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Chapter 1

Introduction

Let O(1,n) = {A € GL(n + 1;R) | A’'SA = S}, where S = <_01 10) _

Let SO¢(1,n) be the identity component of O(1, n), which is also the identity
component of SO(1,n), and consider a subgroup of SOy(1,n) consisting of all

matrices of the form ((1) g) , where B € SO(n). Call the embedded subgroup

SO(n) again.
Note the Lie algebra o(1,n) is given by
o(1,n) = {X € gl(n + 1;R)| XS + SX = 0}.

Now, think of a left-invariant metric on SO¢(1,n), induced from an inner
product (-, -) on the Lie algebra, so(1,n), defined as follows :

1
(A,B) = 5 trace(A" B) for A, B € so(1,n).
If ¢ is a Killing-Cartan form, then
o(U,V)==2(n—1)(U,V) for U,V € o(n) C o(1,n),

o(X,Y)= 2(n-1)(X,Y) for X,Y € o(n)* Co(1,n),
p(X,V)=0=(X,V) for X € o(n)*, V € 0(n).

Note Isomg(SOg(1,n)) = SO¢(1,n) x SO(n), and with the Riemannian met-
ric on SOg(1,n) x SO(n) which makes the projection SO(n) — SOy (1,7n)/SO(n)
Riemannian, the quotient SOg(1,n)/SO(n) becomes isometric to the hyperbolic
space H".

If n=2, then it can be easily shown that for a given geodesic triangle in H?,
the distance by the holonomy displacement of the boundary curve of the given
geodesic triangle in the fiber is as same as the area of the triangle. Furthermore,



the direction of the boundary curve of the given geodesic triangle in H? will
determine the direction of its holonomy displacement. All of these are dealt
with in Chapter 4.

Can a similar result be obtained in a topological disk in H"?

If it is a geodesic triangle, something similar can be easily said from the
result for the case n=2 and Fact 2, mentioned in Chapter 5. But, what can be
done for a general disk in H"?

To answer this question, we intend to approximate the given disk with
geodesic triangles, since there exists a unique totally geodesic triangle for any 3
different points in H". And then we intend to construct a curve in the fiber by
using the property for the case n=2. But how can we approximate it? Though
each geodesic triangle and its boundary curve determine the direction of each
holonomy displacement, some linear ordering of geodesic triangles and the in-
duced ordering of their boundary curves may not represent the boundary curve
of their union. If the given disk is contained in an isometrically embedded
plane H? in H" , something similar can be said from a curve in the fiber SO(n),
made from the result for the case n=2 and Fact 2, mentioned in Chapter 5,
since holonomy displacements are happening in the one-dimensional vertical
subgroup. Though the different orderings of triangles give different curves in
the vertical space, they will meet at the same ending point. So, with respect
to any ordering, the holonomy displacement of the boundary curve of the given
disk can be approximated. But in other cases, what can be obtained? Some-
thing similar could be done if the fiber SO(n) were abelian, which would make
the ending points of any other different two curves in the fiber, induced from
different linear orderings, be the same. But the fiber SO(n) is not abelian for
n > 3. The difficult part is that not only the approximation of the area but
also the linear ordering of the triangles on each step for the approximation of
the boundary curve of the disk should be considered at the same time. This
is one of the hardest parts in this paper, which is dealt with in Chapter 2
and Appendices A and B. Furthermore, can holonomy displacements by the
lifts of piecewise geodesics approaching to the boundary of the given topological
disk in the base space converge to the holonomy displacement by the lift of the
boundary? It will be discussed in Section 5.3.

After the case n=2 is explained in Chapter 4, our following main result for
the general case will be explained in Chapter 5.

Theorem 1.0.1 Let 7 : SOy(1,n) — H" be the Riemannian submersion given
as before. Then, given a topological disk S, with smooth interior and with e =

7(e) on its piecewise smooth boundary, in H", there is a C'- curve f :[0,1] —
SO(n) C SOy(1,n) with f(0) = e such that

o f(1) = f(0O)"'f(1) = the difference by the holonomy induced from the
boundary of S in view of right multiplication



o the length of the curve f = the area of S.

Corollary 1.0.2 IfS is a piecewise smooth disk in H", then there is a piecewise
C'- curve f:]0,1] = SO(n) C SOy(1,n) with the same properties of Theorem
1.0.1.

Recall some definitions first. Let 7 : M — B denote a submersion, where
M is a Riemannian manifold. The horizontal distribution of w is the orthogonal
complement H = V' of the vertical distribution V, defined to be the kernel
of m,, i.e., the collection of tangent spaces to fibers. If B is a Riemannian
manifold, then 7 is called a Riemannian submersion if it is isometric when
restricted to the horizontal distribution, i.e., |m.x| = |z| for all x € H. For a
differentiable curve ¢ : [a,b] — B, a curve ¢ : [a,b] — M is a horizontal lift
of cif Toé = c and &(t) € My for each t € [a,b]. Given p € 7 1(c(a)),
the holonomy displacement of p associated to c¢ is defined to be ¢&(b), where
¢(a) = p. In this paper, ‘holonomy displacement’ means ‘holonomy displacement
of e, where e is the identity of SOg(1,n). Note elements in 7! (c(a)) induce
a map h, : ﬂ_l(c(a)) — 7T_1(C<b>), which is called holonomy diffeomorphism
assoicated to c. If ¢ is a geodesic and 7 : (—¢,€) — 7 *(c(a)) is a differentiable
curve, consider a variation V : [a,b] X (—€,€) — M such that V(a,s) = 7(s)
for s € (—e,€) and that for each s € (—¢,€), t — V(t,s) is a horizontal lifting
of ¢ at y(s). Then, for each s € (—¢,¢€), t — ViDs(t,s) is a Jacobi field along a
horizontal geodesic t — V (¢, s) called a holonomy field. A polytope is a piecewise
totally geodesic surface, homeomorphic to a disk, whose boundary consists of
piecewise geodesic curves.



Chapter 2

Strategy for approximation

The approximation procedure in this paper is similar to that of ‘Factorization
Lemma’, given by Lichnerowicz, Theorie Globale des Connexions et des Groupes
d’Holonomie , [3, vol 1, p.284], so understanding the lemma will be helpful for
this chapter. For the difference, focus on properties of triangles mentioned in
number 6. The reason for introducing another approximation will be given in
Subsection 5.4.7.

1. For any 3 points in H", there exists a unique totally geodesic triangle
with these vertices.

2. Let AABC be a totally geodesic triangle in H" and consider a piecewise
geodesic from € = 7(e) to A, where e is the identity of SOy(1,n).

Cc

g
A

B

~ Then, it will be shown that the holonomy displacement of v = eA-AB-BC-
CA- Aeis g € SO(n), where

the length of eg = the area of A ABC'.

3. Let AABC and AACD be two given geodesic triangles in H" and consider
a piecewise geodesic curve from e to A.

Consider two curves v, = eA-AB-BC-CA-Aé and v, = eA-AC-CD-DA-Ae .
Then the holonomy displacement of 71 * 72 equals to that of 73 = eA-AB- BC'-

CD-DA- Aé.



_ In general, if 1 =¢A-AB-BC-CD-DA-Aéand vy, =¢éA-AD-DC-CE-
ED-DA- Aeé are two curves in H" , then the holonomy displacement of y; 72
equals to that of 3 =eA-AB-BC-CE-ED-DA- Ae .

4. What’s the difficulty of the approximation?
Consider three given geodesic triangles AABC' , NACE , ACDE in H" .

Then, for three curves vy = €A-AB-BC-C'A-Aé, v =eA-AC-CE-EA-Ae
and v3 = eA-AE-EC -CD - DE - EA - Aé , the horizontal lift of 71 * 75 * 3
equals to that of 74 = €A - AB- BC - CD - DE - EA - Aé , which relates to the
boundary of the polygon ABC'DE' . But the horizontal lift of v; * v3 * 75 equals
toys =eA-AB-BC-CA-AE-EC-CD-DE-FEA-AC-CE-EA- Aé , which
does not relate to the boundary of the polygon ABC'DE . Thus, for our object,
the order of curves is important, which relates to the order of triangles.

5. Refer to the number 4.




Consider a curve 73 = éA - AC - CD - DE - EC - CA - Aé . Though the
order (1, 72, 73) of curves relates to the order of the triangles, induced by
the order (71, 72, 73) of curves, the horizontal lift of ~; % 75 % 43 equals to
Ay =eA-AB-BC-CE-EA-AC-CD-DE-EC-CA- Ae , which does not relate
to the boundary of the polygon ABCDE . Thus, it is also important how to
make a curve that represents a given triangle. This problem in the construction
of a curve for each triangle will be solved by introducing the starting point and
the ending point of each triangle in Appendix A.

6. Instead of approximating a given topological disk in H" directly, we will
approximate D? by triangles, and approximate the given disk in H" by the
diffeomorphism from D? to it. In fact, in Appendix A, for each n =0,1,2,---,
we will construct a subdivision D,, of the interval [0, 1] and an ordered set A,
consisting of triangles having the following properties:

Property 1.) Given a non-first element L in A, the boundary of (J{M €
A,|M < L} contains a side of L, which will be divided into two line segments in
its barycentric subdivision, where one of two line segments will become a side
of the first triangle and the other one will become a side of the second triangle
in the barycentric subdivision of L.

Property 2.) Given L € A,, , | J{M € A,|M < L} is diffeomorphic to the
disk D2

Property 3.) Assume L € A, and six triangles My, My, -+, Mg € A1,
obtained from the barycentric subdivision of L, follows the order of i =1,2,---6
in A,11. Then the starting points of M; and L are same. Also are the ending
points of Mg and L.

Property 4.) Assume L, M € A,, and that M is the next element of L in A,
for n > 1.
Then, The ending point of L and the starting point of M are same.

Furthermore, we can give one more property without loss of generality:

Property 5.) (J{M € A,|M < L} does not contain such a boundary point
of D? that the the boundary of the given topological disk in H" is not smooth
at its image.



Chapter 3

Definitions, Triangles and
Curves

All materials in this chapter will be dealt with in Appendix B concretely. And
‘a constant speed curve’ in this paper means ‘a piecewise constant speed curve.’

3.1 Notations

f#*g:]0,1] — H™ is an ordinary juxtaposition of curves f, g : [0, 1] — H". And,
for a given curve ¢ : [0, 1] — H", ¢ represents a curve whose direction is opposite
to that of ¢, that is, ¢ : [0,1] — H" is given by ¢(t) = ¢(1 — t).

3.2 Simplification v of a curve g : [a,b] — H"

Given a curve g : [a,b] — S, we can think of a curve v : [a,b] — S whose
direction is one-sided as follows :

If we can find ¢,d, e € (a,b) such that a < ¢ < d < e < b and Im(gleq) =
Im(g|i4,q) and that the directions of g|.4 and g|4.) are one-sided but opposite
from each other, then we can think of the new curve g : [a,b] — D? from the
remaining part gl and g|ep by translating in the domain and rescaling as
follows :

Note g(c) = g(e).

Consider two curves g; : [a,d] — H" and g5 : [d,b] — H"™ given by

g(c_a(t—a)+a> = gi(t) for t € [a,d]

d—a
and

g <2:—Z(t —b)+ b) = go(t) for t € [d, ],

7



and then let g = g1 * go.

From a curve obtained by doing this work again and again and by
reparametrizing it, we can think of a piecewise constant speed curve 7 : [a, b] —
S which we want.

3.3 The definition of D, j,, t], t5

1. .

k )
n 1 1 J . k=1 pn—k+1
( kl{ §+2k+1'2k—1.6n—k+1|j:0’1’2""’2 -6
i=1

1=

Think of the usual order D,, and regard

01112 1_16"1+1 1 cD
"2 6772 67 T2 2 672 22 20.6n "
as Oth, 1st, 2nd, ---, 6"th, 6""'th, --- element, respectively.

Now, define functions
jn : Dn — {07172737"'}

ty: (D, — {0}) U{1} = D,
ty : D, — { the last element of D, } — D,

as follows :
Jn(s) =7 for the j-th element s € D,,.

t7(s) is the (j — 1)-th element in D,, for a given j-th element s € D,, — {0}
and t7(1) is the last element in D,,.

t5(s) is the (j + 1)-th element in D,, for a given j-th element s € D,, — { the
last element of D, }.

141 n n -=n n P11 n n
3.4 Definition of 4, ¢y, Ty, 1€, 1€, Py, and Py
on the disk D?

Recall, from Properties mentioned later in Chapter 2, that the union U; of
triangles from 1st one to i-th one is diffeomorphic to a disk.

8



Let n € {1,2,3,---} and ty € D,, be given.

With respect to the ordering of D, we will define v, cf; , ¢ and ¢} induc-
tively for each fixed n:

Case 1) to is the first element in D, , in fact, to = 3 - =

The orientation at the barycenter of T, € Ay will give the direction of the
boundary curve of the first triangle in A,,.

Then
¢ :[0,1] = {basepoint} C D*
¢y :[0,1] — {basepoint} C D?
oy :[0,1] = D?
and

Yo 0,1] — D?

can be thought, where ¢ and ~; are the piecewise smooth boundary curve of
the first triangle in A,, with piecewise constant speed and the direction of the
boundary curve is induced from the given orientation.

Note vy can be regarded as the simplification of cf * ¢f * ci. .

We will call v the holonomy curve at time t = to.

Now, consider the path from the basepoint to the ending point of the first
triangle in n-step along the opposite direction of the holonomy curve ~; at
t =ty , which is a piecewise smooth curve with piecewise constant speed. Then
from the path, we can define a piecewise smooth curve

10?0 : [O, 1] — l)2
with piecewise constant speed. And its opposite direction can make us define
ey 0,1] = D2
Define a piecewise smooth curve
Yy [0,1] = D?

with piecewise constant speed as the boundary curve of the 1st triangle in the
n-th step, where the curve is a loop at the ending point of the first triangle and
the direction of the boundary curve is induced from the given orientation.

Case 2) tg is the j-th element in D,, i.e., j,(to) = j, where j > 2



Let t; be the (j — 1)-th element in D, i.e., t7(ty) = t; and j,(t1) = j — 1,
where j —1 > 1.

Consider the path from the basepoint to the starting point of the j-th triangle
in the n-th step along the opposite direction of the holonomy curve 4}, at t = t;
, which is a piecewise smooth one with constant speed . Then from the path,
we can define a piecewise smooth curve

¢} [0,1] = 0U;_, C D?

with constant speed, where U;_; is the union of triangle in A,, from the 1st one
to the (j — 1)-th one.
And its opposite direction can make us define

¢y :[0,1] = 0U;_y C D

Define a piecewise smooth curve

A 0,1] — D?

with constant speed as the boundary curve of the j-th triangle in the n-th step,
where the curve is a loop at the starting point of the triangle and the direction
of the boundary curve is induced from the given orientation.

Now define a piecewise smooth curve

v :[0,1] = 0U; C D?

with constant speed from the simplification of 7} * ¢ * op * ¢ , where Uj is the
union of triangle in A,, from the 1st one to the j-th one. The new curve will be
also called the holonomy curve at time t =t .

Now, consider the path from the basepoint to the ending point of the j-th
triangle in the n-th step along the opposite direction of the holonomy curve ~;
at t = to , which is a piecewise smooth one with constant speed. Then from the
path, we can define a piecewise smooth curve

iy 2 0,1] = 0U; € D?

with constant speed. And its opposite direction can make us define

1y [0,1] = oU; € D,

Define a piecewise smooth curve

Yy 2 [0,1] = D?

10



with constant speed as the boundary curve of the j-th triangle in the n-th
step, where the curve is a loop at the ending point of the j-th triangle and the
direction of the boundary curve is induced from the given orientation.

3.5  The simplification of ¢ * icg

For each n > 1 and 0 # ty € D,, where tq is the j,(to)-th element in D,,, the

simplification of ¢ * 1cf is a curve along the boundary of j,(f)-th triangle in

A,, with opposite direction to the given orientation such that it starts from the

starting point of the triangle and that its image consists of the following sets :
one point, one side, two sides or the boundary of the triangle.

3.6 The induced curves on the surface S C H"
and totally geodesic planes in H"

Let ® : D? — S be a given diffcomorphism. Then we can think of triangles in
S induced from the barycentric subdivision on D? on each n-th step. We will
use  ~ " notation for the induced triangles and curves in S , that is ,

T = &(T) for T € A,

and

~nosm o s=n S sm gn SN
/ytoa Ctoa Sptov Ctov lct07 wtoa 1Ct07

which are piecewise smooth curves with constant speed such that

[m(:yg)) :[m(q)o%;)
Im(cy) = Im(®ocy)
Im(cﬁz)) = [m(q)ogpz))

Im(cy,) = Im(® o &)

0

11



Im(,¢;) = Im(® o ¢y, )
Im(yp) = Im(® oy}

Im(,¢,) = Im(® o ¢}

and whose direction relates to that of v, ¢, i, ¢, 1¢h , ¥r , 1, , Tespectively.

Now with respect to each triangle in S, we can think of a totally geodesic
triangle with same vertices in H" . So, each step will induce the similar concept
, i.e. triangles and curves, on the induced pleated surface consisting of totally

geodesic triangles and we’ll use * A ’ notation for them. In other words, we can
think of

7 A Am AN M 2n NURR
T e An7 Yo Ctor Ptor Ctos 1Ctys wtm 1G4
n An . An  2n n Tn an . . . . n -
where the curves Y., Cit, @i, G s 1Cy,, Vi 5 1C;,, are piecewise geodesics in H", in-
duced from the boundaries of totally geodesic triangles T, and are relating to the
; o R RS = R S =~ L n..n n  =n n no_=n

PIeVIOUS CUrves %y , Cy s Proy Croy 161 % 1G4, 111 S and Yt Ctos Ptor Ctor 1Ctys % 1C,
D2
in D~.

12



Chapter 4
SO(2) — SO(1,2) — H?

For an ordered orthonormal basis {E, Es, E3} of 0(1,2), given by

0 0
0 —1],
1 0

,and E3 = [El, EQ] =

o O O

1
0
0

o O O

0
Ey=10
1

o O O

1
0],E;, =
0

o = O

let a triple (Es, E1, E3) be the orientation of SOy(1,2). Then, Fact(5), men-
tioned in Chapter 5, says that the induced orientation (Es, E1) on o(2)* is
comparable to the counterclockwise orientation on H?.

For t € R, put

1 0 0
U(t) = exp(tk3) = [0 cost —sint
0 sint cost

Let ¢ : [to,t3] — H? be a simple-closed arc-length parameterized piecewise-
smooth curve representing a geodesic triangle in H? with the counterclockwise
orientation:

o(ts) = o{ty) clto)=c(ts)
A A
c(t o) o ro
apy>0 or apy<o0

More precisely, ¢ is continuous on [tg, t3] and smooth on (tg, t1) U (¢, t2) U (t2, t3)
, where c(tg) = c(t3), c(t1) and ¢(t3) are vertices of the given geodesic triangle.

13



Let

a be the angle from ¢(ty") to — é(t37),
3 be the angle from ¢(t1) to — ¢(t;7), and
v be the angle from ¢(ty™) to — ¢(t27) .

Then, either a, 5,7 > 0 or «, 3,y < 0 holds.

Lemma 4.0.1 Under the above condition, let ¢ : [to,t3] — SOy(1,2) be a
horizontal lift of c. Then, the relation between the holonomy and the area of a
geodesic triangle is given by

c(to) " olts) = (W~ ot B 491))

where

5= 1 ifa,B,y>0
n _1 if&,ﬁ,’y<0

Furthermore, m — | o+ B + | is the area of the geodesic triangle.

| |

ofty) cfty)

ot =clts) ofty A=olty) g,

a,B,y>0 or o, B,y<0

Proof) Let m: SOy(1,2) — H? be the given Riemannian submersion. Recall
Fact (5), mentioned in Chapter 5. For any k& € SO(2), the restriction Ady,2)t
of Ady(+) : o(1,2) — 0(1,2) to 0(2)* is an automorphism of 0(2)*, which is
projected to the action of K on T7r(e)]l-]l2 and the action is in fact a rotation if
n = 2. For —¢(t37) and its horizontal lift z at &(¢), find A € o(2)* satisfying

Lé(to)—l*x = Ae.

14



Then Fact (5) says that
Laty)-1, ¢(to™) = (Ady(a)A)e.
And Fact (1), mentioned in Chapter 5, says that
c(t) = &(to) - exp((t — to) AdyyA)  for ¢ € [to, t1],

SO '
Lé(tl)*l* c(t) = (Ad\lf(oc)A)e-

Now from Fact (5), we get
Ley-1, e(tr ™) = (Ady(p) (— Ady()4)), = (Adwmw@ v e,
and from Fact (1)
c(t) = é(tr) - exp((t — t1) Ady(m)y v w@A) for t € [t to],

S0
Le(tz)1, €(ta”) = (Adwm)w(@) w(p)A)e-
If we apply Fact (1) and (5) again, then we obtain

Le(tay-1, €(t2") = (Ady(y) (= Ady(mywioyw(nA)), = (Ady(a)u(@g)vmAe

and
(t) = &(ts) - exp((t — t2) Ady(ayw(pumAd) for t € [ta, 3],
SO
Lit)-1,6(ts7) = (Adw(a)w(s) wmAe,
that is,

—&(ts™) = L), ,(—Adwayw@wmA)e = Lis), . (Adwmw(@) v wmAe.

Therefore,

™ (é(to) . etA)

W(E(ts) _ et(Admw)-waww)ww)A))

( (to) - €

(¢(to) - etAdéuorl~a<t3>»ww)wm)‘wmww‘)

tAd

|
3
™

)Lt e v w v A (1) T E(t)

I
3

because

é(t) " - E(ts) € SO(2)

and
Be so(2)" and k€ SO2) = k-e'P - k1 = 0B,

15



Thus, we get

A = Adz )1 a(13) 0 () w(0) 0 (3) W) A

and so
Eto) ™t - E(ts) - U(m+ (a+B+7)) = ¥(2nm) for somen € Z .

Therefore,

&to) " Ets) = ¥ (2nm) (‘I’(ﬂ' +(a+ 0+ 7)))_1

=<\I/(7T+((I+B+’Y))>i
V(-7 —(a+L+7)) if a,8,v>0
{ (\1/ T+ 0z+ﬁ+7))) - if o, 5,7 <0
(m — oz—|—6+7)) | if a, B,7v>0

w(x FER ) e <o

1 ifa,B,7>0
:<\Il(7r |a+6+v|)),where5:{ _1 ifZ,§,3<o.

Remark 4.0.2 Recall that the induced orientation (Ey, Ey) on o(2)* is compa-
rable to the counterclockwise one on H2. This lemma says that the orientation
(Es, Ev, E3) of SOy(1,2) is comparable to the usual one (e, e, es) in the 3-
dimensional Euclidean space R3.
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Chapter 5

Liftings in
SO(n) — SOy(1,n) — H"

This chapter is the proof of Theorem 1.0.1 and its Corollary 1.0.2.

5.1 Preliminaries on the Riemannian submer-
sion 7 : SOy(1,n) — H"

Let m : SOg(1,n) — H" be the given Riemannian submersion. In fact, this is
the quotient of the isometric right translation by SO(n) and H" is isometric to
SO (1,7)/SO(n).

Let G =SO¢(1,n) , K =S0(n) , and g and ¢ be their Lie algebras, respec-
tively. Then we have the following facts, see [KN; vol 2., Example 10.2] and
[GW; Section 1.4, Section2.4].

Facts

1. For X € ¢4, t +— g exp (tX) : (—00,00) — G is a horizontal geodesic for
any g € G.

2. For X,Y € €& with 0 # [X,Y] € & let h be a Lie subalgebra
Span{X,Y,[X,Y]} C g. Then its related subgroup H is isometric to
SOo(1,2). Furthermore, the riemannian submersion SOg(1,n) — SO(n)
can be restricted to (H = SOg(1,2)) — SO(2).

3. Each fiber gK, g € G, is totally geodesic. More precisely, for U € ¢,

t — g exp(tU) : (—o0,00) — gK C G is a vertical geodesic for any
g € G. Especially, if ¢ € K, then its image lies on K = eK. Furthermore,

17



for any piecewise smooth curve ¢ : [a,b] — H", its induced holonomy
he : 7Y (c(a)) = 7 1(c(b)) is an isometry.

. For any k € K, the right translation Ry : G — G by k, Ri(g) = gk, is

an isometry. Or, equivalently, Ady : g — g is a linear isometry for any
ke K.

n

The action of Adg on £+ is projected to the action of K on Tr(eyH", where

e is the identity of G. More precisely, for B € SO(n), for k = ((1) g) ct
and for a column vector £ € R" |

m = (O _gt) ettt and Adym = < 0 —(Be)

§ 0 B¢ 0

Consider the following Lemma, which is the explanation of the holonomy
isometry h. in Fact 3 in terms of vector fields.

Lemma 5.1.1 For any U € ¢ and for any horizontal geodesic ¢ : |a,b] — G,
U o ¢ is a holonomy field along c.

Proof ) Consider a vertical geodesic v : (—¢,€) — ¢K given by

7(s) = é(a) - exp(sU),

and a variation V(¢,s) : [a,b] X (—€,¢) — G defined by

V(t,s) = ¢(t) - exp(sU).

Then, for inclusions maps i : [a,b] — [a,b] X (—¢€,€) and j; : (—€,€) — [a, b] X
(—e, €) with is(t) = (t,5) = ji(s),

and

since

and

Vojo=rv, Voig=c¢
V o1, is a horizontal geodesic with moV oi, =¢

exp(sU) € K, Vois(t) = V(t,s) = Rexp(sv) (é(t))

the right multiplication Recp(svy is an isometry for each s € (—¢,¢).

18



So from
V(t,s) =c(t) - exp(soU) - exp((s — so)U) = V (¢, 50) - exp((s — s0)U),

we get
‘/;DQ o 7:80 (t) — LV(t,so)*Ue - UV(t,So) - U o (V o ZSO)<t>

and that U is a holonomy field along V o i,. Especially, U o ¢ is a holonomy
field along a horizontal geodesic ¢ = V o ig.

5.2 - Detfinition
of f:|)Dm— K=80(n)fy: Dy — SO(n)

m=1
and f,, : [0,1] — SO(n) and the property of
fim

5.2.1 Definition of f,f,,

Let f(0) = e. Fix ty € U D,, — {0}. Then we can find a positive integer ny =

m=1
min {my |[m+1>m; =t € D,}.
Note that on the given surface S,

~n __ ~ng ~n _=n __ =n
Yo = Vo and Cin(to) = 1Ctg = 1G4, =

for all n > ngy . So let

g . Ao =~ e 10
Vo = Vi and 1y, = 1Cpy
Define

f(to) : = the value , at ¢t = 1, of the horizontal lifting of 7, at e .
Put f, as the restriction fn lu D, of fn, defined below, to D,,.

5.2.2 Definition of f, and its property
Define a curve f, : [0,1] = K = SO(n) with f,(0) = e inductively as follows:

Step 1) Assume tg € D, is the 1st element in D,,, in fact, tqg = % . %. Then,
11 (to) = 0.

19



(X3, YD)l

T(e)

Consider the first triangle in A,,, its starting point and the horizontal lifting

of )
z = lim ——— - G (1)
O A O N .
and |
yi=— lim ———— - ¢} (t)

=1 | O (t) |
at e , respectively and find

n n n n 1
Xo = Xino) Yo = Yipe) € F

with

T Xo' e = m gl(to) e= =
and

™ Yy e = m Yt?(to) le=y.
Then, define

A~

0 . <t (Area of the 1st triangle in A,,)
n ‘= ©eXp :

to- | [ X, Yo'] |

X)) forte ot

which is a geodesic in K = SO(n) from Fact 3.

Step 2) Assume ty € D, is the j-th element in D,,, where j > 2.

20



A
Jatto)

(X Vi
t%o), ti'(tu)),'ﬁtw YE} ()l

A
-fl{ t?(tO) ) A
Jtdey €5, xn
it lg
e

Ti(e)

Note t}(to) is the (j — 1)-th element in D,,, where j —1 > 1. A
Let ;.m0 Cho [0, 1] = SOg(1,n) be the horizontal lifting of ¢} at f, (¢} (%))

and then consider the j-th triangle in fln, its starting point and the horizontal
lifting of

ri= lim - G (1)
0t [ op ()|
and
1 .
y = - h ’ gpto( )

at g := fn(t?(to))é{;(l) , respectively and find

n n 1
Xiz(to) Yepao) € ¢

with

T Xﬁf(to) ‘g =T
and

e t:}(tg) g = v
Then define
f(t =

n(t)
An (4 . ex < b (4 . _(Area of j-th triangle in An) Xn 7}/% >
Fulti(t)) - exp {(t =4 (t0)) (tO*t?(tO))'”Xf?(towyt%(m)” Ko Ve o)

for t € [t} (o), to]-
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Step3 ) top =1
Note t7(1) be the last element in D,, , in other words, t7(1) = Z —.

Then define

~

fn(t) == fu(t1(1))
for ¢t € [t7(1),1].
Now check the property of fn.
Assume 0 # ty € D,, is a j-th element in D,,, where j > 1 . Then t7(t) is

the (j — 1)-th elements in D,, , where j — 1 > 0, and from Facts, mentioned
early in this chapter, and from the property in Chapter 4, we get

fa(to) = the value , at t = 1, of the horizontal lifting of ey x @y x C) at Fa((t0))
= the value , at £ = 1, of the horizontal lifting of 43, at e .

N
fn(to)
o
tto)
1o Ao EF \

Te) "

>
=

Define, for any g € G, l; : K — G by l,(k) = gk , which is an isometric
imbedding of K onto the fiber gK.

And let w and Q be the connection form and the curvature form of the
connection of the principal bundle 7 : SOy(1,n) — H", respectively.

22



Then, under the identification of T.G and g, for t € (t}(¢o),t0) and g =
fn(t?(to))éz)(l), which is the value, at t = 1, of the horizontal lifting of ¢} at

Fa(t1(t0)) -

~

o (e ful®) = U0, (2 ()

| fn (8] | (t)] .
) ()
- (lfn(t)*e)il ( HX??(to)’l%%(to)”fn(t)' Xy Yol i)
- |(lfn(t)*e)_l([Xf5L(1tO>7Y}?z(to)ﬂfn(t))\ '(lfn(t)*e)_l ( [Xt%(tow Yt?(to)] |fn(t))
= Wi agl i Yiw)]
= WG oo Vg Ko o Yo lo)
and

w (= 'fn(t)) e = L(ﬁ(t))*l*(\f:(t)\ Ia®))

Roughly speaking, the unit tangent vector m fa(t), t € (17(t), to), is the
negative of the unit curvature of the 2-dimensional horizontal plane

Hy = Span{Xi ) lg: Yir) lots where g =7 () Cio (1),

which projects to the tangent plane of the j,(to)-th triangle in A, at m(g) =
¢i (1) = the starting point of the j,(Zp)-th triangle in A,. And, the length of
fu lien(t0) 1) 18 the area of the j,(fo)-th triangle in A,.

5.3 The convergence of f,(t;) to f(t)
Recall
f(to) = the value , at t = 1, of the horizontal lifting of 7, at e
and
Fa(to) = fu(to) = the value , at ¢ = 1, of the horizontal lifting of g, at e .

Consider our Riemannian submersion

SO(n) —— SOy(1,n) —— SOy(1,n)/SO(n).

23



This bundle has a global cross section s : H -+ NA C G, which comes from the
Iwasawa decomposition NAK, where K = SO(n). That is, every element of G
is uniquely written as nak, and the projection maps this to naK € H.

The cross section s provides us with a one-to-one correspondence between
the space of all continuous piecewise C*-curves in H" and in SOg(1,n), with
initial points e and e, by

h <— soh.

By abusing notations, express soh by h. For a curve h : [0,1] — H", the unique
horizontal lift h : [0, 1] — SOq(1,n) is given by
h(t) - a(t) = h(t)

for a unique curve a(t) in SO(n). Such an a(t) is obtained by solving the
differential equation
(h*h' +dat, V) =0 (5.3-1)

for every V' € €, where ' means the derivative with respect to ¢t. Note that the
first entry h™'h'+a’-a~! is an element of the Lie algebra so(1,n). The equation
(5.3-1) comes about as follows. The curve h(t) being horizontal implies the
following equalities should hold.

= ((A(t)a(t)) (a(®)""h(t) "W (t)a(t) + a(t)"'d'(1)) , (h(t)a(t))V),

for every V' € ¢, on the tangent space at h(t)a(t). Since the metric on G is
left-invariant, this implies

0 = (a(t) " h(t) R (H)alt) + alt) " d (t), V),

for every V € & on the tangent space at e, G. = g. Since this holds for all
V € ¢ and the multiplication by any element in K, especially a(t)™* € K, on
the right-hand side is also an isometry, by taking conjugation by a(t), the above
is equivalent to the equality (5.3-1) above.

We examine the equalities (5.3—1) more closely. The equality holds for every
V' € € implies that h(t)~ 1/ (t) + a/(t)a"'(t) does not have any vertical compo-
nent. That is, —a’(t)a"!(t) is the vertical component of h(t)~'h/(t) so that
()W (1) = —d' (t)a (1) + X, € £ @ -

is a vertical and horizontal splitting.
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Let g(t) be another path with a unique horizontal lift §(¢) = ¢(¢)b(t), satis-
fying

0= (g 'g +Vb ", V), (5.3-2)
for every V € £. Again, we have a splitting
g) L' () = =V ()b Ht) + X, € t @
From
1) (1) — g(t) " g' ()l = lla'()a™" (t) = V' ()b~ (O] + || X1 — Xal,

we get

la'(t)a™(t) = V'O @) < [R(&TR () — g(&) " g @] (5.3-3)
These are norms on the Lie algebra so(1,n).

On the space of continuous piecewise C*-curves (k > 1) in SOy (1,n) with
initial point e, we define a distance function by

p(h,g) = / R W) — g™ g'(0)]] dt.

Note that h(t)~t - W/(t) € so(1,n) and ||.|| is the norm there. We argue that
this is a metric. Suppose p(h,g) = 0. Then, by continuity (on each proper
subinterval of [0, 1] if needed), h(t)~* - W/ (t) = g(t)~' - ¢'(¢) for every t. Now we
apply the similar statement of the following Lemma to the C''-curves piece by
piece to conclude h(t) = g(t) for all t € [0, 1] from the continuity of h and g and
from translation by right multiplication if needed, see [KN], vol 1, p69. In fact,
for h(t) := h(to) ‘h(to +t), t € [0,t1 — to], we get

W (t) = h(to) *H (tg + 1),
h(t)7 R (t) = h(t) " h(te) " h (tg + 1)
h(to+t) "' (to +t)
h(s)"'h'(s) where s =ty +t € [to, 1]

and h(s) = h(to)h(s — to

~—

Lemma 5.3.1 Let G be a Lie group and g its Lie algebra identified with T.(G).
Let Y;, 0 <t <1, be a continuous curve in T.(G). Then there exists in G a
unique curve a; of class Ct such that ag = e and C'Ltat_l =Y, for0 <t <1.
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Let h be a curve in H" (or in N A, by abuse of notation). The unique curve
a:[0,1] — SO(n) such that A(t) - a(t) is the horizontal lift of h(¢) will be called
Wp,.

For two curves h and g, the inequality (5.3-3) shows that p(wp,, w,) < p(h, g).
Let 8 be the space of all continuous piecewise C*-curves on N A with the initial
point e.

Proposition 5.3.2 The map B — G sending h to wy(1) is continuous. More
precisely, let h : [0,1] — NA be a piecewise C*-curve. For every e > 0, there
exists 6 > 0 such that, if g € B and p(h,g) < 3, then d(e,wn(1)™" - w,(1)) =
d(wp(1),w,(1)) < e.

Proof ) For simplicity, we write wy,(t), wy(t) by a(t), b(t), respectively. Note
0= b)Y =vb"t+b(b 1 (5.3-4)
Then, from a(a~10)b~! = e,
ala )bt = —d' (a0t — a(a D) (b7

— _ala—l . b<b—1)l
= —d'a ' +0b'  (from the equality (5.3-4))

Thus,
lla'a™ = b7 = [la(a™"b)b7|.

Observe that (a™'b)" € T,-1,(K). The left translation L, and the right transla-
tion R,-1 maps this vector to a tangent vector at T,(K). However, both these
translations are isometries so that they preserve the norms. We have,

o't = #571)| = la(a™ )™ = I|(a” 8}

/H(a—lb)'“ dt:/||a’a_1 b dt

is small, the arc-length of the path a(t)7'b(t) is small. Therefore, if a(0) and
b(0) were close (or if a(0) = b(0)), then a(1) and b(1) are close. This finishes
the proof from the inequality (5.3-3).

Consequently, if

Remark 5.3.3 The above proposition can be applied to a general Lie group
with Twasawa decomposition such that both left and right multiplications by K
are 1sometries.
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Since
fn(to) = the value , at ¢ = 1, of the horizontal lifting of 4] at e

and
Y, converges to ' = i, as 1 goes to 0o,

we get

f(to) = the value , at ¢t = 1, of the horizontal lifting of 7, at e

5.4 Preliminaries for the main proof

Fix ¢y € UD” — {0} and find a positive integer np = min {n; |n+1>n; =
n=1
to € Dn} .
Assume n > ng .
Note ty is not the last element in D,, for n > ngy. Notice that with respect
to totally geodesic triangles, éfg(to)(l) = 1cp (1) = 1e0(1) = é%?o(to)(l) for all

n > ng, which is the ending point of the j,(t)-th triangle in A,, and also the
starting point of the (j,,(t5(t0)) = jn(to) + 1)-th triangle in A, for all n > ny.

5.4.1 A new curve éiﬁ‘ort for the comparison of triangles

Define ¢ : [0,1] — H" as the shortest geodesic from m(e) € H" to

é%(to)(l) = é?;%(to)(l) = 160(1) = 16 (1), in other words, to the starting point

of (Ju(t3(to)) = ju(to) + 1) -th triangle in A, which is also the ending point of
Jn(to)-th triangle in A,,. Consider its horizontal lift
5o 10,1] = SOo(1,n)

at e.
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5.4.2 The comparison of (ju(t5(to)) = jn(te) + 1)-th to-
tally geodesic triangles

For each n > ng, consider

e to) = B0t © futto) 8t * [0, 1] = SOo(1,m)
which is the horizontal lifting of é’gg (1) & €, that is ,

AN . an
T O eCey(to) = Ctg(to)

mo fn(to)é?g(to) :

Note 56%(150) and fn(to)é%(to) are piecewise geodesics, since the right trans-

lation Ry : G — G by k is an isometry for any k¥ € K = SO(n) and ¢} are
piecewise geodesics.

Yl A
o At G,y (1)

X2 A
TN Cee ) (U

Consider the (j,(t5(to)) = jn(to) + 1)-th triangle in A,, its starting point
and the horizontal lifting of

1 .
z = lim ————— - Bpny ()
t—0+ ‘ W?g(to)(t) | 5 (to
and
. 1 in
y=—lim ———— ‘Ptg(to)(t)

=17 | @%(to)(t) |
at eé?g(to)(l) =: g , respectively and find

n
Xios

Y eet

with
X =
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and .
7T*Yt7g |g: Y.

Also consider the horizontal lifting of  and y at .¢{*"(1) =: g, and find

Xpyree
with )

T Xty gy =T
and )

7T*Y£ |gt0: Y.
Note

Falto) CEB(t) = Fule1 (22 (00))) CH (ko) 5

SO

—_— n AN
e Xi, (1) SH 1y (D) T T Xz (13(t0)) |fna?f(tg(to)))%g(to)(l)
1 .
HO*l% MONEE
=z
—7T*X |g
:W*Xto iy
which implies
Xi = Ad Fulto))- 1 Xy

from 7 ,)Cto) = Bfut0) © eCiyao)-
Slmllarly, .
Yo = Ad( 1o Yiy -
And by considering a loop
et « ity + 10,1] = H™
where ¢;hort: [0,1] — H? is given by
éf(?ort (t) — é?hort(l _ t) ’

and its horizontal lifting at .¢§"*"(1) , we obtain

Xn Ad short (1)1 ec?g(to)(l))_lXZé
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}/t"(’)b — Ad((eéfgov‘t(l))—l, }/t?(’)b .

<1y D)7
Then we get X
Xto = Ad((eéféwrt(l))fl.eégg(to)(1)'fn(t0))71Xt0
YZ)L = Ad((eéfgort(l))fl.eégn(t )(1)"}671(750))71}/15? '
5 (to

Since both (.5 (1))~" - eé%(t0)<1) and f,(to) are elements in K = SO(n), we
get

(Xt Yol = Ad((eeggort(n)ﬂ.eegg(to)(n.fn(to))ﬂ[Xg),Yt?] ‘
Note é?g(to) = 1Cf, - So we can rewrite X and Y;» as
Xiy = Ad(ggrore))-1., 07, (1) Futo) 1 Xto
Yio = Adegroreqy-1.orp, (1)-futto)) - Yo -

Since 1Cp,, converges to 16, in H™ as n, the number of steps (not the dimension
of H") goes to 00, ((1¢)}, converges to .(16)y, in SOg(1,7) .
Since

N

fn(to) = the value , at ¢ =1, of the horizontal lifting of 4] at e

and
A1 converges to ' = Y, as n goes to 0o,

we get, from Proposition 5.3.2,

f(to) = the value , at ¢t = 1, of the horizontal lifting of 7, at e
= lim f n(tO)'
n— o0
Then we also get

Futto) 101 = B, 40) © (16)f, = e(16)gy * fulto),

which will converge to

(1)t - f(to) = Ri(rg) © (18)t = fiao) (1010 -
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Te) X

5.4.3 The comparison of (j,(t5(to)) = jn(te) + 1)-th tri-
angles on the given surface S

Now, consider the (j,,(£3°(to)) = jno (to) + 1)-th triangle, lying on S, in A,,, it
starting point and the horizontal lifting of

1

zi= lim ———— - " (1)
t—0+ | wtno(to)(t) | t5° (to)
and 1
y:=—lim — - @l?o(to)(t)

t=1- | (ptno(to)(t> |

~short

at g, = <5, (1) and at g := 7,y (16)4, (1), respectively, and find
OXtO ) OY;O ) OXZ(L)Ov OYtng € EL

with

T 0Xiy gy = T = T 0 X4y |g
and

Ta0Yy" lgg =Y = T 0¥y |
Then,

o+ (e (1)) e(10)4(1) - f(to)

I
—~
~
(=)
—~

[S—
~—
k"al
—~
N

9= Fito)(1€)to (1)
implies that

~ Mg

OXZEO = Ad bho?"t(l)) 1. (1C)t0(1) f(to)) 1 OXtO

~ ng

Yo" = Ad(( grort (1)) =1.0 (1)1 (1)-F(t0) 1 0Y 1o -
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5.4.4  The convergence of tangent planes induced by
(Jn(t3(to)) = ju(to) + 1)-th triangles at t =t and the

convergence of —1— . f (+) under lim lim
8 ()] Ja(?) N—00 tt

Now, for g € ﬂfl(w(]@n(to)(lé)%(l))), let
H} = Span{7, 7},

where 7,y are horizontal vectors at g satisfying

= 1 s ()
T &= MM ———— e Ol 4
t=07" | Qotg(to)(t) | 2
1 i
CPene )(t) :
by @
H;
U
?B(to)
o)
Also, for g € 717 (, 4,)(10)7 (1)), let
H} = Span{7, 7},
where 7,7 are horizontal vectors at g satisfying
= : 1 in
T &= lim —————— @, ) (1)



= (—1) - ( the unit curvature of the 2-dimensional horizontal oriented tangent

plane,

i i

Fn (1) (19075 (1) (R (23 (1)) S (1) (D)

= Span{ Xy o)) | i

Fn (13 (1)) Sty (1) (1) Yir ez o)) |fn<t;l<tg<to>>>éfg<t0)(1)
= Span{ X} |fn<t0)(1é)?o(1)’ Yy fn<t0>(1é)?o(1)}
at 7, ep ) Bt (1) = fu 105 1)
which projects to the tangent plane
of the (jn(t2(to)) = ju(to) + 1)-th triangle in A,
at (7 (1) (16)15 (1)) = 165, (1) = 4y (1)
= the starting point of the (5,(t5(to)) = jn(to) + 1)-th triangle in A,
with respect to the connection of the principal bundle 7 : SOy(1,n) — H")

JR— 1 . Xn
X5 (e t00 Yo ol X g 00

1 n n
= v X Yl

Y,

o)

N v VN
Ad((eaghort 1) =1 o, (1) fn e =1 Ko Yig)

‘Ad«eeggm(l))—l»e(léwo<1)<.fn(to>>—1[X?oytﬁ”
o N 1 . vn \n
o Ad((eéf{}"”(1))‘1~e(16)?0(1)~fn(to))‘1 ([Xg),y”tg] R Yto]>
=(-1)- Ad ( gshort(1y)-1.. o) (1)-F (to))*l( the unit curvature of the 2-dimensional
0 to n

horizontal oriented tangent plane,

o

5o (1)

= Span{f(t’é

¥ n
iy Vi

et}

Note the tangent plane of the (j,(£3(to)) = jn(to) + 1)-th triangle in A, at
16p (1) = éfg(to)(l) = é%?(to)(l) =160 (1) = 5?;9@0)(1) =160 (1) for all n > nyg , the
starting point of the (j.(t5(t0)) = jn(to) + 1)-th triangle in A, and the ending
point of the j,(to)-th triangle in A, for all n > ng at the same time, which is
also the starting point of the (j,,(t5°(t0)) = Jn, (to) + 1)-th triangle, lying on S,
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thetangent planeof S & 1Cto(1) = () for w21

eyl

A
J (to)thtrianglein B (U n(to) +1) thtrianglein An
(n(to) +1) thtrianglein An

Jp(to)-thtrianglein An

in A,, and the ending point of the j,, (to)-th triangle in A, at the same time,
will converge to the tangent plane of S at Ct"(t (1) =1c(1)

And, note, in general, if lim, ,» ¢, = ¢, in G and lim, . X, = Xp in g,
then

lim ¢ - Ad,, X,, = lim exp™'(exp(t - Ad,, z,,))

n—o0 n—oo

= lim expfl(gn -exp(t - Xy) 'gnfl)

n—0o0
= exp (g, - exp(t - Xo) - g, )
= exp (exp(t - AngXO))
=t AdgoXO .

Now, refer to previous three pictures. Then we get, for t € (to, tg(to)) ,

ult))

w (

|fn<t)|
= m' (Xt Vi
:A@mwwmla@muMm>4B§ﬁj[X%Yﬂ>

= (—1)- Ad E5hort (1) =L (160 (1)-F, (to))—l( the unit curvature of the 2-dimensional
€ 0 € O n
horizontal oriented tangent plane,

H:leggmu) = Span{X}

¥ n
eéf(’)w”(l)ay;to eé;‘g”t(l)})a

which will converge to

(—1) . Ad((eéfhort(l))_l'e(lé)to(1)'f(t0))_1( the unit curvature Of the 2-dimensional
0

horizontal oriented tangent plane,
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H™ = Span{gXZ)O

sho'rt(l

0
eéggort(i)})

AN
eGghort (1) oY,

~ 1 ~ 10 ~ N0
= Ad(( ehm«t( )-1 (15)t0(1)‘f(t0))_1 <m . [OXtO 3 OYto ])
_ 1
o Hoxt()’o ;7‘00

= (~1)-

Y70 ’ [XZ)()a OY?OOi

( the unit curvature of the 2-dimensional horizontal oriented tangent

plane, H e = SPanfo Xl [ 6o oY |7 080}
at fr)(10)60(1)
which projects to the tangent plane

of the (Jiu, (t5°(t0)) = jng(to) + 1)-th triangle in A,

where ng= min {n; |[n+1>n; =t € D,} ,

- so tangent to the given disk S -
at 70 (110 (1)) = 181y (1) = . (1)

= the starting point of the (j,,(5°(t0)) = Jjn,(to) + 1)-th triangle in A,,
with respect to the connection of the principal bundle 7 : SOg(1,n) — H”)

under lim lim .
n—00 t—tgt

So, under the identiﬁcation of T.K with ¢,

Jim lim, Lg, -y, fn( )
= lim o [X",Y"]
n—oo | [)fgﬂyn] | to

| [0Xey's 05"l |

= (-1)-

5.4.5

To show

o X5, oYy

( the unit curvature of the 2-dimensional horizontal oriented tangent

plane, Hf(t 6 (1) at ) (16)1 (1)
which projects to the tangent plane of S at (7, (16)s (1)) = 164,(1)
with respect to the connection of the principal bundle 7 : SOg(1,n) — H”)

fn( )

The convergence of

|f

A~

lim lim L. b, L. f.(t) = lim lim L. 1y, - f(),

n—00 t—tgt

|fn(t)] n—00 t—to~ [fn(D)]
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for g € 77T (5, 1m0y (1001 (1)) = 7T (5, 1) (16)75 (1)) , let
\H} = Span{,7} ,

where Z, 3 are horizontal vectors at g satisfying

T & = lim —— @btg( )

SO () |

1
Ty == lim ——— (D).
U () |

Also7 for g € 7T_1(7T<f‘n(t?(t0))(1é)to(1))) ) let
11:15 .= Span{z, 7} ,

where Z, § are horizontal vectors at ¢ satisfying

~ 1
= lim —— ¢t0()
O () |
j=— lim —— g (1)
S () |

Now, consider the horizontal lifting of

z = llm+ . ! @Dto( )
O () |

and 1
wi= = lm ———— 0 (1)
| () |

at g := fn(t’f(to))(lé)z)(l) = fn(t?(to))é%‘(to)(l) , respectively and find
Zl, Wit e et

with
Z 1=
and
Tx Wtﬁ |g:
Also consider the horizontal lifting of z and w at .(1¢)} (1) = eCt"(to)(l)

respectively and find

I 1
Z;g, Wi et
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with
T Z:Z) |g: z

and
in
. Wi |g=w.

And consider the horizontal lifting of z and w at .¢;""(1) =: g;, and find

zpr, Wi e et
with

7T* ZZ) |gt0: z
and

—_—
T Wi lgig= W -

Note Imgpj = Imyy is the boundary of a geodesic triangle in H" .
Then, from Facts, mentioned earlier in this chapter, and from the property
in Chapter 4, we get

N

Fult) = Fulti (k) - exp (¢ = £1(t)) - ( Area of ju(to)-th triangle in A,)

[X%(to)’ Yt?(to)])

(
((tO - tn( 0)) | [ 7 (to) 7}/;n(t0)] |)
i e o ~ ((Area of ji(t)-th triangle in Ay o
- f’VI(tl(tO)) p ((t tl (to)) ((tO —t?(to)) | [ totho] |) [Zto’W ])

for t € [t?(to), to] .

Note

n 1
™ Zto fn(t?(to))(lé)to(l) - tl_lf(g}r | 1& ( ) | wto( )
to
=z
= Ziy oy, (1) 5

which implies

Z” Ad (£ (t0))) 1ZtT(L)
from fa(t (to ))<1é)Z) - an(t”f(to)) © 6(1C)t0 .
Simil arly, i
Wi, = Ad ;. 2 (t0) e
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And by considering a loop
ehort s qe 1 [0,1] — H,
where ¢;hor : [0,1] — H" is given by
Ehort (1) = gshort(1 — 1) |
and its horizontal lifting at .¢;""(1) , we obtain

Zyy = Adq(ggror 1)1 (1)1 2t

ng = Ad((eéfgort(l))fl.5(15)?0(1))—1Wt2 .

Then we get A
Ziy = Ad(( gghore(1))-1., 0y (1)t (t0))) -1 o
Wn Ad short(l)) L.(18)n (1) fn(t"(to *1Wtqg'
Since both (. (1))~ - (1¢)1(1) and Fu((ty)) are elements in K =
SO(n) , we get
(Z, W] = Ad,

to?

(eeghomt (1)~ e(18)7 (1)-Fn(t] (t0)) 7

Note the tangent plane of the j,(to)-th triangle in A, at 1p (1) = é%(to)(l) =

é%ij(to)(l) =16(1) = 5%9(150)(1) = 1¢(1) for all n > ng , the starting point of

the (jn(t5(t0)) = jn(to) + 1)-th triangle in A, and also the ending point of the
Jn(to)-th triangle in A, for all n > ng, which is also the starting point of the
(Jno (t5°(t0)) = Jino(to) + 1)-th triangle, lying on S, in A,, and also the ending
point of the j,,(to)-th triangle in A,,,, will converge to the tangent plane of S
at Ct"(t y(1) = 1655 (1), which implies that for ¢ € (¢7(to), to)

w ( 1))

mm

= w12 Wil

:A@<mw»1<@(wmmm)(f;—ﬂ[@bwﬂ)

=(-1)-Ad, G (1))~ Lee OB, (1)-Fo (1 (00))) ( the unit curvature of the 2-dimensional

horizontal oriented tangent plane,

Am A A
— n ‘1)”
]_Heéfgort(l) - Span{ZtO |eéf(})w”(1)’ to |eé§(})zort(1)})
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will converge to

(=1) - Ad( ashort (1)) 1. (16)eq (1)-Flt0)) 1 ( the unit curvature of the 2-dimensional
0

horizontal oriented tangent plane,

~n ~ 10 ~-1o
Hgl%gort(l) e Span{OXtO eég(f;ort(l)7 Oyto eég(f)tort(l)})
= Ad : e [0 X s Y g
= Al((eghort (1)1 (10)9 (17 (10)) (no 7, 10X oY, ]>
-1 . [OXZ)O’ OYZ]O}

X0, oV 2]l

= (—1)- ( the unit curvature of the 2-dimensional horizontal oriented tangent

plane, HT0 .5, @) = SPan{oXid [ e0 1) 0Vt |y 0000}

at f10)(16),(1) ,
which projects to the tangent plane

of the (Jin, (12°(t)) = jn, (to) 4+ 1)-th triangle in A, ,

where ng= min{n; |[n+1>n, =1t € D,} ,

- so tangent to the given disk S -
at 7(f(eg) (1€)10 (1)) = 1640 (1) = o, 1 (1)

= the starting point of the (jn, (t5°(t0)) = Jjno(to) + 1)-th triangle in A,
with respect to the connection of the principal bundle 7 : SO (1,n) — H")

Thus we get
lim lim L (%-fi(t)) Clim — L zr W
n—00 t—3to~ (fn ()™ |fn (D) "—>°°| [ZZ}),WZS] | or o
1

= o X700y
| [0 X85 0Y5°] | o X', o¥ey’

1 . R 1 X A
= Jlim i Ly, -0, (77 50)

n—00 t—tgt

5.4.6 Main Part

Define a function s, : D,, — {0} — (0, 00) as follows :
Given t € D,, — {0}, assume t is the j-th element in D,, i.e., j = j,(t) . Then,
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j:jn(t)
Sp(t) 1 = Z ( the area of i-th triangle in A,)
i=1
= the area of the region surrounded by 4;" in the n-th step polytope.

Note in S, for n > ny,
the region surrounded by 47! in S = the region surrounded by ¥, in S,
so we get

lim s,(ty) = the area of the region surrounded by 4 in S =: s({) .
n—o0

Thus, we obtain a function
s: U D, —{0} — (0,00).
Now, induce a function
fn : [0, the area of the n-step polytope] — K |

which is the reparametrization of f, with | f,(t) |= 1 on

[0, the area of the n-step polytope] —
J

{ Z( the area of the i-th triangle in A,) | j =1,2,---, | A, ] } :
i=1
Then we get

fa(sa(t)) = fult) = fult) for t € D,, — {0} .

Define a function
fAs) [te U, Dy —{0}} = K
by
fs(t) = f(t).
Then we get

F(s(t0)) = Flto) = lim F(to) = lim fu(s,(t0)).
Note, for t; € U2, D,, — {0},

flt)) = Jim Fa(t1)
= lim (the value, at ¢ = 1, of the horizontal lifting of ;! at e)

n—0o0

= the value, at ¢ = 1, of the horizontal lifting of 7;, at e .
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Since 7, converges to 7y, as t; approaches ¢y in U, D,,, Proposition 5.3.2
o

implies that f will be continuous on UD” — {0} and we can extend f on [0,1].

n=1

And from f(s(ty)) = f(to) , f will be continuous on {s(t) | t € GD” —{0}}.
n=1

Note s is continuous on UD” — {0} and so it can be extended on [0,1].

n=1

Since {s(t) |t € UD” — {0}} is a dense subset of [0, the area of S], we
n=1
can extend f on [0, the area of S| continuously. Call it f as well. Then we get

fos= fis continuous on [0, 1]

and

f( the area of S) = f(1) = lim (1) = A(1),

t—=1,teUn_ Dn

where 7 : [0,1] — S is the boundary curve of S and .7 is its horizontal lifting
at e.

Now, we show f is a C! curve.
Define a function F}, from

[0, the area of the n-step polytope] —
J

{ Z( the area of the i-th triangle in fln) | j=1,2,---, \fln| }
i=1

to

the unit sphere in £

by .
Eut) = Ligu)-1, fa(t) -

And define a function

F:{st) | te UD” —{0}} — the unit sphere in ¢

n=1

by

F(s(to)) = lim lim L ). (; fn(t)> = lim lim L; ). (l; fn(t)>.

n—00 t—to~ fin n—00 t—tg n
- |fn (2] - + fn(®)]

Then, F,, is constant on the interval

(0, the area of the first triangle in An)
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and on the interval

J J+1
(Z(the area of the i-th triangle in /Aln) , Z(the area of the ¢-th triangle in An))
i=1 i=1

for each j =1,2,---,|4,|, and

F(s(ty)) = lim lm L 1) (ﬁfn(t» = lim lim L(fn() h, ( -1 fn(t)>

n—00 t—tg— n—00 t—tgt [ fn (t)|
= lim lim L, fn() = lim  lim Lf(t fn()
n—00 t—)sn(to) n—00 t—)sn(to)
= lim lim L, @) fn()

n—00 t—sy, (to)

= lim lim F,(t).

Nn—00 t—5y, (to)

Also
F(s(to))

= lim lim w (
n—o0 t—to \f

(1))

= (-1)- ( the unit curvature of the 2-dimensional horizontal oriented tangent plane,

7710 I &
He(lé)to(l)'f(to) B Hf(zo)(lé)to(l) ’
which projects to the tangent plane of S at (1), (1) . )

Note paths ;¢ on S gives us

hm lét(l) = 15t0(1)

t—to,t€USL | Dy

and
o s =l GE(1) - ()
= c(10),(1) - f(to)
= Flto) (1)1, (1) -
Then we get
t—to, tlie%lgolenF(S(t))
= lim (=1) - ( the unit curvature of the 2-dimensional horizontal

t—)t()7 tEUzolen

. rrni (t)
oriented tangent plane, — H''' (5 )

for some n;(t) € N depending on ¢,
whose projection is the tangent plane of the

surface S at 16(1) )
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= (—1) - ( the unit curvature of the 2-dimensional horizontal oriented tangent

.
plane, Hf_(to)(la)to(l) )

whose projection is the tangent plane of the surface S at 1¢,(1) )

So, we get

F:{s(t)|teu, 2D, —{0}} — the unit sphere in ¢

is a continuous function. Since {s(t) | t € U2, D, } is a dense subset of
[0, the area of S], we can extend F' on [0, the area of S| continuously. Call it
also F. Consider the C! curve

a : [0, the area of S] — K

satisfying

Note the function

fn : [0, the area of the n-step polytope] — K
can be regarded as the piecewise integral curve of

Fa(®) = Ligan (Lay-1,Sa(0) = Loty Fu(?)
or equivalently the piecewise solution of the ODE

La, @) -1,0n(t) = Fu(t) .
Then '
F(s(to)) = lim lim Ly, @)1, fo(t) = lim lim F,(t)

n—00 t—s,(to) n—00 t—sn (o)

implies that

a(s(tp)) = lim  lim «,(t) = lim lim f,(t) = JEEOJCNS“(%)) = f(s(to)) -

n—00 t— sy (to) n—00 t—sy (to)

Since {s(t) | t € U2, D,} is a dense subset of [0, the area of S| and F is
continuous on [0, the area of S|, we get

f=aisaC' curve on [0, the area of 3] .
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Also, we obtain

the length of the curve f = the length of the curve «

the area of S

-/ [ a(t) | dt
0
the area of S

-/ F(o) | di
0

= the area of 5,

which proves Theorem 1.0.1.

5.4.7 Remarks on Factorization Lemma

‘Factorization Lemma’, introduced by Lichnerowicz, Theorie Globale des Con-
nexions et des Groupes d’Holonomie , [3, vol 1, p.284], can give us another

sequence of piecewise smooth loops p, : [0,1] — H", m = 1,2,--- | with
tm(0) = m(e) such that it converges to 0S. And a similar way to make the se-
quence of curves f, : [0,1] = K, n=1,2,---, can give us a sequence of curves

gn:10,1]] = K, n=1,2,---, with ¢,(0) = e such that ¢,(1) is the ending point
of the horizontal lifting of u, at e and that the length of g, is the area of the
polytope, the union of totally geodesic triangles obtained in the construction of
gn- Since the sequence of the areas converges to the area of S, Prop 5.3.2 will
say that g, (1) will converge to .y(1) and that the distance from e to ¥(1) is
less that equal to the area of S. But the sequence {g,} may not converge to
some curve from e to .7(1).

5.5 The proof of Corollary 1.0.2

Given a piecewise smooth disk S, consisting of m sub-disks with smooth interiors
and piecewise smooth boundaries, pick the first smooth sub-disk S; with one
vertex lying on the boundary 05. Then by induction, it can be shown that the
sub-disks Sy, - - -, .5, can be ordered in such a way that

j
U S; is homeomorphic to a disk for each j =1,--- ,m.
i=1

By regarding the point of S; on the boundary as the basepoint, Theorem 1.0.1
and the similar arguments to those used in the construction of  f,,” in Subsection
5.2.2 will give a piecewise smooth curve f, which we want.
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Appendix A

About Triangles

For each n = 0,1,2,--- , all triangles inside 2" - 3-gon will consist of two kinds
of triangles, interior ones and exterior ones.

A.1 The definition of interior triangles and the
definition of their starting points and end-
ing points

Consider a regular triangle whose vertices lie on the boundary of the given disk
D? and one of whose vertices is the base point of the disk. Call the triangle Ty.
And the base point will be called its starting and ending point.

Now define triangles T}4,...q,, inductively as follows :

Case 1) n=1":

The given orientation at the center of D? and the base point, or equivalently
the starting and ending point of Tg, will give the order by of sides of Ty, where
by = 1.2.3, in the counter-clockwise or clockwise order. For the barycentric
subdivision of T, thinking of the triangle with the base point as its vertex and
with one side lying on the first side of 7T}y as the first triangle will give the order
of triangles in the counter-clockwise or clockwise order. The i-th triangle will
be called T,,,, where ap =0 and a; =1, forv=1,2,--- ,6.

For Ty, , the base point, or equivalently the starting point of T, will be called
the starting point of Ty; and the barycenter of T will be called the ending point
of T(]l.

For Ty; , where 1 = 2,3,4,5 , the barycenter of T will be called the starting
and ending point of Ty; for i = 2,3,4,5 .
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For Ty , the barycenter of Ty will be called the starting point of Ty and the
base point , or equivalently the ending point of T , will be called the ending
point of TOG

Case2) n>2:

Let L,—1 = Tuayay sa, , be given, where ayp = 0 and ay,---,a,-1 €
{1,2,3,4,5,6}. Let L, 9 :=T,,...q,_, and assume the following properties:

-M; = Tharvan o4, J € {1,2,3,4,5,6}, consists one of six triangles obtained
by the barycentric subdivision of L,,_,

- L,y is also one of those, in other words,

Lnfl = Taoal"'anfﬂlnfl = Taoal'"an—zjo = Mjo

for some jy € {1,2,3,4,5,6}.

- common vertex of L, o and M; is the starting point of each of them,

- the barycenter of L, 5 is the starting point of M; for i« = 2,3,4,5,6, and
the ending point of M; for i =1,2,3,4,5,

- the common vertex of L,,_» and Mj is the ending point of each of them,

- if the starting and the ending point of L, 5 are same, then they are the
common vertex of L, o and Mg,

- if the starting and the ending point of L, o are different, then M; and Mg
are mutually opposite ones inside L,,_»,

- one side of L, 5, which contains a side of M, is divided into two line
segments, each of which is one side of M; for i = 1, 2, respectively.
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%
%

n2"Taa,, Ln-7Ta o,

£
}

Ln-2"Ta,..q, La2"Taa,,

Notice all the above assumptions hold for n=2.

Note that the line segment connecting the barycenter and the starting point
of L,_5 is one side of M; from the assumption that the common vertex of L,,_»
and M, is the starting point of each of them.

Under the above assumptions, we have two choices such that the order of M;
and M, is either the counter-clockwise order or the clockwise order with respect
to the barycenter of L, o and the line segment connecting the barycenter and
the starting point of L,,_».

Subcase 2-1 ) a,—1 = 1, that is, L,y = My = Tyy.a,, o1

4

Ln_2=Tao 8

Assume the order of L,,_1 = M; and My = T,,..., ,2 is the counter-clockwise
order with respect to the barycenter of L, 5 = T,,...,, , and the line segment
connecting the barycenter and the starting point of L, 5. Out of six triangles
obtained from the barycentric subdivision of L, ; = Mj, choose the triangle
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with a part of one side of L, 5 as its side and with the starting point and
the barycenter of L, 1 = M; as its vertices, and call it T},...,, ,11 and let
N{ = Tya, o11- At the barycenter of L, ; = M, consider the counter-
clockwise order of the 6 triangles from the N}. The 5 triangles from the next
one of N} will be called

Tao~--an_2127 Ta0~-~an_2137 Tao~--an_2167 Ta0~-~an_2157 Tao~--an_214

in order. Let N!:= T, 4. ,1; fori=2,3,4,5,6.

If the order of L,_; = M; and M, is the clockwise order, then the order
will be given from the symmetry by the line connecting the barycenter and the

starting point of L, 1 = Mj:

Lho™Tao -,

Recall the assumptions for L, ; = M, lying between the phrase ‘Case 2)
n > 2’ and the one ‘Subcase 2-1 ) a,,_1 =1, ---,  and let L,, := le, j=1,---,6.

Note the common vertex of L, ; = M; and N is the starting point of
L, 1 = M from the definition of N} . Now, call the vertex the starting point
of N} . And call the barycenter of L, ; = M, the starting point of N} for i =
2,3,4,5,6. Also, call the barycenter the ending point of N} for i = 1,2,3,4,5.

Note the common vertex of L, ; = M; and N{ is the barycenter of L, o,
so the ending point of L, ; = M; from the assumption for M;. Call the vertex
the ending point of Ng.

Note that the starting and the ending point of L,,_; = M, are different and
the positions of N{ and N} are mutually opposite inside L,,_; = M;.

And the side of L,y = M, which contains a side of N}, is divided into two
line segments, each of which is one side of N} for i = 1,2, respectively.

Subcase 2-2 ) a,—1 = 6, that is, L,—1 = Mg = Tyy..a,, 46 °

Assume the order of M; and M, is the counter-clockwise order with respect
to the barycenter of L, 5 and the line segment connecting the barycenter and the
starting point of L, 5. From the assumptions, lying between the phrase ‘Case
2) n > 2’ and the one ‘Subcase 2-1 ) a,_1 = 1, -+, the vertex of L, ; = M,
which is also the barycenter of L, _s, is the starting point of L, ; = Mgs. The
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L T

n-7 ' a,--a,, or

counter-clockwise angle of L, = Mg at its starting point determines its initial
side and the terminal side. Out of six triangles obtained from the barycentric
subdivision of L, 1 = Mg, choose the triangle with a part of the initial side
of L,_1 = Mg as its side and with the starting point and the barycenter of
L,_1 = Mg as its vertices, and call it Ty,..o. .61 and let NO := T, .o 1. At
the barycenter of L,,_1 = Mg, consider the counter-clockwise order of the 6
triangles from the NP. The 5 triangles from the next one of N = Ty, .0, .61
will be called

Tao---an_262a Tao---an_2637 Tao---an_2667 Tao---an_2657 Tao---an_264

in order. Let N? := T, .. 6 fori=2,34,5,6.
If the order of M7 and M is the clockwise order, then the order will be given

from the symmetry by the line connecting the barycenter and the starting point
of Ln—l = MGZ

i

Lo Ta-a, or Li-sTaa,

T

Recall the assumptions for L, ; = Mg, lying between the phrase ‘Case 2)
n > 2’ and the one ‘Subcase 2-1 ) a,_1 =1, -+, and let L,, := Njﬁ, j=1,---,6.

Note the common vertex of L, ; = Mg and NV is the starting point of
L, 1 = Mg from the definition of N¥. Now, call the vertex the starting point
of Nf. And call the barycenter of L, 1 = Mg the starting point of N? for i =
2,3,4,5,6. Also, call the barycenter the ending point of N¢ for i = 1,2,3,4,5.

To consider the common vertex of L, _; = Mg and N§, we have the following
two possibilities :

51



The starting point and the ending point of L,_5 are same or different.

But in any possibilities, the common vertex of L, ; = Mg and N¢ is also
the common vertex of L,,_o and L,,_; = Mg, so the ending point of L,,_; = Mg
from the assumption for Mg. Call the vertex the ending point of N¢.

Note that the starting and the ending point of L, ; = Mg are different and
the positions of N{ and N§ are mutually opposite inside L, = M.

Notice the side of L,_; = Mg, which contains a side of N7, is divided into
two line segments, each of which is one side of N? for i = 1,2, respectively.

Subcase 2-3) a,_1 € {2,3} or (a,—1 € {4,5} and a,_» € {0,2,3,4,5}),
that is,

Ln—l = ]\4Z = Tao~-'an,2i for 7 = 2, 3

or
Ly 1=M; =T, q, i for i=45anda, o€ {0,2,3,4,5}:

—
L — L

n-3a-a, n-17Tay 3, a,,= Mi

Let i = a,_1.

Assume the order of M; and M, is the counter-clockwise order with respect
to the barycenter of L, _5 and the line segment connecting the barycenter and the
starting point of L, _s. From the assumptions, lying between the phrase ‘Case
2) n > 2’ and the one ‘Subcase 2-1 ) a,—; = 1, -+, the vertex of L, ; = M;
which is also the barycenter of L,,_», is the starting point of L,y = M;. The
counter-clockwise angle of L,,_; = M; at its starting point determines the initial
side and the terminal side. Out of six triangles obtained from the barycentric
subdivision of L, 1 = M;, choose the triangle with a part of the initial side
of L,_1 = M; as its side and with the starting point and the barycenter of
L,y = M; as its vertices, and call it T},...4,, 4, ,1, i0 other words, T4, ..., i1,
and let Ni := T,,...a,_,i1- At the barycenter of L,y = M;, consider the counter-
clockwise order of the 6 triangles from the Ni. The 5 triangles from the next
one of Ni =Ty, _sa,_,1 Will be called

Taomanfzanfﬂv T“O"'an72an7137 TflO"'an72anfl47 TflO"'an72anfl57 TflO"'an72an716

in order. Let Ni := Tyy.a,_yij = Tagean_san_r j fOr j = 2,3,4,5,6.
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4 3

Ln-iTa, a2 My

U

bn7"Tay g,

If the order of M; and My is the clockwise order, then the order will be given
from the symmetry by the line connecting the barycenter and the starting point
of Ln—l = Mz = Taoman72an71 :

Recall the assumptions for L,,_; = M;, lying between the phrase ‘Case 2)
n > 2’ and the one ‘Subcase 2-1 ) a,_1 =1, -+, and let L,, := N;, j=1,---,6.

Note the common vertex of L,y = M; and Ny is the starting point of
L, 1 = M; from the definition of Ni. Now, call the vertex the starting point
of Ni . And call the barycenter of L, ; = M; the starting point of N} for j =
2,3,4,5,6. Also, call the barycenter the ending point of N} for j =1,2,3,4,5.

Note the common vertex of L,_; = M, and N} is the starting point of
L, 1 = M; , so the barycenter of L, 5 and the ending point of L,, 1 = M; from
the assumption for M;. Call the vertex the ending point of N.

Note that the starting and the ending point of L,,_; = M; are same and they
are the common vertex of L, ; = M; and N¢.

And the side of L,_; = M;, which contains a side of N{, is divided into two
line segments, each of which is one side of N JZ for 5 = 1,2, respectively.

Subcase 2-4 ) a,,—1 € {4,5} and a,_» € {1,6},
that is,
Ly 1=M,=T,..q, , for i=4,5anda,o € {1,6}:

4 3

Lh-7Ta, a, 7> Lo-iTay 0,7 M;

Let 7 = Ap—1-

Assume the order of M; and M, is the counter-clockwise order with respect
to the barycenter of L, 5 and the line segment connecting the barycenter and the
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starting point of L,_5. From the assumptions,lying between the phrase ‘Case 2)
n > 2’ and the one ‘Subcase 2-1 ) a,,_1 = 1, - - -’ the vertex of L,,_; = M;, which
is also the barycenter of L,,_, is the starting point of L,,_; = M;. The clockwise
angle of L, 1 = M, at its starting point determines the initial side and the
terminal side. Out of six triangles obtained from the barycentric subdivision of
L,_1 = M;, choose the triangle with a part of the initial side of L,,_; = M, as its
side and with the starting point and the barycenter of L,,_; = M, as its vertices,
and call it Ty ..., sa, .1 , i other words, Tg...q, ,i1, and let Ni = Tooan_qi1- At
the barycenter of L,, 1 = M;, consider the clockwise order of the 6 triangles from
the Ni. The 5 triangles from the next one of Ni = Ty, ..a, it = Tug-ay_say i1
will be called

TaO"'an—Qan—127 Tao---an—Qan—l?n TaO"'an—Qan—147 TaO"'an—Qan—157 TULO”'an—Qan—l6
: i _ :
in order. Let Ni = Togan_2i5 = Tagan_san_17 for j = 2,3,4,5,6.

If the order of M; and M, is the clockwise order, then the order will be given
from the symmetry by the line connecting the barycenter and the starting point
of Ln,1 = MZ .

3 4
Loz Tay ., i> Ln17Ta g, 007 Mi

Recall the assumptions for L, 1 = M;, lying between the phrase ‘Case 2)
n > 2’ and the one ‘Subcase 2-1 ) a,_1 =1, -+, and let L,, := N;, j=1,---,6.

Note the common vertex of L,,_; = M; and Ny is the starting point of L,,_; =
M from the definition of N{. Now, call the vertex the starting point of Ni. And
call the barycenter of L, = M; the starting point of N; for j = 2,3,4,5,6.
Also, call the barycenter the ending point of N} for j =1,2,3,4,5.

Note the common vertex of L,_; = M, and N} is the starting point of
L,_1 = M;, so the barycenter of L,_5 and the ending point of L,,_; = M; from
the assumption for M;. Call the vertex the ending point of N/.

Note that the starting and the ending point of L,,_; = M; are same and they
are the common vertex of L, ; = M; and N¢.

And the side of L,_; = M;, which contains a side of N7, is divided into two
line segments, each of which is one side of N ; for j = 1, 2, respectively.

Under the counterclockwise orientation, interior triangles for n = 2,3 will
be given as follows :
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Now let’s review the definition of the starting points and ending points of
triangles made right before as follows :

To begin with, note that the common vertex of Tj4,. 0, , a0d Tyia;.a, 11
is the starting point of T;,4,...q,, , and that the common vertex of T;,4,...q, , and
Tooay-a,_ 16 1S the ending point of T}, 4,..q,_, -

For Tyhyaya, 11 , the starting point of T},4,...q, , is the common vertex with
Tooay-a,_,1 and will be called the starting point of T},,4,...q,_,1. And the barycen-
ter of Tyya,...a, , Will be called the ending point of T;4,...q, ,1-

For Thyay-a,_1i » Where © = 2,3,4,5, the barycenter of T}4,..q, , Will be
called the starting and ending point of T;4,...q, -

For T,,4,...a, 6, the barycenter of Ty 4,...q,,, Will be called the starting point
of Topay-a,_16- And the ending point of Tj 4., , is the common vertex with
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Tooay--a, 16 and will be called the ending point of 1,4, ..., ,6-

To check whether we can define triangles inductively:

Recall the assumptions for T,,4,..q, ,, lying between the phrase ‘Case 2)
n > 2’ and the one ‘Subcase 2-1 ) a,_ 1 =1, ---.

Note that the common vertex of Tj4;.a,, and Ty a,..a, ,1 iS the start-
ing point of each of them. The barycenter of Ty 4,...q, , iS the starting point
of Topay-van i for i = 2,3,4,5,6, and the ending point of T, 4, ...q, i for
1 = 1,2,3,4,5. The common vertex of T4, a, , a0d Ty a,..q, ;6 15 the end-
ing point of each of them.

Notice that if the starting and the ending point of Ty,...q,, 54, _, are same then
an—1 # 1,6 and they are the common vertex of Ty ...a,_sa,_, a0d Tyy.ap,_sa,_16-
Also note that if the starting and the ending point of T}, ..., ,a4, , are different
then a,—1 € {1,6} and T} ..., sa, ,1 and Ti ., ,a, .6 are mutually opposite
ones inside T} ...q,, sa, ;-

And one side of T},,4,...a, ,, Which contains a side of T4 4,45-a, ;1 1s divided
into two line segments, each of which is one side of T},,4,..., i, fori = 1,2
respectively. Thus we can define triangles inductively.

A.2 The definition of exterior triangles and the
definition of their starting points and end-
ing points

A.2.1 The definition of Sg° =

The given orientation at the center of D? and the base point, or equivalently
the starting and ending point of Tg, will give the order by of sides of Ty, where
by = 1,2, 3, as explained early in ‘Section A.1.’

Case ) n=1:

From the given orientation at the center of D?, consider the direction of each
side of Tj, which will give the starting point and the ending point of each side.

For the side by of Ty and the (line) segment on the boundary of D? | which
faces the side by and has common terminal points with the side by , consider
the midpoint of the side by and of the boundary segment, respectively. Then
a given half of the side by, the straight line segment between the midpoint of
the boundary segment and the common terminal point of the side by and of the
given half of the side by, and the straight line segment between the midpoint
of the side by and that of the boundary segment will determine a triangle, so
we can obtain two triangles from each half of the side by. Let’s call them Sg°*
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and Sg°* | where for S{° | i is determined by the order with respect to the
orientation at the center of D? and the line segment connecting the center of
D? and the starting point of Tj.

Under the counterclockwise orientation, exterior triangles for n = 1 will be
given as follows :

B ¥

Case 2) n > 2:

Let Sp """ be given.

The side of Sgobl'"b"‘l, which faces the boundary of D?, will give two triangles
as follows :

Consider the direction of the side of S0 "*"~' which faces the boundary
of D?, and that of the line segment on the boundary of D? which is being
faced by the side, respectively, from the orientation at the center of D? and the
line segment connecting the center of D? and the starting point of 7. Then
we can think of the starting point, midpoint and ending point of the side of
580”1""’"*1, which faces the boundary of D?, and those of the boundary segment,
respectively. Now, refer to the construction of two triangles in ‘case 1.” Then
the triangle with the midpoints and common starting point of the side and the
boundary segment as vertices will be called Sgobl"'b"‘ll and the triangle with
the midpoints and common ending point of the side and the boundary segment

. . bob1---bn—12
as vertices will be called Sy ™ 7'~.

Under the counterclockwise orientation, exterior triangles for n = 2,3 will
be given as follows :
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Now, define the starting point and the ending point of the triangles made
right before as follows:

Letn>1.

For Sgobl"'b"’”,z’ =1, 2, consider the direction of its side facing the boundary
with respect to the orientation at the center of D?.

If n is odd, the ending point of the side, facing the boundary of D?, will be
called the starting point of Sbobl br=1i and the starting point of the side, facing
the boundary of D?, will be called the ending point of 530’“”"’"*”’.

If n is even, the starting point of the side, facing the boundary of D?, will be
called the starting point of Sgoblmb"‘” and the ending point of the side, facing
the boundary of D?, will be called the ending point of 530“'“”"*”.

A.2.2 The definition of SPobr b«

apgai--am

Let 1 < k < n be given. Let m = n — k. To define S%% b  consider a

agal - am’
triangle TO whose orientation is the opposite one of Ty (, considering Tp14 might
be helpful). Then the m-step barycentric subdivision makes us think of T0a1...am
, which is the mirror-symmetry of Tyq,..q,, (, for example Tp1414,..q0,,). Note
the orientation of the triangle T()l is the opposite one of Tpy; (,considering Tp141
might be helpful), and its m-step barycentric subdivision T01a2...am is also the
mirror-symmetry of Tyi4,..q,, (, for example To14145..a,, )-

We want to define S20%% as follows :
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Case 1-1) k is odd and b = 1:

Consider the barycentric subdivision of Sgobl"'b’“. By comparing it with that
of Ty, define

- Sgg-bl"'b"‘, which matches Tpy; for j € {1,2,3,4},

- Spv which matches Ty,
oo 7%, which matches Tjs5,
and their starting and ending points.

For m > 2, the respective identification of

bobi--b  qbobi-bx  cbobi-by  cbobi-br I
Sot » Soj ;S04 » So6 with Ty, Ty, To, To,
where j € {2, 3,5}, and their m-step barycentric subdivision can make us define

Sgggg;;@am, where ay = 0.

Case 1-2) k is odd and b, = 2:

Identify Sgobl"'b" with Ty;, where the starting point and ending point of
Sgobl"'bk is also identified to those of Tp;.

Consider the m-step barycentric subdivision of Sgobl"'b’“ and Tp; respectively.
The identification, then, can make us define S2% % from Tj,,..q,,, where
ap = 0.

Under the counterclockwise orientation, the triangles for k = 1 and m =1
will be given as follows :

Case 2-1) k is even and b, = 1:
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By identifying Sgobl"'b’“ with Tm, we can define Sﬁgiﬁ*;km from T01a1..4am, where
ap = 0 (, for example Th1414,a,,) -

Case 2-2) k is even and b, = 2:

Consider the barycentric subdivision of Sgobl'“bk. By comparing it with that
of Ty, define )

- Sggbl"'b", which matches 7;013' for j € {1,2,3,4},

bobi---b :
- Sps 1%, which matches Tpyg,

bob1 b :
- Spg -, which matches T;s,

and their starting and ending points.
For m > 2, the respective identification of

bob1---br  qQbobi-bx  bobi-br  qbobi--by : T T
Sot , So , Sod » 006 with Toy, Ty, To, Tor,

where j € {2, 3,5}, and their m-step barycentric subdivision can make us define

Shobu-br , where ag = 0.

Under the counterclockwise orientation, the triangles for k = 2 and m =1
will be given as follows :

A.3 The ordering of triangles in the n —th step

Forn=1,2,--- , let

Ay = {Tugarowan | @0 =0,0; € {1,2,3,4,5,6} fori = 1,--- . n}

(Uk+m:n,1§k§n,0§m§nfl{Sgg.l?.lc.;;lbk | bO € {17 273}7b1 € {17 2} for i = 17 e ka
co=0,¢; €{l,---,6} for 1 <j <mif m>1})
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, which is regarded as the set of all triangles in the n — th step.

Now refer to the following pictures for Oth, 1st, 2nd and 3rd step under the
counterclockwise orientation :

Case 1) Tyyoa, < S2000% where k+m =n

Co"Cm

Case 2) Tupa, < Ty, if (ag, -+ ,an) < (bo, -+ ,bg) with respect to the
dictionary order

Case 3) The order of St and S  where k+m =n=s+1

do--ct
Case 3-1) k < s:
Sb()bl"'bk < Sgo.c.%é'cs
0 t

ag - -am
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Case 3-2) k = s (so, m =t ) and (b, b1, -+ ,bx) < (co,c1,- -+, ) with
respect to the dictionary order :
If k is odd, then SPobi-br > GeocL ek

ag:--am

. bObl"'bk CQC1 Ck
If k is even, then Sj071 7k < SP710

Case 3-3) k = s, (bo,b1, -+ ,bx) = (co,c1,--+,¢ck) and (ag, - ,am) <
(do, -+ ,d,,) with respect to the dictionary order :

bob1 by coc1*-Ck
S < Sdo,,,dm

ag -am

A.4 The properties of triangles in A,

We can easily check the following three properties from the definition of trian-
gles.

Property 1.) Given a non-first element L in A, the boundary of (J{M €
A,|M < L} contains a side of L, which will be divided into two line segments in
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its barycentric subdivision, where one of two line segments will become a side
of the first triangle and the other one will become a side of the second triangle
in the barycentric subdivision of L.

Property 2.) Given L € A, , |J{M € A,|M < L} is diffeomorphic to the
disk D?.

Property 3.) Assume L € A, and six triangles My, My, -+, Mg € A,q1,
obtained from the barycentric subdivision of L, follows the order of i = 1,2,---6
in A,,1. Then the starting points of M; and L are same. Also are the ending
points of Mg and L.

And we also have the next property :

Property 4.) Assume L, M € A,, and that M is the next element of L in A,
for n > 1.
Then, The ending point of L and the starting point of M are same.

Proof )

Case 1) L ="T,,..a,_,a, for some (ag, - ,an_1,a,)
Subcase 1-1 ) a, # 6

Note M = Ty,...v,, b, » Where

b =a; for 0 <7 <nandb, =a,+1.

Then inside the triangle T'a - - - a,,—1, the barycenter of ..., _, is the ending
point of L = Ty...a, ,a, and the starting point of M = Ty,..4,, .5, at the same
time.
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Subcase 1-2 ) a, = 6

If ap =0 and a; = -+ = a,, = 6, then the ending point of L = T},..0, a,
is the ending point of Ty by induction and also the ending point of Tj, that
is, the basepoint, which is the starting point of S3? and so the starting point
of M = 53 if n = 1 and the starting point of M = ng,,,bn_l with by = 0 and
blzzbn_lzllfTLZQ

Now assume n > 2 and a; # 6 for some ¢ with 1 <7 < n.

We can find iy satisfying 1 < iy < n, a;, # 6 and a; = 6 for all iy < i < n.
Then M = Tp,..b, _,», satisfies

b; :aifora110§i<i0
bl-o:aio—l—l
bi =1lforallig<i<n

Note the ending point of L = Tg,..q, 14, is the ending point of Tg,..q, by
induction.

Notice the starting point of M = Tj,..,, s, is the starting point of Tbo-~-b¢0
by induction.

Since a; = b; for 0 < ¢ < ip and b;, = a;, + 1, the ending point of
L = T(,JO...,“O_MO is the barycenter of TQO"'aio—l? which is the starting point of
Tagaiy1big = Tbobyy 16y, = M. Thus, we get

the ending point of L is the starting point of M.

Case 2) L = Skob b where k +m = n.
Subcase 2-1 ) m =0 and k = n is odd.

Note (bg, by, -+ ,b,) # (1,1,--- 1), because if (bg, by, -+ ,b,) = (1,1,--- 1)
then L = Spov P = Sl11 is the last element in A,.

If n = 1, then we can trivially obtain that the ending point of L is the
starting point of M from the definition of triangles.

Assume n > 2.

If M = Sod=dn then we get (bg, by, -+ ,bn) > (do,dy, - ,d,) and so

either (d():bo—l,dl::dn:2aﬂdb1::bn:1)

or

dig with 1 <4y < n such that
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dzzblfora110§z<zo
diozl,biOIQ
dl:2,61:1forallzo<z§n1f1§zo<n

In the first possibility, the side of L and the side of M, both of which faces
the boundary, meet at one point where Sg°”" = S and Sgo# = S92 meet.

In the second possibility, the side of L and the side of M, both of which faces
the boundary, meet at one point which is contained in such line segment as the

. . bob1-+-big _1b; bobi-+-big 12 boby-+-big 11 dody-diy_1d;
intersection of .S, T = 5 7" and S, 0t = g, io—1ig

In any possibilities, the side of L and the side of M, both of which faces the
boundary, meet at one point. Since n is odd, the point is the starting point of
the side of L, facing the boundary, and the ending point of the side of M, facing
the boundary, so

the ending point of L is the starting point of M.

Subcase 2-2 ) m =0 and k = n is even

Note (b, b1, -+ ,b,) # (3,2, ,2), because if (bg, by, ,b,) = (3,2, ,2)
then L = SJoP 0 = §322 is the last element in A,,.
If M = Sdohdn then we get (by, by, ,bn) < (do,dy,--- ,dy,) and so

either(d0:b0+1,b1:---:bn:2andd1:---:dnzl)

or

Jip with 1 < iy < n such that

d; =b; for all 0 <1 < i
diy =2,b;, =1
d; :1,bl:2forallzo<z§n1f1§zo<n

In the first possibility, the side of L and the side of M, both of which faces
the boundary, meet at one point where Si°*" = Sp°* and S = Sg! meet.

In the second possibility, the side of L and the side of M, both of which faces
the boundary, meet at one point which is contained in such line segment as the
intersection of S P00 = gott ot gy q Gt Pie1? gl diomidio

In any possibilities, the side of L and the side of M, both of which faces

the boundary, meet at one point. Since n is even, the above condition implies
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that the point is the ending point of the side of L, facing the boundary and the
starting point of the side of M, facing the boundary, so

the ending point of L is the starting point of M.

Subcase 2-3 ) m > 1 and ¢, # 6

If m = 1, then the barycenter is both the ending point of L and the starting
point of M from the definition.

Assume m > 2. Note L = Shobr-be —  and its next element M are inside
the triangle Sbobl bk which is one of the triangles obtained by the barycentric
subdivision Sggbl by = Ghobrbr

Compare it with the proper one of Ty, To1, Ty and Ty;. By referring to subcase
1-1, - by restricting it to the first triangle if needed-, we get

the ending point of L is the starting point of M.

Subcase 2-4 ) m > 1 and ¢,,, = 6

... . bobi---b
Note L = SPb1P g inside the triangle Sg°”* ", where co = 0.
0C1""Cm

Assume ¢ = ¢y =+ = Cp_1 = Gy, = 6.
If m = 1, then the ending point of L = S0t — 5Pk wi]] be the ending

coCm,

point of 500 b tautologically. If m > 2, then compare S%% % with the proper

cocl

one of Ty, Ty, TO and Tm Then from the comparison, the ending point of L will
be the ending point of S, which is also the ending point of S8 .
If M = Sdodids with gy = 0, then we get

ag--at
either
(k=s,a1 = =aq;, =1 and Sdo(’l1 ¢ is the next element of Sgg"'bk in Agi1)

or
(s=k+1,t=m—1,a;,=1for 1 <i<tin case of m > 2 and

dody---d by,
So ¢

is the next element of S{3% in Ayy).

In the first possibility, S20 % will be also the next element of SP"*"% in
Ay and so the ending point of SZ°° % will be the starting point of %% from
subcase 2-1 and 2-2 , which implies

the ending point of Sbob1 P will be the starting point of Sdodl
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In the second possibility, note one of £ and s is odd and the other one is
even, which implies that S°* "% is the last element in A, and that Sgo% % is
the first element in the subset

TOT1 T
{56

o € {1,2,3}, x; € {1,2} fori=1,---s}

of Ay = Ajy1. Also, notice that the ending point of Sggbl"'b’“ is also the ending

point of Sgobl'"b’“ from the definition of triangles. By thinking of the side of
Sgobl'"b’“, which faces the boundary, and the side of Sgodl”'ds, which faces the

boundary, we get

the ending point of S will be the starting point of Sdods,

SO
the ending point of S5 will be the starting point of Sdods,
In any possibilities, the ending point of Sgg"'b’“, which is also the ending point

of L, is the starting point of its next element in A, {, which will be the starting
point of M from ay =--- =a; =1 if t > 1. Thus, we get

the ending point of L is the starting point of M.

Now , assume m > 2 and ¢; # 6 for some 1 <7 < m. From the comparison
of Sé’ggllbk with the proper one of Ty, Ty, Ty and Ty, we get L and M are inside
the triangle S2. % and from subcase 1-2, we get

the ending point of L is the starting point of M.
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Appendix B

About Curves

B.1 Notations

f#*g:]0,1] — H" is an ordinary juxtaposition of curves f, g : [0, 1] — H". And,
for a given curve ¢ : [0, 1] — H™, ¢ represents a curve whose direction is opposite
to that of ¢, that is, ¢ : [0, 1] — H™ is given by ¢&(t) = ¢(1 — t).

B.2 Simplification 7 of a curve g : [a,b] — H"

Given a curve g : [a,b] — S , we can think of a curve « : [a,b] — S whose
direction is one-sided as follows :

If we can find ¢,d,e € (a,b) such that a < ¢ < d < e < b and I'm(g|q) =
Im(g|i4,) and that the directions of g|.4q and g|4. are one-sided but opposite
from each other, then we can think of the new curve g : [a,b] — D? from the
remaining part gl and gl by translating in the domain and rescaling as
follows :

Note g(c) = g(e).

Consider two curves g : [a,d] — H" and g, : [d,b] — H" given by

g <2:Z(t—a) +a> = g1(t) for t € [a, d]

and

b—d

and then let g = g1 * go.
From a curve obtained by doing this work again and again, we can think of
a constant speed curve v : [a,b] — S which we want.

g (b‘e<t—b>+b) — g(t) for t € [d, 1],
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B.3 The definition of D,, j,,t7,t5

1 3 . n
Dn:{_6_n|j207172776}u
1o j
n s k—1 n—k+1
( k=1{25+2k+1'2k—1.6n—k+1|j—0’1’2""’2 6 })

i=1

Think of the usual order D,, and regard

O1112 1_16"1+1 1 cD
"2 6772 67 T2 2 672 22 20.67 "
as Oth, 1st, 2nd, - -, 6"th, 6"*1th, --- element, respectively.

Now, define functions
jn : Dn — {07172737"'}

ty : D, — {0} = D,
ty : D, — { the last element of D, } — D,

as follows :

Jn(s) =j  for the j-th element s € D,,.

t7(s) is the (j — 1)-th element in D,, for a given j-th element s € D,, — {0}.

th(s) is the (j + 1)-th element in D, for a given j-th element s € D,, — { the

last element of D, }.

141 n n =n n =1 n n
B.4 Definition of ¢, cy , €, 1€, 1€, ¢r, and g

on the disk D?

Let n € {1,2,3,---} and ty € D,, be given. With respect to the ordering of D,,

we'll define 772, cir , ¢ and p inductively for each fixed n:

Case 1) ty is the first element in D, , in fact, tyg = % . GLn

The orientation at the barycenter of Ty € Ay will give the direction of the

boundary curve of the first triangle in A,.
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Then
¢ :[0,1] = {basepoint} C D*

¢y :[0,1] — {basepoint} C D’

Op 0,1] — D?

and

Yo 0,1] — D?

can be thought, where ¢ and ~; are the piecewise smooth boundary curve of
the first triangle in A,, with constant speed and the direction of the boundary
curve is induced from the given orientation.

Note 74 can be regarded as the simplification of ¢ * ¢} * cf; .

We will call vy the holonomy curve at time t = to.

Now, consider the path from the basepoint to the ending point of the first
triangle in n-step along the opposite direction of the holonomy curve ~; at
t =ty , which is a piecewise smooth curve with constant speed. Then from the
path, we can define a piecewise smooth curve

1(3?0 : [O, 1] — D2
with constant speed. And its opposite direction can make us define
ey 0,1] = D
Define a piecewise smooth curve
Yy 2 [0,1] = D?

with constant speed as the boundary curve of the 1st triangle in the n-th step,
where the curve is a loop at the ending point of the first triangle and the direction
of the boundary curve is induced from the given orientation.

Case 2) tg is the j-th element in D,, , where j > 2

Let t; be the (j — 1)-th element in D,, , where j —1 > 1.

Consider the path from the basepoint to the starting point of the j-th triangle
in the n-th step along the opposite direction of the holonomy curve 7}, at t = t;
, which is a piecewise smooth one with constant speed . Then from the path,
we can define a piecewise smooth curve

CZJ : [0, 1] — an,1 C D?
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with constant speed, where U;_; is the union of triangle in A,, from 1st one to
(7 — 1)-th one.
And its opposite direction can make us define
Ento : [0, 1] — an—l c D%

Define a piecewise smooth curve

gp;;:[o,l]—>D2

with constant speed as the boundary curve of the j-th triangle in the n-th step,
where the curve is a loop at the starting point of the triangle and the direction
of the boundary curve is induced from the given orientation.

Now define a piecewise smooth curve

")/Z; : [O, 1] — GUJ C D?

with constant speed from the simplification of 72 * cif * ppt * ¢ , where Uj is the
union of triangle in A, from 1st one to j-th one. The new curve will be also
called the holonomy curve at time t =tq .

Now, consider the path from the basepoint to the ending point of the j-th
triangle in the n-th step along the opposite direction of the holonomy curve 73
at t =ty , which is a piecewise smooth one with constant speed. Then from the
path, we can define a piecewise smooth curve

1y 2 0,1] = 8U; € D?
with constant speed. And its opposite direction can make us define
ey 0,1] — 0U; € D*.
Define a piecewise smooth curve
Yp 0 [0,1] = D?

with constant speed as the boundary curve of the j-th triangle in the n-th
step, where the curve is a loop at the ending point of the j-th triangle and the
direction of the boundary curve is induced from the given orientation.

B.5 the simplification of ¢ * 1cg,

For each n > 1 and ¢y # 0, where ¢, is the j,(to)-th element in D,,, the simpli-
fication of ¢ * 1cf! is a curve along the boundary curve of j,(t)-th triangle in
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A, with opposite direction to the given orientation such that it starts from the
starting point of the triangle and that its image consists of the following sets :
one point, one side, two sides or the boundary of the triangle.

Proof )

If n=1, then it can be easily checked.

Assume n > 2. If ty is greater than the maximum of D,,_; — {1}, then the
above property can be easily checked.

Now assume n > 2 and t is less than or equal to the maximum of D,,_; —{1}.
Now find 6, (o) € D,_1 such that t771(5,(t9)) < to < d.(to), where 77" (5,,(t0))
is the previous element of 6, (ty) in D,,_1. Then, the j,(ty)-th triangle in A, is
one of the barycentric subdivision of the j,_1(0,(to))-th triangle in A,,_;.

And find a value €(j,(to)) such that , for the given L = j,(¢y)-th triangle in
A?"m

if L="T,,4,a,, then €(j,(to)) = a,

and
if L = Shb1b% where n = k + s, then €(j,(to)) = as.

apgal---as’

Assume n > 2 and that the property, mentioned early in this section, holds
for n — 1.

Then we obtained the following result.

Case 1) Assume the image of the simplification of Egn’éo) * 10?7:(10) consists of
one point.

Now refer to the following picture under the counterclockwise orientation.

The thick line is a part of the image of 7;;11 and the outer triangle is the

1 (n(to))
Jn—1(0,(t0))-th triangle in A,_;.

?}'/

’\

Note the direction of the line segment of the j, 1(d,(tp))-th triangle along

7;;11(5 (o))" mentioned in the Property 1 in the Section A.4 of the Chapter
1 n

A, lying on the boundary curve 7"}

1 (Gut0))? 5 from the common vertex of the
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Jn—1(0,(t0))-th triangle in A,,_; with the second triangle of its barycentric subdi-
vision to its common vertex with the first triangle of its barycentric subdivision
, and

€(jn(to)) = 1,6 = ¢, * 1c;, consists of one side
€(jn(to)) = 2,3 = ¢, * 1c;, consists of one point
€(jn(to)) = 4,5 = ¢, * 1c;, consists of one point
Case 2) Assume the image of the simplification of Egn_(io) * 1025(10) consists of
one side.
Now refer to the following picture under the counterclockwise orientation.

The thick line is a part of the image of 7;;11 (5n(t0)) and the outer triangle
1 n

is the j,_1(d,(to))-th triangle in A, ;. Don’t forget that the ending point of
Jn—1(0,(to)) in A,,_; will lie on the image of 7;‘”_(;0), even though it might not lie

on the image of 7:;;11(6”@0))'

A

>

A

Note the direction of the line segment of the j,_1(d,(to))-th triangle along

'yt’f;ll (6n(t0))’ mentioned in the Property 1 in the Section A.4 of the Chapter
1 n
A lying on the boundary curve 7?,7_11 (65n(t0))’ is from the common vertex of the
1 n
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Jn—1(0,(t0))-th triangle in A,,_; with the second triangle of its barycentric subdi-
vision to its common vertex with the first triangle of its barycentric subdivision
, and

€(jn(to)) = 1 = ¢, * 1cq, consists of one side

€(jn(to)) = 2,3 = ¢, * 1cy, consists of one point

€(jn(to)) = 4 = ¢, * 1cy, consists of the boundary

€(jn(to)) = 5 = ¢ * 1c;, consists of either the boundary or one side
€(jn(to)) = 6 = ¢ * 1c;; consists of either one side or two sides

Remark B.5.1 The last 2 pictures in the bottom seem to be possible under the
induction hypothesis. But it might not happen in fact.

Remark B.5.2 The following picture in the bottom can’t happen from Property
2 in the Section A.j of the Chapter A.

g

%

Case 3) Assume the image of the simplification of Egn_(i ) * 1C5 ( o) consists of
two sides.

Now refer to the following picture under the counterclockwise orienta-
tion. The thick line is a part of the image of 7y~ (t ) and the outer triangle
is the j,_1(d,(to))-th triangle in A,,_;. Don’t forget that the ending point of
Jn-1(0,(tp)) in A, will lie on the image of Vs ( t > even though it might not lie

on the image of Vt?*l(én(to))'

Note the direction of the line segment of the j,_1(3,(ty))-th triangle along

7;1_11 (6 (t0))" mentioned in the Property 1 in the Section A.4 of the Chapter
1
A, lying on the boundary curve 7}, n- ! is from the common vertex of the

(On(to))’
Jn—1(0,(t0))-th triangle in A, with the first triangle of its barycentric subdivi-

sion to its common vertex with the second triangle of its barycentric subdivision
, and
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€(jn(to)) = 1 = ¢ * 1c;, consists of two sides

€(Jn(to)) = 2,3 = ¢, * 1c;, consists of the boundary

€(jn(to)) = 4 = ¢, * 1c;, consists of one point

€(jn(to)) = 5 = ¢, * 1c}, consists of either one point or the boundary
€(Jn(to)) = 6 = ¢ * 1c;; consists of either two sides or one side

Remark B.5.3 The last 3 pictures in the bottom seem to be possible under the
induction hypothesis. But it might not happen in fact.

Remark B.5.4 The following picture in the bottom can’t happen from Property
2 in the Section A.j of the Chapter A.

e
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Case 4) Assume the image of the simplification of Egn_éo) * 16:;”_(10) consists of
the boudary.

Now refer to the following picture under the counterclockwise orientation.
The thick line is a part of the image of 4™} and the outer triangle is the

71 (8n(to))
Jn—1(0,(to))-th triangle in A,_;.
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AN v

A

Note the direction of the line segment of the j,_1(3,(tp))-th triangle along
n—1

Vyn-1 (5u(t0))’ mentioned in the Property 1 in the Section A.4 of the Chapter
1 n

A, lying on the boundary curve ”y:ff_ll (6n(t0))’
1 n

Jn—1(0,(t0))-th triangle in A,,_; with the first triangle of its barycentric subdivi-
sion to its common vertex with the second triangle of its barycentric subdivision
, and

is from the common vertex of the

€(jnlto)) = 1,6 = & % 1} consists of two sides
€(jn(to)) = 2,3 = ¢}, * 1cq, consists of the boundary
€(Jn(to)) = 4,5 = Cy * 1cy consists of the boundary
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