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Abstract 
This study provides newly-derived analytical poroviscoelastic solutions for a 

number of practical and important engineering problems with various levels of material 

anisotropy: laboratory and field testing of cylinders (isotropy, transverse isotropy, and 

weak orthotropy), laboratory testing of rectangular strips (isotropy, transverse isotropy, 

and orthotropy), and wellbore drilling and tunnel excavation (isotropy and transverse 

isotropy). The solutions for these problems are crucial in many disciplines such as civil 

engineering, petroleum engineering, and biomechanics. The newly-derived solutions 

can be considered extensions of some existing analytical solutions to a higher degree of 

anisotropy. However, the importance of material anisotropy is self-evident in 

engineering applications since many bio- and geo-materials are intrinsically anisotropic 

and their mechanical anisotropy can significantly influence the material behavior as 

illustrated throughout this dissertation. The frequently-used assumption of material 

isotropy in poroviscoelasticity to simplify modeling and analysis is therefore no longer 

justified without thorough calibration and validation. 

More important, this study finally establishes the correspondence principle between 

poroviscoelasticity and poroelasticity with general anisotropy based on rigorous 

mathematical and physical considerations. The correspondence principle has been 

established not only in time domain but also in Laplace transform domain, for the 

general phenomenological formulation as well as for the micromechanical relations 

between material coefficients, and will be of fundamental importance in the study of 

poroviscoelasticity. In particular, using the correspondence principle, analytical 



 xii

poroelastic solutions in the Laplace transform domain with any degree of anisotropy can 

now be readily transferred to poroviscoelasticity and vice versa. 
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Chapter 1: Introduction 
1.1 Introduction to Poroviscoelasticity 

Poroviscoelasticity, simply put, is the crossroad of poroelasticity and viscoelasticity. 

The former is the study of saturated linearly-elastic porous materials whose coupling 

between the pore fluid diffusion and the porous matrix deformation significantly 

influences the overall behavior of the composite material. This theory has been 

successfully applied in a range of disciplines such as biomechanics (bones, cartilage, 

etc.), geosciences and petroleum engineering (reservoir engineering, drilling, 

subsidence, etc.), geotechnical engineering (soil behaviors, consolidation, etc.), civil 

engineering (foundations, earth dams, seepage, etc.), physical chemistry (transport, fluid 

flow, etc.), and mechanical engineering (dynamics, wave propagation in porous media, 

etc.). On the other hand, linear viscoelasticity concerns non-aging materials whose 

stiffness coefficients are time-dependent. Various geo-materials and biomaterials 

exhibit viscoelastic behaviors, as will be shown in the next two sections. Following this 

introduction are brief literature surveys where relevant poroviscoelastic research in 

geomechanics and biomechanics is summarized. Next, existing analytical 

poroviscoelastic solutions and the objectives for the development of new ones are 

reviewed. Finally, some background information pertinent to the presentation of this 

dissertation is discussed. 
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1.2 Poroviscoelasticity in Geomechanics and Biomechanics 

1.2.1 Poroviscoelasticity in Geomechanics 

The study of time-dependent effects, usually spoken of under the general title of 
‘creep’, is of the greatest importance in rock mechanics and geophysics. 

Jaeger and Cook, 1979  

Although the preceding quotation is a little outdated, as time-dependent effects 

encompass not only creep-type, i.e., viscoelastic behaviors, but also consolidation-type, 

i.e., poroelastic behaviors, it highlights the importance of poroviscoelasticity, which 

envelops both of the aforementioned time-dependent phenomena, in the study of 

geomechanics. Indeed, poroviscoelastic phenomena have been observed in the 

laboratory and in the field for a wide range of geo-materials as illustrated in Table 1.1. 

Moreover, mechanical anisotropy has long been observed on various classes of rocks 

and soils, probably most notably transverse isotropy on sediments and sedimentary 

rocks. Therefore, analytical anisotropic poroviscoelastic solutions of realistic 

engineering problems would be very useful in simulating laboratory experiments/field 

problems and validating numerical schemes in geomechanics. 
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Table 1.1 – Geo-materials investigated under viscoelasticity, poroelasticity, and 
poroviscoelasticity. 

Modeling Geo- 
material Viscoelasticity Poroelasticity Poroviscoelasticity 

Alabaster Griggs, 1939     
Kim et al., 2004 Asphalt 

concrete Shu and Huang, 2008 
    

Cement 
paste   Jones and Grasley, 2009 Grasley, 2007 

Chalk El Rabaa, 1989     

Geuze and Tjong-Kie, 1954 Gibson et al., 1963 Lefeuve-Mesgouez and 
Mesgouez, 2008 

Clay/soil 
  Hsu and Lu, 2006 Mesgouez and Lefeuve- 

Mesgouez, 2009b 

Nomura et al., 1999 
Coal 

Díaz et al., 2007 
    

Glass Griggs, 1939 Jones and Grasley, 2009   
Ice Morland, 1991     
Limestone Griggs, 1939     
Marble Heard, 1963     

Peat   Zwanenburg and 
Barends, 2007   

Le Comte, 1965 

Paraschiv-Munteanu 
and Cristescu, 2001 Salt rock 

Carcione et al., 2006 

    

Teufel, 1983 Mikami et al., 2002 Mesgouez and Lefeuve- 
Mesgouez, 2009a 

Teufel, 1985 Jourine et al., 2004 Mesgouez and Lefeuve- 
Mesgouez, 2009b 

El Rabaa and Meadows, 1986 Comerlati et al., 2005   
Blanton and Teufel, 1986     
Owen et al., 1988     

Sandstone/ 
siltstone 

Warpinski and Teufel, 1989     
Blanton, 1983 Lecampion et al., 2006 Hoang and  
Teufel, 1983   Abousleiman, 2010 
Owen et al., 1988     
Warpinski and Teufel, 1989     
Carcione and Cavallini, 1995     

Shale/ 
mudstone 

Bloch et al., 1997     
 



 4

1.2.2  Poroviscoelasticity in Biomechanics 

Biological tissues are all viscoelastic 
Fung, 1981 

The fact that all biological tissues exhibit viscoelastic behavior when subjected to 

loading (Fung, 1981) and that they are filled with water (Table 1.2) makes 

poroviscoelasticity indispensable in biomechanics. In fact, poroviscoelasticity has been 

applied effectively to study natural tissues such as articular cartilage (Mak, 1986) and 

brain (Cheng and Bilston, 2007) as well as artificial biological materials such as fibrin 

gels (Noailly et al., 2008). 

Table 1.2 – Water content of tissues of different species (after Khalil and Abdel-
Messeih, 1954). 

Tissue Human Monkey Ox, sheep, pig Rabbit Dog 
Skeletal muscles 75-78 79 78-79 80 68 

Liver 70-75 79 77-78 74 73 
Kidney 78-83 - - 78 - 

Skin 72 70 - 75 55 
Bone 50 61 - - 58 
Fat 6-20 - - - - 

 
Furthermore, anisotropic viscoelastic properties have also been widely observed on 

many biological tissues such as cartilage (Jin and Lewis, 2004), meniscus (Anderson et 

al., 1991), cortical bone (Iyo et al., 2004), and trabecular bone (Deligianni et al., 1994). 

Moreover, there are biomaterials such as arteries, bones, chondrocytes, and meniscus 

that have been investigated under both viscoelasticity and poroelasticity but not yet 

under poroviscoelasticity as shown in Table 1.3. Therefore, an anisotropic 

poroviscoelastic model to simulate relaxation, creep, or hysteresis would be very useful 

in simulating experimental results and validating numerical schemes for biomaterials. 



 5

Table 1.3 – Tissues investigated under viscoelasticity, poroelasticity, and 
poroviscoelasticity. 

Modeling 
Tissue 

Viscoelasticity Poroelasticity Poroviscoelasticity 
Kenyon, 1979 

Arteries Patel et al., 1973  
Simon and Gaballa, 1988 

   

Parsons and Black, 1977 Mow et al., 1980 Mak, 1986 

Hayes and Bodine, 1978 Armstrong et al., 1984 Suh and DiSilvestro, 
1999 

Woo et al., 1980 Eisenberg and Grodzinsky, 
1987 Huang et al., 2001 

Jin and Lewis, 2004 Cohen et al., 1998 Ehlers and Markert, 
2001 

Soulhat et al., 1999 DiSilvestro and Suh, 
2001 

Bursać et al., 1999 Wilson et al., 2004 
Li et al., 2000 Wilson et al., 2005 

García and Cortés, 
2006 
García and Cortés, 
2007 
Hoang and 
Abousleiman, 2009 

Articular 
cartilage 

   

   

Hoang and 
Abousleiman, 2010 

Bone, cortical Iyo et al., 2004 Cowin, 1999   
Deligianni et al., 1994 Cowin, 1999 Bone, 

trabecular Baroud et al., 2003   
   

Brain   Peña et al., 1999 Cheng and Bilston, 
2007 

Chondrocytes Leipzig et al., 2005 Leipzig et al., 2005   
Friedman, 1971 Corneal 

stroma    Eisenberg and Grodzinsky, 
1987 

   

Fat pad, heel Miller-Young et al., 2002     
Fibrin gels   Noailly et al., 2008 Noailly et al., 2008 
Intervertebral 
disk   Simon et al., 1985   

Meniscus Anderson et al., 1991 Spilker et al., 1992   
Skin   Oomens et al., 1987   

 

1.3 Review of Existing Poroviscoelastic Analytical Solutions 

The origin of poromechanics can be traced back to 1941 with Biot’s ground 

breaking article “General theory of three-dimensional consolidation”. This pioneering 
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work is now commonly referred to as Biot’s theory of poroelasticity. In that paper, Biot 

offered a consistent phenomenological analysis of saturated porous media, taking into 

account the full coupling between pore fluid diffusion and solid deformation of a linear 

elastic matrix. The inclusion of matrix viscoelasticity within the poromechanics 

framework was also laid out by Biot (1956). In both of those classical papers, Biot 

offered the analytical solution for the one-dimensional consolidation problem as an 

example of application. Since then, a number of engineering problems have been 

investigated under the realm of poroelasticity and poroviscoelasticity, including one-

dimensional consolidation problem (Table 1.4), Mandel’s problem or rectangular 

geometry (Table 1.5), cylinders (Table 1.6), and wellbore drilling problem (Table 1.7), 

with various degrees of matrix anisotropy. 

Table 1.4 – Studies on the one dimensional consolidation problem. 
Anisotropy Poroelasticity Poroviscoelasticity 
Isotropy Biot, 1941 Biot, 1956 
    Mak, 1986 
    Schanz and Cheng, 2001 
Transverse isotropy   This study 

 
Table 1.5 – Studies on the Mandel’s problem (rectangular strip). 

Anisotropy Poroelasticity Poroviscoelasticity 
Isotropy Mandel, 1953   
  Kameo et al., 2008   
Transverse isotropy Abousleiman et al., 1996a   
Orthotropy   This study 
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Table 1.6 – Studies on the cylindrical geometry. 

Anisotropy Poroelasticity Poroviscoelasticity 
Isotropy Armstrong et al., 1984 Abousleiman et al., 1996b 
  Cui and Abousleiman, 2001 Abousleiman and Cheng, 1996 
  Sawaguchi and Kurashige, 2005 Huang et al., 2001 
Transverse isotropy Abousleiman and Cui, 1998 This study 
  Zwanenburg and Barends, 2007   
  Cowin and Mehrabadi, 2007   
Weak orthotropy   This study 

 
Table 1.7 – Studies on wellbores. 

Anisotropy Poroelasticity Poroviscoelasticity 
Isotropy Carter and Booker, 1982 Carter and Booker, 1983 
  Carter and Booker, 1984 Abousleiman et al., 1996b 
  Detournay and Cheng, 1988   
  Rajapakse, 1993   
  Cui et al., 1997   
  Cui et al., 1998   
  Li, 1999   
  Li and Flores-Berrones, 2002   
  Ekbote et al., 2004   
Transverse isotropy Abousleiman and Cui, 1998 This study 

 

1.4 Research Objectives and Approach 

This study first and foremost aims to establish a correspondence principle between 

poroviscoelasticity and poroelasticity with general anisotropy through rigorous 

mathematical and physical considerations. The newly-derived proof of the 

correspondence principle is given in Chapter 2. Using this correspondence principle, 

analytical solutions in Laplace transform domain for poroviscoelasticity and 

poroelasticity can be transferred readily from one model to the other. Armed with such 

a correspondence principle, the rest of the dissertation aims to derive the analytical 

poroviscoelastic solutions for the practical engineering problems described below: 
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Transversely isotropic cylinders under various loading and unloading conditions, 

with the axis of material symmetry coinciding with the axis of geometrical symmetry, 

will be analyzed in Chapter 3. This is one of the most useful and versatile class of 

solutions in both geomechanics and biomechanics. When the lateral surface of the 

cylinder is confined by a rigid ring (for example uniaxial strain, oedometer, or K0 test in 

geomechanics and confined compression test in biomechanics), physically and 

mathematically the problem becomes a one-dimensional consolidation problem in the 

axial direction. On the other hand, when the sample is not constrained to uniaxial strain 

deformation, the setup can be used to simulate a wide range of laboratory testing 

conditions (unconfined compression test, unjacketed triaxial test, and jacketed triaxial 

test). Furthermore, the time-dependent deformation of drill cores due to the unloading 

from in-situ state of stress can also be simulated using this class of solutions. 

Information about the in-situ stress state, which is crucial in various petroleum 

engineering and civil engineering applications, can be extracted from the analysis of 

drill core relaxation, as will be shown in details in Chapter 3. 

Cylinders with weak cylindrical-orthotropy under laboratory loading conditions, 

also with the axis of material symmetry coinciding with the axis of geometrical 

symmetry, are investigated next. This is an extension of the study on transversely 

isotropic cylinders under laboratory conditions and can be of particular importance for 

cylindrically-reinforced low permeability clays with significant viscoelastic behavior or 

cylindrically orthotropic poroviscoelastic biological tissues. Details of the modeling are 

presented in Chapter 4. 
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For geo-materials and biological tissues with Cartesian mechanical orthotropy, the 

symmetry of material properties implies that rectangular strips are the best sample 

geometry to use for mechanical characterization.  This setup is the famous Mandel’s 

problem in poromechanics. Orthotropic rectangular strips under unconfined 

compression loading will be studied in Chapter 5. 

Finally, the important problem of wellbore drilling through transversely isotropic 

rocks is considered in Chapter 6, with the emphasis on time-dependent displacement of 

the wellbore wall. This chapter targets wellbore instability instances where the time-

dependent borehole deformation is so excessive that the viscoelastic nature of the rock 

matrix must be explicitly considered in the modeling. Notable rock formations with this 

type of borehole failure are salt rock and shale. Some shales are known to cause 

repeated instability problems such as tight hole and stuck pipe despite repeated reaming 

and hole cleaning. Salt rock, on the other hand, can produce significant wellbore 

contraction and can even flow like a viscoelastic liquid under certain downhole 

conditions and the drilling engineers may have only a short time window to install the 

casing before the wellbore becomes inaccessible. The modeling and results of this 

chapter can be easily applied to other circular excavations such as tunnels and drill 

shafts. 

1.5 Important Background Information 

1.5.1 Assumptions 

Only linear poroviscoelasticity will be considered in this study. This restriction 

ensures that an overall complex problem can be decomposed into elementary problems 

and the results for those simpler problems can be superposed to form the desired 
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solution. Furthermore, only small strains and displacements will be considered. More 

specifically, the formulation will be for infinitesimal strains and displacements. 

1.5.2 Sign Convention 

Throughout this dissertation, compressive stresses and strains are taken as positive. 

1.5.3 Short-Hand Notation for Material Symmetry 

The poroelastic constitutive relations with general anisotropy are as follows: 

pM ijklijklij αεσ += . (1.1) 

The short-hand notations for some frequently encountered classes of material 

symmetry are given below: 

Orthotropic materials, 

pMMM zzyyxxxx 1131211 αεεεσ +++= , (1.2) 

pMMM zzyyxxyy 2232212 αεεεσ +++= , (1.3) 

pMMM zzyyxxzz 3332313 αεεεσ +++= , (1.4) 

xyxy M εσ 442= , (1.5) 

xzxz M εσ 552= , (1.6) 

yzyz M εσ 662= , (1.7) 

( )ζεαεαεα +++= zzyyxxMp 321 . (1.8) 

Transversely isotropic materials, 

pMMM zzyyxxxx 1131211 αεεεσ +++= , (1.9) 

pMMM zzyyxxyy 1131112 αεεεσ +++= , (1.10) 

pMMM zzyyxxzz 3331313 αεεεσ +++= , (1.11) 
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xyxy M εσ 442= , (1.12) 

xzxz M εσ 552= , (1.13) 

yzyz M εσ 552= , (1.14) 

( )ζεαεαεα +++= zzyyxxMp 311 . (1.15) 

1.5.4 Frequently Used Parameters 

Undrained stiffness coefficients: 

MMM jiij
u
ij αα+= . (1.16) 

Frequently encountered material coefficient groups in analytical solutions: 

jikkijijk MM ααλ −= . (1.17) 

1.5.5 Engineering Parameters 

Familiar engineering parameters such as Young’s moduli, shear moduli, and 

Poisson’s ratios can be calculated from the stiffness coefficients using the following 

relations (Abousleiman and Cui, 2000): 

For orthotropic materials, Ei denotes the Young’s modulus in the xi direction, Gij 

denotes the shear modulus in the plane xixj, and νij denotes the Poisson’s ratio associated 

with a compressive stress in the xi direction and resulting tensile strain in the xj 

direction, 

dD
vvEM )1( 12231

11
−

= , (1.18) 

dD
vvvEM )( 1232132

12
+

−= , (1.19) 
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dD
vvvEM )( 1323123

13
+

−= , (1.20) 

dD
vvEM )1( 31132

22
−

= , (1.21) 

dD
vvvEM )( 2321131

23
+

−= , (1.22) 

dD
vvEM )1( 21123

33
−

= , (1.23) 

1244 GM = , (1.24) 

1355 GM = , (1.25) 

2366 GM = , (1.26) 

with, 

1213213312312322313311221 −++++= vvvvvvvvvvvvDd . (1.27) 

For transversely isotropic materials, E1 and E3 denote the Young’s moduli in the 

isotropic plane and the transverse direction, respectively, ν1 and ν3 are the Poisson’s 

ratios in the isotropic plane and the transverse direction, respectively, and G3 is the 

shear modulus in a plane through the material symmetry axis, 

)2)(1(
)(

2
311331

2
3131

11 vEvEEv
vEEEM
−−+

−
= , (1.28) 

)2)(1(
)(

2
311331

2
31131

12 vEvEEv
vEvEEM
−−+

+
= , (1.29) 

2
31133

331
13 2 vEvEE

vEEM
−−

= , (1.30) 

2
31133

1
2
3

33 2
)1(

vEvEE
vEM
−−
−

= , (1.31) 
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)1(2 1

1
144 v

EGM
+

== , (1.32) 

355 GM = . (1.33) 

For isotropic materials, only two parameters, for example Young’s modulus E and 

Poisson’s ratio ν, are required to characterize the material mechanical behavior. The 

corresponding relations between stiffness coefficients and engineering parameters 

simplify as follows: 

)21)(1(
)1(

332211 vv
vEMMM
−+

−
=== , (1.34) 

)21)(1(231312 vv
EvMMM

−+
=== , (1.35) 

)1(2665544 v
EGMMM
+

==== . (1.36) 

1.5.6 Laplace Transform and Carson Transform 

Laplace transformation will be used extensively in this dissertation. For 

convenience, the tilde will be used to denote Laplace transform as shown below: 

)}({~ tfLf = . (1.37) 

Carson transforms will also be used extensively for material parameters. The over 

bar will be used to denote Carson transform as follows: 

fsf ~
= . (1.38) 

1.5.7 Spring-Dashpot Models 

Spring-dashpot models have been traditionally used to gain physical insights into a 

variety of viscoelastic behaviors. Using only simple linearly elastic springs (stress is 
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proportional to strain) and simple Newtonian dashpot (stress is proportional to strain 

rate), a wide range of viscoelastic behaviors can be simulated using an appropriate 

configuration. 

An elegant method to find the material behavior of a particular spring-dashpot 

model is to construct its differential stress-strain relations in time domain and then 

apply the Laplace transform to obtain its Carson-transformed viscoelastic stiffness in 

Laplace transform domain. The Laplace-transformed stress-strain relation can be used 

to derive both the relaxation function and the creep function for that particular model. 

The relaxation function is obtained by substituting the Heaviside function for the strain 

(relaxation test) while the creep function is obtained by substituting the Heaviside 

function for the stress (creep test). A few examples demonstrating the technique are 

given below. The Young’s modulus, E, was chosen in these example for illustration; 

other stiffness parameters can be modeled similarly. 

1.5.7.1 Kelvin Model 

The Kelvin model consists of a spring and a dashpot in parallel, as shown in Fig. 

1.1.  

µ

E0

µ

E0

 
Fig. 1.1 – Kelvin model. 
 

The differential stress-strain relation is therefore as follows: 

εµεσ &+= 0E , (1.39) 
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with the dot denoting time derivatives. Laplace transformation of the above equation 

gives, 

εµσ ~)(~
0 sE += . (1.40) 

The Carson-transformed viscoelastic Young’s modulus is therefore, 

µ
ε
σ sEE +== 0~
~

. (1.41) 

The creep function for a Kelvin material is obtained by substituting the Heaviside 

function for the stress in Eq. (1.40), s/1~ =σ , which leads to )(/1~
0 µε sEs +=  or 

)1)(/1( /
0

0 µε tEeE −−= . The Kelvin model however gives an initial infinite stiffness if a 

stress is applied. Therefore, this model is not suitable for the modeling of the porous 

matrix for bio- or geo-materials. 

1.5.7.2 Maxwell Model 

The Maxwell model consists of a spring and a dashpot in series, as shown in Fig. 

1.2. 

µE0 µE0

 
Fig. 1.2 – Maxwell model. 
 

The differential stress-strain relations are therefore as follows: 

21210 ,, εεεεµσεσ +=== &E . (1.42) 

Therefore, 

µ
σσε +=

0E
&

& . (1.43) 

Laplace transformation of the above equation gives, 
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µ
σσε
~~~

0

+=
E
ss . (1.44) 

The Carson-transformed viscoelastic Young’s modulus is therefore, 

µ
µ

ε
σ

sE
sEE
+

==
0

0
~
~

. (1.45) 

The relaxation function for a Maxwell material is obtained by substituting Heaviside 

function for the strain in Eq. (1.44), s/1~ =ε , which leads to )/(~
00 µµσ sEE +=  or 

µσ /
0

0tEeE −= . Since the Maxwell model gives infinite strain at long time if a stress is 

applied, it is limited to the modeling of bio or geo-materials with such behavior. 

1.5.7.3 Zener (Standard Linear Solid) Models 

The simplest spring-dashpot models that can simulate both relaxation and creep 

characteristics are the Zener or the standard linear solid models, as illustrated in Fig. 

1.3. These models consist of two spring and one dashpot, with two possible 

configurations as shown in Fig. 1.3a and Fig. 1.3b. 

E1

E2

µ

µ

E1

E2
E1

E2

µ

µ

E1

E2

µ

E1

E2

 
a)                                       b) 

Fig. 1.3 – Zener (standard linear solid) models. 
 

For configuration a), the model consists of a spring in series with a Kelvin model. 

The stress-strain relation in Laplace transform domain is therefore as follows: 

µ
σσε

sEE +
+=

21

~~~ . (1.46) 
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The Carson-transformed viscoelastic Young’s modulus is therefore, 

µ
µ

ε
σ

sEE
sEEEE
++

+
==

21

121
~
~

. (1.47) 

For configuration b), the model consists of a spring in parallel with a Maxwell 

model. The stress-strain relation in Laplace transform domain is therefore as follows: 

εε
µ
µσ ~~~

2
1

1 E
sE

sE
+

+
= . (1.48) 

The Carson-transformed viscoelastic Young’s modulus is therefore, 

µ
µ

ε
σ

sE
EEsEEE

+
++

==
1

2121 )(
~
~

. (1.49) 

The relaxation and creep functions are summarized in Table 1.8. 

Table 1.8 – Time-domain properties of the Zener (standard linear solid) models. 
Property Configuration a) Configuration b) 

Relaxation function ]1[ /)(

21

2
1

1
21 µtEEe

EE
EE +−−
+

−  )1( /
121

1 µtEeEEE −−−+   

Creep function ⎥
⎦

⎤
⎢
⎣

⎡
−+ − )1(11 /

2

1

1

2 µtEe
E
E

E
  

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−+

+
+

−
µ)(

2

1

21

21

21

111 EE
tEE

e
E
E

EE
 

 
It is easy to show that the two configurations are equivalent. Specifically, their 

parameters are related by the following relations: 

bba EEE 211 +=  (1.50) 

b

bbb
a

E
EEEE

1

212
2

)( +
=  (1.51) 

2
1

2
21

)(
)(

b

bb
ba

E
EE +

= µµ  (1.52) 
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Chapter 2: Correspondence Principle  
2.1 Introduction 

The theory of anisotropic poroviscoelasticity was developed by Biot (1956) based 

on his earlier work on anisotropic poroelasticity (Biot, 1955). This theory has received 

much attention recently as shown by an explosion of applications in both geomechanics 

(Abousleiman et al., 1996b; Schanz and Cheng, 2001; Wong et al., 2008; Hoang and 

Abousleiman, 2010) and biomechanics (Mak, 1986; Huang et al., 2001; Cheng and 

Bilston, 2007; Noailly et al., 2008; Hoang and Abousleiman, 2009a; Hoang and 

Abousleiman, 2010). 

Biot (1956) also discovered a formal similarity between poroelasticity and 

poroviscoelasticity for the general case of matrix anisotropy using thermodynamics. 

However, the micromechanical aspects of this formal similarity were never investigated 

and the physical meaning of the macroscopic parameters remained obscure. Taylor and 

Aifantis (1982) and later Vgenopoulou and Beskos (1992) reestablished the 

correspondence principle between poroelasticity and poroviscoelasticity for isotropic 

media in Laplace transform domain. Abousleiman et al. (1993) used micromechanics 

considerations to show a similar correspondence between the poroelastic and 

poroviscoelastic Biot’s effective stress coefficients, also for isotropic media. Coussy 

(1991, 1995) obtained correspondence relations in the time domain for general 

anisotropy and micromechanics relations for material parameters for isotropic media. 

This chapter revisits anisotropic poroviscoelasticity using micromechanics. The 

correspondence principle is established in both time domain (Section 2.3) and Laplace 

transform domain (Section 2.4). 
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2.2 Review of Anisotropic Poroelasticity 

In this section, some important relations in anisotropic poroelasticity (Cheng, 1997) 

are reproduced for later comparison with anisotropic poroviscoelasticity in Sections 2.3 

and 2.4. 

The constitutive relations for anisotropic poroelasticity can be written in pure 

compliance form as follows: 

pCBC ijklijklij 3
1

−= σε , (2.1) 

CpCB ijij +−= σζ
3
1 , (2.2) 

where εij and σij are the strain and stress tensors, respectively, Cijkl is the compliance 

tensor, Bij is the Skempton’s coefficient tensor, p is the pore pressure, ζ is the variation 

of fluid content, C is the storage coefficient under constant total stress, and the Einstein 

convention for repeated indices is used.  

From Eq. (2.1), the stresses can be expressed as functions of the strains and pore 

pressure by multiplying both sides with the stiffness tensor Mijkl and simplifying, 

pCBMM klijklklijklij 3
1

+= εσ , (2.3) 

using the identity, 

( )jminjnimklmnijklCM δδδδ +=
2
1 , (2.4) 

where δij is the Kronecker’s delta. Comparison of Eq. (2.3) and the following familiar 

formula for total stresses, 

pM ijklijklij αεσ += , (2.5) 

where αij is the Biot’s effective stress coefficient tensor, leads to, 



 20

klijklij CBM
3
1

=α , (2.6) 

which can be inverted to yield, 

klijklij CCB α13 −= . (2.7) 

Similarly, manipulation of Eq. (2.2) and comparison with the following familiar 

formula for pore pressure, with M is the inverse of the storage coefficient under 

constant volume, 

ijijMMp εαζ += , (2.8) 

yields the following relation, 

ijklklij CMC αα+= −1 . (2.9) 

The total strain and stress tensors can be decomposed into the solid (superscript s) 

and the pore (superscript p) components as follows: 

( ) p
ij

s
ijij φεεφε +−= 1 , (2.10) 

( ) pij
s
ijij φδσφσ +−= 1 , (2.11) 

where φ is the porosity. 

The relationships between material coefficients of the porous medium and those of 

the constituents are explored next using a generalization of Nur and Byerlee’s analysis 

(Nur and Byerlee, 1971). Consider an anisotropic micro-homogeneous porous medium 

with an arbitrary network of connected pores, subjected to a state of total stress σij and 

pore pressure p. Due to the linearity of the mechanical behavior of the medium, this 

state of total stress and pore pressure can be decomposed into two modes of loading: a 

total stress σij – δij p without pore pressure and a pore pressure p and an equal confining 

pressure. The total strains due to the first mode of loading are as follows: 
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pCC ijkkklijklij −= σε . (2.12) 

From Eq. (2.11), the solid stress state is as follows: 

( )pijij
s
ij δσ

φ
σ −

−
=

1
1 , (2.13) 

which gives rise to the following solid strains: 

s
kl

s
ijkl

s
ij C σε = , (2.14) 

where s
ijklC  denotes the compliance tensor of the solid. The existence of the compliance 

tensor of the solid phase is a consequence of the micro-homogeneity of the porous 

medium. The pore strains due to this mode of loading can then be calculated using Eq. 

(2.10), 

( ) ( )pCCCC s
ijkkijkkkl

s
ijklijkl

p
ij −−−=

φ
σ

φ
ε 11 . (2.15) 

For the second mode of loading, i.e., pore pressure p and an equal confining 

pressure, following Nur and Byerlee (1971), we consider first a homogeneous solid with 

the pores filled with the same solid material. When this domain is subjected to the 

confining pressure p, the following state of strain is obtained: 

pC s
ijkk

s
ij =ε . (2.16) 

This confining pressure causes a hydrostatic pressure p everywhere in the solid. 

Therefore, using the uniqueness theorem for stress boundary value problems of 

anisotropic elastic bodies (see for example Ezzat and El-Karamany (2002)), we can 

replace the material inside the original pores with fluid while maintaining the same pore 

pressure and obtain the same deformation field in the solid. In other words, 

pC s
ijkk

s
ij

p
ijij === εεε . (2.17) 
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Using the principle of superposition, the total strains and the pore strains due to the 

two modes of loading can be found as follows: 

( )pCCC s
ijkkijkkklijklij −−= σε , (2.18) 

( ) pCCCC s
ijkkijkkkl

s
ijklijkl

p
ij ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ +
−−−=

φ
φ

φ
σ

φ
ε 111 . (2.19) 

Comparison of Eqs. (2.1) and (2.18) yields, 

( )
C

CC
B

s
ijkkijkk

ij

−
=

3
. (2.20) 

The Biot’s effective stress coefficient tensor can then be calculated using Eq. (2.6), 

s
klmmijklijij CM−= δα . (2.21) 

From Eq. (2.19), the variation of fluid content ζ can be found using the following 

consideration: 

fluid
contentfluid

fluid
ilitycompressib

fluidp
ii eee −==ε  

φ
ζε −= pC f

p
ii , (2.22) 

with e and Cf  denoting the volumetric strain and fluid bulk modulus, respectively. The 

variation of fluid content takes the form: 

( ) ( ) ( )pCCpCCCC s
ijkkf

s
ijkkijkkkl

s
ijklijkl −+−+−−= φσζ . (2.23) 

Comparison with Eq. (2.2) yields, 

( ) ( )s
ijkkf

s
ijkkijkk CCCCC −+−= φ . (2.24) 

Finally, Eq. (2.9) gives the expression for M: 

( ) ( )s
ijkkf

s
ijkkijkk

s
mnllijmn CCCCCMM −+−=− φ1 . (2.25) 



 23

The material coefficients αij, Bij, C, and M given above can be further simplified for 

porous media having micro-isotropy or material symmetry (orthotropy, transversely 

isotropy, isotropy, etc.) (Cheng, 1997). 

2.3 Poroviscoelasticity in Time Domain 

A similar treatment for linear poroviscoelastic media will be given in this section. 

We start with the constitutive relations in pure compliance form (“creep” formulation), 

pAC ijklijklij ⊗−⊗=
3
1σε , (2.26) 

pCA ijij ⊗+⊗−= σζ
3
1 , (2.27) 

where the symbol ⊗  denotes the Stieltjes convolution product, 

( ) ( ) ( ) ( )ττ dgtftgtf
t

∫
∞−

−=⊗ . (2.28) 

Eqs. (2.26) and (2.27) are written in the general form for linear poroviscoelasticity 

and the nature of Aij will be made clear shortly through micromechanical analysis. In 

place of Eqs. (2.5) and (2.8), we have the following general relations: 

pM ijklijklij ⊗+⊗= αεσ , (2.29) 

ijijQMp εζ ⊗+⊗= . (2.30) 

The nature of Qij will also be explored later. Inverting Eq. (2.26) gives the stresses 

in terms of strains and pore pressure, 

pAMM klijklklijklij ⊗⊗+⊗=
3
1εσ , (2.31) 

where Mijkl is the inverse of the Cijkl with respect to the convolution product, 
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( ) )(
2
1 tHCM jminjnimklmnijkl δδδδ +=⊗ , (2.32) 

with H(t) is the Heaviside step function. In this chapter, for brevity, the Heaviside step 

function will not be written explicitly except when required to prevent ambiguity. 

Comparison of Eqs. (2.29) and (2.31) yields, 

klijklij AM ⊗=
3
1α , (2.33) 

which can be inverted to give, 

klijklij CA α⊗= 3 , (2.34) 

Similarly, comparison of Eq. (2.30) and the inversion of Eq. (2.27) provides the 

following identities: 

klijijklCMC αα ⊗⊗+= −1 , (2.35) 

ijij MQ α⊗= . (2.36) 

The second identity transforms Eq. (2.30) to the following form: 

ijijMMp εαζ ⊗⊗+⊗= . (2.37) 

Using the uniqueness theorem for stress boundary and initial value problems of 

anisotropic viscoelastic bodies (Ezzat and El-Karamany (2002)), a generalization of Nur 

and Byerlee’s analysis similar to the one for anisotropic poroelasticity presented in 

Section 2.2 can be constructed to yield the following relations:  

( )s
ijkkijkkij CCA −= 3 , (2.38) 

s
klmmijklijij CM ⊗−= δα , (2.39) 

( ) ( )s
ijkkf

s
ijkkijkk CCCCC −+−= φ , (2.40) 

( ) ( )s
ijkkf

s
ijkkijkk

s
mnllijmn CCCCCMM −+−⊗⊗=− φ1 . (2.41) 
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From Eq. (2.38), we can formally define, 

1−⊗= CAB ijij , (2.42) 

or, 

( ) 13 −⊗−= CCCB s
ijkkijkkij , (2.43) 

then Eqs. (2.26) and (2.27) become, 

pBCC ijklijklij ⊗⊗−⊗=
3
1σε , (2.44) 

pCBC ijij ⊗+⊗⊗−= σζ
3
1 , (2.45) 

The physical meaning of Bij becomes apparent when we let ζ = 0 in Eq. (2.45) 

(“undrained” condition), 

ijijBp σ⊗=
3
1 , (2.46) 

or Bij is the poroviscoelastic Skempton’s coefficient tensor.  

Comparison of poroelastic and poroviscoelastic constitutive relations and the 

micromechanical expressions of material coefficients leads to the following 

correspondence principle in time domain: 

Correspondence principle in time domain: Any constitutive relation or formula 

for material coefficients of anisotropic linear poroviscoelasticity can be obtained from 

the corresponding expression in anisotropic linear poroelasticity by replacing 

multiplication with the Stieltjes convolution product. 

Coussy (1991, 1995) obtained the same conclusions about the constitutive relations 

of anisotropic poroviscoelasticity. However, he only provided formulas for material 

coefficients for the special case of isotropic media. 
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2.4 Poroviscoelasticity in Laplace Transform Domain 

The following elementary table of poroelastic and poroviscoelastic formulas in time 

domain and Laplace transform domain can be easily derived: 

Table 2.1 – Comparison of poroelastic and poroviscoelastic formulas in time 
domain and Laplace transform domain. 

Poroelasticity (t) Poroelasticity (s) Poroviscoelasticity (t) Poroviscoelasticity (s)
( ) ( )tfaa 21 ±  ( ) ( )sfaa ~

21 ±  ( ) ( )[ ] ( )tftata ⊗± 21  ( ) ( )[ ] ( )sfsasa ~
21 ±  

( )tfaa ⋅⋅ 21  ( )sfaa ~
21 ⋅⋅  ( ) ( ) ( )tftata ⊗⊗ 21  ( ) ( ) ( )sfsasa ~

21 ⋅⋅  

( )tf
a
a

2

1  ( )sf
a
a ~

2

1  ( ) ( ) ( )tftata ⊗⊗ −1
21  

( )
( ) ( )sf
sa
sa ~

2

1  

 

where s is the Laplace transform variable, the tilde and the bar accents denote Laplace 

transform and Carson transform, respectively. Using these elementary formulas, more 

complex relations can be easily obtained. In particular, Laplace transformation of Eqs. 

(2.44), (2.45), (2.29), (2.37), (2.39), (2.43), (2.35), and (2.41) provides respectively, 

pBCC ijklijklij
~

3
1~~ −= σε , (2.47) 

pCBC ijij
~~

3
1~

+−= σζ , (2.48) 

pM ijklijklij
~~~ αεσ += , (2.49) 

ijijMMp εαζ ~~~ += , (2.50) 

s
klmmijklijij CM−= δα , (2.51) 

( )
C

CC
B

s
ijkkijkk

ij

−
=

3
, (2.52) 

klijijklC
M

C αα+=
1 , (2.53) 
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( ) ( )s
ijkkf

s
ijkkijkk

s
mnllijmn CCCCCM

M
−+−= φ1 . (2.54) 

It is clear that any formula in anisotropic linear poroviscoelasticity can be obtained 

from the corresponding expression in anisotropic linear poroelasticity by replacing 

poroelastic material coefficients with the Carson transform of the poroviscoelastic 

counter parts. Since for the same boundary and initial value problem, other equations 

for the poroelastic and poroviscoelastic formulations are identical, we have the 

following correspondence principle in Laplace transform domain: 

Correspondence principle in Laplace transform domain: The formulation and 

solution to the same boundary and initial value problem in anisotropic linear 

poroviscoelasticity can be obtained from those in poroelasticity by replacing 

poroelastic material coefficients with the Carson transform of the poroviscoelastic 

counterparts. 

Similar observations for the special case of material isotropy has been presented by 

Taylor and Aifantis (1982), Vgenopoulou and Beskos (1992), and Abousleiman et al. 

(1993). It is also noted that while the correspondence principle between poroelasticity 

and poroviscoelasticity will be most useful to find poroviscoelastic solutions from 

existing poroelastic ones, it can be used in the other direction to generate the poroelastic 

solution if the poroviscoelastic solution to the same boundary and initial value problem 

is available. 

2.5 Numerical Examples – Biot’s Effective Stress Coefficients 

Armed with the correspondence principle between poroviscoelasticity and 

poroelasticity, the formulas for material coefficients of anisotropic poroviscoelasticity 
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can be immediately obtained from those of anisotropic poroelasticity (for example 

Cheng (1997)). Of particular interest are the Biot’s effective stress coefficients αij, as 

listed below: 

s
klmmijklijij CM−= δα . (2.55) 

A few examples are given below to demonstrate the intricate behavior of the 

poroviscoelastic Biot’s effective stress coefficients in time domain. For sedimentary 

rocks with material transverse isotropy and elastic micro-isotropic grains, αij simplifies 

as follows in short-hand notation: 

sK
MMM

3
1 131211

1
++

−=α , (2.56) 

sK
MM

3
21 3313

3
+

−=α . (2.57) 

It has been reported that the characteristic time of creep for many rocks including 

shale, siltstone, and sandstone, falls in the range of 10 to 15 hours (Warpinski and 

Teufel, 1989). In the following example, all matrix drained moduli Mij(t) are assumed to 

behave according to the Zener model with the same characteristic creep time of 10 

hours. Initial stiffness coefficients are assumed as follows: M11(0+) = 11.93 GPa, 

M12(0+) = 4.93 GPa, M13(0+) = 3.37 GPa, and M33(0+) = 5.90 GPa. All moduli are 

assumed to retain 50% of initial values at long time. The matrix grain bulk modulus is 

assumed to have insignificant viscoelasticity, Ks = 40 GPa. Since the bulk moduli are 

monotonically decreasing and Ks is constant, the Biot’s effective stress coefficients are 

monotonically increasing, as shown in Fig. 2.1. 
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Fig. 2.1 – Biot’s effective stress coefficients for a transversely isotropic rock with 
elastic Ks. 
 

On the other hand, Ks could be viscoelastic for biological tissues. For micro-

isotropic biomaterials, the Biot’s effective stress coefficients simplify as follows: 

sK
MMM

3
1 131211

1
++

−=α , (2.58) 

sK
MM

3
21 3313

3
+

−=α . (2.59) 

A transversely isotropic articular cartilage with the following properties will be 

considered: M11(0+) = 0.56 MPa, M12(0+) = 0.032 MPa, M13(0+) = 0.029 MPa, and 

M33(0+) = 1.2 MPa. For simplicity of illustration, all moduli are assumed to follow the 

Zener model with the same characteristic relaxation time of 60 seconds and to retain 

50% of initial values at long time. The matrix grain bulk modulus is also assumed to 

behave according to the Zener model with an initial value of 3.0 MPa. Three different 

long-time to short-time ratios of 2/3, 0.5, and 1/3 and three different characteristic 



 30

relaxation times 
sKT  of 30, 60, and 600 seconds are considered for Ks in the following 

analysis.  

For s60=
sKT  which is the same as the characteristic relaxation time of the bulk 

moduli, α1 and α3 either stay constant or vary monotonically as shown in Fig. 2.2. The 

Biot’s effective stress coefficients increase when the percentage decrease in Ks is less 

than that in the bulk moduli and vice versa. 

 
Fig. 2.2 – Biot’s effective stress coefficients for a transversely isotropic articular 
cartilage, characteristic relaxation time of Ks is 60 s. 
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Fig. 2.3 – Biot’s effective stress coefficients for a transversely isotropic articular 
cartilage, characteristic relaxation time of Ks is 600 s. 
 

 
Fig. 2.4 – Biot’s effective stress coefficients for a transversely isotropic articular 
cartilage, characteristic relaxation time of Ks is 30 s. 
 

For a longer s600=
sKT , the time-dependent variations of α1 and α3 are no longer 

monotonic, as shown in Fig. 2.3. Compared to the case of s60=
sKT , α1 and α3 obtain 
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the same short-time and long-time values. However, in intermediate times, since Ks 

decays more slowly than the bulk moduli, α1 and α3 are higher than the case of 

s60=
sKT . The reverse is observed for a shorter s30=

sKT  as shown in Fig. 2.4. This 

complex interplay between the bulk moduli and the grain bulk modulus on the Biot’s 

effective stress coefficients has been observed earlier for isotropic materials 

(Abousleiman et al., 1993). 
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Chapter 3: Transversely Isotropic Cylinders1 
3.1 Introduction 

In both laboratory and field testing, cylinders are one of the most common sample 

geometries. Moreover, for transversely isotropic materials, which are abundant in both 

biomechanics and geomechanics, material characterization testing using cylinders with 

axis of geometrical symmetry coinciding with axis of mechanical symmetry becomes a 

natural choice. This chapter will investigate the poroviscoelastic behavior of such 

specimens under some of the most common laboratory settings: unconfined 

compression, confined compression, unjacketed triaxial, jacketed triaxial, and 

oedometer tests. A special field test with very important applications in the petroleum 

industry, the strain recovery method, is also analyzed herein. 

Following this introduction is a description of the testing configurations in Section 

3.2. Section 3.3 presents the analytical solutions of the sample behavior under such 

settings. Finally, Sections 3.4 and 3.5 give some numerical examples and discussion on 

this class of engineering problems. 

3.2 Problem Description 

3.2.1 Laboratory Testing: Unconfined Compression Test, Triaxial Test, K0 
(Oedometer) Test, and Confined Compression Test 

Fig. 3.1a shows a cylindrical sample with radius R and height H and an attached 

coordinate system. Fig. 3.1b shows the sample under the conventional unconfined 

compression test, with a general time-dependent axial load F(t) (load control) or an 

apparent axial strain εzz(t) (stroke control) applied through the perfectly rigid, 

                                                 
1 Parts of this chapter have been published in Hoang and Abousleiman (2009b) and Hoang and 
Abousleiman (2010) 
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frictionless, and impermeable end caps. Fig. 3.1c demonstrates the unjacketed triaxial 

test, with the addition of a time-dependent confining pressure Po(t). Fig. 3.1d shows a 

general jacketed triaxial loading configuration, with the sample subjected to both 

confining pressure Po(t) and pore pressure po(t) using a two-jacket system. It is worth 

noting that the modeling of the jacketed triaxial test can be used to simulate both the 

unjacketed triaxial test and the unconfined compression test. Specifically, we recover 

the unjacketed triaxial test when Po(t) = po(t), and the unconfined compression test 

when Po(t) = po(t) = 0. Fig. 3.1e shows the sample confined by rigid, frictionless, and 

impermeable bottom plate and lateral ring while being loaded on top using a porous 

loading plate. This configuration is the popular confined compression test in 

biomechanics research. Finally, Fig. 3.1f illustrates the K0 or oedometer test in soil 

mechanics, with the sample sandwiched between two porous loading plates and 

confined laterally by a rigid and impermeable ring. It is evident that for the laboratory 

configuration in Fig. 3.1f, the mid-height plane is a plane of symmetry with no in-plane 

shear stresses or transverse pore fluid flux. In other words, from a physical as well as a 

mathematical point of view, either the top or the bottom half of a sample subjected to 

the oedometer test can be modeled using the confined test. Therefore, the oedometer 

test will not be explicitly discussed in this paper. Interested readers are referred to the 

discussion on the confined compression test. Material-wise, the tested sample is 

transversely isotropic, with the axis of material symmetry coinciding with the axis of 

geometrical symmetry. 



 35

 
Fig. 3.1 – Schematic of compression testing of anisotropic cylindrical samples, a) 
sample dimensions and coordinate system, b) unconfined compression test, c) 
unjacketed triaxial test, d) jacketed triaxial test, e) confined compression test, f) 
oedometer test. 
 

For the unconfined compression, unjacketed triaxial, or jacketed triaxial setup, the 

boundary conditions at r = R are as follows: 

0),(),( ==== rzroorr tpptP σσσ θ . (3.1) 

The boundary conditions at the two ends are as follows: 

0,0,0
0
====

=zzzzrz uq θσσ . (3.2) 

Finally, equilibrium condition in the z direction requires, 

∫=
R

zzrdrtF
0

2)( πσ . (3.3) 
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With the aforementioned conditions, the experimental setup becomes a generalized 

plane-strain axisymmetric problem, with all shear stresses and shear strains vanish, and 

all dynamic and kinematic variables except uz independent of z. 

On the other hand, for the confined compression test, the boundary conditions at the 

top are as follows: 

0,0 === θσσ zzrp . (3.4) 

The boundary conditions at the bottom are as follows: 

0,0,0 ==== zzzrz uq θσσ . (3.5) 

The boundary conditions on the lateral surface are as follows: 

0,0,0 ==== rrrzr uq θσσ . (3.6) 

Equilibrium condition in the z direction still requires Eq. (3.3) to hold. With the 

aforementioned conditions, the experimental setup becomes a one-dimensional problem 

in the z direction with all shear stresses and shear strains vanish, εrr = εθθ = 0, qr = qθ = 

0, and all non-zero dynamic and kinematic variables dependent upon z and t only.  

3.2.2 Field Testing: Strain Recovery Method 

The importance of accurate determination of in-situ maximum and minimum 

horizontal stress orientations and magnitudes can never be over-emphasized in 

geomechanics-related operations in the oil and gas industry. An accurate estimate of the 

in-situ stress state is critical throughout the reservoir life cycle, from basin 

characterization at the very beginning to flow anisotropy modeling in reservoirs, 

borehole stability study for well drilling, hydraulic fracturing for reservoir stimulation, 

sand/solids production during oil and gas production, and modeling and prediction of 

earthquakes induced by the extraction of oil and gas from underground formations. 
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The strain recovery method was first proposed by Voight (1968) for estimating in-

situ stress orientations and magnitudes from cores retrieved from shallow and dry 

wellbores. Since then, several analyses of the technique using viscoelasticity theory 

have been conducted for isotropic rock formations (Blanton, 1983; Warpinski and 

Teufel, 1989). Unfortunately, for the petroleum industry, wells are much deeper and 

both the well and the surrounding rock formation are filled with fluid. Therefore, 

viscoelastic analyses are inherently inadequate. Instead, poroviscoelastic modeling and 

simulation should be used, yet the early attempts to include pore pressure in such 

problems fell short from any real field conditions (Abousleiman and Cheng, 1996). 

The complexity of the application of the strain recovery method to real field cases is 

further compounded by the anisotropy frequently exhibited by rock formations. In 

particular, the commonly encountered transverse isotropy of many sandstones, 

siltstones, shales, etc., could significantly influence the coupled responses including 

pore pressure generation and relaxation behavior. An attempt to incorporate the rock 

transverse isotropy into the analysis was made by Blanton and Teufel (1983) with many 

simplifying assumptions. 

Furthermore, the actual stress and pressure evolution imposed on the retrieved cores 

are time-dependent functions, depending on not only in-situ state of stress but also on 

operational details such as core retrieval time. All existing analyses simplify the actual 

time-dependent boundary conditions to sudden unloading of the core. This simplified 

unloading scenario clearly does not portray real field conditions and could lead to 

misinterpretation of the strain recovery data. 
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This study aims to simulate the poroviscoelastic transversely isotropic relaxation of 

a drill core from a vertical well, from the time it is cored, during retrieval, and during 

sample monitoring in laboratory conditions, using realistic time-dependent stress and 

pressure unloading conditions. 

2R

D

d Drill core

Before coring After coring

p0pwpw p0

2R

D

d Drill core

Before coring After coring

p0pwpw p0

 
Fig. 3.2 – Problem schematic of the strain recovery method, not to scale. 
 

A schematic of the problem is presented in Fig. 3.2. A vertical wellbore is cored to a 

depth D, with a retrieved core of length d and radius R. For most field cases, D >> d >> 

2R. Typical ranges for D, d, and R are hundreds to thousands of meters, tens of meters, 

and centimeters to tens of centimeters, respectively. For balanced drilling, the wellbore 

pressure pw and the formation pore pressure p0 are equal. Following field practice, the 

study will focus on the behavior of the core section close to the bottom of the coring 

barrel. 

The stress state of this core section at the start of coring is as follows: 

0,,, ppSSS rrrrrVzz ==== θθσσσ , (3.7) 

where SV
  is the overburden stress, Sr and Srθ are the radial and shear in-situ stresses, and 

p0 is the formation pore pressure. Sr and Srθ relate to the minimum and maximum 

horizontal in-situ stresses Shmin and SHmax as follows: 
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( )
HS

hminHmaxhminHmax
r

SSSSS θθ −
−

+
+

= 2cos
22

, 

( )
HS

hminHmaxhminHmax
r

SSSSS θθ −
−

+
+

= 2cos
22

, (3.8) 

with θ  is the azimuth around the core and 
HSθ  is the azimuth of the maximum 

horizontal in-situ stress. 

The stress state of the same core section at the end of coring is as follows: 

0,0,, pppp rwrrwzz ==== θσσσ . (3.9) 

Finally, at the end of the retrieval, all stresses and pore pressure on the core surface 

vanish. In this study, the time interval from the end of coring to the end of retrieval is 

termed retrieval time while the time interval from the end of retrieval to the beginning 

of sample relaxation monitoring is termed sample preparation time.  

Since the core length is much greater than the core diameter, pore pressure diffusion 

will occur predominantly in the radial direction. The relaxation behavior, therefore, can 

be examined using generalized plane-strain analysis, provided that relaxation data are 

measured not too close from the bottom of retrieved core. 

3.3 Poroviscoelastic Analytical Solutions 

3.3.1 Review of Relevant Analytical Solutions 

Relevant studies on one-dimensional consolidation problem are summarized in 

Table 3.1. Biot investigated this problem as an example of application in both his 1941 

paper on poroelasticity and his 1956 paper on poroviscoelasticity. Mak (1986) revisited 

the poroviscoelastic 1-D consolidation problem when he investigated the behavior of 

articular cartilage under confined compression testing. Recently, Schanz and Cheng 

(2001) incorporated dynamic effects in the analysis. All of the aforementioned solutions 
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concern only isotropic materials. This study extends the analysis to transversely 

isotropic materials. 

Table 3.1 – Relevant studies on one-dimensional consolidation. 
Anisotropy Poroelasticity Poroviscoelasticity 

Biot, 1956 
Mak, 1986 Isotropy  Biot, 1941 
Schanz and Cheng, 2001 

Transverse isotropy   This study 
 
Table 3.2 – Relevant studies on cylindrical geometry. 

Anisotropy Poroelasticity Poroviscoelasticity 
Armstrong et al., 1984 Abousleiman et al., 1996b 
Cui and Abousleiman, 2001 Abousleiman and Cheng, 1996 Isotropy 
Sawaguchi and Kurashige, 2005 Huang et al., 2001 
Abousleiman and Cui, 1998 
Zwanenburg and Barends, 2007 

Transverse 
isotropy 

Cowin and Mehrabadi, 2007 
This study 

 
Similarly, relevant studies on the behavior of poroelastic and poroviscoelastic 

cylinders are summarized in Table 3.2. Many authors have worked on the subject due 

to the practical importance of this class of problem in both geomechanics and 

biomechanics. Armed with the correspondence principle of poroviscoelasticity and 

poroelasticity established in Chapter 2, the analytical solutions for poroelastic 

transversely isotropic cylinders given by Abousleiman and Cui (1998) will be the most 

useful; these results can be readily transferred to poroviscoelasticity to obtain the 

desired solutions for poroviscoelastic transversely isotropic cylindrical samples under 

testing conditions. It is noted that the sign convention has been changed from tension 

positive in Abousleiman and Cui (1998) to compression positive in this study. 

Consequently, the derivation of the analytical solutions will be presented in details for 

completeness. 
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3.3.2 Governing Equations 

The constitutive relations in cylindrical coordinates for a transversely isotropic 

poroviscoelastic material are as follows:  

pMMM zzrrrr
~~~~~

1131211 αεεεσ θθ +++= , (3.10) 

pMMM zzrr
~~~~~

1131112 αεεεσ θθθθ +++= , (3.11) 

pMMM zzrrzz
~~~~~

3331313 αεεεσ θθ +++= , (3.12) 

ζεαεαεα θθ
~~~~~

311 MMMMp zzrr +++= , (3.13) 

with σij is the stress tensor, εij is the strain tensor, and Mij is the stiffness tensor, p is the 

pore pressure, ζ  is the variation of fluid content, α1 and α3 are the Biot’s effective 

stress coefficients in the isotropic plane and in the transverse direction, respectively, and 

M is the inverse of storage coefficient under constant strains. Other governing relations 

include Darcy’s law, strain-displacement relations, equilibrium equations, and 

continuity equation as listed below. 

Darcy’s law, 

r
pkqr ∂
∂

−=
~~ 1

µ
, (3.14a) 

θµθ ∂
∂

−=
p

r
kq

~1~ 1 , (3.14b) 

z
pkqz ∂
∂

−=
~~ 3

µ
, (3.14c) 

with k1 and k3 are the permeability in the isotropic plane and in the transverse direction; 

and µ denotes pore fluid viscosity.  

Strain-displacement relations, 
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Equilibrium equations, 
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Continuity equation, 
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3.3.3 K0 Test or Confined Compression Test 

The experimental setup becomes a one-dimensional problem in the axial direction. 

In particular, 

0,0,0 ====== θθθθ εε qquu rrrr , (3.18) 

and all non-trivial variables are dependent on z and t only. Substitution of the 

constitutive relations and the equilibrium equation in axial direction transforms the 

diffusion equation into: 
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which admits the following solution: 

)/exp()/exp(~
3231 cszCcszC −+=ζ . (3.20) 

Using the boundary conditions, it can be shown that for load-controlled testing 

condition: 
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The variation of fluid content therefore takes the form: 

)/cosh(
)/cosh(~~

3

3

33

3

csH
csz

S
M o
α

ζ −= . (3.22) 

Other variables can then be found easily to be as follows: 
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For stroke-controlled testing configuration, the average axial stress So can be calculated 

from the displacement uz using the following relation: 
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3.3.4 Unconfined Compression Test and Triaxial Tests 

Substitution of the constitutive relations into the equilibrium equation in radial 

direction yields the following Navier-type equation: 

( )
rM

M
r u

rr

∂
∂

−=
∂
+∂ ζαεε θθ

~~~

11

1 . (3.28) 

This equation and the constitutive relations transform the diffusion equation into: 
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of which the analytical solution is as follows: 

( )ξζ 01
11~ IC

M
M u

= , (3.30) 

with 1/ csr=ξ and In is the modified Bessel function of the first kind of order n. 

Substituting this solution into the Navier-type equation and integrating with respect to r 

yields the expression for the radial displacement, 
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The Laplace-domain solutions for all stresses, strains, pore fluid pressure, and flux 

can then be obtained using equations (3.10) to (3.15). For stroke-control testing 

condition, εzz = εzz(t), the parameters take the form: 
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with new coefficients as follows: 

2/)( 1211 MMG −= , (3.34) 
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and 1/ csR=β . For load-control testing condition, F = F(t), using equation (3.3), the 

resultant axial strain can be obtained as follows: 
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with 

( ) ( )[ ] ( )βσ 0121133
2
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and the average axial stress So is defined as follows: 

2

)()(
R

tFtSo π
= . (3.38) 

3.3.5 Strain Recovery Method 

The overall unloading of the core can be decomposed into two parts: axisymmetric 

unloading and deviatoric unloading. The deviatoric unloading is controlled by the 

following boundary conditions: 
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, 
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( ) )(2sin
2
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with H(t) is the Heaviside unit step function. As shown by Abousleiman et al. (1996), 

the relaxation displacements take the form: 
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The axisymmetric unloading is composed of the remaining of the stress and pressure 

boundary conditions, with the following general form: 

0,)(),(),( ====
==== RrroRrzzoRroRrrr tStpptP θσσσ . (3.41) 

For this mode of unloading, it can be shown that the diffusion equation takes the 

form: 
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of which the analytical solution is as follows: 
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with 1/ csr=ξ and In is the modified Bessel function of the first kind of order n. 

Substituting this solution into the Navier-type equation and integrating with respect to r 

yields the expression for the radial displacement, 

( )
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~ 21
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rCIrCur +−=
ξ
ξα . (3.44) 

The parameters C1 and C2 can then be easily determined from the time-dependent 

boundary conditions Po(t), po(t), and So(t). 

Eq. (3.40) shows that the deviatoric unloading behavior of the core only depends on 

the difference of horizontal in-situ stresses and on viscoelastic properties of the rock 
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matrix. In other words, pore fluid diffusion and coupled phenomena do not affect the 

deviatoric unloading behavior. This observation was recognized earlier by Warpinski 

and Teufel (1989). However, in practice, care must be taken to either measure the radial 

displacement only or separate the tangential displacement from the measured composite 

displacement. 

The axisymmetric unloading behavior of the retrieved core, on the other hand, is 

extremely convoluted. It depends on the in-situ stress state, rock and fluid properties, as 

well as operational details such as core retrieval time and sample preparation time. The 

time for core retrieval affects the time-dependent stress and pore pressure unloading 

conditions while sample preparation time limits how much relaxation data can be 

recorded. These time durations, therefore, must be accounted for in the analysis. 

3.4 Discussion on Analytical Solutions for Laboratory Testing 

3.4.1 General Discussion 

It is evident from the analytical expressions that the response of a transversely 

isotropic poroviscoelastic sample greatly depends on how it is tested, i.e., unconfined 

compression, triaxial configuration, or confined/oedometer testing. In particular, all four 

stiffness coefficients M11, M12, M13, and M33 have significant influence on the behavior 

of a sample tested in unconfined compression or triaxial condition. On the other hand, 

M33 and to a lesser degree M13 take on a dominating role in determining the behavior of 

a sample tested in confined compression. Consequently, confined compression testing 

might be better for isolating and characterizing M13 and M33 than unconfined 

compression and triaxial tests. On the other hand, using the confined compression test 

alone could obviously result in misled conclusions about the anisotropic nature of the 
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tested material. A more in-depth example is given in the next section on biomechanics 

testing.  

The presented formulation and solutions are general with regards to the form of the 

viscoelastic stiffness of the porous matrix. Spring-dashpot models such as the familiar 

Zener model (Carter and Booker, 1983; Leipzig and Athanasiou, 2005) can be easily 

employed. Alternatively, experimentally measured relaxation functions can also be 

used, provided their Laplace transforms exist. 

From equations (3.19) and (3.29), it is clear that even when the intrinsic 

permeability is isotropic, i.e., k1 = k3, the diffusion coefficients in unconfined 

compression and triaxial setups, c1, and confined compression or oedometer setup, c3, 

could assume different values which reflect the anisotropy of the stiffness of the porous 

matrix. For fully coupled problems such as these, the diffusion of the pore fluid is 

governed not only by the intrinsic permeability of the matrix and the viscosity of the 

pore fluid but also by the anisotropic stiffness of the porous matrix. This issue must be 

taken into consideration when designing experimental protocols or analyzing laboratory 

data. 

Finally, for the testing of poroviscoelastic transversely isotropic geo- and bio-

materials using the investigated configurations, there are three different time scales 

involved that warrant careful consideration. The first time scale is dictated by the 

viscoelastic nature of the porous matrix. This time scale is an intrinsic material property 

and researchers have no control over it unless they actively modify the rock or the 

biological tissue. The second time scale involves the diffusion of pore fluid within the 

porous matrix, and is influenced by not only material properties but also sample 
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dimensions, giving researchers some command over it. The amount of control over this 

time scale is limited, however, in biomechanics mostly due to the physical limits in 

tissue size and thickness, and in geomechanics mostly due to the physical limits of the 

testing apparatus. The third and final time scale involves that of the deformation or load 

application and sample monitoring. Fortunately, this time scale can usually be 

controlled at the researcher’s discretion. By understanding the intricate interplay 

between these three time scales, the laboratory tests can be designed to best suit the 

purpose of the experimentalist. 

3.4.2 Numerical Examples of Biomechanics Testing 

The response of an articular cartilage plug with dimensions of R = 2.5 mm and H = 

1000 µm under two of the most popular setups in biomechanics research, i.e., 

unconfined compression and confined compression, is investigated to illustrate the 

applicability of the presented solutions. To demonstrate the viscoelastic effects of the 

matrix, all matrix drained moduli Mij(t) are assumed to behave according to the Zener 

model. Initial stiffness coefficients are as follows: M11(0+) = 0.560 MPa, M12(0+) = 

0.032 MPa, M13(0+) = 0.029 MPa, and M33(0+) = 1.200 MPa. All moduli are assumed to 

retain 2/3 of initial values at long time and to have the same characteristic relaxation 

time of 60 s. This assumption of a uniform relaxation function for all moduli serves to 

illustrate the material behavior more clearly and is not critical to the solutions. Different 

relaxation functions with diverging ratios of long-time value to initial value as well as 

different relaxation times can be used without any difficulty. Other material properties 

are time-independent as follows: porosity φ = 0.852, permeability in isotropic plane k1 = 

1.0×10-15 m2, permeability in transverse direction k3 = 1.0×10-15 m2, fluid bulk modulus 
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Kf = 2.3 GPa, matrix grain bulk modulus Ks = 3.0 MPa, and fluid viscosity µ = 0.001 

Pa·s. It is also worth noting that M11 and M33 are in fact the anisotropic aggregate 

moduli HA in the isotropic plane and in the transverse direction within biomechanics 

context. Cyclic loading is of particular interest in the biomechanics testing; for this 

example, a stroke-controlled loading from 0-50 µm (0-5% apparent strain) with a 

frequency of 1 Hz is employed as shown in Fig. 3.3. The numerical results in this 

section were inverted from the analytical solutions using Durbin method with 800 terms 

(Cheng et al., 1994). 

 
Fig. 3.3 – Applied cyclic axial deformation for both unconfined and confined 
compression tests. 
 

Although the porous matrix of articular cartilage has long been recognized as a 

viscoelastic material, the tissue has been modeled as a poroelastic matter in some 

previous studies to simplify the analysis. The typical approach is to measure the long-

time stiffness coefficients to determine the corresponding poroelastic parameters. 

Therefore, to further illustrate the poroviscoelastic behavior of the tissue, the response 

of a counterpart poroelastic sample is also investigated. Following the common analysis 

method, the stiffness coefficients are taken as Mij-elastic = Mij-viscoelastic(∞).  
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Furthermore, an isotropic poroviscoelastic sample is also analyzed to demonstrate 

the effects of material anisotropy. For illustration purposes, it is assumed that M33 and 

M13 are determined accurately; however, M11 and M12 are not evaluated but assumed to 

be the same as M33 and M13 based on the incorrect assumption of material isotropy. 

Figs. 3.4–3.6 demonstrate the evolution of pore pressure and axial stress at the 

center and the lateral displacement of each side of the unconfined samples with time, 

respectively. Although the trends are similar, it is clear that under displacement-

controlled loading, the poroelastic analysis could underestimate the magnitude of pore 

pressure and stress which is similar to results reported in earlier studies (Cohen et al., 

1998; Bursać et al., 1999). It is also evident that the failure to account for material 

anisotropy could give rise to erroneous predictions of the articular cartilage response to 

external loading, even when poroviscoelastic modeling is used. 

 
Fig. 3.4 – Pore pressure history at the center of the unconfined samples. 
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Fig. 3.5 – Evolution of axial stress at the center of the unconfined samples. 
 

 
Fig. 3.6 – Evolution of lateral displacement of the side of the unconfined samples. 
 

On the other hand, the differences in the confined compression tests are less 

pronounced, as shown in Figs. 3.7–3.9. Only minor difference exists between the 

poroviscoelastic anisotropic and the poroviscoelastic isotropic responses. The reason is 

that only two out of the four moduli, i.e., M33 and M13, play a dominating role in 

determining the tissue behavior in this testing configuration, as explained in Section 
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3.4.1. Between the poroelastic results and the poroviscoelastic results, only the axial 

stress histories are significantly different while the evolution of the lateral stress and the 

pore pressure are almost the same for all three samples. Largely due to the small 

thickness of the tissue, i.e., H = 1000 µm, the diffusion time scale is relatively small. 

For example, the diffusion characteristic time for the poroelastic anisotropic sample is 

1.06 s, comparable to the time scale of the 1-Hz applied loading while being much 

smaller than the viscoelastic relaxation characteristic time of 60 s. In other words, the 

pore pressure diffusion takes place fast enough compared to the applied loading as well 

as the viscoelastic relaxation of the porous tissue to render the difference between 

responses small. Under circumstances such as these, the use of the confined 

compression test alone could potentially mislead the experimentalist to conclude that 

the articular cartilage is poroelastic and/or isotropic. Therefore, other tests such as the 

unconfined compression test are recommended to supplement confined compression 

testing in material characterization for poroviscoelastic anisotropic biological tissues. 

 
Fig. 3.7 – Pore pressure history at the bottom of the confined samples. 
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Fig. 3.8 – Evolution of axial stress at the center of the confined samples. 
 

 
Fig. 3.9 – Evolution of lateral stress of the confined samples. 
 

Similar phenomena have been observed in previous attempts to characterize 

articular cartilage using poroelasticity. Soulhat et al. (1999) reported that isotropic 

poroelastic modeling can give a reasonable description of the axial stress response in 

confined compression tests yet fails to describe the axial stress response in unconfined 

compression and transversely isotropic poroelastic modeling is required to improve the 
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match with experiments. Bursać et al. (1999) reported that even transversely isotropic 

poroelastic modeling cannot simultaneously match the axial and radial responses of 

confined and unconfined compression tests for calf articular cartilage. The numerical 

examples in this section illustrate that the failure to account for either anisotropy or 

viscoelasticity of the articular cartilage matrix could result in flawed predictions of the 

tissue behavior under general external loading. 

3.4.3 Numerical Examples of Geomechanics Testing 

In this section, the response of an oil shale rock sample with dimensions of R = 5 cm 

and H = 20 cm under jacketed triaxial setup is investigated. It has been reported that the 

characteristic time of creep for many rocks including shale, siltstone, and sandstone, 

falls in the range of 10 to 15 hours (Warpinski and Teufel, 1989). Therefore, in this 

example, all matrix drained moduli Mij(t) are assumed to behave according to the Zener 

model with the same characteristic creep time of 10 hours. Initial stiffness coefficients 

are assumed as follows: M11(0+) = 11.93 GPa, M12(0+) = 4.93 GPa, M13(0+) = 3.37 GPa, 

and M33(0+) = 5.90 GPa. All moduli are assumed to retain 50% of initial values at long 

time. Other material properties are time-independent as follows: porosity φ = 0.08, 

permeability k1 = k3 = 50 nD, fluid bulk modulus Kf = 300 MPa, matrix grain bulk 

modulus Ks = 40 GPa, and fluid viscosity µ = 0.010 Pa·s. The numerical results 

presented in this section were inverted to time domain with Stehfest algorithm using 10 

terms (Cheng et al., 1994). 

A counterpart poroelastic sample is also examined to demonstrate the 

poroviscoelastic effects. Since the characteristic time of viscoelasticity of the rock 

matrix is substantially longer than most standard tests, material characterization using 
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conventional techniques would likely produce the short-time poromechanics 

parameters. Therefore, for the poroelastic sample, the stiffness coefficients are taken as 

Mij-elastic = Mij-viscoelastic(0+).  

Finally, an isotropic poroviscoelastic sample is also studied to demonstrate the 

effects of material anisotropy. For illustration purposes, it is assumed that M33 and M13 

are determined accurately; however, M11 and M12 are not assessed but assumed to be the 

same as M33 and M13 based on the incorrect assumption of material isotropy. 

A drained triaxial test in geomechanics typically consists of a relatively rapid 

confinement to the desired confining pressure, a waiting period to ensure that the 

generated pore pressure has enough time to dissipate, and finally a linear-ramp axial 

displacement loading to the desired strain or failure. In this example, the samples will 

be confined rapidly to a confining pressure of 10 MPa. The linear ramp axial loading 

will be at the rate of 2% strain in 10 hours.  

Figs. 3.10 to 3.12 show the response of the poroelastic anisotropic, poroviscoelastic 

anisotropic, and poroviscoelastic isotropic samples after the rapid confinement to 10 

MPa, i.e., Po(t) = So(t) = 10 MPa × H(t) and po(t) = 0. The actual buildup time is 

typically one minute or less, much shorter than the viscoelastic characteristic creep time 

of 10 hours. It is also much shorter than the diffusion characteristic times, for example 

48.4 hours for the poroelastic sample. Therefore, the confining pressure buildup has 

been idealized as a Heaviside step function without loss of generality. 

Fig. 3.10 shows the pore pressure generation at the center of the samples as a 

function of time. It is evident that the poroelastic analysis would severely underestimate 

how long the generated pore pressure can sustain inside the poroviscoelastic sample, 
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and therefore would estimate an inadequate waiting period before the application of 

axial loading.  

 
Fig. 3.10 – Evolution of pore pressure at the center of samples after sudden 
confinement. 
 

 
Fig. 3.11 – Evolution of axial and circumferential displacements after sudden 
confinement. 
 

Fig. 3.11 presents the history of the axial and circumferential displacement after the 

rapid confinement, respectively, which can be readily measured in the experimental 
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setting. These displacements can clearly help differentiate between poroelastic and 

poroviscoelastic behavior, as well as anisotropic and isotropic rock properties. 

 
Fig. 3.12 – Evolution of pore pressure and effective axial stress at the center of 
samples during linear ramp axial loading. 
 

Fig. 3.12 shows the pore pressure and effective axial stress at the center of the same 

three samples during the linear ramp axial displacement loading. The rate of loading is 

relatively slow, i.e., 2% apparent strain in 10 hours, to accommodate the long 

viscoelastic characteristic time as well as the long diffusion characteristic time. While 

the poroelastic analysis can relatively follow the poroviscoelastic trend in pore pressure 

prediction, it overestimates the effective stress at the center of the poroviscoelastic 

sample. On the other hand, Fig. 3.12 clearly shows that the failure to account for 

material anisotropy could result in seriously flawed predictions or analysis of rock 

behavior even under well-controlled laboratory testing conditions.  
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3.5 Numerical Examples and Discussion on Strain Recovery Method 

In this section, the response of a core sample with diameter of 15.24 cm (6 in) 

retrieved from a depth of 1000 m is investigated. The in-situ stress state is summarized 

below: 

SV = 2.31 SG, SHmax = 2.07 SG, Shmin = 1.84 SG, p0 = 1.0 SG, 0=
HSθ . 

It has been reported that the characteristic time of creep for many rocks including 

shales, siltstones, and sandstones, falls in the range of 10 to 15 hours (Warpinski and 

Teufel, 1989). Therefore, in this example, all matrix drained moduli Mij(t) are assumed 

to behave according to the Zener model with the same characteristic creep time of 10 

hours. Other models for the viscoelasticity of the rock matrix or experimentally 

measured relaxation/creep functions can be easily employed in the same manner. Initial 

Young’s modulus perpendicular to bedding, E3(0+), is assumed to be 5 GPa. The 

Poisson’s ratios are assumed to be constant, ν1 = ν3 = 0.3. All moduli are assumed to 

retain 50% of initial values at long time. The Young’s modulus in the direction parallel 

to bedding is assumed to be E1 = nEE3. The anisotropy ratio nE is typically from 1 to 2. 

Three different values of nE of 1.0, 1.5, and 2.0 will therefore be analyzed herein. Other 

material properties are as follows: porosity φ = 0.10, permeability k1 = 5 nD, fluid bulk 

modulus Kf = 2.3 GPa, matrix grain bulk modulus Ks = 42 GPa, and fluid viscosity µ = 

1 cP. 

The simplified analyses using viscoelasticity commonly used in the petroleum 

industry are also included to investigate their performance on these low-permeability 

shales. In these analyses, the pore pressure distribution is assumed to be uniform 
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throughout the core and equal the pore pressure on the core surfaces (Blanton and 

Teufel, 1986). 

Figs 3.13 to 3.18 show the full relaxation evolution of the cores from the end of 

coring and the measured relaxation data during the actual test side by side with the 

corresponding simplified viscoelastic modeling. Although the viscoelastic modeling 

results roughly follow the trends of the poroviscoelastic rock samples, they cannot 

capture the actual relaxation behavior. It is also evident that the anisotropy of the 

formation significantly affects both the overall relaxation evolution and the recorded 

relaxation. 

 
a)                                                                   b) 

Fig. 3.13 – Poroviscoelastic relaxation evolution from the end of coring for E1 = E3, 
(a) and simplified viscoelastic modeling, (b). 
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a)                                                                   b) 

Fig. 3.14 – Measured poroviscoelastic relaxation data for E1 = E3, (a) and 
simplified viscoelastic modeling, (b). 
 

 
a)                                                                   b) 

Fig. 3.15 – Poroviscoelastic relaxation evolution from the end of coring for E1 = 
1.5E3, (a) and simplified viscoelastic modeling, (b). 
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a)                                                                   b) 

Fig. 3.16 – Measured poroviscoelastic relaxation data for E1 = 1.5E3, (a) and 
simplified viscoelastic modeling, (b). 
 

 
a)                                                                   b) 

Fig. 3.17 – Poroviscoelastic relaxation evolution from the end of coring for E1 = 
2E3, (a) and simplified viscoelastic modeling, (b). 
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a)                                                                   b) 

Fig. 3.18 – Measured poroviscoelastic relaxation data for E1 = 2E3, (a) and 
simplified viscoelastic modeling, (b). 
 

3.6 Summary 

The analytical solution for the poroviscoelastic transversely isotropic cylinder 

problem has been derived, accommodating a number of laboratory and field testing 

conditions. For the testing of poroviscoelastic anisotropic geo- and bio-materials, there 

are three different time scales involved that demand careful consideration. The first time 

scale comes from the viscoelastic nature of the porous matrix and is an intrinsic material 

property. The second time scale involves the diffusion of pore fluid within the porous 

matrix, and is influenced by material properties as well as sample dimensions. The final 

time scale belongs to load application and sample monitoring. Understanding the 

complex interplay between these three time scales is crucial for the design of laboratory 

tests on poroviscoelastic materials. Furthermore, even when the intrinsic permeability is 

isotropic, the diffusion coefficients in unconfined compression and triaxial setup could 

be very different from the diffusion coefficients in confined compression and oedometer 

configuration due to the anisotropy of the matrix stiffness. This issue must be taken into 
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consideration when designing experimental protocols or analyzing and interpreting 

laboratory data. 

Inspection of the analytical expressions shows that the response of a transversely 

isotropic poroviscoelastic sample would significantly depend on which testing 

configuration is chosen. In particular, all four stiffness coefficients M11, M12, M13, and 

M33 have significant influence on the behavior of a sample tested under unconfined 

compression and triaxial condition while only M33 and M13 dominate the behavior of the 

same sample tested in confined compression and oedometer condition. As a 

consequence, the use of the confined compression or oedometer test alone could 

potentially mislead the researcher that the anisotropic material is isotropic. Furthermore, 

in some cases the researcher can also be deceived into believing that the material is 

poroelastic instead of poroviscoelastic as demonstrated in the numerical example of 

articular cartilage confined compression testing with cyclic loading. In short, 

unconfined compression or triaxial tests would probably yield more accurate material 

characterization than confined compression or oedometer testing for poroviscoelastic 

anisotropic geo-materials and biological tissues. 

For poroviscoelastic geo-materials tested under a drained triaxial setup with 

confinement followed by linear ramp axial loading, the sample response should be 

closely monitored during the waiting period after confinement in addition to during the 

axial loading, as these data can help characterize both the poroviscoelastic and the 

anisotropic nature of the rocks. The failure to account for either the viscoelasticity or 

the anisotropy of the rock matrix can detrimentally affect the estimation of effective 

stress for poroviscoelastic rocks subjected to external loading. 
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In this chapter, an analytical simulation of the poroviscoelastic transversely 

isotropic relaxation of a drill core from a vertical well, from the time it is cored, during 

retrieval, and during sample monitoring in laboratory conditions, using realistic time-

dependent stress and pressure unloading conditions, has also been presented. Deviatoric 

unloading behavior of the core has been shown to depend only on the difference of 

horizontal in-situ stresses and on viscoelastic properties of the rock matrix. The 

axisymmetric unloading behavior, on the other hand, is extremely convoluted. It 

depends on the in-situ stress state, rock and fluid properties, as well as operational 

details such as core retrieval time and sample preparation time. Through the numerical 

examples demonstrated herein, it is clear that both the poroviscoelasticity and 

anisotropy of the rock formation must be accounted for in order to realistically capture 

the actual core relaxation. 

In conclusion, the presented analytical solutions could serve as benchmarks for 

validating numerical schemes and simulations or assist directly in calibrating and 

interpreting test results on poroviscoelastic anisotropic geo- and bio-materials. 
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Chapter 4: Weakly Orthotropic Cylinders 
4.1 Introduction 

This chapter presents the analytical solutions for the time-dependent evolution of 

pore pressure, axial, radial, and tangential stresses, as well as axial and radial 

displacements, of a poroelastic or poroviscoelastic cylindrical sample with cylindrical 

weak orthotropy under triaxial or unconfined compression testing conditions. These 

solutions are of particular importance for cylindrically-reinforced low permeability 

clays with significant viscoelastic behavior. Potential applications of these materials 

might include nuclear waste storage, chemical waste storage, and viscoelastic settlement 

estimation. 

4.2 Problem Description 

A time-dependent axial force F(t) is applied through the rigid frictionless end caps 

as shown in Fig. 4.1. Time-dependent confining pressure Po(t) and pore pressure po(t) 

can also be applied to the lateral surface. The tested material has weak cylindrical 

orthotropy ( 22112211 , MMMM <<−  and 23132313 , MMMM <<− ), with the axis of 

material symmetry coinciding with the axis of geometrical symmetry. The analytical 

solutions derived herein are also applicable to more familiar subsets of weak cylindrical 

orthotropy such as transverse isotropy and isotropy. 

The general boundary conditions at r = R are as follows: 

0),(),( ==== rzroorr tpptP σσσ θ . (4.1) 
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Fig. 4.1 – Compression testing of anisotropic cylindrical sample, a) sample 
dimension and attached polar coordinate system, b) unconfined compression test, 
c) unjacketed triaxial test, d) jacketed triaxial test. 
 

The boundary conditions at the two ends are as follows: 

0,0,0
0
====

=zzzzrz uq θσσ . (4.2) 

Finally, equilibrium condition in the z direction requires, 

∫=
R

zzrdrtF

02
)( σ

π
. (4.3) 

With the aforementioned conditions, the experimental setup becomes a generalized 

plane-strain axisymmetric problem, with all shear stresses and shear strains on the 
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principal planes vanish, and all dynamic and kinematic variables except uz independent 

of z. 

4.3 Analytical Solution 

4.3.1 Poroelastic Solution 

The constitutive relations for cylindrically orthotropic poroelasticity in polar 

coordinates are as follows: 

pMMM zzrrrr 1131211 αεεεσ θθ +++= , (4.4) 

pMMM zzrr 2232212 αεεεσ θθθθ +++= , (4.5) 

pMMM zzrrzz 3332313 αεεεσ θθ +++= , (4.6) 

( )ζεαεαεα θθ +++= zzrrMp 321 , (4.7) 

where σij is the stress tensor, εij is the strain tensor, Mij’s are the drained moduli of the 

soil/rock matrix, p is the pore pressure, ζ  is the variation of fluid content, αi’s are the 

anisotropic pore pressure coefficients, and M is the inverse of storage coefficient under 

constant strains. Other governing relations include: 

Darcy’s law in the radial direction, 

r
pkqr ∂
∂

−=
µ

1 , (4.8) 

strain-displacement relations, 

r
ur

rr ∂
∂

=ε , (4.9) 

r
ur=θθε , (4.10) 

equilibrium in radial direction, 
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0=
−

+
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∂
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and continuity equation, 
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where qr, k1, and ur are the fluid flux, permeability, and displacement in the radial 

direction, and µ is the pore fluid viscosity. 

Substitution of constitutive relations into the equilibrium equation yields, 
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This equation can be rewritten in the form: 
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Since the drained moduli Mij’s of the matrix are much smaller than the bulk 

modulus Ks of the grains for all soils and many rocks, α1 and α2 are very close to unity. 
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Therefore, the difference between α1 and α2 are negligible compared to each pore 

pressure coefficient. Furthermore, material weak orthotropy gives 

22112211 , MMMM <<−  and 23132313 , MMMM <<− . Assuming that the term ∆ can be 

neglected compared to other terms, Eq. (4.14) simplifies to, 
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It should be noted that the simplified Eq. (4.16) correctly reduces to corresponding 

exact relations for transverse isotropy and isotropy. The use of Eqs. (4.16) and (4.7) 

transforms the continuity equation into, 
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with uM
MMkc
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= , which has the Laplace transform of the form: 
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Let 1/ csr=ξ , Eq. (4.18) takes the form: 

0~~~
2

2

2
2 =−

∂
∂

+
∂
∂ ζξ

ξ
ζξ

ξ
ζξ . (4.19) 

Eq. (4.19) is a modified Bessel equation of 0th degree with the following solution: 

( )ξζ 01
11~ IC

M
M u

=  (4.20) 

Eq. (4.20) already takes into account the fact that the variation of fluid content must 

be finite at r = 0. This result together with the displacement-strain relations gives the 

radial displacement of the form: 
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ξααααξ Ff  is a hypergeometric function of ξ . In 

the case of transverse isotropy, α1 = α2, this hypergeometric function simplifies to the 

familiar expression: 
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Other dynamic and kinematic quantities can then be found as follows: 
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Solving for boundary conditions Po(t), po(t), and F(t), the unknown coefficients C1, 

C2, and the transformed axial strain zzε~  can be found to be as follows: 
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where, 
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The analytical solution for a poroelastic cylindrical sample is therefore complete in 

the Laplace transform domain and can be easily inverted numerically to time domain 

using appropriate inversion algorithms. 

4.3.2 Poroviscoelastic Solution 

Invoking the correspondence principle between poroviscoelasticity and 

poroelasticity, the solution for poroviscoelastic weakly-orthotropic cylinders take the 

form: 
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4.4 Numerical Example 

A cylindrical clay sample with diameter of 10 cm and length of 20 cm under 

unconfined compression is studied in this analysis. A sudden compressive load giving 

an average axial stress of 100 kPa is applied at t = 0. Material properties are as follows: 

grain bulk modulus Ks = 40 GPa, pore fluid bulk modulus Kf = 2.3 GPa, porosity φ = 

47%, permeability in the radial direction k1 = 10-16 m2, and pore fluid viscosity µ = 

0.001 Pa.s. The original transversely isotropic clay has E1(0+) = E2(0+) = 3.0 MPa, 

E3(0+) = 1.2 MPa, and Poisson’s ratios ν21 = 0.3, and ν31 = ν32 = 0.2. The cylindrically 

reinforced clay has weak orthotropy with E2(0+) = 3.5 MPa while other properties 

remain unchanged. The three Young’s moduli are assumed to behave according to the 

Zener model with the same characteristic relaxation time of 600 seconds and long-time 

values equal to 80% of their initial values. The three Poisson’s ratios, on the other hand, 

are assumed to remain constant in this analysis. However, they can be easily made time-

dependent by modeling viscoelastic effects on the moduli Mij’s instead of Ei’s.  

Fig. 4.2 demonstrates the evolution of pore pressure at the center of the original 

transversely isotropic clay and the reinforced orthotropic clay specimens with the 

Mandel-Cryer effect clearly displayed. The two materials give similar responses, with 

the orthotropic clay producing a little higher peak pore pressure. 
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Fig. 4.2 – Pore pressure evolution at center of samples. 
 

 
Fig. 4.3 – Evolution of effective axial stress at center of samples. 
 

Fig. 4.3 and Fig. 4.4 show the development with time of the effective axial stress 

and effective radial stress also at the center of the samples. The orthotropic clay 
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produces a little lower effective stresses partly due to the aforementioned presence of a 

higher pore pressure. 

 
Fig. 4.4 – Evolution of effective radial stress at center of samples. 
 

 
Fig. 4.5 – Evolution of effective tangential stress at center of sample. 
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The evolution of the effective tangential stress at the center of the samples is 

illustrated in Fig. 4.5. The two samples sustain very different stress levels because the 

impact of a changing E2 is significant on the tangential stress. 

The time-dependent axial compression of both samples is compared in Fig. 4.6. 

Since the axial compression in the unconfined compression test is predominantly 

controlled by the axial Young’s modulus, E3, it is natural that the two curves are similar. 

 
Fig. 4.6 – Axial compression of as functions of time. 
 

Finally, the lateral dilation of the two specimens is compared in Fig. 4.7. Although 

they obtain the same long-time value due to identical Poisson’s ratios, the transient 

behavior is appreciably different, with the orthotropic sample producing larger 

deformation. 
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Fig. 4.7 – Lateral dilation as functions of time. 
 

4.5 Summary 

This chapter delineates the analytical solution for pore pressure, axial stress, radial 

stress, and tangential stress distributions, as well as the axial and radial displacements 

for weakly-orthotropic poroelastic or poroviscoelastic cylinders under triaxial or 

unconfined compression testing conditions. It has also been shown through numerical 

examples that compared to transversely isotropic samples, orthotropic specimens could 

have appreciably different effective tangential stress and lateral dilation evolutions. 
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Chapter 5: Orthotropic Rectangular Strips (Mandel’s 
Problem)2 

5.1 Introduction 

Mandel’s problem (Mandel, 1953) is one of the classical problems of 

poromechanics. In this problem, a long specimen with rectangular cross-section 2a×2b 

is sandwiched between two rigid, impermeable, frictionless plates, as illustrated in Fig. 

5.1. A load 2F is then sudden applied at t = 0. Under these conditions, Mandel showed 

that the induced pore pressure at the center plane (x = 0) would increase above the 

initial “undrained” value before decreasing to 0. This non-monotonic behavior of the 

pore pressure response is termed the Mandel-Cryer effect and separates fully-coupled 

poromechanics from the earlier uncoupled theory of Terzaghi (1943). The Mandel-

Cryer effect was confirmed experimentally first by Gibson et al. (1963). Since then, the 

Mandel’s problem has been used extensively as a benchmark for validating numerical 

schemes in poromechanics (Christian and Boehmer, 1970; Cheng and Detournay, 1988; 

Cui et al., 1995). 

x
z

2b

2a

2F

x
z

2b

2a

2F

 
Fig. 5.1 – Schematic of the Mandel’s problem. 
 

                                                 
2 Parts of this chapter have been published in Hoang and Abousleiman (2005) and Hoang and 
Abousleiman (2009a) 
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Mandel’s original paper (Mandel, 1953) only considered poroelastic isotropic 

materials. Abousleiman et al. (1996a) extended this solution to poroelastic transversely 

isotropic materials. In this chapter, the solution by Abousleiman et al. (1996a) will be 

extended to material orthotropy and general time-dependent loading 2F(t). Furthermore, 

the extended solution will be transferred to poroviscoelasticity using the correspondence 

principle developed in Chapter 2. 

5.2 Potential Applications in Articular Cartilage Mechanics 

The new solution will be of particular importance to the study of orthotropic 

articular cartilage. This vital load-bearing tissue has no blood supply. Therefore, an 

understanding of load-induced pore pressure and the resulting pore fluid diffusion is 

crucial in cartilage mechanics. Mechanically, this biological tissue composes of pore 

fluid, 60-85 percent by weight, and an anisotropic inhomogeneous viscoelastic matrix 

made up with proteoglycan aggregates and collagen fibers. The anisotropy and 

heterogeneity of the matrix are due in part to the orientation, size, and distribution of the 

collagen fibers. The cells, or chondrocytes, are limited in number and contribute little to 

the mechanical behavior of the tissue. However, cartilage components are produced by 

the cells, and cell behavior may be susceptible to stresses, fluid pressure, and pore fluid 

flux caused by external mechanical forces, especially since articular cartilage does not 

have a blood supply. Moreover, it has been speculated that the pore fluid squeezed out 

during mechanical loading of the tissue may play an important role in joint lubrication 

(McCutchen, 1962; Walker et al., 1968; Mansour and Mow, 1977). Ultimately, 

knowledge of stress and pore pressure distribution as well as pore fluid flow is essential 

to the understanding of cartilage biomechanics. 
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For orthotropic articular cartilage, an unconfined compression test of a strip with the 

length of the strip cut parallel or perpendicular to the split line, as shown in Fig. 5.2, can 

be conducted to take advantage of the newly-derived solution. With a large enough 

solution bath, the fluid pressure of the bath can be assumed to be constant. 

Articular 
Cartilage

Loading 
Platens

Bathing Solution

Articular 
Cartilage

Loading 
Platens

Bathing Solution

 
Fig. 5.2 – Unconfined compression test setup for a strip of articular cartilage. 
 

5.3 Problem Description 

As illustrated in Fig. 5.1, a long orthotropic specimen is sandwiched between two 

rigid, impermeable, frictionless plates. The xy, xz, and yz planes are chosen to coincide 

with the planes of material symmetry. Due to the sample geometry, material symmetry, 

and boundary conditions, every horizontal plane becomes a plane of folding symmetry 

and the pore fluid only diffuse along the x direction. It is also recognized that all shear 

stresses and shear strains vanish and all dynamic and kinematic variables except uz 

independent of z. 

The boundary conditions for this problem are as follows: 

0: ===±= pax xzxx σσ , (5.1) 

0:0 == xux , (5.2) 

)(2,0,0: tFdxqbz
a

a
zzzzx ===±= ∫

−

σσ , (5.3) 
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0: =−= zubz , (5.4) 

where ui’s are components of the displacement vector and 2F(t) is the time-dependent 

force per unit length applied to the rigid plates. 

5.4 Analytical Solutions 

5.4.1 Poroelastic Solution 

Relevant orthotropic poroelastic constitutive relations for this problem are as 

follows: 
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Other governing equations include the equilibrium equation in the x direction, 

0
~

=
∂
∂

x
xxσ , (5.9) 
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and the continuity equation, 
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The permeability k1 is assumed to be independent of both time and deformation. 

Combining the equations for Darcy’s law and continuity yields, 
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The constitutive relation for pore pressure transforms the above equation into, 
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Substitution of Eqs. (1) and (4) into the equilibrium equation yields, 
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Substitution of Eq. (5.14) into Eq. (5.13) gives the diffusion equation for the 

variation of fluid content, 
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Eq. (5.16) already takes into account the fact that ζ  is an even function of x. The axial 

stress and the pore pressure can then be expressed as functions of the axial strain εzz. 

Solving the boundary conditions for pore pressure and axial stress then gives the 

following formulas for εzz and C1: 
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with, 
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The solution for the sample response can then be found explicitly as follows: 
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5.4.2 Poroviscoelastic Solution 

Invoking the correspondence principle between poroviscoelasticity and 

poroelasticity, the poroviscoelastic solution to the orthotropic Mandel’s problem is as 

follows: 
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with, 

2
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5.5 Numerical Examples 

An example illustrating the application of the analytical solution to cartilage 

mechanics is presented in this section. A specimen of 5 mm wide and 250 µm thick is 

cut along the split line direction. The force F on the specimen is chosen so that an 

average stress of 100 kPa is applied, or F = 2.5 N per cm of specimen length. 

The familiar Zener model, used in many biomechanics studies to simulate material 

viscoelastic responses, (Leipzig and Athanasiou, 2005; Garcia and Cortes, 2007; Wilson 

et al., 2005) is adopted here for the moduli M11, M22, M33, M12, M23, and M13. More 

complex models can also be easily adopted. Based on the data reported by Chahine et 

al. (2004) for the superficial zone of bovine articular cartilage in 0.015M NaCl bathing 

solution, the orthotropic tissue is assumed to have the following long-time stiffness 

coefficients: M11(∞) = 0.373 MPa, M22(∞) = 0.464 MPa, M33(∞) = 0.419 MPa, M12(∞) = 

0.0208 MPa, M23(∞) = 0.0220 MPa, M13(∞) = 0.0187 MPa. All six moduli are assumed 

to have the same characteristic relaxation time of 200 seconds and to retain 80% of their 

initial values at long time. Other parameters are assumed to be time-independent as 

follows: Ks = 3 MPa, φ = 0.852, k1/µ = 4×10-15 m4/(N·s), Kf = 2.3 GPa. Another sample 

of the same dimensions is cut across the split line to investigate the effects of sample 

direction with respect to the natural fiber orientation. To investigate the effects of 

anisotropy, two simpler models of transverse isotropy (averaging M11 and M22 and 

averaging M13 and M23) and isotropy (averaging M11, M22, and M33, and averaging M12, 
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M13, and M23) are also considered. Finally, to investigate the effects of matrix 

viscoelasticity, the commonly used poroelastic analysis in cartilage biomechanics is 

also included; the six moduli, i.e. M11, M22, etc., in the poroelastic analysis are taken to 

be the long-time moduli following common biomechanics experimental practice. 

 

Fig. 5.3 – Axial compression of the specimen. 
 

 

Fig. 5.4 – Lateral displacement of each side of the specimen. 
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The axial compression of the samples is shown in Fig. 5.3. Because the poroelastic 

modeling used long-time values of the stiffness coefficients, it matches very well with 

the sample behavior at long time. However, at short and intermediate times, it severely 

overestimates the compression of a stiffer poroviscoelastic sample, as expected. 

Regarding matrix anisotropy, the transversely isotropic and isotropic models with 

averaged properties produce predictions between those of the poroviscoelastic 

orthotropic samples. 

Similarly, the lateral dilation of either side of the sample is captured very well by 

the poroelastic analysis at long time, as shown in Fig. 5.4. However, this commonly 

used model in biomechanics fails to capture the short-time and intermediate-time 

behavior of the poroviscoelastic tissue. Regarding matrix anisotropy, displacement 

predictions using models with lower degrees of anisotropy by averaging properties in 

different directions are between the real responses of the poroviscoelastic orthotropic 

samples. 

5.6 Summary 

The analytical solution for an orthotropic poroviscoelastic rectangular strip under 

axial loading (Mandel’s problem) have been derived herein. The new solution will be 

particularly relevant to material testing and analysis of orthotropic poroviscoelastic 

biological tissues. Through the numerical examples, it has been shown that the 

poroelastic analysis commonly used in biomechanics will give erroneous predictions of 

the sample behavior at short and intermediate times even when the right degree of 

anisotropy is used. Similarly, any attempt to lower the anisotropy in poroviscoelastic 
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modeling by averaging material properties in different directions will compromise the 

prediction of sample responses to external loading. 
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Chapter 6: Transversely Isotropic Wellbores and 
Tunnels 

6.1 Introduction 

The stability of wellbores and tunnels is of fundamental importance in petroleum 

engineering and civil engineering. Wellbore instability issues cost the petroleum 

industry alone an estimated US$8 billions annually (Al-Wardy and Urdaneta, 2010; 

Diwan et al., 2011). Since the successful adaptation of Kirsch’s classical elastic solution 

of a circular hole in an infinite plate (Kirsch, 1898) to simulate wellbore drilling and 

tunnel excavation (Bradley, 1979), many authors have advanced the modeling of this 

important problem by incorporating pore pressure effects (Carter and Booker, 1982; 

Carter and Booker, 1984; Detournay and Cheng, 1988; Rajapakse, 1993; Cui et al., 

1997; Cui et al., 1998; Abousleiman and Cui, 1998; Cui et al., 1999; Li, 1999; Li and 

Flores-Berrones, 2002; Ekbote et al., 2004), poro-thermal effects (McTigue, 1990; 

Wang and Papamichos, 1994; Abousleiman and Ekbote, 2005; Chen and Ewy, 2005), 

poro-chemical effects (Sherwood and Bailey, 1994; Abousleiman et al., 1999; 

Abousleiman et al., 2000; Ekbote and Abousleiman, 2006; Nguyen and Abousleiman, 

2010), poro-thermo-chemical effects (Ekbote and Abousleiman, 2005), effects of 

natural fractures (Li, 2003; Zhang et al., 2003; Nguyen et al., 2004; Abousleiman and 

Nguyen, 2005; Nguyen et al., 2007; Nguyen and Abousleiman, 2009; Nguyen et al., 

2009), and rock rheology (Carter and Booker, 1983; Abousleiman et al., 1996b). 

This chapter focuses on wellbore instability instances where the time-dependent 

borehole deformation is so excessive that it cannot be adequately explained by anything 

but the viscoelastic nature of the rock matrix itself. Notable rock formations with this 
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type of borehole failure are salt rock and shale. Some shales are known to cause 

repeated instability problems such as tight hole and stuck pipe despite repeated reaming 

and hole cleaning. Salt rock, on the other hand, has been known to flow like a 

viscoelastic liquid under certain downhole conditions and the drilling engineers may 

have only a short time window to install the casing before the wellbore becomes 

inaccessible. To model the poroviscoelastic response of the wellbore in such 

formations, the analytical poroelastic solution of an inclined borehole in a transversely 

isotropic rock formation (Abousleiman and Cui, 1998) is first revisited in this chapter. 

Sign convention for stresses and strains has been changed from tension positive 

(Abousleiman and Cui, 1998) to compression positive to accommodate common 

industry practice. The background (in-situ) state of stress and strain has been explicitly 

separated from the perturbation response since the focus of this study is the perturbation 

displacement field due to wellbore excavation. As a result of this explicit 

decomposition, Abousleiman and Cui’s Problem II (uniaxial stress) is no longer needed. 

Furthermore, the wellbore pressure and the pore pressure boundary conditions have 

been modified from Heaviside step functions to general time-dependent functions to 

accommodate a wider range of field applications. The modified analytical poroelastic 

solution was then transferred to poroviscoelasticity using the correspondence principle 

established in Chapter 2. A numerical example of wellbore drilling through claystone 

using published field-measured rock viscoelastic properties (Zhifa et al., 2001) is also 

analyzed herein. 
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6.2 Problem Description 

In this chapter, a wellbore drilled in any direction (inclination and azimuth) in a 

homogeneous and saturated soil/rock mass is considered. Specifically, vertical, 

horizontal, and inclined wellbores are special cases of the analysis. The surrounding 

formation is assumed to exhibit transverse isotropy, with the axis of material symmetry 

coinciding with the wellbore generator axis. The derived solution and analysis results in 

this chapter naturally extend to other circular excavations such as tunnels and drill 

shafts. 

6.2.1 Coordinate Systems 

 
Fig. 6.1 – Wellbore generator axis with respect to the global coordinates N-E-Z 
and X-Y-Z. 
 

In the global geological coordinate system N-E-Z with the Z axis pointing vertically 

downward, the azimuth of maximum horizontal in-situ stress SHmax and the inclination 

and azimuth of the wellbore generator axis are denoted φNSH, φz, and φNW, respectively, 

as illustrated in Fig. 6.1. For ease of mathematical modeling, a global geomechanics 
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coordinate system X-Y-Z is also used, with the X and Y axes coinciding with the 

directions of SHmax and Shmin, respectively, as shown in Fig. 6.1. 

To describe near-wellbore rock and fluid behaviors, local coordinate systems x-y-z 

and r-θ-z are also used, as shown in Fig. 6.2. The coordinate system x-y-z is obtained 

from X-Y-Z by such rotation that Z becomes z and y remains in the original horizontal 

plane (Cui et al., 1997). It is noted that in this configuration, the x axis always points 

toward the wellbore top for inclined and horizontal wellbores. Finally, the local polar 

coordinate system r-θ-z is simply the complementary polar coordinate system of x-y-z. 

 
Fig. 6.2 – Local wellbore coordinates x-y-z and r-θ-z. 
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6.2.2 Boundary Conditions 

Rotation of far-field stresses to the local wellbore coordinates x-y-z gives, 
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with the above [a] matrix coefficients expressed as, 
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with φSH = φNSH - φNW. Rotation of far-field stresses to the local wellbore coordinates r-

θ-z yields, 

( )000 2cos θθ −+= SPSr , (6.3) 

( )000 2cos θθθ −−= SPS , (6.4) 

( )00 2sin θθθ −−= SSr , (6.5) 

θθ sincos yzxzrz SSS += , (6.6) 

θθθ cossin yzxzz SSS +−= , (6.7) 

with the following parameter definitions: 
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yx
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2

arctan
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0θ . (6.10) 

6.2.3 Decomposition Scheme 

The original state of stress in the medium is as follows: 

rrr S=σ , (6.11) 

θθθσ S= , (6.12) 

zzz S=σ , (6.13) 

θθσ rr S= , (6.14) 

rzrz S=σ , (6.15) 

zz Sθθσ = , (6.16) 

0pp = . (6.17) 

At far field, r → ∞, all perturbation responses must vanish. The boundary conditions 

for the perturbation solution at far field are therefore as follows: 

0,0 == pijσ . (6.18) 

On the other hand, the stresses and pressure at the wellbore wall are controlled by 

the introduction of the wellbore at t = 0. The boundary conditions for the perturbation 

solution at the wellbore wall, r = R, are therefore of the form: 

)()( tptHS wrrr +−=σ , (6.19) 

)(tHSrr θθσ −= , (6.20) 

)(tHSrzrz −=σ , (6.21) 

)()(0 tptHpp i+−= , (6.22) 
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with pw is the time-dependent mud pressure inside the well and pi is the time-dependent 

mud pressure at the wellbore wall. The pressures pw and pi could have different values 

due to the presence of a mud cake. These complex boundary conditions at the wellbore 

wall for the perturbed state can be decomposed into three simpler problems as described 

below: 

Plane strain axisymmetric problem, at r = R, 

)()(0 tptHP wrr +−=σ , (6.23) 

0=θσ r , (6.24) 

)()(0 tptHpp i+−= . (6.25) 

Plane strain deviatoric problem, at r = R, 

( ) )(2cos 00 tHSrr θθσ −−= , (6.26) 

( ) )(2sin 00 tHSr θθσ θ −= , (6.27) 

0=p . (6.28) 

Anti-plane shear stress problem, at r = R, 

)(tHSrzrz −=σ . (6.29) 

These three problems can be solved separately and the resulting solutions can then 

be superposed to obtain the complete solution to the perturbation response. 

Superposition of the perturbed stress and pore pressure solution and the in-situ state of 

stress and pore pressure gives the actual time-dependent stress state of the formation 

surrounding the wellbore. 
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6.3 Analytical Solution 

6.3.1 Poroelastic Solution 

6.3.1.1 Poroelastic Governing Relations 

The constitutive relations in cylindrical coordinates for a transversely isotropic 

poroelastic material are as follows:  

pMMM zzrrrr
~~~~~

1131211 αεεεσ θθ +++= , (6.30) 

pMMM zzrr
~~~~~

1131112 αεεεσ θθθθ +++= , (6.31) 

pMMM zzrrzz
~~~~~

3331313 αεεεσ θθ +++= , (6.32) 

( )ζεαεαεα θθ
~~~~~

311 +++= zzrrMp , (6.33) 

θθ εσ rr G~2~ = , (6.34) 

with σij is the stress tensor, εij is the strain tensor, ζ is the variation of fluid content, Mij 

is the stiffness tensor, α1 and α3 are the Biot’s effective stress coefficients in the 

isotropic plane and the transverse direction, respectively, M is the inverse of the storage 

coefficient under constant strain, and G is the shear modulus in the isotropic plane. 

Other governing relations include Darcy’s law, strain-displacement relations, 

equilibrium equations, and continuity equation as listed below. 

Darcy’s law, 

r
pkqr ∂
∂

−=
~~ 1

µ
, (6.35) 

θµθ ∂
∂

−=
p

r
kq

~1~ 1 , (6.36) 

with k1 is the permeability in the isotropic plane and µ denotes pore fluid viscosity.  

Strain-displacement relations, 
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Equilibrium equations, 
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6.3.1.2 Solution to the Plane Strain Axisymmetric Problem 

Substitution of the constitutive relations into the equilibrium equation in radial 

direction yields the following Navier-type equation: 
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∂
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Substitution of the Navier-type equation into the continuity equation yields the 

following diffusion equation for the variation of fluid content: 
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with uM
MMkc
11

111
1 µ
= , of which the analytical solution is as follows: 

( )ξζ 01
11~ KC

M
M u

= , (6.46) 

with 1/ csr=ξ and Kn is the modified Bessel function of the second kind of order n. 

The solution for ζ  above already takes into account that ζ  must stay finite as r 

approaches infinity. Substituting this solution into the Navier-type equation and 

integrating with respect to r yields the expression for the radial displacement, 

( ) rCKrCur 2
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11
~ +=

ξ
ξα . (6.47) 

The Laplace-domain solutions for all stresses, strains, pore pressure, and flux can 

then be easily obtained. Solving for the boundary conditions, the parameters C1 and C2 

can be found to be as follows: 
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with 1/ csR=β . The displacement at the wellbore wall can then be easily found to be 

as follows: 

G
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. (6.50) 

For the plane strain axisymmetric problem, although the displacement field as a 

whole is dependent on the poroelastic properties of the rock formation, the displacement 
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at the wellbore wall is the same as in elasticity; it only depends on the shear modulus of 

the formation. 

6.3.1.3 Solution to the Plane Strain Deviatoric Problem 

Because of the symmetry of the problem, the response of the formation is assumed 

to take the following form: 

)(2cos~
0θθσ −Σ= rrrr , (6.51) 

)(2sin~
0θθσ θθ −Σ= rr , (6.52) 

)(2cos~
0θθσ θθθθ −Σ= , (6.53) 
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0θθ −= Pp , (6.54) 

)(2cos~
0θθ −= rr Uu , (6.55) 

)(2sin~
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0θθζ −= Z , (6.61) 
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0θθθθ −=Qq . (6.63) 

Substitution of the constitutive relations into the equilibrium equations leads to the 

following relations: 
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The introduction of a new function φ satisfying φζαεε θθ +++
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Since Wz must stay bounded as r approaches infinity, it takes the following form: 
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which leads to 2
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2 r
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=Φ . Substitution of ωz and φ into the equilibrium equation and 

the continuity equation yields the following Navier-type equation and diffusion 

equation: 
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 is the Laplacian in cylindrical 

coordinates. The angle-independent component of the variation of fluid content 

therefore takes the following form: 
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with 1/ csr=ξ and Kn is the modified Bessel function of the second kind of order n. 

The displacement field can then be found to be as follows: 
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The unknown parameters C3, C4, and C5 can then be found by solving the 

boundary conditions, 
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6.3.1.4 Solution to the Anti-Plane Shear Problem 

Using the displacement functions proposed by Hashin and Rosen (1964), the 

solution immediately after wellbore excavation can be found to be as follows: 
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No normal strain is created in this mode of anti-plane shear loading. Hence, no pore 

pressure is generated and the solution is time-independent and elastic in nature. It is also 

noted that the displacement field produced by this mode of loading does not affect the 

size of the wellbore.  

6.3.1.5 Superposed Displacement Field 

At the wellbore wall, r = R, the radial and tangential displacements due to wellbore 

drilling are as follows: 
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The deformed shape of the wellbore is therefore elliptical with the following 

semimajor and semiminor axes, respectively: 
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The semiminor axis is in the direction θ = θ0 since maximum stress relief occurs in 

that direction. For isotropic rocks, Eqs. (6.84) and (6.85) simplify as follows: 
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where K and G are the bulk modulus and the shear modulus, respectively. 

6.3.2 Poroviscoelastic Solution 

Application of the correspondence principle in Laplace transform domain 

immediately gives the poroviscoelastic deformation of the wellbore: 
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Let Rc denote the outer radius of the casing, the maximum time available to set the 

casing from the instance of wellbore excavation can be calculated using the following 

relation: 

cRb = . (6.92) 

For isotropic rocks, Eqs. (6.90) and (6.91) simplify as follows: 
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where K and G are the bulk modulus and the shear modulus, respectively. 

6.4 Numerical Example and Discussion 

In this section, a numerical example of wellbore drilling through a claystone 

formation is presented. The bulk mechanical properties of the rock are taken from a 

field study by Zhifa et al. (2001). The Young’s modulus of the claystone is found by 

Zhifa et al. to be best represented by the Zener model, as shown in Fig. 6.3 while the 

Poisson’s ratio is constant at 0.33. 

E3(1)

E3(2)

µE3(1)

E3(2)

µ

 
Fig. 6.3 – Zener model for the Young’s modulus of claystone, E3(1) = 16.64 MPa, 
E3(2) = 68.32 MPa, µ = 2.43×1013 Pa-s (Zhifa et al., 2001). 
 

Other rock properties are assumed to be as follows: porosity φ = 0.2, permeability k1 

= 1.0 mD, pore fluid viscosity µ = 1.0 cP, grain bulk modulus Ks = 40 GPa, pore fluid 

bulk modulus Kf = 2.3 GPa. To investigate the effects of the rock formation anisotropy, 

it will be assumed that the measured Young’s modulus is in the direction perpendicular 

to bedding, E3, while the Young’s modulus parallel to bedding, E1, is nEE1. Typical 

value of nE is from 1.0 to 2.0. Three values of nE of 1.0, 1.5, and 2.0 will therefore be 
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used in the following analyses. The Poisson’s ratio, on the other hand, is assumed to be 

isotropic; however, this assumption can be relaxed without any difficulties. 

Vertical wellbore drilling at a depth of 1000 m will be analyzed. The overburden 

stress gradient is assumed to be 2.30 g/cc. The maximum and minimum horizontal 

stresses are assumed to be the 0.9 and 0.8 times the overburden. For this in-situ state of 

stress, the axisymmetric and deviatoric stresses P0 and S0 equal 0.85 and 0.05 times the 

overburden, respectively. The pore pressure gradient is assumed to be 1 g/cc. The 

gravitational acceleration g is taken to be 9.81 m/s2. 

Some of the existing works in the literature model the time-dependent wellbore 

deformation using only viscoelasticity for simplicity (see for example Carcione et al. 

(2006)). To investigate the adequacy of such approach to modeling wellbore 

deformation in porous viscoelastic rock formations, a viscoelastic analysis has also been 

carried out for comparison using rock bulk properties identical to the poroviscoelastic 

analysis. The initial wellbore is assumed to be circular with a radius of 0.254 m for both 

analyses. 

6.4.1.1 Balanced Drilling 

The evolution of wellbore dimensions for the typical scenario of balanced drilling 

(pw = p0) will be investigated first. For balanced drilling, the formation of mudcake is 

unlikely. Therefore, pi is assumed to be the same as pw. 

The evolution of the axisymmetric displacement at the wellbore wall due to the 

unloading of P0 and the introduction of pw is illustrated in Fig. 6.4. The poroviscoelastic 

and viscoelastic analyses yield identical results, as discussed in the derivation of the 

solution for the plane strain axisymmetric problem. As E1 increases, the formation 



 108

becomes stiffer in the cross-sectional plane and therefore wellbore contraction 

decreases, as shown in Fig. 6.4. 

 
Fig. 6.4 – Evolution of the axisymmetric displacement due to the unloading of the 
axisymmetric in-situ stress P0 = 0.85 SV and the introduction of balanced drilling 
mudweight pw = 1.0 g/cc. 
 

 
Fig. 6.5 – Evolution of the deviatoric displacements due to the unloading of the 
deviatoric stress S0 = 0.05 SV, E1 = E3. 
 

The evolution of the deviatoric displacements at the wellbore wall due to the 

unloading of the deviatoric stress S0 is shown in Fig. 6.5 to Fig. 6.7. At long times, 

when the pore pressure has reached equilibrium, the poroviscoelastic and viscoelastic 
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displacements are identical. However, at shorter times, the poroviscoelastic deformation 

is less than that predicted using viscoelasticity. Regarding the effects of formation 

anisotropy, the stiffer the Young’s modulus in the cross-sectional plane, the smaller the 

wellbore contraction. 

 
Fig. 6.6 – Evolution of the deviatoric displacements due to the unloading of the 
deviatoric stress S0 = 0.05 SV, E1 = 1.5E3. 
 

 
Fig. 6.7 – Evolution of the deviatoric displacements due to the unloading of the 
deviatoric stress S0 = 0.05 SV, E1 = 2E3. 
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Fig. 6.8 – Evolution of wellbore dimensions for pw = 1.0 g/cc, E1 = E3. 
 

 
Fig. 6.9 – Evolution of wellbore dimensions for pw = 1.0 g/cc, E1 = 1.5E3. 
 

The actual evolution of the wellbore dimensions can be obtained through the 

superposition of the axisymmetric and deviatoric displacements, as shown in Fig. 6.8 to 

Fig. 6.10. The time-variation of the semimajor of the elliptical wellbore is less than that 

of the semiminor for both the poroviscoelastic and the viscoelastic analyses because the 

axisymmetric and deviatoric displacements partly offset each other for the semimajor 
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(direction of minimum horizontal stress) while they complement each other for the 

semiminor (direction of maximum horizontal stress). 

 
Fig. 6.10 – Evolution of wellbore dimensions for pw = 1.0 g/cc, E1 = 2E3. 
 

6.4.1.2 Overbalanced Drilling 

A common practice to remedy the wellbore shrinkage problem in poroviscoelastic 

formation is to increase the drilling mudweight to apply additional pressure on the 

wellbore wall. In this section, the same well drilling scenario as in the previous section 

would be considered, except the mudweight is increased to 1.5 g/cc. 

The evolution of the axisymmetric displacement at the wellbore wall due to the 

unloading of P0 and the introduction of pw is illustrated in Fig. 6.11. The 

poroviscoelastic and viscoelastic analyses again yield identical results, as predicted by 

the solution of the plane strain axisymmetric problem, but the magnitude of wellbore 

contraction is less than the case of balanced drilling thanks to the additional support of a 

higher mud pressure. The evolution of the deviatoric displacement is the same as in the 
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case of balanced drilling presented in the last section (Fig. 6.5 to Fig. 6.7) since the 

deviatoric response is independent of the mud pressure. 

 
Fig. 6.11 – Evolution of the axisymmetric displacement due to the unloading of the 
axisymmetric stress P0 = 0.85 SV and the introduction of overbalanced drilling 
mudweight pw = 1.5 g/cc. 
 

Finally, the evolution of the wellbore dimensions is illustrated in Fig. 6.12 to Fig. 

6.14, with less wellbore shrinkage in the semiminor (maximum horizontal stress 

direction) compared to balanced drilling. 

 
Fig. 6.12 – Evolution of wellbore dimensions for pw = 1.5 g/cc, E1 = E3. 
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Fig. 6.13 – Evolution of wellbore dimensions for pw = 1.5 g/cc, E1 = 1.5E3. 
 

 
Fig. 6.14 – Evolution of wellbore dimensions for pw = 1.5 g/cc, E1 = 2E3. 
 

6.5 Summary 

In this chapter, the analytical poroelastic solution of an inclined borehole in a 

transversely isotropic rock formation (Abousleiman and Cui, 1998) has been modified 

to explicitly calculate the deformation field induced by wellbore drilling. The modified 

solution has also been transferred to poroviscoelasticity using the correspondence 
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principle established in Chapter 2. The presented poroviscoelastic solution will be 

useful in design and analysis of wellbore drilling through rock formations with 

significant viscoelasticity in the rock matrix, such as salt rock and shales. Through the 

presented numerical examples of wellbore drilling through claystone using published 

field-measured rock viscoelastic properties, it is observed that the commonly used 

viscoelastic analysis for wellbores in poroviscoelastic formations gives adequate 

prediction of displacements at the wellbore wall at long times for but produces 

erroneous wellbore deformation predictions at shorter times if the in-situ stresses in the 

cross-section plane of the wellbore are non-hydrostatic. It has also been observed that 

formation anisotropy has a significant influence over the time-dependent wellbore 

displacement; specifically, higher stiffness in the cross-sectional plane of the wellbore 

results in smaller wellbore deformation. 
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Chapter 7: Conclusions 
A rigorous proof of the correspondence principle between poroviscoelasticity and 

poroelasticity with general anisotropy has been presented in Chapter 2, both in time 

domain and in Laplace transform domain, for the general formulation as well as the 

material coefficients. Using this correspondence principle, analytical solutions in 

Laplace transform domain for poroviscoelasticity and poroelasticity can be readily 

transferred from one model to the other. Chapters 3 to 6 show detailed applications of 

this correspondence principle to various practical engineering problems, as described 

below. 

Transversely isotropic cylinders under various loading and unloading conditions, 

with the axis of material symmetry coinciding with the axis of geometrical symmetry, 

have been analyzed in Chapter 3. This is one of the most useful and versatile class of 

solutions in both geomechanics and biomechanics, simulating a wide range of 

laboratory and field testing conditions (oedometer or K0 test in geomechanics, confined 

compression test in biomechanics, unconfined compression test, unjacketed triaxial test, 

jacketed triaxial test, and strain recovery method). It has been shown mathematically 

and numerically that the sample response significantly depends on how the test is set up 

(lateral displacement is constrained or not). Specifically, the popular unconfined 

compression test and confined compression test in biomechanics are not equivalent as 

commonly believed. In particular, the confined compression test can be very misleading 

and should be accompanied by other testing techniques for mechanical characterization 

of anisotropic biological tissue. It has also been shown that for geomechanics, sample 

behavior should be closely monitored during the waiting time between confining 
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pressure application and axial loading, as these responses are particularly useful for 

differentiating the poroviscoelastic and/or anisotropic nature of the tested geo-material. 

Chapter 4 presents an extension of the analytical solution and analyses of Chapter 3 

to cylinders with material weak cylindrical-orthotropy under laboratory loading 

conditions, also with the axis of material symmetry coinciding with the axis of 

geometrical symmetry. This work can be of particular importance for cylindrically-

reinforced low permeability clays with significant viscoelastic behavior. Potential 

applications of these materials might include nuclear waste storage, chemical waste 

storage, and viscoelastic settlement estimation. It has been shown that compared to 

transversely isotropic samples, orthotropic specimens could have appreciably different 

effective tangential stress and lateral dilation evolutions. 

For geo-materials and biological tissues with Cartesian mechanical orthotropy, the 

symmetry of material properties implies that rectangular strips (Mandel’s problem) are 

the best sample geometry to use for mechanical characterization.  This setup has been 

studied in Chapter 5. Through the numerical examples, it has been shown that the 

poroelastic analysis commonly used in biomechanics will give erroneous predictions of 

the sample behavior at short and intermediate times even when the right degree of 

anisotropy is used. Similarly, any attempt to lower the anisotropy in poroviscoelastic 

modeling by averaging material properties in different directions will compromise the 

prediction of sample responses to external loading. 

Finally, the important problem of wellbore drilling through transversely isotropic 

rocks has been considered in Chapter 6, with the emphasis on time-dependent 

displacement of the wellbore wall to investigate wellbore instability instances where the 
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time-dependent borehole deformation is so excessive that the viscoelastic nature of the 

rock matrix must be explicitly taken into account. Notable rock formations with such 

behavior are salt rock and shale. Through the presented numerical example of wellbore 

drilling through claystone using published field-measured rock viscoelastic properties, it 

has been shown that the simpler and commonly used viscoelastic analysis for wellbores 

in poroviscoelastic formations can give adequate prediction of displacements at the 

wellbore wall at long times for but produces erroneous wellbore deformation 

predictions at shorter times if the in-situ stresses in the cross-section plane of the 

wellbore are non-hydrostatic. The analytical solution and engineering analysis presented 

in this chapter can be readily applied to other circular excavations such as tunnels and 

drill shafts. 
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