POROVISCOELASTICITY AND ANALYTICAL SOLUTIONS
OF SELECTED PROBLEMS IN ENGINEERING

A DISSERTATION
SUBMITTED TO THE GRADUATE FACULTY
in partial fulfillment of the requirements for the
Degree of
DOCTOR OF PHILOSOPHY

By
SON KY HOANG
Norman, Oklahoma
2011
POROVISCOELASTICITY AND ANALYTICAL SOLUTIONS OF SELECTED PROBLEMS IN ENGINEERING

A DISSERTATION APPROVED FOR THE SCHOOL OF CIVIL ENGINEERING AND ENVIRONMENTAL SCIENCE

BY

Dr. Younane N. Abousleiman, Chair

Dr. Amy B. Cerato

Dr. Feng C. Lai

Dr. Gerald A. Miller

Dr. K.K. Muraleetharan
Acknowledgements

First and foremost, I would like to thank my advisor, Dr. Younane N. Abousleiman, for his guidance throughout my graduate study. His visionary approach to scientific and engineering problems and his unrivaled demand for quality research have always fueled my drive for academic excellence.

I would also like to thank my committee, Dr. Amy B. Cerato, Dr. Feng C. Lai, Dr. Gerald A. Miller, and Dr. K.K. Muraleetharan, for their encouragement and advice. I also took their classes at one time or another; and their enthusiasm for teaching and dedication to students were my motivations to pursue higher academic goals.

My deepest appreciation goes to my colleagues and friends, Dr. Vinh Xuan Nguyen and Mr. Minh Ha Tran, for serving as sounding boards for my ideas and for their constructive criticisms of my works. I am also indebted to Dr. Shengli Chen, Mr. Amin Mehrabian, and Mr. John L. Brumley for many stimulating discussions.

My heartfelt thanks go to my IT colleagues: Subramanyam Kapaleswaran Vallur (Subbu), Joseph Prem Ebenezer, Kiran Reddy Nomula, Sameeri Pavan Kumar Marryboyina (Sam), Dung Tuan Phan, Syed Naveed Hussain Shah, and Thinh Thanh Doan, for implementing some of my theoretical works into user-friendly softwares. Their efforts helped put my research results into practical engineering use much sooner than I could ever imagine. My special thanks must also go to Ms. Carla L. Cates, the integrated PoroMechanics Institute’s Manager of Administration and Operations, for always going above and beyond her call of duty to make sure our work go as smoothly as possible.
I must acknowledge my old Physics teachers, Professors Ham Nguyen and Don Trung Dam, for nurturing my curiosity for the underlying mechanism of physical phenomena and instilling in me an appreciation for the beauty of physical reasoning balanced with mathematical modeling. Their superior knowledge and utmost humility are still my aspiration today.

Last but not least, I am grateful to my parents, Dr. Ky Van Hoang and Mrs. Thi Thi Nguyen, and my brother, Mr. Lam Ky Hoang, for their unconditional love and support. I am indebted to my wife, Dr. Huong Thi Lan Pham, and my daughter, Uyen Tu Hoang, for the joy and happiness they bring me everyday.
Table of Contents

Acknowledgements ... iv
List of Tables .. viii
List of Figures .. ix
Abstract ... xi

Chapter 1: Introduction .. 1
1.1 Introduction to Poroviscoelasticity... 1
1.2 Poroviscoelasticity in Geomechanics and Biomechanics................................. 2
 1.2.1 Poroviscoelasticity in Geomechanics... 2
 1.2.2 Poroviscoelasticity in Biomechanics.. 4
1.3 Review of Existing Poroviscoelastic Analytical Solutions 5
1.4 Research Objectives and Approach.. 7
1.5 Important Background Information.. 9
 1.5.1 Assumptions ... 9
 1.5.2 Sign Convention ... 10
 1.5.3 Short-Hand Notation for Material Symmetry... 10
 1.5.4 Frequently Used Parameters... 11
 1.5.5 Engineering Parameters.. 11
 1.5.6 Laplace Transform and Carson Transform... 13
 1.5.7 Spring-Dashpot Models.. 13
 1.5.7.1 Kelvin Model.. 14
 1.5.7.2 Maxwell Model .. 15
 1.5.7.3 Zener (Standard Linear Solid) Models... 16

Chapter 2: Correspondence Principle... 18
2.1 Introduction .. 18
2.2 Review of Anisotropic Poroelasticity... 19
2.3 Poroviscoelasticity in Time Domain .. 23
2.4 Poroviscoelasticity in Laplace Transform Domain .. 26
2.5 Numerical Examples – Biot’s Effective Stress Coefficients.......................... 27

Chapter 3: Transversely Isotropic Cylinders.. 33
3.1 Introduction .. 33
3.2 Problem Description... 33
 3.2.1 Laboratory Testing: Unconfined Compression Test, Triaxial Test, K₀ (Oedometer) Test, and Confined Compression Test 33
 3.2.2 Field Testing: Strain Recovery Method .. 36
3.3 Poroviscoelastic Analytical Solutions .. 39
 3.3.1 Review of Relevant Analytical Solutions... 39
 3.3.2 Governing Equations.. 41
 3.3.3 K₀ Test or Confined Compression Test.. 42
 3.3.4 Unconfined Compression Test and Triaxial Tests................................... 44
 3.3.5 Strain Recovery Method.. 45
3.4 Discussion on Analytical Solutions for Laboratory Testing 47
 3.4.1 General Discussion ... 47
 3.4.2 Numerical Examples of Biomechanics Testing 49
 3.4.3 Numerical Examples of Geomechanics Testing..................................... 55
3.5 Numerical Examples and Discussion on Strain Recovery Method................. 59
List of Tables

Table 1.1 – Geo-materials investigated under viscoelasticity, poroelasticity, and poroviscoelasticity. .. 3
Table 1.2 – Water content of tissues of different species (after Khalil and Abdel-Messeih, 1954). .. 4
Table 1.3 – Tissues investigated under viscoelasticity, poroelasticity, and poroviscoelasticity. .. 5
Table 1.4 – Studies on the one dimensional consolidation problem. 6
Table 1.5 – Studies on the Mandel’s problem (rectangular strip). 6
Table 1.6 – Studies on the cylindrical geometry. ... 7
Table 1.7 – Studies on wellbores.. 7
Table 1.8 – Time-domain properties of the Zener (standard linear solid) models. 17

Table 2.1 – Comparison of poroelastic and poroviscoelastic formulas in time domain and Laplace transform domain. .. 26

Table 3.1 – Relevant studies on one-dimensional consolidation. 40
Table 3.2 – Relevant studies on cylindrical geometry. ... 40
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 1.1</td>
<td>Kelvin model</td>
<td>14</td>
</tr>
<tr>
<td>Fig. 1.2</td>
<td>Maxwell model</td>
<td>15</td>
</tr>
<tr>
<td>Fig. 1.3</td>
<td>Zener (standard linear solid) models</td>
<td>16</td>
</tr>
<tr>
<td>Fig. 2.1</td>
<td>Biot’s effective stress coefficients for a transversely isotropic rock with elastic K_s</td>
<td>29</td>
</tr>
<tr>
<td>Fig. 2.2</td>
<td>Biot’s effective stress coefficients for a transversely isotropic articular cartilage, characteristic relaxation time of K_s is 60 s</td>
<td>30</td>
</tr>
<tr>
<td>Fig. 2.3</td>
<td>Biot’s effective stress coefficients for a transversely isotropic articular cartilage, characteristic relaxation time of K_s is 600 s</td>
<td>31</td>
</tr>
<tr>
<td>Fig. 2.4</td>
<td>Biot’s effective stress coefficients for a transversely isotropic articular cartilage, characteristic relaxation time of K_s is 30 s</td>
<td>31</td>
</tr>
<tr>
<td>Fig. 3.1</td>
<td>Schematic of compression testing of anisotropic cylindrical samples, a) sample dimensions and coordinate system, b) unconfined compression test, c) unjacketed triaxial test, d) jacketed triaxial test, e) confined compression test, f) oedometer test</td>
<td>35</td>
</tr>
<tr>
<td>Fig. 3.2</td>
<td>Problem schematic of the strain recovery method, not to scale</td>
<td>38</td>
</tr>
<tr>
<td>Fig. 3.3</td>
<td>Applied cyclic axial deformation for both unconfined and confined compression tests</td>
<td>50</td>
</tr>
<tr>
<td>Fig. 3.4</td>
<td>Pore pressure history at the center of the unconfined samples</td>
<td>51</td>
</tr>
<tr>
<td>Fig. 3.5</td>
<td>Evolution of axial stress at the center of the unconfined samples</td>
<td>52</td>
</tr>
<tr>
<td>Fig. 3.6</td>
<td>Evolution of lateral displacement of the side of the unconfined samples</td>
<td>52</td>
</tr>
<tr>
<td>Fig. 3.7</td>
<td>Pore pressure history at the bottom of the confined samples</td>
<td>53</td>
</tr>
<tr>
<td>Fig. 3.8</td>
<td>Evolution of axial stress at the center of the confined samples</td>
<td>54</td>
</tr>
<tr>
<td>Fig. 3.9</td>
<td>Evolution of lateral stress of the confined samples</td>
<td>54</td>
</tr>
<tr>
<td>Fig. 3.10</td>
<td>Evolution of pore pressure at the center of samples after sudden confinement</td>
<td>57</td>
</tr>
<tr>
<td>Fig. 3.11</td>
<td>Evolution of axial and circumferential displacements after sudden confinement</td>
<td>57</td>
</tr>
<tr>
<td>Fig. 3.12</td>
<td>Evolution of pore pressure and effective axial stress at the center of samples during linear ramp axial loading</td>
<td>58</td>
</tr>
<tr>
<td>Fig. 3.13</td>
<td>Poroviscoelastic relaxation evolution from the end of coring for $E_1 = E_3$, (a) and simplified viscoelastic modeling, (b)</td>
<td>60</td>
</tr>
<tr>
<td>Fig. 3.14</td>
<td>Measured poroviscoelastic relaxation data for $E_1 = E_3$, (a) and simplified viscoelastic modeling, (b)</td>
<td>61</td>
</tr>
<tr>
<td>Fig. 3.15</td>
<td>Poroviscoelastic relaxation evolution from the end of coring for $E_1 = 1.5E_3$, (a) and simplified viscoelastic modeling, (b)</td>
<td>61</td>
</tr>
<tr>
<td>Fig. 3.16</td>
<td>Measured poroviscoelastic relaxation data for $E_1 = 1.5E_3$, (a) and simplified viscoelastic modeling, (b)</td>
<td>62</td>
</tr>
<tr>
<td>Fig. 3.17</td>
<td>Poroviscoelastic relaxation evolution from the end of coring for $E_1 = 2E_3$, (a) and simplified viscoelastic modeling, (b)</td>
<td>62</td>
</tr>
</tbody>
</table>
Fig. 3.18 – Measured poroviscoelastic relaxation data for $E_1 = 2E_3$, (a) and simplified viscoelastic modeling, (b). .. 63

Fig. 4.1 – Compression testing of anisotropic cylindrical sample, a) sample dimension and attached polar coordinate system, b) unconfined compression test, c) unjacketed triaxial test, d) jacketed triaxial test ... 67
Fig. 4.2 – Pore pressure evolution at center of samples 75
Fig. 4.3 – Evolution of effective axial stress at center of samples 75
Fig. 4.4 – Evolution of effective radial stress at center of samples 76
Fig. 4.5 – Evolution of effective tangential stress at center of sample 76
Fig. 4.6 – Axial compression of as functions of time 77
Fig. 4.7 – Lateral dilation as functions of time .. 78

Fig. 5.1 – Schematic of the Mandel’s problem ... 79
Fig. 5.2 – Unconfined compression test setup for a strip of articular cartilage........ 81
Fig. 5.3 – Axial compression of the specimen .. 87
Fig. 5.4 – Lateral displacement of each side of the specimen 87

Fig. 6.1 – Wellbore generator axis with respect to the global coordinates N-E-Z and X-Y-Z. ... 92
Fig. 6.2 – Local wellbore coordinates x-y-z and r-θ-z 93
Fig. 6.3 – Zener model for the Young’s modulus of claystone, $E_{3(1)} = 16.64$ MPa, $E_{3(2)} = 68.32$ MPa, $\mu = 2.43 \times 10^{13}$ Pa-s (Zhifa et al., 2001) ... 106
Fig. 6.4 – Evolution of the axisymmetric displacement due to the unloading of the axisymmetric in-situ stress $P_0 = 0.85 S_Y$ and the introduction of balanced drilling mudweight $p_w = 1.0$ g/cc. .. 108
Fig. 6.5 – Evolution of the deviatoric displacements due to the unloading of the deviatoric stress $S_0 = 0.05 S_Y$, $E_1 = E_3$.. 108
Fig. 6.6 – Evolution of the deviatoric displacements due to the unloading of the deviatoric stress $S_0 = 0.05 S_Y$, $E_1 = 1.5E_3$.. 109
Fig. 6.7 – Evolution of the deviatoric displacements due to the unloading of the deviatoric stress $S_0 = 0.05 S_Y$, $E_1 = 2E_3$.. 109
Fig. 6.8 – Evolution of wellbore dimensions for $p_w = 1.0$ g/cc, $E_1 = E_3$ 110
Fig. 6.9 – Evolution of wellbore dimensions for $p_w = 1.0$ g/cc, $E_1 = 1.5E_3$ 110
Fig. 6.10 – Evolution of wellbore dimensions for $p_w = 1.0$ g/cc, $E_1 = 2E_3$ 111
Fig. 6.11 – Evolution of the axisymmetric displacement due to the unloading of the axisymmetric stress $P_0 = 0.85 S_Y$ and the introduction of overbalanced drilling mudweight $p_w = 1.5$ g/cc ... 112
Fig. 6.12 – Evolution of wellbore dimensions for $p_w = 1.5$ g/cc, $E_1 = E_3$ 112
Fig. 6.13 – Evolution of wellbore dimensions for $p_w = 1.5$ g/cc, $E_1 = 1.5E_3$ 113
Fig. 6.14 – Evolution of wellbore dimensions for $p_w = 1.5$ g/cc, $E_1 = 2E_3$ 113
Abstract

This study provides newly-derived analytical poroviscoelastic solutions for a number of practical and important engineering problems with various levels of material anisotropy: laboratory and field testing of cylinders (isotropy, transverse isotropy, and weak orthotropy), laboratory testing of rectangular strips (isotropy, transverse isotropy, and orthotropy), and wellbore drilling and tunnel excavation (isotropy and transverse isotropy). The solutions for these problems are crucial in many disciplines such as civil engineering, petroleum engineering, and biomechanics. The newly-derived solutions can be considered extensions of some existing analytical solutions to a higher degree of anisotropy. However, the importance of material anisotropy is self-evident in engineering applications since many bio- and geo-materials are intrinsically anisotropic and their mechanical anisotropy can significantly influence the material behavior as illustrated throughout this dissertation. The frequently-used assumption of material isotropy in poroviscoelasticity to simplify modeling and analysis is therefore no longer justified without thorough calibration and validation.

More important, this study finally establishes the correspondence principle between poroviscoelasticity and poroelasticity with general anisotropy based on rigorous mathematical and physical considerations. The correspondence principle has been established not only in time domain but also in Laplace transform domain, for the general phenomenological formulation as well as for the micromechanical relations between material coefficients, and will be of fundamental importance in the study of poroviscoelasticity. In particular, using the correspondence principle, analytical
poroelastic solutions in the Laplace transform domain with any degree of anisotropy can now be readily transferred to poroviscoelasticity and vice versa.
Chapter 1: Introduction

1.1 Introduction to Poroviscoelasticity

Poroviscoelasticity, simply put, is the crossroad of poroelasticity and viscoelasticity. The former is the study of saturated linearly-elastic porous materials whose coupling between the pore fluid diffusion and the porous matrix deformation significantly influences the overall behavior of the composite material. This theory has been successfully applied in a range of disciplines such as biomechanics (bones, cartilage, etc.), geosciences and petroleum engineering (reservoir engineering, drilling, subsidence, etc.), geotechnical engineering (soil behaviors, consolidation, etc.), civil engineering (foundations, earth dams, seepage, etc.), physical chemistry (transport, fluid flow, etc.), and mechanical engineering (dynamics, wave propagation in porous media, etc.). On the other hand, linear viscoelasticity concerns non-aging materials whose stiffness coefficients are time-dependent. Various geo-materials and biomaterials exhibit viscoelastic behaviors, as will be shown in the next two sections. Following this introduction are brief literature surveys where relevant poroviscoelastic research in geomechanics and biomechanics is summarized. Next, existing analytical poroviscoelastic solutions and the objectives for the development of new ones are reviewed. Finally, some background information pertinent to the presentation of this dissertation is discussed.
1.2 **Poroviscoelasticity in Geomechanics and Biomechanics**

1.2.1 **Poroviscoelasticity in Geomechanics**

The study of time-dependent effects, usually spoken of under the general title of 'creep', is of the greatest importance in rock mechanics and geophysics.

Jaeger and Cook, 1979

Although the preceding quotation is a little outdated, as time-dependent effects encompass not only creep-type, i.e., viscoelastic behaviors, but also consolidation-type, i.e., poroelastic behaviors, it highlights the importance of poroviscoelasticity, which envelops both of the aforementioned time-dependent phenomena, in the study of geomechanics. Indeed, poroviscoelastic phenomena have been observed in the laboratory and in the field for a wide range of geo-materials as illustrated in Table 1.1. Moreover, mechanical anisotropy has long been observed on various classes of rocks and soils, probably most notably transverse isotropy on sediments and sedimentary rocks. Therefore, analytical anisotropic poroviscoelastic solutions of realistic engineering problems would be very useful in simulating laboratory experiments/field problems and validating numerical schemes in geomechanics.
Table 1.1 – Geo-materials investigated under viscoelasticity, poroelasticity, and poroviscoelasticity.

<table>
<thead>
<tr>
<th>Geo-material</th>
<th>Modeling</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Viscoelasticity</td>
</tr>
<tr>
<td>Alabaster</td>
<td>Griggs, 1939</td>
</tr>
<tr>
<td>Asphalt concrete</td>
<td>Kim et al., 2004</td>
</tr>
<tr>
<td>Cement paste</td>
<td></td>
</tr>
<tr>
<td>Chalk</td>
<td>El Rabaa, 1989</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Coal</td>
<td>Nomura et al., 1999</td>
</tr>
<tr>
<td>Glass</td>
<td>Griggs, 1939</td>
</tr>
<tr>
<td>Ice</td>
<td>Morland, 1991</td>
</tr>
<tr>
<td>Limestone</td>
<td>Griggs, 1939</td>
</tr>
<tr>
<td>Marble</td>
<td>Heard, 1963</td>
</tr>
<tr>
<td>Peat</td>
<td></td>
</tr>
<tr>
<td>Salt rock</td>
<td>Le Comte, 1965</td>
</tr>
<tr>
<td>Sandstone/ siltstone</td>
<td>Teufel, 1983</td>
</tr>
<tr>
<td></td>
<td>Teufel, 1985</td>
</tr>
<tr>
<td></td>
<td>El Rabaa and Meadows, 1986</td>
</tr>
<tr>
<td></td>
<td>Blanton and Teufel, 1986</td>
</tr>
<tr>
<td></td>
<td>Owen et al., 1988</td>
</tr>
<tr>
<td></td>
<td>Warpinski and Teufel, 1989</td>
</tr>
<tr>
<td>Shale/ mudstone</td>
<td>Blanton, 1983</td>
</tr>
<tr>
<td></td>
<td>Teufel, 1983</td>
</tr>
<tr>
<td></td>
<td>Owen et al., 1988</td>
</tr>
<tr>
<td></td>
<td>Warpinski and Teufel, 1989</td>
</tr>
<tr>
<td></td>
<td>Carcione and Cavallini, 1995</td>
</tr>
<tr>
<td></td>
<td>Bloch et al., 1997</td>
</tr>
</tbody>
</table>
1.2.2 **Poroviscoelasticity in Biomechanics**

Biological tissues are all viscoelastic
Fung, 1981

The fact that all biological tissues exhibit viscoelastic behavior when subjected to loading (Fung, 1981) and that they are filled with water (Table 1.2) makes poroviscoelasticity indispensable in biomechanics. In fact, poroviscoelasticity has been applied effectively to study natural tissues such as articular cartilage (Mak, 1986) and brain (Cheng and Bilston, 2007) as well as artificial biological materials such as fibrin gels (Noailly et al., 2008).

Table 1.2 – Water content of tissues of different species (after Khalil and Abdel-Messeih, 1954).

<table>
<thead>
<tr>
<th>Tissue</th>
<th>Human</th>
<th>Monkey</th>
<th>Ox, sheep, pig</th>
<th>Rabbit</th>
<th>Dog</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skeletal muscles</td>
<td>75-78</td>
<td>79</td>
<td>78-79</td>
<td>80</td>
<td>68</td>
</tr>
<tr>
<td>Liver</td>
<td>70-75</td>
<td>79</td>
<td>77-78</td>
<td>74</td>
<td>73</td>
</tr>
<tr>
<td>Kidney</td>
<td>78-83</td>
<td>-</td>
<td>-</td>
<td>78</td>
<td>-</td>
</tr>
<tr>
<td>Skin</td>
<td>72</td>
<td>70</td>
<td>-</td>
<td>75</td>
<td>55</td>
</tr>
<tr>
<td>Bone</td>
<td>50</td>
<td>61</td>
<td>-</td>
<td>-</td>
<td>58</td>
</tr>
<tr>
<td>Fat</td>
<td>6-20</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Furthermore, anisotropic viscoelastic properties have also been widely observed on many biological tissues such as cartilage (Jin and Lewis, 2004), meniscus (Anderson et al., 1991), cortical bone (Iyo et al., 2004), and trabecular bone (Deligianni et al., 1994). Moreover, there are biomaterials such as arteries, bones, chondrocytes, and meniscus that have been investigated under both viscoelasticity and poroelasticity but not yet under poroviscoelasticity as shown in Table 1.3. Therefore, an anisotropic poroviscoelastic model to simulate relaxation, creep, or hysteresis would be very useful in simulating experimental results and validating numerical schemes for biomaterials.
Table 1.3 – Tissues investigated under viscoelasticity, poroelasticity, and poroviscoelasticity.

<table>
<thead>
<tr>
<th>Tissue</th>
<th>Modeling</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Viscoelasticity</td>
</tr>
<tr>
<td></td>
<td>Parsons and Black, 1977</td>
</tr>
<tr>
<td></td>
<td>Hayes and Bodine, 1978</td>
</tr>
<tr>
<td></td>
<td>Woo et al., 1980</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Articular cartilage</td>
<td>Iyo et al., 2004</td>
</tr>
<tr>
<td></td>
<td>Deligianni et al., 1994</td>
</tr>
<tr>
<td></td>
<td>Baroud et al., 2003</td>
</tr>
<tr>
<td>Brain</td>
<td></td>
</tr>
<tr>
<td>Chondrocytes</td>
<td>Leipzig et al., 2005</td>
</tr>
<tr>
<td>Corneal stroma</td>
<td></td>
</tr>
<tr>
<td>Fat pad, heel</td>
<td>Miller-Young et al., 2002</td>
</tr>
<tr>
<td>Fibrin gels</td>
<td>Noailly et al., 2008</td>
</tr>
<tr>
<td>Intervertebral disk</td>
<td>Simon et al., 1985</td>
</tr>
<tr>
<td>Meniscus</td>
<td>Anderson et al., 1991</td>
</tr>
<tr>
<td>Skin</td>
<td>Oomens et al., 1987</td>
</tr>
</tbody>
</table>

1.3 Review of Existing Poroviscoelastic Analytical Solutions

The origin of poromechanics can be traced back to 1941 with Biot’s groundbreaking article “General theory of three-dimensional consolidation”. This pioneering
work is now commonly referred to as Biot’s theory of poroelasticity. In that paper, Biot offered a consistent phenomenological analysis of saturated porous media, taking into account the full coupling between pore fluid diffusion and solid deformation of a linear elastic matrix. The inclusion of matrix viscoelasticity within the poromechanics framework was also laid out by Biot (1956). In both of those classical papers, Biot offered the analytical solution for the one-dimensional consolidation problem as an example of application. Since then, a number of engineering problems have been investigated under the realm of poroelasticity and poroviscoelasticity, including one-dimensional consolidation problem (Table 1.4), Mandel’s problem or rectangular geometry (Table 1.5), cylinders (Table 1.6), and wellbore drilling problem (Table 1.7), with various degrees of matrix anisotropy.

Table 1.4 – Studies on the one dimensional consolidation problem.

<table>
<thead>
<tr>
<th>Anisotropy</th>
<th>Poroelasticity</th>
<th>Poroviscoelasticity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isotropy</td>
<td>Biot, 1941</td>
<td>Biot, 1956</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mak, 1986</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Schanz and Cheng, 2001</td>
</tr>
<tr>
<td>Transverse isotropy</td>
<td></td>
<td>This study</td>
</tr>
</tbody>
</table>

Table 1.5 – Studies on the Mandel’s problem (rectangular strip).

<table>
<thead>
<tr>
<th>Anisotropy</th>
<th>Poroelasticity</th>
<th>Poroviscoelasticity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isotropy</td>
<td>Mandel, 1953</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kameo et al., 2008</td>
<td></td>
</tr>
<tr>
<td>Transverse isotropy</td>
<td>Abousleiman et al., 1996a</td>
<td></td>
</tr>
<tr>
<td>Orthotropy</td>
<td></td>
<td>This study</td>
</tr>
</tbody>
</table>
Table 1.6 – Studies on the cylindrical geometry.

<table>
<thead>
<tr>
<th>Anisotropy</th>
<th>Poroelasticity</th>
<th>Poroviscoelasticity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isotropy</td>
<td>Armstrong et al., 1984</td>
<td>Abousleiman et al., 1996b</td>
</tr>
<tr>
<td></td>
<td>Cui and Abousleiman, 2001</td>
<td>Abousleiman and Cheng, 1996</td>
</tr>
<tr>
<td></td>
<td>Sawaguchi and Kurashige, 2005</td>
<td>Huang et al., 2001</td>
</tr>
<tr>
<td>Transverse isotropy</td>
<td>Abousleiman and Cui, 1998</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td>Zwanenburg and Barends, 2007</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cowin and Mehrabadi, 2007</td>
<td></td>
</tr>
<tr>
<td>Weak orthotropy</td>
<td></td>
<td>This study</td>
</tr>
</tbody>
</table>

Table 1.7 – Studies on wellbores.

<table>
<thead>
<tr>
<th>Anisotropy</th>
<th>Poroelasticity</th>
<th>Poroviscoelasticity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isotropy</td>
<td>Carter and Booker, 1982</td>
<td>Carter and Booker, 1983</td>
</tr>
<tr>
<td></td>
<td>Carter and Booker, 1984</td>
<td>Abousleiman et al., 1996b</td>
</tr>
<tr>
<td></td>
<td>Detournay and Cheng, 1988</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rajapakse, 1993</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cui et al., 1997</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cui et al., 1998</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Li, 1999</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Li and Flores-Berrones, 2002</td>
<td>Ekbote et al., 2004</td>
</tr>
<tr>
<td>Transverse isotropy</td>
<td>Abousleiman and Cui, 1998</td>
<td>This study</td>
</tr>
</tbody>
</table>

1.4 Research Objectives and Approach

This study first and foremost aims to establish a correspondence principle between poroviscoelasticity and poroelasticity with general anisotropy through rigorous mathematical and physical considerations. The newly-derived proof of the correspondence principle is given in Chapter 2. Using this correspondence principle, analytical solutions in Laplace transform domain for poroviscoelasticity and poroelasticity can be transferred readily from one model to the other. Armed with such a correspondence principle, the rest of the dissertation aims to derive the analytical poroviscoelastic solutions for the practical engineering problems described below:
Transversely isotropic cylinders under various loading and unloading conditions, with the axis of material symmetry coinciding with the axis of geometrical symmetry, will be analyzed in Chapter 3. This is one of the most useful and versatile class of solutions in both geomechanics and biomechanics. When the lateral surface of the cylinder is confined by a rigid ring (for example uniaxial strain, oedometer, or \(K_0 \) test in geomechanics and confined compression test in biomechanics), physically and mathematically the problem becomes a one-dimensional consolidation problem in the axial direction. On the other hand, when the sample is not constrained to uniaxial strain deformation, the setup can be used to simulate a wide range of laboratory testing conditions (unconfined compression test, unjacketed triaxial test, and jacketed triaxial test). Furthermore, the time-dependent deformation of drill cores due to the unloading from in-situ state of stress can also be simulated using this class of solutions. Information about the in-situ stress state, which is crucial in various petroleum engineering and civil engineering applications, can be extracted from the analysis of drill core relaxation, as will be shown in details in Chapter 3.

Cylinders with weak cylindrical-orthotropy under laboratory loading conditions, also with the axis of material symmetry coinciding with the axis of geometrical symmetry, are investigated next. This is an extension of the study on transversely isotropic cylinders under laboratory conditions and can be of particular importance for cylindrically-reinforced low permeability clays with significant viscoelastic behavior or cylindrically orthotropic poroviscoelastic biological tissues. Details of the modeling are presented in Chapter 4.
For geo-materials and biological tissues with Cartesian mechanical orthotropy, the symmetry of material properties implies that rectangular strips are the best sample geometry to use for mechanical characterization. This setup is the famous Mandel’s problem in poromechanics. Orthotropic rectangular strips under unconfined compression loading will be studied in Chapter 5.

Finally, the important problem of wellbore drilling through transversely isotropic rocks is considered in Chapter 6, with the emphasis on time-dependent displacement of the wellbore wall. This chapter targets wellbore instability instances where the time-dependent borehole deformation is so excessive that the viscoelastic nature of the rock matrix must be explicitly considered in the modeling. Notable rock formations with this type of borehole failure are salt rock and shale. Some shales are known to cause repeated instability problems such as tight hole and stuck pipe despite repeated reaming and hole cleaning. Salt rock, on the other hand, can produce significant wellbore contraction and can even flow like a viscoelastic liquid under certain downhole conditions and the drilling engineers may have only a short time window to install the casing before the wellbore becomes inaccessible. The modeling and results of this chapter can be easily applied to other circular excavations such as tunnels and drill shafts.

1.5 Important Background Information

1.5.1 Assumptions

Only linear poroviscoelasticity will be considered in this study. This restriction ensures that an overall complex problem can be decomposed into elementary problems and the results for those simpler problems can be superposed to form the desired
solution. Furthermore, only small strains and displacements will be considered. More specifically, the formulation will be for infinitesimal strains and displacements.

1.5.2 Sign Convention

Throughout this dissertation, compressive stresses and strains are taken as positive.

1.5.3 Short-Hand Notation for Material Symmetry

The poroelastic constitutive relations with general anisotropy are as follows:

\[\sigma_{ij} = M_{ijkl} \varepsilon_{kl} + \alpha_{ij} p . \] \hspace{1cm} (1.1)

The short-hand notations for some frequently encountered classes of material symmetry are given below:

Orthotropic materials,

\[\sigma_{xx} = M_{11} \varepsilon_{xx} + M_{12} \varepsilon_{yy} + M_{13} \varepsilon_{zz} + \alpha_1 p , \] \hspace{1cm} (1.2)

\[\sigma_{yy} = M_{12} \varepsilon_{xx} + M_{22} \varepsilon_{yy} + M_{23} \varepsilon_{zz} + \alpha_2 p , \] \hspace{1cm} (1.3)

\[\sigma_{zz} = M_{13} \varepsilon_{xx} + M_{23} \varepsilon_{yy} + M_{33} \varepsilon_{zz} + \alpha_3 p , \] \hspace{1cm} (1.4)

\[\sigma_{xy} = 2M_{44} \varepsilon_{xy} , \] \hspace{1cm} (1.5)

\[\sigma_{xz} = 2M_{55} \varepsilon_{xz} , \] \hspace{1cm} (1.6)

\[\sigma_{yz} = 2M_{66} \varepsilon_{yz} , \] \hspace{1cm} (1.7)

\[p = M \left(\alpha_1 \varepsilon_{xx} + \alpha_2 \varepsilon_{yy} + \alpha_3 \varepsilon_{zz} + \zeta \right) . \] \hspace{1cm} (1.8)

Transversely isotropic materials,

\[\sigma_{xx} = M_{11} \varepsilon_{xx} + M_{12} \varepsilon_{yy} + M_{13} \varepsilon_{zz} + \alpha_1 p , \] \hspace{1cm} (1.9)

\[\sigma_{yy} = M_{12} \varepsilon_{xx} + M_{11} \varepsilon_{yy} + M_{13} \varepsilon_{zz} + \alpha_1 p , \] \hspace{1cm} (1.10)

\[\sigma_{zz} = M_{13} \varepsilon_{xx} + M_{13} \varepsilon_{yy} + M_{33} \varepsilon_{zz} + \alpha_3 p , \] \hspace{1cm} (1.11)
\[\sigma_{xy} = 2M_{44} \varepsilon_{xy}, \quad (1.12) \]
\[\sigma_{xz} = 2M_{55} \varepsilon_{xz}, \quad (1.13) \]
\[\sigma_{yz} = 2M_{55} \varepsilon_{yz}, \quad (1.14) \]
\[p = M \left(\alpha_x \varepsilon_{xx} + \alpha_y \varepsilon_{yy} + \alpha_z \varepsilon_{zz} + \zeta \right). \quad (1.15) \]

1.5.4 Frequently Used Parameters

Undrained stiffness coefficients:

\[M''_{ij} = M_{ij} + \alpha_i \alpha_j M . \quad (1.16) \]

Frequently encountered material coefficient groups in analytical solutions:

\[\lambda_{ijk} = M_{ij} \alpha_k - M_{ik} \alpha_j . \quad (1.17) \]

1.5.5 Engineering Parameters

Familiar engineering parameters such as Young’s moduli, shear moduli, and Poisson’s ratios can be calculated from the stiffness coefficients using the following relations (Abousleiman and Cui, 2000):

For orthotropic materials, \(E_i \) denotes the Young’s modulus in the \(x_i \) direction, \(G_{ij} \) denotes the shear modulus in the plane \(x_i \overline{x}_j \), and \(v_{ij} \) denotes the Poisson’s ratio associated with a compressive stress in the \(x_i \) direction and resulting tensile strain in the \(x_j \) direction,

\[M_{11} = \frac{E_i (v_{23} v_{12} - 1)}{D_d}, \quad (1.18) \]
\[M_{12} = -\frac{E_i (v_{13} v_{23} + v_{12})}{D_d}, \quad (1.19) \]
\[M_{13} = -\frac{E_3 (v_{12}v_{23} + v_{13})}{D_d}, \quad (1.20) \]
\[M_{22} = \frac{E_2 (v_{13}v_{31} - 1)}{D_d}, \quad (1.21) \]
\[M_{23} = -\frac{E_1 (v_{13}v_{21} + v_{23})}{D_d}, \quad (1.22) \]
\[M_{33} = \frac{E_3 (v_{12}v_{21} - 1)}{D_d}, \quad (1.23) \]
\[M_{44} = G_{12}, \quad (1.24) \]
\[M_{55} = G_{13}, \quad (1.25) \]
\[M_{66} = G_{23}, \quad (1.26) \]

with,
\[D_d = v_{21}v_{12} + v_{31}v_{13} + v_{23}v_{32} + v_{12}v_{23}v_{31} + v_{13}v_{32}v_{21} - 1. \quad (1.27) \]

For transversely isotropic materials, \(E_1 \) and \(E_3 \) denote the Young’s moduli in the isotropic plane and the transverse direction, respectively, \(v_1 \) and \(v_3 \) are the Poisson’s ratios in the isotropic plane and the transverse direction, respectively, and \(G_3 \) is the shear modulus in a plane through the material symmetry axis,
\[M_{11} = \frac{E_1 (E_3 - E_1 v_3^2)}{(1 + v_1)(E_3 - E_3 v_1 - 2E_1 v_3^2)}, \quad (1.28) \]
\[M_{12} = \frac{E_1 (E_3 v_1 + E_1 v_3^2)}{(1 + v_1)(E_3 - E_3 v_1 - 2E_1 v_3^2)}, \quad (1.29) \]
\[M_{13} = \frac{E_1 E_3 v_3}{E_3 - E_3 v_1 - 2E_1 v_3^2}, \quad (1.30) \]
\[M_{33} = \frac{E_3^2 (1 - v_1)}{E_3 - E_3 v_1 - 2E_1 v_3^2}, \quad (1.31) \]
For isotropic materials, only two parameters, for example Young’s modulus E and Poisson’s ratio ν, are required to characterize the material mechanical behavior. The corresponding relations between stiffness coefficients and engineering parameters simplify as follows:

$$M_{11} = M_{22} = M_{33} = \frac{E(1 - \nu)}{(1 + \nu)(1 - 2\nu)},$$ (1.34)

$$M_{12} = M_{13} = M_{23} = \frac{E\nu}{(1 + \nu)(1 - 2\nu)},$$ (1.35)

$$M_{44} = M_{55} = M_{66} = G = \frac{E}{2(1 + \nu)}.$$ (1.36)

1.5.6 Laplace Transform and Carson Transform

Laplace transformation will be used extensively in this dissertation. For convenience, the tilde will be used to denote Laplace transform as shown below:

$$\tilde{f} = L\{f(t)\}.$$ (1.37)

Carson transforms will also be used extensively for material parameters. The over bar will be used to denote Carson transform as follows:

$$\bar{f} = sf.$$ (1.38)

1.5.7 Spring-Dashpot Models

Spring-dashpot models have been traditionally used to gain physical insights into a variety of viscoelastic behaviors. Using only simple linearly elastic springs (stress is
proportional to strain) and simple Newtonian dashpot (stress is proportional to strain rate), a wide range of viscoelastic behaviors can be simulated using an appropriate configuration.

An elegant method to find the material behavior of a particular spring-dashpot model is to construct its differential stress-strain relations in time domain and then apply the Laplace transform to obtain its Carson-transformed viscoelastic stiffness in Laplace transform domain. The Laplace-transformed stress-strain relation can be used to derive both the relaxation function and the creep function for that particular model. The relaxation function is obtained by substituting the Heaviside function for the strain (relaxation test) while the creep function is obtained by substituting the Heaviside function for the stress (creep test). A few examples demonstrating the technique are given below. The Young’s modulus, E, was chosen in these example for illustration; other stiffness parameters can be modeled similarly.

1.5.7.1 Kelvin Model

The Kelvin model consists of a spring and a dashpot in parallel, as shown in Fig. 1.1.

![Kelvin model diagram](image)

Fig. 1.1 – Kelvin model.

The differential stress-strain relation is therefore as follows:

$$\sigma = E_0 \varepsilon + \mu \dot{\varepsilon},$$

(1.39)
with the dot denoting time derivatives. Laplace transformation of the above equation gives,

\[\tilde{\sigma} = (E_0 + s\mu)\tilde{\varepsilon}. \]

(1.40)

The Carson-transformed viscoelastic Young’s modulus is therefore,

\[\tilde{E} = \frac{\tilde{\sigma}}{\tilde{\varepsilon}} = E_0 + s\mu. \]

(1.41)

The creep function for a Kelvin material is obtained by substituting the Heaviside function for the stress in Eq. (1.40), \(\tilde{\sigma} = 1/s \), which leads to \(\tilde{\varepsilon} = 1/s(E_0 + s\mu) \) or \(\varepsilon = (1/E_0)(1 - e^{-E_0/s\mu}) \). The Kelvin model however gives an initial infinite stiffness if a stress is applied. Therefore, this model is not suitable for the modeling of the porous matrix for bio- or geo-materials.

1.5.7.2 Maxwell Model

The Maxwell model consists of a spring and a dashpot in series, as shown in Fig. 1.2.

![Fig. 1.2 – Maxwell model.](image)

The differential stress-strain relations are therefore as follows:

\[\sigma = E_0\varepsilon_1, \quad \sigma = \mu\dot{\varepsilon}_2, \quad \varepsilon = \varepsilon_1 + \varepsilon_2. \]

(1.42)

Therefore,

\[\dot{\varepsilon} = \frac{\dot{\sigma}}{E_0} + \frac{\sigma}{\mu}. \]

(1.43)

Laplace transformation of the above equation gives,
\[s \ddot{\varepsilon} = \frac{s \ddot{\sigma}}{E_0} + \frac{\ddot{\sigma}}{\mu} . \]
(1.44)

The Carson-transformed viscoelastic Young’s modulus is therefore,

\[\bar{E} = \frac{\ddot{\sigma}}{\varepsilon} = \frac{s E_0 \mu}{E_0 + s \mu} . \]
(1.45)

The relaxation function for a Maxwell material is obtained by substituting Heaviside function for the strain in Eq. (1.44), \(\ddot{\varepsilon} = 1/s \), which leads to \(\ddot{\sigma} = E_0 \mu/(E_0 + s \mu) \) or \(\sigma = E_0 e^{-E_0/\mu} \). Since the Maxwell model gives infinite strain at long time if a stress is applied, it is limited to the modeling of bio or geo-materials with such behavior.

1.5.7.3 Zener (Standard Linear Solid) Models

The simplest spring-dashpot models that can simulate both relaxation and creep characteristics are the Zener or the standard linear solid models, as illustrated in Fig. 1.3. These models consist of two spring and one dashpot, with two possible configurations as shown in Fig. 1.3a and Fig. 1.3b.

![Zener models](image)

Fig. 1.3 – Zener (standard linear solid) models.

For configuration a), the model consists of a spring in series with a Kelvin model. The stress-strain relation in Laplace transform domain is therefore as follows:

\[\ddot{\varepsilon} = \frac{\ddot{\sigma}}{E_1} + \frac{\ddot{\sigma}}{E_2 + s \mu} . \]
(1.46)
The Carson-transformed viscoelastic Young’s modulus is therefore,

\[
\tilde{E} = \tilde{\sigma} = \frac{E_1 E_2 + sE_1 \mu}{E_1 + E_2 + s\mu}.
\]

(1.47)

For configuration b), the model consists of a spring in parallel with a Maxwell model. The stress-strain relation in Laplace transform domain is therefore as follows:

\[
\tilde{\sigma} = \frac{sE_1 \mu}{E_1 + s\mu} \tilde{\varepsilon} + E_2 \tilde{\varepsilon}.
\]

(1.48)

The Carson-transformed viscoelastic Young’s modulus is therefore,

\[
\tilde{E} = \frac{\tilde{\sigma}}{\tilde{\varepsilon}} = \frac{E_1 E_2 + s(E_1 + E_2) \mu}{E_1 + s\mu}.
\]

(1.49)

The relaxation and creep functions are summarized in Table 1.8.

<table>
<thead>
<tr>
<th>Property</th>
<th>Configuration a)</th>
<th>Configuration b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relaxation function</td>
<td>(E_1 = \frac{E_1^2}{E_1 + E_2} [1 - e^{-(E_1 + E_2)\mu / \mu}])</td>
<td>(E_1 + E_2 - E_1 (1 - e^{-E_1 \mu / \mu}))</td>
</tr>
</tbody>
</table>
| Creep function | \(\frac{1}{E_1} \left[1 + \frac{E_1}{E_2} (1 - e^{-E_1 \mu / \mu}) \right] \) | \(\frac{1}{E_1 + E_2} \left\{ \frac{1}{E_1} \left[1 + \frac{E_1}{E_2} (1 - e^{-E_1 \mu / \mu}) \right] \right\} \)

It is easy to show that the two configurations are equivalent. Specifically, their parameters are related by the following relations:

\[E_1^a = E_1^b + E_2^b\]

(1.50)

\[E_2^a = \frac{E_2^b (E_1^b + E_2^b)}{E_1^b}\]

(1.51)

\[\mu^a = \mu^b \frac{(E_1^b + E_2^b)^2}{(E_1^b)^2}\]

(1.52)
Chapter 2: Correspondence Principle

2.1 Introduction

The theory of anisotropic poroviscoelasticity was developed by Biot (1956) based on his earlier work on anisotropic poroelasticity (Biot, 1955). This theory has received much attention recently as shown by an explosion of applications in both geomechanics (Abousleiman et al., 1996b; Schanz and Cheng, 2001; Wong et al., 2008; Hoang and Abousleiman, 2010) and biomechanics (Mak, 1986; Huang et al., 2001; Cheng and Bilston, 2007; Noailly et al., 2008; Hoang and Abousleiman, 2009a; Hoang and Abousleiman, 2010).

Biot (1956) also discovered a formal similarity between poroelasticity and poroviscoelasticity for the general case of matrix anisotropy using thermodynamics. However, the micromechanical aspects of this formal similarity were never investigated and the physical meaning of the macroscopic parameters remained obscure. Taylor and Aifantis (1982) and later Vgenopoulou and Beskos (1992) reestablished the correspondence principle between poroelasticity and poroviscoelasticity for isotropic media in Laplace transform domain. Abousleiman et al. (1993) used micromechanics considerations to show a similar correspondence between the poroelastic and poroviscoelastic Biot’s effective stress coefficients, also for isotropic media. Coussy (1991, 1995) obtained correspondence relations in the time domain for general anisotropy and micromechanics relations for material parameters for isotropic media.

This chapter revisits anisotropic poroviscoelasticity using micromechanics. The correspondence principle is established in both time domain (Section 2.3) and Laplace transform domain (Section 2.4).
2.2 Review of Anisotropic Poroelasticity

In this section, some important relations in anisotropic poroelasticity (Cheng, 1997) are reproduced for later comparison with anisotropic poroviscoelasticity in Sections 2.3 and 2.4.

The constitutive relations for anisotropic poroelasticity can be written in pure compliance form as follows:

\[\varepsilon_{ij} = C_{ijkl} \sigma_{kl} - \frac{1}{3} CB_{ij} p, \]
\[\zeta = -\frac{1}{3} CB_{ij} \sigma_{ij} + C p, \]

where \(\varepsilon_{ij} \) and \(\sigma_{ij} \) are the strain and stress tensors, respectively, \(C_{ijkl} \) is the compliance tensor, \(B_{ij} \) is the Skempton’s coefficient tensor, \(p \) is the pore pressure, \(\zeta \) is the variation of fluid content, \(C \) is the storage coefficient under constant total stress, and the Einstein convention for repeated indices is used.

From Eq. (2.1), the stresses can be expressed as functions of the strains and pore pressure by multiplying both sides with the stiffness tensor \(M_{ijkl} \) and simplifying,

\[\sigma_{ij} = M_{ijkl} \varepsilon_{kl} + \frac{1}{3} M_{ijkl} CB_{kl} p, \]

using the identity,

\[M_{ijkl} C_{klmn} = \frac{1}{2} (\delta_{im} \delta_{jm} + \delta_{im} \delta_{jm}), \]

where \(\delta_{ij} \) is the Kronecker’s delta. Comparison of Eq. (2.3) and the following familiar formula for total stresses,

\[\sigma_{ij} = M_{ijkl} \varepsilon_{kl} + \alpha_{ij} p, \]

where \(\alpha_{ij} \) is the Biot’s effective stress coefficient tensor, leads to,
\[\alpha_{ij} = \frac{1}{3} M_{ijkl} C_{kl}, \]

which can be inverted to yield,

\[B_{ij} = 3 C_{ijkl} C^{-1} \alpha_{kl}. \]

Similarly, manipulation of Eq. (2.2) and comparison with the following familiar formula for pore pressure, with \(M \) is the inverse of the storage coefficient under constant volume,

\[p = M \zeta + M \alpha_{ij} \varepsilon_{ij}, \]

yields the following relation,

\[C = M^{-1} + \alpha_{ij} \alpha_{kl} C_{ijkl}. \]

The total strain and stress tensors can be decomposed into the solid (superscript \(s \)) and the pore (superscript \(p \)) components as follows:

\[\varepsilon_{ij} = (1 - \phi) \varepsilon_{ij}^s + \phi \varepsilon_{ij}^p, \]
\[\sigma_{ij} = (1 - \phi) \sigma_{ij}^s + \phi \delta_{ij} p, \]

where \(\phi \) is the porosity.

The relationships between material coefficients of the porous medium and those of the constituents are explored next using a generalization of Nur and Byerlee’s analysis (Nur and Byerlee, 1971). Consider an anisotropic micro-homogeneous porous medium with an arbitrary network of connected pores, subjected to a state of total stress \(\sigma_{ij} \) and pore pressure \(p \). Due to the linearity of the mechanical behavior of the medium, this state of total stress and pore pressure can be decomposed into two modes of loading: a total stress \(\sigma_{ij} - \delta_{ij} p \) without pore pressure and a pore pressure \(p \) and an equal confining pressure. The total strains due to the first mode of loading are as follows:
\[\varepsilon_y = C_{ijkl} \sigma_{kl} - C_{ijkl} p . \] (2.12)

From Eq. (2.11), the solid stress state is as follows:

\[\sigma^s_{ij} = \frac{1}{1 - \phi} \left(\sigma_{ij} - \delta_{ij} p \right), \] (2.13)

which gives rise to the following solid strains:

\[\varepsilon^s_{ij} = C^s_{ijkl} \sigma^s_{kl} , \] (2.14)

where \(C^s_{ijkl} \) denotes the compliance tensor of the solid. The existence of the compliance tensor of the solid phase is a consequence of the micro-homogeneity of the porous medium. The pore strains due to this mode of loading can then be calculated using Eq. (2.10),

\[\varepsilon^p_{ij} = \frac{1}{\phi} \left(C_{ijkl} - C^s_{ijkl} \right) \sigma_{kl} - \frac{1}{\phi} \left(C_{ijkl} - C^s_{ijkl} \right) p . \] (2.15)

For the second mode of loading, i.e., pore pressure \(p \) and an equal confining pressure, following Nur and Byerlee (1971), we consider first a homogeneous solid with the pores filled with the same solid material. When this domain is subjected to the confining pressure \(p \), the following state of strain is obtained:

\[\varepsilon^s_{ij} = C^s_{ijkl} p . \] (2.16)

This confining pressure causes a hydrostatic pressure \(p \) everywhere in the solid. Therefore, using the uniqueness theorem for stress boundary value problems of anisotropic elastic bodies (see for example Ezzat and El-Karamany (2002)), we can replace the material inside the original pores with fluid while maintaining the same pore pressure and obtain the same deformation field in the solid. In other words,

\[\varepsilon_y = \varepsilon^p_{ij} = \varepsilon^s_{ij} = C^s_{ijkl} p . \] (2.17)
Using the principle of superposition, the total strains and the pore strains due to the two modes of loading can be found as follows:

\[\varepsilon_{ij} = C_{ijkl} \sigma_{kl} - (C_{ijkl} - C_{ijkl}^s)p, \]
\[\varepsilon_{ij}^p = \frac{1}{\phi} (C_{ijkl} - C_{ijkl}^s) \sigma_{kl} - \left(\frac{1}{\phi} C_{ijkl} - \frac{1}{\phi} C_{ijkl}^s \right) p. \]
\[B_{ij} = \frac{3(C_{ijkl} - C_{ijkl}^s)}{C}. \]

Comparison of Eqs. (2.1) and (2.18) yields,

\[\alpha_{ij} = \delta_{ij} - M_{ijkl} C_{klmn}^s. \]

From Eq. (2.19), the variation of fluid content \(\zeta \) can be found using the following consideration:

\[\varepsilon_{ii}^p = e_{\text{fluid}} - e_{\text{fluid compressibility}} - e_{\text{fluid content}} \]
\[\varepsilon_{ii}^p = C_f p - \frac{\zeta}{\phi}, \]

with \(e \) and \(C_f \) denoting the volumetric strain and fluid bulk modulus, respectively. The variation of fluid content takes the form:

\[\zeta = -(C_{ijkl} - C_{ijkl}^s) \sigma_{kl} + (C_{ijkl} - C_{ijkl}^s)p + \phi(C_f - C_{ijkl}^s)p. \]

Comparison with Eq. (2.2) yields,

\[C = (C_{ijkl} - C_{ijkl}^s) + \phi(C_f - C_{ijkl}^s). \]

Finally, Eq. (2.9) gives the expression for \(M \):

\[M^{-1} = M_{ijklc} C_{mnij}^s(C_{ijkl} - C_{ijkl}^s) + \phi(C_f - C_{ijkl}^s). \]
The material coefficients \(\alpha_{ij}, B_{ij}, C, \) and \(M \) given above can be further simplified for porous media having micro-isotropy or material symmetry (orthotropy, transversely isotropy, isotropy, etc.) (Cheng, 1997).

2.3 Poroviscoelasticity in Time Domain

A similar treatment for linear poroviscoelastic media will be given in this section.

We start with the constitutive relations in pure compliance form (“creep” formulation),

\[
\varepsilon_y = C_{ijkl} \otimes \sigma_{kl} - \frac{1}{3} A_{ij} \otimes p , \quad (2.26)
\]

\[
\zeta = -\frac{1}{3} A_{ij} \otimes \sigma_{ij} + C \otimes p , \quad (2.27)
\]

where the symbol \(\otimes \) denotes the Stieltjes convolution product,

\[
f(t) \otimes g(t) = \int_{-\infty}^{t} f(t - \tau) g(\tau) \, d\tau . \quad (2.28)
\]

Eqs. (2.26) and (2.27) are written in the general form for linear poroviscoelasticity and the nature of \(A_{ij} \) will be made clear shortly through micromechanical analysis. In place of Eqs. (2.5) and (2.8), we have the following general relations:

\[
\sigma_{ij} = M_{ijkl} \otimes \varepsilon_{kl} + \alpha_{ij} \otimes p , \quad (2.29)
\]

\[
p = M \otimes \zeta + Q_{ij} \otimes \varepsilon_{ij} . \quad (2.30)
\]

The nature of \(Q_{ij} \) will also be explored later. Inverting Eq. (2.26) gives the stresses in terms of strains and pore pressure,

\[
\sigma_{ij} = M_{ijkl} \otimes \varepsilon_{kl} + \frac{1}{3} M_{ijkl} \otimes A_{ij} \otimes p , \quad (2.31)
\]

where \(M_{ijkl} \) is the inverse of the \(C_{ijkl} \) with respect to the convolution product,
\[M_{ijkl} \otimes C_{klmn} = \frac{1}{2} (\delta_{im}\delta_{jn} + \delta_{in}\delta_{jm})H(t), \]

(2.32)

with \(H(t) \) is the Heaviside step function. In this chapter, for brevity, the Heaviside step function will not be written explicitly except when required to prevent ambiguity.

Comparison of Eqs. (2.29) and (2.31) yields,

\[\alpha_{ij} = \frac{1}{3} M_{ijkl} \otimes A_{kl}, \]

(2.33)

which can be inverted to give,

\[A_{ij} = 3C_{ijkl} \otimes \alpha_{kl}, \]

(2.34)

Similarly, comparison of Eq. (2.30) and the inversion of Eq. (2.27) provides the following identities:

\[C = M^{-1} + C_{ijkl} \otimes \alpha_{ij} \otimes \alpha_{kl}, \]

(2.35)

\[Q_{ij} = M \otimes \alpha_{ij}. \]

(2.36)

The second identity transforms Eq. (2.30) to the following form:

\[p = M \otimes \zeta + M \otimes \alpha_{ij} \otimes \varepsilon_{ij}. \]

(2.37)

Using the uniqueness theorem for stress boundary and initial value problems of anisotropic viscoelastic bodies (Ezzat and El-Karamany (2002)), a generalization of Nur and Byerlee’s analysis similar to the one for anisotropic poroelasticity presented in Section 2.2 can be constructed to yield the following relations:

\[A_{ij} = 3(C_{ijkk} - C_{ijkk}^s), \]

(2.38)

\[\alpha_{ij} = \delta_{ij} - M_{ijkl} \otimes C_{klmn}^s, \]

(2.39)

\[C = (C_{ijkk} - C_{ijkk}^s) + \phi(C_f - C_{ijkk}^s), \]

(2.40)

\[M^{-1} = M_{ijmn} \otimes C_{mnll}^s \otimes (C_{ijkk} - C_{ijkk}^s) + \phi(C_f - C_{ijkk}^s). \]

(2.41)
From Eq. (2.38), we can formally define,

\[B_{ij} = A_{ij} \otimes C^{-1}, \quad (2.42) \]

or,

\[B_{ij} = 3(C_{ijkl} - C_{ijkl}'') \otimes C^{-1}, \quad (2.43) \]

then Eqs. (2.26) and (2.27) become,

\[\varepsilon_{ij} = C_{ijkl} \otimes \sigma_{kl} - \frac{1}{3} C \otimes B_{ij} \otimes p, \quad (2.44) \]

\[\zeta = -\frac{1}{3} C \otimes B_{ij} \otimes \sigma_{ij} + C \otimes p, \quad (2.45) \]

The physical meaning of \(B_{ij} \) becomes apparent when we let \(\zeta = 0 \) in Eq. (2.45) (“undrained” condition),

\[p = \frac{1}{3} B_{ij} \otimes \sigma_{ij}, \quad (2.46) \]

or \(B_{ij} \) is the poroviscoelastic Skempton’s coefficient tensor.

Comparison of poroelastic and poroviscoelastic constitutive relations and the micromechanical expressions of material coefficients leads to the following correspondence principle in time domain:

Correspondence principle in time domain: Any constitutive relation or formula for material coefficients of anisotropic linear poroviscoelasticity can be obtained from the corresponding expression in anisotropic linear poroelasticity by replacing multiplication with the Stieltjes convolution product.

Coussy (1991, 1995) obtained the same conclusions about the constitutive relations of anisotropic poroviscoelasticity. However, he only provided formulas for material coefficients for the special case of isotropic media.
2.4 Poroviscoelasticity in Laplace Transform Domain

The following elementary table of poroelastic and poroviscoelastic formulas in time domain and Laplace transform domain can be easily derived:

Table 2.1 – Comparison of poroelastic and poroviscoelastic formulas in time domain and Laplace transform domain.

<table>
<thead>
<tr>
<th>Poroelasticity (t)</th>
<th>Poroelasticity (s)</th>
<th>Poroviscoelasticity (t)</th>
<th>Poroviscoelasticity (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>((a_1 \pm a_2)f(t))</td>
<td>((a_1 \pm a_2)\tilde{f}(s))</td>
<td>([a_1(t) \pm a_2(t)] \otimes f(t))</td>
<td>([\tilde{a}_1(s) \pm \tilde{a}_2(s)] \tilde{f}(s))</td>
</tr>
<tr>
<td>(a_1 \cdot a_2 \cdot f(t))</td>
<td>(a_1 \cdot a_2 \cdot \tilde{f}(s))</td>
<td>(a_1(t) \otimes a_2(t) \otimes f(t))</td>
<td>(\tilde{a}_1(s) \cdot \tilde{a}_2(s) \cdot \tilde{f}(s))</td>
</tr>
<tr>
<td>(\frac{a_1}{a_2}f(t))</td>
<td>(\frac{a_1}{a_2} \tilde{f}(s))</td>
<td>(a_1(t) \otimes a_2^{-1}(t) \otimes f(t))</td>
<td>(\frac{\tilde{a}_1(s)}{\tilde{a}_2(s)} \tilde{f}(s))</td>
</tr>
</tbody>
</table>

where \(s\) is the Laplace transform variable, the tilde and the bar accents denote Laplace transform and Carson transform, respectively. Using these elementary formulas, more complex relations can be easily obtained. In particular, Laplace transformation of Eqs. (2.44), (2.45), (2.29), (2.37), (2.39), (2.43), (2.35), and (2.41) provides respectively,

\[
\tilde{\varepsilon}_j = \tilde{C}_{ijkl} \tilde{\sigma}_{kl} - \frac{1}{3} \tilde{C}_{ij} \tilde{p}, \tag{2.47}
\]

\[
\tilde{\zeta} = -\frac{1}{3} \tilde{C}_{ij} \tilde{\sigma}_j + \tilde{C} \tilde{p}, \tag{2.48}
\]

\[
\tilde{\sigma}_j = \tilde{M}_{ijkl} \tilde{\varepsilon}_{kl} + \tilde{\alpha}_j \tilde{p}, \tag{2.49}
\]

\[
\tilde{p} = \tilde{M} \tilde{\zeta} + \tilde{M} \tilde{\alpha}_j \tilde{\varepsilon}_j, \tag{2.50}
\]

\[
\tilde{\alpha}_j = \delta_j - \tilde{M}_{ijkl} \tilde{C}_{klmn}^s, \tag{2.51}
\]

\[
\tilde{B}_j = 3\left(\tilde{C}_{ijkl} - \tilde{C}_{ijkl}^s\right) \tilde{C}, \tag{2.52}
\]

\[
\tilde{C} = \frac{1}{M} + \tilde{C}_{ijkl} \bar{\alpha}_j \bar{\alpha}_k, \tag{2.53}
\]
\[
\frac{1}{M} = M_{ijkl} \bar{C} \left(\bar{C}_{ijkl} - \bar{C}_{ijkl}^* \right) + \phi \left(\bar{C}_{j} - \bar{C}_{ijkl}^* \right).
\]

(2.54)

It is clear that any formula in anisotropic linear poroviscoelasticity can be obtained from the corresponding expression in anisotropic linear poroelasticity by replacing poroelastic material coefficients with the Carson transform of the poroviscoelastic counterparts. Since for the same boundary and initial value problem, other equations for the poroelastic and poroviscoelastic formulations are identical, we have the following correspondence principle in Laplace transform domain:

Correspondence principle in Laplace transform domain: The formulation and solution to the same boundary and initial value problem in anisotropic linear poroviscoelasticity can be obtained from those in poroelasticity by replacing poroelastic material coefficients with the Carson transform of the poroviscoelastic counterparts.

Similar observations for the special case of material isotropy has been presented by Taylor and Aifantis (1982), Vgenopoulou and Beskos (1992), and Abousleiman et al. (1993). It is also noted that while the correspondence principle between poroelasticity and poroviscoelasticity will be most useful to find poroviscoelastic solutions from existing poroelastic ones, it can be used in the other direction to generate the poroelastic solution if the poroviscoelastic solution to the same boundary and initial value problem is available.

2.5 Numerical Examples – Biot’s Effective Stress Coefficients

Armed with the correspondence principle between poroviscoelasticity and poroelasticity, the formulas for material coefficients of anisotropic poroviscoelasticity
can be immediately obtained from those of anisotropic poroelasticity (for example Cheng (1997)). Of particular interest are the Biot’s effective stress coefficients α_{ij}, as listed below:

$$\bar{\alpha}_{ij} = \delta_{ij} - \bar{M}_{ijkl} \bar{C}_{klnm} s.$$ \hfill (2.55)

A few examples are given below to demonstrate the intricate behavior of the poroviscoelastic Biot’s effective stress coefficients in time domain. For sedimentary rocks with material transverse isotropy and elastic micro-isotropic grains, α_{ij} simplifies as follows in short-hand notation:

$$\bar{\alpha}_1 = 1 - \frac{\bar{M}_{11} + \bar{M}_{12} + \bar{M}_{13}}{3K_s},$$ \hfill (2.56)

$$\bar{\alpha}_3 = 1 - \frac{2\bar{M}_{12} + \bar{M}_{33}}{3K_s}.$$ \hfill (2.57)

It has been reported that the characteristic time of creep for many rocks including shale, siltstone, and sandstone, falls in the range of 10 to 15 hours (Warpinski and Teufel, 1989). In the following example, all matrix drained moduli $M_{ij}(t)$ are assumed to behave according to the Zener model with the same characteristic creep time of 10 hours. Initial stiffness coefficients are assumed as follows: $M_{11}(0^+)$ = 11.93 GPa, $M_{12}(0^+)$ = 4.93 GPa, $M_{13}(0^+)$ = 3.37 GPa, and $M_{33}(0^+)$ = 5.90 GPa. All moduli are assumed to retain 50% of initial values at long time. The matrix grain bulk modulus is assumed to have insignificant viscoelasticity, K_s = 40 GPa. Since the bulk moduli are monotonically decreasing and K_s is constant, the Biot’s effective stress coefficients are monotonically increasing, as shown in Fig. 2.1.
Fig. 2.1 – Biot’s effective stress coefficients for a transversely isotropic rock with elastic K_s.

On the other hand, K_s could be viscoelastic for biological tissues. For micro-isotropic biomaterials, the Biot’s effective stress coefficients simplify as follows:

\[
\bar{\alpha}_1 = 1 - \frac{M_{11} + M_{12} + M_{13}}{3K_s}, \quad (2.58)
\]

\[
\bar{\alpha}_3 = 1 - \frac{2M_{13} + M_{33}}{3K_s}. \quad (2.59)
\]

A transversely isotropic articular cartilage with the following properties will be considered: $M_{11}(0^+) = 0.56$ MPa, $M_{12}(0^+) = 0.032$ MPa, $M_{13}(0^+) = 0.029$ MPa, and $M_{33}(0^+) = 1.2$ MPa. For simplicity of illustration, all moduli are assumed to follow the Zener model with the same characteristic relaxation time of 60 seconds and to retain 50% of initial values at long time. The matrix grain bulk modulus is also assumed to behave according to the Zener model with an initial value of 3.0 MPa. Three different long-time to short-time ratios of 2/3, 0.5, and 1/3 and three different characteristic
relaxation times $T_{k s}$ of 30, 60, and 600 seconds are considered for K_s in the following analysis.

For $T_{k s} = 60$ s which is the same as the characteristic relaxation time of the bulk moduli, α_1 and α_3 either stay constant or vary monotonically as shown in Fig. 2.2. The Biot’s effective stress coefficients increase when the percentage decrease in K_s is less than that in the bulk moduli and vice versa.

Fig. 2.2 – Biot’s effective stress coefficients for a transversely isotropic articular cartilage, characteristic relaxation time of K_s is 60 s.
Fig. 2.3 – Biot’s effective stress coefficients for a transversely isotropic articular cartilage, characteristic relaxation time of K_s is 600 s.

Fig. 2.4 – Biot’s effective stress coefficients for a transversely isotropic articular cartilage, characteristic relaxation time of K_s is 30 s.

For a longer $T_{K_s} = 600$ s, the time-dependent variations of α_1 and α_3 are no longer monotonic, as shown in Fig. 2.3. Compared to the case of $T_{K_s} = 60$ s, α_1 and α_3 obtain
the same short-time and long-time values. However, in intermediate times, since K_s decays more slowly than the bulk moduli, α_1 and α_3 are higher than the case of $T_{K_s} = 60$ s. The reverse is observed for a shorter $T_{K_s} = 30$ s as shown in Fig. 2.4. This complex interplay between the bulk moduli and the grain bulk modulus on the Biot’s effective stress coefficients has been observed earlier for isotropic materials (Abousleiman et al., 1993).
Chapter 3: Transversely Isotropic Cylinders

3.1 Introduction

In both laboratory and field testing, cylinders are one of the most common sample geometries. Moreover, for transversely isotropic materials, which are abundant in both biomechanics and geomechanics, material characterization testing using cylinders with axis of geometrical symmetry coinciding with axis of mechanical symmetry becomes a natural choice. This chapter will investigate the poroviscoelastic behavior of such specimens under some of the most common laboratory settings: unconfined compression, confined compression, unjacketed triaxial, jacketed triaxial, and oedometer tests. A special field test with very important applications in the petroleum industry, the strain recovery method, is also analyzed herein.

Following this introduction is a description of the testing configurations in Section 3.2. Section 3.3 presents the analytical solutions of the sample behavior under such settings. Finally, Sections 3.4 and 3.5 give some numerical examples and discussion on this class of engineering problems.

3.2 Problem Description

3.2.1 Laboratory Testing: Unconfined Compression Test, Triaxial Test, K_0 (Oedometer) Test, and Confined Compression Test

Fig. 3.1a shows a cylindrical sample with radius R and height H and an attached coordinate system. Fig. 3.1b shows the sample under the conventional unconfined compression test, with a general time-dependent axial load $F(t)$ (load control) or an apparent axial strain $\varepsilon_{zz}(t)$ (stroke control) applied through the perfectly rigid,
frictionless, and impermeable end caps. Fig. 3.1c demonstrates the unjacketed triaxial test, with the addition of a time-dependent confining pressure $P_o(t)$. Fig. 3.1d shows a general jacketed triaxial loading configuration, with the sample subjected to both confining pressure $P_o(t)$ and pore pressure $p_o(t)$ using a two-jacket system. It is worth noting that the modeling of the jacketed triaxial test can be used to simulate both the unjacketed triaxial test and the unconfined compression test. Specifically, we recover the unjacketed triaxial test when $P_o(t) = p_o(t)$, and the unconfined compression test when $P_o(t) = p_o(t) = 0$. Fig. 3.1e shows the sample confined by rigid, frictionless, and impermeable bottom plate and lateral ring while being loaded on top using a porous loading plate. This configuration is the popular confined compression test in biomechanics research. Finally, Fig. 3.1f illustrates the K_0 or oedometer test in soil mechanics, with the sample sandwiched between two porous loading plates and confined laterally by a rigid and impermeable ring. It is evident that for the laboratory configuration in Fig. 3.1f, the mid-height plane is a plane of symmetry with no in-plane shear stresses or transverse pore fluid flux. In other words, from a physical as well as a mathematical point of view, either the top or the bottom half of a sample subjected to the oedometer test can be modeled using the confined test. Therefore, the oedometer test will not be explicitly discussed in this paper. Interested readers are referred to the discussion on the confined compression test. Material-wise, the tested sample is transversely isotropic, with the axis of material symmetry coinciding with the axis of geometrical symmetry.
For the unconfined compression, unjacketed triaxial, or jacketed triaxial setup, the boundary conditions at $r = R$ are as follows:

$$\sigma_{rr} = p_o(t), \ p = p_o(t), \ \sigma_{r\theta} = \sigma_{rz} = 0. \quad (3.1)$$

The boundary conditions at the two ends are as follows:

$$q_z = 0, \ \sigma_{zz} = \sigma_{z\theta} = 0, \ u_z\big|_{z=0} = 0. \quad (3.2)$$

Finally, equilibrium condition in the z direction requires,

$$F(t) = \int_0^R 2\pi \sigma_{zz} r dr. \quad (3.3)$$
With the aforementioned conditions, the experimental setup becomes a generalized plane-strain axisymmetric problem, with all shear stresses and shear strains vanish, and all dynamic and kinematic variables except u_z independent of z.

On the other hand, for the confined compression test, the boundary conditions at the top are as follows:

$$ p = 0, \sigma_{xz} = \sigma_{z\theta} = 0. $$ \hspace{1cm} (3.4)

The boundary conditions at the bottom are as follows:

$$ q_z = 0, \sigma_{xz} = \sigma_{z\theta} = 0, u_z = 0. $$ \hspace{1cm} (3.5)

The boundary conditions on the lateral surface are as follows:

$$ q_r = 0, \sigma_{rz} = \sigma_{r\theta} = 0, u_r = 0. $$ \hspace{1cm} (3.6)

Equilibrium condition in the z direction still requires Eq. (3.3) to hold. With the aforementioned conditions, the experimental setup becomes a one-dimensional problem in the z direction with all shear stresses and shear strains vanish, $\varepsilon_{rr} = \varepsilon_{\theta\theta} = 0$, $q_r = q_\theta = 0$, and all non-zero dynamic and kinematic variables dependent upon z and t only.

3.2.2 Field Testing: Strain Recovery Method

The importance of accurate determination of in-situ maximum and minimum horizontal stress orientations and magnitudes can never be over-emphasized in geomechanics-related operations in the oil and gas industry. An accurate estimate of the in-situ stress state is critical throughout the reservoir life cycle, from basin characterization at the very beginning to flow anisotropy modeling in reservoirs, borehole stability study for well drilling, hydraulic fracturing for reservoir stimulation, sand/solids production during oil and gas production, and modeling and prediction of earthquakes induced by the extraction of oil and gas from underground formations.
The strain recovery method was first proposed by Voight (1968) for estimating in-situ stress orientations and magnitudes from cores retrieved from shallow and dry wellbores. Since then, several analyses of the technique using viscoelasticity theory have been conducted for isotropic rock formations (Blanton, 1983; Warpinski and Teufel, 1989). Unfortunately, for the petroleum industry, wells are much deeper and both the well and the surrounding rock formation are filled with fluid. Therefore, viscoelastic analyses are inherently inadequate. Instead, poroviscoelastic modeling and simulation should be used, yet the early attempts to include pore pressure in such problems fell short from any real field conditions (Abousleiman and Cheng, 1996).

The complexity of the application of the strain recovery method to real field cases is further compounded by the anisotropy frequently exhibited by rock formations. In particular, the commonly encountered transverse isotropy of many sandstones, siltstones, shales, etc., could significantly influence the coupled responses including pore pressure generation and relaxation behavior. An attempt to incorporate the rock transverse isotropy into the analysis was made by Blanton and Teufel (1983) with many simplifying assumptions.

Furthermore, the actual stress and pressure evolution imposed on the retrieved cores are time-dependent functions, depending on not only in-situ state of stress but also on operational details such as core retrieval time. All existing analyses simplify the actual time-dependent boundary conditions to sudden unloading of the core. This simplified unloading scenario clearly does not portray real field conditions and could lead to misinterpretation of the strain recovery data.
This study aims to simulate the poroviscoelastic transversely isotropic relaxation of a drill core from a vertical well, from the time it is cored, during retrieval, and during sample monitoring in laboratory conditions, using realistic time-dependent stress and pressure unloading conditions.

![Diagram](image)

Fig. 3.2 – Problem schematic of the strain recovery method, not to scale.

A schematic of the problem is presented in Fig. 3.2. A vertical wellbore is cored to a depth \(D \), with a retrieved core of length \(d \) and radius \(R \). For most field cases, \(D \gg d \gg 2R \). Typical ranges for \(D, d, \) and \(R \) are hundreds to thousands of meters, tens of meters, and centimeters to tens of centimeters, respectively. For balanced drilling, the wellbore pressure \(p_w \) and the formation pore pressure \(p_0 \) are equal. Following field practice, the study will focus on the behavior of the core section close to the bottom of the coring barrel.

The stress state of this core section at the start of coring is as follows:

\[
\sigma_{zz} = S_V, \quad \sigma_{rr} = S_r, \quad \sigma_{r\theta} = S_{r\theta}, \quad p = p_0,
\]

where \(S_V \) is the overburden stress, \(S_r \) and \(S_{r\theta} \) are the radial and shear in-situ stresses, and \(p_0 \) is the formation pore pressure. \(S_r \) and \(S_{r\theta} \) relate to the minimum and maximum horizontal in-situ stresses \(S_{hmin} \) and \(S_{hmax} \) as follows:
\begin{align*}
S_r &= \frac{S_{H_{\text{max}}} + S_{H_{\text{min}}}}{2} + \frac{S_{H_{\text{max}}} - S_{H_{\text{min}}}}{2} \cos 2(\theta - \theta_{S_{\text{max}}}), \\
S_r &= \frac{S_{H_{\text{max}}} + S_{H_{\text{min}}}}{2} + \frac{S_{H_{\text{max}}} - S_{H_{\text{min}}}}{2} \cos 2(\theta - \theta_{S_{\text{min}}}),
\end{align*}
(3.8)

with \(\theta \) is the azimuth around the core and \(\theta_{S_{\text{max}}} \) is the azimuth of the maximum horizontal in-situ stress.

The stress state of the same core section at the end of coring is as follows:

\[
\sigma_{zz} = p_w, \sigma_{rr} = p_w, \sigma_{rb} = 0, p = p_0.
\]
(3.9)

Finally, at the end of the retrieval, all stresses and pore pressure on the core surface vanish. In this study, the time interval from the end of coring to the end of retrieval is termed retrieval time while the time interval from the end of retrieval to the beginning of sample relaxation monitoring is termed sample preparation time.

Since the core length is much greater than the core diameter, pore pressure diffusion will occur predominantly in the radial direction. The relaxation behavior, therefore, can be examined using generalized plane-strain analysis, provided that relaxation data are measured not too close from the bottom of retrieved core.

3.3 Poroviscoelastic Analytical Solutions

3.3.1 Review of Relevant Analytical Solutions

Relevant studies on one-dimensional consolidation problem are summarized in [Table 3.1]. Biot investigated this problem as an example of application in both his 1941 paper on poroelasticity and his 1956 paper on poroviscoelasticity. Mak (1986) revisited the poroviscoelastic 1-D consolidation problem when he investigated the behavior of articular cartilage under confined compression testing. Recently, Schanz and Cheng (2001) incorporated dynamic effects in the analysis. All of the aforementioned solutions
concern only isotropic materials. This study extends the analysis to transversely isotropic materials.

Table 3.1 – Relevant studies on one-dimensional consolidation.

<table>
<thead>
<tr>
<th>Anisotropy</th>
<th>Poroelasticity</th>
<th>Poroviscoelasticity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isotropy</td>
<td>Biot, 1941</td>
<td>Biot, 1956</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mak, 1986</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Schanz and Cheng, 2001</td>
</tr>
<tr>
<td>Transverse isotropy</td>
<td></td>
<td>This study</td>
</tr>
</tbody>
</table>

Table 3.2 – Relevant studies on cylindrical geometry.

<table>
<thead>
<tr>
<th>Anisotropy</th>
<th>Poroelasticity</th>
<th>Poroviscoelasticity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isotropy</td>
<td>Armstrong et al., 1984</td>
<td>Abousleiman et al., 1996b</td>
</tr>
<tr>
<td></td>
<td>Cui and Abousleiman, 2001</td>
<td>Abousleiman and Cheng, 1996</td>
</tr>
<tr>
<td></td>
<td>Sawaguchi and Kurashige, 2005</td>
<td>Huang et al., 2001</td>
</tr>
<tr>
<td>Transverse isotropy</td>
<td>Abousleiman and Cui, 1998</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td>Zwanenburg and Barends, 2007</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cowin and Mehrabadi, 2007</td>
<td></td>
</tr>
</tbody>
</table>

Similarly, relevant studies on the behavior of poroelastic and poroviscoelastic cylinders are summarized in **Table 3.2**. Many authors have worked on the subject due to the practical importance of this class of problem in both geomechanics and biomechanics. Armed with the correspondence principle of poroviscoelasticity and poroelasticity established in Chapter 2, the analytical solutions for poroelastic transversely isotropic cylinders given by Abousleiman and Cui (1998) will be the most useful; these results can be readily transferred to poroviscoelasticity to obtain the desired solutions for poroviscoelastic transversely isotropic cylindrical samples under testing conditions. It is noted that the sign convention has been changed from tension positive in Abousleiman and Cui (1998) to compression positive in this study. Consequently, the derivation of the analytical solutions will be presented in details for completeness.
3.3.2 Governing Equations

The constitutive relations in cylindrical coordinates for a transversely isotropic poroviscoelastic material are as follows:

\[
\begin{align*}
\tilde{\sigma}_{rr} &= M_{11}\tilde{\varepsilon}_{rr} + M_{12}\tilde{\varepsilon}_{\theta\theta} + M_{13}\tilde{\varepsilon}_{zz} + \alpha_1 \tilde{p}, \\
\tilde{\sigma}_{\theta\theta} &= M_{12}\tilde{\varepsilon}_{rr} + M_{11}\tilde{\varepsilon}_{\theta\theta} + M_{13}\tilde{\varepsilon}_{zz} + \alpha_3 \tilde{p}, \\
\tilde{\sigma}_{zz} &= M_{13}\tilde{\varepsilon}_{rr} + M_{11}\tilde{\varepsilon}_{\theta\theta} + M_{33}\tilde{\varepsilon}_{zz} + \alpha_3 \tilde{p}, \\
\tilde{p} &= \alpha_1 M_{11}\tilde{\varepsilon}_{rr} + \alpha_2 M_{12}\tilde{\varepsilon}_{\theta\theta} + \alpha_3 M_{33}\tilde{\varepsilon}_{zz} + M\zeta,
\end{align*}
\]

with \(\sigma_{ij}\) is the stress tensor, \(\varepsilon_{ij}\) is the strain tensor, and \(M_{ij}\) is the stiffness tensor, \(p\) is the pore pressure, \(\zeta\) is the variation of fluid content, \(\alpha_1\) and \(\alpha_3\) are the Biot’s effective stress coefficients in the isotropic plane and in the transverse direction, respectively, and \(M\) is the inverse of storage coefficient under constant strains. Other governing relations include Darcy’s law, strain-displacement relations, equilibrium equations, and continuity equation as listed below.

Darcy’s law,

\[
\begin{align*}
\tilde{q}_r &= -\frac{k_1}{\mu} \frac{\partial \tilde{p}}{\partial r}, \\
\tilde{q}_\theta &= -\frac{k_1}{\mu} \frac{1}{r} \frac{\partial \tilde{p}}{\partial \theta}, \\
\tilde{q}_z &= -\frac{k_3}{\mu} \frac{\partial \tilde{p}}{\partial z},
\end{align*}
\]

with \(k_1\) and \(k_3\) are the permeability in the isotropic plane and in the transverse direction; and \(\mu\) denotes pore fluid viscosity.

Strain-displacement relations,
\[\tilde{\varepsilon}_{rr} = \frac{\partial \tilde{u}_r}{\partial r}, \]

(3.15a)

\[\tilde{\varepsilon}_{\theta\theta} = \frac{\tilde{u}_r}{r} + \frac{1}{r} \frac{\partial \tilde{u}_\theta}{\partial \theta}, \]

(3.15b)

\[\tilde{\varepsilon}_{r\theta} = \frac{1}{2} \left(\frac{1}{r} \frac{\partial \tilde{u}_r}{\partial \theta} + \frac{\partial \tilde{u}_\theta}{\partial r} - \frac{\tilde{u}_\theta}{r} \right), \]

(3.15c)

\[\tilde{\varepsilon}_{zz} = \frac{\partial \tilde{u}_z}{\partial z}. \]

(3.15d)

Equilibrium equations,

\[\frac{\partial \tilde{\sigma}_{rr}}{\partial r} + \frac{1}{r} \frac{\partial \tilde{\sigma}_{r\theta}}{\partial \theta} + \tilde{\sigma}_r - \tilde{\sigma}_{\theta\theta} = 0, \]

(3.16a)

\[\frac{\partial \tilde{\sigma}_{r\theta}}{\partial r} + \frac{1}{r} \frac{\partial \tilde{\sigma}_{\theta\theta}}{\partial \theta} + 2 \tilde{\sigma}_{\theta\theta} = 0, \]

(3.16b)

\[\frac{\partial \tilde{\sigma}_{zz}}{\partial z}. \]

(3.16c)

Continuity equation,

\[\tilde{\rho} = k \left(\frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2} \right) \tilde{p} = 0. \]

(3.17)

3.3.3 K_0 Test or Confined Compression Test

The experimental setup becomes a one-dimensional problem in the axial direction. In particular,

\[u_r = u_\theta = 0, \varepsilon_{rr} = \varepsilon_{\theta\theta} = 0, q_r = q_\theta = 0, \]

(3.18)

and all non-trivial variables are dependent on z and t only. Substitution of the constitutive relations and the equilibrium equation in axial direction transforms the diffusion equation into:
\[s\tilde{\zeta} - c_3 \frac{\partial^2 \tilde{\zeta}}{\partial z^2} = 0, \quad c_3 = \frac{k_3 M_{33} \bar{M}}{\mu M_{33}}, \] (3.19)

which admits the following solution:

\[\tilde{\zeta} = C_1 \exp(z\sqrt{s/c_3}) + C_2 \exp(-z\sqrt{s/c_3}). \] (3.20)

Using the boundary conditions, it can be shown that for load-controlled testing condition:

\[C_1 = C_2 = -\frac{\tilde{\alpha}_3}{2M_{33}} \frac{\bar{S}_o}{\cosh(H\sqrt{s/c_3})}. \] (3.21)

The variation of fluid content therefore takes the form:

\[\tilde{\zeta} = -\frac{\tilde{\alpha}_3}{M_{33}} \frac{\bar{S}_o}{c_3} \frac{\cosh(z\sqrt{s/c_3})}{\cosh(H\sqrt{s/c_3})}. \] (3.22)

Other variables can then be found easily to be as follows:

\[\tilde{p} = \frac{\tilde{\alpha}_3 \bar{M}}{M_{33}} \bar{S}_o \left[1 - \frac{\cosh(z\sqrt{s/c_3})}{\cosh(H\sqrt{s/c_3})} \right], \] (3.23)

\[\tilde{q}_z = \frac{k_3 \tilde{\alpha}_3 M}{\mu M_{33}} \sqrt{\frac{s}{c_3}} \frac{\tilde{S}_o}{\cosh(H\sqrt{s/c_3})} \frac{\sinh(z\sqrt{s/c_3})}{\cosh(H\sqrt{s/c_3})}, \] (3.24)

\[\tilde{\varepsilon}_{zz} = \frac{1}{M_{33}} \tilde{S}_o \left[1 + \frac{\tilde{\alpha}_3^2 \bar{M}}{M_{33}} \frac{\cosh(z\sqrt{s/c_3})}{\cosh(H\sqrt{s/c_3})} \right], \] (3.25)

\[\tilde{\sigma}_{rr} = \tilde{\sigma}_{\theta\theta} = \frac{1}{M_{33}} \tilde{S}_o \left[\frac{\tilde{\alpha}_3 \tilde{\alpha}_{33} \bar{M}}{M_{33}} \frac{\cosh(z\sqrt{s/c_3})}{\cosh(H\sqrt{s/c_3})} \right]. \] (3.26)

For stroke-controlled testing configuration, the average axial stress \(S_o \) can be calculated from the displacement \(u_z \) using the following relation:

\[\tilde{u}_z = \frac{\tilde{S}_o}{M_{33}} \left[H + \frac{\tilde{\alpha}_3^2 \bar{M}}{M_{33}} \frac{\tanh(H\sqrt{s/c_3})}{\sqrt{s/c_3}} \right]. \] (3.27)
3.3.4 **Unconfined Compression Test and Triaxial Tests**

Substitution of the constitutive relations into the equilibrium equation in radial direction yields the following Navier-type equation:

\[
\frac{\partial(\varepsilon_r + \varepsilon_{\theta\theta})}{\partial r} = -\frac{\alpha_i M}{M_{11}^u} \frac{\partial \zeta}{\partial r}.
\]

(3.28)

This equation and the constitutive relations transform the diffusion equation into:

\[
s\zeta - c_1 \left(\frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} \right) \zeta = 0, \quad c_1 = \frac{k_i M_{11} M}{M_{11}^u},
\]

(3.29)

of which the analytical solution is as follows:

\[
\zeta = \frac{M_{11}^u}{M} C_1 I_0(\xi),
\]

(3.30)

with \(\xi = \sqrt{s/c_1} \) and \(I_n \) is the modified Bessel function of the first kind of order \(n \).

Substituting this solution into the Navier-type equation and integrating with respect to \(r \) yields the expression for the radial displacement,

\[
\tilde{u}_r = -\alpha_i C_1 r \frac{I_1(\xi)}{\xi} + \frac{C_2 r}{2}.
\]

(3.31)

The Laplace-domain solutions for all stresses, strains, pore fluid pressure, and flux can then be obtained using equations (3.10) to (3.15). For stroke-control testing condition, \(\varepsilon_{zz} = \varepsilon_{zz}(t) \), the parameters take the form:

\[
C_1 = \frac{1}{D_e} \left[\frac{1}{M_{11} + M_{12}^u} \tilde{p}_o - 2\alpha_i M \tilde{p}_o - \left(\tilde{\lambda}_{113} + \tilde{\lambda}_{123} \right) M \tilde{\varepsilon}_{zz} \right],
\]

(3.32)

\[
C_2 = \frac{1}{D_e} \left\{ -4G \alpha_i \frac{I_1(\beta)}{\beta} \tilde{p}_o + 2M_{11} I_0(\beta) \tilde{p}_o \\
+ 2 \left[2G \alpha_i \alpha_3 M \frac{I_1(\beta)}{\beta} - M_{11} M_{13}^u I_0(\beta) \right] \tilde{\varepsilon}_{zz} \right\},
\]

(3.33)
with new coefficients as follows:

$$\bar{G} = (\bar{M}_{11} - \bar{M}_{12})/2,$$

(3.34)

$$D_{\varepsilon} = \bar{M}_{11} \left(\bar{M}_{11}^u + \bar{M}_{12}^u \right) I_0(\beta) - 4\bar{G}\bar{\alpha}_1^2 \bar{M} \frac{I_1(\beta)}{\beta},$$

(3.35)

and $\beta = R \sqrt{\varepsilon / c_1}$. For load-control testing condition, $F = F(t)$, using equation (3.3), the resultant axial strain can be obtained as follows:

$$\tilde{\varepsilon}_{zz} = \frac{1}{D_o} \left\{ \begin{align*}
&2\left[\bar{T}_{113} \left(\bar{M}_{11}^u + \bar{M}_{12}^u \right) - 2\bar{G}\bar{\alpha}_1\bar{M}_{13}^u \right] \frac{I_1(\beta)}{\beta} \bar{p}_o \\
&+ \left[\bar{M}_{11}^u \bar{M}_{13}^u I_0(\beta) - 2\bar{G}\bar{\alpha}_1^2 \bar{M} \frac{I_1(\beta)}{\beta} \right] \bar{p}_o \\
&+ 4\bar{G}\bar{\alpha}_1^2 \bar{M} \frac{I_1(\beta)}{\beta} - \bar{M}_{11} \left(\bar{M}_{11}^u + \bar{M}_{12}^u \right) I_0(\beta) \bar{S}_o
\end{align*} \right\},$$

(3.36)

with

$$D_o = \bar{M}_{11} \left[2(\bar{M}_{13}^u)^2 - \bar{M}_{33}^u \left(\bar{M}_{11}^u + \bar{M}_{12}^u \right) I_0(\beta) \right.$$

$$\left. + 2\bar{M} \left[(\bar{T}_{113}^u + \bar{T}_{123}^u) - \bar{\alpha}_{13}^u \bar{I}_{13}^u + 2\bar{G}\bar{T}_{113}^u \bar{T}_{331}^u \right] \frac{I_1(\beta)}{\beta} \right],$$

(3.37)

and the average axial stress S_o is defined as follows:

$$S_o(t) = \frac{F(t)}{\pi R^2}.$$

(3.38)

3.3.5 Strain Recovery Method

The overall unloading of the core can be decomposed into two parts: axisymmetric unloading and deviatoric unloading. The deviatoric unloading is controlled by the following boundary conditions:

$$\sigma_{rr}^{\text{av}} = \frac{S_{\text{Hmax}} - S_{\text{Hmin}}}{2} \cos 2(\theta - \phi_{S_o}) \mathcal{H}(t),$$

$$\mathcal{H}(t) = \begin{cases} 1 & t > 0 \\ 0 & t < 0 \end{cases}.$$
\[\sigma_{r0} |_{r=R} = \frac{S_{Hmax} - S_{hmin}}{2} \sin 2(\theta - \theta_{sH}) H(t), \quad (3.39) \]

with \(H(t) \) is the Heaviside unit step function. As shown by Abousleiman et al. (1996), the relaxation displacements take the form:

\[\tilde{u}_r |_{r=R} = -\frac{S_{Hmax} - S_{hmin}}{4sG} r \cos 2(\theta - \theta_{sH}) \tilde{u}_\theta |_{r=R} = \frac{S_{Hmax} - S_{hmin}}{4sG} \sin 2(\theta - \theta_{sH}). \quad (3.40) \]

The axisymmetric unloading is composed of the remaining of the stress and pressure boundary conditions, with the following general form:

\[\sigma_{rr} |_{r=R} = p_o(t), p_l |_{r=R} = p_O(t), \sigma_{r\theta} |_{r=R} = S_o(t), \sigma_{r\theta} |_{r=R} = 0. \quad (3.41) \]

For this mode of unloading, it can be shown that the diffusion equation takes the form:

\[s \ddot{\zeta} - c_1 \left(\frac{\partial^2 \zeta}{\partial r^2} + \frac{1}{r} \frac{\partial \zeta}{\partial r} \right) = 0, \quad (3.42) \]

of which the analytical solution is as follows:

\[\ddot{\zeta} = \frac{M^u}{M} C_1 I_0(\xi), \quad (3.43) \]

with \(\xi = r \sqrt{s/c_1} \) and \(I_n \) is the modified Bessel function of the first kind of order \(n \). Substituting this solution into the Navier-type equation and integrating with respect to \(r \) yields the expression for the radial displacement,

\[\tilde{u}_r = -\alpha \xi C_1 r \frac{I_1(\xi)}{\xi} + \frac{C_2 r}{2}. \quad (3.44) \]

The parameters \(C_1 \) and \(C_2 \) can then be easily determined from the time-dependent boundary conditions \(p_o(t), p_O(t), \) and \(S_o(t) \).

Eq. (3.40) shows that the deviatoric unloading behavior of the core only depends on the difference of horizontal in-situ stresses and on viscoelastic properties of the rock.
matrix. In other words, pore fluid diffusion and coupled phenomena do not affect the deviatoric unloading behavior. This observation was recognized earlier by Warpinski and Teufel (1989). However, in practice, care must be taken to either measure the radial displacement only or separate the tangential displacement from the measured composite displacement.

The axisymmetric unloading behavior of the retrieved core, on the other hand, is extremely convoluted. It depends on the in-situ stress state, rock and fluid properties, as well as operational details such as core retrieval time and sample preparation time. The time for core retrieval affects the time-dependent stress and pore pressure unloading conditions while sample preparation time limits how much relaxation data can be recorded. These time durations, therefore, must be accounted for in the analysis.

3.4 Discussion on Analytical Solutions for Laboratory Testing

3.4.1 General Discussion

It is evident from the analytical expressions that the response of a transversely isotropic poroviscoelastic sample greatly depends on how it is tested, i.e., unconfined compression, triaxial configuration, or confined/oedometer testing. In particular, all four stiffness coefficients M_{11}, M_{12}, M_{13}, and M_{33} have significant influence on the behavior of a sample tested in unconfined compression or triaxial condition. On the other hand, M_{33} and to a lesser degree M_{13} take on a dominating role in determining the behavior of a sample tested in confined compression. Consequently, confined compression testing might be better for isolating and characterizing M_{13} and M_{33} than unconfined compression and triaxial tests. On the other hand, using the confined compression test alone could obviously result in misled conclusions about the anisotropic nature of the
tested material. A more in-depth example is given in the next section on biomechanics testing.

The presented formulation and solutions are general with regards to the form of the viscoelastic stiffness of the porous matrix. Spring-dashpot models such as the familiar Zener model (Carter and Booker, 1983; Leipzig and Athanasiou, 2005) can be easily employed. Alternatively, experimentally measured relaxation functions can also be used, provided their Laplace transforms exist.

From equations (3.19) and (3.29), it is clear that even when the intrinsic permeability is isotropic, i.e., $k_1 = k_3$, the diffusion coefficients in unconfined compression and triaxial setups, c_1, and confined compression or oedometer setup, c_3, could assume different values which reflect the anisotropy of the stiffness of the porous matrix. For fully coupled problems such as these, the diffusion of the pore fluid is governed not only by the intrinsic permeability of the matrix and the viscosity of the pore fluid but also by the anisotropic stiffness of the porous matrix. This issue must be taken into consideration when designing experimental protocols or analyzing laboratory data.

Finally, for the testing of poroviscoelastic transversely isotropic geo- and biomaterials using the investigated configurations, there are three different time scales involved that warrant careful consideration. The first time scale is dictated by the viscoelastic nature of the porous matrix. This time scale is an intrinsic material property and researchers have no control over it unless they actively modify the rock or the biological tissue. The second time scale involves the diffusion of pore fluid within the porous matrix, and is influenced by not only material properties but also sample
dimensions, giving researchers some command over it. The amount of control over this time scale is limited, however, in biomechanics mostly due to the physical limits in tissue size and thickness, and in geomechanics mostly due to the physical limits of the testing apparatus. The third and final time scale involves that of the deformation or load application and sample monitoring. Fortunately, this time scale can usually be controlled at the researcher’s discretion. By understanding the intricate interplay between these three time scales, the laboratory tests can be designed to best suit the purpose of the experimentalist.

3.4.2 Numerical Examples of Biomechanics Testing

The response of an articular cartilage plug with dimensions of \(R = 2.5 \) mm and \(H = 1000 \) µm under two of the most popular setups in biomechanics research, i.e., unconfined compression and confined compression, is investigated to illustrate the applicability of the presented solutions. To demonstrate the viscoelastic effects of the matrix, all matrix drained moduli \(M_{ij}(t) \) are assumed to behave according to the Zener model. Initial stiffness coefficients are as follows: \(M_{11}(0^+) = 0.560 \) MPa, \(M_{12}(0^+) = 0.032 \) MPa, \(M_{13}(0^+) = 0.029 \) MPa, and \(M_{33}(0^+) = 1.200 \) MPa. All moduli are assumed to retain 2/3 of initial values at long time and to have the same characteristic relaxation time of 60 s. This assumption of a uniform relaxation function for all moduli serves to illustrate the material behavior more clearly and is not critical to the solutions. Different relaxation functions with diverging ratios of long-time value to initial value as well as different relaxation times can be used without any difficulty. Other material properties are time-independent as follows: porosity \(\phi = 0.852 \), permeability in isotropic plane \(k_1 = 1.0 \times 10^{-15} \) m\(^2\), permeability in transverse direction \(k_3 = 1.0 \times 10^{-15} \) m\(^2\), fluid bulk modulus
\(K_f = 2.3 \text{ GPa} \), matrix grain bulk modulus \(K_s = 3.0 \text{ MPa} \), and fluid viscosity \(\mu = 0.001 \) \(\text{Pa} \cdot \text{s} \). It is also worth noting that \(M_{11} \) and \(M_{33} \) are in fact the anisotropic aggregate moduli \(H_i \) in the isotropic plane and in the transverse direction within biomechanics context. Cyclic loading is of particular interest in the biomechanics testing; for this example, a stroke-controlled loading from 0-50 \(\mu \text{m} \) (0-5\% apparent strain) with a frequency of 1 Hz is employed as shown in Fig. 3.3. The numerical results in this section were inverted from the analytical solutions using Durbin method with 800 terms (Cheng et al., 1994).

Fig. 3.3 – Applied cyclic axial deformation for both unconfined and confined compression tests.

Although the porous matrix of articular cartilage has long been recognized as a viscoelastic material, the tissue has been modeled as a poroelastic matter in some previous studies to simplify the analysis. The typical approach is to measure the long-time stiffness coefficients to determine the corresponding poroelastic parameters. Therefore, to further illustrate the poroviscoelastic behavior of the tissue, the response of a counterpart poroelastic sample is also investigated. Following the common analysis method, the stiffness coefficients are taken as \(M_{ij,\text{elastic}} = M_{ij,\text{viscoelastic}}(\infty) \).
Furthermore, an isotropic poroviscoelastic sample is also analyzed to demonstrate the effects of material anisotropy. For illustration purposes, it is assumed that M_{33} and M_{13} are determined accurately; however, M_{11} and M_{12} are not evaluated but assumed to be the same as M_{33} and M_{13} based on the incorrect assumption of material isotropy.

Figs. 3.4–3.6 demonstrate the evolution of pore pressure and axial stress at the center and the lateral displacement of each side of the unconfined samples with time, respectively. Although the trends are similar, it is clear that under displacement-controlled loading, the poroelastic analysis could underestimate the magnitude of pore pressure and stress which is similar to results reported in earlier studies (Cohen et al., 1998; Bursać et al., 1999). It is also evident that the failure to account for material anisotropy could give rise to erroneous predictions of the articular cartilage response to external loading, even when poroviscoelastic modeling is used.

![Graph](image_url)

Fig. 3.4 – Pore pressure history at the center of the unconfined samples.
On the other hand, the differences in the confined compression tests are less pronounced, as shown in Figs. 3.7–3.9. Only minor difference exists between the poroviscoelastic anisotropic and the poroviscoelastic isotropic responses. The reason is that only two out of the four moduli, i.e., M_{33} and M_{13}, play a dominating role in determining the tissue behavior in this testing configuration, as explained in Section
3.4.1. Between the poroelastic results and the poroviscoelastic results, only the axial stress histories are significantly different while the evolution of the lateral stress and the pore pressure are almost the same for all three samples. Largely due to the small thickness of the tissue, i.e., \(H = 1000 \ \mu m \), the diffusion time scale is relatively small. For example, the diffusion characteristic time for the poroelastic anisotropic sample is 1.06 s, comparable to the time scale of the 1-Hz applied loading while being much smaller than the viscoelastic relaxation characteristic time of 60 s. In other words, the pore pressure diffusion takes place fast enough compared to the applied loading as well as the viscoelastic relaxation of the porous tissue to render the difference between responses small. Under circumstances such as these, the use of the confined compression test alone could potentially mislead the experimentalist to conclude that the articular cartilage is poroelastic and/or isotropic. Therefore, other tests such as the unconfined compression test are recommended to supplement confined compression testing in material characterization for poroviscoelastic anisotropic biological tissues.

Fig. 3.7 – Pore pressure history at the bottom of the confined samples.
Fig. 3.8 – Evolution of axial stress at the center of the confined samples.

Fig. 3.9 – Evolution of lateral stress of the confined samples.

Similar phenomena have been observed in previous attempts to characterize articular cartilage using poroelasticity. Soulhat et al. (1999) reported that isotropic poroelastic modeling can give a reasonable description of the axial stress response in confined compression tests yet fails to describe the axial stress response in unconfined compression and transversely isotropic poroelastic modeling is required to improve the
match with experiments. Bursać et al. (1999) reported that even transversely isotropic poroelastic modeling cannot simultaneously match the axial and radial responses of confined and unconfined compression tests for calf articular cartilage. The numerical examples in this section illustrate that the failure to account for either anisotropy or viscoelasticity of the articular cartilage matrix could result in flawed predictions of the tissue behavior under general external loading.

3.4.3 Numerical Examples of Geomechanics Testing

In this section, the response of an oil shale rock sample with dimensions of $R = 5$ cm and $H = 20$ cm under jacketed triaxial setup is investigated. It has been reported that the characteristic time of creep for many rocks including shale, siltstone, and sandstone, falls in the range of 10 to 15 hours (Warpinski and Teufel, 1989). Therefore, in this example, all matrix drained moduli $M_{ij}(t)$ are assumed to behave according to the Zener model with the same characteristic creep time of 10 hours. Initial stiffness coefficients are assumed as follows: $M_{11}(0^+) = 11.93$ GPa, $M_{12}(0^+) = 4.93$ GPa, $M_{13}(0^+) = 3.37$ GPa, and $M_{33}(0^+) = 5.90$ GPa. All moduli are assumed to retain 50% of initial values at long time. Other material properties are time-independent as follows: porosity $\phi = 0.08$, permeability $k_1 = k_3 = 50$ nD, fluid bulk modulus $K_f = 300$ MPa, matrix grain bulk modulus $K_s = 40$ GPa, and fluid viscosity $\mu = 0.010$ Pa·s. The numerical results presented in this section were inverted to time domain with Stehfest algorithm using 10 terms (Cheng et al., 1994).

A counterpart poroelastic sample is also examined to demonstrate the poroviscoelastic effects. Since the characteristic time of viscoelasticity of the rock matrix is substantially longer than most standard tests, material characterization using
conventional techniques would likely produce the short-time poromechanics parameters. Therefore, for the poroelastic sample, the stiffness coefficients are taken as $M_{ij\text{-elastic}} = M_{ij\text{-viscoelastic}}(0^+)$.

Finally, an isotropic poroviscoelastic sample is also studied to demonstrate the effects of material anisotropy. For illustration purposes, it is assumed that M_{33} and M_{13} are determined accurately; however, M_{11} and M_{12} are not assessed but assumed to be the same as M_{33} and M_{13} based on the incorrect assumption of material isotropy.

A drained triaxial test in geomechanics typically consists of a relatively rapid confinement to the desired confining pressure, a waiting period to ensure that the generated pore pressure has enough time to dissipate, and finally a linear-ramp axial displacement loading to the desired strain or failure. In this example, the samples will be confined rapidly to a confining pressure of 10 MPa. The linear ramp axial loading will be at the rate of 2% strain in 10 hours.

Figs. 3.10 to 3.12 show the response of the poroelastic anisotropic, poroviscoelastic anisotropic, and poroviscoelastic isotropic samples after the rapid confinement to 10 MPa, i.e., $P_o(t) = S_o(t) = 10 \text{ MPa} \times H(t)$ and $p_o(t) = 0$. The actual buildup time is typically one minute or less, much shorter than the viscoelastic characteristic creep time of 10 hours. It is also much shorter than the diffusion characteristic times, for example 48.4 hours for the poroelastic sample. Therefore, the confining pressure buildup has been idealized as a Heaviside step function without loss of generality.

Fig. 3.10 shows the pore pressure generation at the center of the samples as a function of time. It is evident that the poroelastic analysis would severely underestimate how long the generated pore pressure can sustain inside the poroviscoelastic sample,
and therefore would estimate an inadequate waiting period before the application of axial loading.

Fig. 3.10 – Evolution of pore pressure at the center of samples after sudden confinement.

Fig. 3.11 – Evolution of axial and circumferential displacements after sudden confinement.

Fig. 3.11 presents the history of the axial and circumferential displacement after the rapid confinement, respectively, which can be readily measured in the experimental
setting. These displacements can clearly help differentiate between poroelastic and poroviscoelastic behavior, as well as anisotropic and isotropic rock properties.

Fig. 3.12 – Evolution of pore pressure and effective axial stress at the center of samples during linear ramp axial loading.

Fig. 3.12 shows the pore pressure and effective axial stress at the center of the same three samples during the linear ramp axial displacement loading. The rate of loading is relatively slow, i.e., 2% apparent strain in 10 hours, to accommodate the long viscoelastic characteristic time as well as the long diffusion characteristic time. While the poroelastic analysis can relatively follow the poroviscoelastic trend in pore pressure prediction, it overestimates the effective stress at the center of the poroviscoelastic sample. On the other hand, Fig. 3.12 clearly shows that the failure to account for material anisotropy could result in seriously flawed predictions or analysis of rock behavior even under well-controlled laboratory testing conditions.
3.5 Numerical Examples and Discussion on Strain Recovery Method

In this section, the response of a core sample with diameter of 15.24 cm (6 in) retrieved from a depth of 1000 m is investigated. The in-situ stress state is summarized below:

\[S_V = 2.31 \text{ SG}, \ S_{H_{\max}} = 2.07 \text{ SG}, \ S_{H_{\min}} = 1.84 \text{ SG}, \ p_0 = 1.0 \text{ SG}, \ \theta_{s_H} = 0. \]

It has been reported that the characteristic time of creep for many rocks including shales, siltstones, and sandstones, falls in the range of 10 to 15 hours (Warpinski and Teufel, 1989). Therefore, in this example, all matrix drained moduli \(M_{ij}(t) \) are assumed to behave according to the Zener model with the same characteristic creep time of 10 hours. Other models for the viscoelasticity of the rock matrix or experimentally measured relaxation/creep functions can be easily employed in the same manner. Initial Young’s modulus perpendicular to bedding, \(E_3(0^+) \), is assumed to be 5 GPa. The Poisson’s ratios are assumed to be constant, \(\nu_1 = \nu_3 = 0.3 \). All moduli are assumed to retain 50% of initial values at long time. The Young’s modulus in the direction parallel to bedding is assumed to be \(E_1 = n_E E_3 \). The anisotropy ratio \(n_E \) is typically from 1 to 2. Three different values of \(n_E \) of 1.0, 1.5, and 2.0 will therefore be analyzed herein. Other material properties are as follows: porosity \(\phi = 0.10 \), permeability \(k_1 = 5 \text{ nD} \), fluid bulk modulus \(K_f = 2.3 \text{ GPa} \), matrix grain bulk modulus \(K_s = 42 \text{ GPa} \), and fluid viscosity \(\mu = 1 \text{ cP} \).

The simplified analyses using viscoelasticity commonly used in the petroleum industry are also included to investigate their performance on these low-permeability shales. In these analyses, the pore pressure distribution is assumed to be uniform.
throughout the core and equal the pore pressure on the core surfaces (Blanton and Teufel, 1986).

Figs 3.13 to 3.18 show the full relaxation evolution of the cores from the end of coring and the measured relaxation data during the actual test side by side with the corresponding simplified viscoelastic modeling. Although the viscoelastic modeling results roughly follow the trends of the poroviscoelastic rock samples, they cannot capture the actual relaxation behavior. It is also evident that the anisotropy of the formation significantly affects both the overall relaxation evolution and the recorded relaxation.

![Fig. 3.13 – Poroviscoelastic relaxation evolution from the end of coring for $E_1 = E_3$, (a) and simplified viscoelastic modeling, (b).](image)
Fig. 3.14 – Measured poroviscoelastic relaxation data for $E_1 = E_3$, (a) and simplified viscoelastic modeling, (b).

Fig. 3.15 – Poroviscoelastic relaxation evolution from the end of coring for $E_1 = 1.5E_3$, (a) and simplified viscoelastic modeling, (b).
Fig. 3.16 – Measured poroviscoelastic relaxation data for $E_1 = 1.5E_3$, (a) and simplified viscoelastic modeling, (b).

Fig. 3.17 – Poroviscoelastic relaxation evolution from the end of coring for $E_1 = 2E_3$, (a) and simplified viscoelastic modeling, (b).
Fig. 3.18 – Measured poroviscoelastic relaxation data for $E_1 = 2E_3$, (a) and simplified viscoelastic modeling, (b).

3.6 Summary

The analytical solution for the poroviscoelastic transversely isotropic cylinder problem has been derived, accommodating a number of laboratory and field testing conditions. For the testing of poroviscoelastic anisotropic geo- and bio-materials, there are three different time scales involved that demand careful consideration. The first time scale comes from the viscoelastic nature of the porous matrix and is an intrinsic material property. The second time scale involves the diffusion of pore fluid within the porous matrix, and is influenced by material properties as well as sample dimensions. The final time scale belongs to load application and sample monitoring. Understanding the complex interplay between these three time scales is crucial for the design of laboratory tests on poroviscoelastic materials. Furthermore, even when the intrinsic permeability is isotropic, the diffusion coefficients in unconfined compression and triaxial setup could be very different from the diffusion coefficients in confined compression and oedometer configuration due to the anisotropy of the matrix stiffness. This issue must be taken into
consideration when designing experimental protocols or analyzing and interpreting laboratory data.

Inspection of the analytical expressions shows that the response of a transversely isotropic poroviscoelastic sample would significantly depend on which testing configuration is chosen. In particular, all four stiffness coefficients M_{11}, M_{12}, M_{13}, and M_{33} have significant influence on the behavior of a sample tested under unconfined compression and triaxial condition while only M_{33} and M_{13} dominate the behavior of the same sample tested in confined compression and oedometer condition. As a consequence, the use of the confined compression or oedometer test alone could potentially mislead the researcher that the anisotropic material is isotropic. Furthermore, in some cases the researcher can also be deceived into believing that the material is poroelastic instead of poroviscoelastic as demonstrated in the numerical example of articular cartilage confined compression testing with cyclic loading. In short, unconfined compression or triaxial tests would probably yield more accurate material characterization than confined compression or oedometer testing for poroviscoelastic anisotropic geo-materials and biological tissues.

For poroviscoelastic geo-materials tested under a drained triaxial setup with confinement followed by linear ramp axial loading, the sample response should be closely monitored during the waiting period after confinement in addition to during the axial loading, as these data can help characterize both the poroviscoelastic and the anisotropic nature of the rocks. The failure to account for either the viscoelasticity or the anisotropy of the rock matrix can detrimentally affect the estimation of effective stress for poroviscoelastic rocks subjected to external loading.
In this chapter, an analytical simulation of the poroviscoelastic transversely isotropic relaxation of a drill core from a vertical well, from the time it is cored, during retrieval, and during sample monitoring in laboratory conditions, using realistic time-dependent stress and pressure unloading conditions, has also been presented. Deviatoric unloading behavior of the core has been shown to depend only on the difference of horizontal in-situ stresses and on viscoelastic properties of the rock matrix. The axisymmetric unloading behavior, on the other hand, is extremely convoluted. It depends on the in-situ stress state, rock and fluid properties, as well as operational details such as core retrieval time and sample preparation time. Through the numerical examples demonstrated herein, it is clear that both the poroviscoelasticity and anisotropy of the rock formation must be accounted for in order to realistically capture the actual core relaxation.

In conclusion, the presented analytical solutions could serve as benchmarks for validating numerical schemes and simulations or assist directly in calibrating and interpreting test results on poroviscoelastic anisotropic geo- and bio-materials.
Chapter 4: Weakly Orthotropic Cylinders

4.1 Introduction

This chapter presents the analytical solutions for the time-dependent evolution of pore pressure, axial, radial, and tangential stresses, as well as axial and radial displacements, of a poroelastic or poroviscoelastic cylindrical sample with cylindrical weak orthotropy under triaxial or unconfined compression testing conditions. These solutions are of particular importance for cylindrically-reinforced low permeability clays with significant viscoelastic behavior. Potential applications of these materials might include nuclear waste storage, chemical waste storage, and viscoelastic settlement estimation.

4.2 Problem Description

A time-dependent axial force $F(t)$ is applied through the rigid frictionless end caps as shown in Fig. 4.1. Time-dependent confining pressure $P_o(t)$ and pore pressure $p_o(t)$ can also be applied to the lateral surface. The tested material has weak cylindrical orthotropy ($|M_{11} - M_{22}| << M_{11}, M_{22}$ and $|M_{13} - M_{23}| << M_{13}, M_{23}$), with the axis of material symmetry coinciding with the axis of geometrical symmetry. The analytical solutions derived herein are also applicable to more familiar subsets of weak cylindrical orthotropy such as transverse isotropy and isotropy.

The general boundary conditions at $r = R$ are as follows:

$$\sigma_{rr} = P_o(t), \quad p = p_o(t), \quad \sigma_{r\theta} = \sigma_{rz} = 0.$$ \hspace{1cm} (4.1)
Fig. 4.1 – Compression testing of anisotropic cylindrical sample, a) sample dimension and attached polar coordinate system, b) unconfined compression test, c) unjacketed triaxial test, d) jacketed triaxial test.

The boundary conditions at the two ends are as follows:

\[q_z = 0, \sigma_{zz} = 0, u_r \big|_{z=0} = 0. \] (4.2)

Finally, equilibrium condition in the \(z \) direction requires,

\[\frac{F(t)}{2\pi} = \int_0^H \sigma_{zz} r dr. \] (4.3)

With the aforementioned conditions, the experimental setup becomes a generalized plane-strain axisymmetric problem, with all shear stresses and shear strains on the
principal planes vanish, and all dynamic and kinematic variables except u_z independent of z.

4.3 Analytical Solution

4.3.1 Poroelastic Solution

The constitutive relations for cylindrically orthotropic poroelasticity in polar coordinates are as follows:

$$\sigma_{rr} = M_{11}\varepsilon_{rr} + M_{12}\varepsilon_{\theta\theta} + M_{13}\varepsilon_{zz} + \alpha_1 p, \quad (4.4)$$

$$\sigma_{\theta\theta} = M_{12}\varepsilon_{rr} + M_{22}\varepsilon_{\theta\theta} + M_{23}\varepsilon_{zz} + \alpha_2 p, \quad (4.5)$$

$$\sigma_{zz} = M_{13}\varepsilon_{rr} + M_{23}\varepsilon_{\theta\theta} + M_{33}\varepsilon_{zz} + \alpha_3 p, \quad (4.6)$$

$$p = M(\alpha_1\varepsilon_{rr} + \alpha_2\varepsilon_{\theta\theta} + \alpha_3\varepsilon_{zz} + \zeta), \quad (4.7)$$

where σ_{ij} is the stress tensor, ε_{ij} is the strain tensor, M_{ij}’s are the drained moduli of the soil/rock matrix, p is the pore pressure, ζ is the variation of fluid content, α_i’s are the anisotropic pore pressure coefficients, and M is the inverse of storage coefficient under constant strains. Other governing relations include:

Darcy’s law in the radial direction,

$$q_r = \frac{k_i}{\mu} \frac{\partial p}{\partial r}, \quad (4.8)$$

strain-displacement relations,

$$\varepsilon_{rr} = \frac{\partial u_r}{\partial r}, \quad (4.9)$$

$$\varepsilon_{\theta\theta} = \frac{u_r}{r}, \quad (4.10)$$
equilibrium in radial direction,
\[
\frac{\partial \sigma_{rr}}{\partial r} + \frac{\sigma_{rr} - \sigma_{\theta\theta}}{r} = 0,
\]
and continuity equation,
\[
\frac{\partial \zeta}{\partial t} - \frac{k_1}{\mu} \left(\frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} \right) \rho = 0,
\]
where \(q_r, k_1, \) and \(u_r \) are the fluid flux, permeability, and displacement in the radial direction, and \(\mu \) is the pore fluid viscosity.

Substitution of constitutive relations into the equilibrium equation yields,
\[
-\alpha_1 M \frac{\partial \zeta}{\partial r} = \left(\frac{M_{11}}{\alpha_1} + \alpha_1 M \right) \frac{\partial}{\partial r} \left(\alpha_1 \varepsilon_{rr} + \alpha_2 \varepsilon_{\theta\theta} \right) + M \left(\alpha_1 - \alpha_2 \right) \frac{1}{r} \left(\alpha_1 \varepsilon_{rr} + \alpha_2 \varepsilon_{\theta\theta} \right) \\
+ \left(M_{11} - M_{12} \right) \frac{\varepsilon_{rr}}{r} + \left(M_{12} - M_{22} \right) \frac{\varepsilon_{\theta\theta}}{r} + \left(M_{12} - M_{11} \right) \frac{\alpha_2}{\alpha_1} \frac{\partial \varepsilon_{\theta\theta}}{\partial r} \\
+ \left[M_{13} - M_{33} + \alpha_3 M \left(\alpha_1 - \alpha_2 \right) \right] \frac{\varepsilon_{zz}}{r} - \left(\alpha_1 - \alpha_2 \right) M \frac{\zeta}{r}.
\]
This equation can be rewritten in the form:
\[
-\alpha_1 M \frac{\partial \zeta}{\partial r} = \left(\frac{M_{11}}{\alpha_1} + \alpha_1 M \right) \frac{\partial}{\partial r} \left(\alpha_1 \varepsilon_{rr} + \alpha_2 \varepsilon_{\theta\theta} \right) + \Delta,
\]
with,
\[
\Delta = M \left(\alpha_1 - \alpha_2 \right) \frac{1}{r} \left(\alpha_1 \varepsilon_{rr} + \alpha_2 \varepsilon_{\theta\theta} \right) \\
+ \left(M_{11} - M_{12} \right) \frac{\varepsilon_{rr}}{r} + \left(M_{12} - M_{22} \right) \frac{\varepsilon_{\theta\theta}}{r} + \left(M_{12} - M_{11} \right) \frac{\alpha_2}{\alpha_1} \frac{\partial \varepsilon_{\theta\theta}}{\partial r} \\
+ \left[M_{13} - M_{33} + \alpha_3 M \left(\alpha_1 - \alpha_2 \right) \right] \frac{\varepsilon_{zz}}{r} - \left(\alpha_1 - \alpha_2 \right) M \frac{\zeta}{r}.
\]
Since the drained moduli \(M_{ij} \)'s of the matrix are much smaller than the bulk modulus \(K_s \) of the grains for all soils and many rocks, \(\alpha_1 \) and \(\alpha_2 \) are very close to unity.
Therefore, the difference between α_1 and α_2 are negligible compared to each pore pressure coefficient. Furthermore, material weak orthotropy gives $|M_{11} - M_{22}| \ll M_{11}, M_{22}$ and $|M_{13} - M_{23}| \ll M_{13}, M_{23}$. Assuming that the term Δ can be neglected compared to other terms, Eq. (4.14) simplifies to,

$$- \alpha_i M \frac{\partial \zeta}{\partial r} = \left(\frac{M_{11}}{\alpha_i} + \alpha_i M \right) \frac{\partial}{\partial r} \left(\alpha_i \varepsilon_{rr} + \alpha_2 \varepsilon_{\theta \theta} \right).$$

(4.16)

It should be noted that the simplified Eq. (4.16) correctly reduces to corresponding exact relations for transverse isotropy and isotropy. The use of Eqs. (4.16) and (4.7) transforms the continuity equation into,

$$\frac{\partial \zeta}{\partial t} - c_i \left(\frac{\partial^2 \zeta}{\partial r^2} + \frac{1}{r} \frac{\partial \zeta}{\partial r} \right) = 0,$$

(4.17)

with $c_i = \frac{k_i M_{11} M}{\mu M_{11}^u}$, which has the Laplace transform of the form:

$$s \tilde{\zeta} - c_i \left(\frac{\partial^2 \tilde{\zeta}}{\partial r^2} + \frac{1}{r} \frac{\partial \tilde{\zeta}}{\partial r} \right) = 0.$$

(4.18)

Let $\tilde{\xi} = r \sqrt{s/c_i}$, Eq. (4.18) takes the form:

$$\tilde{\xi}^2 \frac{\partial^2 \tilde{\zeta}}{\partial \xi^2} + \tilde{\xi} \frac{\partial \tilde{\zeta}}{\partial \xi} - \tilde{\xi}^2 \tilde{\zeta} = 0.$$

(4.19)

Eq. (4.19) is a modified Bessel equation of 0th degree with the following solution:

$$\tilde{\zeta} = \frac{M_{11}^u}{M} C_1 I_0(\tilde{\xi})$$

(4.20)

Eq. (4.20) already takes into account the fact that the variation of fluid content must be finite at $r = 0$. This result together with the displacement-strain relations gives the radial displacement of the form:
\[\tilde{u}_r = -\frac{\alpha_1 C_1}{1 + \alpha_2 / \alpha_1} r f(\tilde{\xi}) + \frac{C_2}{1 + \alpha_2 / \alpha_1} r, \quad (4.21) \]

where \(f(\tilde{\xi}) = \, _1F_2\left(1 + \frac{\alpha_2}{\alpha_1}; 1, \frac{3 + \alpha_2}{2}; \frac{\xi^2}{4}\right) \) is a hypergeometric function of \(\tilde{\xi} \). In the case of transverse isotropy, \(\alpha_1 = \alpha_2 \), this hypergeometric function simplifies to the familiar expression:

\[_1F_2\left(1, 1, 2; \frac{\xi^2}{4}\right) = 2 \frac{I_1(\xi)}{\xi}. \quad (4.22) \]

Other dynamic and kinematic quantities can then be found as follows:

\[\tilde{\varepsilon}_{rr} = -\alpha_1 C_1 I_0(\tilde{\xi}) + \frac{\alpha_2 C_1}{1 + \alpha_2 / \alpha_1} f(\tilde{\xi}) + \frac{C_2}{1 + \alpha_2 / \alpha_1}, \quad (4.23) \]

\[\tilde{\varepsilon}_{\theta\theta} = -\alpha_1 C_1 f(\tilde{\xi}) + \frac{C_2}{1 + \alpha_2 / \alpha_1}, \quad (4.24) \]

\[\bar{p} = M_1 C_1 I_0(\tilde{\xi}) + \alpha_1 M C_2 + \alpha_3 M \tilde{\varepsilon}_{zz}, \quad (4.25) \]

\[\tilde{\sigma}_{rr} = \frac{\lambda_{112}}{1 + \alpha_2 / \alpha_1} C_1 f(\tilde{\xi}) + \frac{M_{11}^u + M_{12}^u}{1 + \alpha_2 / \alpha_1} C_2 + M_{13}^u \tilde{\varepsilon}_{zz}, \quad (4.26) \]

\[\tilde{\sigma}_{\theta\theta} = \frac{\lambda_{122}}{1 + \alpha_2 / \alpha_1} C_1 f(\tilde{\xi}) + \frac{M_{12}^u + M_{22}^u}{1 + \alpha_2 / \alpha_1} C_2 + M_{23}^u \tilde{\varepsilon}_{zz}, \quad (4.27) \]

\[\tilde{\sigma}_{zz} = \lambda_{132} C_1 I_0(\tilde{\xi}) + \frac{\lambda_{312}}{1 + \alpha_2 / \alpha_1} C_1 f(\tilde{\xi}) + \frac{M_{13}^u + M_{23}^u}{1 + \alpha_2 / \alpha_1} C_2 + M_{33}^u \tilde{\varepsilon}_{zz}, \quad (4.28) \]

\[\tilde{q}_r = -\frac{k_c}{\mu} M_1 C_1 \left[\sum \frac{s}{c_1} I_1(\xi) \right], \quad (4.29) \]

Solving for boundary conditions \(P_o(t), p_o(t), \) and \(F(t) \), the unknown coefficients \(C_1, C_2, \) and the transformed axial strain \(\tilde{\varepsilon}_{zz} \) can be found to be as follows:
\[C_1 = \frac{a_1 + a_2}{D} \left\{ -M(\lambda_{11} + \lambda_{23})\tilde{s}_o \\
- M(\lambda_{331} + \lambda_{332})\tilde{p}_o \\
+ \left[a_3 M(\lambda_{113} + \lambda_{123}) - (M_{113} + M_{23})M_{13}^{\mu} + M_{33}(M_{11}^{\mu} + M_{12}^{\mu})\tilde{p}_o \right] \right\}, \quad (4.30) \]

\[C_2 = \frac{1 + a_2/a_1}{D} \left\{ \left[(a_1 + a_2)M_{11}M_{11}^{\mu}I_0(\beta) - \alpha_1 a_3 M_{412}f(\beta) \right] \tilde{s}_o + \left[(a_1 + a_2)M_{11}M_{13}^{\mu}I_0(\beta) - \alpha_3 Mh(\beta) \right] \tilde{p}_o \right\}, \quad (4.31) \]

\[\tilde{\varepsilon}_z = \frac{1}{2} \left\{ \left[(a_1 + a_2)\left(M_{11}^{\mu} + M_{12}^{\mu} \right)I_0(\beta) - \alpha_1 a_3 M_{412}f(\beta) \right] \tilde{s}_o + \left[(a_1 + a_2)\left(M_{13}^{\mu} + M_{23}^{\mu} \right)I_0(\beta) - \alpha_3 Mh(\beta) \right] \tilde{p}_o \right\}, \quad (4.32) \]

where,

\[\beta = R\sqrt{s/c_1}, \quad (4.33) \]

\[D = (a_1 + a_2)M_{11}M_{11}^{\mu}(M_{11}^{\mu} + M_{12}^{\mu}) - M_{13}^{\mu}(M_{13}^{\mu} + M_{23}^{\mu})I_0(\beta) - \alpha_1 a_3 M_{412}(\lambda_{331} + \lambda_{332})f(\beta) - M(\lambda_{113} + \lambda_{123})h(\beta) \quad (4.34) \]

\[h(\tilde{\varepsilon}) = 2(a_1 + a_2)\lambda_{113}I_1(\tilde{\varepsilon}) + \alpha_1 a_3 \lambda_{312}g(\tilde{\varepsilon}), \quad (4.35) \]

\[g(\tilde{\varepsilon}) = F_2 \left(\frac{1 + a_2/a_1}{2}, \frac{3 + a_2/a_1}{2}, \frac{\tilde{\varepsilon}^2}{4} \right). \quad (4.36) \]

The analytical solution for a poroelastic cylindrical sample is therefore complete in the Laplace transform domain and can be easily inverted numerically to time domain using appropriate inversion algorithms.

4.3.2 Poroviscoelastic Solution

Invoking the correspondence principle between poroviscoelasticity and poroelasticity, the solution for poroviscoelastic weakly-orthotropic cylinders take the form:
\[
\zeta = \frac{M_1u}{M}C_1I_0(\xi),
\] (4.37)

\[
\tilde{u}_r = -\frac{\alpha_1C_1}{1 + \alpha_2/\alpha_1}r f(\xi) + \frac{C_2}{1 + \alpha_2/\alpha_1}r,
\] (4.38)

\[
\tilde{\epsilon}_{rr} = -\alpha_1C_1I_0(\xi) + \frac{\alpha_2C_1}{1 + \alpha_2/\alpha_1}f(\xi) + \frac{C_2}{1 + \alpha_2/\alpha_1},
\] (4.39)

\[
\tilde{\epsilon}_{\phi\phi} = -\frac{\alpha_1C_1}{1 + \alpha_2/\alpha_1}f(\xi) + \frac{C_2}{1 + \alpha_2/\alpha_1},
\] (4.40)

\[
\tilde{p} = M_1C_1I_0(\xi) + \alpha_1MC_2 + \alpha_3M\tilde{\epsilon}_{zz},
\] (4.41)

\[
\tilde{\sigma}_{rr} = \frac{\lambda_{12}}{1 + \alpha_2/\alpha_1}C_1f(\xi) + \frac{M_{11}u + M_{12}u}{1 + \alpha_2/\alpha_1}C_2 + \bar{M}_{13}u\tilde{\epsilon}_{zz},
\] (4.42)

\[
\tilde{\sigma}_{\phi\phi} = \frac{\lambda_{12}}{1 + \alpha_2/\alpha_1}C_1f(\xi) + \frac{M_{12}u + M_{22}u}{1 + \alpha_2/\alpha_1}C_2 + \bar{M}_{23}u\tilde{\epsilon}_{zz},
\] (4.43)

\[
\tilde{\sigma}_{zz} = \frac{\lambda_{13}}{1 + \alpha_2/\alpha_1}C_1f(\xi) + \frac{M_{13}u + M_{23}u}{1 + \alpha_2/\alpha_1}C_2 + \bar{M}_{33}u\tilde{\epsilon}_{zz},
\] (4.44)

\[
\tilde{q}_r = -\frac{k_c}{\mu}\frac{M_{11}C_1}{C}r I_1(\xi),
\] (4.45)

with,

\[
C_1 = \frac{\alpha_1 + \alpha_2}{D}\left\{ -\bar{M}(\bar{\lambda}_{13} + \bar{\lambda}_{123})\tilde{s}_o - \bar{M}(\bar{\lambda}_{331} + \bar{\lambda}_{332})\tilde{p}_o + [\bar{\alpha}_3M(\bar{\lambda}_{13} + \bar{\lambda}_{123}) - (\bar{M}_{13} + \bar{M}_{23})\bar{M}_{13}u + \bar{M}_{33}(\bar{M}_{11} + \bar{M}_{12})\tilde{p}_o] \right\},
\] (4.46)

\[
C_2 = \frac{1 + \alpha_2/\alpha_1}{D}\left\{ -\left[(\alpha_1 + \alpha_2)\bar{M}_{11}\bar{M}_{13}uI_0(\beta) - \bar{\alpha}_1\bar{\alpha}_3\bar{\lambda}_{112}f(\beta) \right]\tilde{s}_o + \left[(\alpha_1 + \alpha_2)\bar{M}_{11}\bar{M}_{33}uI_0(\beta) - \bar{\alpha}_1\bar{\alpha}_3\bar{\lambda}_{112}f(\beta) \right]\tilde{p}_o + \left[\bar{M}_{33}h(\beta) - \bar{\alpha}_1\bar{\alpha}_12\bar{M}_{33}uI_0(\beta) \right]\tilde{p}_o \right\},
\] (4.47)
\[\tilde{\varepsilon}_{zz} = \frac{1}{D} \left\{ \left(\tilde{\varepsilon}_1 + \tilde{\varepsilon}_2 \right) \left[\bar{M}_{11} \left(\bar{M}_{11}^{uu} + \bar{M}_{12}^{uu} \right) J_0(\beta) - \bar{\alpha}_1 \bar{\alpha}_{112} \tilde{f}(\beta) \right] \hat{S}_o \right\} - \left(\tilde{\varepsilon}_1 + \tilde{\varepsilon}_2 \right) \left[\bar{M}_{11} \left(\bar{M}_{13}^{uu} + \bar{M}_{23}^{uu} \right) J_0(\beta) - \bar{\alpha}_1 \bar{\alpha}_{112} \tilde{f}(\beta) \right] \hat{S}_o \right\} \right\}, \]

\[D = \left(\tilde{\varepsilon}_1 + \tilde{\varepsilon}_2 \right) \bar{M}_{11} \left[\bar{M}_{11}^{uu} \left(\bar{M}_{11}^{uu} + \bar{M}_{12}^{uu} \right) - \bar{M}_{13} \left(\bar{M}_{13}^{uu} + \bar{M}_{23}^{uu} \right) \right] J_0(\beta) \]

\[- \bar{\alpha}_1 \bar{\alpha}_{112} \left(\bar{\alpha}_{331} + \bar{\alpha}_{332} \right) \tilde{f}(\beta) - \bar{M} \left(\bar{\alpha}_{113} + \bar{\alpha}_{332} \right) \tilde{h}(\beta) \]

(4.48)

(4.49)

4.4 Numerical Example

A cylindrical clay sample with diameter of 10 cm and length of 20 cm under unconfined compression is studied in this analysis. A sudden compressive load giving an average axial stress of 100 kPa is applied at \(t = 0 \). Material properties are as follows:

- Grain bulk modulus \(K_s = 40 \) GPa,
- Pore fluid bulk modulus \(K_f = 2.3 \) GPa,
- Porosity \(\phi = 47\% \),
- Permeability in the radial direction \(k_1 = 10^{-16} \) m\(^2\),
- Pore fluid viscosity \(\mu = 0.001 \) Pa.s.

The original transversely isotropic clay has \(E_1(0^+) = E_2(0^+) = 3.0 \) MPa, \(E_3(0^+) = 1.2 \) MPa, and Poisson’s ratios \(\nu_{21} = 0.3 \), and \(\nu_{31} = \nu_{32} = 0.2 \). The cylindrically reinforced clay has weak orthotropy with \(E_2(0^+) = 3.5 \) MPa while other properties remain unchanged. The three Young’s moduli are assumed to behave according to the Zener model with the same characteristic relaxation time of 600 seconds and long-time values equal to 80% of their initial values. The three Poisson’s ratios, on the other hand, are assumed to remain constant in this analysis. However, they can be easily made time-dependent by modeling viscoelastic effects on the moduli \(M_{ij} \)’s instead of \(E_i \)’s.

Fig. 4.2 demonstrates the evolution of pore pressure at the center of the original transversely isotropic clay and the reinforced orthotropic clay specimens with the Mandel-Cryer effect clearly displayed. The two materials give similar responses, with the orthotropic clay producing a little higher peak pore pressure.
Fig. 4.2 – Pore pressure evolution at center of samples.

Fig. 4.3 and Fig. 4.4 show the development with time of the effective axial stress and effective radial stress also at the center of the samples. The orthotropic clay
produces a little lower effective stresses partly due to the aforementioned presence of a higher pore pressure.

Fig. 4.4 – Evolution of effective radial stress at center of samples.

Fig. 4.5 – Evolution of effective tangential stress at center of sample.
The evolution of the effective tangential stress at the center of the samples is illustrated in Fig. 4.5. The two samples sustain very different stress levels because the impact of a changing E_2 is significant on the tangential stress.

The time-dependent axial compression of both samples is compared in Fig. 4.6. Since the axial compression in the unconfined compression test is predominantly controlled by the axial Young’s modulus, E_3, it is natural that the two curves are similar.

![Fig. 4.6 – Axial compression of as functions of time.](image)

Finally, the lateral dilation of the two specimens is compared in Fig. 4.7. Although they obtain the same long-time value due to identical Poisson’s ratios, the transient behavior is appreciably different, with the orthotropic sample producing larger deformation.
4.5 Summary

This chapter delineates the analytical solution for pore pressure, axial stress, radial stress, and tangential stress distributions, as well as the axial and radial displacements for weakly-orthotropic poroelastic or poroviscoelastic cylinders under triaxial or unconfined compression testing conditions. It has also been shown through numerical examples that compared to transversely isotropic samples, orthotropic specimens could have appreciably different effective tangential stress and lateral dilation evolutions.
Chapter 5: Orthotropic Rectangular Strips (Mandel’s Problem)\(^2\)

5.1 Introduction

Mandel’s problem (Mandel, 1953) is one of the classical problems of poromechanics. In this problem, a long specimen with rectangular cross-section \(2a \times 2b\) is sandwiched between two rigid, impermeable, frictionless plates, as illustrated in Fig. 5.1. A load \(2F\) is then suddenly applied at \(t = 0\). Under these conditions, Mandel showed that the induced pore pressure at the center plane \((x = 0)\) would increase above the initial “undrained” value before decreasing to 0. This non-monotonic behavior of the pore pressure response is termed the Mandel-Cryer effect and separates fully-coupled poromechanics from the earlier uncoupled theory of Terzaghi (1943). The Mandel-Cryer effect was confirmed experimentally first by Gibson et al. (1963). Since then, the Mandel’s problem has been used extensively as a benchmark for validating numerical schemes in poromechanics (Christian and Boehmer, 1970; Cheng and Detournay, 1988; Cui et al., 1995).

\[\text{Fig. 5.1 – Schematic of the Mandel’s problem.}\]

\(^2\) Parts of this chapter have been published in Hoang and Abousleiman (2005) and Hoang and Abousleiman (2009a)
Mandel’s original paper (Mandel, 1953) only considered poroelastic isotropic materials. Abousleiman et al. (1996a) extended this solution to poroelastic transversely isotropic materials. In this chapter, the solution by Abousleiman et al. (1996a) will be extended to material orthotropy and general time-dependent loading $2F(t)$. Furthermore, the extended solution will be transferred to poroviscoelasticity using the correspondence principle developed in Chapter 2.

5.2 Potential Applications in Articular Cartilage Mechanics

The new solution will be of particular importance to the study of orthotropic articular cartilage. This vital load-bearing tissue has no blood supply. Therefore, an understanding of load-induced pore pressure and the resulting pore fluid diffusion is crucial in cartilage mechanics. Mechanically, this biological tissue composes of pore fluid, 60-85 percent by weight, and an anisotropic inhomogeneous viscoelastic matrix made up with proteoglycan aggregates and collagen fibers. The anisotropy and heterogeneity of the matrix are due in part to the orientation, size, and distribution of the collagen fibers. The cells, or chondrocytes, are limited in number and contribute little to the mechanical behavior of the tissue. However, cartilage components are produced by the cells, and cell behavior may be susceptible to stresses, fluid pressure, and pore fluid flux caused by external mechanical forces, especially since articular cartilage does not have a blood supply. Moreover, it has been speculated that the pore fluid squeezed out during mechanical loading of the tissue may play an important role in joint lubrication (McCutchén, 1962; Walker et al., 1968; Mansour and Mow, 1977). Ultimately, knowledge of stress and pore pressure distribution as well as pore fluid flow is essential to the understanding of cartilage biomechanics.
For orthotropic articular cartilage, an unconfined compression test of a strip with the length of the strip cut parallel or perpendicular to the split line, as shown in Fig. 5.2, can be conducted to take advantage of the newly-derived solution. With a large enough solution bath, the fluid pressure of the bath can be assumed to be constant.

![Fig. 5.2 – Unconfined compression test setup for a strip of articular cartilage.](image)

5.3 Problem Description

As illustrated in Fig. 5.1, a long orthotropic specimen is sandwiched between two rigid, impermeable, frictionless plates. The xy, xz, and yz planes are chosen to coincide with the planes of material symmetry. Due to the sample geometry, material symmetry, and boundary conditions, every horizontal plane becomes a plane of folding symmetry and the pore fluid only diffuse along the x direction. It is also recognized that all shear stresses and shear strains vanish and all dynamic and kinematic variables except u_z independent of z.

The boundary conditions for this problem are as follows:

$$x = \pm a : \sigma_{xx} = \sigma_{xz} = p = 0,$$ \hspace{1cm} (5.1)

$$x = 0 : u_x = 0,$$ \hspace{1cm} (5.2)

$$z = \pm b : \sigma_{zx} = 0, q_z = 0, \int_{-a}^{a} \sigma_{zz} dx = 2F(t),$$ \hspace{1cm} (5.3)
\[z = -b : u_z = 0, \quad (5.4) \]

where \(u_z \)'s are components of the displacement vector and \(2F(t) \) is the time-dependent force per unit length applied to the rigid plates.

5.4 Analytical Solutions

5.4.1 Poroelastic Solution

Relevant orthotropic poroelastic constitutive relations for this problem are as follows:

\[\tilde{\sigma}_{xx} = M_{11} \tilde{\varepsilon}_{xx} + M_{12} \tilde{\varepsilon}_{yy} + M_{13} \tilde{\varepsilon}_{zz} + \alpha_1 \tilde{\rho}, \quad (5.5) \]

\[\tilde{\sigma}_{yy} = M_{12} \tilde{\varepsilon}_{xx} + M_{22} \tilde{\varepsilon}_{yy} + M_{23} \tilde{\varepsilon}_{zz} + \alpha_2 \tilde{\rho}, \quad (5.6) \]

\[\tilde{\sigma}_{zz} = M_{13} \tilde{\varepsilon}_{xx} + M_{23} \tilde{\varepsilon}_{yy} + M_{33} \tilde{\varepsilon}_{zz} + \alpha_3 \tilde{\rho}, \quad (5.7) \]

\[\tilde{\rho} = M \left(\alpha_1 \tilde{\varepsilon}_{xx} + \alpha_2 \tilde{\varepsilon}_{yy} + \alpha_3 \tilde{\varepsilon}_{zz} + \tilde{\zeta} \right). \quad (5.8) \]

Other governing equations include the equilibrium equation in the \(x \) direction,

\[\frac{\partial \tilde{\sigma}_{xx}}{\partial x} = 0, \quad (5.9) \]

Darcy’s law in the \(x \) direction,

\[\tilde{q}_x = -k_1 \frac{\partial \tilde{p}}{\partial x}, \quad (5.10) \]

and the continuity equation,

\[s \tilde{\zeta} + \frac{\partial \tilde{q}_x}{\partial x} = 0. \quad (5.11) \]

The permeability \(k_1 \) is assumed to be independent of both time and deformation.

Combining the equations for Darcy’s law and continuity yields,

\[s \tilde{\zeta} - k_1 \frac{\partial^2 \tilde{p}}{\partial x^2} = 0. \quad (5.12) \]
The constitutive relation for pore pressure transforms the above equation into,
\[
\begin{align*}
\frac{s \dddot{\zeta}}{\mu} - k_i M \frac{\partial^2 \dddot{\zeta}}{\partial x^2} - k_i M \alpha_i \frac{\partial^2 \dddot{q}}{\partial x^2} &= 0 .
\end{align*}
\]
(5.13)

Substitution of Eqs. (1) and (4) into the equilibrium equation yields,
\[
\frac{\partial \dddot{q}}{\partial x} = -\frac{M \alpha_i}{M^u_{11}} \frac{\partial \dddot{\zeta}}{\partial x} .
\]
(5.14)

Substitution of Eq. (5.14) into Eq. (5.13) gives the diffusion equation for the variation of fluid content,
\[
\frac{s \dddot{q}}{\partial x^2} = 0 ,
\]
(5.15)
with \(c_1 = \frac{k_i M^u_{11} M}{\mu M^u_{11}} \), which admits the following solution,
\[
\dddot{\zeta} = C_1 \cosh \frac{s}{c_1} x .
\]
(5.16)

Eq. (5.16) already takes into account the fact that \(\zeta \) is an even function of \(x \). The axial stress and the pore pressure can then be expressed as functions of the axial strain \(\varepsilon_{zz} \). Solving the boundary conditions for pore pressure and axial stress then gives the following formulas for \(\varepsilon_{zz} \) and \(C_1 \):
\[
C_1 = \frac{M^u_{11} M_{11}^u \frac{s}{c_1}}{A \sinh \left(\frac{s}{c_1} - A_2 \right) \sinh \left(\frac{s}{c_1} \right)} \tilde{F} ,
\]
(5.17)
\[
\dddot{\varepsilon}_{zz} = \frac{M_{11} M^u_{11} \frac{s}{c_1}}{A \sinh \left(\frac{s}{c_1} - A_2 \right) \sinh \left(\frac{s}{c_1} \right)} \tilde{F} ,
\]
(5.18)
with,

\[A_1 = M \lambda^2_{113}, \quad (5.19) \]

\[A_2 = M_{11}[M_{11}^u M_{33}^u - (M_{13}^u)^2]. \quad (5.20) \]

The solution for the sample response can then be found explicitly as follows:

\[
\tilde{\rho} = \frac{MM_{11}^{u} \lambda_{113} \left(s \cosh \frac{s}{c_1} - \cosh \frac{s}{c_1} \right)}{A_1 \sinh \frac{s}{c_1} - A_2 \cosh \frac{s}{c_1}} \tilde{F}, \quad (5.21)
\]

\[
\tilde{\sigma}_{zz} = \frac{\frac{s}{c_1} \left(A_1 \cosh \frac{s}{c_1} - A_2 \cosh \frac{s}{c_1} \right)}{A_1 \sinh \frac{s}{c_1} - A_2 \cosh \frac{s}{c_1}} \tilde{F}, \quad (5.22)
\]

\[
\tilde{e}_{xx} = \frac{\frac{s}{c_1} \left(M_{11}^{u} M_{13}^{u} \cosh \frac{s}{c_1} - M_{11}^{u} \lambda_{113} \cosh \frac{s}{c_1} \right)}{A_1 \sinh \frac{s}{c_1} - A_2 \cosh \frac{s}{c_1}} \tilde{F}, \quad (5.23)
\]

\[
\tilde{u}_x = \frac{M_{11}^{u} \left(s \cosh \frac{s}{c_1} - M_{11}^{u} \lambda_{113} \sinh \frac{s}{c_1} \right)}{A_1 \sinh \frac{s}{c_1} - A_2 \cosh \frac{s}{c_1}} \tilde{F}, \quad (5.24)
\]

\[
\tilde{u}_z = (z + b) \tilde{\varepsilon}_{zz}, \quad (5.25)
\]

\[
\tilde{q}_x = -\frac{k_1}{\mu} \tilde{F} \left(\frac{s}{c_1} \sinh \frac{s}{c_1} \right) \tilde{F}, \quad (5.26)
\]
5.4.2 Poroviscoelastic Solution

Invoking the correspondence principle between poroviscoelasticity and poroelasticity, the poroviscoelastic solution to the orthotropic Mandel’s problem is as follows:

\[
\tilde{\varepsilon}_{xx} = \left(\frac{s}{c_1} M_{11} M_{13} \cosh \frac{s}{c_1} - \bar{M} \bar{\alpha}_{13} \cosh \frac{s}{c_1} x \right) \tilde{F}, \\
A_i \sinh \frac{s}{c_1} a - A_2 \frac{s}{c_1} a \cosh \frac{s}{c_1} a,
\]

(5.27)

\[
\tilde{\varepsilon}_{zz} = - \left(\frac{s}{c_1} M_{11} M_{11} \cosh \frac{s}{c_1} a \right) \tilde{F}, \\
A_i \sinh \frac{s}{c_1} a - A_2 \frac{s}{c_1} a \cosh \frac{s}{c_1} a,
\]

(5.28)

\[
\tilde{u}_x = \left(\frac{s}{c_1} M_{11} M_{13} \cosh \frac{s}{c_1} x - \bar{M} \bar{\alpha}_{13} \sinh \frac{s}{c_1} x \right) \tilde{F}, \\
A_i \sinh \frac{s}{c_1} a - A_2 \frac{s}{c_1} a \cosh \frac{s}{c_1} a,
\]

(5.29)

\[
\tilde{u}_z = (z + b) \tilde{\varepsilon}_{zz},
\]

(5.30)

\[
\tilde{p} = \left(\frac{s}{c_1} (A_i \cosh \frac{s}{c_1} x - A_2 \cosh \frac{s}{c_1} a) \right) \tilde{F}, \\
A_i \sinh \frac{s}{c_1} a - A_2 \frac{s}{c_1} a \cosh \frac{s}{c_1} a,
\]

(5.31)

\[
\tilde{\sigma}_{zz} = \left(\frac{s}{c_1} (A_i \cosh \frac{s}{c_1} x - A_2 \cosh \frac{s}{c_1} a) \right) \tilde{F}, \\
A_i \sinh \frac{s}{c_1} a - A_2 \frac{s}{c_1} a \cosh \frac{s}{c_1} a,
\]

(5.32)

\[
\tilde{q}_x = - \frac{k_1}{\mu} \left(\frac{s}{c_1} \sinh \frac{s}{c_1} x \right) \tilde{F}, \\
A_i \sinh \frac{s}{c_1} a - A_2 \frac{s}{c_1} a \cosh \frac{s}{c_1} a,
\]

(5.33)
with,

\[A_1 = \lambda_{13}^2, \]
\[A_2 = \lambda_{11}^2 \left[\lambda_{22}^* \lambda_{33}^* - (\lambda_{13}^*)^2 \right]. \]

(5.34)

(5.35)

5.5 Numerical Examples

An example illustrating the application of the analytical solution to cartilage mechanics is presented in this section. A specimen of 5 mm wide and 250 µm thick is cut along the split line direction. The force \(F \) on the specimen is chosen so that an average stress of 100 kPa is applied, or \(F = 2.5 \text{ N per cm of specimen length} \).

The familiar Zener model, used in many biomechanics studies to simulate material viscoelastic responses, (Leipzig and Athanasiou, 2005; Garcia and Cortes, 2007; Wilson et al., 2005) is adopted here for the moduli \(M_{11}, M_{22}, M_{33}, M_{12}, M_{23}, \) and \(M_{13} \). More complex models can also be easily adopted. Based on the data reported by Chahine et al. (2004) for the superficial zone of bovine articular cartilage in 0.015M NaCl bathing solution, the orthotropic tissue is assumed to have the following long-time stiffness coefficients: \(M_{11}(\infty) = 0.373 \text{ MPa}, M_{22}(\infty) = 0.464 \text{ MPa}, M_{33}(\infty) = 0.419 \text{ MPa}, M_{12}(\infty) = 0.0208 \text{ MPa}, M_{23}(\infty) = 0.0220 \text{ MPa}, M_{13}(\infty) = 0.0187 \text{ MPa} \). All six moduli are assumed to have the same characteristic relaxation time of 200 seconds and to retain 80% of their initial values at long time. Other parameters are assumed to be time-independent as follows: \(K_s = 3 \text{ MPa}, \phi = 0.852, k_1/\mu = 4 \times 10^{-15} \text{ m}^4/(\text{N·s}), K_f = 2.3 \text{ GPa} \). Another sample of the same dimensions is cut across the split line to investigate the effects of sample direction with respect to the natural fiber orientation. To investigate the effects of anisotropy, two simpler models of transverse isotropy (averaging \(M_{11} \) and \(M_{22} \) and averaging \(M_{13} \) and \(M_{23} \)) and isotropy (averaging \(M_{11}, M_{22}, \) and \(M_{33}, \) and averaging \(M_{12}, \)
M_{13}, and M_{23}) are also considered. Finally, to investigate the effects of matrix viscoelasticity, the commonly used poroelastic analysis in cartilage biomechanics is also included; the six moduli, i.e. M_{11}, M_{22}, etc., in the poroelastic analysis are taken to be the long-time moduli following common biomechanics experimental practice.

Fig. 5.3 – Axial compression of the specimen.

Fig. 5.4 – Lateral displacement of each side of the specimen.
The axial compression of the samples is shown in Fig. 5.3. Because the poroelastic modeling used long-time values of the stiffness coefficients, it matches very well with the sample behavior at long time. However, at short and intermediate times, it severely overestimates the compression of a stiffer poroviscoelastic sample, as expected. Regarding matrix anisotropy, the transversely isotropic and isotropic models with averaged properties produce predictions between those of the poroviscoelastic orthotropic samples.

Similarly, the lateral dilation of either side of the sample is captured very well by the poroelastic analysis at long time, as shown in Fig. 5.4. However, this commonly used model in biomechanics fails to capture the short-time and intermediate-time behavior of the poroviscoelastic tissue. Regarding matrix anisotropy, displacement predictions using models with lower degrees of anisotropy by averaging properties in different directions are between the real responses of the poroviscoelastic orthotropic samples.

5.6 Summary

The analytical solution for an orthotropic poroviscoelastic rectangular strip under axial loading (Mandel’s problem) have been derived herein. The new solution will be particularly relevant to material testing and analysis of orthotropic poroviscoelastic biological tissues. Through the numerical examples, it has been shown that the poroelastic analysis commonly used in biomechanics will give erroneous predictions of the sample behavior at short and intermediate times even when the right degree of anisotropy is used. Similarly, any attempt to lower the anisotropy in poroviscoelastic
modeling by averaging material properties in different directions will compromise the prediction of sample responses to external loading.
Chapter 6: Transversely Isotropic Wellbores and Tunnels

6.1 Introduction

The stability of wellbores and tunnels is of fundamental importance in petroleum engineering and civil engineering. Wellbore instability issues cost the petroleum industry alone an estimated US$8 billions annually (Al-Wardy and Urdaneta, 2010; Diwan et al., 2011). Since the successful adaptation of Kirsch’s classical elastic solution of a circular hole in an infinite plate (Kirsch, 1898) to simulate wellbore drilling and tunnel excavation (Bradley, 1979), many authors have advanced the modeling of this important problem by incorporating pore pressure effects (Carter and Booker, 1982; Carter and Booker, 1984; Detournay and Cheng, 1988; Rajapakse, 1993; Cui et al., 1997; Cui et al., 1998; Abousleiman and Cui, 1998; Cui et al., 1999; Li, 1999; Li and Flores-Berrones, 2002; Ekbote et al., 2004), poro-thermal effects (McTigue, 1990; Wang and Papamichos, 1994; Abousleiman and Ekbote, 2005; Chen and Ewy, 2005), poro-chemical effects (Sherwood and Bailey, 1994; Abousleiman et al., 1999; Abousleiman et al., 2000; Ekbote and Abousleiman, 2006; Nguyen and Abousleiman, 2010), poro-thermo-chemical effects (Ekbote and Abousleiman, 2005), effects of natural fractures (Li, 2003; Zhang et al., 2003; Nguyen et al., 2004; Abousleiman and Nguyen, 2005; Nguyen et al., 2007; Nguyen and Abousleiman, 2009; Nguyen et al., 2009), and rock rheology (Carter and Booker, 1983; Abousleiman et al., 1996b).

This chapter focuses on wellbore instability instances where the time-dependent borehole deformation is so excessive that it cannot be adequately explained by anything but the viscoelastic nature of the rock matrix itself. Notable rock formations with this
type of borehole failure are salt rock and shale. Some shales are known to cause repeated instability problems such as tight hole and stuck pipe despite repeated reaming and hole cleaning. Salt rock, on the other hand, has been known to flow like a viscoelastic liquid under certain downhole conditions and the drilling engineers may have only a short time window to install the casing before the wellbore becomes inaccessible. To model the poroviscoelastic response of the wellbore in such formations, the analytical poroelastic solution of an inclined borehole in a transversely isotropic rock formation (Abousleiman and Cui, 1998) is first revisited in this chapter. Sign convention for stresses and strains has been changed from tension positive (Abousleiman and Cui, 1998) to compression positive to accommodate common industry practice. The background (in-situ) state of stress and strain has been explicitly separated from the perturbation response since the focus of this study is the perturbation displacement field due to wellbore excavation. As a result of this explicit decomposition, Abousleiman and Cui’s Problem II (uniaxial stress) is no longer needed. Furthermore, the wellbore pressure and the pore pressure boundary conditions have been modified from Heaviside step functions to general time-dependent functions to accommodate a wider range of field applications. The modified analytical poroelastic solution was then transferred to poroviscoelasticity using the correspondence principle established in Chapter 2. A numerical example of wellbore drilling through claystone using published field-measured rock viscoelastic properties (Zhifa et al., 2001) is also analyzed herein.
6.2 Problem Description

In this chapter, a wellbore drilled in any direction (inclination and azimuth) in a homogeneous and saturated soil/rock mass is considered. Specifically, vertical, horizontal, and inclined wellbores are special cases of the analysis. The surrounding formation is assumed to exhibit transverse isotropy, with the axis of material symmetry coinciding with the wellbore generator axis. The derived solution and analysis results in this chapter naturally extend to other circular excavations such as tunnels and drill shafts.

6.2.1 Coordinate Systems

In the global geological coordinate system N-E-Z with the Z axis pointing vertically downward, the azimuth of maximum horizontal in-situ stress $S_{H_{\text{max}}}$ and the inclination and azimuth of the wellbore generator axis are denoted ϕ_{NSH}, ϕ_z, and ϕ_{NW}, respectively, as illustrated in Fig. 6.1. For ease of mathematical modeling, a global geomechanics

![Wellbore generator axis with respect to the global coordinates N-E-Z and X-Y-Z.](image)
coordinate system X-Y-Z is also used, with the X and Y axes coinciding with the directions of $S_{H_{\text{max}}}$ and $S_{h_{\text{min}}}$, respectively, as shown in Fig. 6.1.

To describe near-wellbore rock and fluid behaviors, local coordinate systems x-y-z and r-θ-z are also used, as shown in Fig. 6.2. The coordinate system x-y-z is obtained from X-Y-Z by such rotation that Z becomes z and y remains in the original horizontal plane (Cui et al., 1997). It is noted that in this configuration, the x axis always points toward the wellbore top for inclined and horizontal wellbores. Finally, the local polar coordinate system r-θ-z is simply the complementary polar coordinate system of x-y-z.

Fig. 6.2 – Local wellbore coordinates x-y-z and r-θ-z.

![Local wellbore coordinates](image)
6.2.2 Boundary Conditions

Rotation of far-field stresses to the local wellbore coordinates \(x\)-\(y\)-\(z\) gives,

\[
\begin{bmatrix}
S_x \\
S_y \\
S_z \\
S_{xy}
\end{bmatrix} = \begin{bmatrix}
(a_x x) \\
(a_y y) \\
(a_z z) \\
(a_{xy})
\end{bmatrix}^2 = \begin{bmatrix}
S_{HH} \\
S_{Hh} \\
S_{Hy} \\
S_{V}
\end{bmatrix},
\]

(6.1)

with the above \([a]\) matrix coefficients expressed as,

\[
\begin{bmatrix}
a_x x \\
a_y y \\
a_z z
\end{bmatrix}^{\phi SH, SH} = \begin{bmatrix}
\cos \phi \phi \cos \phi SH & -\sin \phi \phi \cos \phi SH & \sin \phi \phi \cos \phi SH \\
\cos \phi \phi \sin \phi SH & \cos \phi \phi \sin \phi SH & \sin \phi \phi \sin \phi SH \\
-\sin \phi \phi & 0 & \cos \phi \phi
\end{bmatrix},
\]

(6.2)

with \(\phi_{SH} = \phi_{SH} - \phi_{NW}\). Rotation of far-field stresses to the local wellbore coordinates \(r\)-\(\theta\)-\(z\) yields,

\[
S_r = P_0 + S_0 \cos 2(\theta - \theta_0),
\]

(6.3)

\[
S_\theta = P_0 - S_0 \cos 2(\theta - \theta_0),
\]

(6.4)

\[
S_r = -S_0 \sin 2(\theta - \theta_0),
\]

(6.5)

\[
S_x = S_x \cos \theta + S_{yz} \sin \theta,
\]

(6.6)

\[
S_\theta = -S_x \sin \theta + S_{yz} \cos \theta,
\]

(6.7)

with the following parameter definitions:

\[
P_0 = \frac{S_x + S_y}{2},
\]

(6.8)

\[
S_0 = \sqrt{\left(\frac{S_x - S_y}{2}\right)^2 + S_{xy}^2},
\]

(6.9)
\[\theta_0 = \frac{1}{2} \arctan \frac{2S_{vy}}{S_x - S_y}. \] (6.10)

6.2.3 Decomposition Scheme

The original state of stress in the medium is as follows:

\[\sigma_{rr} = S_r, \] (6.11)
\[\sigma_{\theta\theta} = S_\theta, \] (6.12)
\[\sigma_{zz} = S_z, \] (6.13)
\[\sigma_{r\theta} = S_{r\theta}, \] (6.14)
\[\sigma_{rz} = S_{rz}, \] (6.15)
\[\sigma_{\omega z} = S_{\omega z}, \] (6.16)
\[p = p_0. \] (6.17)

At far field, \(r \to \infty \), all perturbation responses must vanish. The boundary conditions for the perturbation solution at far field are therefore as follows:

\[\sigma_{ij} = 0, \quad p = 0. \] (6.18)

On the other hand, the stresses and pressure at the wellbore wall are controlled by the introduction of the wellbore at \(t = 0 \). The boundary conditions for the perturbation solution at the wellbore wall, \(r = R \), are therefore of the form:

\[\sigma_{rr} = -S_r H(t) + p_w(t), \] (6.19)
\[\sigma_{r\theta} = -S_{r\theta} H(t), \] (6.20)
\[\sigma_{rz} = -S_{rz} H(t), \] (6.21)
\[p = -p_0 H(t) + p_i(t), \] (6.22)
with p_w is the time-dependent mud pressure inside the well and p_i is the time-dependent mud pressure at the wellbore wall. The pressures p_w and p_i could have different values due to the presence of a mud cake. These complex boundary conditions at the wellbore wall for the perturbed state can be decomposed into three simpler problems as described below:

Plane strain axisymmetric problem, at $r = R$,

$$\sigma_{rr} = -P_0 H(t) + p_w(t),$$ (6.23)

$$\sigma_{r\theta} = 0,$$ (6.24)

$$p = -p_0 H(t) + p_i(t).$$ (6.25)

Plane strain deviatoric problem, at $r = R$,

$$\sigma_{rr} = -S_0 \cos (\theta - \theta_0) H(t),$$ (6.26)

$$\sigma_{r\theta} = S_0 \sin (\theta - \theta_0) H(t),$$ (6.27)

$$p = 0.$$ (6.28)

Anti-plane shear stress problem, at $r = R$,

$$\sigma_{rz} = -S_{rz} H(t).$$ (6.29)

These three problems can be solved separately and the resulting solutions can then be superposed to obtain the complete solution to the perturbation response. Superposition of the perturbed stress and pore pressure solution and the in-situ state of stress and pore pressure gives the actual time-dependent stress state of the formation surrounding the wellbore.
6.3 Analytical Solution

6.3.1 Poroelastic Solution

6.3.1.1 Poroelastic Governing Relations

The constitutive relations in cylindrical coordinates for a transversely isotropic poroelastic material are as follows:

\[\tilde{\sigma}_{rr} = M_{11} \tilde{\varepsilon}_{rr} + M_{12} \tilde{\varepsilon}_{\theta\theta} + M_{13} \tilde{\varepsilon}_{zz} + \alpha_1 \tilde{p}, \quad (6.30) \]

\[\tilde{\sigma}_{\theta\theta} = M_{12} \tilde{\varepsilon}_{rr} + M_{11} \tilde{\varepsilon}_{\theta\theta} + M_{13} \tilde{\varepsilon}_{zz} + \alpha_1 \tilde{p}, \quad (6.31) \]

\[\tilde{\sigma}_{zz} = M_{13} \tilde{\varepsilon}_{rr} + M_{14} \tilde{\varepsilon}_{\theta\theta} + M_{33} \tilde{\varepsilon}_{zz} + \alpha_3 \tilde{p}, \quad (6.32) \]

\[\tilde{p} = M \left(\alpha_1 \tilde{\varepsilon}_{rr} + \alpha_2 \tilde{\varepsilon}_{\theta\theta} + \alpha_3 \tilde{\varepsilon}_{zz} + \tilde{\zeta} \right), \quad (6.33) \]

\[\tilde{\sigma}_{r\theta} = 2G \tilde{\varepsilon}_{r\theta}, \quad (6.34) \]

with \(\sigma_{ij} \) is the stress tensor, \(\varepsilon_{ij} \) is the strain tensor, \(\zeta \) is the variation of fluid content, \(M_{ij} \) is the stiffness tensor, \(\alpha_1 \) and \(\alpha_3 \) are the Biot’s effective stress coefficients in the isotropic plane and the transverse direction, respectively, \(M \) is the inverse of the storage coefficient under constant strain, and \(G \) is the shear modulus in the isotropic plane.

Other governing relations include Darcy’s law, strain-displacement relations, equilibrium equations, and continuity equation as listed below.

Darcy’s law,

\[\tilde{q}_r = -\frac{k_1}{\mu} \frac{\partial \tilde{p}}{\partial r}, \quad (6.35) \]

\[\tilde{q}_\theta = -\frac{k_1}{\mu} \frac{1}{r} \frac{\partial \tilde{p}}{\partial \theta}, \quad (6.36) \]

with \(k_1 \) is the permeability in the isotropic plane and \(\mu \) denotes pore fluid viscosity.

Strain-displacement relations,
\[\varepsilon_{rr} = \frac{\partial \tilde{u}_r}{\partial r}, \]
\[(6.37) \]

\[\varepsilon_{\theta\theta} = \frac{\tilde{u}_r}{r} + \frac{1}{r} \frac{\partial \tilde{u}_\theta}{\partial \theta}, \]
\[(6.38) \]

\[\varepsilon_{r\theta} = \frac{1}{2} \left(\frac{1}{r} \frac{\partial \tilde{u}_r}{\partial \theta} + \frac{\partial \tilde{u}_\theta}{\partial r} - \frac{\tilde{u}_\theta}{r} \right), \]
\[(6.39) \]

\[\tilde{\omega}_r = \frac{1}{2} \left(- \frac{1}{r} \frac{\partial \tilde{u}_r}{\partial \theta} + \frac{\partial \tilde{u}_\theta}{\partial r} + \frac{\tilde{u}_\theta}{r} \right). \]
\[(6.40) \]

Equilibrium equations,

\[\frac{\partial \tilde{\sigma}_{rr}}{\partial r} + \frac{1}{r} \frac{\partial \tilde{\sigma}_{\theta\theta}}{\partial \theta} + \tilde{\sigma}_{rr} - \tilde{\sigma}_{\theta\theta} = 0, \]
\[(6.41) \]

\[\frac{\partial \tilde{\sigma}_{r\theta}}{\partial r} + \frac{1}{r} \frac{\partial \tilde{\sigma}_{\theta\theta}}{\partial \theta} + 2 \frac{\tilde{\sigma}_{r\theta}}{r} = 0. \]
\[(6.42) \]

Continuity equation,

\[s \tilde{\zeta} - k \left(\frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2} \right) \tilde{p} = 0. \]
\[(6.43) \]

6.3.1.2 Solution to the Plane Strain Axisymmetric Problem

Substitution of the constitutive relations into the equilibrium equation in radial direction yields the following Navier-type equation:

\[\frac{\partial (\tilde{\varepsilon}_{\theta\theta} + \tilde{\varepsilon}_{r\theta})}{\partial r} = \frac{\alpha M M_1^\alpha}{\partial r} \tilde{\zeta}. \]
\[(6.44) \]

Substitution of the Navier-type equation into the continuity equation yields the following diffusion equation for the variation of fluid content:

\[s \tilde{\zeta} - c_1 \left(\frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} \right) \tilde{\zeta} = 0, \]
\[(6.45) \]
with $c_1 = \frac{k_1}{\mu} \frac{M_{11}M}{M_{11}'}$, of which the analytical solution is as follows:

$$\zeta = \frac{M_{11}'}{M} c_1 K_0(\xi),$$

(6.46)

with $\xi = r\sqrt{s/c_1}$ and K_n is the modified Bessel function of the second kind of order n.

The solution for ζ above already takes into account that ζ must stay finite as r approaches infinity. Substituting this solution into the Navier-type equation and integrating with respect to r yields the expression for the radial displacement,

$$\tilde{u}_r = \alpha_i C_i r \frac{K_i(\xi)}{\xi} + C_2 r.$$

(6.47)

The Laplace-domain solutions for all stresses, strains, pore pressure, and flux can then be easily obtained. Solving for the boundary conditions, the parameters C_1 and C_2 can be found to be as follows:

$$C_1 = \frac{-P_0}{s M_{11} K_0(\beta)},$$

(6.48)

$$C_2 = \frac{\alpha_i R^2}{M_{11}} \left(-\frac{P_0}{s} + \tilde{p}_i \right) \frac{1}{K_0(\beta)} \frac{K_1(\beta)}{\beta} - \frac{R^2}{2G} \left(-\frac{P_0}{s} + \tilde{p}_w \right),$$

(6.49)

with $\beta = \frac{R s}{c_1}$. The displacement at the wellbore wall can then be easily found to be as follows:

$$\tilde{u}_r \bigg|_{r=R} = \left(-\frac{P_0}{s} + \tilde{p}_w \right) \frac{R}{2G}.$$

(6.50)

For the plane strain axisymmetric problem, although the displacement field as a whole is dependent on the poroelastic properties of the rock formation, the displacement
at the wellbore wall is the same as in elasticity; it only depends on the shear modulus of the formation.

6.3.1.3 Solution to the Plane Strain Deviatoric Problem

Because of the symmetry of the problem, the response of the formation is assumed to take the following form:

\[
\begin{align*}
\tilde{\sigma}_{rr} &= \Sigma_{rr} \cos 2(\theta - \theta_0), \\
\tilde{\sigma}_{r\theta} &= \Sigma_{r\theta} \sin 2(\theta - \theta_0), \\
\tilde{\sigma}_{\theta\theta} &= \Sigma_{\theta\theta} \cos 2(\theta - \theta_0), \\
\tilde{p} &= P \cos 2(\theta - \theta_0), \\
\tilde{u}_r &= U_r \cos 2(\theta - \theta_0), \\
\tilde{u}_\theta &= U_\theta \sin 2(\theta - \theta_0), \\
\tilde{\varepsilon}_{rr} &= E_{rr} \cos 2(\theta - \theta_0), \\
\tilde{\varepsilon}_{\theta\theta} &= E_{\theta\theta} \cos 2(\theta - \theta_0), \\
\tilde{\varepsilon}_{r\theta} &= E_{r\theta} \sin 2(\theta - \theta_0), \\
\tilde{\omega}_z &= W_z \sin 2(\theta - \theta_0), \\
\tilde{\zeta} &= Z \cos 2(\theta - \theta_0), \\
\tilde{q}_r &= Q_r \cos 2(\theta - \theta_0), \\
\tilde{q}_\theta &= Q_\theta \sin 2(\theta - \theta_0).
\end{align*}
\]

Substitution of the constitutive relations into the equilibrium equations leads to the following relations:
\[M_{11}^u \cfrac{\partial (\bar{e}_{rr} + \bar{e}_{\theta\theta})}{\partial r} + \alpha_i M \cfrac{\partial \bar{\zeta}}{\partial r} - 2G \cfrac{1}{r} \cfrac{\partial \bar{\omega}}{\partial \theta} = 0 , \]
(6.64)

\[M_{11}^u \cfrac{1}{r} \cfrac{\partial (\bar{e}_{rr} + \bar{e}_{\theta\theta})}{\partial \theta} + \alpha_i M \cfrac{1}{r} \cfrac{\partial \bar{\zeta}}{\partial \theta} + 2G \cfrac{\partial \bar{\omega}}{\partial r} = 0 . \]
(6.65)

The introduction of a new function \(\phi \) satisfying \[\cfrac{M_{11}^u}{2G} (\bar{e}_{rr} + \bar{e}_{\theta\theta}) + \cfrac{\alpha_i M}{2G} \bar{\zeta} + \phi = 0 \]
leads to,

\[\phi = \Phi \cos 2(\theta - \theta_0) , \]
(6.66)

\[\cfrac{\partial \Phi}{\partial r} = -2 \cfrac{W_z}{r} , \]
(6.67)

\[-2\Phi = r \cfrac{\partial W_z}{\partial r} . \]
(6.68)

\(W_z \) therefore satisfies the following equation:

\[r^2 \cfrac{\partial^2 W_z}{\partial r^2} + r \cfrac{\partial W_z}{\partial r} - 4W_z = 0 . \]
(6.69)

Since \(W_z \) must stay bounded as \(r \) approaches infinity, it takes the following form:

\[W_z = \cfrac{M_{11}^u C_3}{2G r^2} , \]
(6.70)

which leads to \(\Phi = \cfrac{M_{11}^u C_3}{2G r^2} \). Substitution of \(\omega_z \) and \(\phi \) into the equilibrium equation and the continuity equation yields the following Navier-type equation and diffusion equation:

\[\nabla^2 (\bar{e}_{rr} + \bar{e}_{\theta\theta}) = -\cfrac{\alpha_i M}{M_{11}^u} \nabla^2 \bar{\zeta} , \]
(6.71)

\[s\bar{\zeta} - c_i \nabla^2 \bar{\zeta} = 0 , \]
(6.72)
with \(c_1 = \frac{k_1}{\mu} \frac{M_{11} M}{M_{11}} \) and \(\nabla^2 = \frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2} \) is the Laplacian in cylindrical coordinates. The angle-independent component of the variation of fluid content therefore takes the following form:

\[
Z = \frac{M_{11}^u}{M} C_4 K_2(\xi), \quad (6.73)
\]

with \(\xi = r \sqrt{s/c_1} \) and \(K_n \) is the modified Bessel function of the second kind of order \(n \).

The displacement field can then be found to be as follows:

\[
\tilde{u}_r = \left\{ \frac{M_{11}^u}{2G} \frac{C_3}{r} + \frac{\alpha_1}{\sqrt{s/c_1}} \left(C_4 \left[K_1(\xi) + 2 \frac{K_2(\xi)}{\xi} \right] + \frac{C_5}{r^3} \right) \right\} \cos \left(\theta - \theta_0 \right), \quad (6.74)
\]

\[
\tilde{u}_\theta = \left[- \frac{C_3}{2r} + \frac{2\alpha_1}{\sqrt{s/c_1}} \left(C_4 \frac{K_2(\xi)}{\xi} + \frac{C_5}{r^3} \right) \right] \sin \left(\theta - \theta_0 \right). \quad (6.75)
\]

The unknown parameters \(C_3, C_4, \) and \(C_5 \) can then be found by solving the boundary conditions,

\[
C_3 = 4 \frac{S_0}{s} \frac{R^2}{s} \frac{M_{11} K_2(\beta)}{\left(M_{11}^u + M_{12}^u \right) M_{11} K_2(\beta) - 4G \alpha_1^2 M K_1(\beta) / \beta}, \quad (6.76)
\]

\[
C_4 = 4 \frac{S_0}{s} \frac{\alpha_1 M}{\left(M_{11}^u + M_{12}^u \right) M_{11} K_2(\beta) - 4G \alpha_1^2 M K_1(\beta) / \beta}, \quad (6.77)
\]

\[
C_5 = - \frac{S_0}{s} \frac{R^2}{2G} \left[\frac{\left(M_{11}^u + M_{12}^u \right) M_{11} K_2(\beta) + 4G \alpha_1^2 M K_1(\beta) / \beta + 16G \alpha_1^2 M K_2(\beta) / \beta^2}{\left(M_{11}^u + M_{12}^u \right) M_{11} K_2(\beta) - 4G \alpha_1^2 M K_1(\beta) / \beta} \right]. \quad (6.78)
\]
6.3.1.4 Solution to the Anti-Plane Shear Problem

Using the displacement functions proposed by Hashin and Rosen (1964), the solution immediately after wellbore excavation can be found to be as follows:

\[u_r = u_\theta = 0, u_z = -S_{rr} \frac{R^2}{M_{44} r}, \]

\[\sigma_{rr} = -S_{rr} \frac{R^2}{r^2}, \]

\[\sigma_{r\theta} = S_{r\theta} \frac{R^2}{r^2}. \]

No normal strain is created in this mode of anti-plane shear loading. Hence, no pore pressure is generated and the solution is time-independent and elastic in nature. It is also noted that the displacement field produced by this mode of loading does not affect the size of the wellbore.

6.3.1.5 Superposed Displacement Field

At the wellbore wall, \(r = R \), the radial and tangential displacements due to wellbore drilling are as follows:

\[\tilde{u}_r|_{r=R} = -\left(-\frac{P_0}{s} + \tilde{\rho}_w \right) \frac{R}{2G} + \frac{S_0}{s} \frac{R}{2G} \frac{\left(3M_{11}^u - M_{12}^u \right) M_{11} K_2(\beta) + 4G\alpha_1^2 M \frac{K_1(\beta)}{\beta}}{\left(M_{11}^u + M_{12}^u \right) M_{11} K_2(\beta) - 4G\alpha_1^2 M \frac{K_1(\beta)}{\beta}} \cos 2(\theta - \theta_0), \]

\[\tilde{u}_\theta|_{r=R} = \frac{S_0}{s} \frac{R}{2G} \frac{\left(3M_{11}^u - M_{12}^u \right) M_{11} K_2(\beta) + 4G\alpha_1^2 M \frac{K_1(\beta)}{\beta}}{\left(M_{11}^u + M_{12}^u \right) M_{11} K_2(\beta) - 4G\alpha_1^2 M \frac{K_1(\beta)}{\beta}} \sin 2(\theta - \theta_0), \]
The deformed shape of the wellbore is therefore elliptical with the following semimajor and semiminor axes, respectively:

\[
\tilde{a} = \frac{R}{s} + \left(-\frac{P_0}{s} + \tilde{p}_w \right) \frac{R}{2G} + \frac{S_0}{s} \frac{R}{2G} \left(\frac{3M_{11}^u - M_{12}^u}{\beta} \right) M_{11} K_2 (\beta) + 4G\alpha^2 M K_1 (\beta), \tag{6.84}
\]

\[
\tilde{b} = \frac{R}{s} + \left(-\frac{P_0}{s} + \tilde{p}_w \right) \frac{R}{2G} - \frac{S_0}{s} \frac{R}{2G} \left(\frac{3M_{11}^u - M_{12}^u}{\beta} \right) M_{11} K_2 (\beta) - 4G\alpha^2 M K_1 (\beta). \tag{6.85}
\]

The semiminor axis is in the direction \(\theta = \theta_0 \) since maximum stress relief occurs in that direction. For isotropic rocks, Eqs. (6.84) and (6.85) simplify as follows:

\[
\tilde{a} = \frac{R}{s} + \left(-\frac{P_0}{s} + \tilde{p}_w \right) \frac{R}{2G} \left(K + \frac{5}{3} G + \alpha^2 M \right) \left(K + \frac{4}{3} G \right) K_2 (\beta) + 2G\alpha^2 M K_1 (\beta), \tag{6.86}
\]

\[
\tilde{b} = \frac{R}{s} + \left(-\frac{P_0}{s} + \tilde{p}_w \right) \frac{R}{2G} \left(K + \frac{5}{3} G + \alpha^2 M \right) \left(K + \frac{4}{3} G \right) K_2 (\beta) - 2G\alpha^2 M K_1 (\beta), \tag{6.87}
\]

where \(K \) and \(G \) are the bulk modulus and the shear modulus, respectively.

6.3.2 Poroviscoelastic Solution

Application of the correspondence principle in Laplace transform domain immediately gives the poroviscoelastic deformation of the wellbore:
\[\tilde{u}_r|_{r=R} = -\left(-\frac{P_0}{s} + \tilde{p}_w \right) \frac{R}{2G} \]

\[+ \frac{S_0}{s} \frac{R}{2G} \frac{\left(3M_{i1}^u - M_{i2}^u \right) M_{i1} K_2(\beta) + 4G \alpha_i^2 M K_i(\beta)}{\left(M_{i1} + M_{i2}^u \right) M_{i1} K_2(\beta) - 4G \alpha_i^2 M K_i(\beta) \beta} \cos 2(\theta - \theta_0), \quad (6.88) \]

\[\tilde{u}_\theta|_{r=R} = -\frac{S_0}{s} \frac{R}{2G} \frac{\left(3M_{i1}^u - M_{i2}^u \right) M_{i1} K_2(\beta) + 4G \alpha_i^2 M K_i(\beta)}{\left(M_{i1} + M_{i2}^u \right) M_{i1} K_2(\beta) - 4G \alpha_i^2 M K_i(\beta) \beta} \sin 2(\theta - \theta_0), \quad (6.89) \]

\[\tilde{a} = \frac{R}{s} + \left(-\frac{P_0}{s} + \tilde{p}_w \right) \frac{R}{2G} + \frac{S_0}{s} \frac{R}{2G} \frac{\left(3M_{i1}^u - M_{i2}^u \right) M_{i1} K_2(\beta) + 4G \alpha_i^2 M K_i(\beta)}{\left(M_{i1} + M_{i2}^u \right) M_{i1} K_2(\beta) - 4G \alpha_i^2 M K_i(\beta) \beta}, \quad (6.90) \]

\[\tilde{b} = \frac{R}{s} + \left(-\frac{P_0}{s} + \tilde{p}_w \right) \frac{R}{2G} - \frac{S_0}{s} \frac{R}{2G} \frac{\left(3M_{i1}^u - M_{i2}^u \right) M_{i1} K_2(\beta) + 4G \alpha_i^2 M K_i(\beta)}{\left(M_{i1} + M_{i2}^u \right) M_{i1} K_2(\beta) - 4G \alpha_i^2 M K_i(\beta) \beta}. \quad (6.91) \]

Let \(R_c \) denote the outer radius of the casing, the maximum time available to set the casing from the instance of wellbore excavation can be calculated using the following relation:

\[b = R_c. \quad (6.92) \]

For isotropic rocks, Eqs. (6.90) and (6.91) simplify as follows:

\[\tilde{a} = \frac{R}{s} + \left(-\frac{P_0}{s} + \tilde{p}_w \right) \frac{R}{2G} \]

\[+ \frac{S_0}{s} \frac{R}{2G} \frac{\left(K + \frac{4}{3} G + \alpha_i^2 M \right) K_i(\beta) + 2G \alpha_i^2 M K_i(\beta) \beta}{\left(K + \frac{4}{3} G + \alpha_i^2 M \right) K_i(\beta) - 2G \alpha_i^2 M K_i(\beta) \beta}, \quad (6.93) \]
where K and G are the bulk modulus and the shear modulus, respectively.

6.4 Numerical Example and Discussion

In this section, a numerical example of wellbore drilling through a claystone formation is presented. The bulk mechanical properties of the rock are taken from a field study by Zhifa et al. (2001). The Young’s modulus of the claystone is found by Zhifa et al. to be best represented by the Zener model, as shown in Fig. 6.3 while the Poisson’s ratio is constant at 0.33.

Fig. 6.3 – Zener model for the Young’s modulus of claystone, $E_{3(1)} = 16.64 \text{ MPa}$, $E_{3(2)} = 68.32 \text{ MPa}$, $\mu = 2.43 \times 10^{13} \text{ Pa-s}$ (Zhifa et al., 2001).

Other rock properties are assumed to be as follows: porosity $\phi = 0.2$, permeability $k_1 = 1.0 \text{ mD}$, pore fluid viscosity $\mu = 1.0 \text{ cP}$, grain bulk modulus $K_s = 40 \text{ GPa}$, pore fluid bulk modulus $K_f = 2.3 \text{ GPa}$. To investigate the effects of the rock formation anisotropy, it will be assumed that the measured Young’s modulus is in the direction perpendicular to bedding, E_3, while the Young’s modulus parallel to bedding, E_1, is $n_E E_1$. Typical value of n_E is from 1.0 to 2.0. Three values of n_E of 1.0, 1.5, and 2.0 will therefore be
used in the following analyses. The Poisson’s ratio, on the other hand, is assumed to be isotropic; however, this assumption can be relaxed without any difficulties.

Vertical wellbore drilling at a depth of 1000 m will be analyzed. The overburden stress gradient is assumed to be 2.30 g/cc. The maximum and minimum horizontal stresses are assumed to be the 0.9 and 0.8 times the overburden. For this in-situ state of stress, the axisymmetric and deviatoric stresses P_0 and S_0 equal 0.85 and 0.05 times the overburden, respectively. The pore pressure gradient is assumed to be 1 g/cc. The gravitational acceleration g is taken to be 9.81 m/s2.

Some of the existing works in the literature model the time-dependent wellbore deformation using only viscoelasticity for simplicity (see for example Carcione et al. (2006)). To investigate the adequacy of such approach to modeling wellbore deformation in porous viscoelastic rock formations, a viscoelastic analysis has also been carried out for comparison using rock bulk properties identical to the poroviscoelastic analysis. The initial wellbore is assumed to be circular with a radius of 0.254 m for both analyses.

6.4.1.1 Balanced Drilling

The evolution of wellbore dimensions for the typical scenario of balanced drilling ($p_w = p_0$) will be investigated first. For balanced drilling, the formation of mudcake is unlikely. Therefore, p_i is assumed to be the same as p_w.

The evolution of the axisymmetric displacement at the wellbore wall due to the unloading of P_0 and the introduction of p_w is illustrated in Fig. 6.4. The poroviscoelastic and viscoelastic analyses yield identical results, as discussed in the derivation of the solution for the plane strain axisymmetric problem. As E_1 increases, the formation
becomes stiffer in the cross-sectional plane and therefore wellbore contraction decreases, as shown in Fig. 6.4.

Fig. 6.4 – Evolution of the axisymmetric displacement due to the unloading of the axisymmetric in-situ stress $P_0 = 0.85 S_Y$ and the introduction of balanced drilling mudweight $p_m = 1.0 \text{ g/cc}$.

![Diagram](image1)

The evolution of the deviatoric displacements at the wellbore wall due to the unloading of the deviatoric stress $S_0 = 0.05 S_Y$, $E_1 = E_3$ is shown in Fig. 6.5 to Fig. 6.7. At long times, when the pore pressure has reached equilibrium, the poroviscoelastic and viscoelastic

![Diagram](image2)
displacements are identical. However, at shorter times, the poroviscoelastic deformation is less than that predicted using viscoelasticity. Regarding the effects of formation anisotropy, the stiffer the Young’s modulus in the cross-sectional plane, the smaller the wellbore contraction.

Fig. 6.6 – Evolution of the deviatoric displacements due to the unloading of the deviatoric stress $S_0 = 0.05 S_1, E_1 = 1.5E_3$.

Fig. 6.7 – Evolution of the deviatoric displacements due to the unloading of the deviatoric stress $S_0 = 0.05 S_1, E_1 = 2E_3$.
The actual evolution of the wellbore dimensions can be obtained through the superposition of the axisymmetric and deviatoric displacements, as shown in Fig. 6.8 to Fig. 6.10. The time-variation of the semimajor of the elliptical wellbore is less than that of the semiminor for both the poroviscoelastic and the viscoelastic analyses because the axisymmetric and deviatoric displacements partly offset each other for the semimajor
(direction of minimum horizontal stress) while they complement each other for the semiminor (direction of maximum horizontal stress).

![Fig. 6.10 – Evolution of wellbore dimensions for $p_w = 1.0$ g/cc, $E_1 = 2E_3$.](image)

6.4.1.2 Overbalanced Drilling

A common practice to remedy the wellbore shrinkage problem in poroviscoelastic formation is to increase the drilling mudweight to apply additional pressure on the wellbore wall. In this section, the same well drilling scenario as in the previous section would be considered, except the mudweight is increased to 1.5 g/cc.

The evolution of the axisymmetric displacement at the wellbore wall due to the unloading of P_0 and the introduction of p_w is illustrated in Fig. 6.11. The poroviscoelastic and viscoelastic analyses again yield identical results, as predicted by the solution of the plane strain axisymmetric problem, but the magnitude of wellbore contraction is less than the case of balanced drilling thanks to the additional support of a higher mud pressure. The evolution of the deviatoric displacement is the same as in the
case of balanced drilling presented in the last section (Fig. 6.5 to Fig. 6.7) since the deviatoric response is independent of the mud pressure.

![Fig. 6.11](image1)

Fig. 6.11 – Evolution of the axisymmetric displacement due to the unloading of the axisymmetric stress $P_0 = 0.85 S_V$ and the introduction of overbalanced drilling mudweight $p_w = 1.5 \text{ g/cc}$.

Finally, the evolution of the wellbore dimensions is illustrated in **Fig. 6.12** to Fig. 6.14, with less wellbore shrinkage in the semiminor (maximum horizontal stress direction) compared to balanced drilling.

![Fig. 6.12](image2)

Fig. 6.12 – Evolution of wellbore dimensions for $p_w = 1.5 \text{ g/cc}, E_1 = E_3$.
6.5 Summary

In this chapter, the analytical poroelastic solution of an inclined borehole in a transversely isotropic rock formation (Abousleiman and Cui, 1998) has been modified to explicitly calculate the deformation field induced by wellbore drilling. The modified solution has also been transferred to poroviscoelasticity using the correspondence
principle established in Chapter 2. The presented poroviscoelastic solution will be useful in design and analysis of wellbore drilling through rock formations with significant viscoelasticity in the rock matrix, such as salt rock and shales. Through the presented numerical examples of wellbore drilling through claystone using published field-measured rock viscoelastic properties, it is observed that the commonly used viscoelastic analysis for wellbores in poroviscoelastic formations gives adequate prediction of displacements at the wellbore wall at long times for but produces erroneous wellbore deformation predictions at shorter times if the in-situ stresses in the cross-section plane of the wellbore are non-hydrostatic. It has also been observed that formation anisotropy has a significant influence over the time-dependent wellbore displacement; specifically, higher stiffness in the cross-sectional plane of the wellbore results in smaller wellbore deformation.
Chapter 7: Conclusions

A rigorous proof of the correspondence principle between poroviscoelasticity and poroelasticity with general anisotropy has been presented in Chapter 2, both in time domain and in Laplace transform domain, for the general formulation as well as the material coefficients. Using this correspondence principle, analytical solutions in Laplace transform domain for poroviscoelasticity and poroelasticity can be readily transferred from one model to the other. Chapters 3 to 6 show detailed applications of this correspondence principle to various practical engineering problems, as described below.

Transversely isotropic cylinders under various loading and unloading conditions, with the axis of material symmetry coinciding with the axis of geometrical symmetry, have been analyzed in Chapter 3. This is one of the most useful and versatile class of solutions in both geomechanics and biomechanics, simulating a wide range of laboratory and field testing conditions (oedometer or K₀ test in geomechanics, confined compression test in biomechanics, unconfined compression test, unjacketed triaxial test, jacketed triaxial test, and strain recovery method). It has been shown mathematically and numerically that the sample response significantly depends on how the test is set up (lateral displacement is constrained or not). Specifically, the popular unconfined compression test and confined compression test in biomechanics are not equivalent as commonly believed. In particular, the confined compression test can be very misleading and should be accompanied by other testing techniques for mechanical characterization of anisotropic biological tissue. It has also been shown that for geomechanics, sample behavior should be closely monitored during the waiting time between confining
pressure application and axial loading, as these responses are particularly useful for differentiating the poroviscoelastic and/or anisotropic nature of the tested geo-material.

Chapter 4 presents an extension of the analytical solution and analyses of Chapter 3 to cylinders with material weak cylindrical-orthotropy under laboratory loading conditions, also with the axis of material symmetry coinciding with the axis of geometrical symmetry. This work can be of particular importance for cylindrically-reinforced low permeability clays with significant viscoelastic behavior. Potential applications of these materials might include nuclear waste storage, chemical waste storage, and viscoelastic settlement estimation. It has been shown that compared to transversely isotropic samples, orthotropic specimens could have appreciably different effective tangential stress and lateral dilation evolutions.

For geo-materials and biological tissues with Cartesian mechanical orthotropy, the symmetry of material properties implies that rectangular strips (Mandel’s problem) are the best sample geometry to use for mechanical characterization. This setup has been studied in Chapter 5. Through the numerical examples, it has been shown that the poroelastic analysis commonly used in biomechanics will give erroneous predictions of the sample behavior at short and intermediate times even when the right degree of anisotropy is used. Similarly, any attempt to lower the anisotropy in poroviscoelastic modeling by averaging material properties in different directions will compromise the prediction of sample responses to external loading.

Finally, the important problem of wellbore drilling through transversely isotropic rocks has been considered in Chapter 6, with the emphasis on time-dependent displacement of the wellbore wall to investigate wellbore instability instances where the
time-dependent borehole deformation is so excessive that the viscoelastic nature of the rock matrix must be explicitly taken into account. Notable rock formations with such behavior are salt rock and shale. Through the presented numerical example of wellbore drilling through claystone using published field-measured rock viscoelastic properties, it has been shown that the simpler and commonly used viscoelastic analysis for wellbores in poroviscoelastic formations can give adequate prediction of displacements at the wellbore wall at long times for but produces erroneous wellbore deformation predictions at shorter times if the in-situ stresses in the cross-section plane of the wellbore are non-hydrostatic. The analytical solution and engineering analysis presented in this chapter can be readily applied to other circular excavations such as tunnels and drill shafts.

