, Shumard Oak, Sweetgum species do not thrive well on 

poorly drained clay rich or mud soils. It appears that trees that do not thrive 

well on poorly drained soils would not thrive well on clay soils which are 

poorly drained. Poorly drained clay soils gets hard when dry, and hinder  

penetration of tree roots into deeper soils, and make tree roots shallow and 

wide spread and vulnerable to uprooting during windy ice storms 

(Lindemann and Baker 2002; Gratkowski 1956; Everham and Brokaw 1996).   

     During the ice storm, if the ground temperature rises above freezing, 

the freezing rain droplets melt as they touch the ground; and the ice-melt 

water percolates through the top soil increasing soil moisture content that 

decreases soil shear strength. Decreasing shear strength induces uprooting of 

ice loaded trees (Putz et al. 1983). In the study area, there were five soil types 

each with variable pre-storm soil moisture contents. During the ice storm 

they became wet, and thin, moist clay soils induced tree uprooting. Soil 

moisture content (MOISTURE) also showed significant weak positive 

correlations with both tree height (r = 0.28) and canopy (r =0.32) damage. 

Such weak relationships were also evident in all 10 tree species which was 

expected because the soil moisture content for each soil type was uniform for 

all sample trees located in that soil category and the magnitude of tree height 

and canopy damage varied among the sample trees within that soil.   
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     The correlation results suggest that four edaphic factors significantly 

contributed to tree height and canopy damage caused by the ice storm under 

consideration. However, the magnitude of relationships indicated by the 

correlation coefficients varied because of variation in tree species, and their 

adaptive capability with the edaphic conditions examined here. Based upon 

the direction and magnitude of relationships between land slope, soil depth, 

soil texture, and soil moisture content with tree height and canopy damage, 

the third and the fourth hypotheses are accepted.  

iv) Location Factor  

The average distance between a sampled tree and its nearest 

neighboring trees is the single locational factor examined in this study that 

may have contributed to tree damage during the ice storm under 

consideration. Once loaded with large quantity of freezing ice, that exceeds 

the tree’s wood resistance capacity, the branches and stems of taller trees 

break down and fall on nearest understory shorter trees, and damage their 

stems and branches. In this study, the average distance between the sample 

tree and its nearest neighbors showed significant moderately negative 

correlations with tree height (r = -0.50) and canopy (r = -0.51) damage 

indicating that lower the distance between trees, higher  the percent of tree 

damages during ice storm. All major tree species showed moderate to strong 

negative correlations with distance factor (Table 3.1). In an urban area like the 

City of Norman, such relationship is expected because residents have planted 
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individual trees in their yards and along the boundary fences for ornamental 

purposes and those trees may not always be damaged by their nearest trees. 

However, among group trees in the study area, breakage of ice loaded 

branches of some larger trees damaged the trunks and canopies of their 

closest under story trees. Hence, based on the direction and magnitude of 

correlation of distance with tree height and canopy damage, the hypothesis 5 

is accepted.  

 
b) Modeling Tree Damages during an Ice Storm 

i) Test of Multi-collinearity & Selection of Final Independent Variables 

Using the SPSS program, three sets of multiple regressions were 

computed taking the percent change in tree height (HEIGHT), tree crown 

(CROWN) and total tree damage (TREE), computed as an average of height 

and canopy damage of 524 sample trees, as three separate dependent 

variables against 11 independent variables identified in priori model (Figure 

3.1). The independent variables were tested for multi-collinearity using 

simple bi-variate correlation statistics and strongly correlated (r >= ±0.50) 

variables were excluded from modeling.  

The maximum speed of wind (WIND) and the accumulation of ice 

(ICE) was weakly correlated among themselves and with all other 

independent variables and hence, included in the models (Table 3.2). Tree 

crown diameter (CROWN) was weakly correlated with branch angle, and  
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strongly correlated with stem diameter (SDBH), and branch diameter 

(BRANCH); the latter two were also strongly correlated, and hence, excluded 

from the models. Both crown diameter and branch angle would indicate the 

total surface area for ice accumulation and they were not strongly correlated. 

Hence, they were included in the models. Land slope (SLOPE) and soil depth 

(SDEPTH) were weakly correlated with all other variables, and therefore, 

included in the models. Soil average clay content (CLAY) was strongly 

correlated with the soil moisture content (MOISTURE). Since clay soils are 

generally moist, average clay content alone would account for any impact 

that soil moisture may have on tree damage. Therefore, soil moisture content 

was eliminated from the models. The distance (DISTANCE) variable was 

weakly correlated with all other independent variables and it was included in 

the models. Thus, a set of eight independent variables were finally selected 

for modeling  

ii) Tree Height Damage Model  

Stepwise multiple regression analysis of eight independent variables 

representing the climatic, biotic, edaphic and location factors have explained 

72% of the total variation in the percent of tree height change due to the ice 

storm. Among the independent variables, the thickness of ice accumulation 

has emerged as the most important predictor (based on standardized β value) 

of tree height damage and was followed by branch angle, pre-storm tree 

crown diameter, and maximum wind speed. Among the edaphic factors, soil
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depth has emerged as the most important predictor with negative influence 

on tree height damage; both soil clay content and slope contributed positively 

to tree height damage. Finally, the distance from the nearest neighboring 

trees also exerted negative influence to tree height damage model (Table 3.3, 

Col. 1).  

Stepwise, the biotic variable, the branch angle (BANGLE) entered the 

model first and explained 38% of the total variance of tree height damage due 

to ice storm. In the next two steps, the thickness of ice accumulation (ICE)   

and the pre-storm crown diameter entered the model and explained 

respectively 15% and 7% of the total variance. In the fourth step, the second 

climatic variable, maximum wind speed (WIND) entered the model and 

explained an additional 5% of the variance. In the next four steps, soil depth 

(SDEPTH), distance from the nearest tree (DISTANCE), average of clay 

content of soil (CLAY), and land slope (SLOPE) entered the model and 

explained respectively 3%, 2%, 2%, and 1% of the total variance in tree height 

damage.  

In the next stage of data processing, multiple regression analyses were 

employed separately for each of the 10 species included in the tree samples. 

The tree height damage model (Table 3.3) for American Elms has explained  

80% (adjusted R2) of the total variance; tree crown diameter, maximum wind 

speed, thickness of ice accumulation, and distance emerged as the most 

important predictors that explained respectively 67%, 6%, 4%, and 3% of the 
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total variance in tree height damage. For Pine trees, the multiple regression 

analysis explained 70% (adjusted R2) of the total variance; average soil clay 

content, branch angle, and wind speed appeared as the most important 

predictors contributing respectively 51%, 12% and 7% of the total variation in 

tree height damage. For Hackberry trees, the model explained 78% of the total 

variance in their height damage due to ice storm; and distance from the 

nearest tree, crown diameter, and branch angle appeared as important 

predictors contributing respectively 58%, 21% and 2% of the total explained 

variance. For Pin Oak trees, the multiple regression analysis explained about 

84% of the total variation; and branch angle, maximum wind speed, and 

slope, emerged as important predictors contributing respectively 72%, 8%, 

and 4% of the total variation in their height damage during the ice storm. For 

Shumard Oak trees, the model explained 74% of the total variance; and 

sequentially, independent variables such as branch angle, distance, soil 

depth, crown diameter, slope, thickness of ice accumulation,  and average 

clay content of soil entered the model and explained respectively, 52%, 10%, 

4%, 3%, 2%, 2% and 1% of the total variance of tree height damage. Thickness 

of ice accumulation, branch angle and soil depth, contributing respectively 

62%, 13% and 3% of the total variance (adjusted R2 =0.78) emerged as the 

principal causes height damage among Siberian Elms trees.  

The thickness of ice accumulation, branch angle, maximum wind 

speed, distance from the nearest trees, slope and average clay content 
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contributed respectively, 42%, 16%, 5%, 3%,, 3% and 2% of the total variance 

in ice storm height damage among the Silver Maple trees. Again, the branch 

angle, distance, and thickness of ice accumulation, explaining respectively 

75%, 8% and 5% of the total variance (adjusted of R2 = 0.88), appeared as the 

major contributors to height damage among Sweetgum trees during the ice 

storm. The pre-storm crown diameter, slope and thickness of ice 

accumulation contributed respectively 65%, 9% and 3% of the total variance 

explaining the ice storm height damage among Sycamore trees. Finally, the 

branch angle, crown diameter, distance, and soil depth appeared to be best 

predictors of ice storm height damage among the Sugar Maple trees. These 

variables respectively explained 64%, 16%, 5% and 2% of the total variance.   

iii) Tree Canopy Damage Model   

Multiple regression analysis of eight independent variables have 

explained 71 percent of the total variation in the percent of tree canopy 

damage due to the ice storm. Among the independent variables, thickness of 

ice accumulation has emerged as the most important predictor (based on 

standardized β value) of canopy damage, followed by branch angle, 

maximum wind speed, pre-storm, crown diameter, average clay content of 

soil, and slope. Likewise in tree height damage assessment, soil depth and 

distance variables have exerted negative influence while average soil clay 

content, and land slope exerted positive influence on the tree canopy damage 

during the ice storm (Table 3.4, Col. 1).  
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When employed a stepwise multiple regression, the climatic variable, 

thickness of ice accumulation (ICE) entered the model first and explained 37% 

of the total variance of tree canopy damage due to the storm. In the next three 

steps, branch angle (BANGLE), maximum wind speed (WIND), and distance 

from the nearest trees (DISTANCE) entered the model and explained 

respectively 15% 9% and 4% of the total variance. In the fifth step, the pre-

storm crown diameter (CROWN) entered the model and explained an 

additional 2% of the variance. In the next three steps, soil depth (SDEPTH), 

average clay content (CLAY), and slope (SLOPE) entered and explained 

another 4% of the total variance in tree canopy damage.  

Multiple regression analyses of 10 tree species data on canopy damage 

also revealed some important comparative results. The tree canopy damage 

model for American Elms has explained 77% (adjusted R2) of the total 

variance; pre-storm crown diameter, branch angle and the thickness of ice 

accumulation emerged as important predictors explaining respectively 55%, 

15%, 7% of the total variance in canopy damage. For Pine trees, the model 

explained 77% (adjusted R2) of the total variance; the maximum wind speed, 

average clay content of soil, soil depth, and slope  appeared as the most 

important predictors contributing respectively 46%, 22%, 7%, and 3% of the 

total variation in tree canopy damage. For Hackberry trees, the model 

explained 92% of the total variance in canopy damage due to ice storm; and 

the branch angle, pre-storm crown diameter, average clay content of soil, soil   
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depth, and maximum wind speed explained respectively 62%, 18%, 7%, 2% 

and 2% of the total variation. 

For Pin Oak trees, the multiple regression analysis explained 72% of 

the total variation, and branch angle, maximum wind speed, crown diameter 

and the thickness of ice accumulation emerged as important predictors 

contributing respectively 54%, 9%, 4%, and 5% of the total variation in their 

canopy damage. For Shumard Oak trees, the model explained 77% of the total 

variance; sequentially, variables such as the tree branch angle, distance, 

thickness of ice accumulation, and crown diameter entered the model, and 

explained respectively, 59%, 10%, 6%, and 2% of the total variance of tree 

canopy damage. The thickness of ice accumulation on trees, soil depth, and 

the tree branch angle are three most important predictors of canopy damage 

among the Siberian Elms trees as they contributed respectively 67%, 12% and 

4% of the total variance (adjusted R2 = 0.83). The branch angle, thickness of 

ice accumulation, distance from nearest trees, land slope, and maximum wind 

speed contributing respectively, 35%, 13%, 8%, 7%, 4%,  and 2% of the total 

variance in ice storm canopy damage among the Silver Maple trees. The tree 

branch angle, thickness of ice accumulation, and distance from nearest trees  

respectively explained 69%, 10% and 5% of the total variance (adjusted R2 = 

0.84), and thus, appeared as major contributors to canopy damage among 

Sweetgum trees during the ice storm. Pre-storm crown diameter, slope, 

distance, average clay content of soil, and branch angle contributed 
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respectively 56%, 6%, 3% , 3%, and 2% of the total variance explaining the ice 

storm canopy damage among Sycamore trees. Finally, the branch angle, and 

distance emerged as the best predictors of ice storm canopy damage among 

the Sugar Maple trees as these variables explained respectively 67% and 10% 

of the total variance.  

iv) Tree Damage Model  

The sampled trees have suffered variable magnitude of damage during 

the ice storm in the study area. While some trees suffered major height 

damage with much less canopy damage, others suffered minor height 

damage and major canopy damage, and yet some others did not suffer any 

damage at all and even experienced both height and canopy increase. In 

order to assess an overall tree damage during the ice storm under 

consideration, an average of tree height and canopy damage was computed 

and regressed against the eight independent variables (factors) affecting tree 

damage (Table 3.5). The model explained 76% of the variation in average tree 

damage during the ice storm; the thickness of ice accumulation and tree 

branch angle emerged as two most important predictors contributing about 

40% and 16% of tree damages during the ice storm. In the next six steps, 

maximum wind speed, pre-storm crown diameter, depth of soil, distance, 

average clay content of soil, and slope entered in the model and explained 

respectively about 8%, 4%, 3%, 2%, 1% and 1% of the tree damage. Both the 

depth of soil and distance variables exerted negative influence whereas tree  

 97 
 





crown diameter, slope, soil clay content have had their positive influence on 

the tree damage during the ice storm.   

Among species, pre-storm crown diameter, thickness of ice 

accumulation, branch angle, wind speed, and distance from the nearest trees 

contributed respectively 68%, 10%, 4%, 2% and 2%  (adjusted R2 = 0.86) to the 

explained variance of ice storm damage of American Elms trees in the study 

area. Average clay content of soil, maximum wind speed, soil depth and tree 

branch angle explained about 46%, 22%, 6%, and 3% respectively of the total 

variation  (adjusted R2 = 0. 77) in ice storm damage of Pine trees in the study 

area. Among the Hackberry species, branch angle, pre-storm crown diameter, 

distance from neighboring trees, and average clay content of soil explained 

about 63%, 13%, 12% and 2% of the total variation (adjusted R2 = 0.89) of tree 

damage during the ice storm. The branch angle, maximum wind speed, 

thickness of ice accumulation, and slope explained about 69%, 10%, 2%, and 

2% of the total variance (adjusted R2 = 0.83) of ice storm damage of Pin Oak 

trees. For Shumard Oak trees, variables such as branch angle, distance, 

thickness of ice accumulation, crown diameter, and slope sequentially entered 

the model and explained respectively about 61%, 11%, 5%, 2%, and 2% of the 

explained variance (adjusted R2 = 0.81%) of tree damage. The thickness of ice 

accumulation, branch angle and soil depth were responsible for the damage 

of Siberian Elms trees during the ice storm as these variables explained 

respectively 69%, 13% and 4% of total variance (adjusted R2 = 0.87).  For the 
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Silver Maple species, thickness of ice accumulation, branch angle, maximum 

wind speed, distance from the neighboring trees, slope,  and soil depth have 

contributed respectively 42%, 17%, 6%, 5%, 5% and 2% of the total variation ( 

adjusted R2 = 0.77) in tree damage. Branch angle (75%), average clay content 

of soil, (10%) distance (2%), and thickness of ice accumulation (3%) were the 

key factors that have accounted for 90% (adjusted R2) of the damage of 

Sweetgum trees. Pre-storm crown diameter, slope, thickness of ice 

accumulation, average clay content of soil, distance and branch angle 

accounted for about 82% of the variation in damage of Sycamore trees during 

the ice storm. Finally, branch angle, distance from neighboring trees, soil 

depth, and crown diameter by explaining respectively 71%, 12%, 4% and 2% 

of the total variation (adjusted R2 = 0.71), have caused most of damages of 

Sugar Maple trees during the ice storm.  

 

c) Testing the Predictability of the Models  

 The coefficients of the tree height damage model yielded the following  

equation: 

Ŷ =   ‐84.41 + (0.19*WIND) + (0.24*ICE) + (0.20*CROWN) + (0.21*BANGLE) + 
(0.10*SLOPE) ‐ (0.17*SDEPTH) + (0.14*CLAY) ‐ (0.16*DISTANCE) + 13.24  

 
The equation generated an estimated value of tree height damage (Ŷest), 

which was strongly and positively correlated with the observed (Yobs) height 

damage (r=0.57). Also the multiple regression of tree height damage against 8 
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independent variables also generated the predicted tree height damage (Ypred) 

which correlated  very strongly with the observed value (r=0.85).  

The coefficients of the tree canopy damage model yielded the following 

equation: 

Ŷ =   ‐112.18 + (0.24* WIND) + (0.27*ICE) + (0.16*CROWN) + (0.20*BANGLE) + 
(0.09*SLOPE) ‐ (0.15*SDEPTH) + (0.12*CLAY) ‐ (0.17*DISTANCE) + 14.66 
 

 The equation also generated an estimated value of tree canopy damage (Ŷest), 

which was strongly and positively correlated with the observed (Yobs) value 

of the canopy damage (r=0.56). Also, the multiple regression of tree canopy 

damage against 8 independent variables also generated the predicted tree 

canopy damage (Ypred) which correlated very strongly with the observed 

value (r=0.84). 

 The average tree damage model also resulted in better explained 

variance (adjusted R2 = 0.76) and its parameters yielded the following  

equation:   

Ŷ=   ‐98.90 + (0.22*WIND) + (0.26*ICE) + (0.19*CROWN) + (0.21*BANGLE) + 
(0.10*SLOPE) ‐ (0.17*SDEPTH) + (0.13*CLAY) – (0.17*DISTANCE) + 12.13 

 
The equation generated an estimated value of average tree damage (Ŷest), 

which was strongly and positively correlated with the observed (Yobs) value 

of the average tree damage (r=0.58). The multiple regression of average tree 

damage against 8 independent variables also generated the predicted value of 

average tree damage (Ypred) which was correlated very strongly with its 

observed value (r=0.88).  
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These findings indicated that the multiple regression analyses and the 

variables specified in the models and tested here adequately demonstrated 

the processes of tree damage during the ice storm.  

 

Discussion 

This study has revealed the causes and processes of tree damage 

during the ice storm of December 8-11, 2007 in the City of Norman, 

Oklahoma. The bi-variate correlation results suggest that among the 

independent variables representing climatic, biotic, edaphic, and locational 

factors, the thickness of ice accumulation has emerged as the most important 

predictor of tree damage during the ice storm. It was followed by the pre-

storm tree biotic characteristics especially the angle of branching which had 

exerted strong positive influence on both height and canopy damage. 

Somewhat moderate wind speed also exerted some positive influence on tree 

height and canopy damage. Other tree characteristics, such as crown 

diameters, stem, and branch diameters also exerted significant positive 

influence on ice storm tree damage. The edaphic factors namely, the surface 

slope, clay, and moisture contents, had weak to moderate correlation; and soil 

depth and location of trees in relation to their nearest neighbor (distance) had 

significant negative impacts on tree height and canopy damage. These 

relationships were almost uniform among the 10 major tree species that 

dominated the study area. These relationships have supported the 
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hypotheses underlying this study. Hence, all 11 independent variables 

initially selected contributed significantly to tree damage during ice storm 

and were initially included in modeling ice storm tree damage in the study 

area.  

Prior to modeling tree damage, 11 independent variables were tested 

for multi-collinearty. Variables such as pre-storm tree branch thickness, stem 

diameter, and soil moisture content were excluded because of their higher 

correlation with other independent variables. Finally, the three multiple 

regression models employed in the study revealed that 72% of tree height, 

71% of tree canopy, and 76% of average tree damages were explained by the 8 

independent variables selected in the model.  In all three models, the 

thickness of ice accumulation emerged as the most important predictor and it 

was successively followed by the tree branch angle, crown diameter and 

wind speed. The land slope and soil characteristics exerted low to moderate 

influence on the magnitude of tree damage. All the coefficients of 

independent variable were significant at 0.001 levels.  

The nature and magnitude of influence of independent variables on 

tree damage were also evidenced separately for each of the 10 species.  

Although ice accumulation was the main factor causing height and canopy 

damages among all species, each species were influenced differently by 

different independent variable those induced the magnitude and damaging 

process. For example, for trees with larger crown and near-perpendicular 

 103 
 



branches, such as American Elms, Hackberries, Siberian Elms, Shumard 

Oaks, and Sycamore trees, ice loading was primarily responsible for their 

damage; however, and ice loading was facilitated by larger tree crown  and 

almost right angular branches that provided more surface area for greater 

loading. For narrow canopy tall conifers such as Pines, Pin Oaks, and Silver 

Maples, the magnitude of tree damage is product of joint effect of ice loading 

and  strong wind that destroys the stems and cause tree damage. Pines are 

shallow rooted and weak trees and their ice storm damage and uprooting is 

facilitated by wind, and shallow clay rich soil. Those species located on 

steeper clay rich shallow soils are greatly affected by wind which causes their 

uprooting once they are loaded with ice.   

Both correlation and multiple regression results highlighted the 

process of tree damage during the ice storm. The strong positive influence of 

the thickness of ice accumulation suggested that higher amount of ice 

accumulated during the ice storm had created higher loading on tree 

canopies and branches. Wind speed may reduce the amount of ice 

accumulation. However, stronger winds easily break the ice loaded branches 

and causes uprooting of trees. When ice loading exceeded the load bearing 

and bending capacity of individual tree stem and branches, it caused the 

breakage of both stem and branches. Thus, higher amount of ice 

accumulation had caused greater percentage of height and canopy damage of 

trees. In the process of ice accumulation, tree branch angles played the most 
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important role: branches that are near right angles to the tree stems hindered 

ice from falling on the ground, and allowed more ice to accumulate on tree 

branches. Therefore, trees with right angle branches suffered more ice storm 

damage.  Tree trunk, branch, and crown diameters, contribute to tree height 

and canopy damage in two ways. First, older trees with bigger stems, 

branches and crowns often suffer damage from disease and insect infestation 

which make larger trees more vulnerable to breakage under ice loading. 

Second, bigger crown, perpendicular branches provide larger surface area to 

allow more ice accumulation that also induces their breakage. Thus, larger 

trees with bigger stem, branches, and crown sizes suffer more damage due to 

large quantity of ice loading as evidenced in this study. Strong positive 

correlations shown by the percentage of tree height and canopy damage with 

the pre-storm tree crown diameter, stem diameter, and branch diameter as 

evidenced in this study simply validates that fact.  

The edaphic factors such as surface slope, soil depth, soil clay and 

moisture contents also play important mediating roles in the process of ice 

storm tree damage. A moderate correlation between surface slope and the 

percent of tree height and canopy damages, as evidenced in this study, 

suggested that trees located on steeper slope suffered greater damages during 

the storm than those located on a flat surface. Trees that are located on 

slightly undulated surface incidentally suffered greater damage during the 

ice storm. Trees located on steep slope grow as inclined toward the slope and 
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these trees when loaded with ice easily become uprooted, and their stems and 

branches break from ice loading.  

Soil depth showed negative correlations and regression coefficients 

with the percent damage in tree height and canopy size suggesting the fact 

that sampled trees located on shallower soil suffered greater damage from the 

ice storm. Also, the sampled trees located on soils with higher percentage of 

clay and moisture content suffered greater damage from ice storm as 

indicated by their significant moderate positive correlations with tree height 

and canopy damages. Clay rich soils, in general, are hard and compact when 

dry; they prevent trees from going deep into the surface and force them to 

spread horizontally. During an ice storm, as the freezing rain water percolates 

through soil, the clay rich soil suddenly loses greater amount of shearing 

strength and compactness which facilitates ice loaded trees to be uprooted. 

These impacts of soil depth, clay and moisture content on tree damage were 

supported in this study area where trees located on thinner, clay rich, wet 

soils suffered greater damage due to uprooting during the ice storm. 

 In this study, it was observed that the distance between trees exerted 

strong negative impact on tree damage indicating the fact that the sample 

trees located nearest to another tree suffered greater damage during the ice 

storm. This was due to the falling of ice loaded broken stems and branches of 

one tree on its neighboring ice loaded tree leading to the breakage of the 

latter.    
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The correlation and regression results allow an identification of 

climatic, biotic, edaphic and locational factors or conditions those make trees 

vulnerable or resilient to ice storm damage. Amongst all predictors, the 

amount of ice accumulation certainly remains the key factor making trees 

vulnerable to damage: trees located in areas of thicker ice accumulation are 

more vulnerable than those located in thinner accumulation areas. Older trees 

with big canopy and perpendicular (right angle) branches are more 

vulnerable than smaller trees with acute angled branches.  Trees located on 

steeper slope with shallow clay rich moist soils are more vulnerable than 

those located on flat plain land with deeper soil with less clay content. Also, 

grouped trees are more vulnerable than the individual trees.  

Similarly, the coefficients of regression and determination yielded by 

the average tree damage models dealing with individual tree species suggest 

that American Elm, Siberian Elm, Pine, Sugar Maple trees would be most 

vulnerable to ice storm damage because of their wide spread very large 

crown and horizontal branching that allowed larger accumulation of ice as 

well as their location on shallow clay rich soils as evidenced by larger 

coefficient of determination on independent variables such as crown 

diameter, angle of branching, soil depth, and soil clay contents (Figure 3.1; 

Table 3.5). In contrast, Pin Oaks, Pecans, Hackberries, Sweetgums, Sycamores, 

Silver Maples, and Shumard Oaks are least to moderately vulnerable to ice 

storm damage because of their larger and stronger stem and branch, and 
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acute to wide branching and their preference of flat land, deep, moist, and clay 

rich soils that were characteristics of the study area.  

 

Conclusion: Toward an Ice Storm Tree Damage Model 

 This study has taken much interest in examining the factors affecting 

the incidence of tree damage during the hazardous ice storm of December 8-

11, 2007 in the City of Norman, Oklahoma. Based upon LiDAR aided data on 

tree height and canopy damage, and field data on ice accumulation, tree 

biotic characteristics, edaphic, and location conditions, this study examined a 

priori model of ice storm tree damage in the study area. While the data 

supported the acceptance of five hypotheses of relationships between tree 

height and canopy damage and 8 contributing independent variables, it also 

allowed examining three models taken separately: the percent change in tree 

heights, canopy diameters, and average of the two as dependant variables. 

The three models explained high percentage of variance (adjusted R2) of tree 

height, canopy and average damage. Based on the magnitude, direction and 

significance of influence of the independent variables on the dependent 

variables, the study results allowed the formulation of ice storm tree damage 

models for the study area. The models state that the accumulation of ice on 

trees during the storm was responsible for massive breakage of tree stems 

and branches leading to decreases in both tree heights and canopy diameters. 

The degree of tree height and canopy damage, which varied with trees 
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species, was modified by a number of mediating status variables in the 

following manner: that older trees with larger crown, stem, and branch 

diameter, and those with wider right angular branches were loaded greater 

amount of ice and they suffered greater percentage of stem and branch 

damage; that those trees located on steeper slope were inclined and bended 

more as the freezing rain precipitated and crystallized and finally uprooted 

under pressure of ice loading and strong effect of wind; those trees located on 

shallower, wet and clay rich soils were easily uprooted under ice loading and 

under moderate wind speed; that those trees located in close proximity to 

others suffered more damage due falling of broken branches and stems of the 

neighboring trees on them. In this process, young trees with smaller crown, 

stem, and nearly acute angular branches located on thicker sand and silt rich 

well drained soils on plain surface suffered less height and canopy damage 

during the ice storm. Some of these latter trees even experienced some 

growth in their stem height and canopy indicating that they are less 

vulnerable and more resilient to ice storms than the older and larger trees.    

 The model tested here is a linear one and is in the initial stage of 

formulation. In a small area such as that under study, where the spatial 

variation in freezing rain, wind speed, surface slope, soil depth, soil clay and 

moisture content were not much, the model explained about 76% of the 

variation in tree damage. If tested in a larger area with much more variability 

in slope, soil depth, clay and moisture contents, these status variables should 
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have more prominent influence on the dependent variables. The study results 

suggest that tree crown, stem, branch size, and branch angle, as well as 

surface slope, soil depth, clay and moisture content and location of trees in 

respect to other neighboring tree jointly determined the degree and 

magnitude of tree damage during the ice storm in the study area. Hence, 

these variables can be taken as determinants and indicators of vulnerability of 

tree damage due to ice storms.  



CHAPTER IV 

MAPPING THE VULNERABILITY OF TREE  
DAMAGE FROM ICE STORMS  

 
Every year, natural hazards such as hurricanes, floods, tornadoes, and 

ice storms causes substantial damage to trees in orchards, natural vegetations, 

and urban areas around the country. They not only cause economic losses by 

damaging the branches and trunks of trees, but also change the species 

composition and structure of individual trees and affect their capabilities to 

cope with diseases and form resilience to disasters. Sheer volume of existing 

literature has estimated the degree of tree damage due to various natural 

hazards. However, they have not explored whether trees are vulnerable to a 

specific hazard and whether there are variations among tree species in terms 

of their vulnerability to natural hazards. The present study aims to meet this 

gap. Precisely, it reviews the literature on ice storm hazard and its impact on 

trees in the United States to identify the conditions that make trees vulnerable 

to ice storm damage. It also performs an inventory of the City of Norman’s 

bio-physical conditions such as distribution of trees, individual tree 

characteristics such as trunk diameter at breast height (DBH), canopy 

diameter, branch diameter, angle of branching, proximity to other trees,
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local soil conditions (depth and moisture content), and land topography (e.g. 

slope). Based on the existing knowledge and exploratory data, the study 

addresses the question: “Which parts of the study area within the City of Norman 

are vulnerable to ice storm trees damage?” Using the data on the area’s bio-

physical and ice storm conditions (based on the December 8-11, 2007 ice 

storm), an index of vulnerability was computed and mapped using the GIS 

techniques to identify the parts of the study area that are more vulnerable to 

tree damage during the ice storm.  

 

Ice Storm Hazard and Tree Damage 

Ice storms occur between November and March with average peak 

season being December in the west and January in the eastern part of the 

country. Known as glaze, ice storms forms when super-cooled rain drops fall 

on the ground surface with below freezing temperatures (-4oC to 0oC), and 

freeze (hence the term freezing rain) on contact with ground objects such as 

trees and power lines embedding all exposed surface with an accumulation of 

a thick layer of ice (Bennet 1959; Lemon 1961). The thick layer of ice adds 

extra weight on the power lines and branches of the trees, causing them to 

tear and break apart. A 12 hour long ice storm can produce several 

centimeters thick ice accumulation; and a 15 m tall conifer tree can 

accumulate 45,000 kg of ice during a severe storm (Heidorn 2001).  Presence 
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of strong winds during the ice storm can also breaks branches and trunks, 

and uproots trees (Changnon and Karl 2003).  

Both the frequency of ice storm and its severity of damage vary over 

geographic regions. The Northeastern US receives 5-7 days of freezing rains 

per year (highly frequent); Midwestern states receive 4-5 days (moderate 

high); Northwestern states receive 3-4 days (moderate); Central, Southeast 

and Southern states receive 1-3 days (low frequent) of freezing rain every 

year. The Northeastern US receives the most frequent catastrophic ice storms 

followed by the Southeast; the Central, Southwest, and Southern states 

received less frequent catastrophic ice storms (Changnon 2003). Severity of ice 

storm is determined by the total value of damage it causes. According to 

American Insurance Company standards, ice storm becomes catastrophic 

when the total value of damage exceeds $25 million per event (NRC 1999). In 

the United States, ice storms destroy over $375 million worth of building 

structures, trees and power lines annually (Changnon 2003). During 1949-

2000, there were 87 catastrophic ice storms that caused over $16 billion loss of 

property (Figure 4.1). 

Studies dealing with the nature and impacts of major ice storms on 

trees in the United States and Canada are numerous and they follow a 

geographic pattern. There were 24 studies published in between 1936-2000 

(Bragg et al. 2003). Of them, 6 (25%) dealt with the Northeastern US and 

Southeast Canada; 6 with the Midwestern states; 2 (8%) with the Western US, 
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and 10 (42%) with the Southern US; 2 with Texas; and only one study dealt 

with Oklahoma.  

 
 
Figure 4.1: Distribution of catastrophic ice storm events in the US from 1949‐2000. 

 
 

Despite the lack of studies, the occurrence of ice storms in Oklahoma is 

in no way insignificant. During 1949-2000, there were 30 catastrophic ice 

storms in the State that damaged trees, building structures, property and 

power lines (Changnon and Karl 2003). Since the year 2000, major ice storm 

occurred in Oklahoma in every two to three years. They generally lasted for 

several hours to several days and the large quantity of ice accumulated on 

tree branches during the storm caused them to break and fall on the 

surrounding understory tree tops, rooftops and power lines causing their 

destruction and power loss. These storms generally caused damage in the 
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central, north-central and north-eastern part of the state killing close to 

hundred people; leaving millions people without power for several days, and 

damaging large number of trees including  close to 30,000 acres of pecan trees 

(Smith and Rohla 2009).  

Oklahoma’s natural vegetation can be divided into 15 regions with 

Oak, Hickory, Blackjack, and Pine trees being dominant tree species. These 

tree species have different biological characteristics and variable adaptive 

capability with soil and moisture contents. Over the years, these trees have 

been exposed to multiple ice storms and experienced variable degrees of 

damage; sustained growth and survived if not uprooted or totally destroyed 

by the storm or by urban clearing. Considering their biodiversity as well as 

the frequent occurrence of ice storm as a major natural hazard, it was 

hypothesized that: the trees in the study area are vulnerable to ice storm damage 

and the degree of tree damage varies spatially within the area. What makes the trees 

vulnerable to ice storm is a research question that was explored in this study.  

 

Indicators of Vulnerability of Ice Storm Tree Damage 

Vulnerability of trees to ice storm damage varies over geographic 

regions. While the storms directly damage trees by breaking their trunk and 

branches, the magnitude of damage is significantly modified by the glaze 

characteristics, tree biological characteristics, and local edaphic conditions. 
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The conditions that increases or decreases the degree of tree damages during 

ice storms are the indicators that make trees vulnerable to the hazard.  

Sheer volume of existing studies has identified a number of indicators 

that make trees vulnerable to damage during ice storms. Among climatic 

conditions, the thickness of ice accumulation and direction of wind are two 

important indicators of tree damage. Tree damage occurs when the weight of 

an accumulated ice exceeds the wood strength of the tree and causes 

breakages of trunks and branches, and sometimes uprooting. The burden of 

falling ice loaded broken branches on the understory trees also damage 

younger or shorter trees across.  Strong wind during ice storms can also break 

tree trunks and branches, and uproot trees to cause tree damage (Lemon 1961; 

Giuliano 2008).  

Several tree characteristics such as tree species, wood strengths, trunk 

and canopy diameters, branch diameters, growth patterns, and the ability of 

physical resistance influence the extent of tree damage from ice storms and 

hence are important indicators of tree vulnerability. Tree wood strength to 

resist the combined effects of wind and glaze is an important indicator of tree 

vulnerability to ice storm damage (Lemon 1961). Each tree species has 

different wood strength and resistance capacity to sustain ice storm damage. 

Tree species with low wood resistance are more vulnerable to ice storm 

damage. Among deciduous hardwood species, Box Elder (Acer negundo), 

Eastern Cider trees with wood strength of <1.0 are most vulnerable while 
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Sycamore (Platanus occidentalis) with wood strength >1.6 are intermediate to 

most resistant to ice storm damage (Warrillow and Mou 1999). Among 

conifers, the Loblolly Pines (Pinus taeda) are most resistant to ice storm 

followed by Slash Pines (Pinus elliottii) and Longleaf Pines (Pinus palustris). 

Individual gymnosperm conifers are less vulnerable than group trees 

whereas softwood species are more vulnerable to ice damage than the 

hardwood species (Warrillow and Mou 1999; Bruederle and Stearn 1985; 

Whitney and Johnson 1984). Broadleaf trees with large surface areas such as 

Black Cherry, Scarlet Oak, Black Locust are most vulnerable while small 

crowned White Pine and Eastern Hemlocks are least vulnerable to ice storms 

(Abell 1934; Hauer et al. 1993). 

Tree canopy size (diameter) is an important indicator of vulnerability 

of tree damage during ice storm (Abell 1934). Larger trees with larger canopy 

surface area experience greater amount of ice accumulation and suffer greater 

breakage of branches within the crown. Crown surface area, which 

determines the amount of ice accumulation, is also an indicator that affects 

the degree of tree damage from ice storms. Coniferous gymnosperms with 

smaller cone shaped crowns and smaller surface areas suffered less damage 

from ice storms than the broad crown angiosperms (Bruderle and Stearns 

1985; Hauer et al. 1993; Whitney and Johnson 1984; Warrillow and Mou 1999).   

Tree age also makes them vulnerable to ice storm damage. Downs 

(1938) noted that middle aged (21-40 years) and older trees (>40 years) with 
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larger crowns suffered the greatest percentage damage (21.5-39.4%) because 

of presence of decayed boles and limbs. Tree growth habit is an important 

indicator of tree vulnerability to ice storm damage. Croxton (1939) found that 

the larger branched trees suffered greater damage due to accumulation of 

more ice than the smaller branched trees. 

The angle of branching is an indicator of tree vulnerability as it 

determines the amount of glaze exposure. Horizontal branching at 900 angles 

produces large surface areas and allows large amount of ice accumulation 

that increases the vulnerability of tree damage than acute angle branching 

(Bruederle and Stearn 1985).  

Wood specific gravity increases the maximum bending capacity which 

enables a tree to withstand bending before collapse under ice loading; hence, 

is an indicator of vulnerability of tree damage from ice storms (Panshin and 

de Zeeuw 1970; Bragg et al. 2003). Tree damage occurs when the weight of the 

accumulated ice exceeds the maximum bending capacity (or resilience) of the 

branches, boles, and roots (Hauer et al. 1993; Petty and Worrell 1981; Peltola 

et al. 1999; Bragg et al. 2003). Tree age and growth form determines the wood 

specific gravity and maximum bending capacity. The older insect affected 

decayed trees with less wood specific gravity and more moisture content are 

more vulnerable to ice storm damage than younger and healthy trees 

(Bruederle and Stearn 1985; Gibson et al. 1986; Hauer et al. 1993).   
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Several edaphic conditions such as slope, soil depth, soil texture, soil 

moisture content, and tree spacing (distance from the nearest tree) are also 

important indicators of tree vulnerability to ice storm. Shallow rooted trees 

grown on thin soils on steep slopes develop asymmetrical crowns that receive 

unbalanced ice loads and become more vulnerable to ice damage. Deep 

rooted trees grown on thicker plain soils develop symmetrical crowns, 

receive balanced ice loads; and hence remain less vulnerable (Bruederle and 

Stearn 1985; Seischab et al. 1993; Warrillow and Mou 1999).  

Soil depth, clay and moisture contents directly affect root area and 

contribute to tree uprooting during ice storms. Thin clay rich soil, which gets 

hard when dry, hinder penetration of tree roots and make trees vulnerable to 

uprooting during windy ice storms (Lindemann and Baker 2002; Gratkowski 

1956; Everham and Brokaw 1996). During an ice storm, if the ground 

temperature is above freezing, the freezing rain droplets melt as they touch 

the ground; and the ice melt water percolates through the top soil increasing 

soil moisture content that decreases soil shear strength. Decreasing shear 

strength causes uprooting of ice loaded trees (Putz et al. 1983).  

Tree spacing is also an important indicator of vulnerability of tree 

damage during ice storms. Distance between two trees determines the risk of 

falling of higher trees on understory trees causing their damage during an ice 

storm. Closely spaced trees are more vulnerable to ice storm damage than 

widely spaced trees (Whitney and Johnson 1984). 
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From the review of literature, 12 key indicators of vulnerability have 

been identified that directly and indirectly cause tree damage during an ice 

storm and thus make trees vulnerable. They are namely: thickness of ice 

accumulation, wind speed, wood strengths, crown diameters, tree trunk 

diameters, branch diameters, branch angles, surface slopes, soil depths, clay 

and moisture contents, and distances between trees.  

 

Data and Methodology 

The study was conducted in the central part of the City of Norman, 

Oklahoma. The study area has 31 species of trees scattered non-uniformly 

throughout (Figure 4.2). Field survey for this study involved collection of 

data on the tree characteristics by species, and topographic and soil quality 

data for the city. Since the city is only a small part of the State that was hit by 

the December, 2007 ice storm, the amount of ice thickness and the average 

wind speed were collected from the Oklahoma Climatological Survey (OCS), 

National Weather Service (NWS), and Oklahoma Mesonet Center located in 

the University of Oklahoma’s Norman campus and were interpolated for the 

surrounding counties.    

Data on tree characteristics were collected through direct field surveys 

within the study area. The study area was divided into 200 grid blocks with 

each block measuring approximately 290 x 290 m. Within each grid, 3 to 4 

random tree samples (depending on their availability) with a minimum    
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distance of 60 m apart was selected. A total of 585 trees were sampled of 

which 61 were totally damaged by the ice storm of December 8-11, 2007 and 

were removed by the residents and the City. Therefore, only 524 trees were 

selected for field data collection.  Using a handheld Trimble GeoExplorer 2005 

series GPS unit, the location of each tree, their trunk diameter at breast height 

(tdbh), branch diameter, proximity of individual trees to the nearest tree, and 

angle of branching were measured and recorded during the field 

observations. Angle of branching was measured for the lowest five branches 

using Brunton compass, and the mean angle of branching was calculated for 

each sample tree. Pre-storm crown diameters were gathered from the pre-

storm LiDAR data using ArcGIS v. 9.3 software.  

Data on soil depth, clay, and moisture content for each sample tree 

location was obtained from the USDA’s Database (SSURGO) for Cleveland 

County. The database had a high soil sample density (for every 10 acres, a soil 

sample was taken). Land slope for each sample tree base was gathered from 

the Digital Elevation Model (DEM) prepared at a spatial resolution of 0.3 m 

per pixel in 2007 by the City of Norman using the ENVI v. 4.4 remote sensing 

software.  

 

Analytical Method 

The ice thickness and wind speed data along with the field sample 

data were placed in tabular form and mapped using ArcGIS software. It was 
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assumed that data on ice accumulation, wind speed, crown diameter, angle of 

branching, slope, and soil clay contents all have positive relationships with 

tree damage.  Therefore, these values were ranked from 1 to 5 based on 

natural breaks among the data sets. On the other hand, soil depth, and 

distance among trees have inverse relationship so they were ranked from 5 to 

1 with increasing values. All the rank scores were given a certain weight 

(based on the percentage of variance calculated in chapter 3) and were added 

to obtain a total rank score for each tree. There were 8 indicators of 

vulnerability considered in this study and the total rank score ranged 

between 0.72 and 5.0.  

Based on damage data collected from pre- and post-storm LiDAR data 

over the study area, the total rank scores were grouped based on the amount 

of damage and the ranges of ranked scores were used as an index of 

vulnerability for ice storm tree damage. Trees with high rank scores were 

assumed to be most vulnerable to ice storm damage than those with low rank 

scores. The scores were mapped and a hot-spot analysis was performed using 

the CrimeStat software to identify highly vulnerable “hot spot” areas.   

 

Results 

a) Nature of Indicators of Vulnerability in the Study Area 

 

 

 123 
 



i) Thickness of Ice Accumulation 

Giulliano (2008) estimated the thickness of ice accumulation during 

December 8-11, 2007 for the State of Oklahoma and reported that the City of 

Norman received an accumulation of 1.27 - 2.54 cm of ice (Figure 4.3). Since the 

storm approached from the northeast, it is assumed that a 2.54 cm thick ice was 

accumulated in the northeast and 1.27 cm ice accumulated in the south 

southwest side of the city. Considering this aspect in the study area, sampled 

trees located in the north and northeast side were assumed to accumulate 

approximately 2.54 cm of thick ice; those in the central part were assigned 

around 1.90 cm; and those in the south and southwest side, about 1.27 cm of ice 

accumulation.  

 

Figure 4.3: Thickness of ice in the State of Oklahoma during December 9‐11, 2007 ice 
storm. (Giulliano, 2008)              
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ii) Wind Speed 

Te average wind speed data collected on the 8th and the 11th of 

December shows that in the central part of the Oklahoma, wind was blowing 

between 32 and 56 kph.  However, when interpolated based on the data of the 

Cleveland and surrounding counties, the wind speed for the study area 

varied between 34 and 42 kph.  The wind speed increased from the north and 

northeastern part to the south western part of the study area.  

iii) Crown Diameters 

The crown diameters indicated tree age and growth form of the 

sampled trees. The crown diameters of the trees ranged between 11 m for 

Pines, to 15 m for Pin Oaks, Sycamores, Siberian Elms, to 17-19 m for 

American Elms, Hackberries, Shumard Oaks, Silver Maples, Sugar Maples, 

and Sweetgums.  Because of their location on nearly flat topographic slope, 

the sampled trees were found to have symmetrical crown shapes. In an urban 

neighborhood, crown diameters may be shortened by trimming. 

iv) Branch Angles  

Some species spread out their branches more horizontally than others. 

Among the sample species, the average angle of branching varied from 33-39o 

for American Elms and Sycamores; 40-45o for Shumard Oaks and Pines; 46-

49o for Sweetgums and Pin Oaks; and >50o for Silver and Sugar Maples, 

Siberian Elms, and Hackberries.  
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v) Surface Slopes   

The study area consisted of almost flat plain land with minor inclines 

along several small creeks running through its west, south, and eastern parts. 

Most sample tree locations have slopes of <12o. However, those located 

nearby the creeks, have slopes between 12-33o.  

vi) Soil Depth  

        The study area is dominated by six soil series, namely: the Kirkland in 

the north, Teller in the west central and southeast, Slaughterville in the 

southwest, Derby in the south, Bethany in the center, and Venos in the central 

and southern part. Average depth of soil varied from 175 cm for Venos, to 200 

cm for Kirkland, Teller and Slaughterville to 210 cm for Derby and Bethany 

series.   

vii) Average Soil Clay Content 

The SSURGO soil database produced by USDA listed the minimum 

and maximum soil clay content of each soil type for the City of Norman. In 

this study, an average of the minimum and maximum clay content was 

computed for the study area and used to calculate the vulnerability index. 

The average clay content of Kirkland soil is 36%; and that of Bethany, Venos, 

Teller, Slaughterville ranged respectively from 32%, 22%, 15% and 10%. The 

Derby soil contains very little clay (<10%). The USDA did not test the clay 

content in the urban soils.  
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viii) Tree Spacing/Distance 

The study area is covered by wide range of tree species. There were 

over 30,000 trees detected using LiDAR data for this study. The sampled trees 

were spaced at an average of 3.4 m apart although individual trees may have 

been more widely spaced.  

 

b) Index of Vulnerability of Tree damage from Ice Storm 

Raw values of the above described 8 indicators were ranked and 

individual rank scores were added by assigned weights to compute the index 

of vulnerability (IOV) of tree damage during ice storm. The distribution of the 

individual rank scores are given in Figure 4.4 and Table 4.1. Since the 

indicators would contribute to tree damage during an ice storm, high total 

rank scores would indicate high vulnerability and lower total rank scores 

would indicate low vulnerability. For the total of 524 sample trees, the total 

rank score ranged between 0.72 and 5.0. However, based on damage amount, 

trees that scored between 4.22 and 5.0 were identified as highly vulnerable 

and those scoring between 3.37 and 4.21 were marked as moderately 

vulnerable.  The trees that scored between 2.38 and 3.36 were considered to 

have low vulnerability to be damaged by the ice storm. When mapped, most 

trees in the north central, northeastern and southeastern side of the study 

area were found to be highly vulnerable to ice storm damage; those in the 

central part were found to be moderately vulnerable; and those in the  
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southwestern part were identified to have low vulnerability.   

Among individual tree species, Silver Maple, Sycamore, Sugar Maple, 

and Pine trees were found to have low vulnerability; Shumard Oaks, and 

Siberian Elms would be low to moderately vulnerable; and American Elms, 

Sweetgums, Hackberries, and Pin Oaks are expected to be moderate to highly  

vulnerable tree species. While some Eastern Cedars were categorized as 

highly vulnerable, some were found to be low to moderately susceptible to 

tree trunk and canopy breakage depending on their individual locations and 

tree characteristic. The distribution of the total rank scores indicated that the 

vulnerability of tree damage from ice storm did indeed vary spatially within 

the study area.  Therefore, the proposed hypothesis was accepted. 

 

c) Hot Spot Analysis 

Hot spot analysis was performed using 155 tree samples in the 

CrimeStat software platform. These samples included trees that had high IOV 

scores (4.22-5.0). Trees that were cleared due to the storm were also included 

in the analysis since the biophysical conditions of the individual tree locations 

and characteristics met the conditions that made those areas highly 

vulnerable. The hot spot results indicated that there are four main clusters 

(regions) within the study area where trees are highly vulnerable to damage 

from ice storms (Figure 4.5). For simple understanding and visualizations, the  
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hot spots are indicated by 1x standard deviation ellipses. The ellipses only 

show general areas (rather than include all the samples) where trees are 

highly vulnerable. These were the areas where there were at least 15 trees 

within a radius of 0.80 km, which seemed to be the optimal parameters for 

the hot spot analysis. Fewer trees within small search radius produced many 

clusters, whereas many trees within large search area produced only one 

large region. Region 1 had 23 trees that are highly vulnerable and they mostly 

belonged to Sugar Maple, and Shumard Oak species. Almost half of the trees 

were completely cleared in this region.  Although the slope was typically very 

low and soil was quite deep for this area, the clay concentration within this 

area was quite high. These trees had large canopy sizes, trunk diameters, and 

branch angles. They also grew very close to each other and had high ice 

accumulations.  It is this latter factor that gave the trees in this region a very 

high index scores. 

In regions 2 and 3, a total of 61 trees were found to be highly 

vulnerable to damage. Within these areas, Silver Maples, Shumard Oaks, and 

American Elms are the major species found. Similar to region 1, these trees 

are also very close to each other and have very high canopy diameter. 

However, the slope in this area and the branch thicknesses of the trees are 

fairly low, while the branch angles are quite high. While the soil depth is 

quite low, the average soil clay percentages are very high for these sections of 

the study area.  
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In region 4, 21 Eastern Cedars and Pin Oaks were found to be highly 

vulnerable. Although they are very distant from each other, the major cause 

of their high vulnerability is the high clay content of the soil, high angle of 

branching, and the young age of the trees (based on their branch and crown 

diameters). Also, majority of the trees within this region were cleared due to 

the storm causing this region to be a hot spot for tree vulnerability. 

When compared the hotspots for tree vulnerability and tree damage, it 

was observed that all four hotspot regions of the VI share common areas 

between regions 3, 7, 8, 9, 10, and 11 on the damage hotspot areas (Figure 4.6). 

This suggests that the method used to create the VI can indeed identify areas 

that are likely to have tree damage from ice storms based on the local 

biological and edaphic conditions. It can be seen that no commonality is 

found for damage regions 1, 2, 4, 5, and 6.  This can be attributed to several 

possibilities. First, accuracy level of damage data can influence the number of 

trees that were considered to be highly damaged. Second, the index values 

are based on 8 variables and any variations within these variables can also 

change the vulnerability level of a tree. Finally the four regions have diverse 

trees species with different physical characteristics and it would not be 

possible to take into account all their physical conditions that caused them to 

be damaged.  
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Conclusion 

This study has taken much interest in searching for and constructing 

an index of vulnerability of tree damage during ice storms. Based on an 

extensive review of literature, this study has identified 11 key indicators of 

vulnerability. They represent climate, tree characteristics, local edaphic 

conditions and tree spacing of a region. The study area within the City of 

Norman is characterized by wide range of tree biological, and soil 

characteristics. While the city received only 1.27 to 2.54 cm of ice and 34-42 

kmh wind gusts during the ice storm under consideration, the amount of ice 

accumulation varied over space. Along with ice accumulations, individual 

tree characteristics, surface slope, soil depth, clay, and moisture content, as 

tree spacing all have made a tree less or more vulnerable to damage. The 

proposed methodology for creating the index would not allow city planners 

and foresters of other states to find areas where trees are vulnerable to ice 

storms, but would also allow finding vulnerable areas for other types of 

natural hazards as well.  



CHAPTER V 

SUMMARY AND CONCLUSIONS 

This study purported to fulfill a gap in research on the study of 

vulnerability and assessment of tree damage due to ice storms in an urban 

area.  For that purpose, it assessed the magnitude of tree damage during the 

ice storm that occurred on December 8-11, 2007 in the City of Norman, 

Oklahoma by developing an integrated LiDAR aided remote sensing and GIS 

methodology (component I); explored the factors responsible for tree damage 

during ice storms and developed models tree damage during ice storms 

(component II) for the study area; and based upon the weights, it created an 

index of vulnerability of ice storm tree damage (component III).  

The first component has assessed tree damage within the study area. It 

examined the utility of an integrated active remote sensing and GIS approach 

to tree damage assessment in an urban setting. Using the pre- and post-ice 

storm LiDAR data to extract pre and post-storm tree heights and canopy 

diameters, this section of the study was conducted based on assumptions that 

both the Koukulas and Blackburn Approach (KBA) and the Local Maxima 

Approach (LMA) would accurately extract the height and canopy outlines for 

a given time; and that the computation and analyses of change (negative or
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positive) between pre- and post-ice storm tree heights and canopy diameters 

would provide a scope of estimation of tree damage and/or growth in 

relatively less time and effort. The results have indicated that both KBA and 

LMA methods are unique in accurately estimating tree heights; however, the 

KBA method is not capable of extracting the outlines of canopies for group 

trees with overlapping branches. Since the vegetation of this study area 

(possibly in other urban areas as well) are mixed in species composition and 

contains both individual and the group trees, a hybrid of KBA and LMA was 

necessary for height and canopy damage assessment for the study area. The 

study shows that species such as Bald Cypresses, Pin Oaks, Sycamores, Silver 

Maples suffered minor stem and canopy damages; Hackberries, Pecans, 

Shumard Oaks, and Sweetgums suffered moderate damage; American Elms, 

Pines, Siberian Elms, Sugar Maples, and Eastern Cedars suffered most severe 

damage from the ice storm. Mapping the extracted damage data revealed that 

trees in the northern and northeastern part of the study area were more 

damaged than those in the southern part. The results of this component are 

significant in several ways. First, by using the LiDAR data, it is possible to 

classify the trees in the study area into bushes and small trees (BSTs), medium 

and big trees (MBTs), and into individual and grouped trees. Second, the 

proposed integrated LiDAR aided RS and GIS platform can effectively 

measure, quantify, and map urban tree damage due to ice storms and other 

natural hazards. Third, a hybrid of KB and LM methods can assess tree height 
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damages with very high (>85%) level of accuracy and tree canopy damage 

with moderate (42%) degree of accuracy. Changing tree characteristics during 

the pre- and post-ice storm periods as well as the species wise variability of 

tree height-canopy diameter ratio were some of the factors that can affect the 

level of accuracy between height and canopy damage estimation.  

 The second component of this study has examined the factors affecting 

the incidence of tree damage during the hazardous ice storm.  Based upon the 

LiDAR aided data on tree height and canopy damage, and field data on ice 

accumulation, tree biotic characteristics, edaphic and location conditions, this 

section has examined priori models of ice storm tree damage in the study 

area. Based on the relationships between tree height and canopy damage and 

11 contributing independent variables, five hypotheses underlying the study 

were accepted. The section also examined three models taken separately: the 

percent change in tree height, canopy diameter, and average of the two as 

dependant variables and eight independent variables; independent variables 

such as tree stem diameter, branch diameter, and soil moisture content were 

eliminated from the models because of their multi-collinearity. The three 

models explained higher percentage of variance (adjusted R2) of height, 

canopy and average tree damage. Based on the magnitude, direction and 

significance of influence of the independent variables on the dependent 

variables, the study results allowed the formulation of ice storm tree damage 

models for the study area. The model indicates that greater accumulation of 
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ice on trees during the occurrence of hazardous ice storm was the primary 

factor responsible for the massive breakage of stems and branches of trees in 

the study area. The magnitude of tree damage, however, was mediated 

through a set of status variables such as pre-storm tree crown, branch angle, 

surface slope, soil depth and clay content, and distance of trees in respect to 

other neighboring trees. Multiple regression coefficients suggest that ice 

accumulation amount, branch angle, wind speed, distance, crown diameter,  

soil depth  and clay content, and distance contributed significantly to height, 

canopy and average trees damage during the ice storm. This result indicate 

that trees with larger crowns, perpendicular branches and growing in groups 

on undulated slope and thin clay rich moist soils were severely damaged 

during the ice storm; and hence, tree species with these biotic, edaphic, and 

location characteristics would be the most vulnerable to ice storm damage.   

In the third component, an index of vulnerability of ice storm tree 

damage was created based on climatic, tree biotic characteristics, and local 

edaphic and locational conditions of the study area. Mapping of the index 

revealed that despite the existence of large variety of tree species in the 

southern part of the study area, the “hotspot” of vulnerability lies in its 

northern section where trees would be more vulnerable due to the occurrence 

of greater amount of freezing rain and ice accumulation, slightly varied 

biophysical characteristics, and the presence of more larger and grouped trees 

in that section. The index also suggests that species such as Silver Maple, 
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Sycamore, Sugar Maple, and Pine trees would be less vulnerable; Shumard 

Oaks and Siberian Elms low to moderately vulnerable; and American Elms, 

Sweetgums, Hackberries, and Pin Oaks would be moderate to highly 

vulnerable to ice storm damage.   

The results of the three components suggest that they have several 

theoretical, methodological and policy implications. Theoretically, the study 

results revealed that like the humans, trees are also vulnerable to natural 

hazard damage; and that the formulation and mapping of an index of 

vulnerability would help researchers and policy makers to identify the 

hotspots and species susceptible natural hazard damage. Methodologically, it 

was found that an integrated approach combining an active LiDAR aided 

remote sensing and GIS platform can be effectively used to measure the tree 

damage in urban areas; and that modeling tree damage can help 

identification of factors contributing to tree damage during ice storms.           

Finally, the study results (combining three components) have significant 

policy implications for the City of Norman. It was revealed that hotspots of 

vulnerability, i.e., the areas with predicted high vulnerability are located in 

the northern section of the city; and that those hotspots indeed experienced 

high degree of tree damage during the ice storm of December 8-11, 2007; and 

that species such as Bald Cypresses, Pin Oaks, Sycamores, Silver Maples 

appeared to be the most ice storm resistant trees in the city; Hackberries, 

Pecans, Shumard Oaks, Sweetgums, and Callery Pears are moderately 
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vulnerable; and American Elms, Pines, Siberian Elms, Sugar Maples, and 

Eastern Cedars with large crown and perpendicular branching are most 

vulnerable to ice storm. Trees in the northern section of the City are more 

vulnerable than those in the south.  It is expected that these findings will help 

the City of Norman to plan their land use and urban forest coverage to reduce 

the future tree damage from frequently occurring ice storms. 

  

Suggestions for Future Research 

Several areas of future research relating to tree damage from natural 

hazards and their assessments can be conducted. First, the factors 

incorporated in the priori models and the index may vary depending on the 

nature of hazards.  For example, in the case hurricane and tornadoes, wind 

(rather than the ice loadings) are the primary causes of tree damage.  The 

factors may also vary spatially as in the case of the ice storm tree damage 

occurring in the Great Plains versus that of the New England States where 

there are variations in the landscape and soil characteristics. It would 

therefore, be important to explore all the factors and their variations that may 

cause tree damage from ice storms and other disasters; and how they vary 

spatially across the State of Oklahoma, and other parts of the World. The 

timing of the ice storm and the amount of present leaves may play a role in 

the amount of damage trees sustain.  Therefore, this factor should be explored 
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as well. Also, the effectiveness of the priori models in predicting tree canopy 

and height damage from ice storms should also need to be examined.   

Third, in the case of utilizing GIS and RS technologies for tree damage 

assessment, this study has shown that the LiDAR data are capable of 

accurately quantifying and estimating tree damage from ice storms.  

However, whether similar accuracy levels are possible for damage 

assessment from other types of disasters are needed to be explored. 

Improvements in LiDAR data as well as newer and better algorithms and 

methods that are currently being proposed for accurately extracting tree 

outlines should be examined further for assessing tree damage.   

 



Appendix I 
 

Distribution of Major Tree Species within the City of Norman 
 

Species 
(Common Name) 

Scientific 
Name 

Frequency of Trees 
(Total = 1141) 

Percent of
Total 

Hackberry  Celtis occidentalis L.  245  21.5 

Shumard Oak  Quercus shumardii Buckl.  146  12.8 

Silver Maple  Acer saccarinum L.  91  7.9 

Sycamore  Plantanus occidentalis L.  82  7.2 

Siberian Elm  Ulmus pumila L.  75  6.6 

American Elm  Ulmus americana L.  68  5.9 

Sweetgum  Liquidambar styraciflua L.  62  5.4 

Sugar Maple  Acer saccharum Marsh.  60  5.3 

Pin Oak  Quercus palustris M.  41  3.6 

Redbud  Cercis canadensis L.  30  2.6 

Pecan  Carya illinoensis  29  2.5 

Bradford pear  Pyrus calleryana ‘var’  20  1.8 

Red Maple  Acer rubrum L.  17  1.5 

(Source: Hennessey 2000) 
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