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Abstract

Accurate quantitative precipitation estimation (QPE) and quantitative precipitation

forecasts (QPF) require accurate microphysical parameterization/modeling of the pre-

cipitation. This study presents the modeling of rain microphysics and the application

of polarimetric weather radar on rain retrievals. There are three topics addressed in

this study. The first topic is the study of raindrop size distribution (DSD) through

in-situ disdrometer observations. The observational error of disdrometer is quantified

and corresponding error effects in developing DSD model are analyzed. The second

topic is the characterization of rain microphysics with the linkage to radar observa-

tions. Empirical relations of rain-radar variables are developed for X-, C- and S-band

polarimetric radars. The third topic is the retrieval of DSD parameters from po-

larimetric radar data (PRD). Three different approaches: direct retrieval, Bayesian

retrieval and variational retrieval, are introduced. The latter two methods are promis-

ing with the optimal use of radar data. Their performance and potential are analyzed

and discussed.
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Chapter 1

Introduction

1.1 Motivation

Accurate quantitative precipitation estimation (QPE) and quantitative precipitation

forecasts (QPF) require accurate characterization and parameterization of precipita-

tion microphysics. For decades, the Doppler weather radar has played an important

role in QPE and QPF. With the development of the dual-polarization technique,

precipitation can be better studied through polarimetric radar observations. The

knowledge and approaches in quantifying polarimetric radar measurements for pre-

cipitation have been highly demanded. However, research on this topic is seriously

lacking so far. If the microphysical process of the precipitation can be well char-

acterized/modeled, QPE and QPF would essentially benefit from the application of

polarimetric radar measurements. Fig. 1.1 shows the schematic diagram, which links

the related research area for QPE and QPF. It was proposed by Zhang et al. (2006b)

in the National Science Foundation (NSF) grant “Improving microphysics parame-

terizations and quantitative precipitation forecast through optimal use of video dis-

drometer, profiler and polarimetric radar observations”. The current study focuses on

the areas with the blue shadow in the figure. Briefly speaking, they are observations,

models, parameterizations, and retrievals of rain microphysics.
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Figure 1.1: Schematic diagram linking together related area of research, from Zhang

et al. (2006b).

Observational study is the basis of model developments and microphysical param-

eterizations, which are of great importance and required for rain retrievals. As we

know, in-situ measurements from disdrometer provide information on individual drop

sizes, shapes, and terminal velocities at a specific location. The disdrometer obser-

vations are related to those at the upper levels, helping to understand the dominant

microphysical properties of the rainfall. Remote measurements from radar provide

information on the bulk precipitation characteristics over a wide area. The micro-

physical parameterization/modeling based on disdrometer observations provides the

basis for the application of radar measurements.

Raindrop size distribution (DSD) modeling is the major part of the model study.

The DSD reveals the fundamental properties of rain microphysics. With a accurate

DSD model, the rain properties could be well retrieved from the radar measurements.

Generally, a good DSD model is required to represent natural variations well. It is

known that the larger the order of a model freedom, the better the variation could

be represented. However, the number of independent information from radar ob-

servations is limited and the error effect of radar observations could affect the DSD
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retrieval. Complicated DSD models might not work in practical retrievals. An appro-

priate DSD model should keep a good balance between its flexibility and the capability

of its parameters to be well resolved. The other necessary part of the model study

is error analysis during the DSD modeling. Because the modeling is primarily based

on in-situ measurements, observational errors should be taken into account and the

error effect should be reduced as far as possible.

Numerical weather prediction (NWP) requires the microphysical parameterization

of the precipitation. NWP is a key part for QPF, which is based on the data assim-

ilation (DA) system. Generally, the characterization of rain microphysics through

radar variables provides empirical but useful relations, which serve as good physical

constraints in the NWP. The development of these relations is practically meaningful.

Currently, S-, C-, and X-band polarimetric weather radars are popular platforms for

weather services and researchers. The characterization of rain microphysics at these

bands facilitates the application of polarimetric radar data (PRD) of different systems.

Rain estimation is one of major purposes of weather radar applications. Previ-

ously, rainfall rate was directly estimated with empirical radar-rain relations. With

the development of DSD modeling, many efforts have been put into DSD retrieval.

The DSD retrieval is obviously superior to the retrieval of integral parameters because

DSD is more informative. Much progress has been made in retrieving DSD parame-

ters from polarimetric radar measurements recently [e.g., Haddad et al. (1997); Bringi

et al. (2002, 2003); Gorgucci et al. (2002); Brandes et al. (2004a,b); Vivekanandan

et al. (2004); Zhang et al. (2001, 2006a)]. However, there are still issues to be re-

solved. For example, optimal use of radar observations in DSD retrieval is demanded

given the fact that various radar variables have different error characteristics. For the
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purpose of improving rain retrieval, this study presents three different DSD retrieval

approaches and analyzes their performances.

1.2 Organization of Dissertation

The major purpose of this study is to investigate the properties of rain microphysics

and develop appropriate physical models and algorithms for rain retrievals from po-

larimetric radar data. The rest of this study is organized as follows:

• Chapter 2 describes basic instruments, concepts and theories used in this study.

The emphases are put on the raindrop size distribution and the polarimetric

radar data, as well as the scattering theory linking them. This chapter ad-

dresses in-situ and remote sensing instruments, observed DSDs, conventional

DSD models, rain and radar variables, raindrop shape models, scattering prop-

erties at different frequencies, and the simulation of radar variables based on

the scattering theory.

• Chapter 3 discusses the error analysis and DSD parameter estimation. Firstly,

observation errors of the disdrometer are quantified through side-by-side com-

parison. The error effect on DSD parameter estimation is analyzed, and dif-

ferent estimators are evaluated. A method of processing disdrometer data is

introduced to reduce the error effect. The constraint-gamma (C-G) DSD model

is refined and investigated on issues such as error propagation, low-end DSD

truncation, and physical significance.

• In Chapter 4, the characterization of rain microphysics is given for S-, C- and

X-band frequencies. The derivation of empirical relations, linking rain proper-

ties with radar variables, is based on the raindrop scattering model and DSDs

measured by the disdrometer. A direct DSD retrieval approach is described
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by applying the C-G DSD model. An adjustment of constraining relation is

introduced to improve the DSD retrieval at the leading edge of convection.

• Chapter 5 introduces a Bayesian approach to retrieve DSD from PRD. This

algorithm takes the observation error of PRD into account and gives an estimate

of the uncertainty of retrieved results. The prior information of rain properties is

derived from long-term disdrometer observations. The validity of this algorithm

is demonstrated by the comparison of retrievals with in-situ measurements.

• In Chapter 6, a variational approach is applied to the DSD retrieval from po-

larimetric radar observations in the presence of attenuation. This algorithm

applies the variational method to optimize the use of PRD and minimize the

error effect. For an advantage, the attenuation correction is embedded into the

forward operator and also optimized from the observations. The preliminary

study gives a promising result. Besides, this chapter discusses the limitations

and potential improvements of this algorithm.

• Chapter 7 summarizes works in this study and outlines future research.
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Chapter 2

Basic Knowledge of Observational Study

2.1 Observational Instruments

Remote sensing instruments, such as weather radars, provide large coverage of pre-

cipitation observations. For example, the current National Weather Service (NWS)

WSR-88D (Weather Surveillance Radar 1988 Doppler) network provides nationwide

observations for weather services such as storm detection, forecast, and warning. The

in-situ instruments, such as rain gauge and disdrometer, are helpful in studying rain

microphysics and developing microphysical models for weather radar applications. In

this study, the major in-situ instruments used are three two-dimensional video dis-

drometers (2DVD), which are operated by the University of Oklahoma (OU), National

Center for Atmospheric Research (NCAR) and National Severe Storms Laboratory

(NSSL), respectively. A disdrometer dataset of more than 3-years of observations are

used to characterize rain microphysics and develop radar-rain retrieval algorithms.

Weather radars used for this study are an S-band prototype polarimetric WSR-88D

(KOUN), two X-band polarimetric IP1 radars of Center for Collaborative Adaptive

Sensing of the Atmosphere (CASA), and Polarimetric Radar for Innovations in Me-

teorology and Engineering (OU-PRIME) operated by Atmospheric Radar Research

Center (ARRC) at OU. In addition, the surface rain gauge measurements of Okla-

homa Mesonet are used to verify rain retrieval algorithm as well.
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2.1.1 In-situ instruments

Disdrometers, regarded as an effective tool for study of rain microphysics, are widely

used by researchers. Currently there are three types of disdrometers popular in the

world. The traditional one is the Joss-Waldvogel disdrometer (JWD). JWD is an

impact-type disdrometer (Fig. 2.1a), which is designed based on the measurement

of raindrop momentum. It has a ∼50 cm2 sampling area and measures raindrop size

from 0.3 to 5.5 mm with 20 size intervals. Its accuracy in measuring drop size is

about 5% [Tokay et al. (2001)]. JWD has several shortcomings. The foremost one is

that JWD has a “dead time” after the impact of a drop. In a heavy rain, JWD may

miss some raindrops due to the dead time, leading to an underestimate of raindrop

concentration. Its dynamic range of size measurement is also limited. Too small

(< 0.3 mm) or too large (> 5.5 mm) raindrops are not measurable by a JWD. The

concentration of small raindrops is normally underestimated.

Figure 2.1: (a)Joss-Waldvogel disdrometer RD-80 (From manufacturer’s official web-

site www.disdromet.com). (b) Laser optical Parsivel disdrometer (From manufac-

turer’s official website www.ott-hydrometry.de).

The Parsivel disdrometer is a one-dimensional laser optical disdrometer (as shown

in Fig. 2.1b). Besides size and raindrops, it can measure the fall velocity of hy-

drometeors. Its sampling area is also about 50 cm2. The measurable particle size is

0.06–24.5 mm. The velocity range is 0.05–20.8 m s−1. The Parsivel disdrometer still
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has several shortcomings, though it performs better than JWD. It is only an optical

device, which captures the one-dimensional projection of a particle. This may cause

the biased estimation of particle size when the particle has a non-spherical shape.

Moreover, a particle might be blocked by the other particle ahead of it in the light

sheet, leading to the miscounting of particles. Generally, the Parsivel disdrometer

may underestimate the fall velocity for middle size raindrops (1–3 mm) and numbers

for small raindrops (< 1 mm).

Figure 2.2: The OEU (including sensor and computer) of OU 2DVD.

With the development of disdrometer technology, recently a two-dimensional video

disdromer (2DVD) was introduced to the research community [Kruger and Krajewski

(2002)]. It is capable of measuring particle size, shape, and falling velocity with an

unprecedented accuracy. The 2DVD has a fine resolution. The resolution of proto-

type model (e.g., NSSL 2DVD) is 0.195 mm and the latest model (e.g., OU 2DVD)

is 0.132 mm. For raindrop measurement, the 2DVD applies 41 size bins with 0.2 mm

bin width. Compared to JWD and Parsivel disdrometer, the 2DVD has a relatively
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larger sampling area (∼100 cm2). The typical sampling volume within a 1-min inter-

val is about 3-5 m3. Similar to other disdrometers, the 2DVD still has a relatively

larger uncertainty in measuring small drops than mid-size drops. Typically, it under-

estimates the concentration of small raindrops (< 1 mm). Compared to JWD and

Parsivel disdrometer, its accuracy has been much improved.

Figure 2.3: Raindrop measurement by 2DVD depends on two orthogonal horizontal

light sheets, from Kruger and Krajewski (2002).

Fig. 2.3 shows the principle of 2DVD in measuring particles. There are two sets

of light sources and cameras inside 2DVD’s outdoor electronic unit (OEU), producing

two orthogonal horizontal light sheets. Two lights sheets are spaced at 6–7 mm and

the view area is about 10 × 10 mm2. When a particle falls down through two light

sheets. It blocks the light ways and two cameras capture its projections in two direc-

tions. The size and shape of a particle are then retrieved from its shadows captured

by the cameras. The time, falling from one light sheet to the other light sheet, is used

to calculate the fall velocity. Superior to Parsivel disdrometer, 2DVD can resolve two

particles falling in the light sheets at the same time, though one particle might block
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the other one in one direction.

Other in-situ instruments used for precipitation research include rain gauge. Stan-

dard rain gauge of Oklahoma Mesonet, used in this study, is an unheated tipping-

bucket gauge with a sensor of 30.4 cm diameter sampling area (about 700 cm2). The

rainfall is measured at every 0.254 mm. The accumulated rainfall is recorded every

5 minutes. Therefore, rainfall might be recorded at every other 15-minute interval if

the rainfall is very light. On the other hand, if the rain is very heavy, the rain gauge

is likely to underestimate the total amount of rainfall because the rain might splash

outside the bucket. The measurement error of rainfall is about ±5% with the rainfall

rate range of 0-50 mm per hour.

2.1.2 Remote sensing instruments

Remote sensing instruments used in this study are three types of weather radars.

KOUN, located at the north research campus of OU, is an S-band polarimetric radar

with simultaneous transmission and receiving at horizontal (H) and vertical (V) chan-

nels. CASA IP1 network consists of 4 X-band polarimetric radars—KSAO, KCYR,

KRSP, KLWE—located at 60-70 km southwest of KOUN. OU-PRIME is a C-band

polarimetric radar made with the latest radar technique. It is located at the south

research campus of OU. OU-PRIME finished its installation and began data collec-

tion in early 2009.

The key parameters of three radar systems are listed in Table 2.1. All three

radars apply the simultaneous dual-polarization mode. Compared to KOUN and

OU-PRIME, CASA IP1 radar is much smaller (with an antenna aperture of 1.2 m)

and its antenna scanning is more agile (with an antenna accelerate rate of 50 ◦s−2).
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Figure 2.4: Radar on the tower is KOUN, operated by NSSL. OU 2DVD and NCAR

2DVD are deployed inside the red fence in a field experiment. NSSL 2DVD is deployed

aside in a basement covered by a shutter.

Figure 2.5: OU-PRIME, operated by ARRC, began data acquisition in January 2009

(From website http://en.wikipedia.org/wiki/OU-PRIME)
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Table 2.1: System specifications of three dual-pol radars: KOUN, OU-PRIME, and

CASA IP1

KOUN OU-PRIME CASA IP1

Operating frequency (GHz) 2.7-3.0 5.51 9.3

Frequency band S C X

Antenna aperture (m) 8.53 8.5 1.2

Antenna gain (dB) 45.5 50 38

3-dB beam width (degree) 1.0 0.5 1.8

Max. rotation rate (deg s−1) 36 36 35

Accelrate rate (deg s−2) 15 18 50

Transmitter type Klystron Magnetron Magnetron

Peak power (kW) 750 1000 7.5

PRF (Hz) 320-1300 500-2000 1600, 2400

Pulse width (µs) 1.6, 4.5-5.0 0.4, 0.8, 1, 2 0.18, 0.66

Range resolution (m) 250, 1000 60, 125 48, 100

Dual-polarization simultaneous simultaneous simultaneous

However, it has much less transmitter power and the peak power is only 1% of KOUN.

OU-PRIME has the most narrow antenna beam width of 0.5 ◦, which is half of KOUN

(1 ◦) and almost a quarter of CASA IP1 (1.8 ◦). Moreover, OU-PRIME has a digital-

adjustable PRF with range from 500–2000Hz while KOUN and CASA IP1 only have

several fixed PRFs to choose from. The typical PRF used by OU-PRIME is 1180 Hz,

corresponding to a maximum unambiguous range of 127 km. KOUN and CASA IP1

radar generally have about 300 and 60 km unambiguous ranges, respectively. In addi-

tion, CASA IP1 can transmit pulses with the shortest width, having the finest range

resolution of 48 m. Typically, range resolutions applied in practice for three radars
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are 250 m, 125 m, and 100 m, respectively.

2.2 Raindrop Size Distribution (DSD)

2.2.1 DSD models

Functional relations are always applied to model DSD in the study/research of rain

microphysics. The following models are DSD models generally used by researchers of

the meteorological community in the world.

• M-P model [Marshall and Palmer (1948)]

N(D) = 8000exp(−ΛD) (2.1)

It is a single parameter model with a slope parameter Λ. This well-known model

was proposed by Marshall and Palmer (1948) and was widely used in the past

50 years. It was helpful in bulk-scheme rain parameterization and radar-rain

estimation when single-polarization weather radars were prevailing.

• Exponential model

N(D) = N0exp(−ΛD) (2.2)

It is a two parameters model with a concentration parameter N0 and Λ. It

is more flexible than M-P model since the latter is equivalent to the exponen-

tial model with a fixed N0. Besides the DSD, the exponential model can be

used to model snow particle size distribution. It is especially appropriate for

applications of dual-frequency/dual-polarization weather radars.

• Gamma model [Ulbrich (1983)]

N(D) = N0D
µexp(−ΛD) (2.3)
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In addition to N0 and Λ, gamma distribution introduces a shape parameter µ.

It has been widely accepted that the gamma model is flexible to represent the

variability of natural DSDs. As a result, a lot of researchers have applied gamma

model to study the DSD since it was introduced to the metrological community

by Ulbrich (1983). Some recent studies have applied the normalized gamma

DSD. For example, Bringi et al. (2002) applied the gamma DSD as:

N(D) = Nwf(µ)
( D
D0

)µ
exp(−ΛD) (2.4)

with

f(µ) =
6

3.674

(3.67 + µ)µ+4

Γ(µ+ 4)
(2.5)

Λ =
3.67 + µ

D0

(2.6)

where Λ is the slope parameter of gamma function. Nw is a normalized parame-

ter, the value of which equals to the intercept parameter of an exponential DSD

that has the same water content and the median volume diameter D0. The N0

in Eq. 2.3 is then equal to

N0 = Nwf(µ)D−µ0 (2.7)

The advantage of a normalized gamma DSD is that parameters (Nw and D0)

have specific physical meaning.

• Log-normal model

N(D) =
NT√
2πσD

exp

(
−[ln(D)− η]2

2σ2

)
(2.8)

where NT is the total number concentration. η and σ are the mean and stan-

dard deviation of Gaussian distribution, respectively. This model follows the

assumption that parameters of the DSD can be modeled as random variables

from a multivariate Gaussian distribution. It has a good explanation of DSD

based on the probability theory, and the mathematical calculation is not that

complicated. However, it might not be the best one matching observed DSDs.
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DSD models mentioned above have their own advantages and limitations. By

comparison, the gamma distribution generally has the best performance in modeling

observed DSDs. Fig. 2.6 shows an example of DSD models. The asters denote a

DSD observed by 2DVD. Four lines represent fitted distributions by four models. It

is evident that the M-P model has the worst performance. The DSD model, which has

more freedom (i.e., more parameters), represent the observation better. The observed

DSD in the figure is well modeled by the gamma function. This study focuses on the

gamma model and its modification. Although the gamma distribution is flexible for

modeling observed DSD, it is inevitable that the model error will be introduced. Next

chapter will mention the error issues of DSD observations and its modeling.

Figure 2.6: Example of an 2DVD-observed DSD, which is represented by different

DSD models.

2.2.2 DSD observations

Different types of DSDs represent different rains. With the help of 2DVD, the DSD

can be obtained with satisfactory accuracy. There are some examples of 1-min DSDs

observed by the 2DVD. Fig. 2.7 shows several typical DSDs chosen from rain events
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Figure 2.7: Five DSDs (column A) observed by the 2DVD at 1-min interval and bin

size resolution of 0.2 mm. Column B represent the liquid water content distribution

(see the label, where ρ is the water density). Column C is the 6th order distribution

of DSD. Five rows represent DSD1, DSD2, DSD3, DSD4, and DSD5, from top to

bottom, respectively.
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occurring on 21 July 2006 and 6 November 2006 [Zhang et al. (2008), Figs. 5 and

6]. In addition to each DSD, the corresponding liquid water content (proportional to

the 3rd order moment) and 6th order moment per unit drop size interval are shown

in the second and third columns. The first row shows a DSD (this type of DSD

is referred to as “DSD1”), attributed to the raindrop sorting and usually observed

during the leading edge of the convection. DSD1 generally has a very low total number

concentration (NT ), total raindrop count (Tct) and water content (W ). However, the

mean volume diameter (Dm) is not small, sometimes even larger than 3 mm. This type

of DSD is classified as a “big drop” DSD by the hydrometeor classification algorithm

[e.g., Ryzhkov et al. (2005c)]. The second row shows a DSD observed in the region

of a convective core (referred to as “DSD2”). DSDs in this region generally have a

broad shape and very high NT . The observed maximum diameters (Dmax) are usually

larger than 5 mm. DSD2 has many raindrops in all size categories so that rain-rate

(R) and reflectivity factor (Z) generally have large values. The third row shows a DSD

observed in the trailing stage of the convection (referred to as “DSD3”). This type of

DSD still contains many small raindrops (<1 mm) but few large raindrops (>3 mm)

such that the DSD appears to be truncated. The Dm is usually small (around 1 mm),

although the R might be moderate (i.e., NT is large). The DSD in the region of weak

convection (not shown here) for this event also has similar properties to DSD3. The

fourth row shows a DSD observed in the stratiform region (referred to as “DSD4”).

DSD4 usually does not have small raindrops as many as DSD3 but tends to contain

more large raindrops than DSD3, given the same R. Consequently, when both have

the same R, DSD4 generally has a broader distribution but a lower NT . The Dmax of

DSD4 is usually between 3 mm and 5 mm. The Dmax of DSD3 is usually not larger

than 4 mm. The fifth row shows a DSD (referred to as “DSD5”), which tends to have

a bimodal distribution (although the bimodal distribution is not obvious for the DSD,

it is evident for the water content distribution). In the region ahead of the convective
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core, the DSDs observed within 1-min intervals sometimes have the tendency to be

bimodal.

2.2.3 Rain variables

The raindrop size distribution is fundamental for rain microphysics because all the

rain properties can be learned from the DSD. The following rain variables are all

associated with the DSD.

The nth moment : Mn =

∫ Dmax

Dmin

DnN(D)dD, [mmn m−3] (2.9)

Total number concentration : NT = M0, [m
−3] (2.10)

Water content : W =
π

6
× 10−3M3, [g m−3] (2.11)

Reflectivity factor : Z ≈M6, [mm6 m−3] (2.12)

Rainfall rate : R = 6× 10−3π

∫ Dmax

Dmin

D3v(D)N(D)dD, [mmn h−1] (2.13)

Evaporate rate : Re =

∫ Dmax

Dmin

δMe

δt
N(D)dD, [g m−3 s−1] (2.14)

Accretion rate : Ra =

∫ Dmax

Dmin

δMa

δt
N(D)dD, [g m−3 s−1] (2.15)

Mean diameter : Da =
M1

M0

, [mm] (2.16)

Effective diameter : De =
M3

M2

, [mm] (2.17)

Mean volume diameter : Dm =
M4

M3

, [mm] (2.18)

Median volume diameter [mm] :

∫ D0

Dmin

D3N(D)dD =

∫ Dmax

D0

D3N(D)dD (2.19)

Mass-weighted terminal velocity : vtm =

∫ Dmax

Dmin
D3v(D)N(D)dD∫ Dmax

Dmin
D3N(D)dD

, [m s−1] (2.20)

where, D is the equivalent diameter of raindrop. Dmax and Dmin are maximum and

minimum diameters of the raindrop, respectively. v(D) is the falling velocity of the

raindrop.
δMe

δt
and

δMa

δt
are surface evaporation rate and accretion rate of a raindrop,

respectively.
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2.3 Polarimetric Radar Data

Polarimetric radar measurements are informative for interpreting properties of hy-

drometeors. Given a spheroid raindrop illuminated by the radar wave, the scattering

energies at horizontal and vertical axes are different, leading to a measurement dif-

ference between the radar reflectivity at H and V channels. The dual-polarization

difference helps to estimate the shape of the raindrop. This section addresses polari-

metric radar data (PRD) used in the rest of this study. They are reflectivity factor

(ZH,V ), differential reflectivity (ZDR), co-pol correlation coefficient (ρHV ), and specific

differential phase (KDP ).

1. Reflectivity factor

The reflectivity factor is a part of the radar reflectivity, which includes the term

of radar constant as well. For convenience, the reflectivity factor is sometimes

called the reflectivity. Reflectivity factors for horizontal (ZH) and vertical po-

larization (ZV ) are defined as [Zhang et al. (2001)]:

ZH,V =
4λ4

π4
∣∣K∣∣2

〈
n
∣∣Fhh,vv(π)

∣∣2〉 (2.21)

where λ is the wavelength and |K|2 is a dielectric term. K = (ε − 1)/(ε + 2)

and ε is the dielectric constant. |K|2 for water is generally varies between 0.91

to 0.93 for a wavelength between 0.01 and 0.1 m. Fhh and Fvv are complex

scattering amplitudes of a particle at horizontal and vertical directions, respec-

tively. π means the direction of wave scattering is 180◦, i.e., backscattering. n

is the number concentration and the notation “〈 〉” denotes the expected value.

There is 〈nX〉 =
∫
N(D)XdD, which means the average of all particles, given

a distribution within the sampling volume.

Eq. 2.21 suggests that the reflectivity factor is proportional to the number

concentration of hydrometeors within a radar resolution volume. Besides, it is
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sensitive to the particle size. For example, for Raleigh scattering the reflectivity

factor is about the 6th moment of DSD. If the particle size is doubled, the reflec-

tivity will have an increase of about 18 dB. The reflectivity factor is normally

given in the unit of dBZ [10 log10(mm6 m−3)]. The radar measurement error of

reflectivity is normally about 1–2 dB.

2. Differential reflectivity

Differential reflectivity represents the ratio between reflectivity at the horizontal

and vertical polarizations. It is given by (normally in unit of dB)

ZDR = 10 log
ZH
ZV

= 10 log

〈
n
∣∣Fhh(π)

∣∣2〉〈
n
∣∣Fvv(π)

∣∣2〉 (2.22)

Since the differential reflectivity is the ratio of reflectivity measurements be-

tween H and V channels, it is insensitive to the absolute radar calibration of

reflectivity. It is also insensitive to partial radar beam blockage. Moreover,

differential reflectivity is independent of the concentration of scatters, but it is

affected by the propagation effects such as the attenuation.

The differential reflectivity is informative for determining the raindrop size. The

raindrop generally has an oblate shape. The larger the raindrop size, the more

oblate the shape (e.g. see raindrop shape model in Fig. 2.10 of next section).

Therefore, the reflectivity at horizontal direction is normally higher than the

reflectivity at vertical direction. For light rains, raindrops are approximately

spheric. The differential reflectivity, therefore, is small (∼ 0 dB). For heavy

rain with many large raindrops, the differential reflectivity increases. The dif-

ferential reflectivity of rain is generally between 0 and 5 dB. Given a raindrop

axis ratio model, the median size can be retrieved quantitatively through the
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differential reflectivity measurement.

The differential reflectivity is also helpful for the classification of scatters other

than raindrops. For example, dry hail, graupel and aggregated snow may tum-

ble during their falling. Their differential reflectivities are approximately 0 dB

with small positive or negative values. Melting hail and wet snow, less likely

to tumble and having a larger dielectric constant because of the coated water,

would have a larger differential reflectivity, generally 1–7 dB and 0.5–2.5 dB,

respectively. Others scatters, such as insects and birds, may have an uncommon

differential reflectivity for hydrometeors. The differential reflectivity is an im-

portant input parameter for current fuzzy-logic-based hydrometer classification

algorithms [e.g., Ryzhkov et al. (2005b); Lim et al. (2005)].

3. Co-pol correlation coefficient

The co-pol correlation coefficient is an indicator of de-correlation between backscat-

tering signals at horizontal and vertical polarizations. It is given by

ρHV =

〈
nFhh(π)F ∗vv(π)

〉
√〈

n
∣∣Fhh(π)

∣∣2〉〈n∣∣Fvv(π)
∣∣2〉 (2.23)

Generally, the correlation coefficient would decrease when particles have irregu-

lar shapes or much uncertainty of canting angles. In addition, if there are mixed

particles with different phases, the correlation coefficient would be reduced as

well. The value is normally high for hydrometers that are oriented and smooth.

For example, the correlation coefficient for raindrops is high, about 0.98–1.

Small raindrops have a higher value than large drops with more oblateness.

Hail and snow mostly have a lower correlation coefficient than the water. Cor-

relation coefficients of graupel, dry hail, and wet hail are about 0.97–0.995,

21



0.85–0.97, 0.75–0.95, respectively. The crystal, dry aggregated snow and wet

aggregated snow have values of 0.98–1, 0.97–1, 0.9–0.97, respectively. In the

mixture of rain and snow, the correlation coefficient is normally < 0.95. The

tumbling hail and snow aggregate might have a value < 0.9. Ground clutter of

neutral sources such as tree and grass has a relatively low correlation coefficient

as 0.5–0.9. Ground clutter of man-made structures has a relatively high value

as 0.9–1.0. The correlation coefficient is independent of the concentration of

hydrometers and the radar calibration. It is also immune to propagation effects.

4. Specific differential phase

Differential phase (φDP ) is the accumulated phase difference between horizontal

and vertical polarizations along a propagation path. It is a variable associated

with the forward scattering. The specific differential phase (KDP ) is defined as

the range derivative of the one-way differential phase. Typically, it is computed

by

KDP =
2π

k
Re
(〈
n
∣∣Fhh(0)

∣∣〉− 〈n∣∣Fvv(0)
∣∣〉) (2.24)

where, Fhh,vv(0) indicates the forward scattering amplitude of one particle. The

unit of KDP is ◦km−1. The value of KDP increases with increasing the particle

oblateness. It is dependent on the hydrometer number concentration but less

sensitive to the size distribution than ZH and ZDR. KDP is independent of the

radar calibration and the partial beam blockage. It is a good variable used for

the estimation of precipitation, especially for rain [Doviak and Zrnic (1993)].

For S-band radar echo of rain, the KDP is normally 0–3 ◦km−1. Snow and hail

have a lower KDP because their dielectric constants are much smaller than for

liquid water. The dry hail (or dry snow) has a smaller KDP than the melting

hail (or wet snow), typically -0.5–0.5 ◦km−1 (or 0–0.05 ◦km−1). Practically, the

measurement error of KDP is large. The estimation of KDP is usually done by
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an gradient calculation with averaging phase measurements of multiple range

gates. For example, 9 gates (or 25 gates) average was suggested by Ryzhkov

et al. (2005a) as “lightly filtered” (or heavily filtered) for KOUN radar data

processing.

2.4 Scattering Theory

2.4.1 Description

When electromagnetic waves radiate on a particle, the particle may absorb a part of

radiation energy and scatter the rest of radiation energy. Given that angular radiation

density of electromagnetic wave is an constant, absorbed and scattered energy can

be judged in terms of cross section. Typically, there are four terms used in scattering

theory: scattering cross section (σs), absorption cross section (σa), total (or extinc-

tion) cross section (σt) and backscattering (or radar) cross section (σb). The total

cross section is the summation of the absorption cross section and scattering cross

section, i.e., σt = σa + σs. The backscattering cross section represents the backward

scattering energy, which is usually used for mono-static radar applications. In order

to assess particles with different sizes, these cross sections are generally normalized by

the geometry section of the particle, σg = πa2, and produce corresponding Q factors

as

Qt = σt/σg, Qs = σs/σg

Qa = σa/σg, Qb = σb/σg (2.25)

For those particles with diameter much less than radiation wavelength, the scatter-

ing effect can be explained by the Rayleigh theory, according to which the scattering

energy is proportional to the sixth power of the particle size and inversely proportional

to the fourth power of the wavelength. But for particles whose sizes are comparable
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with the wavelength, the Rayleigh scattering theory is not applicable. In such a case,

the scattering issue can be solved by Mie theory, which is a complete mathematical-

physical scattering theory of electromagnetic radiation by spherical particles.

Fig. 2.8 shows Q factors of particles based on Mie theory. When particle sizes are

relatively small when compared to the wavelength (e.g., D/λ < 0.1), the absorption

cross section is much larger than the scattering section, which means the loss of wave

propagation is dominated by the particle absorption instead of the scattering. When

the particle sizes are relatively large, the loss is greatly affected by scattering. The

total cross section is approximately twice as large as the geometric cross section of

particles. The radar backscattering cross section is almost linearly increasing with the

size for small particles (D/λ < 1/16), while for large particles, it varies periodically

with the decrease of amplitude. It is approaching the constant when the size is

approaching the infinite.

2.4.2 Raindrop model

Many studies have shown that raindrops are not spherical but more likely oblate,

especially for large raindrops [e.g., Pruppacher and Beard (1970)]. The oblateness

increases with increasing raindrop size. The axis ratio of a raindrop can be defined as

the ratio of the diameter of vertical axis to the diameter of horizontal axis (see Fig.

2.9). Since the raindrop is oblate, the scattering of a raindrop would be different at

horizontal and vertical directions, causing the non-zero differential reflectivity. The

differential reflectivity of a raindrop can be quantitatively determined by the raindrop

oblateness. In addition, the raindrop oblateness is also important to determine other

PRD such as the differential phase and the correlation coefficient.
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Figure 2.8: Q factors in terms of particle sizes based on Mie theory, from lecture notes

of course ECE/METR 6613, Spring 2006.

Figure 2.9: An oblate raindrop model and its axis ratio.
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Efforts have been made to investigate the shape of a falling raindrop. Keenan

et al. (2001) gave a review of observed raindrop axis ratio relations. Generally, there

are three kinds of relations. The empirical relations introduced by Pruppacher and

Beard (1970); Green (1975); Chuang and Beard (1990) focuses on the raindrop shape

under an equilibrium condition. However, other studies such as Pruppacher and Pit-

ter (1971); Beard et al. (1983); Beard and Jameson (1983); Beard and Tokay (1991)

found that collision, wind shear and turbulence could lead to the oscillation of rain-

drops, whose shapes would be more spheric than shapes under equilibrium condition.

Their shape models are referred to as the oscillation model. Keenan et al. (2001);

Brandes et al. (2002) introduced empirical relations derived from previous observa-

tions or relations with a regression procedure.

Figure 2.10: Different raindrop axis ratio models.
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Even with the same DSD, different raindrop shape models might lead to a distinct

value of estimated radar variables. Brandes et al. (2002) illustrated with a specific

example that the simulated ZDR using the equilibrium shape model is 0.2 dB larger

than the corresponding value calculated using the experimental shape model. It is

worth noting that currently there is no consensus on the use of the raindrop shape

model in the community. In this study, estimated radar variables are based on the

experimental shape model introduce by Brandes et al. (2002). The axis ratio r is

given as:

r = 0.9951 + 0.0251D − 0.03644D2 + 0.005303D3 − 0.0002492D4 (2.26)

2.4.3 Scattering amplitude and phase

In addition to the particle shape, the particle size, canting angle, composition, fre-

quency and temperature are factors that determine particle’s scattering amplitude

and phase. This study puts efforts on the study of rainfall, therefore, the scattering

of raindrop is the major interest of this section.

The major effect of the temperature is on the dielectric constant ε, thereafter the

parameter K. Table 2.2 gives the dielectric terms of water for different frequencies

and temperatures, following the equations introduced by Ray (1972). The variations

of dielectric constant ε and term |K|2 are small, especially for lower frequency (e.g.,

S-band 3 GHz). As a result, this study has neglected the effect of temperature and

assumed the temperature to be 10 ◦C for the calculation of raindrop scattering.

The frequency and the size are other two major factors determining the scattering

of raindrops. Fig. 2.11 gives the results of raindrop scattering amplitude and phase

calculated from T-Matrix method [Zhang et al. (2001)]. The green, blue and black

lines represent results for S-band (10 cm), C-band (5.4 cm) and X-band (3.2 cm),
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Table 2.2: Dielectric terms of water in terms of temperature and frequency

0 ◦C 10 ◦C 20 ◦C

3 GHz
ε 79.6919+25.1976 i 79.6690+18.2257 i 77.9014+13.2354 i

|K|2 0.9342 0.9313 0.9283

5.5 GHz
ε 65.1406+37.1941 i 70.9023+29.4124 i 72.7890+22.4553 i

|K|2 0.9331 0.9307 0.9279

9.3 GHz
ε 44.7967+41.4592 i 55.4394+37.8489 i 62.3358+31.9111 i

|K|2 0.9305 0.9291 0.9269

respectively. Solid lines and dashed lines indicate the scattering at horizontal (H)

and vertical (V) directions, respectively. As Fig. 2.11 shows, both backscattering

and forward scattering amplitudes increase with increasing raindrop size, but the

increase is not linear in logarithmic domain. For example, a raindrop with D > 5

mm might have a scattering amplitude of four orders larger than a raindrop with

D < 0.5 mm. The higher the frequency, the larger the scattering amplitude. The

difference of scattering amplitude between two frequencies also depends on the size.

Due to the oblateness of raindrop, there are differences between scattering amplitudes

at horizontal and vertical directions. The larger the raindrop, the more the scattering

difference. The difference between two directions is little for raindrops with D < 1.5

mm. The scattering phase is a little more irregular than the scattering amplitude.

Generally, the forward scattering phase has an increasing tendency with increasing

the raindrop size. The backscattering phases between two directions have a difference

about 180◦.
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Figure 2.11: Calculated scattering parameters with respect to the equivalent raindrop

size based on T-matrix method: (a) backscattering amplitude, (b) forward scattering

amplitude, (c) backscattering phase, (d) forward scattering phase.
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2.4.4 Simulation of radar variables

According to the scattering theory, radar variables can be calculated given a DSD.

Equations used for the calculation are Eqs. 2.21–2.24. In addition, the specific atten-

uation (AH,V ), and specific differential attenuation (ADP ) are two frequently applied

variables representing the precipitation attenuation. Similar to specific differential

phase, specific attenuation and specific differential attenuation are variables also as-

sociated with the forward scattering. Their calculations are given as:

AH,V =
4π

k
Im
(〈
n
∣∣Fhh,vv(0)

∣∣〉) (2.27)

ADP =
4π

k
Im
(〈
n
∣∣Fhh(0)

∣∣〉− 〈n∣∣Fvv(0)
∣∣〉) (2.28)

The following figures show some examples of simulated radar variables (S-band)

based on the procedure mentioned previously. Figs. 2.12–2.14 show the dependence

of five radar variables on the rainfall rate, given the assumption of M-P DSD. Results

of T-Matrix method are shown by solid lines. As a reference, results of Rayleigh

scattering are plotted as well. It is worth noting that the canting angle of raindrops

also play a role in the calculation of scattering. Generally, a raindrop is assumed to

have a random canting angle during its falling process but the mean canting angle is

zero. The probability distribution of canting angle is assumed to follow the Gaussian

function with a standard deviations σφ. Figure results also show the comparison be-

tween σφ = 0◦ and σφ = 20◦.

As Fig 2.12 shows, both ZH and ZDR increase with increasing rainfall rate. They

increase quickly for rainfall rate less than 20 mm h−1 while slowly for larger rainfall

rate. The bigger the uncertainty of canting angle, the smaller the ZH and ZDR. The

difference attributed to σφ is very small for ZH but moderate for ZDR. Rain with

rate of 100 mm h−1 might have a 0.5 dB difference between σφ = 0◦ and σφ = 20◦.

ZH estimated by Rayleigh theory has a larger value than ZH by T-matrix method.
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Figure 2.12: Simulated S-band (a) ZH and (b) ZDR based on scattering theory versus

rainfall rate.

Figure 2.13: Simulated S-band KDP based on scattering theory versus rainfall rate.
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Figure 2.14: Simulated S-band (a) Ahh and (b) ADP based on scattering theory versus

rainfall rate.

With increasing rainfall rate, the difference becomes larger. The ZDR difference is

very small for Rayleigh and T-matrix calculation.

Figs 2.13 and 2.14 show the similar tendency to Fig. 2.12. KDP , AH and ADP all

increase with increasing rainfall rate. AH increases almost linearly. The bigger the σφ,

the smaller the KDP , AH and ADP . The difference of AH attributed to σφ is very small

while the difference of ADP or KDP is notable for moderate and heavy rain. When

rainfall rate increases, differences attributed to σφ become larger for all three variables.

There are some explanations for these results. When canting angle increases, the

horizontal scattering amplitude would decrease and the vertical amplitude would

increase. When the drop size or drop number concentration increases, the attenuation

and phase shift would also increase. Horizontal components increase more quickly

than vertical components. When rainfall rate increases, the number concentration

of raindrops increases and more large drops may exist. As a result, the difference

between two directions would become larger, especially for ZDR, KDP and ADP .
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Chapter 3

Error Analysis and DSD Parameter Estimation

3.1 Introduction

Disdrometers are usually used to measure natural DSDs, study precipitation mi-

crophysics, and verify radar-rain estimation. However, disdrometer measurements

themselves are not without error, which are caused by i) undersampling [e.g., Gertz-

man and Atlas (1977); Wong and Chidambaram (1985)]; ii) physical variations [e.g.,

Ulbrich (1983); Jameson and Kostinski (1998)]; iii) instrument limitations (resolution

and sensitivity); and iv) environmental factors such as wind effect [e.g., Nespor et al.

(2000)]. In addition, there might be discrepancies between a natural DSD and its

model representation (i.e., model error). Measurement and model errors both cause

errors in the estimation of gamma DSD parameters and integral physical parameters

[e.g., Zhang et al. (2003); Smith et al. (2005)].

The first issue examined in this chapter is the quantification of disdrometer mea-

surement error related to small sampling volume and limited sampling time. Disdrom-

eter observations contain not only physical variations but also measurement errors.

Gertzman and Atlas (1977) and Wong and Chidambaram (1985) presented a detailed

analysis of sampling error based on the assumption of independent Poisson distribu-

tions of raindrop count. Rain events, however, may not be independent stationary
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random processes. Physical variations and sampling errors coexist [e.g., Jameson and

Kostinski (1998); Schuur et al. (2001)]. It is difficult to separate sampling errors from

physical variations with a single instrument. Side-by-side comparisons, on the other

hand, provide information that allows sampling errors to be quantified. Tokay et al.

(2001) compared video disdrometer (i.e., 2DVD) and impact disdrometer (i.e., Joss-

Waldvogel disdrometer, JWD) measurements. However, their study focused mainly

on the comparison of DSD parameters and rain variables and did not quantify errors.

To my knowledge, error quantification for 2DVD observations through side-by-side

comparison has not yet been reported. Knowing observational errors and their error

correlations for different DSD moments, the error propagation can be estimated for

any rain variable estimator based on rain moments [e.g., Zhang et al. (2003)]. More-

over, error quantification helps to introduce advanced processing techniques to reduce

error effects on DSD modeling or retrieval.

The second issue is to examine error effects on the DSD parameter estimation.

Different DSD moments have been used to estimate DSD parameters in previous stud-

ies. Waldvogel (1974) first suggested using both the 3rd (M3) and the 6th moments

(M6) (the estimator using the 3rd and 6th moments is referred to as M36, the same

method of notation will be used for other estimators throughout this dissertation) to

determine two parameters of the exponential DSD model. This is a reasonable choice

because M3 and M6 are exactly (or approximately) proportional to water content (or

attenuation for Rayleigh scattering) and radar reflectivity (for Rayleigh scattering).

In the succeeding decades, however, different combinations of DSD moments were

also used to estimate DSD parameters. For example, the 3rd and 4th moments were

applied by Smith et al. (1976) and Testud et al. (2000). The 0th, 1st, and 2nd moments

(i.e., an M012 estimator) were used by Smith (1993). The 3rd, 4th and 6th moments

were applied by Kozu and Nakamura (1991); Tokay and Short (1996); Tokay et al.
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(2001). The 2nd, 4th, and 6th moments (i.e., an M246 estimator) were used by Ulbrich

and Atlas (1998); Zhang et al. (2001, 2003); Brandes et al. (2004a,b); Vivekanandan

et al. (2004). Which moments should be used to better estimate DSD parameters?

According to Gertzman and Atlas (1977) and Wong and Chidambaram (1985), higher

DSD moments have greater errors. Their conclusion was based on the assumption

of Poisson probability theory for raindrop numbers. However, as indicated by Smith

(2003), low-order moments may have even larger errors than middle-order moments

because radar measurements do not accurately represent the dependence of radar-

measured variables on small raindrops. Smith et al. (2005) proposed using the M234

estimator and showed that it gave the least error for the estimate of DSD parame-

ters. Kliche et al. (2008) recently argued that the L-Moment (LM) and maximum

likelihood (ML) estimators, which obtain the estimate from DSD spectrum instead of

integral moments, have better performance than moment estimators used previously

(e.g., M234) for retrieving DSD parameters of a gamma distribution. Consequently,

it is necessary to evaluate performances of all these estimators.

The third issue is the correlation between DSD parameters. Several researchers

[e.g., Ulbrich (1983); Chandrasekar and Bringi (1987); Haddad et al. (1997)] have

shown that the retrieved three DSD parameters (N0, µ, and Λ) of gamma model

are not mutually independent. Ulbrich (1983) introduced a N0 − µ relation whereby

the three DSD parameters could be retrieved using measurements of radar reflectiv-

ity (ZH) and attenuation. However, the N0 − µ relation, depending on the fitting

procedure, is unstable and fluctuates by several orders of magnitude. Therefore, its

utility is limited. Chandrasekar and Bringi (1987) attributed the N0 − µ relation to

the statistical error. Haddad et al. (2006) further showed that even in the absence

of observational noise, the dual-frequency retrieval using a N0 − µ relation could be

ambiguous. Through disdrometer observations, Zhang et al. (2001) and Brandes et al.
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(2004a) found that µ is highly related to Λ. Because the resulting µ−Λ relationship

helps to facilitate the DSD retrieval from dual-polarization or dual-frequency radar

measurements, it is necessary to know whether the µ−Λ relation represents physical

property of rain or just a spurious relation.

In Section 3.2, disdrometer sampling errors are quantified by analyzing mea-

surements from two instruments placed side-by-side. Error effects of measurement

and DSD model are investigated for seven different estimators in Section 3.3. The

constraint-gamma (C-G) DSD is verified in Section 3.4 by analyzing error effects and

quantitative comparison. Section 3.5 introduces a sorting and averaging procedure

based on two parameters (SATP) to mitigate the error effect. The C-G DSD model

is then refined with this procedure and used for the rest part of this study.

3.2 Quantification of 2DVD Observation Error

Disdrometer observations contain sampling errors that arise from a limited sampling

volume (∼0.01 m2 sampling area and ∼3 m3/minute sampling volume). In practice,

it is difficult to separate sampling errors from physical variations based on single

disdrometer measurements. Measurements by two similar disdrometers deployed side-

by-side, however, can be treated as two realizations, x1 and x2, of the same process,

which have the same expected value. That is,
x1 = 〈x〉+ ε1

x2 = 〈x〉+ ε2

(3.1)

where ε1 and ε2 denote sampling errors of two disdrometers. Assuming two disdrom-

eters measure the same DSD, differences between two measurements would be due

to statistical fluctuations. The physical variation can be cancelled by subtracting
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one measurement from the other. Assuming sampling errors of two disdrometer are

independent, the sampling error can be quantified by

〈
|x1 − x2|2

〉
=
〈
|ε1 − ε2|2

〉
= 2σ2

x (3.2)

where σx is the standard deviation of sampling error. The error can also be represented

by the fractional standard deviation (FSD) as

FSDx =
σx
〈x〉

(3.3)

The expected value of x is not known in practice. However, if the rain process

is assumed to be a stationary random process, the expected value of x could be es-

timated using the time-average of all available data based on the ergodic theorem.

In this study, the expected value is estimated by taking the time-averaged value of

14200-minute samplings. It is worthwhile to note that this kind of estimation in-

troduces some uncertainties because in practice the rain process is not an ergodic

process. Nevertheless, the uncertainty attributed to the time-average is not the em-

phasis of this study.

Differences between measurements of two 2DVDs arise from spatial inhomogene-

ity in rain and slight differences in the spatial and temporal resolutions between

the two units. Measurement bias is reduced by the calibration. Measured number

concentrations within each bin were averaged for both 2DVDs. For each bin, the

difference between two mean number concentrations was regarded as a measurement

bias. The measurement bias was then subtracted from given 2DVD measurements.

Although the measurement bias can not be perfectly tuned for bins with a size less

than 0.6 mm, bias effects are insignificant for integral parameters. FSDs of physical

parameters, such as drop count, mass, and reflectivity distributions, had similar error

characteristics. Taking drop count measurements as an example, FSDs estimated us-

ing Eqs. 3.2 and 3.3 are denoted as side-by-side and are shown as a function of bin size
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(solid line) in Fig. 3.1. If only measurements of a single 2DVD are used, the standard

deviation σx in Eq. 3.3 is calculated by σ2
x = 〈|x− 〈x〉|2〉. The dashed line represents

the result of the NCAR 2DVD measurements and the dash-dotted line represents the

result of the NSSL 2DVD measurements. The dashed and dash-dotted lines agree well

for the medium-sized drops. Based on the assumption that the observed raindrops

obey the Poisson process, the theoretical FSDs, shown by the dotted-solid line, are

derived by 〈Ni〉−0.5, where Ni is the total number of drops within the ith bin.

Figure 3.1: FSD of observed drop counts over bin spectrum. The solid line represents

the calculation based on side-by-side comparison. The dashed line represents the

result of NCAR 2DVD measurements and the dash-dotted line represents the result

of NSSL 2DVD measurements. The solid-dotted line represents the calculation based

on Poisson assumption.

As shown in Fig. 3.1, FSDs estimated from single 2DVD measurements (dashed

and dash-dotted lines) give an overestimation for sampling errors. Considering that

side-by-side 2DVD measurements eliminate the physical variation, sampling errors
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estimated in this way are more accurate than from single 2DVD estimates. The

difference between the solid and dashed/dash-dotted lines demonstrates the DSD’s

physical variability, which is large compared to the Poisson error (within bin sizes

less than 3.5 mm). The solid line also shows that the sampling error increases with

decreasing drop size for drops smaller than 0.6 mm. This is mainly attributed to the

2DVD’s inability to accurately measure small drops. The dotted-solid line represents

the Poisson error. The Poisson error increases considerably when drop sizes are larger

than 3 mm. This is due to the undersampling of large raindrops. It is also noticed

that the sampling error indicated by the solid line is close to the Poisson error for

raindrop sizes greater than 3 mm. It implies that the sampling error is associated

primarily with the undersampling for these sizes.

FSDs of DSD moments were estimated by applying Eqs. 3.2 and 3.3, in which the

variable x represents the DSD moment (not bin drop counts). The results for mo-

ments from the 0th order to the 6th order (M0, M1, , M6) are given in the columns of

Table 3.1. The first row contains the result estimated from the side-by-side compar-

ison. The second row, denoted as “Theoretical”, contains the result estimated from

the same dataset but based on the Poisson statistical model [Appendix of Schuur

et al. (2001)]. Because the theoretical result assumes sampled raindrop counts within

one-minute obey the Poisson distribution, which is independent random process, it

gives a lower limit to the actual FSDs. The theoretical result indicates that moment

errors are generally larger for higher moments. This can be explained by the mo-

ment estimation. That is, because large drops carry more weight in the calculation

of higher moments, their sampling errors are greater contribututors to the total er-

ror. The estimate from side-by-side comparison generally agrees with this tendency

except the error is somewhat larger. The difference between the “Side-by-side” and

“Theoretical” results might be explained by (i) dependent measurement errors, i.e.,
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samples from two adjacent times or bins have correlated errors, (ii) instrumental bias,

and (iii) non-Poisson distributed raindrops. Because error estimates in Table 3.1 were

obtained directly from disdrometer measurements without any assumption regarding

DSD shape, they are more realistic than results of simulations.

Table 3.1: FSD of different DSD moments

Moment M0 M1 M2 M3 M4 M5 M6

Side-by-side 0.1029 0.0965 0.0906 0.0901 0.1025 0.1311 0.1746

Theoretical 0.0379 0.0350 0.0408 0.0550 0.0767 0.1045 0.1372

Correlations exist not only between DSD moments [e.g., Jameson and Kostin-

ski (1998)], but also between sampling errors of DSD moments [e.g., Zhang et al.

(2003)]. Since the sampling errors have been quantified by a side-by-side comparison

in this paper, the correlation between sampling errors can be quantified as well. The

correlation coefficient is formulated by

ρ =
〈εmεn〉√
〈ε2
m〉〈ε2

n〉
(3.4)

where m, n represent two moments (m, n = 0,, 6) and ε denotes the error of ob-

served moments. In practice, the 〈εmεn〉 is estimated from two 2DVDs measurements

by 1
N

∑N
k=1 0.5(x

(m)
1,k − x

(m)
2,k )(x

(n)
1,k − x

(n)
2,k) , where x denotes the measured moment,

subscript 1, 2 represent two 2DVDs and N is the number of side-by-side samples.

Correlation coefficients between sampling errors for DSD moments ranging from the

0th to the 6th order are given in Table 3.2. It is obvious that sampling errors are

less correlated if two moments are widely spaced. The correlation will be less than

10% if the order difference is larger than 6. Given the same order difference (e.g.,

correlation of M0 and M3 versus correlation of M3 and M6), the correlation tends

to be a little larger for higher moments, which is caused by sampling errors. As for
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the 2nd, 4th, and 6th moments, which were chosen to retrieve DSD parameters, the

correlation coefficients for pairs M2-M4, M4-M6, and M2-M6 are 0.74, 0.82 and 0.40,

respectively. It is important to know these FSDs and correlation coefficients because

they determine the standard errors of DSD parameter estimation [Zhang et al. (2003)].

Table 3.2: Correlation coefficient of sampling errors for different moments

M0 M1 M2 M3 M4 M5 M6

M0 1 0.8927 0.6805 0.4996 0.3385 0.1927 0.0531

M1 0.8927 1 0.9142 0.7202 0.5116 0.3449 0.2058

M2 0.6805 0.9142 1 0.9160 0.7371 0.5594 0.3988

M3 0.4996 0.7202 0.9160 1 0.9346 0.7927 0.6215

M4 0.3385 0.5116 0.7371 0.9346 1 0.9493 0.8244

M5 0.1927 0.3449 0.5594 0.7927 0.9493 1 0.9570

M6 0.0531 0.2058 0.3988 0.6215 0.8244 0.9570 1

3.3 DSD Parameter Estimation

3.3.1 Estimation method

There are seven estimators, i.e., five moment estimator as well as L-Moment (LM)

and maximum likelihood (ML) estimators, evaluated in this study. They are used to

estimate three gamma DSD parameters µ, Λ and N0. The M012 estimator is based on

the 0th, 1st, and 2nd order moments. Similarly, the other four estimators are referred

to as “M234”, “M246”, “M346”, and “M456”. The moment estimators are
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i) M012:

η̂ =
M̂2

1

M̂0M̂2

, µ̂ =
1

1− η̂
− 2,

Λ̂ =
M̂0

M̂1

(µ̂+ 1), N̂0 =
M̂0Λ̂(µ̂+1)

Γ(µ̂+ 1)
.

(3.5)

ii) M234:

η̂ =
M̂2

3

M̂2M̂4

, µ̂ =
1

1− η̂
− 4,

Λ̂ =
M̂2

M̂3

(µ̂+ 3), N̂0 =
M̂2Λ̂(µ̂+3)

Γ(µ̂+ 3)
.

(3.6)

iii) M246:

η̂ =
M̂2

4

M̂2M̂6

, µ̂ =
(7− 11η̂)− (η̂2 + 14η̂ + 1)0.5

2(η̂ − 1)
,

Λ̂ =

[
M̂2

M̂4

(µ̂+ 3)(µ̂+ 4)

]0.5

, N̂0 =
M̂2Λ̂(µ̂+3)

Γ(µ̂+ 3)
.

(3.7)

iv) M346:

η̂ =
M̂3

4

M̂2
3 M̂6

, µ̂ =
(8− 11η̂)− (η̂2 + 8η̂)0.5

2(η̂ − 1)
,

Λ̂ =
M̂3

M̂4

(µ̂+ 4), N̂0 =
M̂3Λ̂(µ̂+4)

Γ(µ̂+ 4)
.

(3.8)

v) M456:

η̂ =
M̂2

5

M̂4M̂6

, µ̂ =
1

1− η̂
− 6,

Λ̂ =
M̂4

M̂5

(µ̂+ 5), N̂0 =
M̂4Λ̂(µ̂+5)

Γ(µ̂+ 5)
.

(3.9)

The ML and LM estimators are similar to the ones described by Kliche et al. (2008).

The only difference is that Kliche et al. have assumed the drop number in different

size categories follows the gamma distribution whereas assumption here is that the
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number concentration (i.e., the DSD) follows the gamma distribution. It is worth

noting that the number concentration is the drop number in a fixed size sampling

volume. However, for Kliche’s approach different size categories have different sam-

pling volumes. Consequently, two approaches are not exactly equivalent. Suppose

the number concentration of each size category Di (i = 1 . . . 41) has an integer num-

ber Ni, the summation of Ni is N . The LM and ML estimator are described as follows.

vi) LM:

l̂1 = b0, l̂2 = 2b1 − b0,

b0 =
1

N

N∑
k=1

Dk, b1 =
1

N(N − 1)

N−1∑
k=1

kD(k+1),

l̂2

l̂1
=

Γ(µ̂+ 1.5)√
πΓ(µ̂+ 2)

(3.10)

where, the l1 and l2 are the first two L-moments; D(k) is the kth size category with

Ni from small to large in sequence. The estimate of µ is calculated by nonlinear

iteration. After obtaining the estimate of µ, Λ can be calculated by

Λ̂ =
µ̂+ 1

l̂1
. (3.11)

vii) ML: The estimate of µ is calculated by iteration from following formula

ln(µ̂+ 1)−Ψ(µ̂+ 1) = ln

[
1
N

∑N
k=1Dk(∏N

i=1Di

)1/N

]
, (3.12)

where, Ψ is the “psi” function defined by Ψ(x) = Γ′(x)
Γ(x)

. The estimate of Λ has the

similar form as Eq. 3.11 and is

Λ̂ =
µ̂+ 1

1

N

N∑
k=1

Dk

(3.13)
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As described above, ML and LM estimators give estimates of µ and Λ. The third

DSD parameter, N0, is estimated from the 0th moment. The estimate of N0 is given

by

N̂0 =
M̂0Λ̂µ̂+1

Γ(µ̂+ 1)
(3.14)

3.3.2 Error analysis in estimating DSD parameters

3.3.2.1 Simulation of disdrometer observations

In order to evaluate estimators mentioned above, simulated disdrometer observations

are applied for the reason that the truth can be controlled in the simulation. The

first simulation—simulation A—assumes that the true DSD follows the gamma dis-

tribution. The simulations apply the similar procedure as described in Chandrasekar

and Bringi (1987), Smith et al. (1993), and Moisseev and Chandrasekar (2007), with

some modifications (described later in this subsection). Simulation A uses the normal-

ized gamma distribution (Eq. 2.4). Three parameters Nw, µ and D0 were randomly

generated within specific ranges as described by Ulbrich (1983), and Bringi and Chan-

drasekar (2001), which were believed to represent most natural rain DSDs. It was

assumed that µ has a uniform in the range from -1 to 4, D0 was uniform from 0.5

to 2.5 mm, and log10Nw was uniform from 3 to 5. The simulated gamma distribu-

tions with these parameters were regarded as the “truth”. Sampling errors were then

added to the “truth” and assumed to be observation errors of disdrometer. Here,

errors were not just the Poisson errors applied by Chandrasekar and Bringi (1987)

and Moisseev and Chandrasekar (2007). A modification has been made according to

the result of error quantification in Section 3.2. The detailed steps are explained as

follows. Firstly, the ratio of estimated error to Poisson error, ri (i = 1, . . . , 41), is

estimated by the ratio of the solid line to the dotted line for each size category in Fig.
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3.1. It is found that the ratio is almost unit for sizes greater than 4 mm. Considering

the side-by-side comparison may overestimate the error because of instrument factor

(e.g., different sensitivity) and environment factor (rain spatial variability over two

disdrometers), the value of ri is reduced by using r′i = 1 + 0.6(ri − 1) to better rep-

resent the measurement error for small drops. For each size category, the simulated

“true” bin number concentration Ni (i = 1, . . . , 41) is assumed as the mean. The

error with standard deviation r′iN
0.5
i is then added to Ni to simulate the observed bin

number concentration. As a result, the simulated observation would have a larger

error than Poisson error. In particularly, the sampling error for small raindrops is

much higher (about 1–5 times for D < 1.0 mm) than predicted by the Poisson theory.

The natural DSD is not necessary the gamma distribution though most previous

studies have evaluated DSD estimators based on this assumption. It is known that the

model error exists for representing observed DSDs with a gamma function. In order

to investigate the effect that the model error may have on the moment estimation, the

second simulation—simulation B—assumes the true DSD follows a perturbed gamma

distribution. Simulation B creates the model error by adding random perturbation

to the gamma distribution. The perturbation is simulated using correlated random

errors. The procedure is described as follows. First, a sequence of correlated random

values x = [x1, x2, . . . , x4] is simulated (the procedure is the same as that for gener-

ating time-series radar echoes of weather signals; Zrnic (1975)). The length of the

sequence is 41, which corresponds to 41 size categories. Too small correlation length

(e.g., 1 or 2) tends to introduce independently statistical errors without changing the

intrinsic gamma shape. Too long correlation length (e.g., 20 or more) would likely

to yield a different DSD shape. In this study, the correlation length is appropriately

chosen as 5. The random variable x has a Gaussian distribution with a zero mean

and an arbitrary standard deviation of 0.05. A perturbed gamma distribution is then
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generated by multiplying the ith bin of a simulated gamma distribution by 10xi . The

perturbed distribution consists of some perturbation and a gamma distribution, and

it is assumed to be the truth of a “non-gamma” distribution. It is worthwhile to note

that the simulated non-gamma distributions are not far from gamma distribution be-

cause the uncertainty of perturbation is only 0.5 dB (∼ 12%), which is large enough

to simulate most of the observed DSDs. Similar to the procedure of simulation A,

sampling errors are then added to the truth for the simulated observation. Although

the simulation of non-gamma DSD seems somewhat artificial, the simulation aids in

the understanding of the characteristics of moment errors and moment estimators

when a DSD does not follow a gamma distribution.

The unrealistic simulation may deteriorate the statistics. Some physical con-

straints have been applied for data quality control. The simulated spectrum is as-

sumed good and valid for statistical analysis if its integral parameters fall into ordinary

ranges of most observed spectra. According to disdrometer observations, very narrow

spectra (Dmax < 0.8 mm) account for 0.9% of total dataset, data of ZH larger than

55 dBZ are less than 0.5%, and data of R less than 0.1 mm h−1 and larger than 100

mm h−1 account for only 0.4% and 0.15%, respectively. In addition, spectra with few

drops (Tct < 10) do not have meaningful statistical information. All these constraints

are applied to eliminate the “bad” spectra for statistical analysis.

3.3.2.2 Uncertainties of estimated DSD parameters for a gamma DSD

According to Eqs. 3.5–3.9 of moment estimators, the value of estimated µ depends

on the ratio η of moments. The value of η is always less than 1 according to the

mathematical calculation. Fig. 3.2a shows the dependence of µ on η for different mo-

ment estimators. The parameter r is defined as the ratio of estimated η to the true

value, i.e., r = η̂/η . Fig. 3.2b shows the histogram of r for M234 and M246 based on
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simulation A. Both distributions of r are skewed towards the right of value 1 because

the error of moments increases the uncertainty of r. The distribution for M234 is

narrower than the distribution for M246, implying that M234 has fewer errors. It is

also found that the larger the moment error, the more skewed the shape is towards

values greater than 1 (not shown). It is noted that all derivatives of µ with respect

to η increase with η. If estimated η deviates from the true value, estimated µ will

be biased; moreover, the value of µ has more overestimation than underestimation.

Fig. 5 of Zhang et al. (2003) illustrates the tendency for overestimation prevails over

underestimation by showing that the µ − Λ scatter points have a larger upward ex-

tension. Figs. 6 and 7 of Smith et al. (2005) also demonstrate these kinds of biases

in estimating DSD parameters.

Fig. 3.3 shows the histograms of ∆µ (the difference between the M246 estimation

and the truth) within several rain-rate ranges. These histograms indicate that µ is

overestimated rather than underestimated; the smaller the rain-rate, the larger the

overestimation. Fig. 3.4 shows the normalized frequency of ∆µ, for different ranges of

µ. The thin dashed line denotes the result of M234. In each subplot, the thin dashed

line is almost symmetrical and has a peak at the zero point, implying that M234 has

the smallest estimate bias of µ among all the estimators. M456, represented by the

dotted line, tends to have the largest bias of µ. Kliche et al. (2008) demonstrated

by simulation that ML and LM estimators have much less bias in estimating µ than

moment estimators (e.g., M234). As shown in Fig. 3.4, however, we could not obtain

the same result. Both ML and LM estimators depend heavily on the accuracy of

measuring the number of small drops because the number of large drops is normally

small. This implies that ML and LM estimators are sensitive to error at the low

end of DSD. This tendency is supported by the results in Kliche et al. (2008), which

show that truncating the low end of DSD deteriorates the performance of ML and
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Figure 3.2: (a) The dependence of µ on η for five moment estimators. (b) The

histograms of ratio r distributions for M246 and M234 estimators. The dataset is the

simulation A, which simulates the gamma DSDs.

LM estimators much more than for high moment estimators. For simulation A, we

have enlarged the Poisson error about 1-5 times at the low end (D ≤ 1.0 mm) of

DSD by introducing the modified error. As a result, it is not surprising that the

ML and LM estimators have larger biases than M234 in the range −1 < µ ≤ 0.

In fact, as shown in Fig. 3.4, ML and LM estimators have similar performance to
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Figure 3.3: The histograms of ∆µ distributions for different rain-rate ranges. The

dataset is the simulation A and the estimator is M246.
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Figure 3.4: The frequency of ∆µ, normalized by total number of minutes, for different

estimators based on simulation A, given the range of true µ: a) −1 < µ ≤ 0; b)

0 < µ ≤ 1; c) 1 < µ ≤ 2; d) 2 < µ ≤ 4.

M012. This is reasonable because the low moment estimator M012 also depends

largely on the low end of DSD. It should be emphasized here that smaller estimate

bias of DSD parameters does not guarantee better estimates of integral parameters

because the DSD model is highly nonlinear. In the next subsection, these estima-

tors will be evaluated by considering the estimation of integral parameters. For the

rest of this subsection, more details of DSD parameter estimation are to be addressed.
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Table 3.3: Fractional Errors (%) for different moments of simulated Gamma DSDs

M2 M3 M4 M5 M6

0 < R < 1 7.39 8.52 11.00 14.63 19.41

1 < R < 3 4.67 5.66 7.65 10.76 15.13

3 < R < 5 3.81 4.75 6.61 9.54 13.82

5 < R < 10 3.36 4.20 5.88 8.63 12.79

10 < R < 20 2.78 3.60 5.19 7.81 11.84

20 < R < 35 2.28 2.94 4.24 6.46 9.91

35 < R < 50 1.90 2.45 3.53 5.30 8.11

50 < R < 80 1.58 2.08 3.05 4.62 7.02

80 < R 1.23 1.56 2.21 3.30 5.00

All 3.87 4.71 6.43 9.14 13.08

Table 3.4: Biases of µ for different estimators of simulated Gamma DSDs

M246 M234 M246 ∗ M234 ∗

0 < R < 1 0.72 0.31 10.78 13.18

1 < R < 3 0.56 0.24 4.73 6.04

3 < R < 5 0.54 0.23 2.97 3.76

5 < R < 10 0.51 0.21 2.10 2.60

10 < R < 20 0.49 0.20 1.49 1.77

20 < R < 35 0.42 0.17 1.11 1.30

35 < R < 50 0.35 0.14 0.93 1.10

50 < R < 80 0.28 0.11 0.76 0.92

80 < R 0.21 0.07 0.54 0.66

∗ means truncation of raindrops < 0.6 mm
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As discussed above, the moment error is a key factor in accurately estimating DSD

parameters. As shown in Figs. 3 and 4 of Zhang et al. (2003), the standard deviation

of the estimated µ and Λ parameters increases with increasing moment errors or with

decreasing correlation between moments. For simulated data, the relative moment

errors are calculated by

F =
∣∣∣X − X̄

X

∣∣∣ (3.15)

where the parallel bars “| · |” stand for the absolute value, the upper bar “−” denotes

the average of data, X represents the integral variable of interest and F represents the

fractional error. Table 3.3 lists the fractional error for moments from the 2nd order to

the 6th order based on dataset of simulation A. It is seen that the higher the R, the

smaller the moment error and the higher the moment order, the larger the moment

error. Based on these moments, the DSD parameters are estimated. The biases of

µ estimated by M234 and M246 are listed in the two left-most columns of Table 3.4.

The estimation bias decreases with increasing R, and M234 has a smaller bias than

M246. It is noted that the bias of µ is not large. This implies that M246 and M234

estimators have the potential to retrieve physical information from the observations

despite their biases.

3.3.2.3 Uncertainties of estimated integral variables for a gamma DSD

The goodness of an estimators performance depends on the definition of “goodness”

of estimation. In this study, the “goodness” of an estimator is examined by the frac-

tional error in estimating five integral parameters NT , R, Dm, ZH , and ZDR. The

relative performances of seven estimators are investigated for each parameter. Given

that all five evaluated parameters have physical significances, the better estimator is

suggested according to the overall performance. The formulas of NT , R, Dm, ZH and
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ZDR refer to Eqs. 2.10, 2.13, 2.18, 2.21 and 2.22.

Table 3.5 lists the estimation biases for five integral variables. Table 3.6 shows

the corresponding fractional errors of the estimates. R and Dm are evaluated in lin-

ear units while ZH , ZDR and NT are evaluated in logarithmic units. It is seen that

M234 and M246 have a similar performance and should be considered as the two

best estimators. The ML and LM estimators, like M012, have the best estimates for

NT but the worse estimates for other parameters. As expected, M456 has the worst

estimates for NT . It is found that the performance of an estimator is related to rain

intensity. The dataset was sorted for several ranges of R. Within each range, the

fractional error of the estimation is calculated according to Eq. 3.15. The fractional

error curves for different estimators are plotted in Fig. 3.5. These estimators gener-

ally provide a better estimation with increasing R than the ML and LM estimators

except for NT . This result implies that the latter two estimators are not practical

when observed DSD have large errors for small drop sizes. M246, M234, M346, and

M456 perform similarly when estimating ZH and R, implying that the error of an

estimated variable is determined mainly by the error of the moment with the closest

moment order to it. For example, the R is approximately proportional to the 3.67th

moment. The uncertainty of the estimated R comes mainly from the error of the 4th

moment applied by estimators. M234 provides a relatively better estimate than other

estimators (except M012 for NT ), though the difference is slight compared with M246.

Compared to M246, the improvement of M234 is not much. This is consistent with

the error analysis of M234 by Smith et al. (2005), who believed that middle moment

estimators are better than the estimators with low or high moments. According to

the simulation, this conclusion is appropriate if the true DSD is a gamma distribution.
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Table 3.5: Bias for different integral variables based on simulated Gamma DSDs

M246 M234 M346 M456 M012 ML LM

R(mm h−1) -0.094 -0.185 -0.112 -0.156 -0.248 -1.221 -1.197

Dm(mm) -0.032 -0.022 -0.022 0.001 -0.03 -0.102 -0.094

ZH(dBZ) -0.44 -0.284 -0.441 -0.443 -0.439 -1.838 -1.709

ZDR(dB) -0.093 -0.048 -0.1 -0.117 -0.048 -0.143 -0.13

NT (dB) -0.057 -0.018 -0.096 -0.179 -0.001 -0.001 -0.001

Table 3.6: Fractional errors (%) for different integral variables based on simulated

Gamma DSDs

M246 M234 M346 M456 M012 ML LM

F [R(mm h−1)] in % 5.49 5.51 5.49 5.5 7.65 18.25 14.75

F [Dm(mm)] in % 2.85 2.56 2.56 2.54 4.38 10.48 8.43

F [ZH(dBZ)] in % 2.23 1.99 2.23 2.23 3.43 9.17 7.75

F [ZDR(dB)] in % 10.5 7.69 11.13 12.5 11.62 22.79 18.41

F [NT (dB)] in % 2.29 1.27 3.54 6.19 0.93 0.93 0.93
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Figure 3.5: The dependences of fractional errors (in %) of estimated integral variables,

ZH (dBZ), ZDR (dB), R (mm h−1), Dm (mm) and log10[NT (m−3)], on the rain-rate.

Seven estimators are evaluated. The dataset is obtained using simulation A.
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3.3.2.4 Uncertainties in the estimates for a non-gamma DSD

In Simulation B, the DSD is assumed to have a non-gamma distribution, and the

same analysis is made as the previous subsection. As shown in Table 3.7, moment

errors for Simulation A and B are very similar, implying that the following results

are probably affected not by the change of moment errors but rather by the change

of DSD shape. The bias and fractional error results are shown in Table 3.8 and Fig.

3.6. Compared to the results based on the gamma distribution assumption, the es-

timation uncertainties of R, Dm and NT have few changes for almost all estimators.

One evident change is that M234 is no longer the best estimator for ZH and ZDR.

Although the measured middle moments still have fewer errors (as shown in Table

3.7), the middle moment estimator is degraded when the DSD has model errors. As

shown in Fig. 3.6, the estimate uncertainty of ZDR is apparently enlarged for M234,

M012, ML and LM but reduced for M246, M346, and M456, especially if R is less

than 10 mm h−1. M456, instead of M234, becomes most accurate in estimating ZDR,

indicating that high moment estimators are less sensitive to model error in estimating

ZDR than low moment estimators. Because the natural DSD is not an exact gamma

distribution, low and middle moment estimators might not be the best ones to es-

timate high-moment parameters. Looking at Tables 3.7–3.9 and Figs. 3.5 and 3.6,

there is no fundamental difference for estimators such as M234, M246, and M346 in

estimating NT , R, D0, ZH , and ZDR.

Table 3.7: Fractional Errors (%) of different moments based on simulated DSDs

M0 M1 M2 M3 M4 M5 M6

Gamma 6.32 4.05 3.87 4.71 6.43 9.14 13.08

Non-Gamma 6.32 4.02 3.85 4.70 6.27 8.45 11.09
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Table 3.8: Same as Table 3.5, but based on simulated Non-gamma DSDs

M246 M234 M346 M456 M012 ML LM

R(mm h−1) 0.024 -0.067 0.006 -0.038 -0.116 -1.041 -1.037

Dm(mm) -0.013 -0.004 -0.004 0.019 -0.011 -0.083 -0.075

ZH(dBZ) -0.08 0.077 -0.081 -0.083 -0.075 -1.466 -1.341

ZDR(dB) 0.019 0.063 0.011 -0.006 0.065 -0.03 -0.017

NT (dB) -0.058 -0.018 -0.097 -0.179 -0.001 -0.001 -0.001

Table 3.9: Same as Table 3.6, but based on simulated Non-gamma DSDs

M246 M234 M346 M456 M012 ML LM

F [R(mm h−1)] in % 5.52 5.46 5.5 5.48 7.56 18.17 14.63

F [Dm(mm)] in % 2.36 2.28 2.28 2.8 4.28 10.26 8.21

F [ZH(dBZ)] in % 1.84 1.88 1.84 1.84 3.31 8.88 7.41

F [ZDR(dB)] in % 8.25 10.86 8.13 7.87 15.07 24.15 19.13

F [NT (dB)] in % 2.36 4.88 3.61 6.26 0.93 0.93 0.93
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Figure 3.6: The same as Fig. 3.5 except the dataset is from simulation B, which

simulates the non-gamma DSDs.
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3.3.3 Evaluating estimators using 2DVD dataset

Evaluation using real DSD data gives similar results to the analysis made in previous

section based on simulation B, i.e., non-gamma distribution assumption. Following

the analysis in the previous section, NT , R, Dm, ZH , and ZDR are directly calculated

using the observed DSDs, as well as from gamma DSD parameters estimated with

each of the seven estimators. Tables 3.10 and 3.11 lists the biases and the fractional

errors of estimation, assuming the observed DSDs to be the reference. It is shown

that ML and LM estimators, close to M012, have the largest biases and errors in es-

timating R, Dm, ZH , and ZDR. Estimators M246, M234, M346 and M456 have small

biases and little uncertainty in estimating the five variables, with a few exceptions.

Similar to results in previous subsection, M012 has a slightly better performance than

ML and LM, but still has large fractional errors in estimating R, Dm, ZH , and ZDR.

M234 is not as accurate as M246, M346 and M456 in estimating ZH and ZDR. From

Tables 3.10 and 3.11, it is possible to conclude that M234 may be more sensitive to

model errors than high moment estimators, despite the fact that middle moments

have lower sampling errors. Moreover, ML and LM estimators are not accurate in

estimating high moment integral parameters for real data because they are sensitive

to measurement error at the low end of DSD, as well as to model error.

Table 3.10: Same as Table 3.5, but based on observed DSDs

M246 M234 M346 M456 M012 ML LM

R(mm h−1) 0.017 0.02 0.015 -0.008 -0.694 -1.307 -1.336

Dm(mm) -0.009 0 0 0.029 -0.084 -0.1468 -0.151

ZH(dBZ) -0.003 0.104 -0.002 -0.002 -0.965 -1.941 -2.070

ZDR(dB) 0.045 0.076 0.04 0.02 -0.086 -0.171 -0.172

NT (dB) 0.369 0.059 0.018 -0.072 0 0 0
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Figure 3.7: The comparisons of (a) ZH and (b) ZDR. The cross points indicate the

observations by the polarimetric radar. The circle points represent the calculations

based on DSDs observed by the 2DVD. Thin solid, dash-dotted, dotted and thin

dashed lines indicate the calculation based on DSDs estimated by M246, M234, ML

and LM estimators. The statistic values of these curves are listed in Tables 3.12 and

3.13
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Table 3.11: Same as Table 3.6, but based on observed DSDs

M246 M234 M346 M456 M012 ML LM

F [R(mm h−1)] in % 0.4 0.45 0.29 0.05 7.38 16.0 15.30

F [Dm(mm)] in % 1.01 0 0 2.18 7.33 11.76 11.41

F [ZH(dBZ)] in % 0.07 0.96 0.06 0.03 5.52 9.03 8.73

F [ZDR(dB)] in % 8.64 16.97 7.4 4.07 32.23 39.89 37.71

F [NT (dB)] in % 4.5 3.46 6.23 8.96 0 0 0

In practice, disdrometer observations are usually used as the ground truth to ver-

ify radar observations. However, there are always discrepancies between ground and

radar observations. One example is given in Fig. 3.7. The time-series values of ZH

and ZDR observed by NCAR S-Pol radar [Brandes et al. (2002, 2004a); Zhang et al.

(2003)] are plotted in cross points. The disdrometer was deployed about 38 km from

the radar and the elevation angle of radar beam was 0.5◦. The circle points represent

the ZH and ZDR calculations from disdrometer observations underneath the radar

resolution volume. By comparison, estimates based on M246, M234, ML and LM

estimators are plotted in thin solid, dash-dotted, dotted and thin dashed lines, re-

spectively. The statistics of mean difference and standard deviation for these curves

versus radar measurements are listed in Tables 3.12 and 3.13. As they show, the re-

sults from four moment estimators are very close to disdrometer observations, though

ML and LM estimators have the worst performance. The moment estimators cannot

compensate for, nor reduce, the discrepancy between the radar and the disdrometer

observations. This implies that the discrepancy is mainly due to instrumental factors

and physical reasons, and not to the DSD moment error measured by the disdrome-

ter. From the result, it can be concluded that the choice of moment estimator is not

an effective solution for improving radar-disdrometer comparison.
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Table 3.12: Mean difference between 2DVD calculations and radar observations

2DVD Obs. Vs.

Radar Obs.

M246 Est. Vs.

Radar Obs.

M234 Est. Vs.

Radar Obs.

ML Est. Vs.

Radar Obs.

LM Est. Vs.

Radar Obs.

ZH(dBZ) 0.78 0.64 0.74 1.05 0.52

ZDR(dB) 0.11 0.12 0.14 0.09 0.05

Table 3.13: Standard deviation of 2DVD calculations versus radar observations

2DVD Obs. Vs.

Radar Obs.

M246 Est. Vs.

Radar Obs.

M234 Est. Vs.

Radar Obs.

ML Est. Vs.

Radar Obs.

LM Est. Vs.

Radar Obs.

ZH(dBZ) 3.07 3.09 3.04 3.42 3.17

ZDR(dB) 0.17 0.18 0.21 0.21 0.20

3.4 Analysis of C-G DSD Model

3.4.1 C-G DSD model

Although gamma distribution is flexible to represent natural DSDs, its three degrees

of freedom increase the complexity of DSD retrieval from radar observations. For

example, Bringi et al. (2002) proposed using polarimetric radar measurements of

ZH , ZDR and specific differential phase (KDP ) to retrieve a normalized gamma DSD.

However, Brandes et al. (2004a) have shown that this approach is sensitive to the

KDP noise. In addition, KDP is derived from measurements made over many range

gates and does not always match ZH and ZDR measurements well at every range

gate. Therefore, the addition of KDP may result in a deterioration of DSD retrieval

at a specific range gate, especially if it is not used optimally. Zhang et al. (2001)

introduced a constraint-gamma (C-G) DSD model, which had a constraint µ − Λ

relationship derived from disdrometer dataset. This model reduces the freedom of
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DSD model to two and facilitates the DSD retrieval from dual-polarization or dual-

frequency radar measurements. The C-G DSD model has been validated by several

studies of DSD retrieval [e.g., Vivekanandan et al. (2004); Brandes et al. (2004a,b);

Zhang et al. (2006a); Cao et al. (2008); Cao and Zhang (2009)].

3.4.2 Truncation issues on parameter correlation

Moisseev and Chandrasekar (2007) argued that the relation between the estimated µ

and Λ parameters may not represent physics. However, their results were based on

an unrealistic simulation with artificially raised moment errors. For example, their

main conclusions were based on the truncation of the low end (< 0.6 mm) of a DSD

spectrum. This kind of truncation greatly enlarges moment errors, especially for low

moments. The moment error for the truncation of 0.6 mm is listed in Table 3.14. The

bias of estimated µ is listed in the two right-most columns of Table 3.4. It is shown

that moment errors are significantly increased for low Rs and the moment M2. The

bias of estimated µ is also increased. However, this kind of truncation does not realis-

tically reflect disdrometer observations. The 2DVD has a good resolution of 0.195 mm

for the prototype model or 0.132 mm for the latest model, from which data are used

for this study. This means that the 2DVD could measure raindrops at least as small

as 0.2 mm. Although small raindrops might be under-sampled due to environmental

effects, it is not possible to miss all the raindrops smaller than 0.6 mm. In addition,

Moisseev and Chandrasekar’s simulation used a sampling volume of 1.5 m3 that is

equivalent to a shorter sampling time of 30 seconds and a uniform terminal velocity

5 m s−1, leading to a larger error for high moments. These limitations enlarged the

sampling error, as did the truncation of size less than 0.6 mm. Consequently, the

biases of estimated µ and Λ (not shown) are significantly increased. The histograms

of r and ∆µ are shown in Fig. 3.8. It is shown that µ may even be overestimated

by 20, which is beyond the meaningful range. The artificial overestimations lead to a
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spurious correlation between µ and Λ parameters [as shown in Fig. 5, Moisseev and

Chandrasekar (2007)]. This correlation is unrealistic and cannot verify the presump-

tion that the observed µ− Λ relation by Zhang et al. (2001) is mainly attributed to

error effects.

Figure 3.8: The histograms of (a) r and (b) ∆µ distributions. The estimator is M246.

The dataset is the simulation A, but the low end of DSDs (< 0.6 mm) is truncated.

3.4.3 Refinement of µ− Λ relation

3.4.3.1 DSD sorting and averaging based on two parameters (SATP)

It is well known that DSD variability can be reduced by averaging. For example, Joss

and Gori (1978) demonstrated that random, time-sequential, and rain-rate sequential

averaging will lead to exponential DSDs. Sauvageot and Lacaux (1995), considering

“instantaneous” DSDs having strong variability, further studied averaged DSDs of

JWD data within a set of rain-rate intervals, finding that the rain-rate reflectivity

(R − ZH) relations obtained from averaged DSDs are close to those calculated from

non-averaged data and compatible with those proposed in previous studies. Lee and

Zawadzki (2005) introduced the sequential intensity filtering technique (SIFT), which
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Table 3.14: Same as Table 3.3, but the low end of DSD (< 0.6 mm) is truncated.

M2 M3 M4 M5 M6

0 < R < 1 48.36 32.08 22.60 19.79 21.63

1 < R < 3 31.25 18.73 13.29 12.93 15.89

3 < R < 5 22.30 12.56 9.48 10.42 14.08

5 < R < 10 16.20 8.85 7.35 9.04 12.92

10 < R < 20 11.68 6.32 5.87 7.97 11.89

20 < R < 35 8.52 4.52 4.58 6.53 9.93

35 < R < 50 7.08 3.53 3.72 5.35 8.13

50 < R < 80 5.82 2.87 3.17 4.64 7.03

80 < R 3.74 1.93 2.26 3.31 5.01

All 21.86 13.24 10.12 10.63 13.67

was to be used for processing a single rain event, sorting DSDs within a time window

(typically one hour) by the reflectivity and averaging consecutive DSDs (typically

10). They found that averaging DSDs within an interval of reflectivity could reduce

observational errors of disdrometer measurements and yield more stable R − ZH re-

lations. The averaging methods mentioned above, however, apply a coarse filtering

technique that result in a significant loss of physical variations. A better method to

process disdrometer data is needed—one that can preserve the physical variability

while reducing the impact of observational error.

As shown in the previous subsection, sampling error is an unavoidable problem

for 2DVD measurements, resulting in the degradation of the DSD fitting [Zhang et al.

(2003)]. Since the DSD models are based on 2DVD observations (e.g., the C-G DSD

model depends on fitted shape and slope parameters), the challenge is to reduce the

sampling errors so that fitted shape and slope parameters are less affected by errors.
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Here, we suggest a sorting and averaging method based on two parameters (SATP).

The SATP method is proposed due to the fact that numerous 2DVD measurements are

available with which the constraining shape-slope relation of C-G DSD model could be

developed. Unlike the SIFT method introduced by Lee and Zawadzki (2005). SATP

is applied to a whole dataset rather than a single event. With SATP, two parameters

are used to characterize the DSD. Physical variability is therefore preserved much

better than with SIFT. The SATP procedure is briefly described as follows.

(i) Select two characteristic parameters to build two-dimensional grids.

(ii) Calculate both characteristic parameters based on 1-min DSD measurements.

(iii) Sort the whole dataset and find DSDs with similar physical characteristics ac-

cording to their two characteristic parameters.

(iv) Average observed DSDs located in the same grid to obtain a new DSD.

(v) Process averaged DSDs (i.e., fit to a gamma distribution) to develop the shape-

slope relation of C-G DSD model.

The characteristic parameters can be any two rain variable (e.g., DSD moments,

characteristic sizes of DSD, etc.). In general, the high moments, which have relatively

larger measurement errors, and the low moments, which are determined by small

drops and susceptible to disdrometer measurement uncertainty, do not represent rain

physics well. On the other hand, the middle moments are both more representative

of rain physics and more accurately measured. In this study, the middle moment-

related parameters, R and D0, are therefore chosen for processing. The sorting grids

used in this study are shown in Fig. 3.9. Each grid in the R−D0 plane is defined by

variations of ±5% for R and ±0.025 mm for D0. The bar length indicates the number

of observed DSDs. DSDs within each grid pixel are characterized by small variations
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of R and D0 and are assumed to represent the similar rain physics. For example, Fig.

3.10 shows three groups of observed DSDs (thin solid lines) within three different

grids. The dashed, bold solid and dash-dotted lines represent three mean DSDs. For

the three groups of DSDs in Fig. 3.10, FSDs of R are 5.58%, 11.82% and 5.1%, FSDs

of D0 are 1.53%, 1.86% and 0.76%, FSDs of NT are 1.75, 1.73 and 1.46 dB, and FSDs

of ZH are 1.57, 1.85 and 0.72 dB, respectively. These FSDs imply that SATP has

the potential to identify similar DSDs. If we assume that the sorted DSDs within

each grid pixel have the same DSD (expected value) and similar sampling error, the

latter can surely be reduced by averaging the sorted DSDs. The fit to the averaged

DSD is therefore less affected by errors and represents the physics better than the fit

to non-averaged DSDs. Compared to one-parameter filtering methods, SATP better

preserves the physical variation.

SATP is a procedure for processing large amounts of raw data that contain errors.

Because it is hard to exactly quantify the error reduction of each individual grid,

SATP is not intended to analyze “instantaneous” integral rain parameters. SATP is

designed to provide the mean property of the DSD (i.e., the mean µ − Λ relation)

rather than improve upon the individual observation. Because the physics is preserved

with less error, the mean µ− Λ relation processed by SATP is obviously better than

that obtained directly from error-contaminated measurements. Determining the error

reduction for a specific DSD is not the major concern. On the other hand, the

frequency distribution (Fig. 3.9) shows that light rain data (R < 3 mm h−1) account

for a large portion of the dataset. The µ− Λ relation derived from the data prior to

SATP filtering will be largely controlled by those data. Fitted DSDs of light rains

always have large µs and Λs, and unfiltered results will raise the slope of mean µ−Λ

relation and cause the retrieval using µ − Λ relation to deteriorate. SATP reduces

the effect of light rain events and represents other rain events well. It is worthwhile

67



Figure 3.9: Occurrence frequency of sorted rain data based on rain rate (step 10%) and

median volume diameter (step 0.05 mm). Each pixel of the R−D0 plane represents a

specific DSD. The bar over the pixel denotes the number of observed DSDs sorted for

one specific DSD. Observed DSDs within a pixel are averaged to obtain the specific

DSD.

to note that SATP could be improved if more parameters (e.g. three parameters) are

used to sort the similar DSDs. In this study, the dataset is not sufficient so that only

two parameters have been applied. In next subsection, SATP is applied to derive a

constrained µ− Λ relation.

3.4.3.2 Refined µ− Λ relation

The shape-slope relation of the C-G DSD model may vary in different climate regions.

Previous studies [e.g., Zhang et al. (2001); Brandes et al. (2004b)] have shown that
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Figure 3.10: Example of sorted DSDs and their mean DSDs. Thin solid lines represent

the observed DSDs, which are sorted into three grids using SATP method. DSDs

within one grid have the similar distribution. Three mean DSDs are denoted as bold

dashed line, bold solid line, and bold dash-dotted line, respectively. Those mean the

DSDs, which represent (R,D0)=(1.1 mm h−1, 1.04 mm), (5.57 mm h−1, 1.19 mm),

and (86.58 mm h−1, 1.38 mm), respectively.

the relation for the Southern Great Plains (i.e., Oklahoma) is a little different than

the one for a subtropical region (i.e., Florida). Using the SATP method, 2DVD data

were processed to refine the µ − Λ relation for rains in Oklahoma. First, the data

were grouped on a R −D0 grid and averaged. Averaged DSDs were then fitted to a

gamma distribution by the truncated moment fit [TMF, Vivekanandan et al. (2004)],

a modified M246 estimator. After that, the second order polynomial least-square fit

was used to obtain the mean µ − Λ relation. The fitted µs and Λs for sorted and

averaged DSDs are plotted in Fig. 3.11. The solid line is the fitted curve of circle

points. A dashed line depicts the Florida µ−Λ relation from Zhang et al. (2001). The

dashed line generally has larger µs than the solid line, given the same Λs. It implies
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that DSDs in Florida tend to have a narrower shape than DSDs in Oklahoma. The

solid line in Fig. 3.11 is the refined µ− Λ relation of C-G DSD model used for DSD

retrieval and is given by

µ = −0.0201Λ2 + 0.902Λ− 1.718 (3.16)

Eq. 3.16 is applicable for a Λ within a range from 0 to 20. Larger Λ values are

thought to be the result from measurement errors rather than storm physics [Zhang

et al. (2003)].

Figure 3.11: Scatter diagram of µ − Λ with DSD sorting. Circles denote DSD data

fitted by TMF method. Solid line is the mean curve fitted to circle points by two-

order polynomial fit. Dashed line corresponds to the Florida relation [Zhang et al.

(2001)].

To verify the refined µ−Λ relation, we examine the Dm and standard deviation of

mass-weighted diameter distribution (σm) because both can be directly derived from

observations and are independent of sorting and fitting procedures. If relation 3.16
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Figure 3.12: (a) Scatter diagram of Dm versus σm. Circles denote that Dm and σm

are calculated from observed DSDs of 14200 minutes. The solid line denotes that Dm

and σm are calculated from gamma DSDs with µ − Λ constrained by relation 3.16.

(b) Scatter diagram plot of retrieved Dm versus observed Dm that using relation 3.16.

Crosses denote the data points, and solid line corresponds to the unit slope. The bias

is −2.18% and the correlation coefficient is 0.915. (c) The same as (b) but for σm.

The bias is −1.15% and the correlation coefficient is 0.985.
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represents rain physics, the Dm − σm relation derived from observations and from

relation 3.16 should be consistent. Fig. 3.12a shows the result of these calculations.

Crosses denote calculations of Dm and σm from observed 1-min DSDs. The solid line,

derived from relation 3.16, agrees with observations. Further verification was done by

examining retrieved Dm and σm using the relation 3.16. Scatter diagram of retrieved

and observed Dm and σm are shown in Fig. 3.12b and c. Some data points deviate

substantially from the solid line (e.g., observed σm larger than 2.4 mm). These data

points typically are DSDs with long and poorly sampled tails (not shown). However,

the outliers are few in number and don’t contaminate the result. The bias of retrieved

Dm using relation 3.16 is only -0.03 mm (or −2.18%) and the correlation coefficient

is 0.915 (Fig. 3.12b). The bias of retrieved σm is only -0.007 mm (or −1.15%) and

the correlation coefficient is 0.985 (Fig. 3.12c). The same comparison procedure can

be applied for rain variables of W , R, D0, and NT . For observations with R < 100

mm h−1, Table 3.15 lists bias and correlation values of retrievals versus observations

for several rain variables. Except for NT , all these variables have a small bias and a

correlation coefficient close to 1. These results show that the refined µ − Λ relation

is valid for the rain DSD retrieval.

Table 3.15: Bias and correlation coefficient for retrieved rain variables versus obser-

vations

Dm σm W R D0 NT

Bias (%) -2.18 -1.15 2.52 3.37 8.73 14.16

Corr. Coef. 0.915 0.985 0.967 0.986 0.819 0.763

3.4.3.3 Further study of physical information of µ− Λ relation

According to the analysis of simulated data, M234 and M246 have an overall good

performance among seven estimators in estimating integral variables (ZH , ZDR, R,
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Dm and NT ), whether the true DSD follows a gamma distribution exactly or ap-

proximately. This means that the parameters N0, µ, and Λ estimated by M246 can

represent the physical property of a DSD. Consequently, it is reasonable to think that

the µ − Λ relation (e.g., Eq. 3.16), is at least partially due to rain microphysics. In

this subsection, it is demonstrated that there is an equivalence between the µ − Λ

relation and the mean relation derived through the normalization approach proposed

by Testud et al. (2001).

Normalization [e.g., Testud et al. (2001); Bringi et al. (2002)] has been widely

accepted as an approach of studying rain physics from observed DSDs. Testud et al.

(2001) demonstrated that the “average” of normalized DSD spectra is sufficiently

stable that only two parameters are needed to describe the DSD. The normalized

distribution FN(X) is calculated by

FN(X) = N(D)/N∗0 (3.17)

with

N∗0 =
44W

πρwD4
m

(3.18)

X = D/Dm (3.19)

where, N∗0 is the normalization term and ρw is the density of water. Following Testud’s

approach, the normalization procedure is performed to process the disdrometer data.

The “average” and the standard deviation of normalized DSDs are shown in Fig.

3.13. The solid line denotes the “average” curve (referred to as the “T-function”).

The standard deviation (represented by the error bar) is moderate for median X

(0.4 < X < 1.5). For X > 1.5, there is a large fluctuation for the normalized dis-

tribution. It is seen that Fig. 3.13 is very similar to Figs. 3-6 in Testud et al.

(2001), though the DSD spectra were not classified into different rain categories in
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Fig. 3.13 because rain categories were irrelevant to our goal. The purpose of deriving

this mean curve is to evaluate the performance of the µ − Λ relation derived from

observed DSDs. Retrievals based on the T-function were compared with those based

on the µ− Λ relation 3.16.

Figure 3.13: The statistics of normalized DSDs following Testud’s approach. The

solid line is the “average” of the normalized DSDs (referred to as the “T-function”).

The error bars represent the standard deviation.

A simulation of normalized DSDs based on the µ−Λ relation is given by Fig. 3.14.

The thick solid line is the curve of T-function. The thin solid lines represent a set of

normalized DSDs based on the µ−Λ relation with Λ varying from 0 to 10. It is shown

that the T-function could be viewed as the mean of thin lines—results of the µ − Λ

relation. The µ − Λ relation allows for more flexible shapes of the DSD, especially

for the low end. The thin lines have a similar variability to those observed DSDs,

which are normalized in Fig. 3.13. It can be seen that there is no essential difference

between the two approaches for modeling the natural DSD, though Testud argued
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Figure 3.14: The simulation of normalized DSDs (thin lines) that are based on the

µ − Λ relation with Λ varying from 0 to 10. The reference is the T-function (thick

solid line).

that his approach was free of any assumed DSD forms. Both approaches lead to a

DSD model with two parameters. The comparisons of retrievals using two approaches

also demonstrate their equivalence [Cao and Zhang (2009)].

3.5 Summary and Conclusion

In this chapter, the model error and measurement error of DSD are analyzed. Mea-

surement errors of disdrometer are quantified through a side-by-side disdrometer com-

parison. Error effects on DSD parameter estimation are investigated based on sim-

ulated and real disdrometer data. The µ − Λ relation (i.e., C-G DSD model) is

examined and refined using a sorting and averaging method (SATP) for the sake of

minimizing error effect.
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Compared to other filtering methods applied to disdrometer observations [Lee and

Zawadzki (2005); Sauvageot and Lacaux (1995)], SATP has the following advantages:

(i) identifies (or isolates) similar DSDs; (ii) statistical errors of observed DSDs can

be reduced while physical variations are preserved; (iii) is applicable to more than

one rain event; and (iv) the performance of SATP improves as the size of the dataset

increases. There are also limitations to the application of SATP: (i) two parame-

ters are not accurate enough to characterize some extreme cases (e.g., non-gamma

distributions); (ii) different combinations of two parameters may affect the retrieved

DSD; (iii) averaging the DSDs may reduce the physical variation if the grid pixels

are not small enough; and (iv) the dataset is small for extremely heavy rain which

limits the utility of SATP. In spite of these limitations, SATP is a promising method

for processing disdrometer data. SATP could be improved if more parameters (e.g.

three parameters) are used to characterize DSDs.

The error analysis and DSD estimation can be concluded as follows:

• As for 2DVD measurements, sampling errors of large drops have been found

to be substantial and dominated by statistical errors while sampling errors of

very small drops are mainly attributed to system limitations. Middle DSD mo-

ments (e.g., the 3rd moment), on the other hand, have a comparatively smaller

sampling error than outer moments (e.g., the zero moment or the 6th moment).

• DSD moments essentially represent rain physics though they contain errors.

Integral parameters of interest can be estimated/retrieved with small bias and

fractional error if corresponding moments or the closest moments are included in

the estimator. For the purpose of retrieval, it is important in model development

to include the moments that are close to observed variables.
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• Middle moment estimators of gamma DSD parameters produce fewer errors

than the lower and higher moment estimators. If the true DSD follows the

gamma distribution, M234 has the best overall performance in estimating the

evaluating variables (NT , R, D0, ZH , and ZDR). However, if the true DSD

does not follow the gamma distribution, the performance of M234 will degrade,

especially for estimating ZH and ZDR. In this case, the selection of a moment

estimator depends on the integral parameters of interest.

• ML and LM estimators have less bias in estimating gamma parameters accord-

ing to the study of Smith and Kliche. The performance, however, depends

significantly on the error at the low end of DSD and the assumption of gamma

distribution. If the measurement error at the low end is enlarged or the DSD

deviates from the gamma distribution (model error), ML and LM estimators

will degrade and perform worse than estimators such as M234, which directly

use middle moments. Generally, ML and LM estimators perform similarly to

low moment estimators such as M012.

• The overall differences among M234, M246, and M346 are not substantial for

the five evaluated parameters. M246 is recommended as the one for practical

use. Although there are differences existing among seven estimators mentioned

in this study, the choice of estimators could not account for the discrepancies

between radar and disdrometer observations. The discrepancies between radar

and disdrometer observations are mainly due to instrumental difference.

• Measurement and model errors cause estimated DSD parameters to be biased.

Moment estimators tend to overestimate the DSD shape and slope parameters

µ and Λ. The overestimation depends on the moment errors and may lead

to a spurious relation between µ and Λ if the moment errors are more than

20%. However, the observed moments are believed to have errors around 10%
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or less and the overestimation of µ is mostly not more than 5. Consequently,

the µ−Λ relations found in previous studies are not determined entirely by the

error effect. Notably, integral physical parameters are not substantially biased.

Therefore, it is speculated that the µ−Λ relations are related to microphysical

processes.

• The µ − Λ relation of constrained-gamma DSD model is demonstrated to be

equivalent to the mean function of normalized DSDs derived through Testud’s

approach. Both approaches construct a DSD model with two parameters. There

is no essential difference between these two DSD models in estimating integral

parameters. But the µ − Λ relation allows more flexibility of DSD shape and

performs better in estimating NT . Furthermore, the constrained-gamma DSD

model, like the exponential DSD model, is more convenient to apply in practice.
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Chapter 4

Characterization of Rain Microphysics and Direct

DSD Retrieval

4.1 Introduction

Parameterization of rain microphysics is essentially important in the numerical weather

prediction model for quantitative precipitation forecasts. The previous microphysi-

cal parameterizations were mostly model-based, i.e., assuming a specific DSD model.

For example, Kessler (1969) introduced a single-moment scheme, which was based on

the exponential DSD model with a fixed parameter N0. The single-moment param-

eterization scheme has been widely used in forecast models [e.g., weather research

and forecast (WRF) model] due to its simplicity and computational efficiency. The

two-moment parameterization schemes, intrinsically assuming a two-parameter DSD,

provide better representation of rain microphysics and have attracted a lot of research

interests [e.g., Hong et al. (2004); Chen and Liu (2004); Zhang et al. (2006a)]. The

two-moment schemes are appropriate for the application of polarimetric radar data

and it is found that rain microphysics can be well characterized in terms of polari-

metric radar variables, ZH and ZDR. In this chapter, the disdrometer observations

are used to characterize the rain microphysics in Oklahoma. Different from previous

studies that have assumed a specific DSD model, this study applies observed DSDs,
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free of the model assumption. Seven rain variables, NT , R, W , D0, Re, Ra, and Vtm,

are characterized in terms of ZH and ZDR. For convenient applications, this study

addresses the microphysical characterization for S-, C- and X-band, which are major

frequencies for weather radars. It is worth noting that simulated radar variables,

based on disdrometer observations and the scattering theory, might have discrep-

ancies with the radar observations. The calibration of radar data by disdrometer

observations might be required in practical applications.

The second issue of this chapter is the DSD retrieval from PRD. Generally, the

retrieval applies a two-parameter DSD model and two radar variables ZH and ZDR,

which normally have better data quality than other PRD. This chapter focuses on

the retrieval of C-G DSD model that has been verified by several studies [Brandes

et al. (2004a,b); Vivekanandan et al. (2004); Zhang et al. (2006a)]. The retrieval

mainly follows the idea of Zhang et al. (2001) but applies the refined constraint µ−Λ

relation described in Chapter 3. Possible adjustment of µ − Λ relation is also in-

vestigated. As we know, the C-G DSD model is developed based on disdrometer

observations. Although it is applicable for most radar observations, it is worth noting

the fact that there are discrepancies between radar and disdrometer observations due

to factors such as rainfall inhomogeneity, sampling volume differences, limitations

in radar measurements (e.g., contamination, sampling error, miscalibration), limita-

tions in disdrometer measurements (e.g., undersampling, splashing, wind effects), and

non-stationary rain processes (e.g., drop sorting, clustering, and evaporation). Ac-

cording to previous studies, if radar-measured reflectivity and differential reflectivity

are close to the ZH−ZDR relation derived from disdrometer measurements, retrieved

rain variables (e.g., R, D0, and NT ) generally agree with in-situ measurements. How-

ever, when radar measurements deviate greatly from disdrometer ZH −ZDR relation,

the result of DSD retrieval is not satisfactory. For example, if an DSD only has a

80



few large drops, the ZDR would be large while the ZH might be small. In this case,

the DSD is narrow and has a higher µ value than the estimation from µ− λ relation.

This kind of DSD can be observed at the leading edge of a convection and is identi-

fied as the “Big Drop” type. In such a case, the adjustment to the µ − λ relation is

recommended in the retrieval to represent the real physical process better.

4.2 Characterization of Rain Microphysics

4.2.1 S-Band

This section gives the characterization of rain microphysics at S-band frequency.

Brandes et al. (2004b) and Zhang et al. (2006a) characterized the rain microphysics

by assuming a C-G DSD model. Errors due to the DSD model, however, may prop-

agate through their procedure. The fitting directly with observations (without using

the constraining µ−Λ relation) should reduce the error propagation. In order to fur-

ther reduce the observation error, SATP method (described in Chapter 3) is applied

to process DSDs observed by the disdrometer. Rain variables, NT (m−3), R (mm

h−1), W (g m−3), and D0 (mm), were calculated according to Chapter 2 for each

data point. Radar variables, ZH (in linear units of mm6 m−3) and ZDR (dB) were

calculated according to Eqs. 2.21 – 2.22 as well. Using a polynomial fit for all data

points, rain variables were expressed in terms of radar variables as:

NT = ZH × 10(−0.0837Z3
DR + 0.702Z2

DR − 2.062ZDR + 0.794) (4.1)

R = ZH × 10(−0.0363Z3
DR + 0.316Z2

DR − 1.178ZDR − 1.964) (4.2)

W = ZH × 10(−0.0493Z3
DR + 0.430Z2

DR − 1.524ZDR − 3.019) (4.3)

D0 = 0.0436Z3
DR − 0.216Z2

DR + 1.076ZDR + 0.659 (4.4)
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In the similar way, microphysical processes can be estimated given a DSD. Evapo-

ration rate (Re, g m−3s−1), accretion rate (Re, g m−3s−1), and mass-weighted terminal

velocity (Vtm, m s−1), were calculated. Using the polynomial least-square fit with the

weight of rainwater content, mean curves (solid lines) for each parameter were derived

in terms of W (g m−3) and D0 (mm) as:

Re = W
(
0.0923D−3

0 − 0.309D−2
0 + 1.056D−1

0 − 0.0082)× 10−3 (4.5)

Ra = W
(
− 0.014D3

0 + 0.211D2
0 − 1.50D0 + 7.04)× 10−3 (4.6)

Vtm = 0.0916D3
0 − 1.088D2

0 + 4.754D0 + 0.525) (4.7)

As Fig. 4.1 shows, Eqs. 4.2–4.4 represent rain variables well for ZDR ranging

from 0.15 to 4 dB while Eqs. 4.5–4.7 are good empirical relations for Re, Ra and

Vtm with D0 less than 4 mm. To evaluate these empirical relations, results of these

relations are compared with observations. DSDs with a ZDR from 0.15 to 4 dB were

used to validate Eqs. 4.1–4.4 while DSDs with a D0 from 0.5 to 4 mm were used

for Eqs. 4.5–4.7. The bias and correlation coefficient values between empirical values

and observed values are calculated and listed in Table4.1. Scatter diagrams of these

results reveal that Eqs. 4.6 and 4.7 for estimates of Ra (proportional to the 2.67th

moment of DSD) and Vtm have a very small bias (< 1%). Eqs. 4.2–4.4 for estimates

of R, W , and D0 have a bias less than 10%, and Eqs. 4.2 and 4.5 have a bias larger

than 10%. This implies that empirical relations for low moments NT (zero moment)

and Re (∼ 1.6th moment) are not as good as relations for high moments. This is

probably because the control variables (ZH , ZDR, W and D0) are mainly determined

by meddle size or large drops and they are not good at representing low moments.

Middle moments (e.g., Ra and Vtm), on the other hand, are well represented. It is

worth noting that D0−ZDR plot (Fig. 4.1c) has a large scatter. This is likely due to

the fact that the main contributor to D0 is the median size drop while ZDR is mainly

determined by the large drop. This is also the reason why the D0 estimated from

ZDR, when compared to the observed D0, only has a correlation coefficient about 0.8.
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Figure 4.1: Relations between rain and radar variables. Crosses denote data points

and solid lines are mean curves by polynomial fitting. (a) Ratio of R to ZH versus

ZDR. (b) Ratio of W to ZH versus ZDR. (c) D0 versus ZDR. (d) Ratio of Re to W

versus D0. (e) Ratio of Ra to W versus D0. (f) Vtm versus D0.
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Figure 4.2: Scatter diagram of empirical values versus observations. Crosses denote

data points and solid lines correspond to the unit slope. Empirical relations are Eqs.

4.1–4.7. (a) Ratio of R to ZH . (b) D0. (c) Ratio of NT to ZH . (d) Ratio of Re to W .

(e) Ratio of Ra to W . (f) Vtm.
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Table 4.1: Bias and correlation coefficient for rain variables using Eqs. 4.1–4.7 versus

observations

NT R W D0 Re Ra Vtm

bias (%) 20.24 9.09 9.63 7.18 13.80 -0.52 -0.026

corr. coef. 0.63 0.97 0.94 0.81 0.97 0.98 0.98

4.2.2 C-Band and X-Band

The frequency difference only affects relations that include radar variables in the

previous section. Radar variables have distinct properties between S-band and C-, X-

band. Fig. 4.3 gives the simulated ZH and ZDR versus the raindrop size. Differences

of ZH and ZDR among three bands are very small for raindrops D < 2mm. X-band

(C-band) ZH becomes distinctly larger than S-band ZH from ∼3 mm (∼4.5 mm) and

the maximum difference is ∼5 dB (∼7 dB). The difference is particularly evident for

ZDR. C-band ZDR has a sharp increase starting from ∼3 mm and reaches the peak at

∼6 mm. The maximum ZDR difference can be ∼2.5 dB, given the same raindrop size.

Beyond 6 mm, C-band ZDR decreases and its value becomes even lower than S-band

ZDR. X-band ZDR has a similar trend to C-band ZDR but its range of variation is

much less than C-band ZDR.

Compared to S-band, the attenuation associated with the precipitation is much

larger at C, X-band. Fig. 4.4 shows the simulated attenuation factors versus the

raindrop size with the same assumption of concentration as in Fig. 4.3. As figure

shows, even for small raindrops (D < 1 mm) C- or X-band attenuation is distinctly

larger than S-band. X-band has the largest attenuation. The maximum AH difference

is seen at ∼3.5 mm, where X-band AH is larger than S-band AH with an order of
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Figure 4.3: Simulation of (a) ZH and (b) ZDR versus equivalent diameter of raindrop.

Given that raindrops have the same size and the same concentration 1 m−3 within a

bin interval 0.2 mm.

Figure 4.4: Same as Fig. 4.3 but for simulation of (a) AH and (b) ADP .
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magnitude of ∼2. Generally, C- and X-bands AH values are larger than S-band with

a factor of more than 10. The similar trend is seen for ADP . It is worth noting that

attenuation factors of C- and X-band have some undulations for middle and/or large

drops. The undulation is attributed to the fact that raindrop sizes are comparable

with the wavelength and the scattering of raindrops does not follow the linear relation

estimated by Rayleigh theory.

Figure 4.5: Same as Fig. 4.3 but for simulation of KDP .

The phase parameters, similar to attenuation parameters, are also associated with

the forward scattering. In practice, phase terms can be used to estimate the atten-

uation. Fig. 4.5 shows the simulation of KDP . KDP shows a similar variation trend

to AH and ADP , implying that KDP could be used to estimate these two parameters.

The empirical relations associated with the attenuation and phase terms are given

later in this section.

In the following, characterized relations of rain and radar variables are updated

for C- and X-band. The development procedure is as same as the one used for the

S-band. Fig. 4.6 presents the result of C-band parameterization. The wavelength is
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Figure 4.6: C-band relations between rain and radar variables. (a) Ratio of R to ZH

versus ZDR. (b) Ratio of W to ZH versus ZDR. (c) D0 versus ZDR. (d) Ratio of NT

to ZH versus ZDR.
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Figure 4.7: X-band relations between rain and radar variables. (a) Ratio of R to ZH

versus ZDR. (b) Ratio of W to ZH versus ZDR. (c) D0 versus ZDR. (d) Ratio of NT

to ZH versus ZDR.
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specified as 5.4 cm, which is applied by OU-PRIME radar. In the figure, the crosses

denote calculated parameters from 2DVD data, which have been processed by SATP

method. Solid lines are mean relations which are fitted to polynomial functions using

data points. The mean relations are given by:

C-band (5.4 cm) :

NT = ZH × 10(0.0355Z4
DR − 0.450Z3

DR + 2.012Z2
DR − 3.990ZDR + 1.541) (4.8)

R = ZH × 10(0.0101Z4
DR − 0.146Z3

DR + 0.713Z2
DR − 1.635ZDR − 1.754) (4.9)

W = ZH × 10(0.014Z4
DR − 0.20Z3

DR + 0.980Z2
DR − 2.186ZDR − 2.711) (4.10)

D0 = 0.0438Z3
DR − 0.390Z2

DR + 1.436ZDR + 0.402 (4.11)

Similar to Fig. 4.6, Fig. 4.7 shows the mean relations derived for X-band. The

wavelength is specified as 3.2 cm, which is used by CASA IP1 radars. The relations

are given by:

X-band (3.2 cm) :

NT = ZH × 10(0.049Z4
DR − 0.551Z3

DR + 2.091Z2
DR − 3.803ZDR + 1.50) (4.12)

R = ZH × 10(0.041Z4
DR − 0.381Z3

DR + 1.177Z2
DR − 1.890ZDR − 1.70) (4.13)

W = ZH × 10(0.055Z4
DR − 0.517Z3

DR + 1.642Z2
DR − 2.585ZDR − 2.628) (4.14)

D0 = 0.0984Z3
DR − 0.488Z2

DR + 1.265ZDR + 0.470 (4.15)

According to Figs. 4.6 and 4.7, relations 4.8–4.15 are recommended for use with

ZDR from 0.1 to 4 dB. As mentioned previously, these relations represent the mean

properties. There exist uncertainties attributed to the variation of DSD. For example,

parameter ZH is appropriate the 6th order moment of DSD. R is ∼ 3.67th order

moment and W and NT are lower moments. The uncertainty of log(R/ZH) is less

than uncertainties of log(W/ZH) and log(NT/ZH). Data points of D0 look much more

scattering than other three parameters, especially for large ZDR. This fact implies

that the dependence of D0 on ZDR is more sensitive to the DSD shape than the ratio
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of moment parameters. C-band relations have more undulations than X-band. It is

likely attributed to the fluctuation of C-band ZDR shown in Fig. 4.3b.

Figure 4.8: Oneone plots of results from C-band relations versus observations. (a)

Ratio of R to ZH . (b) Ratio of W to ZH . (c) D0. (d) Ratio of NT to ZH .

Performances of these empirical relations are demonstrated in Figs. 4.8 and 4.9.

The horizontal axis indicates the parameters calculated from 2DVD data. The ver-

tical axis denotes the results of empirical relations. The bias and root-mean-square

error (RMSE) of empirical estimations are shown in Table 4.2. For both bands, pa-

rameters log(R/ZH) and log(W/ZH) have a small bias and RMSE, generally less than
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Figure 4.9: Oneone plots of results from X-band relations versus observations. (a)

Ratio of R to ZH . (b) Ratio of W to ZH . (c) D0. (d) Ratio of NT to ZH .

5%. Parameter log(NT/ZH) has a large bias and RMSE. This fact illustrates that

radar variables ZH and ZDR can not represent low DSD moments well because they

are parameters associated with high DSD moments. D0 has a relatively small bias

but has a relatively large RMSE (∼ 25%) for empirical estimation.

Attenuation and phase terms are interest parameters for C- and X-band appli-

cations. According to the scattering theory, attenuation and phase parameters are
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Table 4.2: Bias and RMSE of estimations by empirical relations for C- and X-band

log(R/ZH) log(W/ZH) D0 log(NT/ZH)

X-band
bias (%) -2.80 -2.77 -4.59 -82.98

RMSE (%) 4.35 4.57 25.57 111.0

C-band
bias (%) -2.74 -2.72 -3.77 -87.44

RMSE (%) 4.28 4.48 24.06 118.5

calculated for all 2DVD dataset. The results are shown in Figs. 4.10 and 4.11 for

C- and X-band. The crosses denote data points. Figures show that there are cor-

relations existing among attenuation and phase parameters. Correlation coefficients

among those parameters are listed in Table 4.3. Generally, X-band has a stronger

correlation between attenuation and phase terms than C-band while its correlation

between AH and ZH is a little lower. The correlation between AH and KDP is the

strongest one given the same frequency. In addition, parameters ADP and KDP are

more sensitive to the DSD shape than AH and ZH . Therefore, variations of ADP–KDP

pair and ADP–AH pair are larger with a weaker correlation between two parameters

of a pair. Among them, C-band ADP and KDP have the weakest correlation.

Table 4.3: Correlation coefficient among attenuation and phase parameters.

AH–KDP ADP–KDP ADP–AH AH–ZH

X-band 0.998 0.968 0.968 0.910

C-band 0.961 0.844 0.941 0.943
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Figure 4.10: C-band parameterization of attenuation and phase terms. (a) AH versus

KDP , (b) ADP versus KDP , (c) ADP versus AH , (d) AH versus ZH .
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Figure 4.11: Same as Fig. 4.10 but for X-band parameterization.
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It is practically useful to develop empirical relations among attenuation and phase

parameter. As shown in Figs. 4.10 and 4.11, solid lines are mean relations derived

by the power law fitting. These mean relations are given by:

C-band (5.4 cm): AH = 0.112KDP (4.16)

ADP = 0.029KDP (4.17)

ADP = 0.290AH (4.18)

AH = 3.695× 10−5Z0.740
H (4.19)

X-band (3.2 cm) : AH = 0.314KDP (4.20)

ADP = 0.051KDP (4.21)

ADP = 0.162AH (4.22)

AH = 1.426× 10−4Z0.756
H (4.23)

Using these relations, the attenuation can be corrected with measurements of dif-

ferential propagation phase. Practically, it is a simple but efficient way to correct

precipitation attenuation given the conditions (i) there is not existing any other pre-

cipitation phases than rain, and (ii) phase measurements have a good quality (e.g.

with good SNR). Sophisticated attenuation correction methods will be discussed in

Chapter 6.

4.3 DSD Retrieval from PRD

With empirical relations mentioned in previous two sections, rain variables of interest

can be calculated. It is convenient to use these relations as physical models for

some practical applications. However, these relations can only be applied with a

fixed frequency. If frequency changes, all the relations have to be updated. Moreover,

these empirical relations only represent a mean characteristics, for which they sacrifice

some physical variations. These issues are not the obstacle for DSD retrieval. On
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one hand, physical variations can be well represented given a good DSD model. The

DSD retrieval may improve the estimation of rain variables from radar observations.

On the other hand, radar variables can be calculated given a DSD and the scattering

amplitudes at different frequencies. It is more flexible in different applications by

retrieving the DSD. This section presents the DSD retrieval introduced by Zhang

et al. (2001) and discusses some issues in practice.

4.3.1 Retrieval based on a C-G DSD model

Following the studies of Zhang et al. (2001) and Brandes et al. (2004b), the DSD

retrieval is described as follows. There are two major assumptions. One is that the

DSD satisfies the C-G DSD model with a constraining µ − Λ relation described by

Eq. 3.16. The other assumption is that the raindrop axis ratio relation is invariant

within the radar sampling volume and is given by Eq. 2.26 [Brandes et al. (2002)].

Given the constraining relation and fixed axis ratio relation, the DSD shape pa-

rameter µ is uniquely determined by the observed ZDR, according to Eqs. 2.21–2.22.

With µ retrieved from ZDR, the other DSD parameter N0 is then calculated from

ZH . This method of retrieving DSD applies ZH and ZDR values directly from the

observations, without considering the measurement error effect. The measurement

error might propagate into the retrieval result. The error issue of DSD retrieval will

be discussed in the next chapter, which introduces the Bayesian approach.

4.3.2 Adjustment of µ− Λ relation

The refined µ−Λ relation (Eq. 3.16) enables the retrieval of the gamma distribution

parameters (N0, µ, and Λ) from measurements of ZH and ZDR. A ZH–ZDR scatter

diagram based on disdrometer observations is presented in Fig. 4.12. Solid and

dashed lines denote polynomial fits for Oklahoma and Florida (Zhang et al. 2006),
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respectively. There is little difference between these two curves for ZH < 30 dBZ.

The mean ZH–ZDR relation for Oklahoma is given by equation

ZDR = 10(−2.6857× 10−4Z2
H + 0.04892ZH − 1.4287) (4.24)

where both ZH and ZDR are expressed on a logarithmic scale. This ZH−ZDR relation

4.24 is consistent with the µ − Λ relation 3.16 for the fact that both were derived

from the same disdrometer dataset.

Figure 4.12: Plot of ZDR versus ZH from 2DVD measurements in Oklahoma. Cross

points denote 2DVD measurements. The solid line is the mean curve, which is fitted

to all data pointes in logarithmic domain by a two-order polynomial fitting. The

dashed line is the Florida relation (Zhang et al. 2001)

Previous studies [e.g., Schuur et al. (2001); Brandes et al. (2003, 2004a); Vivekanan-

dan et al. (2004); Zhang et al. (2006a)] have shown that disdrometer observations are
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Figure 4.13: (a) PPI of KOUN radar-measured reflectivity (065955 UTC, 13 May

2005). A solid square isolate a strong convective storm at the leading edge of this

rain event. The dashed rectangular region is a multiple precipitation-type region

that includes portions of the convective leading edge, thunderstorm core, and trailing

stratiform precipitation. (b) Plot of ZDR versus ZH . Dots denote measurements

within a multiple precipitation-type region, i.e., dashed-line region of subplot (a).

Asterisks denote measurements within leading edge region, i.e., solid-line square of

subplot (a). The solid line is the mean curve of disdrometer observations (Eq. 4.24).

The region within the dashed-line includes BD cases.
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generally consistent with radar observations and that DSD models derived from dis-

drometer observations generally work well when applied to radar retrieval. However,

the sampling volume of a radar is much larger than that of a disdrometer. The KOUN,

for example, has a sampling volume of ∼ 0.07 km3 at a 30 km range. Consequently,

its sampling volume can be 107 or more than that of a 2DVD. The difference between

radar measurements and 2DVD measurements might be large, especially for inhomo-

geneous rains (e.g. at the leading edge of convection). The radar retrieval may not

work well if ZH and ZDR measurements depart significantly from the disdrometer-

based mean relation. Fig. 4.13a shows a PPI image of radar reflectivity measured

by KOUN on May 13, 2005. A solid square isolates a strong convective cell at the

leading edge of squall line. The dashed region includes portions of the leading and

trailing convective line. The scatter diagram of ZH and ZDR within these two regions

are plotted in Fig. 4.13b. The disdrometer-based mean ZH − ZDR relation 4.24 is

plotted for reference. Most ZH − ZDR pairs from the rectangular box cluster well

around the line described by Eq. 4.24 except for measurements corresponding to the

isolated convective cell, where relatively high ZDR are associated with relatively low

ZH . According to the hydrometeor classification algorithm described by Ryzhkov

et al. (2005b), these points are identified as rain dominated by big drops (BD). In the

BD region, the DSD tends to be narrower and the total concentration of drops tends

to be much lower than in stratiform rain with the same intensity. Retrievals based

on relation 3.16 may result in errors in the BD region. For example, such a retrieval

would result in a broadly estimated DSD and an unreasonably large total number

concentration. To solve this problem, the disdrometer-based relation is adjusted to

µ = µ′(Λ) + C∆ZDR (4.25)

where the µ′(Λ) is the disdrometer-based relation 3.16 derived in the previous chap-

ter, ∆ZDR is the difference between the radar-measured ZDR and the ZDR estimated

from measured ZH according to Eq. 4.24, and C is an adjustment parameter. It is
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reasonable to consider the adjustment term C∆ZDR to be related to ZH and ZDR

because ZH and ZDR give useful information about rain type, intensity, and DSD.

Intuitively, the adjustment parameter C should be positive and dependent on ZH

and ZDR. For a given ∆ZDR, it is desired that C increase when ZDR increases or

ZH decreases. It is hard, however, to determine a good adjustment term that fully

represents the variability of rain physics. This study focuses on the adjustment of BD

region, where the ∆ZDR has a maximum dynamic range of 3. We expect the adjusted

µ to fall into the normal dynamic range of 6. Therefore, the value of C was chosen to

be 2 for this study. No adjustment is made if ∆ZDR < 0.5 dB. The adjustable µ−Λ

relation could improve the retrieval of NT and D0 at the leading edge of convective

squall line, which is often characterized as the BD region. On the other hand, the

effect of adjustment is minor outside of BD regions.

4.3.3 Radar retrieval

The radar retrieval was applied to the rain event illustrated in Fig. 4.13a. The

retrieval was performed over the whole storm area (including the BD region) using

radar-measured ZH and ZDR as well as the refined µ − Λ relation with an adjust-

ment. The retrieval without the adjustment was also performed as a comparison.

The retrieving procedure is similar to that described in previous studies (e.g., Zhang

et al. 2001, Brandes et al. 2004) except for the numerical method used to solve

the nonlinear equations and the procedure to estimate the maximum diameter. The

regression method used here is the two-dimensional Newton-Raphson method [Press

et al. (2001)]. The maximum diameter in previous studies was estimated from an em-

pirical relation fitted to disdrometer observations (e.g., Brandes et al. 2004), which

remains to be an issue in radar retrieval. When the µ − Λ relation is used with the

adjustment, the impact of maximum diameter is minor. As a result, this study sets
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the maximum diameter to a constant of 8 mm, which works for most rain events

(ZH < 60 dBZ).

The PPI images of radar measurements and retrieval results are shown in Fig.

4.14. The fields of ZH , ZDR, and results of hydrometer classification are shown in

column (a). ZH and ZDR measurements classified as NR or RH are filtered out before

the rain retrievals are performed. The column (b) contains retrieval results based on

the µ − Λ relation without the adjustment, and the column (c) represents retrieval

results based on the µ− Λ relation with the adjustment. These two approaches give

similar and reasonable retrievals for most duration of the storm. It is noted that re-

trieved rain-rates through two approaches have little difference. In general, the µ−Λ

adjustment mainly reduces the number concentration of small drops while causing

less change for median and large drops. Consequently, lower moments are affected

more than higher moments. The retrieved rain-rate is less affected by the adjustment.

In BD regions with low ZH , however, retrievals without µ−Λ adjustment produce a

much higher NT and a smaller D0. They suggest that a large number of small drops

exist in the area where a small number of big drops should be. Thus, retrievals with

the adjustment give more reasonable results for the developing convective cells.

The refined µ − Λ relation 3.16 has already been verified by disdrometer data in

Chapter 3. Next, comparisons between radar retrievals and disdrometer observations

are given to demonstrate its validity for radar data. The rain event analyzed was a

precipitation system that passed through central Oklahoma on 2 May 2005 when the

NCAR 2DVD was deployed 28 km south of KOUN. Fig. 4.15 shows time series ZH

and ZDR from 1100 UTC to 1330 UTC. The asterisks denote radar measurements.

To reduce error, radar measurements have been averaged over five range gates. To

eliminate a systematic bias between radar and disdrometer, radar-measured ZDR was
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Figure 4.14: Comparison of radar retrievals based on adjusted and unadjusted µ−Λ

relation. Column (a) shows radar-measured ZH and ZDR (065955 UTC on May 13,

2005), and classifications of rain (NR-no rain echo, R-light and moderate rain, HR-

heavy rain, RH-rain/hail mixture, BD-big drops). ZH and ZDR classified as NR and

RH have been filtered out before the rain retrievals were performed. Column (b)

shows radar retrieval results of R, D0 and NT based on the refined µ − Λ relation

without adjustment (Eq. 3.16). Column (c) shows radar retrieval results of same

variables based on the µ− Λ relation with adjustment (Eq. 4.25).
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Figure 4.15: Comparison of radar measurements and disdrometer calculations for (a)

reflectivity. (b) differential reflectivity. Asterisks denote radar measurements on May

2, 2005. Solid lines denote that reflectivity and differential reflectivity are calculated

from observed DSDs by 2DVD.
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Figure 4.16: Comparison of (a) rain rate, (b) median volume diameter and (c) to-

tal number concentration from radar retrievals (asterisks points) and disdrometer

observations (solid lines). (May 2, 2005)
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adjusted by subtracting 0.3 dB. Possible contamination from a low melting layer and

ground targets was mitigated by removing data points with a cross correlation coef-

ficient less than 0.9. The solid lines denote ZH and ZDR calculated from disdrometer

observations. Fig. 4.15 shows disdrometer calculations match radar measurements

quite well. The discrepancy between radar measurements and disdrometer calcula-

tions during some short periods (e.g., at 1140UTC and at 1320UTC) is attributed to

the inhomogeneity of spatial distribution of rain.

Using the C-G DSD model, rain parameters were retrieved from dual-polarization

radar measurements. Fig. 4.16 shows the comparison of R, D0, and NT between radar

retrievals and disdrometer calculations. The asterisks denote radar retrievals and solid

lines denote disdrometer calculations from observed DSDs. Referring to Fig. 4.15,

if the radar-measured ZH and ZDR agree with the disdrometer measurements, the

retrieved rain variables in Fig. 4.16 match the disdrometer measurements. Compared

to retrieval results in a previous study [Cao et al. (2006), Fig. 7], the retrieval ofD0 has

been improved, especially for the period of light rain. TheNT for light rain is also close

to the disdrometer observation. Considering the sampling volume difference between

radar and disdrometer, the refined disdrometer-based µ − Λ relation is believed to

give a satisfactory retrieval using polarimetric radar measurements. The adjustment

of µ− Λ relation gives a reasonable rain retrieval for BD cases.

4.4 Summary

In this chapter, disdrometer observations in Oklahoma are used to characterize rain

microphysics in terms of radar variables at S-, C- and X-band frequencies. The DSDs

observed by the disdrometer provide a realistic representation of rain microphysics,

free of any assumption of a functional DSD. According to the analysis of disdrometer

dataset, NT , R, W , and D0 are well characterized in terms of ZH and ZDR. Re, Ra,
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and Vtm are well characterized in terms of W and D0. Empirical relations between AH

(or ADP ) and ZH (or KDP ) are also given. The characterization of rain microphysics

provides useful relations for the application of polarimetric radar data.

Many studies have showed that the C-G DSD model is valid to represent rain

physics. When it is applied for the radar retrieval, the C-G DSD model yields satis-

factory retrievals of rain variables (e.g., NT , R, andD0) for most rain events. However,

when the DSD is characterized as one with a bimodal distribution, a long tail, or sig-

nificant big drops (BD), the retrieval from radar measurements may have problem

and retrieved variables tend to have large deviations from in-situ observations. For

BD DSDs, retrievals based on relation 3.16 would overestimate NT and underesti-

mate D0. A simple adjustment of the µ − Λ relation according to Eq. 4.25 is found

to resolve this problem, giving better retrievals of NT and D0 as observed by the

disdrometer. This adjustment improves the retrieval especially for the leading edge

of convection. It is also worth noting that the C-G DSD model might be further

improved by combining additional information such as temporal and spatial correla-

tions, more observations, and prior statistical information. The DSD retrieval is a

promising topic for radar meteorology community and deserves further researches.
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Chapter 5

A Bayesian Approach for DSD Retrieval

5.1 Introduction

In the previous chapter, characterization of rain variables and DSD retrieval from

PRD have been addressed. This chapter further studies the DSD retrieval and fo-

cuses on optimizing the use of radar measurements. It is worth noting that previous

studies assume that radar measure the truth. In that case, all the radar measurements

have the equal quality and retrievals have the equal reliability. However, it is known

that: 1) radar data contain measurement errors; 2) different radar quantities have

different measurement errors; and 3) radar does not necessarily measure the rain, i.e.,

other categories of targets could be included in the radar echo. If we directly apply

radar measurements to do rain retrieval (e.g., DSD retrieval in chapter 4), some of

the results could be totally wrong. The model error, which is attributed to different

species of targets, and the measurement error could mask the truth of rain retrieval.

Since the measurement error is an inevitable obstacle to the accuracy of rain esti-

mators, how to quantify the error effect and optimize the use of radar measurements

becomes an important issue. The realistic solution is that we quantitatively find dif-

ferent contributions to the radar echo and separate the rain part. It is practically

impossible to realize this task. The other solution is that we try to identify how much

the reliability of rain retrieval could be. That is to say, we allow the error effect exist
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in the process of retrieval, but we should know how much it could affect the result of

retrieval. Bayesian theory offers a promising method to realize this by optimizing the

use of measurements [e.g., Evans et al. (1995); Mc Farlane et al. (2002); Di Michele

et al. (2005); Chiu and Petty (2006)].

The Bayesian method has been applied on the rainfall estimation with radar data.

One example is the study of Hogan (2007), who applied Bayesian approach spatially

(i.e., variational method). Although the variational method is believed to be advanced

in using PRD, it is always complicated and there remain many issues to be resolved.

For example, Hogan (2007) applied ZH as a strong constraint (i.e., ZH was not in the

variational scheme and its error was ignored). If there were not such a constraint,

the variational system would be hard to converge with satisfied results. On the other

hand, high-order DSD models (e.g., gamma DSD) have been demonstrated to repre-

sent rain physics well in many previous studies. However, they are complicated for the

application in the variational scheme. For this reason, Hogan (2007) only assumed a

simple ZH-R relation (i.e., intrinsic simple DSD model with only one-parameter). In

this chapter, the study is focused on the DSD retrieval using the Bayesian approach.

Different with what Hogan did, current study applies Bayesian approach temporally

(i.e. using historic data as the prior information). A C-G DSD model, which has

been successfully applied in previous studies, is used in this scheme. Efforts are put

into the use of DSD parameters, rather than integral parameters, as state parameters

of the retrieval scheme.

Because the retrieval is assumed for rain signals, radar echoes other than pure

rain signals are considered as rain signals with a model error. As a result, the model

error as well as the measurement error jointly affect the retrieval. This retrieval

scheme provides not only mean values of state parameters, but also their standard
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deviations. The error effect can be determined by the standard deviation of state

parameter, which also implies the reliability of retrieval.

It is worth noting that many factors are required for the success of the Bayesian

approach. First and foremost is the correct prior information on rain characteristics.

This study utilizes a large dataset of disdrometer measurements to construct the

prior distribution of state parameter. Since it is reasonable to assume the disdrome-

ter has measured the ground truth of rain (i.e., DSD), the prior distribution from the

disdrometer observation is better than the presumed model, such as Gaussian PDF

distribution, which is often used in other Bayesian approaches.

In this chapter, a Bayesian approach of rain retrieval is presented by retrieving

DSD parameters from ZH and ZDR at S-band (10.7 cm). In addition to the evaluation

by simulated radar data, a rain event on 13 May 2005 in central Oklahoma is analyzed

to verify the algorithm by comparing radar retrievals with in-situ measurements of

disdrometer and rain gauge. In order to aid the analysis, two popular empirical

rain estimators are used to compare with the Bayesian algorithm. One empirical

estimator, used by WSR-88D as a default estimator for mid-latitude rain, is only

based on ZH . The other one is an estimator based on ZH and ZDR. The two relations

are, respectively:

R(ZH) = 0.017× Z0.714
H (5.1)

R(ZH , ZDR) = 0.0142× Z0.77
H Z−1.67

DR (5.2)

Eq. 5.2 was developed by NSSL for polarimetric radar applications. It had an opti-

mum performance for rain during the JPOLE field campaign (Ryzhkov et al. (2005a)).
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This chapter is organized as follows. Section 2 gives a detailed description of

the Bayesian approach. The retrieval algorithm is evaluated in Section 3 using the

disdrometer dataset. Section 4 gives a case study to demonstrate the application of

this algorithm. Discussion and conclusion are provided in the last section.

5.2 Bayesian Approach

5.2.1 Theory

Bayesian theory provides a way to estimate state variables by evaluating the a pos-

terior probability density function (PDF) of state variables. The mean values and

standard deviations of state variable can be obtained with the a posterior PDF.

According to Bayesian theory, a posterior PDF, Ppost(x|y), is calculated by

Ppost(x|y) =
Pf (y|x) · Ppr(x)∫
Pf (y|x) · Ppr(x) · dx

(5.3)

where state variable vector x represents parameters of interest. Vector y indicates

available observations for the retrieval of physical properties. Ppr(x) is the prior PDF

of state variable. Pf (y|x) is a conditional PDF representing the relation between

observations and state variables. Given the Ppost(x|y), the mean value E(x) and

the standard deviation SD(x) of state variable are therefore obtained by integrating

Ppost(x|y) as:

E(x) =

∫
x · Pf (y|x) · Ppr(x) · dx∫
Pf (y|x) · Ppr(x) · dx

(5.4)

SD(x) =

√√√√√√√
∫ (

x− E(x)
)2 · Pf (y|x) · Ppr(x) · dx∫

Pf (y|x) · Ppr(x) · dx
(5.5)
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Eqs. 5.3–5.5 are basic equations of the Bayesian approach. In this chapter, they

are applied for the rain DSD retrieval. The following subsections address details on

the state vector x, observation vector y, Ppr(x), and Pf (y|x).

5.2.2 State parameters

Figure 5.1: Histogram of estimated DSD parameters based on 2DVD data: a) N ′0,

unit in log10(mm−1−µm−3), and b) Λ′, unit in mm−1/4.

In many rain retrieval algorithms, integral variables such as rainfall rate are treated

as the state parameter. Since DSD is the interest property of rain microphysics, this
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Figure 5.2: Contour of the occurrence frequency of joint estimated DSD parameters,

N ′0 [unit in log10(mm−1−µm−3)], and Λ′ (unit in mm−1/4). The interval of unmarked

contours between 10 and 100 is 10.
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study applies DSD parameters as state parameters. For this study, a constrained-

gamma DSD model with an updated constraining relation Eq. 3.16 is applied. There-

fore, unknown states required for the retrieval are two DSD parameters, N0 and Λ.

According to Bayesian theory, the prior PDF of state variable should be known.

The prior distribution of DSD parameter can be found by fitting the DSDs observed

by 2DVDs. If we assume measured DSDs follow the gamma distribution, gamma

function parameters (i.e., N0, Λ, and µ) can be fitted by a regression method. For

each parameter, tens of thousands of values from all the DSDs are used to construct

the occurrence distribution. Prior PDF of a parameter is then obtained by normaliz-

ing its occurrence distribution. For two parameters required for the retrieval, a joint

PDF is constructed for the Bayesian approach. The regression procedure follows the

truncated moment fit method described by Vivekanandan et al. (2004). It utilizes

the 2nd, 4th, and 6th DSD moments to estimate three gamma parameters. Although

DSD parameters estimated in this way (i.e., using the moment method) would have a

bias [e.g., Zhang et al. (2003); Smith et al. (2009)], studies in Chapter 3 have shown

that the moment method using the 2nd, 4th, and 6th moments has less error effects

of model error and measurement error, compared to other moment methods and the

maximum likelihood and L-moment methods.

As to N0 and Λ distributions constructed from 2DVD dataset, a practical problem

is that they are greatly skewed and have large dynamic ranges (not shown). It is dif-

ficult to discretize them and they are obviously not appropriate for practical use. In

order to reduce their dynamic ranges, the original DSD parameters are transformed to

new forms, i.e., N ′0 = log10N0 and Λ′ = Λ0.25. The histograms of occurrence frequency

are shown in figure 5.1. The dynamic ranges of N ′0 and Λ′ are reduced significantly.
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With the transformation, the heavy rain, moderate rain and light rain could be repre-

sented by new parameters more appropriately. For example, originally Λ has a skewed

distribution with its most portion representing the light rain. Now the moderate and

heavy rain (e.g., 0 < Λ < 3) account for a larger proportion of the dynamic range

than before. Because the large Λ always has a larger bias (typically overestimation)

than a small one, the shrinking of Λ range suggests that the bias would be reduced.

For this study, state vector x in Eqs. 5.3–5.5 is set to be [N ′0,Λ
′]. Their units are

log10(mm−1−µm−3), and mm−1/4, respectively. Correspondingly, observation vector y

is set as [ZH , ZDR], whose units are dBZ and dB, respectively.

The joint PDF of state variables are obtained by normalizing the occurrence fre-

quency histogram. The detailed procedure is described as follows. Firstly, the range

of parameter N ′0 is discretized with interval 0.1. The range of parameter Λ′ is dis-

cretized with interval 0.05. Sort the dataset of estimated DSD parameters into the

grids of N ′0 and Λ′, and the occurrence frequency is then counted for each grid. Fig.

5.2 shows the contour of the result. As it shows, the two parameters have a correla-

tion with each other, especially for large values of Λ′. Because the joint distribution

is applied as the prior information, the effect of correlation is therefore accounted

for in the Bayesian algorithm. Most DSDs have a N ′0 between 3 and 5 (i.e., N0 is

about 103–105 m−3mm−1) and Λ′ between 1.1 and 1.6 (i.e., Λ is about 1.5-6). Finally,

the joint PDF is calculated by the normalization of distribution in Fig. 5.2. It is

worth noting that this joint distribution entirely comes from observations and is free

of any mathematical function. It represents the actual rain physics better than the

assumption of a Gaussian distribution, which is always applied as the prior PDF in

other Bayesian approaches of rain retrieval.
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5.2.3 Conditional PDF

The conditional PDF Pf (y|x) is a bridge between measurements and state variables,

analogous to the forward model used in the optimal-estimation theory. It characterizes

how measurements would be with the given DSD parameters. The measurement

error is also characterized by this PDF. Generally, it is difficult to find an true PDF

to represent this process. Conventional method assumes a Gaussian distribution for

the uncertainty of measurements. Following this assumption, the conditional PDF in

current study is assumed to be a bivariate-normal distribution as:

Pf (ZH , ZDR|Λ′, N ′0) =

1

2πSD(ZH)SD(ZDR)
√

1− ρ2
exp

{
−1

2(1− ρ2)

[
(ZH − E(ZH))2

SD2(ZH)

−2ρ(ZH − E(ZH))(ZDR − E(ZDR))

SD(ZH)SD(ZDR)
+

(ZH − E(ZDR))2

SD2(ZDR)

]}
(5.6)

This equation gives a probability model of observed ZH and ZDR, given two DSD

parameters Λ′ and N ′0. ZH and ZDR in this model are assumed to work in the loga-

rithmic units. The variable ρ in Eq. 5.6 denotes the correlation coefficient between

ZH and ZDR errors. The error should include both observation error and model er-

ror. Generally, observations of ZH and ZDR can be considered to have independent

observation errors. Most previous studies of Bayesian approach have considered the

observation error only and assumed ρ = 0. However, the forward operator model

might introduce the error correlation between these two variables. In this study, the

C-G DSD model is applied to estimate ZH and ZDR in the forward operator. The

model error tends to be correlated. Therefore, ρ should not be zero and vary with

different ZH-ZDR pairs. It is normally hard to estimate this kind of correlation for

each ZH-ZDR pair. Fortunately, it is found that the effect of ρ on the retrieval is not

essential. For the simplicity, this study assumes a constant ρ = 0.5 for the application
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of Eq. 5.5.

Figure 5.3: Sketch figure of ZDR vs. ZH from 2DVD measurements. Solid line denotes

the mean curve (Eq. 15 of Cao et al. 2008). Upper bound and lower bound are given

according to the mean curve.

Theoretically, SD(·) terms in equation 5.5 stand for the error effect (including the

model error and the measurement error), which control the probability of “observed”

ZH and ZDR. The real error effect ought to be complicated. As a result, the SD(·)

values are not easy to decided for each pair of DSD parameters. Here, a simple model

of SD(·) terms is proposed. As we know, radar measurement error for rain signals

is normally 1–2 dB for ZH and 0.1–0.3 dB for ZDR. If radar signals are not for pure

rain, ZH and ZDR values would be different than the ones estimated by the theorem

of raindrop scattering, which is the basis of this retrieval algorithm. That is to say,

the model error would be enlarged for the rain retrieval. In that case, SD(·) terms

should be set to a larger value. Considering the ZDR is much more sensitive to the

model error than ZH , we ignore the variation of SD(ZH) and only take the SD(ZDR)
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into account.

Firstly, the SD(ZH) is assumed to be a constant (2 dB) in Eq. 5.6. SD(ZDR) is

assumed to be a function of ZH and ZDR. As discussed in previous paragraph, the

value of SD(ZDR) mainly depends on the measurement error for rain signal. For non-

rain signal, the model error would become a significant factor. It is then reasonable

to presume SD(ZDR) grow with increasing the degree of non-rain. Fig. 10 of Cao et

al. (2008) shows a common range of ZH and ZDR of rain signals, which are estimated

from 2DVD observations. It implies that ZH and ZDR of rain should be limited in

a bounded region. The boundaries can be approximately determined by the mean

curve of ZDR vs. ZH (Eq. 15 of Cao et al. 2008). As it is shown in Fig. 5.3, the mean

curve is denoted by a solid line with its equation noted on the figure. Two dashed

lines give the upper boundary and lower boundary of rain data region. The upper

boundary is the twice as much as the mean curve. The lower boundary is the half

of mean curve minus 0.2. The following equation gives the SD(ZDR) model. Within

the bounded region, SD(ZDR) is assumed to be a constant (0.3 dB). Outside of the

region, SD(ZDR) is assumed to increase linearly with the difference between observed

ZDR and the upper/lower boundary. The ratio 0.3 is an empirical number, which is

determined by the presumption that 3 dB difference brings 1.2 dB SD(ZDR). The

model of SD(ZDR) is given by:

SD(ZDR) =


0.3× (ZDR − Zup

DR) + 0.3, above upper boundary

0.3, within the region

0.3× (Z low
DR − ZDR) + 0.3, below lower boundary

(5.7)

where, Zup
DR (Z low

DR) denotes the upper (lower) boundary. Eq. 5.5 implies that if an

observed ZDR deviated from the normal range of rain data, ZDR would be less reliable
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to represent the rain.

5.2.4 Forward model

The forward model is used to calculate polarimetric radar variables from DSD pa-

rameters. The basis of the calculation is the scattering theory of raindrops described

in Chapter 2. Equations for calculating the ZH and ZDR are Eqs. 2.21 and 2.22.

The backscattering cross sections of H and V directions are calculated as described in

Chapter 4 with assumptions of radar wavelength 10.7 cm (S-band), raindrop temper-

ature 10 ◦C, zero canting angle of raindrops, and experimental shape model (Brandes

et al. 2002). In order to evaluate the DSD retrieval using the Bayesian approach, two

integral rain variables, R(mm h−1) and Dm (mm) according to Eqs. 2.13 and 2.18,

are used.

In brief, the procedure of rain retrieval using this Bayesian approach is described

as follows. Given two PRD, ZH and ZDR, the conditional probability is calculated

with Eqs. 5.6 and 5.7 for any state variables N ′0 and Λ′. It is integrated in Eqs.

5.5 and 5.4 to obtain mean values and standard deviations of N ′0 and Λ′ with their

prior joint PDF. With retrieved DSD parameters E(N ′0) and E(Λ′), the gamma DSD

is constructed. In this way, rain variables of interest such as rainfall rate can be

calculated from the retrieved gamma DSD.

5.3 Evaluation of Algorithm

As described in previous subsection, the scattering theory is the basis of this Bayesian

retrieval algorithm. Therefore, the success of this algorithm should depend on the

presumption that the real PRD would be consistent with the quantities estimated by
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the scattering theory. Given the premise, it is interesting to know how the algorithm

perform for the rain retrieval. In other words, is the algorithm self-consistent with

the results estimated from scattering theory? To evaluate the consistency of this

algorithm, 2DVD measurements are used to simulate the PRD. In this way, the per-

formance of this algorithm could be known given that the PRD follow the scattering

theory.

Figure 5.4: Scatter diagram of retrieved values versus observations: a) R, and b)

Dm are results from Bayesian algrithm. c) and d) are retrieved rainfall rate using

algorithms of R(ZH , ZDR) and R(ZH), respectively. Crosses represent data points

and solid lines denote equal values of axes.
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The 2DVD dataset used for the evaluation includes about 24,500 one-minute DSDs

with the threshold of 50 raindrops. ZH and ZDR are simulated from these DSDs based

on the scattering theory. The related equations are Eqs. 2.21 and 2.22. The simu-

lated ZH and ZDR are then used to retrieve DSD parameters following the procedure

described in previous subsection. Corresponding rain variables are calculated with

retrieved mean values E(N ′0) and E(Λ′). Those rain variables can be compared with

the ones calculated from observed DSDs. The statistics of the comparison shows the

performance of the retrieval algorithm.

Table 5.1: Bias and RMSE of Bayesian retrievals versus 2DVD measurements

0.1 < R < 3 3 < R < 15 15 < R < 30 30 < R < 100

R(mm h−1)
bias (%) 11.9 1.76 -0.64 -1.19

RMSE (%) 49.7 17.3 11.5 21.5

Dm(mm)
bias (%) -5.02 -4.43 0.74 8.93

RMSE (%) 17.3 15.2 13.6 18.7

Fig. 5.4 shows the scatter diagram of retrieved results versus the observations.

Each cross points represent the result for a 1-minute DSD. Figs. 5.4a and 5.4b gives

the R and Dm comparison for Bayesian algorithm. For a reference, Figs. 5.4c and

5.4d display comparisons of variable R for NSSL’s empirical estimators, Eqs. 5.1 and

5.2, respectively. As to variable R, the R(ZH) algorithm obviously has the worst

performance. There is much more scattering of point than other two algorithms,

which are based on two polarimetric variables. The reason of the large uncertainty

is attributed to the fact that R(ZH) estimator applies intrinsic one-parameter DSD

assumption, which can not well represent the variation of rain physics. Other two
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algorithms, which apply the assumption of a two-parameter DSD, have a much better

result. Moreover, retrievals by the Bayesian algorithm are a little better than by the

empirical estimator R(ZH , ZDR). Estimator R(ZH , ZDR) has an evident underesti-

mation for large rainfall rate (e.g., R > 60 mm h−1). The uncertainty of estimator

R(ZH , ZDR) is obviously larger too.

As Figs. 5.4a and 5.4b show, retrieved R and Dm by Bayesian algorithm have a

good match with the 2DVD observations, with a correlation coefficients 0.98 (or 0.89)

for R (or Dm). There are existing a little scattering of data points. The scattering

increases especially with increasing Dm. The scattering of data points can likely be

attributed to the defect of C-G model, which can not perfectly represent the variation

of DSDs. For example, there is obvious large scattering of data points with observed

Dm < 3 mm but retrieved Dm > 3.5 mm. These data points generally have concave

DSDs and fewer median size raindrops (or a long tail, i.e., flat high end), which are

not sufficient to form a gamma distribution. There are also some data points in Fig.

5.4a with undesired overestimate of R (e.g., observed R < 8 mm h−1 but retrieved

R > 10 mm h−1). These data points generally have convex and narrow DSDs with a

low concentration of small raindrops (D < 0.8 mm). Retrieved DSDs under the con-

straint of µ−Λ relation always have more small raindrops than observations, leading

to a larger R. Nevertheless, Figs. 5.4 shows that the C-G model still perform better

than the model presumed by estimator R(ZH , ZDR) or R(ZH).

The statistics of Figs. 5.4a and 5.4b are shown in Table 5.1. The bias and RMSE

of retrievals are used to show the performance of Bayesian algorithm. In order to

distinguish different rain types, DSDs are classified with four categories by the range

of rainfall rate, i.e., 0.1 < R < 3 mm h−1; 3 < R < 15 mm h−1; 15 < R < 30 mm

h−1; 30 < R < 100 mm h−1. It is shown that R tends to be overestimated for R < 3
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Figure 5.5: Occurrence histogram of retrieved SD values. The left column is for

values of SD(Λ′) and the right column is for SD(N ′0). The rows from top to bottom

are for data within the ranges of 0.1 < R < 3, 3 < R < 15, 15 < R < 30, and

30 < R < 100 mm h−1, respectively.
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mm h−1. Dm tends to be underestimated for R < 15 mm h−1 while overestimated for

R > 30 mm h−1. The estimation of R has a greater uncertainty for light rain (i.e.,

R < 3 mm h−1). The possible reason is that DSDs of light rain, which have fewer

raindrops to construct a DSD, might have a larger measurement error or model error

than other types of DSDs. Apart from the light rain, the bias of R estimate is less

than 2% and the RMSE is lower than 22%. That is to say, the uncertainty of rain

estimation is generally no more than 1 dB, which is less than the uncertainty of radar

measurements (e.g., the uncertainty of ZH measurement is generally thought to be

∼ 2 dB).

Other variables to be evaluated are SD(·) terms retrieved by the Bayesian algo-

rithm. The dataset of ZH and ZDR comes from rain data. As a result, statistics of

retrieved SD(·) terms help the understanding of retrieval performance for rain data.

Similar to the previous analysis, dataset are classified with several categories in terms

of rainfall rate. Fig. 5.5 shows the occurrence histogram of estimated SD(·) values

of state variables. It is evident that estimated SD(·) values tend to decrease with

increasing R, implying that estimated state variables have the less uncertainty. Since

the measurement errors have been modeled with SD(ZH) and SD(ZDR) in Eq. 5.6,

retrieved SD(Λ′) and SD(N ′0) represent the error effect of ZH and ZDR. Higher SD(·)

values denote a larger error effect in the retrieval. Therefore, the SD(·) value could be

regarded as an indicator of the data quality. Given the real radar data, if estimated

SD(·) values are beyond the range for corresponding rainfall rate, it is likely that the

radar data are not for pure rain and contamination might be included in the data.

Fig. 5.6 shows more analysis of SD(·) values. It gives the dependence of E(Λ)

and SD(Λ) on the ratio of ZDR to ZH . It is worth noting SD(Λ′) and SD(N ′0) also

have the similar characteristics to SD(Λ). Fig. 5.6 shows the analysis of SD(Λ)
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Figure 5.6: The dependence of E(Λ) (unit in mm−1) and SD(Λ) (unit in mm−1)

on the ratio of ZDR to ZH . (a) and (b) show the mean curve fitted to data points

of 20 < R < 30. (c) and (d) display mean curves associated with data points of

1 < R < 3, 3 < R < 5, 5 < R < 10, 10 < R < 20, 20 < R < 30, and R > 30 mm h−1,

respectively. The variable N ′0 has the similar characteristics to Λ (not shown).
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only because variable Λ is familiar to the community. In Figs. 5.6a and 5.6b, cross

points denote data points with 20 < R < 30 mm h−1. Solid lines represent mean

curves of E(Λ) and normalized SD(Λ) [i.e., SD(Λ)/E(Λ)]. These two curves are

fitted by two multi-order polynomial functions. For E(Λ), the general trend is that

its value decreases with increasing ratio ZDR/ZH , implying large ratio would lead to

an estimation of wide DSD. For normalized SD(Λ), its value has the similar trend

but it may increase significantly with increasing ZDR/ZH beyond a given value. For

example, when ZDR/ZH > 0.06, the normalized SD(Λ) value increases and the rate

of increasing is much faster than its rate of decreasing. These two figures suggest that

ZDR and ZH of rain signals have an intrinsic relation. The uncertainty of retrieved

DSD parameter such as SD(Λ) would be enlarged if these two PRD were apart from

that relation. In other words, if retrieved SD(·) values are small, it is likely that

the PRD represent the rain signal. Similar to Figs. 5.6a and 5.6b, Figs. 5.6c and

5.6d show mean curves for dataset with different R ranges. As figures show, all the

categories have very similar tendency for curves of E(Λ) and normalized SD(Λ). Gen-

erally speaking, the larger the ratio of ZDR/ZH , the smaller the E(Λ). In addition,

Normalized SD(Λ) has a low value for a certain range of ZDR/ZH ratio. Beyond that

range the uncertainty of estimation (i.e., normalized SD values) would increase. Figs.

5.5 and 5.6 demonstrate the SD(·) characteristics of rain retrieval. This additional

information from SD(·) terms provides the confidence/reliability of rain retrieval. It

is one of major advantages of the Bayesian approach for rain retrieval.

5.4 Case Study

In this section, a case of radar-rain retrieval is studied. The Bayesian algorithm is

applied to real radar data measured by a polarimetric WSR-88D, named KOUN. In

order to verify the algorithm, rain gauge and disdrometer measurements are used to
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compared with the retrieved results (i.e., rainfall rate and one-hour rain accumula-

tion). Corresponding analysis are given for the comparison.

5.4.1 Data description

Figure 5.7: Locations of radar, disdrometer and rain gauge. KOUN radar is located in

Norman. Six Oklahoma Mesonet sites (dark triangles), named SPEN, MINC, CHIC,

NINN, WASH, and SHAW. OU 2DVD is deployed at KFFL.

As shown in Fig. 5.7, KOUN radar is located at Norman in central Oklahoma.

Rain gauge measurements from six Oklahoma Mesonet sites are used in this study.

The six sites (noted by triangles in the figure), named SPEN, MINC, CHIC, NINN,

WASH, and SHAW, are located at 35.7 km north, 45.0 km west, 47.0 km southwest,

53.6 km southwest, 28.7 km south, and 48.8 km east of KOUN, respectively. A dis-

drometer is also used to do the comparison. It was placed at the site of KFFL, which
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is only about 300 m away from the Mesonet site WASH.

Figure 5.8: Rain comparison between measurements from disdrometer and Mesonet

rain gauge: a) rainfall rate; b) one-hour rain accumulation. The one-hour rain ac-

cumulation at a given time was calculated by accounting for the rainfall within half

hour before and after this time.

The instrumental validation of rain gauge can be examined by comparing its mea-

surements to those of the disdrometer. The rain gauge at WASH was so close to the

disdrometer that rain properties measured by both instruments should be similar,

though there were effects of the rain inhomogeneity and the measurement error. Fig.

5.8 shows the comparison between disdrometer and rain gauge measurements. Two
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subfigures are comparisons of rainfall rate and one-hour rain accumulation, respec-

tively. The rainfall rate of rain gauge is calculated based on total rain of 5 minutes

rain. The one-hour rain accumulation at a given time was calculated by accounting

for the rainfall within half hour before and after this time. Because the Mesonet

rain gauge recorded rain data every five minutes while the 2DVD recorded data every

minute, to be consistent, the 2DVD data are smoothed with five minutes’ interval.

As Fig. 5.8 shows, for both parameters of rainfall rate and one-hour rain accumula-

tion, temporal variations match with each other very well. The fractional difference

of measurements between two instruments is only 3.18%, which is less than the al-

lowance for measurement error of rain gauge (i.e., 5%). Fig. 5.8 demonstrates the

consistency between two instruments and also suggests that rain gauge and disdrom-

eter are reliable sources to be regarded as measuring the ground truth.

On 13 May 2005 a squall line passed through Oklahoma from the northwest to the

southeast. Fig. 5.9 shows PPI images of KOUN radar measurements at 0830UTC.

As shown in ZH and ZDR, the convective rain was followed by a large coverage of

stratiform precipitation. The convective core had ZH as large as 55 dBZ and ZDR as

large as 3.5 dB. Radar PPI scans were made at an elevation of 0.5, meaning that the

radar beam center was at a height of approximately 250 m at the range of 28.4 km

(where disdrometer was deployed). Fig. 5.9 also shows the cross-correlation coeffi-

cient (ρHV ) and results of hydrometer classification developed by NSSL (Schuur et al.

(2003); Ryzhkov et al. (2005c)). The classification algorithm is based on PRD such as

ZH , ZDR, KDP , and ρHV . The meaning of the hydrometer classes are NR: non-rain

echo, R: rain, HR: heavy rain, RH: rain and hail mixture, and BD: big drop. The

following subsection presents the radar data quality control before the application of

retrieval algorithm.
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Figure 5.9: PPI image of KOUN radar observations at 0830 UTC on 13 May 2005:

a) ZH , b) ZDR, c) ρHV , and d) hydroclass. The meaning of hydrometer classification

are NR: non-rain echo, R: rain, HR: heavy rain, RH: rain and hail mixture, and BD:

big drop.

5.4.2 Radar data quality control

In order to smooth the data and filter out speckle, a speckle filtering procedure was

performed on the radar-measured ZH and ZV . Filtered ZDR was calculated from

filtered ZH and ZV . The concept of speckle filter applied in this study is similar to

130



the one described by Lee et al. (1997) except for minor changes. Assuming radar re-

flectivity is combined with a multiplicative noise N , the observation is then expressed

in logarithmic domain by

ZO
H,V (dBZ) = ZT

H,V (dBZ) +N(dB) (5.8)

where subscripts H and V represent horizontal and vertical polarization, respectively;

superscripts O and T denote the observation and the truth, respectively; and N(dB) is

assumed to be a random white noise with Gaussian PDF. Therefore, radar reflectivity

at horizontal or vertical polarization could be estimated by

ẐT
H,V (dBZ) = ZO

H,V (dBZ) + b
[
ZO
H,V (dBZ)− ZO

H,V (dBZ)
]

(5.9)

where,

b =
Var
[
ZT
H,V (dBZ)

]
Var
[
ZO
H,V (dBZ)

] (5.10)

and,

Var
[
ZT
H,V (dBZ)

]
= Var

[
ZO
H,V (dBZ)

]
− Var

[
N(dB)

]
(5.11)

The Var[·] means the variance. In this study, the mean and variance of observed

ZH,V are estimated from observations of adjacent area of distance 1 km. The measure-

ment error [i.e., standard deviation of N(dB)] is assumed to be 2 dB. The minimum

variance of ZH,V is assumed to be 1. That is, the minimum value of b is set to 0.2.

Because the verification was conducted only for pure rain, the study has eliminated

radar echo pixels contaminated by hail, anomalous propagation, biological scatters,

and so on. This task was accomplished based on the hydrometer classification algo-

rithm developed by NSSL. The eliminated region was filled up with estimated ZH (or

ZDR), which was the averaged ZH (or ZDR) of rain signals at adjacent area within 1

km distance. If contamination area was large (e.g., storm core region with large area

of rain/hail echoes), ZH (or ZDR) would be estimated by spatially interpolation using
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Figure 5.10: Time-series figure of un-calibrated ZH and ZDR from radar, as well as

ZH and ZDR calculated from 2DVD measurements.

rain signals at adjacent area (not necessarily within 1 km distance).

As discussed in the introduction, radar measurements were calibrated using 2DVD

measurements. For the rain event on 13 May 2005, Fig. 5.10 shows the time-series

figures of un-calibrated ZH and ZDR from radar (for pure rain), as well as ZH and

ZDR calculated from 2DVD measurements. Being interpolated into a consistent time

scale (i.e., with one minute interval from 0700 to 1300 UTC), the difference between

two lines was calculated and averaged. The difference was found to be -1.08 dB for
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ZH or 0.36 dB for ZDR. Radar measured ZH and ZDR of a full scanning were hence

calibrated by subtracting these two values before used for the Bayesian retrieval.

5.4.3 Analysis of retrievals

Fig. 5.11 shows one example of retrieval results, which are based on KOUN radar

observations shown in Fig. 5.9. Fig. 5.11a gives the PPI image of retrieved R by the

Bayesian algorithm. Retrieved R by empirical dual-pol estimator (i.e., Eq. 5.2) is

close to this figure (not shown). Fig. 5.11b shows the retrieved R by empirical single-

pol estimator (by Eq. 5.1). There are less region of rain output in Fig. 5.11a, which

has been filtered by the classification result of Fig. 5.11d. For example, Fig. 5.11b

contains some speckles at southeast of the leading edge of the storm, which cannot be

filtered by the speckle filter. However, those speckles are normally biological echoes

and have been rejected in Fig. 5.11a. Although Figs. 5.11a and 5.11b have similar

storm feature and close R estimate within the stratiform region, it is obvious that

Fig. 5.11b has a higher R estimate than Fig. 5.11a in the region of strong convec-

tion, which extends from northeast through southwest. Figs. 5.11c and 5.11d display

images of retrieved SD(Λ′) and SD(N ′0) by Bayesian algorithm, respectively. Both

SD(·) images have a similar trend, implying that either one could be used alone. It

is worth noting that both Figs. 5.11c and 5.11d have directly applied PRD shown in

Figs. 5.11a and 5.11b without the filtering of classification result (i.e., Fig. 5.11d).

The good thing is that the SD(·) images are consistent with the classification results.

The rain region typically has small SD(·) values. Large SD(·) values, which are be-

yond their normal ranges for the rain, indicate there is no rain at the region (e.g.,

SD(N ′0) > 2.5).

If rain gauge and disdrometer measurements are assumed to be ground truth,

the Bayesian algorithm can be verified through the quantitative comparison between
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Figure 5.11: Retrieval results from radar observations shown in Fig. 5.9 (i.e., 0830

UTC on 13 May 2005). a) rainfall rate by Bayesian retrieval, b) rainfall rate by R(ZH)

retrieval, c) SD(Λ′) by Bayesian retrieval, and d) SD(N ′0) by Bayesian retrieval.

observations and retrievals. Fig. 5.12 (or 5.13) shows comparisons of rainfall rate

(or one-hour rain accumulation) for retrievals and observations at different sites (six

rain gauges and one disdrometer). In both figures thick solid lines indicate surface

measurements. Thin solid lines denote radar retrievals using the Bayesian algorithm.

As a reference, dashed lines give radar retrievals using the empirical dual-pol relation

(Eq. 5.2) and dotted lines indicate radar retrievals using the empirical single-pol

relation (Eq. 5.1). As figures show, the Bayesian estimator is practically consistent
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Figure 5.12: Rainfall rate comparisons between radar retrievals and in-situ measure-

ments at seven sites: a) CHIC; b) MINC; c) NINN; d) SHAW; e) SPEN; f) WASH;

g) KFFL.
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Figure 5.13: One-hour rain accumulation of radar retrievals and in-situ measurements

at seven sites: a) CHIC; b) MINC; c) NINN; d) SHAW; e) SPEN; f) WASH; g) KFFL.
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Table 5.2: Bias and RMSE of rain retrievals (one-hour rain accumulation) versus

in-situ measurements at sites

CHIC MINC NINN SHAW SPEN WASH KFFL

Bayesian
bias (%) -7.3 2.5 8.3 7.8 15.5 10.7 10.0

RMSE (%) 21.0 11.5 21.7 14.7 19.6 16.4 15.5

R(ZH , ZDR)
bias (%) 1.1 1.6 12.3 22.4 28.0 19.8 20.2

RMSE (%) 17.3 26.4 33.5 29.9 33.9 34.4 33.3

R(ZH)
bias (%) 35.4 48.1 48.2 49.5 44.9 48.9 50.4

RMSE (%) 80.4 103.5 106.8 72.3 56.0 95.3 92.5

with the dual-pol estimator. Both estimators give satisfactory results of rainfall rate

(or one-hour rain accumulation), capturing the temporal variation of surface measure-

ments. The single-pol estimator normally overestimates rainfall during the convection

while it performs fairly well in the stratiform region. It is worth noting that the mix-

ture of rain/hail might exist near convective cores (e.g., around 0655UTC at MINC).

Radar measured ZH and ZDR are sometimes extremely large (e.g., ZH = 55 dBZ and

ZDR = 3.5 dB). If no quality control were performed, rainfall rate estimated from

contaminated ZH and ZDR could be much larger than 100 mm h−1. However, surface

measurements in Figs. 5.12 and 5.13 show that this is not the case. Radar retrievals

in these figures demonstrate that the data quality control [i.e., using radar measure-

ments (classified as rain) from an adjacent area to interpolate into a contaminated

region] can give a reasonable rain estimation for the contaminated region.
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By comparison, the Bayesian retrieval is superior to the empirical dual-pol re-

trieval. In additoin, it is reasonable to see that both of them are better than the

single-pol retrieval. As Fig. 5.13 shows, the empirical dual-pol retrieval tends to

overestimate the one-hour rain accumulation for heavy (sometimes moderate) rain.

The empirical single-pol retrieval has even worse performance, especially during the

strong convection. Table 5.2 gives the bias and RMSE of one-hour rain accumulation

retrievals versus in-situ measurements. As it shows, the empirical single-pol retrieval

has the worst results. At seven sites, the Bayesian retrieval has small biases (∼ 10%)

and RMSE (∼ 20%) compared to those of empirical retrievals. With the exception

of CHIC, the empirical dual-pol retrieval generally has a larger bias and standard

deviation than the Bayesian retrieval.

5.5 Conclusion

In this chapter, a Bayesian algorithm is proposed for rain estimation through estimat-

ing gamma DSD parameters from ZH and ZDR. For this algorithm, the prior PDF

of state variables is constructed using a large set of 2DVD data collected in central

Oklahoma. The conditional PDF of the radar observation is assumed to follow a

bivariate Gaussian model. Forward models of radar variable calculation are based on

the theory of raindrop backscattering. The evaluation from 2DVD data and verifi-

cation by a case study have shown that the Bayesian algorithm has the potential to

improve the rain estimation from PRD.

There are still issues about the implementation of this algorithm. First, different

with empirical estimators, the basis of this algorithm is the raindrop backscattering

theory. Radar measurements should be consistent with the estimation from ground

observations. Many previous studies have shown such a consistence to some degree.
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Given that radar measurements match with disdrometer measurements, the proposed

Bayesian algorithm is effective as shown in this study. On the contrary, if radar ob-

servations cannot be explained by the scattering theory, i.e., the radar and surface

measurements are not consistent, this algorithm won’t give the right retrieval. In

that case, Bayesian algorithm will consider the mismatch as observation/model er-

ror. The corresponding SD(·) terms would reflect such an error effect. This fact also

implies that calibration to the raw radar data might be required when this Bayesian

algorithm is applied for other radars. In the case study the equivalence has been

shown between the rain gauge and disdrometer. This fact suggests that rain gauge,

which is widely used nationwide, could be an alternative source for radar calibration

in practical applications.

This study also shows that the Bayesian algorithm essentially has the similar per-

formance with the empirical dual-pol estimator (i.e., Eq. 5.2). The similarity comes

from the fact that both methods are based on the application of ZH and ZDR and an

intrinsic two-order DSD model. However, the Bayesian retrieval, which does not use

deterministic coefficients, performs better. It gives the estimate with the maximum

posterior probability, as well as the standard deviation of estimate, which can be

used as a good indicator of radar data quality for rain echoes. Moreover, although

the Bayesian approach in this study is limited in two PRD, other PRD such as corre-

lation coefficient and differential phase can be incorporated into the observation y in

Eq. 5.3, making the algorithm more effective. However, there are still issues on the

appropriate assumption of their conditional distribution model (i.e., Eq. 5.6).

In addition, it is worth noting that the approach introduced in this chapter in-

corporates the historic information and does not apply the spatial information. As

a result, the spatial algorithm such as attenuation correction is beyond the scope of
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this chapter. The variational method could be a good candidate to solve this kind of

problem. Related research will be shown in next chapter.
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Chapter 6

Variational Method for Optimal DSD Retrieval in

Presence of Attenuation

6.1 Introduction

Previous chapters mainly focus on the application of radar data without considering

the attenuation. The reason is that WSR-88D radar network in the United States

works at the S-band frequency (∼ 10 cm wavelength), for which the attenuation effect

is minor and can be neglected for most cases. However, most national weather radar

networks in the world operate at a higher frequency. For example, many weather

radars used in Europe and the TDWR (Terminal Doppler Weather Radars) of the

U.S. operate at the C-band (∼ 5 cm wavelength). Recently, X-band (∼ 3 cm wave-

length) weather radars such as those in the CASA (Center for Collaborative Adap-

tive Sensing of the Atmosphere) IP1 network have received more attention. Unlike

S-band radars, the propagation effect of precipitation attenuation on C-band and X-

band measurements can not be ignored. The attenuation is a significant problem for

radar-based rain estimation and precipitation microphysics studies at these shorter

wavelengths.
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For single-polarization radars, the attenuation correction is mainly based on the

Hitschfeld-Bordan (H-B) method and its revised versions [e.g., Delrieu et al. (2000);

Zhang et al. (2004); Berne and Uijlenhoet (2006)]. With dual-polarization radars,

the measured propagation phases (differential phase or specific differential phase)

have been widely used for the attenuation correction. Such algorithms include the

direct phase correction (DP) method [e.g., Bringi et al. (1990)], data fitting method

[Ryzhkov and Zrnic (1995)], ZPHI algorithm [Testud et al. (2000)], self-consistence

(SC) method [Bringi et al. (2001)] and revised SC methods [Park et al. (2005); Vulpi-

ani et al. (2005); Gorgucci and Baldini (2007); Liu et al. (2006); Ryzhkov et al. (2007)].

All these algorithms apply various empirical relations associated with the attenua-

tion. For example, the deterministic power law relation between the attenuation and

radar reflectivity is the basis for the H-B and revised H-B algorithms. The power

law relations between the attenuation and specific differential phase are essential for

phase-based attenuation corrections. These empirical relations should be uniquely

known for the DP method while the coefficients could be adjusted by the SC method

and its revised versions.

There are problems in attenuation correction algorithms mentioned above. The

attenuation estimated from empirical relations may be affected by the strong con-

straints that sacrifice a lot of physical variabilities. Moreover, the measurement er-

ror, which can further deteriorate the attenuation estimation, are not fully taken into

account in these algorithms. There are possible ways to solve these problems. Since

drop size distribution of hydrometeors (e.g., DSD) is fundamental for precipitation

microphysics, the sacrifice of physical variability can be mitigated by estimating DSD

parameters, which are used to estimate the attenuation [e.g., Meneghini and Liao

(2007)]. In addition, the effect of measurement error can be minimized through a
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variational approach by optimizing the use of all available measurements with error-

based weights [e.g., Hogan (2007); Xue et al. (2009)]. The combination of these two

approaches should have great potential to improve attenuation correction and QPE.

To do this work, DSD parameters need to be estimated as part of the state vector.

Because of the involvement of DSD parameters in the observation operator, the varia-

tional scheme becomes highly non-linear. The forward model of radar measurements

(i.e., attenuated observations) and the corresponding partial derivatives are compli-

cated functions of DSD parameters. The development of adjoint codes is a problem.

In this chapter, two approaches mentioned above are combined for the first time to

correct the attenuation and estimate DSD parameters from X-band (or C-band) PRD.

The DSD is retrieved through a two-dimensional variational scheme. Attenuation

effects are built into the forward observation operator and the attenuation correction

is accomplished adaptively during the iterative optimization/estimation process. The

rest of this chapter is organized as follows. The methodology is described in Section

6.2. The algorithm is evaluated in Section 6.3 using simulated X-band PRD from

S-band radar measurements. Retrievals based on real PRD are analyzed in Section

6.4. Limitations and potentials of the algorithm are discussed in Section 6.5.

6.2 Methodology

6.2.1 Variational approach

This variational algorithm applies three PRD, ZH , ZDR, and KDP , for the DSD re-

trieval. The optimal use of measurements involves the minimization of a cost function

as:

J(x) = Jb(x) + wZH
JZH

(x) + wZDR
JZDR

(x) + wKDP
JKDP

(x) (6.1)
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where,

Jb(x) =
1

2
(x− xb)

TB−1(x− xb) (6.2)

JZH
(x) =

1

2

[
HZH

(x)− yZH

]T
R−1
ZH

[
HZH

(x)− yZH

]
(6.3)

JZDR
(x) =

1

2

[
HZDR

(x)− yZDR

]T
R−1
ZDR

[
HZDR

(x)− yZDR

]
(6.4)

JKDP
(x) =

1

2

[
HKDP

(x)− yKDP

]T
R−1
KDP

[
HKDP

(x)− yKDP

]
(6.5)

The cost function J is composed of four parts. Jb is the background part. The other

three terms correspond to observations of ZH , ZDR, and KDP , respectively. Super-

script T denotes the matrix transpose. Matrix w represents relative weights of the

observation terms and is associated with the signal-to-noise ratio (SNR). Vector x

is the state vector and xb is the background or first guess. Vector y indicates the

radar observations. H denotes the nonlinear observation operator of radar variables.

B is the background error covariance matrix. R is the observational error covariance

matrix. Matrix w can be regarded as a part of R. This study separates them for the

convenience of defining a simple w in term of SNR. Subscripts ZH , ZDR and KDP

are used to denote the terms for the corresponding observations. Above equations

try to follow the standard notations used in the modern data assimilation literature,

as defined in Ide et al. (1997).

The size of matrix B is n2 where n is the size of state vector x. The full matrix is

usually huge. The matrix computation and storage, especially for the inversion of B,

can be a major problem during the iterative minimization of the cost function. To

solve this problem, a new state variable v is introduced, written as,

v = D−1δx (6.6)
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with δx = x − xb and DDT = B [Parrish and Derber (1992)]. Notation δ indicates

the increment. D is the square root of the background error covariance matrix B.

The cost function is then rewritten as follows,

J(v) =
1

2
vTv +

1

2
wZH

[
HZH

(xb + Dv)− yZH

]T
R−1
ZH

[
HZH

(xb + Dv)− yZH

]
+

1

2
wZDR

[
HZDR

(xb + Dv)− yZDR

]T
R−1
ZDR

[
HZDR

(xb + Dv)− yZDR

]
+

1

2
wKDP

[
HKDP

(xb + Dv)− yKDP

]T
R−1
KDP

[
HKDP

(xb + Dv)− yKDP

]
(6.7)

In this way, the inversion of B is avoided. The minimization of cost function J is

achieved by searching the minimum gradient of cost function ∇vJ , which is given by:

∇vJ =v + wZH
DTHT

ZH
R−1
ZH

(
HT
ZH

Dv− dZH
)+

wZDR
DTHT

ZDR
R−1
ZDR

(
HT
ZDR

Dv− dZDR
)+

wKDP
DTHT

KDP
R−1
KDP

(
HT
KDP

Dv− dKDP
) (6.8)

H represents the Jacobian operator, a matrix containing the partial derivative of

observation operator H with respective to each element of the state vector. Vector d

is the innovation of observation, i.e., d = y−H(xb).

The spatial influence of the observation is determined by the background error

covariance matrix B. Huang (2000) showed that the element bij of matrix B could be

modeled as a spatial filter,

bij = σ2
b exp

[
− 1

2

(rij
rL

)2
]

(6.9)

where subscripts i, j denotes two grid points in the analysis space; σ2
b is the back-

ground error covariance; rij indicates the distance between the ith and jth grid points;

rL is the decorrelation length of the observed physical quantity. In this chapter, rL is

assumed to be a constant in the two-dimensional analysis space, i.e., the error covari-

ance is spatially homogeneous at horizontal plane, as is for the isotropic covariance

145



option in Liu and Xue (2006). The square root of B, i.e., D, can be computed by

applying a recursive filter described by Gao et al. (2004) and Liu et al. (2007). In this

way, the cost of computation and storage can be reduced significantly (by a factor of

B dimension), compared to the computation of inversion of B.

6.2.2 Forward observation operator

The C-G DSD model has been successfully applied in rain retrieval in previous two

chapters. Therefore, it is appropriate for testing the variational retrieval here. In this

chapter, N ′0 = log10(N0) and Λ are chosen as state variables. The state vector x is

composed of N ′0 and Λ at all grid points. Given two DSD parameters at each grid

point, the DSD can be determined. Therefore, rain properties, including intrinsic ZH

and ZDR, as well as KDP can be estimated as well. The forward operators of ZH and

ZDR follow Eqs. 2.21 and 2.22, respectively. The forward operator of KDP is given

by

KDP =
180λ

π

∫ ∞
0

Re
[
fa(0)− fb(0)

]
N(D)dD (◦km−1) (6.10)

where fa(0) and fb(0) represent the forward scattering amplitudes at horizontal and

vertical polarizations, respectively. Re(·) denotes the real part of a complex value.

The scattering amplitudes fa,b(0) are also calculated based on the T-matrix method

as described in Chapter 2. Specific attenuations at horizontal (AH) and vertical (AV )

polarizations can be calculated by

AH,V = 4.343× 103

∫ ∞
0

σH,Vext (D)N(D)dD (dB km−1) (6.11)

where σH,Vext is the extinction cross section at horizontal or vertical polarizations. The

specific differential attenuation ADP is defined as:

ADP = AH − AV (dB km−1) (6.12)
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If specific attenuations are known, the attenuated reflectivity (Za
H) and attenuated

differential reflectivity (Za
DR) at each range gate can be calculated by

Za
H(n) = ZH(n)− 2

n−1∑
i=1

AH(i)∆r (6.13)

and,

Za
DR(n) = ZDR(n)− 2

n−1∑
i=1

ADP (i)∆r (6.14)

where numbers i and n denote the ith and nth range gates from the radar location,

respectively. ∆r is the range resolution.

6.2.3 Lookup table method

In Eq. 6.8, it is expensive to directly compute the transpose of linearized operator H,

which is the matrix of partial derivatives. In general, the adjoint method is applied to

compute HT efficiently without storing the full matrix. However, this method is not

appropriate in this study. Here the calculation of radar variables is based on the pre-

calculation of scattering amplitude. Without the approximation (using a empirical

relation to model the scattering amplitude), it is difficult to represent the derivatives

functionally in terms of DSD parameters. In such a case, it is a problem to develop

an adjoint for the calculation of HT . In order to solve this problem, the lookup table

method is applied.

The partial derivative of each polarimetric radar variable, i.e., ZH , ZDR, or KDP ,

with respect to each state variable, Λ or N ′0, is needed at every grid point. Therefore,

there are total six tables of derivative for the observation operator H (i.e., ∂ZH/∂Λ,

∂ZDR/∂Λ, ∂KDP/∂Λ, ∂ZH/∂N
′
0, ∂ZDR/∂N

′
0, and ∂KDP/∂N

′
0). In each lookup ta-

ble, the derivative values are pre-calculated for parameter Λ varying from 0 to 50

and parameter N ′0 varying from 0 to 10. To ensure the accuracy, the range of each

parameter is discretized at an interval of 0.1. Consequently, each lookup table has
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nv × 501× 101 elements (nv is the dimension of Λ and N ′0). In this way, the partial

derivative of operator H is found from these tables for any given values of Λ and N ′0.

The interpolation can be performed for values between the discrete Λ or N ′0 to further

improve the accuracy. Generally, parameter values in lookup tables are sufficiently

accurate for the iterative minimization of cost function because parameter ranges are

wide. For state variables out of the table range, they are restricted at the edge of the

table range although this rarely happens in practice.

With introducing the lookup table, the cast of derivative calculation is saved. In

the similar way, given any two state parameters, the calculation of intrinsic (non-

attenuated) ZH , ZDR, KDP , AH , and ADP can be made efficiently as well with using

the lookup table method. As a result, the observation operator H is computed as

a combination of different values found in various lookup tables, avoiding the inte-

gral calculation in the forward model. Preliminary results in following sections have

demonstrated that the lookup table is an efficient tool to deal with non-linear forward

models of complicated functions.

6.2.4 Iteration procedure

The iteration procedure of minimizing the cost function is shown in Fig. 6.1. At the

beginning of the program, necessary data files such as all lookup tables, the back-

ground, radar measured ZH , ZDR, KDP , and SNR are loaded. In the mean time,

initial parameters of the variational scheme are configured. Radar measurements are

then preprocessed. Within the analysis region, only radar measurements with SNR

> 1 dB are used. Moreover, observational weights are set differently. The weight (i.e.,

element of matrix w) is set to 1 for SNR > 20 dB, 1/2 for SNR > 10 dB, 1/4 for SNR

> 5 dB and 1/8 for SNR < 5 dB, respectively. With the initial state vector (e.g.,

set v=0), intrinsic variables, ZH , ZDR, KDP , AH , and ADP , are found for each grid
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Figure 6.1: Flowchart of variational retrieval scheme.

point from the lookup tables. Corresponding Jacobian matrices (H) are constructed

based on the lookup tables as well. After the interpolation from grid points to the

observation points, attenuated ZH and ZDR are calculated according to Eqs. 6.13 and

6.14. Calculated polarimetric variables, ZH , ZDR and KDP , and measured variables

are used in Eq. 6.8 to calculate the gradient of cost function. The initial first guess

is always assumed to be the background. During the minimization process, the state

vector is updated at each loop until the iteration is converged. If the background con-

tains no useful information (e.g., the constant background), the analysis field based

on the first guess may not be satisfactory enough. In such a case, the analysis result

is considered as a new first guess and used to repeat the minimization process. In

general, several outer loops would give the satisfactory result, which has a relatively

small cost function.
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6.3 Evaluation by Simulation

The advantage of using simulated data is that the truth is known and can be compared

to the retrieved result. In this section, the variational approach is evaluated by X-

band PRD that are simulated from real measurements of an S-band radar. The

S-band measurements come from KOUN radar. It is assumed that the simulated

PRD are measured by two CASA IP1 radars [see Xue et al. (2006)], i.e., the radars

located at Cyril (KCYR) and Lawton (KLWE) of Oklahoma, which are about 80 and

100 km southwest of the KOUN, respectively.

6.3.1 Simulation of X-band PRD

On 8 May 2007 a convective system passed through Oklahoma from west to east. PPI

images of ZH and ZDR measured by KOUN at 1230 UTC are shown in Fig. 6.2. Two

asterisks located at the southwest part of the image denote the locations of KLWE

and KCYR. Two 20 km×20 km regions indicated by two square boxes in Fig. 6.2a are

analysis regions used to test the variational algorithm. It is worth noting that these

two regions include a part of storm core, where the attenuation can be notable at the

X-band frequency. The simulation procedure is described as follows. Let’s take the

simulation of KCYR measurements for an example. Firstly, assume the KCYR makes

full 360◦ azimuth scans at 1◦ increment. The maximum range is 30 km and the range

resolution is 48 meters. Secondly, interpolate KOUN measurements at the lowest

elevation into every radar range gate of KCYR, ignoring the effect of radar elevation

differences. Thirdly, interpolated ZH and ZDR are used to retrieve the “true” DSD

for each radar range gate, assuming the contribution completely comes from the rain.

Next, intrinsic PRD (ZH , ZDR, KDP , AH , and ADP ) are calculated based on the

“true” DSD. After intrinsic PRD are obtained for all range gates, attenuated PRD

are then calculated along each beam path. Finally, random noises and biases are

added to the attenuated PRD to simulate measurement errors and system biases.
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Figure 6.2: (a) ZH , (b) ZDR measured by KOUN (elevation angle 0.5◦, range resolu-

tion 250 m, 1230 UTC, 8 May 2007). Two solid line boxes indicate the regions used

for the simulation.
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6.3.2 Test of algorithm consistency

Does the variational method have a self-consistent retrieval? The following experi-

ments test the performance of the algorithm under ideal conditions, for which only

statistical errors are considered while biases and other errors are not added. Measure-

ment errors are assumed to be Gaussian random noises with standard deviations of 2

dB for ZH (dBZ), 0.2 dB for ZDR (dB), and 0.1 ◦km−1 for KDP (◦km−1), respectively.

In the third step of X-band PRD simulation, the “true” DSD is retrieved from two

S-band PRD, ZH and ZDR. The retrieval follows the procedure described in Chapter

4. It is worth noting that the “true” DSD is assumed to follow the C-G model, which

is the same as the DSD model used in the variational retrieval. That is to say, when

X-band PRD are simulated in this way, there is no DSD model error (it is worth

noting that DSD parameters are not known before hand) in the variational retrieval.

The variational analysis applies configurations described as follows. The analysis

region is a 20 km×20 km square shown by the box in Fig. 6.2. It is covered by

251×251 analysis points at an interval of 80 meter. The initial background is set to

constant values over the whole analysis domain (N ′0 is 3 and Λ is 4). These rough

guesses may be far from the truth. In the variational scheme, the decorrelation scale

L is set to be 20 grids, i.e., 1.6 km, which is reasonable for the spatial property of a

storm. Default observation errors are 2 dB for ZH , 0.2 dB for ZDR, and 0.1◦km−1 for

KDP , the same as those of simulated observations. Since the background is constant,

the background error is set as 2, which is rather a large value.

The first experiment is performed for KCYR radar. Simulated PRD and retrieved

results are shown in Fig. 6.3. Three columns from left to right show the images of ZH ,

ZDR, and KDP , respectively. Three rows indicate different properties of PRD. The

third row denotes the “true” PRD, which are simulated with the C-G DSD model,
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i.e., without model error for the variational retrieval. The second row represents the

simulated observations. The attenuations have been applied to the simulated obser-

vations. Measurement errors have been added to them as well. The first row shows

analysis results using the variational algorithm. The input data of the variational

algorithm are the simulated PRD shown in the second row.

Figure 6.3: Simulated PRD and retrieved results for KCYR. Three rows from top to

bottom denote the retrieval results, the simulated PRD (with attenuation effect) and

the truth fields, respectively. Three columns from left to right show the ZH , ZDR,

and KDP , respectively. True DSDs are assumed to follow C-G DSD model.

As Fig. 6.3 shows, the variational algorithm successfully retrieves ZH , ZDR, and

KDP even though observed PRD contain attenuations and noises. The analysis results

match the truth very well except for some smoothing. The true PRD are interpolated
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Figure 6.4: The same as Fig. 6.3 but for KLWE
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into the grid points and compared to the analysis results. The biases of retrievals

with respect to the true PRD are 0.11 dB, 0.01 dB and less than 0.001 ◦km−1 for

ZH , ZDR, and KDP , respectively. Accordingly, RMSEs of retrieval are 0.47 dB, 0.10

dB and 0.06◦km−1. These results demonstrate the excellent performance of the vari-

ational algorithm in a perfect condition, i.e., with controlled measurement errors and

without DSD model errors and biases. Moreover, the lookup table method, as well

as adaptive attenuation correction integrated in the forward model, has been proven

to be effective in this situation.

Similar analysis is performed for simulated PRD of KLWE. The results are shown

in Fig. 6.4. In the analysis region, there are heavy rains around the radar so that the

attenuation effect is more severe than the KCYR case shown in Fig. 6.3. This is obvi-

ous from the second row of Fig. 6.4. Simulated ZH and ZDR have a very low value in

the far distance. The strong attenuation close to the radar can negatively affect the

minimization process of cost function because the retrieval at far range is sensitive

to the attenuation correction at near range. However, the variational algorithm still

gave nearly perfect results. The biases of retrieval in Fig. 6.4 are 0.13 dB, 0.01 dB

and 0.006◦km−1. The RMSEs of retrieval are 0.40 dB, 0.09 dB and 0.07◦km−1. In

the overlapping region of KCYR and KLWE radars, Figs. 6.3 and 6.4 show a good

match for all three radar variables.

6.3.3 Test of DSD model error

Because natural DSDs are not necessarily represented by the C-G DSD model, this

subsection tests the effect of DSD model error on the variational algorithm. During

the simulation, the true DSD is assumed to follow the exponential model instead of

the C-G DSD model. There is an evident difference between the C-G model and
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the exponential model. The exponential model is equivalent to a gamma model with

a shape parameter µ=0 while the C-G model is the gamma model with its shape

parameter depending on the slope parameter. Since the variational algorithm applies

the C-G model, simulated X-band PRD using exponential model can bring a notable

DSD model error.

The simulation and retrieval procedures are similar to those described in previous

subsection. The same S-band data are used so that the effect of model error can be

perceived through the comparison. Corresponding results are shown in Fig. 6.5 for

KCYR and Fig. 6.6 for KLWE. Although the true PRD in Fig. 6.5 (or Fig. 6.6) do

not have much difference with those in Fig. 6.3 (or Fig. 6.4), the intrinsic DSD are

different. However, both figures show that the retrieval results (first row) still match

the truth (third row) very well even though DSD model errors have been introduced.

For Fig. 6.5, the biases of retrieval are 0.09 dB, 0.01 dB, and 0.001◦km−1 for ZH , ZDR,

and KDP , respectively. The RMSEs of retrieval are 0.46 dB, 0.10 dB and 0.06 ◦km−1.

For Fig. 6.6, the corresponding biases are 0.16 dB, 0.03 dB, and 0.006 ◦km−1. The

corresponding RMSEs are 0.46 dB, 0.11 dB and 0.08 ◦km−1. Compared to the biases

and RMSEs in Figs. 6.3 and 6.4, there are no fundamental difference from them.

That is to say, the performance of this variational algorithm has not been notably

deteriorated with the addition of DSD model error. It implies that the assumption

of C-G DSD model should be reasonable and practicable for this variational algorithm.

6.3.4 Test of measurement error and bias

There are two considerations for practical application of this algorithm. First, mea-

surement errors are always unknown and might be overestimated/underestimated in

the observation error covariance matrix. The other consideration is that there might
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Figure 6.5: The same as Fig. 6.3 but true DSDs are assumed to follow exponential

DSD model
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Figure 6.6: The same as Fig. 6.5 but for KLWE
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exist intrinsic biases attributed with the forward model error, which leads to the

difference between radar measurements and observational model outputs. This sub-

section examines the algorithm’s sensitivity to the error and the bias that can not

been well characterized in the retrieval.

The following tests are based on the simulated “truth” shown in Fig. 6.6. It is

worth noting that the DSD model error exists for all the following tests. To simulate

the “observation”, the “true” radar parameters are added with different measurement

errors and biases for a total 12 tests. Tests 1-4 assume no bias but different measure-

ment errors for simulated “observations”. Tests 5-8 assume the same measurement

errors but different biases. Tests 9-12 assume the same biases as tests 5-8 except

that measurement errors are different. The detailed configurations of simulated data

and statistics of retrievals are shown in table 6.1. In each cell of the table, right

values of notation “slash” are simulated biases/measurement errors. Left values are

biases/RMSE of retrievals compared to the truth. In the ideal condition, measure-

ment errors should be characterized by error covariance matrices (RZH
, RZDR

, RKDP
)

of the variational scheme. However, it is impossible because true errors are always

unknown. Therefore, a mismatched error structure is assumed for these tests. For

those error covariance matrices, the standard deviations of ZH , ZDR, and KDP are

assumed to be 0.5 dB, 0.1 dB and 0.1 ◦km−1, respectively. That is to say, the “mea-

surement” errors only match the “truth” in test 1. In other tests, the “true” error

are generally larger than the error assumption in the retrieval.

As to tests 1-4, the retrieval RMSEs are generally less than the “true” measure-

ment errors. This means the algorithm has the capability to smooth the observation

with a less statistical error. However, the measurement error may introduce the re-

trieval bias and the bias increases with increasing the measurement error. It is noted
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that the bias and the RMSE are not large, implying that the statistical error does

not have much effect on the retrieval if there is no intrinsic bias in the measurement.

Table 6.1: Bias and RMSE of variational retrieval for different experiments

Retrieval bias / Simulated bias Retrieval RMSE / Simulated error

TEST ZH (dB) ZDR (dB) KDP (◦km−1) ZH (dB) ZDR (dB) KDP (◦km−1)

1 0.091 / 0 0.027 / 0 0.004 / 0 0.393 / 0.5 0.107 / 0.1 0.084 / 0.1

2 0.083 / 0 0.009 / 0 0.006 / 0 0.409 / 1.0 0.108 / 0.2 0.083 / 0.2

3 0.178 / 0 0.023 / 0 0.012 / 0 0.476 / 1.5 0.110 / 0.3 0.088 / 0.3

4 0.267 / 0 0.036 / 0 0.019 / 0 0.537 / 2.0 0.120 / 0.4 0.093 / 0.4

5 0.444 / 0.125 0.115 / 0.025 0.020 / 0.025 0.597 / 0.5 0.159 / 0.1 0.084 / 0.1

6 0.841 / 0.25 0.219 / 0.05 0.037 / 0.05 0.952 / 0.5 0.253 / 0.1 0.092 / 0.1

7 1.575 / 0.5 0.411 / 0.1 0.067 / 0.1 1.687 / 0.5 0.445 / 0.1 0.114 / 0.1

8 2.879 / 1.0 0.755 / 0.2 0.118 / 0.2 3.037 / 0.5 0.807 / 0.1 0.160 / 0.1

9 0.448 / 0.125 0.113 / 0.025 0.022 / 0.025 0.606 / 0.75 0.157 / 0.15 0.085 / 0.15

10 0.862 / 0.25 0.216 / 0.05 0.040 / 0.05 0.979 / 1.0 0.250 / 0.2 0.095 / 0.2

11 1.604 / 0.5 0.408 / 0.1 0.071 / 0.1 1.724 / 1.25 0.443 / 0.25 0.117 / 0.25

12 2.940 / 1.0 0.747 / 0.2 0.122 / 0.2 3.117 / 1.5 0.801 / 0.3 0.165 / 0.3

Tests 5-8 have the same measurement errors as test 1 except they have differ-

ent biases. Compared to test 1 results, tests 5-8 show notable biases and RMSEs

in retrieval resutls. Except some values of KDP , all retrieval biases or RMSEs are

larger than simulated biases or errors in tests 5-8. Test 8 shows that 1 dB bias in

ZH measurements leads to about 3 dB bias and 3 dB RMSE in ZH retrievals. This

fact implies that the variational algorithm is more sensitive to the measurement bias

than to the measurement error. The measurement bias not only introduces a larger

bias in the retrieval but also enlarges the retrieval RMSE. Moreover, the large the

measurement bias, the larger the retrieval bias and RMSE. Test 9-12 apply the sim-

ilar simulation to tests 5-8 except measurement errors are different. For example,

simulated data in test 12 have three times measurement error as large as in test 8.
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However, retrieval biases and RMSEs of test 12 are almost the same as those of test

8. This fact also demonstrates that the algorithm’s sensitivity to the measurement

bias is greater than to the measurement error.

These 12 tests give a good understanding of the algorithm’s sensitivity. In prac-

tice, the situation would be much more complicated. For example, measurement error

might not be equal for every measurement. However, this would not be a serious is-

sue according to the previous analysis. The serious problem might exist when the

radar data are inconsistent with each other. For example, according to the radar

forward model used in the retrieval algorithm, three parameters, ZH , ZDR, and KDP ,

should be intrinsically consistent. Any inconsistency is equivalent to introducing

measurement biases, which might lead to large biases and RMSEs in the retrieval.

Moreover, the data inconsistency might not exist everywhere equally. For example,

radar measurements might not be reliable due to low SNRs. Within low SNR regions,

measurement biases and errors might be very large while they might be small in other

regions. The performance of the variational algorithm would also degrade in such a

situation. With the understanding of algorithm’s sensitivity, the next subsection will

show some results from the real radar data and discuss corresponding issues for prac-

tical implementation of the algorithm.

6.4 Retrieval Based on Real PRD

The previous section tests the variational algorithm using simulated data and shows

promising results. The simulations also show that the performance of the algorithm

depends on the data quality. It makes sense because previous tests applies a constant

background, which contains useless information for the retrieval. The simulated data

have a good data quality so that the background information is not necessary for the
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retrieval to get a good result. However, the data quality is a major problem when

this algorithm is applied with the real data. As long as the observations have a bad

data quality, the retrieval would not be able to get a reasonable result. In that case

the useful information is required to compensate the degradation of the data quality.

The rest part of this section gives two cases of real data retrievals to address this

issue.

6.4.1 Case 1: X-band data

This case applies the X-band data collected by two CASA radars described in the

previous section. Figs. 6.7 and 6.8 show the PPI images of ZH , ZDR, KDP , and

SNR, measured by KCYR and KLWE, respectively. The square boxes in the fig-

ures represent the analysis region of retrieval. As Fig. 6.7d shows, there exist some

regions with a low SNR (<10 dB) in the analysis area. Particularly, the low SNR

region is much larger in the the analysis area of KLWE (Fig. 6.8). Within the low

SNR region, the data quality of radar data is problematic. ZDR, which is noisy in

both figures, obviously has a worse quality than ZH . KDP , having many positive

and negative values, is least reliable among three variables. To mitigate the effect of

poor data quality, some observational weighs in terms of SNR have been introduced

in the cost function (as shown in Eq. 6.1). In addition, the default measurement

errors are set to 2 dB for ZH(dBZ), 0.4 dB for ZDR(dB), and 0.2 ◦km−1 for KDP

(◦km−1), respectively. The measurement errors for ZDR and KDP are twice as much

as those assumed in the simulation case because for real data ZDR and KDP usually

have more uncertainty than ZH . It can be obviously seen that the real ZH and ZDR

in Figs. 6.7 and 6.8 are much noisier than simulated ZH and ZDR in Figs. 6.3 and 6.4.

Let’s first test the constant background in the real data retrieval. The background

parameters are set to be the same values as in previous tests (i.e., N ′0 = 3 and Λ = 4).
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Figure 6.7: (a) ZH , (b) ZDR, (c) KDP , and (d) SNR as measured by KCYR at the

elevation angle of 2◦ at 1230 UTC on May 8th, 2007. The square box region is the

retrieval domain.

163



Figure 6.8: The same as Fig. 6.7 but data were measured by KLWE.
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The background error is set to 4, denoting a large dynamic range of N ′0 or Λ. The

retrieval results are shown in Figs. 6.9 and 6.10 for KCYR and KLWE, respectively.

Unfortunately, because the constant background cannot provide any helpful infor-

mation within the region of low SNR, the retrieval results there are bad. Moreover,

because the attenuation correction process makes the far range retrieval have a sub-

stantial dependence on the near range retrieval, the low SNR region could actually

affect the retrieval almost at the entire region. This impact is evident in Figs. 6.9

and 6.10, especially for ZDR and KDP . The variational algorithm failed in this exper-

iment when a constant background is applied. It is reasonable to have such a result

because the variational retrieval is a global optimization system. If satisfactory re-

trieval were desired, good physical information (no matter from data or background)

of the entire region should be provided. Otherwise, incorrect retrieval at one point

might happen. Its negative effect could be spread through spatial correlation and in-

correct attenuation correction, resulting in potential degradation of the entire system.

The S-band radar measurements can be an additional source in providing useful

information to compensate for the bad data quality of X-band radar measurements.

The following experiment applies the same data but a different background obtained

from S-band radar measurements. In simulation section, ZH and ZDR measured by

KOUN have been used to simulate a “truth” field (Figs. 6.3 and 6.4, the third row).

Here the simulated “truth” field is used as the background. Generally, the S-band

measurements should be close to the truth though there exist model error and mea-

surement error effects. As a result, using S-band based background should have a

smaller background error than using constant background. In this experiment the

background error is set to 0.5, representing a moderate error. For example, given the

same Λ, N ′0 error of 0.5 introduces 5 dB error for ZH .
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Figure 6.9: Retrieved results based on KCYR radar measurements. The background

was set to be constant. From left to right: (a) ZH , (b) ZDR, (c) KDP .

Figure 6.10: The same as Fig. 6.9 but for the retrieval of KLWE radar measurements.

The variational retrieval results are shown in Figs. 6.11 and 6.12 for KCYR and

KLWE, respectively. As expected, the background has compensated for the X-band

data with a low quality so that the performance of the variational algorithm is stable

and satisfactory. Since we do not know the truth, the reasonableness can be exam-

ined by comparing the results of two radars at the overlapped region. As Figs. 6.11

and 6.12 show, the major features of all three radar varaibles match very well at the

overlapped region (refer to overlapped region of two square boxes in Fig. 6.2). In

addition, compared to background images (Figs. 6.3 and 6.4, the third row), Figs.

6.11 and 6.12 show more details. The details are due to the fact that the X-band

data have better range resolution and have contributed to the retrieval. The detailed

features of two retrievals also have a good match. Considering two X-band radars are

two independent sources, this result convinces the validity of the variational retrieval
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algorithm introduced in this study.

Figure 6.11: Retrieved results based on KCYR radar measurements. The background

was based on the retrieval of S-band radar (KOUN) measurements. From left to right:

(a) ZH , (b) ZDR, (c) KDP .

Figure 6.12: The same as Fig. 6.11 but for the retrieval of KLWE radar measurements.

6.4.2 Case 2: C-band data

The second case is the C-band radar retrieval. Fig. 6.13 shows PPI images of four

variables measured by OU-PRIME on 12 April 2009. The elevation angle of radar

PPI scan is 1.3◦. This case is a stratiform precipitation event, having a melting layer

located at the height of 1.8-3 km. Within 80 km distance, the radar echoes generally

come from raindrops. The precipitation is quite quasi-uniform and has a narrow

spectrum width of 0.5-2 m s−1. The square box region in Fig. 6.13, which is 50×50

km2 region, is chosen for the variational analysis.
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Figure 6.13: (a) ZH , (b) ZDR, (c) KDP , and (d) SNR as measured by OU-PRIME on

12 April 2009, 1.3◦, 0704 UTC. The square box region is the retrieval domain.
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It is noted that the northwest part of the analysis region has a low SNR less than

10 dB. The retrieval using a constant background can not output satisfactory results

(not shown). To improve the retrieval, additional information is required to use. The

NEXRAD radar measurements is a possible source for the supplement of C-band

radar data. The advantage is that NEXRAD has a wide coverage and its data can

be available any time. The limitation is that it only has the single-polarization data,

which are insufficient to provide good background with two DSD parameters. Fig.

6.14 shows the reflectivity measured by KTLX radar of NEXRAD. Its axis has been

set to be the analysis region shown in Fig. 6.13. There is a problem with using ZH to

estimate the background because the background requires two DSD parameters for

each grid. In the following variational retrieval, the M-P DSD model is assumed to

estimate the background from the ZH of KTLX. It is worth noting that using M-P

parameters as C-G parameters obviously introduces the background error. However,

it is expected that this procedure could, at least partially, bring physical information

and contribute to the retrieval at low SNR regions.

Figure 6.14: ZH measured by KTLX on 12 April 2009, 0.5◦, 0704 UTC.
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Fig. 6.15 gives retrieval results as well as radar measurements in the analysis

region. Although the results can not be verified, the retrieval looks reasonable. At-

tenuations in measured ZH and ZDR have been corrected in the retrieval. C-band

has a shorter wavelength than S-band, therefore, retrieved ZH has a little higher

value than KTLX’s ZH . Retrieved KDP matches observed KDP well but has a better

smoothing effect. More important thing is that three retrieved variables are consis-

tent with each other according to the scattering theory. The retrieval results should

be satisfactory given these radar measurements. Limitations of this variational algo-

rithm will be discussed in the next section.

Figure 6.15: Retrieved results (lower row) based on OU-PRIME radar measurements

(upper row). The background is based on ZH measured by KTLX. From left to right:

(a) ZH , (b) ZDR, (c) KDP .
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6.5 Discussion

This chapter proposes a variational retrieval algorithm based on attenuated radar

measurements. The C-G DSD parameters are treated as the state variables in the

variational scheme. Three radar variables (ZH , ZDR, and KDP ) are optimized to

correct the attenuation and do the retrieval by mitigating the effect of their mea-

surement errors. The proposed lookup table method is demonstrated effective for the

computation of complicated forward model and its partial derivatives. Preliminary

results based on simulated and real radar data show the effectiveness of this varia-

tional algorithm. The possible error sources for the variational retrieval algorithm

may come from following factors.

• The major source of the uncertainty comes from the data quality. According

to the analysis of simulation and real data, radar data with low SNRs would

deteriorate the retrieval remarkably if there were no useful information to correct

them. At the region where the data quality is poor, the background is required

to provide complementary physical information.

• The second one is the forward model. As to the variational approach, obser-

vations and analysis fields are connected through the forward model. In this

study, the forward model is based on the backscattering theory of raindrops.

There are two possible situations. One is that the real radar measurement of

raindrop do not match the forward model output. The other one is that the

radar might measure other species such as snow and hail. In either situation,

the forward model would have a model error in the retrieval. This kind of error

acts like introducing a bias in the radar measurement and lead to a large bias

and RMSE in the retrieval.

• The third source is the model error associated with the DSD model. The varia-

tional algorithm treats the two parameters of C-G DSD model as state variables.
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In reality, assumption of the C-G DSD may not be valid and is a possible source

of error. However, simulation results using exponential DSD suggest that the

algorithm is not very sensitive to the assumed DSD model. The analysis of

integral parameters (e.g., ZH , ZDR, and KDP ) is robust. The retrieval using

real data also implies this suggestion when radar data quality is good or com-

pensated by a reasonable background (e.g., S-band measurements).

• Another source of error is the estimation of error spatial structure. The true

magnitudes and correlations of the error covariance are never exactly known. In

this algorithm, the spatial structure of background error covariance is modeled

by a two-dimensional isotropic Gaussian function. Each measurement error co-

variance matrix is assumed to be diagonal with an empirical standard deviation.

According to the tests, it seems that these two models work for the modeling of

the background error and the measurement error. The tests also show that the

algorithm is less sensitive to the measurement error than to the measurement

bias although the measurement error would also introduce a bias and RMSE in

the retrieval.

The algorithm introduced in this chapter, for the first time, retrieves DSD parame-

ters of a two-parameter model in a variational scheme. Previous studies of variational

rain retrieval generally assumed a simple DSD model [e.g., Jung et al. (2008a) applied

a M-P model] or its equivalence [e.g., Hogan (2007) applied a Z − R relation]. The

two-parameter DSD model gives more flexibility to model the natural DSD, improv-

ing the estimation of attenuation and the succedent retrieval. However, a complicated

DSD model bring another issue. In addition to the rain, radar might measure the

snow, the hail or their mixture. More state parameters are required in the varia-

tional scheme to distinguish these species. Consequently, additional observations are

needed to retrieve these unknown parameters. In this algorithm, only three radar

observations are available, restricting the number of state parameters. For example,
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if the scheme includes three species of precipitation and uses a two-parameter model

for each species, at least six observations are required. It is difficult to obtain so

many reliable observations from one or two radars. The physical variability should be

sacrificed if multiple phases of precipitation were taken into account. So far, multi-

ple sources rather than radar observations have been utilized in a variational scheme

[e.g., Jung et al. (2008a,b)]. However, this topic is related to the data assimilation

and beyond the scope of current study, which focuses on the radar retrieval.

According to the previous analysis, the major barrier for the implementation of

this algorithm is the data quality. This problem can be overcome by applying an

appropriate background. In this study, different backgrounds have been tried. Case

one uses S-band dual-polarization observations to generate the background. This

background has less errors than the one used in case two, which is obtained from

NEXRAD radar observations. However, considering the NEXRAD has a national

coverage, the latter case should have more practical significance. It is known that

the NEXRAD is being upgraded to the dual-polarization capacity. The updated

NEXRAD will provide a good data source in the variational scheme. In such a case,

the data quality issue is no longer a problem for the application of this variational

DSD retrieval algorithm.
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Chapter 7

Conclusions

7.1 Summary

In this dissertation, the rain microphysics in central Oklahoma has been well inves-

tigated based on the long-term 2DVD observations. Useful microphysical characteri-

zations, the C-G DSD model, and retrieval algorithms are developed for applications

of polarimetric radar data in the QPE and QPF. This work is briefly summarized as

follows.

• Observation errors of 2DVD are quantified. The low-end and high-end of DSD

observed by the 2DVD have larger error than the middle part of the DSD,

which results in the middle moments having relatively lower errors than other

moments.

• Estimations of DSD parameters are analyzed. In term of estimating integral

rain parameters, the moment estimator M246 is better than other estimators,

such as M012, M234, ML, and LM, though it has unavoidable estimate biases

for DSD parameters.

• The C-G DSD model is re-analyzed and refined. Observed DSDs can be well

modeled by the C-G model. The constraining µ − Λ relation represents the

physical truth of rain properties although it is sensitive to the observation error.
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The SATP method improves the development of µ− Λ relation with less error

effect.

• Rain microphysics is characterized for S-, C- and X-band radar applications.

The empirical relations of rain-radar variables are useful in the QPE and QPF.

• The DSD retrieval proposed by Zhang et al. (2001) is re-studied. It is illustrated

again that the C-G DSD model can be successfully used in the DSD retrieval

from polarimetric radar observations. An adjustment of the µ − Λ relation

improves the retrieval (e.g., NT and D0) at the leading edge of convective storm.

• A Bayesian approach of DSD retrieval is proposed. The DSD retrieval combined

with the Bayesian approach provides an estimate of retrieval uncertainty, aiding

in the understanding of data quality of radar data and the reliability of the

retrieval. The validity of this algorithm is demonstrated by the quantitative

comparison between in-situ measurements and radar retrievals.

• A variational algorithm for DSD retrieval is introduced. For the first time,

two DSD parameters are retrieved from a variational method when applied to

attenuated radar observations. The preliminary results are encouraging. The

attenuation correction can be computed iteratively through the optimal use of

observations. However, the current method significantly depends on whether

the useful information covers the whole region of analysis.

7.2 Major Achievements

The first achievement in this study is the analysis of the C-G DSD model in depth.

As we know, accurate radar-rain retrieval requires an appropriate model to represent

DSDs. A three-parameter model, though more flexible, is seldom applied because

of the trade-off between the model complexity and the reliability of the retrieval.
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In recent studies, the C-G DSD model, a two-parameter model with a constraining

µ − Λ relation, has been shown to be superior to the traditional M-P model or an

exponential model. However, suspicions still exist about the validity of the µ−Λ re-

lation. This study quantifies the measurement error of 2DVD and analyzes the error

effect on the development of the µ − Λ relation. The results reveal a large physical

significance of the µ − Λ relation, providing the validity of C-G DSD model. The

refined µ−Λ relation in this study also facilitates the application of C-G DSD model

in the radar-rain retrieval.

The second achievement is the development of forward radar observation opera-

tors and their applications to microphysical characterization and radar-rain retrieval.

Based on the disdrometer-radar comparison study, the raindrop scattering model is

demonstrated as an efficient tool to estimate radar parameters. As a result, rain

microphysics can be characterized by radar variables. This study gives the empirical

radar-rain relations for the S-, C- and X-band, providing an efficient/convenient ap-

proach for weather radar applications.

The third achievement is the study of DSD retrieval with polarimetric radar mea-

surements. Recently the DSD retrieval has attracted a lot of research interests in

radar meteorology community. This study introduces three DSD retrieval methods.

The direct retrieval method is straightforward and convenient for operational use.

The Bayesian retrieval and variational retrieval methods optimize the use of radar

measurements. Both are promising methods for operational radar-rain retrieval. By

comparison, the variational retrieval is more complicated, but it also has a greater

potential than the Bayesian retrieval. So far, the Bayesian retrieval method is easier

to carry out for the operational purpose. Later the variational retrieval method would

prevail with its improved version.
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7.3 Suggestions for Future Research

My subsequent work will primarily focus on improving the variational DSD retrieval

from PRD. The major tasks needed to accomplish this are described as follows:

• The first task is to improve the variational retrieval through better data quality

control. Preprocessing algorithms of radar data are about to be developed,

making the data to be consistent and more reliable.

• The second task is to make the variational algorithm appropriate for operational

use with S-band dual-polarization data. The S-band data are less affected by

the attenuation, causing the variational method is less sensitive to the data

quality. Even without an informative background, the S-band variational re-

trieval could output satisfactory results by neglecting the attenuation effect.

With the dual-polarization upgrade of the NEXRAD, this work would be great

practical significance for the application on the NEXRAD.

• The third task is to solve the problem of multiple-phases of precipitation. The

current algorithm is limited in a small region (e.g., distance is less than sev-

eral tens of kilometers) where snow/hail echoes are rarely observed. If the

algorithm is applied to a large coverage (e.g., distance is more than 100 km),

different precipitation phases are likely to exist, leading to the forward model

error. Therefore, multiple-phases of precipitation should also be retrieved in

the variational scheme.

The study of the rain microphysics and the rain retrieval is a very significative

work. In this dissertation, I only address a limited study of this topic. Many inter-

esting issues are worth of further researches. I hope my future research could have a

great contribution to the operational use of advanced radar-rain algorithms and could

be recognized by the radar meteorology community.
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Appendix A - List Of Symbols

Ahh Specific Horizontal Attenuation

ADP Specific Differential Attenuation

B Error Covariance Matrix of Background

cm Centimeter, 10−2 meters

C Adjustment Parameter

D Equivalent Diameter

D Square Root of Background Error Covariance Ma-

trix

D0 Median Volume Diameter

Da Mean Diameter

De Effective Diameter

Di Diameter of ith Bin

Dm Mean Volume Diameter

Dmax Maximum Diameter

Dmin Minimum Diameter

fa,b Scattering Amplitude at Major (or Minor) Axis

of a Drop without Canting

Fhh Scattering Amplitude at Horizontal Direction

Fvv Scattering Amplitude at Vertical Direction

FN(X) Normalized Distribution

GHz Gigahertz, 109 Hz

H(x) Nonlinear Observation Operator

185



H Linearization of Observation Operator

Hz Hertz, unit increment of frequency

I/Q In-phase/Quadrature Signal

J Cost Function of Variational Scheme

k Wave Number

km Kilometer, 103 meters

kW Kilowatts, 103 Watts

KDP Specific Differential Phase

l1, l2 First Two L-Moments

m Meter, unit increment of length

mm Milimeter, 10−3 meters

MHz Megahertz, 106 Hz

Ma Mass of Accretion

Me Mass of Evaporation

Mn DSD nth Moment

N0 Concentration Parameter of DSD

N ′0 Transformation of N0

N(D) Raindrop Size Distribution

Ni Total Number of Drops Within ith Bin

NT Total Number Concentration

Nw Concentration Parameter of Normalized Gamma

DSD

N∗ Normalization Term of DSD

Pf Conditional PDF of Observation

Ppost Posterior PDF

Ppr Prior PDF

Pt Peak Transmit Power
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r Raindrop Axis Ratio

R Rainfall Rate

R Error Covariance Matrix of Observation

Ra Accretion Rate

Re Evaporation Rate

T Temperature

v Transformed State Vector

va Aliasing Velocity

v(D) Falling Velocity

Vtm, vtm Mass-weighted Terminal Velocity

w Weighting Function of Variational Scheme

W Water Content

x State Vector

y Observation Vector

Z Radar Reflectivity Factor

ZDR Differential Reflectivity

Za
DR Attenuated ZDR

Zup
DR, (or Z low

DR) Upper (or Lower) Boundary of ZH−ZDR for Rain

Data

Zhh Horizontal Radar Reflectivity

Zvv Vertical Radar Reflectivity

ZH (or ZV ) Radar Reflectivity Factor for Horizontal (or Ver-

tical) Polarization

Za
H Attenuated ZH

ZO
H,V Observed ZH,V

ZT
H,V Ground Truth of ZH,V

Γ Gamma Function
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∆ Increment

∆r Range Resolution

δ Increment

ε Error

εr Complex Dielectric Constant

Λ Slope Parameter of DSD

Λ′ Transformation of Λ

λ Wavelength

µ Shape Parameter of DSD

ρ Correlation Coefficient

ρw Water Density

σ Standard Deviation of Gaussian Distribution

σH,Vext Extinction Cross Section at Horizontal or Vertical

Polarization

σH (or σV ) Back Scattering Cross Section for Horizontal (or

Vertical) Polarization

σm Standard Deviation of Mass-weighted Diameter

Distribution

σφ Standard Deviation of Canting Angle

τ Pulse Duration

Ψ The “psi” Function

∇ Partial Derivative

◦ Degree

◦C Centidegree
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Appendix B - List Of Acronyms and Abbreviations

2DVD Two-Dimensional Video Disdrometer

ARRC Atmospheric Radar Research Center

BD Big Drops

CASA Collaborative Adaptive Sensing of the Atmo-

sphere

C-G Constrained-Gamma Model

DA Data Assimilation

DP Direct Phase Correction Algorithm

DSD Raindrop Size Distribution

FSD Fractional Standard Deviation

H Horizontal Channel

H-B Hitschfeld-Bordan Algorithm

IUT Indoor User Terminal

JPOLE Joint Polarization Experiment

JWD Joss-Waldvogel Disdrometer

KFFL Kesseler Farm Field Laboratory

LM L-Moment

M012 Moment Estimator Using Moments 0, 1, 2

M234 Moment Estimator Using Moments 2, 3, 4

M246 Moment Estimator Using Moments 2, 4, 6

M346 Moment Estimator Using Moments 3, 4, 6

M456 Moment Estimator Using Moments 4, 5, 6
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M-P Marshall and Palmer Model

ML Maximum Likelihood

NCAR National Center for Atmospheric Research

NEXRAD Next-Generation Radar

NSF National Science Foundation

NSSL National Severe Storms Laboratory

NWP Numerical Weather Prediction Model

NWS National Weather Service

OEU Outdoor Electronics Unit

OU University of Oklahoma

OU-PRIME Polarimetric Radar for Innovations in Meteorol-

ogy and Engineering

PDF Probability Density Function

PPI Plane Position Indicator

PRD Polarimetric Radar Data

PRF Pulse Repetition Frequency

PRT Pulse Repetition Time

QPE Quantitative Precipitation Estimation

QPF Quantitative Precipitation Forecast

RMSE Root Mean Square Deviation of Error

SATP Sorting and Averaging Procedure Based on Two

Parameters

SC Self-Consistence Algorithm

SD Standard Deviation

SIFT Sequential Intensity Filtering Technique

SNR Signal-to-Noise Ratio

S-Pol S-band Polarimetric Radar
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TDWR Terminal Doppler Weather Radar

TMF Truncated Moment Fit

V Vertical Channel

WRF Weather Research and Forecasting Model

WSR-88D Weather Surveillance Radar–1988 Doppler
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