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Abstract 
 

 As humans alter the environmental landscape, there is an increasing need to 

understand the relationship between species and the environment, how changes to the 

environment translate to populations and communities, and how to develop management 

practices that reduce or reverse our negative impacts.  Different animals respond 

differently to environmental change as do different developmental life stages within the 

same species.  Reproduction, for example, is often the most sensitive time period of an 

organism’s life, yet has been largely ignored in conservation biology, partly due to the 

difficulties in studying reproduction (e.g. complex life cycles, migration, delayed 

reproduction).  Nonetheless, it is vitally important that we have some basic understanding 

of the reproductive process in order to facilitate sound management of critically imperiled 

fauna.  Freshwater mussels are one such globally imperiled group of invertebrates with 

over 70% of species considered threatened.  However, very little is understood about 

their complex life cycle, particularly the portion of reproduction up to and including 

fertilization.  The research detailed in my dissertation broadens our understanding of this 

portion of the mussel reproductive cycle and how it is being impacted by humans.   

 My first chapter explores the environmental variables that are important in 

regulating timing of gametogenesis in mussels.  Using a year-long field sampling regime 

I found that water temperature, and in particular the number of degree days during which 

growth occurs, is an important correlate for the number of mature gametes present in 

adult mussel’s gonadal tissue.  Using a 3-month long laboratory study I confirmed these 

findings; however, I also discovered the potential for a food quality by temperature 
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interaction in this study as mussels in my experiment were fed high quality food and had 

substantially more gametes present in their gonads than were ever observed in the field. 

 My second chapter explores how environmental variables affect the process of 

fertilization in freshwater mussels.  I conducted a sperm viability experiment in which I 

manipulated water temperature (5, 15, 25, and 35oC) and measured the percentage of 

viable mussel sperm that were motile over time.  I found that mussel sperm are viable for 

extensive periods of time, but that the highest motility was observed in the 15 and 25oC 

temperature range.  I combined these data with a modeling approach to determine how 

mussel population dynamics and gene flow could be impacted by different thermal and 

flow regimes.  I discovered that mussel sperm has the potential to move extremely long 

distances downstream, but that ultimately sperm transport is a function of stream velocity 

and height above the sediment at which sperm are released.  Reproductive success, 

however, is a function of the proportion of sperm that have remained viable over time.   

 The research detailed in my third chapter examines the role of impoundments on 

the reproductive success and population attributes of freshwater mussels.  Using data 

collected in my year-long field study, I found that mussels below a cold-water release 

impoundment had lower overall mussel densities, higher proportions of hermaphroditic 

individuals, higher prevalence of sterilizing trematodes, and lower body condition 

relative to mussels found above the impoundment.  I also found that patterns in timing of 

gamete development were also unusual below the cold-water release dam.  I outline a 

conceptual model by which alterations in temperature, stream flow, light, and food 

availability caused by impoundments could lead to overall negative density-dependence 

in mussel populations.  These first three chapters illustrate the importance of natural 
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temperature and flow regimes in maintaining healthy reproduction in freshwater mussel 

communities, information that is critical for managing rivers that provide habitat to 

mussels.   

 As humans continue to alter riverine landscapes, we are also likely to impact the 

evolutionary trajectories of species residing there.  Unfortunately, another aspect of 

mussel biology that is also understudied is the evolution of the great diversity of 

freshwater mussels, particularly in North America.  Several evolutionary hypotheses have 

been proposed for the evolution of these organisms, yet none have been tested.  The goal 

of my fourth chapter was to address freshwater mussel evolution from the perspective of 

mechanisms of reproductive isolation, since barriers must exist between species to 

maintain distinct species identities.  I examined the role that habitat use and timing of 

reproduction may play in isolating co-occurring, closely related mussel species of the 

genus Quadrula.  I found that habitat overlap among closely related species varies 

(although is often high), but could be one isolating mechanism.  Timing of reproduction, 

however, overlaps almost entirely among these species and is likely not a factor 

maintaining species identity in this genus.  Further research into other isolating 

mechanisms is required to increase our understanding of reproductive barriers and 

evolution of freshwater mussels.  
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SUMMARY 

1.  Freshwater mussels are one of the most threatened faunas in North America and 

globally, but little research has examined factors leading to successful reproduction 

(gamete development and fertilization success) in these species.   

2.  We combined field and laboratory studies to determine environmental factors 

influencing successful reproduction in three closely related species of freshwater mussels 

in a south central U.S. river.    

3.  Successful gamete development in the field was linked to temperature, specifically the 

number of accumulated degree days.  Laboratory studies confirmed this finding, but also 

suggested that temperature and food availability interact to regulate gamete development.   

4.  Our data indicate that successful reproduction may be inhibited by altered temperature 

regimes found below impoundments.    

 

INTRODUCTION 

Freshwater ecosystems and the species that inhabit them are being decimated 

globally (Allan and Flecker, 1993).  One of the most threatened freshwater groups in 

North America is freshwater mussels (Bivalvia: Unionoida) (Williams et al., 1993; 

Strayer et al., 2004).  Freshwater mussels are a guild of benthic, filter-feeding bivalves 

that provide important ecosystem services to the aquatic community (Vaughn and 

Hakenkamp, 2001).  Mussels can be found in dense, multi-species aggregations known as 

mussel beds; here they can dominate the benthic biomass and their influences on 

ecosystem function can be significant, particularly during periods of low flow and high 

temperature (Spooner and Vaughn, 2006; Vaughn, Spooner and Galbraith, 2007; Vaughn, 
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Nichols and Spooner, 2008).  They are important in nutrient cycling and couple benthic 

and pelagic compartments by filtering suspended material and depositing feces and 

pseudofeces (undigested food particles) to the benthos (Vaughn and Hakenkamp, 2001; 

Vaughn, Gido and Spooner, 2004; Howard and Cuffey, 2006; Vaughn et al., 2007).  

Additionally, live mussels and their spent shells provide habitat for other benthic 

organisms (Spooner and Vaughn, 2006; Vaughn and Spooner, 2006).  Therefore, 

understanding and maintaining mussel species diversity and abundance has implications 

for entire stream ecosystems.   

Reproduction in freshwater mussels occurs when male mussels cast their gametes 

into the water column.  Females, filtering phytoplankton and other seston from the water, 

passively collect the ejected sperm (McMahon and Bogan, 2001).  Fertilization occurs on 

the interior of specialized brood chambers located in the females’ gills where larvae 

(glochidia) begin their maturation (Richard, Dietz and Silverman, 1991).  Glochidia are 

released to complete their development as obligate ectoparasites on fish hosts after which 

they detach from their hosts and become free-living in the epibenthos (McMahon and 

Bogan, 2001).   

Few studies have examined the timing and success of reproduction in unionid 

mussels and little is known about the factors that signal reproduction.  Studies on other 

freshwater bivalves such as zebra mussels suggest that reproduction is ultimately cued by 

a combination of temperature, photoperiod, and food availability (Borcherding, 1995; 

Wacker and von Elert, 2003) and research in both zebra mussels and marine mollusks 

suggests that signaling molecules such as serotonin and available energy reserves serve as 

physiological cues for reproduction (Zandee, Kluytmans and Zurburg, 1980; Ram et al., 
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1993; Urrutia et al., 1999; Masseau et al., 2002).  How the combined effect of these 

factors may influence the reproductive success of freshwater mussels depends on which 

factors are most important for cuing gametogenesis in different species.  Therefore, one 

goal of this study was to use a combined laboratory and field approach to investigate the 

factors that are important signals for reproduction in freshwater mussels.   

Mussel populations have been steadily declining in recent history due to habitat 

destruction, population fragmentation, and introduction of non-native species (Strayer, 

1999; Vaughn and Taylor, 1999; Watters, 2000).  One factor linked to mussel decline is 

the widespread impoundment of rivers.  Impoundments have been shown to negatively 

impact mussels at all stages of life (Vaughn and Taylor, 1999); however, because 

reproduction is often the most sensitive time during development and impoundments are 

known to drastically alter the physical properties of rivers (Baxter, 1977; Allan, 1995; 

Poff et al., 1997), it is likely that dams could influence the timing of reproduction in 

downstream mussel populations.  Therefore, a second goal of this study was to document 

effects of impoundments on the timing of reproduction in freshwater mussels. 

 

MATERIALS AND METHODS 
 
 Study Sites 

 The present study was conducted in three mussel beds in the Little River in 

southeastern Oklahoma, U.S. (Fig. 1).  The Little River is located in the Ouachita 

Mountains region of the Interior Highlands and is a tributary of the Red River.  This 

region is a center of speciation for both aquatic and terrestrial organisms including fish, 

crayfish, mussels, salamanders, and caddisflies (Mayden, 1985; Moulton and Stewart, 
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1996).  The Little River is approximately 350 km long and drains two major tributaries in 

Oklahoma, the Glover and Mountain Fork rivers.  This river contains a healthy and 

diverse mussel fauna with over 37 species of unionids (Galbraith, Spooner and Vaughn, 

2008). 

Because we were interested in effects of temperature on mussel reproduction, we 

chose sites known to have different thermal regimes.  The Little River is influenced by 

two impoundments.  The mainstem of the river is impounded by Pine Creek Reservoir 

(Fig. 1).  The Mountain Fork River is impounded by Broken Bow Lake which is formed 

from a hypolimnetic (cold water release) dam.  It is used to generate hydropower and 

maintain a non-native trout hatchery downstream.  Cold water released below Broken 

Bow Lake enters the Little River at its confluence with the Mountain Fork River, 

approximately 64 km downstream from Pine Creek Reservoir, and substantially changes 

the thermal regime of the river (Vaughn and Taylor, 1999).   Sites 1 and 2 were located 

above the confluence of the Little River with the Mountain Fork River and site 3 was 

directly below this confluence.  

Study species 

 Quadrula is among the most widespread and speciose genera of freshwater 

mussels in North America (Parmalee and Bogan, 1998) and includes dominant species as 

well as several species that are either federally endangered (e.g. Q. fragosa) or listed as 

species of special concern (Q. cylindrica).  We studied three species of Quadrula, the 

Pimpleback (Q. pustulosa, Lea 1931), the Rabbitsfoot (Q. cylindrica, Say 1817) and the 

Mapleleaf mussel (Q. quadrula, Rafinesque 1820).  These three species vary in their 

relative abundance within southeastern Oklahoma and across North America.  



6 
 

 Field Study 
 
 We conducted a year-long field study to estimate factors (water temperature, light 

reaching the benthos, and food availability) that influence gamete development in Q. 

pustulosa, Q. cylindrica and Q. quadrula.  Between September 2005 and August 2006, 

we sampled these three species on a monthly basis, except during December, January, 

and March due to inclement weather and high water.  During each monthly sampling trip, 

we collected, marked, weighed and measured as many individuals of each species as we 

could find during an approximately two-hour timed snorkel search (Vaughn, Taylor and 

Eberhard, 1997).  We collected small (~50 µl) gonad samples from each mussel’s 

visceral mass with a syringe and preserved the samples in buffered formalin.  In the 

laboratory, we examined gonadal samples under a microscope to quantify gamete status 

in each individual.  Sperm samples were quantified using a hemocytometer to estimate 

the sperm concentration or sperm standing crop present in the gonads (number of 

developed sperm per milliliter).  All eggs and their vitellin membranes were measured (2 

estimates of both length and width) to quantify change in ovum size. This is the first 

study to use syringe gonad sampling in a quantitative fashion.  This non-lethal sampling 

technique allows for large sample sizes without sacrificing individuals, particularly of 

threatened and endangered species (Shiver, 2002; Saha and Layzer, 2008). Although 

further studies are necessary to compare this sampling technique with traditional 

histological sampling, the consistency of our data with the literature suggests that that this 

method is an unbiased method for quantifying the number of mature gametes in a non-

lethal manner.    
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For each site, we recorded temperature (°C) and light (lux) every 30 minutes with 

HOBO (Onset, Pocasset, MA, U.S.A) loggers for use in our estimation of seasonal and 

diurnal temperature and photoperiod variation during the year of our sampling.  We 

estimated the number of accumulated degree days from the start of our study using the 

University of California Statewide Integrated Pest Management Program online degree 

day calculator (UC IPM, 2008; Baskerville and Emin, 1969).  To calculate degree days, 

we defined the limits of growth for all species to occur between 10 and 31oC based on 

metabolic rate data for Q. pustulosa (Spooner and Vaughn, 2008).  We determined the 

maximum and minimum daily temperatures from the temperature logger data and a single 

sine method to calculate the number of accumulated degree days since the start of our 

sampling.     

  To quantify food availability we collected benthic core samples at each site 

seasonally (four times over the course of the year) and monthly water column chlorophyll 

a samples.  Core samples were homogenized with a sediment processor in the lab.  We 

then filtered three 150-ml subsamples which were dried (100oC for 72 hours) and 

weighed to obtain dry weight estimates.  We ashed samples in a muffle furnace at 550oC 

for 1 hour to obtain estimates of ash free dry mass as a measure of benthic organic matter.  

For water column chlorophyll, we filtered three 1-l samples of river water onto glass fiber 

filters, and extracted and quantified chlorophyll a spectrophotometrically using the 

acetone method (APHA, 1996).    

We determined the timing of peak reproduction for each species at each site by 

plotting sample date against either log concentration of sperm observed in the gonads or 

proportion of female eggs in the 80th size percentile based on our measurements of 
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diameter (a standardized estimate of reproductive state to account for differences in egg 

size across species).  We used ANOVA and a Tukey post hoc multiple comparison 

procedure to determine seasonal differences in daily water temperature, benthic organic 

matter, and water column chlorophyll a among sites.  ANOVA was used to test for 

differences among sites in mean hours of light per day (> 0 lux as measured by HOBO 

loggers) reaching the benthos.  We used multiple regression with forward selection to 

determine which environmental parameters (benthic organic matter, water column 

chlorophyll a, temperature, degree days, and light) explained the most variation in timing 

of peak maturation in the three species of mussels.  Egg data were arcsine transformed 

and sperm data were log transformed to meet assumptions of ANOVA.  Because we used 

a sine function to calculate our degree day data, we a priori decided that a cubic function 

should be used to relate timing of reproduction to degree days.  We expected that 

reproductive output would follow a third degree polynomial function over time with a 

period of low reproductive output, gradually increasing over time, and again dropping off 

after spawning.  Therefore, we included three degree day terms in our regression 

analysis:  degree days, degree days2, and degree days3.   

Laboratory Experiment 

Based on the results of our field study, we designed a laboratory experiment 

testing the influences of temperature and photoperiod on reproductive timing.  During the 

summer of 2007, we collected mussels from the Little River and acclimated them to 5oC 

for two weeks prior to the start of the experiment.  Mussels were housed in re-circulating 

stream mesocosms that consisted of large fiberglass tanks lined with gravel-filled plastic 

containers (Allen and Vaughn, 2009).  Each mesocosm housed 14 Q. pustulosa and five 
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Q. cylindrica individuals for a total mesocosm density of 44 individuals m-2.  Mussel 

densities at our three field sites were 35, 53, and 16 individuals m-2 for sites 1, 2 and 3, 

respectively; densities in our experiment fell within this natural range.  Quadrula 

quadrula was not abundant enough in the field for use in this experiment.  Each of 12 

mesocosms was exposed to one of four temperature and light treatments:  cold/dark, 

cold/light, warm/dark, and warm/light (Table 1). 

Because we wanted to ensure that food was not limiting in this experiment, 

mussels were fed every other day with a 2:1 mixture of commercial marine shellfish diet 

and Nannochloropsis (Instant Algae, Reed Mariculture, Campbell, California, USA) used 

for brood stock conditioning in marine mussels.  Data from Spooner and Vaughn (2008) 

show that Q. pustulosa clearance rates triple from 5oC to 15oC.  Therefore, mussels in 

warm treatments were fed approximately 3 times the amount of food of cool-treatment 

mussels to account for the added metabolic demands due to increased temperature 

(Borcherding, 1995).  Partial water changes were completed every two weeks to 

minimize ammonia accumulation.  We collected gonad samples from a subsample of 

individuals in each treatment at the start of the experiment and monthly thereafter to 

quantify reproductive development.  Individual mussels were never sampled more than 

once and after sampling were placed back into their respective mesocosms to maintain 

mussel density throughout the experiment.  We used a two-way ANCOVA to evaluate 

effects of temperature and light on gamete development in the laboratory experiment; 

time was used as a covariate in this analysis. 
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RESULTS 

 Field Study 

 We found significant differences among sites in mean annual temperature, mean 

hours of light reaching the benthos, benthic organic matter, and water column chlorophyll 

a and significant site by season interactions in benthic organic matter and mean water 

temperature (Table 2).   Specifically, site 3 was significantly colder than the other sites in 

the summer and warmer than the other sites in the winter (Fig. 2).  Site 1 received more 

hours of daylight to the benthos than the other sites, but had lower benthic organic matter 

than sites 2 and 3.  Site 3 had lower water column chlorophyll a than site 2 but did not 

differ significantly from site 1.   

We sampled a total of 460 individual mussels across species and sampling sites 

over the course of our year-long study.  We identified reproductively mature individuals 

across a range of size classes for each species.  The smallest individuals collected of each 

species were 58, 38, and 47 mm for Q. cylindrica, Q. pustulosa, and Q. quadrula, 

respectively, and all were found to have mature gametes in their gonads.  Averaged 

across all sites, peak sperm concentration in the gonads occurred in the summer, with Q. 

cylindrica reaching its peak slightly earlier (late May) than Q. pustulosa or Q. quadrula 

(mid June; Table 3).  Declines in gonadal concentrations of sperm after the peak are 

attributed to gamete release and occur throughout June, July and August.  There was 

variability in timing of reproduction among species across sites.  At site 1, Q. quadrula 

and Q. cylindrica both appeared to reach their reproductive peak earlier than Q. pustulosa 

(Table 3); however, site 2 mussels matched the pattern of reproductive timing seen river-

wide (Table 3).  While peaks in reproduction at site 3 were generally similar to those at 
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sites 1 and 2 (Table 3), overall patterns of gametogenesis are difficult to describe given 

that this site had much lower mussel densities and variable sperm concentrations.   

Mean proportion of ova with a diameter in the 80th percentile (averaged across all 

three sites) had seasonal patterns similar to those for sperm concentration; however, 

peaks in ovum diameter occurred slightly earlier than peaks in sperm concentration 

(Table 3).  Riverwide, Q. quadrula appeared to reach peaks in ovum size approximately 

one to two months later than the other two species.  However, patterns in ovum diameter 

varied within and among sites.  At site 1, all three species reached peak reproductive 

status at approximately the same time of year (Table 3), while at site 2 Q. cylindrica 

peaked slightly earlier than the other two species (Table 3).  Peaks in egg size at site 3 

were similar to those observed at sites 1 and 2 (Table 3), but it was again difficult to 

discern any seasonal patterns at site 3 (Table 3). 

Multiple regression revealed significant relationships between environmental 

variables and reproductive status for each species except for Q. quadrula males (Table 4).  

Reproductive status in all three species was related to at least one degree day term (Table 

4; Fig. 3).  Reproduction in Q. pustulosa males and Q. cylindrica females also was 

dependent on mean monthly water temperature.  However, we found that all of the 

environmental parameters were significantly correlated with one another except for 

seasonal benthic organic matter, which was not significantly correlated with any of the 

degree day terms or mean temperature.  There was no relationship between mussel length 

or wet weight and stage of reproduction. 
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Laboratory Experiment 

Temperature and light had no effect on sperm concentration in Q. cylindrica, 

there was no light by temperature interaction, and time was not a significant covariate 

(temperature:  F(1,16)= 0.04, p= 0.84; light:  F(1,16)= 1.35, p= 0.26; light x temperature:  

F(1,16)= 1.47, p= 0.24; time:  F(1,16)= 0.03, p= 0.86).  There was,  however, a significant 

effect of temperature in female Q. cylindrica, no effect of light, and again no light by 

temperature interaction (temperature:  F(1,19)= 6.85, p= 0.02; light:  F(1,19)= 0.58, p= 0.46; 

light x temperature:  F(1,19)= 1.27, p= 0.27).  However, time was a significant covariate 

(F(1,19)= 6.14, p= 0.02).  In particular, females in the cool treatments had a larger 

proportion of developed eggs in their gonads than females in the warm treatments (Fig. 

4).   

We found no main effect of temperature or light on sperm concentration in Q. 

pustulosa (temperature:  F(1,26)= 0.06, p= 0.81; light:  F(1,26)= 2.23, p= 0.15) but did find a 

marginally significant light by temperature interaction, with time as a significant 

covariate (light x temperature:  F(1,26)= 4.17, p= 0.05; time:  F(1,26)= 10.54, p= 0.003).  In 

particular, males in warm/dark treatments had the highest sperm concentrations compared 

to other treatments.  There was an effect of temperature in female Q. pustulosa, but there 

was no effect of light, no light by temperature interaction and time was not a significant 

covariate (temperature:  F(1,28)= 5.20, p= 0.03; light:  F(1,28)= 0.07, p= 0.79; light x 

temperature:  F(1,28)= 1.43, p= 0.24; time:  F(1,28)= 0.37, p= 0.55).  Specifically, females in 

warm treatments had a larger proportion of developed eggs than females in cool 

treatments (Fig. 4).   
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In males, gamete concentration in the gonads was higher in the laboratory 

experiment than in the field.  Quadrula cylindrica sperm concentrations were between 

1.6 and 4.6 times higher (mean = 3.0) in the lab than the mean peak concentrations 

measured in the field.  Likewise, Q. pustulosa laboratory sperm concentrations ranged 

from 1.7 to 6.8 times higher (mean = 3.8) in the lab than the field.  The proportion of 

developed eggs in the laboratory study, however, was lower or equal in size to that 

observed in the field.  Quadrula cylindrica egg size in this study ranged from 0.3 to 1.0 

times (mean = 0.5) the average egg size during peak reproduction in the field.  Similarly, 

Q. pustulosa egg size in the lab ranged from 0.3 to 1.0 times (mean = 0.5) the average 

peak size found in the field. 

 

DISCUSSION 

Densities of freshwater mussel species vary across North America and likely 

depend on biogeography, habitat suitability for survival and reproduction, and rates of 

extirpation, both natural and human caused (Strayer, 2008).  As mussel densities are 

rapidly declining globally, it is urgent that we understand the factors contributing to these 

declines in greater detail.  Determining the environmental cues that are important for 

successful reproduction and how disrupting these cues can influence mussel reproduction 

is necessary for management and conservation of mussel communities.  Although later 

stages of mussel reproduction (glochidial development and encystment on host fish) have 

received considerable attention in the literature, there have been few quantitative studies 

of factors that regulate gamete production in mussels.  To our knowledge, ours is the first 
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study to use a combined field and laboratory approach to determine factors that trigger 

gametogenesis in unionid mussels.   

Both the field and laboratory studies described here suggest that thermal regimes 

are important cues for timing of gamete development (and potentially gamete release). 

Time of reproduction varied slightly among sites, but in all species was correlated with 

number of accumulated degree days, a measure of the total amount of heat to which an 

organism has been subjected.  Degree days are an important developmental cue for many 

aquatic invertebrate species (Ward and Stanford, 1982) including freshwater mussels.  

Hruska (1992) suggested that time for glochidial metamorphosis in the pearl mussel, 

Margaritifera margaritifera, was related to degree days.  Our results indicate that number 

of annually accumulated degree days also may be important in governing earlier stages of 

the reproductive cycle. This makes sense given the natural variability in temperature from 

year to year and that mussel growth and development, like that of most aquatic 

ectotherms, is constrained between a minimum and maximum temperature range (Burky, 

1983; Willmer, Stone and Johnson, 2005).   

Correspondingly, we found temperature, and for male Q. pustulosa a photoperiod 

by temperature interaction, to be significant to gamete development in our laboratory 

experiment.  The results of this experiment are somewhat difficult to interpret, however, 

particularly for females.  For both Q. pustulosa and Q. cylindrica, our data show that 

proportion of eggs in the 80th percentile declined from the beginning of the experiment.  

This decline could be due to the fact that females were collected from the field during the 

peak of their reproductive cycle and that mature eggs were then being transferred to the 

brood pouch (leaving smaller eggs to be sampled from the gonads).  Alternatively, 
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experimental conditions may have caused females to resorb their mature eggs, a 

phenomenon that is known to occur in mussels (Henley, 2002).  It was also unexpected 

that Q. cylindrica males and females had higher numbers of mature gametes under cold 

temperatures, especially because water temperatures rarely drop as low as 5oC in 

southeastern Oklahoma.  Quadrula cylindrica does reach its reproductive maturity 

slightly earlier than Q. pustulosa so it is plausible that gametogenesis is triggered by 

cooler temperatures.  An alternative explanation could be that gamete development is 

compromised by cold temperature.  All of these questions require further study. 

Both Q. pustulosa and Q. cylindrica had higher sperm concentrations in 

laboratory experiments than we observed in the field.  Laboratory-kept animals were fed 

a highly nutritious diet (protein concentration of food fed to laboratory mussels was three 

to nine times higher than Little River seston (Galbraith, unpublished data)) and were fed 

in excess, so that food would not be a limiting factor in our experiment.  Thus, it is 

possible that effects of high quality food overpowered any effects of temperature or light 

in our experiment and indicates that food and food quality may be limiting resources in 

the field.  Borcherding (1995) showed that zebra mussel gametogenesis was dependent 

on temperature, but was also reliant on food availability.  Similarly, Wacker and von 

Elert (2003) stressed the importance of temperature and food quality, specifically 

polyunsaturated fatty acids (PUFAs) in zebra mussel reproduction.  Our field data offer 

some support to the importance of food availability to reproduction:  site 1 had the lowest 

benthic organic matter of all three sites and correspondingly lower sperm concentrations 

in all three species (Table 3).  Further studies examining effects of both food quality and 
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quantity are needed to make conclusions about environmental variables that influence 

gametogenesis. 

We found that all three species of Quadrula reproduce during summer months 

with peak gamete concentrations present during May and June, thus placing gamete 

release during June, July and August.  These patterns in timing of reproduction are 

consistent with that reported for other members of the genus Quadrula and other mussel 

species in general (Yeager and Neves, 1986; Haggerty et al., 1995; Garner, Haggerty and 

Modlin, 1999).  Peak female egg size was seen slightly earlier than peak sperm 

concentration, suggesting that female mussels are reproductively mature earlier in the 

year than males.  Females need to be ready for males to release their sperm; however, 

females have to transfer their mature eggs from their gonads to their gills where 

fertilization takes place (McMahon and Bogan, 2001).  Both are potential factors that 

need to be further examined in the context of understanding female mussel receptivity.   

The thermal regime at site 3 was different than at the other two sites, with warmer 

winter and cooler summer temperatures (Fig. 2).  This site receives substantially colder 

water from the upstream tributary during summer months, released to generate electricity 

and to maintain a trout hatchery downstream of the dam.  It also has lower water column 

chlorophyll a than the other two sites.  While peaks in reproduction were similar among 

all sites (Table 3), general patterns of reproduction varied among all species at site 3, and 

could be a function of the altered physical and potentially chemical properties we 

observed here.  However, because mussel densities were so low at this site, it is difficult 

to determine whether patterns in reproductive timing truly differ from the other sites or is 

simply due to the fact that not enough individuals could be sampled to observe a clear 
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pattern.  The trends do suggest that Q. quadrula males peak later in the year at site 3 than 

they do at sites 1 or 2, which may be a function of the unusual physical properties of this 

site (cold water, low food, etc.).     

Reproductive success in mussels can be disrupted by cold temperatures and 

unnatural thermal regimes (Layzer, Gordon and Anderson, 1993; Heinricher and Layzer, 

1999; Watters, 2000).  Heinricher and Layzer (1999) showed that Megalonaias nervosa 

individuals that had stopped reproducing below a hypolimnetic release dam were capable 

of reproduction following translocation to a river with suitable reproductive cues.  In that 

study inappropriate thermal cues below the dam were considered the most likely 

explanation, although food availability was not ruled out as a causative factor.  Layzer et 

al. (1993) suggested that mussel extirpations in the Caney Fork River, Tennessee were 

due to direct effects of altered temperature on mussel reproduction.  Temperature and 

food availability may be responsible for the unusual patterns in gamete development 

observed at site 3, but further research must examine other differences that may exist 

between these sites (e.g. toxins, water chemistry) that could be causing the unusual 

patterns in gametogenesis. 

Impoundments also indirectly affect mussel reproduction by altering host fish 

species’ migration patterns and presence and by impacting juveniles.  Dams can limit the 

movement of migratory host fish species, which can potentially influence gene flow 

between mussel populations (Layzer et al., 1993; Watters, 1996, 2000).  Decreases in 

thermally sensitive-host fish populations also have been documented in rivers with 

altered thermal regimes (Davenport and Warmuth, 1965).  Since most mussel species are 

obligate ectoparasites on fish and many are host fish specialists, declines in host fish 
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abundance can have severe implications for mussel reproductive success.  Juvenile 

mussel recruitment can also be negatively impacted by high water velocities, siltation and 

lack of food below impoundments (Layzer and Madison, 1995; Vaughn and Taylor, 

1999; Watters, 2000).   

Impoundments and other anthropogenic factors are known to have detrimental 

impacts on aquatic organisms at all stages of life, not just the reproductive stage.  

However, reproduction is often one of the most vulnerable time periods for organisms, 

making them particularly sensitive to changes in environmental conditions.  Our results 

emphasize the importance of maintaining natural thermal regimes and potentially food 

availability in regulated rivers to facilitate successful mussel reproduction. 
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Table 1.  Experimental design for stream mesocosm experiment.   

Treatment N 
Temp (oC) 
Month 1 

Temp (oC) 
Months 2-3 

Light (hrs of 
light:dark) 

Cold/Dark 3 5 5 8:16 
Cold/Light 3 5 5 16:8 
Warm/Dark 3 5 15 8:16 
Warm/Light 3 5 15 16:8 
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Table 2.  Results of two-way ANOVAs comparing temperature, light, benthic organic 

matter, and water column chlorophyll a among sites and seasons.   

Factor F  (df) p 
Water temperature   

Site 11.26 (2,926) <0.001
Season 1721.68 (3,926) <0.001
Site x Season 13.66 (6,926) <0.001

Light reaching benthos  
Site 2.92 (2,787) 0.06
Season 43.86 (3,787) <0.001
Site x Season 0.97 (6,787) 0.45

Benthic production   
Site 15.16 (2,118) <0.001
Season 1.11 (3, 118) 0.35
Site x Season 2.87 (6,118) 0.01

Water column chlorophyll   
Site 5.82 (2,51) <0.001
Season 12.52 (3,51) <0.001
Site x Season 1.08 (6,51) 0.39
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Table 3.  Mean (± SE) sperm concentration, mean (± SE) proportion of eggs in the 80th 

size percentile, and month of peak reproduction for each sex at each study site and 

averaged across all three study sites. 

Site Species 

Summer 
peak in 
male 
maturity 

Mean sperm 
concentration 
(#/ml x 108) 

Summer 
peak in 
female 
maturity 

Mean 
proportion of 
eggs in 80th 
size 
percentile 

All sites Q. cyindrica May 4.85 (0.63) April 0.53 (0.11) 
Q. pustulosa June 2.97 (0.32) April 0.50 (0.10) 

  Q. quadrula June 2.76 (2.1) June 0.44 (0.28) 
Site 1 Q. cyindrica May 4.11 (0.44) April 0.60 (0.10) 

Q. pustulosa June 2.76 (0.47) April 0.52 (0.27) 
  Q. quadrula May 1.62 (0.91) April 0.38 (0) 
Site 2 Q. cyindrica May 7.05 (0) May 0.34 (0.04) 

Q. pustulosa June 4.48 (0.62) April 0.49 (0.11) 
  Q. quadrula June 1.05 (0.90) May 0.29 (0.02) 
Site 3 Q. cyindrica May 5.61 (1.84) None 0.00 

Q. pustulosa May 3.11 (0.58) May 0.30 (0.04) 
Q. quadrula July 8.93 (0) June 1.00 (0) 
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Table 4.  Results of multiple regression and significant factors explaining the importance 

of environmental variables on patterns in gamete development over time.   

 Adj. R2 F (df) Explanatory variables 
Males       

Q. cylindrica 0.61 23.14 (3,39) degree days, degree days2, degree days3

Q. pustulosa 0.15 12.53 (2,125) degree days3, mean temperature
Q. quadrula  no significant model

Females     
Q. cylindrica 0.19 13.99 (1,54) mean temperature
Q. pustulosa 0.19 22.85 (1,92) degree days3

Q. quadrula 0.24 5.66 (1,14) degree days
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FIGURE LEGENDS 
 
Figure 1.  Location of sampling sites ( ) in the Little River in southeastern Oklahoma.  

Latitude and longitude coordinates for the sites are as follows:  Site 1:  33.93992, 

-94.76927; Site 2:  33.949203, -94.73382; Site 3:  33.94822, -94.56965.  

Figure 2.  Mean (± SE) monthly temperature during the 2005-2006 study period at three 

sampling sites in the Little River, Oklahoma.  Data collected at 30 minutes 

intervals using continuous data loggers.   

Figure 3.  Relationship between the number of accumulated degree days since the start of 

our field season and sperm concentration for Q. cylindrica (a), Q. pustulosa (b), 

and Q. quadrula (c) and the proportion of eggs in the 80th percentile based on size 

for Q. cylindrica (d), Q. pustulosa (e), and Q. quadrula (f).     

Figure 4.  Treatment means (± SE) for males (a, b) and females (c, d) of Q. cylindrica and 

Q. pustulosa averaged across time periods for the laboratory experiment.   
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Chapter 2.  Effects of temperature and stream flow on sperm motility and dispersal 
in freshwater mussels 
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Abstract 
 

 Freshwater mussels use a spermcasting reproductive strategy that is unique among 

freshwater invertebrates, although more common in marine invertebrates.  We 

determined how sperm motility (estimated as percent motile sperm) is affected by 

temperature in freshwater mussels and then modeled the combined effects of temperature 

and stream flow on downstream movement of motile mussel sperm.  We found that 

sperm of Quadrula pustulosa are most motile between 15 and 25oC and that sperm can 

travel long distances downstream under certain flow regimes.  The distance sperm can 

travel, however, depends in part on their release height above the substrate, and the 

percent motile sperm available for fertilization influences how far downstream successful 

reproduction can occur.  Our findings highlight the importance of maintaining natural 

thermal and flow regimes to insure successful reproduction in freshwater mussels.   

 

Key words:  Unionid, fertilization, spermcast, discharge, climate change, impoundment  

 

Introduction 

 Organisms living in stream ecosystems have evolved a variety of morphological, 

behavioral, and physiological adaptations to cope with a flowing environment (Vogel 

1994).  Many of these adaptations revolve around extreme events like floods and 

droughts and involve either avoiding these events or developing life history strategies that 

are synchronized with them (Vogel 1994, Lytle and Poff 2004).  Many aquatic 

organisms, for example, time their reproduction around particular temperature and flow 

regimes to either take advantage of newly available resources or reduce natal mortality 
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due to harsh conditions (Lytle and Poff 2004).  Although environmental variability is not 

predictable on a yearly basis, long-term averages in flow and temperature have shaped 

organisms’ responses to these parameters (Poff et al. 1997, Lytle and Poff 2004).  

Historical stream flow and temperature regimes, however, are being altered on a large 

scale by human activity.  In particular, impoundments (Poff et al. 1997, Vaughn and 

Taylor 1999), clearing of riparian habitat (Castelle et al. 1994), and increased climatic 

variability due to climate change (Mulholland et al. 1997, Parmesan 2006) are shifting 

natural variability in stream ecosystems.  Studies suggest that alterations in flow and 

temperature are causing declines in species diversity and abundance in both fish and 

aquatic invertebrates (Allan and Flecker 1993, Mulholland et al. 1997, Poff et al. 1997, 

Burgmer et al. 2007).   

Freshwater mussels (Bivalvia:  Unionoida) are one of the most globally-

threatened faunas (Williams et al. 1993, Strayer 1999, Vaughn and Taylor 1999, Lydeard 

et al. 2004, Strayer et al. 2004).  Mussels have a reproductive strategy that results in 

generally low recruitment (McMahon and Bogan 2001) which, in combination with their 

long lifespan, makes them particularly susceptible to anthropogenic influences (Watters 

2000).  Reproduction occurs when males release their gametes into the water column and 

females passively filter in the sperm (McMahon and Bogan 2001); we refer to this 

process as spermcasting (Bishop and Pemberton 2006) as opposed to broadcasting where 

both sexes release their gametes.  Eggs develop and are fertilized in specialized brood 

chambers located within the females’ gills.  Mussel larvae (called glochidia) are 

transferred to one or several specific host fish species to survive as ectoparasites until 

reaching further maturity (Barnhart et al. 2008).  Juvenile mussels then drop from their 
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host fish and mature to adulthood in the epibenthos (McMahon and Bogan 2001).  

Although spermcasting is a common reproductive strategy in many sessile marine 

invertebrates (Bishop and Pemberton 2006), freshwater mussels are the only known 

freshwater organisms to use this strategy.   

Reproduction in freshwater mussels is thought to be triggered by a combination of 

temperature, photoperiod, and food availability (Mackie 1984, Hruska 1992, Borcherding 

1995).  If this is the case, mussels experiencing altered environmental conditions may 

survive but fail to reproduce, contributing to a slow decline of the community.  

Reservoirs may alter temperature, light and food availability, as well as fragment host 

fish populations and thus mussel populations (Baxter 1977, Vaughn and Taylor 1999, 

Watters 2000).  In the southern U.S., streams often dry into a series of isolated pools in 

hot summer months.  River regulation may exacerbate these harsh conditions by holding 

water in upstream reservoirs and prolonging drought conditions downstream.  This 

practice can lead to extremely high temperatures (as high as 40oC), elevated ammonia, 

and low dissolved oxygen (Spooner and Vaughn 2000, Gagnon et al. 2004, Cooper et al. 

2005).  Under such conditions, mussel communities encounter unnatural thermal regimes 

for cuing reproduction, and mussels experience high stress levels (Spooner and Vaughn 

2008), further decreasing potential reproductive success.  Alternatively, hypolimnetic 

release impoundments can have the opposite effect on stream temperature and flow by 

releasing unnaturally cold water into rivers; this has also been shown to decrease mussel 

reproductive success (Layzer et al. 1993, Heinricher and Layzer 1999, Watters 2000).   

Although environmental signals may be important for cuing gamete development 

and release, successful reproduction ultimately depends on the ability of viable sperm to 
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travel to the eggs of the correct species.  In zebra mussels, both sperm viability and 

motility are affected by water temperature (Ciereszko et al. 2001).  Low motility and 

viability should decrease the fertilization success of sperm (Mojares et al. 1995, 

Ciereszko et al. 2001).  In addition, stream flow may be important to both reproductive 

success and overall mussel population dynamics.  Sperm release during high flow events 

may result in sperm being washed quickly downstream and prevent females’ eggs from 

becoming fertilized; however, low flow may restrict fertilization to only nearby mussels, 

which could affect population genetics and relatedness of individuals within a mussel 

bed.  Because both flow and temperature can be altered by river regulation, it is important 

to understand how these factors may impact fertilization success.  Here, we first asked 

how mussel sperm motility is affected by temperature.  We then developed a model to 

predict how temperature and stream discharge interact to govern the downstream 

movement of viable freshwater mussel sperm.     

 

Methods 
Study organisms 

Mussels used in this study were collected from the Kiamichi River and 

hydrological data used for modeling were from the Little River.  These adjacent rivers are 

located in the Ouachita Highlands of southeastern Oklahoma, U.S., and are known for 

their high mussel and fish biodiversity (Moulton and Stewart 1996, Master et al. 1998, 

Matthews et al. 2005, Galbraith et al. 2008).  Our study focused on Quadrula pustulosa.  

We chose this species because it occurs throughout the Mississippi drainage (Parmalee 

and Bogan 1998) and is common in the Kiamichi and Little Rivers.  It is a medium-sized 
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(mean shell height at our sites is 54 mm) habitat generalist and thus likely serves as a 

good surrogate for other mussel species.   

Quantifying sperm motility  

To determine how temperature influences sperm motility and, by extension, 

viability, we used methods similar to those of Ciereszko et al. (2001).  We collected 

sperm from individual Q. pustulosa males using a syringe biopsy technique (Saha and 

Layzer 2008) and diluted the sperm in filtered pond water.  Pilot work showed that 

mussels survived and reproduced in the filtered pond water (Vaughn et al. 2004, pers. 

obs.).  We exposed the sperm to temperatures of 5, 15, 25, and 35oC (all temperatures 

that are experienced by mussels with mature sperm present in their gonads in 

southeastern Oklahoma; pers. obs.) and counted the percentage of motile sperm after 0, 2, 

4, 8, 24, and 48 hours of exposure (n=7 for each temperature).  To do this we quantified 

the number of moving sperm in one grid cell of a hemacytometer (4 nl) for each 

temperature and time period and divided this by the total number of sperm in the cell to 

obtain the percent motile sperm in a sample.  We counted a mean (± SE) of 150 ± 8 

sperm for each mussel per temperature for each of the 6 sampling time periods.  To 

determine the effect of temperature on percent motile sperm, we used repeated measures 

ANCOVA on arcsine transformed percent motile sperm values with time as the block 

factor and arcsine transformed initial percent motile sperm as a covariate.  We 

acknowledge that sperm motility does not directly equate to viability and that, in many 

spermcasting species, sperm are not activated until they are exposed to some chemical 

cue, undergo a morphological shift, or come into contact with females (Burighel and 

Martinucci 1994b, Johnson and Yund 2004, Temkin and Bortolomi 2004).  Also, males 
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that release their sperm naturally likely release a higher proportion of motile sperm than 

we observed by collections made using the syringe biopsy technique.   

Model development and parameter estimates 

Our model incorporated the movement of sperm due to stream discharge and 

gravitational settling and combined this movement with our estimates of percent motile 

sperm.  To estimate settling velocity (Vs) of sperm, we used Stoke’s Law:  Vs= 2gr2 (ρp-

ρf)/9µ where g = acceleration of gravity (m/s), r = the radius of the sperm (m), ρp and ρf 

are the densities (mass/volume) of the sperm cells and water, respectively (kg/m3), and µ 

= dynamic viscosity of water (Pa s).  We used the mean sperm head length (l), width (w), 

and height (h) (see below) to calculate the equivalent spherical diameter (ESD = (lwh)1/3) 

of sperm and the ESD/2 was used in place of the radius in the Stoke’s Law equation.  

ESD of an irregularly shaped object provides an estimate of the diameter (ESD/2 

estimates the radius) of a sphere with an equivalent volume to the object (Jennings and 

Parslow 1988, Kamykowski et al. 1992).  In estimating the ESD, we considered only the 

sperm head dimensions.  Because flagella are likely to increase sperm resistance to 

settling, our estimates using only sperm head size should bias our model towards faster 

settling rates than if we had included the flagellum dimensions in our model.     

We used scanning electron microscopy to examine Q. pustulosa sperm 

morphology for use in settling rate calculations for our model.  We collected sperm 

samples from 5 males using a syringe (Saha and Layzer 2008).  The sperm were fixed for 

30 min in a 3:1 solution of saturated mercuric chloride and 2% osmium tetroxide 

(Parducz 1967, Small and Marszalek 1969) and then washed 3 times with distilled water.  

The sperm were mounted on sputter coated 22-mm Thermanox® cover slips and were 
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dehydrated in an ethanol series.  Coverslips were critical point dried and sputter coated 

using 60% gold/40% palladium, mounted, and viewed using a JEOL JSM-880 high-

resolution scanning electron microscope.  We used ImageJ digital image analysis 

software to measure the sperm dimensions along three perpendicular axes (head length, 

width and height), and tail length (Abramhoff et al. 2004).  We then averaged the head 

length and width and tail length measurements from 36 sperm cells collected from each 

of 4 individuals for use in our model.   

We were unable to find information on the density (kg/m3) of freshwater mussel 

sperm in the literature.  Therefore, we substituted the mean density of the single-celled 

freshwater green alga, Chlorella vulgaris in our model (average= 1079 kg/m3 (Oliver et 

al. 1981).   This algal species is similar in shape (prolate spheroid) and size (slightly 

larger than mussel sperm:  mean diameter = 5.71 µm) to freshwater mussel sperm (Oliver 

et al. 1981).  We recognize that there are probably subtle differences in cell density 

between plant and animal cells; however, due to lack of a suitable alternative, we feel that 

using Chlorella density is appropriate for this model.        

Buried mussels come to the streambed surface to release gametes that can then be 

transported by the current (Watters et al. 2001).  We estimated the potential downstream 

movement of sperm by building a model that incorporated varying stream discharge 

regimes and gamete release locations.  Sperm release behavior and the height above the 

substrate of gamete release have not been confirmed in bivalves (Mackie 1984, G. T. 

Watters, Ohio State University, personal communication); thus, we built our model using 

heights that represent what we considered a realistic range based on the size of this 

species (mean shell height is 5.4 cm):  1, 5, and 10 cm above the substrate.  We consider 
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it reasonable to assume that mussels are capable of forcibly ejecting their sperm up to 10 

cm above the substrate because we have observed mussels using their exhalant siphon to 

“pump” feces and pseudofeces (undigested food particles) this distance into the water 

column (pers. obs.).    

We used United States Geological Survey (USGS) real-time stream discharge 

data for the Little River (http://waterdata.usgs.gov/nwis/uv?07338500) for midsummer, 

the approximate time of gamete release in this species (pers. obs.).  In particular, our 

model was based on 4 different July stream discharge estimates:  0.51 m3/s, the mean 

July 2006 discharge; 8.34 m3/s, the mean July discharge for 2000-2006; 18.89 m3/s, the 

mean July discharge for 1990-1999; and 58.26 m3/s, the maximum July discharge for 

1990-2006.  We assumed laminar flow and a constant river width of 25.5 m (based on 

field data from three mussel beds reported in Galbraith et al. 2008) throughout the Little 

River and across varying stream discharge rates.  We used linear regression between 

stream depth (measured in the field) and stream discharge (from USGS) to estimate the 

cross sectional area of the Little River under different discharges (F(1,11)= 228.90, p< 

0.0001, R2= 0.95) so that we could use these data to obtain a linear flow estimate in m/s.   

We used simple vector addition to sum the flow rate and the sperm settling rate to 

obtain estimates of downstream movement of sperm (settling distance downstream = 

flow rate + sperm settling rate).  To account for variations in our model outcome due to 

variability in sperm size, we estimated settling rates and downstream movement of sperm 

based on mean sperm size (± SD).  We incorporated our data on percent motile sperm at 

25oC into our model to estimate the relative importance of stream discharge and percent 

motile sperm on fertilization success.   
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Results 

Sperm motility and morphology 

Temperature significantly affected the percentage of motile sperm, and percent 

sperm initially motile was a significant covariate (temperature:  F(3,22) = 11.02, p < 0.001; 

initial percent motile sperm:  F(1,22) = 9.16, p = 0.006; Fig. 2).  The percentage of motile 

sperm was highest at 25oC, although not significantly different from 15oC and marginally 

different from 35oC.  Despite the appearance of an increase in percent motile sperm 

between 8 and 48 hours at some temperatures, there was no significant difference in 

percent motile sperm between 8, 24, and 48 hours at any temperature; this artifact was 

due to high variability in percent motile sperm during these later time periods.   

Q. pustulosa sperm (Fig. 1) had a mean (± SE) total length (head plus tail) of 

38.23 ± 3.22 µm.  Mean sperm head length was 3.61 µm (±0.26 µm) and head width 

averaged 2.13 µm (±0.26 µm).  Mean sperm tail length was 34.62 µm (±3.04 µm), 

approximately 9.6 times longer than sperm head length.  Based on mean head 

dimensions, we calculated the ESD of Q. pustulosa sperm to be 2.54 µm.   

The model 

Using the percent motile sperm at 25oC, we first estimated how far downstream 

viable sperm could travel under 4 different July flow regimes due to flow alone without 

considering settling velocity (Fig. 3).  We then predicted downstream transport distances 

and observed the relative importance of settling rate and percent motile sperm under 3 

different release heights (Figs 4).  Based on our estimates of sperm size, we calculated 

the mean settling velocity of sperm to be 0.28 µm/s; however, using the mean sperm 

radius ± 1 SD, we calculated that settling rate could vary between 0.23 and 0.35 µm/s.  
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We found that under natural midsummer flow regimes, sperm has the potential to be 

carried considerable distances downstream and remain viable (Fig. 3), even after taking 

sperm settling rates into account (Fig. 4, Table 1).  Due to variation in sperm size, we 

calculated that sperm settling rates can vary around the mean by between 18-25% (Table 

1).   

Our model predicts that the relative importance of sperm settling and percent 

motile sperm varies with gamete release height.  For example, if mussels release their 

sperm 1 cm above the substrate, mussel sperm has the potential to travel from 3.8 to 36.5 

km downstream; however, the drop in percent motile sperm between 4 and 8 h after 

release limits fertilization success to distances much closer to where the sperm were 

released.  For example, 6 h after release, only approximately 10% of sperm are still 

motile (almost 1/3 of the original value), but by then sperm have only moved between 2.4 

and 22.4 km, depending on flow regime:  sperm effectively travel half  the distance that 

they could have based on settling rates alone (Fig. 4).   

A similar pattern is observed if sperm are released at 5 or 10 cm above the 

substrate (Fig. 4), with sperm having a maximum potential for downstream transport of 

between 19.2 and 182.5 km if released at 5 cm and between 38.4 and 364.9 km if 

released at 10 cm.  However, sperm motility effectively restricts the movement of viable 

sperm to the same 2.4 to 22.4 km range that was observed when mussels release their 

sperm 1 cm above the substrate.  This distance is between 90 and 95% shorter than sperm 

could have traveled based on settling rates alone.   
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Discussion 

Our study suggests that Q. pustulosa sperm are most viable between 15 and 25oC 

(Fig. 2), and that mussel sperm have the ability to travel large distances downstream 

depending on stream discharge and height at which sperm are released into the water 

column.  We found that although sperm cannot necessarily travel as great a distance 

downstream when released only 1 cm above the sediment, a decline in percent motile 

sperm only limits their role in fertilization to half the distance they could have traveled 

before settling.  At release heights of 5 cm or higher, sperm have the potential to move 

hundreds of kilometers downstream; however, their ability to be useful in fertilization is 

restricted to a distance within only 5-10% of the potential distance they could have 

travelled based on settling rates alone.     

Lefevre and Curtis (1910) and Downing et al. (1993) suggested that mussel sperm 

in lake environments may only diffuse a maximum of 0.5 m while remaining viable.  

Whereas this may be the case in lentic systems, it is plausible in lotic systems for sperm 

to travel many more kilometers over the 4 h during which sperm are the most viable, 

depending on release height and stream discharge.  There are no current data on release 

height of mussel sperm, and in fact, some mussels may release their sperm into the 

interstitial pore water in the sediment to fertilize nearby females.  Nichols et al. (2004) 

showed that mussels are capable of filtering benthic (i.e. non-suspended) algal particles 

so this strategy may be used by females to filter sperm released to the benthos by adjacent 

males.  Further research into this phenomenon is necessary, especially given its important 

consequences for understanding gene flow between mussel beds.  Our data suggest that, 

even in mussel species that do not use highly mobile host fish species (e.g. minnows or 
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darters), high rates of gene flow among mussel beds are still possible due to sperm 

movement.  Mussel bed monitoring sites established by C. Vaughn in the Little River 

range between 1.4 and 127 km apart (Reagan 2008).  Based on our model, these are 

reasonable distances for sperm to travel between beds provided there is adequate flow.  

The relative contributions of host fish movement and sperm movement to genetic 

diversity in mussel populations has not been investigated and is an obvious follow-up to 

this study.   

While our model includes estimates of the movement of individual sperm cells, 

several species of freshwater mussel have been discovered to release sperm in 

concentrated spermatozeugmata, or sperm balls (Lynn 1994, Waller and Lasee 1997, 

Ishibashi et al. 2000, G. T. Watters, Ohio State University, personal communication).  

These sperm packages can contain several thousand sperm, can range up to 80 µm in 

diameter, and are suspected to be an efficient sperm delivery system in many invertebrate 

taxa (Lynn 1994, Waller and Lasee 1997, Ishibashi et al. 2000).  We did not observe any 

spermatozeugmata in Q. pustulosa using our sampling method; however, it is possible 

that prior to natural gamete release sperm are packaged in similar structures.  If true, this 

would increase the settling velocity and potentially increase the longevity of the 

encapsulated sperm.  We used Stoke’s Law to estimate the settling rate of hypothetical 

spermatozeugmata assuming a diameter of 80 µm and a density similar to that of an 

individual sperm cell (i.e. the density of Chlorella vulgaris).  Using the same model we 

used for our sperm, we incorporated settling rates with July flow regimes and sperm 

release heights to predict how far downstream spermatozeugmata could travel (Fig. 5).  

Sperm packaging drastically decreases the distance that sperm travel downstream before 
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settling from the water column.  Under the highest July flow regimes and the highest 

release height, spermatozeugmata could travel a maximum of 0.36 km downstream, a 

considerable decrease from the range observed in individual, free-swimming sperm cells.  

Ishibashi et al. (2000) observed spermatozeugmata in five species of freshwater bivalves 

and found that sperm encapsulated in spermatozeugmata were active for at least 48 h 

after release.  If this is the case, sperm viability should never be a limiting factor in 

freshwater mussel fertilization downstream of release.  Further investigation into the 

effects of sperm packaging on viability and travel downstream is needed as this has 

implications for population and conservation genetics of these organisms.   

Once sperm have been released into the water column and begin travelling 

downstream (assuming they are not packaged into spermatozeugmata), sperm 

concentrations within the water column could be extremely dilute, particularly during 

high flow, decreasing the chances of successful fertilization (Haggerty et al. 1995).  

However, mussels in southeastern Oklahoma reproduce during summer months when 

water levels are generally low and temperatures warm.  Vaughn et al. (2004) and Spooner 

and Vaughn (2008) have shown that mussels under these conditions have high clearance 

rates, which would facilitate sperm filtration by females.  Additionally, recent work 

suggests that marine animals adopting the spermcasting reproductive strategy can still 

achieve high levels of successful reproduction with sperm concentrations two to three 

orders of magnitude more dilute than required by typical broadcast spawners (Pemberton 

et al. 2003, Bishop and Pemberton 2006).  This conclusion is supported by several studies 

in which high levels of fecundity (>85% of females) have been observed in naturally 

reproducing freshwater mussel populations even when mussel densities were low 
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(Haggerty et al. 1995, Haag and Staton 2003), although other studies report fecundities 

slightly lower than this (65-75%) (Yeager and Neves 1986, Haggerty et al. 1995, Garner 

et al. 1999).   

Spermcasting marine species can also achieve successful reproduction at 

population densities much lower than broadcast spawners (Phillippi et al. 2004), partly 

because females have the ability to store sperm (Foighil 1985, Bishop and Ryland 1991, 

Burighel and Martinucci 1994a).  Foighil (1985) found that sperm storage can last 

between 1 to 4 months in the marine bivalve, Mysella tumida, and Bishop and Ryland 

(1991) found sperm storage up to a month in the ascidian, Diplosoma listerianum.  

Although no work has yet documented sperm storage capabilities in freshwater mussels, 

there is recent evidence indicating that multiple paternity does occur (Christian et al. 

2007).  Although sperm storage may not need to be invoked to explain multiple paternity, 

it is one possible explanation for the observation that female mussels brood only a single 

clutch at a time even when there is high variability in timing of gamete release within a 

species (Haag and Staton 2003, Galbraith and Vaughn 2008).  Research into the 

mechanism of multiple paternity and the potential for sperm storage in mussels is critical 

for our understanding the dynamics of freshwater mussel reproduction.     

 We have presented here the first model for predicting the movement of freshwater 

mussel sperm.  It should serve as a basic model against which more complex models can 

be tested.  This model is clearly very simple and does not take into consideration complex 

stream flow patterns, diffusion of sperm across the width of the stream, or loss of sperm 

from the water column due to filtration by mussel beds and by other filter-feeding 

animals.  Additionally, our “high end” estimates of the distance sperm can travel is based 
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on extremely high July water flow for this region (the highest July flow in almost 20 

years).  Under high flow regimes where water residence times are low, mussels would 

have a more difficult time clearing sperm from the water column (Vaughn et al. 2004).  

The actual distance sperm can travel and be successfully used in reproduction is probably 

much closer to those found under our more moderate flow estimates.   

Despite the limitations of our model, the model demonstrates that the distance that 

motile sperm travel ultimately depends on stream discharge and temperature.  Successful 

mussel reproduction requires adequate flow to distribute sperm to receptive females of 

the same species and appropriate thermal conditions such that sperm are viable upon 

reaching a female.  Thus, as temperature and flow regimes continue to be altered by 

climate change and river regulation, the distance motile sperm are carried downstream, 

and ultimately mussel reproductive success, is likely to change.  Climate change models 

have predicted an increase in seasonal air temperature by as much as 4oC over the coming 

years (Mulholland et al. 1997).  In addition, river regulation in the southern U.S. often 

results in rivers becoming a series of isolated pools in the summer with temperatures 

sometimes exceeding 40oC (Spooner and Vaughn 2000).  Although we did not measure 

percent motile sperm at temperatures between 25 and 35oC, we do know that motility 

drops off somewhere between these two temperatures (Fig. 2).  This means that as water 

temperatures rise, the distance motile sperm can travel downstream will be restricted 

closer to the site of gamete release.  Freshwater mussels have evolved in rivers where 

there is flow and temperature variability across years, which likely leads to some years of 

good and other years of poor recruitment.  However, our model indicates that drastically 
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manipulating flow and temperature could alter not only the genetic structure of mussel 

populations, but could lead to overall reproductive failure of mussels.   
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Table 1.  Variation in sperm settling distance due to variability in sperm size.  Values 

represent settling distance based on mean sperm radius (settling distance), settling 

distance based on mean – 1 SD in sperm radius (longest settling distance), and settling 

distance based on mean + 1 SD in sperm radius (shortest settling distance).   

Discharge 
(m3/s) 

Sperm 
release 

height (cm) 
Settling 

distance (km)

Longest 
settling 

distance (km)

Shortest 
settling 

distance (km) 
0.51 1 3.8 4.8 3.1 
8.34 1 25.2 31.5 20.6 
18.89 1 31.6 39.5 25.8 
58.26 1 36.5 45.6 29.9 
0.51 5 19.2 24.0 15.7 
8.34 5 125.9 157.4 103.1 
18.89 5 157.8 197.3 129.2 
58.26 5 182.5 228.1 149.4 
0.51 10 38.4 48.1 31.5 
8.34 10 251.9 314.9 206.2 
18.89 10 315.6 394.6 258.4 
58.26 10 364.9 456.3 298.8 
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Figure legends 

Figure 1.  Scanning electron micrographs of Q. pustulosa sperm illustrating an individual 

spermatozoon (A), a sperm head (B), and the protrusion caused by mitochondria 

(arrow) and insertion point of the flagellum with the sperm head (C).   

Figure 2.  (A) Estimated marginal means (±1 SE) of percent motile Q. pustulosa sperm 

over time at four different temperatures.  Mean for initial percent motile sperm is 

the grand mean averaged across all temperature treatments (the covariate in our 

ANCOVA).  (B) Mean (±1 SE) percent motile sperm at four temperatures 

averaged over 48 hours. 

Figure 3.  (A)  Distance sperm can move downstream (without considering sperm 

settling) under four different July flow regimes versus percent motile sperm at 

25oC.  (B)  Expanded view of (A).   

Figure 4.  Results of model predicting the distance sperm can travel downstream until 

settling out of the water column (marked by triangles) under four July flow 

regimes versus percent motile sperm at 25oC (gray line).  Model assumes mussels 

release sperm 1 cm (A), 5 cm (B) and 10 cm (C) above sediment.   

Figure 5. Results of model predicting the distance hypothetical spermatozeugmata (sperm 

packages) can move downstream until settling out of the water column (marked 

by triangles) under four July flow regimes.  Model assumes mussels release 

spermatozeugmata 1 cm (A), 5 cm (B) and 10 cm (C) above sediment.  
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Chapter 3.  Potential effects of reservoir management on the condition and 
reproductive traits of downstream mussels 
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Abstract 

 Impoundments are known to have dramatic influences on aquatic ecosystems; 

however, these effects can vary depending on management, including water release 

patterns.  We examined the effects of two dams on freshwater mussel reproductive traits:  

one dam that mimicked natural flow patterns where the amount of water released 

(outflow) approximately equaled the amount of water coming into the reservoir (inflow) 

and one dam where outflow did not mimic natural flow patterns.  We found that mussel 

reproductive traits, including density, percent hermaphrodites, percent of the population 

infected by sterilizing trematodes, body condition and sex ratio, were all disrupted below 

the dam with unnatural flow regimes.  Although there were still some population 

disturbances below the more naturally-regulated impoundment, these were not as severe.  

Potential mechanisms by which impoundments can influence reproductive characteristics 

of freshwater mussels and ultimately lead to slow population demise include effects on 

gamete viability, reproductive cues, and stress responses, all of which ultimately lead to 

negative density-dependence (allee effects).   

 

Key words:  Unionid, impoundment, temperature, flow, sex ratio, parasitism, 

hermaphrodite  
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Introduction 

 All animals must acquire and assimilate energy, grow and reproduce.  Success in 

doing so ultimately depends on an animal’s physiological and ecological requirements.  

Different species vary in these requirements and different life stages within a single 

species can also have diverse physiological and ecological optima.  In particular, 

reproduction is one of the most critical time periods in an organism’s life and is therefore 

crucial to conservation efforts.  For example, there are often narrow windows during 

which conditions are optimal for reproduction, and reproductive adults, juveniles, or 

gametes can be extremely sensitive to stressors during this time (Snell, 1986; Gosselin 

and Chia, 1995; Eriksson and Baden, 1997; Willmer et al., 2005).  Additionally, 

reproduction is energetically costly:  both males and females can invest heavily in 

reproduction through a variety of mechanisms including nuptial gifts, calling behavior, 

mate guarding, brooding and matrotrophy (Trexler, 1997; Chaparro and Thompson, 

1998; Vahed, 1998; Watson et al., 1998; Sullivan and Kwiatkowski, 2007). 

 Even though reproduction is particularly sensitive to environmental stressors and 

change, understanding how changing environmental conditions impact reproduction can 

be difficult.  For example, many long-lived organisms delay reproduction until late in 

life, making it difficult to detect changes in their reproductive success (Rowe, 2008).  

Some animals migrate during their reproductive period, while others have complex life 

cycles that are not well understood, further complicating the study of their reproduction 

(Holmes, 2007; Petranka, 2007; Fraser and Bernatchez, 2008).  Unfortunately, most 

conservation research has focused primarily on adult organisms, neglecting the larval, 

embryonic, and gametic stages that make reproduction a “bottleneck” to species 
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conservation:  failure to understand this most sensitive time period could lead to failure in 

conservation efforts.    

A widespread and significant environmental change that has impacted many 

organisms globally is the large-scale impoundment of rivers.  In the 20th century alone, 

more than 75,000 dams over 2 meters high have been constructed in the United States 

(Poff et al., 2007).  Impoundments alter physical characteristics of rivers including flow, 

temperature, light, material cycling and availability, and sediment loads, not only in 

impounded sections of rivers but upstream and downstream as well (Benke, 1990; Allan 

and Flecker, 1993; Poff et al., 2007).  These altered conditions result in a wide variety of 

direct and indirect effects on aquatic organisms including mortality, disruption of 

reproductive cues, blocked fish migration and disturbance of entire food webs (Poff et al., 

1997; Poff and Hart, 2001; Lytle and Poff, 2004).  Although we have a generally good 

understanding of acute impacts of impoundment, more information and synthesis is 

needed on chronic, cumulative effects of dam-induced disturbances on affected 

organisms (Strayer et al., 2004).   

 Impoundments have been constructed for a variety of human needs including 

irrigation, hydroelectricity, drinking water, flood control, and recreation (Allan and 

Flecker, 1993; Poff and Hart, 2001).  Impoundments differ in their ecological impacts 

depending on how drastically the river is altered and on subsequent management of 

reservoir releases (Poff et al., 1997).  These ecological effects vary with dam location, 

dam height, degree of water regulation, and how closely water management mimics 

natural stream conditions (Poff and Hart, 2001; Poff et al., 2007).  For example, water 

released below impoundments can result in both abnormally high and low flows, 
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sometimes on a daily basis, and often at the “wrong” time of year (Poff et al., 1997; 

Richter and Richter, 2000).   

  Freshwater mussels (Bivalvia:  Unionoida) are a group of benthic, filter-feeding 

bivalves that provide important ecosystem services in lakes and rivers (Spooner and 

Vaughn, 2006; Vaughn et al., 2007; Vaughn et al., 2008).  Freshwater mollusks in 

general are one of the most globally imperiled faunas, with over 700 species listed on the 

IUCN (the World Conservation Union) Red List as threatened or endangered (Lydeard et 

al., 2004; Strayer et al., 2004).  Mussels possess a suite of traits that make them highly 

susceptible to habitat alteration (Watters, 2000).  Adults are sedentary with limited 

dispersal capabilities and restricted refugia from disturbance (McMahon and Bogan, 

2001; Spooner, 2007).  Mussels are long-lived (< 6 to 100 years), have delayed 

reproduction (age at maturity 6 - 12 years), and juvenile survivorship is low, in turn 

making overall recruitment low (McMahon and Bogan, 2001).  Mussels also have a 

complicated life history that depends on their larvae developing as ectoparasites on host 

fish species; therefore, successful dispersal of mussels is also fish-dependent (McMahon 

and Bogan, 2001; Barnhart et al., 2008).  Many mussel species are host fish specialists 

and require encystment on particular host fish species to successfully develop (Haag and 

Warren, 1998; Barnhart et al., 2008).  Because of these unique life history characteristics, 

addressing conservation needs for reproducing mussel populations has been largely 

neglected.   

 Mussels evolved in rivers that typically experienced seasonal periods of low and 

high flow, and recent studies indicate that natural, temporal variability in flows is 

important for successful recruitment (Vaughn and Taylor, 1999; Gore et al., 2001; 
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Hardison and Layzer, 2001).  Because impoundments are known to severely alter natural 

flow regimes (Baxter, 1977; Poff et al., 1997; Poff and Hart, 2001), mussel communities 

have been strongly, negatively impacted by widespread dam construction (Bogan, 1993; 

Watters, 2000).  Numerous studies have documented mussel declines below 

impoundments (Suloway et al., 1981; Miller et al., 1984; Williams et al., 1992; Layzer et 

al., 1993; Vaughn and Taylor, 1999; Garner and McGregor, 2001).  Layzer et al. (1993) 

and Heinricher and Layzer (1999) showed that cold water released below dams decreases 

mussel reproductive success downstream.  Impoundments also impede fish host 

movement between mussel patches, thus limiting dispersal and potentially gene flow 

among mussel populations (Watters, 1996, 2001; Barnhart et al., 2008).  In most cases, 

multiple factors likely interact to lead to declines in mussel populations below 

impoundments; however, little work has examined the mechanisms underlying these 

declines.   

 Here, we examine a suite of reproductive traits in naturally occurring freshwater 

mussel populations in a southern U.S. river and relate these to the effects of two 

impoundments with different management practices.  We compare mussel reproductive 

traits among three sites that are variable in their physical characteristics and are located at 

different distances downstream from these two impoundments.  We have evidence 

suggesting that timing of gamete development may be impacted below a cold-water 

release impoundment (Galbraith, 2009, Chapter 1).  Here, we examine other reproductive 

and population level characteristics of mussels, including sex ratio, percent 

hermaphroditism, body condition, and parasite load, to evaluate the reproductive success 
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and future stability of three mussel populations. We then use these data to generate 

testable hypotheses as to the mechanisms of mussel decline below impoundments.       

 

Materials and Methods 

 Study Area and Species 

 Our study was conducted in the Little River in southeastern Oklahoma, U.S. (Fig. 

1), in the Ouachita Mountains region of the Interior Highlands.  This region is a center of 

speciation for both aquatic and terrestrial organisms including mussels, and the Little 

River itself harbors 37 species of unionid mussels (Mayden, 1985; Moulton and Stewart, 

1996; Galbraith et al., 2008).  The Little River is impacted by two impoundments.  The 

mainstem river is impounded by Pine Creek Lake, which is used for flood control, 

municipal water supply, and recreation (OWRB, 2007).  The river also receives inflow 

from a tributary, the Mountain Fork River, which is impounded by Broken Bow Lake.  

This second reservoir is primarily used to generate hydroelectric power and to provide 

pulses of cold water for a non-native, stocked trout fishery.    

 We chose sites known to have abundant, diverse mussel assemblages (Vaughn 

and Taylor, 1999; Galbraith et al., 2008) but which we thought would be differentially 

impacted by impoundments.  Site 1 was located approximately 60 km below Pine Creek 

Lake, Site 2 was located approximately 5 km below Site 1 (65 km below Pine Creek 

Lake).  Both Sites 1 and 2 were located above the inflow from Broken Bow Lake (Fig. 1).  

Site 3 was located approximately 85 km below Pine Creek Lake and 40 km below 

Broken Bow Lake (Fig. 1).  Site 3 has significantly colder summer temperatures and 

warmer winter temperatures than the other two sites (Table 1) because of its location 
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below Broken Bow Lake (Galbraith, 2009, Chapter 1).  Site 3 also has lower water 

column chlorophyll a than the other 2 sites (Galbraith, 2009, Chapter 1).  However, all 

three sites vary to some extent in their flow regimes, food availability (both water column 

chlorophyll a and benthic ash free dry mass), and light availability (Galbraith, 2009, 

Chapter 1).  All sites were on the relatively pristine USFWS-operated Little River 

National Wildlife Refuge and experienced similar watershed land use (OWRB, 2007).   

 We focused our study on three related species in the genus Quadrula:  the 

pimpleback (Quadrula pustulosa), the rabbitsfoot (Q. cylindrica) and the mapleleaf 

mussel (Q. quadrula).  The species we chose co-occur in many rivers across North 

America including the Little River (Parmalee and Bogan, 1998).  Several members of this 

genus are either federally endangered (e.g. Q. fragosa) or listed as species of special 

concern (Q. cylindrica).  Therefore we were particularly interested in the reproductive 

biology of this genus.  Because of their widespread distribution throughout North 

America, however, we feel that data collected on these species will also pertain to other 

mussel species.   

 Sampling 

 In August 2005 we quantitatively sampled mussels at the three sites to estimate 

population densities.  For each site we evacuated 30, randomly-placed 0.25 m2 quadrats 

to a depth of approximately 15 cm, removed, identified and measured mussels, and 

returned mussels to their original location (Vaughn et al., 1997; Strayer and Smith, 2003).       

From September 2005 through August 2006, we semi-quantitatively sampled 

(timed searches) the three Quadrula species at each site on a monthly basis (except 

during December, January, and March due to inclement weather and high water).   Timed 
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searches consisted of at least two hours of searching for mussels by hand, snorkel, or 

SCUBA in deeper areas (> 0.75 m).  We collected, marked, weighed and measured as 

many individuals of each species as we could find.  We also collected a small (~50 µl) 

gonad sample from the visceral mass with a syringe and preserved the samples in 

buffered formalin.  This non-lethal technique for determining sex in non-sexually 

dimorphic species allows large sample sizes without killing individuals, particularly 

threatened and endangered species (Shiver, 2002; Saha and Layzer, 2008).  In the 

laboratory, we examined gonad samples under a microscope to identify male and female 

mussels and to quantify presence or absence of sterilizing trematodes (Jokela et al., 

1993).   

We gathered online reservoir intake and release data from the U.S. Army Corps of 

Engineers for both Pine Creek Lake (http://www.swt-

wc.usace.army.mil/PINE.lakepage.html) and Broken Bow Lake (http://www.swt-

wc.usace.army.mil/BROK.lakepage.html).  The reservoir data that we examined were 

collected between January 1995 and December 2006.   

Data analyses 

For all of our analyses, individual mussels were only represented once in each 

analysis (i.e. recaptured mussels were not included).  We analyzed log of mean mussel 

density (from quadrat data collected in August, 2005) on a species-by-site basis using a 

two-way ANOVA followed by a Tukey post hoc comparison.  We used chi-square 

analysis to determine differences in parasite presence or absence among sites.  To do this, 

we pooled all parasitized individuals collected during the year-long field study within 

each site.  It is a general assumption in models of parasite infection that parasite 



76 
 

transmission is a function of host density (May and Anderson, 1979; Toft et al., 1991; 

Loot et al., 2005).  Therefore, we assumed that rates of parasitism should be a function of 

mussel density and weighted our expected proportions in our chi-square by species 

density at each site.   

We estimated mussel body condition for each individual collected over the course 

of the year using the Fulton’s K metric in which body condition (K) = l3/w(106), where l 

is mussel length and w is mussel wet weight (including the shell).  This measure of 

condition has been traditionally used in the aquaculture literature (Mgaya and Mercer, 

1995), but has been applied with success to freshwater mussels (Spooner and Vaughn, 

2008).  Low body condition would refer to individuals with lower wet weight relative to 

body length whereas high body condition would refer to individuals that were heavier 

than predicted based on length.  We used ANOVA and a Tukey post hoc comparison to 

test for differences in body condition among sites.  Because these three species differ in 

their body size and shape (and potentially growth constraints) we did not compare 

differences in body condition among species using this metric.   

We used chi-square to determine if proportion of males of each species (i.e. sex 

ratio) was equal both across sites and within individual sites using sex data collected over 

the course of the year-long study.  We also used chi-square to test for differences among 

sites in incidence of hermaphroditism (both female and male gametes present in the same 

gonad), again using the mussels collected during the year-long field study.  

Hermaphroditism is often common in freshwater mussel populations, particularly small, 

isolated populations (Heard, 1975).  We tested the null hypothesis that hermaphrodites 

are equally distributed among all three sites.    
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Results 

 We found significant differences in mussel density (Table 2) among sites (F(2,261)= 

29.25, p< 0.001) and species (F(2,261)= 165.79, p< 0.001) and a significant site-by-species 

interaction (F(4,261)= 19.92, p< 0.001).  All three species were significantly different from 

each other with Q. pustulosa having the highest density followed by Q. cylindrica and Q. 

quadrula respectively.  In general, Site 2 had the highest densities of all three species, 

followed by Site 1 and then Site 3, with the exception of Q. cylindrica density, in which 

case Site 1 had higher densities than Site 2. 

 Sterilizing trematodes were present in only 17 of 460 individuals and only in Q. 

pustulosa.  We found a significant difference in parasite load among sites (χ2
(2)= 12.85, 

p= 0.002), with higher rates of parasitism than expected at site 3 (Fig. 2).   

 There were significant differences in mussel body condition across sites (Q. 

cylindrica:  F(2,111)= 18.51, p< 0.001; Q. pustulosa:  F(2,272)= 16.49, p< 0.001; Q. 

quadrula:  F(2,34)= 5.89, p= 0.006) (Fig. 3).  Body condition in all three species was 

consistently lowest at site 3.  We found no effect of sex or parasitism on Q. pustulosa 

body condition except females at site 3 had significantly lower body condition than males 

(Fig. 3), meaning that females had lower wet weight relative to their body length than 

males. 

 There were also differences from equality in the relative proportion of males and 

females of each species (Fig. 4).  Averaged across all sites, Q. cylindrica had a 

significantly female-biased population (χ2
(1)= 4.03, p= 0.045); however, within individual 

sites there were no differences from equal sex ratios for this species.  There were 

significantly more Q. pustulosa males than females (χ2
(1)= 8.4, p= 0.004) across all sites.  
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Although this same pattern was seen at each of the individual sites, there was only a 

statistically significant male bias at site 1 (χ2
(1)= 6, p= 0.01).  Quadrula quadrula had an 

approximately equal sex ratio across all sites and within each individual site.   

 We found a significant difference in the proportion of hermaphroditic individuals 

among sites (χ2
(2)= 6, p= 0.05; Fig. 5).  There was no difference among sites in the 

frequency of Q. cylindrica hermaphrodites (χ2
(2)= 0.5, p= 0.78).  However, site 3 had 

significantly more hermaphroditic Q. pustulosa (χ2
(2)= 6, p= 0.05) and marginally more 

Q. quadrula hermaphrodites (χ2
(2)= 5.2, p= 0.07) than expected.  Incidence of 

hermaphroditism ranged between 0 and 7% for sites 1 and 2, but for site 3 was as high as 

14% in Q. cylindrica and 33% in Q. quadrula.   

 There were differences in reservoir release patterns between Pine Creek and 

Broken Bow reservoirs (Fig. 6).  Pine Creek reservoir releases almost identically 

mimicked reservoir inflow during the entire year, with slight deviations during February 

and March.  On the other hand, Broken Bow releases varied considerably from inflow; 

reservoir release was substantially higher than inflow during summer months when 

natural stream flow is generally low.  These differences in reservoir release patterns 

translated into differences in water temperature at the mussel beds (Table 1).   

 

Discussion  

River regions both above and below a dam often experience unseasonal 

temperature and flow regimes, anoxic conditions, altered patterns of sediment deposition 

and erosion, and lower particulate organic matter concentrations (Allan, 1995).  

However, the way an impoundment is managed can influence how a dam impacts 
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downstream populations.  Pine Creek Lake is an example of an impoundment where 

releases mimic natural variability in rainfall and tributary inflow received by the 

reservoir.  Broken Bow Lake, on the other hand, is an example of a reservoir where 

summer release patterns exceed the amount of water entering the reservoir from tributary 

inflow and rainfall.  As a consequence, the mussel populations below Broken Bow Lake 

experience colder than normal summer temperatures (Table 1), higher flow, and 

potentially limited food availability in the form of phytoplankton (Galbraith, 2009, 

Chapter 1) compared to populations below Pine Creek Lake (sites 1 and 2).  These 

patterns translate into long-term trends of declining reproductive success in mussels 

below Broken Bow Lake.   

Densities of all three mussel species were lower at site 3 than at sites 1 and 2.  In 

addition, we found that mussels at site 3 exhibited more signs of stress than mussels at 

sites 1 and 2, with higher rates of parasitism in Q. pustulosa (Fig. 2) and lower body 

condition for all three mussel species (Fig. 3).  Further, we found a higher frequency of 

hermaphroditism in both Q. pustulosa and Q. quadrula at site 3 (Fig. 5).  We do not 

know the mechanisms by which altered temperature and flow regimes are impacting 

mussel reproduction below Broken Bow Lake and similar reservoirs, but they likely 

include multiple pathways, all of which ultimately may result in the long-term demise of 

mussel populations (Fig. 7).  Disruptions in appropriate reproductive cues below 

impoundments have resulted in a complete failure of some mussel species to reproduce 

(Layzer et al., 1993; Heinricher and Layzer, 1999), and we have some evidence that 

inappropriate reproductive cues could be influencing gamete development in the Little 
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River, leading to a negative density-dependent feedback loop (Fig. 7ii.) (Galbraith, 2009, 

Chapter 1).   

Freshwater mussel sperm are only motile within a narrow thermal range 

(Galbraith, 2009, Chapter 2); non-motile sperm cannot be used for reproduction 

(Ciereszko et al., 2001).  This could lead to poor recruitment in areas below 

impoundments with inappropriate thermal regimes, thus lowering overall mussel 

densities over time (Fig. 7i).  It is also plausible that unusual flow and temperature 

patterns could directly cause stress or could alter the nutrient dynamics and thus food 

availability to downstream mussel beds (Fig. 7iii) (Elser and Kimmel, 1985).  Marine 

mussels exposed to extreme temperatures and low food availability experience sub-lethal, 

physiological stress effects as well as direct mortality (Incze et al., 1980; Dahlhoff et al., 

2002).  Therefore we can expect that these factors would also influence freshwater 

mussel body condition thereby decreasing survivorship and eventually overall mussel 

density.   

Hermaphrodites often are more common in small, genetically isolated populations 

or in environments that are particularly stressful as an adaptation to counteract Allee 

effects (i.e. as a means of reproducing even when mates are rare) (Ghiselin, 1969; Heard, 

1975).  Mussels at site 3 may have reached a low density threshold, causing individuals 

to resort to hermaphroditism to increase the chances of successful fertilization.  If this is 

the case, negative density dependence will likely cause these populations to continue to 

decline (Strayer et al., 2004).  Hermaphrodites generally constitute a small proportion 

(usually less than 10%) of freshwater mussel populations (Haggerty et al., 1995; Garner 

et al., 1999; Haag and Staton, 2003).  However, we found 14% of Q. cylindrica and 33% 
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of Q. quadrula were hermaphroditic at site 3, suggesting that these species are declining 

at this site.  Little is known about the factors (temperature, genetics) that govern sex 

determination in freshwater mussels.  Whether altered thermal regimes below 

impoundments could directly cause hermaphroditism by interfering with “normal” sex-

determination needs to be investigated.   

Lower body condition below impoundments also may increase susceptibility to 

parasite infection (Gangloff et al., 2008).  Sterilizing trematode loads vary among 

freshwater mussels, but in some areas have been found to be as high as 100% in a single 

species (Henley et al., 2007).  We found less than 10% of the individuals in our study to 

be parasitized, trematodes were found in only one species, Q. pustulosa, and were highest 

at site 3.  Although there was no significant difference in body condition between 

parasitized mussels and non-parasitized males and females, we only sampled a relatively 

small number of parasitized individuals.  Further analysis is needed to confirm if low 

body condition makes particular individuals more susceptible to infection or if the 

parasites themselves lower body condition of mussels post-infection (Gangloff et al., 

2008).  We did not find mature gametes in any of our parasitized individuals, suggesting 

that these trematodes completely sterilize their hosts.  This has severe consequences for 

Q. pustulosa reproduction;  a substantial portion of  individuals are not reproducing, thus 

lowering the effective population size.   

Our sex ratio data point to a decrease in effective population size throughout the 

Little River, regardless of distance below an impoundment.  We found significant female-

biased sex ratios in Q. cylindrica but found a male-biased sex ratio in Q. pustulosa.  

Deviations from a 1:1 sex ratio appear to be common in freshwater mussels (Bauer, 1987; 
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Downing et al., 1989; Byrne, 1998; Garner et al., 1999; Haag and Staton, 2003; McIvor 

and Aldridge, 2007).   In our system, sex ratios could be equal at conception, with later 

sex-specific mortality skewing the adult sex ratio.  Other possibilities are that one sex 

(females in Q. pustulosa and males in Q. cylindrica) has higher rates of parasite 

infections or that the skewed sex ratio is simply a phase in the development of 

hermaphroditism within the population (McIvor and Aldridge, 2007; Yusa, 2007).  We 

were unable to confirm or refute the parasitism hypothesis since there were no mature 

gametes found in any of our parasitized individuals.  Nonetheless, the male-biased sex 

ratio in Q. pustulosa indicates that there are fewer female individuals available for 

reproduction, and thus Q. pustulosa abundance is likely on the decline.  This was 

demonstrated by (Galbraith et al., 2005) where Q. pustulosa in the nearby Kiamichi 

River, Oklahoma was found to have dropped in density an average of 85% across 10 

established monitoring sites in a period of less than 15 years.  A final explanation for 

unequal sex ratios could be that our sampling methods under sampled one sex or the 

other; however, we have no reason to believe that this is the case.    

 We acknowledge that there are limitations to this study particularly that we only 

examine 3 sites and 2 impoundments located in a narrow geographic range.  Other 

studies, however, have supported the finding that unnatural temperature regimes can have 

profound, chronic influences on reproduction and population dynamics of species located 

below impoundments, including not only mussels but fish and other invertebrate species 

(Munn and Brusven, 1991; Layzer et al., 1993; Voelz et al., 1994; Heinricher and Layzer, 

1999; Clarkson and Childs, 2000; Haxton and Findlay, 2008).  This study, in combination 

with these others, suggests that improper water management and disruption of thermal 



83 
 

cues is a serious issue that warrants further investigation, particularly on a larger, 

continental scale.   

Our data support a conceptual model in which mussel reproduction below 

impoundments is influenced by multiple pathways and feedback loops (Fig. 7).   The 

proposed mechanisms are not comprehensive and other aspects of mussel populations 

could be impacted by impoundments (energy assimilation, toxin loads, etc.).  

Additionally, reproductive trends that we observed may not necessarily be caused by 

impoundments alone.  The Little River and most other rivers across North America have 

been heavily impacted by other forms of human disturbance (clearing of riparian 

vegetation, agricultural run-off, channelization, etc.) which could further feed into the 

conceptual model of mussel decline.  Nonetheless, our data are indicative of the complex, 

indirect effects of impoundments on mussel reproductive traits.  
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Table 1.  Mean seasonal temperature (± SE) for each of our three sampling sites.  

Temperature was recorded every 30 minutes with HOBO™ loggers.  Data taken from 

Galbraith (2009), Chapter 1. 

Site Season 
Mean 
temperature (oC) 

Site 1 Fall 17.26 (0.57) 
 Winter 8.44 (0.16) 
 Spring 19.08 (0.47) 
  Summer 30.13 (0.18) 
Site 2 Fall 17.80 (0.54) 
 Winter 8.89 (0.14) 
 Spring 18.52 (0.44) 
  Summer 30.60 (0.14) 
Site 3 Fall 17.25 (0.47) 
 Winter 9.22 (0.14) 
 Spring 18.89 (0.43) 
 Summer 25.91 (0.14) 
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Table 2.  Mean (±SE) mussel density at each site for each species.  Densities were 

estimated from quadrat data collected in August, 2005. 

Site Species 
Mussel density (# 
individuals/m2) 

Site 1 Q. cylindrica 2.4 (0.62) 
 Q. pustulosa 10.27 (2.04) 
  Q. quadrula 0.13 (0.13) 
Site 2 Q. cylindrica 1.07 (0.50) 
 Q. pustulosa 20.67 (2.16) 
  Q. quadrula 0.53 (0.25) 
Site 3 Q. cylindrica 0.27 (0.19) 
  Q. pustulosa 3.73 (0.83) 
  Q. quadrula 0 (0) 
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Figure Legends 
 
Figure 1.  Location of sampling sites in the Little River in southeastern Oklahoma.   

Figure 2.  Results of chi-square analysis comparing observed and expected parasite loads 

in Q. pustulosa at each study site.  Mussels were collected across the year-long 

sampling period and numbers in parentheses represent the total number of Q. 

pustulosa collected over the course of the year at each site.  Expected levels of 

infection were weighted based on Q. pustulosa density at each site.   

Figure 3.  Mean (± SE) body condition of unparasitized males and females and 

parasitized (sex cannot be determined in parasitized individuals) Q. pustulosa at 

each site.  Bars with different letters are significantly different from one another 

within a site based on ANOVA and Tukey post hoc comparisons.  Significant 

differences between sites are reported in the results section.  Numbers in 

parentheses represent the total number of individuals of each sex collected over 

the year-long field study.        

Figure 4.  Proportion of males in the population at each study site collected throughout 

the course of our year-long field study (line = 0.5:  equal proportions of males and 

females).  Total number of individuals of each species collected at each site over 

the course of the year is represented in parentheses.   

Figure 5.  Chi-square results for hermaphroditism in the three Quadrula species at each 

study site.  Frequency refers to the number of observed (or expected) 

hermaphroditic individuals collected over the course of the year-long field study.   
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Figure 6.  Mean monthly (± SE) reservoir inflow and release for Pine Creek Reservoir 

and Broken Bow Reservoir.  Data were collected between January 1995 and 

December 2006 by the U.S. Army Corps of Engineers.       

Figure 7.  Conceptual model demonstrating the potential effects of impoundments on 

reproductive and population traits in mussels. 
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ABSTRACT 

 High species richness in broadcast spawning invertebrates is paradoxical in that 

speciation should be rare in organisms with high dispersal and gene flow.   Freshwater 

mussels coexist in dense aggregations that can contain multiple, closely-related species.  

In addition, most species spawn at the same time of year, providing the opportunity for 

heterospecific fertilization.  We examined the role of habitat separation and reproductive 

timing as potential mechanisms of reproductive isolation among several members of a 

single freshwater mussel genus, Quadrula.  We found little overall overlap in habitat use 

among these closely-related species; however, this overlap varied depending on whether 

or not a mussel species was rare or abundant in the mussel bed.  We also found high 

overlap in reproductive timing, suggesting that other barriers to reproduction could be at 

work to ensure conspecific fertilization.  Further knowledge of isolating mechanisms 

should lead to a better understanding of the speciation process in spermcast spawning 

organisms.     

    

Key words:  Unionid, speciation, pre-zygotic, habitat, geographic information system 

(GIS) 

 

INTRODUCTION 

 The great species richness of many broadcast spawning aquatic invertebrates 

remains paradoxical with respect to the speciation process.  Most species whose life 

histories include releasing their gametes into the water column have high dispersal and 

thus high gene flow, which should slow genetic differentiation and mitigate speciation.  
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However, these populations often contain numerous, closely-related species, indicating 

that speciation might not be as rare as once thought (Palumbi, 1994; Rawson et al., 2003).  

Many of these species (e.g. corals) spawn simultaneously, further increasing the chances 

for heterospecific fertilization (Harrison et al., 1984; Levitan et al., 2004).   

 The process of speciation depends on barriers to reproduction developing among 

species.  These barriers can include one or a combination of pre- and post-zygotic factors 

(Mayr, 1964; Futuyma, 1998).  Several of the most common pre-zygotic mechanisms of 

reproductive isolation among broadcasters include spatial and temporal differences in 

gamete release, gamete incompatibility, and sperm chemotaxis (Palumbi, 1994) while 

post-zygotic mechanisms include decreased hybrid fitness (death, sterility)(Futuyma, 

1998; Coyne and Orr, 2004).  Understanding the order in which isolating mechanisms 

have evolved can shed light on the process of speciation and whether it occurred in 

allopatry or sympatry. 

North American freshwater mussels present an evolutionary paradox similar to 

that found in broadcast spawning marine invertebrates.  These mussels typically occur as 

dense, speciose aggregations and use a spermcasting reproductive strategy which is 

similar to that of broadcasting (Bishop and Pemberton, 2006).  Reproduction occurs when 

male mussels release their sperm into the water column.  Females passively collect the 

ejected sperm as they filter phytoplankton from the water.  Fertilization occurs on the 

interior of the females’ gills where larvae (glochidia) then begin to mature.  Larvae are 

eventually released to complete their development as obligate ectoparasites on fish hosts 

(McMahon and Bogan, 2001; Barnhart et al., 2008).  Most mussel species reproduce 

during a narrow time window over the summer (Yeager and Neves, 1986; Haggerty et al., 
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1995; Garner et al., 1999; Haag and Staton, 2003).  Mechanisms for ensuring fertilization 

of a conspecific (i.e. the sperm of one species correctly “finding” and fertilizing the egg 

of the same species) are virtually unstudied in freshwater mussels.  As females passively 

filter phytoplankton and sperm suspended in the water column, the potential to filter the 

sperm of a closely-related species seems high.  Indeed there is some evidence that 

hybridization can occur among closely-related mussel species (Kat, 1986; Cyr et al., 

2007).   

The process of speciation in general is poorly understood in freshwater mussels, 

partly because their life cycle is complicated by a parasitic stage.  Thus, an understanding 

of freshwater mussel speciation relies on a speciation model for the host fish as well.  To 

date, no studies have analyzed the overlapping phylogenies between mussels and their 

host fish.  Unfortunately, traditional notions of speciation by geographic isolation do not 

satisfactorily explain mussel diversity for many species (Graf, 1997).  Alternatively, Graf 

(1997) has presented a model of sympatric speciation via the formation of host races.  

While this model was not designed to universally explain speciation in all mussel species, 

it too has some problems.  First, it assumes that speciation occurred via mussel species 

switching host fish that are present at different times of year; however, many closely-

related mussel species share host fish species (Cummings and Watters; Parmalee and 

Bogan, 1998).  Second, the model assumes that viable sperm cannot diffuse across large 

distances between populations.  Galbraith (2009, Chapter 2) and Berg et al. (2008) have 

suggested, however, that sperm can travel large distances, at least in stream habitats.  

Similarly, the gametes of other spermcasting species have been shown to diffuse long 

distances while still achieving high fertilization success (Bishop and Pemberton, 2006).     
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How do we begin to understand speciation in freshwater mussels and other 

speciose groups that broadcast their gametes?  A logical starting place is to examine 

mechanisms of reproductive isolation among closely-related species.  This may reveal 

information about the order in which reproductive barriers arose and, in turn, how the 

speciation process proceeded.  Here we examined spatial and temporal partitioning as 

potential mechanisms of reproductive isolation in several closely-related freshwater 

mussel species.  

 

MATERIALS AND METHODS 

Study Area and Species 

 Our study was conducted in the Little River in southeastern Oklahoma, U.S., in 

the Ouachita Mountains region of the Interior Highlands.  This region is a center of 

speciation for both aquatic and terrestrial organisms including fish, crayfish, 

macroinvertebrates and mussels, and the Little River itself harbors 37 species of unionid 

mussels (Mayden, 1985; Moulton and Stewart, 1996; Galbraith et al., 2008).  In this 

region, mussels occur in aggregations called mussel beds that can vary in size from 

several meters square to several thousand meters square (Vaughn and Spooner, 2006).  

For example, in the Little River, some beds contain as many as 30 species in a single bed 

and mussel biomass can reach as high as 25 kg/m2 (Spooner and Vaughn, 2008).  Our 

study focused on 3 mussel beds in a protected area (the U.S. Fish and Wildlife Service 

Little River National Wildlife Refuge) that we knew contained diverse, healthy mussel 

assemblages (Fig. 1) (Vaughn and Taylor, 1999; Spooner and Vaughn, 2009).      
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 Quadrula is one of the most widespread and speciose genera of freshwater 

mussels in North America (Parmalee and Bogan, 1998).  It contains over 20 recognized 

species in 3 species groups - quadrula, metanevra, and pustulosa (Serb et al., 2003).  The 

Little River currently has or has historically contained multiple species of Quadrula 

including Q. pustulosa, Q. cylindrica, Q. quadrula, Q. fragosa, Q. metanevra, Q. 

nodulata, and Q. apiculata, along with species recently re-classified into this genus, 

Tritogonia verrucosa and Fusconaia flava (Serb et al., 2003).  Our study focused on one 

species from each species group:  Q. pustulosa, Q. cylindrica (metanevra group), and Q. 

quadrula.  In addition, we included a fourth species, Tritogonia verrucosa, which was 

recently reclassified to the genus Quadrula (Serb et al. 2003) in the habitat overlap 

portion of our study.  These 4 species co-occur in many rivers across North America, 

including the Little River (Parmalee and Bogan, 1998).  

Habitat Overlap 

 We created continuous distribution maps for each species at the 3 sites, and used 

these to estimate habitat overlap.  We quantitatively sampled mussels at each of our 3 

sites in August, 2005.  At each site, we evacuated 30, randomly placed, 0.25-m2 quadrats 

to a depth of approximately 15 cm, removed, identified and measured mussels, and 

returned mussels to their original location (Vaughn et al., 1997; Strayer and Smith, 2003).  

We made a grid with 2 measuring tapes, one stretching along the length of the river and 

the other running perpendicular to flow, and assigned each quadrat a set of x and y 

coordinates.  We plotted these coordinates in a geographic information system (GIS) and 

calculated the area of the mussel bed encompassed by our quadrats (referred to hereafter 

as mussel bed area).  We also used GIS to create a continuous distribution map for each 
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species based on presence or absence of that species in a quadrat (Fig. 2).  To do this, we 

used an inverse distance weighted function, which is a multivariate interpolation 

technique used to assign values to unknown points based on the values of nearby points 

(Walker et al., 2008).   After creating the continuous distribution maps for each species 

alone, we then repeated the process for all 2-species combinations to produce maps 

predicting where both species would be found together.  We calculated the area of the 

mussel bed over which there was an 80% or higher probability of the two species co-

occurring and divided this by the area of the mussel bed.  This allowed us to estimate the 

percentage of the mussel bed over which each species pair co-occurred.   

 Abundance of the 4 species varied among sites (Fig. 3).  Quadrula pustulosa was 

abundant across sites whereas Q. cylindrica and Q. quadrula were relatively rare.  These 

differences in abundance could result in differences in “perceived overlap” depending on 

whether a species is common or rare.  For example, a rare species might always co-occur 

in quadrats with a common species, so from a rare species perspective overlap with the 

common species would be high.  However, the common species would infrequently co-

occur with the rare species, so from its perspective overlap would be low.   To estimate 

this perceived overlap, we calculated the percent overlap of each 2-species combination 

based on (1) the distribution of the rarer species of the pair and (2) the distribution of the 

more abundant species of the pair.  We did this by dividing the area of overlap of both 

species by the total area of the rarest species to quantify what we refer to as the “rare 

species percent overlap” and by dividing the area of overlap of both species by the total 

area of the most abundant species to quantify the “dominant species percent overlap.” 
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 The theory of limiting similarity predicts that similar species (in this case, closely 

related species) cannot coexist (i.e. should have low habitat overlap) (Abrams, 1983).  

Therefore, we might expect to see a constrained relationship between genetic divergence 

among species and habitat overlap.  Species with low genetic divergence should have low 

habitat overlap and species with higher genetic divergence could have higher habitat 

overlap or alternatively, could have no overlap at all.  This would result in a positive, 

triangularly-shaped constraint envelope between genetic distance and habitat overlap.  To 

test this, we used GenBank mitochondrial ND1 sequences for the 4 species and calculated 

percent divergence (p-distances) with MEGA 4 (Tamura et al., 2007).  We used 

correlation to examine directional associations between percent genetic divergence and 

percent habitat overlap for each site.     

Timing of Reproduction 

 We determined timing of reproduction by quantifying sperm and egg 

development over time.  We used timed searches to semi-quantitatively sample Q. 

pustulosa, Q. cylindrica and Q. quadrula at the 3 sites on a monthly basis from 

September 2005 through August 2006 (except during December, January, and March due 

to inclement weather and high water).  For further details on our exact sampling 

techniques, refer to Galbraith (2009, Chapter 1).  We graphically analyzed timing of peak 

reproduction for each species at each site by plotting sample date against either the log 

concentration of sperm or the proportion of eggs in the 80th percentile based on size (a 

standardized estimate of reproductive state to account for differences in egg size among 

species).  We assumed that declines following the peak in sperm concentration were due 

to spawning.   
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RESULTS 

Habitat overlap between 2-species pairs was generally low, in most cases less 

than 10% (Table 1).  An exception was Q. pustulosa and T. verrucosa, whose distribution 

overlapped 70% at Site 2 (Table 1).  However, rare species perceived overlap with more 

abundant species was quite high, being 100% in many cases (Table 1).  Dominant species 

perceived overlap was variable and depended upon particular site and species 

combination (Table 1).  We found no significant correlations between genetic divergence 

and habitat overlap at any of our sampling sites (Fig. 4).      

We found variable patterns of overlap in the spawning periods of all 3 species 

both within sites and riverwide (Figs. 5 and 6).  In general, the concentration of mature 

sperm in the gonads peaked between mid-May and mid-June (Fig. 5) for all species.  

Female egg size peaked slightly earlier, with maximum size reached between mid-April 

and late-May (Fig. 6).  

 

DISCUSSION 

 Our results suggest that differences in habitat use among closely related mussel 

species could serve as an isolating mechanism preventing heterospecific fertilization.  

The effectiveness of this mechanism likely depends on the overall abundance and thus 

the “perceived overlap” of the species in question.  The common species Q. pustulosa 

and T. verrucosa overlapped very little with the rare species Q. quadrula and Q. 

cylindrica.  In this scenario, this low overlap should prevent heterospecific fertilization 

between Q. pustulosa males and Q. quadrula or Q. cylindrica females.  In contrast, from 

the perspective of the rare Q. quadrula and Q. cylindrica, their overlap with the more 
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dominant species is high.  Thus, in this case there would be a high potential for 

heterospecific fertilization with the dominant species (Q. pustulosa and T. verrucosa) in 

the absence of other barriers or factors preventing fertilization. 

 Although there is the potential for habitat overlap to act as an isolating 

mechanism, other factors indicate that habitat overlap is not the predominant isolating 

mechanism.  First, if habitat overlap is an isolating mechanism, we should see a positive 

constraint envelope between genetic divergence among species and habitat overlap.  

However, we found no significant relationships and no observable trends between habitat 

overlap and species’ phylogenetic relationships (Fig. 4), suggesting that habitat 

differences are not (or at least are no longer) an isolating mechanism among closely-

related species.    

 Several studies have demonstrated that reproductive isolation and genetic distance 

are correlated in nature (Coyne and Orr, 1989; Knowlton et al., 1993; Sasa et al., 1998).  

In other words, hybridization is unlikely to occur among species that are genetically 

divergent.  This may explain why we observed no correlation between genetic distance 

and habitat overlap in our study:  genetic divergence among these species is relatively 

high such that hybridization is no longer a concern and species can therefore coexist.  

Second, near-bed flow patterns in mussel beds are turbulent and complex (Vogel, 1994; 

O'Riordan et al., 1995; Commito and Rusignuolo, 2000) and are likely to carry mussel 

sperm in unpredictable patterns depending on ever-changing flow conditions.  Unless 

habitat separation is great or perpendicular to flow, there might still be a high potential 

for currents to carry sperm between microhabitats and thus for heterospecific mating to 

occur (Galbraith, 2009, Chapter 2).       
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 In a previous study (Galbraith, 2009, Chapter 1) we observed variable overlap in 

the timing of reproduction among species at our study sites, making it unclear if temporal 

isolation is acting as a barrier to reproduction among Quadrula species.  We did find 

some differences in reproductive timing across sites that are likely due to differences in 

spawning cues among sites (Galbraith, 2009, Chapter 1).  More importantly, however, we 

observed differences in peak reproduction among species within sites.  If sperm is staying 

within a given mussel bed, then these differences in reproductive timing might be 

evidence of niche partitioning.  However, data collected to date (Galbraith, 2009, Chapter 

2) suggest that sperm can travel long distances downstream and may not be staying 

within a bed.  Therefore, if male spawning in one species starts in May at an upstream 

bed, then reproduction has technically begun riverwide for that species (provided that that 

downstream females are receptive) despite slight differences in the timing of sperm 

release at downstream beds.  Our data suggest then, that temporal reproductive niche 

partitioning is probably unlikely.   

 Given that the vast majority of mussel species reproduce in summer (Yeager and 

Neves, 1986; Haggerty et al., 1995; Garner et al., 1999; Haag and Staton, 2003) and that 

many mussel beds contain numerous species, the number of temporal “spawning niches” 

that could be carved out seems to be relatively small.  Thus it is not completely surprising 

that reproductive timing is an unlikely barrier to reproduction among closely-related 

species.  However, temporal isolation has been found between species of corals whose 

spawning periods are only separated by 2 hours, which provides just enough time for the 

gametes of one species to move out of reach of the gametes of the second species 

(Levitan et al., 2004).  While this might be a unique situation, further investigation into 
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the timing of broadcast spawning on a much narrower time scale is warranted in 

freshwater mussels.   

Closely related species that are near each other often spawn simultaneously and 

sometimes interbreed.  This phenomenon has been documented in a variety of broadcast 

spawning marine invertebrate species including corals, sea cucumbers, and sea urchins 

(McEuen, 1988; Levitan, 2002; Levitan et al., 2004).  For example, in mass spawning 

events in the Indowest Pacific, over 100 species of closely-related corals (genus 

Acropora) simultaneously release their gametes (Harrison et al., 1984).  In many of these 

simultaneously reproducing species, it has been difficult to define clear genetic 

differences among species:  hybridization is common in the laboratory and often in nature 

in areas of sympatry.   Since closely related freshwater mussel species reproduce 

simultaneously, they also should have a high potential for hybridization.  Unfortunately, 

little research has examined the role of hybridization in freshwater mussel communities 

and the extent to which closely-related species can hybridize is unknown (Cyr et al., 

2007).  What appear to be morphological “intermediates” are relatively common in 

mussels, but could well be a function of physical processes differentially acting on shell 

formation and not a function of hybridization (Watters, 1994).  Further research into the 

prevalence of hybrid freshwater mussels is necessary to begin to fully understand the 

barriers to reproduction among closely related species.    

 Although there is some evidence that some Quadrula species may be able to 

hybridize (Serb et al., 2003), there is no genetic evidence for hybridization in the species 

we studied.  This suggests that some form of reproductive barrier is preventing 

interbreeding.  There are multiple potential pre-zygotic reproductive barriers that we did 
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not examine, including sperm chemotaxis, gamete incompatibility, and behavioral or 

mechanical incompatibility (Palumbi, 1994; Futuyma, 1998). Mechanical incompatibility 

is probably more common among terrestrial organisms and those with internal 

fertilization (Bierne et al., 2003); however, the roles of chemotaxis and gamete 

incompatibility are much more likely in freshwater mussels and other broadcast 

spawners.  Laboratory experiments have revealed some degree of gamete incompatibility 

between closely-related species of corals and in the marine mussels Mytlius edulis and M. 

trossulus, suggesting strong barriers to interspecific fertilization (Rawson et al., 2003; 

Levitan et al., 2004).  Additionally, Miller et al. (1994) showed that zebra and quagga 

mussel (Dreissena polymorpha and D. bugensis respectively), sperm exhibit species-

specific attraction to oocyte extracts of the same species and less (although some) 

interspecific sperm attraction was always present between the two.  Recent research has 

also focused on the evolution and selection of sperm and egg surface proteins in the 

gamete recognition process and as a pre-zygotic isolating mechanism in broadcasting 

organisms (Swanson and Vacquier, 1998; Vacquier, 1998; Riginos and McDonald, 

2003).  Further investigation into the roles of these prezygotic isolating mechanisms 

would be a logical next step for understanding reproductive barriers in Quadrula species, 

freshwater mussels, and broadcast spawners in general.   

 Postzyogtic isolating mechanisms may also play a role in limiting reproduction 

among heterospecifics.  Decreases in hybrid fitness including fetal death, hybrid sterility 

and increased susceptibility of hybrids to pest, parasites and disease have been shown to 

act as selective agents against hybridization (Bert et al., 1993; Bert and Arnold, 1995; 

Futuyma, 1998).  For example, Bert et al. (1993) showed that hybrids of species in the 
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broadcasting marine clam genus Mercenaria were significantly more prone to gonadal 

tumors than were purebred individuals.  In addition, Bierne et al. (2002) demonstrated 

that M. edulis/M. galloprovincialis hybrids had decreased survivorship during the larval 

stage of development (although, interestingly, they exhibited higher growth rates than 

purebred larvae).  Once we have a better understanding of the role of hybridization in 

freshwater mussel communities, further research into hybrid fitness could yield some 

interesting patterns and lend further insight into the speciation process.   

 This is some of the first work examining mechanisms of reproductive isolation in 

freshwater mussel species.  As little is known about mussel speciation, further 

investigation into the barriers to reproduction among closely-related species could shed 

some light on the process of evolution in this unique and highly threatened taxon.  Most 

work on reproductive isolation has been conducted in broadcast spawning organisms, not 

spermcasters (such as freshwater mussels, some marine bivalves, ascidians, sponges, and 

some corals).  While many of the same isolating mechanisms likely apply to 

spermcasting species, the opportunity for female choice and selection on the part of 

females is much greater in spermcasting organisms than in broadcast spawners.  Sperm 

storage, which is common in spermcasters (Bishop and Pemberton, 2006), may provide 

opportunity for female sperm choice which could either facilitate or hinder barriers to 

reproduction among closely related species and warrants further investigation.   

 A better understanding of reproductive isolation in broadcasters and spermcasters 

in general, however, could help to resolve the speciation paradox that exists in these 

organisms.  Additionally, knowledge of the evolution of reproductive barriers over time 

could help elucidate whether speciation occurred in allopatry or sympatry in many of 
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these organisms.  An alternative (but not necessarily mutually exclusive) explanation for 

this paradox is that broadcasting and spermcasting species simply have lower extinction 

rates rather than an unusually high rate of speciation.  Further research is needed to 

address this question in general.  Understanding the process by which such great diversity 

has arisen and been maintained in these organisms may be important for conserving their 

diversity in the future as human interference disrupts natural speciation processes in 

freshwater ecosystems (Hunter, 2006).    
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Table 1.  Estimated habitat overlap for pairwise species combinations at three sites in the 

Little River, Oklahoma.  See text for definitions.  Rare species from each pair is marked 

with an *. 

Site 

Bed 
area 
(m2) Species pairs 

% 
Overlap 

Corrected 
% Overlap 
(rare) 

Corrected 
% Overlap 
(dominant) 

Site 1 711 Q. cylindrica* & Q. pustulosa 8.06 100.00 3.65 
Q. cylindrica & Q. quadrula* 0.37 100.00 21.20 
Q. cylindrica* & T. verrucosa 1.49 37.04 60.42 
Q. pustulosa & Q. quadrula* 0.37 100.00 18.52 
Q. pustulosa & T. verrucosa* 2.27 56.43 2.78 
Q. quadrula* & T. verrucosa 0.37 100.00 3.34 

Site 2 449 Q. cylindrica* & Q. pustulosa 0.96 100.00 4.58 
Q. cylindrica & Q. quadrula* 0.24 18.09 0.99 
Q. cylindrica* & T. verrucosa 0.74 76.81 0.54 
Q. pustulosa & Q. quadrula* 1.31 100.00 1.06 
Q. pustulosa & T. verrucosa* 69.74 100.00 9.15 
Q. quadrula* & T. verrucosa 0.96 73.40 71.68 

Site 3 431 Q. cylindrica* & Q. pustulosa 0.72 100.00 24.64 
Q. cylindrica* & T. verrucosa 0.42 58.00 1.34 
Q. pustulosa & T. verrucosa* 0.55 79.17 1.37 
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FIGURE LEGENDS 

Figure 1.  Three sampling sites in the Little River, southeastern Oklahoma, USA. 

Figure 2.  Example of a continuous probability distribution for a single mussel species 

(left) and for two overlapping species (right) generated by inverse distance 

weighting.  Light regions represent areas of low species occurrence or overlap and 

dark areas represent a high probability of finding that species or species pair.   

Figure 3.  Mean (±SE) density (based on quadrat data) of each mussel species by site. 

Figure 4.  Correlation between genetic p-distance between species pairs and three 

measures of habitat overlap:  total percent overlap, percent overlap of each 2-

species combination based on the distribution of the rarest species of the pair (rare 

species % overlap) and percent overlap of each 2-species pair based on the 

distribution of the most abundant species of the pair (dominant species % 

overlap). 

Figure 5.  Mean (±SE) sperm concentration in the gonads over time for three species 

averaged across all three sites (a), and at Site 1 (b), Site 2 (c) and Site 3 (d).   

Figure 6.  Mean (± SE) proportion of eggs in the 80th percentile based on size over time 

for three species averaged across all three sites (a) and at Site 1 (b), Site 2 (c) and 

Site 3 (d).    
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