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Chapter 1

Introduction

Let O(1, n) = {A ∈ GL(n+ 1;R) | AtSA = S}, where S =

(
−1 0
0 In

)
.

Let SO0(1, n) be the identity component of O(1, n), which is also the identity
component of SO(1, n), and consider a subgroup of SO0(1, n) consisting of all

matrices of the form

(
1 0
0 B

)
, where B ∈ SO(n). Call the embedded subgroup

SO(n) again.
Note the Lie algebra o(1, n) is given by

o(1, n) = {X ∈ gl(n+ 1;R)|X tS + SX = 0}.

Now, think of a left-invariant metric on SO0(1, n), induced from an inner
product ⟨· , ·⟩ on the Lie algebra, so(1, n), defined as follows :

⟨A,B⟩ = 1

2
trace(AtB) for A,B ∈ so(1, n).

If ϕ is a Killing-Cartan form, then

ϕ(U, V ) = −2(n− 1)⟨U, V ⟩ for U, V ∈ o(n) ⊂ o(1, n) ,

ϕ(X, Y ) = 2(n− 1)⟨X,Y ⟩ for X,Y ∈ o(n)⊥ ⊂ o(1, n) ,

ϕ(X,V ) = 0 = ⟨X, V ⟩ for X ∈ o(n)⊥, V ∈ o(n) .

Note Isom0

(
SO0(1, n)

)
= SO0(1, n)×SO(n), and with the Riemannian met-

ric on SO0(1, n)×SO(n) which makes the projection SO(n)→ SO0(1, n)/SO(n)
Riemannian, the quotient SO0(1, n)/SO(n) becomes isometric to the hyperbolic
space Hn.

If n=2, then it can be easily shown that for a given geodesic triangle in H2,
the distance by the holonomy displacement of the boundary curve of the given
geodesic triangle in the fiber is as same as the area of the triangle. Furthermore,
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the direction of the boundary curve of the given geodesic triangle in H2 will
determine the direction of its holonomy displacement. All of these are dealt
with in Chapter 4.

Can a similar result be obtained in a topological disk in Hn?
If it is a geodesic triangle, something similar can be easily said from the

result for the case n=2 and Fact 2, mentioned in Chapter 5. But, what can be
done for a general disk in Hn?

To answer this question, we intend to approximate the given disk with
geodesic triangles, since there exists a unique totally geodesic triangle for any 3
different points in Hn. And then we intend to construct a curve in the fiber by
using the property for the case n=2. But how can we approximate it? Though
each geodesic triangle and its boundary curve determine the direction of each
holonomy displacement, some linear ordering of geodesic triangles and the in-
duced ordering of their boundary curves may not represent the boundary curve
of their union. If the given disk is contained in an isometrically embedded
plane H2 in Hn , something similar can be said from a curve in the fiber SO(n),
made from the result for the case n=2 and Fact 2, mentioned in Chapter 5,
since holonomy displacements are happening in the one-dimensional vertical
subgroup. Though the different orderings of triangles give different curves in
the vertical space, they will meet at the same ending point. So, with respect
to any ordering, the holonomy displacement of the boundary curve of the given
disk can be approximated. But in other cases, what can be obtained? Some-
thing similar could be done if the fiber SO(n) were abelian, which would make
the ending points of any other different two curves in the fiber, induced from
different linear orderings, be the same. But the fiber SO(n) is not abelian for
n ≥ 3. The difficult part is that not only the approximation of the area but
also the linear ordering of the triangles on each step for the approximation of
the boundary curve of the disk should be considered at the same time. This
is one of the hardest parts in this paper, which is dealt with in Chapter 2
and Appendices A and B. Furthermore, can holonomy displacements by the
lifts of piecewise geodesics approaching to the boundary of the given topological
disk in the base space converge to the holonomy displacement by the lift of the
boundary? It will be discussed in Section 5.3.

After the case n=2 is explained in Chapter 4, our following main result for
the general case will be explained in Chapter 5.

Theorem 1.0.1 Let π : SO0(1, n) → Hn be the Riemannian submersion given
as before. Then, given a topological disk S, with smooth interior and with ē =
π(e) on its piecewise smooth boundary, in Hn, there is a C1- curve f : [0, 1]→
SO(n) ⊂ SO0(1, n) with f(0) = e such that

• f(1) = f(0)−1f(1) = the difference by the holonomy induced from the
boundary of S in view of right multiplication
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• the length of the curve f = the area of S.

Corollary 1.0.2 If S is a piecewise smooth disk in Hn, then there is a piecewise
C1- curve f : [0, 1] → SO(n) ⊂ SO0(1, n) with the same properties of Theorem
1.0.1.

Recall some definitions first. Let π : M → B denote a submersion, where
M is a Riemannian manifold. The horizontal distribution of π is the orthogonal
complement H = V⊥ of the vertical distribution V , defined to be the kernel
of π∗, i.e., the collection of tangent spaces to fibers. If B is a Riemannian
manifold, then π is called a Riemannian submersion if it is isometric when
restricted to the horizontal distribution, i.e., |π∗x| = |x| for all x ∈ H. For a
differentiable curve c : [a, b] → B, a curve c̃ : [a, b] → M is a horizontal lift
of c if π ◦ c̃ = c and ˙̃c(t) ∈ Hc̃(t) for each t ∈ [a, b]. Given p ∈ π−1

(
c(a)

)
,

the holonomy displacement of p associated to c is defined to be c̃(b), where
c̃(a) = p. In this paper, ‘holonomy displacement’ means ‘holonomy displacement
of e,’ where e is the identity of SO0(1, n). Note elements in π−1

(
c(a)

)
induce

a map hc : π−1
(
c(a)

)
→ π−1

(
c(b)

)
, which is called holonomy diffeomorphism

assoicated to c. If c is a geodesic and γ : (−ϵ, ϵ)→ π−1
(
c(a)

)
is a differentiable

curve, consider a variation V : [a, b] × (−ϵ, ϵ) → M such that V (a, s) = γ(s)
for s ∈ (−ϵ, ϵ) and that for each s ∈ (−ϵ, ϵ), t 7→ V (t, s) is a horizontal lifting
of c at γ(s). Then, for each s ∈ (−ϵ, ϵ), t 7→ V∗D2(t, s) is a Jacobi field along a
horizontal geodesic t 7→ V (t, s) called a holonomy field. A polytope is a piecewise
totally geodesic surface, homeomorphic to a disk, whose boundary consists of
piecewise geodesic curves.
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Chapter 2

Strategy for approximation

The approximation procedure in this paper is similar to that of ‘Factorization
Lemma’, given by Lichnerowicz, Theorie Globale des Connexions et des Groupes
d’Holonomie , [3, vol 1, p.284], so understanding the lemma will be helpful for
this chapter. For the difference, focus on properties of triangles mentioned in
number 6. The reason for introducing another approximation will be given in
Subsection 5.4.7.

1. For any 3 points in Hn, there exists a unique totally geodesic triangle
with these vertices.

2. Let △ABC be a totally geodesic triangle in Hn and consider a piecewise
geodesic from ē = π(e) to A, where e is the identity of SO0(1, n).

B

A

_
e

C

Then, it will be shown that the holonomy displacement of γ = ēA ·AB ·BC ·
CA · Aē is g ∈ SO(n), where

the length of eg = the area of △ ABC .

3. Let△ABC and△ACD be two given geodesic triangles inHn and consider
a piecewise geodesic curve from ē to A.

Consider two curves γ1 = ēA·AB·BC ·CA·Aē and γ2 = ēA·AC ·CD·DA·Aē .
Then the holonomy displacement of γ1 ∗γ2 equals to that of γ3 = ēA ·AB ·BC ·
CD ·DA · Aē .
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B

A

C

D

_
e

_
e A

B

CD

E

In general, if γ1 = ēA ·AB ·BC ·CD ·DA ·Aē and γ2 = ēA ·AD ·DC ·CE ·
ED ·DA ·Aē are two curves in Hn , then the holonomy displacement of γ1 ∗ γ2
equals to that of γ3 = ēA · AB ·BC · CE · ED ·DA · Aē .

4. What’s the difficulty of the approximation?
Consider three given geodesic triangles △ABC ,△ACE ,△CDE in Hn .

B

A

_
e

C

D
E

Then, for three curves γ1 = ēA·AB ·BC ·CA·Aē , γ2 = ēA·AC ·CE ·EA·Aē
and γ3 = ēA · AE · EC · CD ·DE · EA · Aē , the horizontal lift of γ1 ∗ γ2 ∗ γ3
equals to that of γ4 = ēA · AB · BC · CD ·DE · EA · Aē , which relates to the
boundary of the polygon ABCDE . But the horizontal lift of γ1 ∗ γ3 ∗ γ2 equals
to γ5 = ēA ·AB ·BC ·CA ·AE ·EC ·CD ·DE ·EA ·AC ·CE ·EA ·Aē , which
does not relate to the boundary of the polygon ABCDE . Thus, for our object,
the order of curves is important, which relates to the order of triangles.

5. Refer to the number 4.
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Consider a curve γ̃3 = ēA · AC · CD · DE · EC · CA · Aē . Though the
order (γ1, γ2, γ̃3) of curves relates to the order of the triangles, induced by
the order (γ1, γ2, γ3) of curves, the horizontal lift of γ1 ∗ γ2 ∗ γ̃3 equals to
γ̃4 = ēA ·AB ·BC ·CE ·EA ·AC ·CD ·DE ·EC ·CA ·Aē , which does not relate
to the boundary of the polygon ABCDE . Thus, it is also important how to
make a curve that represents a given triangle. This problem in the construction
of a curve for each triangle will be solved by introducing the starting point and
the ending point of each triangle in Appendix A.

6. Instead of approximating a given topological disk in Hn directly, we will
approximate D2 by triangles, and approximate the given disk in Hn by the
diffeomorphism from D2 to it. In fact, in Appendix A, for each n = 0, 1, 2, · · · ,
we will construct a subdivision Dn of the interval [0, 1] and an ordered set An

consisting of triangles having the following properties:

Property 1.) Given a non-first element L in An, the boundary of
∪
{M ∈

An|M < L} contains a side of L, which will be divided into two line segments in
its barycentric subdivision, where one of two line segments will become a side
of the first triangle and the other one will become a side of the second triangle
in the barycentric subdivision of L.

Property 2.) Given L ∈ An ,
∪
{M ∈ An|M ≤ L} is diffeomorphic to the

disk D2.

Property 3.) Assume L ∈ An and six triangles M1,M2, · · · ,M6 ∈ An+1,
obtained from the barycentric subdivision of L, follows the order of i = 1, 2, · · · 6
in An+1. Then the starting points of M1 and L are same. Also are the ending
points of M6 and L.

Property 4.) Assume L,M ∈ An and that M is the next element of L in An

for n ≥ 1.
Then, The ending point of L and the starting point of M are same.

Furthermore, we can give one more property without loss of generality:

Property 5.)
∪
{M ∈ An|M ≤ L} does not contain such a boundary point

of D2 that the the boundary of the given topological disk in Hn is not smooth
at its image.
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Chapter 3

Definitions, Triangles and
Curves

All materials in this chapter will be dealt with in Appendix B concretely. And
‘a constant speed curve’ in this paper means ‘a piecewise constant speed curve.’

3.1 Notations

f ∗g : [0, 1]→ Hn is an ordinary juxtaposition of curves f, g : [0, 1]→ Hn. And,
for a given curve c : [0, 1]→ Hn, c̄ represents a curve whose direction is opposite
to that of c, that is, c̄ : [0, 1]→ Hn is given by c̄(t) = c(1− t).

3.2 Simplification γ of a curve g : [a, b]→ Hn

Given a curve g : [a, b] → S , we can think of a curve γ : [a, b] → S whose
direction is one-sided as follows :

If we can find c, d, e ∈ (a, b) such that a < c < d < e < b and Im(g|[c,d]) =
Im(g|[d,e]) and that the directions of g|[c,d] and g|[d,e] are one-sided but opposite
from each other, then we can think of the new curve g̃ : [a, b] → D2 from the
remaining part g|[a,c] and g|[e,b] by translating in the domain and rescaling as
follows :

Note g(c) = g(e).
Consider two curves g1 : [a, d]→ Hn and g2 : [d, b]→ Hn given by

g

(
c− a
d− a

(t− a) + a

)
= g1(t) for t ∈ [a, d]

and

g

(
b− e
b− d

(t− b) + b

)
= g2(t) for t ∈ [d, b],
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and then let g̃ = g1 ∗ g2.
From a curve obtained by doing this work again and again and by

reparametrizing it, we can think of a piecewise constant speed curve γ : [a, b]→
S which we want.

3.3 The definition of Dn, jn, t
n
1, t

n
2

Dn =

{
1

2
· j
6n
| j = 0, 1, 2, · · · , 6n

}∪
(
∪n

k=1

{
k∑

i=1

1

2i
+

1

2k+1
· j

2k−1 · 6n−k+1
| j = 0, 1, 2, · · · , 2k−1 · 6n−k+1

})
Think of the usual order Dn and regard

0,
1

2
· 1
6n
,
1

2
· 2
6n
, · · · , 1

2
=

1

2
· 6

n

6n
,
1

2
+

1

22
· 1

20 · 6n
, · · · ∈ Dn

as 0th, 1st, 2nd, · · · , 6nth, 6n+1th, · · · element, respectively.
Now, define functions

jn : Dn → {0, 1, 2, 3, · · · }

tn1 :
(
Dn − {0}

)
∪ {1} → Dn

tn2 : Dn − { the last element of Dn} → Dn

as follows :

jn(s) = j for the j-th element s ∈ Dn.

tn1 (s) is the (j − 1)-th element in Dn for a given j-th element s ∈ Dn − {0}
and tn1 (1) is the last element in Dn.

tn2 (s) is the (j+1)-th element in Dn for a given j-th element s ∈ Dn−{ the
last element of Dn}.

3.4 Definition of γnt0, c
n
t0
, c̄nt0, 1c

n
t0
, 1c̄

n
t0
, φn

t0
and ψn

t0

on the disk D2

Recall, from Properties mentioned later in Chapter 2, that the union Ui of
triangles from 1st one to i-th one is diffeomorphic to a disk.

8



Let n ∈ {1, 2, 3, · · · } and t0 ∈ Dn be given.
With respect to the ordering of Dn, we will define γ

n
t0
, cnt0 , c̄

n
t0
and φn

t0
induc-

tively for each fixed n:
Case 1) t0 is the first element in Dn , in fact, t0 =

1
2
· 1
6n

The orientation at the barycenter of T0 ∈ A0 will give the direction of the
boundary curve of the first triangle in An.

Then
cnt0 : [0, 1]→ {basepoint} ⊂ D2

c̄nt0 : [0, 1]→ {basepoint} ⊂ D2

φn
t0
: [0, 1]→ D2

and

γnt0 : [0, 1]→ D2

can be thought, where φn
t0
and γnt0 are the piecewise smooth boundary curve of

the first triangle in An with piecewise constant speed and the direction of the
boundary curve is induced from the given orientation.

Note γnt0 can be regarded as the simplification of cnt0 ∗ φ
n
t0
∗ c̄nt0 .

We will call γnt0 the holonomy curve at time t = t0.
Now, consider the path from the basepoint to the ending point of the first

triangle in n-step along the opposite direction of the holonomy curve γnt0 at
t = t0 , which is a piecewise smooth curve with piecewise constant speed. Then
from the path, we can define a piecewise smooth curve

1c
n
t0
: [0, 1]→ D2

with piecewise constant speed. And its opposite direction can make us define

1c̄
n
t0
: [0, 1]→ D2.

Define a piecewise smooth curve

ψn
t0
: [0, 1]→ D2

with piecewise constant speed as the boundary curve of the 1st triangle in the
n-th step, where the curve is a loop at the ending point of the first triangle and
the direction of the boundary curve is induced from the given orientation.

Case 2) t0 is the j-th element in Dn, i.e., jn(t0) = j, where j ≥ 2

9



Let t1 be the (j − 1)-th element in Dn, i.e., t
n
1 (t0) = t1 and jn(t1) = j − 1,

where j − 1 ≥ 1.
Consider the path from the basepoint to the starting point of the j-th triangle

in the n-th step along the opposite direction of the holonomy curve γnt1 at t = t1
, which is a piecewise smooth one with constant speed . Then from the path,
we can define a piecewise smooth curve

cnt0 : [0, 1]→ ∂Uj−1 ⊂ D2

with constant speed, where Uj−1 is the union of triangle in An from the 1st one
to the (j − 1)-th one.

And its opposite direction can make us define

c̄nt0 : [0, 1]→ ∂Uj−1 ⊂ D2.

Define a piecewise smooth curve

φn
t0
: [0, 1]→ D2

with constant speed as the boundary curve of the j-th triangle in the n-th step,
where the curve is a loop at the starting point of the triangle and the direction
of the boundary curve is induced from the given orientation.

Now define a piecewise smooth curve

γnt0 : [0, 1]→ ∂Uj ⊂ D2

with constant speed from the simplification of γnt1 ∗ c
n
t0
∗φn

t0
∗ c̄nt0 , where Uj is the

union of triangle in An from the 1st one to the j-th one. The new curve will be
also called the holonomy curve at time t = t0 .

Now, consider the path from the basepoint to the ending point of the j-th
triangle in the n-th step along the opposite direction of the holonomy curve γnt0
at t = t0 , which is a piecewise smooth one with constant speed. Then from the
path, we can define a piecewise smooth curve

1c
n
t0
: [0, 1]→ ∂Uj ⊂ D2

with constant speed. And its opposite direction can make us define

1c̄
n
t0
: [0, 1]→ ∂Uj ⊂ D2.

Define a piecewise smooth curve

ψn
t0
: [0, 1]→ D2

10



with constant speed as the boundary curve of the j-th triangle in the n-th
step, where the curve is a loop at the ending point of the j-th triangle and the
direction of the boundary curve is induced from the given orientation.

3.5 The simplification of c̄nt0 ∗ 1c
n
t0

For each n ≥ 1 and 0 ̸= t0 ∈ Dn, where t0 is the jn(t0)-th element in Dn, the
simplification of c̄nt0 ∗ 1c

n
t0
is a curve along the boundary of jn(t0)-th triangle in

An with opposite direction to the given orientation such that it starts from the
starting point of the triangle and that its image consists of the following sets :

one point, one side, two sides or the boundary of the triangle.

3.6 The induced curves on the surface S ⊂ Hn

and totally geodesic planes in Hn

Let Φ : D2 → S be a given diffeomorphism. Then we can think of triangles in
S induced from the barycentric subdivision on D2 on each n-th step. We will
use ’ ∼ ’ notation for the induced triangles and curves in S , that is ,

T̃ = Φ(T ) for T ∈ An

Ãn = {Φ(T ) | T ∈ An}

and

γ̃nt0 , c̃
n
t0
, φ̃n

t0
, ˜̄cnt0 , 1c̃

n
t0
, ψ̃n

t0
, 1˜̄c

n
t0
,

which are piecewise smooth curves with constant speed such that

Im(γ̃nt0) = Im(Φ ◦ γnt0)

Im(c̃nt0) = Im(Φ ◦ cnt0)

Im(φ̃n
t0
) = Im(Φ ◦ φn

t0
)

Im(˜̄cnt0) = Im(Φ ◦ c̄nt0)

11



Im(1c̃
n
t0
) = Im(Φ ◦ 1c

n
t0
)

Im(ψ̃n
t0
) = Im(Φ ◦ ψn

t0
)

Im(1˜̄c
n
t0
) = Im(Φ ◦ 1c̄

n
t0
)

and whose direction relates to that of γnt0 , c
n
t0
, φn

t0
, c̄nt0 , 1c

n
t0
, ψn

t0
, 1c̄

n
t0
, respectively.

Now with respect to each triangle in S, we can think of a totally geodesic
triangle with same vertices in Hn . So, each step will induce the similar concept
, i.e. triangles and curves, on the induced pleated surface consisting of totally
geodesic triangles and we’ll use ’ ∧ ’ notation for them. In other words, we can
think of

T̂ ∈ Ân, γ̂
n
t0
, ĉnt0 , φ̂

n
t0
, ˆ̄cnt0 , 1ĉ

n
t0
, ψ̂n

t0
, 1ˆ̄c

n
t0
,

where the curves γ̂nt0 , ĉ
n
t0
, φ̂n

t0
, ˆ̄cnt0 , 1ĉ

n
t0
, ψ̂n

t0
, 1ˆ̄c

n
t0
are piecewise geodesics in Hn, in-

duced from the boundaries of totally geodesic triangles T̂ , and are relating to the
previous curves γ̃nt0 , c̃

n
t0
, φ̃n

t0
, ˜̄cnt0 , 1c̃

n
t0
, ψ̃n

t0
, 1˜̄c

n
t0
in S and γnt0 , c

n
t0
, φn

t0
, c̄nt0 , 1c

n
t0
, ψn

t0
, 1c̄

n
t0

in D2.
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Chapter 4

SO(2)→ SO0(1, 2)→ H2

For an ordered orthonormal basis {E1, E2, E3} of o(1, 2), given by

E1 =

0 0 1
0 0 0
1 0 0

 , E2 =

0 1 0
1 0 0
0 0 0

 , and E3 = [E1, E2] =

0 0 0
0 0 −1
0 1 0

 ,

let a triple (E2, E1, E3) be the orientation of SO0(1, 2). Then, Fact(5), men-
tioned in Chapter 5, says that the induced orientation (E2, E1) on o(2)⊥ is
comparable to the counterclockwise orientation on H2.

For t ∈ R, put

Ψ(t) = exp(tE3) =

1 0 0
0 cos t − sin t
0 sin t cos t

 .

Let c : [t0, t3] → H2 be a simple-closed arc-length parameterized piecewise-
smooth curve representing a geodesic triangle in H2 with the counterclockwise
orientation:

c( t 0) = c( t )

c( t1)
c( t )

3

2

α

β
γ

α,β,γ > 0 or
c( t2)

c( t1)

)=c0tc( ( t3)

α

γ β

α,β,γ < 0

More precisely, c is continuous on [t0, t3] and smooth on (t0, t1)∪ (t1, t2)∪ (t2, t3)
, where c(t0) = c(t3), c(t1) and c(t2) are vertices of the given geodesic triangle.
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Let

α be the angle from ċ(t0
+) to − ċ(t3−),

β be the angle from ċ(t1
+) to − ċ(t1−), and

γ be the angle from ċ(t2
+) to − ċ(t2−) .

Then, either α, β, γ > 0 or α, β, γ < 0 holds.

Lemma 4.0.1 Under the above condition, let c̃ : [t0, t3] → SO0(1, 2) be a
horizontal lift of c. Then, the relation between the holonomy and the area of a
geodesic triangle is given by

c̃(t0)
−1 · c̃(t3) =

(
Ψ
(
π − |α + β + γ |

))δ
,

where

δ =

{
1 if α, β, γ > 0
−1 if α, β, γ < 0

Furthermore, π − |α + β + γ | is the area of the geodesic triangle.

c(t0) = c(t 3) c(t 1)

c(t 2 )

)0c(t~
~
c(t 1)

c(t
~

2)

π

~
c(t 3)

α, β, γ > 0 or

)c(t∼

c(t~

π

0)

3

α, β, γ <  0

c(t 0)= c(t 3) c(t 2)

c(t 1 )

c(t
~

1)

c(t
~

2 )

Proof) Let π : SO0(1, 2)→ H2 be the given Riemannian submersion. Recall
Fact (5), mentioned in Chapter 5. For any k ∈ SO(2), the restriction Adk|o(2)⊥
of Adk(·) : o(1, 2) → o(1, 2) to o(2)⊥ is an automorphism of o(2)⊥, which is
projected to the action of K on Tπ(e)H2 and the action is in fact a rotation if
n = 2. For −ċ(t3−) and its horizontal lift x at c̃(t0), find A ∈ o(2)⊥ satisfying

Lc̃(t0)−1∗x = Ae.

14



Then Fact (5) says that

Lc̃(t0)−1∗
˙̃c(t0

+) = (AdΨ(α)A)e.

And Fact (1), mentioned in Chapter 5, says that

c̃(t) = c̃(t0) · exp
(
(t− t0)AdΨ(α)A

)
for t ∈ [t0, t1],

so
Lc̃(t1)−1∗

˙̃c(t1
−) = (AdΨ(α)A)e.

Now from Fact (5), we get

Lc̃(t1)−1∗
˙̃c(t1

+) =
(
AdΨ(β)(−AdΨ(α)A)

)
e
= (AdΨ(π)·Ψ(α)·Ψ(β)A)e,

and from Fact (1)

c̃(t) = c̃(t1) · exp
(
(t− t1)AdΨ(π)·Ψ(α)·Ψ(β)A

)
for t ∈ [t1, t2],

so
Lc̃(t2)−1∗

˙̃c(t2
−) = (AdΨ(π)·Ψ(α)·Ψ(β)A)e.

If we apply Fact (1) and (5) again, then we obtain

Lc(t2)−1∗
˙̃c(t2

+) =
(
AdΨ(γ)(−AdΨ(π)·Ψ(α)·Ψ(β)A)

)
e
= (AdΨ(α)·Ψ(β)·Ψ(γ)A)e

and
c̃(t) = c̃(t2) · exp

(
(t− t2)AdΨ(α)·Ψ(β)·Ψ(γ)A

)
for t ∈ [t2, t3],

so

Lc̃(t3)−1∗
˙̃c(t3

−) = (AdΨ(α)·Ψ(β)·Ψ(γ)A)e,

that is,

− ˙̃c(t3
−) = Lc̃(t3)∗e(−AdΨ(α)·Ψ(β)·Ψ(γ)A)e = Lc̃(t3)∗e(AdΨ(π)·Ψ(α)·Ψ(β)·Ψ(γ)A)e.

Therefore,

π
(
c̃(t0) · etA

)
= π

(
c̃(t3) · et(AdΨ(π)·Ψ(α)·Ψ(β)·Ψ(γ)A)

)
= π

(
c̃(t0) · etAd

c̃(t0)
−1·c̃(t3)·Ψ(π)·Ψ(α)·Ψ(β)·Ψ(γ)

A · c̃(t0)−1 · c̃(t3)
)

= π
(
c̃(t0) · etAd

c̃(t0)
−1·c̃(t3)·Ψ(π)·Ψ(α)·Ψ(β)·Ψ(γ)

A)
because

c̃(t0)
−1 · c̃(t3) ∈ SO(2)

and
B ∈ so(2)⊥ and k ∈ SO(2)⇒ k · etB · k−1 = etAdkB.
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Thus, we get
A = Adc̃(t0)−1·c̃(t3)·Ψ(π)·Ψ(α)·Ψ(β)·Ψ(γ)A

and so

c̃(t0)
−1 · c̃(t3) ·Ψ

(
π + (α + β + γ)

)
= Ψ(2nπ) for some n ∈ Z .

Therefore,

c̃(t0)
−1 · c̃(t3) = Ψ(2nπ) ·

(
Ψ
(
π + (α + β + γ)

))−1

=
(
Ψ
(
π + (α + β + γ)

))−1

=

{
Ψ(−π − (α+ β + γ)) if α, β, γ > 0(
Ψ
(
π + (α + β + γ)

))−1

if α, β, γ < 0

=


Ψ(π − (α + β + γ)) if α, β, γ > 0(
Ψ
(
π −

(
(−α) + (−β) + (−γ)

)))−1

if α, β, γ < 0

=
(
Ψ
(
π − |α + β + γ|

))δ
, where δ =

{
1 if α, β, γ > 0
−1 if α, β, γ < 0.

Remark 4.0.2 Recall that the induced orientation (E2, E1) on o(2)⊥ is compa-
rable to the counterclockwise one on H2. This lemma says that the orientation
(E2, E1, E3) of SO0(1, 2) is comparable to the usual one (e1, e2, e3) in the 3-
dimensional Euclidean space R3.
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Chapter 5

Liftings in
SO(n)→ SO0(1, n)→ Hn

This chapter is the proof of Theorem 1.0.1 and its Corollary 1.0.2.

5.1 Preliminaries on the Riemannian submer-

sion π : SO0(1, n)→ Hn

Let π : SO0(1, n) → Hn be the given Riemannian submersion. In fact, this is
the quotient of the isometric right translation by SO(n) and Hn is isometric to
SO0(1, n)/SO(n).

Let G = SO0(1, n) , K = SO(n) , and g and k be their Lie algebras, respec-
tively. Then we have the following facts, see [KN; vol 2., Example 10.2] and
[GW; Section 1.4, Section2.4].

Facts

1. For X ∈ k⊥, t 7→ g· exp (tX) : (−∞,∞)→ G is a horizontal geodesic for
any g ∈ G.

2. For X, Y ∈ k⊥ with 0 ̸= [X, Y ] ∈ k, let h be a Lie subalgebra
Span{X, Y, [X, Y ]} ⊂ g. Then its related subgroup H is isometric to
SO0(1, 2). Furthermore, the riemannian submersion SO0(1, n) → SO(n)
can be restricted to

(
H = SO0(1, 2)

)
→ SO(2).

3. Each fiber gK, g ∈ G, is totally geodesic. More precisely, for U ∈ k,
t 7→ g· exp(tU) : (−∞,∞) → gK ⊂ G is a vertical geodesic for any
g ∈ G. Especially, if g ∈ K, then its image lies on K = eK. Furthermore,
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for any piecewise smooth curve c : [a, b] → Hn, its induced holonomy
hc : π

−1(c(a))→ π−1(c(b)) is an isometry.

4. For any k ∈ K, the right translation Rk : G → G by k,Rk(g) = gk, is
an isometry. Or, equivalently, Adk : g → g is a linear isometry for any
k ∈ K.

5. The action of AdK on k⊥ is projected to the action of K on Tπ(e)Hn, where

e is the identity of G. More precisely, for B ∈ SO(n), for k =

(
1 0
0 B

)
∈ k

and for a column vector ξ ∈ Rn ,

m =

(
0 −ξt
ξ 0

)
∈ k⊥ and Adkm =

(
0 −(Bξ)t
Bξ 0

)
.

Consider the following Lemma, which is the explanation of the holonomy
isometry hc in Fact 3 in terms of vector fields.

Lemma 5.1.1 For any U ∈ k and for any horizontal geodesic c̃ : [a, b] → G,
U ◦ c̃ is a holonomy field along c̃.

Proof) Consider a vertical geodesic γ : (−ϵ, ϵ)→ c̃K given by

γ(s) = c̃(a) · exp(sU),

and a variation V (t, s) : [a, b]× (−ϵ, ϵ)→ G defined by

V (t, s) = c̃(t) · exp(sU).

Then, for inclusions maps is : [a, b] → [a, b] × (−ϵ, ϵ) and jt : (−ϵ, ϵ) → [a, b] ×
(−ϵ, ϵ) with is(t) = (t, s) = jt(s),

V ◦ j0 = γ, V ◦ i0 = c̃

and
V ◦ is is a horizontal geodesic with π ◦ V ◦ is = c̃

since
exp(sU) ∈ K, V ◦ is(t) = V (t, s) = Rexp(sU)

(
c̃(t)
)

and

the right multiplication Rexp(sU) is an isometry for each s ∈ (−ϵ, ϵ).
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So from

V (t, s) = c̃(t) · exp(s0U) · exp
(
(s− s0)U

)
= V (t, s0) · exp

(
(s− s0)U

)
,

we get
V∗D2 ◦ is0(t) = LV (t,s0)∗

Ue = UV (t,s0) = U ◦ (V ◦ is0)(t)

and that U is a holonomy field along V ◦ is0 . Especially, U ◦ c̃ is a holonomy
field along a horizontal geodesic c̃ = V ◦ i0.

5.2 Definition

of f̄ :
∞∪

m=1

Dm → K = SO(n), f̄m : Dm → SO(n)

and f̂m : [0,1]→ SO(n) and the property of

f̂m

5.2.1 Definition of f̄ , f̄m

Let f̄(0) = e. Fix t0 ∈
∞∪

m=1

Dm − {0}. Then we can find a positive integer n0 =

min {m1 | m+ 1 ≥ m1 ⇒ t0 ∈ Dm} .
Note that on the given surface S,

γ̃nt0 = γ̃n0
t0 and c̃ntn2 (t0) = 1c̃

n
t0
= 1c̃

n0
t0 = c̃n0

t
n0
2 (t0)

for all n ≥ n0 . So let
γ̃t0 := γ̃n0

t0 and 1c̃t0 := 1c̃
n0
t0

Define

f̄(t0) : = the value , at t = 1, of the horizontal lifting of γ̃t0 at e .

Put f̄n as the restriction f̂n |∪∞
n=1Dn of f̂n, defined below, to Dn.

5.2.2 Definition of f̂n and its property

Define a curve f̂n : [0, 1]→ K = SO(n) with f̂n(0) = e inductively as follows:

Step 1) Assume t0 ∈ Dn is the 1st element in Dn, in fact, t0 =
1
2
· 1
6n
. Then,

tn1 (t0) = 0.
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π

x

y

]
n
0Y,0

nX[

Xn
0|e

Y0
n|e

e

(e)π

f
n
(t0)

n
( 1−2 .1−6n)f=

|

^ ^

Consider the first triangle in Ân, its starting point and the horizontal lifting
of

x := lim
t→0+

1

| ˙̂φn
t0(t) |

· ˙̂φn
t0
(t)

and

y := − lim
t→1−

1

| ˙̂φn
t0(t) |

· ˙̂φn
t0
(t)

at e , respectively and find

Xn
0 = Xn

tn1 (t0)
, Y n

0 = Y n
tn1 (t0)

∈ k⊥

with
π∗ X

n
0 |e = π∗ X

n
tn1 (t0)

|e = x

and
π∗ Y

n
0 |e = π∗ Y

n
tn1 (t0)

|e = y .

Then, define

f̂n(t) := exp
(
t · (Area of the 1st triangle in Ân)

t0· | [Xn
0 , Y

n
0 ] |

· [Xn
0 , Y

n
0 ]
)

for t ∈ [0, t0] ,

which is a geodesic in K = SO(n) from Fact 3.

Step 2) Assume t0 ∈ Dn is the j-th element in Dn, where j ≥ 2 .
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y

x

π

Y
n
tn1 (t0

)|g

Xn
tn
1

(t0) |g

e

n (t 0 )

))0t(tn1(f

(e)π

X[
n
tn
1

(t0),Y
n
t1n(t0)]|f(tn1(t0))

ĉ
t
n

0

ĉn
t0))0t(

nt1(f

^
n

f
^

^

^

n

Note tn1 (t0) is the (j − 1)-th element in Dn, where j − 1 ≥ 1 .
Let f̂n(tn1 (t0))

ĉnt0 : [0, 1]→ SO0(1, n) be the horizontal lifting of ĉ
n
t0
at f̂n(t

n
1 (t0))

and then consider the j-th triangle in Ân, its starting point and the horizontal
lifting of

x := lim
t→0+

1

| ˙̂φn
t0(t) |

· ˙̂φn
t0
(t)

and

y := − lim
t→1−

1

| ˙̂φn
t0(t) |

· ˙̂φn
t0
(t)

at g := f̂n(tn1 (t0))
ĉnt0(1) , respectively and find

Xn
tn1 (t0)

, Y n
tn1 (t0)

∈ k⊥

with
π∗ X

n
tn1 (t0)

|g = x

and
π∗ Y

n
tn1 (t0)

|g = y .

Then define

f̂n(t) :=

f̂n(t
n
1 (t0)) · exp

((
t− tn1 (t0)

)
· (Area of j-th triangle in Ân)(

t0−tn1 (t0)
)
· | [Xn

tn1 (t0)
,Y n

tn0 (t0)
] |
· [Xn

tn1 (t0)
, Y n

tn1 (t0)
]
)

for t ∈ [tn1 (t0), t0].
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Step3 ) t0 = 1

Note tn1 (1) be the last element in Dn , in other words, tn1 (1) =
n+1∑
i=1

1

2i
.

Then define
f̂n(t) := f̂n(t

n
1 (1))

for t ∈ [tn1 (1), 1].

Now check the property of f̂n.
Assume 0 ̸= t0 ∈ Dn is a j-th element in Dn, where j ≥ 1 . Then tn1 (t0) is

the (j − 1)-th elements in Dn , where j − 1 ≥ 0 , and from Facts, mentioned
early in this chapter, and from the property in Chapter 4, we get

f̂n(t0) = the value , at t = 1, of the horizontal lifting of ĉnt0 ∗ φ̂
n
t0
∗ ¯̂cnt0 at f̂n(t

n
1 (t0))

= the value , at t = 1, of the horizontal lifting of γ̂nt0 at e .

π

e

))0t(tn1(f

(e)π
^n

t0

c

ĉn
t
0

))0t(1
n

t(f

f (t
n 0 )

ϕ̂n
t 0

^

^
^
n

n

Define, for any g ∈ G, lg : K → G by lg(k) = gk , which is an isometric
imbedding of K onto the fiber gK.

And let ω and Ω be the connection form and the curvature form of the
connection of the principal bundle π : SO0(1, n)→ Hn, respectively.
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Then, under the identification of TeG and g, for t ∈ (tn1 (t0), t0) and g =

f̂n(tn1 (t0))
ĉnt0(1), which is the value, at t = 1, of the horizontal lifting of ĉnt0 at

f̂n(t
n
1 (t0)) ,

ω
(

1

| ˙̂fn(t)|
· ˙̂fn(t)

)
= (lf̂n(t)∗e

)−1
(

1

| ˙̂fn(t)|
· ( ˙̂fn(t))v

)
= (lf̂n(t)∗e

)−1
(

1

| ˙̂fn(t)|
· ˙̂fn(t)

)
= (lf̂n(t)∗e

)−1
(

1
|[Xn

tn1 (t0)
, Y n

tn1 (t0)
]|f̂n(t)|

· [Xn
tn1 (t0)

, Y n
tn1 (t0)

] |f̂n(t)
)

= 1
|(l

f̂n(t)∗e
)−1([Xn

tn1 (t0)
, Y n

tn1 (t0)
]|
f̂n(t)

)| · (lf̂n(t)∗e)
−1 ( [Xn

tn1 (t0)
, Y n

tn1 (t0)
] |f̂n(t))

= 1
|[Xn

tn1 (t0)
, Y n

tn1 (t0)
]| · [X

n
tn1 (t0)

, Y n
tn1 (t0)

]

= −1
|Ω(Xn

tn1 (t0)
|g , Y n

tn1 (t0)
|g)| · Ω (Xn

tn1 (t0)
|g, Y n

tn1 (t0)
|g)

and
ω
(

1

| ˙̂fn(t)|
· ˙̂fn(t)

)
|e = L(f̂n(t))−1∗

(
1

| ˙̂fn(t)|
· ˙̂fn(t)

)
Roughly speaking, the unit tangent vector 1

|ḟn(t)|
· ḟn(t), t ∈ (tn1 (t0), t0), is the

negative of the unit curvature of the 2-dimensional horizontal plane

Ĥn
g = Span{Xn

tn1 (t0)
|g, Y n

tn1 (t0)
|g}, where g =f̂n(tn1 (t0))

ĉnt0(1),

which projects to the tangent plane of the jn(t0)-th triangle in Ân at π(g) =
ĉnt0(1) = the starting point of the jn(t0)-th triangle in Ân. And, the length of

f̂n |[tn1 (t0),t0] is the area of the jn(t0)-th triangle in Ân.

5.3 The convergence of f̄n(t0) to f̄(t0)

Recall

f̄(t0) = the value , at t = 1, of the horizontal lifting of γ̃t0 at e

and

f̄n(t0) = f̂n(t0) = the value , at t = 1, of the horizontal lifting of γ̂nt0 at e .

Consider our Riemannian submersion

SO(n) −−−→ SO0(1, n) −−−→ SO0(1, n)/SO(n).
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This bundle has a global cross section s : H→ NA ⊂ G, which comes from the
Iwasawa decomposition NAK, where K = SO(n). That is, every element of G
is uniquely written as nak, and the projection maps this to naK ∈ H.

The cross section s provides us with a one-to-one correspondence between
the space of all continuous piecewise Ck-curves in Hn and in SO0(1, n), with
initial points ē and e, by

h←→ s ◦ h.

By abusing notations, express s◦h by h. For a curve h : [0, 1]→ Hn, the unique
horizontal lift h̃ : [0, 1]→ SO0(1, n) is given by

h(t) · a(t) = h̃(t)

for a unique curve a(t) in SO(n). Such an a(t) is obtained by solving the
differential equation

⟨h−1h′ + a′a−1, V ⟩ = 0 (5.3–1)

for every V ∈ k, where ′ means the derivative with respect to t. Note that the
first entry h−1h′+a′ ·a−1 is an element of the Lie algebra so(1, n). The equation
(5.3–1) comes about as follows. The curve h̃(t) being horizontal implies the
following equalities should hold.

0 = ⟨(h(t)a(t))′, (h(t)a(t))V ⟩
= ⟨h′(t)a(t) + h(t)a′(t), (h(t)a(t))V ⟩
= ⟨(h(t)a(t))

(
a(t)−1h(t)−1h′(t)a(t) + a(t)−1a′(t)

)
, (h(t)a(t))V ⟩,

for every V ∈ k, on the tangent space at h(t)a(t). Since the metric on G is
left-invariant, this implies

0 = ⟨a(t)−1h(t)−1h′(t)a(t) + a(t)−1a′(t), V ⟩,

for every V ∈ k, on the tangent space at e, Ge = g. Since this holds for all
V ∈ k and the multiplication by any element in K, especially a(t)−1 ∈ K, on
the right-hand side is also an isometry, by taking conjugation by a(t), the above
is equivalent to the equality (5.3–1) above.

We examine the equalities (5.3–1) more closely. The equality holds for every
V ∈ k implies that h(t)−1h′(t) + a′(t)a−1(t) does not have any vertical compo-
nent. That is, −a′(t)a−1(t) is the vertical component of h(t)−1h′(t) so that

h(t)−1h′(t) = −a′(t)a−1(t) +X1 ∈ k⊕ k⊥.

is a vertical and horizontal splitting.
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Let g(t) be another path with a unique horizontal lift g̃(t) = g(t)b(t), satis-
fying

0 = ⟨g−1g′ + b′b−1, V ⟩, (5.3–2)

for every V ∈ k. Again, we have a splitting

g(t)−1g′(t) = −b′(t)b−1(t) +X2 ∈ k⊕ k⊥.

From

||h(t)−1h′(t)− g(t)−1g′(t)|| = ||a′(t)a−1(t)− b′(t)b−1(t)||+ ||X1 −X2||,

we get

||a′(t)a−1(t)− b′(t)b−1(t)|| ≤ ||h(t)−1h′(t)− g(t)−1g′(t)||. (5.3–3)

These are norms on the Lie algebra so(1, n).

On the space of continuous piecewise Ck-curves (k ≥ 1) in SO0(1, n) with
initial point e, we define a distance function by

ρ(h, g) =

∫ 1

0

||h(t)−1 · h′(t)− g(t)−1 · g′(t)|| dt.

Note that h(t)−1 · h′(t) ∈ so(1, n) and ||.|| is the norm there. We argue that
this is a metric. Suppose ρ(h, g) = 0. Then, by continuity (on each proper
subinterval of [0, 1] if needed), h(t)−1 · h′(t) = g(t)−1 · g′(t) for every t. Now we
apply the similar statement of the following Lemma to the C1-curves piece by
piece to conclude h(t) = g(t) for all t ∈ [0, 1] from the continuity of h and g and
from translation by right multiplication if needed, see [KN], vol 1, p69. In fact,
for h̃(t) := h(t0)

−1h(t0 + t), t ∈ [0, t1 − t0], we get

h̃′(t) = h(t0)
−1h′(t0 + t),

h̃(t)−1h̃′(t) = h̃(t)−1h(t0)
−1h′(t0 + t)

= h(t0 + t)−1h′(t0 + t)

= h(s)−1h′(s) where s = t0 + t ∈ [t0, t1]

and h(s) = h(t0)h̃(s− t0).

Lemma 5.3.1 Let G be a Lie group and g its Lie algebra identified with Te(G).
Let Yt, 0 ≤ t ≤ 1, be a continuous curve in Te(G). Then there exists in G a
unique curve at of class C

1 such that a0 = e and ȧta
−1
t = Yt for 0 ≤ t ≤ 1.
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Let h be a curve in Hn (or in NA, by abuse of notation). The unique curve
a : [0, 1]→ SO(n) such that h(t) · a(t) is the horizontal lift of h(t) will be called
wh.

For two curves h and g, the inequality (5.3–3) shows that ρ(wh, wg) ≤ ρ(h, g).
Let P be the space of all continuous piecewise Ck-curves on NA with the initial
point e.

Proposition 5.3.2 The map P −→ G sending h to wh(1) is continuous. More
precisely, let h : [0, 1] → NA be a piecewise Ck-curve. For every ϵ > 0, there
exists δ > 0 such that, if g ∈ P and ρ(h, g) < δ, then d(e, wh(1)

−1 · wg(1)) =
d(wh(1), wg(1)) < ϵ.

Proof) For simplicity, we write wh(t), wg(t) by a(t), b(t), respectively. Note

0 = (bb−1)′ = b′b−1 + b(b−1)′ (5.3–4)

Then, from a(a−1b)b−1 = e,

a(a−1b)′b−1 = −a′(a−1b)b−1 − a(a−1b)(b−1)′

= −a′a−1 − b(b−1)′

= −a′a−1 + b′b−1 (from the equality (5.3–4))

Thus,
||a′a−1 − b′b−1|| = ||a(a−1b)′b−1||.

Observe that (a−1b)′ ∈ Ta−1b(K). The left translation La and the right transla-
tion Rb−1 maps this vector to a tangent vector at Te(K). However, both these
translations are isometries so that they preserve the norms. We have,

||a′a−1 − b′b−1|| = ||a(a−1b)′b−1|| = ||(a−1b)′||.

Consequently, if ∫
||(a−1b)′|| dt =

∫
||a′a−1 − b′b−1|| dt

is small, the arc-length of the path a(t)−1b(t) is small. Therefore, if a(0) and
b(0) were close (or if a(0) = b(0)), then a(1) and b(1) are close. This finishes
the proof from the inequality (5.3–3).

Remark 5.3.3 The above proposition can be applied to a general Lie group
with Iwasawa decomposition such that both left and right multiplications by K
are isometries.
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Since

f̄n(t0) = the value , at t = 1, of the horizontal lifting of γ̂nt0 at e

and
γ̂nt0 converges to γ̃n0

t0 = γ̃t0 as n goes to ∞ ,

we get

f̄(t0) = the value , at t = 1, of the horizontal lifting of γ̃t0 at e

= lim
n→∞

f̄n(t0).

5.4 Preliminaries for the main proof

Fix t0 ∈
∞∪
n=1

Dn − {0} and find a positive integer n0 = min {n1 | n + 1 ≥ n1 ⇒

t0 ∈ Dn} .
Assume n ≥ n0 .
Note t0 is not the last element in Dn for n ≥ n0. Notice that with respect

to totally geodesic triangles, ĉntn2 (t0)
(1) = 1ĉ

n
t0
(1) = 1ĉ

n0
t0 (1) = ĉn0

t
n0
2 (t0)

(1) for all

n ≥ n0, which is the ending point of the jn(t0)-th triangle in Ân and also the
starting point of the (jn(t

n
2 (t0)) = jn(t0) + 1)-th triangle in Ân for all n ≥ n0.

5.4.1 A new curve ĉshortt0
for the comparison of triangles

Define ĉshortt0
: [0, 1] → Hn as the shortest geodesic from π(e) ∈ Hn to

ĉntn2 (t0)
(1) = ĉn0

t
n0
2 (t0)

(1) = 1ĉ
n0
t0 (1) = 1ĉ

n
t0
(1), in other words, to the starting point

of (jn(t
n
2 (t0)) = jn(t0) + 1) -th triangle in Ân, which is also the ending point of

jn(t0)-th triangle in Ân. Consider its horizontal lift

eĉ
short
t0

: [0, 1]→ SO0(1, n)

at e.
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5.4.2 The comparison of (jn(t
n
2(t0)) = jn(t0) + 1)-th to-

tally geodesic triangles

For each n ≥ n0, consider

eĉ
n
tn2 (t0)

:= R(f̂n(t0))−1 ◦ f̂n(t0)
ĉntn2 (t0) : [0, 1]→ SO0(1, n) ,

which is the horizontal lifting of ĉntn2 (t0)
at e, that is ,

π ◦ eĉ
n
tn2 (t0)

= ĉntn2 (t0) = π ◦ f̂n(t0)
ĉntn2 (t0) .

Note eĉ
n
tn2 (t0)

and f̂n(t0)
ĉntn2 (t0)

are piecewise geodesics, since the right trans-

lation Rk : G → G by k is an isometry for any k ∈ K = SO(n) and ĉnt0 are
piecewise geodesics.

y

x

π

Y
n

Xn

(e)π

f
n
(t0)

e

ĉn
tn2(t0))0t(f

ĉ t
nn

2(t0)e

ĉ n

ĉ
0

short
t

ĉe
short
t

0

0
|g

t 0
|g

Y
n
t0

|g

Xn
t |g0

t0

t0

Y
n

t

t0
|

f

n

n
(tn1 ( tn

2
(t0)))ĉtn2(t0)

Xn
t 0

|
f
n( tn1 ( tn2(t0)))ĉ t2

n(t 0)

(1)

(1)

tn2(t0)

~

~

^

^

^
^

^

Consider the (jn(t
n
2 (t0)) = jn(t0) + 1)-th triangle in Ân, its starting point

and the horizontal lifting of

x := lim
t→0+

1

| ˙̂φn
tn2 (t0)

(t) |
· ˙̂φn

tn2 (t0)
(t)

and

y := − lim
t→1−

1

| ˙̂φn
tn2 (t0)

(t) |
· ˙̂φn

tn2 (t0)
(t)

at eĉ
n
tn2 (t0)

(1) =: g , respectively and find

X̃n
t0
, Ỹ n

t0
∈ k⊥

with
π∗X̃

n
t0
|g= x
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and
π∗Ỹ

n
t0
|g= y .

Also consider the horizontal lifting of x and y at eĉ
short
t0

(1) =: gt0 and find

X̂n
t0
, Ŷ n

t0
∈ k⊥

with
π∗X̂

n
t0
|gt0= x

and
π∗Ŷ

n
t0
|gt0= y .

Note

f̂n(t0)
ĉntn2 (t0) = f̂n(tn1 (t

n
2 (t0)))

ĉntn2 (t0) ,

so

π∗ X
n
t0
|
f̂n(t0)

ĉn
tn2 (t0)

(1) = π∗ X
n
tn1 (t

n
2 (t0))

|
f̂n(tn1 (tn2 (t0)))

ĉn
tn2 (t0)

(1)

= lim
t→0+

1

| ˙̂φn
tn2 (t0)

(t) |
· ˙̂φn

tn2 (t0)
(t)

= x

= π∗X̃
n
t0
|g

= π∗X̃
n
t0
|eĉntn2 (t0)

(1) ,

which implies

Xn
t0
= Ad(f̂n(t0))−1X̃

n
t0

from f̂n(t0)
ĉntn2 (t0)

= Rf̂n(t0)
◦ eĉ

n
tn2 (t0)

.
Similarly,

Y n
t0
= Ad(f̂n(t0))−1Ỹ

n
t0
.

And by considering a loop

¯̂cshortt0
∗ ĉntn2 (t0) : [0, 1]→ Hn ,

where ¯̂cshortt0
: [0, 1]→ H3 is given by

¯̂cshortt0
(t) = ĉshortt0

(1− t) ,

and its horizontal lifting at eĉ
short
t0

(1) , we obtain

X̃n
t0
= Ad((eĉshortt0

(1))−1·eĉntn2 (t0)
(1))−1X̂n

t0
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Ỹ n
t0
= Ad((eĉshortt0

(1))−1·eĉntn2 (t0)
(1))−1Ŷ n

t0
.

Then we get
Xn

t0
= Ad((eĉshortt0

(1))−1·eĉntn2 (t0)
(1)·f̂n(t0))−1X̂

n
t0

Y n
t0
= Ad((eĉshortt0

(1))−1·eĉntn2 (t0)
(1)·f̂n(t0))−1Ŷ

n
t0
.

Since both (eĉ
short
t0

(1))−1 · eĉntn2 (t0)(1) and f̂n(t0) are elements in K = SO(n), we
get

[Xn
t0
, Y n

t0
] = Ad((eĉshortt0

(1))−1·eĉntn2 (t0)
(1)·f̂n(t0))−1 [X̂

n
t0
, Ŷ n

t0
] .

Note ĉntn2 (t0)
= 1ĉ

n
t0
. So we can rewrite Xn

t0
and Y n

t0
as

Xn
t0
= Ad((eĉshortt0

(1))−1·e(1ĉ)nt0 (1)·f̂n(t0))
−1X̂

n
t0

Y n
t0
= Ad((eĉshortt0

(1))−1·e(1ĉ)nt0 (1)·f̂n(t0))
−1Ŷ

n
t0
.

Since 1ĉ
n
t0
converges to 1c̃t0 inHn as n, the number of steps (not the dimension

of Hn) goes to ∞, e(1ĉ)
n
t0
converges to e(1c̃)t0 in SO0(1, n) .

Since

f̂n(t0) = the value , at t = 1, of the horizontal lifting of γ̂nt0 at e

and
γ̂nt0 converges to γ̃n0

t0 = γ̃t0 as n goes to ∞ ,

we get, from Proposition 5.3.2,

f̄(t0) = the value , at t = 1, of the horizontal lifting of γ̃t0 at e

= lim
n→∞

f̂n(t0).

Then we also get

f̂n(t0)
(1ĉ)

n
t0
= Rf̂n(t0)

◦ e(1ĉ)
n
t0
= e(1ĉ)

n
t0
· f̂n(t0),

which will converge to

e(1c̃)t0 · f̄(t0) = Rf̄(t0) ◦ e(1c̃)t = f̄(t0)(1c̃)t0 .
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5.4.3 The comparison of (jn(t
n
2(t0)) = jn(t0) + 1)-th tri-

angles on the given surface S

Now, consider the (jn0(t
n0
2 (t0)) = jn0(t0) + 1)-th triangle, lying on S, in Ãn0 , its

starting point and the horizontal lifting of

x := lim
t→0+

1

| ˙̃φn0

t
n0
2 (t0)

(t) |
· ˙̃φn0

t
n0
2 (t0)

(t)

and

y := − lim
t→1−

1

| ˙̃φn0

t
n0
2 (t0)

(t) |
· ˙̃φn0

t
n0
2 (t0)

(t)

at gt0 = eĉ
short
t0

(1) and at g := f̄(t0)(1c̃)t0(1), respectively, and find

0X̂
n0
t0 , 0Ŷ

n0
t0 , 0X

n0
t0 , 0Y

n0
t0 ∈ k⊥

with
π∗ 0X̂

n0
t0 |gt0 = x = π∗ 0X

n0
t0 |g

and
π∗ 0Ŷ

n0
t0 |gt0 = y = π∗ 0Y

n0
t0 |g .

Then,

g = f̄(t0)(1c̃)t0(1) = e(1c̃)t0(1) · f̄(t0) = gt0 · (eĉshortt0
(1))−1 · e(1c̃)t0(1) · f̄(t0)

implies that

0X
n0
t0 = Ad((eĉshortt0

(1))−1·e(1c̃)t0 (1)·f̄(t0))−1 0X̂
n0

t0

0Y
n0
t0 = Ad((eĉshortt0

(1))−1·e(1c̃)t0 (1)·f̄(t0))−1 0Ŷ
n0

t0
.
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5.4.4 The convergence of tangent planes induced by
(jn(t

n
2(t0)) = jn(t0) + 1)-th triangles at t = t0 and the

convergence of 1

| ˙̂fn(t)|
· ˙̂fn(t) under lim

n→∞
lim

t→t0
+

Now, for g ∈ π−1(π(f̂n(t0)(1ĉ)
n
t0
(1))), let

Ĥn
g := Span{x̃, ỹ} ,

where x̃, ỹ are horizontal vectors at g satisfying

π∗ x̃ = lim
t→0+

1

| ˙̂φn
tn2 (t0)

(t) |
· ˙̂φn

tn2 (t0)
(t)

π∗ ỹ = − lim
t→1−

1

| ˙̂φn
tn2 (t0)

(t) |
· ˙̂φn

tn2 (t0)
(t) .

H
∼ n

g

H
n^
g

~~
x

~

~
y

~~
y

π

π

π∗

∗
π∗

x

x∗π
x

y

y

~

~

~~

~~

g

~ϕ n

tn
2 t 0( )

ϕn

tn
2(t0)

^

Also, for g ∈ π−1(π(f̂n(t0)(1ĉ)
n
t0
(1))), let

H̃n
g := Span{˜̃x, ˜̃y} ,

where ˜̃x, ˜̃y are horizontal vectors at g satisfying

π∗ ˜̃x = lim
t→0+

1

| ˙̃φn
tn2 (t0)

(t) |
· ˙̃φn

tn2 (t0)
(t)
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π∗ ˜̃y = − lim
t→1−

1

| ˙̃φn
tn2 (t0)

(t) |
· ˙̃φn

tn2 (t0)
(t).

Note, for t ∈ (t0, t
n
2 (t0)) = (tn1 (t

n
2 (t0)), t

n
2 (t0)), from Subsection 5.2.2,

ω
(

1

| ˙̂fn(t)|
· ˙̂fn(t)

)
= (−1) ·

(
the unit curvature of the 2-dimensional horizontal oriented tangent

plane,

Ĥn

f̂n(t0)
(1ĉ)nt0

(1) = Ĥn

f̂n(tn1 (tn2 (t0)))
ĉn
tn2 (t0)

(1)

= Span{Xn
tn1 (t

n
2 (t0))

|
f̂n(tn1 (tn2 (t0)))

ĉn
tn2 (t0)

(1), Y
n
tn1 (t

n
2 (t0))

|
f̂n(tn1 (tn2 (t0)))

ĉn
tn2 (t0)

(1)}

= Span{Xn
t0
|
f̂n(t0)

(1ĉ)nt0
(1), Y

n
t0
|
f̂n(t0)

(1ĉ)nt0
(1)}

at f̂n(tn1 (t
n
2 (t0)))

ĉntn2 (t0)(1) = f̂n(t0)
(1ĉ)

n
t0
(1) ,

which projects to the tangent plane

of the (jn(t
n
2 (t0)) = jn(t0) + 1)-th triangle in Ân

at π(f̂n(t0)(1ĉ)
n
t0
(1)) = 1ĉ

n
t0
(1) = ĉntn2 (t0)(1)

= the starting point of the (jn(t
n
2 (t0)) = jn(t0) + 1)-th triangle in Ân

with respect to the connection of the principal bundle π : SO0(1, n)→ Hn
)

= 1
|[Xn

tn1 (tn2 (t0))
, Y n

tn1 (tn2 (t0))
]| · [X

n
tn1 (t

n
2 (t0))

, Y n
tn1 (t

n
2 (t0))

]

= 1
|[Xn

t0
, Y n

t0
]| · [X

n
t0
, Y n

t0
]

=
Ad

((eĉ
short
t0

(1))−1·e(1ĉ)nt0
(1)·f̂n(t0))

−1 [X̂
n
t0
,Ŷ n

t0
]

|Ad
((eĉ

short
t0

(1))−1·e(1ĉ)nt0
(1)·f̂n(t0))

−1 [X̂
n
t0
,Ŷ n

t0
]|

= Ad((eĉshortt0
(1))−1·e(1ĉ)nt0 (1)·f̂n(t0))

−1

(
1

|[X̂n
t0
,Ŷ n

t0
]| · [X̂

n
t0
, Ŷ n

t0
]
)

= (−1) · Ad((eĉshortt0
(1))−1·e(1ĉ)nt0 (1)·f̂n(t0))

−1

(
the unit curvature of the 2-dimensional

horizontal oriented tangent plane,

Ĥn
eĉshortt0

(1)
= Span{X̂n

t0
|
eĉshortt0

(1), Ŷ
n
t0
|
eĉshortt0

(1)}
)

Note the tangent plane of the (jn(t
n
2 (t0)) = jn(t0) + 1)-th triangle in Ân at

1ĉ
n
t0
(1) = ĉntn2 (t0)

(1) = ĉn0

tn2 (t0)
(1) = 1ĉ

n0
t0 (1) = c̃n0

tn2 (t0)
(1) = 1c̃

n0
t0 (1) for all n ≥ n0 , the

starting point of the (jn(t
n
2 (t0)) = jn(t0) + 1)-th triangle in Ân and the ending

point of the jn(t0)-th triangle in Ân for all n ≥ n0 at the same time, which is
also the starting point of the (jn0(t

n0
2 (t0)) = jn0(t0) + 1)-th triangle, lying on S,
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n (t0)−th triangle in
~
An

j
n

(t0)−th triangle in An
^

j j
n (t0) +1)( −th triangle in A

~
n

(jn (t0) +1) −th triangle in Ân

ϕψ
t
n

0
t0

n^ ^

the tangent plane of S at ~
1c

n
0

0
(1) = ~

c1t t0

n
(1) for n >

=n n0

in Ãn0 and the ending point of the jn0(t0)-th triangle in Ãn0 at the same time,
will converge to the tangent plane of S at c̃n0

tn2 (t0)
(1) = 1c̃

n0
t0 (1) .

And, note, in general, if limn→∞ gn = g0 in G and limn→∞Xn = X0 in g ,
then

lim
n→∞

t · AdgnXn = lim
n→∞

exp−1(exp(t · Adgnxn))

= lim
n→∞

exp−1(gn · exp(t ·Xn) · gn−1)

= exp−1(g0 · exp(t ·X0) · g0−1)

= exp−1(exp(t · Adg0X0))

= t · Adg0X0 .

Now, refer to previous three pictures. Then we get, for t ∈
(
t0, t

n
2 (t0)

)
,

ω ( 1

| ˙̂fn(t)|
· ˙̂fn(t) )

= 1
|[Xn

t0
, Y n

t0
]| · [X

n
t0
, Y n

t0
]

= Ad((eĉshortt0
(1))−1·e(1ĉ)nt0 (1)·f̂n(t0))

−1

(
1

|[X̂n
t0
,Ŷ n

t0
]| · [X̂

n
t0
, Ŷ n

t0
]
)

= (−1) · Ad((eĉshortt0
(1))−1·e(1ĉ)nt0 (1)·f̂n(t0))

−1

(
the unit curvature of the 2-dimensional

horizontal oriented tangent plane,

Ĥn
eĉshortt0

(1)
= Span{X̂n

t0
|
eĉshortt0

(1), Ŷ
n
t0
|
eĉshortt0

(1)}
)
,

which will converge to

(−1) · Ad((eĉshortt0
(1))−1·e(1c̃)t0 (1)·f̄(t0))−1

(
the unit curvature of the 2-dimensional

horizontal oriented tangent plane,
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H̃n0

eĉshortt0
(1)

= Span{0X̂
n0

t0
|
eĉshortt0

(1), 0Ŷ
n0

t0
|
eĉshortt0

(1)}
)

= Ad((eĉshortt0
(1))−1·e(1c̃)t0 (1)·f̄(t0))−1

(
1

|[0X̂
n0
t0

, 0Ŷ
n0
t0

]| · [0X̂
n0

t0
, 0Ŷ

n0

t0
]
)

= 1
|[0X

n0
t0

, 0Y
n0
t0

]| · [0X
n0
t0
, 0Y

n0
t0
]

= (−1) ·
(

the unit curvature of the 2-dimensional horizontal oriented tangent

plane, H̃n0

f̄(t0)
(1c̃)t0 (1)

= Span{0Xn0
t0
|
f̄(t0)

(1c̃)t0(1)
, 0Y

n0
t0
|
f̄(t0)

(1c̃)t0 (1)
}

at f̄(t0)(1c̃)t0(1) ,

which projects to the tangent plane

of the (jn0(t
n0
2 (t0)) = jn0(t0) + 1)-th triangle in Ãn0 ,

where n0 = min {n1 | n+ 1 ≥ n1 ⇒ t0 ∈ Dn} ,

- so tangent to the given disk S -

at π(f̄(t0)(1c̃)t0(1)) = 1c̃t0(1) = c̃n0

t
n0
2 (t0)

(1)

= the starting point of the (jn0(t
n0
2 (t0)) = jn0(t0) + 1)-th triangle in Ãn0

with respect to the connection of the principal bundle π : SO0(1, n)→ Hn
)

under lim
n→∞

lim
t→t0+

.

So, under the identification of TeK with k ,

lim
n→∞

lim
t→t0+

L(f̂n(t)−1)∗
1

| ˙̂fn(t)|
· ˙̂fn(t)

= lim
n→∞

1

| [Xn
t0 , Y

n
t0 ] |
· [Xn

t0
, Y n

t0
]

=
1

| [0Xn0
t0 , 0Y

n0
t0 ] |

· [0Xn0
t0 , 0Y

n0
t0 ]

= (−1) ·
(

the unit curvature of the 2-dimensional horizontal oriented tangent

plane, H̃n0

f̄(t0)
(1c̃)t0 (1)

at f̄(t0)(1c̃)t0(1) ,

which projects to the tangent plane of S at π(f̄(t0)(1c̃)t0(1)) = 1c̃t0(1)

with respect to the connection of the principal bundle π : SO0(1, n)→ Hn
)

5.4.5 The convergence of 1

| ˙̂fn(t)|
· ˙̂fn(t)

To show

lim
n→∞

lim
t→t0+

L(f̂n(t)−1)∗
1

| ˙̂fn(t)|
· ˙̂fn(t) = lim

n→∞
lim

t→t0−
L(f̂n(t)−1)∗

1

| ˙̂fn(t)|
· ˙̂fn(t) ,
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for g ∈ π−1(π(f̂n(tn1 (t0))
(1ĉ)

n
t0
(1))) = π−1(π(f̂n(t0)(1ĉ)

n
t0
(1))) , let

1Ĥ
n
g := Span{x̃, ỹ} ,

where x̃, ỹ are horizontal vectors at g satisfying

π∗ x̃ = lim
t→0+

1

| ˙̂ψn
t0(t) |

· ˙̂ψn
t0
(t)

π∗ ỹ = − lim
t→1−

1

| ˙̂ψn
t0(t) |

· ˙̂ψn
t0
(t) .

Also, for g ∈ π−1(π(f̂n(tn1 (t0))
(1ĉ)

n
t0
(1))) , let

1H̃
n
g := Span{˜̃x, ˜̃y} ,

where ˜̃x, ˜̃y are horizontal vectors at g satisfying

π∗ ˜̃x = lim
t→0+

1

| ˙̃ψn
t0(t) |

· ˙̃ψn
t0
(t)

π∗ ˜̃y = − lim
t→1−

1

| ˙̃ψn
t0(t) |

· ˙̃ψn
t0
(t) .

Now, consider the horizontal lifting of

z := lim
t→0+

1

| ˙̂ψn
t0(t) |

· ˙̂ψn
t0
(t)

and

w := − lim
t→1−

1

| ˙̂ψn
t0(t) |

· ˙̂ψn
t0
(t)

at g := f̂n(tn1 (t0))
(1ĉ)

n
t0
(1) = f̂n(tn1 (t0))

ĉntn2 (t0)
(1) , respectively and find

Zn
t0
, W n

t0
∈ k⊥

with
π∗ Z

n
t0
|g= z

and
π∗ W

n
t0
|g= w .

Also consider the horizontal lifting of z and w at e(1ĉ)
n
t0
(1) = eĉ

n
tn2 (t0)

(1) =: g ,
respectively and find

Z̃n
t0
, W̃ n

t0
∈ k⊥
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with
π∗ Z̃

n
t0
|g= z

and
π∗ W̃

n
t0
|g= w .

And consider the horizontal lifting of z and w at eĉ
short
t0

(1) =: gt0 and find

Ẑn
t0
, Ŵ n

t0
∈ k⊥

with
π∗ Ẑ

n
t0
|gt0= z

and
π∗ Ŵ

n
t0
|gt0= w .

Note Imφn
t0
= Imψn

t0
is the boundary of a geodesic triangle in Hn .

Then, from Facts, mentioned earlier in this chapter, and from the property
in Chapter 4, we get

f̂n(t) = f̂n(t
n
1 (t0)) · exp

(
(t− tn1 (t0)) ·

( Area of jn(t0)-th triangle in Ân)

((t0 − tn1 (t0))· | [Xn
tn1 (t0)

, Y n
tn1 (t0)

] |)
· [Xn

tn1 (t0)
, Y n

tn1 (t0)
]
)

= f̂n(t
n
1 (t0)) · exp

(
(t− tn1 (t0)) ·

( Area of jn(t0)-th triangle in Ân)

((t0 − tn1 (t0))· | [Zn
t0 ,W

n
t0 ] |)

· [Zn
t0
,W n

t0
]
)

for t ∈ [tn1 (t0), t0] .

Note

π∗ Z
n
t0
|
f̂n(tn1 (t0))

(1ĉ)nt0
(1) = lim

t→0+

1

| ˙̂ψn
t0(t) |

· ˙̂ψn
t0
(t)

= z

= π∗ Z̃
n
t0
|e(1ĉ)nt0 (1) ,

which implies

Zn
t0
= Ad(f̂n(tn1 (t0)))−1Z̃

n
t0

from f̂n(tn1 (t0))
(1ĉ)

n
t0
= Rf̂n(tn1 (t0))

◦ e(1ĉ)
n
t0
.

Similarly,
W n

t0
= Ad(f̂ntn1 (t0))−1W̃

n
t0
.
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And by considering a loop

¯̂cshortt0
∗ 1ĉ

n
t0
: [0, 1]→ Hn ,

where ¯̂cshortt0
: [0, 1]→ Hn is given by

¯̂cshortt0
(t) = ĉshortt0

(1− t) ,

and its horizontal lifting at eĉ
short
t0

(1) , we obtain

Z̃n
t0
= Ad((eĉshortt0

(1))−1·e(1ĉ)nt0 (1))
−1Ẑn

t0

W̃ n
t0
= Ad((eĉshortt0

(1))−1·e(1ĉ)nt0(1))
−1Ŵ n

t0
.

Then we get
Zn

t0
= Ad((eĉshortt0

(1))−1·e(1ĉ)nt0 (1)·f̂n(t
n
1 (t0)))

−1Ẑ
n
t0

W n
t0
= Ad((eĉshortt0

(1))−1·e(1ĉ)nt0 (1)·f̂n(t
n
1 (t0)))

−1Ŵ
n
t0
.

Since both (eĉ
short
t0

(1))−1 · e(1ĉ)nt0(1) and f̂n(t
n
1 (t0)) are elements in K =

SO(n) , we get

[Zn
t0
,W n

t0
] = Ad((eĉshortt0

(1))−1·e(1ĉ)nt0 (1)·f̂n(t
n
1 (t0)))

−1 [Ẑ
n
t0
, Ŵ n

t0
] .

Note the tangent plane of the jn(t0)-th triangle in Ân at 1ĉ
n
t0
(1) = ĉntn2 (t0)

(1) =

ĉn0

tn2 (t0)
(1) = 1ĉ

n0
t0 (1) = c̃n0

tn2 (t0)
(1) = 1c̃

n0
t0 (1) for all n ≥ n0 , the starting point of

the (jn(t
n
2 (t0)) = jn(t0) + 1)-th triangle in Ân and also the ending point of the

jn(t0)-th triangle in Ân for all n ≥ n0, which is also the starting point of the
(jn0(t

n0
2 (t0)) = jn0(t0) + 1)-th triangle, lying on S, in Ãn0 and also the ending

point of the jn0(t0)-th triangle in Ãn0 , will converge to the tangent plane of S
at c̃n0

tn2 (t0)
(1) = 1c̃

n0
t0 (1), which implies that for t ∈

(
tn1 (t0), t0

)
ω ( 1

| ˙̂fn(t)|
· ˙̂fn(t) )

= 1
|[Zn

t0
, Wn

t0
]| · [Z

n
t0
, W n

t0
]

= Ad((eĉshortt0
(1))−1·e(1ĉ)nt0 (1)·f̂n(t

n
1 (t0)))

−1

(
1

|[Ẑn
t0
,Ŵn

t0
]| · [Ẑ

n
t0
, Ŵ n

t0
]
)

= (−1) · Ad((eĉshortt0
(1))−1·e(1ĉ)nt0 (1)·f̂n(t

n
1 (t0)))

−1

(
the unit curvature of the 2-dimensional

horizontal oriented tangent plane,

1Ĥ
n

eĉshortt0
(1) = Span{Ẑn

t0
|
eĉshortt0

(1), Ŵ
n
t0
|
eĉshortt0

(1)}
)
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will converge to

(−1) · Ad((eĉshortt0
(1))−1·e(1c̃)t0 (1)·f̄(t0))−1

(
the unit curvature of the 2-dimensional

horizontal oriented tangent plane,

H̃n0

eĉshortt0
(1)

= Span{0X̂
n0

t0
|
eĉshortt0

(1), 0Ŷ
n0

t0
|
eĉshortt0

(1)}
)

= Ad((eĉshortt0
(1))−1·e(1c̃)t0 (1)·f̄(t0))−1

(
1

|[0X̂
n0
t0

, 0Ŷ
n0
t0

]| · [0X̂
n0

t0
, 0Ŷ

n0

t0
]
)

= 1
|[0X

n0
t0

, 0Y
n0
t0

]| · [0X
n0
t0
, 0Y

n0
t0
]

= (−1) ·
(

the unit curvature of the 2-dimensional horizontal oriented tangent

plane, H̃n0

f̄(t0)
(1c̃)t0 (1)

= Span{0Xn0
t0
|
f̄(t0)

(1c̃)t0(1)
, 0Y

n0
t0
|
f̄(t0)

(1c̃)t0 (1)
}

at f̄(t0)(1c̃)t0(1) ,

which projects to the tangent plane

of the (jn0(t
n0
2 (t0)) = jn0(t0) + 1)-th triangle in Ãn0 ,

where n0 = min {n1 | n+ 1 ≥ n1 ⇒ t0 ∈ Dn} ,

- so tangent to the given disk S -

at π(f̄(t0)(1c̃)t0(1)) = 1c̃t0(1) = c̃n0

t
n0
2 (t0)

(1)

= the starting point of the (jn0(t
n0
2 (t0)) = jn0(t0) + 1)-th triangle in Ãn0

with respect to the connection of the principal bundle π : SO0(1, n)→ Hn
)

Thus we get

lim
n→∞

lim
t→t0−

L(f̂n(t)−1)∗

(
1

| ˙̂fn(t)|
· ˙̂fn(t)

)
= lim

n→∞

1

| [Zn
t0 ,W

n
t0 ] |
· [Zn

t0
,W n

t0
]

=
1

| [0Xn0
t0 , 0Y

n0
t0 ] |

· [0Xn0
t0 , 0Y

n0
t0 ]

= lim
n→∞

lim
t→t0+

L(f̂n(t)−1)∗

(
1

| ˙̂fn(t)|
· ˙̂fn(t)

)
.

5.4.6 Main Part

Define a function sn : Dn − {0} → (0,∞) as follows :
Given t ∈ Dn − {0}, assume t is the j-th element in Dn, i.e., j = jn(t) . Then,
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sn(t) : =

j=jn(t)∑
i=1

( the area of i-th triangle in Ân)

= the area of the region surrounded by γ̂nt in the n-th step polytope.

Note in S, for n ≥ n0,

the region surrounded by γ̃nt0 in S = the region surrounded by γ̃n0
t0 in S ,

so we get

lim
n→∞

sn(t0) = the area of the region surrounded by γ̃n0
t0 in S =: s(t0) .

Thus, we obtain a function

s : ∪∞
n=1Dn − {0} → (0,∞) .

Now, induce a function

fn : [0, the area of the n-step polytope]→ K ,

which is the reparametrization of f̂n with | ḟn(t) |= 1 on
[0, the area of the n-step polytope] −{ j∑

i=1

( the area of the i-th triangle in Ân) | j = 1, 2, · · · , | Ân |
}
.

Then we get

fn(sn(t)) = f̂n(t) = f̄n(t) for t ∈ Dn − {0} .

Define a function
f : {s(t) | t ∈ ∪∞

n=1Dn − {0}} → K

by
f(s(t)) = f̄(t) .

Then we get

f(s(t0)) = f̄(t0) = lim
n→∞

f̄n(t0) = lim
n→∞

fn(sn(t0)) .

Note, for t1 ∈ ∪∞
n=1Dn − {0} ,

f̄(t1) = lim
n→∞

f̄n(t1)

= lim
n→∞

(the value, at t = 1, of the horizontal lifting of γ̂nt1 at e)

= the value, at t = 1, of the horizontal lifting of γ̃t1 at e .
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Since γ̃t1 converges to γ̃t0 as t1 approaches t0 in ∪∞
n=1Dn, Proposition 5.3.2

implies that f̄ will be continuous on
∞∪
n=1

Dn−{0} and we can extend f̄ on [0,1].

And from f(s(t0)) = f̄(t0) , f will be continuous on
{
s(t) | t ∈

∞∪
n=1

Dn − {0}
}
.

Note s is continuous on
∞∪
n=1

Dn − {0} and so it can be extended on [0,1].

Since
{
s(t) | t ∈

∞∪
n=1

Dn − {0}
}
is a dense subset of [0, the area of S], we

can extend f on [0, the area of S] continuously. Call it f as well. Then we get

f ◦ s = f̄ is continuous on [0, 1]

and
f( the area of S) = f̄(1) = lim

t→1,t∈
∪∞

n=1 Dn
eγ̃t(1) = eγ̃(1),

where γ̃ : [0, 1] → S is the boundary curve of S and eγ̃ is its horizontal lifting
at e.

Now, we show f is a C1 curve.
Define a function Fn from

[0, the area of the n-step polytope] −{ j∑
i=1

( the area of the i-th triangle in Ân) | j = 1, 2, · · · , | Ân |
}

to
the unit sphere in k

by
Fn(t) = L(fn(t))−1∗ ḟn(t) .

And define a function

F :
{
s(t) | t ∈

∞∪
n=1

Dn − {0}
}
→ the unit sphere in k

by

F (s(t0)) = lim
n→∞

lim
t→t0−

L(f̂n(t)−1)∗

(
1

| ˙̂fn(t)|
· ˙̂fn(t)

)
= lim

n→∞
lim

t→t0+
L(f̂n(t)−1)∗

(
1

| ˙̂fn(t)|
· ˙̂fn(t)

)
.

Then, Fn is constant on the interval

(0, the area of the first triangle in Ân)
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and on the interval( j∑
i=1

(the area of the i-th triangle in Ân) ,

j+1∑
i=1

(the area of the i-th triangle in Ân)

)
for each j = 1, 2, · · · , | Ân | , and

F (s(t0)) = lim
n→∞

lim
t→t0−

L(f̂n(t)−1)∗

(
1

| ˙̂fn(t)|
· ˙̂fn(t)

)
= lim

n→∞
lim

t→t0+
L(f̂n(t)−1)∗

(
1

| ˙̂fn(t)|
· ˙̂fn(t)

)
= lim

n→∞
lim

t→sn(t0)
−
L(fn(t))−1∗ ḟn(t) = lim

n→∞
lim

t→sn(t0)
+
L(fn(t))−1∗ ḟn(t)

= lim
n→∞

lim
t→sn(t0)

L(fn(t))−1∗ ḟn(t)

= lim
n→∞

lim
t→sn(t0)

Fn(t) .

Also

F (s(t0))

= lim
n→∞

lim
t→t0

ω
(

1

| ˙̂fn(t)|
· ˙̂fn(t)

)
= (−1) ·

(
the unit curvature of the 2-dimensional horizontal oriented tangent plane,

H̃n0

e(1c̃)t0 (1)·f̄(t0)
= H̃n0

f̄(t0)
(1c̃)t0(1)

,

which projects to the tangent plane of S at (1c̃)t0(1) .
)

Note paths 1c̃t on S gives us

lim
t→t0,t∈∪∞

n=1Dn
1c̃t(1) = 1c̃t0(1)

and

lim
t→t0,t∈∪∞

n=1Dn
f̄(t)(1c̃)t(1) = lim

t→t0,t∈∪∞
n=1Dn

e(1c̃)t(1) · f̄(t)

= e(1c̃)t0(1) · f̄(t0)
= f̄(t0)(1c̃)t0(1) .

Then we get
lim

t→t0, t∈∪∞
n=1Dn

F (s(t))

= lim
t→t0, t∈∪∞

n=1Dn

(−1) ·
(
the unit curvature of the 2-dimensional horizontal

oriented tangent plane, H̃
n1(t)

f̄(t)(1c̃)t(1)
,

for some n1(t) ∈ N depending on t,

whose projection is the tangent plane of the

surface S at 1c̃t(1)
)
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= (−1) ·
(

the unit curvature of the 2-dimensional horizontal oriented tangent

plane, H̃n0

f̄(t0)
(1c̃)t0 (1)

,

whose projection is the tangent plane of the surface S at 1c̃t0(1)
)

= F (s(t0)) .
So, we get

F : {s(t) | t ∈ ∪∞
n=1Dn − {0}} → the unit sphere in k

is a continuous function. Since {s(t) | t ∈ ∪∞
n=1Dn} is a dense subset of

[0, the area of S], we can extend F on [0, the area of S] continuously. Call it
also F . Consider the C1 curve

α : [0, the area of S]→ K

satisfying

α(0) = e and

L(α(t)−1)∗α̇(t) = F (t) .

Note the function

fn : [0, the area of the n-step polytope]→ K

can be regarded as the piecewise integral curve of

ḟn(t) = L(fn(t))∗(L(fn(t))−1∗ḟn(t)) = Lfn(t)∗Fn(t) ,

or equivalently the piecewise solution of the ODE

L(αn(t))−1∗α̇n(t) = Fn(t) .

Then
F (s(t0)) = lim

n→∞
lim

t→sn(t0)
L(fn(t))−1∗ḟn(t) = lim

n→∞
lim

t→sn(t0)
Fn(t)

implies that

α(s(t0)) = lim
n→∞

lim
t→sn(t0)

αn(t) = lim
n→∞

lim
t→sn(t0)

fn(t) = lim
n→∞

fn(sn(t0)) = f(s(t0)) .

Since {s(t) | t ∈ ∪∞
n=1Dn} is a dense subset of [0, the area of S] and F is

continuous on [0, the area of S], we get

f = α is a C1 curve on [0, the area of S] .
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Also, we obtain

the length of the curve f = the length of the curve α

=

∫ the area of S

0

| α̇(t) | dt

=

∫ the area of S

0

| F (t) | dt

= the area of S ,

which proves Theorem 1.0.1.

5.4.7 Remarks on Factorization Lemma

‘Factorization Lemma’, introduced by Lichnerowicz, Theorie Globale des Con-
nexions et des Groupes d’Holonomie , [3, vol 1, p.284], can give us another
sequence of piecewise smooth loops µm : [0, 1] → Hn, m = 1, 2, · · · , with
µm(0) = π(e) such that it converges to ∂S. And a similar way to make the se-
quence of curves fn : [0, 1]→ K, n = 1, 2, · · · , can give us a sequence of curves
gn : [0, 1]→ K, n = 1, 2, · · · , with gn(0) = e such that gn(1) is the ending point
of the horizontal lifting of µn at e and that the length of gn is the area of the
polytope, the union of totally geodesic triangles obtained in the construction of
gn. Since the sequence of the areas converges to the area of S, Prop 5.3.2 will
say that gn(1) will converge to eγ̃(1) and that the distance from e to eγ̃(1) is
less that equal to the area of S. But the sequence {gn} may not converge to
some curve from e to eγ̃(1).

5.5 The proof of Corollary 1.0.2

Given a piecewise smooth disk S, consisting ofm sub-disks with smooth interiors
and piecewise smooth boundaries, pick the first smooth sub-disk S1 with one
vertex lying on the boundary ∂S. Then by induction, it can be shown that the
sub-disks S1, · · · , Sm can be ordered in such a way that

j∪
i=1

Si is homeomorphic to a disk for each j = 1, · · · ,m.

By regarding the point of S1 on the boundary as the basepoint, Theorem 1.0.1
and the similar arguments to those used in the construction of ‘f̂n’ in Subsection
5.2.2 will give a piecewise smooth curve f , which we want.
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Appendix A

About Triangles

For each n = 0, 1, 2, · · · , all triangles inside 2n · 3-gon will consist of two kinds
of triangles, interior ones and exterior ones.

A.1 The definition of interior triangles and the

definition of their starting points and end-

ing points

Consider a regular triangle whose vertices lie on the boundary of the given disk
D2 and one of whose vertices is the base point of the disk. Call the triangle T0.
And the base point will be called its starting and ending point.

Now define triangles Ta0a1···an inductively as follows :

Case 1) n = 1 :
The given orientation at the center of D2 and the base point, or equivalently

the starting and ending point of T0, will give the order b0 of sides of T0, where
b0 = 1.2.3, in the counter-clockwise or clockwise order. For the barycentric
subdivision of T0, thinking of the triangle with the base point as its vertex and
with one side lying on the first side of T0 as the first triangle will give the order
of triangles in the counter-clockwise or clockwise order. The i-th triangle will
be called Ta0a1 , where a0 = 0 and a1 = i, for i = 1, 2, · · · , 6.

For T01 , the base point, or equivalently the starting point of T0, will be called
the starting point of T01 and the barycenter of T0 will be called the ending point
of T01.

For T0i , where i = 2, 3, 4, 5 , the barycenter of T0 will be called the starting
and ending point of T0i for i = 2, 3, 4, 5 .
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T 0

b

0b

0

b0=3=1

=2

or

T 0

b

0b

0

b0

=2

=3
=1

T01

T02

T
03 T04

T05

T06 T

T

T T

T

T06 01

0205

0304

For T06 , the barycenter of T0 will be called the starting point of T06 and the
base point , or equivalently the ending point of T0 , will be called the ending
point of T06

Case 2) n ≥ 2 :
Let Ln−1 := Ta0a1···an−2an−1 be given, where a0 = 0 and a1, · · · , an−1 ∈

{1, 2, 3, 4, 5, 6}. Let Ln−2 := Ta0···an−2 and assume the following properties:
-Mj := Ta0a1···an−2 j, j ∈ {1, 2, 3, 4, 5, 6}, consists one of six triangles obtained

by the barycentric subdivision of Ln−2,
- Ln−1 is also one of those, in other words,

Ln−1 = Ta0a1···an−2an−1 = Ta0a1···an−2 j0 =Mj0

for some j0 ∈ {1, 2, 3, 4, 5, 6}.
- common vertex of Ln−2 and M1 is the starting point of each of them,
- the barycenter of Ln−2 is the starting point of Mi for i = 2, 3, 4, 5, 6, and

the ending point of Mi for i = 1, 2, 3, 4, 5,
- the common vertex of Ln−2 and M6 is the ending point of each of them,
- if the starting and the ending point of Ln−2 are same, then they are the

common vertex of Ln−2 and M6,
- if the starting and the ending point of Ln−2 are different, then M1 and M6

are mutually opposite ones inside Ln−2,
- one side of Ln−2, which contains a side of M1, is divided into two line

segments, each of which is one side of Mi for i = 1, 2, respectively.
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T a0 ...an−2

M

M1M 6

2

Ln−2= T a0 ...an−2

1M

M2

6M

Ln−2
=

T a0 ...an−2

6M M1

M2

=n−2L T a0 ...an−2

1

M

M

M

2

6

=
n−2L

Notice all the above assumptions hold for n=2.
Note that the line segment connecting the barycenter and the starting point

of Ln−2 is one side of M1 from the assumption that the common vertex of Ln−2

and M1 is the starting point of each of them.
Under the above assumptions, we have two choices such that the order ofM1

andM2 is either the counter-clockwise order or the clockwise order with respect
to the barycenter of Ln−2 and the line segment connecting the barycenter and
the starting point of Ln−2.

Subcase 2-1 ) an−1 = 1, that is, Ln−1 =M1 = Ta0···an−21 :

T a0 ...an−2

6
3

4

5

2M

2

1

N

N1

1

Ln−2=

Assume the order of Ln−1 =M1 andM2 = Ta0···an−22 is the counter-clockwise
order with respect to the barycenter of Ln−2 = Ta0···an−2 and the line segment
connecting the barycenter and the starting point of Ln−2. Out of six triangles
obtained from the barycentric subdivision of Ln−1 = M1, choose the triangle
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with a part of one side of Ln−2 as its side and with the starting point and
the barycenter of Ln−1 = M1 as its vertices, and call it Ta0···an−211 and let
N1

1 := Ta0···an−211. At the barycenter of Ln−1 = M1, consider the counter-
clockwise order of the 6 triangles from the N1

1 . The 5 triangles from the next
one of N1

1 will be called

Ta0···an−212, Ta0···an−213, Ta0···an−216, Ta0···an−215, Ta0···an−214

in order. Let N1
i := Ta0···an−21i for i = 2, 3, 4, 5, 6.

If the order of Ln−1 = M1 and M2 is the clockwise order, then the order
will be given from the symmetry by the line connecting the barycenter and the
starting point of Ln−1 =M1:

T a0 ...an−2

2

4

5
6

3

M

=
n−2L

N1
1

N2
1

Recall the assumptions for Ln−1 = M1, lying between the phrase ‘Case 2)
n ≥ 2’ and the one ‘Subcase 2-1 ) an−1 = 1, · · · ,’ and let Ln := N1

j , j = 1, · · · , 6.
Note the common vertex of Ln−1 = M1 and N1

1 is the starting point of
Ln−1 = M1 from the definition of N1

1 . Now, call the vertex the starting point
of N1

1 . And call the barycenter of Ln−1 = M1 the starting point of N1
i for i =

2, 3, 4, 5, 6. Also, call the barycenter the ending point of N1
i for i = 1, 2, 3, 4, 5.

Note the common vertex of Ln−1 = M1 and N1
6 is the barycenter of Ln−2,

so the ending point of Ln−1 =M1 from the assumption for M1. Call the vertex
the ending point of N1

6 .
Note that the starting and the ending point of Ln−1 =M1 are different and

the positions of N1
1 and N1

6 are mutually opposite inside Ln−1 =M1.
And the side of Ln−1 =M1, which contains a side of N1

1 , is divided into two
line segments, each of which is one side of N1

i for i = 1, 2, respectively.

Subcase 2-2 ) an−1 = 6, that is, Ln−1 =M6 = Ta0···an−26 :
Assume the order of M1 and M2 is the counter-clockwise order with respect

to the barycenter of Ln−2 and the line segment connecting the barycenter and the
starting point of Ln−2. From the assumptions, lying between the phrase ‘Case
2) n ≥ 2’ and the one ‘Subcase 2-1 ) an−1 = 1, · · · ,’ the vertex of Ln−1 = M6,
which is also the barycenter of Ln−2, is the starting point of Ln−1 = M6. The
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T a0 ...an−2

3

5 6

4

M

M

N1
6 N2

6

1

2

Ln−2= or T a0 ...an−2

3

4
5

6

=
n−2

M

N1
6

N2
6

2M

L

1

counter-clockwise angle of Ln−1 =M6 at its starting point determines its initial
side and the terminal side. Out of six triangles obtained from the barycentric
subdivision of Ln−1 = M6, choose the triangle with a part of the initial side
of Ln−1 = M6 as its side and with the starting point and the barycenter of
Ln−1 = M6 as its vertices, and call it Ta0···an−261 and let N6

1 := Ta0···an−261. At
the barycenter of Ln−1 = M6, consider the counter-clockwise order of the 6
triangles from the N6

1 . The 5 triangles from the next one of N6
1 = Ta0···an−261

will be called

Ta0···an−262, Ta0···an−263, Ta0···an−266, Ta0···an−265, Ta0···an−264

in order. Let N6
i := Ta0···an−26i for i = 2, 3, 4, 5, 6.

If the order ofM1 andM2 is the clockwise order, then the order will be given
from the symmetry by the line connecting the barycenter and the starting point
of Ln−1 =M6:

T a0 ...an−2

3
4

56

n−2

1M

M2

=L

1

2N6

N6

or T a0 ...an−2

3

4
5
6

n−2

M

M1

2

=L

N2

N1

6

6

Recall the assumptions for Ln−1 = M6, lying between the phrase ‘Case 2)
n ≥ 2’ and the one ‘Subcase 2-1 ) an−1 = 1, · · · ,’ and let Ln := N6

j , j = 1, · · · , 6.
Note the common vertex of Ln−1 = M6 and N6

1 is the starting point of
Ln−1 = M6 from the definition of N6

1 . Now, call the vertex the starting point
of N6

1 . And call the barycenter of Ln−1 = M6 the starting point of N6
i for i =

2, 3, 4, 5, 6. Also, call the barycenter the ending point of N6
i for i = 1, 2, 3, 4, 5.

To consider the common vertex of Ln−1 =M6 and N
6
6 , we have the following

two possibilities :
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The starting point and the ending point of Ln−2 are same or different.
But in any possibilities, the common vertex of Ln−1 = M6 and N6

6 is also
the common vertex of Ln−2 and Ln−1 =M6, so the ending point of Ln−1 =M6

from the assumption for M6. Call the vertex the ending point of N6
6 .

Note that the starting and the ending point of Ln−1 =M6 are different and
the positions of N6

1 and N6
6 are mutually opposite inside Ln−1 =M6.

Notice the side of Ln−1 = M6, which contains a side of N6
1 , is divided into

two line segments, each of which is one side of N6
i for i = 1, 2, respectively.

Subcase 2-3) an−1 ∈ {2, 3} or (an−1 ∈ {4, 5} and an−2 ∈ {0, 2, 3, 4, 5}),
that is,

Ln−1 =Mi = Ta0···an−2 i for i = 2, 3

or
Ln−1 =Mi = Ta0···an−2i for i = 4, 5 and an−2 ∈ {0, 2, 3, 4, 5} :

T a0 ...an−2n−2

M

M1

2

=L T a0 ...an−2

3 4

6

an−1

5

1

2

=Ln−1

N

N

i

i

= M i

Let i = an−1.
Assume the order of M1 and M2 is the counter-clockwise order with respect

to the barycenter of Ln−2 and the line segment connecting the barycenter and the
starting point of Ln−2. From the assumptions, lying between the phrase ‘Case
2) n ≥ 2’ and the one ‘Subcase 2-1 ) an−1 = 1, · · · ,’ the vertex of Ln−1 = Mi,
which is also the barycenter of Ln−2, is the starting point of Ln−1 = Mi. The
counter-clockwise angle of Ln−1 =Mi at its starting point determines the initial
side and the terminal side. Out of six triangles obtained from the barycentric
subdivision of Ln−1 = Mi, choose the triangle with a part of the initial side
of Ln−1 = Mi as its side and with the starting point and the barycenter of
Ln−1 = Mi as its vertices, and call it Ta0···an−2an−11, in other words, Ta0···an−2i1,
and let N i

1 := Ta0···an−2i1. At the barycenter of Ln−1 =Mi, consider the counter-
clockwise order of the 6 triangles from the N i

1. The 5 triangles from the next
one of N i

1 = Ta0···an−2an−11 will be called

Ta0···an−2an−12, Ta0···an−2an−13, Ta0···an−2an−14, Ta0···an−2an−15, Ta0···an−2an−16

in order. Let N i
j := Ta0···an−2 ij = Ta0···an−2an−1 j for j = 2, 3, 4, 5, 6.
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T a0 ...an−2

=L

M1

M 2

n−2 T a0 ...an−2an−1

6

3

5

4

N

N

1
i

2
i

=
n−1L = M i

If the order ofM1 andM2 is the clockwise order, then the order will be given
from the symmetry by the line connecting the barycenter and the starting point
of Ln−1 =Mi = Ta0···an−2an−1 :

Recall the assumptions for Ln−1 = Mi, lying between the phrase ‘Case 2)
n ≥ 2’ and the one ‘Subcase 2-1 ) an−1 = 1, · · · ,’ and let Ln := N i

j , j = 1, · · · , 6.
Note the common vertex of Ln−1 = Mi and N i

1 is the starting point of
Ln−1 = Mi from the definition of N i

1. Now, call the vertex the starting point
of N i

1 . And call the barycenter of Ln−1 = Mi the starting point of N i
j for j =

2, 3, 4, 5, 6. Also, call the barycenter the ending point of N i
j for j = 1, 2, 3, 4, 5.

Note the common vertex of Ln−1 = Mi and N i
6 is the starting point of

Ln−1 =Mi , so the barycenter of Ln−2 and the ending point of Ln−1 =Mi from
the assumption for Mi. Call the vertex the ending point of N i

6.
Note that the starting and the ending point of Ln−1 =Mi are same and they

are the common vertex of Ln−1 =Mi and N
i
6.

And the side of Ln−1 =Mi, which contains a side of N i
1, is divided into two

line segments, each of which is one side of N i
j for j = 1, 2, respectively.

Subcase 2-4 ) an−1 ∈ {4, 5} and an−2 ∈ {1, 6},
that is,

Ln−1 =Mi = Ta0···an−2i for i = 4, 5 and an−2 ∈ {1, 6} :

T a0 ...an−2n−2

M

M1

2

=L T a0 ...an−2an−1

6

3

5

4

N

N

1
i

2
i

=
n−1L = M i

Let i = an−1.
Assume the order of M1 and M2 is the counter-clockwise order with respect

to the barycenter of Ln−2 and the line segment connecting the barycenter and the
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starting point of Ln−2. From the assumptions,lying between the phrase ‘Case 2)
n ≥ 2’ and the one ‘Subcase 2-1 ) an−1 = 1, · · · ,’ the vertex of Ln−1 =Mi, which
is also the barycenter of Ln−2, is the starting point of Ln−1 =Mi. The clockwise
angle of Ln−1 = Mi at its starting point determines the initial side and the
terminal side. Out of six triangles obtained from the barycentric subdivision of
Ln−1 =Mi, choose the triangle with a part of the initial side of Ln−1 =Mi as its
side and with the starting point and the barycenter of Ln−1 =Mi as its vertices,
and call it Ta0···an−2an−11 , in other words, Ta0···an−2i1, and let N i

1 := Ta0···an−2i1. At
the barycenter of Ln−1 =Mi, consider the clockwise order of the 6 triangles from
the N i

1. The 5 triangles from the next one of N i
1 = Ta0···an−2i1 = Ta0···an−2an−11

will be called

Ta0···an−2an−12, Ta0···an−2an−13, Ta0···an−2an−14, Ta0···an−2an−15, Ta0···an−2an−16

in order. Let N i
j := Ta0···an−2 ij = Ta0···an−2an−1 j for j = 2, 3, 4, 5, 6.

If the order ofM1 andM2 is the clockwise order, then the order will be given
from the symmetry by the line connecting the barycenter and the starting point
of Ln−1 =Mi :

T a0 ...an−2

=L

M1

M 2

n−2 T a0 ...an−2

3 4

6

an−1

5

1

2

=Ln−1

N

N

i

i

= M i

Recall the assumptions for Ln−1 = Mi, lying between the phrase ‘Case 2)
n ≥ 2’ and the one ‘Subcase 2-1 ) an−1 = 1, · · · ,’ and let Ln := N i

j , j = 1, · · · , 6.
Note the common vertex of Ln−1 =Mi andN

i
1 is the starting point of Ln−1 =

Mi from the definition of N i
1. Now, call the vertex the starting point of N i

1. And
call the barycenter of Ln−1 = Mi the starting point of N i

j for j = 2, 3, 4, 5, 6.
Also, call the barycenter the ending point of N i

j for j = 1, 2, 3, 4, 5.
Note the common vertex of Ln−1 = Mi and N i

6 is the starting point of
Ln−1 =Mi, so the barycenter of Ln−2 and the ending point of Ln−1 =Mi from
the assumption for Mi. Call the vertex the ending point of N i

6.
Note that the starting and the ending point of Ln−1 =Mi are same and they

are the common vertex of Ln−1 =Mi and N
i
6.

And the side of Ln−1 =Mi, which contains a side of N i
1, is divided into two

line segments, each of which is one side of N i
j for j = 1, 2, respectively.

Under the counterclockwise orientation, interior triangles for n = 2, 3 will
be given as follows :
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Now let’s review the definition of the starting points and ending points of
triangles made right before as follows :

To begin with, note that the common vertex of Ta0a1···an−1 and Ta0a1···an−11

is the starting point of Ta0a1···an−1 and that the common vertex of Ta0a1···an−1 and
Ta0a1···an−16 is the ending point of Ta0a1···an−1 .

For Ta0a1···an−11 , the starting point of Ta0a1···an−1 is the common vertex with
Ta0a1···an−11 and will be called the starting point of Ta0a1···an−11. And the barycen-
ter of Ta0a1···an−1 will be called the ending point of Ta0a1···an−11.

For Ta0a1···an−1i , where i = 2, 3, 4, 5, the barycenter of Ta0a1···an−1 will be
called the starting and ending point of Ta0a1···an−1i.

For Ta0a1···an−16, the barycenter of Ta0a1···an−1 will be called the starting point
of Ta0a1···an−16. And the ending point of Ta0a1···an−1 is the common vertex with
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Ta0a1···an−16 and will be called the ending point of Ta0a1···an−16.

To check whether we can define triangles inductively:
Recall the assumptions for Ta0a1···an−1 , lying between the phrase ‘Case 2)

n ≥ 2’ and the one ‘Subcase 2-1 ) an−1 = 1, · · · .’
Note that the common vertex of Ta0a1···an−1 and Ta0a1···an−11 is the start-

ing point of each of them. The barycenter of Ta0a1···an−1 is the starting point
of Ta0a1···an−1i for i = 2, 3, 4, 5, 6, and the ending point of Ta0a1···an−1i for
i = 1, 2, 3, 4, 5. The common vertex of Ta0a1···an−1 and Ta0a1···an−16 is the end-
ing point of each of them.

Notice that if the starting and the ending point of Ta0···an−2an−1 are same then
an−1 ̸= 1, 6 and they are the common vertex of Ta0···an−2an−1 and Ta0···an−2an−16.
Also note that if the starting and the ending point of Ta0···an−2an−1 are different
then an−1 ∈ {1, 6} and Ta0···an−2an−11 and Ta0···an−2an−16 are mutually opposite
ones inside Ta0···an−2an−1 .

And one side of Ta0a1···an−1 , which contains a side of Ta0a1a2···an−11 is divided
into two line segments, each of which is one side of Ta0a1···an−1i, for i = 1, 2,
respectively. Thus we can define triangles inductively.

A.2 The definition of exterior triangles and the

definition of their starting points and end-

ing points

A.2.1 The definition of Sb0b1···bn
0

The given orientation at the center of D2 and the base point, or equivalently
the starting and ending point of T0, will give the order b0 of sides of T0, where
b0 = 1, 2, 3, as explained early in ‘Section A.1.’

Case 1) n = 1 :
From the given orientation at the center of D2, consider the direction of each

side of T0, which will give the starting point and the ending point of each side.
For the side b0 of T0 and the (line) segment on the boundary of D2 , which

faces the side b0 and has common terminal points with the side b0 , consider
the midpoint of the side b0 and of the boundary segment, respectively. Then
a given half of the side b0, the straight line segment between the midpoint of
the boundary segment and the common terminal point of the side b0 and of the
given half of the side b0, and the straight line segment between the midpoint
of the side b0 and that of the boundary segment will determine a triangle, so
we can obtain two triangles from each half of the side b0. Let’s call them Sb01

0
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and Sb02
0 , where for Sb0i

0 , i is determined by the order with respect to the
orientation at the center of D2 and the line segment connecting the center of
D2 and the starting point of T0.

Under the counterclockwise orientation, exterior triangles for n = 1 will be
given as follows :

S

S

S S

S

S

21
0

12
0

0
11

22
0

0

0
32

31

Case 2) n ≥ 2 :

Let S
b0b1···bn−1

0 be given.

The side of S
b0b1···bn−1

0 , which faces the boundary ofD2, will give two triangles
as follows :

Consider the direction of the side of S
b0b1···bn−1

0 , which faces the boundary
of D2, and that of the line segment on the boundary of D2, which is being
faced by the side, respectively, from the orientation at the center of D2 and the
line segment connecting the center of D2 and the starting point of T0. Then
we can think of the starting point, midpoint and ending point of the side of
S
b0b1···bn−1

0 , which faces the boundary of D2, and those of the boundary segment,
respectively. Now, refer to the construction of two triangles in ‘case 1.’ Then
the triangle with the midpoints and common starting point of the side and the
boundary segment as vertices will be called S

b0b1···bn−11
0 and the triangle with

the midpoints and common ending point of the side and the boundary segment
as vertices will be called S

b0b1···bn−12
0 .

Under the counterclockwise orientation, exterior triangles for n = 2, 3 will
be given as follows :
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S

S

S S

S

S

21
0

12
0

0
11

22
0

0

0
32

31

S

S

S112

111

S121

S122

S211

S212 S221

S222

311

312S

S321
S322

0

0

0

0

0

0 0

0

0

0

0

0

Now, define the starting point and the ending point of the triangles made
right before as follows:

Let n ≥ 1.
For S

b0b1···bn−1i
0 , i = 1, 2, consider the direction of its side facing the boundary

with respect to the orientation at the center of D2.
If n is odd, the ending point of the side, facing the boundary of D2, will be

called the starting point of S
b0b1···bn−1i
0 and the starting point of the side, facing

the boundary of D2, will be called the ending point of S
b0b1···bn−1i
0 .

If n is even, the starting point of the side, facing the boundary of D2, will be
called the starting point of S

b0b1···bn−1i
0 and the ending point of the side, facing

the boundary of D2, will be called the ending point of S
b0b1···bn−1i
0 .

A.2.2 The definition of Sb0b1···bk
a0a1···am

Let 1 ≤ k < n be given. Let m = n − k. To define Sb0b1···bk
a0a1···am , consider a

triangle T̃0 whose orientation is the opposite one of T0 (, considering T014 might
be helpful). Then the m-step barycentric subdivision makes us think of T̃0a1···am
, which is the mirror-symmetry of T0a1···am (, for example T0141a1···am). Note
the orientation of the triangle T̃01 is the opposite one of T01 (,considering T0141
might be helpful), and its m-step barycentric subdivision T̃01a2···am is also the
mirror-symmetry of T01a2···am (, for example T0141a2···am).

We want to define Sb0b1···bk
a0a1···am as follows :
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Case 1-1) k is odd and bk = 1:
Consider the barycentric subdivision of Sb0b1···bk

0 . By comparing it with that
of T01, define

- Sb0b1···bk
0j , which matches T01j for j ∈ {1, 2, 3, 4},

- Sb0b1···bk
05 , which matches T016,

- Sb0b1···bk
06 , which matches T015,

and their starting and ending points.
For m ≥ 2, the respective identification of

Sb0b1···bk
01 , Sb0b1···bk

0j , Sb0b1···bk
04 , Sb0b1···bk

06 with T01, T0, T̃0, T̃01,

where j ∈ {2, 3, 5}, and their m-step barycentric subdivision can make us define
Sb0b1···bk
a0a1a2···am , where a0 = 0.

Case 1-2) k is odd and bk = 2:
Identify Sb0b1···bk

0 with T01, where the starting point and ending point of
Sb0b1···bk
0 is also identified to those of T01.
Consider the m-step barycentric subdivision of Sb0b1···bk

0 and T01 respectively.
The identification, then, can make us define Sb0b1···bk

a0a1···am from T01a1···am , where
a0 = 0.

Under the counterclockwise orientation, the triangles for k = 1 and m = 1
will be given as follows :

Case 2-1) k is even and bk = 1:
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By identifying Sb0b1···bk
0 with T̃01, we can define Sb0b1···bk

a0a1···am from T̃01a1···am , where
a0 = 0 (, for example T0141a1···am) .

Case 2-2) k is even and bk = 2:
Consider the barycentric subdivision of Sb0b1···bk

0 . By comparing it with that
of T̃01, define

- Sb0b1···bk
0j , which matches T̃01j for j ∈ {1, 2, 3, 4},

- Sb0b1···bk
05 , which matches T̃016,

- Sb0b1···bk
06 , which matches T̃015,

and their starting and ending points.
For m ≥ 2, the respective identification of

Sb0b1···bk
01 , Sb0b1···bk

0j , Sb0b1···bk
04 , Sb0b1···bk

06 with T̃01, T̃0, T0, T01,

where j ∈ {2, 3, 5}, and their m-step barycentric subdivision can make us define
Sb0b1···bk
a0a1a2···am , where a0 = 0.

Under the counterclockwise orientation, the triangles for k = 2 and m = 1
will be given as follows :

A.3 The ordering of triangles in the n− th step

For n = 1, 2, · · · , let

An = {Ta0a1···an | a0 = 0, ai ∈ {1, 2, 3, 4, 5, 6} for i = 1, · · · , n}
∪

(∪k+m=n,1≤k≤n,0≤m≤n−1{Sb0b1···bk
c0···cm | b0 ∈ {1, 2, 3}, bi ∈ {1, 2} for i = 1, · · · k,
c0 = 0, cj ∈ {1, · · · , 6} for 1 ≤ j ≤ m if m ≥ 1})
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, which is regarded as the set of all triangles in the n− th step.

Now refer to the following pictures for 0th, 1st, 2nd and 3rd step under the
counterclockwise orientation :

T 0

Case 1) Ta0···an < Sb0b1···bk
c0···cm , where k +m = n

Case 2) Ta0···an < Tb0···bn if (a0, · · · , an) < (b0, · · · , b0) with respect to the
dictionary order

Case 3) The order of Sb0b1···bk
a0···am and Sc0c1···cs

d0···ct , where k +m = n = s+ t

Case 3-1) k < s :
Sb0b1···bk
a0···am < Sc0c1···cs

d0···dt
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Case 3-2) k = s ( so, m = t ) and (b0, b1, · · · , bk) < (c0, c1, · · · , ck) with
respect to the dictionary order :

If k is odd, then Sb0b1···bk
a0···am > Sc0c1···ck

d0···dm
If k is even, then Sb0b1···bk

a0···am < Sc0c1···ck
d0···dm

Case 3-3) k = s, (b0, b1, · · · , bk) = (c0, c1, · · · , ck) and (a0, · · · , am) <
(d0, · · · , dm) with respect to the dictionary order :

Sb0b1···bk
a0···am < Sc0c1···ck

d0···dm

A.4 The properties of triangles in An

We can easily check the following three properties from the definition of trian-
gles.

Property 1.) Given a non-first element L in An, the boundary of
∪
{M ∈

An|M < L} contains a side of L, which will be divided into two line segments in
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its barycentric subdivision, where one of two line segments will become a side
of the first triangle and the other one will become a side of the second triangle
in the barycentric subdivision of L.

Property 2.) Given L ∈ An ,
∪
{M ∈ An|M ≤ L} is diffeomorphic to the

disk D2.

Property 3.) Assume L ∈ An and six triangles M1,M2, · · · ,M6 ∈ An+1,
obtained from the barycentric subdivision of L, follows the order of i = 1, 2, · · · 6
in An+1. Then the starting points of M1 and L are same. Also are the ending
points of M6 and L.

And we also have the next property :

Property 4.) Assume L,M ∈ An and that M is the next element of L in An

for n ≥ 1.
Then, The ending point of L and the starting point of M are same.

Proof )
Case 1) L = Ta0···an−1an for some (a0, · · · , an−1, an)
Subcase 1-1 ) an ̸= 6
Note M = Tb0···bn−1bn , where

bi = ai for 0 ≤ i < n and bn = an + 1.

Then inside the triangle Ta0 · · · an−1, the barycenter of Ta0···an−1 is the ending
point of L = Ta0···an−1an and the starting point of M = Tb0···bn−1bn at the same
time.
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Subcase 1-2 ) an = 6
If a0 = 0 and a1 = · · · = an = 6, then the ending point of L = Ta0···an−1an

is the ending point of T06 by induction and also the ending point of T0, that
is, the basepoint, which is the starting point of S32

0 and so the starting point
of M = S32

0 if n = 1 and the starting point of M = S32
b0···bn−1

with b0 = 0 and
b1 = · · · = bn−1 = 1 if n ≥ 2.

Now assume n ≥ 2 and ai ̸= 6 for some i with 1 ≤ i < n.
We can find i0 satisfying 1 ≤ i0 < n, ai0 ̸= 6 and ai = 6 for all i0 < i ≤ n.

Then M = Tb0···bn−1bn satisfies

bi = ai for all 0 ≤ i < i0

bi0 = ai0 + 1

bi = 1 for all i0 < i ≤ n

Note the ending point of L = Ta0···an−1an is the ending point of Ta0···ai0 by
induction.

Notice the starting point of M = Tb0···bn−1bn is the starting point of Tb0···bi0
by induction.

Since ai = bi for 0 ≤ i < i0 and bi0 = ai0 + 1, the ending point of
L = Ta0···ai0−1ai0

is the barycenter of Ta0···ai0−1
, which is the starting point of

Ta0···ai0−1bi0
= Tb0···bi0−1bi0

=M. Thus, we get

the ending point of L is the starting point of M.

Case 2) L = Sb0b1···bk
c0···cm where k +m = n.

Subcase 2-1 ) m = 0 and k = n is odd.

Note (b0, b1, · · · , bn) ̸= (1, 1, · · · , 1), because if (b0, b1, · · · , bn) = (1, 1, · · · , 1)
then L = Sb0b1···bn

0 = S11···1
0 is the last element in An.

If n = 1, then we can trivially obtain that the ending point of L is the
starting point of M from the definition of triangles.

Assume n ≥ 2.
If M = Sd0d1···dn

0 , then we get (b0, b1, · · · , bn) > (d0, d1, · · · , dn) and so

either (d0 = b0 − 1, d1 = · · · = dn = 2 and b1 = · · · = bn = 1)

or

∃i0 with 1 ≤ i0 ≤ n such that
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di = bi for all 0 ≤ i < i0

di0 = 1, bi0 = 2

di = 2, bi = 1 for all i0 < i ≤ n if 1 ≤ i0 < n.

In the first possibility, the side of L and the side of M, both of which faces
the boundary, meet at one point where Sb0b1

0 = Sb01
0 and Sd0d1

0 = Sd02
0 meet.

In the second possibility, the side of L and the side ofM, both of which faces
the boundary, meet at one point which is contained in such line segment as the

intersection of S
b0b1···bi0−1bi0
0 = S

b0b1···bi0−12

0 and S
b0b1···bi0−11

0 = S
d0d1···di0−1di0
0 .

In any possibilities, the side of L and the side of M , both of which faces the
boundary, meet at one point. Since n is odd, the point is the starting point of
the side of L, facing the boundary, and the ending point of the side ofM , facing
the boundary, so

the ending point of L is the starting point of M.

Subcase 2-2 ) m = 0 and k = n is even

Note (b0, b1, · · · , bn) ̸= (3, 2, · · · , 2), because if (b0, b1, · · · , bn) = (3, 2, · · · , 2)
then L = Sb0b1···bn

0 = S32···2
0 is the last element in An.

If M = Sd0d1···dn
0 , then we get (b0, b1, · · · , bn) < (d0, d1, · · · , dn) and so

either (d0 = b0 + 1, b1 = · · · = bn = 2 and d1 = · · · = dn = 1)

or

∃i0 with 1 ≤ i0 ≤ n such that

di = bi for all 0 ≤ i < i0

di0 = 2, bi0 = 1

di = 1, bi = 2 for all i0 < i ≤ n if 1 ≤ i0 < n .

In the first possibility, the side of L and the side of M, both of which faces
the boundary, meet at one point where Sb0b1

0 = Sb02
0 and Sd0d1

0 = Sd01
0 meet.

In the second possibility, the side of L and the side ofM , both of which faces
the boundary, meet at one point which is contained in such line segment as the

intersection of S
b0b1···bi0−1bi0
0 = S

b0b1···bi0−11

0 and S
b0b1···bi0−12

0 = S
d0d1···di0−1di0
0 .

In any possibilities, the side of L and the side of M , both of which faces
the boundary, meet at one point. Since n is even, the above condition implies
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that the point is the ending point of the side of L, facing the boundary and the
starting point of the side of M , facing the boundary, so

the ending point of L is the starting point of M.

Subcase 2-3 ) m ≥ 1 and cm ̸= 6

If m = 1, then the barycenter is both the ending point of L and the starting
point of M from the definition.

Assume m ≥ 2. Note L = Sb0b1···bk
c0c1c2···cm−1cm

and its next element M are inside

the triangle Sb0b1···bk
c0c1

, which is one of the triangles obtained by the barycentric

subdivision Sb0b1···bk
c0

= Sb0b1···bk
0 .

Compare it with the proper one of T0, T01, T̃0 and T̃01. By referring to subcase
1-1, - by restricting it to the first triangle if needed-, we get

the ending point of L is the starting point of M.

Subcase 2-4 ) m ≥ 1 and cm = 6

Note L = Sb0b1···bk
c0c1···cm is inside the triangle Sb0b1···bk

0 , where c0 = 0.

Assume c1 = c2 = · · · = cm−1 = cm = 6.
If m = 1, then the ending point of L = Sb0b1···bk

c0cm
= Sb0b1···bk

06 will be the ending

point of Sb0···bk
06 tautologically. If m ≥ 2, then compare Sb0b1···bk

c0c1
with the proper

one of T0, T01, T̃0 and T̃01. Then from the comparison, the ending point of L will
be the ending point of Sb0···bk

066 , which is also the ending point of Sb0···bk
06 .

If M = Sd0d1···ds
a0···at with a0 = 0, then we get

either

(k = s, a1 = · · · = at = 1 and Sd0d1···ds
01 is the next element of Sb0···bk

06 in Ak+1)

or
(s = k + 1, t = m− 1, ai = 1 for 1 ≤ i ≤ t in case of m ≥ 2 and

Sd0d1···ds
0 is the next element of Sb0···bk

06 in Ak+1).

In the first possibility, Sd0d1···ds
0 will be also the next element of Sb0b1···bk

0 in
Ak and so the ending point of Sb0b1···bk

0 will be the starting point of Sd0d1···ds
0 from

subcase 2-1 and 2-2 , which implies

the ending point of Sb0b1···bk
06 will be the starting point of Sd0d1···ds

01 .
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In the second possibility, note one of k and s is odd and the other one is
even, which implies that Sb0b1···bk

0 is the last element in Ak and that Sd0d1···ds
0 is

the first element in the subset

{Sx0x1···xs
0 | x0 ∈ {1, 2, 3} , xi ∈ {1, 2} for i = 1, · · · s}

of As = Ak+1. Also, notice that the ending point of Sb0b1···bk
06 is also the ending

point of Sb0b1···bk
0 from the definition of triangles. By thinking of the side of

Sb0b1···bk
0 , which faces the boundary, and the side of Sd0d1···ds

0 , which faces the
boundary, we get

the ending point of Sb0b1···bk
0 will be the starting point of Sd0d1···ds

0 ,

so

the ending point of Sb0b1···bk
06 will be the starting point of Sd0d1···ds

0 .

In any possibilities, the ending point of Sb0···bk
06 , which is also the ending point

of L, is the starting point of its next element in Ak+1, which will be the starting
point of M from a1 = · · · = at = 1 if t ≥ 1. Thus, we get

the ending point of L is the starting point of M.

Now , assume m ≥ 2 and ci ̸= 6 for some 1 ≤ i < m. From the comparison
of Sb0b1···bk

c0c1
with the proper one of T0, T01, T̃0 and T̃01, we get L andM are inside

the triangle Sb0···bk
c0c1

and from subcase 1-2, we get

the ending point of L is the starting point of M.
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Appendix B

About Curves

B.1 Notations

f ∗g : [0, 1]→ Hn is an ordinary juxtaposition of curves f, g : [0, 1]→ Hn. And,
for a given curve c : [0, 1]→ Hn, c̄ represents a curve whose direction is opposite
to that of c, that is, c̄ : [0, 1]→ Hn is given by c̄(t) = c(1− t).

B.2 Simplification γ of a curve g : [a,b]→ Hn

Given a curve g : [a, b] → S , we can think of a curve γ : [a, b] → S whose
direction is one-sided as follows :

If we can find c, d, e ∈ (a, b) such that a < c < d < e < b and Im(g|[c,d]) =
Im(g|[d,e]) and that the directions of g|[c,d] and g|[d,e] are one-sided but opposite
from each other, then we can think of the new curve g̃ : [a, b] → D2 from the
remaining part g|[a,c] and g|[e,b] by translating in the domain and rescaling as
follows :

Note g(c) = g(e).
Consider two curves g1 : [a, d]→ Hn and g2 : [d, b]→ Hn given by

g

(
c− a
d− a

(t− a) + a

)
= g1(t) for t ∈ [a, d]

and

g

(
b− e
b− d

(t− b) + b

)
= g2(t) for t ∈ [d, b],

and then let g̃ = g1 ∗ g2.
From a curve obtained by doing this work again and again, we can think of

a constant speed curve γ : [a, b]→ S which we want.
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B.3 The definition of Dn, jn, t
n
1 , t

n
2

Dn =

{
1

2
· j
6n
| j = 0, 1, 2, · · · , 6n

}∪
(
∪n

k=1

{
k∑

i=1

1

2i
+

1

2k+1
· j

2k−1 · 6n−k+1
| j = 0, 1, 2, · · · , 2k−1 · 6n−k+1

})

Think of the usual order Dn and regard

0,
1

2
· 1
6n
,
1

2
· 2
6n
, · · · , 1

2
=

1

2
· 6

n

6n
,
1

2
+

1

22
· 1

20 · 6n
, · · · ∈ Dn

as 0th, 1st, 2nd, · · · , 6nth, 6n+1th, · · · element, respectively.
Now, define functions

jn : Dn → {0, 1, 2, 3, · · · }

tn1 : Dn − {0} → Dn

tn2 : Dn − { the last element of Dn} → Dn

as follows :

jn(s) = j for the j-th element s ∈ Dn.

tn1 (s) is the (j − 1)-th element in Dn for a given j-th element s ∈ Dn − {0}.

tn2 (s) is the (j+1)-th element in Dn for a given j-th element s ∈ Dn−{ the
last element of Dn}.

B.4 Definition of γnt0, c
n
t0
, c̄nt0, 1c

n
t0
, 1c̄

n
t0
, φn

t0
and ψn

t0

on the disk D2

Let n ∈ {1, 2, 3, · · · } and t0 ∈ Dn be given. With respect to the ordering of Dn,
we’ll define γnt0 , c

n
t0
, c̄nt0 and φn

t0
inductively for each fixed n:

Case 1) t0 is the first element in Dn , in fact, t0 =
1
2
· 1
6n

The orientation at the barycenter of T0 ∈ A0 will give the direction of the
boundary curve of the first triangle in An.
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Then
cnt0 : [0, 1]→ {basepoint} ⊂ D2

c̄nt0 : [0, 1]→ {basepoint} ⊂ D2

φn
t0
: [0, 1]→ D2

and

γnt0 : [0, 1]→ D2

can be thought, where φn
t0
and γnt0 are the piecewise smooth boundary curve of

the first triangle in An with constant speed and the direction of the boundary
curve is induced from the given orientation.

Note γnt0 can be regarded as the simplification of cnt0 ∗ φ
n
t0
∗ c̄nt0 .

We will call γnt0 the holonomy curve at time t = t0.
Now, consider the path from the basepoint to the ending point of the first

triangle in n-step along the opposite direction of the holonomy curve γnt0 at
t = t0 , which is a piecewise smooth curve with constant speed. Then from the
path, we can define a piecewise smooth curve

1c
n
t0
: [0, 1]→ D2

with constant speed. And its opposite direction can make us define

1c̄
n
t0
: [0, 1]→ D2.

Define a piecewise smooth curve

ψn
t0
: [0, 1]→ D2

with constant speed as the boundary curve of the 1st triangle in the n-th step,
where the curve is a loop at the ending point of the first triangle and the direction
of the boundary curve is induced from the given orientation.

Case 2) t0 is the j-th element in Dn , where j ≥ 2

Let t1 be the (j − 1)-th element in Dn , where j − 1 ≥ 1.
Consider the path from the basepoint to the starting point of the j-th triangle

in the n-th step along the opposite direction of the holonomy curve γnt1 at t = t1
, which is a piecewise smooth one with constant speed . Then from the path,
we can define a piecewise smooth curve

cnt0 : [0, 1]→ ∂Uj−1 ⊂ D2
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with constant speed, where Uj−1 is the union of triangle in An from 1st one to
(j − 1)-th one.

And its opposite direction can make us define

c̄nt0 : [0, 1]→ ∂Uj−1 ⊂ D2.

Define a piecewise smooth curve

φn
t0
: [0, 1]→ D2

with constant speed as the boundary curve of the j-th triangle in the n-th step,
where the curve is a loop at the starting point of the triangle and the direction
of the boundary curve is induced from the given orientation.

Now define a piecewise smooth curve

γnt0 : [0, 1]→ ∂Uj ⊂ D2

with constant speed from the simplification of γnt1 ∗ c
n
t0
∗φn

t0
∗ c̄nt0 , where Uj is the

union of triangle in An from 1st one to j-th one. The new curve will be also
called the holonomy curve at time t = t0 .

Now, consider the path from the basepoint to the ending point of the j-th
triangle in the n-th step along the opposite direction of the holonomy curve γnt0
at t = t0 , which is a piecewise smooth one with constant speed. Then from the
path, we can define a piecewise smooth curve

1c
n
t0
: [0, 1]→ ∂Uj ⊂ D2

with constant speed. And its opposite direction can make us define

1c̄
n
t0
: [0, 1]→ ∂Uj ⊂ D2.

Define a piecewise smooth curve

ψn
t0
: [0, 1]→ D2

with constant speed as the boundary curve of the j-th triangle in the n-th
step, where the curve is a loop at the ending point of the j-th triangle and the
direction of the boundary curve is induced from the given orientation.

B.5 the simplification of c̄nt0 ∗ 1c
n
t0

For each n ≥ 1 and t0 ̸= 0, where t0 is the jn(t0)-th element in Dn, the simpli-
fication of c̄nt0 ∗ 1c

n
t0
is a curve along the boundary curve of jn(t0)-th triangle in
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An with opposite direction to the given orientation such that it starts from the
starting point of the triangle and that its image consists of the following sets :

one point, one side, two sides or the boundary of the triangle.

Proof )
If n=1, then it can be easily checked.
Assume n ≥ 2. If t0 is greater than the maximum of Dn−1 − {1}, then the

above property can be easily checked.
Now assume n ≥ 2 and t0 is less than or equal to the maximum ofDn−1−{1}.

Now find δn(t0) ∈ Dn−1 such that tn−1
1 (δn(t0)) < t0 ≤ δn(t0), where t

n−1
1 (δn(t0))

is the previous element of δn(t0) in Dn−1. Then, the jn(t0)-th triangle in An is
one of the barycentric subdivision of the jn−1(δn(t0))-th triangle in An−1.

And find a value ϵ(jn(t0)) such that , for the given L = jn(t0)-th triangle in
An,

if L = Ta0a1···an , then ϵ(jn(t0)) = an

and
if L = Sb0b1···bk

a0a1···as , where n = k + s, then ϵ(jn(t0)) = as.

Assume n ≥ 2 and that the property, mentioned early in this section, holds
for n− 1.

Then we obtained the following result.
Case 1) Assume the image of the simplification of c̄n−1

δn(t0)
∗ 1c

n−1
δn(t0)

consists of
one point.

Now refer to the following picture under the counterclockwise orientation.
The thick line is a part of the image of γn−1

tn−1
1 (δn(t0))

and the outer triangle is the

jn−1(δn(t0))-th triangle in An−1.

1
6

1

6

Note the direction of the line segment of the jn−1(δn(t0))-th triangle along
γn−1

tn−1
1 (δn(t0))

, mentioned in the Property 1 in the Section A.4 of the Chapter

A, lying on the boundary curve γn−1

tn−1
1 (δn(t0))

, is from the common vertex of the
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jn−1(δn(t0))-th triangle in An−1 with the second triangle of its barycentric subdi-
vision to its common vertex with the first triangle of its barycentric subdivision
, and

ϵ(jn(t0)) = 1, 6⇒ c̄nt0 ∗ 1c
n
t0
consists of one side

ϵ(jn(t0)) = 2, 3⇒ c̄nt0 ∗ 1c
n
t0
consists of one point

ϵ(jn(t0)) = 4, 5⇒ c̄nt0 ∗ 1c
n
t0
consists of one point

Case 2) Assume the image of the simplification of c̄n−1
δn(t0)

∗ 1c
n−1
δn(t0)

consists of
one side.

Now refer to the following picture under the counterclockwise orientation.
The thick line is a part of the image of γn−1

tn−1
1 (δn(t0))

and the outer triangle

is the jn−1(δn(t0))-th triangle in An−1. Don’t forget that the ending point of
jn−1(δn(t0)) in An−1 will lie on the image of γn−1

δn(t0)
, even though it might not lie

on the image of γn−1

tn−1
1 (δn(t0))

.

1

6
61

1

6

1 6
1

6

Note the direction of the line segment of the jn−1(δn(t0))-th triangle along
γn−1

tn−1
1 (δn(t0))

, mentioned in the Property 1 in the Section A.4 of the Chapter

A, lying on the boundary curve γn−1

tn−1
1 (δn(t0))

, is from the common vertex of the
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jn−1(δn(t0))-th triangle in An−1 with the second triangle of its barycentric subdi-
vision to its common vertex with the first triangle of its barycentric subdivision
, and

ϵ(jn(t0)) = 1⇒ c̄nt0 ∗ 1c
n
t0
consists of one side

ϵ(jn(t0)) = 2, 3⇒ c̄nt0 ∗ 1c
n
t0
consists of one point

ϵ(jn(t0)) = 4⇒ c̄nt0 ∗ 1c
n
t0
consists of the boundary

ϵ(jn(t0)) = 5⇒ c̄nt0 ∗ 1c
n
t0
consists of either the boundary or one side

ϵ(jn(t0)) = 6⇒ c̄nt0 ∗ 1c
n
t0
consists of either one side or two sides

Remark B.5.1 The last 2 pictures in the bottom seem to be possible under the
induction hypothesis. But it might not happen in fact.

Remark B.5.2 The following picture in the bottom can’t happen from Property
2 in the Section A.4 of the Chapter A.

1

6

Case 3) Assume the image of the simplification of c̄n−1
δn(t0)

∗ 1c
n−1
δn(t0)

consists of
two sides.

Now refer to the following picture under the counterclockwise orienta-
tion. The thick line is a part of the image of γn−1

δn(t0)
and the outer triangle

is the jn−1(δn(t0))-th triangle in An−1. Don’t forget that the ending point of
jn−1(δn(t0)) in An−1 will lie on the image of γn−1

δn(t0)
, even though it might not lie

on the image of γn−1

tn−1
1 (δn(t0))

.

Note the direction of the line segment of the jn−1(δn(t0))-th triangle along
γn−1

tn−1
1 (δn(t0))

, mentioned in the Property 1 in the Section A.4 of the Chapter

A, lying on the boundary curve γn−1

tn−1
1 (δn(t0))

, is from the common vertex of the

jn−1(δn(t0))-th triangle in An−1 with the first triangle of its barycentric subdivi-
sion to its common vertex with the second triangle of its barycentric subdivision
, and
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6

1

1

6 1

6

1 6

1

6

ϵ(jn(t0)) = 1⇒ c̄nt0 ∗ 1c
n
t0
consists of two sides

ϵ(jn(t0)) = 2, 3⇒ c̄nt0 ∗ 1c
n
t0
consists of the boundary

ϵ(jn(t0)) = 4⇒ c̄nt0 ∗ 1c
n
t0
consists of one point

ϵ(jn(t0)) = 5⇒ c̄nt0 ∗ 1c
n
t0
consists of either one point or the boundary

ϵ(jn(t0)) = 6⇒ c̄nt0 ∗ 1c
n
t0
consists of either two sides or one side

Remark B.5.3 The last 3 pictures in the bottom seem to be possible under the
induction hypothesis. But it might not happen in fact.

Remark B.5.4 The following picture in the bottom can’t happen from Property
2 in the Section A.4 of the Chapter A.

1

6
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Case 4) Assume the image of the simplification of c̄n−1
δn(t0)

∗ 1c
n−1
δn(t0)

consists of
the boudary.

Now refer to the following picture under the counterclockwise orientation.
The thick line is a part of the image of γn−1

tn−1
1 (δn(t0))

and the outer triangle is the

jn−1(δn(t0))-th triangle in An−1.
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1

6 61

Note the direction of the line segment of the jn−1(δn(t0))-th triangle along
γn−1

tn−1
1 (δn(t0))

, mentioned in the Property 1 in the Section A.4 of the Chapter

A, lying on the boundary curve γn−1

tn−1
1 (δn(t0))

, is from the common vertex of the

jn−1(δn(t0))-th triangle in An−1 with the first triangle of its barycentric subdivi-
sion to its common vertex with the second triangle of its barycentric subdivision
, and

ϵ(jn(t0)) = 1, 6⇒ c̄nt0 ∗ 1c
n
t0
consists of two sides

ϵ(jn(t0)) = 2, 3⇒ c̄nt0 ∗ 1c
n
t0
consists of the boundary

ϵ(jn(t0)) = 4, 5⇒ c̄nt0 ∗ 1c
n
t0
consists of the boundary
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