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Abstract

BIOMETRIC CLASSIFICATION WITH FACTOR ANALYSIS

Ngao D. Mamuya

The University of Oklahoma, 2010

Supervisor: Joseph P. Havlicek

This research presents a study on biometrics classification using Factor Analysis (FA). As 

a multivariate statistical  tool, factor analysis is useful for understanding the underlying 

structure in a dataset. Moreover, in addition to achieving an economy of the variables, the 

“factors” or hypothetical constructs can provide an alternate yet succinct representation 

of the data. It is a method of determining, from an observable set of variables, a basic set 

of components that are common to all the observations. In this study, the loadings (or 

weights) on the Factors are used to classify the data in alternate representation. In 

particular, we will examine and group the data according to three biometric features. In 

the first part, we  demonstrate the capabilities of factor analysis to capture the gender of 

x



the individual. This will enable us to use FA as a gender classifier. The next study will 

show the use of an FA as a facial hair classifier. Given a group  of individuals, we will be 

able to classify them as either having beards or not. Finally, in the last part presented in 

this work, we will work on classifying the facial expressions of a group of Japanese 

women. Given all seven universal expressions per subject (two or three of each 

expression), we will use factor analysis to group each subject according to their 

expression. Furthermore,  given an individual with a  particular expression, we will use 

factor analysis as a biometric measure in the determination of the particular expression 

exhibited.
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Chapter 1.

Introduction

  Biometric technologies are methods based on a person's physiological 

characteristics. These characteristics can include face, speech, fingerprints, voice and iris 

recognition among others. They can be used in the identification and or verification of 

individuals for the purpose of controlled access or secured transactions.  A biometric 

system captures and transforms the characteristics of an object into a compact form that 

is subsequently matched to a stored database of previously processed characteristics. 

Identification, verification or classification is achieved according to some similarity 

measure.

Face recognition [1] from still and video images is one such biometric technique 

which employs the facial characteristics of an individual for use in identification or 

verification. The potential applications of automated facial recognition systems are 

numerous. End users of these systems include both public and private sectors. Some 

applications are mugshot identification, surveillance or screening of crowded areas for 

known individuals by law enforcement, identity verification for security controlled entry
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 points (airport checkpoints, buildings, accounts access etc…) or secured electronic 

financial transactions.

Traditionally, facial recognition was solely accomplished by human operators. 

The human visual system is very sophisticated. It is both accurate and robust to a host of 

extenuating factors including aging, differing expression, variable illumination, partial 

occlusion and to a degree some disguises. Some drawbacks are the number of distinct 

identities a human can accurately and efficiently process and the time required to 

successfully accomplish each task. A robust and successful automated system can 

overcome these limitations by utilization of virtually unlimited storage capacity and low 

computational processing time. In general, a system capable of this is very difficult to 

develop. Thus, most systems are designed to be either identification, verification or 

classification systems. 

Identification refers to identifying a probe (a user) against a database of known 

individuals, while verification is only concerned with verifying that a user is indeed who 

they claim to be. As such, identification is an N-to-N analysis, while verification is a 

1-to-N analysis. This difference is critical in the design of an application. In a 

classification system, the goal is to be able to classify an object accordingly. In this 

research, I will look at a gender classification system. I am  interested in building a 

gender classifier using Factor Analysis. In addition to this I will also show that an FA is 

capable of capturing other facial characteristics, specifically facial hair. 

Factor Analysis belongs to the family of multivariate statistical methods. As such,
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in this research, I will examine a few of the multivariate methodologies used towards the 

goal of biometric analyses. Specifically, I will take a brief look at the methods of: 

Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), Independent 

Component Analysis (ICA), and Factor Analysis (FA). We will look at how some of these 

procedures are used in facial recognition. 

What will become evident is how the different methods differ in how they 

represent the data. Each has strengths and weaknesses. Depending on whether the end 

goal is representation, classification, or discrimination some of these methods will be 

more suited to the task than others. In addition to this, we will also discover that within 

each method, there exist ways of adjusting the procedures to deal with different datasets 

or at least changes that will enable them to answer some questions more effectively. 

Some of these are, when doing PCA, how should you choose which eigenvectors for the 

representation and should some of the leading eigenvectors be discarded. Or when doing 

a Factor Analysis, what if any rotations should you employ. In the next chapter, I will 

take a closer look at the above mentioned techniques.

Until recently, the gender classification problem was primarily investigated by the 

psychology and cognitive communities [1], [2]. Lately, it has come under review by the 

statistical, and in general, the data processing communities. Generally speaking, there are 

two methods:  geometric and appearance based. The appearance based approaches, which 

deal with the image as a whole, gained favor after Kirby and Sirovich's successful image 

representation using principle components [3]. Moghadam and Yang’s support vector
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 machine (SVM) method for gender classification [4] achieved relatively good results on 

the FERET [5] database. SVM's   represent the feature vectors as a set of points in a high 

dimensional space where the boundaries between  classes are expressed as hyperplanes. 

For non linear problems, kernel functions can be used to map the features to a linear 

solution in the new space. Using a Gaussian kernel, SVM was able to achieve a 3.4% 

error rate. Abdi et al. [6] reported gender classification accuracy of 91.8% for faces with 

hair information included. Neural networks have also been studied in this area. The 

Adaboost methods [7] have shown very good results with error rates of less than 5%. A 

combination of the SVM and Fisher Linear Discriminante (FLD) classifiers [16] show a 

success rate of 94%. Using a radial base function (RBF) network, Brunelli and Poggio 

were able to achieve a gender classification rate of 87.5% [9]. 

A lot of the work done (PCA, LDA, ICA etc…) falls under the general heading of 

Multivariate Statistical Analysis. In this dissertation, I will take a closer look at some of 

these methods. I will begin by looking at the method of Principle Component Analysis 

(PCA), followed by that of the Linear Discriminant Analysis (LDA). The next method to 

be examined is Independent Component Analysis (ICA). Finally, I will look at Factor 

Analysis (FA).

From the above, it is clear that as with most multivariate analysis, the goal is that 

of simplifying the data. Given a large dataset, we would like to be able to get a better feel 

of the relationship between the many observed or measured variables. These methods 

will all answer some specific questions about the datasets. Some will lend themselves
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 more intuitively to the problems of classification, while others will be more suited to the 

task of efficient representation. Furthermore, we will also find that within some 

procedures, there will be room for customizing the procedure according to the dataset or 

based on the question. In the coming sections, I will take a closer look at the mechanics 

of these procedures.

In this research, I will employ a Factor Analysis (FA) on test groups to answer and 

classify the subjects according to whether they are: male or female, bearded or not, and 

finally a facial expression classifier.
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Chapter 2.

Background

The use of biometrics can be traced back to the 19th century. In 1882, Bertillon 

presented a biometric system for the aid of identifying criminals [10]. His system 

consisted of taking several measurements of an individual’s head and body. This 

information was processed into a formula to produce a unique and time invariant identity 

for each criminal. The system was eventually adopted as a standard in prison systems. 

Later, fingerprinting became the de facto standard. Today, in addition to finger prints, 

DNA testing is also an accepted form of identification. All the methods discussed so far 

share the common trait of requiring the cooperation of the subject. While this can 

sometimes be achieved, it is not always the case.  

Facial recognition, as a biometric, is a very desirable alternative. This is 

highlighted by the fact that, under certain conditions, the whole process of acquiring the 

data, processing it and establishing identification can be accomplished with minimal to 

no cooperation from the subject. 

 The human system of facial recognition is very sophisticated and robust.
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 However, a major drawback to this system is in the numbers it can process effectively 

and accurately. This is where the advantage of a computer is greatest. An automated 

system capable of facial recognition success comparable to that of humans would find 

applications in a myriad of cases. Some applications would be for use in the law 

enforcement, access to ATM machines or computers, screening and surveillance at 

restricted entry points. Today, many systems use a combination of cards and/or passwords 

to perform access control. Some even use finger printing or iris scanning to establish 

identity [1]. The advantage of a facial recognition based system would be the 

convenience of requiring very little in the way of cooperation.  

Early work on facial recognition focused more on measuring the distances 

between various features on the face. During 1964 and 1965, Bledsoe et al. [2] created 

the first automated system to do this. The system was called a man-machine. It performed 

recognition with the aid of an operator who manually entered the coordinates of various 

feature points, such as center of pupils, into the computer by way of a RAND tablet. The 

computer would calculate various distances between the coordinates, normalize them and 

store them. A match was made by comparing every new subject to the stored distances in 

a database, and selecting the closest one. 

Another useful biometric task is that of gender classification. Early work on 

gender classification used a system of point-lights to capture the gait of an individual. It 

was found that gait was unique to an individual. Johansson [11] was the first researcher to 

employ the point-lights to identify and analyze an individual's gait. He attached point-
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lights to the main joints of individuals, and viewed their motion against a dark 

background. From this, he was able to show that an individual's gait can be used as a 

identification measure. Using point-lights, Kozlowski and Cutting [12] were able to 

achieve success rates of about 63% for gender classification. Changing some of the 

parameters, Barclay [13] showed that structural cues play an important part in the 

classification. Mather and Murdoch [14] further showed that dynamic motion cues are 

better suited to the gender classification problem than structural ones. Aside from gait 

analysis, most of the early research on gender classification was either appearance based 

or geometry based. The geometry based models utilized various distances between facial 

features as input. Brunelli [9] used such a system. As the input to a HyperBF neural 

network, he used 16 such distances. He reported an accuracy of about 79%. Burton et al.

[15] used 73 facial distances as input to a linear discriminant analysis (LDA) for gender 

classification. These methods both showed similar error rates of more than 10%.

Appearance based systems treat the whole image as input. They usually start with 

a training dataset. This is used in training a classifier. Some of the classifiers are neural 

networks, SVM or LDA systems. Golomb et al. [16] used a fully connected, two -layered 

back propagation network as their classifier (SEXNET). Using a training set of 80 

individuals (40 male and 40 female), and a probe or test gallery of 10, they reported 

accuracy rates of around 91.9%. Yen et al. [17] adopted the same method but with a 

larger dataset. Using 1400 facial images, they report a success rate of 90%. Another 

neural network system is that of Cottrell [18]. Using a two stage neural network and 64
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 training images, Cottrell et al. obtained accuracy levels of 63%. Utilizing PCA based 

features as inputs to a perceptron classifier, Abdi et al. were able to realize rates of 91.8% 

[4]. Recently, Moghaddam et al. [4] SVM method has shown promise. Using RBF, they 

have been able to achieve a success rate of 96.6%.

Facial expression analysis is another area that has recently garnered the interest of 

the scientific community. A system capable of accurate and real time facial expression 

analysis would be a great step towards a fully automated Human Computer Interaction 

(HCI) machine. Research in the social sciences [19], [20] has shown that facial 

expressions help coordinate conversations. Moreover, in a study of non verbal 

communication, Mehrabian [21] showed that verbal communication contributed to only 

7% of the overall message. The rest was attributed to voice intonation and facial 

expression. Specifically, 38% and 55% respectively. 

A complete Facial expression analysis system consists of three separate parts. The 

first is facial detection, followed by facial expression extraction, and finally classification 

of the extracted expression [1]. In this work, I will only examine the classification part. 

To date, the most popular method in use is that of the Facial Action Coding System 

(FACS) [20]. This system, in a sense, is a code book for all the expressions that can be 

generated by a combination of the contractions of a set of 44 different facial muscles or 

Action Units (AU). Each set of combinations will result in a subtle change in facial 

appearance. The FACS system provides an investigator with the corresponding facial 

expression. Conversely, given a facial expression, an observer can match it, or express it

9



 as a set of active AU's. Most studies on facial expression analysis are concerned with the 

six universal expressions advocated by Ekman [19]. Ekman defined the six basic 

expressions as happiness, sadness, surprise, fear, anger, and disgust. Other researchers 

include the neutral expression as the seventh. The difficulty encountered by many is the 

lack of universally accepted definitions or objective facial descriptions of these basic 

emotions. Another involves the lack of a categorization of blends of these basic 

expressions [22]. 

Facial expression systems generally fall under the three categories: template 

based, rule based, or neural networks. In template based, the facial expression to be 

examined is compared to previously defined and stored templates of all the expressions. 

Some of these templates are defined in terms of the 44 AUs listed in the FACS. 

Commonly used methods are PCA, LDA or Elastic graph matching among others. Cohn 

[23], using discriminant functions on a combination of AUs reported an accuracy of 88% 

with 100 subjects. Edwards [24] achieved an accuracy rate of 74% with 25 subjects. 

Their work involved a Mahalonobis distance-based PCA and LDA. Hong's Elastic graph 

matching method [25]  was able to attain a rate of 81% on 25 subjects. Using PCA and 

LDA on labeled graph vectors, Lyons [26] achieved rates of 75% to 92%.

             Neural networks based methods as done by Hara, Padgett, Zhang, and Zhao 

report rates of 85%, 86%, 90%, and 100% respectively [27]. Pantic's rule based method 

[28] reported rates of 91% with 8 subjects.

In this research, I will be examining multivariate methods. As such, I will
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 examine more closely the following methods: PCA, LDA, ICA and FA.

2.1     Principle Component Analysis

This method was first described by Karl Pearson back in 1901 [29]. However, it 

was not until 1933, when a practical description was given by Hotelling [30], that it 

gained more widespread use.

Today, as a result of the availability of computational hardware, PCA has found 

numerous applications across a wide range of fields. PCA can be described as a method 

of dimension reduction. It casts a dataset of many variables (N) into one of P (P<<N) 

uncorrelated variables in a manner that is more suitable for representation. This is 

achieved by transforming the N variables X 1 , X 2 ,... , X N through a linear combination to 

produce new variables Y 1 ,Y 2 ,... ,Y P , (P << N)  that are uncorrelated in order of their 

magnitudes (variances). As, a result, it can be seen that PCA will not always achieve a 

more compact form. Clearly, if the original dataset’s variables were already uncorrelated, 

then the new variables, while uncorrelated in order of their importance will not achieve 

the desired outcome of reduced dimensionality.

As stated earlier, PCA has been found to be useful in varied fields of study. It has 

recently been widely used in pattern analysis. It is to this end that I will explore its use 

and contributions.

The Eigenface method for face recognition was introduced by Turk and Pentland
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 [31]. Their work was based on the earlier work of Sirovich and Kirby [3]. Sirovich and 

Kirby used the eigenvector representation to approximate the image with only the largest 

eigenvectors (referred to as “eigenpictures”), thus achieving some compression. By using 

more of the eigenvectors, the resulting image is an improved approximation of the 

original. Before examining PCA’s direct application towards facial recognition, I will 

first give a brief mathematical introduction to PCA. 

PCA can be described as a subspace projection method which seeks to find a more 

compact representation or basis of a dataset such that each new axis has maximal 

variation while being uncorrelated to the other axes. Lets us begin with a dataset X of k 

observations X 1 , X 2 ,... , X K , where each observation is X represented by a collection of 

N variables.

                                    X ={X i ,i=1,2,. .. , k } (2.1)

                                    X j={x i , i=1,2,... , N } , j=1,. .. , k. (2.2)

The goal now is to find a combination of the N xi’s to produce a new set of observations 

Y with reduced variates L where L < N. 

i.e.                                    Y 1=a11 X 1a12 X 2⋯a1L X L⋯a1N X N ,

                                      Y 2=a21 X 1a22 X 2⋯a2L X L⋯a2N X N ,    (2.3)

⋮

                                                    Y N=aN1 X 1aN2 X 2⋯a NL X L⋯a NN X N .
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Where the Y’s are a linear combination of the X’s subject to the condition that the Y’s will 

have zero correlation and the coefficients are such that                      

                                     a11
2 a12

2 ⋯a1N
2 =1 ,

                                     a21
2 a22

2 ⋯a2N
2 =1 ,                                                    (2.4)

                                                    ⋮

                                    a N1
2 aN2

2 ⋯aNN
2 =1.

The reduction in dimension is achieved by the fact that PCA will order the new 

observations, Y’s, by their variances. Those which have variances below some set 

threshold will be ignored in the reconstruction. Thus,

 

          Y 1=a11 X 1a12 X 2⋯a1L X L ,

                                            Y i=a11 X 1a12 X 2⋯a1L X L ,                            (2.5)

                                               ⋮                                  

Y L=a L1 X 1aL2 X 2⋯aL L X L .

Lets us now examine how the coefficients are computed. 

The objective of PCA is to find a linear combination of the original variables, X, with 

maximum variance. The variance of Y is
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                                     Var Y = 1
n−1

 XaT Xa .                                            (2.6)

We now choose a to maximize this variance subject to 

                                         aT a=1.                           (2.7)

This particular constraint is put in place to ensure the maximization is not a result of 

choosing arbitrary large values of the a's.

We can solve this constrained optimization problem using the Lagrangian multiplier

                                  L= XaT  Xa−aT a−1 .                           (2.8)

Taking the derivative of L with respect to a yields

                                      
 L
a

=2XT X − 2a .                          (2.9)

Setting this to zero, and solving we get the characteristic equation

                                   X T X − I a=0 .                                    (2.10)

The solution to the above can be obtained by finding the Eigenvectors and Eigenvalues  

of the covariance matrix X T X (also known as Spectral Decomposition). At this point, we 

note that the Eigenvalues  , are the variances of Y, and the sought after coefficients are 

given by their associated Eigenvector.  The above problem can also be viewed and solved 

by way of a Singular Value Decomposition (SVD).
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2.1.1 Facial Recognition using PCA

What makes PCA suitable for facial recognition is its ability for dimension 

reduction. Instead of computing distances between all the raw images, the distances will 

be computed between the transformed images. The Images to be considered are arranged 

as vectors of dimension (nm). The mean training image is subtracted from all the training 

images before solving for the eigenvectors and eigenvalues [31].

The collection of training images is the image space. PCA is used to find the 

vectors that best describe (in the sense of maximal variation) the distribution of the face 

images in the entire image space [3]. The projection of data from the original dimension 

to the reduced dimension or subspace spanned by the principle eigenvectors is optimal in 

the mean squared error sense1. This transformed subspace of vectors is called the face 

space or sometimes referred to as the Eigenfaces [31]. Depending on the application, 

sometimes not only the eigenvectors associated with the smallest eigenvalues are 

discarded. Sometimes some of the largest are discarded. This is the case when the most 

variations within the images are those caused by unwanted elements. If kept, this could 

introduce variations that would skew the results towards the unwanted characteristics. An 

example of this is the variance introduced because of variable lighting.  

2.1.2 PCA Example

Let us now take a look at a practical example. For the data, I will use the face 

database provided by Olivetti Research Laboratory (ORL) [32]. There are ten different

15

1 The projection of the subspace back to the original space has minimum reconstruction error. 



 images of each of 40 distinct subjects. For some subjects, the images were taken at 

different times, varying the lighting, facial expressions and facial details (glasses / no 

glasses). All the images were taken against a dark homogeneous background with the 

subjects in an upright, frontal position. Fig. 2.1 shows a sample of the raw images.  

Figure 2.1 Four subjects in the ORL Database.

In this example, I use the first nine images of every individual for the training set and the
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 last (tenth) image of the individual as the probe set. Below are the steps followed.

1. Create a matrix with the pixel values of all the training images Xt  by lining up 

each image as a row vector.

Xt Pixel 1 Pixel 2 ⋯ Pixel m

Image 

1

56 56 32

Image 

2

45 40 38

⋮

Image 

n

40 55 35

2. Subtract the mean training image from the training images (rows) of Xt and probe 

images Xp

                       X t= X t – mean{X t }

                X p= X p – mean{ X t }

3.         Compute the covariance matrix X t
T X t . To save computation time and space, we 

first compute the smaller matrix X t X t
T  , and observe  that both

X t
T X t and X t X t

T  share the same nonzero eigenvalues. The eigenvectors of
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 the matrix X t
T X t are the products of  the eigenvectors of X t X t

T  with the 

training matrix, Xt.

4.         Solve the equation X t
T X t− I a=0

5.         Project the training set Xt onto the subspace2 spanned by the eigenvectors.

Figure 2.2 Ten Eigenfaces corresponding to the largest eigenvalues. 

6. Project the probe set Xp onto the subspace spanned by the eigenvectors whose 

associated eigenvalues represent the most of the variance2.

7.        Compute the distance from the probe image to all the training images.

8.        The probe image with the smallest distance to a training image is selected as 

a  match.

18
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 Figure 2.3  PCA Example.

Fig. 2.3 shows the image of the leading eigenvector in the top left position. This is 

followed by a reconstruction of the actual image using only the retained eigenvectors. 

The top right image is the original image. Below, starting at the left and moving to the 

right and down are the images sorted by their respective distances (ascending) to the 

original image.
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Figure 2.4  Plot of the Eigenvalues.

In Fig. 2.3 we see that the algorithm was successful in matching the probe image to all 

nine corresponding images in the training dataset. The figure also shows the image of the 

first eigenvector (eigenface). Fig. 2.4 shows a plot of the eigenvalues. Only a small (less 

than 50 in this case) number of the eigenvalues are used in the matching process. This is 

because most of the variation is captured by the few leading eigenvectors. This is can be 

seen in Fig. 2.4 

 

2.2 Linear Discriminant Analysis.

Similar to PCA, Linear Discriminant Analysis (LDA) [33] can also be viewed as a
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 dimension reduction technique. However, while PCA is best suited for representation of 

data, i.e. finding the axes that are most efficient for representation, LDA is a supervised 

learning algorithm that seeks axes (not necessarily orthogonal) which are efficient for 

discrimination. For a C-class classification problem, LDA finds the C-1 basis vectors that 

maximize the interclass distances while minimizing the intraclass distances. 

The LDA classification is achieved by maximizing the ratio of the between class 

variance to the within class variance. Like PCA, the LDA method projects the raw 

images onto a subspace before computing distances. The difference lies in the 

formulation of the subspaces. LDA first calculates the scatter matrices, Si, for all the i 

classes. This scatter matrix, Si, is calculated as the sum of the covariance matrices for 

images in class i. The scatter matrices are given by

                            S i= ∑
images x∈ class i

x−i x−i
T ,                                                (2.11)

where x are the centered (mean subtracted) images in class i and μi is the mean of the raw 

images in class i. From this follows the within-class scatter matrix S w. This measures the 

scatter between objects of the same class according to

                                          Sw=∑
i=1

C

S i .                                                                   (2.12)

Here C is the number of classes.
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Next, the between-class scatter matrix, SB, is computed. It is calculated as the sum of the 

weighted covariance matrix of the differences between the overall mean and the class 

means according to

                                                 S B=∑
i=1

C

nii−i−T ,                (2.13)

where ni is the number of images in class i and μ is the overall mean of the images.

The objective here is to find the transformation vector w, such that

                                                         max
w

wT S B w
wT SW w

.              (2.14)

The solution gives the generalized eigenvectors and eigenvalues of the within-class and 

between-class scatter matrices. The eigenvectors corresponding to the largest C i are the 

basis vectors of the subspace.

In doing LDA, as above, notice that the overall within-class scatter matrix is the 

mean of the various within-class scatter matrices. This would not be a problem if all the 

classes were normally distributed, or sufficiently similar to each other [33]. However, this 

is not always the case. What happens when some classes are outliers? This raises the 

question of a weighted within-scatter matrix. How do we choose the weights?

2.3        Independent Component Analysis.

Independent Component Analysis (ICA) is a method that seeks to find the
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 statistically independent components of a signal. In general, ICA comes under the class 

of problems known as blind source separation (BSS) [34]. Similar to other multivariate 

methods, ICA also projects data onto a different space. However, unlike PCA which uses 

second-order statistics to find a new set of variables (principle components) that are 

uncorrelated with maximum variance, ICA uses both second-order and higher-order 

statistics to find a new set of signals that have minimal  dependence. Note that correlation 

is a weaker property than independence. 

Given a mixture of signals X (training data), ICA finds the matrix W (the 

transformation or unmixing matrix) such that

                                                  W X T=U .                                  (2.15)

Here U is a matrix with rows that have minimal dependence. Unfortunately, there is no 

closed form expression for finding W. Instead this is done through iterative search 

methods [35]. Different methods rely on different search criteria. However, it has been 

shown that they almost always lead to similar algorithms [35]. A popular algorithm is the 

InfoMax method by Bell and Sejnowski [36].  InfoMax performs a gradient ascent on the 

elements of W to maximize the entropy H u where

                                          H u =∫ f u u log  f uu du                           (2.16)

All the algorithms used fall into one of two fundamentally different types: architecture 1 

or architecture 2.

In architecture 1, the input images in X are considered to be a linear mixture of

23



 statistically independent basis images U combined by an unknown mixing matrix A. In 

this architecture, the face images are variables and the pixel values provide observations 

for the variables. Projecting the input images onto the learned weight vectors W produces 

the independent basis images. Note that this will result in the images being spatially 

localized. The images are then represented by a linear combination (the coefficients are in 

the matrix A) of the independent basis image.

In order to control the number of independent components produced by ICA, it 

has been suggested [37, 38] to reduce the dimension of X via a PCA transformation. ICA 

is then applied to the reduced dimension eigenvectors to produce the independent basis 

images. Below in Fig. 2.5 is an example of eight images and their corresponding 

independent basis images. In architecture 2, the inputs are the transposed input images of 

architecture 1. In other words, the pixels are the variables and the images are the 

observations. The basis images from architecture 2 show more global properties than 

those from architecture 1. This can be seen below in Fig.2.6.
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Figure 2.5 Eight feature vectors from ICA Architecture 1.
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Figure 2.6 Eight feature vectors from ICA Architecture 2.
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Chapter 3.

Factor Analysis

In this chapter, I will examine yet another multivariate technique. Furthermore, I 

will explore the uses of this technique as applied to the FERET facial database. 

Factor Analysis can be described as a relatively heuristic methodology. This is 

because, with a factor analysis, it is the interpretation of the various factors that is 

important to the researcher. How can we interpret the various factors in a given model to 

represent the physical data in a meaningful manner? The essential purpose of an FA is to 

describe the covariance/correlation relationships among many observations in terms of a 

few underlying but unobservable random quantities called factors [39].  

3.1 PCA Vs FA

As a multivariate statistical tool, factor analysis is similar to PCA in that it seeks 

to replace the n random variables with m (m < n) random variables. Like PCA, the data 

for a factor analysis consists of p observations, each with n variables. Unlike PCA, which 

is used to find the optimal  way of combining variables such that the total variance of the 

variables is accounted for by fewer new variables or components where each successive
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 component accounts for a maximum variance while being uncorrelated with the other 

components, factor analysis may be used to identify the underlying structure of the 

variables and to estimate scores or loadings to measure latent factors. 

The  factor loadings are a measure of how well the variables agree with the 

computed factors.  Another difference between the two approaches is that with PCA all 

of the observed variance is mapped onto the uncorrelated components, while in factor 

analysis the shared variance or correlation is analyzed and explained in terms of common 

factors and a unique or error factor [39]. Moreover, unlike PCA, factor analysis is based 

on a postulated model. In this dissertation, I will be concerned with the Common Factors 

model [40].

 Factor Analysis can be traced back to the work of Spearman [41]. While studying 

the correlation between student’s test scores, he noted that the relationships could be 

explained by a simple model suggesting a two-factors model: an overall intelligence 

factor and a test specific factor. This simple model was later expanded to allow for more 

factors. Specifically, each test result was postulated to be due to several common factors 

and a test specific factor. 

One of the reasons for choosing to perform an FA is for the attainment of a 

parsimonious description of the observed data. A successful FA is able to represent a set 

of observations through a linear transformation to a smaller set of new variables or 

factors. A satisfactory resolution will yield factors that convey all the essential 

information in the original variables [41]. This new representation is accomplished
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 through an analysis of the correlation or covariance of the observable variables. These 

factors can be thought of as implicit traits or unobservable patterns buried in the dataset. 

They afford the researcher an alternative description. Factor analysis, like most 

methodologies, can take several forms. The one I will be concerned with is the Common 

Factors variety. In essence, it looks to represent the observable set of variables with a set 

of common factors that are shared by all the observable variables plus a unique factor that 

is specific to each variable. In this dissertation, I will be looking to find gender, facial hair 

and facial expression factors in three datasets [5], [42]. 

In his initial two-factor model, Spearman [41] observed that the pattern exhibited 

by the correlations followed a simple model. The model he used to explain the data was 

of the form

                                                          X i=a i Fe i  ,                                                (3.1)

where, after standardizing the raw observed data (standard deviation of one and a zero 

mean), X i is the ith test score, F is a factor with zero mean and standard deviation of one,

a i is a constant (also known as the factor loading), and e i is the specificity or the part of

X i that is specific to the ith test (or variable) only. From the above model, the variance of

X i is 
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Var  X i=Var a i Fei

=Var ai F Var e i

=ai
2Var F Var e i

⇒ 1 =a i
2Var e i

                                         (3.2)

From this, we see that the square of the factor loading is the part of the variance that is 

accounted for by the factor F. The general factor analysis model for m multiple factors, 

and a specific factor is given by

                                    X i=a i1 F 1a i2 F 2⋯a i m F me i   ,                                  (3.3)

where, again, X i is the standardized and centered ith score, the F's are the m factors, a i ’s 

are the factor loadings, and e i is the specificity which is uncorrelated with any of the 

common factors. Similarly, the variance can be seen to be

         
Var  X i=a i1

2 Var F 1ai2
2 Var F 2⋯a i m

2Var F mVar ei

⇒ 1 =a i1
2a i2

2⋯a i m
2Var e i

             (3.4)

where    

                                               a i1
2a i2

2⋯a i m
2 ,                                  (3.5)

is called the communality of X i  is the part of the variance that is related to the factors. 

These factors Fi are not unique. New  factors can be obtained from these by a linear
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 combination. For example, we can create new factors W such that

                                    

W 1=d 11 F1d 12 F 2⋯d 1m F m

W 2=d 21 F 1d 22 F 2⋯d 2m F m

⋮
W m=d m1 F1d m2 F 2⋯d mm F m

                                 (3.6)

These new factors are a result of a rotation of the previous factors. This is often done to 

help the researcher reach a more meaningful interpretation of the loadings across the 

various factors [43]. The factor rotation can be orthogonal or oblique. In an orthogonal 

rotation, the new factors will be uncorrelated. With oblique rotations, the new factors are 

correlated. A commonly used rotation is the Varimax rotation [44]. This rotation is based 

on maximizing the variance of the squares of the loadings. By doing so, all variables will 

have their loadings close to zero or one. This in turn will facilitate an easier and more 

intuitive interpretation of the factors. The correlation between two variables X i and X j is 

                                r i j=ai1 a j1a i2a j2⋯a i m a j m .                                             (3.7)

This shows that two variables are highly correlated if they have high (positive or 

negative) loadings on the same factors.

3.2 Common Factor Analysis

Common Factor Analysis, as opposed to a full component model, is a special type 

of factor analysis that seeks to represent the p observations, each consisting of n 

variables, in terms of m (m < n) common factors and p specific factors. In general, FA is 

similar to PCA. However, unlike PCA, where the new variables are represented by a
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 linear combination of a set of n uncorrelated components, the factors in an FA need not 

be uncorrelated. In fact, in common FA, the m common factors can be correlated. 

   The goal of common factor analysis is to find a set of new variables such that the 

overall variance of each observation can be explained by way of a common component(s) 

and a unique one [29]. With a common Factor analysis, it is the covariation among the 

variables that is of interest. In 1904, Spearman [41] was the first to stress the importance 

of this model. In carrying out a study to measure the general intelligence, he hypothesized 

that the observed correlation between variables such as school performance, original 

thinking and arithmetic reasoning was due to a common intelligence factor and that the 

unaccounted variance of each variable was it's specific variance. In other words, 

Spearman's formulation stated that

                           Total Variance = Common Variance + Unique Variance

                                                                                   

                                                                                            (Specific + Error Variance)

The general form of an FA model is as in (3.3). Where iX is the new ith variable, ia is a 

constant (also known as a factor loading), the iF ’s are the m common factors and ie is the 

variable’s specific variance. In matrix notation, we have

                                                   X – =LF  ,                                                     (3.8)

where
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     X = Observable random vector,

       = mean,

     L = matrix of factor loadings,

       = specific variances,

The estimated vectors F and є must be independent [62]. Let

        E(F) = E(є) = 0;  Cov(F) = I;   Cov(є) = ψ ,                   (3.9)

where  ψ is a diagonal matrix. The basic assumptions of the common factor model stem 

from the following axioms [45].

1. A variable can be partitioned into two parts: a common and a specific part.

    X i=C iV i  C is the common part component and V is the specific component.

2. E {V i X k}=0 i≠k  

    E {V i V k}=0 i≠k

3. E {V i C k}=0 i≠k

4. E {V i C i}=0    

5. E {C i C k}=r ik i≠k

The correlation between two variables is due to the common factor portion. This is 

called the communality. It can be written as:     

                                                    E {C i
2}=hi

2 .                                                    (3.10)

or as in (3.5). The part due to it's specificity is the specific variance 

                                                    E {V i
2}=ui

2  .                                                   (3.11)
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3.3     Procedure for a Factor Analysis

Which extraction method to choose will depend on the available data, and/or 

purpose of the analysis. Common extraction methods include: Maximum Likelihood 

(ML), the method of Principal Factors, and the principal component method. I will, 

primarily, make use of the maximum likelihood method [46].

An important question that must be answered in performing a factor analysis is 

how many factors should you retain? Again, this is entirely dependent on the researcher 

and the data. Some general guidelines used are:  number of eigenvalues greater than or 

equal to one (Principal Components Analysis method), scree test/scree plot, percentage of 

variance, and hypothesis testing [43]. Some methods do not require a postulated number 

of factors; instead they are concerned with finding a model with enough factors to best 

reproduce the correlation matrix of the original data.

Finally, in doing a factor rotation, there are two alternatives. There are the 

orthogonal and the oblique rotations/transformations. Rotations, a geometrical 

transformation of the axes of factors, are used to increase the interpretability of the 

results. The orthogonal rotation keeps the factors uncorrelated while trying to increase 

their interpretability. An oblique rotation allows the new factors to be correlated. A 

popular orthogonal method is the Varimax transformation [44]. It constitutes maximizing 

the variance of the loadings within factors across the observations. Another method 

within the orthogonal methods is the Quartimax method, which seeks to maximize the 

variance of the variables across the various factors [39]. Here, I will restrict my attention
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 to the orthogonal methods, specifically the Varimax transformation. I have decided to 

use this because I am interested in using the loadings on the factors as a classifier.

3.3.1  Principal Component Factor Analysis

The Principal Component Factor Analysis method was developed to facilitate the 

reduction of a large body of variables to a few [43]. It was originally proposed by Karl 

Pearson [29], and later developed for use in FA by Hotelling [30]. The model is given by

            X i=a1 F1a2 F 2⋯a N F N i=1,2,. .. p .                  (3.12)

This model [43] uses the principal components from PCA as the initial factors. These are 

rotated until the desired factors are found. Similar to PCA, for N variables there will be N 

principal components. These are just linear combinations of the original variables, so that

 

Y 1=a11 X 1a12 X 2⋯a1L X L⋯a1p X p ,

Y 2=a21 X 1a22 X 2⋯a2L X L⋯a2p X p ,

⋮

Y p=a p1 X 1a p2 X 2⋯a pL X L⋯a pp X p ,

  (3.13)

where the a ij ’s are obtained from the eigenvectors of the original correlation matrix. For 

the initial factors (like in PCA), only L (L<p) of the principal components are retained. 

This can be written (inversely) as

35



   

X 1=a11Y 1a21Y 2⋯aL1 Y p⋯e1 ,

X 2=a12Y 1a22Y 2⋯a L2 Y p⋯e2 ,

⋮

X L=a1pY 1a2p Y 2⋯aLp Y p⋯eL ,

                     (3.14)

Where the e’s are linear combinations of the discarded principal components. The next 

step is to scale the components to unity. This is followed by the rotation step [43]. In our 

case, I will use a Varimax rotation, yielding

X 1=d 11 Z 1d 21 Z2⋯d L1 Z L⋯e1 ,

X 2=d 12 Z 1d 22 Z 2⋯d L2 Z L⋯e2 ,

⋮

X L=d 1p Z1d 2p Z 2⋯d Lp Z L⋯e p ,

   (3.15)

where the dij are the scaled aij and the Zi are the rotated factors. For data reduction, only a 

few of the components are retained [43]. Typically, the retained components will account 

for most of the variation in the data [39]. However, in order to reproduce the original 

correlation among the variables, all components will be needed.

3.3.2 Principle Factors Method.

Unlike the method of principal component analysis described in section 

3.3.1, the principal factors method requires an estimation of the specific variances a priori 

[40]. These specific variances allow for the construction of the reduced correlation 

matrix. The reduced correlation matrix is the original correlation matrix with the specific
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 variances subtracted from the diagonal elements. This reduced correlation matrix will 

have communality estimates as its diagonal elements . The decomposition of this adjusted 

(reduced) correlation matrix results in the common factors and unique factors. In fact, 

when using ones as the diagonal elements, this method reverts to the principal component 

method. Given the number of factors, the principal factor method will extract factors that 

account for the maximum variance [40]. These factors are extracted by way of a 

characteristic roots and vector analysis of the association matrix. In most cases the 

association matrix is either the correlation or covariance matrix. Like PCA, the first 

factor extracted will have the maximum variance. The second factor is extracted in such a 

way that it will be uncorrelated with the first while having the second highest variance 

[43]. The rest (up to the number of specified factors) of the factors are extracted in a 

similar manner. Thus, all the extracted principal factors will be uncorrelated. In contrast 

to the method of principal components, this method seeks to maximally (in a least square 

sense) reproduce the correlation matrix using m common factors (m < N) and a unique 

factor. Thus all the n variables will be represented by:

        Y j=a j1 F 1a j2 F 2⋯a jm F md jU j  j=1,2,⋯ , p             (3.16)

or

              Y j=∑
k =1

m

a jk F kd j U j  j=1,2,⋯ , p ; i=1,2,⋯, n ,                      (3.17)

where the common factors account for the correlation among the variables and the unique 

factor represents the remaining variance of each variable. As before, the factor
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 coefficients are called the loadings. The square of these coefficients or loadings, a2
ik, are 

an indicator of how much each factor contributes to the communality of a particular 

variable. The sum of the square of the loadings, a j1
2 a j2

2 ⋯a jm
2 , is the communality 

of the variable Xi. This is the part of its variance that is related to the common factors. 

The coefficients are also a measure of the correlation between variables. The correlation 

between variables can be expressed as the sum of the products of coefficients [39], i.e .

                         r jk=∑
p=1

m

a jpakp .  j , k=1,2,⋯, n .                                       (3.18)

Note that rjk = rkj and that the communality is simply rjj. The principal factor method 

seeks to find factors such that the sum

                                  V 1=a11
2 a21

2 ⋯an1
2                                                         (3.19)

is maximum subject to the condition

                                          r jk=∑
p=1

m

a jpakp .                                                              (3.20)

Maximization is achieved by use of Lagrangian multipliers [47].

              The first step in the principal factor method is the determination of the 

coefficients for the first factor under the constraint of maximal communality. This 

maximization of (3.18) with the constraints of (3.19) results in a system of n equations 

for the unknowns a j1 , j=1,⋯ , n [40]. A necessary and sufficient condition for a non-

trivial solution is the vanishing of the determinant of the reduced correlation matrix [40].

i.e.,
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                                  Det [h1
2−1 r12 ⋯ r1n

r21 h2
2−2 r2n

⋮ ⋮
rn1 r n2 ⋯ hn

2−n
]=0 .                        (3.21)

The expanded form of (3.21) is the characteristic equation. The roots of the characteristic 

equation are the eigenvalues and their associated solutions are the eigenvectors. The 

eigenvectors corresponding to the largest eigenvalue, λ1, of the reduced correlation matrix 

R are the coefficients or loadings of the first factor F1. The coefficients of the second 

factor F2 are the eigenvectors associated with the largest eigenvalue of the new reduced 

correlation matrix. This new reduced correlation matrix is the original reduced 

correlation matrix sans the contributions of the coefficients of the first eigenvectors. 

                                           R1=R−a1 a1
'                                                                 (3.22)

where a1 is the vector of coefficients for F1. The largest eigenvalue of the new reduced 

correlation matrix will have a corresponding eigenvector consisting of the coefficients of 

the second factor F2 [47]. In fact, this eigenvalue and its corresponding eigenvector can 

be obtained directly from the original reduced correlation matrix as the second largest 

eigenvalue and its associated eigenvector. The rest of the eigenvalues and their associated 

eigenvectors are obtained in a like manner [40]. 

           When doing a full component analysis, that is starting with unities as the diagonal 

elements of the correlation matrix, there will be n eigenvalues for a full rank matrix. In 

the case of a principal-factor analysis (with communalities in the diagonal) there will be 

m eigenvalues. All these computations can be achieved by use of electronic computers.
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 Jacobi's [48] work has been found to be an effective method in the computations of these 

eigenvalue-eigenvector pairs. The decomposition of the correlation matrix as the product 

of its eigenvalues and eigenvectors can also be explained by way of  the spectral theorem 

[49], which states that the symmetric matrix R can be diagonalized by means of an 

orthogonal transformation.

3.3.3 Maximum Likelihood Method.

              Unlike the method of principal factors, the Maximum Likelihood method does 

not require the estimated communality values. Instead, it requires the number of 

postulated factors. The method of maximum likelihood generally seeks to find the factor 

matrix that will minimize the residual matrix in a least square sense. In the 1940's, 

Lawley [50] developed a statistical basis for measuring the effectiveness of a factor 

analysis. His test was based on the use of the method of maximum likelihood for the 

estimation of the factors. Starting with an assumption of the number of common factors 

m, and the assumption of a multivariate normal distribution, Lawley's method estimates 

the universal factor loadings from the test sample. The effectiveness of the model is 

measured by a Chi-Squared test of significance. Under the assumption that the samples 

are normally distributed, Wishart [51] determined the distribution function of the 

elements of the covariance matrix as

                  F =K∣∣
−1
2  p−1

∣S∣1 /2 p−n−1 e
−1/2  p−1 ∑

j ,k=1

n

 jk s jk ∏
jk=1

n

ds jk

,                               (3.23)

where K is a constant involving the sample size, N,  and number of observations n and
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 where  S and Σ are the sample and population covariance matrices, respectively. This 

distribution function is the likelihood function. The task is now to find the estimates A 

(matrix consisting of the common factor loadings) and D (diagonal matrix of the unique 

variances) such that

                                                 =AA ' D2                                                         (3.24)

will maximize the likelihood function. The maximization is achieved by equating the 

partial derivatives of  (3.21)  with respect to the ajp and the diagonal matrix dj to zero and 

solving the resulting equations. The solution obtained by Lawley [50] is:

                                            P = A A ' D2 ,                                                            (3.25)

                                            A= P R−1 A ,                                                               (3.26)

                                            D2=I −diag  A A '  ,                                                  (3.27)

where P is the population correlation matrix with the entries of the main diagonal 

normalized to unity, P is the estimated correlation matrix, and R is the sample 

correlation matrix. In order to simplify the numerical maximization of (3.23), the 

population correlation matrix P is assumed to be equal to the sample correlation matrix R 

[39].    

3.4     Preliminary Results Using Factor Analysis

In this dissertation, I performed a factor analysis on the FERET image databases. I 

ran the analysis several times on different datasets. The aim was to include many 

different subjects in our datasets. This was done to test the robustness of some of the 

results and to check for consistency of the results. Initially, the number of factors was
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 varied for each dataset. This was done in a rather heuristic manner in keeping with the 

exploratory nature of the work at this stage. In fact, a goal of this work is to develop a 

deeper, and more intuitive understanding of the relationship between the number of 

factors, the type of dataset, and the desired interpretation of the analysis. Fig. 3.1 shows 

one such dataset [5].

Figure 3.1 Cropped facial images of female (top row), and male (bottom row)

I ran a  factor analysis on the dataset shown in Fig. 3.1. Initially, I used two factors. A 

Varimax rotation was applied to the factors. Fig.3.2 shows the corresponding loadings of 

the two factors for the ten subjects.
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Figure 3.2 Factor Loadings (two factors) for images if Fig 3.1

Looking at the factor loadings, I noticed that these particular factors seemed capable of 

capturing the gender of the subject. Notice that the first five subjects (with the exception 

of the first subject) exhibit higher loadings on the second factor than the first factor. This 

is the opposite with regard to the male subjects (with the exception of the last one. What 

does this mean? Can we interpret the factors to mean gender? Part of this work is an 

attempt to be able to answer these questions in a more rigorous manner. I ran another 

factor analysis on the above dataset using three factors. Fig. 3.3 is a graph of the three 

loadings for every subject.
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Figure 3.3 Factor Loadings (three factors)

Again, we observe that the first two factors seem to be exhibiting the same behavior as 

when there were only two factors. 

I ran another analysis against a different dataset. Fig. 3.4 is the image dataset, 

followed by the analysis using two, three, four, and five factors.

Figure 3.4 Facial Dataset
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Figure 3.5 Two factors using dataset of Fig. 3.4

Figure 3.6 Three factors using dataset of Fig. 3.4 
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Figure 3.7 Four factors using dataset of Fig. 3.4

Figure 3.8 Five factors using dataset of Fig. 3.4
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All the analysis seems to agree that the first two factors can be interpreted to represent 

gender. This trend seems to hold even for multiple factors. 

I performed another analysis on a different dataset [32]. In addition to gender, this 

new dataset introduces the element of facial hair. Fig. 3.9 shows the dataset. With this 

analysis, we see that subjects with facial hair seem to have low loadings on factor 3 in 

Fig. 3.11, and low loadings on factor 4 in Fig. 3.12. Moreover, we can still see the gender 

classification coming through the first two factors. 

Figure 3.9 Facial Images dataset
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Figure 3.10 Two factors using dataset from Fig. 3.9

Figure 3.11 Three factors using dataset from Fig.3.9
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Figure 3.12 Four factors using dataset from Fig. 3.9
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Chapter 4.

Gender Classification with Factor Analysis

In this research, I will perform a common factor analysis on a set of variable 

images [5],[42]. Each image will be considered as an independent composite variable. In 

the analysis, I used a total of ten images. Five male and five female subjects. The first 

step is to construct a correlation or covariance matrix. Each n by m  image will be 

represented by a vector of length nm. In this dissertation, I will work with standardized 

data, and therefore the correlation matrix. Using images from the FERET database [5], I 

randomly selected ten images shown in Fig. 4.1 and 4.2 to construct our correlation 

matrix. All images were cropped and resized. Each of these images will be regarded as an 

observation with nm variables. This will result in a correlation matrix of size  10x10.

After computing the correlation among the ten facial images, an FA, using the 

method of maximum likelihood with two common factors  was utilized in the estimation 

of the factors and the loadings. 
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Figure 4.1 Female images 

Figure 4.2 Male images

The maximum likelihood estimates (for p observations of n x 1 vectors) are 

obtained by a numerical maximization of  the joint likelihood function:

                                     L  ,=∏
i=1

p ∣−1/2∣
2n/2 e[−1 /2 xi−T −1 x i−] .    (4.1)

Subject to the uniqueness condition (to overcome the many possible 

transformations/solutions) that (4.2) be a diagonal matrix.
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                                             LT −1 L= .                 (Diagonal matrix)    (4.2)

Using an orthogonal rotation (Varimax method [44]) of the estimated factors, we see in 

Fig 4.4 how the first five (female) variables load high on the first factor and low on the 

second. The opposite is true for the male images. They load higher on the first factor than 

on the second factor. It is this separation of the factors along with how the two groups 

load up on them that will enable us to create a linear classification rule. Fig.4.3 shows the 

two factors as images. 

               

Figure 4.3 Images of the factors
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Figure 4.4 Loadings on the two factors

The next step is to estimate the factor scores from our analysis. These factor scores will 

be used to compute the new representation of our probe dataset in the factor space. The 

probe dataset or test cases consists of the images not used in the initial factor analysis. 

They will be tested against our linear classification rule. There are several methods of 

estimating these factor scores. I will use a Weighted Least Squares (WLS) method. To use 

the weighted least squares method, we must first know all the variables in the model      

                                                         X – =LF  .                (4.3)

Given that the loadings, L, and specific variances, ψ, are themselves estimates, we will
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 treat them as though they are the true population parameters in the estimation of the 

factor scores. Bartlett [38], advocated that since the specific variances, Cov(є) = ψ, need 

not be equal, the sum of the squares should be weighted by the reciprocal of their 

variances.

From the above model, we have:

                                                      =X – −LF .                                       (4.4)

The weighted sum of squares is 

                                      ∑
i=1

p i
2

i
=T −1 =x−−Lf T −1 x−−Lf .      (4.5)

 

To find the estimated factor scores, we find the estimates, f ,that minimize the above. 

The solution is [45]

                                  f = LT −1 L−1 LT −1x i− .                                           (4.6)

Using these factor score estimates, the new representation of the probe images in terms of 

the two factors is computed. The loadings are used in the classification. Fig.4.5 is a plot 

of the loadings of the probe dataset with respect to the previously found factors. From the 

plot, we can see how the same gender images identify with their respective factors. It is
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 this separation that allows us to create an identification boundary. In general, depending 

on how we choose to transform the factors (orthogonal vs oblique transformations), we 

will have different classification rules.

              

Figure 4.5 Loadings of probe images on the two factors

In this dissertation, I used images from the FERET [5] database. All the images were 

cropped and resized to 112x92 pixels. This was done to keep the sizes of the images from 

both databases [32], [5] consistent. Other than that, no further processing was applied. 

Using the y=x line as the classification boundary and a test gallery of 200 images, I was 

able to achieve average classification rates of 90%.

               An alternate method of using factor analysis for gender classification is to
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 divide the facial images database into two groups: a known training group and a testing 

group. The training group will comprise an equal number of images of both genders. 

These individuals are chosen according to how well they set up the correlation matrix. 

We want a group such that the correlation matrix clearly exhibits a separation between 

the genders. An example of such a group is shown in Fig.4.6. The associated correlation 

matrix is shown below. Note that, with this particular group, we can clearly see that both 

genders correlate significantly with members of their respective gender class. The shaded 

areas in the matrix below show the high correlation among members of the same sex.

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10

I1 1.000 0.781 0.742 0.751 0.843 0.338 0.328 0.390 0.343 0.367

I2 0.781 1.000 0.833 0.782 0.836 0.281 0.298 0.274 0.335 0.263

I3 0.742 0.833 1.000 0.763 0.791 0.236 0.276 0.254 0.284 0.228

I4 0.751 0.782 0.763 1.000 0.755 0.379 0.371 0.325 0.373 0.384

I5 0.843 0.836 0.791 0.755 1.000 0.211 0.214 0.228 0.213 0.223

I6 0.338 0.281 0.236 0.379 0.211 1.000 0.797 0.772 0.806 0.721

I7 0.328 0.298 0.276 0.371 0.214 0.797 1.000 0.754 0.792 0.740

I8 0.390 0.274 0.254 0.325 0.228 0.772 0.754 1.000 0.748 0.709

I9 0.343 0.335 0.284 0.373 0.213 0.806 0.792 0.748 1.000 0.805

I10 0.367 0.263 0.228 0.384 0.223 0.721 0.740 0.709 0.805 1.000

                      Figure 4.6 Correlation Matrix for the ten training Images.

Testing of an individual is performed by first creating an association matrix of the test 

image with the ten preselected images. An FA is carried out on the new correlation 

matrix. Determination of the gender of the test image is accomplished by examining the 

loadings of the new image on the two factors. The success rates are comparable to the
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 previous method. Using a test bed of 168 facial images, I was are able to achieve a 

success rate of 89.88%.

57



Chapter 5.

Facial hair Classification with Factor Analysis

Notice in Fig. 3.12, that the factor analysis was able to capture and group the 

individuals according to gender. Moreover, it  was also capable of grouping the 

individuals by facial hair. To further study this phenomena,  a factor analysis was setup to 

investigate this behavior. Using the FERET database [5], male subjects, with and without 

facial hair, were chosen. Of the chosen subjects, some were selected to be the training set. 

The remainder were used as the test bed. Using forty individuals, twenty with facial hair 

and twenty without facial hair a correlation matrix was constructed. The forty training set 

individuals are shown below in Fig.5.1 and the test images gallery is shown in Fig.5.2.

After the correlation of the forty subjects was computed, two factors were extracted by 

means of a maximum likelihood factor analysis. The two extracted factors are shown in 

Fig.5.3.
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Figure 5.1 Training set images

Figure 5.2 Images of the test database
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Figure 5.3. Image of the two Factors.

Subsequent to the analysis, the images are arranged by the magnitude of their loadings on 

the two factors. Fig.5.4 shows the top ten (by magnitude) images of the two factors. The 

first two rows are the ten images with the largest magnitudes on factor one, and the last 

two rows are the images with the largest loadings on factor two. Clearly, we can see that 

the first factor has images of non-facial hair subjects while the second factor is dominated 

with images of individuals with facial hair. Using this characteristic of the two factors, I 

was are able to to classify the images of the test gallery according to the magnitude of 

their loadings on the two factors. To test an image, the test image was appended to the 

training gallery prior to running an FA.
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Figure 5.4 Images of the ten subjects with largest magnitudes on the two loadings

Depending on the magnitude of its loading on the two factors, a classification was 

reached. Fig. 5.5 shows our test gallery ordered as per such a classification rule.

 A success rate of 90% was achieved with this particular test gallery. Another test 

gallery was constructed as shown in Fig. 5.6. The  results of running this test gallery 

against the training images of Fig. 5.7 are shown in Fig. 5.8. A success rate of 80% is 

obtained. Fig.5.9 shows another example of a test gallery, followed by the classification
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 results in Fig.5.10. 

B e a r d B e a r d B e a r d B e a r d B e a r d

N o  B e a r d N o  B e a r d B e a r d N o  B e a r d N o  B e a r d

Figure 5.5 Results of the classified images
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Figure 5.6 Images of test gallery
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Figure 5.7 Training set images

N o  B e a r d B e a r d B e a r d B e a r d B e a r d

N o  B e a r d N o  B e a r d N o  B e a r d B e a r d N o  B e a r d

Figure 5.8 Classification of test gallery images
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Figure 5.9 Another test gallery

B e a r d B e a r d B e a r d B e a r d B e a r d

N o  B e a r d N o  B e a r d N o  B e a r d B e a r d N o  B e a r d

Figure 5.10 Classification results of images in Fig. 5.9

The success rate of Fig.5.10 is 90%. The average success rate for the three is 86.67%.
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Chapter 6.

Facial  Expression Classification with Factor Analysis

In this chapter, I will use factor analysis to analyze and classify the facial 

expressions of a group of Japanese women from the Japanese Female Facial Expression 

Database (JAFFE) [52,53]. Each of the ten subjects in the database  will have two or 

three images of the seven universal expressions: anger, disgust, fear, happiness, neutral, 

sad and surprise. Using factor analysis, I will first show the procedure's ability to capture 

the common variation among a subject's facial expression gallery. That is, it will be 

shown that a factor analysis is able to identify, and group an individual's different facial 

expressions. 

Facial expression analysis can be traced back to the nineteenth century work of 

Darwin [54]. Darwin showed that facial expressions were universal to both man and 

animal. He postulated that man had certain inborn emotions. A century later, Ekman and 

Friesen [55] laid the ground work for the existence of the six primary or basic emotions: 

anger, sadness, happiness, disgust, surprise and fear. In [20], Ekman and Friesen 

introduced the most wildly used system for facial expression analysis, FACS. Their
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 system, Facial Action Coding System, or FACS is based on characterizing visually 

distinguishable facial movements by Action Units, or AU. They showed that 46 AUs are 

needed to account for the changes in facial expressions with different expressions 

corresponding to different combinations of these AUs. 

Given a gallery comprising of an individual's images of the seven universal 

expressions, a factor analysis will be used to group the images according to the 

expression displayed. Given that every subject's gallery exhibits all the seven facial 

expressions (the six basic and a neutral), I will run our factor analysis using seven as the 

number of common factors. Each common factor will account for one of the six facial 

expressions and the neutral expression. Fig. 6.1 shows one of the subject's gallery where 

the following abbreviation is used:

AN- Angry; DI- Disgust; FE- Fear; HA- Happy; NE- Neutral; SA- Sad; SU- Surprise.

Fig. 6.2 shows the image of the seven factors obtained from the factor analysis 

with seven common factors of images of Fig. 6.1. Fig. 6.3 shows the results of running a 

factor analysis with seven common factors. Each image is grouped, column wise, 

according to the value of its loading on the seven common factors. The three images with 

the highest loadings on each common factor are displayed. Fig. 6.4 is another individual's 

gallery from the database [52]. After running a FA with seven common factors, images of 

the seven factors obtained are shown below in Fig.6.5. Fig. 6.6 shows a grouping of the 

images of Fig 6.4 according to their loadings on the seven common factors.
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1 A N 2 A N 3 A N

4 D I 5 D I 6 D I

7 D I 8 F E 9 F E

1 0 F E 1 1 H A 1 2 H A

1 3 H A 1 4 N E 1 5 N E

1 6 N E 1 7 S A 1 8 S A

1 9 S A 2 0 S U 2 1 S U

2 2 S U

Figure 6.1 Seven Facial Expressions of a subject
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F a c t o r :  1 F a c t o r :  2 F a c t o r :  3 F a c t o r :  4 F a c t o r :  5 F a c t o r :  6 F a c t o r :  7

Figure 6.2 The seven common factors obtained from the FA.

K L . D I4 . 1 7 3 . t i f f

K L . D I2 . 1 7 1 . t i f f

K L . D I3 . 1 7 2 . t i f f

K L . S U 3 . 1 6 6 . t i f f

K L . S U 2 . 1 6 5 . t i f f

K L . S U 1 . 1 6 4 . t i f f

K L . N E 3 . 1 5 7 . t i f f

K L . N E 2 . 1 5 6 . t i f f

K L . N E 1 . 1 5 5 . t i f f

K L . H A 3 . 1 6 0 . t i f f

K L . H A 1 . 1 5 8 . t i f f

K L . H A 2 . 1 5 9 . t i f f

K L . A N 2 . 1 6 8 . t i f f

K L . A N 3 . 1 6 9 . t i f f

K L . A N 1 . 1 6 7 . t i f f

K L . S A 2 . 1 6 2 . t i f f

K L . S A 1 . 1 6 1 . t i f f

K L . F E 2 . 1 7 5 . t i f f

K L . F E 3 . 1 7 6 . t i f f

K L . F E 1 . 1 7 4 . t i f f

K L . F E 2 . 1 7 5 . t i f f

  Disgust   Surprise    Neutral     Happy     Angry      Sad      Fear

Figure 6.3 Subject grouped (column wise) according to facial expression.
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1 A N 2 A N 3 A N

4 D I 5 D I 6 D I

7 F E 8 F E 9 F E

1 0 F E 1 1 H A 1 2 H A

1 3 H A 1 4 N E 1 5 N E

1 6 N E 1 7 S A 1 8 S A

1 9 S A 2 0 S U 2 1 S U

2 2 S U

Figure 6.4 A subject with all seven facial expressions
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F a c t o r :  1 F a c t o r :  2 F a c t o r :  3 F a c t o r :  4 F a c t o r :  5 F a c t o r :  6 F a c t o r :  7

Figure 6.5 Images of the seven common factors from an FA of images of Fig 6.4

Y M . F E 4 . 7 0 . t i f f

Y M . F E 3 . 6 9 . t i f f

Y M . F E 2 . 6 8 . t i f f

Y M . A N 2 . 6 2 . t i f f

Y M . A N 3 . 6 3 . t i f f

Y M . A N 1 . 6 1 . t i f f

Y M . H A 3 . 5 4 . t i f f

Y M . H A 1 . 5 2 . t i f f

Y M . D I 3 . 6 6 . t i f f

Y M . S U 3 . 6 0 . t i f f

Y M . S U 1 . 5 8 . t i f f

Y M . S U 2 . 5 9 . t i f f

Y M . S A 3 . 5 7 . t i f f

Y M . S A 2 . 5 6 . t i f f

Y M . S A 1 . 5 5 . t i f f

Y M . N E 1 . 4 9 . t i f f

Y M . N E 3 . 5 1 . t i f f

Y M . H A 2 . 5 3 . t i f f

Y M . D I 1 . 6 4 . t i f f

Y M . D I 3 . 6 6 . t i f f

Y M . N E 2 . 5 0 . t i f f

     Fear     Angry     Happy   Surprise      Sad    Neutral   Disgust

Figure 6.6 Subject grouped according to facial expression.

As evidenced from the above, factor analysis is able to capture images of similar 

expressions. These images of like expressions have high loadings on the common factors 

exhibiting a particular expression. The next question is whether we can use this to
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 determine a particular expression. To this end, I ran an FA using seven common factors 

on a given dataset consisting of a subject with several images per expression. The 

resultant grouping of the images as per the seven common factors was then used to 

determine the expression of an unknown facial expression image. This was done by 

examining the loading of the unknown expression on the seven common factors.   

To run the above classification, I first select an individual's gallery. An image of 

the subject with one of the exhibited expression is removed from the gallery. This will be 

the expression that is tested in the classification. Using the remaining images in the 

gallery, an FA with seven common factors is run. This results in seven common factors. 

An additional FA is then performed with the unknown image as part of the gallery. The 

classification is made according to the magnitude of the loading of the unknown 

expression on the established seven factors. Using a leave one out strategy, each image in 

an individual's gallery is run with the remaining images. As an example, the classification 

results for the images of Fig. 6.4 are given in Fig. 6.7. In order to quantify the success of 

the classification, the classifications obtained are compared to the baseline of the 

expressions in Fig. 6.4. So, looking at the first three expression images (image numbers 

1, 2, 3), we see that the FA was able to identify the correct expression of anger. In such a 

manner, all the image expressions in Fig. 6.7 are checked against the baseline image 

expressions in Fig. 6.4. An overall success rate is determined as the percentage of the 

number of correctly identified expressions. Looking at Fig. 6.7, we see that with the 

exception of image numbers 6, 7 and 17, FA was able to correctly classify all the
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 expressions of this particular individual.

1 :  A n g r y 2 :  A n g r y 3 :  A n g r y

4 :  D i s g u s t 5 :  D i s g u s t 6 :  H a p p y

7 :  S a d 8 :  F e a r 9 :  F e a r

1 0 :  F e a r 1 1 :  H a p p y 1 2 :  H a p p y

1 3 :  H a p p y 1 4 :  N e u t r a l 1 5 :  N e u t r a l

1 6 :  N e u t r a l 1 7 :  F e a r 1 8 :  S a d

1 9 :  S a d 2 0 :  S u r p r i s e 2 1 :  S u r p r i s e

2 2 :  S u r p r i s e

Figure 6.7 Classification of each image

That is a success rate of 86.4% for this subject. Another test is shown below in Fig. 6.8
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 corresponding to the subject in Fig. 6.1.

1 :  A n g r y 2 :  A n g r y 3 :  A n g r y

4 :  D i s g u s t 5 :  F e a r 6 :  D i s g u s t

7 :  D i s g u s t 8 :  F e a r 9 :  S a d

1 0 :  F e a r 1 1 :  H a p p y 1 2 :  H a p p y

1 3 :  H a p p y 1 4 :  N e u t r a l 1 5 :  N e u t r a l

1 6 :  N e u t r a l 1 7 :  F e a r 1 8 :  S a d

1 9 :  F e a r 2 0 :  S u r p r i s e 2 1 :  S u r p r i s e

2 2 :  S u r p r i s e

Figure 6.8 Classification result of gallery in Fig. 6.1

Comparing Fig.6.8 and Fig 6.1 we see that with the exception of image numbers 9, 17
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 and 19 all expressions are correctly classified. The above success rate is again 86.4%. 

Fig. 6.9 shows another subject's gallery.

1 A N 2 A N 3 A N

4 D I 5 D I 6 D I

7 F E 8 F E 9 F E

1 0 H A 1 1 H A 1 2 H A

1 3 N E 1 4 N E 1 5 N E

1 6 S A 1 7 S A 1 8 S A

1 9 S U 2 0 S U 2 1 S U

Figure 6.9 Facial images of a subject in a gallery.

After running a FA with seven common factors, an image of the seven factors obtained
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 are shown below in Fig. 6.10.

F a c t o r :  1 F a c t o r :  2 F a c t o r :  3 F a c t o r :  4 F a c t o r :  5 F a c t o r :  6 F a c t o r :  7

Figure 6.10 Images of the seven common factors of gallery in Fig.6.9

Fig. 6.11 shows the grouping of facial expressions of images in Fig.6.9.

N A . A N 2 . 2 1 2 . t i f f

N A . A N 3 . 2 1 3 . t i f f

N A . A N 1 . 2 1 1 . t i f f

N A . N E 1 . 1 9 9 . t i f f

N A . N E 2 . 2 0 0 . t i f f

N A . N E 3 . 2 0 1 . t i f f

N A . S U 3 . 2 1 0 . t i f f

N A . S U 2 . 2 0 9 . t i f f

N A . H A 1 . 2 0 2 . t i f f

N A . D I2 . 2 1 5 . t i f f

N A . D I3 . 2 1 6 . t i f f

N A . S U 1 . 2 0 8 . t i f f

N A . F E 1 . 2 1 7 . t i f f

N A . F E 2 . 2 1 8 . t i f f

N A . F E 3 . 2 1 9 . t i f f

N A . H A 3 . 2 0 4 . t i f f

N A . H A 1 . 2 0 2 . t i f f

N A . H A 2 . 2 0 3 . t i f f

N A . S U 1 . 2 0 8 . t i f f

N A . S A 1 . 2 0 5 . t i f f

N A . S A 3 . 2 0 7 . t i f f

    Angry    Neutral   Surprise   Disgust      Fear    Happy      Sad

 

Figure 6.11 Classification if images in Fig. 6.9

The results of the classification of images in Fig. 6.9 are shown in Fig. 6.12
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1 :  A n g r y 2 :  A n g r y 3 :  A n g r y

4 :  N e u t r a l 5 :  D i s g u s t 6 :  D i s g u s t

7 :  F e a r 8 :  F e a r 9 :  F e a r

1 0 :  H a p p y 1 1 :  H a p p y 1 2 :  H a p p y

1 3 :  N e u t r a l 1 4 :  N e u t r a l 1 5 :  N e u t r a l

1 6 :  D i s g u s t 1 7 :  S a d 1 8 :  S a d

1 9 :  S u r p r i s e 2 0 :  S u r p r i s e 2 1 :  S u r p r i s e

Figure 6.12 Classification results of images of Fig. 6.9

Comparing Fig. 6.12 and Fig. 6.9 we see that other than image number 4 and number 16,
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 all are correctly identified. Giving a success rate of 90.5%. Fig. 6.13 shows a table with 

the success rates for all ten subjects. The average overall success rate is 85.02%.

Subject 
1

Subject 
2

Subject 
3

Subject 
4

Subject 
5

Subject 
6

Subject 
7

Subject 
8

Subject 
9

Subject
10

95.2% 69.6% 90.9% 90% 85.7% 65% 90.5% 90.5% 86.4% 86.4%

Figure 6.13 Success rate for all ten subjects
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Chapter 7.

Conclusion

In the course of this dissertation, I examined the different multivariate analysis 

tools used for the purpose of facial images. I first investigated the use of principal 

component analysis as used for facial recognition. I also studied both the linear 

discriminate and independent components analyses. While both of these techniques have 

been shown to be effective against the classical face recognition problem, I found the 

factor analysis method to be a powerful tool for classifying face images into groups based 

on traits such as gender. This is because, unlike a principal components analysis, a factor 

analysis seeks to explain a number of variables, or images in this case, in terms of a few 

underlaying traits. These traits or categories take the form of factors. This is done by an 

analysis of the correlations among the variables.

Prior to applying the FA algorithm, the images used were all manually cropped 

and resized. This, I realize, is somewhat empirical, and almost certainly has some impact 

on the performance of the approach. In future work, I would like to automate this step, or 

at the very least use a more systematic and controlled procedure.  In this dissertation, I
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 have shown that Factor analysis can be a powerful tool for use as a biometric classifier. 

Starting with the application presented in Chapter 4, I was able to use FA for the purpose 

of gender classification with an overall success rate of 90%. In Chapter 5, I used FA to 

classify subjects as having facial hair or not. The success rates for the three galleries 

considered were 90%, 80% and 90% for an overall average correct classification rate of 

86.67%. Finally, in Chapter 6, I used a FA to classify human facial expressions. In the 

test, I grouped (column wise) each expression image with images of the same expression. 

The next experiment involved is the use of the FA to classify a new probe image (one not 

used in the initial FA) as one of the seven expressions. Fig. 6.13 shows a table with the 

success rates for the ten subjects.  An overall success rate of 85.02%  was achieved. This 

compares well with the rate of the other two multivariate statistical analyses used in the 

analysis of static facial images. Edwards [60] reports a rate of 74% when using PCA 

based on Mahalonobis distance and LDA, while Huang [61], reports a rate of 84.5% 

when using PCA with a minimum distance classifier on a 2D emotion space.  

The main original contribution of this dissertation has been to show that factor 

analysis is a powerful method for treating several important biometric classification 

problems that fall outside the scope of the classical face recognition problem. An 

important aspect of future research will be to determine if this generalizes broadly to 

biometric classification problems in general or is specific to the three applications 

considered in this dissertation. 

While the gender discrimination problem has been treated elsewhere, the
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 performance obtained here is excellent and FA is distinctly parsimonious compared to 

the competing methods. To the best of my knowledge, classification based on facial hair 

has not been treated previously. 

Both of these classification applications are of great practical interest for the 

automated surveillance, market analysis, and in the analysis of shopper behavior. For 

example, with a gender classifier, department stores could easily and automatically 

generate data to analyze how certain types of displays influence shopping habits based on 

gender.

Perhaps even more significant are the good success rates I obtained using FA to 

classify emotions in Chapter 6. An application capable of classifying human emotions 

from facial images could be integrated in the design of a smart house or work 

environment. It could be used in setting a more appropriate ambiance. Another use would 

be in the area of determining mood or intent for security applications. Such an 

application can more accurately gauge individuals by reading their exhibited emotions. 

This would also allow stores to gain valuable feedback from shoppers toward a host of 

products, or even placements of certain items.
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