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ABSTRACT 

 

Monomer-micelle equilibrium, the distribution of surfactant species between the 

monomer and the micelles in solution, dictates many important physical properties of 

surfactants.  Although monomer-micelle equilibrium compositions have been 

experimentally determined by different methods, there are severe limitations for these 

experimental measurements (e.g., expensive, difficult to interpret the data, and only 

applicable to specific systems).  The goal of this work is to develop a universal, 

inexpensive, user-friendly technique to measure monomer-micelle equilibrium.  The 

suitable conditions (e.g., initial total surfactant concentration and electrolyte 

concentration) to use this technique are determined by the experiments with three single 

surfactant systems including both ionic and nonionic surfactants.  After that, this 

technique is validated on two model binary surfactant mixtures, SDS/NP(EO)10 and 

CPC/NP(EO)10, at different surfactant ratios and three different temperatures.  The 

results demonstrate that the kinetic data are necessary to accurately determine the 

surfactant monomer and micelle compositions from the SED technique.  The values of 

CMC obtained from the SED technique show good correlation with the data from 

surface tension measurement and predictions from RST.  This is very crucial condition 

for validity of the SED technique.  Although the RST describes the CMC data well, the 

predictions of monomer and micelle compositions from RST can be in gross error when 

compared to the experimental data from SED technique.  In some cases, the SED 

technique measures a CPC-rich micelle while the RST predicts a NP(EO)10-rich 

micelle.  The SED results at different temperatures also yield enough data to calculate 
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the thermodynamics properties of these studied systems.  A calculation of HE, SE and 

GE values from SED data show that the HE and SE values from RST significantly 

deviate from the values calculated from experiment data while the values of GE from 

both SED technique and the RST agree well. 
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CHAPTER 1 

 

1. Introduction  

 

  This dissertation can be divided into three major parts.  Chapter 2 is the use of 

semi-equilibrium dialysis (SED) technique on three different single surfactant system, 

sodium dodecyl sulfate (SDS), cetylpyridinium chloride (CPC), and nonylphenol 

polyethoxylate with an average degree of polymerization of 10 (NP(EO)10), to study the 

effect of initial retentate surfactant concentration for a cationic surfactant, the effect of 

electrolyte concentration for an anionic surfactant and the effect of use of nonionic 

surfactant.  In Chapter 3, The SED technique is used to measure the mixed CMC and 

the monomer-micelle equilibrium compositions of two binary anionic/nonionic 

surfactant mixtures, SDS/NP(EO)10 and CPC/NP(EO)10, at 30oC and different 

surfactant ratios.  The experimental results are compared to the results from the surface 

tension measurement and the predictions from the RST.  The SED experiments are 

conducted at 40oC and 50oC for SDS/NP(EO)10 and CPC/NP(EO)10 at different 

surfactant ratios to measure the mixed CMC and monomer-micelle compositions in 

Chapter 4.  The thermodynamic values are also calculated based on the experimental 

data from SED technique.  These calculated values are also compared to the RST 

predictions. 
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CHAPTER 2 

Measuring Monomer-Micelle Equilibrium by Using Semi-Equilibrium Dialysis.  

I. Single Surfactant Systems 

The semi-equilibrium dialysis (SED) technique is utilized in this series of three 

papers as a new experimental method to measure monomer-micelle equilibrium for 

multicomponent surfactant systems.  In this Part I, the validity of the technique is 

demonstrated for single surfactants.  At a suitable contact time between a surfactant 

solution in the retentate compartment of a dialysis cell and water or electrolyte solution 

in the permeate compartment of the cell, the permeate solution has the same 

concentration of surfactant as the monomer in the retentate side.  At longer contact 

times, micelles can form in the permeate compartment.  The permeate concentration of 

each surfactant is interpolated from kinetic data to a time at which the retentate 

monomer concentration is attained (equilibration time).  Permeate surfactant 

concentration was measured as a function of time for single cationic, anionic, and 

nonionic surfactant systems.  A simple linear interpolation of concentration vs. time 

both before and after the equilibration time is shown to accurately yield monomer 

concentrations as confirmed by comparison to CMC values.  As retentate surfactant 

concentration increases, the equilibration time decreases.  At higher retentate surfactant 

concentrations or with added NaCl (for ionic surfactants), the change in permeate 
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surfactant concentration above the CMC with time is lower, leading to more accurate 

interpolations.   
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2.1 INTRODUCTION 

 

Monomer-micelle equilibrium is the distribution of surfactant species between 

the monomer and the micelles in solution.  For single surfactant systems, the monomer 

surfactant concentration is known as the critical micelle concentration (CMC).  For 

multicomponent systems of surfactants, the total monomer concentration is called the 

mixed CMC of the system and one important feature is the difference in the micellar 

composition as compared to the monomer.  In general, monomer-micelle equilibrium is 

an important key to understanding and controlling many important surfactant 

phenomena – for example, surfactant adsorption and precipitation which are both 

related solely to the monomer surfactant concentrations.  Therefore, the ability to 

measure or predict monomer-micelle composition is crucial in optimizing performance 

of surfactant systems in many products (e.g., laundry detergents).   

Although experimental measurements of monomer-micelle equilibrium have 

been carried out using various techniques – for example, ultrafiltration1-7, conductivity 

and ion-specific electrodes8-25, surfactant specific electrodes26-29, fluorescence probes30, 

light scattering31-45, small-angle neutron scattering46-55, nuclear magnetic resonance56-75, 

neutron reflection55,76-79, and ultracentrifugation80-83 – there are severe limitations to 

these techniques.  The equipment involved in most of the above mentioned techniques 

is expensive (e.g. neutron scattering) and the results are typically difficult to interpret 

(e.g. ultrafiltration); or only applicable to specific systems (e.g. electrode techniques 

only apply to ionic surfactants).  Consequently, there is no convenient, inexpensive, 

universally applicable method to experimentally measure the monomer-micelle 

equilibrium.      
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The semi-equilibrium dialysis (SED) technique has been developed by our 

laboratory to measure solubilization of organic solutes in micelles at variable solute 

concentrations84-91.  The SED method is applied here to measure monomer-micelle 

equilibrium.  The retentate compartment of a dialysis cell shown in Fig. 2.1 is initially 

loaded with a surfactant solution above the CMC.  The permeate side is initially loaded 

with water or water with the same added electrolyte (e.g. NaCl) concentration as 

contained in the retentate.  The pore size of the dialysis membrane (nominally 6KD 

molecular weight cut-off) is small enough to block the passage of micelles from 

retentate to permeate, but large enough to permit surfactant monomer to pass through.  

Ideally, the surfactant concentration in the permeate will plateau at a concentration 

corresponding to the monomer retentate concentration before rising again as micelles 

begin to form in the permeate.  Such a window of opportunity has been observed during 

analysis of solubilization when solute concentration in the permeate equals 

unsolubilized solute concentration in the retentate although small correction factors 

were developed for solubilization in micelles formed on the retentate side84,92.  While in 

principle, application of SED to analysis of monomer-micelle equilibrium could also 

yield a similar window of opportunity during which permeate samples would yield 

retentate monomer concentrations, we will see that sampling must be done 

continuously over a period of time and interpolation rules developed to determine 

equilibrium monomer concentrations.  Since the resulting SED technique uses 

commonly-available inexpensive dialysis cells, many systems can be investigated 

simultaneously.  The only analytical technique required is one capable of measuring the 

concentration of each surfactant in a mixture: HPLC or multiple wave length UV are 

example of analytical tools, depending on surfactant structure.  The SED technique can 
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be applied to any type of surfactant and to a mixture of surfactants of any degree of 

complexity as long as the concentration of each component can be measured. 

In this paper, we investigate the kinetics of the permeate concentration for 

single surfactant anionic, cationic, and nonionic surfactant systems.  In Part II, we 

analyze two binary surfactant systems and compare observed monomer compositions to 

those predicted by regular solution theory (RST), the dominant model used to describe 

the thermodynamics of non-ideal mixing in micelles.  In Part III, we use the 

temperature dependence of SED results to examine enthalpy and entropy contributions 

to nonideality of mixed micelle formation. 

 

2.2 EXPERIMENTAL SECTION 

 

2.2.1 Materials  

High purity (99+%) cetylpyridinium chloride (CPC), obtained from Zeeland 

Chemicals (Zeeland, MI), was used as received.  Sodium dodecyl sulfate (SDS) from 

Fisher Scientific (Fair Lawn, NJ) initially at 99% purity was further purified by 

recrystallization from water and then from methanol, followed by drying under vacuum 

condition at room temperature93.  The nonionic surfactant used in this study was 

nonylphenol polyethoxylate with an average degree of polymerization of 10 

(NP(EO)10).  This polydisperse nonionic surfactant (trade name Igepal CO-660 from 

Rhodia, Georgia) was used without further purification.  Sodium chloride (NaCl) was 

Fisher Certified A.C.S. grade (Fisher Scientific, Fair Lawn, NJ). 
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2.2.2 Methods  

Surface tension measurements using the Wilhelmy plate technique were 

conducted by Kruss Processor Tensiometer K12 (Kruss USA, North Carolina).  The 

solution was placed in a crystallizing dish surrounded by a water jacket to control the 

temperature at 30oC.  Prior to the measurement, surfactant solutions were prepared and 

kept at 30oC in a controlled temperature water bath overnight.  All surfactant solutions 

in this study were isotropic; no precipitation, liquid crystal, coacervate, or separation of 

surfactant into other phases was observed. 

The dialysis cells (Fig. 2.1) used in this study were made from acrylic with an 

approximate dimension of 3 inches by 4 inches by ½ inch thickness.  On each side of 

the compartment, there was a chamber with an approximate volume of 7 mL.  

Regenerated cellulose acetate membranes with 6000 Dalton molecular weight cutoff 

(pore size diameter of 25-50 Å) were soaked in the retentate surfactant solution for 7 

days at 30oC prior to use.  The soaking surfactant solution was changed to a new 

solution every two days.  The membrane pretreatment was conducted to minimize the 

surfactant loss by adsorption onto the membrane during the dialysis experiment.  Then, 

the presoaked membrane was mounted between two SED cell compartments.  A known 

volume of a surfactant solution was placed in the retentate compartment using a 10 mL 

syringe.  The deionized water or electrolyte solution was then injected into the 

permeate compartment by another 10 mL syringe.  The volumes of solution in both 

compartments were controlled by the syringes to assure that they were the same at the 

beginning of experiments.  After that, the SED cell was sealed in the plastic package to 

minimize the evaporation of the solutions inside the cell.   Then, the packed SED cell 

was equilibrated in the incubator (Isotemp 625D, Fisher Scientific) at 30oC.  Each 
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experiment was conducted with three separate SED cells for triplicate data.  After a 

specified contact time, both retentate and permeate solutions were drawn out from the 

cell and the volume measured to obtain the volume change caused by osmotic pressure.  

For both retentate and permeate solutions, concentrations of the CPC and NP(EO)10 

were determined by a Hewlett-Packard 8452A diode array spectrophotometer while 

concentrations of SDS was determined by a Dionex LC20 Chromatography System 

with conductivity detector. 

 

2.3 RESULTS AND DISCUSSION 

 

2.3.1 CMC Determination from Surface Tension 

Surface tension of surfactant solutions were measured and plotted as a function 

of surfactant concentration.  The point where there is a sharp change in surface tension 

is the CMC of the surfactant or surfactant mixture94.   Table 2.1 summarizes the CMC 

values of all studied single surfactant systems from surface tension – the resulting 

values are consistent with literature values95.  The CMC of SDS and CPC decreases as 

added NaCl concentration increases consistent with the Corrin-Harkins equation96, 

yielding a fractional counterion binding of 0.62 and 0.61 for SDS and CPC, 

respectively, from the best fit for the different salinities, a very typical value9. 

 

2.3.2 Effect of Initial Retentate Surfactant Concentration for a Cationic 

Surfactant  

The SED experiments were preformed to evaluate an effect of initial retentate 

CPC concentration on the permeate CPC concentration at 30oC with no added 
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electrolyte.  Initial retentate concentrations of CPC were 1x10-2 M, 2x10-2 M, and 

2.5x10-1 M, which are 10, 20 and 250 times the CMC of this surfactant, were evaluated.  

Deionized water was initially in the permeate compartment of SED cells in this study.  

Figs. 2.2 through 2.4 show the permeate CPC concentration as a function of time for 

these varying initial CPC retentate concentrations.  These kinetic results show that the 

CPC concentration in the permeate compartment dramatically increases with time at the 

beginning of the experiment, followed by a period of time with a reduced rate of 

increase in the permeate CPC concentration.  The surfactant monomer is dilute enough 

(< about 10 mM for all surfactants studied here) to obey Henry’s Law: the partial 

fugacity or activity of the monomer is proportional to concentration.  The pseudo-phase 

separation model assumes that the monomer concentration remains constant at the 

CMC as the total surfactant concentration increases above the CMC.  However, careful 

measurements show that the activity (ion-pair activity for ionic surfactants) increases 

slightly with increasing total surfactant concentration above the CMC for a single 

surfactant97,98.  So, when the permeate surfactant concentration reaches the CMC, there 

is a small driving force for additional surfactant monomer to diffuse across the 

membrane.  Upon reaching the permeate, this surfactant above the CMC forms 

micelles, so the total permeate surfactant concentration increases slowly with time 

above the CMC.  From Figs. 2.2-2.4, there is a dramatic decrease in slope of permeate 

surfactant concentration vs. time at around the CMC.  Although much more 

sophisticated mathematical techniques could be used to model these curves, we propose 

that the intersection of two straight lines, one below the CMC and one at concentrations 

modestly above the CMC, will yield the monomer concentration on the retentate side 

(CMC for a single surfactant) and the equilibration time required to attain it.  The use 
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of linear interpolation procedures is simple and consistent with a user-friendly 

analytical technique in that interpretation of the experimental data does not require 

sophisticated software. 

From Figs. 2.2-2.4, the interpolated CMC for all three initial CPC retentate 

concentration and equilibrium times are summarized in Table 2.1.    The interpolated 

CMC values are all about 1mM which is consistent with the CMC measured from 

surface tension.  This agreement is a necessary condition to establish the validity of the 

SED technique.  The results show that the initial surfactant retentate concentration in 

the studied range (10 to 250 times the CMC) doesn’t have a significant effect on the 

monomer concentration obtained from the SED experiment, consistent with only a 

slowly changing monomer concentration with total surfactant concentration above the 

CMC.  Above the CMC, the slope of the interpolation line only slightly increases with 

increasing initial retentate CPC concentration, again supporting a very small 

dependence of monomer concentration on total surfactant concentration above the 

CMC.  In Figs. 2.3 and 2.4, at about 8 and 4 times the equilibration time, there is a 

nearly discontinuous increase in permeate concentration which is reproducible, 

although not easy to explain.  The change in the permeate solution volume due to 

osmotic effects leaving a portion of the membrane unwet could be an explanation.  This 

effect does not affect the validity of the SED technique to obtain monomer-micelle 

equilibrium, although the data at times greater than when this jump occurs must be 

discarded in drawing interpolation curves. 

From Fig. 2.2-2.4 and Table 2.1, the equilibration time is at 6.6, 5.3 and 2.25 

hours for the initial surfactant retentate concentration of 10, 20 and 250 times the CMC 

of CPC, respectively.  Micelle lifetimes are extremely short94,95,99-101 (on the order of 10 
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msec) with exchange times for monomer entering/exiting micelles resulting in 

monomer residence time in micelles of microseconds scale99-101.  So, the equilibration 

time dependence on retentate surfactant concentration is probably due to slow diffusion 

of surfactant across the unmixed retentate compartment to reach the membrane to 

diffuse across, not the rapid equilibration between monomer and micelles as monomer 

disappears into the membrane.  It would seem that the straight line drawn through the 

data below the CMC should go through the origin (zero time, zero concentration), but it 

begins at a finite surfactant concentration at zero time, probably due to residual soak 

solution in the membrane leaching into the permeate solution at very short times. 

Higher initial surfactant concentration in the retentate side promotes a higher 

osmotic pressure difference across the membrane.  This osmotic effect causes the 

permeate solution volume to decrease after contact with the retentate solution.  The 

difference in this volume increases as a function of time and initial retentate surfactant 

concentration.  This volume difference has been found in the range of 1.5-60%. 

 

2.3.3 Effect of Electrolyte Concentration for an Anionic Surfactant  

From Table 2.1, we see that the anionic surfactant SDS has 6.5 times the CMC 

of cationic surfactant CPC.  Fig. 2.5 shows permeate SDS concentration as a function 

of time for an initial retentate SDS concentration of 10 times the CMC.  As with CPC, 

there are two clear linear regions in the kinetic curve in Fig. 2.5, although the 

difference in slope between the two regions is less than for CPC (Figs. 2.2-2.4) which 

can be attributed to the higher CMC of SDS. 

The CMC from interpolation in Fig. 2.4 is 6.7x10-3 M, which agrees well with 

6.5x10-3 M from surface tension measurements.  The equilibration time is 8.0 hr, which 



12 

 

is longer than that for CPC when interpolating to the same initial retentate surfactant 

concentration as seen in Table 2.1.  The slopes of both lines in Fig. 2.5 for SDS are 

much higher than these for CPC at any initial retentate concentration shown in Figs. 

2.2-2.4.  At low times, this is because there is a greater concentration driving force 

across the membrane due to the higher CMC.  At times beyond when the CMC is 

attained, the higher slope indicates that the monomer activity increases with total 

surfactant concentration more rapidly than for CPC, again characteristic of a higher 

CMC ionic surfactant. 

Figs. 2.6 and 2.7 show permeate surfactant concentration as a function of time 

for SDS with 0.1 M NaCl and 0.2 M NaCl, respectively.  Initial retentate SDS 

concentrations are 10 times the CMC, which decreases with increasing [NaCl] as 

shown in Table 2.1.  Two clear linear regions of the kinetic curve are observed.  The 

CMC from interpolation at 0.1 M NaCl and 0.2 M NaCl are 1.25x10-3 M and 9.0x10-4 

M, respectively.  These values compared very favorably with the 1.15x10-3 M and 

8.0x10-4 M CMC values obtained from surface tension measurements, respectively, as 

seen in Table 2.1.  Thus, excellent agreement between the CMC values from SED and 

surface tension is again observed.  The equilibration time does not change 

systematically with salinity (see Table 2.1 and Figs. 2.5, 2.6 and 2.7).  The slope of 

both linear regions of the kinetic curves decreases with increasing salinity due to 

reduced CMC values.  The lack of a systematic trend in equilibration time emphasizes 

that kinetic data must be obtained to calculate the CMC from SED data.  Selecting a 

time to sample the permeate to measure retentate monomer concentrations does not 

appear to be feasible at this time. 
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The change in the permeate solution volume during a 4 day contact period is 

30% for no added NaCl system, 10% for 0.1 M NaCl and 0% for 0.2 M NaCl.  The 

initial permeate solution contains the same salinity as the retentate, so at a high enough 

[NaCl], the surfactant in the initial retentate solution adds insignificantly to the total 

dissolved species concentration, so osmotic pressure across the membrane becomes 

negligible.  The anomalous jumps in permeate surfactant concentration at longer times 

seen for CPC were not observed for the three SDS experiments in Figs. 2.5-2.7. 

 

2.3.4 Effect of Use of a Nonionic Surfactant 

Fig. 2.8 shows the permeate surfactant concentration as a function of time for 

nonionic surfactant at an initial retentate NP(EO)10 concentration of 3.6x10-4 M or 10 

times the CMC with 0.2 M NaCl.  The added NaCl has little effect on the micelle 

forming properties of nonionic surfactant (like CMC95), but is added here for 

convenience to avoid significant osmotic pressures.  Three linear regions are observed.  

Two linear lines are drawn at low and medium times and the CMC from interpolation 

of the two lines is 3.7x10-5 M which agrees well with the CMC from surface tension at 

3.6x10-5 M. 

As seen in Table 2.1, the equilibration time is in the same range as that of the 

anionic and cationic surfactant systems.  The three linear regions of the kinetic curve 

for NP(EO)10 in Fig. 2.8 is probably a consequence of the polydispersity of the 

commercial nonionic surfactants.   While a monodisperse nonionic surfactant would 

certainly have been preferable for this study, these were not readily available.  Since 

nonionic surfactants generally have CMC values well below these of ionic 

surfactants94,95,102, the permeate surfactant concentration requiring measurement in this 
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SED technique can be on the order of 1x10-5 M (see Fig. 2.8). In a mixture with a 

dissimilar surfactant when applied to monomer-micelle equilibrium determination in a 

mixed surfactant system generally requiring HPLC analysis and detectors applicable to 

surfactants without chromophores (e.g., evaporative light scattering), there is great 

difficulty measuring concentrations this low).  Hence, for purposes of demonstrating 

the SED technique here, we choose a nonylphenol hydrophobe in the surfactant which 

can be detected by UV detectors to low concentrations.  As analytical techniques 

continue to improve in the future, this should not be a fundamental limitation of the 

SED technique for nonionic surfactants. 

 

2.4 CONCLUSIONS 

 

In this study, the SED technique has been successfully established as a simple 

experimental method to measure the monomer-micelle equilibrium for single surfactant 

system, anionic, cationic or nonionic surfactant showing excellent agreement with 

CMC values from surface tension measurements.  The results demonstrate that the 

initial retentate surfactant concentration and the added electrolyte concentration affect 

the kinetics of permeate surfactant concentration and osmotic pressure but not the 

interpolated monomer concentration.  Although the interpolated monomer 

concentration is not affected by those parameters, minimizing the osmotic pressure 

makes experiments easier to perform.  Therefore, for further study the initial condition 

will be at 10 times the CMC of studied surfactant system and 0.2 M NaCl.  In Part II of 

this series, the binary surfactant mixture will be examined for the validity of this 

technique to measure mixed monomer-micelle equilibrium. 
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Figure 2.1 Illustration of semiequilibrium dialysis (SED) cell. 
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Figure 2.2 Kinetic results for permeate CPC concentration at 1x10-2 M initial CPC 

concentration. 
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Figure 2.3 Kinetic results for permeate CPC concentration at 2x10-2 M initial CPC 

concentration in retentate. 
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Figure 2.4 Kinetic results for permeate CPC concentration at 2.5x10-1 M initial CPC 

concentration in retentate. 
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Figure 2.5 Kinetic results for permeate SDS concentration at 6.5x10-2 M initial SDS 

concentration in retentate. 
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Figure 2.6 Kinetic results for permeate SDS concentration at 1.15x10-2 M initial SDS 

concentration in retentate and 0.1 M NaCl. 
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Figure 2.7 Kinetic results for permeate SDS concentration at 8.0x10-3 M initial SDS 

concentration in retentate and 0.2 M NaCl. 
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Figure 2.8 Kinetic results for permeate NP(EO)10 concentration at 3.6x10-4 M initial 

NP(EO)10 concentration in retentate and 0.2 M NaCl. 
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Table 2.1 CMC and equilibration time of single surfactants. 

Surfactant 

Initial 
Retentate 
Concentratio
n (M) 

NaCl 
Concen-
tration 

(M) 

CMC 
from 
Surface 
Tension 

(M) 

CMC 
Interpolate
d from SED 
data  

(M) 

Equilibratio
n Time 

(Hr) 

CPC 1.0x10-2 0 1.00x10-3 8.8x10-4 6.6 

CPC 2.0x10-2 0 1.00x10-3 9.2x10-4 5.3 

CPC 2.5x10-1 0 1.00x10-3 1.0x10-3 2.25 

SDS 6.5x10-2 0 6.50x10-3 6.7x10-3 8.0 

SDS 1.15x10-2 0.1 1.15x10-3 1.25x10-3 8.0 

SDS 8.0x10-3 0.2 8.00x10-4 9.0x10-4 12.0 

NP(EO)10 3.6x10-4 0.2 3.6x10-5 3.7x10-5 7.0 
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CHAPTER 3 

Measuring Monomer-Micelle Equilibrium by Using Semi-Equilibrium Dialysis.  

II. Anionic/Nonionic and Cationic/Nonionic Surfactant Systems 

In the Part I of this series of three papers, the semi-equilibrium dialysis (SED) 

technique for measuring monomer-micelle equilibrium was validated for single 

surfactants.  Here in part II, the monomer-micelle equilibrium of binary mixtures of 

ionic and nonionic surfactants has been measured by this experimental method.  By 

using a linear interpolation technique developed in Part I, the individual monomer 

concentrations can be obtained from a plot of permeate surfactant concentration vs. 

time.  The mixed CMC values obtained from this SED technique agree well with those 

from surface tension measurements.  The experimental results are also compared to the 

predicted values from often-used regular solution theory (RST).  The critical micelle 

concentration (CMC) of the studied mixtures are well correlated to RST results with an 

interaction parameter typical of ionic/nonionic surfactant mixtures.  However, the 

predictions of the micellar composition at a given monomer composition from RST 

deviate from the experimental results.  In one case, even the wrong surfactant 

component is predicted to be enriched in micelles compared to monomer.   

 

3.1 INTRODUCTION 
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In many surfactant applications (e.g. laundry detergents), surfactant mixtures 

are commonly used because of mixture synergisms in performance and because most 

commercial surfactants (e.g., linear alkylbenzene sulfonates and ethoxylated alcohols) 

are naturally mixtures.  Monomer-micelle equilibrium, the distribution of surfactant 

species between the monomer and the micelles in solution, dictates many important 

physical properties of surfactants1-4.  For multicomponent surfactant systems, one 

important feature is the difference in the micellar composition as compared to the 

monomer and overall compositions.  Although monomer-micelle equilibrium 

compositions have been experimentally determined by using different methods5-15, 

these experimental measurements have limitations (e.g., expensive, difficult to interpret 

the data, and only applicable to specific systems).  The goal of this work is to develop a 

universal, inexpensive, user-friendly technique to measure monomer-micelle 

equilibrium.  

Various mathematical models to describe monomer-micelle equilibrium have 

been proposed.  These models include the mass action model16-18, the pseudophase 

separation model2,13,19-23, the group contribution method24-28, the Gibbs-Duhem 

equation21,24-35, regular solution theory (RST) 12,13,36-46, a model based on conductivity 

measurement47, and molecular thermodynamic models48-57. 

By far the most commonly used thermodynamic model used to describe 

practical surfactant systems is RST, also referred to as nonideal solution theory58, or 

generically as a one-parameter Margules equation59. This model is so popular because 

it is a one-parameter model which accurately describes CMC data for surfactant 

mixtures. However, the CMC is related to the Gibbs free energy which is a relatively 
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insensitive parameter: a number of models can fit CMC data as a function of monomer 

composition relatively well. Nonetheless, this does not mean that the composition of 

micelles in equilibrium with a given monomer composition is accurately predicted by 

RST as the CMC is the minimum total monomer concentration at which micelles form 

with no information about the composition of these micelles. This paper compares 

measured micelle compositions to those predicted from RST for nonideal 

ionic/nonionic surfactant mixtures. When a surfactant composition is varied, the excess 

free energy of mixing on mixed micelle formation can be unsymmetrical60, in contrast 

to the symmetry which is prediction by RST.  In Part III of this series61, the excess 

enthalpy and excess entropy of mixed micelle formation, determined by the 

temperature dependence of monomer-micelle equilibrium measured using the SED 

technique, will be compared to predictions from RST. 

Typically, the RST interaction parameter (β) is calculated for a given monomer 

composition from the measured CMC of the mixture.  While here we will only consider 

binary surfactant systems, generalization to more components is straightforward36.  To 

use RST for binary surfactant systems, if the CMC of the pure components (C
0 
1  and C

0 
2) 

and the mixed CMC (C12) are measured as a function of monomer mole fraction of 

surfactant 1 (y1), the interaction parameter (β) of these two surfactants and the mole 

fraction of surfactant 1 in the mixed micelle (x1) can be calculated from the following 

equations obtained by equating the partial fugacity of each surfactant component in 

monomer and micelles:    

                                                 

                                   ))1((0
11121

2
1xeCxCy −= β                                                         (1) 
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                                            )(0
21121

2
1)1()1( xeCxCy β−=−                                                (2) 

  The CMC is commonly obtained at several monomer compositions (y1) and 

some best fit averaging procedure used to calculate a single β value for the surfactant 

system from the values at the individual compositions. Theoretical models have also 

been used to predict the β parameter for surfactant mixtures62-66.  The RST assumes a 

constant interaction parameter (β) for particular surfactant mixture while many 

experiments observe a change in this parameter as a function of temperature and 

compositionError! Bookmark not defined.,67-71.  After obtaining the β parameter, the mixed 

CMC (C12) and the micelle composition (x1) of this surfactant mixture can be predicted 

at any y1 from simultaneous solution of equations 1 and 2.  

 

3.2 EXPERIMENTAL SECTION 

 

3.2.1 Materials  

The same materials and purification procedures as Part I72 were used in this 

work.  The three surfactants studied were sodium dodecyl sulfate (SDS), 

cetylpyridinium chloride (CPC), and nonylphenol polyethoxylate with an average 

degree of polymerization of 10 (NP(EO)10) and the salt used in this study was sodium 

chloride (NaCl).   

 

 

3.2.2 Methods  
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Experimental methods for both CMC measurements and SED experiments were 

described in Part I72.  The two studied surfactant mixtures were SDS/NP(EO)10 and 

CPC/NP(EO)10.  The experimental conditions for all studies were 30oC and 0.2 M 

NaCl. 

 

3.3 RESULTS AND DISCUSSION 

 

3.3.1 CMC Determination and β Parameter Calculation  

Surface tensions were measured and plotted as a function of total surfactant 

concentration.  The CMC of the surfactant mixture is determined as the point where a 

sharp transition to a minimum surface tension is observed73.   The CMC values 

measured here (8.0x10-4 M for SDS, 4.0x10-5 M for CPC, 3.6x10-5 for NP(EO)10) are 

consistent with literature values for the individual surfactants74 at 30oC and 0.2 M 

NaCl.   

 The β parameter at each surfactant mixture ratio was calculated from experimental 

mixed CMC values by using equations (1) and (2).  The average β values of 

SDS/NP(EO)10 and CPC/NP(EP)10 mixtures are -2.06 and -1.45, respectively.  These β 

values are typical for ionic/nonionic surfactant systems58 at this salinity. 

 

 

 

3.3.2 Results from SED Experiments for Mixtures of Anionic and Nonionic 

Surfactants  
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The SED experiments were conducted at 30oC to determine the permeate 

surfactant concentration at different contact times for SDS and NP(EO)10 mixtures.  

Three different ratios (75/25, 50/50 and 25/75) of SDS/NP(EO)10 mixtures were 

studied.  The initial retentate concentration was at ten times the mixed CMC for each 

composition as shown in Table 3.1.  To both retentate and permeate compartments, 0.2 

M sodium chloride (NaCl) was added to prevent significant osmotic pressure gradients 

between retentate and permeate compartments and because swamping electrolyte 

simplifies the thermodynamic analysis when ionic surfactants are involved. 

Nonetheless, it should be noted that osmotic pressure gradients across the dialysis 

membrane do not invalidate the SED technique. The volume change would need to be 

taken into account in material balances if water passes through the membrane. Another 

solution is to seal the chambers to not permit bulk flow through the membrane. 

However, the membrane can bow under pressure gradients and even rupture if osmotic 

pressures are great enough. Our experience is that even at ionic strength differences of 

as much as 0.2 M between permeate and retentate compartments, the membrane retains 

its integrity. So, it was for experimental convenience in this work that the swamping 

electrolyte was used to demonstrate the validity of the measurement.  

Figs. 3.1 – 3.3 show the permeate SDS and NP(EO)10 concentrations as a 

function of time at different initial SDS/NP(EO)10 ratios.  These kinetic results show 

that the permeate surfactant concentration dramatically increases at early time followed 

by a reduction in the rate of increase in the permeate surfactant concentration with 

increasing time.  Because the results of these mixtures are similar to those of single 

surfactant systems studied in Part I72, the linear interpolation procedures developed 
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there are utilized to estimate the monomer concentration of each surfactant, as shown in 

Figs. 3.1-3.3 and summarized in Table 3.1.   

To help in interpretation of the results, we will consider one initial composition 

in detail.  For the case of 75/25 SDS/NP(EO)10 initial mole fraction from Fig. 3.1, the 

interpolated monomer concentration of SDS and NP(EO)10 are 2.25x10-4 M and 

1.25x10-5 M, respectively.  These monomer concentrations yield the mixed CMC of 

2.38x10-4 M with SDS mole fraction in monomer (ySDS) of 0.95 and NP(EO)10 mole 

fraction in monomer (yNP(EO)10) of 0.05.  Knowing the mixed CMC, each monomer 

surfactant concentration, the total surfactant concentration and total surfactant ratio, the 

micelle composition in the retentate can be calculated.  The SDS and NP(EO)10 

concentrations in micelles are thus calculated to be 3.00x10-4 M and 2.25x10-4 M, 

corresponding to SDS and NP(EO)10 micellar mole fractions of 0.57 and 0.43, 

respectively.  In applying a mass balance to calculate micellar concentrations of each 

surfactant in the retentate from initial concentrations and measured monomer 

concentrations, the surfactant lost to the permeate compartment must be included in the 

calculation.  For instance, at the equilibration time, both SED compartments have 

surfactant monomer but only the retentate compartment contains surfactant micelles.  In 

this work, both compartments contain the same solution volume throughout the 

experiment and there is minimal osmotic pressure due to identical swamping electrolyte 

in each compartment. 

The mixed CMC, monomer and micellar compositions of studied 

SDS/NP(EO)10 mixtures obtained from SED experiments presented in Figs. 3.1-3.3 are 

summarized in Table 3.1.  The micelles are enriched in NP(EO)10 compared to the 



40 

 

monomer for all three initial compositions studied.  In all cases, this makes sense as the 

nonionic surfactant has a lower CMC and partitions more strongly into micelles. 

Equilibration time is defined as the time at which equilibrium monomer 

concentration is reached in the permeate for a given surfactant component and is 

summarized in Table 3.1.  As expected, the equilibration time is not generally the same 

for the dissimilar surfactants due to different diffusivities. This emphasizes the need to 

obtain the time dependency of permeate concentrations for each surfactant. There is no 

particular time at which samples would yield equilibrium compositions for both 

components. This is in contrast to the study of SED for measurement of solubilization 

equilibrium constants in micelles where there is a window of opportunity of about 18 to 

24 hours75 at which permeate samples contain the equilibrium solute concentration. 

Five of the six surfactants in Table 3.1 have an equilibration time of 8 to 12 hours.  The 

exception is the case of NP(EO)10 in the 75/25 SDS/NP(EO)10 initial mole fraction 

system in which the equilibration time is 2 hours.  This could be due to a relatively low 

NP(EO)10 monomer concentration and a significant difference (20 times) between the 

initial NP(EO)10 concentration and the NP(EO)10 monomer concentration in this 

mixture.  In contrast to NP(EO)10, the SDS initial concentration in this mixture is only 

three times higher than the SDS monomer concentration.  This results in the gradual 

change in the slope of the kinetic curve of SDS in this mixture, unlike a sharp change in 

the slope in the other curves.  Further we note that the equilibration time of the mixture 

components is longer than the corresponding pure components from Part I72 (times 

from 5 to 12 hours). 
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3.3.3 Results from SED Experiments for Mixtures of Cationic and Nonionic 

Surfactants  

The CPC and NP(EO)10 permeate concentrations are plotted as a function of 

contact time at 30oC with 0.2 M NaCl in Figs. 3.4-3.6 for three different ratios (75/25, 

50/50 and 25/75) of CPC/NP(EO)10.  The initial retentate concentration was at ten 

times the mixed CMC for each composition as shown in Table 3.2.  These kinetic data 

for CPC/NP(EO)10 mixtures exhibit more scatter than those for SDS/NP(EO)10.  This 

may be due to the more similar CMC values for CPC and NP(EO)10 (4.0x10-5 M and 

3.6x10-5 M), yielding a similar thermodynamic activity gradient for both components 

across the membrane.  Nonetheless, the CPC/NP(EO)10 kinetic data still show a change 

in slope of permeate surfactant concentration vs. time which is suitable for using the 

linear interpolation technique to obtain the monomer concentration of each surfactant.  

The interpolated monomer concentrations for all three initial CPC/NP(EO)10 ratios 

from Figs. 3.4 through 3.6, the mixed CMC, and calculated surfactant mole fraction in 

monomer and micelle are summarized in Table 3.2.  The micelles are enriched in CPC 

relative to the monomer for all three initial compositions, although the enrichment is 

less significant in the SDS/NP(EO)10 case, likely due to the more similar CMC values 

in the CPC/NP(EO)10 case. 

Because the mixed CMC of the studied CPC/NP(EO)10 system is lower than the 

studied SDS/NP(EO)10 system, the driving force (monomer activity) for the monomer 

species to diffuse from retentate to permeate is also less, which likely explains the 

longer equilibration time for the CPC/NP(EO)10 system (between 15 and 54 hours) 

when compared to the SDS/NP(EO)10 mixture (approximately 10 hours) (Tables 3.2 
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and 3.1, respectively). The equilibration time for the two surfactants in a given system 

can be quite different as seen in Table 3.2 (e.g., 15 hr vs. 54 hr). 

The kinetic results from both SDS/NP(EP)10 and CPC/NP(EO)10 mixtures show 

that the equilibration time for the surfactant concentration in the permeate compartment 

to reach the surfactant monomer concentration varies significantly depending on the 

studied conditions (including initial concentration, initial surfactant ratio and the type 

of surfactant).  These results demonstrate that it is crucial to obtain the kinetic data of 

each surfactant from the SED experiment in order to accurately determine the monomer 

and micelle composition.   

 

3.3.4 Comparing the Results from SED Technique to the Predictions from RST  

At a given monomer composition, the mixed CMC and micellar composition 

were obtained from the β parameter from surface tension derived CMC values and RST 

(equations 1 and 2).  Figs 3.7 and 3.8 plot CMC as a function of ionic surfactant 

monomer mole fraction for SDS/NP(EO)10 and CPC/NP(EO)10 mixtures, respectively.  

In these plots, the reported CMC values came from three different sources: surface 

tension measurement, SED experiment and RST prediction based on the average β 

parameter from surface tension measurements.  For both studied mixtures, the CMC 

values obtained from surface tension measurement and the SED technique agree with 

each other and are well correlated by the prediction from RST.  Agreement between the 

total monomer concentration from the SED method and the measured CMC is a 

necessary condition for validity of SED measurements.  The excellent agreement 

observed in Figs. 3.7 and 3.8 provides substantial support for the SED method proposed 

here. 
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The micellar mole fraction of SDS (xSDS) in SDS/NP(EO)10 mixture is plotted as a 

function of SDS monomer mole fraction (ySDS) in Fig. 3.9.  The dashed line represents 

the predicted values from RST.  The RST predicts that xSDS is always less than ySDS for 

this mixture (no azeotrope) even though β is  negative due to the wide difference in the 

CMC values of SDS and NP(EO)10. The SDS micellar mole fraction obtained from the 

SED technique is higher than the values predicted by RST.  The difference between the 

micellar mole fraction of SDS obtained from the experiment and RST is in the range of 

19-44%.   

Fig. 3.10 shows the relationship between CPC micellar and monomer mole 

fraction in the CPC/NP(EO)10 mixture.  An azeotrope (yCPC = xCPC) is at yCPC = 0.46, 

below which the micelle is enriched in CPC compared to the monomer and above 

which the monomer is enriched in CPC compared to the micelles. From the data 

obtained from the SED technique, the micellar mole fraction of CPC is significant 

higher than the RST predictions.  The difference between the experimental results and 

model prediction is in the range of 46 - 63%.  Furthermore in one case, the SED 

technique measures an CPC-rich micelle (yCPC = 0.6 and xCPC = 0.79, Fig. 3.10) while 

the RST predicts a NP(EO)10-rich micelle.  The important conclusion is that RST 

predictions of monomer-micelle equilibrium can be in gross error with measured results 

even though RST predicts CMC values well.  

 

3.4 CONCLUSIONS  

 

In this Part II of the three part series, the SED technique has been used to measure the 

monomer micelle equilibrium of two ionic/nonionic surfactant binary mixtures at 30oC.  
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The results demonstrate that the kinetic data are necessary to precisely determine the 

surfactant monomer and micelle compositions from the SED technique.  In addition, 

the values of CMC obtained from this technique show excellent correlation with the 

data from surface tension measurement and predictions from RST.  Finally, although 

RST describes the CMC data well, the predictions of monomer and micelle 

compositions from RST can be in gross error.  Overall, these results further support the 

SED technique proposed here for assessing properties of multi-surfactant systems. 
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Figure 3.1 Kinetic results for permeate surfactant concentration from SED experiment 

at 75/25 initial SDS/NP(EO)10 mole fraction, 0.2 M NaCl and 30
o
C.  Initial total 

surfactant concentration in retentate is 1x10-3 M (ten times the mixed CMC of this 

system). 

NP(EO)10 
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Figure 3.2 Kinetic results for permeate surfactant concentration from SED experiment 

at 50/50 initial SDS/NP(EO)10 mole fraction, 0.2 M NaCl and 30
o
C.  Initial total 

surfactant concentration in retentate is 6x10-4 M (ten times the mixed CMC of this 

system). 
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Figure 3.3 Kinetic results for permeate surfactant concentration from SED experiment 

at 25/75 initial SDS/NP(EO)10 mole fraction, 0.2 M NaCl and 30
o
C.  Initial total 

surfactant concentration in retentate is 5.6x10-4 M (ten times the mixed CMC of this 

system). 
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Figure 3.4 Kinetic results for permeate surfactant concentration from SED experiment 

at 75/25 initial CPC/NP(EO)10 mole fraction, 0.2 M NaCl and 30
o
C.  Initial total 

surfactant concentration in retentate is 3.0x10-4 M (ten times the mixed CMC of this 

system). 
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Figure 3.5 Kinetic results for permeate surfactant concentration from SED experiment 

at 50/50 initial CPC/NP(EO)10 mole fraction, 0.2 M NaCl and 30
o
C.  Initial total 

surfactant concentration in retentate is 2.6x10-4 M (ten times the mixed CMC of this 

system). 

NP(EO)10 
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Figure 3.6 Kinetic results for permeate surfactant concentration from SED experiment 

at 25/75 initial CPC/NP(EO)10 mole fraction, 0.2 M NaCl and 30
o
C.  Initial total 

surfactant concentration in retentate is 2.5x10-4 M (ten times the mixed CMC of this 

system). 

NP(EO)10 
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Figure 3.7 CMC of SDS/NP(EO)10 mixture at 0.2 M NaCl and 30oC. 

β = -2.06 
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Figure 3.8 CMC of CPC/NP(EO)10 mixture at 0.2 M NaCl and 30oC. 

β = -1.45 
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Figure 3.9 Monomer-micelle equilibrium for SDS/NP(EO)10 systems at 0.2 M NaCl 

and 30
o
C.     

β = -2.06 



54 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
ic

el
la

r 
m

ol
e 

fr
ac

tio
n 

of
 C

PC
, x

C
PC

Monomer mole fraction of CPC, yCPC

RST at beta =-1.45

SED technique

 

Figure 3.10 Monomer-micelle equilibrium for CPC/NP(EO)10 systems at 0.2 M NaCl 

and 30
o
C.     
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Table 3.1 Monomer and micelle compositions of the studied SDS/NP(EO)10 systems. 

 
75/25 initial 

SDS/NP(EO)10 
ratio 

50/50 initial 
SDS/NP(EO)10 

ratio 

25/75 initial 
SDS/NP(EO)10 

ratio 

Initial total surfactant 
concentration, M 1x10-3 6x10-4 5.6x10-4 

Equilibration time for 
SDS, Hours 8 8 9 

Equilibration time for 
NP(EO)10, Hours 2 12 10 

Monomera 

Concentration of SDS, 
M 2.25x10-4 6.90x10-5 2.60x10-5 

Concentration of 
NP(EO)10, M 1.25x10-5 2.20x10-5 3.20x10-5 

Mixed CMC, M 2.38x10-4 9.10x10-5 5.80x10-5 

Mole fraction of SDS 0.95 0.76 0.45 

Mole fraction of 
NP(EO)10 

0.05 0.24 0.55 

Micelleb 

Concentration of SDS, 
M 3.00x10-4 1.62x10-4 8.80x10-5 

Concentration of 
NP(EO)10, M 2.25x10-4 2.56x10-4 3.56x10-4 

Mole fraction of SDS 0.57 0.39 0.20 

Mole fraction of 
NP(EO)10 

0.43 0.61 0.80 

a measured from SED experiments  

b calculated from mass balance 
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Table 3.2 Monomer and micelle compositions of the studied CPC/NP(EO)10 systems. 

 
75/25 initial 

CPC/NP(EO)10 
ratio 

50/50 initial 
CPC/NP(EO)10 

ratio 

25/75 initial 
CPC/NP(EO)10 

ratio 

Initial total surfactant 
concentration, M 3.0x10-4 2.6x10-4 2.5x10-4 

Equilibration time for 
CPC, Hours 44 15 22 

Equilibration time for 
NP(EO)10, Hours 46 54 26 

Monomera 

Concentration of CPC, M 1.80x10-5 7.00x10-6 3.0x10-6 

Concentration of 
NP(EO)10, M 1.20x10-5 1.70x10-5 3.2x10-5 

Mixed CMC, M 3.00x10-5 2.40x10-5 3.5x10-5 

Mole fraction of CPC 0.60 0.29 0.09 

Mole fraction of 
NP(EO)10 

0.40 0.71 0.91 

Micelleb 

Concentration of CPC, M 1.89x10-4 1.16x10-4 5.56x10-5 

Concentration of 
NP(EO)10, M 5.10x10-5 9.60x10-4 1.24x10-4 

Mole fraction of CPC 0.79 0.55 0.31 

Mole fraction of 
NP(EO)10 

0.21 0.45 0.69 

a measured from SED experiments  

b calculated from mass balance 
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CHAPTER 4 

Measuring Monomer-Micelle Equilibrium by Using Semi-Equilibrium Dialysis. 

III. Excess Enthalpies and Entropies of Mixed Micelle Formation  

for Binary Surfactant Systems 

The semi-equilibrium dialysis (SED) technique is used here to measure 

monomer-micelle equilibrium for ionic/nonionic surfactant mixtures at different 

temperatures to permit calculation of excess Gibbs free energy (GE), excess enthalpy 

(HE) and excess entropy (SE) of mixed micelle formation.  The values of the mixed 

CMC and GE from the SED technique measured here agree with those from surface 

tension measurements and those predicted from regular solution theory (RST).  

However, predictions of HE and SE from RST are in gross disagreement with those 

from SED experiments. 
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4.1 INTRODUCTION 

 

Regular solution theory (RST) has been commonly used in the last few decades 

to predict monomer-micelle equilibrium1-8 by using simple equations with only one 

adjustable interaction parameter (β) as described in Part II of this series9.  The 

simplicity of RST and its ability to describe CMC data has led to its popularity. The 

CMC is easy to measure and is often the only parameter available for a mixed 

surfactant system. However, the value of β can depend on surfactant composition 

instead of being invariant. For example, when surfactant composition is varied, the 

excess free energy of mixing resulting from mixed micelle formation can be 

unsymmetrical10, in contrast to the symmetrical prediction resulting from RST.  In Part 

II of this series9, the monomer-micelle equilibrium of two binary surfactant mixtures 

were measured by the SED technique at 30oC. At a given monomer composition, the 

predicted micelle composition from RST was shown to differ greatly from the 

experimental data even though CMC data were well correlated by RST.  

The heat of mixing on mixed micelle formation as measured by calorimetry has 

been shown to deviate from RST predictions11-14.  In some cases, measured heats are 

endothermic whereas RST predicted exothermic mixing. From CMC data and 

calorimetric measurements, the calculated excess entropy of mixing for mixed micelle 

formation can be large, rather than zero as assumed by RST15.  Another consequence of 

enthalpic and entropic assumptions behind RST being in error is that βRT (where R is 

the gas constant and T is temperature) is observed to depend on temperature for a 

particular surfactant mixture16-21 while RST predicts temperature independence.   
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In this Part III of the series, the same binary surfactant mixtures studied in Part 

II9 is studied at different temperatures and the SED results used to calculate excess 

Gibbs free energy, excess enthalpy, and excess entropy of mixed micelle formation 

with the results compared to RST predictions.  

 

4.2 EXPERIMENTAL SECTION 

 

4.2.1 Materials 

The source and purification of materials were described in Part I22.  The studied 

surfactants were sodium dodecyl sulfate (SDS), cetylpyridinium chloride (CPC), and 

nonylphenol polyethoxylate with an average degree of polymerization of 10 

(NP(EO)10).  The salt used in this study was sodium chloride (NaCl). 

 

4.2.2 Methods  

Experimental methods were described in Part I22 and Part II9 of this series. The 

two studied surfactant mixtures were SDS/NP(EO)10 and CPC/NP(EO)10.  In this paper, 

the SED experiment was conducted at two different temperatures, 40oC and 50oC, using 

the same conditions used in Part II at 30oC.  The initial total surfactant concentration in 

the retentate compartment was ten times the mixed CMC of studied systems.  Both 

permeate and retentate compartments initially contained 0.2 M NaCl.  
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4.3 THEORY 

  

In this section, we discuss how the SED data can be used to calculate the excess 

Gibbs free energy of mixed micelle formation (GE), excess enthalpy of mixed micelle 

formation (HE), and excess entropy of mixed micelle formation (SE). Subsequently, we 

discuss how these thermodynamic parameters can be estimated from RST.  

The standard state for the monomer is defined as 1 M (hypothetical since 

monomer cannot attain this concentration) and the standard state for the surfactant in 

the micelle is the pure component micelle, both at the same added electrolyte level as 

for the mixed surfactant system (0.2 M NaCl in this study). Equating the partial 

fugacity of a surfactant component in the monomer and in the mixed micelle23:  

 

 (1) 

  

where γi
M is the activity coefficient of surfactant i in the micelle, yi is the 

monomer mole fraction of surfactant i,  xi  is the mole fraction of surfactant i in the 

mixed micelle, Ci
0 is the CMC of surfactant i, and C12 is the CMC of the mixed 

surfactant system.  

The excess partial molar Gibbs free energy of surfactant i (     ) in the mixed 

micelle is related to the activity coefficient by24: 

 

  (2) 

 

Where R is the gas constant and T is temperature.  The specific excess Gibbs 

free energy of mixed micelle formation (GE) is24: 
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 (3) 

 

The specific excess enthalpy (HE) and specific excess entropy (SE) of mixed 

micelle formation can be calculated25 from the temperature dependence of GE: 

 

 (4) 

 

 (5) 

 

While here we only consider binary surfactant systems, since these were studied 

in this work, extension to additional components is straightforward23.  Substituting SED 

data for composition and concentration of surfactant i in monomer and in micelle into 

equations 1-3 permits calculation of GE at a given micelle composition (x1, x2).  At this 

composition, the temperature dependence of GE permits calculation of SE and HE from 

equations 4 and 5. Since SED data is not at exactly the same micelle composition at 

different temperatures, some interpolation of the SED data is necessary between 

different compositions at a given temperature. 

RST assumes that all of the nonideality of mixing is due to deviation of the 

enthalpy of mixing from ideal mixing. For a binary system26:  

 

 (6) 

 

 

 (7) 
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Where β is the dimensionless interaction parameter obtained from CMC data for 

the systems studied here in Part II of this series9.  Micellar activity coefficients are 

related to β by23,27: 

 (8) 

 

 (9) 

 

Combining equations 5 -7 yields: 

 

 (10) 

 

4.4 RESULTS AND DISCUSSION 

 

4.4.1 CMC Determination and β Parameter Calculation  

Surface tensions of surfactant solutions were measured at 40oC and 50oC.  The 

values were plotted as a function of total surfactant concentration.  The CMC is 

determined as the point where a sharp transition to a minimum in surface tension 

occurs28.      

The β parameter at each surfactant mixture ratio was calculated from the 

measured CMC values as described in Part II 9 of this series at 30oC.  As presented 

further below, the average β parameters of the SDS/NP(EO)10 system at 30oC, 40oC, 

and 50oC are -2.06, -1.94 and -1.65, respectively.  For the CPC/NP(EO)10 mixture, the 

average β values are -1.45, -1.99, and -1.16, respectively. 
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4.4.2 Comparing SDS/NP(EO)10 SED Results to RST Predictions  

The SED experiments were conducted at three SDS/NP(EO)10 surfactant ratios 

(75/25, 50/50 and 25/75) and two different temperatures (40oC and 50oC) to determine 

the permeate surfactant component concentrations at different contact times.  

Analogous data at 30oC from Part II9 of this series is combined with these results in 

temperature dependence calculations.  

Figs. 4.1 and 4.2 show the CMC as a function of SDS monomer mole fraction 

(ySDS) at 40oC and 50oC.  They show a comparison of the CMC values from surface 

tension measurements, the SED experiments, and RST predictions based on the average 

β parameter from surface tension measurements.  The CMC values obtained from 

surface tension measurements and the SED method agree well with each other and are 

well correlated by the predictions from RST at both studied temperatures; this 

agreement was also found in Part II9 at 30oC.   

Figs. 4.3 and 4.4 show the SDS micellar mole fraction (xSDS) vs. SDS monomer 

mole fraction (ySDS), at 40oC and 50oC, respectively.  From the RST predictions 

(dashed line), there is no azeotrope (where xSDS = ySDS) and xSDS is always less than 

ySDS. The measured xSDS from the SED technique is consistently higher than the values 

predicted by RST; the difference between the measured xSDS and predicted values are 

between 17% and 32% at 40oC and between 20% and 72% at 50oC.  The differences 

are in the same range as the deviation reported9 at 30oC. 

 

4.4.3 Comparing CPC/NP(EO)10 SED Results to RST Predictions  
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The SED experiments were conducted at five CPC/NP(EO)10 surfactant ratios at 

40oC (at 90/10, 75/25, 50/50, 25/75 and 10/90 ratios) and at four ratios at 50oC (at 

10/90, 35/65, 50/50 and 75/25 ratios) to determine the permeate surfactant component 

concentrations at different contact times.  Analogous data at 30oC from Part II9 of this 

series is combined with these results in temperature dependence calculations.  

Figs. 4.5 and 4.6 show the CMC as a function of CPC monomer mole fraction 

(yCPC) at 40oC and 50oC based on surface tension measurements, the SED experiments, 

and RST predictions based on the average β parameter from surface tension 

measurements.  The CMC values obtained from surface tension measurements and the 

SED method agree well with each other and are well correlated by the predictions from 

RST at both studied temperatures; this agreement was also found in Part II9 at 30oC.  

The monomer-micelle equilibrium compositions at 40oC and 50oC from the 

RST predictions and the SED technique are compared in Figs. 4.7 and 4.8, respectively.  

In Fig. 4.7 (at 40oC), RST predicts an azeotrope at yCPC = xCPC =0.54.  At lower CPC 

mole fraction, RST predicts that the micelle is enriched in CPC compared to the 

monomer and at higher CPC mole fractions, the micelles are enriched in the NP(EO)10 

compared to the monomer.  The azeotrope from SED measurements is at yCPC = xCPC = 

0.25 (Fig. 4.7), substantially lower than the prediction from RST.  The difference 

between the measured values of xCPC and those predicted from RST is between 22% 

and 85%.  At 50oC, the azeotrope estimated from the SED experiment is approximately 

at yCPC = 0.35, lower than the RST predictions (azeotrope at yCPC = 0.68).  The 

difference between the experimental measurement and the RST predictions of xCPC  is 

in the range of 12 – 86%.  At lower CPC mole fractions than the azeotrope at both 40oC 

and 50oC, RST predicts that micelles are preferentially enriched in CPC relative to 
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monomer, whereas the experimental data shows the opposite. This deviation between 

the measured and RST predicted values of  xCPC at 40oC and 50oC for the 

CPC/NP(EO)10 mixture is greater than that at 30oC reported in Part II9.  

A comparison of monomer-micelle equilibrium composition from the SED 

technique and the RST prediction in Part II9 and this paper show that although the RST 

can predict the CMC values well, the monomer-micelle compositions predicted by the 

RST can be in gross error and can even be contradictory in trend (ionic surfactant-rich 

micelle vs. non-ionic surfactant-rich micelle) from the experimental measurements. 

 

4.4.4 Comparing Excess Properties from SED Results to RST Predictions  

Excess enthalpy (HE), excess entropy (SE) and excess Gibbs free energy (GE) of 

mixing for the SDS/NP(EO)10 and the CPC/NP(EO)10 mixtures at different studied 

temperatures were calculated based on the experimental results from the SED technique 

using equations 1-5.   These calculated values were compared to the predictions from 

the RST from equations 6, 7, and 10. 

The SED-based calculated and RST predicted values of HE, SE and GE for 

SDS/NP(EO)10 mixtures at 30oC, 40oC and 50oC are plotted in Figs. 4.9 through 4.11, 

respectively.  The values of HE, TSE and GE for SDS/NP(EO)10 mixture vary slightly at 

different temperatures.  The value of GE from SED data is directly related to the 

mixture CMC, so is well described by RST at all three temperatures.  However, the 

SED values of HE and SE considerably deviate from RST predictions:  RST predicts 

minimum HE values of -1,298 J/mol, -1,262 J/mol and – 1,108 J/mol at 30oC, 40oC and 

50oC, respectively, while the minimum in the values of HE calculated from the SED 

results is in the range of -3800 J/mol to -3900 J/mol.  The HE values of SDS/NP(EO)10 
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mixtures from the SED technique compares favorably to the calorimetric results29 for 

the same studied system (except for different salinities).  The difference in HE values 

from these two experimental techniques could be due to different added salt 

concentrations (0.03 M and 0.2 M, respectively) as the heat of mixing in mixed micelle 

formation is strongly dependent on electrostatic interactions29.  The SE values 

calculated from the SED data deviate from zero as predicted by RST.  This observation 

is consistent with previous literature15 and it indicates that the RST assumption of zero 

excess entropy during mixed micelle formation is invalid.   For all studied 

temperatures, the calculated SED values of HE and SE do not show the symmetry with 

respect to micellar mole fraction predicted by RST.  Furthermore, the experimental 

value of βRT is not constant at different temperatures (-5192 J/mol at 30oC, -5051 

J/mol at 40oC, and -4433 J/mol at 50oC) as is hypothesized by RST. 

Figs. 4.12 to 4.14 show the values of HE, TSE and GE calculated from SED data 

for the CPC/NP(EO)10 system at 30oC, 40oC and 50oC, respectively,  and corresponding 

predictions from RST. For this mixture, the GE values calculated from the SED 

experimental results compare well to predictions from RST.  The minimum values of 

HE from the SED data is lower than -10,000 J/mol, about an order of magnitude greater 

than the RST predictions (-913 J/mol at 30oC, -1,295 J/mol at 40oC, and -779 J/mol at 

50oC). These HE values from SED experiment are almost one order of magnitude lower 

than those measured by calorimetry for the CPC/NP(EO)10
29.  The significant higher 

salt concentration used in this study could cause this difference.  This work 

demonstrates that SE deviates greatly from zero, again invalidating RST assumptions 

for this system.  Although the minimum of HE and SE for CPC/NP(EO)10 is predicted 

from RST to be at xCPC = 0.5, the experimental HE and SE curves are unsymmetrical at 
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all three studied temperatures and the values of βRT from experiment vary with 

temperature (-3655 J/mol at 30oC, -5181 J/mol at 40oC, and -3117 J/mol at 50oC).  

These observations are all inconsistent with RST predictions.  

From Figs. 4.9-4.14, the values of HE and SE are positive at the lowest mole 

fraction of the ionic surfactant studied for both SDS/NP(EO)10 and CPC/NP(EO)10 even 

though both parameters are predicted to be negative by RST. Thus, endothermic mixing 

is observed experimentally whereas RST predicts exothermic mixing. And a more 

disordered mixed micelle is observed than predicted by ideal mixing, whereas at other 

compositions, a more ordered system is observed. From Figs. 4.7 and 4.8, this 

composition corresponds to the greatest deviation between experimental micelle 

compositions and those predicted by RST; the micelle is greatly enriched in the ionic 

surfactant at this monomer composition.  

Random mixing (ideal entropy of mixing) is assumed in RST. This is not a 

reasonable assumption for ionic and nonionic head groups since it is reduction of 

electrostatic repulsion between charged head groups due to insertion of nonionic head 

groups between them that is responsible for synergism (negative β values) in mixed 

ionic/nonionic micelles. A macroscopic model30 which accounts for the reduction in the 

absolute value of the electrostatic potential at the micelle surface due to the nonionic 

surfactant head groups causing the charge density on this surface to decrease can 

predict the CMC values of ionic/nonionic surfactant systems. Obviously, dissimilar 

head groups would not be randomly ordered with such forces at work. Models to 

supplant RST based on fundamental principles are needed to account for this complex 

interaction between enthalpic and entropic effects and can possibly derive from local 

composition models from statistical mechanics. However, it is the simplicity of RST 
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which makes it so attractive whereas molecular thermodynamic models tend to be 

complex. A tremendous inhibition in development of advanced models has been the 

lack of a data base of monomer-micelle equilibrium and enthalpies/entropies of mixing 

for mixed micelle formation. The SED technique is a relatively easy-to-use, 

inexpensive, universal technique only requiring the analytical ability to measure the 

concentration of each surfactant component which can now permit development of 

such a data base for mixed surfactant systems to give a basis for further model 

development.  

 

4.5 CONCLUSIONS 

 

The SED technique can effectively measure monomer-micelle equilibrium, as 

demonstrated in this series of papers for an anionic/nonionic and a cationic/nonionic 

surfactant system. Data from SED as a function of temperature permit calculation of 

excess enthalpy and entropy for formation of mixed micelles as an alternative to 

calorimetry. Predicted micelle compositions and excess enthalpy and entropy of micelle 

formation from RST can be in gross disagreement with experimental data even though 

CMC values are well-predicted by RST. The HE and SE can be very unsymmetical with 

micelle composition for binary ionic/nonionic surfactant micelles. For example, both 

HE and SE can be either negative or positive depending on composition. The SED 

technique can permit simple measurement of monomer-micelle equilibrium for 

practical surfactant mixtures as well as permitting development of a data base to aid 

development of the next generation of thermodynamic models for mixed micelles.  
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Figure 4.1 CMC of SDS/NP(EO)10 mixture at 0.2 M NaCl and 40oC. 

β = -1.94 
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Figure 4.2 CMC of SDS/NP(EO)10 mixture at 0.2 M NaCl and 50oC. 

 

 

 

β = -1.65 
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Figure 4.3 Monomer-micelle equilibrium for SDS/NP(EO)10 systems at 0.2 M NaCl 

and 40
o
C.     
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78 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
ic

el
la

r 
m

ol
e 

fr
ac

tio
n 

of
 S

D
S,

 x
SD

S

Monomer mole fraction of SDS, ySDS

RST at beta = -1.65

SED Technique

 

Figure 4.4 Monomer-micelle equilibrium for SDS/NP(EO)10 systems at 0.2 M NaCl 

and 50
o
C.     
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Figure 4.5 CMC of CPC/NP(EO)10 mixture at 0.2 M NaCl and 40oC. 

β = -1.99 
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Figure 4.6 CMC of CPC/NP(EO)10 mixture at 0.2 M NaCl and 50oC. 

β = -1.16 



81 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
ic

el
la

r 
m

ol
e 

fr
ac

tio
n 

of
 C

PC
, x

C
PC

Monomer mole fraction of CPC, yCPC

RST at beta = -1.99
SED Technique

 

Figure 4.7 Monomer-micelle equilibrium for CPC/NP(EO)10 systems at 0.2 M NaCl 

and 40
o
C.     

β = -1.99 
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Figure 4.8 Monomer-micelle equilibrium for CPC/NP(EO)10 systems at 0.2 M NaCl 

and 50
o
C. 

β = -1.16 
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Figure 4.9 Excess enthalpy, excess entropy and excess Gibbs free energy for 

SDS/NP(EO)10 systems at 0.2 M NaCl and 30
o
C.     
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Figure 4.10 Excess enthalpy, excess entropy and excess Gibbs free energy for 

SDS/NP(EO)10 systems at 0.2 M NaCl and 40
o
C.     
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Figure 4.11 Excess enthalpy, excess entropy and excess Gibbs free energy for 

SDS/NP(EO)10 systems at 0.2 M NaCl and 50
o
C.     
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Figure 4.12 Excess enthalpy, excess entropy and excess Gibbs free energy for 

CPC/NP(EO)10 systems at 0.2 M NaCl and 30
o
C.     
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Figure 4.13 Excess enthalpy, excess entropy and excess Gibbs free energy for 

CPC/NP(EO)10 systems at 0.2 M NaCl and 40
o
C.     
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Figure 4.14 Excess enthalpy, excess entropy and excess Gibbs free energy for 

CPC/NP(EO)10 systems at 0.2 M NaCl and 50
o
C.     
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CHAPTER 5 

Conclusions and Recommendations for Future Work 

5.1 CONCLUSIONS 

 

Overall, the results from this study support the SED technique proposed here for 

assessing properties of multi-surfactant systems.  This technique is convenient and 

inexpensive when compared to other available techniques.  It has a high potential to be 

a universally applicable method for measuring monomer-micelle equilibrium of multi-

surfactant systems.   

Although it is time consuming to obtain the kinetic data from SED technique, 

this method can precisely determine the surfactant monomer and micelle compositions.  

The values of CMC obtained from this technique show excellent correlation with the 

data from surface tension measurements and predictions from RST.  The SED 

technique has also shown in this study that although RST describes the CMC data well, 

the predictions of monomer and micelle compositions from RST can be in gross error. 

The calculation of excess thermodynamic properties from SED results shows that the 

excess enthalpies (HE) and excess entropies (SE) of mixed micelle formation can be 

very unsymmetrical with micelle composition for binary ionic/nonionic surfactant 

micelles.  The values of HE and SE can be either negative or positive depending on 

composition.   
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5.2 RECOMMENDATIONS FOR FUTURE WORK 

 

 The use of SED technique to measure monomer-micelle equilibrium may have 

some limitations needed to be defined in the future.  For example, when the initial total 

concentration of one surfactant in the mixture is less than two times the monomer 

concentration of this surfactant in the system, the kinetic curve of this surfactant will 

reach the plateau region before it reaches the real monomer concentration.  This will 

lead to a wrong interpretation of the monomer concentration of this surfactant in the 

mixture.   

 This technique also has a potential to extend to investigate some surfactant 

phenomena (e.g. monomer-micelle-precipitation and monomer-micelle-adsorption 

equilibriums).  A further study is required to determine feasibility and limitation of this 

extension. 


	1_front.pdf
	2_acknowledgement
	3_Table of contents
	4_intro
	5_prapasI
	6_prapasII
	7_prapasIII
	8_Conclusion and future work

