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Abstract 
 
 
 Two sets of experiments are performed to examine the ability of a storm-scale 

numerical weather prediction (NWP) model to predict precipitation and meso-

vortices within the tornadic mesoscale convective system (MCS) that occurred over 

Oklahoma on 8-9 May 2007, when the model is initialized from ensemble Kalman 

filter (EnKF) analyses assimilating conventional and/or radar observations.  Radar 

data from multiple networks are assimilated, including data from the X-band radar 

network of the Engineering Research Center for Collaborative and Adaptive Sensing 

of the Atmosphere (CASA) and the WSR-88D S-band radar network.  The first set 

of experiments uses an independent ensemble for each experiment, while the second 

set nests each ensemble experiment within an outer-grid ensemble to provide 

variation in initial and boundary conditions.  A variety of ensemble configurations 

are used during the analysis and forecast to evaluate the impact of assimilation of 

CASA and WSR-88D radar data, variation within the data assimilation system, and 

variation of the model, including changes to the model microphysics.  In each 

experiment, radar data and/or conventional weather observations (i.e. surface, wind 

profiler, and upper-air observations) are assimilated every 5 minutes for 1 hour.  

Ensemble forecasts are then performed and probabilistic forecast products generated, 

focusing on prediction of radar reflectivity (a proxy of quantitative precipitation) and 

meso-vortices (an indication of tornado potential).  This work is the first 

assimilating real CASA data into a NWP model using EnKF. 
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 While the assimilation of WSR-88D data alone is able to produce a 

reasonably accurate analysis of the convective system, assimilating CASA data in 

addition to WSR-88D data improves the representation of storm-scale circulations, 

particularly in the lowest few kilometers of the atmosphere, as evidenced by analyses 

of gust front position and comparison of modeled and observed radial velocity. 

Assimilating CASA data decreases RMS innovation of the resulting ensemble mean 

analyses of radar reflectivity, particularly in early assimilation cycles, suggesting that 

assimilation of CASA data allows the EnKF system to more quickly achieve a good 

result. Use of multiple microphysics schemes in the ensemble during data 

assimilation is found to alleviate under-dispersion by increasing the ensemble spread. 

 For the single grid experiments, the ensemble assimilating data from both 

CASA and WSR-88D radars and using a mixed-microphysics ensemble during data 

assimilation produces the best probabilistic meso-vortex forecast, while the best 

meso-vortex forecast of the nested grid experiments is produced by the ensemble 

using an increased rain intercept parameter.  Both of these ensembles predict 

maximum probabilities of greater than 0.65 of a significant near-surface vortex, with 

the highest probabilities clustered tightly around the location of the tornadic meso-

vortex observed at 0400 UTC.  Use of multiple microphysics schemes within the 

ensemble aims to address at least partially the model physics uncertainty and 

effectively plays a role of flow-dependent inflation (in precipitation regions) during 

EnKF data assimilation.   

Sensitivity to the assumed observation error used during EnKF data 

assimilation is noted in the nested-grid experiments.  Experiments using assumed 
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observation errors of 2 ms-1 for radial velocity and 3 dBZ for radar reflectivity are 

found to produce substantially better ensemble forecasts (both in qualitative structure 

and in quantitative skill score analyses) than an experiment using lower values of 

assumed observation error.  The forecast ensemble assimilating only conventional 

data performs substantially worse than those ensembles assimilating radar data, but 

still retains useful skill (verified using the relative operating characteristic skill score) 

throughout the 3-hour forecast period.  Though a bias toward stronger precipitation 

is noted in the ensemble forecasts, all experiments produce skillful probabilistic 

forecasts of radar reflectivity on a 0-3 hour timescale as evaluated by multiple 

probabilistic verification metrics.  Though only a single case is studied herein, these 

experiments represent an important step toward an operational EnKF-based ensemble 

analysis and probabilistic forecast system to support convective-scale warn-on-

forecast operations.  
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 Chapter 1:    Introduction 
 

1.1  Motivation and Background 
 
 Accurate prediction of individual deep, moist convective storms is one of the 

major challenges of modern numerical weather prediction (NWP) in research and 

operational settings.  Fully resolving all important storm-scale circulations is very 

expensive from a computational standpoint.  In addition, most existing observing 

networks are quite sparse relative to the spatial scale of the flows being predicted, 

and offer incomplete observational coverage in both physical and parameter spaces. 

These challenges are then compounded by uncertainties and errors within NWP 

models.  As computational power continues to increase, and as new high-resolution 

observing platforms, such as densely networked X-band radars (McLaughlin et al. 

2009), are deployed to address the issues described above, a new challenge has 

arisen:  assimilating data from multiple observing systems to best estimate the 

current state of the atmosphere and initialize storm-scale NWP models. 

Because convective-scale errors generally grow very quickly (Lorenz 1969), it 

is vital to obtain the best possible estimate of the atmospheric state for NWP model 

initialization, ideally accompanied with an estimate of the uncertainty.  While 

objective analysis can often be used for the purpose of obtaining a gridded analysis 

when observed and state variables are the same, remote sensing platforms such as 

radar and satellite do not directly observe most state variables, necessitating 

advanced data assimilation methods able to ‘retrieve’ state variables not directly 

observed. Such methods usually take advantage of physical laws linking various state 
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variables and/or utilize information contained in observations taken at different 

times. They also try to obtain the “optimal” state estimation by taking into account 

errors associated with various sources of information. Four-dimensional variational 

data assimilation (4DVAR) directly uses the numerical model to provide constraints 

among the estimated state variables, while the ensemble Kalman filter (Evensen 

1994) utilizes statistical correlations among variables derived from an ensemble of 

predictions to achieve a similar goal. 

 For convective-scale NWP, the only observing platform currently capable of 

providing spatially and temporally complete coverage of a convective system at a 

resolution sufficient to capture storm-scale features is Doppler radar.  In the United 

States, the National Weather Service (NWS), together with other collaborating 

agencies, operates the WSR-88D radar network (Crum et al. 1993), consisting of 158 

S-band Doppler radars.  While the WSR-88D network is relatively efficient at 

scanning the precipitating atmosphere, the long-range radars comprising the WSR-

88D network cannot reach the lower troposphere beyond a limited distance from the 

radar site because of the curvature of the earth.  Limited low-level radar coverage 

presents a problem for convective-scale data assimilation and NWP; many aspects of 

storm- and sub-storm-scale dynamics are sensitive to the near-surface atmospheric 

state, including the low-level cold pool and its interaction with the surrounding 

environment (e.g., Rotunno et al. 1988; Markowski et al. 2002; Snook and Xue 

2008). 

 To address the near-surface observation problem described above, the 

Engineering Research Center (ERC) for Collaborative Adaptive Sensing of the 
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Atmosphere (CASA) was established to develop short-range, networked X-band 

radars designed to be deployed in close proximity to one another (McLaughlin et al. 

2009).  Between 2006 and 2011, the primary CASA testbed was located in 

southwest Oklahoma and consisted of a network of four dual-polarized X-band 

radars with a maximum range of 40 km (Brotzge 2010b). This radar network was 

located roughly halfway between WSR-88D sites KTLX at Oklahoma City and 

KFDR at Frederick, OK; a location upstream of the Oklahoma City metropolitan area 

during prevailing westerly and southwesterly flow during the warm season.  At the 

network location, neither KTLX nor KFDR can sample the lowest kilometer of the 

atmosphere (Xue et al. 2006), maximizing the potential benefit of increased low-level 

coverage provided by the CASA radars.  A comparison of the key specifications of 

CASA and WSR-88D radars is shown in Table 1.  Despite having relatively wide 

beams compared to WSR-88D, the CASA radars possess such advantages as a radial 

gate spacing of 100 m, a shorter mean range distance of observations (hence higher 

mean cross-beam resolutions), and a dynamic adaptive scanning strategy that 

identifies targets of meteorological interest and chooses an optimal combination of 

sector scans and full-circle scans at up to eight elevation angles to maximize the 

spatial and temporal coverage of features of greatest interest (Brotzge et al. 2005).  

Commonly used methods for assimilating radar data into storm-scale NWP 

models include the three dimensional variational (3DVAR, e.g., Xue et al. 2003; Hu 

et al. 2006b), and four-dimensional variational methods (4DVAR, e.g., Sun et al. 

1991; Sun and Crook 1997, 1998), and EnKF (e.g., Snyder and Zhang 2003; Dowell 

et al. 2004a; Tong and Xue 2005b). Compared to 3DVAR, EnKF has the notable 
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advantage of being able to incorporate multivariate, flow-dependent error covariance, 

including cross-covariance, as derived from the ensemble (Evensen 2003), allowing 

effective ‘retrievals’ of state variables from radial velocity and radar reflectivity 

(Snyder and Zhang 2003; Tong and Xue 2005b).  Unlike 4DVAR, EnKF does not 

require the development of an adjoint model; this development is labor-intensive and 

the resulting adjoint model often has difficulty handling highly nonlinear processes. 

In addition, ensemble forecasts are believed to be particularly important for storm-

scale NWP (Xue et al. 2007).  EnKF naturally provides a set of analyses that in 

principle best characterizes the analysis uncertainty; such analyses can therefore 

serve as initial conditions for ensemble forecasts. 

One important goal of the CASA project is to evaluate the value and benefit of 

data collected by its experimental testbed radars. Preliminary results using the ARPS 

(Xue et al. 2000; Xue et al. 2003) Data Analysis System (ADAS, Brewster 1996), 

together with its cloud analysis package, for data assimilation (Brewster et al. 2007) 

show a generally positive impact from the addition of CASA radar data. On 8-9 May 

2007, a mesoscale convective system (MCS) with a pronounced line-end vortex 

(LEV) developed over southwestern Oklahoma and produced several tornadoes 

shortly after moving out of the CASA domain. Schenkman et al. (2011) studied this 

case, using ARPS 3DVAR and a cloud analysis to assimilate CASA and WSR-88D 

reflectivity and radial velocity data, and demonstrated positive impact of CASA data 

on the prediction of the MCS. In the studies herein, we apply the ARPS EnKF system 

(Tong and Xue 2005b; Xue et al. 2006) to the 8-9 May 2007 LEV event, further 

evaluating the impact of CASA radar data, and combining assimilation of CASA data 
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with WSR-88D radar data and other conventional meteorological observations 

(including surface observations, wind profiler observations, and soundings) to 

demonstrate the potential of such EnKF analyses for initialization of short-timescale 

(0-3 hour) deterministic and ensemble convective-scale forecasts.   

One of the major goals of the National Weather Service (NWS) in the coming 

decade is transitioning from the current warn-on-detection strategy to a warn-on-

forecast paradigm for convective-scale severe weather warnings (e.g., tornado, severe 

thunderstorm and flash flood warnings) in order to increase warning lead-time 

beyond what is possible with nowcasting techniques alone.  Such an increase in 

warning lead-time would allow entities such as hospitals and stadiums sufficient time 

to respond in the event of a warning (Stensrud et al. 2009).  To achieve this goal, 

reliable short-term (0 – 3 hour) forecasts of meteorological features at the convective 

scale will be vital. 

 

1.2  Overview  
 

In the studies herein, we seek to accomplish three major goals: (1) assimilating 

radar data from multiple observation platforms (including WSR-88D and CASA 

radars, surface observations, and upper-air observations) using an EnKF system to 

obtain an accurate estimate of the state of the atmosphere for a deep, moist 

convective system; (2) using an ensemble storm-scale forecast initialized from a set 

of EnKF analyses to obtain probabilistic predictions for storm-scale and sub-storm-

scale processes (including mesovortex prediction); and (3) evaluating the impact of 

variation in experiment design, including microphysical variation, variation in 
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assumed observation error, and in particular, the impact of CASA radar data on 

storm-scale NWP.  To achieve these goals, we investigate the case of a MCS with 

embedded line-end vortex (LEV) that spawned three tornadoes in central Oklahoma 

on 8-9 May 2007. 

Chapter 2 contains a detailed discussion of the data, numerical models, and data 

assimilation techniques used in this study.  We first discuss the characteristics of the 

radars used, including both the X-band CASA network and the S-band NEXRAD 

network.  We then discuss the Advanced Regional Prediction System (ARPS) NWP 

model and its EnKF data assimilation system, along with the experimental design 

applied using ARPS in this study.  Finally, ensemble and probabilistic forecasting 

techniques are introduced and discussed. 

In Chapter 3 we begin by introducing the case study examined herein: the 

tornadic convective system of 8-9 May 2007 over southwestern Oklahoma.  An 

overview of the case is presented, followed by a discussion of severe convective 

storms observed and reported during the event.  Observations, including radar data, 

taken during the event are interpreted. Next, the experiment design for the 8-9 May 

2007 single-grid case study is presented, followed by an in-depth discussion of 

analysis results.  Results of the EnKF data assimilation process are examined, 

considering innovation and ensemble spread statistics and the accuracy of the 

resulting reflectivity and wind fields, as well as the impact of CASA data on the 

assimilation of a near-surface vortex present during the analysis period.   

In Chapter 4, we discuss the results of deterministic and ensemble forecasts, 

including probabilistic forecast products, initialized from the 0200 UTC EnKF 
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analyses obtained in Chapter 3.  Forecasts with and without CASA radar data are 

compared, and the impact of using a mixed-microphysics ensemble is considered.  

Forecast verification is performed both subjectively, through analysis of radar 

reflectivity and vertical convective structure; and objectively, using a variety of 

deterministic and probabilistic skill score metrics.  

In Chapter 5 we present the results of a more complex set of data assimilation 

and forecast experiments performed using the 8-9 May 2007 tornadic MCS case.  

These experiments differ from those presented in Chapters 3 and 4 in their use of 

conventional weather observations (such as upper-air data, wind profiler 

observations, and surface observations) in addition to radar data during EnKF data 

assimilation.  Also, the analysis and forecast experiments are nested within an outer 

ensemble analysis and forecast at a horizontal resolution of 6 km, included to more 

accurately represent mesoscale variations and provide perturbed initial conditions 

and lateral boundary conditions to the 2 km forecast experiments within.  These 

experiments are run on a considerably larger forecast domain identical to that used by 

Schenkman et al. (2011) in their study of this case using 3DVAR data assimilation, 

allowing for direct comparison between the EnKF-based forecast results obtained 

herein and the 3DVAR-based forecast results of Schenkman et al. (2011). 

We close with Chapter 6, in which the results of both sets of analysis and 

forecast experiments are summarized, conclusions are drawn, and thoughts regarding 

possible future investigations are presented.  
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 Chapter 2:  Methodology and Tools 
 

2.1 The CASA project 
 

2.1.1  CASA:  An Overview 
 

The Center for Collaborative Adaptive Sensing of the Atmosphere (CASA) is a 

ten-year National Science Foundation (NSF) Engineering Research Center (ERC), 

established in 2003.  CASA seeks to develop an innovative, low-cost, high-spatial-

density, dynamically-adaptive network of Doppler radars with polarimetric capability 

(Xue et al., 2006) which can be used to detect, track, analyze, and predict tornadoes 

or processes leading to tornadogenesis (McLaughlin et al. 2009).  To these ends, 

CASA deployed a radar testbed in southwestern Oklahoma which was active 

between the spring of 2006 and the spring of 2011, consisting of four X-band radars 

with a maximum range of 40 km, sited in southwestern Oklahoma near Chickasha, 

Cyril, Lawton, and Rush Springs.  The placement of these CASA radars is shown 

below in Fig. 2.1. 

The Weather Surveillance Radar-1998 Doppler (WSR-88D) network is the 

primary operational network of Doppler weather radars used in the United States.  

The CASA radars are positioned between the Frederick (KFDR) and Twin Lakes 

(KTLX) WSR-88D sites, to fill in the gap in radar coverage near the surface caused 

by the curvature of the earth.  CASA seeks to complement the existing WSR-88D 

network by providing enhanced low-level radar coverage, improving the ability to 

detect low-level hazardous weather such as tornadoes, and providing a more 

complete data set for initialization of storm-scale NWP models.  The polarimetric 
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data provided by CASA is also an improvement upon the WSR-88D network, which 

does not have polarimetric capability (though at the time of this writing the WSR-

88D radar network is in the process of being upgraded to add this capability).  

the radar reflectivity and radial velocity data observed by the WSR-88D network 

provide a great deal of information, these variables alone do not provide sufficient 

data to fully describe the microphysical state of a convective storm.  Polarimetric 

data can be helpful in this area, as observations of differential reflectivity and 

differential phase contain information about the density, shape, orientation, and size 

distribution of hydrometeors within the storm (Jung et al. 2008).  

 

 

Fig. 2.1: Locations of the 4 radars in the CASA radar testbed.  30 km range rings 
are shown in black.  Also shown are the locations of the nearest two WSR-88D 
radars; KFDR near Fredrick, OK, and KTLX east of Moore, OK, along with 30 and 
60 km range rings.  Counties, cities, rivers, and major highways are shown. 
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2.1.2  Radar Specifications 

 
The CASA network consists of 4 identical X-band radars.  While future CASA 

radars may employ phased-array technology to allow for electronic beam steering 

(Xue et al., 2006), the existing CASA radars are driven by a single magnetron and 

steered mechanically.  Technical specifications of the CASA radars, and the 

corresponding specifications of the WSR-88D radar network, are detailed below in 

Table 2.1. 

 

Table 2.1: Specifications of the radars used in the CASA radar testbed in 
southwestern Oklahoma, along with corresponding specifications of the operational 
WSR-88D radar network maintained by the National Weather Service. 
 

 CASA WSR-88D 

Wavelength 3.19 cm (X-band) 10.0 cm (S-band) 

Maximum Peak Power 25 kW 750 kW 

Pulse Repetition Frequency Variable up to 3.33 kHZ 0.3 – 1.3 kHZ 

3 dB Beamwidth 2.0 degrees 0.95 degrees 

Polarization Dual linear (V and H) Horizontal polarization  

Rotation Rate Variable up to 120 deg./s 36 deg./s 

Antenna Gain 38 dB 45 dB 

Antenna Diameter 1.5 m 8.5 m 

Maximum Range 40 km 459 km 

 

The 4 radars of the CASA network are connected to a central processing server.  

Every minute, the processing server gathers data from all 4 radars and uses pre-

defined rules to generate an optimal scanning strategy for the next one-minute scan 

cycle.  The rules represent the competing interests of various end-users of the 

network, including research scientists, operational meteorologists, and emergency 

managers.  An example of the output from this process is shown in Fig. 2.2; the 
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rules are used to generate tasks (displayed as polygons), which are then used applied 

to generate the next scanning strategy.  Possible scan modes include a full 360 

degree scan at a constant elevation, a sector scan on a constant elevation, an RHI 

scan, or a combination of the above at varying elevations and azimuths. 

 

 

Fig. 2.2: Diagram of one CASA scan cycle.  Sector scans are denoted by the shaded 
sectors for each radar.  Scanning strategy was adaptively chosen to best scan tasks 
generated from the observed meteorological features, shown in color. 
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Working with X-band radars presents a major challenge in the form of 

attenuation.  In cases of heavy precipitation, significant attenuation of the radar 

signal can occur.  To account for this, CASA uses a built-in attenuation correction 

algorithm.  Also, the relatively wide (2°) beamwidth of the CASA radars limits the 

azimuthal resolution of the system—this problem is addressed by oversampling in 

the azimuthal direction. 

 

2.2 The ARPS NWP model  
 

The Advanced Regional Prediction System (ARPS) is used in this study to 

produce forecasts of convective storms.  ARPS is a fully-compressible, non-

hydrostatic atmospheric prediction model (Xue et al. 2000).  The model state vector 

contains three velocity components (u, v, and w), potential temperature (θ), air 

pressure (p), turbulence kinetic energy (as used in the model's 1.5-order sub-grid-

scale turbulence closure scheme), in addition to microphysical information dependent 

upon the microphysical scheme used.  Both single- and multiple-moment 

microphysical schemes are available.  All microphyicsal schemes used in ARPS 

assume a three-parameter gamma distribution of the form: 

D
xx eDNDn λα −= 0)(        (2.1) 

where the subscript x denotes the hydrometeor species (rain, snow, or hail/graupel), 

nx(D) represents the number of hydrometeors per unit volume with diameter D, N0x is 

an intercept parameter, and α is a slope parameter.  When α = 0, the drop size 

distribution reduces to that of Marshall and Palmer (1948). 
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The most widely-used single moment schemes available in ARPS are based 

largely upon on Lin et al. (1983), and track the mixing ratio of water vapor (qv), as 

well as mixing ratios for varying combinations of the following hydrometeor species:  

cloud water (qc), cloud ice (qi), rain (qr), snow (qs), hail (qh), and graupel (qg), while 

the intercept parameter and slope parameter are set to pre-specified, constant values.  

ARPS also supports multiple-moment schemes based upon the work of Milbrandt 

and Yau (2005), which predict the mixing ratios listed above, as well as intercept 

parameters (N0x), where x denotes hydrometeor species.  The slope parameter can be 

pre-specified, diagnosed, or predicted. 

In the studies herein, radar data assimilation and storm-scale forecasts are 

performed on an ARPS domain with 2 km horizontal spacing; vertical grid stretching 

is applied, giving a near-surface vertical grid spacing of approximately 100 m.  The 

single-grid experiments presented in Chapters 3 and 4 use a physical domain of 256 

× 256 × 40 grid points, while the nested-grid experiments presented in Chapter 5 use 

a larger 500 × 500 × 40 physical domain for the inner nest.  In all experiments, the 

model top is located at a height of 20 km.  Full model physics are used (Xue et al. 

2001), including the NASA Goddard Space Flight Center long- and shortwave 

radiation parameterization, a two-layer soil model, surface fluxes parameterized 

using predicted surface temperature and water content, and a 1.5-order turbulent 

kinetic energy (TKE)-based sub-grid-scale turbulence parameterization, along with 

high-resolution terrain.  Initial and boundary conditions are derived from NCEP 

NAM analyses.  The initial ensemble is generated by adding smoothed random 

perturbations to the model state using the method of Tong and Xue (2008). These 
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smoothed perturbations have a horizontal length scale of 8 km and a vertical length 

scale of 5 km and are added to the horizontal wind field with a standard deviation of 

2 m s-1, to the mixing ratios of hydrometeors, cloud water, and cloud ice with a 

standard deviation of 0.001 kg kg-1, and to the potential temperature field using 

positive perturbations only with a standard deviation of 2 K.  The initialization of 

the EnKF system will be discussed in depth later, in section 2.3.2. 

 

2.3 The ensemble Kalman filter for meteorological data assimilation 
 

At the convective scale, the accuracy and rate of divergence of a given NWP 

forecast depends greatly upon the quality of the initial conditions used.  As time 

passes, the model error increases from that present in the initial state, eventually 

resulting in a predicted state quite different from the true state of the atmosphere. As 

a result, one of the top priorities in storm-scale NWP is generating the most accurate 

set of initial conditions to minimize the initial error in the model state.  Of the data 

assimilation techniques available today, the four-dimensional variational (4DVAR) 

technique (Le Dimet and Talagrand 1986) and the ensemble Kalman filter (EnKF) 

technique (Evensen 2003) are considered to hold the most promise. 

 

2.3.1  Data assimilation using EnKF techniques 

The EnKF technique was first introduced into the meteorological community 

around ten years ago, and has rapidly become an attractive technique for many 

operational and research applications.  EnKF and related filtering methods 

incorporate the computation of flow-dependent error statistics.  Instead of solving 
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for the time-dependent probability density function of the model state, EnKF applies 

the Monte Carlo technique for estimation of the forecast error statistics.  By 

producing a large ensemble of model states and integrating them forward in time, the 

moments of the probability density function can be calculated for different times 

(Evensen 2003).   

 EnKF has proven to be very effective in retrieving accurate and dynamically 

consistent wind, temperature, and microphysical fields from radar reflectivity and 

radial velocity observations when using simulated observations (e.g., Snyder and 

Zhang 2003; Zhang et al. 2004; Tong and Xue 2005a; Xue et al. 2006; Tong and Xue 

2008).  Snyder and Zhang (2003) demonstrated that simulated radial velocity data 

could be successfully assimilated using an EnKF method and warm rain 

microphysics.  Tong and Xue (2005a) expanded upon these results, further showing 

that EnKF could successfully retrieve the microphysical information needed for a 

simple single-moment ice microphysics scheme from simulated radar reflectivity and 

radial velocity data, and provide a reduction in root-mean-square error (rmse) despite 

the highly non-linear nature of the reflectivity observation operator. Obtaining 

analyses from real data that lead to good short-range forecasts of convective storms 

remains a challenge (Dowell et al. 2004b; Tong 2006); most storm-scale EnKF 

studies to date have focused on analysis rather than forecasting; thus relatively few 

papers showing good forecast results have been published so far, except for Lei et al. 

(2009) and Dowell et al. (2010).   

Real radar observations are almost always contaminated by measurement, 

sampling, and aliasing errors; compared to simulated radar observations, which use a 
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perfect model and are free from such errors, the challenge of effectively assimilating 

real radar observations is much greater.  Those studies which have used real data 

have had success in retrieving convective thermodynamic and wind fields, but have 

often found it necessary to do extensive quality controls, delete erroneous or 

contaminated data, and perform post-processing such as objective analysis to place 

data on the model grid (e.g. Dowell et al. 2004b).  In the experiments presented 

assimilation of data from multiple radar platforms (WSR-88D and CASA) and the 

use of assimilated data to update not only warm-rain processes but also ice 

microphysical processes add additional layers of complexity. 

 

2.3.2  The ARPS EnKF system 

The EnKF system of the ARPS model employs an ensemble square-root 

Kalman filter (EnSRF) similar to that presented in Whitaker and Hamill (2002) and 

later refined by Tong and Xue (2008), which is a particular variant of the EnKF 

technique that does not require perturbation of the observations being assimilated.  

At the beginning of the assimilation period, spatially smoothed perturbations are 

added to the background state.  As in Tong and Xue (2008), the spatially smoothed 

perturbation at the grid point (x, y, z) is calculated using: 

( ) ( ) ( )∑=
S

kjiWkjirEzyx ,,,,,,ε       (2.2) 

where r(i, j, k) is a random value independently sampled from a normal distribution 

with a mean of 0 and standard deviation of 1, W(i, j, k) is a 3D distance-dependent 

weighting function, and E is a scaling parameter for obtaining correct variance in the 

perturbation field.  S represents a domain of grid points used for summation, 
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consisting of all points within a specified radius of (x, y, z).  This distance is chosen 

using the typical decorrelation length of background error scales.  For WSR-88D 

radar data, this was assumed to be approximately 6 km, and for CASA radar data, 

approximately 2 km. 

The smoothed initial perturbations are next rescaled, by evaluating E in 

equation 2.2 such that the standard deviation of each perturbation field is equal to a 

desired value. These desired values are 1 m s−1 for velocity components u, v, and w; 

2 K for potential temperature θ; and 1 g kg−1 for microphysical mixing ratios qυ, qc, 

qr, qi, qs, and qh.  These values were determined via experimentation and 

consultation of previous studies (e.g. Tong and Xue 2008).  Such perturbations were 

added to all grid points within a cutoff radius of 6 km of points containing 

precipitation. 

 

2.4 Ensemble-based Probabilistic Forecasting Tools 

 To achieve the lead-times necessary for the warn-on-forecast paradigm 

currently under development within the NWS (Stensrud et al. 2009), reliable short-

term (0 – 3 hour) probabilistic forecasts at the convective scale will be vital.  While 

it is possible to obtain probabilistic forecast products from a single deterministic 

forecast by examining the occurrence of an event at surrounding grid points (Theis et 

al. 2005; Schwartz et al. 2009b), the capability of such a method is limited by 

inherent biases and errors in the deterministic forecast used. One such source of error 

is the microphysical parameterization of the NWP model; Snook and Xue (2008) and 

Dawson et al. (2009) found that the choice of microphysical scheme (and the 
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parameter settings therein) strongly impact the mode and intensity of convection 

predicted.  Furthermore, such probabilistic forecast products are inadequate in 

addressing uncertainty in the initial condition and dynamic error growth. Convective-

scale errors generally grow very quickly (Lorenz 1969), greatly limiting the utility of 

a single deterministic forecast. 

 The use of an ensemble of model predictions allows us to mitigate the impact 

of errors and biases in initial conditions and model parameterizations, while 

providing valuable probabilistic data regarding the forecast.  EnKF methods have 

proven effective in generating dynamically consistent wind, temperature, and 

microphysical fields when assimilating Doppler radar reflectivity and radial velocity 

data for storm-scale NWP (e.g. Dowell et al. 2004; Houtekamer et al. 2005; Tong 

2006).  Because EnKF is inherently an ensemble method, it provides a natural 

starting point for a storm-scale ensemble forecast beginning from the final 

assimilated state of each of the ensemble members during the data assimilation 

period. 

 Because convective cells are highly localized, even small displacement errors 

in a storm-scale forecast can result in very low objective skill scores when verified 

on a point-by-point basis, even though the forecast being scored may still be quite 

valuable to researchers and operational meteorologists (Baldwin et al. 2001; 

Schwartz et al. 2009b). To alleviate this problem, Schwartz et al. (2009b) applied a 

probabilistic “neighborhood” approach following Roberts and Lean (2008), where 

the probability of an event (e.g., radar reflectivity > 40 dBZ; rainfall rate > 2.0 cm/hr; 

hail mixing ratio > 0) at a grid point is determined by conditions at all grid points 
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within a given radius of influence r from that grid point; this collection of points 

comprises the neighborhood for the selected grid point.  In the studies presented 

herein, as was done in Schwartz et al. (2010), the neighborhood is extended to 

include all grid points on the same model level within the radius of influence from 

every ensemble member.  Thus, drawing from Schwartz et al. (2009b; 2010), the 

forecast probability (Pi) of an event at the i th grid point of the ensemble forecast is 

defined by: 

1

1 N

i j
j

P B
N =

= ∑         (2.3) 

where N is the unique collection of all points comprising the neighborhood for point 

i, and Bj is the binary probability at the j th grid point of the neighborhood, defined to 

be 1 if the event was observed at that grid point, and 0 if it was not. Schwartz et al. 

(2010) call Pi neighborhood ensemble probability (NEP); further discussion can be 

found in that paper. 

 Meso-vortices and other circulations cannot easily be treated as point 

variables, and are therefore not well-suited to a NEP method.  Thus, for prediction 

meso-vortices, we instead apply an object-based ensemble verification approach.  

Significant low-level circulations are first manually identified for each ensemble 

member.  For a feature to count as a significant circulation, three criteria must be 

met: (1) vertical vorticity must exceed 0.02 s-1 at 2 km above ground level; (2) 

discernable rotation must be present in the horizontal wind field at this level, and (3) 

the feature must be located within a convective region with radar reflectivity 

exceeding 30 dBZ.  These criteria were chosen to discriminate true mesovortices 

from other phenomena, such as shear zones occurring along outflow boundaries.  
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The binary probability Bim for the i th model grid volume of the mth ensemble member 

is then calculated such that Bim = 1 if the center of that grid volume lies within a 

predefined distance (in this study, 25 km) of a circulation center identified in the 

forecast for that ensemble member, and Bim = 0 otherwise.  A purely ensemble-

probability results, 

1

1 ensN

i im
mens

P B
N =

= ∑        (2.4) 

where Nens is the number of members in the ensemble.  In essence, Pi from equation 

2.4 can be viewed as the predicted probability of a strong near-surface vortex being 

present within 25 km of a given point; this forecast methodology is analogous to that 

used operationally by the Storm Prediction Center in their Day 1 tornado, hail, and 

wind outlook products, which forecast the probability of an event occurring within a 

25 mile radius of a given point (Edwards et al. 2002). 
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 Chapter 3:  8-9 May 2007—EnKF Radar Data Analysis 
 

3.1 An Overview of the 8-9 May 2007 Tornadic MCS 
 
 The tornadic MCS of 8-9 May 2007 occurred over northern Texas and 

portions of western and central Oklahoma.  Three confirmed tornadoes were 

reported during the event; two of these were of EF-1 intensity, the first of which 

occurred near Minco, OK at 0354 UTC, 9 May 2007, and the second of which was 

reported near El Reno, OK at 0443 UTC.  The El Reno tornado was by far the most 

destructive of the three, causing an estimated $3 million of damage.  In addition to 

these two tornadoes, a weaker, EF-0 tornado was confirmed near Union City, OK, 

reported at 0426 UTC.  Of these three tornadoes, only for the El Reno tornado did 

the NWS issue a tornado warning prior to tornado occurrence, underscoring the 

challenge of forecasting tornadoes associated with MCVs.  The location, time of 

occurrence, and intensity of the observed tornadoes are summarized in Fig. 3.1. 
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Fig. 3.1: Locations of tornadic activity associated with the 8-9 May 2007 convective 
system.  CASA radars are indicated by black squares; 40 km CASA range rings are 
indicated in gray. Oklahoma counties are shown in black and labeled.  Confirmed 
tornadoes the forecast period (0200 UTC to 0500 UTC, 9 May 2007) are indicated 
by black triangles with the time of occurrence noted (all times shown are for 9 May 
2007).  The tornadoes reported at 0354 and 0443 UTC were of EF-1 intensity on 
the enhanced Fujita scale; the tornado reported at 0426 UTC was of EF-0 intensity. 
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 During the afternoon and evening hours of 8 May 2007, a surface low 

developed in southwest Oklahoma near the intersection of a slow-moving east-west 

frontal boundary and an advancing cold front to the west.  A mesoscale convective 

system (MCS) developed from pre-existing multicellular convection along the cold 

front (Kumjian and Ryzhkov 2008) beginning around 1200 UTC on 8 May 2007, in 

an area of upper-level divergence associated with a cyclonically curved jet streak.  

This system grew in geographic extent and by 0000 UTC on 9 May 2007 was located 

over much of central and north Texas and southwestern Oklahoma and featured a 

surging bow echo located along its leading edge (Fig. 3.2a).  While the portion of 

the system in Texas began to weaken after 0100 UTC, the northern portion of the 

system in Oklahoma persisted until approximately 0730 UTC (Fig. 3.2b-f).  Though 

strong low-level rotation was observed in the system as early as 0021 UTC, and a 

brief tornado was reported by a media-based storm chaser west of Lake Elsworth, 

OK, at 0115 UTC, subsequent damage survey efforts were unable to confirm this 

report (Brotzge et al., 2009), and no further tornadic activity was reported until 0354 

UTC. 
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Fig. 3.2: Composite radar reflectivity mosaic (dBZ) as observed by WSR-88D radars 
KAMA, KDYX, KFWS, KLBB, and KTLX at (a) 0000 UTC, (b) 0100 UTC, (c) 0200 
UTC, (d) 0300 UTC, (e) 0400 UTC, and (f) 0500 UTC, 9 May 2007.  30 km CASA 
radar range rings are included for reference.  Urban boundaries are shown in 
purple. 
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 Beginning approximately 2200 UTC on 8 May, a LEV formed near the 

northern end of the bow echo, just south of the Red River in northwest Texas.  The 

development of the LEV occurred as the MCS merged with a supercell to its 

northeast (Schenkman et al. 2010).  The LEV moved north-northeast and contracted 

as it moved into southwestern Oklahoma (Brotzge 2010a).  The LEV intensified 

between 0230 and 0300 UTC as it interacted with and absorbed a supercell in 

Comanche County OK (Fig. 3.2b, c); evidence of this intensification was present in 

both WSR-88D radar reflectivity and mesonet observations (Schenkman et al. 2010).  

The LEV reached its peak intensity between 0330 and 0530 UTC (Fig. 3.2e, f), 

during which time all three reported tornadoes occurred.  Observations from the 

Oklahoma mesonet indicate that at its peak, the LEV contained a well-defined 

surface circulation with approximately 25 ms-1 of horizontal wind shear (Schenkman 

et al. 2010).  The observed evolution of the MCS and its associated LEV closely fits 

the conceptual model of an asymmetric convective system presented by Houze et al. 

(1989). 

 

3.2  Radar Data Assimilation Study: Data, Methods, and Goals 
 
 In this radar data assimilation study, we apply the EnKF system of the ARPS 

NWP model to CASA and WSR-88D radar data gathered during the LEV and mini-

supercell tornado case of 8-9 May 2007.   During this event, as discussed above, a 

LEV developed and moved through much of southwest/central Oklahoma, passing 

directly through CASA's Integrative Project One (IP1) radar network (McLaughlin et 

al. 2009). This system spawned two confirmed EF-1 tornadoes and one confirmed 
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EF-0 tornado in central Oklahoma between 0354 UTC and 0443 UTC.  This LEV 

was observed by several WSR-88D radars, as well as all four CASA radars.  

 

 

Fig. 3.3: Forecast domain used in the 2km horizontal resolution radar data 
assimilation experiments for the 9 May 2007 case.  Terrain height, in meters above 
mean sea level, is indicated by the grayscale shading.  40 km CASA radar range 
rings are included for reference.  The black box closely enclosing the CASA IP-1 
radar network denotes the extent of the CASA sub-domain used in calculation of 
updraft mass flux presented in Fig. 3.9. 

 

 In this study, a 259 × 259 × 43 ARPS grid with 2 km horizontal spacing is 

used for analyses and forecasts; vertical grid stretching is applied, giving a near-

surface vertical grid spacing of approximately 100 m.  The model top is at a height 

of 20 km.  The extent of the domain is shown above in Fig. 3.3.  A one-hour-long 
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pre-forecast is performed before EnKF data assimilation cycles begin, initialized 

from the 9 May 2007 NCEP 0000 UTC NAM analysis.  At 0100 UTC, smoothed 

random perturbations are added to the 1-hour forecast using the method of Tong and 

Xue (2008) to create a set of initial conditions from which ensemble forecasts are 

launched. The smoothed perturbations with a horizontal length scale of 8 km and a 

vertical length scale of 5 km are added to the horizontal wind field with a standard 

deviation of 2 m s-1, to the mixing ratios of hydrometeors, cloud water, and cloud ice 

with a standard deviation of 0.001 kg kg-1, and to the potential temperature field 

using positive perturbations only with a standard deviation of 2 K.   

 The EnKF algorithm used is the ensemble square-root filter (EnSRF) of 

Whitaker and Hamill (2002). Radar data are assimilated every 5 minutes from 0100 

to 0200 UTC. The observation error standard deviations are assumed to be 1 m s-1 for 

radial velocity and 2 dBZ for radar reflectivity.  The observation operator used to 

map the model state to observation space for radar reflectivity and radial velocity 

follows that of Jung et al. (2008). To sample radar data on the radar elevation angles, 

a Gaussian power-gain function following Wood and Brown (1997) is used as in Xue 

et al. (2006).  The covariance localization radius is set to 6 km.  Lateral boundary 

conditions are provided by the NCEP NAM 6-hourly analyses and intervening 3 hour 

forecasts.   

 Radar data are assimilated every 5 minutes between 0100 and 0200 UTC in 

three experiments: a control experiment (hereafter referred to as “CNTL”) using a 

mixture of several microphysical schemes (as described below) and assimilating both 

WSR-88D and CASA data, an experiment using a mixed-microphysics ensemble and 
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WSR-88D data only (hereafter “NoCASA”), and one using both WSR-88D and 

CASA data, but only a single microphysical scheme (hereafter “NoMMP”).  The 

differences in model setup between these three experiments are summarized in Table 

3.1. 

 

Table 3.1: Summary of experiments for the radar data assimilation and ensemble 
forecast studies presented in chapters 3 and 4. 

 CNTL NoCASA NoMMP 

WSR-88D radar used? Yes Yes Yes 

CASA radar used? Yes No Yes 

Ensemble size 40 40 40 

Number of Lin  
microphysics members 16 16 40 

Number of WSM-6 
microphysics members 16 16 0 

Number of NEM 
microphysics members 8 8 0 

  

 

 In all experiments, level-II volume scans of WSR-88D radial velocity and 

reflectivity from five WSR-88D radars are assimilated at 5-minute intervals; the 

WSR-88D radars used are those located at Oklahoma City, OK (KTLX), Vance Air 

Force Base, OK (KVNX), Amarillo, TX (KAMA), Dyess Air Force Base, TX 

(KDYX), and Lubbock, TX (KLBB).  In experiments using CASA data, aggregate 

volumes of radial velocity and radar reflectivity are assimilated, also at 5 minute 

intervals, from each of the four CASA radars: Cyril, OK (KCYR); Lawton, OK 

(KLWE); Rush Springs, OK (KRSP); and Chickasha, OK (KSAO). Aggregate 

CASA radar volumes are created by first interpolating raw CASA sector scan data on 
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observed elevations to a uniform radial grid with azimuthal spacing of 1 degree, and 

then interpolating in time to the center of a five-minute window valid at the 

assimilation time.  For each radial, the nearest data before and after the assimilation 

time within the five-minute window are linearly interpolated in time to obtain the 

corresponding radial in the aggregate volume scan.  If only one scan is available for 

a given radial, that scan is used.  If no scans are available, that radial is marked as 

missing.  A summary of the radars used and their locations are provided in Table 

3.2. 

 

Table 3.2: List of radars used for the single-grid radar data assimilation study. 

 Radar Type Latitude Longitude Elevation 

KAMA WSR-88D 35.2333 N 101.7092 W 1113 m 

KDYX WSR-88D 32.5383 N 99.2544 W 357 m 

KLBB WSR-88D 33.6542 N 101.8142 W 1013 m 

KTLX WSR-88D 35.3331 N 97.2778 W 384 m 

KVNX WSR-88D 36.7408 N 98.1278 W 379 m 

KCYR CASA 34.8739 N 98.2522 W 448 m 

KLWE CASA 34.6239 N 98.2708 W 396 m 

KRSP CASA 34.8128 N 97.9306 W 436 m 

KSAO CASA 35.0314 N 97.9562 W 356 m 

 

 

 Because of the strong reflectivity attenuation inherent to X-band radar data in 

areas of heavy precipitation, attenuation correction using polarimetric differential 

phase (Chandrasekar et al. 2004) is applied to CASA data before they are used.  

Accurate attenuation correction is vital; if uncorrected, attenuated radar data were 

assimilated, the erroneously low values of reflectivity in the attenuated regions would 
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negatively impact the analysis. While the attenuation correction algorithm used has 

been shown to accurately retrieve un-attenuated reflectivity values (Chandrasekar et 

al. 2004), it can only do so when the reflected power is above the noise floor of the 

radar receiver.  When total attenuation occurs, the resulting radar data cannot be 

objectively distinguished from true clear-air data; these areas of total attenuation 

appear as “shadows” of near-zero reflectivity in areas which may actually contain 

significant precipitation.  

To avoid erroneous assimilation of completely attenuated reflectivity data, 

CASA reflectivity and radial velocity data are assimilated only in regions where 

attenuation-corrected reflectivity exceeded 20 dBZ. Unfortunately, this constraint 

eliminates the ability of CASA reflectivity data to suppress spurious storms that 

occur in regions free of observed reflectivity; Tong and Xue (2005) showed that the 

assimilation of reflectivity data in non-precipitation regions is very beneficial in 

suppressing spurious storms. Furthermore, though CASA data are not assimilated 

when attenuation-corrected reflectivity is less than 20 dBZ, because no reliable way 

exists to objectively distinguish fully-attenuated regions from clear air echo regions, 

attenuated areas were included in the RMS innovation computation at CASA sites, 

resulting in increased RMS innovation values for the CASA radars.  Finding new 

ways to more effectively use X-band reflectivity data remains an important research 

topic (Xue et al. 2009).   

 In order to counteract the inherent tendency for the ensemble to converge on a 

solution different from the true state of the atmosphere, a method for maintaining 

ensemble spread is needed (Dowell and Wicker 2009).  In order to achieve this, we 
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apply a covariance inflation factor (Anderson and Anderson 1999) of γ = 1.25 to the 

prior deviation of each ensemble member from the ensemble mean.  This value of γ 

was chosen to be large enough to broaden the ensemble distribution, but not so large 

as to result in an unstable or unrealistic model state.  Recent work has applied other 

techniques to increase ensemble spread—for example, Zhang et al. (2004) used a 

“relaxation” technique that restored a pre-set fraction of the ensemble spread lost 

during the assimilation period.  Also, additive perturbations to various model fields 

(e.g. horizontal wind, potential temperature) have been employed. Dowell and 

Wicker (2009), found that applying smoothed additive perturbations to the horizontal 

wind, potential temperature, and water vapor fields yielded a significant increase in 

the resulting ensemble spread.  While ensemble spread maintenance used in these 

studies presented here is limited to covariance inflation, investigation of the optimal 

combination of multiplicative inflation, additive noise, relaxation, and/or adaptive 

inflation is a promising area for future study. 

 At the end of the assimilation period, three sets forecasts are performed from 

0200 to 0500 UTC for each of the three experiments: a single, deterministic forecast 

initialized from the 0200 UTC ensemble mean analysis of each experiment, three 

deterministic forecasts initialized from the 0200 UTC ensemble mean analysis of 

experiment CNTL, each using a different microphysical scheme, and a 40 member 

ensemble forecast with members initialized from the final analysis at 0200 UTC of 

each ensemble member used during the EnKF data assimilation process.  The 

results of these forecasts will be addressed in Chapter 4. 
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3.3  Radar Data Assimilation Results 
 
 By the end of the assimilation period at 0200 UTC 9 May 2007, all three 

experiments produce a MCS with reflectivity structure very similar to that observed 

by radar.  Composite radar data calculated from model fields for CNTL, NoCASA, 

and NoMMP (Fig. 3.4a-c) correspond well to composite radar reflectivity measured 

by WSR-88D (Fig. 3.4d).  Analyzed composite reflectivity at 0200 UTC for all 

experiments compares closely with observed reflectivity in terms of the intensity and 

location of the main convective cells and stratiform rain region and the overall shape 

of the bow echo (Fig. 3.4). In both model simulations and observations, a LEV is 

present at the northern end of the line of strongest convection, located in the western 

portion of the CASA radar network (Fig. 3.4).  Subtle differences between 

experiments are present in the composite reflectivity fields near the CASA network 

(Fig. 3.4a-c).  Minor differences between the analyses (Fig. 3.4a-c) and the 

observations (Fig. 3.4d) of radar reflectivity are notable in the southern portion of the 

domain, where all three experiments underestimate the coverage and intensity of the 

strong echo region where the reflectivity is greater than 35 dBZ.  Insufficient low-

level radar coverage in southwestern portion of the domain is believed to have 

contributed to the model error there, while underestimation of the intensity of the 

main convective line is likely due to under-correction to the background forecast by 

the ensemble filter, which can occur as a result of under-dispersion in the ensemble. 
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Fig. 3.4: Composite radar reflectivity (dBZ) of the final analysis state at 0200 UTC 9 
May 2007 for (a) CNTL, (b) NoMMP, and (c) NoCASA; also (d) composite radar 
reflectivity mosaic (dBZ) observed by WSR-88D radars KAMA, KDYX, KFWS, 
KLBB, and KTLX at 0200 UTC 9 May 2007.   30 km CASA radar range rings are 
included for reference. 

 

Despite the overall qualitative similarity noted in Fig. 3.4, there are important 

differences between the three experiments that occur throughout the assimilation 

period.  Both the inclusion of CASA data and the use of a multi-microphysics 

ensemble produce notable changes in the forecast and analysis states.  We will now 
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address both of these factors in turn, beginning with the impact of assimilating 

CASA radar data in addition to WSR-88D radar data. 

 

3.3.1  Impact of assimilating CASA data 

 CASA seeks to improve storm-scale analyses and forecasts by sampling the 

near-surface flow at high resolution.  Experiment NoCASA is designed to evaluate 

the impact of withholding CASA data during assimilation.  While CNTL and 

NoCASA produce qualitatively similar reflectivity fields (Fig. 3.5), the impact of 

assimilating CASA data can be seen in horizontal wind fields of CNTL and 

NoCASA, particularly in lower levels of the atmosphere (Fig. 3.5); strong southerly 

and southeasterly flow is present at one kilometer above mean sea level 

(approximately 700 m above the surface) within the northern portion of the leading 

convective line in CNTL (located in the region shared by the two western CASA 

radars, Fig. 3.5a), while the corresponding flow in NoCASA is much weaker (Fig. 

3.5c).  In addition, in experiments assimilating CASA data (Fig. 3.5a, b), in the 

southern portion of the CASA domain, southwest winds are present within and just 

ahead the convective line just to the south of the notch in the line near the 

southwestern-most CASA radar (KLWE).  By contrast, this notch is less noticeable 

in NoCASA (Fig. 3.5c), and the low-level winds in the region are from the southeast. 

These differences represent the accumulated effects of assimilating CASA data.  

This result agrees well with results reported by Schenkman et al. (2011), who found 

that assimilation of CASA Vr data for this case using a 3DVAR and cloud analysis 

package had a strong impact on low-level winds and gust front structure. 
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Fig. 3.5: Plots of radar reflectivity (color-shading) and the horizontal wind field 
(vectors) at 1 km above ground level for the final analysis states of (a) CNTL, (b) 
NoMMP, and (c) NoCASA at 0200 UTC.  30 km CASA range rings are also shown 
for reference. 

 

 The assimilation of CASA data results in a marked increase in maximum 

vertical vorticity in the lowest several kilometers of the atmosphere that sets the stage 

for tornadic processes. Fig. 3.6 shows the time-height cross-section of maximum 

vertical vorticity within a box tightly surrounding the CASA domain (depicted in Fig. 

2a), for experiments CNTL and NoCASA.  In CNTL, where CASA data were 

assimilated, much higher maximum values of low-level vertical vorticity are 

consistently present within this domain in both the forecast priors and EnKF analyses 

as compared to NoCASA.  In particular, strong vertical vorticity is present in CNTL 

between 5100 and 6600 s of forecast time (0125 to 0150 UTC) between the surface 

and the 3 km level; a much weaker maximum is also present in NoCASA, but it is 

not discernible until 5400 s (0130 UTC).   
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Fig. 3.6: Time-height plot of maximum vertical vorticity (s-1) for the forecast (a) and 
analysis (b) of CNTL, and the forecast (c) and analysis (d) of NoCASA during the 
analysis period.  Time is denoted in seconds since forecast initialization and ranges 
from 3900 s (01:05 UTC) to 7200 s (02:00 UTC).  Height is shown in kilometers 
above ground level. 

 

Between 0125 and 0150 UTC, a strong low-level circulation is present west-

southwest of KTLX, within the CASA domain.  This circulation is visible in CASA 

and WSR-88D radar observations between 0120 and 0150 UTC, but is much better 

resolved by CASA radars due in large part to shorter range (not shown). The NWS 

Norman forecast office issued a tornado warning for the storm cell containing this 

circulation at 0126 UTC, although a later storm survey found no evidence of an 

actual tornado at this particular time and location.  Inclusion of CASA data resulted 
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in the analysis of a stronger low-level rotation within the CASA domain, matching 

more closely with the observed evolution of the MCS.  In CNTL, where CASA data 

were assimilated, this circulation is present throughout the time it was observed by 

radar (Fig. 3.6a); by contrast, NoCASA is slower in developing such a circulation 

and the resulting low-level vertical vorticity is weaker (Fig. 3.6c).  

The tornado-warned meso-vortex is well-observed by CASA radar KCYR.  

The 2° elevation Vr observations from KCYR at 0140 UTC (Fig. 3.7a) show a strong 

circulation present between 5 and 20 km to the west of the radar site, with 45 m s-1 of 

horizontal wind shear over a distance of approximately 12 km.  Simulated KCYR Vr 

observations from the 0140 UTC ensemble mean analysis of CNTL (Fig. 3.7b) also 

indicate the presence of a meso-vortex circulation which closely matches the location 

and size of that seen in the KCYR observations, but with a slightly weaker maximum 

horizontal shear of around 40 m s-1 across the vortex.  Simulated KCYR Vr 

observations from NoCASA (Fig. 3.7c) show no strong circulation at the 2° 

elevation; instead, a convergent signature with only very weak rotation is present 

near the location of the observed meso-vortex.  In addition, NoCASA (Fig. 3.7c) 

greatly underestimates the region of positive Vr observed to the northwest of KCYR 

(Fig. 3.7a); by contrast, the ensemble mean analysis of CNTL (Fig. 3.7b) indicates a 

flow that closely matches KCYR observations.  These results highlight the 

importance of assimilated near-surface CASA radar data in accurately capturing the 

near-surface flow in this convective system.   
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Fig. 3.7: Radial velocity for the 0140 UTC at the 2 degree elevation (a) as observed 
by CASA radar KCYR, and simulated from the 0140 UTC EnKF analyses of (b) 
CNTL and (c) NoCASA.  The arrows highlight the circulation in the region of the 
tornado-warned mesovortex. 
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Fig. 3.8: Horizontal winds (barbs) and potential temperature (shaded) at the first 
model level above the surface near CASA radar KCYR for the 0140 UTC ensemble 
mean analysis in (a) CNTL and (b) NoCASA .  The position of a gust front 
associated with the embedded mesovortex is indicated.  Also shown are (c) full-
resolution radial velocity observations from the 2° elevation of CASA radar KCYR 
shortly before 0140 UTC. The gust front position indicated by the radial velocity 
observations is indicated by the yellow line. 
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The impact of assimilated CASA data is also evident in the surface wind field 

and cold pool structure in the 0140 UTC analysis.  In experiment CNTL (Fig. 3.8a), 

a moderately intense surface circulation is present, horizontally co-located with that 

indicated by KCYR Vr observations.  In the CNTL analysis, a moderately strong 

gust front is present to the south and southeast of the surface circulation, with strong 

inflow of between 15 and 25 ms-1 ahead of the gust front.  The location of the gust 

front in the 0140 UTC CNTL analysis (Fig. 3.8a) is similar to that indicated by the 

full-resolution 0139 UTC KCYR 2° Vr observations (Fig. 3.8c); at the location of the 

meso-vortex, these observations were 500 to 700 m above the surface.  The surface 

wind field in the 0140 UTC ensemble mean analysis of NoCASA shows only weak 

rotation within a convergent shear zone (Fig. 3.8b), consistent with the simulated Vr 

observations of Fig. 3.7c.  While the gust front present in NoCASA is positioned 

similarly to that in CNTL, it is much weaker, with a cross-frontal temperature 

difference of less than 2 K; this is too weak compared to potential temperature 

decreases of 3 to 4 K as measured by nearby Oklahoma Mesonet stations during 

passage of the gust front (not shown).   
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Fig. 3.9: (a) Total updraft mass flux profiles within the CASA sub-domain (as 
denoted in Fig. 3.3a) at 0140 UTC for experiments CNTL and NoCASA.  
Histograms of vertical velocity exceeding 4 m s-1 within updraft regions in the CASA 
sub-domain are plotted for (b) CNTL and (c) NoCASA. 

 

The stronger low-level circulation of CNTL is accompanied by more 

vigorous convective updrafts over the CASA sub-domain.  Total updraft flux is 

calculated at each model level over the CASA sub-domain outlined in Fig. 3.3a; the 

resulting vertical profiles of updraft flux for the CNTL and NoCASA 0140 UTC 

ensemble mean analyses are plotted in Fig. 3.9a.  Greater updraft flux is present in 

CNTL than in NoCASA, particularly below the 5 km level.  Much of the difference 

in updraft flux between CNTL and NoCASA can be attributed to greater updraft 

velocities in CNTL; histograms of updraft velocity for the 0140 UTC analyses of 

CNTL (Fig. 3.9b) and NoCASA (Fig. 3.9c) in model grid cells where the vertical 

velocity was greater than or equal to 4 m s-1 indicate that more regions of strong 
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updrafts are present in CNTL than in NoCASA.  In the 0140 UTC CNTL analysis, 

updrafts in excess of 16 m s-1 are present in more than 100 grid cells; the maximum 

updraft velocity observed within the CASA sub-domain exceeds 24 m s-1.  In 

NoCASA, only about 30 grid cells have updrafts exceeding 16 m s-1, and the 

maximum updraft velocity within the CASA domain is less than 19 m s-1.  Similar 

behavior was noted at other analysis times and during the forecast cycles, with 

stronger updrafts and greater updraft fluxes present in CNTL than in NoCASA (not 

shown). 

To more quantitatively assess the behavior of the EnKF analyses, average 

root-mean-square (RMS) values of observation innovation (the difference between 

observations and the model state in the form of observed quantities) and ensemble 

spread are examined. Observation innovations and ensemble spread are calculated for 

each of the 4 CASA radars, as well as WSR-88D radars KTLX and KVNX, for radar 

reflectivity (Z) (Fig. 3.10) and radial velocity (Vr) (Fig. 3.11), in experiments CNTL 

and NoCASA.  Innovations in Fig. 3.10 and Fig. 3.11 are calculated for the 

ensemble mean fields at locations where either observed or model reflectivity is 

greater than or equal to 15 dBZ.  The calculation is further limited to within the 

CASA sub-domain (c.f., Fig. 3.3a).  In NoCASA, RMS innovations for the CASA 

radars are calculated against CASA data that were not assimilated; these observations 

are therefore from independent sources.  Nevertheless, EnKF data assimilation in 

NoCASA was able to decrease the average innovations at all CASA sites for Z 

during every assimilation cycle, and for Vr during almost every assimilation cycle 

(Fig. 3.10, Fig. 3.11). Given that different radars measure different components of 
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the velocity field, the reduction in innovation against independent, unassimilated 

radial velocity measurements indicates good performance of the EnKF. 

   

 

Fig. 3.10: Average root-mean-square (RMS) innovation (solid lines) and spread 
(dotted lines) of radial velocity (in m/s) for each of the 5 WSR-88D and 4 CASA 
radars for experiments CNTL (black lines) and NoCASA (gray lines) calculated 
every 5 minutes during the assimilation period.  The assimilation period lasts from 
01:00 UTC (3600 seconds of forecast time) to 02:00 UTC (7200 seconds of forecast 
time).   

 

 Assimilation of CASA data resulted in a slight but notable decrease in RMS 

innovation in the analysis of Z in CNTL as compared to NoCASA (Fig. 3.11).  The 

overall decrease was greater for the CASA radars, due to the absence of CASA data 

in NoCASA.  Among the WSR-88D radars, only KTLX and KVNX are included 
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the comparisons between CNTL and NoCASA in Fig. 10-12 because they are located 

close to the center of the convective system during the assimilation period and share 

the greatest overlap with the CASA domain. The RMS innovations of Vr at KTLX 

and KVNX differ little between CNTL and NoCASA (Fig. 3.10a, b), though the 

RMS innovation of the CNTL analysis is very slightly lower than that of NoCASA at 

KTLX during early assimilation cycles (Fig. 3.10a).  In contrast, a larger 

improvement is seen in Z for CNTL during early cycles for KTLX and early to 

middle cycles for KVNX as compared to NoCASA (Fig. 3.11). These results suggest 

that the inclusion of CASA data modestly improved the analyzed reflectivity field 

within the model, particularly during early assimilation cycles, with less 

improvement to the analysis of radial velocity.     
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Fig. 3.11: As Fig. 3.10, but for radar reflectivity (in dBZ) instead of for radial 
velocity. 

 

 For the WSR-88D sites (KTLX and KVNX), the greatest differences in RMS 

innovations of Z and Vr between CNTL and NoCASA occurred in the first six 

assimilation cycles (Fig. 3.10a, b; Fig. 3.11a, b).  In addition, fewer cycles were 

needed for the analysis to reach its minimum RMS innovation value for Z in CNTL 

than in NoCASA.  While the minimum RMS innovation of the analysis for Z was 

not reached until around the 8th assimilation cycle at KTLX (Fig. 3.11a) and the 11th 

assimilation cycle for KVNX (Fig. 3.11b) in NoCASA, the RMS innovation of the 

analysis reached its minimum value for these radars in CNTL by the 4th and 3rd 

cycles respectively (Fig. 3.11a, b).  Assimilation of CASA data reduces the number 
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of cycles needed for the EnKF analysis to reach a relatively stable and low level of 

RMS innovation in Z. 

  One important measure of the performance of an EnKF data 

assimilation system is statistical consistency, as discussed in Snyder and Zhang 

(2003) and Dowell et al. (2004a).  For forecasts and observations with independent 

error characteristics, the variance of the innovation should be equal to the sum of the 

observation and forecast error variances: 

2 2 2
d o fσ σ σ= +        (3.1) 

Following Dowell et al. (2004a), we arrive from equation 3.1 at a consistency 

relation valid for observations yo and model forecast state xf, with angle brackets 

representing an average over all available observations at a time, and overbars 

denoting an ensemble mean: 
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Here, N is the ensemble size, i is the ensemble index, and H is the observation 

operator. In practice, values of consistency ratio well below 1 are often seen in EnKF 

studies (Dowell et al. 2004a; Dowell et al. 2004b), indicating a general tendency for 

under-dispersion in the ensemble. 
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Fig. 3.12: Consistency ratio of Z (solid lines) and Vr (dotted lines) for the 4 CASA 
radars and the 2 WSR-88D radars nearest to the CASA radar network for CNTL 
(black lines) and NoCASA (gray lines) calculated every 5 minutes during the 
assimilation period (0100 to 0200 UTC).  The thin black dashed line indicates the 
theoretically-expected consistency ratio defined in equation (3.2). 

 

Time series of consistency ratio for CNTL and NoCASA, calculated during 

the assimilation period for four CASA and two WSR-88D (KTLX and KVNX) 

radars are shown in Fig. 3.12.  Values of consistency ratio for Vr and Z in both 

CNTL and NoCASA fall below the optimal value of approximately 1 throughout 

much of the period (Fig. 3.12) with the exception being for Z in early cycles at the 

WSR-88D radar sites (Fig. 3.12a, b) and CASA sites KRSP and KSAO (Fig. 3.12e, 

f).  Consistency ratio for Z was much higher at the WSR-88D radar sites than at 

CASA sites in both CNTL and NoCASA.  Lower values of consistency ratio were 
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observed for Vr than for Z, with Vr consistency ratio values of between 0.1 and 0.3 

common for the CASA radars; WSR-88D sites KTLX and KVNX yielded Vr 

consistency ratios ranging from 0.2 to 0.3.  Consistency ratios for Z were higher, 

ranging between 0.5 and 1.0 for WSR-88D radars, and 0.2 and 1.0 for CASA radars.  

Very high values (greater than 2.0) of consistency ratio for Z were present during the 

first few assimilation cycles due to the very high values of RMS ensemble spread for 

Z at these times (see Fig. 3.12). 

 Values of consistency ratio in experiments NoCASA and CNTL are slightly 

lower than those seen in previous real data studies using a similar EnKF setup, such 

as Dowell et al. (2004b).  One can infer from the particularly low values of 

consistency ratio seen for Vr (Fig. 3.12) that a significant amount of under-dispersion 

exists in the radial velocity field in both NoCASA and CNTL.  In this study, we 

assumed an observation error standard deviation of 1 m s-1 for radial velocity 

observations.  The relatively small assumed observation error may be a contributing 

factor in the low values of consistency ratio observed. In future studies, we will 

consider increasing the assumed observation error to 2 m s -1 for Vr. Values of 

consistency ratio for Z are also below 1, suggesting insufficient ensemble spread in 

the reflectivity field, but this deficiency is not as severe as that in the radial velocity 

field.  Dowell et al. (2009) addressed under-dispersion in radial velocity by using 

additive perturbations to the horizontal wind field; however, initial tests for this case 

including additive perturbations to the wind field did not show improvement in RMS 

innovation for radar reflectivity and radial velocity observations when compared 

against analyses using multiplicative covariance inflation alone; further tests using 
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perturbations with different perturbation magnitudes and scales will be explored in 

future work on this case. 

 The difference in the consistency ratio time series (Fig. 3.12) between CASA 

and NoCASA for Z (and to a lesser extent Vr) indicates that the under-dispersion is 

slightly less severe in CNTL than in NoCASA, particularly during early assimilation 

cycles and at the WSR-88D radar sites (Fig. 3.12a, b).  Assimilation of CASA data 

slightly decreases under-dispersion of radar reflectivity within the ensemble; this is a 

somewhat counter-intuitive result, as increasing the amount of data assimilated 

usually results in decreased spread within the ensemble. This is likely to be due to the 

way that initial perturbations are added.  In this study, initial perturbations were 

only added to grid points within 2 km in the horizontal and 1 km in the vertical of 

observed radar reflectivity exceeding a threshold of 5 dBZ, following the 

methodology of Tong and Xue (2005).  Because CNTL includes CASA data in 

addition to WSR-88D radar data, the region containing initial perturbations is slightly 

larger in CNTL than in NoCASA, particularly at low-levels where only CASA radar 

data is available.  Accordingly, the initial difference in RMS spread is greater for 

CASA radars and very small for WSR-88D radars (Fig. 3.10). The effect of this 

slight difference in the initial perturbation region fades as assimilation cycles are 

performed; by the end of the assimilation window CNTL shows smaller spread in the 

later cycles due to faster spread reduction, as expected when assimilating more 

observations. 
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3.3.2  Impact of using a mixed-microphysics ensemble 

 In previous studies, using different parameterization schemes among 

ensemble members (e.g., Meng and Zhang 2007) and including perturbations of 

microphysical parameters within the ensemble (e.g., Ge et al. 2010) have been shown 

effective in increasing ensemble spread and reducing under-dispersion within the 

ensemble. However, the use of multiple microphysics schemes for real-case storm-

scale radar data assimilation has, to our knowledge, not been reported in the 

literature. In this section, different microphysics schemes are used among ensemble 

members and the effect on the analysis is investigated.   Experiment NoMMP was 

performed to evaluate the effect of using a mixed-microphysics ensemble; NoMMP 

differed from CNTL only in that it used Lin microphysics for all members in the 

ensemble forecast (see Table 3.1). 

 Time-series of RMS innovation and spread during assimilation for 

experiments CNTL and NoMMP are presented in Fig. 3.13 for Vr and Fig. 3.14 for Z.  

Since the impact of the mixed-microphysics ensemble is present throughout the 

model domain, RMS spread and innovation calculations were not limited to the 

CASA sub-domain (see Fig. 3.3a) for comparisons between CNTL and NoMMP.  

Thus, unlike in the comparison between CNTL and NoCASA, calculations are 

presented for all five WSR-88D radars in addition to the four CASA radars; data 

from all these radar sites were assimilated in both CNTL and NoMMP. 

The impact of the mixed-microphysics ensemble on RMS innovation of Vr 

(Fig. 3.13) is relatively small.  The RMS innovation of the Vr analysis of CNTL is 

slightly lower than that of NoMMP at KTLX during the first five assimilation cycles 
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(Fig. 3.13d); however farther to the west at radar site KAMA (Fig. 3.13a), NoMMP 

actually produces a slightly lower RMS innovation for Vr during later cycles of the 

assimilation period.  At most sites no significant difference in RMS innovation of Vr 

can be seen. Likewise, RMS ensemble spread of Vr is virtually unchanged between 

CNTL and NoMMP.  

 

Fig. 3.13: As Fig. 3.10, but for experiments CNTL (black lines) and NoMMP (gray 
lines). 

 
 In contrast to Vr, differences between the RMS innovation and ensemble 

spread of Z in NoMMP and CNTL (Fig. 3.14) are much more prominent.  

Compared to NoMMP, ensemble spread of Z in CNTL grows faster during the 
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forecast step and remains higher during the analysis step; greater ensemble spread is 

consistently present in CNTL during forecasts and analyses than in NoMMP at every 

radar site. Average RMS ensemble spread of Z during the forecast step decreases in 

the first several cycles and remains largely constant during the remainder of the 

assimilation period. Average RMS ensemble spread values for Z at the end of 

assimilation period range between about 3 to 5 dBZ in CNTL and between 1 and 4 

dBZ in NoMMP.   

 

Fig. 3.14: As Fig. 3.13, but for experiments CNTL (black lines) and NoMMP (gray 
lines). 
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 Differences in the RMS innovation values of Z between CNTL and NoMMP 

(Fig. 3.14) are also noticeable but not as prominent as differences in RMS ensemble 

spread.  Error in the forecast ensemble grows more quickly in CNTL than in 

NoMMP, evidenced by a steeper increase between each analysis and the subsequent 

forecast at every WSR-88D radar site, as members using different microphysics 

schemes arrive at varying solutions because of differences in treatment of 

microphysics processes.  The faster growth of RMS innovation in CNTL (Fig. 3.14) 

can be attributed in part to variation in reflectivity formulation between the Lin, 

WSM, and NEM microphysical schemes—for this case, the NEM microphysics 

scheme greatly under-predicts the coverage of stratiform rain, thus members using 

the NEM microphysics scheme within the CNTL ensemble act to increase the RMS 

innovation during the forecast cycles.  When innovation statistics for Z were derived 

for subsets of CNTL members using individual microphysical schemes, the subset 

consisting of NEM members within CNTL had the most rapid increase in RMS 

innovation of Z during forecast steps, while the subset consisting of Lin members 

within CNTL had the slowest increase (not shown).  However, despite the higher 

RMS innovation values of Z present during the forecast step in CNTL, the RMS 

innovation of the analysis of Z in CNTL is equal to or lower than that of NoMMP for 

almost every analysis cycle at all radar sites.  The greatest differences can be seen at 

KAMA and KVNX, where CNTL produces analyses of Z with an average RMS 

innovation of between 0.3 and 1 dBZ lower than corresponding analyses in NoMMP 

for most of the assimilation period.  At the CASA radar sites differences between 
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CNTL and NoMMP are more difficult to discern; at these sites the two experiments 

produced qualitatively similar RMS innovation and ensemble spread time series. 

 

 

Fig. 3.15: As Fig. 3.12, but for experiments CNTL (black lines) and NoMMP (gray 
lines). 
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 Comparison of consistency ratio calculated for Vr and Z for experiments 

CNTL and NoMMP (Fig. 3.15) reveal that use of the mixed-microphysics ensemble 

results in a higher consistency ratio than the single-microphysics ensemble for Z 

because of increased ensemble spread of radar reflectivity in the mixed-microphysics 

case. In both CNTL and NoMMP the consistency ratio of Vr is well below 1.0, 

ranging between 0.25 and 0.5 for WSR-88D radars and 0.1 and 0.25 for CASA 

radars.  While the consistency ratio of Vr is virtually unchanged between CNTL and 

NoMMP, the consistency ratio of Z is considerably higher in CNTL than in NoMMP 

at all radar sites throughout the assimilation period.  Though the consistency ratio of 

Z for CNTL still remains below the optimal value of 1.0 at most radar sites, 

particularly late in the assimilation period, the higher consistency ratio values for Z 

in CNTL suggest that CNTL exhibits significantly less under-dispersion than 

NoMMP (Fig. 3.15). 
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Chapter 4:  8-9 May 2007—Forecasts from EnKF Radar Analyses 

 
 Since the inception of explicit numerical weather prediction (NWP) of severe 

convective storms (Lilly 1990), assimilation of Doppler weather radar data has been 

shown to be critical and often effective for initializing such model predictions (e.g., 

Sun et al. 1991; Sun and Crook 1998; Xue et al. 2003; Hu et al. 2006a).  Recent 

studies have produced promising results assimilating Doppler radar data for 

convective-scale NWP in real-time and over large domains (e.g., Xue et al. 2008).  

The ensemble Kalman filter (EnKF) technique, initially developed by Evensen 

(1994, 2003), has been gaining popularity as an effective method of radar data 

assimilation for storm-scale NWP (e.g., Snyder and Zhang 2003; Dowell et al. 

2004b; Tong and Xue 2005a; Tong and Xue 2008).   

Though EnKF is more computationally expensive than the 3-dimensional 

variational method (3DVAR) widely used operationally, it provides flow-dependent 

multivariate background error covariances and cross-covariances that 3DVAR 

cannot. Such cross-covariances are essential for radar data assimilation, because most 

state variables are not directly observed (Tong and Xue 2005b, 2008).  Additional 

comments on the relative merits of various radar data assimilation methods including 

3DVAR, 4DVAR (4-D variational) and EnKF for convective storm analysis can be 

found in Tong and Xue (2005b).  As available computational power increases, it 

will soon become feasible to run a real-time convective-scale forecast system which 

assimilates data via EnKF (Zhang et al. 2009) and produces convective-scale 

ensemble forecasts (e.g., Xue et al. 2008). 
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Due to the chaotic nature of the atmosphere, and inevitable errors in 

observations and prediction models, weather forecasts always contain uncertainty. 

No forecast is therefore complete without a description of its uncertainty (NRC 

2006), which is often expressed in terms of forecast probability. Ensemble 

forecasting offers a practical way to provide a probabilistic forecast (Leith 1974). 

Global and regional ensemble forecasting has been operational for nearly two 

decades (e.g., Toth and Kalnay 1993; Houtekamer et al. 1996; Du et al. 2003; Bowler 

and Mylne 2009); by comparison, convective-scale ensemble forecasting is still in its 

infancy (Kong et al. 2006; Xue et al. 2011). Convective scale weather poses a greater 

prediction challenge due to its intermittent nature, smaller spatial and temporal scale, 

higher nonlinearity, and often due to incomplete observation coverage; these 

challenges increase the forecast uncertainty, making probabilistic forecasting even 

more crucial (Stensrud et al. 2009; Xue et al. 2011). 

 EnKF provides a set of analyses that, in principle, best characterize the 

analysis uncertainty, making them desirable initial conditions for ensemble forecasts 

(and ensemble-based probabilistic predictions). At the global scale, ensembles using 

EnKF analysis initial conditions have shown superior probabilistic forecasting 

performance compared to those using more traditional perturbation methods 

(Houtekamer et al. 2005; Hamill et al. 2011). EnKF methods have proven effective in 

generating dynamically consistent wind, temperature, and microphysical fields for 

convective storms when assimilating Doppler radar reflectivity and radial velocity 

data (e.g., Dowell et al. 2004b; Tong 2006; Snook et al. 2011) but probabilistic 

forecasts at the convective scale using EnKF analyses has so far received limited 
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attention. Zhang et al. (2010) is an example where convection-permitting-resolution 

ensemble forecasts of a tropical cyclone were initialized from global EnKF analyses.  

 In this chapter, we detail the results of deterministic and ensemble forecasts 

produced from the EnKF analyses of the 8-9 May 2007 tornadic mesoscale 

convective system presented above in Chapter 3, with the goal of evaluating the 

suitability of EnKF analyses of radar data for initializing an ensemble for the short-

term convective-scale probabilistic forecast goals of “warn-on-forecast” (Stensrud et 

al. 2009).  We use the neighborhood ensemble probability (NEP) approach 

(Schwartz et al. 2010) described in Chapter 2 to obtain probabilistic forecasts of 

radar reflectivity, and an object-based ensemble approach to obtain probabilistic 

forecasts of near-surface meso-vortices.  The value of assimilating X-band radar 

data by the Engineering Research Center for Collaborative Adaptive Sensing of the 

Atmosphere (CASA) (McLaughlin et al. 2009) for improving the forecasts is 

evaluated, and the impact of microphysical parameterization during analysis and 

forecast periods is examined. 
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Fig. 4.1: Storm Relative Velocity as observed by the 1.5 degree elevation scan of 
WSR-88D radar KTLX at 04:00 UTC (upper left), 04:20Z (upper right), and 04:40 
UTC (lower left). Urban and county boundaries are shown. 
 

 We will begin by analyzing the results of the deterministic, ensemble, and 

probabilistic forecasts of radar reflectivity (Z) for CNTL, NoMMP and NoCASA, 

and then move on to the results of ensemble and probabilistic forecasts of significant 

near-surface mesovortices.  With regards to the choice of focus, Z was chosen 

because it can be directly verified against WSR-88D radar observations over the 

entire area of the convective system, while low-level mesovortices were closely co-
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located with the observed tornadoes in this event, as can be noted from the match 

between the location of rotational signatures of mesovortices in the KTLX storm-

relative velocity observations (Fig. 4.1) and the tornadoes reported in association 

with them (see Fig. 3.1). We will also address important differences between the 

deterministic forecast from the ensemble mean and the mean of the ensemble 

forecast. Finally, we will discuss the effects of variation of the model microphysical 

scheme, both for the deterministic forecasts from the 0200 UTC CNTL analysis and 

the single- and mixed-microphysics ensemble forecasts performed for CNTL, 

NoMMP, and NoCASA. 

 

4.1  Forecast experiment setup and design 

In the ensemble forecast experiments presented in this chapter, the EnKF 

ensemble analyses presented in Chapter 3, valid at 0200 UTC 9 May 2007, are used 

to initialize 3-hour ensemble forecasts. The model setup and naming convention used 

for these forecast experiments are identical to those presented in Chapter 3. The 

computational domain has 256 × 256 × 40 grid points with a 2 km horizontal grid 

spacing and stretched vertical grid spacing (see Fig. 4.2).  Results from three 

ensemble forecast experiments are presented here.  The control experiment 

(hereafter “CNTL”) assimilates both CASA and WSR-88D radar data and contains 

40 ARPS ensemble members; 16 of these use the Lin ice microphysical scheme (Lin 

et al. 1983), 16 use the WRF single-moment 6-class (WSM6) ice microphysics 

scheme (Hong and Lim 2006), and the remaining 8 members use the NWP explicit 

microphysics (NEM) scheme developed by Schultz (1995).  The second 
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experiment, NoMMP, assimilates the same data as CNTL but uses the Lin 

microphysics scheme in all 40 of its ensemble members. The third experiment, 

NoCASA, uses the same ensemble setup as CNTL but does not assimilate CASA 

data.   

To isolate the impact of using a mixed-microphysics ensemble during the 

forecast period, two more ensemble forecast experiments are run in addition to the 

three mentioned above.  Experiments CNTL_LIN and NoCASA_LIN are initialized 

from the CNTL and NoCASA initial conditions (respectively), but use a single-

microphysics forecast ensemble consisting of 40 ARPS members using the Lin 

microphysics scheme, as in NoMMP.  In all experiments, a reduced rain intercept 

parameter of 8×105 was used, consistent with Snook and Xue (2008), who found that 

reducing the rain intercept parameter yielded more realistic cold-pool structure.  

Lateral boundary conditions for all ensemble members are obtained from the NCEP 

NAM 6-hourly analyses and intervening 3 hour forecasts. 
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Fig. 4.2: Forecast domain used in forecast experiments for the 9 May 2007 case 
initialized from analyses obtained in the experiments presented in Chapter 3.  
Terrain height, in meters above mean sea level, is indicated by the grayscale 
shading.  40 km CASA radar range rings are included for reference.  The black 
box in the northeast portion of the domain denotes the extent of the forecast 
verification sub-domain used in calculation of forecast skill scores. 

 

In all ensemble members, a reduced rain intercept parameter of 8×105 was 

used, consistent with Snook and Xue (2008), who found that reducing the rain 

intercept parameter yielded more realistic cold-pool structure.  A timeline for these 

experiments is presented in Fig. 4.3.  Each ensemble forecast experiment uses, as its 

initial condition, the final ensemble analyses at 0200 UTC of the corresponding 

EnKF data assimilation experiment (i.e., CNTL, NoMMP or NoCASA). 
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Fig. 4.3:  Forecast diagram detailing the analysis and forecast periods for 
experiments CNTL, NoMMP, and NoCASA.  

 

 Forecast verification is performed for radar reflectivity at 0300, 0400, and 

0500 UTC, and for low-level meso-vortices at 0400, 0420, and 0440 UTC; the latter 

times correspond closely to tornado reports received during this event at 0354, 0426, 

and 0443 UTC (see Fig. 3.1).  Given the 2-km horizontal grid spacing used, 

tornado-scale circulations cannot be resolved, we therefore focus on prediction of 

resolvable low-level circulations linked to the observed tornadoes, rather than on the 

tornadoes themselves. With the 2-km horizontal grid spacing used, the mesovortices 

that were present in this case can be resolved. 

 

4.2  Deterministic forecast experiments 
 

While this study focuses primarily on ensemble forecasting, it is often 

valuable to perform a deterministic forecast from the ensemble mean of the initial 

conditions. Such deterministic forecasts are produced for each experiment from the 

ensemble mean analyses valid at 0200 UTC, using the Lin microphysical scheme in 

the forecast model.  Given that the choice and configuration of the microphysical 
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parameterization scheme is known to greatly affect the forecast solution (Dawson et 

al. 2009), particularly with regard to convective dynamics (Snook and Xue 2008), 

two additional deterministic forecasts are launched from the ensemble mean analysis 

of CNTL, one using the WSM6 microphysics scheme and one using the NEM 

microphysics schemes; these forecasts are called CNTL-W and CNTL-N, 

respectively.  

 

4.2.1  Deterministic predictions of radar reflectivity 

 Deterministic forecasts of radar reflectivity and horizontal winds at 

approximately 2 km above ground level are displayed in for forecasts valid at 0300, 

0400, and 0500 UTC from CNTL (Fig. 4.4a, e, i), NoMMP (Fig. 4.4b, f, j), and 

NoCASA (Fig. 4.4c, g, k). Also plotted are mosaics of observed radar reflectivity 

from the WSR-88D network at the corresponding times (rightmost column of Fig. 

4.4).  All experiments predict a MCS with a line-end vortex (LEV) that moves 

northeast through the CASA domain by around 0400 UTC (Fig. 4.4).  In all 

experiments, the convective line moves more slowly than in observations, with the 

greatest position error occurring after 0400 UTC.  The general structure and 

strength of the northern portion of the convective line remains reasonably well-

predicted even by 0500 UTC, though the southern portion of the line dissipates more 

quickly in the forecasts than in the observations (Fig. 4.4i-l). 

 Though the convective mode is predicted rather well, there is noticeable error 

in all experiments with regard to the convective lines extending to the south and 

southeast.  WSR-88D observed two convective lines associated with the system (see 
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Fig. 4.4d, h, l): a stronger leading convective line containing the main bow-echo, 

initially oriented from northwest to southeast (Fig. 4.4d) then later oriented more 

north-south (Fig. 4.4h), and a second weaker line of convection and stratiform 

precipitation oriented from north-northeast to south-southwest, approximately 50-100 

km behind the leading convective line.  While model reflectivity in the initial 

conditions of all three experiments generally matches well with WSR-88D composite 

reflectivity observations at 0200 UTC (Fig. 3.4), the subsequent forecasts (Fig. 4.4a-

c, e-g, i-k) have only a single convective line, positioned roughly along the axis of 

the trailing line in the WSR-88D observations.  This line is present in all 

experiments, and is most intense in NoMMP, particularly later in the forecast (Fig. 

4.4i, j, k). The convective line moves eastward more slowly in the forecasts than in 

the observations, possibly due in part to an underestimation of the intensity of the 

LEV during the later portion of the forecast period, as will be discussed later.  Error 

in the mesoscale environment surrounding the convective system probably also plays 

a role; because no data is assimilated outside the radar echo region, environmental 

errors present in the NAM analysis background cannot be reduced by data 

assimilation. This issue is addressed in the results that will be presented in Chapter 5 

via assimilation of conventional observations. 
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Fig. 4.4: Forecasts of reflectivity (shaded) and winds (vectors) at model grid level 10 
(approximately 2 km above ground level) for CNTL at (a) 03:00 UTC, (e) 04:00 
UTC, and (i) 05:00 UTC; NoMMP at (b) 03:00 UTC, (f) 04:00 UTC, and (j) 05:00 
UTC; and NoCASA at (c) 03:00 UTC, (g) 04:00 UTC, and (k) 05:00 UTC. Also 
shown is reflectivity as observed by the WSR-88D network, interpolated to the same 
model grid level at (d) 03:00 UTC, (h) 04:00 UTC, and (l) 05:00 UTC. 
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 To more quantitatively evaluate the deterministic reflectivity forecasts, the 

Equitable Threat Score (ETS), also known as the Gilbert Skill Score (GSS) (Schaefer 

1990), is calculated for radar reflectivity during the forecast period using thresholds 

of 25 (Fig. 4.5a) and 40 dBZ (Fig. 4.5b).  ETS is calculated on model vertical grid 

level 10 (slightly more than 2 km above the surface) within a verification sub-domain 

(shown in Fig. 3.3) chosen to focus on the region where the impact of CASA radar 

data on the forecast is likely to be significant.  The LEV and its accompanying 

tornadoes pass through this sub-domain during the forecast period.  Unlike the 

critical success index, also known as the threat score (Wilks 2006), the ETS is less 

sensitive to event climatology and thus does not assign unduly poor scores for 

forecasts of rare events (Schaefer 1990), although issues do exist in the verification 

of high-resolution precipitation forecasts using ETS (Baldwin et al. 2001; Ebert 

2008).  Possible values of ETS range from -0.33 to 1.0, with 1.0 representing a 

perfect forecast and 0.0 indicating a forecast with no skill. ETS is commonly used for 

accumulated precipitation verification; we apply it here to instantaneous reflectivity 

fields with the understanding that instantaneous fields are much more sensitive to 

timing errors than accumulated fields.  
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Fig. 4.5: Time-series of equitable threat scores (ETSs) calculated between a mosaic 
of WSR-88D reflectivity observations and deterministic forecasts from experiments 
CNTL, NoMMP, and NoCASA at vertical grid level k = 10 (approximately 2 km 
above ground level) for thresholds of (a) 25 dBZ and (b) 40 dBZ.  Calculations 
were performed over the verification sub-domain indicated by the black outline in 
Fig. 4.2. 
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The ETS is considerably higher at the 25 dBZ threshold (Fig. 4.5a) than at the 

40 dBZ threshold (Fig. 4.5b) at all times in all experiments. The 25 dBZ threshold 

includes both stratiform and convective precipitation regions, while the 40 dBZ 

threshold includes only heavier precipitation associated with convective cores; these 

small convective cores are much more sensitive to small errors in position and timing 

than the widespread stratiform precipitation regions also present in this case (see Fig. 

4.4). In general, ETS tends to be lower for smaller fractional area coverage within a 

verification domain. ETS at the 25 dBZ threshold in the initial conditions (0200 

UTC; forecast time zero in Fig. 4.5a) is approximately 0.76 in all three 

experiments—this relatively high value of ETS underscores the overall good quality 

of the EnKF ensemble mean analysis.  The ETSs at 0200 UTC for the 40 dBZ 

threshold (Fig. 4.5b) are lower but still show considerable skill, with values ranging 

from 0.34 for NoCASA to 0.36 for CNTL.  

 During the forecast period, the 25 dBZ threshold ETS scores (Fig. 4.5a) 

decline modestly during the first 80 minutes the forecast, falling from an initial value 

of approximately 0.77 in all experiments to between 0.48 (for NoMMP) and 0.53 (for 

CNTL) at 80 minutes of forecast time.  While NoMMP has a similar or slightly 

lower ETS than CNTL at the 25 dBZ threshold after 0300 UTC, during the first hour 

of the forecast, NoMMP actually has a slightly higher ETS than both CNTL and 

NoCASA.  The initially lower ETS values of NoCASA and CNTL for the 25 dBZ 

threshold can be attributed to the influence of ensemble members using the NEM 

microphysics scheme during the EnKF data assimilation process that generated the 

ensemble mean analysis from which these forecasts were initialized; ensemble 
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members using the NEM microphysics scheme greatly under-predicted the 

geographic extent of stratiform precipitation within the MCS, leading to a deficiency 

in low to moderate reflectivity areas in the CNTL and NoCASA ensemble mean 

analyses; this deficiency remains present during the first 30 minutes of the CNTL and 

NoCASA forecasts (not shown).  This initial reduction of ETS in CNTL and 

NoCASA is only present at weak to moderate reflectivity thresholds; at a higher 

threshold of 40 dBZ (Fig. 4.5b) this trend is actually reversed, with CNTL and 

NoCASA consistently producing higher ETS values than NoMMP during the first 60 

minutes of the forecast. 

After 0320 UTC (80 minutes of forecast time), 25 dBZ ETS scores in all 

experiments remain comparable to one another and decline steadily for the remainder 

of the forecast period, falling to approximately 0.26 by 0400 UTC, and to below 0.1 

by 0500 UTC.  Development of spurious convection near and within the CASA 

domain after 0300 UTC (see Fig. 4.4) contributes significantly to this decline. In all 

experiments, 40 dBZ ETS scores (Fig. 4.5b) declined most rapidly during the first 

hour of the forecast period, dropping from their initial values of between 0.34 and 

0.36 at 0200 UTC to between 0.14 and 0.17 at 0300 UTC, then declining only 

modestly afterward, falling only to slightly below 0.10 by 0500 UTC. In addition to 

the negative impact of spurious convection that developed near the CASA network, 

the relatively low ETS values later in the forecast period can also be attributed to 

modest position errors in the location of the heavy convective cores in the forecasts 

(see Fig. 4.4); as mentioned earlier, even in an operationally-useful forecast, small 
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position errors often result in very low skill scores when verifying isolated features 

using ETS (Baldwin et al. 2001; Schwartz et al. 2009a).  

 

4.2.2  Evolution of the MCS and LEV in the deterministic forecasts 

 All experiments underestimate the strength of the LEV, particularly during 

the last hour of the forecast period, contributing to forecast error in the convective 

lines in southern and central Oklahoma and northern Texas (see Fig. 4.4i-l).  To 

more closely examine the evolution of the LEV circulation and its associated 

convection, time-height plots of (horizontal plane) maximum vertical vorticity within 

the verification sub-domain (the black outline in Fig. 1) are calculated for the 

deterministic forecasts of CNTL (Fig. 13a), NoMMP (Fig. 13b), and NoCASA (Fig. 

13c).  Similar time-height plots of maximum updraft velocity are presented in Fig. 

14. 

During the EnKF assimilation of radar reflectivity and radial velocity data, at 

5 minute intervals between 0100 and 0200 UTC, maximum vertical vorticity values 

decrease throughout much of the troposphere during each forecast step, particularly 

at the lower levels (Fig. 3.6); the forecast model is unable to adequately sustain the 

intensity of circulation observed in the LEV.  Despite model deficiency (due to 

resolution, etc.), the inclusion of CASA radar observations in CNTL reduces the 

underestimation of LEV intensity in the forecast step as compared to NoCASA.  

During the forecast period (Fig. 4.6), the maximum vertical vorticity values 

associated with the LEV remain relatively steady, and are similar to those seen 

during the forecast steps of the analysis period.  By contrast, Schenkman et al. 
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(2011), who performed deterministic forecasts of this case based on 3DVAR 

analyses, noted that the observed LEV intensified noticeably during the forecast 

period, reaching its peak intensity between 0400 and 0530 UTC.  The LEV was 

discernable in Oklahoma Mesonet surface observations at 0510 and 0520 UTC (not 

shown) as a well-defined surface circulation with around 25 m s-1 of horizontal shear 

(Schenkman et al. 2011).  The LEV is present in the 0500 UTC deterministic 

forecasts (Fig. 4.4i-k), but it is weaker the LEV observed by the Oklahoma Mesonet, 

and located slightly farther north (Fig. 4.4i-l).  The maximum vertical vorticity 

within the verification sub-domain is higher in CNTL and NoMMP than in NoCASA 

(Fig. 4.6), particularly between 0200 UTC to 0400 UTC in the lowest 6 km of the 

atmosphere, indicating that CASA data assimilated between 0100 and 0200 UTC 

contributed to greater sustained intensity of the LEV in the forecasts. 

 Several factors likely contributed to the underestimation of the intensity of the 

LEV in the model.  Mesonet and surface observations are not included in our EnKF 

assimilation process; Schenkman et al. (2011) found these observations useful in 

improving their 3DVAR analyses of this event.  In addition, the relatively coarse 2 

km grid spacing used in this study limits the ability of the model to resolve smaller 

convective-scale processes.   
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Fig. 4.6: Time-height plot of maximum vertical vorticity (s-1) within the forecast 
verification sub-domain (depicted by the black outline in Fig. 4.2) during the forecast 
period for deterministic forecasts of (a) CNTL, (b) NoMMP, and (c) NoCASA. Time 
is denoted in seconds since forecast initialization and ranges from 7200 s (0200 
UTC), which corresponds to the end of the analysis period, to 18000 s (0500 UTC).  
Height above the surface is shown in kilometers.   
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Fig. 4.7: As Fig. 4.6 but for maximum updraft velocity (m s-1). 

 

Despite the underestimation of LEV intensity, strong convective updrafts 

were maintained in all experiments from the beginning of the forecast at 0200 UTC 

until approximately 0420 UTC (Fig. 4.7); after this time the peak updraft velocity 

decreased considerably.  Peak updraft speed in CNTL and NoCASA (Fig. 4.7a, c) 

occurred around 0240 UTC, while peak updraft speed occurred slightly earlier, 

around 0220 UTC, in NoMMP (Fig. 4.7b).  Variation of peak updraft intensity with 

time is similar in CNTL and NoCASA (Fig. 4.7a, c). Both have similarly-timed peak 

updraft velocities and show five similar distinct maxima in updraft speed, occurring 

in CNTL around 0220, 0240, 0300, 0320 and 0345 UTC (Fig. 4.7a), and in NoCASA 

at around 0215, 0245, 0305, 0325, and 0345 UTC.  Updraft speed maxima in 
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NoMMP (Fig. 4.7b) do not correspond well to those in CNTL and NoCASA, 

particularly late in the forecast period; in NoMMP there are only three discrete peaks 

in updraft intensity, occurring at 0220, 0245, and 0310 UTC.  The second and third 

peaks are much weaker than those in CNTL and NoCASA. The maximum updraft 

speed is also quicker to decrease in NoMMP, as evidenced by the lower peak updraft 

intensity in NoMMP between 0330 and 0420 UTC (Fig. 4.7).  The similarity of 

CNTL and NoCASA and the relative difference of NoMMP suggest that during the 

forecast period, evolution of convective updrafts is relatively sensitive to the 

microphysical makeup of the ensemble during the EnKF data assimilation process, 

but only weakly sensitive to inclusion of CASA data during the assimilation period.  

Previous studies by Dawson (2009) and Snook and Xue (2008) found that the choice 

of microphysical scheme and parameter settings greatly impact forecasts of 

convective storms.  These results suggest reducing error in the forecasting model is 

at least as important as providing low level data coverage in addition to existing 

WSR-88D radar network observations, at least for the current case using the given 

data assimilation and forecasting systems. 

 

4.2.3  Effects of microphysical parameterization in the deterministic forecasts 

 To further examine the effects of microphysical parameterization on the 

deterministic forecasts, we performed two additional deterministic forecasts from the 

0200 UTC ensemble mean analysis of CNTL using the WSM6 and NEM 

microphysical schemes.  To distinguish these experiments from the deterministic 

forecasts discussed earlier, we label the forecasts using the WSM6 and NEM 
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schemes CNTL-W and CNTL-N (respectively).  Forecast radar reflectivity fields 

and horizontal wind vectors at vertical model level 10 are plotted at 0500 UTC and 

compared with the deterministic forecast of CNTL and with WSR-88D observed 

reflectivity in Fig. 4.8.   

While all three deterministic forecasts feature similar positioning of the 

northern portion of the MCS (Fig. 4.8a-c), the horizontal extent of lighter 

precipitation (between 10 and 30 dBZ) is considerably greater in CNTL and CNTL-

W (Fig. 4.8a, b) than in CNTL-N Fig. 4.8c).  All three forecasts underestimate the 

coverage of the lighter precipitation to some extent (see Fig. 4.8d); this 

underestimation is least in CNTL (Fig. 4.8a), and greatest in CNTL-N (Fig. 4.8c).  

The 2 km horizontal wind fields are similar over much of the domain in all three 

experiments, with southwesterly flow dominating behind the MCS, though notable 

differences exist in the region of the LEV; the LEV is strongest and best defined at 

this level in CNTL (Fig. 4.8a), and weakest and most poorly defined in CNTL-N.  

All experiments show a LEV weaker than that suggested by the Oklahoma mesonet 

observations cited in Schenkman et al. (2011).  Though all three microphysics 

schemes used are single-moment ice microphysics schemes, the Lin and WSM6 

schemes attempt to accurately model various complex conversions between ice and 

liquid hydrometeor classes, while the NEM microphysical scheme includes 

simplified conversion processes for better computational efficiency (Schultz 1995).  

Despite reduced computational cost of the NEM scheme, it does not appear to be 

well-suited for the case investigated here. 
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Fig. 4.8:  Deterministic forecasts of reflectivity (shaded) and winds (vectors) at 
model grid level 10 (approximately 2 km above ground level) at 0500 UTC for 
experiments (a) CNTL-L, (b) CNTL-W, and (c) CNTL-N.  Also shown: (d) 
reflectivity as observed by the WSR-88D network at 0500 UTC interpolated to the 
same model grid level.  The purple box in each panel indicates the approximate 
location of the observed line-end vortex at 0500 UTC. 
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4.3  Ensemble and probabilistic forecasts 

We begin by presenting the results of ensemble and probabilistic forecasts of 

radar reflectivity (Z) for CNTL, CNTL_LIN and NoMMP.  Radar reflectivity, 

closely linked to precipitation, is a field of meteorological interest that can be directly 

verified against WSR-88D radar observations over the entire area of the convective 

system.  When verifying radar reflectivity forecasts, emphasis is placed on the 

impact of the microphysical makeup of the ensemble during the analysis and forecast 

period, since the impact of CASA data is limited at later forecast times and at greater 

distances from the CASA domain.  Ensemble and probabilistic forecasts of low-

level vortices are then analyzed; near-surface meso-vortices were closely co-located 

with the observed tornadoes in this event, as demonstrated by the proximity of 

rotational signatures in the KTLX storm-relative radial velocity observations (Fig. 

4.1) to the tornadoes reported in association with them (Fig. 3.1). Both the impact of 

assimilating CASA data and the use of mixed-microphysics during the analysis and 

forecast periods are considered in evaluating the performance of the ensemble meso-

vortex forecasts. 

 

4.3.1  Probability-matched ensemble mean radar reflectivity 

In ensemble forecasting, particularly at the convective scale, averaging the 

individual ensemble members to produce ensemble mean fields for precipitation-

related variables (such as radar reflectivity) often leads to a smoother distribution 

with increased geographic extent and a low bias in intensity.  To counteract the low-

bias tendency in the ensemble mean, it is often desirable to reassign the values of 
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precipitation-related fields using values from the component ensemble members used 

to compute the mean; the result of this process (Ebert 2001) is the probability-

matched (PM) mean.  The PM mean is a useful tool for forecasters, producing a 

single “best estimate” deterministic forecast from an ensemble of forecasts; such 

ensemble-mean products for precipitation fields often outperform most or all of the 

ensemble members used to produce them (Ebert 2001).  PM mean Z is calculated at 

approximately 2 km above the surface at 1 (Fig. 4.9a-c), 2 (Fig. 4.9e-g), and 3 (Fig. 

4.9i-k) hours of forecast time for CNTL, CNTL_LIN, and NoMMP, and compared 

with Z as observed by the WSR-88D radar network and interpolated to the model 

grid at the corresponding times (Fig. 4.9d, h, l). 

 In all experiments, the dominant convective mode is predicted with 

reasonable success (Fig. 4.9); the forecast ensembles predict a large mesoscale 

convective system with a trailing convective line in a similar location to the 

corresponding features in the WSR-88D observations (Fig. 4.9d, h, l).  There are 

noticeable errors in the PM mean forecasts, however; in particular, the leading 

convective line, extending southeast from the region of the LEV in the observations 

(Fig. 4.9d, h, l) is not captured in the forecast ensemble.  In addition, the southern 

portion of the trailing convective line decays too quickly in the ensemble forecast at 

0400 UTC and beyond in all forecast experiments (Fig. 4.9b-c, f-g, j-k).  Because of 

the prevailing south and south-southwesterly flow during this case, the decay of the 

southern portion of the trailing convective line can likely be attributed to domain-

boundary interaction in proximity to the southern boundary of the model domain.  
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Fig. 4.9: Probability-matched ensemble mean forecasts of reflectivity (shaded) at 
model grid level 10 (approximately 2 km above ground level) at (a-c) 0300 UTC, (e-
g) 0400 UTC, and (i-k) 0500 UTC for CNTL, CNTL_LIN, and NoMMP. Also shown 
is reflectivity observed by the WSR-88D network, interpolated to the same model grid 
level at (d) 0300 UTC, (h) 0400 UTC, and (l) 0500 UTC.  The center of the line-end 
vortex in the observations is indicated by the black marker in panels (d), (h), and (l). 

 

The Lin microphysics scheme, used in all 40 members of the NoMMP 

experiment during both the analysis and forecast periods, produces greater 

precipitation coverage than NEM and WSM schemes for this case (not shown). In 
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addition, the reduced spread among NoMMP ensemble members as compared to the 

CNTL ensemble, results in much less variation in position (and thus higher ensemble 

mean values) in the trailing line, resulting in a more intense trailing line in the PM 

mean (Fig. 4.9i-k).  In contrast, CNTL, used a mixed-microphysics ensemble 

containing members from the WSM-6 and NEM microphysical schemes, both of 

which favored solutions with less light precipitation.  Combined with exhibited 

greater variation among ensemble members, the result is a PM mean field with a 

weaker trailing line and less extensive regions of lighter precipitation in the northern 

portion of the system in CNTL (Fig. 4.9a-c). 

 
 

4.3.2  Probabilistic reflectivity forecasts 

Fast error growth and high levels of uncertainty from various sources make 

probabilistic forecast products potentially very valuable at the convective scale. 

Using a NEP method, as described in chapter 2, P[ Z > 40 dBZ] (Fig. 4.10) and P[ Z 

> 25 dBZ] (Fig. 4.11) are calculated at 0300, 0400, and 0500 UTC for CNTL, 

CNTL_LIN, and NoMMP, and are compared with the corresponding reflectivity 

contour observed by the WSR-88D network.  A neighborhood radius of 5 km was 

used, resulting in a neighborhood consisting of 21 points in each ensemble member; 

thus, for the 40 member ensemble, the ensemble-wide neighborhood consists of 840 

forecast values.   

The observed 25 dBZ threshold (the thick contour in Fig. 4.10) encompasses 

large areas, including the entire region surrounding the LEV circulation and much of 

the convective line extending to the south and southwest; areas with a high NEP of 
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reflectivity exceeding 25 dBZ closely match regions where observed reflectivity 

exceeds 25 dBZ over the northern portion of the system throughout the forecast 

period (Fig. 4.10), though the forecast precipitation region does not extend quite as 

far north and east as in observations at 0300 and 0400 UTC.  The presence of the 

trailing convective line to the south and southwest is strongly indicated in the 

probabilistic forecasts, particularly in the NoMMP ensemble (Fig. 4.10d-f), though 

the decay of the southern portion of the line discussed in section 3a is evident in all 

experiments.  The greater coverage of light precipitation in members using the Lin 

scheme and less variation among ensemble members result in a large region of very 

high probability associated with the trailing line in NoMMP, particularly at 0400 and 

0500 UTC (Fig. 4.10h, i). 
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Fig. 4.10: Neighborhood ensemble probabilities (shaded) of reflectivity exceeding 25 
dBZ, P[ Z > 25 dBZ] , at model grid level 10 (approximately 2 km above the 
surface), in an area surrounding the CASA domain, for CNTL at (a) 0300 UTC, (b) 
0400 UTC, and (c) 0500 UTC, CNTL_LIN at (d) 0300 UTC, (e) 0400 UTC, and (f) 
0500 UTC, and NoMMP at (g) 0300 UTC, (h) 0400 UTC, and (i) 0500 UTC.  The 
25 dBZ radar reflectivity contours observed by the WSR-88D radars at the same time 
are in bold black contours.  
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Fig. 4.11: As Fig. 4.10, but for P[ Z > 40 dBZ]  and the 40 dBZ radar reflectivity 
contour.  
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The 40 dBZ threshold is exceeded only in small, localized areas in the WSR-

88D observations (the single thick contour in Fig. 4.11), in individual convective 

elements within the core of the LEV and the leading convective line.  Regions near 

the LEV (c.f. Fig. 4.9d, h, l) where observed radar reflectivity exceeds 40 dBZ are 

found in regions of moderate to high NEP (Fig. 4.11), although observed regions 

exceeding 40 dBZ in the leading convective line are largely missed by the forecast 

ensembles. Particularly at later forecast times, all experiments strongly overestimate 

the geographic coverage of 40 dBZ echoes, due in part to spurious convection that 

develops near the CASA radar network (Fig. 4.11c, f, i).  The causes of this 

spurious convection are considered below in section 4.3.3.  The intensity of the 

trailing convective line extending southeast and south of the CASA domain into 

north-central Texas (Fig. 4.11) is also overestimated; moderate to high NEP values 

are present in areas where no reflectivity exceeding 40 dBZ was observed.  The 

ensemble adequately forecasts many of the large-scale reflectivity features of the 

system (Fig. 4.10), but a combination of position error, intensity error, and 

development of spurious convection limits forecast skill for smaller-scale convective 

structures (Fig. 4.11). This result is consistent with the fact that smaller-scale features 

have shorter ranges of predictability (Lorenz 1969).    

To more quantitatively evaluate the skill of the NEP forecasts of radar 

reflectivity, we next examine their performance using two skill-score metrics: the 

relative operating characteristic (ROC) skill score (Mason and Graham 1999), and the 

Brier score (Brier 1950).  The ROC skill score (RSS) is derived from the area under 
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the ROC curve (Mason and Graham 1999), and is given by RSS 2 1ROCA= − , where 

AROC is the area under the ROC curve.  The RSS has a maximum value of 1.0 for a 

perfect probabilistic forecast, and a minimum of -1.0, with scores at or below 0.0 

indicating forecasts with no skill.  The ROC measures hit and false alarm rates at 

varying probability thresholds (Mason and Graham 1999); thus RSS is a summary 

statistic providing information on the resolution of the probabilistic forecast system. 

RSS is calculated for forecasts of reflectivity exceeding 25 dBZ at grid level 10, over 

the entire model domain (Fig. 4.12a), as well as over the verification sub-domain 

(Fig. 4.12b) located within and downwind of the CASA radar network (see Fig. 4.2). 

In all experiments, the RSS is considerably higher over the verification sub-domain 

(Fig. 4.12b) than over the entire domain (Fig. 4.12a), because of error associated with 

the trailing convective line south and southwest of the CASA network. 

 

 

Fig. 4.12: ROC skill score for 1-, 2-, and 3-hour forecasts of radar reflectivity at the 
25 dBZ threshold on vertical grid level k = 10 (slightly more than 2 km above mean 
sea level) calculated over (a) the entire horizontal model domain and (b) the ETS 
verification sub-domain as depicted by the black outline in Fig. 4.2. 
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All forecast ensembles show considerable skill in forecasting reflectivity 

exceeding 25 dBZ.  The 1-hour ensemble forecasts (valid at 0300 UTC) show the 

greatest skill, with verification sub-domain RSSs ranging from 0.84 to 0.89.  RSSs 

steadily decrease between 0300 and 0500 UTC (Fig. 4.12), with domain-wide values 

(Fig. 4.12a) remaining slightly lower than those over the verification sub-domain 

(Fig. 4.12b).  The minimum RSS of 0.40, obtained for NoCASA_LIN on the full 

domain at 0500 UTC, corresponds to an area under the ROC curve of 0.70; a ROC 

area of 0.70 is often considered to be the lower bound for a skillful forecast (Buizza 

1997; Kong et al. 2011), thus all experiments produced skillful 1, 2, and 3 hour NEP 

forecasts for regions of Z exceeding 25 dBZ. 

 

 

Fig. 4.13: RMS innovation and ensemble spread of radar reflectivity for three sub-
ensembles, each containing members using the same microphysical scheme, within 
the CNTL experiment.  The sub-ensembles consist of (1) the 16 Lin members, (2) the 
16 WSM-6 members, and (3) the 8 NEM members within CNTL, respectively. 

 

 NoMMP has the highest domain-wide RSS (Fig. 4.12a) throughout the 

forecast period and the highest RSS within the verification sub-domain (Fig. 4.12b) 

at 0300 and 0400 UTC; at 0500 UTC, however, NoMMP actually has the lowest RSS 

in the sub-domain, while CNTL_LIN has the highest.  For this case, ensemble 

members using Lin microphysics showed, on average, slightly better agreement with 
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observed Z than members using WSM6 or NEM microphysics.  When ROC skill 

scores are calculated for three sub-ensembles within CNTL, grouped by the 

microphysics scheme used, the Lin sub-ensemble produces the highest RSS, while 

the NEM sub-ensemble produces the lowest (Fig. 4.13).  Similarly, within the 

verification sub-domain, RSSs decrease more slowly with time for CNTL_LIN and 

NoCASA_LIN than for their mixed-microphysics counterparts CNTL and NoCASA 

(Fig. 4.12b).  The slightly improved RSS performance in CNTL_LIN and 

NoCASA_LIN at later times appears to be in part due to slightly faster movement of 

the trailing convective line, in better agreement with observations.  These results 

suggest a positive impact of using a mixed-microphysics ensemble during the 

assimilation period, but slightly improved forecast performance when using a Lin-

only ensemble during the subsequent forecast, at least for this case. 

 
 

 

Fig. 4.14: As Fig. 4.12 but for Brier Score. 
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 The Brier score (Brier 1950), another metric commonly used in probabilistic 

forecast evaluation, measures both forecast bias and uncertainty by verifying the 

forecast probability at each point against the observed binary realization of the event 

at that point (1 if the event occurred, 0 if it did not).  Possible values of Brier score 

range from 0 to 1, with lower values indicating better agreement of the forecast 

probability with the observed binary outcome.  As with RSSs, Brier scores are 

presented for forecasts of radar reflectivity exceeding 25 dBZ over the full model 

domain (Fig. 4.14a) and over the verification sub-domain (Fig. 4.14b).  Because 

correctly forecasting non-events improves the Brier score, full domain Brier scores 

(Fig. 4.14a), which include large clear-air regions over western Oklahoma and the 

panhandle of Texas, are significantly lower (better) than Brier scores calculated over 

the verification sub-domain (Fig. 4.14b).   

Domain-wide Brier scores range from between 0.07 and 0.09 at 0300 UTC, 

increasing modestly to between 0.11 and 0.14 by 0500 UTC (Fig. 4.14a).  Brier 

scores over the verification sub-domain increase more quickly and are somewhat 

higher (worse) at later times. Factors negatively impacting the Brier score included 

development of spurious convection near and southwest of the CASA radar network, 

particularly at later times and particularly in NoMMP, as well as underestimation of 

the extent of the stratiform precipitation region in the ensemble (see Fig. 4.9), 

particularly in CNTL and NoCASA. Brier score deteriorates most quickly in 

NoMMP, which has the lowest (best) Brier score at 0300 UTC, but the highest 

(worst) at 0500 UTC both on the full domain and within the verification sub-domain 

(Fig. 4.14).  Compared to their mixed-microphysics counterparts CNTL and 
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NoCASA, Brier scores for CNTL_LIN and NoCASA_LIN are slightly worse at 0300 

and 0400 UTC, but nearly identical at 0500 UTC (Fig. 4.14).  The worse 

performance of NoMMP at later forecast times suggests that increased spread in 

hydrometeor fields during data assimilation in the mixed-microphysics ensembles of 

CNTL and NoCASA may be beneficial in improving probabilistic forecasts of fields 

closely related to hydrometeor distribution, such as radar reflectivity.  The faster 

deterioration of the Brier scores of the mixed-microphysics forecast ensembles 

(CNTL and NoCASA) as compared to those of their single-microphysics 

counterparts (CNTL_LIN and NoCASA_LIN), suggest that using a mixed-

microphysics ensemble that contains poorer-performing scheme(s) during the 

forecast period can negatively impact the forecast. 

 To examine the spread among ensemble members in the reflectivity forecasts, 

spaghetti plots of the 25 dBZ (Fig. 4.15) and 40 dBZ (Fig. 4.16) contours at vertical 

model level 10 (approximately 2 km above the surface) are presented at 0300, 0400, 

and 0500 UTC for the forecast ensembles of CNTL, CNTL_LIN, and NoMMP, and 

compared to the corresponding observed WSR-88D contour. Though the analyses of 

the RSS and Brier score demonstrate that the probabilistic reflectivity forecasts 

possess considerable skill, variations among the ensemble members indicate 

significant uncertainty and spread within the ensemble near the LEV at the 40 dBZ 

threshold (Fig. 4.16).  Ensemble spread, particularly at the 25 dBZ threshold and at 

earlier forecast times, is relatively low (Fig. 4.15a, d, g).  The position and extent of 

reflectivity exceeding 25 dBZ in the northern portion of the convective system is 

well-predicted by most ensemble members in all experiments; most members also 
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predict such regions in the trailing convective line with moderate success at 0300 and 

0400 UTC.   Spread and error in the ensemble forecast of the 25 dBZ threshold 

increase throughout the forecast period (Fig. 4.15); greater spread among ensemble 

members is expected for longer forecasts as initial differences among ensemble 

members grow with time.   

The impact of model microphysics on ensemble spread is evident in the 

spaghetti plots of the 25 dBZ (Fig. 4.15) and 40 dBZ (Fig. 4.16) contours.  

Particularly at 25 dBZ, the spread among ensemble members in the single-

microphysics forecast ensemble of NoMMP (Fig. 4.15g-i) is considerably less than in 

the mixed-microphysics ensemble of CNTL (Fig. 4.15a-c), and also somewhat less 

than in CNTL_LIN (Fig. 4.15d-f) which uses the same microphysical makeup at 

NoMMP but begins from an initial condition obtained using a mixed-microphysics 

analysis ensemble.  In NoMMP, even after 3 hours of forecast time, close 

agreement among the ensemble members is evident in the 25 dBZ contours (Fig. 

4.15i).  Both CNTL (Fig. 4.15c) and CNTL_LIN (Fig. 4.15f) show greater variation 

among ensemble members; the difference is most prominent in the trailing 

convective line.  Almost all members of NoMMP agree on a wide area of 

precipitation in excess of 25 dBZ in the trailing convective line at 0400 and 0500 

UTC (Fig. 4.15h, i).  In CNTL (Fig. 4.15b, c) many members predict the 

precipitation in the trailing line, but there is much greater variation in the location 

and extent of that precipitation than in NoMMP.  Variation among ensemble 

members in CNTL_LIN (Fig. 4.15e, f) is greater than NoMMP, but far less than in 

CNTL.  While starting from an initial condition that used mixed-microphysics 
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appears to induce greater variation among members in the single-microphysics 

CNTL_LIN forecast ensemble, far greater variation results from using mixed-

microphysics during both the analysis and forecast as in CNTL (Fig. 4.15a-c, Fig. 

4.16a-c).  In general, use of a mixed-microphysics ensemble results in increased 

ensemble spread in a variety of model fields, particularly those closely related to 

precipitation processes, due to variation in hydrometeor type and distribution 

resulting from different treatment of microphysical processes. Increased spread alone 

does not necessarily improve the derived probabilistic forecast products, however, as 

indicated in the earlier skill-score analyses. 
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Fig. 4.15: Spaghetti plots of the ensemble forecasts of the 25 dBZ radar reflectivity 
contours on model grid level 10 (approximately 2 km above the surface) in the area 
surrounding the CASA domain for CNTL at (a) 0300 UTC, (b) 0400 UTC, and (c) 
0500 UTC; CNTL_LIN at (d) 0300 UTC, (e) 0400 UTC, and (f) 0500 UTC; and 
NoMMP at (g) 0300 UTC, (h) 0400 UTC, and (i) 0500 UTC.  Contours for 
individual ensemble members are shown as thin gray lines; those for the 
deterministic forecasts initialized from the ensemble mean at 0200 UTC are in thick 
gray lines.  The 25 dBZ radar reflectivity contour observed by the WSR-88D 
network at the corresponding time is indicated by the thick, black contour. 
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Fig. 4.16: As Fig. 4.15, but for the 40 dBZ radar reflectivity contours. 
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4.3.3  Bias and error in the ensemble forecasts 

 During the discussion of the NEP forecasts of radar reflectivity exceeding 40 

dBZ (Fig. 4.11), we noted that the ensemble forecasts predict high probabilities of 

reflectivity exceeding 40 dBZ in regions where no 40 dBZ reflectivity values were 

observed, particularly at 0400 and 0500 UTC.  To more closely examine biases in 

reflectivity within the ensemble forecasts, we construct domain-wide histograms of 

radar reflectivity each hour from 0200 UTC to 0500 UTC in the ensemble mean and 

ensemble member forecasts of CNTL, and compare them to histograms constructed 

from radar reflectivity observed by the WSR-88D radar network and interpolated to 

the model grid.  Bins are placed at intervals of 1 dBZ, and histograms constructed 

using the individual ensemble members are normalized by the size of the ensemble.  

The resulting histograms are shown in Fig. 4.17.   

 Two prominent biases are evident in the histograms of Z for the both 

ensemble mean and the ensemble members: an under-prediction (low bias) of weak 

(<25 dBZ) precipitation regions, and an over-prediction (high bias) of areas of 

intense (>40 dBZ) precipitation (Fig. 4.17).  At the initial time (0200 UTC), only 

the under-prediction of low Z is present in the ensemble members and the ensemble 

mean; the histograms match observations well for Z greater than approximately 25 

dBZ (Fig. 4.17).  By 0300 UTC both biases are present in both the ensemble mean 

and the ensemble members; the magnitude of these biases remains relatively constant 

from 0300 to 0500 UTC (Fig. 4.17d-l).   
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Fig. 4.17: Domain-wide histograms of reflectivity intensity in ensemble forecast 
experiment CNTL in the initial ensemble state and during the 3-hour forecast period.  
Shown are WSR-88D observations interpolated to the model grid (left column), the 
ensemble mean (center column), and individual ensemble members normalized by the 
size of the ensemble (right column).  The vertical axis indicates the number of model 
grid volumes (in thousands) containing reflectivity of a given intensity. 

 

Both the low-bias in weak precipitation and the high bias in strong 

precipitation are smaller in magnitude for the ensemble mean than for the individual 

ensemble members at and after 0300 UTC (Fig. 4.17d-l).  The primary source of 

these differences is smoothing and decreased intensity of Z in the ensemble mean due 

to differences in the position of small-scale reflectivity features among individual 

ensemble members.  While this smoothing leads to a distribution of Z that agrees 

more closely with observations in this case, it is not universally desirable; for 

example, in the absence of the high bias in intense precipitation seen in the ensemble 
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members in this case, the smoothing would degrade, not improve, the distribution of 

Z in the ensemble mean. 

 

 
Fig. 4.18: Ensemble mean horizontal winds (barbs) and potential temperature 
(shaded) in CNTL at model grid level 10 (approximately 2 km above ground level) at 
(a) 0300 UTC, (b) 0400 UTC, and (c) 0500 UTC. 

 

The high bias in intense precipitation observed in the ensemble can be in part 

attributed to spurious convection that developed in and near the CASA radar 

network, as noted in section 4.3.1.  To provide additional insight into the source of 

this spurious convection, we calculate ensemble mean potential temperature and 

horizontal winds approximately 2 km above the surface in CNTL at 0300, 0400, and 

0500 UTC (Fig. 4.18).  In the ensemble, the cold pool in the wake of the MCS (cf. 

Fig. 4.9) is relatively weak, with temperatures at and near the surface under the MCS 

only around 2 to 3 K cooler than the surrounding area (Fig. 4.18).  By comparison, 

many Oklahoma mesonet sites in southwestern Oklahoma recorded temperature 

drops of around 4K during the passage of the MCS (not shown).  In addition, 
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particularly at 0300 UTC (Fig. 4.18a), the strongest convergence at low levels 

occurred behind the MCS, in and near the CASA domain, where strong south-

southwesterly flow just southwest of the CASA domain transitions to weaker 

southerly flow to the north of the CASA domain (Fig. 4.18).  The combination of 

low-level convergence and relatively warm, buoyant air in the wake of the MCS set 

the stage for the spurious convection that developed in this region in the ensemble 

between 0300 and 0500 UTC. 

 

4.3.4  Impact of microphysics on ensemble reflectivity forecasts 

 To examine the impact of a model microphysics during the ensemble 

forecasts, we calculate and compare RMS innovation of radar reflectivity (Z) for 

ensemble forecast experiments CNTL and CNTL_Lin.  CNTL and CNTL_Lin 

ensembles start from the same initial conditions, but CNTL uses a mixed-

microphysics ensemble, while CNTL_Lin uses a single-microphysics ensemble 

consisting only of Lin microphysics members.  Innovation is calculated using all 

grid volumes where the reflectivity observed by the WSR-88D radar network 

(interpolated to the model grid) exceeds 15 dBZ; this analysis technique is similar to 

that used in Aksoy et al. (2010).  Innovation values for each individual ensemble 

member, as well as the ensemble mean and probability-matched (PM) ensemble 

mean, are shown at 1, 2, and 3 hours of forecast time (0300, 0400, and 0500 UTC 

respectively) in Fig. 4.19.   
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Fig. 4.19: RMS innovation of radar reflectivity during the forecast period for 
ensemble forecasts CNTL (left) and CNTL_LIN (right).  The ensemble mean 
forecast is indicated by the thick, solid black line, while the probability-matched 
ensemble mean forecast is indicated by the dashed black line.  The thin gray lines 
indicated innovation within individual ensemble members, with different shades of 
gray used for members using differing microphysical parameterization schemes. 

 

Both CNTL and CNTL_Lin exhibit similar evolution of RMS innovation of Z 

for the ensemble mean and PM mean forecasts.  The ensemble mean consistently 

outperforms the PM mean, as well as most individual ensemble members (Fig. 4.19).  

This result is in agreement with Aksoy et al. (2010), whose ensemble mean RMS 

innovation of Z was also lower than most of their ensemble members.  The 

relatively good performance of the ensemble mean can be attributed to the high bias 

is the reflectivity forecast (Fig. 4.17) discussed earlier, since position differences in 

the strongest reflectivity cores between individual members give an ensemble mean Z 

field that is smoother and contains lower reflectivity values than the individual 
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members.  The PM mean, though it contains the same spatial structure as the 

ensemble mean, has the same high bias as the individual ensemble members.  

Because the ensemble mean consistently outperforms the PM mean, we can conclude 

that it is the absence of the high bias, rather than improved spatial structure of the Z 

field, that results in lower RMS innovation of Z in the ensemble mean. 

In the CNTL ensemble, the individual ensemble members exhibit a trimodal 

distribution, grouped into three clusters segregated by the microphysical scheme used 

in the model.  The cluster of members using the Lin microphysical scheme has the 

lowest RMS innovation, followed by the cluster of members using WSM-6 

microphysics, and the cluster using NEM microphysics has the highest RMS 

innovation values.  The strong clustering in CNTL indicates that error associated 

with the microphysical parameterization is a dominant factor in model error in Z 

during the ensemble forecast; in CNTL_LIN, where all members used the Lin 

microphysical scheme, the ensemble members have a unimodal distribution.  

Though the increased ensemble dispersion of CNTL is desirable, ensemble 

dispersion could also be increased using other methods, such as perturbed boundary 

conditions, perturbations within a microphysical scheme, and the use of different 

spread-maintenance techniques during the assimilation period; such methods will be 

a subject for future work.  Because the microphysical parameterization appears to 

be a dominant source of error in the forecasts, using a more sophisticated 2- or 3-

moment microphysical scheme might also be desirable to reduce overall RMS error 

in the ensemble; this too could be a subject for future studies. 
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4.3.5  Ensemble and probabilistic forecasts of tornadic mesovortices 

 In recent years, explicit prediction of tornadic circulations in short-term 

convective forecasts has become a reality (Xue et al. 2007).  The capability to 

perform such prediction in real-time is a cornerstone of the “warn-on-forecast” 

paradigm being explored by the NWS for use in future operations (Stensrud et al. 

2009).  For forecasts of tornadoes, the most likely initial operational implementation 

would be a probabilistic approach focusing on predicting the probability of tornadoes 

on a timescale of no more than a few hours (Stensrud et al. 2009).  At a horizontal 

grid spacing of 2 km we cannot hope to resolve torandoes, but we can resolve meso-

vortices on the scale of 10 km and greater.  Such meso-vortices were present in the 

9 May 2007 LEV case, and, as noted above, the location and timing of these vortices 

correspond well to the location and timing of tornadoes reported in association with 

the system (see Fig. 4.1; also Fig. 3.1).  As all forecasts were initialized at 02:00 

UTC, the reported tornadoes (which occurred at 03:54, 04:26, and 04:43 UTC) fall at 

forecast times of approximately 2 to 3 hours.   

Forecast ensemble members of CNTL, NoMMP, and NoCASA were 

manually examined at 0400, 0420, and 0440 UTC to identify significant low-level 

vortices, as outlined in section 2. Such low-level vortices are considered objects for 

the purpose of verification.  Equation 2.2 was then applied to generate forecasts of 

the probability of a significant (vertical vorticity ζ > 0.02 s-1) low-level vortex being 

present within 25 km of a point.  The probabilities thus calculated are shown in Fig. 

4.20 at 0400, 0420, and 0440 UTC for CNTL (Fig. 4.20a-c), NoMMP (Fig. 4.20d-f), 
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and NoCASA (Fig. 4.20g-i), along with the locations of reported tornadoes (which 

were co-located with their parent mesovortices). 

 
 

 
Fig. 4.20: Ensemble-based forecast of P[ low-level circulation with vertical vorticity 
ζ > 0.02 s-1 within 25 km of a point]  for CNTL at (a) 0300 UTC, (b) 0400 UTC, and 
(c) 0500 UTC; NoMMP at (d) 0300 UTC, (e) 0400 UTC, and (f) 0500 UTC; and 
NoCASA at (g) 0300 UTC, (h) 0400 UTC, and (i) 0500 UTC.  The triangles indicate 
the reported locations of the tornadoes reported at 0354 UTC (in panels (a), (d), and 
(g)), at 0426 UTC (in panels (b), (e), and (h)), and at 0443 UTC (in panels (c), (f), 
and (i)). 
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 All three forecast ensembles predict near-surface vortices in the vicinity of 

the reported tornadic activity at 0400, 0420, and 0440 UTC (Fig. 4.20).  At 0400 

and 0420 UTC, the probability field of CNTL exhibits a tight concentration of the 

highest probability values close to the reported tornado location (Fig. 4.20a, b).  At 

0400 UTC, the location of the maximum near-surface vortex probability for CNTL of 

0.65 (Fig. 4.20a) is located within 3 km of reported tornado, and its probability field 

is tightly concentrated around the location of observed tornado.  In NoMMP and 

NoCASA (Fig. 4.20d, g) maximum probabilities are located approximately 10 and 20 

km, respectively, from the reported tornado location. NoCASA and NoMMP forecast 

probabilities of only 0.43 and 0.35 (respectively) at the reported tornado location at 

0400 UTC, and, especially in NoMMP (Fig. 4.20d), have relatively diffuse 

probability distributions with lower maxima.  In NoMMP, this difference results 

from a wider spread of vortex location predictions seen within the single-

microphysics ensemble.  The only difference between NoCASA and CNTL, 

however, was the absence or presence of CASA radar data during the assimilation 

period, suggesting that assimilating CASA data positively impacts the prediction of 

low-level vortex features, yielding a higher maximum probability prediction at 0400 

UTC in the vicinity of the observed tornado. This finding is consistent with that of 

Schenkman et al (2011), where low-level radial velocity data from CASA radars 

were found to improve the LEV forecast. 

 The results at 0420 UTC (Fig. 4.20b, e, and h) are similar to those at 0400 

UTC: CNTL (Fig. 4.20b) produces the highest maximum probability (between 0.4 

and 0.5) centered very close to the reported tornado location. NoCASA (Fig. 4.20h) 
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and NoMMP (Fig. 4.20e) have position predict lower probabilities (approximately 

0.2 and 0.1 respectively) of a significant low-level vortex being present in the 

vicinity of the observed tornado.  The probability in the vicinity of the observed 

tornado is lower in all three experiments at 0420 UTC than at 0400 UTC.  At 0440 

UTC (Fig. 4.20g-i), CNTL features a probability field with the highest predicted 

probabilities in close proximity to the observed tornado, but NoCASA predicts a 

slightly higher probability near the observed tornado. NoMMP performs worst at 

0440 UTC, (Fig. 4.20h), predicting a low probability of vortices, with the highest 

probabilities located several tens of kilometers away from the reported tornado.  

Because of the small size of the CASA domain and increasing impact of model 

factors (such as microphysical parameterization) as the forecast period proceeds, the 

greatest impact of CASA data from the initial condition of the ensemble would be 

expected at shorter forecast times, consistent with the results shown in Fig. 4.20. 

One issue that arises when considering prediction of tornadic meso-vortices is 

a question of the limits of predictability for these features.  Smaller features within 

atmospheric flows tend to exhibit error growth on shorter timescales (Lorenz 1969), 

and indeed, the tornadoes observed during this case formed and decayed with 

timescales of less than an hour.  The tornadic meso-vortices within the 8-9 May 

2007 MCS, however, were strongly forced by larger-scale features within the MCS 

that spawned them.  Because MCS’s often exhibit predictability on a significantly 

longer timescale (Carbone et al. 2002), we believe that is therefore reasonable to 

consider ensemble predictions of the tornadic meso-vortices within it at timescales of 

2-3 hours because of this larger-scale forcing.   
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Fig. 4.21:  Locations of significant (vertical vorticity ζ > 0.02 s-1), discernible, low-
level (grid level 10, approximately 2 km above the surface) mesovortex centers for all 
ensemble members at 0400 UTC in experiments (a) CNTL, (b) NoMMP, and (c) 
NoCASA.  Individual members are coded by microphysical type; members using Lin 
microphysics  are marked “L”, members using WSM6 microphysics are marked 
“W”, and members using NEM microphysics are marked “N”.  The ensemble mean 
vortex location is marked “EM”.  The location of the EF1 tornado reported at 0354 
UTC is marked by the black triangle. 
 

 We further examine the role of microphysics in vortex prediction by plotting 

locations of low-level vortex centers in individual ensemble members at 0400 UTC, 

along with the ensemble mean vortex location and the location of the EF-1 Minco 

tornado (reported to have begun at 0354 UTC), for CNTL (Fig. 4.21a), NoMMP 

(Fig. 4.21b), and NoCASA (Fig. 4.21c).  Each low-level vortex center is marked by 

a letter corresponding to the microphysical scheme used in the member that produced 

it (“L” for Lin, “W” for WSM6, and “N” for NEM).  CNTL (Fig. 4.21a) exhibits the 

closest clustering of predicted low-level vortices around the location of the observed 

tornado; 26 of 40 (65%) ensemble members predict a low-level vortex center within 

25 km.  These 26 members include 12 of 16 Lin members and 11 of 16 WSM6 

members, but only 3 of 8 NEM members.  In NoCASA (Fig. 4.21c) 17 of 40 (43%) 
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members predict vortices within 25 km of the observed tornado; these 17 members 

consist of 10 Lin, 5 WSM6, and 2 NEM members.  In CNTL and NoCASA, Lin 

members have the least error in vortex location, while NEM members have the most; 

many NEM members are outliers (see Fig. 4.21a, c), or fail to produce significant 

low-level vortices.  In NoMMP (Fig. 4.21b), predicted vortex locations vary 

substantially among ensemble members; only 14 members (35%) predict low-level 

vortices within 25 km of the observed tornado location, underscoring the positive 

impact of a mixed-microphysics forecast ensemble in meso-vortex prediction.   

 Despite differences in the distribution of individual members, the forecast 

ensemble mean low-level vortex locations (marked by “EM” in Fig. 4.21a-c) were 

similar in all three experiments.  In each case the ensemble mean location was 

located slightly to the northwest of the observed tornado location, with a position 

error ranging from approximately 12 km in CNTL (Fig. 4.21a) to 18 km in NoCASA 

(Fig. 4.21c).  This result underscores the importance of probabilistic information on 

forecast uncertainty; while CNTL produced a much sharper probabilistic forecast of 

the low-level vortex than NoMMP, ensemble mean vortex locations differed by only 

about 3 km, or 1.5 grid intervals (Fig. 4.21a, b) between the two experiments.  Also, 

NoCASA forecasted a higher vortex probability with more individual members 

clustered around the true vortex location than NoMMP but its ensemble mean vortex 

location had a larger position error (Fig. 4.21b, c).  Probabilistic information is 

important in assessing the reliability of these forecasts; an ensemble mean or single 

deterministic forecast cannot provide such information. 
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 Chapter 5:  8-9 May 2007—Nested-Grid EnKF Analysis of 
Conventional and Radar Data and Comparison with 3DVAR 
 

5.1   Data and Methodology 

 While reasonable analyses and forecasts are obtained in the single-grid 

experiments presented in Chapters 3 and 4, those single-grid experiments are subject 

to a number of limitations.  Due to technical restrictions and the limits of available 

computing resources at the time they were run, the single-grid experiments are 

limited to a relatively small domain, causing interaction between the trailing 

convective line of the MCS and the southern domain boundary, as noted in Chapter 

4.  Furthermore, the single-grid experiments use a single lateral boundary condition 

for all ensemble members, reducing spread within the ensemble, and make no use of 

conventional weather observations.   

 Recent advances in the ARPS EnKF system and an increase in available 

computing resources have made it possible to move beyond the limitations noted 

above.  To that end, we perform a set of nested-grid EnKF data assimilation and 

forecast experiments that expand upon the single-grid experiments of Chapters 3 and 

4.  In addition to addressing the limitations of the single-grid experiments, the 

nested-grid experiments also investigate additional influences on the EnKF analysis 

and resulting ensemble forecasts, including the impact of perturbing the rain drop 

size distribution within a single-microphysics ensemble, and the impact of varying 

the assumed observation error for radar reflectivity and radial velocity data during 

EnKF data assimilation. 
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5.1.1  Model Setup 

 Like the experiments presented in Chapters 3 and 4, the nested-grid 

experiments presented here use the ARPS NWP model for assimilation of data and 

generation of forecasts.  Full terrain, soil, surface, and radiation physics are used, 

with settings matching those of the previous experiments (see section 3.1).  Unlike 

the previous experiments, however, a set of two nested domains is used, with 40-

member ensembles used both on an outer domain with a horizontal resolution of 6 

km, and an inner domain with a horizontal resolution of 2 km.  This setup allows for 

the introduction of mesoscale perturbations on the outer domain and the inclusion of 

boundary condition perturbation on the inner domain by using each outer domain 

member to provide the boundary and initial conditions for the corresponding member 

on the inner domain.  The geographic extent of the two domains is shown in Fig. 

5.1.  The outer (6 km horizontal grid spacing) domain has a physical extent of 320 × 

320 × 40 grid points and covers much of the Great Plains, the Mississippi Valley, and 

the southern Rocky Mountains, as well as portions of northern Mexico and the 

northwestern Gulf of Mexico.  The inner (2 km horizontal grid spacing) domain has 

a physical extent of 500 × 500 × 40 grid points and covers all of Oklahoma, much of 

Texas and Kansas, and portions of surrounding states.  The inner domain is identical 

to that used in Schenkman et al. (2011), facilitating direct comparison between the 

results of their 3DVAR-based study of the 8-9 May 2007 tornadic MCS and similar 

analysis and forecast results obtained in this study. 
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Fig. 5.1:  Geographic extent of the outer domain with 6 km horizontal resolution 
and the nested domain with 2 km horizontal resolution (represented by the thick 
black box in the center of the figure) used in experiments presented in Chapter 5.  
CASA IP-1 radar 30 km range rings and 60 km range rings for WSR-88D sites KTLX 
and KFDR are included for reference. 

 
 

5.1.2  Experiment Design 

 In this study, a set of data assimilation and forecast experiments are 

performed on a 500 × 500 × 40 physical domain with 2 km horizontal grid spacing 

and stretched vertical grid spacing; the average vertical grid spacing is 500 m, with a 
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minimum vertical spacing of 100 m near the surface.  This grid is identical to that 

used in Schenkman et al. (2011), who performed cycled data assimilation using the 

ARPS 3DVAR system and a cloud analysis package.  As in the experiments of 

Chapters 3 and 4, full model physics are used (Xue et al. 2001), including the NASA 

Goddard Space Flight Center long- and shortwave radiation parameterization, a two-

layer soil model, surface fluxes parameterized using predicted surface temperature 

and water content, and a 1.5-order turbulent kinetic energy (TKE)-based sub-grid-

scale turbulence parameterization, along with high-resolution terrain.  Like the 

experiments presented in chapters 3 and 4, a 40 member ARPS ensemble is used for 

each experiment.  However, unlike those prior experiments, no mixed-microphysics 

experiments are performed; instead, all experiments use a variant of the Lin et al. 

(1983) microphysics scheme with the default rain intercept parameter reduced to 

8.0·105 in accordance with the findings of Snook et al. (2008); this is a reduction by a 

factor of 10 from its original setting.   

Three experiments are performed with the goal of direct comparison with the 

results of Schenkman et al. (2011) obtained using 3DVAR.  The first of these three 

experiments is a control experiment, hereafter referred to as CNTL, which will serve 

as a basis for comparison for all other experiments detailed in this chapter.  In 

CNTL, both CASA and WSR-88D radar data are assimilated, along with 

conventional observations.  The EnKF data assimilation system is configured 

following the experiments from Chapter 3, with the exception of the assumed 

observation error for Vr, which is increased from 2 ms-1 to 3 ms-1 and the assumed 

observation error for Z, which is increased from 1 dBZ to 2 dBZ.  The second 
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experiment, NoCASA, is identical to CNTL except that only WSR-88D radar data 

and conventional observations are assimilated.  The third experiment, NoRAD, 

assimilates conventional data only.  These three experiments correspond closely to 

three experiments of Schenkman et al. (2011), facilitating direct comparison of 

analysis and forecast results; the comparison will be presented in section 5.4. 

Two more experiments are conducted focusing on the impact of microphysics 

during the analysis and subsequent ensemble forecast.  Experiment R6 uses an 

identical setup to CNTL, except that the rain intercept parameter of the Lin 

microphysics scheme used in the ensemble members is increased from 8.0 × 105 to 

4.0 × 106, the default value of rain intercept parameter corresponding to the Marshall-

Palmer distribution.  The cold pool observed in the single-grid CNTL experiment of 

Chapter 3 was found to be relatively weak.  Results from Snook and Xue (2008) 

indicate that an increased rain intercept parameter corresponds to more intense cold 

pools due to increased evaporative cooling, thus the increased rain intercept 

parameter of R6 may produce a cold pool closer in intensity to that observed by 

Oklahoma Mesonet sites during the 8-9 May 2007 MCS. 

During the forecast period, the innovation of Z within the mixed-

microphysics single-grid forecast ensembles of Chapter 4 exhibited a trimodal 

distribution where the modes were segregated by microphysical scheme.  Though 

the enhanced ensemble spread imparted by the mixed-microphysics ensemble is 

desirable, the trimodal behavior is not.  Another possible method of increasing 

ensemble spread by microphysical variation is perturbation of the intercept 

parameters within a single-microphysics ensemble; previous work by Snook and Xue 
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(2008) has shown that variation of the intercept parameters within a single-moment 

microphysics scheme can have a large impact on the dynamics and structure of the 

resulting storm.  Experiment PERT applies this technique, randomly varying the 

rain intercept parameter of the Lin microphysical scheme in each member between 

8.0·105 and 8.0·106.  The variation in rain intercept parameter is achieved by 

selecting the intercept parameter for each member randomly from a Gaussian 

distribution with a mean of 4.4·106 and a standard deviation of 1.6·106.  Random 

samples of 40 members from this distribution were performed until a set was 

obtained that met two criteria: (1) the set contained no values more than two standard 

deviations from the mean, and (2) the absolute value of the sum of deviations of all 

members was less than one half of the standard deviation of the distribution from 

which the samples were generated.  These two criteria were chosen to ensure that 

the randomly selected rain intercept parameter values fall within the range specified 

above, and that their distribution is balanced around the mean.  Once selected, the 

intercept parameter value is kept fixed for each member. 

Finally, experiment CNTL_LOW is performed using reduced values of 

assumed observation error for Vr and Z of 1 ms-1 and 2 dBZ, respectively.  These 

values are identical to those used in the control experiment in Chapter 3.  When the 

results of the experiments in Chapter 3 were published (Snook et al. 2011), it was 

suggested that the relatively low assumed observation errors may have negatively 

impacted the analysis, a suggestion that will be investigated through comparison of 

results from CNTL and CNTL_LOW.  For reference, a summary of all experiments 

is provided below in Table 5.1. 
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Table 5.1: Summary of the inner-domain experiments presented in Chapter 5. 
 

 
Use of 
CASA 

Use of 
WSR-88D 

Assumed observation error Rain intercept 
parameter Vr (ms-1) Z (dBZ) 

CNTL Yes Yes 2.0 3.0 8.0·105 

NoCASA No Yes 2.0 3.0 8.0·105 
NoRAD No No 2.0 3.0 8.0·105 
R6 Yes Yes 2.0 3.0 4.0·106 
PERT Yes Yes 2.0 3.0 Varied  
CNTL_LOW  Yes Yes 1.0 2.0 8.0·105 
 

All experiments (CNTL, NoCASA, NoRAD, R6, PERT, and CNTL_LOW) 

are initialized from a 40-member ensemble of EnKF analyses performed on the outer 

grid described in section 5.1.1; the outer domain has a horizontal grid spacing of 6 

km, and its geographic extent is shown in Fig. 5.1.  The outer-grid forecast is 

initialized at 1800 UTC on 8 May 2007 from the 8 May 2007 NCEP 1800 UTC 

NAM analysis, and a subsequent 3-hour pre-forecast is performed from the 

initialization.  At 2100 UTC, an ensemble of 40 members is generated by 

introducing smoothed, random, Gaussian mesoscale perturbations using the method 

of Tong and Xue (2008).  Perturbations are added to the horizontal wind (u, v) with 

an average magnitude of 2.0 ms-1, the potential temperature (θ) using positive 

perturbations only with a mean magnitude of 1K, and the mixing ratio of water vapor 

(qv) with a mean magnitude of 10% of the qv value at the given grid point.  The 

horizontal length scale of these perturbations is 36 km, and the vertical length scale is 

7.2 km. 
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Fig. 5.2:  Observations used in the three experiments described in this chapter 
performed on the 2 km horizontal resolution domain.  Locations of Oklahoma 
Mesonet sites are indicated by open squares, locations of ASOS sites by filled 
triangles, and locations of wind profilers by open diamonds.  The dotted and solid 
black circles represent 60 km and 180 km range rings of WSR-88D radar sites 
respectively.  The small gray circles indicate 30 km range rings of the CASA radar 
sites.  This figure is adapted, with permission, from Fig. 3a of Schenkman et al. 
(2011).  
 

 Conventional observations, including ASOS, mesonet observations, wind 

profiler data, and upper air observations (including soundings at 0000 UTC, 9 May 

2007) are assimilated hourly on the outer grid from 2200 UTC, 8 May 2007 to 0100 
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UTC, 9 May 2007 using the ensemble square-root filter (EnSRF) algorithm based on 

that of Whitaker and Hamill (2002).  Assumed observation errors used for 

conventional data vary by observation type as indicated in Table 5.1. 

 

Table 5.2: Assumed observation error magnitude for conventional observations. 
 

Data Type u (ms-1) v (ms-1) Temperature (K) Dewpoint (K) Pressure (hPa) 

Surface 1.5 1.5 1.5 2.0 2.0 

Upper-air 2.5 2.5 1.2 2.0 0.6 

Profiler 2.5 2.5    

 

In order to maintain ensemble spread during the assimilation of conventional 

data on the outer 6 km grid, we apply a multiplicative covariance inflation factor of γ 

= 1.03 to the prior deviation of each ensemble member from the ensemble mean 

(Anderson and Anderson, 1999; Tong and Xue, 2005).  Covariance inflation is 

performed throughout the entire model domain.  In addition to covariance inflation, 

we also apply the relaxation technique of Zhang et al. (2004) with a relaxation 

coefficient of 0.5. 

At 0100 UTC, 9 May 2007, the inner-grid experiments are initialized from 

the interpolated 6-km ensemble forecasts valid at the same time.  Each inner-

domain ensemble member uses boundary conditions derived from the corresponding 

outer-domain member; for example, ensemble member #3 of any inner-grid 

experiment (e.g. CNTL, NoCASA, NoRAD) derives its initial conditions and 

boundary conditions from ensemble member #3 of the outer-domain ensemble.  
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Boundary condition files from the outer-domain members are provided at 15 minute 

intervals throughout the analysis and forecast period (0100 to 0500 UTC).   

 In each of the inner-grid experiments, conventional data are assimilated using 

the same EnSRF algorithm.  Data are assimilated at five minute intervals; the first 

analysis occurs at 0105 UTC, 9 May 2007, and the final analysis occurs at 0200 

UTC.  Conventional data used in this study include surface observations from 

Automated Surface Observing System (ASOS) stations and the Oklahoma Mesonet 

(Brock et al. 1995); as well as upper-air observations from wind profilers.  Mesonet 

data are assimilated every 5 minutes, while ASOS observations and profiler 

observations, which have a coarser temporal frequency, are assimilated only at 0200 

UTC.  No sounding data is assimilated because none is available during the data 

assimilation period.  In addition to these conventional data, some of the experiments 

also assimilate radar observations from the CASA and WSR-88D radar networks.   

In experiments assimilating radar data, observations are assimilated along 

with conventional data at 5 minute intervals from 0105 UTC to 0200 UTC.  Level-II 

radial velocity and radar reflectivity observations are assimilated from six WSR-88D 

radar sites:  Twin Lakes, OK (KTLX); Vance Air Force Base, OK (KVNX), Dyess  

Air Force Base, TX (KDYX); Amarillo, TX (KAMA); Dallas-Fort Worth, TX 

(KFWS); and Lubbock, TX (KLBB).  In experiments using CASA data, radial 

velocity and radar reflectivity data are also assimilated from the four X-band radars 

of the CASA radar network: Cyril, OK (KCYR); Lawton, OK (KLWE); Rush 

Springs, OK (KRSP); and Chickasha, OK (KSAO).  CASA data are assimilated as 

aggregate 5-minute pseudo-volumes produced using temporal and spatial 
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interpolation, as discussed in section 3.2.  The locations of conventional observation 

sites and radar sites are summarized in Fig. 5.2.   

To help maintain ensemble spread, multiplicative covariance inflation is 

applied to the prior deviation of each ensemble member from the ensemble mean 

using an inflation factor of γ = 1.03 in experiment NoRAD (which assimilated only 

conventional data), and an inflation factor of γ = 1.25 in all other experiments (which 

assimilated both conventional and radar data).  Unlike on the outer-grid domain, 

relaxation is not used for the maintenance of ensemble spread on the inner-grid 

domain because preliminary experiments using relaxation while assimilating radar 

data resulted in relatively poor ensemble forecast performance compared to 

experiments using multiplicative covariance inflation only.  The larger covariance 

inflation factor in the experiments assimilating radar data is necessary to maintain 

ensemble spread while assimilating large quantities of data from multiple radar sites. 

 At the end of the data assimilation period, a three-hour ensemble forecast is 

performed for each inner-grid experiment, running from 0200 UTC to 0500 UTC, 

using the final ensemble member analyses at 0200 UTC as initial conditions.  As in 

Chapter 4, forecast verification is performed for radar reflectivity (as a proxy for 

quantitative precipitation) and low-level mesovortices (as an indicator of tornado 

potential) using both qualitative and quantitative methods.  Quantitative verification 

methods include calculation of relative operating characteristic skill score (RSS) and 

Brier scores for ensemble forecasts.  Additional discussion of these skill score 

metrics can be found in section 4.3.2.  Finally, comparisons are performed between 
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the experiments presented herein and the corresponding experiments of Schenkman 

et al. (2011). 

 

5.2   Analysis Results 

 For the six inner-grid experiments (see Table 5.1), conventional and/or radar 

data are assimilated every 5 minutes between 0105 UTC and 0200 UTC.  No 

analysis is performed at 0100 UTC; this is to prevent double-counting of 

observations used in the outer-grid 0100 UTC analysis ensemble, from which the 

inner-grid analysis ensembles are initialized.  The 0200 UTC analysis ensemble 

mean for radar reflectivity at model grid level 10 (approximately 2 km above the 

surface) is shown below in Fig. 5.3 for all experiments.  By 0200 UTC, the final 

analysis of radar reflectivity shows a very similar ensemble mean analysis state for 

all experiments that assimilated radar data (Fig. 5.3a, b, d-f).  The final analysis 

state of these ensemble members agrees reasonably well the observed radar 

reflectivity at 0200 UTC (Fig. 5.3g) in the overall placement of convective features, 

including the leading convective line, the trailing convective line extending south 

into Texas, and the large stratiform region to the west of the leading convective line.   
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Fig. 5.3:  Ensemble mean reflectivity at model level k = 10 (approximately 2 km 
above ground level) for the 0200 UTC analyses of the inner-grid experiments (panels 
(a)-(f)), compared to WSR-88D observations from 0200UTC interpolated to the 
ARPS grid (panel (g)).  The experiment name is included in the lower right of each 
panel. 
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Despite the relatively good agreement in the location and structure of the convective 

system, there are some notable errors in the ensemble mean analyses of the 

experiments assimilating radar data.  Compared to the observations (Fig. 5.3g), all 

of the radar-assimilating experiments (Fig. 5.3a, b, d-f) exhibit slightly weaker 

reflectivity values in their 0200 UTC ensemble mean analyses throughout much of 

the stratiform region and trailing convective line. The intensity of the leading 

convective line is captured well in NoCASA (Fig. 5.3b), but underestimated 

compared to observations (Fig. 5.3g) within the CASA domain in those experiments 

assimilating CASA radar data (Fig. 5.3a, d-f).  The underestimation in these 

experiments is most likely the result of attenuated regions within the convective line 

in the CASA data.  In an attempt to limit the impact of completely attenuated 

regions, CASA reflectivity data are not assimilated when the observed reflectivity is 

less than 20 dBZ, but some impact still remains. 

 Each of the ensemble mean analyses from the radar-assimilating experiments 

contains a convective cell to the east of the Dallas-Fort Worth metro area, just south 

of the Oklahoma border.  This cell occurs near the edge of the coverage areas of the 

KFWS and KTLX radars; while this cell may be impacted by this data boundary, 

data from the neighboring WSR-88D radar site to the east at Shreveport (KSHV) 

indicates that a convective cell was present at 0200 UTC just to the east of the cell 

indicated in the ensemble mean analyses, just beyond the eastern extent of the KFWS 

radar observations.  The westernmost fringe of this convective cell can be seen at 

the eastern extent of the KFWS coverage region in Fig. 5.3g, near the location of the 

convective cell in the ensemble analyses.  Also, the analyses underestimate the 
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intensity of two cells ahead of the convective line observed by KFWS, visible in the 

lower right of Fig. 5.3g.  These cells developed late in the assimilation period and 

likely did not have sufficient time to spin up in the model. 

 In contrast with the experiments that assimilate radar data, the 0200 UTC 

ensemble mean analysis of the NoRAD experiment (Fig. 5.3c), which assimilated 

only conventional data, compares quite poorly to radar reflectivity observations.  

While most NoRAD ensemble members contained a convective system in the general 

region of the MCS observed by the WSR-88D radar network, there is a great deal of 

variation among individual ensemble members in the 0200 UTC analysis regarding 

the position, intensity, and structure of this convective line (not shown).  The result 

is an ensemble mean analysis with large, smooth, relatively weak areas of 

reflectivity; most of the convective structure from individual members is lost when 

computing the ensemble mean (Fig. 5.3c).  Because of the large spread among the 

ensemble members, the NoRAD ensemble analysis can benefit from probability 

matching when calculating the ensemble mean, as described earlier in section 4.3.1.   

 

Fig. 5.4:  Comparison of (a) ensemble mean radar reflectivity and (b) probability-
matched mean radar reflectivity in the 0200 UTC ensemble analysis of NoRAD at 
model grid level k = 10 (approximately 2 km above the surface).  Also shown are (c) 
WSR-88D radar observations, interpolated to the ARPS grid at model level k = 10. 
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When probability matching is performed, the overall coverage of rainfall in the 

probability-matched ensemble mean (Fig. 5.4b) is greatly reduced compared to the 

pure ensemble mean (Fig. 5.4a), though even then the structure of the convective 

system remains quite poor compared to the observations (Fig. 5.4c).  By contrast, in 

the experiments that assimilate radar data the ensemble mean and probability-

matched ensemble mean are quite similar, due to much closer agreement between 

ensemble members due to the constraint by radar observations (not shown).   

Much of the heavy precipitation in the NoRAD ensemble is located to the 

north of the observed convective system (Fig. 5.4), while little to no precipitation is 

indicated in the NoRAD ensemble (Fig. 5.4a, b) in the region of the observed trailing 

convective line extending south into Texas (Fig. 5.4c).  The failure of the NoRAD 

experiment during the analysis period to capture the structure of the observed MCS 

suggests that EnKF assimilation of conventional data alone is grossly insufficient to 

initialize the model for this case.  The coverage and frequency of conventional data 

are greatly limited, while radar can sample regions throughout the storm at 

comparatively high spatial and temporal resolution.  Because convective storms 

vary on the scale of several minutes and hundreds of meters, assimilation of radar 

data is vital for convective-scale NWP.  This result agrees with the findings of 

Schenkman et al. (2011), whose similarly-configured experiments using 3DVAR to 

assimilate conventional and radar data also performed well with comparison to 

observations only when radar data was assimilated.  A more detailed comparison of 

the results presented in this chapter to those of Schenkman et al. (2011) will be 

included below in section 5.4. 
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5.3   Ensemble Forecast Results 

 As in the single-grid experiments presented in Chapters 3 and 4, a three-hour 

ensemble forecast is performed from the 0200 UTC ensemble analyses of all six 

inner-grid experiments.  Examination and verification of these ensemble forecasts 

will follow a similar methodology to that of Chapters 3 and 4.  The primary focus 

will be on ensemble forecasts of radar reflectivity, a variable which serves as a proxy 

for precipitation and can be easily verified against observations from the WSR-88D 

radar network.  Objective verification will be performed against reflectivity 

observed by the WSR-88D network (Fig. 5.5) using the ROC skill score (RSS) and 

Brier score, and both probabilistic and deterministic products will be considered, and 

prominent biases in the ensemble forecasts of radar reflectivity will be examined.  

 

 

Fig. 5.5:  Radar data observed by WSR-88D radar sites KAMA, KDYX, KFWS, 
KLBB, KTLX, and KVNX at (a) 0200UTC, (b) 0300 UTC, (c) 0400 UTC, and (d) 
0500 UTC, interpolated to level k = 10 of the model grid used by the inner-grid 
experiments. 
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The inner-grid experiments (see Table 5.1) can be divided into three primary 

categories: those examining the impact of assimilating various radar data (NoCASA, 

NoRAD); those examining the impact of varying the model microphysics (PERT, 

R6); and finally those examining the impact of changing the assumed observation 

error for radial velocity and radar reflectivity (CNTL_LOW).  The CNTL 

experiment serves as a default against which these three categories of experiments 

are to be compared.  Each of these impacts will be considered in turn, beginning 

with the impact of assimilating radar data. Finally, we will consider ensemble 

forecasts of mesovortices, as we did for the single-grid experiments of Chapters 3 

and 4, using the object-based ensemble forecasting technique described in equation 

2.2.   

While we will focus separately on the impacts of the several different 

variations in ensemble forecast design mentioned in the previous paragraph, it is 

desirable to include RSS and Brier Score statistics for all inner-grid experiments in a 

single chart to facilitate inter-comparison of all experiments together.  For this 

reason, graphs of RSS and Brier Score are included below in Fig. 5.6 and Fig. 5.7 for 

all six inner-grid experiments; these figures will be referred to in each of sections 

5.3.1-5.3.4.  As in section 4.3.2, RSS and Brier Score are calculated both for the full 

model domain and for a sub-domain encompassing the CASA radar domain and 

areas directly to the east and north of the CASA domain (regions downwind of the 

CASA domain in this case where the greatest impact of assimilated CASA radar data 

would be expected).  The methodology used to calculate RSS and Brier Score is 
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identical to that used in section 4.3.2, and the verification sub-domain used here is 

identical in geographic extent to the sub-domain indicated in Fig. 4.2. 

 

Fig. 5.6:  ROC skill score for the ensemble forecast initial condition (at 0200 UTC) 
and for 1-, 2-, and 3-hour forecasts of radar reflectivity at the 25 dBZ threshold on 
vertical grid level k = 10 (slightly more than 2 km above mean sea level) for all six 
inner-grid ensemble forecast experiments.  Shown are ROC skill scores calculated 
over (a) the entire horizontal model domain depicted in Fig. 5.1 and (b) the ETS 
verification sub-domain as depicted by the black outline in Fig. 4.2. 

 

 

 

 

Fig. 5.7:  As Fig. 5.6 but for Brier Score. 
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5.3.1  Impact of Radar Data Assimilation 

 During the analysis period, the ensemble forecast of NoRAD performed 

relatively poorly compared to the experiments assimilating radar data.  Without 

assimilating radar data, the structure of the MCS in the 0200 UTC ensemble analysis 

agreed poorly with observations, and varied considerably among ensemble members 

(Fig. 5.3, Fig. 5.4).  This trend continues throughout the 3-hour forecast period from 

0200 to 0500 UTC in both deterministic forecasts from the NoRAD ensemble. 

 Probability-matched (PM) ensemble mean reflectivity is shown below in Fig. 

5.8 for CNTL (Fig. 5.8a-c) and NoRAD (Fig. 5.8d-f) at 0300, 0400, and 0500 UTC.  

While in the PM mean of NoRAD the heaviest precipitation associated with MCS is 

poorly defined and displaced to the north (Fig. 5.8d-f), the CNTL ensemble produces 

a PM mean with a well-defined MCS at 0400 and 0500 UTC (Fig. 5.8b, c) which 

compares relatively well in location and extent with the observed MCS at those times 

(Fig. 5.5c, d).  At 0300 UTC the PM mean of CNTL exhibits a relatively discrete, 

cellular structure throughout much of the MCS (Fig. 5.8a) which does not match the 

more consolidated MCS observed by the WSR-88D network at that time (Fig. 5.5b).  

The problem of overly cellular organization early during the forecast period is 

common to many of the experiments assimilating radar data.   

The better performance of the ensemble when radar data are assimilated is 

also evident in probabilistic forecasts produced for CNTL and NoRAD using the 

neighborhood ensemble probability (NEP) method described in equation (2.1) using 

a neighborhood radius of 5 km.  Regions predicted in the CNTL ensemble to have 

high probability of Z > 25 dBZ (Fig. 5.9a-c) show much greater agreement with the 
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observed regions of Z > 25 dBZ than those of NoRAD (Fig. 5.9d-f).  Using a 40 

dBZ threshold for NEP calculations, corresponding to heavier convective 

precipitation, it becomes evident that the CNTL ensemble predicts an overabundance 

of heavy precipitation regions with Z > 40 dBZ (Fig. 5.10a-c), though these regions, 

at least over the northern part of the convective system, are not too far displaced from 

areas of observed Z > 40 dBZ.  The NoRAD ensemble (Fig. 5.10d-f) predicts a 

more reasonable coverage of Z > 40 dBZ over central Oklahoma, but also 

erroneously predicts significant probability of Z > 40 dBZ over southern Kansas. 
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Fig. 5.8:  Probability-matched ensemble mean radar reflectivity on model grid level 
k = 10 (approximately 2 km above the surface) for CNTL at (a) 0300 UTC, (b) 0400 
UTC, and (c) 0500 UTC; and for NoRAD at (d) 0300 UTC, (e) 0400 UTC, and (f) 
0500 UTC. 
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Fig. 5.9:  Neighborhood ensemble probabilities (color-shading) of reflectivity 
exceeding 25 dBZ, P[ Z > 25 dBZ] , at model grid level 10 (approximately 2 km 
above the surface) for CNTL at (a) 0300 UTC, (b) 0400 UTC, and (c) 0500 UTC, and 
for NoRAD at (d) 0300 UTC, (e) 0400 UTC, and (f) 0500 UTC.  The 25 dBZ radar 
reflectivity contour observed by the WSR-88D radar network at the corresponding 
time is indicated by the bold black contours.  Urban areas are shown with thin, 
purple contours. 

 



130 
 

 

Fig. 5.10:  As Fig. 5.9 but for neighborhood ensemble probability calculated using 
a threshold of 40 dBZ and the observed 40 dBZ contour. 

 

 Looking at individual ensemble member forecasts, it can be seen that 

variation in the position of the MCS is largely responsible for the smooth, 

widespread, relatively weak precipitation in the NoRAD PM mean.  Radar 

reflectivity is shown below in Fig. 5.11 for three typical NoRAD ensemble members: 

#3 (Fig. 5.11a-c), #16 (Fig. 5.11d-f), and #32 (Fig. 5.11g-i) at 0300, 0400, and 0500 

UTC.  These individual NoRAD ensemble members each feature a relatively 

discrete MCS compared to the PM mean (Fig. 5.8d-f) and agree upon a large region 

of stratiform rain in northwestern Oklahoma and southwestern Kansas, but disagree 
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among one another in the position and structure of the MCS over central Oklahoma. 

When these relatively divergent members are averaged to obtain the ensemble mean 

(and from there the PM ensemble mean), the position differences in the MCS result 

in the spatial smoothing observed in Fig. 5.8. 

 While the assimilation of conventional data alone in NoRAD is sufficient to 

produce organized multicellular convection in all ensemble members (see Fig. 5.11), 

the predictions of the individual members compare poorly with WSR-88D 

observations between 0300 and 0500 UTC (Fig. 5.5b-d).  Convection extends into 

southwestern Oklahoma in many of the NoRAD members between 0300 and 0500 

UTC, in regions where no convection was observed (see Fig. 5.5), and the stratiform 

rain region in most members is shifted too far to the north.  Some NoRAD 

members, such as member #32, predict the presence of an organized convective line 

(Fig. 5.11g, h), but the convective lines predicted vary widely in orientation and do 

not extend nearly as far south as those seen in observations.  Very few of the 

NoRAD members featured a well-defined line-end vortex. 
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Fig. 5.11:  Radar reflectivity at model grid level k = 10 (approximately 2 km above 
the surface) for three NoRAD ensemble members at 0300, 0400, and 0500 UTC.  
Shown are (a-c) NoRAD member #3, (d-f) NoRAD member #16, and (g-i) NoRAD 
member #32. 
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 In CNTL, where radar data is assimilated in addition to conventional data, 

there is much greater agreement between different forecast ensemble members, as 

well as between forecast ensemble members and observations.  Radar reflectivity 

forecasts from three typical CNTL ensemble members are shown below in Fig. 5.12 

between 0300 and 0500 UTC.  Though the members vary moderately in the extent 

and intensity of the trailing line, particularly at 0500 UTC (Fig. 5.12c, f, i), all 

members feature an organized MCS whose position agrees relatively well with that 

observed by the WSR-88D network (Fig. 5.5).  Unlike in NoRAD, most CNTL 

members feature a line-end vortex located at the northern end of the trailing 

convective line, similar to the observed MCS.  Prediction of the line-end vortex will 

be considered in greater detail below in section 5.3.6. 

 The relatively poor quality of the NoRAD initial condition is reflected in 

objective forecast verifications using the RSS (Fig. 5.6) and Brier score (Fig. 5.7).  

When the entire forecast domain is considered, the initial NoRAD ensemble (valid at 

0200 UTC) generates a RSS of just 0.53, compared to 0.92 for CNTL (Fig. 5.6a).  

Both ensembles perform slightly better on the verification sub-domain (Fig. 5.6b), 

though the RSS of 0.65 produced by NoRAD still compares poorly to the 0.97 

produced by CNTL.  The difference is even more pronounced in the 0200 UTC 

Brier score, where CNTL has a lower (better) value by a factor of 5 on both the full 

domain and the verification sub-domain (Fig. 5.7).  The reason for the greater 

difference in Brier score between the two experiments is due to the extensive over-

prediction of light precipitation in the 0200 UTC NoRAD ensemble.  The Brier 



134 
 

score rewards correct prediction of clear-air regions, a metric which heavily penalizes 

the 0200 UTC NoRAD ensemble.   

 

 

Fig. 5.12:  As Fig. 5.11, but for three typical ensemble members from CNTL. Shown 
are (a-c) CNTL member #3, (d-f) CNTL member #14, and (g-i) CNTL member #30. 
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 During the forecast period, CNTL consistently outperforms NoRAD in both 

RSS and Brier score calculated on the full domain (Fig. 5.6a, Fig. 5.7a) by a 

considerable margin, though this margin decreases with increasing forecast time, 

especially for the Brier score.  On the verification sub-domain, CNTL substantially 

outperforms NoRAD at 0300 and 0400 UTC (Fig. 5.6b, Fig. 5.7b), but by 0500 UTC 

NoRAD actually slightly outperforms CNTL in both RSS and Brier score.  While 

the quality of the CNTL forecast ensemble declines throughout the forecast period as 

measured by both skill scores, the skill scores of NoRAD remain relatively steady 

throughout the forecast period, dropping only slightly below their initial 0200 UTC 

values by 0500 UTC.  In CNTL, the relatively rapid decline in both skill scores on 

the sub-domain at 0500 UTC is largely due to over-prediction of the intensity of the 

trailing convective line (see Fig. 5.12c, f, i), a tendency which was not shared by 

NoRAD (see Fig. 5.11c, f, i).  The over-prediction of heavy precipitation in the 

trailing convective line in CNTL is also clearly visible in NEP forecasts of Z > 40 

dBZ, where CNTL predicts a wide swath of P[Z > 40 dBZ] exceeding 0.8 to the east 

and southeast of the CASA domain where no precipitation exceeding 40 dBZ was 

observed by the WSR-88D radar network (Fig. 5.10c). 

 While NoRAD compares poorly to CNTL overall, this does not imply that the 

NoRAD ensemble forecast was entirely unskilled.  Throughout the forecast period, 

on the verification sub-domain, NoRAD RSS values range from 0.47 to 0.68 (Fig. 

5.6b)—even at the minimum of this range, the NoRAD forecast ensemble exceeds 

the RSS of 0.4 considered to be the minimum for a useful forecast (Buizza 1997; 

Kong et al. 2011).  Even on the full domain, the NoRAD forecast remains above the 
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0.40 RSS threshold until after 0400 UTC.  The fact that the NoRAD forecast retains 

useful skill throughout most, if not all, of the forecast period indicates that structures 

and forcing at the mesoscale (and at larger scales) having control on the precipitation 

features were present in this case which could be partially captured by the 

assimilation of conventional observations. 

 

5.3.2  Impact of CASA Data 

 The primary objective of experiment NoCASA is to evaluate the impact of 

including CASA data.  NoCASA differed from CNTL only in the exclusion of 

CASA radar during data assimilation on the inner grid between 0105 and 0200 UTC.  

In this section we will examine the impact on the reflectivity forecast. Impacts on 

ensemble forecasts of mesovortices will be considered later in section 5.3.6. 
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Fig. 5.13:  As Fig. 5.8 but for CNTL at (a) 0300 UTC, (b) 0400 UTC, and (c) 0500 
UTC; and NoCASA at (d) 0300 UTC, (e) 0400 UTC, and (f) 0500 UTC. 

 

 On a system-wide scale, there is relatively little difference in the overall 

structure and evolution of the MCS predicted by the ensemble mean of NoCASA as 

compared to that predicted by the ensemble mean of CNTL.  The PM ensemble 

means of radar reflectivity in CNTL and NoCASA at 0300, 0400, and 0500 UTC (1, 

2, and 3 hours of forecast time, respectively) are shown in Fig. 5.13, and the 

similarity of the two ensembles is apparent.  Both ensembles predict a MCS over 

central Oklahoma, in good agreement with observations (Fig. 5.5), with a trailing line 

extending south and south-southwestward into northern Texas.   
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Fig. 5.14:  As Fig. 5.9 but for CNTL at (a) 0300 UTC, (b) 0400 UTC, and (c) 0500 
UTC; and NoCASA at (d) 0300 UTC, (e) 0400 UTC, and (f) 0500 UTC. 

 

Many members of both the CNTL and NoCASA ensembles also predict some 

convective activity associated with the leading convective line located in the 

observations to the east and southeast of the CASA radar network (Fig. 5.5b, c) at 

0300 and 0400 UTC, as indicated by the areas of moderately high NEP of Z > 25 

dBZ in these regions in both CNTL and NoCASA (Fig. 5.14).  NoCASA also shares 

the tendency of the CNTL ensemble to predict a more cellular organization than seen 

in observations (Fig. 5.5) at 0300 UTC (Fig. 5.13a, d), and to over-predict the 
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intensity of the trailing convective line, particularly at later times, as is evident in the 

NEP of Z > 40 dBZ in both ensembles south and southeast of the CASA radar 

network (Fig. 5.15). 

 

 

Fig. 5.15:  As Fig. 5.10 but for CNTL at (a) 0300 UTC, (b) 0400 UTC, and (c) 0500 
UTC; and NoCASA at (d) 0300 UTC, (e) 0400 UTC, and (f) 0500 UTC. 

 

 When the ensemble forecasts are verified using the RSS and Brier score, 

almost no difference can be seen between the two ensembles for scores calculated on 

the full domain (Fig. 5.6a, Fig. 5.7a).  The two forecasts also perform similarly on 

the verification sub-domain (Fig. 5.6b, Fig. 5.7b), though NoCASA slightly 

outperforms CNTL in both RSS and Brier score in the initial condition at 0200 UTC 
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and in the 1-hour forecast at 0300 UTC; this trend is reversed in the 2- and 3-hour 

forecasts at 0400 and 0500 UTC, at which time CNTL slightly outperforms NoCASA 

in both RSS and Brier score.  The initially slightly better performance of NoCASA 

on the verification sub-domain can likely be attributed to the impact of attenuation in 

observations from CASA radars, as was discussed in section 5.2.  As indicated by 

the better performance of CNTL at 0400 and 0500 UTC, this impact appears to be 

temporary, and outweighed at later times by the positive impact of assimilating 

additional near-surface radar data from the CASA network. 

 The impact of assimilating CASA data becomes more apparent when we 

consider the spread of the ensemble forecast of radar reflectivity and focus on the 

region near and downwind of the CASA radar network.  Ensemble spread of radar 

reflectivity at 0300, 0400, and 0500 UTC is shown for the CNTL and NoCASA 

ensembles in Fig. 5.16.  In both ensembles, higher spread occurs near the fringes of 

the predicted MCS.  Because of differences in the position and movement speed of 

the MCS between individual ensemble members (see Fig. 5.12), points near the 

fringe of the MCS contained moderate to heavy reflectivity in some ensemble 

members, but clear air in others, leading to large RMS spread values.  By contrast, 

in the core of the MCS and the trailing line, all ensemble members indicate that 

moderate to heavy precipitation is present (see Fig. 5.12), thus the relative difference 

in reflectivity between ensemble members, and hence the RMS ensemble spread, is 

lower. 
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Fig. 5.16:  RMS Ensemble spread of radar reflectivity on model grid level k = 10 
(approximately 2 km above the surface) for CNTL at (a) 0300 UTC, (b) 0400 UTC, 
and (c) 0500 UTC; and for NoCASA at (d) 0300 UTC, (e) 0400 UTC, and (f) 0500 
UTC.  30 km CASA range rings are shown in black, and urban boundaries are 
indicated in purple. 

 

 When the difference between the RMS ensemble spread of Z in CNTL and 

that in NoCASA is calculated for 1-, 2, and 3-hour forecasts at 0300, 0400, and 0500 

UTC (Fig. 5.17), the largest differences in RMS ensemble spread occur near and 

downwind of the CASA radar network.  In Fig. 5.17, positive values indicate 

regions in which CNTL has a greater RMS spread of Z, while negative values 

indicate regions where NoCASA has a greater RMS ensemble spread of Z.  At 0300 

UTC (Fig. 5.17a), a there is a considerable region in the northeastern portion of the 
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CASA radar network and just to its north where NoCASA has a much higher 

ensemble spread of Z than CNTL, with difference in RMS ensemble spread of more 

than 10 dBZ in a few regions.  This region of higher ensemble spread in NoCASA 

moves to the north-northeast over time, and is located just to the east and northeast of 

the CASA radar network by 0400 UTC (Fig. 5.17b).  By 0500 UTC the region of 

higher ensemble spread in NoCASA has decreased in magnitude, with peak 

differences of only slightly less than 10 dBZ (compared to more than 13 dBZ at 0300 

UTC), but the region is still well-defined to the northeast of the CASA domain (Fig. 

5.17c). 

 

  

Fig. 5.17:  Difference in RMS Ensemble spread of radar reflectivity on model grid 
level k = 10 (approximately 2 km above the surface) for (CNTL – NoCASA) at (a) 
0300 UTC, (b) 0400 UTC, and (c) 0500 UTC in a region near and downwind of the 
CASA radar network.  30 km CASA range rings are shown in black. 

 

 This region of higher RMS spread in NoCASA than in CNTL represents a 

plume of reduced ensemble spread in CNTL extending downwind from the CASA 

radar network with time.  The reason for this plume is the impact of the CASA radar 

data assimilated in CNTL (which was not assimilated in NoCASA); the wealth of 

densely-spaced CASA data assimilated reduced the ensemble spread of Z in the 
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region.  This reduced spread was advected to the north-northeast by the prevailing 

south-southwesterly wind in the region, moving in roughly the same direction and at 

the same speed as the observed MCS (see Fig. 5.5).  The persistence of this plume 

at 0400 and even 0500 UTC suggests that, at least on a regional scale, the impact of 

CASA radar data assimilated between 0105 and 0200 UTC remains quite evident in 

the forecast two hours later at 0400 UTC, and has still not fully disappeared by the 

end of the forecast period at 0500 UTC.  The regional impact of this data at 0400 

and will be further considered in section 5.3.6, where ensemble forecasts of the 

tornadic mesovortex occurring near the southern extent of the plume at 0400 UTC 

will be examined.  In the field of targeted observation research, expected reduction 

in ensemble forecast variance is often used as a measure of the impact of added 

observations (Majumdar et al. 2001). 

 

5.3.3  Impact of Microphysical Variations 

 Two inner-grid experiments were performed to investigate the impact of 

varying the model microphysics of the forecast ensemble.  In R6, the rain intercept 

parameter of the Lin et al. (1983) microphysics scheme used in all ensemble 

members is increased from 8.0·105 to 4.0·106.  While Snook and Xue (2008) found 

that a rain intercept parameter of 8.0·105 produced the best results for a supercell 

simulation, it is possible that a larger value of the rain intercept parameter may be 

optimal for a squall-line simulation such as the 8-9 May 2007 MCS case studied 

here.  In PERT, the rain intercept parameter is varied within the ensemble in an 

effort to produce the same type of benefit observed when using mixed-microphysics 
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in the single-grid experiments presented in Chapters 3 and 4 without the drawback of 

a multi-modal distribution resulting from the use of different microphysical schemes 

within the ensemble (see Fig. 4.19). 

 Unlike the impact of CASA data, which was mostly localized in a region near 

and downwind of the CASA domain, the impact of changes to the microphysical 

parameterization appears on a system-wide scale.  While subtle differences can be 

observed throughout the MCS, the greatest differences between CNTL and R6 in the 

PM mean reflectivity field (Fig. 5.18) can be seen in the trailing convective line 

extending southward into northern Texas, especially at 0400 and 0500 UTC.  

Compared to the trailing line in the PM mean of CNTL (Fig. 5.18b, c), the trailing 

line in R6 (Fig. 5.18e, f) is not as intense, particularly at 0400 UTC.  The less 

intense line agrees better with the observed intensity of precipitation at this time (Fig. 

5.5c).  The trailing line in the PM mean of PERT is also weaker than that in the PM 

mean of CNTL, but the difference is even more pronounced (Fig. 5.18h, i). 

 CNTL, R6, and PERT all indicate the presence of convective activity in the 

leading convective line located just to the east and southeast of the CASA radar 

network at 0300 and 0400 UTC (Fig. 5.5b, c; Fig. 5.18).  When the NEP of Z > 25 

dBZ is calculated, all three experiments predict a moderate probability of Z > 25 dBZ 

in the vicinity of the observed leading convective line at 0300 and 0400 UTC (Fig. 

5.19a-b, d-e, g-h).  Both PERT and R6 predict higher probabilities than CNTL in 

the region of the leading convective line.  At the 40 dBZ threshold (Fig. 5.20), all 

three experiments predict significant probabilities of Z > 40 dBZ in the trailing 
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convective line where no precipitation of that intensity was observed, but the greatest 

over-prediction is in CNTL, followed by R6; the over-prediction in PERT is the least.  

 

 

Fig. 5.18:  As Fig. 5.8 but for CNTL at (a) 0300 UTC, (b) 0400 UTC, and (c) 0500 
UTC; R6 at (d) 0300 UTC, (e) 0400 UTC, and (f) 0500 UTC; and PERT at (g) 0300 
UTC, (h) 0400 UTC, and (i) 0500 UTC. 
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Fig. 5.19:  As Fig. 5.9, but for CNTL at (a) 0300 UTC, (b) 0400 UTC, and (c) 0500 
UTC; R6 at (d) 0300 UTC, (e) 0400 UTC, and (f) 0500 UTC; and PERT at (g) 0300 
UTC, (h) 0400 UTC, and (i) 0500 UTC. 
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Fig. 5.20:  As Fig. 5.10 but for CNTL at (a) 0300 UTC, (b) 0400 UTC, and (c) 0500 
UTC; R6 at (d) 0300 UTC, (e) 0400 UTC, and (f) 0500 UTC; and PERT at (g) 0300 
UTC, (h) 0400 UTC, and (i) 0500 UTC. 
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 The better agreement with observations seen in the PM mean radar 

reflectivity and NEP reflectivity forecasts for PERT and R6 compared to CNTL is 

reflected in the ROC skill score and Brier score statistics for the three experiments.  

On the full domain, both R6 and PERT slightly outperform CNTL at all hours 

between 0200 and 0500 UTC in both ROC skill score (Fig. 5.6a) and Brier score 

(Fig. 5.7a).  On the verification sub-domain, PERT outperforms CNTL in both RSS 

and Brier score at all times (Fig. 5.6b; Fig. 5.7b), with the greatest improvement 

being at 0500 UTC.  Similarly R6 outperforms CNTL at all times on the verification 

sub-domain in RSS (Fig. 5.6b), and outperforms CNTL in Brier score (Fig. 5.7b) at 

all times except 0400 UTC, at which time the two perform equally well.   

In terms of the skill score metrics considered in Fig. 5.6 and Fig. 5.7, R6 and 

PERT perform similarly for most of the forecast period, both on the full domain and 

on the verification sub-domain.  The relative similarity in the skill scores of R6 and 

PERT suggests that much of the improvement of these experiments over CNTL is 

likely derived from the increased rain intercept parameter they employ (in PERT, the 

mean rain intercept parameter is 4.4·106, which is very close to that of R6), rather 

than the variation in rain intercept parameter of PERT.  It is also possible that 

forecast improvement may be imparted by variation of the rain intercept parameter, 

but that this improvement is not captured by bulk skill statistics such as the RSS and 

Brier score. 



149 
 

 

Fig. 5.21:  As Fig. 5.11, but for three typical ensemble members from PERT. Shown 
are (a-c) PERT member #3, (d-f) PERT member #11, and (g-i) PERT member #35. 

 

 Though there is little difference in skill scores between R6 and PERT, 

variation of the rain intercept parameter in PERT does appear to noticeably impact 

the behavior of the ensemble members.  The weaker trailing line in PERT as 
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compared to CNTL can be traced to greater variation among PERT members in the 

position, orientation, and intensity of the trailing line, particularly at 0400 and 0500 

UTC.  These differences can be seen in Fig. 5.21, which shows predicted 

reflectivity at vertical model level k = 10 (approximately 2 km above the surface) for 

three members of the PERT ensemble.  All three of these members predict a 

relatively robust trailing convective line that remains present through 0500 UTC, but 

by 0500 UTC the line has evolved quite differently between the three.  In PERT 

member #3 (Fig. 5.21c), a thin, moderately intense line is predicted.  In PERT 

member #11 (Fig. 5.21f), the trailing line does not extend as far south, contains 

slightly more intense convection, and exhibits a bowing pattern.  PERT member 

#35 (Fig. 5.21i) predicts a thicker intense line in southern Oklahoma, with only weak 

precipitation extending south into Texas.  While differences exist between the three 

ensemble members in treatment of other portions of the MCS, the differences in the 

trailing line are the most pronounced. 

 

 

Fig. 5.22:  As Fig. 5.17, but for (CNTL – PERT). 
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 The greater variation in the trailing convective line in PERT can be seen in 

the difference between RMS ensemble spread of radar reflectivity between CNTL 

and PERT (Fig. 5.22).  Early in the forecast period at 0300 UTC, there is little 

pattern in the difference in RMS error between CNTL and PERT (Fig. 5.22a).  At 

0400 and 0500 UTC, however, considerably higher RMS ensemble spread of Z is 

present over much of the region in and near the trailing convective line, as evidenced 

by the large area of negative values to the south and southeast of the CASA radar 

network in Fig. 5.22b-c.  Though some positive values can be seen in other regions 

of the convective system (Fig. 5.22b-c), there are more negative regions than 

positive, indicating the presence of slightly greater spread in PERT than in CNTL.   

 

5.3.4  Impact of Assumed Observation Error 

 One notable difference between the nested-grid experiments presented here 

and the single-grid experiments presented in Chapters 3 and 4 is a difference in the 

assumed observation error for radar reflectivity and radial velocity observations 

assimilated between 0105 and 0200 UTC.  In the single-grid experiments, relatively 

low observation errors of 2 dBZ for radar reflectivity and 1 ms-1 for radial velocity 

were assumed during EnKF data assimilation.  While these values have been used 

successfully in observation system simulation experiments (OSSE’s) such as Jung et 

al. (2010), higher values may be optimal in experiments assimilating real data.  

Thus, in five of the inner-grid experiments, including CNTL and those discussed 

above in sections 5.3.1-5.3.3, increased observation errors of 3 dBZ for radar 

reflectivity and 2 ms-1 for radial velocity are assumed (see Table 5.1).  Inner-grid 
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experiment CNTL_LOW, however, uses the same reduced values of assumed 

observation error (2 dBZ for radar reflectivity and 1 ms-1 for radial velocity), as the 

single-grid experiments during EnKF radar data assimilation.  During the forecast 

period, CNTL and CNTL_LOW share an identical ensemble design and model setup. 

 

 

Fig. 5.23:  As Fig. 5.8 but for CNTL at (a) 0300 UTC, (b) 0400 UTC, and (c) 0500 
UTC; and CNTL_LOW at (d) 0300 UTC, (e) 0400 UTC, and (f) 0500 UTC. 
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Fig. 5.24:  As Fig. 5.9 but for CNTL at (a) 0300 UTC, (b) 0400 UTC, and (c) 0500 
UTC; and CNTL_LOW at (d) 0300 UTC, (e) 0400 UTC, and (f) 0500 UTC. 
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Fig. 5.25:  As Fig. 5.10 but for CNTL at (a) 0300 UTC, (b) 0400 UTC, and (c) 0500 
UTC; and CNTL_LOW at (d) 0300 UTC, (e) 0400 UTC, and (f) 0500 UTC. 

 

 In the PM ensemble mean of Z, differences between the two experiments are 

relatively minor.  Compared to CNTL, CNTL_LOW predicts slightly stronger and 

more widespread convection in the region of the trailing convective line (Fig. 5.23b-

c, e-f; Fig. 5.5c-d); elsewhere, the two experiments produce similar PM ensemble 

mean values.  When the ensemble is used to generate a neighborhood ensemble 

probability forecast, however, the differences between the two experiments become 

more pronounced.  For both NEP of Z > 25 dBZ (Fig. 5.24) and Z > 40 dBZ (Fig. 

5.25), areas with NEP values exceeding 0.5 are similar between the two experiments, 

but NEP values are considerably greater in CNTL_LOW than in CNTL in many of 
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these areas.  Also, while both experiments overestimate the coverage of 

precipitation exceeding 40 dBZ (Fig. 5.25), especially late in the forecast period, the 

error is greater in CNTL_LOW, which predicts higher probabilities of Z > 40 dBZ 

over larger regions where no precipitation exceeding 40 dBZ was observed (Fig. 

5.25f).   

 

 

Fig. 5.26:  As Fig. 5.17, but for (CNTL – CNTL_LOW). 

 

 The higher NEP values in many regions of the forecast in CNTL_LOW can 

be largely attributed to reduced ensemble spread in CNTL_LOW compared to 

CNTL.  Fig. 5.26 shows the difference in RMS ensemble spread in Z between 

CNTL and CNTL_LOW on vertical model level 10 (at approximately 2 km above 

the surface) over the full extent of the MCS.  Especially at 0300 UTC (Fig. 5.26a), 

the difference field is dominated by positive values, indicating that ensemble spread 

of Z is considerably higher in CNTL than in CNTL_LOW throughout the MCS.  

Higher ensemble spread of Z in CNTL is less pronounced later in the forecast period, 

but still persists to a lesser extent at 0400 UTC (Fig. 5.26b) and 0500 UTC (Fig. 
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5.26c), particularly near and to the south of the CASA domain in the region of the 

trailing convective line (Fig. 5.5c, d).  This decreasing difference with time is not 

unexpected, because CNTL and CNTL_LOW share the same model and ensemble 

configuration during the forecast period; the only differences between the two 

experiments are the assumed observation errors used for Z and Vr during EnKF 

assimilation of radar data.  During the forecast, as model error increases, the impact 

of the initial state (at 0200 UTC) is likely to be diminished. 

 In terms of objective forecast verification using the RSS and Brier score, the 

lower assumed observation errors used in CNTL_LOW appear to have a negative 

impact on the forecast quality.  At 0200 UTC, CNTL and CNTL_LOW begin with 

similar RSS and Brier scores (Fig. 5.6, Fig. 5.7), both on the full domain and the 

verification sub-domain.  During the forecast period, however, CNTL consistently 

performs slightly better than CNTL_LOW on the full domain in terms of both RSS 

(Fig. 5.6a) and Brier score (Fig. 5.7a).  On the verification sub-domain (Fig. 5.6b, 

Fig. 5.7b) the difference is more pronounced; CNTL substantially outperforms 

CNTL_LOW at all hours during the forecast, and the difference increases with time.  

By 0500 UTC, at 3 hours of forecast time, CNTL retains a relatively skillful RSS of 

0.66 on the verification sub-domain, while the RSS of CNTL_LOW has decreased to 

0.51.  At 0500 UTC, CNTL_LOW was the poorest performing of all six forecast 

experiments on the verification sub-domain in terms of both the RSS (Fig. 5.6b) and 

the Brier score (Fig. 5.7b).  These results suggest that the higher values of assumed 

observation error for Z and Vr used in CNTL do indeed produce better forecast results 

for this real-data case. 
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5.3.5  Biases in the Ensemble Forecasts 

 In the single-grid forecast experiments presented earlier, two primary biases 

are identified in the reflectivity forecasts: a high bias in intense (> 35 dBZ) 

reflectivity, and a low bias in weak (< 20 dBZ) reflectivity (Fig. 4.17).  These biases 

result, respectively, from over-prediction of strong convective regions (especially in 

the trailing line), and under-prediction of stratiform precipitation in the trailing line 

and trailing stratiform region.  Biases in radar reflectivity are examined in a similar 

fashion for the inner-grid experiments by constructing reflectivity histograms using 

the method outlined at the beginning of section 4.3.3.   The resulting histograms for 

inner-grid experiment CNTL are shown below in Fig. 5.27.   

 Compared to the similar reflectivity histograms produced for the single-grid 

experiments discussed in Chapter 4 (Fig. 4.17), several differences are apparent.  In 

the initial forecast state at 0200 UTC, there is very little difference between the 

histograms of the ensemble mean and the ensemble members for the single-grid 

experiment (Fig. 4.17b, c).  By contrast, for inner-grid experiment CNTL, while 

similar numbers of grid volumes contain reflectivity values greater than 

approximately 30 dBZ in the ensemble mean and ensemble members, the individual 

members contain significantly more low-reflectivity values (< 30 dBZ) than the 

ensemble mean (Fig. 5.27).  This difference indicates greater spread in the inner-

grid CNTL ensemble presented here, because spread in the ensemble leads to 

smoothing of the ensemble mean and difference in the reflectivity distribution 

between the ensemble mean and ensemble members.  This difference is likely the 
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result of the mesoscale perturbations added to the nested-grid ensemble on the outer 

grid, as discussed in section 5.1.   

 The two biases identified in Chapter 4 appear to be present in the inner-grid 

CNTL ensemble.  During the forecast period (Fig. 5.27d-l), both the ensemble mean 

and ensemble members of CNTL exhibit a low bias weak (< 30 dBZ) precipitation 

and a high bias in intense (> 45 dBZ) precipitation at 0300, 0400, and 0500 UTC.  

Unlike the single grid experiments, however, the high bias in intense precipitation 

appears to be present primarily in individual ensemble members, and does not appear 

in the ensemble mean.  This can also be attributed to greater ensemble spread in the 

inner-grid experiments than in the single grid experiments, both from mesoscale 

perturbations added on the outer grid, and from the use of higher assumed 

observation errors for Z and Vr, as discussed in section 5.3.4.  The low bias in weak 

precipitation is present in both the ensemble members and ensemble mean, resulting 

from model error—specifically, the tendency of the model to predict too much strong 

convection compared to the observations.   
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Fig. 5.27: Domain-wide histograms of reflectivity intensity in CNTL at 0200, 0300, 
0400, and 0500 UTC.  Shown are WSR-88D observations interpolated to the model 
grid (left column), the ensemble mean (center column), and individual ensemble 
members normalized by the size of the ensemble (right column).  The vertical axis 
indicates the number of model grid volumes (in thousands) containing reflectivity of 
a given intensity. 
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 While similar biases are observed in the five inner-grid experiments 

assimilating radar data (see Table 5.1), the biases in experiment NoRAD, which 

assimilates only conventional data, differ significantly from those of the other five 

inner-grid experiments.  Domain-wide reflectivity histograms are shown below in 

Fig. 5.28 for NoRAD.  The initial ensemble mean in NoRAD, obtained from the 

0200 UTC ensemble member analyses, exhibits biases opposite to those seen in 

CNTL—specifically, the NoRAD ensemble mean has a low bias in intense 

precipitation (> 40 dBZ) and a strong high bias in light precipitation (< 30 dBZ).  

The 0200 UTC ensemble members in NoRAD show a high bias for light and 

moderate precipitation (< 40 dBZ).   

The high bias of weak precipitation in NoRAD at 0200 UTC is particularly 

pronounced and is present in both the ensemble mean and in individual ensemble 

members.  For precipitation between 15 and 20 dBZ, the model in NoRAD has 2 to 

3 times as many grid volumes with precipitation of a given intensity as are present in 

observations.  This bias quickly disappears, however; at later times, very little bias 

can be seen in light precipitation in either the NoRAD ensemble mean (Fig. 5.28e, h, 

k) or ensemble members (Fig. 5.28f, i, l).  At and after 0300 UTC the ensemble 

mean of NoRAD consistently contains substantially less moderate and heavy 

precipitation than the ensemble members, a quality indicative of significant 

smoothing in the mean due to variation within the ensemble (see Fig. 5.11). 
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Fig. 5.28: As Fig. 5.27 but for NoRAD. 
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 Even at 0500 UTC, significant differences can be seen in the reflectivity 

histograms between CNTL and NoRAD.  In the ensemble members (Fig. 5.27l, Fig. 

5.28l), CNTL shows a notable low bias of light precipitation that is absent in 

NoRAD.  This suggests that assimilation of radar data, while it substantially 

improves the representation of the storm in the ensemble (as discussed in earlier 

sections), is also responsible for altering the model state in such a way that a low bias 

in weak (< 30 dBZ) reflectivity is introduced.  In this case, this bias appears to be 

the result of an underestimation of stratiform regions of precipitation in the model 

and an overabundance of convection, particularly in the trailing line (see Fig. 5.13, 

Fig. 5.18, Fig. 5.23).  Identifying the cause of this bias and considering ways to 

mitigate it can be topics for future investigations. 

 

5.3.6  Ensemble Forecasts of Mesovortices 

 As in the single-grid forecast experiments presented in Chapter 4, each of the 

inner-grid forecast experiments (CNTL, NoCASA, NoRAD, PERT, R6, and 

CNTL_LOW) are manually examined at 0400 to identify significant low-level 

vortices, the method outlined in section 2.4.  The vortices identified are considered 

objects for the purpose of verification, and their locations are used along with 

equation 2.2 to generate forecasts of the probability of one or more significant 

(vertical vorticity ζ > 0.02 s-1) low-level vortices being present within 25 km of a 

point.  The probabilities thus calculated are shown for each of the inner-grid 

ensemble forecast experiments below in Fig. 5.29.  When comparing these results to 

those presented for the single-grid experiments in Fig. 4.20, it should be noted that 
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the inner-grid CNTL experiment (Fig. 5.29a) uses a single-microphysics ensemble, 

and thus, of the three single-grid experiments, most closely resembles the single-grid 

NoMMP experiment (Fig. 4.20d), and not the single-grid CNTL experiment (Fig. 

4.20a) which uses a mixed-microphysics ensemble.  Also, it should be remembered 

that the single-grid experiments presented in Fig. 4.20 use lower values of assumed 

observation error for Vr and Z during EnKF data assimilation, identical to those used 

in CNTL_LOW. 

 

 

Fig. 5.29:  Probability of significant low-level vortices within 25 km of a point at 
0400 UTC for (a) CNTL, (b) NoCASA, (c) NoRAD, (d) PERT, (e) R6, and (f) 
CNTL_LOW.  30 km CASA radar range rings are shown.  The position of the EF-1 
tornado reported beginning at 0354 UTC is indicated by the black star. 
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 Of the six inner-grid ensemble forecast experiments, five indicate 

probabilities of greater than 0.3 of significant low-level vortices being present in the 

vicinity of the tornadic mesovortex observed at 0400 UTC.  Only NoRAD (Fig. 

5.29c), which did not assimilate radar data, fails to indicate the presence of this 

significant low-level circulations in the vicinity of the mesovortex.  The greatest 

probability is indicated by experiment R6 (Fig. 5.29e), which predicts a maximum 

probability of greater than 0.7 and a probability field tightly concentrated around the 

location of the observed mesovortex.  CNTL (Fig. 5.29a) also exhibits a probability 

field concentrated near the observed mesovortex, though the maximum probability 

value in CNTL is lower, between 0.5 and 0.6.  The remaining three experiments 

(PERT, NoCASA, and CNTL_LOW) exhibit somewhat less-concentrated probability 

fields with maxima ranging between 0.3 and 0.5 (Fig. 5.29b, e, f). 

 The higher probability predicted in the vicinity of the tornadic mesovortex in 

R6 (Fig. 5.29e) as compared to CNTL (Fig. 5.29a) suggests that increasing the rain 

intercept parameter improves the ensemble forecast of the tornadic mesovortex 

observed in this case.  CNTL uses a fixed rain intercept parameter of 8.0·105, while 

R6 increases this by a factor of 5, using a fixed rain intercept parameter of 4.0·106.  

In the single-grid experiments presented in chapter 4, the ensemble forecasts are 

found to produce relatively weak cold pools of approximately 2 K (Fig. 4.18), 

compared to observed temperature drops of approximately 4 K during the passage of 

the MCS at nearby Oklahoma mesonet surface observation sites (not shown).  The 

increased rain intercept parameter used in R6 results in a drop size distribution that 

favors smaller raindrops. Because these smaller raindrops have a greater total surface 
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area, evaporation of raindrops is increased in R6, thus increasing the amount of 

cooling occurring as a result of the evaporation of raindrops.  While Snook and Xue 

(2008) found that a rain intercept parameter of 8.0·105 produced more realistic cold-

pool structure for a supercell case, this does not appear to hold true for the 8-9 May 

2007 MCS case studied here.   

The probabilistic forecast of mesovortices did not appear to benefit from a 

perturbed rain intercept parameter, as evidenced by the lower maximum and more 

diffuse probability distribution in PERT (Fig. 5.29d) as compared to that in CNTL 

(Fig. 5.29a).  CNTL already exhibits a relatively good forecast of the low-level 

mesovortex at 0400 UTC (Fig. 5.29a).  For this reason, the increased ensemble 

spread of PERT induced by the perturbation of the rain intercept parameter among its 

ensemble members has a negative impact on the mesovortex forecast.   

 The inclusion of CASA radar data significantly improves the 0400 UTC 

mesovortex forecast; this finding agrees with results from the single-grid forecast 

experiments presented in Chapter 4 (Fig. 4.20).  Compared to CNTL (Fig. 5.29a), 

NoCASA (Fig. 5.29b) predicts a lower maximum probability in the vicinity of the 

observed mesovortex, and slightly higher probabilities well to the north of the CASA 

domain.  These false alarms, indicated by the regions of probability between 0.1 and 

0.25 near the Oklahoma-Kansas border in several of the experiments, are the result of 

small circulations in the northern stratiform region of the MCS within a few 

ensemble members.  Inclusion of CASA radar data provides valuable information 

about the near-surface flow, which is important for prediction of features, such as 

mesovortices, that are strongly sensitive to low-level dynamics. 
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 Decreasing the assumed observation error for Vr and Z, as was done in 

CNTL_LOW (Fig. 5.29f) resulted in a poorer ensemble forecast of the near-surface 

mesovortex observed at 0400 UTC.  The probability field predicted by 

CNTL_LOW (Fig. 5.29f) somewhat resembles that of the NoMMP single-grid 

forecast (Fig. 4.20f)—this is not surprising considering that the single-grid NoMMP 

ensemble also used the smaller observation errors (2 dBZ for Z and 1 m s-1 for Vr) 

that CNTL_LOW uses.  This result supports the speculation of Snook et al. (2011) 

that the smaller observation errors used in that study and in CNTL_LOW are likely 

lower than optimal. 

 

5.4   Comparison to 3DVAR-based Forecast Results 

 One goal of the current set of nested grid experiments is to provide a platform 

for directly comparing EnKF and 3DVAR results. To facilitate this, three of the 

inner-grid experiments are configured to correspond closely to 3DVAR data 

assimilation and forecast experiments performed by Schenkman et al. (2011).  

Schenkman et al. (2011) use the ARPS 3DVAR system with a cloud analysis to 

assimilate conventional and radar data for the same case studied here.  The cloud 

analysis uses reflectivity data to estimate hydrometeor fields for rainwater, hail, and 

snow and replaces the background with these estimates anywhere that observations 

are available.  The cloud analysis provides a way of updating temperature, moisture 

and cloud microphysical fields within a 3DVAR framework.  With EnKF, flow-

dependent cross-covariances are used to directly assimilate reflectivity data for the 

update of all state variables including temperature and moisture. 



167 
 

Schenkman et al. (2011) report results from five experiments assimilating 

different combinations of Vr and Z observations from CASA and WSR-88D radars 

along with conventional observations. The inner-grid experiments CNTL, NoCASA, 

and NoRAD presented in this chapter use similar data and model settings to 

experiments CASAVrZ, 88DONLY, and NORAD from Schenkman et al. (2011). 

The relationship between experiments presented in this work and those of 

Schenkman et al. (2011) is detailed below in Table 5.3. 

 

Table 5.3: Comparison of similar experiments from this study and in Schenkman et 
al. (2011). 

 

Experiment 
from  

this work 

Experiment from 
Schenkman et al. (2011) 

Data Assimilated 

Conventional 
Data? 

WSR-88D 
Data? 

CASA  
Data? 

CNTL CASAVrZ Yes Yes Yes 

NoCASA 88DONLY Yes Yes No 

NoRAD NORAD Yes No No 

 

 The experiment design used in CNTL, NoRAD, and NoCASA is chosen to 

closely follow that of Schenkman et al. (2011).  Both investigations use the same 

ARPS model domain of 503 × 503 × 43 grid points with horizontal grid spacing of 2 

km in both the x- and y-directions, and the same stretched vertical coordinate with 

minimum vertical grid spacing of 100 m and average vertical grid spacing of 500 m.  

In both investigations, conventional and radar data are assimilated from 0100 to 0200 

UTC at 5 minute intervals, and the same types of radar data are assimilated in 

corresponding experiments in both investigations.   
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Though CNTL, NoCASA, and NoRAD are designed to correspond closely to 

experiments from Schenkman et al. (2011) as described above, some significant 

differences between the EnKF and 3DVAR experiments still exist.  Most notably, 

the EnKF experiments are nested within an outer 6-km domain initialized at 1800 

UTC, 8 May 2007 from the 8 May 2007 NCEP 1800 UTC NAM analysis; 

conventional data are assimilated hourly on this outer-grid ensemble between 2100 

UTC, 8 May 2007 and 0100 UTC, 9 May 2007. By contrast, the experiments of 

Schenkman et al. (2011) are directly initialized from a one-hour spinup forecast 

starting from a 3DVAR analysis using the 9 May 2007 NCEP 0000 UTC NAM 

analysis as its background.  The outer grid in the EnKF experiments is necessary to 

properly introduce mesoscale perturbations into the ensemble and provide needed 

variation in boundary conditions to the inner-grid ensemble.  

Some differences also exist in the data assimilated between the two 

investigations.  Two of the experiments of Schenkman et al. (2011) assimilate level-

III radar reflectivity observations from WSR-88D radar site KFDR in lieu of level-II 

data from that site (the level-II data are unavailable for KFDR during the data 

assimilation period).  Because level-III data store radar reflectivity on a rather 

coarse interval (5 dBZ), and thus can be expected to contain significantly larger 

observation errors than level-II radar data, no data from KFDR were assimilated in 

the EnKF experiments of this work.  Also, the format of radar data assimilated 

differs between the experiments presented here and those of Schenkman et al. (2011).  

In Schenkman et al. (2011), WSR-88D and CASA radar data are interpolated directly 

to the Cartesian ARPS model grid for use in 3DVAR data assimilation.  For the 



169 
 

EnKF experiments of this work, WSR-88D data are interpolated to Cartesian model 

coordinates in the x- and y-directions, but allowed to remain on radar elevation 

surfaces in the vertical direction.  CASA radar data are interpolated both radial by 

radial in time before being interpolated to the ARPS grid in the x- and y-directions, 

as described in section 5.1.  This choice of interpolation methodology is made to 

reduce interpolation error during EnKF data assimilation, though the impact of this 

difference in radar data format between the experiments presented here and those of 

Schenkman et al. (2011) is not expected to be large.  A third difference of note 

pertains to the use of Oklahoma mesonet data; in the EnKF experiments of this work, 

Oklahoma mesonet data are assimilated every 5 minutes, while in Schenkman et al. 

(2011) these data are assimilated hourly.  In future work with Alex Schenkman, 

3DVAR experiments are planned which will eliminate the differences in the use of 

Oklahoma Mesonet and KFDR level-III radar reflectivity data. 

Another challenge in comparing EnKF and 3DVAR results of the two 

investigations is the use of ensemble forecasts in this work compared to deterministic 

forecasts in Schenkman et al. (2011).  Because EnKF is an ensemble data 

assimilation method and produces an ensemble of analyses as its final state, it is 

natural to perform an ensemble forecast from an EnKF ensemble analysis.  By 

contrast, 3DVAR is a variational method that produces a single, deterministic best-

guess analysis.  While it is possible to perform an ensemble forecast based on a 

3DVAR analysis, the process is not as straightforward as it is when using EnKF.  

Because ensemble mean fields are significantly smoother than ensemble member 

fields at the same time and may differ significantly in structure (see Fig. 5.12, Fig. 
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5.13), it is not feasible to directly compare ensemble mean forecasts from EnKF 

experiments to the deterministic forecasts of Schenkman et al. (2011).  For this 

reason, direct comparisons with deterministic forecasts will be limited to individual 

ensemble members.  Ensemble member #35, a member which performed 

reasonably well in CNTL, NoCASA, and NoRAD, is chosen for this purpose. 

At 0350 UTC, just prior to the start of the reported tornadic activity at 0354 

UTC, the three experiments of Schenkman et al. (2011) each predict a MCS in the 

approximate location of the observed MCS as shown below in Fig. 5.30.  The 

3DVAR experiment assimilating only conventional data (Fig. 5.30b) predicts a very 

small line of convection near the center of the LEV, with little to no stratiform 

precipitation.  By contrast, at 0400 UTC, ensemble member #35 of EnKF 

experiment NoRAD predicts a much larger MCS (Fig. 5.31b), with the core of the 

convection slightly located several tens of kilometers south of the observed LEV.  

While the structure of the MCS predicted is in NoRAD is less linear than the MCS 

predicted in the 3DVAR experiment, the area of coverage of precipitation agrees 

much better with observations (Fig. 5.30a, Fig. 5.31a).  Furthermore, in NoRAD, 

the PM ensemble mean at this time (Fig. 5.8e) predicts the extent of the MCS better 

than the individual ensemble members, suggesting a benefit from the ensemble 

forecast that cannot be realized by the single deterministic forecast of Schenkman et 

al. (2011).  These results suggest that, on a system-wide scale, the EnKF forecast 

benefits from cross-covariances that are computed when using EnKF (and not 

computed when using 3DVAR) for assimilation of conventional data. 
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Fig. 5.30:  0350 UTC 9 May 2007 (a) observed reflectivity (shaded, dBZ) and 
forecast reflectivity (shaded, dBZ), and horizontal wind vectors (ms-1) from 
experiments (b) NORAD, (c) 88DONLY, and (d) CASAVrZ of Schenkman et al. 
(2011).  Reflectivity is plotted on vertical model grid level 7 (approximately 1100 m 
above the surface).  The “L” in panels (a), (c), and (d) marks the approximate 
observed location of the line-end vortex at 0350 UTC.  This figure is reprinted with 
permission from Fig. 11 of Schenkman et al. (2011). 
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Fig. 5.31:  0400 UTC 9 May 2007 (a) observed reflectivity (shaded, dBZ) and 
forecast reflectivity (shaded, dBZ), and horizontal wind (barbs) from ensemble 
member #35 of experiments (b) NoRAD, (c) NoCASA, and (d) CNTL.  Reflectivity is 
plotted on vertical model grid level 7 (approximately 1100 m above the surface).  
The “L” in panels (a), (c), and (d) marks the approximate observed location of the 
line-end vortex at 0400 UTC. 
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 In the 3DVAR experiment assimilating WSR-88D radar data and 

conventional data (but not CASA radar data), the predicted MCS (Fig. 5.30c) has a 

relatively well-defined line-end vortex (LEV) circulation, located just to the 

southeast of the observed LEV (Fig. 5.30a).  The MCS in the forecast from the 

3DVAR experiment has a relatively large region of stratiform rain to the north of the 

LEV, in good agreement with observations, as well as a single line of trailing 

convection located between the observed trailing and leading convective lines (Fig. 

5.30a).  The NoCASA ensemble member forecast (Fig. 5.31c) also predicts a MCS 

with a well-defined LEV, though the LEV in the NoCASA member is located 

approximately 15 km to the west of the observed LEV.  NoCASA also predicts a 

large region of stratiform rain to the north of the LEV, and unlike the forecast from 

the 3DVAR experiment of Schenkman et al. (2011), NoCASA predicts elements of 

both the trailing and leading convective lines, though the trailing convective line is 

stronger in NoCASA (Fig. 5.31c) while the leading line is stronger in observations 

(Fig. 5.31a).  At least near the CASA domain, however, neither of the convective 

lines predicted by NoCASA is as intense or well-organized as the single line in the 

3DVAR forecast. 

 Both the CNTL ensemble member (Fig. 5.31d) and the forecast from the 

3DVAR experiment assimilating CASA and WSR-88D radar data (Fig. 5.30d) 

predict a well-organized MCS with a LEV located very near the observed LEV.  In 

both investigations, the experiment assimilating both CASA and WSR-88D data 

produces the most accurate LEV forecast.  As for the experiments that assimilated 

WSR-88D radar data along with conventional observations, the 3DVAR experiment 
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predicts a single, strong trailing convective line, while the CNTL ensemble member 

predicts both the leading and trailing convective lines. 

 

 

Fig. 5.32:  As Fig. 5.30, but at 0450 UTC 9 May 2007.  This figure is reprinted 
with permission from Fig. 13 of Schenkman et al. (2011). 
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Fig. 5.33:  As Fig. 5.31, but at 0500 UTC 9 May 2007. 

 

 Near the end of the forecast period, the observed LEV has moved 

approximately 30 km to the north from its position at 0400 UTC (Fig. 5.32a).  The 

0450 UTC forecast from the 3DVAR experiment assimilating only conventional data 

(Fig. 5.32b) still predicts a much smaller MCS than observed, with a reflectivity 

pattern that compares poorly to observations (Fig. 5.32a).  The NoRAD ensemble 

member at 0500 UTC (Fig. 5.33b) predicts a much larger MCS, with a large region 
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of stratiform rain and, compared to 0400 UTC, improved linear structure.  While the 

NoRAD ensemble member compares only moderately well to observations (Fig. 

5.32a), the forecast of precipitation coverage in the NoRAD appears qualitatively 

superior to that of the forecast from the 3DVAR experiment assimilating only 

conventional data.   

 For both experiments assimilating radar data (Fig. 5.32c, d), the 3DVAR-

based forecasts predict an MCS that agrees well with observations, containing a 

strong LEV located 15-20 km to the east of the observed LEV location (Fig. 5.32a).  

The LEV is slightly stronger, and the position error slightly less, in the forecast from 

the 3DVAR experiment assimilating both CASA and WSR-88D radar data (Fig. 

5.32d).  Likewise, the NoCASA (Fig. 5.33c) and CNTL (Fig. 5.33d) ensemble 

members both predict an MCS with a well-defined LEV.  The LEV in the NoCASA 

ensemble member is located approximately 5-10 km to the southwest of the observed 

LEV, while in the CNTL ensemble member, it is located approximately 5-10 km to 

the east of the observed LEV; in both cases, the position error in the LEV forecast is 

less than in the corresponding 3DVAR-based forecast.  At 0500 UTC, the NoCASA 

and CNTL ensemble member forecasts predict only a single trailing line of 

convection, much like the 3DVAR-based forecasts, and both NoCASA and CNTL 

strongly over-predict the intensity of the trailing convective line (Fig. 5.33).  While 

the 3DVAR-based forecasts (Fig. 5.32) also over-predict the intensity of the trailing 

convective line, the amount and areal extent of the over-prediction is somewhat less.
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  Chapter 6:  Summary and Discussions 

6.1   Summary of Results 

 Two sets of experiments are conducted using an ensemble Kalman filter to 

assimilate conventional and/or radar data into the ARPS numerical weather 

prediction model for the case of a tornadic MCS/LEV that occurred over Texas and 

Oklahoma on 8-9 May 2007.  Three-hour forecasts are produced from the resulting 

ensemble analyses, with the goal of obtaining accurate short-term forecasts of radar 

reflectivity and meso-vortices.  The first set of experiments, conducted on a single 

model domain with 2-km grid spacing, examines the impact of assimilating CASA 

radar data and of using a mixed-microphysics ensemble.  The second set of 

experiments, conducted on a pair of nested ensemble domains using 6- and 2-km grid 

spacing, examines the impact of assimilating various conventional and radar data 

sources, of variation in the rain intercept parameter of the single-moment ice 

microphysics scheme (Lin et al. 1983) used in the model, and of variation in the 

assumed observation error used during EnKF data assimilation for radar data.  The 

results of these experiments are summarized below, beginning with the results of the 

single-grid experiments. 

 

6.1.1  Single-grid EnKF Analysis of Radar Data 
  
 In the single-grid EnKF data assimilation study, the impact of CASA radar 

data and the use of a mixed-microphysics ensemble are examined for the 8-9 May 

2007 tornadic MCS/LEV that occurred over Texas and Oklahoma.  Inclusion of 
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CASA data imparted a noticeable improvement on the mean ensemble analysis, 

particularly within the CASA domain. Using a multi-microphysics ensemble helps to 

improve the spread of the ensemble.  The best analysis is obtained in CNTL, which 

used both CASA data and a multi-microphysics ensemble.   

 As evidenced by a time-height analysis of vertical vorticity and updraft 

intensity, as well as the low-level wind field, assimilation of radar data from the 

network of 4 CASA radars improves the resulting analysis, with the most significant 

improvement in the ensemble mean analysis seen in the lowest few kilometers of the 

atmosphere where WSR-88D coverage is poorest.  The assimilation of CASA data 

does not have a very large impact on average RMS innovation and ensemble spread 

statistics, however the effect of assimilating CASA data is a slight reduction in RMS 

innovation at the WSR-88D radar sites whose coverage areas overlap the CASA 

network domain (KTLX and KVNX). This reduction is present in data for both Vr 

and Z, though the reduction is larger for Z, and is observed primarily during the first 

six assimilation cycles.  Assimilation of CASA data thus allows the EnSRF system 

to more quickly achieve its best estimate of the atmospheric state.  Assimilation of 

CASA data does not appear to have any significant effect on RMS ensemble spread 

of Vr or Z. 

 Using a mixed-microphysics ensemble during data assimilation greatly 

increases the average RMS ensemble spread of Z at all radar sites; in many cases the 

RMS ensemble spread of Z when using a mixed-microphysics ensemble is more than 

twice that observed when a single-microphysics ensemble is used.  This increase 

constitutes a significant improvement in the analysis, helping to alleviate the marked 
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under-dispersiveness of the analysis ensemble; the consistency ratio for reflectivity in 

the mixed-microphysics experiment is much closer to the theoretically-expected 

value of approximately 1.0 than that of the single-microphysics experiment.  Even 

in the mixed-microphysics experiment, however, under-dispersiveness is still present 

in Z, and all three experiments show marked under-dispersiveness in Vr, despite 

covariance inflation of 25% being applied.  The use of a mixed-microphysics 

ensemble, while beneficial, is not alone sufficient to counteract the low ensemble 

spread often observed in EnKF studies, at least for this case.  To address this issue, 

use of more robust multi-moment microphysical parameterizations within the 

ensemble, such as those used in Putnam et al. (2010), may be effective, as well as use 

of additive perturbations to horizontal wind variables, and application the relaxation 

technique of Zhang et al. (2004); such techniques can be topics for future study. 

 

6.1.2  Single-grid Deterministic and Ensemble Forecasts  

 Following the EnKF analysis of CASA and WSR-88D radar data, we perform 

3-hour deterministic and ensemble forecasts for the 8-9 May 2007 tornadic MCS, 

starting from ensemble Kalman filter analyses assimilating CASA and WSR-88D 

radar data. We examine the impact of assimilating CASA (in addition to WSR-88D) 

radar data on the forecast, and the impact of variation in the choice of model 

microphysics during both the assimilation and forecast periods. The choice of 

microphysical scheme makes a significant impact on forecast evolution for 

predictions of radar reflectivity and mesovortices. Deterministic forecast experiments 

initialized from the ensemble mean of analysis experiments using single- and mixed-
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microphysics ensembles differ noticeably in their low-level wind and reflectivity 

fields, and in particular the evolution of the vertical updraft structure within the 

system.  When model microphysics is varied for deterministic forecasts initialized 

from a single 0200 UTC EnKF ensemble mean analysis, the forecast using the NEM 

microphysical scheme is found to greatly under-forecast stratiform precipitation 

regions.  Similar results were seen in the ensemble forecast experiments, where 

members using the Lin or WSM6 scheme performed considerably better in prediction 

of low-level mesovortex locations than members using the NEM microphysical 

scheme. 

 From the ensemble forecast experiments, probabilistic predictions for radar 

reflectivity and low-level circulations are obtained.  A neighborhood ensemble 

probability approach (Schwartz et al. 2010) is applied to generate 60-180 minute 

probabilistic forecasts for radar reflectivity, and an object-oriented ensemble forecast 

approach is used to generate 120-160 minute probabilistic forecasts of low-level 

mesovortices.  Both the assimilation of CASA data and the use of a mixed-

microphysics ensemble during the EnKF data assimilation cycles have significant 

impacts on the resulting forecasts in terms of convective structure, and both have a 

positive impact on the forecast of low-level vortices.   

All ensemble forecast experiments successfully predict the dominant 

convective mode during the forecast period, indicating a MCS with an embedded 

LEV, and a convective line extending to the south, though the southern end of the 

convective line decays too quickly in the forecasts as a result of interaction with the 

southern domain boundary.  The ensemble forecasts show varying degrees of 
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success in predicting the location of tornadic mesovortices between 120 and 160 

minutes of forecast time; the control forecast, which uses a mixed-microphysics 

ensemble and assimilates CASA radar data, performs particularly well, predicting a 

strong, localized probability maximum of 0.65 less than 5 km from the observed 

mesovortex that spawned the 0354 UTC EF-1 Minco tornado.  The experiment that 

does not assimilate CASA data and the experiment using a single-microphysics 

ensemble predict comparatively diffuse probability fields, with lower probabilities of 

0.43 and 0.35 respectively at the observed location of the tornadic mesovortex. 

 

6.1.3  Nested-grid Experiments Assimilating Conventional and Radar Data  

 Expanding upon the single-grid EnKF data assimilation and ensemble 

forecast experiments presented in chapters 3 and 4, we perform a set of nested-grid 

EnKF experiments, also using the 8-9 May 2007 tornadic MCS as a case study.  In 

these experiments, conventional data are assimilated in addition to radar data, and 

mesoscale perturbations are introduced on the outer-nest ensemble in addition to the 

assimilation of conventional data.  A 40-member outer-nest ensemble with 6 km 

horizontal grid spacing is used, within which are embedded six inner-nest 

experiments.  In addition to the control experiment, the experiments performed can 

be broken down into three categories: (1) two experiments to investigate the impact 

of assimilating radar data from the WSR-88D and CASA radar networks, (2) two 

experiments to investigate the impact of varying the rain intercept parameter of the 

model microphysical scheme, and (3) one experiment investigating the impact of 

changing the assumed observation error for radar reflectivity and radial velocity 
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observations.  Ensemble forecasts of radar reflectivity were produced, analyzed, and 

verified against WSR-88D observations, and biases in these forecasts were 

considered.  Forecasts of the tornadic mesovortex observed at 0400 UTC were also 

performed and compared among experiments and against the observed mesovortex. 

 As expected, the control experiment, which assimilated CASA and WSR-88D 

radar data in addition to conventional data, substantially outperforms the experiment 

that assimilated only conventional data (i.e. no radar data) in terms of the structure 

and location of the MCS predicted.  In particular, many members of the control 

experiment predict a well-defined line-end vortex that follows a similar path to the 

observed line-end circulation, while almost no members do in the experiment 

assimilating only conventional data.  Even when no radar data are assimilated, 

however, the resulting ensemble forecast is found to retain useful skill throughout the 

3-hour forecast period.  When WSR-88D radar data and conventional data are 

assimilated, but CASA data are not, the ensemble forecast performs similarly to the 

control experiment in qualitative prediction of the MCS evolution and in objective 

verification using the ROC skill score and Brier score.  With regard to probabilistic 

forecasts of the tornadic mesovortex, however, the control experiment outperforms 

the experiment that did not assimilate CASA data. 

 Experiments are performed to test two different variations to the model 

microphysical scheme: (1) increasing the rain intercept parameter by a factor of five, 

and (2) randomly varying the rain intercept parameter between the default value and 

10 times the default value.  Both variations are found to improve the resulting 

ensemble forecasts of radar reflectivity.  The predicted MCS looks qualitatively 
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similar in the probability-matched ensemble mean forecast of the control experiment 

and the experiments with variation in the model microphysics, but the trailing 

convective line of the MCS is better predicted in the two experiments using an 

altered rain intercept parameter.  The control experiment performs slightly better 

than the experiment with the randomly varying rain intercept parameter in prediction 

of the tornadic mesovortex occurring at 0400 UTC, but the experiment with a 

uniformly increased rain intercept parameter performs the best of all six experiments 

in its probabilistic prediction of the tornadic mesovortex. 

 Decreasing the assumed observation error of radar reflectivity from 3 dBZ to 

2 dBZ, and of radial velocity from 2 ms-1 to 1 ms-1, results in negative impacts to 

both reflectivity forecasts and probabilistic forecasts of the tornadic mesovortex.  

The experiment using the reduced observation errors during assimilation produces an 

ensemble forecast that has larger errors in the trailing convective line than the control 

experiment.  The control experiment has a substantially higher ensemble spread for 

radar reflectivity compared to the experiment with reduced observation error, and 

produces a substantially better probabilistic forecast of the tornadic mesovortex.  

 

6.2   Concluding Remarks 

 Particularly for a tornadic system of this nature, the horizontal grid spacing 

used in this study (2 km) is insufficient to fully capture all important sub-storm-scale 

processes occurring within the domain.  While 2 km horizontal grid spacing is 

sufficient to capture the line-end vortex and near-surface mesovortex circulations 
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observed in the 8-9 May 2007 case, a significantly smaller horizontal grid spacing 

(on the order of 100 m) would be necessary to capture tornado-scale circulations. 

 In addition, we note the challenges of working with X-band Doppler radar 

data, perhaps the greatest of which is attenuation.  While S-band radars, such as the 

WSR-88D network suffer very little attenuation, even through heavy precipitation, 

attenuation in X-band radar data is much more significant.  An X-band radar beam 

passing through more than approximately 10 km of heavy precipitation ( > 50 dBZ) 

is attenuated completely, leaving a “shadow” beyond the range where complete 

attenuation occurred.  Additionally, even when attenuation is incomplete, error 

within the attenuation correction algorithm leads to discrepancy between X-band and 

S-band observations of the same volume.  While CASA X-band data are assimilated 

with reasonable success when a minimum threshold of 20 dBZ is applied to the 

CASA data, applying this threshold eliminates the ability of the CASA radar data to 

suppress spurious convection via assimilation of clear-air data.  Finding effective 

ways to better correct for attenuation, objectively identify areas where complete 

attenuation has occurred, and to mitigate the effects of attenuation upon data 

assimilation will be vital in improving future data assimilation endeavors using X-

band radar data.   

 We also point out the value of polarimetric radar data for purposes of data 

assimilation.  Polarimetric variables such as differential reflectivity and specific 

differential phase have been shown to be useful in hydrometeor classification, an area 

which would help to address uncertainty within the microphysical parameterizations 

of the model.  While challenges remain in developing well-suited forward operators 
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(Jung et al. 2008), such dual-polarimetric radar data hold great promise for 

improving the analysis of the atmospheric state.  While this study was limited by the 

single-polarization data available from the WSR-88D network for the case study 

chosen, and by the limited nature of existing polarimetric forward operators, the 

upcoming dual-polarization WSR-88D upgrade holds great promise for future EnKF 

studies using polarimetric radar data. 

 Future improvement in the representation of microphysical processes within 

NWP models also holds promise for improved storm-scale EnKF data assimilation.  

While skillful forecasts are obtained in this study using single-moment model 

microphysical schemes, such schemes are suboptimal for convective-scale EnKF.  

Single-moment microphysical schemes assume a constant drop size distribution for 

rain, hail, and snow; for example, in the Lin et al. (1983) scheme, an exponential 

distribution is assumed, tunable by changing the intercept parameter for each 

hydrometeor species.  In nature, however, the drop size distribution does not 

necessarily conform to an exponential distribution, and the intercept parameter can 

vary significantly within a convective system, particularly for large, linear systems 

such as the 8-9 May 2007 tornadic MCS studied here.  Multiple-moment 

microphysical schemes hold promise for improving the representation of 

hydrometeors within the model; preliminary work by Putnam et al. (2010) suggests 

that using a two-moment microphysical scheme during EnKF assimilation of radar 

data and during the subsequent forecast can improve the quality of forecasts for this 

case. 

  The results of this study are encouraging with regard to development of a 
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future warn-on-forecast severe weather warning system (Stensrud et al. 2009), 

suggesting that, at least for the case studied, it is possible to provide useful ensemble 

predictions of convective hazards, including areas of heavy precipitation and tornadic 

mesovortices, with lead times of 1 to 3 hours. We do note, however, that the 

robustness of such predictions still needs to be tested and calibrated over a large 

number of cases including a wide range of convective tornadic and non-tornadic 

storms, and that objective identification and verification of tornado-scale vortices is 

non-trivial (Potvin et al. 2009).  At present, the high computational cost of 

performing such high-resolution predictions in real-time remains a barrier to 

operational implementation which will need to be addressed with algorithm and code 

optimizations and access to petascale computing systems. Further improvement in 

the prediction model and the inclusion of other available observations are also 

important; such work is ongoing with this and other cases. Though only a single case 

is used in the studies presented herein, careful case studies of this nature represent an 

essential first step towards full systematic testing and operational implementation of 

a warn-on-forecast system. 
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