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ABSTRACT 
 

Pavements are vulnerable to subgrade layer performance because it acts as a 

foundation. Due to increase in the truck traffic, pavement engineers are challenged to 

build more strong and long-lasting pavements. To increase the load-bearing capacity of 

pavements, subgrade layer is often stabilized with cementitious additives. Thus, an 

overall characterization of stabilized subgrade layer is important for enhanced short- and 

long-term pavement performance.  

In this study, the effect of type and amount of additive on the short-term 

performance in terms of material properties recommended by the new Mechanistic-

Empirical Pavement Design Guide (MEPDG) is examined. A total of four soils 

commonly encountered as subgrades in Oklahoma are utilized. Cylindrical specimens 

stabilized with lime (3%, 6% and 9%), class C fly ash (CFA) (5%, 10% and 15%) and 

cement kiln dust (CKD) (5%, 10% and 15%) are molded, cured for 28 days, and then 

subjected to different stress sequences to study the resilient modulus (Mr) followed by 

modulus of elasticity (ME) and unconfined compressive strength (UCS) test. Results 

show that the changes in the Mr, ME and UCS values stabilized specimens depend on the 

soil type and properties of additives.  

The long-term performance (or durability) of stabilized soil specimens is 

investigated by conducting freeze-thaw (F-T) cycling, vacuum saturation and tube 

suction tests on 7-day cured P-, K- and C-soil specimens stabilized with 6% lime, 10% 

CFA and 10% CKD. Also, specimens are capillary-soaked for 60 days and tested for Mr, 

as an additional indicator for evaluating long-term performance. This study is motivated 

by the fact that during the service life of pavement stabilized layers are subjected to F-T 
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cycles and moisture variations. It is found that that UCS value of all the stabilized 

specimens decreased with increase in the number of F-T cycles. A strong correlation was 

observed between UCS values retained after vacuum saturation and F-T cycles indicating 

that vacuum saturation could be used as a time-efficient and inexpensive method for 

evaluating durability of stabilized soils. Among other benefits, this study helps enrich the 

database on the durability of stabilized subgrade soils. Also, improved understanding of 

different procedures for evaluation of durability is needed to enable a more objective 

selection of test method(s) by design engineers and to facilitate a more meaningful 

comparison of data obtained from different additives and different evaluation procedures. 

Over the past few decades, detrimental effects of stabilization of sulfate bearing 

soil with calcium-based additives have surfaced around the world. In the past, emphasis 

has been placed on using sulfate resistant additives for stabilizing sulfate bearing soils 

which are not readily available and are also expensive. In this study, short- and long-term 

observations from stabilization of sulfate bearing soil with locally available low (CFA), 

moderate (CKD) and high (lime) calcium-based stabilizers are determined to evaluate 

and compare the effect of additive type on the phenomenon of sulfate-induced heave. The 

impact of different factors on the development of the ettringite, responsible for sulfate-

induced heaving, is also discussed.  

For Level 2 design of pavements, a total of four stress-based statistical models 

and two feed-forward-type artificial neural network (ANN) models, are evaluated for 

predicting resilient modulus of 28-day cured stabilized specimens. Specifically, one semi-

log stress-based, three log-log stress-based, one Multi-Layer Perceptrons Network 

(MLPN), and one Radial Basis Function Network (RBFN) are developed. Overall, semi-
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log stress-based and MLPN neural network are found to show best acceptable 

performance for the present evaluation and validation datasets. Further, correlations are 

presented for stress-based models to correlate Mr with compacted specimen 

characteristics and soil/additive properties. The models and correlations developed in this 

study could be refined using an enriched database.  

Additionally, the effect of type of additive on indirect tensile and fatigue 

characteristics of selected stabilized P- and V-soil is evaluated. This study is based on the 

fact that stabilized layer is subjected to tensile stresses under wheel loading. Thus, the 

resilient modulus in tension (Mrt), fatigue life and strength in tension (σt) or flexure 

(represented by modulus of rupture, MOR) becomes another important design parameter 

within the mechanistic framework. Cylindrical specimens are prepared, cured for 28 days 

and subjected to different stress sequences in indirect tension to study the Mrt. On the 

other hand, stabilized beam specimens are compacted using a Linear Kneading 

Compactor and subjected to repeated cycles of reloading-unloading after 28 days of 

curing in a four-point beam fatigue apparatus for evaluating fatigue life and flexural 

stiffness. It is found that all three additives improved the Mrt, σt and MOR values; 

however, degree of improvement varied with the type of additive and soil. The magnitude 

of resilient modulus in tension is found lower than it is in compression. Findings from 

this study shed light on the differences in properties of cementitiously stabilized soil in 

indirect tension, flexure and compression. The fatigue life values and model of stabilized 

specimens is expected to provide a better understanding of performance of cementitiously 

stabilized layers in mechanistic sense. 
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The design of pavement structure has evolved from the empirical method, namely 

the AASHTO 1993 design guide, to the mechanistic-empirical approach (AASHTO 2002 

Mechanistic-Empirical Pavement Design Guide, MEPDG). In the past, few studies 

evaluated conventional flexible pavement section (without stabilized layer) using both 

AASHTO 1993 and MEPDG. But to the author’s knowledge, no effort has been directed 

towards design of semi-rigid type (with stabilized layer and no aggregate base) flexible 

pavements using both AASHTO 1993 and new MEPDG. Since the new MEPDG is 

intended to replace previously existing AASHTO 1993 pavement design based on 

empirical methods, it is important to evaluate and compare semi-rigid pavement designs 

using both AASHTO 1993 and MEPDG. To this end, this study encompasses the 

differences in the design of semi-rigid pavements developed using AASHTO 1993 and 

AASHTO 2002 MEPDG methodologies. Further, the design curves for fatigue 

performance prediction of stabilized layers are developed for different stabilized 

pavement sections. It is found that the design thickness is influenced by the type of soil, 

additive, selection of material property and design method. Cost comparisons of sections 

stabilized with different percentage and type of additives is also made. Knowledge gained 

from the parametric analysis of different sections using AASHTO 1993 and MEPDG is 

expected to be useful to pavement designers and others in implementation of the new 

MEPDG for future pavement design. 
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CHAPTER 1                                                                     
INTRODUCTION  

1.1 Background and Needs 

According to the recent report by AASHTO/TRIP, only half of the nation’s major 

roads are in good condition (AASHTO, 2009). The report found that major urban centers 

have the roughest roads – some with more than 60% of roads in poor condition. Weak 

subgrade soils are a leading factor in this regard. Driving roads in need of repairs threaten 

public safety and add $335 annually to typical vehicle operation costs by an average 

driver. In urban areas with high concentrations of rough roads, extra vehicle operating 

costs can be as high as $746 annually (AASHTO, 2009; ODOT, 2007). In the last few 

decades, pavement engineers have been challenged to build, repair and maintain 

pavement systems with enhanced longevity and reduced costs. Specifically, efforts have 

been made to improve the design methodology (AASHTO, 2004) and to establish 

techniques for modification of highway pavement materials. Cementitious stabilization is 

considered one of these techniques; it enhances the engineering properties of subgrade 

soils, which is essential for structurally sound pavements. 

Cementitious stabilization is widely used in Oklahoma and elsewhere as a 

remedial method to ameliorate subgrade soil properties such as strength, stiffness, swell 

potential, workability and durability through the addition of cementitious additives. It 

consists of mixing stabilizing agents (or additives) such as lime, class C fly ash (CFA) 

and cement kiln dust (CKD) with soil. In the presence of water, these agents react with 

soil particles to form cementing compounds that are responsible for the enhancement in 

the aforementioned engineering properties. However, the degree of enhancement is 
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influenced by many factors such as stabilizing agent type, type of soil to be stabilized, 

curing time, cost, and seasonal factors (AFJMAN, 1994; Parsons et al., 2004; Khoury, 

2005). 

With the movement toward implementation of the new Mechanistic-Empirical 

Pavement Design Guide (MEPDG) (AASHTO, 2004), new material properties required 

for short- and long-term critical performance prediction of cementitiously stabilized 

layers are recommended. These material properties include: 28-day elastic (ME) (for lean 

concrete, cement treated material, soil cement, and lime-cement-flyash), 28-day resilient 

modulus (Mr) (for lime-stabilized soil), unconfined compressive strength (UCS) (7-day 

for cement-stabilization, and 28-day for lime and lime-cement-flyash-stabilization), and 

28-day flexural strength. The evaluation of these input parameters is required to pursue a 

Level 1 (most accurate) design under the hierarchical scheme. For a Level 2 

(intermediate) design, however, design inputs are user selected, possibly from an agency 

database or from a limited testing program or could be estimated through correlations 

(AASHTO, 2004). Level 3, which is the least accurate, requires only the default values 

and is generally not recommended.  This approach provides the designer with a great deal 

of flexibility to obtain the inputs for a project based on the importance of that project and 

available resources. The hierarchical approach is employed with regard to traffic, 

materials, and condition of existing pavement inputs (Von Quintus and Moulthrop, 2007). 

Although several studies have been conducted in the past to evaluate the 

performance of stabilized materials in pavement construction (see e.g., McManis and 

Arman, 1989; Baghdadi, 1990; Zaman et al., 1992; Puppala et al., 1996; Misra, 1998; 

Little, 2000; Miller and Zaman, 2000; Senol et al., 2002; Kim and Siddiki, 2004; Khoury 
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and Zaman, 2007; Camargo et al., 2009; Gomez 2009; Prozzi and Aguiar-Moya, 2010), 

only a few studies have established some of the required short- and long-term inputs of 

stabilized soils that are suitable for the new MEPDG (Kim and Siddiki, 2004; Camargo et 

al., 2009; Gomez, 2009; Prozzi and Aguiar-Moya, 2010) when designing a new 

pavement.  However, no studies to the author’s knowledge evaluated all the required 

short- and long-term parameters of cementitiously stabilized subgrade.  

Consequently, the primary objective of this study is to evaluate Mr, ME, UCS, and 

flexural strength of subgrade soils stabilized with different cementitious additives, 

namely, lime, CFA, and CKD. The new MEPDG does not consider the durability of 

cementitiously stabilized materials for modeling purposes (AASHTO, 2004). However, 

the testing of durability of stabilized subgrade layer is of utmost importance due to the 

loss of strength and stiffness in long-term climate changes inducing freeze-thaw (F-T) 

and wet-dry (W-D) cycles (Little and Nair, 2009; Saxena et al., 2010). Thus, the effect of 

additive type on long-term performance (or durability) is examined in this study using 

three different methods namely, F-T cycling, vacuum saturation and tube suction tests. 

Also, specimens were capillary-soaked and tested for Mr, as an additional indicator for 

evaluating durability. The short- and long-term performance characteristics and 

mechanisms are explained by using the scanning electron microscopy and X-ray 

diffraction data. Additionally, the energy dispersive spectroscopy micrographs are used to 

identify the elements in the cementitious products due to stabilization. 

Knowledge gained from the experimental program illustrating the effect of type 

of additive and soil on the short- and long-term performance of stabilized soil specimens 

is expected to be useful to pavement designers and others in future pavement design and 
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maintenance projects. Also, improved understanding of different procedures for 

evaluation of durability is needed to enable a more objective selection of test method(s) 

by design engineers and to facilitate a more meaningful comparison of data obtained 

from different additives and different evaluation procedures. 

For design of new pavement, Mr for stabilized soil specimens is generally 

determined by conducting repeated load triaxial tests in the laboratory on 28-day cured 

specimens according to the AASHTO T-307-99 test method (AASHTO, 2004). The 

AASHTO T-307-99 test method, however, is a complex, time consuming and expensive 

test method and not particularly well suited for small projects.  Hence, in the present 

study selected stress-based statistical and artificial neural network models are evaluated 

and validated. Also, correlations of Mr with the characteristics of molded stabilized 

specimen as well as soil/additive properties are developed. The results from this study 

could be used for both the currently used AASHTO 1993 Design Guide and the Level 2 

and Level 3 recommendations of the AASHTO 2002 MEPDG. 

Stabilized subgrade layers may be used to provide support for either flexible or 

rigid pavements, but are more frequently used with flexible pavements (FHWA, 2009). In 

a conventional flexible pavement section (AASHTO, 2004) with a granular base course, 

stress analysis indicates that the radial stress or strain is maximum at the bottom of the 

asphalt concrete layer directly under the center of the wheel load (Huang, 2004; 

Papagiannakis and Masad, 2007) (Figure 1.1 a). However, some studies (e.g., AASHTO 

2004, Adaska and Luhr, 2004, Kuennen, 2006; Lav et al., 2006; Molenaar and Pu, 2008; 

Agostinacchio et al., 2008) showed that when the same cross-section is analyzed with the 

granular course replaced by a stabilized layer (Figure 1.1 b), the location of the critical 
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tensile stress shifts to bottom of the stabilized subgrade and, hence, the performance of 

the flexible pavement, from a mechanistic standpoint. The type of flexible pavement with 

a cementitiously stabilized layer below asphalt concrete is classified as semi-rigid type 

flexible pavement by the new MEPDG (AASHTO, 2004). A semi-rigid pavement would 

require evaluation of additional engineering properties such as flexural strength, modulus 

in flexure and fatigue life of stabilized subgrade layer. However, due to difficulties 

associated with preparing and handling of a beam specimen, several studies recommend 

using indirect diametrical tensile test method (or Brazilian test), as a possible alternative 

to the flexural beam test (see e.g., Foley et al., 2001; Khattak and Alrashidi, 2006; 

Gnanendran and Piratheepan, 2008). Hence, this study further examines this proposition 

and investigates the strength and modulus determined by both flexural beam and indirect 

diametrical testing tests. 

Several developments over recent decades have offered an opportunity for more 

rational and rigorous pavement design procedures (Carvalho and Schwartz, 2006). The 

design procedures developed in the AASHTO 1993 guide for new pavement are based on 

the algorithms originally developed from the AASHO road test (Mulandi et al., 2006). 

Some newer concepts such as the resilient modulus for pavement material 

characterization were introduced in this version (AASHTO, 1986; AASHTO, 1993). On 

the other hand, the new MEPDG (AASHTO, 2004) adopted a mechanistic-empirical 

approach to the damage analysis of flexible pavements. This involves computing the 

pavement structural responses to load (i.e., stresses/strains), translating them into 

damage, and accumulating the damage into distresses that are responsible for reduced 

pavement performance over time (Papagiannakis and Masad, 2007). Very little attention, 
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to the author’s knowledge, has previously been focused on differences in the pavement 

designs developed using AASHTO 1993 and AASHTO 2002 design guides.  

In the present research, a parametric study of structural designs for a typical semi-

rigid type flexible pavement section with a stabilized subgrade layer is conducted using 

both the AASHTO 1993 design guide and the new MEPDG. Such work is expected to 

contribute towards the comparative merits and demerits of the pavement designs 

developed by using AASHTO 1993 and mechanistic-based AASHTO 2002 pavement 

design guides.  

1.2 Objectives of the Research 

The final goal of this research work is to characterize and design cementitiously 

stabilized subgrade layer as structural component of a pavement system in the light of the 

new MEPDG. In order to carry out this research, there is an obvious necessity to study 

the behavior and characteristics of stabilized subgrade recommended by the new 

MEPDG. The specific objectives of this study are noted below: 

(1) Determine the effect of various stabilizing agents, namely, lime, CFA, and CKD, by 

conducting Mr in compression, ME and UCS, representing short-term performance. 

(2) Evaluate the long-term performance (or durability) of stabilized subgrades by 

conducting freeze-thaw cycling, vacuum saturation, tube suction and Mr (60-day 

capillary-soaked specimens) tests.  

(3) Determine the effect of lime, CFA and CKD on flexural strength and fatigue life of 

specimens prepared by using selected soils. Also, evaluate strength and resilient 

modulus in indirect tension.  
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(4) Determine and compare the magnitude of sulfate-induced heaving of sulfate bearing 

soil stabilized with various cementitious additives, namely, lime, CFA and CKD.  

(5) Identify the micro-structural developments in the matrix of stabilized soil 

specimens by conducting mineralogical studies such as scanning electron 

microscopy and energy dispersive spectroscopy.  

(6) Develop statistical and artificial neural network (ANN) based models to predict 

resilient modulus of stabilized subgrade soils as a function of factors that are used 

in the development of the statistical models.  

(7) Conduct statistical analyses to develop correlations of Mr with compacted specimen 

characteristics and soil/additive properties.  

(8) Compare and analyze the design of a semi-rigid type flexible pavement by using 

both the AASHTO 1993 design guide and the new MEPDG design guidelines.  

1.3 Organization of the Dissertation 

Following the introduction presented in Chapter 1, Chapter 2 entitled “Influences 

of Various Cementitious Additives on the Short-Term Performance of Stabilized 

Subgrades” addresses the effect of different additives on the evaluation of MEPDG 

inputs representing short-term performance of soils stabilized with different cementitious 

additives, namely, lime, class C fly ash (CFA) and cement kiln dust (CKD) (Solanki et 

al., 2009b). Cylindrical specimens were compacted and cured for 28 days in a humidity 

room having a constant temperature and controlled humidity. At the end of the curing 

period, specimens were tested for Mr, ME, and UCS representing short-term performance. 

This study is also directed to evaluating the effect of different chemical and physical 

properties of soils and additives on the improvement in Mr values.  
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Chapter 3 entitled “Influences of Various Cementitious Additives on the 

Durability of Stabilized Subgrades” examines the long-term performance (or durability) 

of stabilized soil specimens (Solanki and Zaman, 2010). Cylindrical specimens were 

molded, cured for 28 days, and then tested for durability by conducting F-T cycling, 

vacuum saturation and tube suction tests. Also, specimens were capillary-soaked for 60 

days and tested for Mr, as an additional indicator for long-term performance. The effect 

of F-T cycles on the strength of stabilized specimens was evaluated. Also, durability 

evaluated by using two time-efficient and inexpensive laboratory procedures was 

compared with conventional durability test. 

The study presented in Chapter 4 entitled “Influences of Various Cementitious 

Additives on the Laboratory Performance of Sulfate Bearing Soil” was undertaken to 

evaluate natural sulfate bearing lean clay from northwestern Oklahoma for the effect of 

type and amount of additive on the short- and long-term performance by evaluating 

material properties, as recommended by the new MEPDG (Solanki et al., 2009a). Lean 

clay specimens stabilized with lime, CFA, and CKD were molded, cured for 28 days, and 

then subjected to different stress sequences to study the Mr. The same specimens were 

then tested for ME and UCS or 3-D swell. Specimens tested for 3-D swell were further 

tested for Mr, ME, and UCS, after 120 days of capillary soaking. Further, results were 

supported by conducting scanning electron microscopy (SEM) tests in conjunction with 

X-ray diffraction (XRD) analyses. 

Chapter 5 entitled “Statistical and Artificial Neural Network Modeling” is related 

to statistical and artificial neural network (ANN) modeling of Mr for Level-2 pavement 

design applications (Solanki et al., 2010). A total of three stress-based statistical models 
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and two ANN models were developed using a dataset containing Mr test results of 160 

specimens. The strengths and the weaknesses of the developed models were examined 

using additional Mr test results that were not used in the development of these models. 

Further, possible correlations of Mr with compacted specimen characteristics and 

soil/additive properties were also investigated.  

 Chapter 6 entitled “Behavior of Cementitiously Stabilized Subgrade Soils Under 

Tension and Flexure” is devoted to examining the influence of cementitious additives on 

indirect tensile and flexural characteristics of selected soils stabilized with lime, CFA and 

CKD. Cylindrical specimens were compacted using a Superpave gyratory compactor and 

cured for 28 days, prior to subjecting them to cycles of unloading-reloading cycles for 

determining resilient modulus in tension (Mrt). Additionally, beam specimens were 

compacted and cured for evaluating effect of additive type on flexural characteristics 

namely, flexural stiffness (Mrf) and fatigue life. The cylinders and beams were also tested 

for determining indirect tensile and flexural strength, respectively. 

 Chapter 7 entitled “Design of Semi-Rigid Type of Flexible Pavement” includes a 

parametric study of structural designs of a typical semi-rigid type flexible pavement 

section using both the AASHTO 1993 design guide and the new MEPDG. Also, design 

curves for predicting the performance of stabilized layers are presented. Finally, 

economic differences between a pavement section constructed using different additives is 

also discussed. 

In Chapter 8, the summary of this dissertation and recommendations for future 

research are presented.  
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Figure 1.1 Typical Flexible Pavement Section (a) Conventional Flexible and (b) 
Stabilized Subgrade Showing Locations of Critical Compressive and Tensile Strains 
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CHAPTER 2                                                                         
INFLUENCES OF VARIOUS CEMENTITIOUS ADDITIVES ON THE SHORT-TERM 

PERFORMANCE OF STABILIZED SUBGRADES 

2.1 Introduction 

The efficacy of cementitious stabilization depends on the composition of soils and 

the stabilization parameters such as property and percentage of additive (AFJMAN, 1994; 

Little et al., 2000; Al-Rawas et al., 2002; Parsons et al., 2004; Evangelos, 2006). The 

degree of improvement achieved by cementitious stabilization can be evaluated by 

different engineering properties. For pavement application, however, the new 

Mechanistic-Empirical Pavement Design Guide (MEPDG) (AASHTO, 2004) 

recommends new materials properties for critical short-term performance prediction. 

These properties include resilient modulus (Mr) or elastic modulus (ME), and unconfined 

compressive strength (UCS) representing short-term performance of pavement. The 

evaluation of these inputs is required to pursue a Level 1 (most accurate) design under the 

hierarchical scheme. For a Level 2 (intermediate) design, however, design inputs are user 

selected possibly from an agency database or from a limited testing program or could be 

estimated through correlations (AASHTO, 2004). Level 3, which is the least accurate, 

requires only the default values and is generally not recommended.   

Consequently, the primary objective of the study presented herein is to evaluate 

Mr, ME, and UCS of four commonly encountered subgrade soils in Oklahoma stabilized 

with locally available cementitious additives, namely, lime, class C fly ash (CFA) and 

cement kiln dust (CKD). This study is also directed to evaluate the effect of different 

chemical and physical properties of soils and additives on the improvement in Mr values. 

Further, mineralogical studies such as scanning electron microscopy and energy 
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dispersive spectroscopy were also used to verify research findings observed from the 

macro test results. 

2.2 Literature Review 

Several pertinent studies have previously been undertaken to evaluate the 

engineering properties of soils stabilized using different cementitious additives. A 

summary of different studies is presented in the Table 2.1. Chang (1995) investigated the 

resilient properties and microstructure of a fine grained soil (Lateritic soil) stabilized with 

CFA and lime. Strength was evaluated after a 7-day curing period by performing UCS 

tests. Specimens were compacted at near optimum moisture content (OMC) in a mold 

with a diameter of 38 mm (1.5 in) and a height of 100 mm (4 in). The resilient modulus 

tests were performed in accordance with the AASHTO T 274-82 test method.  Results 

showed that the Mr values varied between 125 to 250 MPa (18 to 36 ksi). But, no attempt 

was made to study the ME of specimens, as recommended by the new MEPDG.  

Little (2000) reported that the effect of lime stabilization induces a 1,000 percent 

or more increase in Mr over that of the untreated soil. The AASHTO T 294 method was 

used to determine the Mr values. Values of back-calculated (from field falling weight 

deflectometer testing) Mr typically falls within a range of 210 and 3,500 MPa (30 and 508 

ksi). The strength values determined for lime-stabilized soil was reported as high as 7,000 

to 10,000 kPa (1,016 to 1,451 psi). However, this study was limited to lime-stabilized 

subgrade soils and no attempt was made to compare with other additives. 

Qubain et al. (2000) determined the effect of lime stabilization on pavement 

design having medium to stiff clayey soils. The AASHTO TP 46-94 test method was 

used to determine the Mr values on 1-hour cured cylindrical specimens. Each test 
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consisted of 16 stress stages with deviatoric stress ranging from 12 to 62 kPa (2 to 9 psi). 

The average UCS at 5% lime content was 620 kPa (90 psi), with a Mr value of 250 MPa 

(36 ksi). In a similar laboratory study, Ramakrishna (2002) evaluated Mr values of lean 

clay specimens stabilized with cement and fly ash and cement mix. The percentage of 

additive used was 8% cement, 15% fly ash with 5% cement and 20% slag. The Mr values 

were reported to be 600 to 1200 MPa (87 to 174 psi) for clays stabilized with cement, 350 

to 700 MPa (51 to 102 ksi) for clays stabilized with fly ash and cement mix and 325 to 

570 MPa (47 to 83 ksi) for clays stabilized with slag. 

Further, Parsons and Milburn (2003) conducted a series of tests, namely UCS and 

modulus of elasticity to evaluate the relative performance of lime, cement, CFA and an 

enzymatic stabilizer. These stabilizers were combined with a total of seven different soils 

having Unified Soil Classification System (USCS) classifications of CH, CL, ML and 

SM. Lime- and cement-stabilized soils showed the most improvement in performance for 

multiple soils, with CFA-stabilized soils showing substantial improvement. The results 

also showed that for many soils, more than one stabilization options may be effective for 

the construction of subgrade. No attempt was made to examine the Mr values.  

Further in comparative studies, Kim and Siddiki (2004) conducted a series of 

laboratory tests to evaluate the performance of fine grained soils encountered in Indiana 

and stabilized them with lime and lime kiln dust (LKD).  These tests include UCS, 

California Bearing Ratio (CBR), and Mr. Findings from the study indicate that LKD may 

be viable, cost effective in enhancing the strength of fine grained soils, compared to 

hydrated lime.  Their study addressed most of the properties that will be evaluated in the 

proposed study. Also, their study addressed the design inputs for the MEPDG. However, 



14 
 

it was carried out on predominantly fine grained soils, namely, A-4, A-6, and A-7-6 

encountered in Indiana.  It is also important to note that the mineralogical and textural 

characteristics of soils in Oklahoma are different than those in Indiana, and thus those 

results may not be directly used for design of pavements in Oklahoma at Level 1 or Level 

2. 

In a recent study, Camargo et al. (2009) conducted California Bearing Ratio 

(CBR), Mr, UCS, and durability (freeze-thaw) tests for evaluating the effects of adding 

CFA to the recycled pavement material and a road surface gravel to enhance their 

mechanical properties. It was reported that Mr and UCS values of stabilized material 

increased significantly. Freeze-thaw cycling had a small effect on the Mr and UCS of the 

recycled materials. A strong relationship was found between Mr and UCS of recycled 

materials blended with fly ash. However, this study was limited to aggregate base and no 

subgrade soils were considered. 

In another recent study, Gomez (2009) evaluated the Mr values of soil specimens 

stabilized with two additives, namely, CFA and CKD. In this study, five project sites 

were selected in Oklahoma. Both stabilized and raw soils were collected, mixed, 

compacted, cured under controlled conditions, and tested for Mr at specific times of 

curing. The five test soils included clayey and silty sands (SC and SM), a low plasticity 

silty soil (ML), and two low plasticity clayey soils (CL). It was found that CKD treated 

samples gave larger improvement rates than CFA treated samples for low plastic and 

non-plastic soils when compared to the efficiency of lime and CFA as soil stabilizers. 

Although larger improvements were reported for the CKD-stabilized specimens, no 

consistent correlations were found when related to the soil parameters. The Mr values 
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obtained from field mixed samples showed lower improvement parameters when 

compared to lab mixed specimens. Ultimate field-mixed specimen improvements were 

found to be 1.5 to 6 times lower than lab-mixed improvements. As expected, additive 

content generally showed a direct relationship with improved Mr values.  

2.3 Materials and Sources 

In the present study, a total of four soils and three cementitious additives are used. 

This section describes the fundamental properties including grain size distribution, index 

properties and chemical compositions of the soils and additives. 

2.3.1 Native Soils 

The following soils are used in the present study: (1) Port series (P-soil); (2) 

Kingfisher series (K-soil); (3) Vernon series (V-soil); and (4) Carnasaw series (C-soil). A 

summary of the soil properties determined in the laboratory and the corresponding 

standard testing identification are presented in Table 2.2. According to the USCS, P-soil 

is classified as CL-ML (silty clay with sand) with a liquid limit of approximately 27 and a 

plasticity index (PI) of approximately 5. K-soil is classified as CL (lean clay), according 

to the UCSS with an average liquid limit of approximately 39% and a PI of 

approximately 21. As per the USCS, V-soil is a sulfate-bearing soil (Sulfate content ≈ 

15,400 ppm) and classified as lean clay (CL), with an average liquid limit of 

approximately 37 and a PI of approximately 11. C-soil is classified as fat clay (CH) 

according to USCS with a PI value of 29. A summary of physical and chemical properties 

of soils is presented in Table 2.3. 



16 
 

2.3.2 Cementitious Additives 

As noted earlier, three different cementitious additives, namely, hydrated lime, 

class C fly ash (CFA), and cement kiln dust (CKD) were used. Hydrated lime was 

supplied by the Texas Lime Company, Cleburne, Texas. It is a dry powder manufactured 

by treating quicklime (calcium oxide) with sufficient water to satisfy its chemical affinity 

with water, thereby converting the oxides to hydroxides. CFA from Lafarge North 

America (Tulsa, Oklahoma) was brought in well-sealed plastic buckets. It was produced 

in a coal-fired electric utility plant. CKD used was provided by Lafarge North America 

located in Tulsa, Oklahoma. It is an industrial waste collected during the production of 

Portland cement. The physical and chemical properties of the stabilizing agents are 

presented in Table 2.4. The XRF analysis was conducted using a Panalytical 2403 

spectrometer on specimens obtained by using fused bead preparation method. The fused 

bead preparation technique consists of dissolving the specimen in a solvent called a flux 

at high temperature (>1000°C) in a platinum crucible and to cast it in a casting-dish. It is 

evident from Table 2.4 that the calcium oxide content in hydrated lime is 68.6%. This can 

be explained using the stoichiometry of the chemical reaction taking place during the 

specimen preparation for XRD. 

Ca(OH)2     CaO   +   H2O   

(74)=40x1+16x2+1x2  (56)=40x1+16x1  (18)=1x2+16x1 

Using above chemical equation, it can be shown that 95.9% of Ca(OH)2 (reactant) 

will produce approximately 72% of CaO (product). Further, the free lime content (i.e., 

any lime not bound up in glassy phase compounds such as tricalcium silicate and 

tricalcium aluminate) was determined in accordance with ASTM C 114 (Alternate Test 

T = 512oC 
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Method B, ammonium acetate titration). Although CFA is having very low lime content 

(0.2%), specimens stabilized with CFA showed enhancement in strength and modulus 

values (see Sections 2.7 and 2.8). It is speculated that during the reaction process some 

lime is liberated from the bound state which takes part in the cementitious reactions and 

thus, producing increase in strength and modulus values.  

2.4 Factors Affecting Cementitious Stabilization 

The effectiveness of cementitious stabilization depends on properties of both soil 

and additive (AFJMAN, 1994, Al-Rawas et al., 2002, Parsons et al., 2004, Evangelos, 

2006). A description of pertinent factors intrinsic to the soils and additives which 

influences the efficiency of cementitious stabilization is presented herein.  

2.4.1 Soil Properties 

2.4.1.1 Gradation and Plasticity Index 

Several researchers (e.g., Diamond and Kinter, 1964; Haston and Wohlgemuth, 

1985; Prusinski and Bhattacharja, 1999; Little, 2000; Qubain et al., 2000; Kim and 

Siddiki, 2004; Mallela et al., 2004; Puppala et al., 2006; Consoli et al., 2009) 

recommended use of lime with fine-grained soils. However, CFA (see e.g., McManis and 

Arman, 1989; Chang, 1995; Misra, 1998; Zia and Fox, 2000; Puppala et al., 2003; Bin-

Shafique et al., 2004; Phanikumar and Sharma, 2004; Nalbantoglu, 2004; Camargo et al., 

2009; Li et al., 2009) and CKD (e.g., McCoy and Kriner, 1971; Napierala, 1983; 

Baghdadi and Rahman, 1990; Zaman et al., 1992; Sayah, 1993; Miller and Azad, 2000; 

Miller and Zaman, 2000; Parsons and Kneebone, 2004; Sreekrishnavilasam et al., 2007; 

Peethamparan et al., 2008; Gomez, 2009) is used successfully with both fine- and coarse-
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grained soils. Lower effectiveness of lime with coarse-grained soil can be attributed to 

scarcity of pozzolana (silicious and aluminacious material) in coarse-grained soils which 

is required for pozzolanic (or cementitious) reactions. Little (2000) and Mallela et al. 

(2004) recommend a soil with a minimum clay content (< 0.002 mm) of 10% and a 

plasticity index of 10 for lime-stabilization. In this study, only K-, V- and C-soil fulfils 

this requirement with C-soil having highest clay content of 48%. However, mineralogical 

analysis conducted using X-ray fluorescence spectroscopy (XRF) revealed that all the 

fours soils used in this study are having high (> 70%) amount of pozzolana, as presented 

in Table 2.3. 

2.4.1.2 Cation Exchange Capacity 

Cation Exchange Capacity (CEC) is the quantity of exchangeable cations required 

to balance the charge deficiency on the surface of the clay particles (Mitchell, 1993). 

During ion-exchange reaction of soil with cementitious additive, cation of soil (e.g., Na+, 

K+) is replaced by cation of additive (Ca2+) and the thickness of double diffused layer is 

reduced. Hence, the replacement of cations results in increase in workability and strength 

of soil-additive mixture. The rate of exchange depends on clay type, solution 

concentrations and temperature (Gomez, 2009). In soil stabilization studies, CEC values 

have been used to a limited extent to explain the effectiveness of soil stabilization 

(Nalbantoglu and Tuncer, 2001; Al-Rawas et al., 2002; Nalbantoglu, 2004; Gomez, 

2009).  

In this study, CEC was measured by sodium acetate method in accordance with 

EPA 9081 test method (Chapman, 1965). As evident from Table 2.3, K-soil and C-soil 

showed highest and lowest CEC values of 21.7 and 5.2 meq/100 gm, respectively. On the 
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other hand, P- and V-soil produced a CEC value of 11.5 and 19.9 meq/100 gm, 

respectively. 

2.4.1.3 Sulfate Content 

Primary “sulfate-induced heaving” problems arise when natural sulfate rich soils 

are stabilized with calcium-based additives (Puppala et al., 2004), also known as “sulfate 

attack.” This heave is known to severely affect the performance of pavements, and other 

geotechnical engineering structures built on sulfate rich soils stabilized with calcium-

based additive (Hunter, 1988; Mitchell and Dermatas, 1990; Petry and Little, 1992; 

Rajendran and Lytton, 1997; Rollings et al., 1999; Puppala et al., 2004). According to 

current understanding, “low to moderate” and high sulfate soils are those with sulfate less 

than 2,000 ppm and more than 2,000 ppm, respectively (Kota et al., 1996; Mitchell and 

Dermatas, 1990; Puppala et al., 2002; Rao and Shivananda, 2005). In this study, soluble 

sulfate content in the soils were measured using the Oklahoma Department of 

Transportation procedure for determining soluble sulfate content: OHD L-49 (ODOT, 

2006). Only V-soil was found to have high sulfate content of 15,400 ppm (>10,000 ppm) 

which may have the potential to cause serious damage due to calcium-based additive. 

This issue has been further discussed in Chapter 4. 

2.4.1.4 Specific Surface Area 

Surface phenomena have an important influence on the behavior of fine-grained 

soils; they affect many physical and chemical properties (Cerato and Lutenegger, 2002). 

The specific surface area (SSA), refers to the area per unit mass of soil, may be a 

dominant factor in controlling the fundamental behavior of many fine-grained soils 
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(Gomez, 2009). The mineralogy of fine-grained soils is the dominant factor in 

determining the effect of SSA. For this study, only total SSA measurement was 

conducted using the polar liquid Ethylene Glycol Monoethyl Ether (EGME) method 

(Cerato and Lutenegger, 2002) and results are presented in Table 2.3. C-soil had the 

highest SSA value of 118.5 m2/gm, P-soil, on the other hand, had the lowest SSA of 51.0 

m2/g.  

2.4.1.5 Silica Sesquoxide Ratio 

Many properties of soils are related with the silica sesquioxide ratio (SSR) 

(Winterkorn and Baver, 1934; Fang, 1997; Mallela et al., 2004). Hence, in this study it 

was decided to evaluate SSR of soils. It is defined as:   

C

z

B

y
A

x

SSR
+

=

                              (2.1)

 

where, x is the percent of SiO2, y is the percent of Al2O3, z is the percent of Fe2O3, A is 

the molecular weight of SiO2 (60.1), B is the molecular weight of Al2O3 (102.0), and C is 

the molecular weight of Fe2O3 (159.6). From the results presented in Table 2.3 it is clear 

that P-soil is having highest SSR value of 14.9 while C-soil is having lowest SSR value 

of 3.9.  

2.4.2 Additive Properties 

2.4.2.1 Free-Lime Content 

In calcium-based stabilizers (e.g., Portland cement, CFA, CKD) most of the lime 

(CaO) is bound up in compounds such as tricalcium silicate and tricalcium aluminate. 
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The unreacted lime that is not combined in any of these compounds is called free-lime, 

which is expected to play a major role in stabilization (Collins and Emery, 1983; Misra, 

1998; Zaman et al., 1998; Ferguson and Levorson, 1999; Miller and Azad, 2000; Miller 

and Zaman, 2000; Sezer et al., 2006; Khoury and Zaman, 2007; Peethamparan and Olek, 

2008). Free-lime content was determined by conducting titration in accordance with 

ASTM C 114 alternative test method B and results are presented in Table 2.4. It is clear 

that lime is having highest free-lime content of 46.7% followed by 6.7% for CKD and 

0.2% for CFA. 

2.4.2.2 Specific Surface Area 

The specific surface area (SSA) of additives, as measured by using the ethylene 

glycol monoethyl ether (EGME) method (Cerato and Lutenegger, 2002), were 17.0, 6.0, 

and 12.0 m2/gm, respectively, for lime, CFA and CKD. It can be seen that lime and CFA 

had the highest and the lowest SSA values, respectively. A higher SSA indicates more 

reactivity of additive (Nalbantoglu and Tuncer, 2001; Sreekrishnavilasam et al., 2007). 

2.4.2.3 Loss on Ignition 

A higher loss on ignition (LOI) value indicates high carbonates for CFA/CKD and 

high hydroxides for lime. Some researchers reported that high LOI indicates low free-

lime content for CKDs, making CKDs less reactive, and therefore lower improvements 

(Bhatty et al., 1996; Miller and Azad, 2000). In the laboratory, LOI was evaluated by 

igniting additive inside a muffle furnace at a temperature of 950oC (1742oF) in 

accordance with ASTM C 114 test method for hydraulic cements. As evident from results 

presented in Table 2.4, lime and CFA produced highest and lowest LOI values of 31.8% 
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and 1.2%, respectively. On the other hand, approximately 27% of CKD is lost on 

ignition.  

2.4.2.4 Percent Passing No. 325 Sieve 

Several researchers noticed increased reactivity of additive with increase in 

amount of additive passing No. 325 (45 µm) sieve (NCHRP, 1976; Bhatty et al., 1996; 

Zaman et al., 1998; Zheng and Qin, 2003; Khoury, 2005). The percentage of passing No. 

325 sieve for lime, CFA and CKD determined in accordance with ASTM C 430 test 

method are 98.4, 85.8 and 94.2, respectively. It is clear that lime is finer among all the 

additives used in this study.   

2.4.2.5 pH and pH Response 

The elevated pH level of soil-lime mixture is important because it provides an 

adequate alkaline environment for ion-exchange reactions (Little, 2000). In the 

laboratory, pH is determined using the method recommended by ASTM D 6276 for lime-

stabilization, which involves mixing the solids with de-ionized (DI) water, periodically 

shaking samples, and then testing with a pH meter after 1 h. The procedure specifies that 

enough lime must be added to a soil-water system to maintain a pH of 12.4 after 1 h. This 

ensures that adequate lime is provided to sustain the saturation during the 1-h period 

(Prusinski and Bhattacharja, 1999).  

Several researchers (e.g., Haston and Wohlgemuth, 1985; Prusinski and 

Bhattacharja, 1999; IRC, 2000; Little, 2000; Qubain et al., 2000; Mallela et al., 2004; 

Puppala et al., 2006; Consoli et al., 2009) used pH values on soil-lime mixture as an 

indicator of reactivity of lime. However, only limited studies (see e.g., Miller and Azad, 
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2000; Parsons et al., 2004; Peethamparan and Olek, 2008; Gomez, 2009) evaluated pH 

response of soil-CFA or soil-CKD mixtures. Hence, the pH values of soil-additive 

mixtures were determined to investigate whether pH would reflect the effectiveness soil 

stabilization with lime, CFA or CKD.  

The pH results of raw soil, raw additive and soil-additive mixtures are presented 

in Table 2.5 and are used as the primary guide for determining the amount of additive 

required to stabilize each soil. It is clear that raw P-, V- and K-soil are alkaline with a pH 

value greater than 8.0. On other hand, C-soil is acidic with a pH value approximately 

4.17. Also, it was found that raw lime, CFA and CKD had a pH value of 12.58, 11.83 and 

12.55, respectively. The pH values of raw CFA and CKD are consistent with the results 

reported by other researchers (e.g., Miller and Azad, 2000; Sear, 2001; Parsons et al., 

2004; Peethamparan and Olek, 2008; Gomez, 2009). The pH trend of raw additives is 

similar to the trend of available free-lime content in additive, as shown in Table 2.4. 

For all the soil-additive mixtures, pH values increase with the increase in the 

percentage of additive and show an asymptotic behavior after a certain percentage. In the 

current study, an increase of less than 1% in pH percent increase with respect to raw soil 

is assumed as starting point of asymptotic behavior. As evident from Table 2.5, pH 

values started showing an asymptotic behavior with 3% lime for P-, K- and V-soil. With 

CFA and CKD, P-, K- and V-soil showed asymptotic behavior at an additive content of 

10%. However, C-soil, due to acidic nature, attained asymptotic behavior at a higher lime 

content of 5%. Additionally, C-soil never attained an asymptotic behavior with CFA and 

CKD contents up to 17.5%. This can be attributed to the acidic behavior of C-soil which 

requires higher amount of moderately basic CFA and CKD for neutralization. Based on 
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the aforementioned observations, it was decided to select 3%, 6% and 9% lime for 

laboratory performance evaluation. On the other hand, 5% 10% and 15% were selected 

for CFA- and CKD-stabilization. 

2.4.2.6 Silica Sesquoxide Ratio 

As noted earlier, SSR values of additives were evaluated using Eqn. 2.1 and 

results are presented in Table 2.4. From Table 2.4, SSR values of lime, CFA and CKD 

are 1.9, 3.0 and 6.0, respectively. Further, SSR values of additives and soils were added 

together, called as combined SSR value, and correlated with improvement in Mr values, 

as will be discussed later in Section 2.9. 

2.5 Moisture-Density Test 

In the laboratory soil was mixed manually with stabilizer for determining 

moisture-density relationship of soil-additive mixtures. The procedure consists of adding 

specific amount of additive, namely, lime (3%, 6% or 9%) or CFA (5%, 10% or 15%) or 

CKD (5%, 10% or 15%) to the processed soil. The amount of additive was added based 

on the dry weight of soil. The additive and soil were mixed manually to uniformity, and 

tested for moisture-density relationships by conducting Proctor test in accordance with 

ASTM D 698 test method.  

2.5.1 P-soil and Additive Mixtures 

The moisture-density test results (i.e., OMCs and maximum dry density, MDDs) 

for P-soil are presented in Table 2.6. The moisture content was determined by oven-

drying the soil-additive mixture. The OMC and MDD of raw soil was found to be 13.1% 

and 17.8 kN/m3 (108.7 pcf), respectively. In the present study, laboratory experiments 
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showed an increase in OMC with increasing percentage of lime and CKD. On the other 

hand, a decrease in the MDDs with increasing percent of lime and CKD is observed from 

Table 2.6. Other researchers (e.g., Haston and Wohlegemuth, 1985; Zaman et al., 1992; 

Miller and Azad, 2000; Sreekrishnavilasam et al., 2007) also observed effects similar to 

those in the current study. One of the reasons for such behavior can be attributed to the 

increased number of fines in the mix due to the addition of lime and CKD.  

A higher MDD was obtained by increasing the CFA content. However, the MDD 

increase diminished with the increase in CFA beyond 10%. Conversely, the OMC 

showed an increase for 5% CFA and then it generally decreased with increasing CFA 

content. These observations were similar to those reported by McManis and Arman 

(1989) for sandy silty soil and by Misra (1998) for clays.  

2.5.2 K-soil and Additive Mixtures 

The moisture-density test results for K-soil are presented in Table 2.7. The OMC 

and MDD of raw soil was found to be 16.5% and 17.4 kN/m3 (110.6 pcf), respectively. In 

the present study, laboratory experiments showed an increase in OMC with increasing 

percentage of lime. On the other hand, a decrease in the MDDs with increasing percent of 

lime is observed from Table 2.7. This is consistent with the results reported by Nagaraj 

(1964), Haston and Wohlegemuth (1985), Ali (1992) and Little (1996). Little (1996) 

believed that OMC increased with increasing lime content because more water was 

needed for the soil-lime chemical reactions. Nagaraj (1964) suggested that the decrease in 

MDD of the lime-treated soil is reflective of increased resistance offered by the 

flocculated soil structure to the compactive effort. 
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For CFA stabilization, MDD increased with increase in CFA content. On the 

other hand, OMC decreased for 5 percent CFA mix and then increased for 10 and 

decreased again for 15 percent of fly ash mix. A similar observation was reported by 

McManis and Arman (1989), Misra (1998) and Solanki et al. (2007a). Misra (1998) 

reported that the increase in MDD can be attributed to the packing of finer fly ash 

particles (smaller than a No. 200 sieve) in voids between larger soil particles. This 

behavior of OMC was attributed to progressive hydration of soil and fly ash mixtures and 

increased number of finer particles (specific surface) in the soil-fly ash mixtures. 

CKD-stabilized soil showed the same trends like lime-stabilized soil. An increase 

in OMC and a decrease in MDD with increase in the percentage of additive was 

observed. Other researchers (e.g., Zaman et al., 1992; Miller and Azad, 2000) also 

observed effects similar to those in the current study. Similar statements as mentioned for 

lime-stabilization can be used to rationalize the compaction behavior of CKD-stabilized 

soils. 

2.5.3 V-soil and Additive Mixtures 

The moisture-density test results for V-soil mixed with different percentages of 

additives are summarized in Table 2.8. The Proctor tests conducted on raw V-soil showed 

an OMC and MDD value of 23.0% and 16.0 kN/m3 (101.9 pcf), respectively. Similar to 

P- and K-soil-lime/CKD mixtures, OMC-MDD essentially showed the same trend. 

Hence, reasons as mentioned in the preceding section can be used to justify the observed 

trends in OMC and MDD values. 

For CFA stabilization, the moisture-density results were more complex. 

Laboratory experiments showed that MDD decreased with 5 percent CFA, and then 
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increased with increase in the percentage of additive. On the other hand, OMC decreased 

with the increase in the amount of CFA, as evident from Table 2.8.  

2.5.4 C-soil and Additive Mixtures 

The OMC was found to be 20.3% for the raw C-soil. For lime- and CKD-

stabilized soil samples, it was evident that OMC increased and MDD decreased with 

increasing percentage of lime as illustrated in Table 2.9. For CFA stabilization, Proctor 

results showed that MDD decreases for 5 percent of CFA, increases for 10 percent and 

then again decreases for 15 percent CFA as shown in Table 2.9. On the other hand, OMC 

decreased with the increase in the percentage of CFA. Since moisture-density results of 

C-soil and additive mixtures showed similar trends to other soil-additive mixtures used in 

this study, similar reasons as mentioned in the preceding Section 2.5.1 can be used to 

justify the observed OMC-MDD trends. 

2.6 Specimen Preparation 

In this study, a total of 160 specimens were prepared according to the method 

described by Solanki et al. (2009a) and Solanki et al. (2009b). The mixture for each 

specimen consists of raw soil mixed with specific amount of additive. The amount of 

additive (3%, 6%, or 9% for lime and 5%, 10%, or 15% for CFA and CKD) was added 

based on the dry weight of the soil. The additive and soil were mixed manually for 

uniformity. After the blending process, a desired amount of water was added based on the 

OMC. Then, the mixture was compacted in a mold having a diameter of 101.6 mm (4.0 

in) and a height of 203.2 mm (8.0 in) to reach a dry density of between 95%-100% of the 

maximum dry density (MDD) (Tables 2.6 through 2.9). After compaction, specimens 
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were cured at a temperature of 23.0 ± 1.7oC (73.4 ± 3.1oF) and a relative humidity of 

approximately 96% for 28 days; 28-day curing period is recommended by the new 

MEPDG (AASHTO, 2004).  

2.7 Experimental Methodology 

2.7.1 Resilient Modulus, Modulus of Elasticity and Unconfined Compressive Strength 

The resilient modulus (Mr) tests were performed in accordance with the AASHTO 

T 307 test method. The test procedure consisted of applying 15 stress sequences using a 

cyclic haversine-shaped load pulse with duration of 0.1 seconds and rest period of 0.9 

seconds. The sample was loaded following the sequences shown in Table 2.10. For each 

sequence, the applied load and the vertical displacement for the last five cycles were 

recorded and used to determine the Mr. A 2.23 kN (500 lb) load cell was used to apply 

the required load level. Two linear variable differential transformers (LVDTs) were used 

to measure the resilient vertical deformation. These LVDTs were attached to two 

aluminum clamps that were mounted on the specimen at a distance of approximately 50.8 

mm (2.0 in) from both ends of the specimen.  The LVDTs had a maximum stroke length 

of 5.08 mm (0.2 in). Figure 2.1 shows a photographic view of the LVDTs mounted on a 

sample. A power supply was used to excite and amplify the LVDT signals. This is 

consistent with Barksdale et al. (1997) that measuring relative displacement between two 

points on the specimen eliminates the extraneous deformations occurring past the ends of 

the specimens. A complete setup of Mr testing on stabilized subgrade soil specimen is 

shown in Figure 2.2.  

To generate the desired haversine-shaped load and to read the load and 

displacement signals, a program was written using Material Testing System (MTS) Flex 
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Test SE Automation software, as shown in Figure 2.3. The load-deformation response 

was recorded for last 5 cycles of each stress sequence by using a computer-controlled 

Flex Test SE Test Controller (see Figure 2.3). The Flex Test SE digital servo-controller 

from MTS is made up of a powerful array of reliable, flexible and easy-to-use controllers 

designed to address the full spectrum of material and component testing needs. Basic 

capabilities include station configuration, auto-zeroing, control mode switching with 

hydraulics on, and adaptive control. The controller provides a self-contained single-

channel control, and can be linked to other controllers for multi-channel testing. All the 

data were collected and stored in an MS Excel file and a macro program in Excel was 

written to process these data and evaluate the resilient modulus. The Mr for each 

sequence was calculated from the average recoverable strain and average load from last 

five cycles by using the following expression: 

r

d
rM

ε
σ=           (2.2) 

where, σd = repeated cyclic deviatoric stress, and εr = recoverable strain (or resilient 

strain). Further, details of the apparatus and the noise reduction method used are given by 

Solanki et al. (2009b). 

The new MEPDG recommends the use of Mixture Design and Testing Protocol 

(MDTP) developed by Little (2000) in conjunction with the AASHTO T 307 test 

protocol for determining the Mr of soils stabilized with lime. The PDG also requires ME 

as one of the design inputs for soil-cement, cement-treated materials, lime-cement-fly ash 

mixtures and lean concrete. Since no specific parameters were recommended for CFA 

and CKD stabilization, it was decided to evaluate the modulus of elasticity (ME) and 
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unconfined compressive strength (UCS) as an additional indicator of the mechanical 

behavior of CFA- and CKD-stabilized specimens. 

ME and UCS tests were conducted in accordance with the ASTM D 1633 test 

method. Specimens were loaded in a MTS frame at a constant strain rate of 0.63% (of 

sample height) per minute, which is equivalent to 1.27 mm (0.05 in.) per minute for the 

specimen configuration used here. Deformation values were recorded during the test 

using LVDTs fixed to opposite sides of and equidistant from piston rod with a maximum 

stroke length of ±12.7 mm (±0.5 in). The load values were obtained from a load cell 

having a capacity of 22.7 kN (5,000 lb). Each specimen was subjected to two unloading-

reloading cycles before loading it to failure. Straight lines were drawn through the first 

two unloading-reloading curves (secant modulus) and the average slope of these lines is 

the ME of the stabilized clay specimen.   

2.7.2 Mineralogical Studies 

To facilitate the macro-behavior comparison and explanation, the mineralogical 

study techniques such as Scanning Electron Microscopy (SEM) and Energy Dispersive 

Spectroscopy (EDS) were employed to qualitatively identify the micro-structural 

developments in the matrix of the stabilized soil specimens. 

The Scanning Electron Microscopy (SEM) technique was employed using a JEOL 

JSM 880 microscope to qualitatively identify the micro-structural developments in the 

matrix of the stabilized soil specimens. After the UCS test on specimens, broken mix was 

air-dried for approximately four days. Three representative tiny pieces were mounted on 

stubs (1 cm, i.e., 0.4 in. wide discs that have a pin-mount on the base of the disc). The 

samples were not electrically conductive; therefore, they were initially coated by Iridium 
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to maintain conductivity. The quality of images was not satisfactory, so it was decided to 

use gold-palladium alloy for the process instead of Iridium coating. Hence, pieces were 

coated with a thin layer (≈ 5 nm) of an alloy of gold-palladium by sputter coating 

technique to provide surface conductivity. A JEOL JSM 880 scanning electron 

microscope operating at 15 kV was used to visually observe the coated specimens. The 

JEOL JSM 880 was fitted with an energy-dispersive X-ray spectrometer (EDS). The EDS 

was used to analyze chemical compositions of the specimen. In this technique, electrons 

are bombarded in the area of desired elemental composition; the elements present will 

emit characteristic X-rays, which are then recorded on a detector. The micrographs were 

taken using EDS2000 software. It must be noted that SEM study allows only a tiny area 

of raw and stabilized specimen to be examined (unlike engineering laboratory 

specimens). However, it is believed to be representative of the reaction process of 

stabilized specimens.  

2.8 Presentation and Discussion of Mr Results 

The Mr test results of the four soils namely, P-, K-, V-, and C-soil stabilized with 

lime, CFA and CKD are shown in Tables 2.11 to 2.22. Each Mr value listed in Tables 

2.11 to 2.22 is an average of Mr tests conducted on four specimens. One way to observe 

the effect of different percentages of additives on the resilient properties is to compare the 

average Mr at a particular stress level (Elliot and Thornton, 1988; Drumm et al., 1997; 

Ping et al., 2001). For example, Strategic Highway Research Program (SHRP) Protocol 

P-46 (1989) suggests reporting Mr values of subgrade at a deviatoric stress of 28 kPa (4.0 

psi) and a confining pressure of 41 kPa (6 psi). However, to the author’s knowledge, 

there is no such recommendation for stabilized subgrades. It is also important to note that 
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the actual stress level (i.e., deviatoric and confining stress) can be estimated by 

calculating the in-situ stress using a multi-layer elastic program (e.g., KENLAYER); 

however, stress level may change depending on the pavement configuration. So for 

comparison purposes, it was decided to use experimental Mr values determined at a stress 

level closest to the level recommended by SHRP P-46 (1989). Therefore, mean Mr at a 

deviatoric stress of 25 kPa (3.6 psi) and a confining pressure of 41 kPa (6.0 psi) were 

selected for comparison, as shown in Figure 2.4. Additionally, to study the comparative 

effectiveness of lime, CFA and CKD on the four soils, graphs of percent improvement in 

Mr values (deviatoric stress = 25 kPa, i.e., 3.6 psi and confining pressure = 41 kPa, i.e., 

6.0 psi) versus percentage of additive were plotted (Figures 2.4 – 2.7). 

2.8.1 Effect of Lime Content 

It is clear from Tables 2.11 through 2.14 that mean Mr values increased due to 

stabilization. This increase, however, depends on the type of soil. For example, 3% lime 

provided an increase of approximately 459%, 1,261%, 647% and 115% with P-, K-, V- 

and C-soil, respectively (Figures 2.4 – 2.7). This improvement is maximum with K-soil, 

however, a reduction in Mr values was observed beyond a certain percent (Figure 2.5). 

For example, K-soil specimens stabilized with 9% lime showed 33 percent decrease in Mr 

values as compared to specimens stabilized with 6% lime. This is consistent with other 

studies (Haston and Wohlgemuth, 1985; Petry and Wohlgemuth, 1988; Arora and 

Aydilek, 2005; Osinubi and Nwaiwu, 2006) that an increase in lime beyond 5% results in 

lower strength values. One explanation is that excess lime behaved as low strength filler, 

effectively weakening the lime-soil mixture (Osinubi and Nwaiwu, 2006). It is also worth 

noticing that the new MEPDG recommends Mr value range between 207 – 413 MPa (30 
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– 60 psi) for lime-stabilized soils. This range is similar to the range of Mr values obtained 

in this study for C-soil specimens (213 – 573 MPa, i.e., 31 – 83 psi). However, P-, V- and 

K-soil specimens stabilized with lime showed higher range of Mr values (> 500 MPa, i.e., 

73 ksi). 

2.8.2 Effect of CFA Content  

From Tables 2.15 through 2.18, one can see that the average Mr value increased 

with amount of CFA with a range of Mr values between 150 – 2,500 MPa (22 – 363 ksi). 

The increase in Mr values with increased amount of CFA is consistent with the studies 

conducted by other researchers such as McManis and Arman (1989), Chang (1995), 

Misra (1998), Senol et al. (2002), Mir (2004), and Arora and Aydilek (2005). It is evident 

from Figures 2.4 – 2.7 that for the percentages used in this study, 15% CFA-stabilized 

specimens showed a maximum increase in Mr values of approximately 1,305%, 1,078%, 

894%, and 174% for P-, K-, V- and C-soil specimens, respectively, as compared to raw 

soil. For 5% and 10% CFA, K-soil specimens showed highest improvements of 

approximately 498% and 983%, respectively.  

2.8.3 Effect of CKD Content 

Tables 2.19 through 2.22 summarized the effect of CKD on Mr. Results showed 

that Mr increased with the increased percentage of additive with a range of Mr values 

between 150 – 2,700 MPa (22 – 392 ksi); this is consistent with Zhu (1998), Parsons et 

al. (2004), Khoury (2005), and Gomez (2009). For example, the Mr values of 15% CKD-

stabilized specimens increased as much as 1,608%, 2,277%, 1,473%, and 565% for P-, 

K-, V- and C-soil, respectively. As depicted in Figure 2.4, a large increase in average Mr 
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can be observed when the CKD content is increased from 0 to 5%, 5 to 10% and 10 to 

15%. This rate of increase in Mr values is the highest between 5% and 10% CKD. For 

example, this increase is 174%, 219%, 193% and 51% for P-, K-, V- and C-soil, 

respectively. In the present study, CKD treatment (>10%) resulted in the highest Mr 

values (Figures 2.4 – 2.7). 

2.8.4 Effect of Stress Level 

To analyze the effect of stress level (deviatoric stress, σd and confining pressure, 

σ3), selected plots were drawn between stress ratio (σd/UCS) and Mr values of raw and 

stabilized P- and K-soil specimens (Figures 2.8 – 2.11). In general, it is clear from 

Figures 2.8 to 2.11 that the Mr values of raw and stabilized soil specimens increases with 

increase in confining pressure and with decreasing deviatoric stress. However, the 

percentage of increase in modulus is relatively small for stabilized soil specimens 

compared to untreated specimens. For example, at a deviatoric stress of 37 kPa (5.4 psi), 

increase in confining pressure from 14 to 41 kPa (2 to 6 psi) increases Mr value by 

approximately 30%, 23%, 3% and 4% for raw, 9% lime-, 15% CFA-, and 15% CKD-

stabilized specimens, respectively, of P-soil. At similar stress level, K-soil specimens 

showed approximately 8%, 4%, 2% and 3% enhancement in Mr values with 0%, 9% 

lime, 15% CFA and 15% CKD, respectively. Similar observations were reported by 

Achampong (1996), Achampong et al. (1997) and Ramakrishna (2002) for cement- and 

lime-stabilized soil. The lower sensitivity of stabilized soil specimens towards change in 

stress level could be attributed to higher strength of stabilized soil specimens. For 

example, raw P-soil specimens are subjected to load range inducing stresses between 5 to 



35 
 

30% of UCS. On the other hand, P-soil specimens stabilized with 15% CKD are 

subjected to load range inducing stresses between 1 to 5% of UCS. 

2.9 Presentation and Discussion of ME and UCS Results 

The variation of modulus of elasticity (ME) and UCS values with the additive 

content is shown graphically in Figures 2.12 and 2.13, respectively. The UCS values 

were found to be 224, 191, 168 and 207 kPa, i.e., 33, 28, 24 and 30 psi for the raw P-, K-, 

V- and C-soil, respectively. In general, the trend of the behavior of ME and UCS values 

for different percentages of additives is the same as that observed for Mr values.  

2.9.1 Effect of Lime Content 

As depicted in Figure 2.12, in lime-stabilized specimens an increase of 

approximately 186%, 516%, 436% and 72% in ME values was observed for 3% lime-

stabilized P-, K-, V- and C-soil specimens, respectively. Similarly, addition of 3% lime 

increased the UCS values by 67%, 138%, 297% and 21% for P-, K-, V- and C-soil, 

respectively. It is clear that K- and V-soil showed the highest improvement with lime. On 

the other hand, C-soil with the lowest pH and CEC value showed the lowest 

enhancements in both ME and UCS values. Also, all the soils and percentages of lime 

used in this study were having strength lower than 1,723 kPa (250 psi), as recommended 

by MEPDG for stabilized soil layer in a flexible pavement. 

2.9.2 Effect of CFA Content 

It is evident from Figures 2.12 and 2.13 that there is a significant increase in ME 

and UCS with increasing CFA content in the treated soils. A maximum increase of 367%, 

586%, 616%, and 95% was observed in ME values for 15% CFA stabilized P-, K-, V- and 
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C-soil, respectively. Correspondingly, these different stabilized soil specimens showed an 

increase in UCS values by 278%, 250%, 396%, and 99%. Clearly, V-soil specimens 

stabilized with CFA showed better performance, as compared to other soils used in this 

study. Similar to lime, all the UCS values were lower than 1,723 kPa (250 psi) for CFA-

stabilized specimens. 

2.9.3 Effect of CKD Content 

It is evident that there is significant increase in the ME with increasing amount of 

CKD content in the stabilized soils (Figure 2.12). The ME values in all soils exhibited an 

increase with the amount of CKD. As depicted in Figure 2.13, in P-soil specimens the 

maximum increase (about 638%) in ME values was observed by adding 15% CKD. 

Similarly, 15% CKD-stabilized K-, V- and C-soil specimens exhibited the maximum 

increase of approximately 1,061%, 1,042% and 194%, respectively, compared to the raw 

soil. The variation of UCS values with the CKD content is illustrated in Figure 2.13. It is 

observed that UCS values of all the soils used in this study increases as the amount of 

CKD increases. For example, the UCS values increased by 529%, 505%, 705%, and 

154% for the P-, K-, V-, and C-soil specimens, respectively, when stabilized with 15% 

CKD. This observation is consistent with that of Miller and Azad (2000), 

Sreekrishnavilasam et al. (2007), Peethamparan and Olek (2008) and Peethamparan et al. 

(2009). Again, CKD-stabilization was not able to provide minimum strength of 1,723 kPa 

(250 psi), as recommended by the new MEPDG. 
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2.10 Effect of Soil and Additive Type 

From the aforementioned results it is obvious that the resilient modulus, modulus 

of elasticity and unconfined compressive strength of stabilized specimens is influenced 

by the type of soil and additive. Since the trend of improvement in Mr, ME and UCS 

values is similar, as discussed earlier, only Mr values are used herein to discuss the effect 

of soil and additive type.   

For all the four soils used in this study, it is clear, in general, that at lower 

application rates (3% to 6%), the lime-stabilized soil specimens showed the highest 

improvement in the Mr values. At higher application rates (> 10%), however, the CKD 

treatment provided the maximum enhancements (Figures 2.4 – 2.7). Overall, 15% CKD-

stabilized specimens showed the highest improvement for all the four soils. In addition, 

stabilization of K-soil resulted in the maximum enhancement in Mr values (Figure 2.5). 

On the other hand, C-soil specimens showed much lower improvements in Mr values, as 

shown in Figure 2.7. One of the explanations for lowest improvement in Mr values of C-

soil could be acidic nature of C-soil (pH = 4.17), as discussed earlier. It is also observed 

that the normalized percent increase in Mr (NMr = % Increase in Mr value/% Additive) 

values is influenced by CEC of soil. This behavior is graphically presented in Figure 

2.14. C-soil having lowest CEC value (5.2 meq/100 gm) produced lowest NMr of 38% 

with 3% lime. On the other hand, K-soil having highest CEC value (21.7 meq/100 gm) 

enhanced NMr by 420% with 3% lime. Similar trend is observed for P-, K-, V- and C-

soils stabilized with 10% CFA and 10% CKD (Figure 2.14). No specific trend was 

observed for the variation of Mr with gradation, plasticity index and specific surface area 

of soil. For example, C-soil specimens with higher plasticity index (29) and clay content 
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(48%) stabilized with 6% lime had NMr values lower than P-soil (plasticity index = 5, 

clay content = 11%). 

Attempts were made to observe the effect of additive properties, namely, free-

lime content, alkali content, loss on ignition, specific surface area, pH, passing No. 325 

sieve, and SSR ratio. The effect of free-lime content is depicted in Figure 2.15. It is clear 

that the NMr value increases with the free-lime content; however, the percent increase 

varied from one soil to another. For example, the NMr of P-soil specimens increased from 

121 to 153% as the free-lime content increased from 6.7 to 46.1%. C-soil specimens, on 

the other hand, exhibited an increase of approximately 22 to 38% as the free-lime content 

increased from 6.7 to 46.1%. Figures 2.16 and 2.17 show the variation of NMr values of 

3% lime-, 10% CFA- and 10% CKD-stabilized P-, K-, V- and C-soil specimens with the 

alkali content and loss on ignition value of additive, respectively. A decrease in NMr 

values with alkali content can be observed; however, increase in NMr values with loss on 

ignition was observed. This trend is contrary to the behavior reported by other researchers 

for different type of CKDs (e.g., Bhatty et al., 1996; Miller and Azad, 2000; 

Peethamparan and Olek, 2008). For example, Bhatty et al. (1996) reported that CKDs 

containing less than 6% alkalis and low LOI values are reactive and produces higher 

strength. This difference in behavior could be attributed to other factors such as free-lime 

content that might have influenced in enhancing the effectiveness of the additives. 

Although CFA had higher alkali content and lower LOI than lime, it also had lower free-

lime content (0.2% for CFA versus 46.1% for lime). 

Figure 2.18 shows a plot between percent passing No. 325 sieve of additives and 

NMr values. It is clear from Figure 2.18 that percent passing No. 325 sieve influences the 
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Mr values. An increase in percent passing No. 325 sieve from 85.8% (CFA) to 98.4% 

(lime) increased the NMr values from 32 to 153 for P-soil. This can be attributed to 

increase in fine contents in the soil and thus increased surface area for pozzolanic 

reactivity. Normalized percent increase in Mr values versus specific surface area of 

additive are shown in Figure 2.19. All curves in Figure 2.19 show clear correlation 

between the NMr values with SSA. For example, P-soil specimens showed an increase in 

NMr values (32 to 153%) with an increase in SSA value of additive from 6.0 to 17.0 

m2/gm. For similar magnitude of SSA values, K-soil specimens showed an increase in 

NMr from 98 to 420%. The fact that the additive particles have a larger surface to interact 

with the soil can explain this behavior. Larger SSA values imply more available surface 

for soil-additive interaction resulting in more cementitious products and thus higher gain 

in modulus values. The pH value of additive also plays an important role in enhancing the 

Mr values, as evident from Figure 2.20. An increase in NMr values with pH can be 

observed from Figure 2.20. Lime-stabilized specimens having highest pH value of 12.58 

produced highest modulus value followed by CKD- (pH = 12.55) and CFA- (pH = 11.83) 

stabilized specimens. As discussed earlier, high pH value causes silica from the clay 

minerals to dissolve and, in combination with Ca2+ form calcium silicate and calcium 

aluminate hydrate (Eades, 1962; Diamond and Kinter, 1964).  

Further, an attempt was made to correlate the SSR value of soil-additive mix with 

variation in Mr values. Figure 2.21 depicts the change in NMr values of stabilized 

specimens with SSR. It is clear from Figure 2.21 that the NMr values exhibited an 

increase with the SSR values; however, a reduction in NMr values was observed beyond 

a certain percentage of SSR value (between 7 – 13%). This is an indication that the 
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amount of SSR up to a certain percentage (7 – 13%) would contribute to the increase in 

pozzolanic reactivity, which is responsible for the modulus increase.  

2.11 Microstructure Characteristics 

As noted earlier, mineralogical studies such as SEM and EDS were conducted on 

all the raw soils, raw additives and 28-day cured stabilized C-soil specimens to study the 

influence of stabilization on microstructure characteristics. 

2.11.1 Raw Soils and Additives 

Figure 2.22 shows SEM micrographs of raw soil samples at high magnification 

(10,000 times). It is clear that the raw soil has a discontinuous structure, where the voids 

are more visible because of the absence of hydration products. The raw additives used in 

this study were also studied using SEM/EDS methods. Figures 2.23 (a), (b) and (c) show 

SEM/EDS of raw lime, CFA and CKD powder, respectively. As evident from Figure 

2.23 (a), raw lime is an amorphous powder consisting mainly of calcium compounds. 

This is in agreement with the XRF results reported in Table 2.4. On the other hand, CFA 

and CKD are more complex compounds. EDS results indicated presence of calcium, 

aluminum, silicon, iron, sulfur, phosphorous, titanium, and magnesium minerals in CFA. 

Whereas EDS results of CKD indicated presence of calcium, silicon, magnesium, sulfur, 

and potassium minerals. The SEM micrographs of raw CFA showed that CFA is 

composed of different size spherical particles (or cenosphere); however, CKD 

micrographs showed particles with poorly defined shapes.  
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2.11.2 C-Soil with 9% Lime 

To study the microstructure of 9% lime-stabilized C-soil specimens, 28-day UCS 

tested specimens were examined using SEM micrographs. Figure 2.24 (a) shows the 

microstructure at a magnification level of 10,000 times, which when compared with the 

raw soil micrograph of Figure 2.22 (d) shows marked change in morphology. From 

Figure 2.24 (a), it is clear the raw soil structure has transformed from a particle based 

form to a more integrated composition due to cementitious reactions. At a higher 

magnification (x 25,000 times), the cementing phases could clearly be seen. Further, EDS 

pattern was used as a basis to monitor the changes occurring in the chemical composition 

at selected locations within the C-soil after stabilization with 9% lime. As evident from 

Figure 2.24 (a), analysis on the cementing phases showed presence of calcium (Ca) and 

silicon (Si), which is an indication of the presence of C-S-H (Calcium-Silicate-Hydrate, 

xCaO.ySiO2.zH2O). It should be noted that the other two peaks not marked in Figure 2.24 

(a) belongs to gold-palladium coating used for making specimens electrically conductive. 

The cementing phases, due to gradual crystallization of the new secondary minerals, 

caused an increase in the strength of the stabilized soil, as discussed in Section 2.8. 

Similar observations were reported by other researchers (see e.g., Locat et al., 1996; 

Ghosh and Subbarao, 2001; Nalbantoglu, 2006; Kavak and Akyarh, 2007). Figure 2.24 

(b) shows micrograph of same specimen at a magnification level of 5,000 times taken 

from a different location. A flower-like structure of calcium hydroxide crystals is evident 

which indicates presence of un-reacted hydrated lime in the stabilized specimen. This is 

consistent with the observations reported in Section 2.7.1 that excess lime acts as filler 

resulting in decreased strength.  
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2.11.3 C-Soil with 15% CFA 

The SEM micrographs of C-soil stabilized with 15% CFA are presented in 

Figures 2.25 (a) through (c). Figure 2.25 (a) reveals the formation of cementing products, 

with lamellar form, adjacent to the fly ash particles. The EDS analysis showed presence 

of Ca and Si indicating presence of C-S-H, the main cementing product responsible for 

strength gain (Choquette et al., 1987; Lav and Lav, 2000). Also, two additional peaks of 

gold and palladium appeared because specimens were sputter coated with alloy of gold-

palladium. In viewing these samples, one would notice that the spherical particles of fly 

ash are joined strongly to the clay particles in its surrounding (Chang, 1995). It was also 

apparent that the fly ash particles served as nucleation sites for the growth of the 

hydration products (or coatings), as shown in Figure 2.25 (b). Formation of ettringite, 

Ca6[Al(OH)6]2.(SO4)3.26H2O, was also observed in the form of heaps of rod-like crystals 

(Figure 2.25 c). This observation was further confirmed by conducting EDS analysis 

which suggested presence of Ca, Al (aluminum) and S (sulfur) with traces of Si and Ti 

(titanium) as impurities. No areas were found showing normal ettringite spectra without 

traces of Si and Ti. Similar structure, as shown in Figure 2.25 (c), was reported as 

ettringite by other researchers (e.g., Mitchell and Dermatas, 1992; Intharasombat, 2003). 

Further, SEM micrographs revealed that most of the fly ash particles were covered with a 

reaction shell as seen in Figure 2.25 (d). The approximate chemical composition of the 

outer shell was determined at location 1 and 3 by the EDS analysis and a typical 

composition is presented in pattern marked as point and 1 and 3. The composition of the 

shell was slightly different from that of the un-reacted inner fly ash surface which is 

shown in spectrum 2. The higher calcium peak in 1 and 3 compared to spectrum 2 
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suggests the initiation of reaction products (e.g., C-A-S-H) formation on the surface of fly 

ash particle. It should be noted that the exact quantitative composition cannot be obtained 

using the EDS analysis of the stabilized specimens. 

2.11.4 C-Soil with 15% CKD 

SEM micrographs as illustrated in Figures 2.26 (a) and (b) show significant 

changes in the microstructure of raw soil when mixed with CKD and cured for 28 days. It 

could be observed that flat clay structure surfaces observed in Figure 2.22 (d) is covered 

with cementitious reaction products, as shown in Figure 2.26 (a). Figure 2.26 (a) show 

the C-A-S-H (Calcium-Alumino-Silicate-Hydrate, xCaO.yAl 2O3.zSiO2.wH2O) phase 

development which contains distinct peaks of Ca, Si and Al elements based on the EDS 

analysis, consistent with observation reported by Chaunsali and Peethamparan (2010). 

Figure 2.26 (b) shows micrographs of hydration coatings and bonds developed in 15% 

CKD-stabilized C-soil. Another prominent feature of the microstructure of 15% CKD-

stabilized C-soil was the presence of needle-shaped ettringite crystals (Figure 2.26 c). 

The presence of ettringite crystals in CKD-stabilized soil is consistent with the 

observations reported by Peethamparan et al. (2008), Moon et al. (2009), and Chaunsali 

and Peethamparan (2010). Hence, improved strength and stiffness exhibited by CKD-

stabilized soil specimens after curing could be attributed to aforementioned reaction 

products.  

2.12 Concluding Remarks 

This study was undertaken to evaluate four soils from Oklahoma for the effect of 

type and amount of additive on the material properties as recommended by new MEPDG 
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for critical performance prediction. Subgrade clay specimens stabilized with lime (3%, 

6% and 9%), CFA (5%, 10% and 15%) and CKD (5%, 10% and 15%) were molded, 

cured for 28 days, and then subjected to different stress sequences to study the Mr 

followed by ME and UCS test. Based on the study presented in this chapter the following 

conclusions can be derived: 

1. All three additives improved the Mr, ME and UCS values of P-, K-, V- and C-soil 

specimens; however, degree of improvement varied with the type of additive and soil.  

2. The results from pH tests showed that 3% lime, 10% CFA and 10% CKD provide an 

asymptotic behavior (less than 1% increase in pH w.r.t raw soil pH) in P-, K- and V-

soil-additive mixtures. No such asymptotic behavior was observed for C-soil 

stabilized with 10% CFA and 10% CKD.  

3. The range of Mr values (213 – 573 MPa, i.e., 31 – 83 ksi) of lime-stabilized fat clay 

specimens is similar to the range of Mr values recommended by MEPDG for lime-

stabilized specimens; however, silty clay and lean clays showed higher range of Mr 

values (> 500 MPa, i.e. 73 ksi).  

4. For the different percentage of CFA used in this study, the range of Mr values were 

150 – 2,500 MPa (22 – 363 ksi) for silty clay, 300 – 1,300 MPa (44 – 189 ksi) for 

lean clays and 150 – 400 MPa (22 – 58 ksi) for fat clay.  On the other hand, CKD-

stabilization provided Mr values ranging between 400 – 2,600 MPa (58 – 377 ksi) for 

silty clay, 250 – 2,000 MPa (36 – 290 ksi) for lean clays and 150 – 900 MPa (22 – 

131 ksi) for fat clay. 

5. For CFA- and CKD-stabilization, the amount of improvement increases with increase 

in the additive content; however, a reduction in Mr, ME and UCS values was observed 
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beyond a certain percentage of lime content (between 6 – 9% for K- and C-soil, 

between 3 – 6% for V-soil).  

6. In general, lime-stabilization produced highest Mr values with K-soil (918 – 1,382 

MPa, i.e., 133 – 201 ksi). On the other hand, CFA- and CKD-stabilization produced 

highest Mr values with P-soil (1,037 – 2,435 MPa for CFA, i.e., 151 – 353 ksi; 2,333 

– 2,613 MPa for CKD, i.e., 339 – 379 ksi). 

7. At lower application rates (3% to 6%), lime showed highest improvement in the Mr 

values. At higher application rates (> 10%), CKD provided maximum enhancements.  

8. The Mr values of raw and stabilized soil specimens increases with increasing 

confining pressure and with decreasing deviatoric stress. However, the percentage of 

increase in modulus is relatively less pronounced for stabilized soil specimens 

compared to untreated specimens. The lower sensitivity of stabilized soil specimens 

towards change in stress level could be attributed to higher strength of stabilized soil 

specimens.  

9. None of the additive percentages used in this study was able to provide minimum 

strength of 1,723 kPa (250 psi), as recommended by new MEPDG for stabilized base 

layer in a flexible pavement. However, Mr values were higher or similar than the 

values recommended by MEPDG for lime-stabilized soil specimens; no 

recommendations are available for CFA- and CKD-stabilized soils, hence no 

comparisons were made.  

10. The percentage of increase in Mr values is better correlated with soil properties – 

cation exchange capacity; additive properties – free-lime content, alkali content, loss 
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on ignition, percent passing No. 325 sieve, specific surface area, pH; and soil-additive 

mixture properties – silica sesquioxide ratio. 

11. Microscopic analysis confirms that the addition of lime or CFA or CKD to soil 

induces beneficial reactions and significant improvements in strength and stiffness. 

Also, it could be concluded that the formation of reaction products such as C-S-H, C-

A-S-H and ettringite contributed to strength development of stabilized soil.  
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Table 2.1 A Summary of Relevant Laboratory Studies on Soils Stabilized with Different 

Additives 
 

Reference Type of soila Type of additive Parameters/Testsb 
Haston and Wohlgemuth 
(1985) 

CL  Lime UCS  

McManis and Arman (1989) A-3, A-2-4 FA UCS, R  
Baghdadi (1990) Kaolinite clay CKD UCS  
Zaman et al. (1992) Clays CKD UCS  
Chang (1995) Lateritic soil FA, Lime UCS, Mr  
Achampong (1996) CL, CH PC, Lime UCS, Mr  
Misra (1998) Clays FA UCS  
Prusinski and Bhattacharja 
(1999) 

Clays PC, Lime UCS, CBR (No) 

Little (2000) Fine grained 
soils 

Lime UCS, Mr 

Miller and Azad (2000) CH, CL, ML CKD UCS  
Miller and Zaman (2000) Shale, Sand CKD CBR, UCS 
Qubain et al. (2000) CL  Lime UCS, Mr  
Zia And Fox (2000) Loess FA UCS, CBR 
Senol et al. (2002) Clays FA UCS, CBR, Mr  
Parsons and Milburn (2003) CH, CL, ML, 

SM 
Lime, PC, CFA, 
Enzymatic stabilizer 

UCS, Modulus 

Kim and Siddiki (2004) A-4, A-6, A-7-
6 

Lime, LKD UCS, CBR, Mr  

Prabakar et al. (2004) CL, OL, MH FA UCS, CBR, Shear strength parameters 
Arora and Aydilek (2005) SM FA UCS, CBR, Mr 
Barbu and McManis (2005) CL, ML Lime, PC UCS, Cyclic Triaxial test 
Hillbrich and Scullion (2006) A-3 PC Mr, Seismic Modulus  
Osinubi and Nwaiwu (2006) CL Lime UCS  
Puppala et al. (2006) CH Lime with 

polypropylene fiber 
UCS 

Ling et al. (2008) Silty clay Lime, PC Mr  
Gomez (2009) SC, SM, ML, 

CL 
FA, CKD Mr 

a Soils according to USCS and AASHTO classification; b pH, Compaction and Atterberg limit tests are not included 
in the list 
Mr: Resilient modulus test; CBR: California Bearing Ratio; R: Soil support resistance value; FA: Fly ash; PC: 
Portland cement; CKD: Cement kiln dust; LKD: Lime kiln dust 
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Table 2.2 Testing Designation and Soil Properties 
 

Method Parameter/Units P-soil K-soil V-soil C-soil 
ASTM D 2487 USCS Symbol CL-ML CL CL CH 
AASHTO M 145 AASHTO Designation A-4 A-6 A-6 A-7-6 
ASTM D 2487 USCS Name Silty clay 

with sand 
Lean clay Lean clay Fat clay 

ASTM D 2487 % finer than 0.075 mm 83 97 100 94 
ASTM C 430 % finer than 0.045 mm 54 89 95 87 
ASTM D 422 % finer than 0.002 mm 

(clay content) 
11 45 39 48 

ASTM D 4318 Liquid limit  27 39 37 58 
ASTM D 4318 Plastic limit  21 18 26 29 
ASTM D 4318 Plasticity index 5 21 11 29 
… Activity 0.24 0.47 0.28 0.69 
ASTM D 854 Specific gravity 2.65 2.71 2.61 2.64 
ASTM D 698 Optimum moisture 

content (%) 
13.1 16.5 23.0 20.3 

ASTM D 698 Max. dry unit weight 
(kN/m3) 

17.8 17.4 16.0 16.3 

USCS: Unified Soil Classification System 
 

Table 2.3 Chemical and Physical Properties of Soils used in this Study 
 

P-soil K-soil V-soil C-soil
Silica (SiO2)

a 77.7 65.8 54.0 63.4
Alumina (Al2O3)

a 7.4 13.0 17.6 21.5
Ferric oxide (Fe2O3)

a 2.3 4.8 7.2 9.1
Silica/Sesquioxide ratio (SSR) 
SiO2/(Al 2O3+Fe2O3)

14.9 7.0 4.1 3.9

Calcium oxide (CaO)a 3.1 3.6 3.8 0.1
Magnesium oxide (MgO)a 1.9 3.5 5.0 1.2
Sulfur trioxide (SO3)

a
0.0 0.1 1.8 0.0

Alkali content (Na2O + K2O)a 2.4 3.2 5.8 3.0
Percentage passing No. 325b 54.0 88.8 94.8 87.2

pH (pure material)c 8.91 8.82 8.14 4.17

Sulfate content (ppm)d < 40 < 40 15,400 267

Specific surface area (m2/gm)e 51.0 92.5 116.5 118.5
Cation exchange capacity 

(meq/100 gm)f
11.5 21.7 19.9 5.2

28-day UCS (kPa) 224 191 168 207

Chemical compound/Property
Percentage by weight, (%)

aX-ray Fluorescence analysis;  bASTM C 430; cASTM D 6276; dOHD L-49 test 

method; eEthylene glycol monoethyl ether method (Cerato and Lutenegger 

2001); fEPA 9081 test method; No. 325: 0.045mm  
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Table 2.4 Chemical and Physical Properties of Stabilizers used in this Study 

 

Lime CFA CKD
Silica (SiO2)

a 0.6 37.7 14.1
Alumina (Al2O3)

a 0.4 17.3 3.1
Ferric oxide (Fe2O3)

a 0.3 5.8 1.4
Silica/Sesquioxide ratio (SSR) 

SiO2/(Al2O3+Fe2O3)
1.9 3.0 6.0

Calcium oxide (CaO)a 68.6 24.4 47

Calcium hydroxide (Ca(OH)2)
a

95.9** … …
Magnesium oxide (MgO)a 0.7 5.1 1.7
Sulfur trioxide (SO3)

a
0.1 1.2 4.4

Alkali content (Na2O + K2O)a 0.1 2.2 1.7
Loss on ignitionb 31.8* 1.2 27
Free limeb 46.1 0.2 6.7
Percentage passing No. 325c 98.4 85.8 94.2
pH (pure material)d 12.58 11.83 12.55
Specific surface area (m2/gm)e 17.0 6.0 12.0

28-day UCS (kPa) … 708 17

Chemical compound/Property
Percentage by weight, (%)

aX-ray Fluorescence analysis;  bASTM C 114; cASTM C 430; dASTM D 

6276; eEthylene glycol monoethyl ether method (Cerato and Lutenegger 
2001); UCS: Unconfined compressive strength; *Ca(OH)2 decomposes 

at 512oC; **Before ignition   
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Table 2.5 Variation of pH Values with Soil and Additive Type 
 

Type of 
Additive 

Additive 
Content 

(%) 

P-soil K-soil V-soil C-soil 
pH 

value 
% 

Increasea 
pH 

value 
% 

Increasea 
pH 

value 
% 

Increasea 
pH 

value 
% 

Increasea 

Lime 

0 8.91 --- 8.82 --- 8.14 --- 4.17 --- 

1 12.24 37.4 12.04 36.5 11.67 43.4 9.22 121.1 

3b 12.43 39.5 12.49 41.6 12.41 52.5 12.23 193.3 

5 12.45 39.7 12.50 41.7 12.49 53.4 12.54 200.7 

6 12.45 39.7 12.54 42.2 12.52 53.8 12.55 201.0 

7 12.46 39.8 12.57 42.5 12.52 53.8 12.55 201.0 

9 12.47 40.0 12.57 42.5 12.52 53.8 12.57 201.4 

100 12.58 41.2 12.58 42.6 12.58 54.5 12.58 201.7 

CFA 

0 8.91 --- 8.82 --- 8.14 --- 4.17 --- 

2.5 10.97 23.1 10.03 13.7 10.40 27.8 5.19 24.5 

5 11.30 26.8 10.83 22.8 10.85 33.3 5.93 42.2 

7.5 11.39 27.9 11.28 27.9 11.05 35.7 6.55 57.1 

10b 11.50 29.1 11.42 29.5 11.14 36.8 7.79 86.8 

12.5 11.59 30.0 11.50 30.4 11.15 37.0 8.32 99.5 

15 11.6 30.2 11.57 31.2 11.19 37.5 8.86 112.5 

17.5 11.62 30.4 11.61 31.6 11.38 39.8 9.47 127.1 

100 11.83 32.8 11.83 34.1 11.83 45.3 11.83 183.7 

CKD 

0 8.91 --- 8.82 --- 8.14 --- 4.17 --- 

2.5 11.35 27.4 11.11 26.0 10.99 35.0 7.05 69.1 

5 11.88 33.3 11.73 33.0 11.59 42.4 8.8 111.0 

7.5 12.09 35.7 12 36.1 11.79 44.8 10.11 142.4 

10b 12.22 37.1 12.15 37.8 12.14 49.1 10.88 160.9 

12.5 12.3 38.0 12.23 38.7 12.21 50.0 11.28 170.5 

15 12.36 38.7 12.3 39.5 12.31 51.2 11.62 178.7 

17.5 12.38 38.9 12.36 40.1 12.38 52.1 11.98 187.3 

100 12.55 40.9 12.55 42.3 12.55 54.2 12.55 201.0 
aIncrease in pH w.r.t. pH value of raw soil; bBold values represent minimum additive content providing asymptotic behavior (< 
1% increase) 
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Table 2.6 A Summary of OMC-MDD of Lime-, CFA- and CKD-P-soil Mixtures 
 

Type of 
additive 

Percentage 
of additive 

OMC 
(% ) 

Maximum dry density 
kN/m3 pcf 

Raw 0 13.1 17.8 113.4 

Lime 
3 14.7 17.1 108.7 
6 15.9 16.9 107.2 
9 16.5 16.6 105.9 

CFA 
5 14.0 17.8 113.5 
10 12.8 18.1 114.9 
15 11.7 18.0 114.7 

CKD 
5 14.8 17.4 110.5 
10 15.2 17.2 109.3 
15 15.3 17.1 108.6 

1 pcf = 0.1572 kN/m3; OMC: optimum moisture content; MDD: 
maximum dry density; CFA: class C fly ash; CKD: cement kiln dust 

 
 
 
 

Table 2.7 A Summary of OMC-MDD of Lime-, CFA- and CKD-K-Soil Mixtures 
 

Type of 
additive 

Percentage 
of additive 

OMC 
(% ) 

Maximum dry density 
kN/m3 pcf 

Raw 0 16.5 17.4 110.6 

Lime 
3 16.1 17.0 108.4 
6 16.5 16.8 106.6 
9 18.5 16.3 103.8 

CFA 
5 13.0 17.4 110.8 
10 15.3 17.4 111.0 
15 15.1 17.5 111.5 

CKD 
5 16.9 17.3 110.2 
10 17.3 17.1 108.6 
15 17.6 16.9 107.8 

1 pcf = 0.1572 kN/m3; OMC: optimum moisture content; MDD: 
maximum dry density; CFA: class C fly ash; CKD: cement kiln dust 
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Table 2.8 A Summary of OMC-MDD of Lime-, CFA- and CKD-V-Soil Mixtures 
 

Type of 
additive 

Percentage 
of additive 

OMC 
(% ) 

Maximum dry density 
kN/m3 pcf 

Raw 0 23.0 16.0 101.9 

Lime 
3 25.4 15.6 99.5 
6 25.9 15.3 97.4 
9 26.8 14.9 95.0 

CFA 
5 22.6 16.0 101.6 
10 21.7 16.1 102.5 
15 21.2 16.2 102.9 

CKD 
5 24.1 15.7 100.1 
10 23.5 15.8 100.3 
15 23.1 15.8 100.7 

1 pcf = 0.1572 kN/m3; OMC: optimum moisture content; MDD: 
maximum dry density; CFA: class C fly ash; CKD: cement kiln dust 

 
 
 
 

Table 2.9 A Summary of OMC-MDD of Lime-, CFA- and CKD-C-Soil Mixtures 
 

Type of 
additive 

Percentage 
of additive 

OMC 
(% ) 

Maximum dry density 
kN/m3 pcf 

Raw 0 20.3 16.3 103.7 

Lime 
3 22.0 16.0 101.5 
6 22.7 15.6 99.0 
9 23.8 15.3 97.3 

CFA 
5 20.0 16.3 103.5 
10 18.6 16.6 105.3 
15 16.6 16.4 104.1 

CKD 
5 21.6 16.1 102.3 
10 21.7 16.0 101.8 
15 21.9 15.9 101.4 

1 pcf = 0.1572 kN/m3; OMC: optimum moisture content; MDD: 
maximum dry density; CFA: class C fly ash; CKD: cement kiln dust 
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Table 2.10 Testing Sequence used for Resilient Modulus Test 

 

Sequence 
Number 

Confining 
Pressure 

(kPa) 

Maximum 
Axial Stress 

(kPa) 

Cyclic 
Stress 
(kPa) 

Constant 
Stress 
(kPa) 

No. of Load 
Applications 

Conditioning 41 28 25 3 500 
1 41 14 12 1 100 
2 41 28 25 3 100 
3 41 41 37 4 100 
4 41 55 50 6 100 
5 41 69 62 7 100 
6 28 14 12 1 100 
7 28 28 25 3 100 
8 28 41 37 4 100 
9 28 55 50 6 100 
10 28 69 62 7 100 
11 14 14 12 1 100 
12 14 28 25 3 100 
13 14 41 37 4 100 
14 14 55 50 6 100 
15 14 69 62 7 100 

 
 
 

Table 2.11 A Summary of Resilient Modulus Values of Lime-Stabilized P-soil 
Specimens 

 

Raw SD CV 3% Lime SD CV 6% Lime SD CV 9% Lime SD CV

41 12 181 4 2 1,104 91 8 1,298 95 7 1,388 121 9
41 25 153 3 2 856 65 8 1,091 90 8 1,120 102 9
41 37 137 2 2 694 78 11 815 64 8 860 92 11
41 50 127 2 2 615 78 13 708 48 7 737 71 10
41 62 120 2 2 550 69 13 637 33 5 650 45 7
28 12 161 3 2 1,176 60 5 808 80 10 1,255 131 10
28 25 133 2 2 799 72 9 934 71 8 882 125 14
28 37 120 2 1 647 76 12 679 29 4 706 102 14
28 50 114 2 1 570 73 13 625 26 4 642 65 10
28 62 110 2 2 533 66 12 592 27 5 613 47 8
14 12 146 3 2 1,092 80 7 981 18 2 1,261 187 15
14 25 116 2 2 740 58 8 990 3 0 844 102 12
14 37 105 2 2 597 69 12 695 1 0 698 98 14
14 50 99 2 2 532 66 12 629 3 0 614 69 11
14 62 96 1 2 504 62 12 627 10 2 585 49 8

* Deformations are out of the measuring range of LVDTs

σ3 

(kPa)
σd 

(kPa)

σd : deviator stress; σ3 : confining pressure; Mr : resilient modulus (using internal LVDTs)
1 psi = 6.89 kPa; 1 ksi = 6.89 MPa; SD: standard deviation; CV: coefficient of variation (%)

Mr (MPa)
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Table 2.12 A Summary of Resilient Modulus Values of Lime-Stabilized K-soil 
Specimens 

Raw SD CV 3% Lime SD CV 6% Lime SD CV 9% Lime SD CV

41 12 97 1 1 1,174 41 4 1,382 128 9 929 27 3
41 25 83 1 2 1,130 36 3 1,206 44 4 813 12 1
41 37 68 1 2 1,101 42 4 1,063 34 3 755 10 1
41 50 57 1 3 1,069 56 5 987 19 2 725 2 0
41 62 50 2 3 1,027 59 6 926 15 2 680 8 1
28 12 92 1 1 1,107 18 2 1,254 109 9 828 28 3
28 25 77 2 2 1,117 29 3 1,108 34 3 770 28 4
28 37 65 2 3 1,055 43 4 990 21 2 736 4 1
28 50 57 2 3 1,029 61 6 958 18 2 700 9 1
28 62 51 1 3 1,034 65 6 922 17 2 677 11 2
14 12 90 1 1 1,179 48 4 1,209 96 8 832 49 6
14 25 75 2 3 1,090 42 4 1,115 50 4 772 21 3
14 37 63 2 3 1,062 58 5 1,006 23 2 723 8 1
14 50 55 2 4 1,040 58 6 941 19 2 699 9 1
14 62 50 2 4 1,042 62 6 918 15 2 667 11 2

* Deformations are out of the measuring range of LVDTs

σ3 

(kPa)
σd 

(kPa)

σd : deviator stress; σ3 : confining pressure; Mr : resilient modulus (using internal LVDTs)
1 psi = 6.89 kPa; 1 ksi = 6.89 MPa; SD: standard deviation; CV: coefficient of variation (%)

Mr (MPa)

 
 
 

Table 2.13 A Summary of Resilient Modulus Values of Lime-Stabilized V-soil 
Specimens 

Raw SD CV 3% Lime SD CV 6% Lime SD CV 9% Lime SD CV

41 12 145 8 6 958 68 7 821 25 3 745 22 3
41 25 126 1 1 941 41 4 772 23 3 706 14 2
41 37 108 1 1 916 7 1 740 20 3 700 19 3
41 50 94 2 2 911 4 0 710 12 2 682 22 3
41 62 83 2 3 876 11 1 717 8 1 651 20 3
28 12 127 6 5 1,049 63 6 843 18 2 719 23 3
28 25 103 0 0 922 15 2 750 15 2 698 22 3
28 37 90 2 2 909 4 0 729 16 2 676 19 3
28 50 83 3 3 896 8 1 703 14 2 662 26 4
28 62 77 3 3 869 6 1 678 13 2 645 21 3
14 12 119 6 5 1,010 32 3 820 26 3 710 44 6
14 25 95 0 0 939 7 1 756 14 2 683 20 3
14 37 83 2 2 898 9 1 724 17 2 668 22 3
14 50 75 3 3 883 14 2 699 15 2 650 24 4
14 62 71 3 4 868 10 1 684 10 1 643 29 5

* Deformations are out of the measuring range of LVDTs

σ3 

(kPa)
σd 

(kPa)

σd : deviator stress; σ3 : confining pressure; Mr : resilient modulus (using internal LVDTs)
1 psi = 6.89 kPa; 1 ksi = 6.89 MPa; SD: standard deviation; CV: coefficient of variation (%)

Mr (MPa)
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Table 2.14 A Summary of Resilient Modulus Values of Lime-Stabilized C-soil 
Specimens 

Raw SD CV 3% Lime SD CV 6% Lime SD CV 9% Lime SD CV

41 12 137 1 1 293 7 2 573 67 12 421 20 5
41 25 129 1 1 277 5 2 502 36 7 388 11 3
41 37 117 1 1 257 5 2 472 32 7 360 7 2
41 50 106 1 1 237 4 2 445 28 6 334 5 2
41 62 96 1 1 220 4 2 422 27 6 310 5 2
28 12 130 1 1 288 4 2 555 51 9 409 10 2
28 25 123 1 1 261 5 2 491 31 6 375 5 1
28 37 115 1 1 242 5 2 461 28 6 339 7 2
28 50 104 1 1 226 4 2 435 27 6 326 5 2
28 62 96 1 1 217 4 2 423 27 6 307 5 2
14 12 117 1 1 283 10 3 519 34 7 400 12 3
14 25 114 2 1 258 5 2 473 28 6 359 8 2
14 37 106 2 2 237 4 2 448 27 6 334 6 2
14 50 99 2 2 223 5 2 431 29 7 319 6 2
14 62 91 1 1 213 5 2 418 28 7 298 7 2

* Deformations are out of the measuring range of LVDTs

σ3 

(kPa)
σd 

(kPa)

σd : deviator stress; σ3 : confining pressure; Mr : resilient modulus (using internal LVDTs)
1 psi = 6.89 kPa; 1 ksi = 6.89 MPa; SD: standard deviation; CV: coefficient of variation (%)

Mr (MPa)

 
 
 
 

Table 2.15 A Summary of Resilient Modulus Values of CFA-Stabilized P-soil Specimens 

Raw SD CV 5% CFA SD CV 10% CFA SD CV 15% CFA SD CV

41 12 181 4 2 280 7 2 818 83 10 2,435 234 10
41 25 153 3 2 255 6 2 642 28 4 2,150 151 7
41 37 137 2 2 230 6 2 587 17 3 1,394 127 9
41 50 127 2 2 212 5 3 553 11 2 1,155 16 1
41 62 120 2 2 197 5 2 520 9 2 1,038 17 2
28 12 161 3 2 246 7 3 746 85 11 2,221 198 9
28 25 133 2 2 209 5 3 580 24 4 1,756 187 11
28 37 120 2 1 190 5 3 539 17 3 1,348 120 9
28 50 114 2 1 181 5 3 520 14 3 1,148 115 10
28 62 110 2 2 178 5 3 503 11 2 1,038 116 11
14 12 146 3 2 214 5 2 730 98 13 1,961 176 9
14 25 116 2 2 177 4 2 567 34 6 1,923 142 7
14 37 105 2 2 162 4 2 517 21 4 1,359 31 2
14 50 99 2 2 155 4 2 493 14 3 1,131 25 2
14 62 96 1 2 154 4 3 484 12 2 1,037 17 2

* Deformations are out of the measuring range of LVDTs

σ3 

(kPa)
σd 

(kPa)

σd : deviator stress; σ3 : confining pressure; Mr : resilient modulus (using internal LVDTs)
1 psi = 6.89 kPa; 1 ksi = 6.89 MPa; SD: standard deviation; CV: coefficient of variation (%)

Mr (MPa)
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Table 2.16 A Summary of Resilient Modulus Values of CFA-Stabilized K-soil 
Specimens 

Raw SD CV 5% CFA SD CV 10% CFA SD CV 15% CFA SD CV

41 12 97 1 1 605 54 9 1,003 49 5 1,086 35 3
41 25 83 1 2 496 11 2 899 22 2 978 31 3
41 37 68 1 2 450 11 3 876 20 2 954 35 4
41 50 57 1 3 416 13 3 851 15 2 949 33 3
41 62 50 2 3 389 13 3 846 11 1 924 29 3
28 12 92 1 1 540 29 5 889 10 1 1,034 44 4
28 25 77 2 2 431 10 2 882 14 2 975 34 3
28 37 65 2 3 397 14 3 854 7 1 952 30 3
28 50 57 2 3 373 14 4 847 17 2 917 28 3
28 62 51 1 3 366 13 4 842 9 1 924 26 3
14 12 90 1 1 498 29 6 926 39 4 967 35 4
14 25 75 2 3 412 11 3 898 10 1 970 32 3
14 37 63 2 3 373 14 4 879 10 1 931 28 3
14 50 55 2 4 352 15 4 857 13 1 919 22 2
14 62 50 2 4 340 16 5 843 13 2 945 9 1

* Deformations are out of the measuring range of LVDTs

σ3 

(kPa)
σd 

(kPa)

σd : deviator stress; σ3 : confining pressure; Mr : resilient modulus (using internal LVDTs)
1 psi = 6.89 kPa; 1 ksi = 6.89 MPa; SD: standard deviation; CV: coefficient of variation (%)

Mr (MPa)

 
 
 

Table 2.17 A Summary of Resilient Modulus Values of CFA-Stabilized V-soil 
Specimens 

Raw SD CV 5% CFA SD CV 10% CFA SD CV 15% CFA SD CV

41 12 145 8 6 750 72 10 1,092 64 6 1,255 66 5
41 25 126 1 1 629 24 4 1,013 29 3 1,253 62 5
41 37 108 1 1 586 16 3 995 26 3 1,169 20 2
41 50 94 2 2 549 13 2 957 23 2 1,180 10 1
41 62 83 2 3 527 10 2 935 24 3 1,145 23 2
28 12 127 6 5 719 70 10 1,104 70 6 1,212 89 7
28 25 103 0 0 588 19 3 1,004 42 4 1,168 4 0
28 37 90 2 2 558 15 3 964 28 3 1,148 16 1
28 50 83 3 3 532 11 2 934 27 3 1,142 16 1
28 62 77 3 3 514 9 2 931 26 3 1,151 4 0
14 12 119 6 5 661 53 8 1,183 86 7 1,203 139 12
14 25 95 0 0 572 19 3 996 46 5 1,145 53 5
14 37 83 2 2 545 13 2 957 34 4 1,150 22 2
14 50 75 3 3 525 10 2 940 27 3 1,141 25 2
14 62 71 3 4 510 9 2 920 28 3 1,136 14 1

* Deformations are out of the measuring range of LVDTs

σ3 

(kPa)
σd 

(kPa)

σd : deviator stress; σ3 : confining pressure; Mr : resilient modulus (using internal LVDTs)
1 psi = 6.89 kPa; 1 ksi = 6.89 MPa; SD: standard deviation; CV: coefficient of variation (%)

Mr (MPa)
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Table 2.18 A Summary of Resilient Modulus Values of CFA-Stabilized C-soil Specimens 
 

Raw SD CV 5% CFA SD CV 10% CFA SD CV 15% CFA SD CV

41 12 137 1 1 241 10 4 290 12 4 359 11 3
41 25 129 1 1 225 11 5 274 10 4 354 11 3
41 37 117 1 1 205 11 5 256 10 4 331 9 3
41 50 106 1 1 190 10 5 240 9 4 313 9 3
41 62 96 1 1 176 10 6 228 10 4 295 7 2
28 12 130 1 1 229 12 5 276 10 4 331 15 5
28 25 123 1 1 206 11 5 252 10 4 311 10 3
28 37 115 1 1 189 11 6 236 11 5 295 7 2
28 50 104 1 1 177 10 6 223 11 5 285 7 2
28 62 96 1 1 168 10 6 215 10 5 276 6 2
14 12 117 1 1 218 13 6 267 15 6 307 9 3
14 25 114 2 1 195 11 6 238 12 5 293 9 3
14 37 106 2 2 180 12 6 222 12 6 275 5 2
14 50 99 2 2 168 11 7 212 13 6 263 4 2
14 62 91 1 1 160 11 7 205 12 6 258 4 2

* Deformations are out of the measuring range of LVDTs

σ3 

(kPa)
σd 

(kPa)

σd : deviator stress; σ3 : confining pressure; Mr : resilient modulus (using internal LVDTs)
1 psi = 6.89 kPa; 1 ksi = 6.89 MPa; SD: standard deviation; CV: coefficient of variation (%)

Mr (MPa)

 
 
 
 

Table 2.19 A Summary of Resilient Modulus Values of CKD-Stabilized P-soil 
Specimens 

Raw SD CV 5% CKD SD CV 10% CKD SD CV 15% CKD SD CV

41 12 181 4 2 666 52 8 * * * * * *
41 25 153 3 2 734 21 3 2,010 359 18 2,613 365 14
41 37 137 2 2 531 14 3 1,784 202 11 2,563 229 9
41 50 127 2 2 456 11 2 1,627 236 14 2,428 204 8
41 62 120 2 2 409 8 2 1,495 147 10 2,389 136 6
28 12 161 3 2 673 49 7 * * * * * *
28 25 133 2 2 601 18 3 1,969 257 13 2,549 344 14
28 37 120 2 1 477 12 2 1,840 199 11 2,511 175 7
28 50 114 2 1 425 10 2 1,619 132 8 2,400 170 7
28 62 110 2 2 400 8 2 1,493 157 10 2,328 165 7
14 12 146 3 2 662 52 8 * * * * * *
14 25 116 2 2 617 19 3 1,916 232 12 2,532 357 14
14 37 105 2 2 465 11 2 1,747 148 8 2,502 253 10
14 50 99 2 2 418 10 2 1,543 126 8 2,337 193 8
14 62 96 1 2 391 8 2 1,488 125 8 2,333 161 7

* Deformations are out of the measuring range of LVDTs

σ3 

(kPa)
σd 

(kPa)

σd : deviator stress; σ3 : confining pressure; Mr : resilient modulus (using internal LVDTs)
1 psi = 6.89 kPa; 1 ksi = 6.89 MPa; SD: standard deviation; CV: coefficient of variation (%)

Mr (MPa)
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Table 2.20 A Summary of Resilient Modulus Values of CKD-Stabilized K-soil 
Specimens 

Raw SD CV 5% CKD SD CV 10% CKD SD CV 15% CKD SD CV

41 12 97 1 1 355 36 10 1,264 93 7 * * *
41 25 83 1 2 344 29 9 1,096 51 5 1,973 239 12
41 37 68 1 2 322 25 8 1,118 50 4 1,926 156 8
41 50 57 1 3 303 23 7 1,095 41 4 1,894 59 3
41 62 50 2 3 285 20 7 1,076 64 6 1,885 55 3
28 12 92 1 1 341 24 7 1,226 89 7 * * *
28 25 77 2 2 332 24 7 1,132 53 5 1,944 134 7
28 37 65 2 3 309 23 7 1,111 30 3 1,910 147 8
28 50 57 2 3 293 20 7 1,070 39 4 1,854 40 2
28 62 51 1 3 283 21 7 1,080 47 4 1,829 61 3
14 12 90 1 1 339 32 9 1,201 99 8 * * *
14 25 75 2 3 323 23 7 1,180 28 2 1,928 280 15
14 37 63 2 3 306 21 7 1,084 22 2 1,862 269 14
14 50 55 2 4 290 20 7 1,073 34 3 1,845 133 7
14 62 50 2 4 281 21 7 1,086 39 4 1,827 50 3

* Deformations are out of the measuring range of LVDTs

σ3 

(kPa)
σd 

(kPa)

σd : deviator stress; σ3 : confining pressure; Mr : resilient modulus (using internal LVDTs)
1 psi = 6.89 kPa; 1 ksi = 6.89 MPa; SD: standard deviation; CV: coefficient of variation (%)

Mr (MPa)

 
 
 
 

Table 2.21 A Summary of Resilient Modulus Values of CKD-Stabilized V-soil 
Specimens 

Raw SD CV 5% CKD SD CV 10% CKD SD CV 15% CKD SD CV

41 12 145 8 6 462 18 4 2151 213 10 * * *
41 25 126 1 1 427 17 4 1660 158 10 1982 208 10
41 37 108 1 1 389 16 4 1633 172 11 1962 202 10
41 50 94 2 2 356 16 5 1551 110 7 1934 198 10
41 62 83 2 3 326 16 5 1547 127 8 1881 182 10
28 12 127 6 5 413 18 4 2140 192 9 * * *
28 25 103 0 0 378 17 5 1635 177 11 1925 77 4
28 37 90 2 2 354 18 5 1554 113 7 1839 197 11
28 50 83 3 3 335 17 5 1569 149 9 1825 133 7
28 62 77 3 3 318 17 5 1552 127 8 1800 180 10
14 12 119 6 5 400 19 5 2065 178 9 * * *
14 25 95 0 0 376 21 6 1608 146 9 1892 29 2
14 37 83 2 2 346 19 6 1577 170 11 1869 194 10
14 50 75 3 3 324 19 6 1572 122 8 1821 202 11
14 62 71 3 4 310 18 6 1545 132 9 1793 197 11

* Deformations are out of the measuring range of LVDTs

σ3 

(kPa)
σd 

(kPa)

σd : deviator stress; σ3 : confining pressure; Mr : resilient modulus (using internal LVDTs)
1 psi = 6.89 kPa; 1 ksi = 6.89 MPa; SD: standard deviation; CV: coefficient of variation (%)

Mr (MPa)
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Table 2.22 A Summary of Resilient Modulus Values of CKD-Stabilized C-soil 
Specimens 

Raw SD CV 5% CKD SD CV 10% CKD SD CV 15% CKD SD CV

41 12 137 1 1 251 19 7 434 38 9 901 120 13
41 25 129 1 1 230 17 7 417 34 8 858 55 6
41 37 117 1 1 205 17 8 395 36 9 844 33 4
41 50 106 1 1 186 15 8 376 36 10 814 31 4
41 62 96 1 1 169 13 7 355 35 10 798 26 3
28 12 130 1 1 238 20 8 412 35 8 933 98 11
28 25 123 1 1 208 16 8 391 34 9 897 47 5
28 37 115 1 1 189 15 8 376 36 10 841 44 5
28 50 104 1 1 173 15 9 361 37 10 826 31 4
28 62 96 1 1 162 14 9 348 36 10 804 28 3
14 12 117 1 1 226 19 8 413 31 7 927 74 8
14 25 114 2 1 201 19 9 386 38 10 899 73 8
14 37 106 2 2 179 17 9 370 38 10 874 61 7
14 50 99 2 2 165 16 10 355 38 11 848 45 5
14 62 91 1 1 154 15 10 344 38 11 822 44 5

* Deformations are out of the measuring range of LVDTs

σ3 

(kPa)
σd 

(kPa)

σd : deviator stress; σ3 : confining pressure; Mr : resilient modulus (using internal LVDTs)
1 psi = 6.89 kPa; 1 ksi = 6.89 MPa; SD: standard deviation; CV: coefficient of variation (%)

Mr (MPa)
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Figure 2.1 Setup for Resilient Modulus Test (Without Pressure Chamber) 
 

 
 

Figure 2.2 Setup for Resilient Modulus Test (With Pressure Chamber) 
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2.3 MTS Digital Control System and Computer 

 

Figure 2.4 Improvement of Mr Values for P-soil 
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Figure 2.5 Improvement of Mr Values for K-soil 

 

 
Figure 2.6 Improvement of Mr Values for V-soil 

 

 
Figure 2.7 Improvement of Mr Values for C-soil 
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Figure 2.8 Effect of Stress Level on Mr Values of Raw Soil 

 

 
Figure 2.9 Effect of Stress Level on Mr Values of 9% Lime-Stabilized Soil 

40

60

80

100

120

140

160

180

200

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

R
es

ili
en

t M
od

u
lu

s 
(M

P
a)

Stress Ratio (σd/UCS)
S3 = 41 kPa (P-soil) S3 = 28 kPa (P-soil) S3 = 14 kPa (P-soil)

S3 = 41 kPa (K-soil) S3 = 28 kPa (K-soil) S3 = 14 kPa (K-soil)

400

600

800

1,000

1,200

1,400

0.00 0.05 0.10 0.15

R
es

ili
en

t M
od

u
lu

s 
(M

P
a)

Stress Ratio (σd/UCS)

S3 = 41 kPa (P-soil) S3 = 28 kPa (P-soil) S3 = 14 kPa (P-soil)

S3 = 41 kPa (K-soil) S3 = 28 kPa (K-soil) S3 = 14 kPa (K-soil)



64 
 

 
Figure 2.10 Effect of Stress Level on Mr Values of 15% CFA-Stabilized Soil 

 

 
Figure 2.11 Effect of Stress Level on Mr Values of 15% CKD-Stabilized Soil 
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Figure 2.12 Variation of ME Values with Soil and Additive Type 

 
Figure 2.13 Variation of UCS Values with Soil and Additive Type 

 

 
Figure 2.14 Variation of Normalized Percent Increase in Mr Values with Cation 

Exchange Capacity 
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Figure 2.15 Variation of Normalized Percent Increase in Mr Values with Percent Free-

Lime Content of Additive 

 
Figure 2.16 Variation of Normalized Percent Increase in Mr Values with Percent Alkali 

Content of Additive 

 
Figure 2.17 Variation of Normalized Percent Increase in Mr Values with Loss on Ignition 

Value of Additive 
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Figure 2.18 Variation of Normalized Percent Increase in Mr Values with Percent Passing 

No. 325 Sieve of Additive 

 
Figure 2.19 Variation of Normalized Percent Increase in Mr Values with Specific Surface 

Area of Additive 

 
Figure 2.20 Variation of Normalized Percent Increase in Mr Values with pH of Additive 
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Figure 2.21 Variation of Normalized Percent Increase in Mr Values with Combined SSR 

Value of Soil-Additive Mixture 
 
 

   
 
 

(a)              (b) 
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Figure 2.22 SEM Micrographs of Raw (a) P-, (b) K-, (c) V-, and (d) C-Soil Specimens 
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(a)  

 
(b) 

 
(c) 

Figure 2.23 SEM/EDS of Raw (a) Lime, (b) CFA, and (c) CKD Powder 
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(a) Calcium-Silicate-Hydrate (C-S-H) 

 
 

(b) Calcium Hydroxide (CH) 
Figure 2.24 SEM Micrographs of 28-Day Cured 9% Lime-Stabilized C-Soil Specimen 
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(a) C-S-H 

 

(b) Hydration Coatings 

 

(c) Ettringite Crystals 
 

Figure 2.25 SEM Micrographs of 28-Day Cured 15% CFA-Stabilized C-Soil Specimen 
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(d)  

 
Figure 2.25 (Cont’d) SEM Micrographs of 28-Day Cured 15% CFA-Stabilized C-Soil 

Specimen 
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(a) C-S-H 

  
(b) Hydration Coatings 

 
(c) Ettringite Crystals 

Figure 2.26 SEM Micrographs of 28-Day Cured 15% CKD-Stabilized C-Soil Specimen 
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CHAPTER 3                                                                         
INFLUENCES OF VARIOUS CEMENTITIOUS ADDITIVES ON THE DURABILITY 

OF STABILIZED SUBGRADE SOILS  

3.1 Introduction 

Durability (or long-term performance) of pavement materials induced by changes 

in climatic conditions namely, freeze-thaw and wet-dry, have been recognized by 

pavement engineers as a major factor in poor pavement performance. In cold regions, 

freeze-thaw (F-T) action is considered to be one of the most destructive actions that can 

induce significant damage to a pavement structure. Freezing of moisture present in the 

pore spaces of soil structure result in the formation of ice lenses. During times of 

temperate weather, the ice lenses thaw, and the structural capacity of the roadway may be 

dramatically reduced (Guthrie and Hermansson, 2003). The repeated action of F-T 

deteriorates the integrity of the pavement structure indicating possible changes in the 

engineering properties of pavement material such as resilient modulus and unconfined 

compressive strength. The importance of considering durability in mixture design has 

also been highlighted by AASHTO (2004), Transportation Research Circular E-C086: 

Evaluation of Chemical Stabilizers (Petry and Sobhan, 2005) and recent NCHRP Web-

Only Document: Recommended Practice for Stabilization of Subgrade Soils and Base 

Materials (Little and Nair, 2009). To this end, durability (or long-term performance) of 

stabilized soil specimens was evaluated by conducting F-T cycling, vacuum saturation 

and tube suction tests. Also, specimens were capillary-soaked for 60 days and tested for 

Mr, as an additional indicator for evaluating long-term performance. 
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3.2 Overview of Previous Studies 

A review of previous studies reveals no widely accepted laboratory procedure to 

evaluate the durability of cementitiously stabilized subgrade soils. Hence, a summary of 

different experimental procedures available in literature for evaluating durability of 

stabilized soil specimens is provided in this section.  

3.2.1 Freeze-Thaw and Wet-Dry Cycling 

Soil specimens subjected to freeze-thaw (F-T) or wet-dry (W-D) cycles provide 

an indication of how those specimens will maintain engineering parameters in the field 

exposed to diverse environmental conditions. Among “conventional” laboratory 

procedures, the ASTM D 559 and ASTM D 560 test methods are the only existing 

standardized procedures for evaluating effect of W-D and F-T cycles on cement-

stabilized soil specimens, respectively. These methods consist of mixing soil and additive 

at optimum moisture content and compacting with standard effort in a 100 mm (4 in) 

diameter Proctor mold. After compaction, specimens are cured for 7 days in a humidity 

room and then subjected to a series of F-T or W-D cycles. After completion of each 

cycle, specimen is brushed on all sides with a wire brush and effect of F-T or W-D cycles 

is measured in terms of percent weight loss. As a result of the variability associated with 

the brushing process, many agencies and researchers omit the brushing portion of the test 

and replace it with unconfined compressive strength (UCS) testing after completion of all 

12 cycles (Shihata and Baghdadi, 2001). 

Petry and Wohlgemuth (1988) subjected highly plastic soils stabilized with lime 

and Portland cement (PI 64 to 77) to 12 W-D cycles, as specified in ASTM D 559, after 7 

days of curing in a humidity room. However, the wire brushing called for in the 
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specification was not performed. The results indicated that the lime-stabilized specimens 

retained their integrity better than the Portland cement specimens, at each gradation level. 

The theory of “water proofing” was used to explain the differences in performance 

between cement and lime.  

In a combined laboratory and field study from Oklahoma, Miller and Zaman 

(2000) investigated durability of CKD-stabilized soil by performing UCS on samples 

subjected to F-T and W-D cycles separately. Tests were conducted on 7-day cured three 

combinations of soil and additives, namely, CKD with sand, CKD with shale, and 

quicklime with shale. One W-D cycle consisted of immersing samples in water for 5 

hours, followed by oven drying for 24 hours at 71oC (160oF). Samples that survived were 

subjected to UCS after 0, 1, 3, 7, and 12 W-D cycles. The UCS tests were conducted after 

the drying cycle so that moisture conditions would be uniform for each sample tested. 

The same procedure was used to prepare and cure samples during F-T testing. One F-T 

cycle consisted of placing samples in a freezer at -23oC (-9oF) for 24 hour and then 

pacing in a moisture chamber under controlled humidity of 95% and temperature of about 

23oC (73oF). UCS tests were conducted after 0, 1, 3, 7, and 12 cycles. Specimens were 

tested at the end of thawing period. CKD-stabilized shale specimens showed increase in 

UCS values for the first three W-D cycles, beyond which sample did not survive 

immersion in water. On the other hand, specimens stabilized with quicklime survived 

only one W-D cycle. Sand specimens stabilized with CKD showed an increase in UCS 

values over the full 12 cycles of W-D. Contrary to W-D cycles, all the specimens 

survived 12 F-T cycles. 
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In a comparative study by Parsons and Milburn (2003), durability of soils treated 

with different additives, namely, lime, CFA, Portland cement and enzymatic stabilizer 

was evaluated. After compaction of the soil-additive mix, the samples were cured for 7 

days in a humidity room and then subjected to a series of F-T and W-D cycles. The 

cement-treated soils had the least weight loss in F-T testing, while CFA-treated soils had 

lower weight losses in F-T testing than lime-treated soils. Relative performance in the W-

D cycles was mixed; lime generally performed better on fine-grained materials and 

Portland cement on coarse-grained soils, although Portland cement performed relatively 

well with the CH clays. Additionally, CFA performed well only on the SM soil, where it 

survived the full 12 cycles.  

In another study by Parsons and Kneebone (2004), eight different soils with 

classifications of CH, CL, ML, SM and SP were tested for F-T and W-D durability to 

evaluate the relative performance of CKD as a stabilizing agent. Results were compared 

with previous findings for the same soils stabilized with lime, cement, and fly ash. It was 

reported that the CKD treated soil samples’ performance in W-D testing was similar to 

that for lime, fly ash and cement treated soils. However, CKD-stabilized samples were 

not as durable in F-T testing as lime, fly ash and cement treated soil samples.  

Arora and Aydilek (2005) conducted F-T tests on silty sand (SM) stabilized with 

40% class F fly ash in combination with cement or lime. It was found that the strength of 

specimens stabilized with class F fly ash and cement increased with increasing number of 

F-T cycles. The increase in strength was more enhanced for mixtures that contained 7% 

cement than for mixtures with 4 and 5% cement.  Also, lime-stabilized specimens 
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survived during F-T cycles but their strengths decreased with increasing number of F-T 

cycles.  

3.2.2 Vacuum Saturation 

The vacuum saturation method was proposed by Dempsey and Thompson (1973) 

as a rapid and economical method for predicting the durability of stabilized materials. 

Currently, vacuum saturation test is outlined in ASTM C 593 as durability test for Class 

C fly ash, lime-fly ash, and lime-stabilized soils. This method consists of mixing soil and 

additive at optimum moisture content and compacting with standard effort in a 100 mm 

(4 in) diameter Proctor mold After compaction, specimens are cured for 7 days and 

placed in a vacuum chamber that is subsequently evacuated to a pressure of 610 mm Hg. 

(24 in. Hg., 11.8 psi). After 30 minutes, the chamber is flooded with de-ionized water, 

and the vacuum is removed. The specimens are allowed to soak for 1 hour and are then 

tested for UCS. Only few studies (e.g., McManis and Arman, 1989; Guthrie et al., 2008; 

Parker, 2008) are available in the literature. 

McManis and Arman (1989) evaluated the durability of two CFA-stabilized 

sands, namely, A-3 and A-2-4 in accordance with the ASTM C 593 specifications. 

Specimens were conditioned in a vacuum saturation chamber and tested for UCS with the 

exception that they were cured in a humidity room at 22.7o±1oC (73o±3oF) rather than at 

38oC (100oF), as specified in the ASTM procedure. A comparison of the differences in 

strength between specimens subjected to this procedure and those not subjected to this 

procedure provided a relative measure of durability of the sand mixtures. The strength 

loss in the A-3 specimens was inconsistent, but the A-2-4 specimens demonstrated a 

consistent loss in strength.  
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In a recent study, Parker (2008) conducted vacuum saturation test on silty sand 

and lean clay stabilized with different additives, namely, class C fly ash, lime-fly ash, 

lime or Type I/II Portland cement. It was found that the silty sand specimens stabilized 

with lime-fly ash had significantly higher UCS after vacuum saturation than specimens 

stabilized with CFA, lime or cement. Also, clay specimens stabilized with CFA or lime-

fly ash had significantly higher UCS values than specimens stabilized with cement or 

lime. This study also proposed strong correlation between residual UCS values after F-T 

cycling and vacuum saturation. 

3.2.3 Tube Suction Test 

The Tube Suction Test (TST) was developed by the Finnish National Road 

Administration and the Texas Transportation Institute to evaluate the moisture 

susceptibility or the amount of “free” water present within a soil system (Syed et al., 

1999; Guthrie et al., 2001). The TST involves measurement of surface dielectric values 

(DV) of the test specimens. During the test, the increase of moisture in the specimen is 

monitored with a dielectric probe, which measures the dielectric properties at the surface 

of the specimen. The DV is a measure of the unbound or “free” moisture within the 

specimen. High surface dielectric readings indicate suction of water by capillary forces 

and can be an indicator of a non-durable material that will not perform well under 

saturated or freeze-thaw cycling conditions (Scullion and Saarenketo, 1997). Guthrie and 

Scullion (2003) suggested that aggregate base specimens having final dielectric readings 

less than 10 are characterized as satisfactory with respect to moisture and/or frost 

susceptibility, while specimens with final readings above 16 are considered 

unsatisfactory. Aggregate base specimens with final dielectric values between 10 and 16 
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are expected to exhibit marginal long-term durability.  To the author’s knowledge, there 

are no recommended lower and upper DV values for stabilized soil specimens. Hence, in 

the present study DV values will be used to evaluate comparative moisture susceptibility 

of stabilized soil specimens.  

In recent years, TST results have been correlated with bearing capacity, frost 

heave, and several other parameters (PCA, 1992; Saarenketo and Scullion, 1996; Scullion 

and Saarenketo, 1997; Little, 2000; Syed et al., 2000; Guthrie and Scullion, 2000; 

Saarenketo et al., 2001; Guthrie and Scullion, 2003; Saeed et al., 2003; Syed et al., 2003; 

Barbu et al., 2004; Zhang and Tao, 2008). Little (2000) evaluated moisture susceptibility 

of low, moderate, and high plasticity soils using TST. Moisture susceptibility was 

determined indirectly by measuring the DV of stabilized specimens using a 

PercometerTM. Tests were performed on three versions of each soil: untreated, lime-

treated with unsealed curing, and lime-treated with controlled curing (seal-cured). It was 

found that for low-plasticity soils, lime acted as a fine filler and increased the water 

content after capillary soaking. No significant difference was seen on the DV over that of 

the untreated soil. For moderate plasticity and high plasticity soils, lime treatment, with 

seal-curing, resulted in slightly lower moisture contents and substantial and statistically 

significant reductions in DVs.  

Barbu et al. (2004) studied only the moisture susceptibility of 28 day cured silty 

sand specimens stabilized with 3.5% of cement. Different conditions for conducting TST 

were evaluated, such as specimen size, the effect of compaction energy and size of clods. 

The two different cylindrical specimen sizes used were 305 mm (12 in) by 152 mm (6 in) 

diameter and 180 mm (7 in) by 101.6 mm (4 in) diameter. DV readings were taken for 
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500 hours using PercometerTM. It was concluded that the difference in final result due to 

different dimensions of the specimen, compaction energy or clod size is not significant. 

Zhang and Tao (2006) conducted wetting-drying test, along with the TST and 7-day UCS 

to determine the efficiency of cement stabilization on low plastic soils, which is 

frequently encountered in Louisiana. This study confirmed the equivalence among 

wetting-drying, TST, and 7-day UCS tests as an alternative to traditional durability tests.  

In a recent study, Parker (2008) evaluated the moisture susceptibility of 7-day 

cured stabilized silty sand and lean clay specimens. Five additives, namely, class C fly 

ash, lime-fly ash, lime, and type I/II Portland cement were used in this study. DV values 

measured in the tube suction test were lowest for specimens treated with lime-fly ash and 

cement with respect to the sand and for specimens treated with class C fly ash and cement 

with respect to the clay. The lime-fly ash and cement successfully reduced the DV values 

of sand specimens to a marginal rating, while no stabilizer reduced the moisture 

susceptibility of the clay to a satisfactory level. 

In another recent study, Zhang and Tao (2008) conducted TST for evaluating 

durability of cement-stabilized low plasticity soils. A series of specimens were molded at 

six different cement contents (2.5, 4.5, 6.5, 8.5, 10.5 and 12.5%) and four different 

molding moisture contents (15.4, 18.5, 21.5, and 24.5%). It was found that the final stable 

DV values of stabilized specimens were all above the value of 30. The maximum DVs 

generally decreased with increase in cement content. With increase in the molding 

moisture content, it was less effective for cement to reduce the maximum DV. Also, it 

was reported that at the low cement dosages, specimens molded on the dry side of 

compaction curve can suck in free water faster than those compacted on the wet side until 



82 
 

enough amount of cement is used. Further, the test results indicated that the water-cement 

ratio of cement-stabilized soil had the dominant influence on the maximum DV. 

It is also worth mentioning here that there is no standardized procedure for 

conducting TST on stabilized materials. A summary of TST procedure used by different 

researchers is presented in Table 3.1. Hence, one of the objectives of this study is to 

develop TST procedure for stabilized soils, as will be discussed later. 

3.2.4 Other Methods 

Several researchers (see e.g., Kenai et al., 2006; Zhang and Tao, 2008; Osinubi et 

al., 2010) and agencies (see Table 3.2) use 7-day UCS values as an indicator of the 

durability for the soil stabilization mix design. For example, Zhang and Tao (2008) 

established equivalency of 7-day UCS and W-D durability. In a recent study, Osinubi et 

al. (2010) evaluated durability of soil-lime-slag mixtures by determining strength of 

moisture conditioned specimens. The resistance to loss in strength was determined as a 

ratio of the UCS of specimens wax-cured for 7 days, de-waxed top and bottom and later 

moisture conditioned in water for another 7 days to the UCS of specimens wax-cured for 

14 days. It was found that the resistance to loss in strength decreased with higher slag 

content. For 8% lime-stabilized specimen, a peak value of 80% with highest durability 

was observed. However, soil-lime-slag mixtures containing 6 – 8% lime showed 

resistance to loss in strength values in the range between 50 – 70%. 

 Some researchers (e.g., Prusinski and Bhattacharja, 1999; Parsons and Milburn, 

2003; Parsons and Kneebone, 2004) used leaching test for evaluating durability of 

stabilized soil specimens. The leaching durability test involves leaching de-ionized water 

through a Proctor specimen of soil for 28 days. Leachate samples are collected for 
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determining flow rate, calcium concentration, and pH at different intervals of 1, 3, 7, 14, 

21, and 28 days. Only limited information is available on leaching of CFA- or CKD-

stabilized soil specimens. However, extensive leaching investigations were performed on 

lime-stabilized specimens by McCallister and Petry (1990; 1991; 1992). According to 

McCallister and Petry (1990; 1991; 1992), lime-addition levels in soils are defined at two 

levels: lime modification optimum (LMO) as determined by pH test (ASTM D 6276) and 

lime stabilization optimum (LSO) as determined by the lime addition percentage which 

provides the maximum UCS. For the soils tested by McCallister and Petry (1990; 1991; 

1992), the lime levels for LMO and LSO were 3 – 4% and 7 – 8%, respectively.  

3.3 Materials  

The three soils: (1) Port series soil (P-soil), (2) Kingfisher series soil (K-soil), and 

(3) Carnasaw series soil (C-soil), were used to evaluate the durability. Their properties 

are presented in Section 2.3.1, Chapter 2. Also, hydrated lime, class C fly ash (CFA) and 

cement kiln dust (CKD) were used. Their properties are presented in Section 2.3.2, and 

summarized in Table 2.4. As mentioned in the previous chapter, the differences between 

the chemical composition and physical properties among the selected additives are 

clearly evident in Table 2.4 and are expected to lead to different durability of stabilized 

specimens. 

3.4 Laboratory Procedure 

3.4.1 Conventional Freeze-Thaw Test 

The freeze-thaw (F-T) test was performed in accordance with procedure outlined 

in ASTM D 560. Specimens were prepared by mixing raw soil mixed with specific 
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amount of additive. The amount of additive (6% for lime and 10% for CFA and CKD) 

was added based on the dry weight of the soil. The specimens were molded with a 

Harvard Miniature device (diameter = 33 mm i.e., 1.3 in and height = 71 mm i.e., 2.8 in). 

The Harvard Miniature procedure was calibrated in accordance with the ASTM D 4609 

test method using each soil and additive mixture so that at the standard Proctor optimum 

moisture content (OMC) and the Harvard Miniature procedure produced a specimen 

having the standard Proctor maximum dry density (MDD). All specimens were 

compacted at the OMC and MDD of the soil-additive mixture, as presented in Tables 2.6, 

2.7 and 2.9. After compaction, specimens were cured for 7 days at a temperature of 23.0 

± 1.7oC (73.4 ± 3.1oF) and a relative humidity of approximately 96%, as recommended 

by ASTM D 1632 test method. A total of two replicates were prepared for each 

combination and then subjected to 0, 1, 4, 8 and 12 F-T cycles after 7 days of curing. 

Each F-T cycle consists of freezing for 24 hours at a temperature not warmer than -

23.3oC (-10oF) and thawing for 23 hours at 21.1oC (70oF) and 100% relative humidity 

(Figure 3.1). Free potable water was made available to the porous plates under the 

specimens to permit the specimens to absorb water by capillary action during the thawing 

period. After the completion of appropriate F-T cycle, unconfined compressive strength 

(UCS) tests were conducted by loading specimens in a displacement control mode at a 

strain rate of 1% per min. 

3.4.2 Vacuum Saturation Test 

The vacuum saturation test was performed in accordance with ASTM C 593 test 

method with slight modifications. This method consists of mixing soil and additive 

namely, 6% lime or 10% CFA or 10% CKD, and compacting with standard effort in a 
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Proctor mold (diameter = 100 mm i.e., 4 in and height = 115 mm i.e., 4.5 in). After 

compaction, specimens were cured in a humidity room at 23.0 ± 1.7oC (73.4 ± 3.1oF) 

rather than at 37.8oC (100oF), as specified in the ASTM procedure. Following curing, 

specimens were placed in a vacuum chamber that is subjected to a vacuum pressure of 

81.3 kPa (11.8 psi; 24 in Hg). After 30 minutes, vacuum was removed and the chamber 

was flooded with water and the specimens were allowed to soak for 1 hour. After the 

saturation period the water was drained, and the specimens were immediately tested for 

UCS by loading specimens in a displacement control mode at a strain rate of 1% per min. 

A comparison of the differences in UCS values between specimens subjected to this 

procedure (UCS after vacuum saturation) and those not subjected to this procedure (UCS 

before vacuum saturation) provided a relative measure of durability of the stabilized 

specimens. Figure 3.2 shows photographic view of setup used for vacuum saturation test. 

The vacuum chamber consists of a 25 mm (1 in) thick Plexiglas lid. As shown in Figure 

3.2, specimens were placed in an upright position on a perforated steel plate so that water 

could enter the soil from all surfaces. 

3.4.3 Tube Suction Test 

Since there is no standard protocol for conducting tube suction tests, durability of 

specimens was evaluated by preparing specimens by using following three different 

methods: 

1. Method-1 

Compaction: Standard Proctor compaction (five layers/lifts) at the OMC and a target 

dry density of 95-100% of MDD 

Cylindrical specimen size: diameter = 101.6 mm (4 in), height = 203.2 mm (8 in) 
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2. Method-2 

Compaction: Superpave gyratory compactor (single layer/lift) at the OMC and a 

target dry density of 95-100% of MDD 

Cylindrical specimen size: diameter = 101.6 mm (4 in), height = 203.2 mm (4 in) 

3. Method-3 

Compaction: Superpave gyratory compactor (single layer/lift) at the OMC and a 

target dry density of 95-100% of MDD 

Cylindrical specimen size: diameter = 152.4 mm (6 in), height = 152.4 mm (6 in) 

Method-2 and Method-3 are similar to the method of compaction used by Harris 

et al. (2006). According to Harris et al. (2006), specimens should be molded in one lift 

because molding specimens in multiple lifts with a drop hammer generates permeability 

barriers. The permeability barriers do not allow the water to rise up through the sample 

beyond the bottom lift (Harris et al., 2006). In the present study, the specimen size 

compacted using Superpave gyratory compactor was restricted to 152.4 mm (6 in) 

(Method-3) due to the constraint of molding in one lift.  

After compaction, specimens were cured for 7 days in a controlled environment 

of temperature of 23.0 ± 1.7oC (73.4 ± 3.1oF) and a relative humidity of approximately 

96%. Then, specimens were dried in an oven at 40 ± 5oC (104 ± 9oF) for two days. After 

oven drying, the specimens were allowed to cool down at room temperature for 30 

minutes, and then applied with a thin layer of grease around the lateral surface and placed 

on a porous stone in an open dish containing approximately 10 mm (0.4 in) of de-ionized 

(DI) water. Since the quality of the porous stones has an important influence on the final 

DV (Barbu and Scullion, 2005), clean porous stones were used. Further, the top surface 
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of specimen was covered with a plastic sheet and plate for avoiding loss of moisture due 

to evaporation. During wetting of specimens in DI water, the increase in dielectric value 

(DV) with time due to capillary rise of water was measured. Four measurements were 

taken along the circumference of the specimen in separate quadrants and the fifth reading 

was taken at the center of specimen and an average of all five readings was calculated. 

Measurements were taken daily for 10 days using a dielectric probe (or PercometerTM) 

and the final 10th day reading was reported. A photographic view of the TST setup is 

shown in Figure 3.3. To ensure adequate contact of probe on the top of surface of the 

specimen, a surcharge of 2.2 kg (4.86 lb) was applied (Figure 3.3). After 10 days of TST, 

specimens prepared by using Method-1 and -2 were cut into five and three equal layers, 

respectively, and oven dried for moisture content. 

3.4.4 Resilient Modulus Test on Capillary-Soaked Specimens 

The new Mechanistic-Empirical Pavement Design Guide (MEPDG) (AASHTO, 

2004) recommends the evaluation of resilient modulus (Mr) for critical performance 

prediction of stabilized subgrade layer. During the service life, however, subgrade 

undergoes moisture variations and consequently large strength and stiffness fluctuations 

as well. It is critical that the changes taking place in the modulus of proposed subgrade 

soil at the expected field condition be investigated beforehand (AASHTO, 2004). One of 

the modes of moisture variation includes capillary soaking, which involves sucking of 

water into the pavement matrix from a free water surface located at its base. In practice, 

the external water sources may come from rain, clogged up drains, or perched and 

shallow water tables. Hence, in this study, stabilized specimens already tested for Mr, as 

discussed in Section 2.6, were further subjected to capillary soaking under controlled 
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temperature (23.0 ± 1.7oC i.e., 73.4 ± 3.1oF) and relative humidity (>96%) in an ice chest. 

After 60 days of capillary soaking, specimens were again tested for Mr, as additional 

indicator of durability. Specifically, Mr test was conducted on two replicates of capillary 

soaked specimens of P-, K-, and C-soil stabilized with three additives namely, 6% lime, 

10% CFA and 10% CKD. Further, details of the Mr tests are given in Section 2.6. 

3.5 Presentation and Discussion of Results 

3.5.1 Effect of Freeze-Thaw Cycles 

The individual results of the UCS tests after 0, 1, 4, 8 and 12 F-T cycles are 

graphically illustrated in Figures 3.4, 3.5 and 3.6 for P-, K- and C-soil, respectively. All 

the specimens tested in this study, in general, showed decrease in the UCS values with 

increase in the number of F-T cycles. For example, the UCS value of raw, 6% lime-, 10% 

CFA-, and 10% CKD-stabilized K-soil specimen after 12 F-T cycle is approximately 

97%, 89%, 93%, and 90% lower than a comparable specimen with a zero F-T cycle. A 

similar qualitative trend was observed for the P- and C-soil specimens, where the UCS 

values exhibited a decrease as the number of F-T cycles increased up to 12. The decrease 

in UCS values can be explained by a combined effect of pore structure and the increase 

of moisture content (Figure 3.7 for K-soil specimens) during the thawing portion of the 

cycle. Increase in moisture content during the thawing phase results in ice lenses within 

the void space of the specimens in the freezing phase; formation of ice lenses distorts the 

structure of raw and stabilized specimens (Khoury, 2005). On the other hand, higher 

density of stabilized soil specimen indicates fine pore structure. The capillary force 

exerted on a pore wall depends on the pore size: the smaller the pore, the higher the 

suction force. As water enters and exits the pores, it can generate considerable pressure 
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and degrade the surrounding material (Prusinski and Bhattacharja, 1999). Although lime-

stabilized specimen had higher moisture content than corresponding CFA-stabilized 

specimens (Figure 3.7), it also had lower density indicating open pore structure which 

reduces F-T damage effects (16.8 kN/m3 for K-soil-lime versus 17.4 kN/m3 for K-soil-

CFA mixtures). It is also clear from Figures 3.4 through 3.6 that decrease in UCS from F-

T cycle 0 to 1 is higher than decrease in UCS between other F-T cycles. For example, 

UCS values of 6% lime-stabilized K-soil specimens decreased by approximately 40% 

between F-T cycles 0 – 1 and 34% between F-T cycles 1 – 4, respectively. It is 

speculated that freezing and thawing opened up the pores, reducing the damaging effects 

of later F-T cycles. 

The effect of F-T action on UCS values varies from one soil-additive mixture to 

another, as shown in Figures 3.4 through 3.6. Table 3.3 shows the average percentage 

decrease in UCS values of raw and stabilized P-, K- and C-soil specimens due to F-T 

action. It is evident that for P-soil specimens, a silty clay with sand, the percentage 

decrease in UCS values of 10% CKD-stabilized specimens is lower than the 

corresponding 6% lime-stabilized specimens, followed by 10% CFA-stabilized 

specimens. For example, the UCS values of CKD-stabilized specimens subjected to 4 F-T 

cycles is approximately 65% lower than the corresponding UCS values of stabilized 

specimens with no such cycles. The corresponding percentage decrease is 75% and 82% 

for lime- and CFA-stabilized specimens, respectively. Although the percentage decrease 

in UCS values for lime-stabilized specimens subjected to 1 F-T cycle is higher than 

corresponding CKD-stabilized specimens, the UCS values for CKD-stabilized specimens 

were higher than the corresponding UCS values of the lime-stabilized specimens. 
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Specifically, the UCS values of CKD-stabilized specimens is 605 kPa (87.8 psi) which is 

approximately 91% higher than the corresponding UCS values of lime-stabilized 

specimens after 1 F-T cycle (Figure 3.4). Figure 3.8 shows a photographic view of the 

raw, 6% lime-, 10% CFA-, and 10% CKD-stabilized specimens of P-soil with no visual 

degradation evident. Consequently, CKD-stabilization provided better resistance than 

lime- and CFA-stabilization towards F-T durability of P-soil specimens.  

Contrary to the behavior of stabilized P-soil specimens, F-T tests on both K-soil 

(lean clay) and C-soil (fat clay) stabilized specimens projected 6% lime-stabilized 

specimens showing highest UCS values followed by 10% CKD and 10% CFA. For 

example, the average UCS value of 6% lime-stabilized C-soil specimens subjected to 1 F-

T cycles is 159 kPa (23 psi), as compared to 65 kPa (9 psi), and 21 kPa (3 psi) for 10% 

CKD- and 10% CFA-stabilized specimens, respectively. Further, the percentage decrease 

in UCS values from Table 3.3 supports the fact that 6% lime stabilized specimens are 

more durable against F-T cycles as compared to specimens stabilized with 10% CKD and 

10% CFA. It is believed that presence of highest calcium content in lime among all 

additives used in this study (Table 2.4) will produce higher amount of cementitious 

products (e.g., calcium silicate hydrate, calcium aluminate hydrate) after combining with 

pozzolana (silicious and aluminacious material). Since K- and C-soil have very high clay 

content indicating higher amount of pozzolana as compared to P-soil (Table 2.2), more 

cementitious compounds are expected in K- and C-soil. Figures 3.9 and 3.10 show 

photographic view of raw and stabilized K- and C-soil specimens, respectively. It is clear 

from Figures 3.9 and 3.10 that raw and stabilized C-soil specimens show more 

degradation than corresponding K-soil specimens. Thus, one can conclude that durability 
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of C- and K-soil specimens against F-T cycles is higher with lime as compared to CFA 

and CKD.  

3.5.2 Vacuum Saturation Test 

A summary of UCS results conducted on P-, K- and C-soil specimens subjected to 

vacuum saturation procedure (UCS after vacuum saturation) and those not subjected to 

vacuum saturation procedure (UCS before vacuum saturation) is presented in Figure 

3.11. The raw soil specimens deteriorated during the soaking stage and could not be 

tested for UCS. All of the stabilized specimens lost strength compared to the control 

specimens tested after 7 days. During vacuum saturation testing, the UCS of the P-soil 

specimens stabilized with lime, CFA and CKD decreased by an average of 44, 53 and 

55%, respectively. Although lime-stabilized specimens showed lowest percentage 

decrease, the average UCS value of CKD-stabilized specimen was highest (258 kPa, i.e., 

37 psi) after vacuum saturation test among all the additives used in this study. Similar to 

the trends of UCS values after F-T cycles, 6% lime-stabilized specimens of K- and C-soil 

specimens showed lowest percentage decrease in UCS values after vacuum saturation. 

For example, K-soil specimens stabilized with 6% lime, 10% CFA and 10% CKD 

showed a percentage decrease in UCS values of approximately 51%, 66% and 71%, 

respectively. Also, it is evident from Figure 3.11 that for K- and C-soil specimens, the 

UCS values after vacuum saturation of 6% lime-stabilized specimens is higher than the 

corresponding 10% CKD-stabilized specimens, followed by 10% CFA-stabilized 

specimens. Since UCS values of stabilized P-, K- and C-soil specimens after vacuum 

saturation showed similar trends to UCS values after F-T cycling, similar reasons as 

mentioned in the preceding Section 3.5.1 can be used to justify the observed trends. 
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3.5.3 Tube Suction Test 

A summary of the final 10th day dielectric constant values (DVs) for the raw and 

stabilized P-, K- and C-soil specimens is summarized in Figures 3.12, 3.13 and 3.14, 

respectively.  

3.5.3.1 Effect of Method of Specimen Preparation 

It is clear from Figures 3.12 through 3.14 that the specimens prepared by using 

Method-1 showed a lower DV as compared to corresponding specimens prepared by 

using Method-2 and -3 which provided similar DVs.  For example, raw K-soil specimens 

provided a DV of 18.1, 40.2 and 39.9 when specimens were prepared in accordance with 

Method-1, -2 and -3, respectively. This difference in DV between specimens prepared by 

using Method-1 and -2 or -3 could be attributed to the variation of the moisture content 

values along the height of specimens, as shown in Figures 3.15, 3.16 and 3.17, 

respectively, for P-, K- and C-soil specimens. Specimens prepared by using Method-1 

showed that the moisture content of bottom layer is very high as compared to the 

moisture content of the top layer. This difference in moisture content between bottom and 

top layer varies between 1.3 – 3.9%, 1.3 – 6.9%, and 1.0 – 6.7% for P-, K- and C-soil 

specimens, respectively. On the other hand, all the P-, K- and C-soil specimens prepared 

by using Method-2 showed a difference in moisture content of less than 0.5% between 

bottom and top layer. Since the measured signal using PercometerTM depends only on the 

dielectric properties of top 20 – 30 mm (0.8 – 1.2 in) of material (Saarenketo, 2006; 

Adek, 2007), it is expected that the specimen having uniform moisture content will 

provide the representative behavior. Also, it is important to note that the specimens 

compacted in single layer (Method-2 and -3) are more representative of the field 
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conditions where stabilized subgrade layer is compacted in one lift. Figures 3.18 (a) and 

(b) show photographic view of 10% CKD-stabilized C-soil specimens prepared by using 

Method-1 and -2, respectively. It is evident from Figures 3.18 (a) and (b) that the 

specimen prepared by using Method-1 is dry at top while specimen prepared by using 

Method-2 is uniformly wet resulting in lower (28.9) and higher (41.1) DVs, respectively, 

as shown in Figure 3.14.  

3.5.3.2 Effect of Additive and Soil Type 

Since Method-2 and -3 provided similar and representative DVs of stabilized soil 

specimens, DVs obtained by using Method-2 were used for further evaluation of effect of 

additive and soil type on durability. The raw P-, K-, and C-soil specimens showed an 

average DV of approximately 35.3, 40.2 and 39.2, respectively (Figures 3.12 – 3.14). 

Stabilization with 10% CFA is more effective in reducing the DV of P-soil specimens 

followed by 6% lime. For example, DV reduced by 18% and 17% by treating P-soil with 

10% CFA and 6% lime, respectively. Similar to the qualitative trend noticed in preceding 

sections, K- and C-soil specimens showed more effectiveness with 6% lime by 

decreasing the DVs of corresponding raw soil specimens by 20% and 15%, respectively. 

These results are consistent with the observations made by Little (2000) and Barbu and 

McManis (2005). The percentage decrease in DV due to 10% CFA was found to be 

approximately 7% and 4% for K- and C-soil specimens, respectively, consistent with the 

observations reported by Guthrie et al. (2008) and Parker (2008). It is an indication that 

lime and CFA stabilization has more or less same degree of effectiveness in reducing the 

DV for K- and C-soils.  
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On the other hand, the DVs of 10% CKD-stabilized P-, K- and C-soil specimens 

exhibited an increase, an opposite trend as compared to lime- and CFA-stabilized 

specimens. For example, P-, K- and C-soil specimens prepared with 10% CKD showed 

an average increase of approximately 5%, 4% and 5% as compared to raw specimens. 

Hence, CKD was found to show no significant improvement in DVs for the P-, K- and C-

series. Similar behavior of increase in DV with addition of 2% CKD in limestone base 

material was reported by Si and Herrera (2007). This behavior of increase in DV of 

CKD-stabilized specimens may be attributed to the presence of extra CKD in the 

specimen which is not reacting with the host material; hence it absorbs water increasing 

the moisture content (Figures 3.15 – 3.17) and dielectric constant.  

3.5.4 Resilient Modulus Test on Capillary-Soaked Specimens 

The Mr test results of P-, K- and C-soil specimens tested after 60 days of capillary 

soaking are presented in Tables 3.4, 3.5 and 3.6, respectively. All Mr values listed in 

Tables 3.4 through 3.7 are mean of results from testing conducted on two specimens. In 

general, it is clear that all P-, K- and C-soil capillary-soaked specimens showed decrease 

in Mr values with respect to corresponding specimens tested before soaking, as 

mentioned in Section 2.7. For comparison, Mr values at a particular stress level (σ3 = 41 

kPa, i.e., 6.0 psi, σd = 25 kPa, i.e., 3.6 psi) are graphically shown in Figure 3.19. After 

capillary soaking, 6% lime-stabilization of K- and C-soil showed the best performance by 

providing highest Mr values (Figure 3.19). As compared to capillary-soaked raw K-soil 

specimens, 6% lime produced 759% higher Mr values. On the other hand, C-soil 

specimens stabilized with 6% lime produced Mr values enhanced by 356%, as compared 

to raw C-soil specimens. Stabilization with 10% CFA produced a moderate effect after 
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capillary soaking. For example, 10% CFA enhanced Mr values by an approximate 

percentage of 422% and 67% respectively, for K- and C-soil specimens. With P-soil, the 

degree of effectiveness after capillary soaking was found more for 10% CFA-stabilized 

(approximately 1,237% increase) specimens than corresponding 6% lime-stabilized 

(approximately 538% increase) specimens. 

On the contrary to before capillary soaking behavior, CKD-stabilized specimens 

showed the worst performance after 60-day capillary soaking. For example, specimens 

stabilized with 10% CKD showed an increase in Mr values only by 245%, lowest among 

all stabilized P-soil specimens. Similarly, addition of 10% CKD in K-soil specimens 

showed an increase of approximately 349% in Mr values, compared to raw soil 

specimens. Capillary-soaked C-soil specimens stabilized with 10% CKD showed no 

improvement in Mr values. 

Further, to discuss the comparative long-term effectiveness of lime, CFA, and 

CKD, a chart of ratio of Mr values before and after capillary soaking versus type of 

additive was plotted (as shown in Figure 3.20). It is clear from Figure 3.20 that P-soil 

specimens stabilized with 10% CFA showed maximum resistance towards moisture 

damage with reduction in Mr values by an average factor of 1.7. On the other hand, 6% 

lime-stabilization proved more effective with K- and C-soils. For example, Mr value of 

K- and C-soil specimens stabilized with 6% lime decreased by a factor of 15.3 and 4.8, 

respectively. K- and C-soil specimens stabilized with 10% CFA showed moderate 

behavior with reduction in Mr values by a factor of 18.7 and 7.1 for K- and C-soil, 

respectively. Stabilization of specimens with CKD yielded least resistance to moisture 

damage among all the three additives used in this study. For example, Mr values of P-, K- 
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and C-soil specimens stabilized with 10% CKD decreased by a factor of 20.0, 26.6 and 

30.7, respectively.  

3.6 Discussion 

Based on aforementioned UCS results, P-soil specimens, a silty clay with sand, 

showed better performance with 10% CKD against F-T cycles. On the other hand, K- 

(lean clay) and C-soil (fat clay) specimens showed higher degree of improvement against 

F-T cycles with 6% lime. Similar qualitative trend of P-, K- and C-soil specimens were 

observed for the retained UCS values after vacuum saturation test. It is also important to 

note that C-soil specimens stabilized with lime, CFA and CKD showed lowest retained 

UCS values as compared to corresponding specimens of P- and K-soil. This can be 

attributed to the acidic nature of C-soil (pH = 4.17) which will decrease the rate of 

cementitious reactions. Further, analyses of the test results indicated that the UCS values 

after 12 F-T cycle were lower than the corresponding values associated with UCS values 

retained after vacuum saturation. This observation suggests that the 12 F-T cycles are 

more severe than the vacuum saturation test for these particular fine-grained soils. Figure 

3.21 shows a plot of UCS after F-T cycles (1 and 12) versus UCS after vacuum 

saturation. The R2 value associated with this correlation is comparatively high at 0.9401 

and 0.7361 after F-T cycle 1 and 12, respectively. Thus, a strong correlation exists 

between UCS values retained after vacuum saturation and F-T cycles. 

The final DVs of all the raw and stabilized specimens were above the value of 16. 

Referring to the maximum DV criterion proposed by Guthrie and Scullion (2003), which 

was mainly for coarse soils or aggregates, the soil tested in this study were moisture 

susceptible with its maximum DV above 16. However, based on increase of 7-day UCS 
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by 345 kPa (50 psi) over raw specimens criterion, recommended by several highway 

agencies (Table 3.2) for selection of additive content, 10% CKD-stabilized P-soil and all 

stabilized K-soil specimens should be durable. Thus, the maximum DV criterion seems 

more conservative since no specimen satisfied the maximum DV criterion; consistent 

with the observations reported by Zhang and Tao (2006; 2008). Also, no correlation was 

observed between the final DV after TST and durability evaluated by using retained UCS 

values after F-T or vacuum saturation test. For example, P-soil specimens stabilized with 

10% CKD showed best performance against F-T cycles among all the additives used in 

this study. On the other hand, TST projected 10% CKD-stabilized specimens showing the 

worst performance with a very high DV of approximately 37.2. Figure 3.22 shows that 

the final DV is affected by the moisture content of specimens. However, it is worth 

noticing that the final DV is dependent on material type and is influenced by properties 

such as clay content, saturation history, degree of bonding of water molecules around soil 

particle, optimum moisture content, and plastic limit (Saarenketo, 2006). 

The qualitative trend of Mr values of stabilized soil specimens tested after 60 days 

of capillary soaking were similar to the behavior of corresponding specimens tested for 

DV by using Method-2. For example, Mr tests on capillary-soaked specimens showed 

that P-soil specimens stabilized with 10% CFA have maximum resistance towards 

moisture damage consistent with the lowest DV (28.8) of 10% CFA-stabilized 

specimens. Figure 3.23 shows a plot of Mr after 60 days of capillary soaking versus final 

10th day DV. The R2 value of 0.6786 associated with this correlation suggests similar 

qualitative trend of results obtained using the two testing procedures.  
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3.7 Conclusions 

The following conclusion can be drawn from the aforementioned results of this study: 
 
1. All the specimens tested in this study showed decrease in the UCS values with 

increase in the number of F-T cycles. Such a decrease could be explained by the 

increase in moisture absorbed by specimen during the thawing portion of the cycle 

and pore structure of the stabilized specimen.  

2. For the percentages of additives used in this study, results showed that lime provides 

higher resistance against F-T cycles for lean clay (K-soil) and fat clay (C-soil). On the 

other hand, CKD-stabilization is more effective with silty clay (P-soil) against 

damage caused by F-T cycles. A similar qualitative trend of behavior was observed 

for retained UCS after vacuum saturation test. 

3. The test results indicated that the 12 F-T cycles are more severe than the vacuum 

saturation test for the particular soils used in this study. Also, a strong correlation 

exists between UCS values retained after vacuum saturation and F-T cycles. 

4. The final dielectric constant values measured by conducting Tube Suction Test are 

influenced by the method of specimen preparation. However, final DV is not affected 

by the specimen size, as evident from similar results obtained by using Method-2 and 

-3.  

5. Stabilization with 10% CFA is more effective in reducing the DV of silty clay 

specimens followed by 6% lime. However, 6% lime proved more effective in 

reducing DV of lean clay and fat clay specimens. On the contrary, 10% CKD was 

found to show no significant improvement in DVs for the soils used in this study. 

Also, a strong correlation was found between the final DV and moisture content of 
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specimens suggesting that DV is affected by the amount of moisture present in the 

specimens. 

6. The maximum DV criterion for selecting durable aggregate base material seems more 

conservative for raw and stabilized soil specimens. 

7. No correlation was observed between the final DV after TST and durability evaluated 

by using retained UCS values after F-T or vacuum saturation test. 

8. After capillary soaking, 6% lime-stabilization of lean clay and fat clay showed the 

best performance by providing highest Mr values. With silty clay, the degree of 

effectiveness after capillary soaking was found more for 10% CFA-stabilized 

specimens than corresponding 6% lime-stabilized specimens. Contrary to before 

capillary soaking behavior, CKD-stabilized specimens showed the worst performance 

after 60-day capillary soaking. Thus, the qualitative trend of Mr values after capillary 

soaking were similar to the behavior of corresponding specimens tested for DV. 

9. For all the soils used in this study, raw and stabilized C-soil (fat clay) specimens 

showed worst performance in F-T UCS, vacuum saturation and Mr after capillary 

soaking tests. This can be attributed to the acidic nature of C-soil (pH = 4.17) which 

will decrease the rate of cementitious reactions. 
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Table 3.1 Summary of Literature Review of Tube Suction Test on Stabilized Materials 
 

Reference 

Type of 
Soil 
/Aggregate 
(Additive) 

Curing 
period 

Specimen 
Size 

Drying 
Period 

Duration 
of 
reading 

Experimental Details 

Little 
(2000) 

Silty soil (L) 7 days 152.4 mm 
x 152.4 
mm (6.0 in) 
x 6.0 in) 

4 days 
(40o C) 

311 hours 
(13 days) 

Specimen was placed in a tray with a 
porous plate at the bottom of the 
specimen (No mold was used) 

Syed et al. 
(2000) 

Aggregates 
(CLS) 

NA 152.4 mm 
x 203.2 
mm (6.0 in 
x 8.0 in) 

-- 240 hours 
(10 days) 

Specimen was compacted in 
cylindrical plastic molds. These 
molds were having 1.0mm diameter 
holes around the circumference(at 
height of 6 mm from the bottom)  of 
the mold at a horizontal spacing of 
12.5 mm 

Guthrie 
and 
Scullion 
(2003) 

Hanson 
Aggregates 

NA 152.4 mm 
x 203.2 
mm (6.0 in 
x 8.0 in) 

2 days 
(60±5o 
C) 

240 hours 
(10 days) 

Specimen was compacted in 
cylindrical plastic molds. These 
molds were having 1.5mm diameter 
holes around the circumference(at 
height of 6 mm from the bottom)  of 
the mold at a horizontal spacing of 
12.5 mm 

Saeed et al. 
(2003) 

NA NA 152.4 mm 
x 203.2 
mm (6.0 in 
x 8.0 in) 

3 days 
(38o C) 

-- Specimens were compacted in 
cylindrical plastic molds. These 
molds were having 1/16 in diameter 
holes (¼ in above the outside bottom 
of the mold)around the 
circumference of the mold at a 
horizontal spacing of 0.5 in. This 
equates to 38 or 39 holes around the 
cylinder base. In addition it also 
consisted of one 1/16 in diameter 
hole in each quadrant of the circular 
bottom of the mold, with each hole 
about 2 in from the center 

Syed et al. 
(2003) 

Aggregates 
(C) 

0 day 101.6 mm 
x 116.8 
mm (4.0 in 
x 4.6 in) 

3-4 
days 
(40o C) 

240 hours 
(10 days) 

Specimen was placed in a tray with a 
porous plate at the bottom of the 
specimen (No mold was used) 

Barbu et al. 
(2004) 

Silty sand 
(C) 

28 days 152.4 mm 
x 304.8 
mm, 101.6 
mm x 
177.8 mm 
(6.0 in x 
12.0 in, 4.0 
in x 7.0 in) 

2 days 
(50o C) 

500 hours 
(21 days) 

The bottom of the tube was cut and 
replaced with aluminum foil pierced 
with a 1.mm nail, to form 3 
concentric circles and with a 
distance between holes of 
approximately 4 cm 

Zhang and 
Tao (2008) 

Lean clay (C) 1 day 101.6 mm 
x 177.8 
mm (4.0 in 
x 7.0 in) 

14 days 
(40o C) 

240 hours 
(10 days) 

Specimens were placed in plastic 
tube with holes at their bottoms, and 
then plastic tubes were placed in a 
large plastic container with a porous 
stone underneath and 20 mm water 
above the bottom= of the samples 

L-Lime; C-Cement; CLS-Concentrated liquid stabilizer;  NA-Not Applicable 
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Table 3.2 Summary of Recommended Procedures by Different Agencies for Evaluating 
Durability of Stabilized Soils 

 
Agency Specification/ 

Reference 
Type of 
additive 

Procedure Requirements 

American 
Society for 
Testing and 
Materials 
(ASTM) 

ASTM D 4609 
(2001) 

Chemicals Unconfined compressive strength on 
raw, cured specimens and 2-day 
moisture conditioned samples  

UCSt  > 50 psi + UCSr 
 

Department 
of Air Force 
and Army 

AFJMAN 
(1994) 

Lime, PC Cured specimens (28-day for lime-
stabilized, 7-day cement-stabilized at 
73oF) are subjected to 12 cycles of W-
D or F-T in accordance with ASTM D 
559 or 560, respectively and tested for 
UCS 

UCSt≥250 psi (for 
flexible pavement), 
UCSt≥200 psi (for rigid 
pavement) 

Illinois DOT 
(ILDOT) 

PTA-D7/ 
IDOT (2005) 

Lime, PC Unconfined compressive strength on 
raw and treated specimens 

UCSt,L > 50 psi + UCSr 
UCSt,L ≥ 100 psi 
UCSt,PC ≥ 500 psi 

Indiana 
DOT 
(INDOT) 

INDOT (2008) Lime, PC Unconfined compressive strength on 
cured specimens (2-days at 120oF) 

UCSt,L > 50 psi + UCSr 
UCSt,c ≥ 100 psi + UCSr 

Ohio DOT 
(OHDOT) 

Supplement 
1120/ OHDOT 
(2007) 

Lime, PC Cured specimens (7-day at 104oF) 
followed by moisture conditioning of 
specimens through capillary soaking 
for 1-day before UCS test 

UCSt,L> 50 psi + UCSr 
UCSt,L ≥ 100 psi 
UCSt,PC > 50 psi + UCSr 
UCSt, PC≥ 150 psi 

Oklahoma 
DOT 
(ODOT) 

OHD L-50/ 
ODOT (2006) 

PC, CFA, 
CKD 

Cured specimens (one for 7-day, 
another for 5-day followed by 2-day 
of moisture conditioning  through 
immersion in water) at 73oF before 
UCS test 

Without moisture 
conditioning:  
UCSt,PC, CFA, CKD > 50 psi 
+ UCSr 
UCSt,PC, CFA,  CKD < 150 
psi 
Moisture conditioned: 
UCSt,PC, CFA, CKD > 50 psi 
+ UCSr 

Texas DOT 
(TXDOT) 

Tex 121-E/ 
TXDOT (2002) 

Lime Cured specimens (7-day at room 
temperature) and air dried at 140oF to 
loose 1/3 – ½  of molding moisture 
content 

UCSt,L > 50 psi + UCSr 
 

Texas DOT 
(TXDOT) 

Tex 135-E/ 
TXDOT (2002) 

PC Cured specimens (7-day at 140oF) are 
subjected to 12 cycles of F-T in 
accordance with ASTM D 560, and 
weight loss is determined 

--- 

DOT: Department of Transportation; UCS: unconfined compressive strength; t: treated soil; r: raw soil 
W-D: wet-dry; F-T: freeze-thaw; L: Lime; PC: Portland cement; CFA: class C fly ash; CKD: cement kiln dust 
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Table 3.3 Percentage Decrease in UCS Values of Raw and Stabilized P-, K- and C-soil 
Specimens Due to F-T Cycles 

 

 
 
 

Table 3.4 A Summary of Resilient Modulus Values of Stabilized P-soil Specimens (After 
60-Day Capillary Soaking) 

Raw SD CV 6% Lime SD CV 10% CFA SD CV 10% CKD SD CV

41 12 33 6 18 181 28 15 391 38 10 98 19 19
41 25 29 5 17 186 31 17 388 41 11 100 18 18
41 37 25 4 16 209 22 11 344 37 11 117 17 15
41 50 24 4 17 227 28 12 261 42 16 126 21 17
41 62 24 5 21 236 13 6 218 39 18 131 18 14
28 12 32 5 16 169 21 12 258 41 16 87 11 13
28 25 26 6 23 189 11 6 241 38 16 101 16 16
28 37 23 4 17 204 10 5 232 37 16 107 19 18
28 50 23 3 13 215 19 9 232 41 18 112 21 19
28 62 22 4 18 224 17 8 225 38 17 116 16 14
14 12 24 2 8 156 18 12 271 39 14 83 14 17
14 25 18 3 16 173 22 13 273 43 16 83 17 21
14 37 17 1 6 183 17 9 277 29 10 86 13 15
14 50 18 1 5 193 22 11 269 34 13 92 11 12
14 62 18 2 11 203 29 14 249 31 12 96 9 9

* Deformations are out of the measuring range of LVDTs

σ3 

(kPa)
σd 

(kPa)

σd : deviator stress; σ3 : confining pressure; Mr : resilient modulus (using internal LVDTs)
1 psi = 6.89 kPa; 1 ksi = 6.89 MPa; SD: standard deviation; CV: coefficient of variation (%)

Mr (MPa)

 
 
 

1 4 8 12

None 96 96 97 97
6% Lime 33 75 82 85
10% CFA 57 82 87 87
10% CKD 48 65 78 83

None 95 95 96 97
6% Lime 40 79 86 89
10% CFA 69 91 92 93
10% CKD 66 83 88 90

None 95 95 96 100
6% Lime 62 91 95 98
10% CFA 97 98 98 99
10% CKD 88 94 98 99

Number of F-T Cycles

P-soil

Additive 
Type

K-soil

C-soil
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Table 3.5 A Summary of Resilient Modulus Values of Stabilized K-soil Specimens (After 
60-Day Capillary Soaking) 

 

Raw SD CV 6% Lime SD CV 10% CFA SD CV 10% CKD SD CV

41 12 11 4 40 72 17 24 47 11 23 41 8 19
41 25 9 3 36 79 16 20 48 9 19 41 9 22

41 37 a a a 79 12 15 46 10 22 39 6 15
41 50 - - - 83 13 15 45 6 13 38 6 16
41 62 - - - 87 14 16 45 8 18 38 8 20
28 12 - - - 56 11 19 43 9 21 39 10 25
28 25 - - - 58 14 24 37 9 23 35 6 16
28 37 - - - 64 13 20 37 10 27 35 8 23
28 50 - - - 71 10 13 39 11 28 37 5 15
28 62 - - - 78 11 14 41 10 24 39 9 23
14 12 - - - 48 9 20 36 7 19 39 7 18
14 25 - - - 50 9 18 31 6 19 32 5 15
14 37 - - - 56 12 21 31 8 25 31 4 13
14 50 - - - 64 10 16 33 6 18 32 4 12
14 62 - - - 72 14 20 36 4 11 34 5 15

* Deformations are out of the measuring range of LVDTs

σ3 

(kPa)
σd 

(kPa)

σd : deviator stress; σ3 : confining pressure; Mr : resilient modulus (using internal LVDTs)
1 psi = 6.89 kPa; 1 ksi = 6.89 MPa; SD: standard deviation; CV: coefficient of variation (%)

Mr (MPa)

 
 
 
 

Table 3.6 A Summary of Resilient Modulus Values of Stabilized C-soil Specimens (After 
60-Day Capillary Soaking) 

Raw SD CV 6% Lime SD CV 10% CFA SD CV 10% CKD SD CV

41 12 30 4 14 104 21 20 40 9 23 15 3 20
41 25 23 3 14 105 18 17 38 4 11 14 4 29
41 37 18 2 14 101 20 20 36 7 20 12 3 23

41 50 16 2 12 100 17 17 34 11 32 a a a

41 62 a a a 101 21 21 33 7 21 - - -
28 12 - - - 87 15 18 34 4 11 - - -
28 25 - - - 79 12 15 27 3 11 - - -
28 37 - - - 79 11 14 26 4 15 - - -
28 50 - - - 83 12 15 27 2 7 - - -
28 62 - - - 87 13 15 28 2 8 - - -
14 12 - - - 67 11 16 25 2 8 - - -
14 25 - - - 62 10 16 21 3 14 - - -
14 37 - - - 64 9 14 21 2 10 - - -
14 50 - - - 68 11 15 22 2 9 - - -
14 62 - - - 74 8 11 23 3 13 - - -

* Deformations are out of the measuring range of LVDTs

σ3 

(kPa)
σd 

(kPa)

σd : deviator stress; σ3 : confining pressure; Mr : resilient modulus (using internal LVDTs)
1 psi = 6.89 kPa; 1 ksi = 6.89 MPa; SD: standard deviation; CV: coefficient of variation (%)

Mr (MPa)
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(a)                                                                       (b) 
Figure 3.1 Setup for (a) Freezing (b) Thawing Test 

 

 
 

Figure 3.2 Setup for Vacuum Saturation Test 
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Figure 3.3 Setup for Tube Suction Test 
 

 
Figure 3.4 UCS of Raw and Stabilized P-Soil Specimens at the End of 0, 1, 4, 8 and 12 

Freeze-Thaw Cycles 
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Figure 3.5 UCS of Raw and Stabilized K-Soil Specimens at the End of 0, 1, 4, 8 and 12 

Freeze-Thaw Cycles 

 
Figure 3.6 UCS of Raw and Stabilized C-Soil Specimens at the End of 0, 1, 4, 8 and 12 

Freeze-Thaw Cycles 
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Figure 3.7 Moisture Content of Raw and Stabilized K
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Moisture Content of Raw and Stabilized K-Soil Specimens at the End of 0, 
4, 8 and 12 Freeze-Thaw Cycles 

 

(a) Raw                      (b) 6% Lime            (c) 10% CFA                (d) 10% CKD                                   
soil Specimens at the End of 12 Freeze-Thaw Cycles
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(a) Raw                      (b) 6% Lime            (c) 10% CFA                (d) 10% CKD                                   

Figure 3.9 K-soil Specimens at the End of 12 Freeze-Thaw Cycles 
 

 
(a) Raw                      (b) 6% Lime            (c) 10% CFA                (d) 10% CKD                                   

Figure 3.10 C-soil Specimens at the End of 12 Freeze-Thaw Cycles 
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Figure 3.11 UCS of Raw and Stabilized Soil Specimens Before and After Vacuum 

Saturation Test 
 

 
Figure 3.12 Final 10th Day Dielectric Values of Raw and Stabilized P-Soil Specimens 
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Figure 3.13 Final 10th Day Dielectric Values of Raw and Stabilized K-Soil Specimens 

 
 

 
Figure 3.14 Final 10th Day Dielectric Values of Raw and Stabilized C-Soil Specimens 
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Figure 3.15 Variation of Moisture Content Along the Height of Stabilized P-Soil 

Specimens 

 
Figure 3.16 Variation of Moisture Content Along the Height of Stabilized K-Soil 

Specimens 
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Figure 3.17 Variation of Moisture Content Along the Height of Stabilized C-Soil 

Specimens 
 

                               
                      (a) Method-1        (b) Method-2 

Figure 3.18 Photographic View of C-soil Specimens Stabilized with 10% CKD Under 
Tube Suction Test (After 10 Days)  
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Figure 3.19 Mr Values (σ3 = 41 kPa, σd = 25 kPa) Versus Type of Additive for P-, K- and 

C-Soil Specimens After 60-Day Capillary Soaking  
 
 

 
Figure 3.20 Mr Ratio (Mr Before Capillary Soaking/Mr After Capillary Soaking) Versus 

Type of Additive (σ3 = 41 kPa, σd = 25 kPa) 
 
 
 
 
 
 
 
 
 
 

2
9

1
8

6

3
8

8

1
0

0

9

7
9

4
8

4
1

2
3

1
0

5

3
8

1
4

0

50

100

150

200

250

300

350

400

450

Raw Soil 6% Lime 10% CFA 10% CKD

R
es

ili
en

t M
od

u
lu

s,
 M

r
(M

P
a)

Additive type

P-Soil K-Soil C-Soil

5
.9

1
.7

2
0

.0

1
5

.3

1
8

.7

2
6

.6

4
.8

7
.1

3
0

.7

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

6% Lime 10% CFA 10% CKD

M
r
R

at
io

 =
 (M

r
b

ef
or

e 
ca

p
ill

ar
y 

so
ak

in
g)

/(
M r

af
te

r 
ca

p
ill

ar
y 

so
ak

in
g)

Additive type

P-Soil K-Soil C-Soil



114 
 

 
Figure 3.21 Correlation between UCS After the Freeze-Thaw (FT) Test and UCS After 

the Vacuum Saturation (VS) Test 

 
Figure 3.22 Correlation between Final Dielectric Constant Value and Moisture Content 

(Method-2) 
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Figure 3.23 Correlation between Mr After 60-Day Capillary Soaking and Final 10th Day 

Dielectric Constant Values 
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CHAPTER 4                                                                        
INFLUENCES OF VARIOUS CEMENTITIOUS ADDITIVES ON PERFORMANCE 

OF SULFATE BEARING SOIL  

4.1 Introduction 

Sulfate bearing natural soils are ubiquitous in southern, western, and southwestern 

states of the United States (Hunter, 1988; Mitchell and Dermatas, 1990; Petry and Little, 

1992; Kota et al., 1996; Rollings et al., 1999; Puppala et al., 2001). These states mainly 

include Texas, Nevada, Louisiana, Kansas, Colorado, and Oklahoma where calcium-

based additives such as lime, ordinary Portland cement, and fly ash, are traditionally used 

to stabilize natural subgrade soils rich with sulfate (Kota et al., 1996; Rollings et al., 

1999). Primary “sulfate-induced heaving” problems arise when natural sulfate rich soils 

are stabilized with calcium-based additives (Puppala et al., 2004), also known as “sulfate 

attack.” Calcium ions of the additive are known to react with free alumina and soluble 

sulfates in soils to form ettringite, Ca6[Al(OH)6]2.(SO4)3.26H2O, causing expansion of up 

to 250 percent when completely formed (Hunter, 1988; Berger et al., 2001). Ettringite, a 

weak sulfate mineral, undergoes significant heaving when subjected to hydration. This 

heave is known to severely affect the performance of pavements, and other geotechnical 

engineering structures built on sulfate rich soils stabilized with calcium-based additive 

(Hunter, 1988; Mitchell and Dermatas, 1990; Petry and Little, 1992; Rajendran and 

Lytton, 1997; Rollings et al., 1999; Puppala et al., 2004). 

Consequently, a research program was undertaken with the objective of exploring 

potential additives with different amount of calcium that are locally produced and 

economically available, namely, lime, class C fly ash (CFA), and cement kiln dust (CKD) 

for stabilizing natural sulfate rich lean clay from northwestern Oklahoma. The research 
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presented in this chapter is unique in several ways: short-term and long-term strength-

stiffness parameters of stabilized sulfate rich lean clay are evaluated for pavement 

application and volume change behavior of stabilized lean clay is addressed. Short-term 

performance evaluation included determination of resilient modulus (Mr), modulus of 

elasticity (ME), and unconfined compressive strength (UCS), after 28 days of curing, 

consistent with the MEPDG, as presented in Chapter 2. Long-term performance was 

evaluated in terms of three-dimensional (3-D) swell during 120 days of capillary soaking 

of selected specimens. At the end of capillary soaking, specimens were further tested for 

Mr, modulus of elasticity, and unconfined compressive strength, as additional indicators 

to long-term pavement performance. Furthermore, pH values, Atterberg limits, and 

percent passing No. 200 sieve were also determined after 28 days of curing. 

Mineralogical studies such as scanning electron microscopy, energy dispersive 

spectroscopy, and X-ray diffraction were used to verify research findings observed from 

the macro test results. The evaluation results presented here could potentially lead to the 

selection of type and amount of locally available additive for stabilization of sulfate rich 

lean clay in pavement construction projects. 

4.2 Background 

Sherwood (1958) was the one of the early investigators who noticed the problem 

concerning sulfate attack on stabilized soil. Sherwood (1962) conducted an experiment to 

determine the effect of the presence of sulfate ions in soils on the durability of cement- 

and lime-stabilized soils. The method of investigation consisted of observing the behavior 

of specimens of stabilized soil when totally immersed in water. The laboratory study 

showed disintegration of lime-and cement-stabilized clay specimens within few days, 
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whereas cement-stabilized sand mixtures containing the same proportions of sulfates 

were unaffected even after being immersed for one year. On the basis of results, it was 

proposed that sulfate attack on cement-stabilized soils is principally due to the reaction 

involving clay minerals and that the relatively slow combination of the sulfates with the 

cement is of secondary importance.  

Cordon (1962) conducted similar laboratory test concerning sulfate attack 

resistance of soil cement. Type I, Type II and Type V Portland cements and a coarse-

grained soil and a fine-grained soil were used for specimen preparation, which would be 

immersed in sulfate solution. A photographic record, taken at different time intervals, 

was used as a method of demonstrating progress of the sulfate attack. Major conclusions 

included: (1) soil-cement is subject to sulfate attack much in the same manner as cement 

concrete, but deterioration in soil-cement is much more rapid than in cement concrete; (2) 

soil cement specimens prepared with Type V and Type II cements were more resistant to 

the sulfate attack than soil cement specimens fabricated with Type I cement; and (3) soil 

cement specimens made with fine-grained soils deteriorated more rapidly. 

Mitchell (1986), in a Terzaghi lecture, reintroduced the profession to calamities 

associated with sulfate-induced heave in lime stabilized clay soils. An investigation was 

carried out concerning a section of a major arterial street with lime treated expansive soil 

base in Las Vegas, Nevada. The completed construction appeared to be of good quality 

and the initial performance was excellent but after two years pavement failed in the form 

of surface heaving and cracking. The investigation of the failed pavement indicated that 

structural design of the pavement section was adequate and the failure was not traffic-

induced. Further tests provided the following information: the soil contained significant 
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amounts of soluble sodium sulfate (up to 1.5 percent by weight); samples taken from 

intact and un-failed zones swelled if exposed to water; clay minerals were present in the 

soil; a significant amount of ettringite was indicated by X-ray diffraction in both the 

failed and un-failed zones. This landmark paper was followed by a comprehensive study 

by Hunter (1988), which provided a geochemical analysis of the phenomenon of sulfate-

induced heave in clay soils stabilized with calcium-based additives. Both papers focused 

on a case study of failure at Stewart Avenue in Las Vegas, Nevada.  

The phenomenon of sulfate-induced heave received much attention during the 

1990s and continues to pose problems for those stabilizing soils where soluble sulfates 

are present, especially in the western United States. Better understanding of this 

phenomenon was provided by Mitchell and Dermatas (1990), Little and Petry (1992), 

Petry (1995), Rollings et al. (1999), and Little et al. (2010). Petry and Little (1992) 

reviewed the background on sulfate-induced heave in lime- and cement-stabilized clay 

soils and some examples of projects affected by this phenomenon. In another study by 

Petry and Little (2002), future research needs for establishing more effective ways to 

stabilize sulfate-bearing clays have been identified.  

The problem of stabilizing sulfate bearing soils with lime as well as plausible 

stabilization schemes were recently reviewed by Harris et al. (2004). Among the 

stabilization schemes identified were mellowing for 1 to 3 days, higher molding moisture 

contents (2% above optimum), and single application of lime instead of double 

application. However, conclusions were made on the basis of only three-dimensional 

swelling tests and no attempt was made to study the performance using other tests such as 

resilient modulus, unconfined compressive strength and modulus of elasticity, as 
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recommended by the MEPDG. Moreover, 1 to 3 days of mellowing could be problematic 

for design applications. 

Further, Puppala et al. (2004) addressed the effectiveness of sulfate resistant 

cement additives Types I/II and V, for providing better treatment of four different sulfate 

rich soils. Experimental design included evaluation of compaction relationships, 

Atterberg limits, linear shrinkage and free swell strain potentials, unconfined compressive 

strength, and low strain shear moduli properties. Overall test results showed that both 

cement types provided effective stabilization of sulfate rich soils of varying sulfate levels. 

Also, this study addressed some of the design inputs for the MEPDG. However, it was 

carried out by using sulfate resistant additives which are not readily available in the 

Oklahoma area and are expensive (Nevels and Laguros, 2005). Also, sulfate resistant 

cement additives may provide protection against the Type I sulfate attacked, but they will 

be completely ineffective against the Type II sulfate attack (Wang, 2002), as will be 

discussed later. This makes it necessary to investigate locally available additives.  

In a recent study, Hilbrich and Scullion (2010) successfully stabilized soils 

containing high sulfate concentration (30,000 to 50,000 ppm) using traditional additives 

and non-traditional construction methods. A total of four combinations of traditional 

additives, namely, 6% lime, 4% lime with 4% class F fly ash, 4% lime with 6% class F 

fly ash, and 4% lime with 8% class F fly ash were considered. The subgrade was pre-

treated with 3% lime slurry at OMC+2% and kept wet and reworked approximately 3 to 5 

times for a period of 7 days. After 7 days, remaining percent of stabilizer was added 

followed by another mellowing period and compaction. Good performance in the field 

indicated that stabilization with extended mellowing is feasible, even with very high 
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sulfate bearing subgrade soils. However, several days of mellowing could be problematic 

for design applications. 

4.3 Factors Affecting Sulfate Attack 

Similar to cement concrete, the pH, moisture availability, lime dosage, 

temperature, sulfate levels, reactive alumina, and clay mineralogy may all affect sulfate 

attack of stabilized soils (Hunter, 1988; Roy et al., 2003; Puppala et al., 2005; Little et al., 

2010). These factors should therefore be determined when stabilized soils are susceptible 

to sulfate attack. The thermal and chemical stability of ettringite, under varying 

conditions of pH value, has been evaluated by a number of investigators, for example 

Gabrisova et al. (1991). It was reported that in a calcium alumino-sulfate system at room 

temperature, ettringite is no longer stable when pH is 10, and decomposes to form 

gypsum and hydrogarnet (C3AH6). 

The ettringite formation process was given by Harris (2004) as: 

(i) Ionization of lime: Ca(OH)2 →Ca2++2OH-  

(ii) Dissolution of clay mineral: Al4Si4O10(OH)8+4OH-+10H2O → Al(OH)4
-

+4H4SiO4   

(iii) Dissolution of gypsum: CaSO4.2H2O → Ca2++SO4
2-+2H2O  

(iv) Formation of ettringite: 6Ca2++2Al(OH)4
-+4OH-+3SO4

2-+26H2O →  

Ca6[Al(OH)6]2.(SO4)3.26H2O 

Thus, when calcium-based additive is added in sufficient quantities to clay, the 

pH is raised. Once the pH exceeds 10.5, dissolution of the clay surface occurs, and Si and 

Al ions are released. If sulfates, either in solid or groundwater form, are present in 

sufficient quantity, they may initiate a reaction between the calcium and the silica and 
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alumina released from clay minerals to form significant quantities of ettringite or 

monosulfate hydrates. Mehta and Klein (1966) determined that the formation of 

monosulfate hydrates is favored in high alumina environments, but the formation of 

ettringite is favored in low alumina environments. Also, there appears to be two ettringite 

formation mechanisms, namely, Type I and Type II (Wang, 2002). The Type I 

mechanism refers to the conventional sulfate attack, analogous to attack on conventional 

Portland cement concrete, where the Portland cement hydration products provide the 

calcium and alumina to react with sulfates to form ettringite. On the other hand, the Type 

II mechanism is clay-based sulfate attack where the Portland cement hydration products 

provide calcium and the clay minerals in the soil provide alumina to react with sulfates, 

when it is present, to form ettringite (Wang, 2002). 

Based on several investigations of sulfate attack on lime-stabilized soils in Texas, 

Petry (1995) suggested that soils containing sulfate contents of 2,000 ppm have the 

potential to cause swelling, and levels of 10,000 ppm have the potential to cause serious 

damage due to lime addition. According to current understanding, “low to moderate” and 

high sulfate soils are those with sulfate less than 2,000 ppm and more than 2000 ppm, 

respectively (Kota et al., 1996; Mitchell and Dermatas, 1990; Puppala et al., 2002; Rao 

and Shivananda, 2005; Little et al., 2010). 

Time frame to form ettringite in stabilized soils is not well established. Several 

case studies reported that the time frame for sulfate heaving varied from a few days to 

several weeks (Kota et al., 1996). The time generally depends on the solubility of 

sulfates, amount of reactive alumina liberated from soil particles and the amount of 

calcium present in the additive, which helps in the formation of ettringite (Puppala et al., 
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2004). Recently, Little et al. (2010) suggested that the time required to form ettringite in 

stabilized soils depends upon: amount of water used, the relative activities of ions in the 

aqueous solution, uniform pH regime, mineralogy, and the ability to solubilize sufficient 

reactants into an aqueous phase. 

In the laboratory controlled environments, the effects of these variables and 

conditions are somewhat minimized since heave studies were conducted on stabilized soil 

specimens subjected to capillary soaking in high humidity environment (>96%) and 

controlled temperature of 23.0 ± 1.7oC (73.4 ± 3.1oF). In such ideal conditions, ettringite 

mineral was formed in treated clays in less than 24 hours after stabilization and maximum 

heaving was noted within seven days after curing (Inthrasombat, 2003). Hence, the 

present capillary soaking time frame of 120 days (4 months) is considered more than 

sufficient for sulfate heave assessment in this study. Moreover, pH values were 

monitored before and after 28 days of curing (before capillary soaking). A soil having 

sulfate content of greater than 10,000 ppm was selected to ascertain the formation of 

ettringite. 

4.4 Materials and Test Procedure 

The lean clay used in this study belongs to the “Vernon series” in northwestern 

Oklahoma. Selection of this particular clay was based on the soluble sulfate content 

measured in this soil. Sulfate was present in the form of gypsum (CaSO4.2H2O) outcrops, 

as shown in Figure 4.1 (a). Figure 4.1 (b) demonstrates the presence of small gypsum 

crystals in Vernon series soil, also called as V-soil in this study.  Soluble sulfate content 

in the lean clay was measured using the Oklahoma Department of Transportation 

procedure for determining soluble sulfate content: OHD L-49 (ODOT, 2006). This soil 
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has a sulfate content of 15,400 ppm (>10,000 ppm). Physical properties of this soil were 

determined from the Atterberg limit test, hydrometer tests, and standard Proctor 

compaction tests. The chemical analyses include pH, and cationic exchange capacity 

(Chapman, 1965) test. These results are presented in Table 2.2. As per the ASTM D 4318 

test method, the selected lean clay has an average liquid limit of approximately 37% and 

a plasticity index (PI) of approximately 11. The chemical properties of the clay 

determined using X-ray Fluorescence analyses are given in Table 2.3. 

As noted previously, three different additives, namely, hydrated lime, CFA and 

CKD were used in this study. The chemical and physical properties of the additives are 

presented in Table 2.4. Hydrated lime is high calcium-based additive with 46.1% of 

available free lime. On the other hand, CFA and CKD are low (free lime content = 0.2%) 

and moderate (free lime content = 6.7%) calcium-based additives, respectively (Wang, 

2002). It is worth mentioning that properties of CKD can vary significantly from plant to 

plant depending on the raw materials and type of collection process used (Miller and 

Zaman, 2000). Similarly, fly ash properties may be unique to the same source while it 

may differ from ashes obtained from other sources (ACAA, 1999). These differences in 

physical and chemical properties of additives can lead to different performance of 

stabilized soil specimens. 

4.4.1 Specimen Preparation 

A total of 40 specimens were prepared in this study. The procedure consists of 

adding a specific amount of additive to the raw clay. The amount of additive (3%, 6%, or 

9% for lime and 5%, 10%, or 15% for CFA and CKD) is expressed as a percentage of the 

dry weight of the soil. The additive and clay were mixed to achieve a uniform mix. After 
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the blending process, a desired amount of water was added based on the optimum 

moisture content (OMC). Then, the mixture was compacted in a mold having a diameter 

of 101.6 mm (4.0 in) and a height of 203.2 mm (8.0 in) to reach a dry density of between 

95%-100% of the maximum dry density (MDD). A summary of OMCs and MDDs of 

raw and soil-additive mixes is presented in Table 2.8; OMCs and MDDs were determined 

in accordance with the ASTM D 698 test method. As evident from Table 2.8, laboratory 

experiments showed an increase in OMC and a decrease in MDD with the amount of 

lime. This is consistent with the results reported by Nagaraj (1964), Haston and 

Wohlegemuth (1985), Ali (1992), and Little (1995). For CFA stabilization, MDD 

decreased for 5 percent and then increased for 10 and 15 percent fly ash. On the other 

hand, a decrease in OMC was observed with increase in CFA content. A similar 

observation was made by McManis and Arman (1989), and Misra (1998), McManis and 

Arman (1989) reported that the reduction in OMC can be attributed to the spherical shape 

of the fly ash particles in the soil voids, which lubricated the mix and aided in the 

densification efforts. On the contrary, for soil-CKD mixtures the moisture-density results 

were more complex. Laboratory experiments showed that MDD decreased with 5 percent 

CKD, and then increased with the increase in the percentage of additive. On the other 

hand, OMC increased with 5 percent CKD and then decreased with the increase in the 

amount of CKD, as evident from Table 3. This behavior is consistent with the 

observations made by other researchers (see e.g., Baghdadi and Rahman, 1990; Baghdadi 

et al., 1995; Parsons et al., 2004). 

After compaction, specimens were cured at a temperature of 23.0 ± 1.7oC (73.4 ± 

3.1oF) and a relative humidity of approximately 96% for 28 days; 28-day curing period is 
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recommended by the new MEPDG (AASHTO, 2004). A total of four replicates were 

prepared for each additive content, of which two specimens were tested for Mr and then 

followed by the three-dimensional (3-D) swell test by subjecting specimens to capillary 

soaking under controlled temperature (23.0 ± 1.7oC i.e., 73.4 ± 3.1oF) and humidity 

(>96%) in an ice chest. After 120 days of capillary soaking, specimens were again tested 

for Mr and then followed by ME and UCS tests. The other two specimens were tested for 

Mr and then followed by ME and UCS tests, without capillary soaking. After the UCS 

test, broken specimens were air dried for approximately 2 days, and then pulverized and 

passed through a No. 40 sieve. The finer material was reconstituted with moisture for 1 

day, and then tested for liquid limit and plastic limit in accordance with ASTM D 4318. 

Moreover, pH values were monitored before and after 28 days of curing (before capillary 

soaking), in accordance with the test method recommended by ASTM D 6276. Since Mr, 

ME and UCS tests are already discussed in Section 2.6, only three-dimensional swell tests 

and mineralogical studies will be discussed in the chapter. 

4.4.2 Three-Dimensional Swell Test 

The oedometer swell testing method is most widely used to evaluate the swelling 

behavior of soils. This is mainly because of the simplicity of its operation and the 

availability of conventional oedometer in most soil mechanics laboratories (Al-Shamrani 

and Al-Mhaidib, 2000). However, a large discrepancy is observed between swell 

predicted using parameters obtained from oedometer tests and that actually realized in the 

field. Comparison of field and laboratory data obtained from oedometer tests revealed 

that the laboratory results from 1-D swell tests overestimate the in situ heave by a factor 

of about 3 (see e.g., Johnson and Snethen, 1979; Erol, 1992). Hence, to investigate the 
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swelling potential of specimens, three-dimensional (3-D) swell test were conducted in 

accordance with a procedure described by Harris et al. (2004). The 3-D swell values were 

measured by determining the height to the nearest 0.025 mm (0.001 in) in 3 places that 

are 120o apart. The diameter was measured to the nearest 0.025 mm (0.001 in) near the 

top, in the middle, and near the base of each sample. The three height and diameter 

measurements were averaged and the 3-D volume change was calculated.  

4.4.3 Mineralogical Studies 

The Scanning Electron Microscopy (SEM) technique was employed to 

qualitatively identify the micro-structural developments in the matrix of the stabilized 

soil. After the UCS test on capillary-soaked 9% lime- and 15% CKD-stabilized 

specimens, the broken mix was air-dried for approximately four days. Three 

representative tiny pieces were mounted on stubs (1 cm wide discs that have a pin-mount 

on the base of the disc) and coated with a thin layer (≈ 5 nm) of Iridium by sputter 

coating technique to provide surface conductivity. A JEOL JSM 880 scanning electron 

microscope operating at 15 kV was used to visually observe the coated specimens. The 

JEOL JSM 880 was fitted with an energy-dispersive X-ray spectrometer (EDS). The EDS 

was used to analyze chemical compositions of the specimen. In this technique, electrons 

are bombarded in the area of desired elemental composition; the elements present will 

emit characteristic X-rays, which are then recorded on a detector. EDS was performed on 

selected specimens where needle-shaped crystals of ettringite were identified. The 

micrographs were taken using EDS2000 software.  

To confirm the SEM results, X-ray diffraction (XRD) tests were performed on 

raw soil and capillary-soaked 9% lime- and 15% CKD-stabilized specimens. Four-day air 
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dried mix was pulverized with a mortar and pestle, sieved through a U.S. standard No. 

325 sieve (45 µm) and the powder finer than 45 µm was collected and placed on a 

specimen holder prior to testing. This holder was then mounted on a Rigaku D/Max X-

ray diffractometer for analysis. This diffractometer is equipped with bragg-brentano 

parafocusing geometry, a diffracted beam monochromator, and a conventional copper 

target X-ray tube set to 40 kV and 30 mA. The measurements were performed from 5o to 

70o (2θ range), with 0.03o step size and 1 seconds count at each step. Data obtained by 

the diffractometer were analyzed with Jade 3.1, an X-ray powder diffraction analytical 

software, developed by Materials Data, Inc. (Jade, 1999). Generated diffractograms 

(using the peaks versus 2θ and d-spacing) were used to determine the presence of 

ettringite. 

4.5 Laboratory Test Results 

4.5.1 pH Testing 

Since the pH level of soil indicates strong pozzolanic reaction and stability of 

ettringite, pH values were also determined after 28 days of curing, before capillary 

soaking. The results of pH tests for mixtures of clay and different amounts of additives 

are presented in Figure 4.2. The comparison of pH values of specimens stabilized for zero 

and 28 days revealed that specimens prepared with higher lime content and cured for 28 

days exhibited lower reduction in pH, as compared to specimens prepared with lower 

lime content. For example, specimens prepared with 9% lime and cured for 28 days 

exhibited no significant reduction (1.9%) in pH values compared to 3% (11.3%) and 6% 

(6.3%), as shown in Figure 4.2. It is believed that the excess of lime caused the presence 

of high amounts of un-reacted lime and thus reduced the strength values, as noted 
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subsequently. In addition, all percentage of CFA- and CKD-stabilized specimens showed 

significant decrease in 28-day pH value, as revealed in Figure 4.2. A decrease in pH 

value indicates consumption of calcium oxide (CaO) in cementitious reactions and thus 

an increase in strength values. In addition, it is also clear that pH is greater than 10 for 

28-day cured clay specimens stabilized with 3%, 6% and 9% lime, and 10% and 15% 

CKD. This pH value provides a good stable environment for the development of 

ettringite (Gabrisova et al., 1991; Little et al., 2005). 

4.5.2 Effect of Additives on Mr After Capillary Soaking 

The Mr test results of V-soil stabilized with different percentages of lime, CFA 

and CKD after capillary soaking are presented in Tables 4.1, 4.2 and 4.3, respectively. A 

convenient way to observe the effect of different percentages of additives is to compare 

Mr values obtained before and after capillary soaking at a particular stress level (Drumm 

et al., 1997). The mean Mr at a deviatoric stress of 25 kPa (3.6 psi) and a confining 

pressure of 42 kPa (6.0 psi) have been compared for this purpose (Figure 4.3). Further, to 

study the comparative effectiveness of lime, CFA, and CKD on V-soil, a chart of percent 

improvement in Mr values versus percentage of additive was plotted (Figure 4.4). 

4.5.2.1 Effect of Lime Content 

It is clear that the Mr values decreased after 120 days of capillary soaking due to 

damage caused by moisture. For example, 3%, 6% and 9% lime showed a decrease of 

approximately 91%, 89% and 88%, respectively (Figure 4.3). This decrease is maximum 

for 3% beyond which a reduction in percentage decrease was observed. Although 3% 

lime showed maximum percentage decrease, 6% lime provided highest Mr values ranging 
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between 52 – 93 MPa (2.0 – 3.7 ksi), as shown in Table 4.1. Also, comparison with the 

Mr values of raw soil specimens after capillary soaking shows that 6% lime produced 

highest percentage increase in Mr values of approximately 99% (Figure 4.4). 

4.5.2.2 Effect of CFA Content 

From Table 4.2 and Figure 4.3, one can see that the average Mr value decreased 

by approximately 89%, 87% and 42% after capillary soaking for specimens stabilized 

with 5%, 10% and 15% CFA, respectively. However, the percentage decrease in Mr value 

was lower for specimens stabilized with higher amount of CFA. It is also clear from 

Figure 4.3 that specimens with a lower percentage of CFA (i.e. 5%) showed an increase 

in Mr values by 55% as compared Mr values of the raw specimen after capillary soaking. 

Higher percentages of CFA resulted in an increase in the improvement of Mr values, as 

shown in Figure 4.4. For example, 10% and 15% CFA-stabilized specimens magnified 

the Mr values by 186% and 1,552% with respect to the raw specimens tested after 

capillary soaking.  

4.5.2.3 Effect of CKD Content 

Table 4.3 illustrates the Mr values of CKD-stabilized specimens after capillary 

soaking. It is evident from Table 4.3 that after capillary soaking, specimens showed a 

decrease in Mr values. For example, 5%, 10% and 15% CKD-stabilized specimens 

showed a decrease in Mr values by approximately 69%, 90% and 95%, respectively. With 

respect to Mr values of raw specimens after capillary soaking, CKD-stabilized specimens 

showed maximum effectiveness with 10% CKD (Figure 4.4). For example, at a 

deviatoric stress of 25 kPa (3.6 psi) and a confining pressure of 42 kPa (6.0 psi), 
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specimens stabilized with 5%, 10% and 15% CKD showed an increase of approximately 

201%, 258% and 122%, respectively. 

It is also evident from Tables 4.1 through 4.3 that the Mr values at other stress 

levels follow similar trends of behavior, as discussed in the above paragraphs. It is clear 

in general for 120-day capillary-soaked specimens that the highest improvement for 

CKD-stabilized specimens is observed at application rates of less than 10% (Figure 4.4). 

At application rates between 10% and 15%, CFA-stabilized specimens showed the 

highest improvement in the Mr values. Overall, the 15% CKD-stabilized specimen 

showed highest improvement (1,473%) before capillary soaking (as discussed in Section 

2.7), while 15% CFA-stabilized specimen showed the highest improvement (1,561%) 

after 120-day of capillary soaking. This difference in Mr values before and after capillary 

soaking can be attributed to difference in chemical properties of the additives, as 

illustrated in Table 2.4, which will result in different swell behavior of stabilized 

specimens. This issue will be illustrated in subsequent sections. 

4.5.3 Effect of Additives on ME and UCS After Capillary Soaking 

The variation of modulus of elasticity (ME) and UCS values with the additive 

content is shown graphically in Figures 4.5 and 4.6, respectively. Also, results of both 

specimens before and after capillary soaking are included in the same graph for 

comparative purpose. It is evident that there is significant increase in ME and UCS with 

increasing additive content in the treated soils. However, capillary-soaked specimens 

showed decrease in ME and UCS values than the corresponding specimens tested before 

capillary soaking. For example, the ME values of lime-, CFA- and CKD-stabilized 

specimens subjected to capillary soaking is approximately 88 – 89%, 31 – 92%, and 82 – 
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95% lower, respectively, than the corresponding ME values of stabilized specimens 

before capillary soaking. Similarly, UCS values of capillary-soaked specimens showed a 

decrease ranging between 86 – 88%, 40 – 90%, and 77 – 88% for lime-, CFA- and CKD-

stabilized specimens, respectively, corresponding to specimens tested before capillary 

soaking.  

Further, to study the comparative effectiveness of lime, CFA and CKD after 

capillary soaking, graphs of percent improvement in ME and UCS values versus 

percentage of additive were plotted in Figures 4.7 and 4.8, respectively. For lime-

stabilized specimens, 3% lime showed maximum enhancements of approximately 110% 

and 157% for ME and UCS values, respectively. Specimens stabilized with 15% CFA 

projected highest improvements (1,635% for ME and 1,222% for UCS) among all the 

percentages of different additives used in this study. CKD showed improvements in ME 

and UCS values ranging between 82 – 271% and 87 – 465%, respectively, with 10% 

providing maximum enhancements in ME and UCS values. This behavior is contrary to 

the behavior observed before capillary soaking where 15% CKD provided maximum 

enhancements before capillary soaking. It is believed that excessive CKD (>10%) 

increases the moisture susceptibility and swelling of specimens resulting in decreased ME 

and UCS values.  

4.5.4 Effect of Additives on Atterberg Limits 

A summary of the Atterberg limits and percent passing No. 200 (< 75 µm) sieve 

determined after 28 days of curing for different percentages of additives is presented in 

Table 4.4. Results show that lime produced highest plasticity index (PI) reductions by 

substantially increasing plastic limit and a small increase in liquid limit. For example, 3% 
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lime increased plastic limit and liquid limit by approximately 69% and 32%, respectively. 

Reduction in PI values for lime-stabilized soils can be attributed to ion-exchange and 

associated flocculation reactions between lime and soil which made soil non-plastic by 

agglomerating it into a more friable and aggregated structure (Prusinski and Bhattacharja, 

1999; IRC, 2000; Little, 2000).  

The addition of CFA to V-soil produced only a small increase (8%) in liquid limit 

values. The maximum liquid limit occurred at a CFA content of 5%. Additional CFA 

beyond 5% resulted in decrease in liquid limit for 10% and increase for 15%. Plastic limit 

showed monotonic increase with increase in the percentage of CFA used in this study. 

For example, 15% CFA increased plastic limit value by approximately 27%. The 

combined effect of change in liquid and plastic limit decreased PI values. For example, 

15% CKD decreased PI values by approximately 45%.  

Adding CKD to the V-soil also produced changes in the plasticity. However, 

effectiveness of CKD in reducing the plasticity of V-soil is low as compared to lime and 

CFA. It is also clear from Table 4.4 that increase in CKD content produced similar order 

of magnification in liquid limit and plastic limit values which resulted in small changes in 

PI values. For example, 5% CKD increased liquid and plastic limit by approximately 3% 

and 4%, respectively. One of the explanations could be the large contents of sulfates and 

alkalis present in the CKD used in this study (Table 2.4). The presence of these 

compounds can lead to the formation of gypsum, ettringite, and possibly syngenite 

crystals during the hydration process (Peethamparan et al., 2008). These reaction 

products may induce stiffening and increased absorption of water, resulting in less 

effectiveness in the reduction of PI values. Similar observations of effect of CKD on PI 
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were reported by other researchers (Miller and Azad, 2000; Parsons et al., 2004; 

Peethamparan et al., 2008; Snethen et al., 2008). 

Further, percent passing No. 200 sieve results clearly shows that lime is the most 

effective additive in decreasing the fine content than CFA, followed by CKD. For 

example, 9% lime, 15% CFA and 15% CKD decreased the percent passing No. 200 sieve 

by approximately 61.4%, 15.2% and 6.6%, respectively.  

4.5.5 Effect of Additives on Three-Dimensional Swell 

Figure 4.9 shows three-dimensional swell progressing with time for raw V-soil 

and stabilized specimens. Final three-dimensional swell values after 120 days are 

presented in Table 4.4. Negative swells from day 0 to day 4 are a result of drying of the 

specimens before the start of the swell test. These results demonstrate an unmistakable 

trend of increasing swell with the increasing percent of lime and CKD. As discussed in 

the background section, sulfate-induced heave is attributed to the increase in volume. 

After 120 days, the 9% lime-stabilized specimen showed the highest magnitude of swell, 

equal to 22.3%, compared to the value of 0.8% measured on the raw soil. Swelling was 

also seen with V-soil stabilized using 10% and 15% CKD. On the contrary, CFA 

stabilization helped by reducing the swelling. For example, 15% CFA-stabilized 

specimens reduced the swelling by a factor of 138%. It is clear from Figure 4.9 that 

sulfate-induced heave is pronounced only in lime- and CKD-stabilized specimens. This 

can be attributed to comparatively high pH values (> 10) after 28 days of curing 

(beginning of 3-D swell test) and high concentration of calcium ions in lime (95.9% of 

calcium hydroxide) and CKD (47.0% of calcium oxide), as compared to CFA (pH < 10 

and 24.4% of calcium oxide). At higher pH values (> 10) ettringite is more stable, as 
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discussed in the background section. Similar behavior of reduced sulfate-induced heaving 

with low calcium-based stabilizers was reported by other researchers (e.g., Kota et al., 

1996; Wild 1996, 1998; Wang, 2002). For example, Wild (1996, 1998) demonstrated that 

partial substitution of lime with granulated blast furnace slag substantially reduce the 

damaging expansion and have positive effect on strength development. 

4.5.6 Assessment of Sulfate-Induced Heave 

Figure 4.10 shows SEM/EDS test results conducted on representative tiny pieces 

of 9% lime- and 15% CKD-stabilized specimens, after 120 days of capillary soaking. The 

SEM micrograph (magnification = 10,000 times) clearly shows needle-like ettringite 

crystals. The length of ettringite crystal is less than 2 µm for both 9% lime- and 15% 

CKD-stabilized specimens. This observation is consistent with the findings reported by 

other researchers (e.g., Mitchell and Dermatas, 1992; Roy et al., 2003; Intharasombat, 

2003; Moon et al., 2007; Little et al., 2010). Furthermore, EDS was used on specific 

needle-shaped crystal for analyzing elemental composition. EDS for the selective 

identified crystals showed the presence of sulfur (S) along with other elements such as 

calcium (Ca), aluminum (Al) and oxygen (O), which is an indication of the presence of 

ettringite. No areas were found showing normal ettringite spectra without traces of silica 

(Si). 

To confirm the ettringite formation, XRD tests were also conducted on 9% lime- 

and 15% CKD-stabilized specimens. For comparison raw V-soil was also tested, as 

shown in Figures 4.11 (a-c). Figure 4.11 (a) indicates that no ettringite peaks were 

noticed in raw V-soil. The ettringite peaks were observed for 9% lime- and 15% CKD-

stabilized V-soil specimens. This substantiates that formation of ettringite resulted in 
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heaving as noted in Figure 4.9. Furthermore, the ettringite traces detected in 9% lime-

stabilized soil were of higher intensity level as compared to 15% CKD-stabilized 

specimen. As a result, 9% lime-stabilized soil undergoes higher sulfate induced heaving. 

Based on SEM, EDS and XRD studies, it can be concluded that the ettringite was formed 

in lime- and CKD-stabilized specimen which yielded swelling and a decrease in strength-

stiffness of the mix, after 120 days of capillary soaking. 

4.6 Conclusions 

This study was undertaken to evaluate natural sulfate bearing lean clay (V-soil) 

from northwestern Oklahoma for the effect of type and amount of additive on the short- 

and long-term performance by evaluating material properties as recommended by the 

new Mechanistic-Empirical Pavement Design Guide (MEPDG). Lean clay (CL) 

specimens stabilized with lime (high calcium additive), CFA (low calcium additive), and 

CKD (moderate calcium additive)were molded, cured for 28 days, and then subjected to 

different stress sequences to study the Mr. The same specimens were then tested for 

modulus of elasticity (ME) and UCS or 3-D swell. Specimens tested for 3-D swell were 

further tested for Mr, ME, and UCS, after 120 days of capillary soaking. Based on the 

study presented in this chapter the following conclusions can be derived: 

1. All three additives helped by improving Mr, UCS and ME values after 28 days of 

curing. However, after 120 days of capillary soaking, raw and all stabilized 

specimens showed reduction in Mr, UCS, and ME values. Overall, the 15% CKD-

stabilized specimen showed the highest improvement after 28 days of curing, while 

the 15% CFA-stabilized specimen showed the highest Mr, UCS, and ME values after 

120 days of capillary soaking. 
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2. For the different percentages of additive used in this study, the range of Mr values 

after capillary soaking were 47 – 93 MPa (1.9 – 3.7 ksi) for lime–stabilized 

specimens, 37 – 755 MPa (1.5 – 29.7 ksi) for CFA-stabilized specimens and 53 – 180 

MPa (2.1 – 7.1 ksi) for CKD-stabilized sulfate bearing lean clay specimens.  

3. For CFA-stabilization, the amount of improvement after capillary soaking increases 

with increase in the additive content; however, a reduction in Mr, ME and UCS values 

was observed beyond a certain percentage of lime or CKD content (between 3 – 6% 

for lime, between 10 – 15% for CKD).  

4. The ME and UCS values of lime-, CFA- and CKD-stabilized specimens showed 

decrease ranging between approximately 86 – 89%, 31 – 92%, and 77 – 95% due to 

120 days of capillary soaking. 

5. Atterberg limit results showed that lime produced the best results in decreasing the 

plasticity index of clay followed by CFA and CKD. Results showed that lime 

produced highest plasticity index (PI) reductions by substantially increasing plastic 

limit and a small increase in liquid limit. However, CFA produced only a small 

increase in liquid limit values and monotonic increase in plastic limit with increase in 

CFA content. Increase in CKD content produced similar order of magnification in 

liquid limit and plastic limit values which resulted in small changes in PI 

6. Three-dimensional swelling test showed an increase in volume for lime- (22.3% for 

9% lime) and CKD-stabilized (6.4% for 15% CKD) specimens, while a reduction in 

volume for the specimens stabilized with low calcium based stabilizer (i.e., CFA), as 

compared to raw sulfate bearing clay specimens. This increase in volume is attributed 

to sulfate-induced heaving and presence of calcium in additive which results in the 
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formation of expansive mineral ettringite. Further, the presence of ettringite was 

verified using SEM/EDS tests in conjunction with XRD analyses.  

7. Development of ettringite depends on several factors such as pH (or calcium content), 

moisture availability, lime dosage, temperature, sulfate levels, reactive alumina and 

clay mineralogy. In this study, pH value greater than 10.0 and availability of moisture 

were verified as two dominant factors required for the formation of ettringite.  
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Table 4.1 A Summary of Resilient Modulus Values of Lime-Stabilized V-soil Specimens 

(After 120-Day Capillary Soaking) 

Raw SD CV 3% Lime SD CV 6% Lime SD CV 9% Lime SD CV

41 12 48 1 1 84 9 10 93 9 10 87 1 1
41 25 44 1 2 82 6 7 88 9 10 82 11 13
41 37 38 0 0 75 8 11 80 6 8 74 10 13
41 50 32 0 1 72 8 11 76 4 5 71 8 11
41 62 29 1 4 70 6 9 75 4 5 69 4 6
28 12 33 1 3 63 6 9 76 8 11 71 13 18
28 25 28 1 4 60 8 13 70 8 11 65 12 18
28 37 26 1 4 59 7 13 68 3 4 63 10 16
28 50 26 1 5 61 8 13 68 2 3 63 6 10
28 62 26 1 5 61 6 10 66 3 4 61 4 7
14 12 25 1 5 48 8 17 57 4 7 53 8 15
14 25 21 2 8 45 5 11 52 3 5 48 10 21
14 37 21 1 7 46 6 13 52 1 2 47 9 19
14 50 21 2 8 48 7 14 53 3 6 49 7 13
14 62 22 1 6 49 7 14 52 8 15 47 5 10

* Deformations are out of the measuring range of LVDTs

σ3 

(kPa)
σd 

(kPa)

σd : deviator stress; σ3 : confining pressure; Mr : resilient modulus (using internal LVDTs)
1 psi = 6.89 kPa; 1 ksi = 6.89 MPa; SD: standard deviation; CV: coefficient of variation (%)

Mr (MPa)

 
 
 

Table 4.2 A Summary of Resilient Modulus Values of CFA-Stabilized V-soil Specimens 
(After 120-Day Capillary Soaking) 

Raw SD CV 5% CFA SD CV10% CFA SD CV 15% CFA#
SD CV

41 12 48 1 1 73 6 8 125 8 7 755 46 6
41 25 44 1 2 69 4 6 127 3 2 731 16 2
41 37 38 0 0 63 5 7 122 2 1 696 13 2
41 50 32 0 1 60 3 5 119 1 1 685 16 2
41 62 29 1 4 60 4 6 119 9 7 684 17 2
28 12 33 1 3 61 5 8 99 8 9 677 32 5
28 25 28 1 4 52 4 8 93 3 3 646 18 3
28 37 26 1 4 50 4 8 93 2 2 629 12 2
28 50 26 1 5 50 4 7 97 1 1 632 11 2
28 62 26 1 5 49 4 7 101 2 1 638 11 2
14 12 25 1 5 40 4 10 71 9 13 638 17 3
14 25 21 2 8 35 5 15 68 4 6 593 15 3
14 37 21 1 7 35 3 9 70 3 4 580 31 5
14 50 21 2 8 36 3 8 76 2 2 588 25 4
14 62 22 1 6 37 3 8 80 1 1 590 16 3

#Additive content providing maximum enhancements

* Deformations are out of the measuring range of LVDTs

σ3 

(kPa)
σd 

(kPa)

σd : deviator stress; σ3 : confining pressure; Mr : resilient modulus (using internal LVDTs)
1 psi = 6.89 kPa; 1 ksi = 6.89 MPa; SD: standard deviation; CV: coefficient of variation (%)

Mr (MPa)
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Table 4.3 A Summary of Resilient Modulus Values of CKD-Stabilized V-soil Specimens 

(After 120-Day Capillary Soaking) 

Raw SD CV 5% CKD SD CV 10% CKD SD CV 15% CKD SD CV

41 12 48 1 1 145 9 6 180 8 5 104 12 11
41 25 44 1 2 133 7 5 158 4 2 98 5 5
41 37 38 0 0 118 7 6 138 6 4 88 3 3
41 50 32 0 1 109 5 5 128 6 5 83 3 4
41 62 29 1 4 104 3 3 123 5 4 80 6 7
28 12 33 1 3 108 10 9 127 5 4 73 8 11
28 25 28 1 4 94 6 6 108 4 4 66 7 11
28 37 26 1 4 89 5 6 104 6 6 65 4 6
28 50 26 1 5 89 5 6 104 7 7 67 4 5
28 62 26 1 5 88 4 5 105 6 6 68 8 12
14 12 25 1 5 79 9 11 89 4 4 52 7 13
14 25 21 2 8 68 9 13 78 8 11 47 8 16
14 37 21 1 7 66 7 11 76 8 10 47 6 13
14 50 21 2 8 68 6 9 79 8 10 50 5 10
14 62 22 1 6 69 5 8 81 8 10 53 4 8

* Deformations are out of the measuring range of LVDTs

σ3 

(kPa)
σd 

(kPa)

σd : deviator stress; σ3 : confining pressure; Mr : resilient modulus (using internal LVDTs)
1 psi = 6.89 kPa; 1 ksi = 6.89 MPa; SD: standard deviation; CV: coefficient of variation (%)

Mr (MPa)

 
 

Table 4.4 A Summary of Stabilized V-Soil Specimens 28-Day Atterberg Limits and Final 
3-D Swell Volume 

 

Percentage 
of additive 

% passing No. 
200 sieve (28-

day) 

Atterberg limits  
(28-day curing) 

3-D Swell 
Volume (%) 
(120-day) LL (%) PL (%) PI (%) 

Raw V-Soil      
0 100.0 37 26 11 0.8 

Lime      
3 69.0 49 44 5 13.4 
6 48.2 51 NP NP 21.3 
9 38.6 48 NP NP 22.3 

CFA      
5 99.4 40 30 10 0.7 
10 90.6 37 30 7 0.2 
15 84.8 39 33 6 -0.3 

CKD      
5 99.8 38 27 11 0.6 
10 96.2 40 30 10 1.5 
15 93.4 43 34 9 6.4 

LL: Liquid Limit; PL: Plastic Limit; PI: Plasticity Index; NP: Non-plastic 
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(a)                                                              (b) 

Figure 4.1 (a) Outcrops Containing Gypsum in Western Oklahoma (Source: Adams, 
2008), and (b) Gypsum Crystals in Vernon Series Soil 

 

 
Figure 4.2 Variation of pH with Type and Amount of Additive 
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Figure 4.3 Variation of Mr (σd = 25 kPa, σ3 = 42 kPa) After Capillary Soaking with Type 

and Amount of Additive 
 

 
Figure 4.4 Increase in Mr (σd = 25 kPa, σ3 = 42 kPa) With Respect to Mr Values of Raw 

Soil Specimens After Capillary Soaking 
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Figure 4.5 Variation of Modulus of Elasticity After Capillary Soaking with Type and 

Amount of Additive 
 
 

 
Figure 4.6 Variation of Unconfined Compressive Strength After Capillary Soaking with 

Type and Amount of Additive 
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Figure 4.7 Increase in ME Values With Respect to Corresponding Values of Raw Soil 

Specimens After Capillary Soaking 
 
 

 
Figure 4.8 Increase in UCS Values With Respect to Corresponding Values of Raw Soil 

Specimens After Capillary Soaking 
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Figure 4.9 Three-Dimensional Swell Test Results  
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Figure 4.10 SEM/EDS of Ettringite Deposited in the (a) 9% Lime- and (b) 15% CKD-
Stabilized Specimens (After 120 Days of Capillary Soaking) 
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CHAPTER 5                                                                        
STATISTICAL AND ARTIFICIAL NEURAL NETWORK MODELING  

5.1 Introduction 

Empirical design methods for flexible pavement structures are primarily based on 

the equations that were developed largely from the AASHO Road Tests conducted in 

1950’s. These methods fail to reflect the dynamic nature of traffic loads. Therefore, the 

mechanistic design methods referred to as the “AASHTO Guide for Design of Pavement 

Structure” (AASHTO, 1986) recommended the use of resilient modulus (Mr), a dynamic-

strength parameter, to characterize flexible pavement materials. The Mr accounts for the 

cyclic nature of vehicular traffic loading, and is defined as the ratio of deviatoric stress to 

recoverable strain.  

Several laboratory and field procedures are either currently being used or 

evaluated for determining a design Mr value of subgrade soil. Direct laboratory methods 

used for evaluating Mr during the past two decades include resonant column, torsional 

shear, gyratory, and repeated load triaxial testing (AASHTO, 1986, Kim and Stokoe, 

1992, George 1992, Kim et al., 1997). Among these, the Mr from repeated load triaxial 

test (RLTT) is used most frequently because of the repeatability of test results and its 

representation of field stress in a controlled laboratory environment. RLTT is conducted 

in the laboratory on remolded or undisturbed samples according to different AASHTO 

test methods of which AASHTO T307 is used frequently (AASHTO, 2004). The 

AASHTO T307 test method can be a time consuming and expensive test method, 

particularly for small projects.  
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In the new 2002 AASHTO guide, which is currently in the evaluation stage, a 

hierarchical approach is used to determine different design inputs including Mr 

(AASHTO, 2004). It requires evaluation of pertinent engineering properties of subgrade 

soils in laboratory or field to pursue a Level 1 (most accurate) design. For a Level 2 

(intermediate) design, however, the design inputs are user selected, possibly from an 

agency database or from a limited testing program or could be estimated through 

correlations (AASHTO, 2004). A Level 3 design, which is the least accurate and 

generally not recommended, uses only the default values. For Level 2 designs, a 

regression model for Mr can be very useful as it provides the designer with significant 

flexibility in obtaining the design inputs for a project.  

Consequently, the primary objective of the study presented herein is to develop 

correlations or models for Mr of some common subgrade soils in Oklahoma stabilized 

with locally available cementitious additives for Level 2 pavement design applications. 

Two different modeling options, namely regression models and artificial neural networks 

(ANN) are employed. The strengths and the weaknesses of the developed models were 

examined using additional Mr test results that were not used in the development of these 

models. Further, possible correlations of Mr with compacted specimen characteristics and 

soil/additive properties are investigated. The models and correlations developed in this 

study are expected to be useful in the Level 2 designs of pavements in Oklahoma.   

5.2 Review of Previous Studies 

5.2.1 Statistical Models 

Several studies have previously been undertaken to develop empirical correlations 

for estimating Mr values in terms of other soil properties (see e.g., Lee et al., 1997; 
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Mohammad et al., 1999; Ooi et al., 2004; Rahim and George, 2004; Elias and Titi, 2006; 

Hossain, 2009; Mohammad et al., 2009). However, only a few models and correlations 

are available for cementitiously stabilized soils in the literature (Table 4.1); these 

correlations are either limited to one type of additive (e.g., Achampong, 1996; Arora and 

Aydilek, 2005, Ling et al., 2008) or applicable only for a particular stress level (e.g., 

Achampong et al., 1997; AASHTO, 2004; Hillbrich and Scullion, 2006; Mooney and 

Toohey, 2010). No studies to the author’s knowledge, have addressed the statistical 

modeling of stabilized soils specimens correlating soil/additive properties with Mr values 

at different stress levels. 

One of the commonly used models to represent Mr is the power model (see e.g. 

Dunlap, 1963; Seed et al., 1967; Thompson and Robnett, 1976; Moossazadeh and 

Witczak, 1981; May and Witczak, 1981; Uzan, 1985; Farrar and Turner, 1991; Yau and 

Quintus, 2002; NCHRP 2003; Hopkins at el., 2004; Rahim and George, 2004; 

Khazanovich et al., 2006). A number of researchers have utilized other index properties 

to estimate Mr (see e.g., Gomes and Gillet, 1996; Paute and Hornych, 1996; Rada and 

Witczak,1981; Raad et al., 1992;  Zaman et al. 1994; Dai and Zollars, 2002). For 

example, Drumm et al. (1990) developed two regression models for Mr of fine-grained 

soils as a function of deviator stress and soil-index properties, namely, percentage passing 

No. 200 sieve (P200), plasticity index (PI), dry density (γd), and unconfined compressive 

strength (UCS). A relatively small (twenty-two) number of these samples were used in 

developing these models. Also, this study was limited to raw soil and no additive was 

used. 
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In a similar study, Lee et al. (1997) investigated the Mr of raw cohesive soils, 

mainly clayey subgrade soils, with RLTT. Specimens were compacted using standard and 

modified Proctor methods at near optimum moisture content (OMC) in a mold with a 

diameter of 38 mm (1.5 in) and a height of 100 mm (4.0 in). It was seen that the custom-

compaction results were in close agreement with the maximum dry density (MDD) and 

the optimum moisture content (OMC) from the standard and modified Proctor tests. 

Regression analyses were conducted to obtain a relationship between Mr and the stress in 

unconfined compressive strength test causing 1% strain (SU1.0%) in laboratory compacted 

specimens.  The relationship between Mr and SU1.0% for a given soil was found to be 

unique regardless of moisture content and compaction effort. The results showed that the 

Mr and SU1.0% vary with the moisture content in a similar manner. Furthermore, four 

different compactive efforts were used in that study, but a single relationship between Mr 

and SU1.0% was obtained, as presented in following equation: 

Mr = 695.4 (SU1.0%) – 5.93 (SU1.0%)2       (5.1) 

where, Mr = resilient modulus at maximum axial stress of 41.4 kPa (6.0 psi) and 

confining pressure of 20.7 kPa (3.0 psi), and SU1.0% = stress causing 1% (strain kPa) in 

conventional UCS test. 

Moreover, the relationship was similar for different cohesive soils, indicating that 

it may be applicable for different types of clayey soils.  The limited data suggested that 

the same correlation might be used to estimate the Mr for both laboratory and field 

compacted conditions.  

Achampong et al. (1997) tested the Mr values for soils stabilized with Portland 

cement or lime by using a RLTT with variable deviator stress, moisture content, additive 
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content, curing period and soil type. It was found that the Mr values of stabilized 

specimens are dependent on deviator stress and the curing time. However, this study was 

conducted on synthetic soils and limited to only two additives namely, lime and Portland 

cement.  

In a field study, Yau and Von Quintus (2002) proposed the following correlation 

using the Mr data obtained from the Long Term Pavement Performance (LTPP) test 

sections: 

Mr = k1 Pa (θ/Pa)
k2[(τoct/Pa)+1] k3       (5.2)  

where, τoct is the octahedral shear stress, and k1, k2, and k3, are the regression constants. 

Yau and Quintus (2002) expressed these regression constants as a function of moisture 

content, dry density, optimum dry density, liquid limit, percent silt, percent clay, and 

percent passing different sieve sizes. The soils were classified into three different groups 

(coarse grained sandy soils, fine grained silty soils, and fine grained clayey soils), and the 

regression constants were developed for each soil type.  

 The new AASHTO 2002 MEPDG (AASHTO, 2004) and Mallela et al. (2004) 

indicated that the design Mr for lime-stabilized subgrade can be approximated from the 

UCS results using following equation: 

Mr = 0.124 UCS + 9.98        (5.3)  

where, Mr is resilient modulus in ksi and UCS is unconfined compressive strength in psi. 

Mallela et al., (2004) cites Thompson (1966) as the source of aforementioned equation 

and indicates that the design Mr and UCS values should be based on testing of specimens 

cured at room temperature for 28 days and strength tested in accordance with ASTM D 

5102 test method. Also, Eqn. 5.3 was developed by Thompson (1966) from 
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unconsolidated undrained compression testing of cylindrical specimens having a diameter 

of 50 mm (2 in) and a height of 100 mm (4 in). However, there is a lack of proper 

information by AASHTO 2002 MEPDG as no particular stress level is suggested for Eqn. 

5.3. Also, in a recent study Mooney and Toohey (2010) concluded that Eqn. 5.3 is 

conservative in its prediction of Mr from UCS of lime-stabilized specimens. 

In Minnesota, Khazanovich et al. (2006) used Mr results for 23 samples from 

several locations and evaluated the regression constants for use in the mechanistic-

empirical-based pavement designs. However, because the mineralogical and textural 

characteristics of soils in Oklahoma are different than those in Minnesota, those results 

may not be directly used for pavements in Oklahoma for a Level 2 design. 

Malla and Joshi (2008) used long-term pavement performance (LTPP) 

information for 259 test specimens for developing model consisting bulk stress (θ) and 

τoct relating to soil properties, namely, moisture content (w), OMC, γd, MDD, liquid limit 

(LL), and PI. Predictions models were developed by conducting multiple linear 

regression analysis using computer software SAS.  

Another study performed by Ling et al. (2008) recommended models for 

predicting Mr values of lime- and lime-cement-stabilized soils with curing time, degree of 

saturation, and wet-dry cycles. The proposed Mr prediction models were verified and 

calibrated by means of a laboratory experimental program and on-site testing. It was 

found that the predicted values were close to the laboratory results and the former were 

consistently higher. In most cases the prediction error of lime-cement-stabilized soil is 

less than 10% while the difference between predicted Mr of lime-stabilized and tested 
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values could be as much as 30% depending on the saturation levels. The prediction 

models developed in their study, however, were limited to only one particular stress level. 

In a recent study, Hossain (2009) evaluated three different models namely, Model 

1, 2 and 3. Model 1 is used by the Virginia Department of Transportation for predicting 

design Mr value: 

Mr = k1(σ3)
k2(σd)

k5         (5.4)  

where, σ3 is confining stress, σd is deviator stress and k1, k2, k5 are regression coefficients. 

Model 2 was developed by Von Quintus and Killingsworth (1997) for pavement design 

and is recommended by AASHTO 1993 design guide: 

Mr = k1 Pa (θ/Pa)
k2 (σd/Pa)

k3        (5.5)  

where, θ  is bulk stress and k1, k2, k3 are regression coefficients. Model 3 is recommended 

by the new AASHTO 2002 MEPDG and is given by Eqn. 5.2. Further, correlations were 

developed for estimating Mr values from CBR and stress at 1% strain from triaxial shear 

test. As in any many previous studies, this study was limited to raw soils.  

5.2.2 Artificial Neural Network Models 

ANN has become an important modeling technique due to its success in many 

engineering applications including geotechnical engineering problems (see e.g., TRB, 

1999; Najjar et al., 2000; Shahin et al., 2004; Zaman et al., 2010). One of the common 

artificial neural networks in use currently is the feed-forward network.  As evident from 

its name, a feed-forward network only allows the data flow in the forward direction 

(Zurada, 1992; Fausett, 1994; Ripley, 1996; Hill and Lewicki, 2006). Based on the 

architecture, a number of feed-forward networks are available such as multi-layer 

perceptrons, radial basis function, probabilistic neural networks, generalized regression 
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neural networks, and linear networks (TRB, 1999; Shahin et al., 2004; StatSoft  Inc, 

2006;  Sharma and Das  2008; Far et al., 2009). 

ANN contains a number of simple, highly interconnected processing elements, 

known as “nodes” or “units.” In a typical processing element, each input connection has a 

weighting value. With the weighting value, input data and bias value, a net input is 

described into the processing element. Then, a transfer function provides an output from 

the net input. Finally, a single output is produced and transmitted to other processing 

elements (Skapura, 1996; Najjar et al., 2000; Shahin et al., 2001).  

The weights between the processing elements are adjusted during the “training or 

learning” phase. In the training process, a number of epochs are performed in the 

network.  After each epoch, the weights are adjusted and a sum of mean squared error 

between target and output values is calculated. The training process stops when the sum 

of mean squared error is minimized or falls within an acceptable range (Shahin et al., 

2001; Shahin et al., 2004). 

Different algorithms can be used to train a network. In general, the training 

algorithms can be divided into two types: supervised and unsupervised.  The supervised 

algorithms adjust the weights and the thresholds using the input and target output values, 

while the unsupervised algorithms only use the input values. The supervised training 

algorithms include back propagation, conjugate gradient descent, Levenberg-Marquardt, 

Pseudo-inverse, etc. (Mehrotra et al., 1996; Shahin et al., 2004; StatSoft Inc., 2006).  

A number of researchers have utilized ANN technique in pavement applications. 

For example, Meier et al. (1996) augmented a computer program, WESDEF, with ANN 

models to back-calculate pavement layer moduli. The ANN models were trained to 
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compute the layer Mr from falling weight deflectometer (FWD) data from flexible 

pavements (Meier et al., 1996).  

In another pavement application study, Sharma and Das (2008) used ANN models 

to back-calculate layer moduli with better accuracy compared with other software, 

namely, EVERCALC and ExPaS. In a recent study, Far et al. (2009) utilized ANN for 

estimating the dynamic modulus of asphalt concrete. The results showed that the 

predicted and measured dynamic modulus values are in close agreement using ANN 

models.  

In another study by Far et al. (2010), ANN models for estimating dynamic moduli 

of LTPP sections were developed. A large national data set that covers a substantial range 

of potential input conditions was utilized to train and verify the ANNs. First, the ANN 

predictive models were trained and ranked using a common independent data set that was 

not used for calibrating any of the ANN models. A decision tree was developed from 

these rankings to prioritize the models for any available inputs. Next, the models were 

used to estimate the dynamic moduli for the LTPP database materials and ultimately to 

characterize the master curve and shift factor function. It was found that ANN models 

predict reliable dynamic moduli of LTPP sections over a wide range of temperature and 

frequencies. 

5.3 Characteristics of Soils and Database 

In this study, a total of four clay subgrade soil series namely, Port series (P-soil), 

Vernon series (V-soil), Carnasaw series (C-soil) and Kingfisher series (K-soil) are used. 

Of these, three soils (P-, V- and C-soil) were used in the development/evaluation of 

models and are collectively referred to as the “development/evaluation dataset.” The 
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remaining one soil (K-soil) was used for the validation of the models. Data for stabilized 

K-soil is collectively referred to as the “validation dataset.” P-soil, V-soil, C-soil and K-

soil are CL-ML, CL, CH and CL clays, respectively, in accordance with the Unified Soil 

Classification System (USCS). As noted previously, three different additives, namely, 

hydrated lime, CFA and CKD were used in this study. The physical and chemical 

properties of soils and additives are presented in Tables 2.3 and 2.4, respectively. 

A M r database developed using laboratory test results on 160 specimens prepared 

by using four soils stabilized with three additives namely, lime (3%, 6% and 9%), CFA 

(5%, 10% and 15%) and CKD (5%, 10% and 15%) was used. The specimen preparation 

and laboratory testing procedure are already discussed in Sections 2.5 and 2.6, 

respectively. An outlier approach was used by employing t-statistic to discard the test 

results if a sample result deviates significantly from the average of Mr results obtained 

from four replicates. The critical value (t-critical) for student’s t-test is taken at a 

significance level (α) of 0.05. If the calculated t-statistic value is greater or equal to this 

value (t-critical), then one chance in twenty the value is from the same population.  

5.4 Statistical Models 

5.4.1 Selection of Models 

Several constitutive models are available in the transportation literature for Mr 

calculation/prediction. The input required in MEPDG Level 1 design consists of the 

regression coefficients (k-values) determined from laboratory test results. The following 

four stress dependent models are considered in this study:  

1. Model 1, a log-log model recommended by the 1993 AASHTO Design Guide for 

unbound materials (1993). 
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where, pa = atmospheric pressure (101.283 kPa), θ = bulk stress (sum of three 

principal stresses), σd = cyclic deviatoric stress acting on the material, k1, k2 and k3 are 

the model constants. 

2. Model 2, a log-log model recommended by NCHRP 1-28 (1997) for stabilized 

specimens.  
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where, σ3 = confining stress acting on the material. 

3. Model 3, a model similar to semi-log k1, k2, k3 (σ3, σd) model reported by Andrei et al. 

(2004).  
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One of the advantages of using the aforementioned semi-log model is that it is valid 

for either σ3 = 0 or σd = 0. 

4. Model 4, a log-log model recommended by the new AASHTO 2002 MEPDG for 

unbound materials (AASHTO 2004). 
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Tables 5.2, 5.3 and 5.4 present the aforementioned average model constants (k1, k2 

and k3) for P-, V- and C-soil, respectively. These values could easily be used for 

pavement design using both the 1993 AASHTO Design Guide and MEPDG Level 2 

design/analysis provided the state of stress is known from layered elastic analysis or 

some other means. In this study, the design Mr values were calculated at a deviatoric 

stress of 41.34 kPa (6.0 psi) and a confining pressure of 13.78 kPa (2.0 psi), as 

recommended by Jones and Witczak (1977) and Ping et al. (2001).  

5.4.2 Evaluation of Models 

Four models were evaluated using the following criteria: (1) Se/Sy ratio represents 

the ratio of the standard deviation of the errors to the standard deviation of the sample. A 

lower value of this ratio is a measure of the improvement in prediction achieved by using 

the model instead of the mean. (2) R2, the square of the correlation coefficient (or 

coefficient of regression), is probably the most widely used indicator for identifying the 

accuracy of prediction. The new MEPDG recommends a R2 value greater than 0.90 

(AASHTO, 2004). (3) Visual examination of the predicted versus measured Mr is used to 

identify local bias (i.e. incorrect model form) (Andrei et al., 2004). 

Figures 5.1 (a) and (b) show the frequency diagrams of R2 and Se/Sy values of the 

samples used in this study. Compared to other models, AASHTO 2002 MEPDG model 

(Model 4) for unbound material has the worst overall goodness of fit statistics with only 

seven samples having R2 values greater than 0.9 and 19 samples having Se/Sy < 0.2. 

Hence, Model 4 was rejected for further development of correlations and validation. Both 

Models 1 and 2, resulted in 62 samples with a R2 value greater than 0.9. Additionally, 

Models 1 and 2 gave 33 and 36 samples with a Se/Sy value of less than 0.2. Therefore, 
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Models 1 and 2 were selected for further development of correlations and validation. 

Although Model 3 gave less number of samples (only 55) with R2 > 0.9, it showed the 

highest number of samples with Se/Sy < 0.2. Hence, Model 3 was also selected for further 

development of correlations and validation.  

5.4.3 Correlations 

The model constants were correlated with commonly used compacted specimen 

characteristics and basic soil/additive properties. Specifically, the correlations developed 

herein consider the following compacted specimen characteristics – unconfined 

compressive strength, dry density, moisture content, percent of additive, silica sesquoxide 

ratio (SSR); soil properties – percent passing No. 200 sieve, plasticity index, clay content, 

pH, specific surface area, cationic exchange capacity; and additive properties – silica 

content, alumina content, iron oxide content, SSR, calcium oxide content, magnesium 

oxide content, alkali content, free-lime, specific surface area, loss on ignition, percent 

passing No. 325 sieve, pH. The stepwise method of multiple linear regression (α = 0.05) 

option in SAS 9.1 was used for correlating model constants with the aforementioned 

properties. The F test for the multiple regressions was conducted using SAS 9.1 to 

validate significance of the relationship between Mr and independent variables included 

in the model constants. The associated probability is designated as Pr > F or p-value. A 

small p-value implies that the model is significant in explaining the variation in the 

dependent variables. For example, the relative effects of mechanical properties of mixture 

and chemical/physical properties of soil and additive for Model 3 are summarized in 

Table 5.5. The analyses of variance (ANOVA) results show that the Mr (in MPa) values 
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were significantly influenced by the compacted specimen characteristics, soil/additive 

properties and stress levels at α = 0.05. The following correlations were established: 
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Model 3 
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(R2 = 0.9078; F value = 1022; Pr < 0.0001) 

where,  

UCS   =  28-day unconfined compressive strength (kPa), 

Pa   =  atmospheric pressure (101.283 kPa),  

MC   =  molding moisture content (%),  

DUW   =  molding dry unit weight (kN/m3), 

γw   =  density of water (9.81 kN/m3) 

PA   =  additive content in specimen (%), 

P200   =  passing No. 200 sieve for soil (%), 

PI   =  plasticity index, 

CC   =  clay content in soil (%), 

pHs   =  pH of pure soil, 

SSAs  =  specific surface area of soil (m2/g), 

SiO2   =  silica content of additive (%), 

Al2O3   =  alumina content of additive (%), 

SSRa  =  SSR of additive, 
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CaO   =  calcium oxide content of additive (%), 

MgO   =  magnesium oxide content of additive (%), 

ACA  =  alkali content of additive (%), 

FL   =  free-lime content of additive (%), 

LOI   =  loss on ignition of additive (%), 

P325   =  passing No. 325 sieve for additive (%), 

pHa   =  pH of pure additive, 

SSRm  =  SSR of soil-additive mixture. 

A comparison between the measured Mr results and predicted values for Models 

1, 2 and 3 by using aforementioned correlations are shown in Figures 5.2, 5.3 and 5.4, 

respectively. It is evident that the predicted values are closer to the equality line when the 

Mr values are less than 1,600 MPa. This observation may be due to the distribution of 

dataset. Only 133 Mr values out of 1181 Mr values (approximately 11%) are in the upper 

range of 1,600 MPa. The remaining 89% of the Mr values for this study are in the lower 

range of the evaluation dataset. Overall, all the three models showed similar performance 

based on the R2 (> 0.90) and F values (600 – 1000). Therefore, all the three models were 

selected for further validation.  

5.4.4 Validation of Models 

The evaluated models were validated using Mr values of a lean clay (K-soil) 

stabilized with lime (3%, 6%, 9%), CFA (5%, 10%, 15%) and CKD (5%, 10%, 15%). 

This provides different views on the prediction quality and the importance of datasets on 

statistical analysis. As noted previously, R2, Se/Sy value and visual examination are 
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utilized as the basis of comparing the three models in regard to the goodness of fit and 

significance of the model.  

The Mr values of 31 stabilized K-soil specimens were predicted using the 

correlations developed with stabilized P-, V- and C-soil specimens dataset. Then, the 

predicted Mr values were compared to the measured Mr values, as shown in Figure 5.5. 

As evident from Figure 5.5, Model 3 showed superior performance with the highest R2 

value of 0.9791 and the lowest average Se/Sy value of 0.4817. Although Models 1 and 2 

predicted Mr values with high R2 value (~ 0.9), but both models gave an average Se/Sy 

value greater than 1. Also, it is evident from Figure 5.5 that the scatters for Model 3 are 

closer to the equality line as compared to scatters of Models 1 and 2. It is an indication 

that Model 3 is capable of predicting the Mr values of stabilized subgrade clays 

reasonable well, as compared to other models.  

5.4.5 Correlations Developed Using Selected Parameters 

As noted earlier, a total of 23 input parameters were used for developing 

correlations. However, some of the inputs parameters (e.g., specific surface area, cationic 

exchange capacity) require test setup(s) which are not readily available in the 

geotechnical engineering laboratories. Hence, it was decided to use selected parameters 

that are readily available from the additive supplier and/or evaluated commonly in the 

geotechnical laboratory. Specifically, the correlations developed herein consider the 

following compacted specimen characteristics – unconfined compressive strength, dry 

density, moisture content, percent of additive; soil properties – percent passing No. 200 

sieve, plasticity index, clay content, pH; additive properties – free lime content, loss on 

ignition, percent passing No. 325 sieve, pH. Since Model 3 showed best acceptable 
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performance, the stepwise method (as discussed in Section 5.4.3) was used for 

developing Model 3 correlations. The following correlations were established: 
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A comparison between the measured and predicted Mr values for Model 3 

correlations developed using all 23 parameters (Eqns. 5.16 – 5.18) and selected 12 

parameters (Eqns. 5.19 – 5.21) is shown in Figure 5.6. It is evident from Figure 5.6 that 

both models show very similar prediction with high R2 value (> 0.90). As an example, 

Model 3, developed using selected 12 parameters, predicted design Mr values of 6% 

lime-stabilized K-soil specimens approximately 0.2% higher than corresponding Mr 

values predicted using Model 3 developed using all 23 parameters. The corresponding 

percentage difference in predicted design Mr value is approximately 0.8% and 1.2% 

higher for 10% CFA- and 10% CKD-stabilized K-soil specimens, respectively. 
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5.5 Artificial Neural Network Models 

5.5.1 Development and Evaluation of Models 

In the present study, two feed-forward-type ANN models, namely, Radial Basis 

Function Network (RBFN) and Multi-Layer Perceptrons Network (MLPN), were 

developed using the Mr dataset of P-, V- and C-soils. Previous studies show that RBFN 

and MLPN are two best ANN models for predicting Mr values of subgrade soils (Zaman 

et al., 2010). A commercial software, STATISTICA 8, was used to develop these models. 

In the present application, the input layer consists of 25 nodes (or neurons), one node for 

each of the independent variables, namely UCS/Pa, MC, DUW/γw, P200, PI, CC, pHs, 

SSAs, CECs, PA, SiO2, Al2O3, Fe2O3, SSRa, CaO, MgO, ACA, FL, LOI, P325, pHa, SSAa, 

SSRm, σ3/Pa, and σd/Pa. The output layer consists of one node, representing Mr/Pa. For 

each ANN model developed, a trial and error approach was used to find the number of 

nodes in the hidden layer(s), in search of the optimum model.  After the architecture was 

set, the development dataset was fed into the model for training. To examine the strengths 

and weaknesses of the developed models, they were evaluated by comparing the 

predicted Mr values with the experimental values (or measured values) with respect to the 

R2 values. Thus, a higher R2 value was considered a better fit of the evaluation dataset. 

Previously, several researchers have used R2 as an indicator of model performance 

(Tarefder et al., 2005; Rankine and Sivakugan, 2005; Solanki et al., 2008). 

5.5.1.1 Radial Basis Function Network (RBFN) 

The radial basis function network (RBFN) divides the modeling space using 

hyperspheres. The centers and radii are used to characterize these hyperspheres.  The 
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RBFN units respond non-linearly to the distance of points from the center represented by 

a radial unit. The response surface of a single radial unit is the Gaussian (bell-shaped) 

function, peaked at the center, and descending outwards (Haykin, 1994; Bishop, 1995; 

Hill and Lewicki, 2006).  Therefore, the RBFN has three layers, namely input, hidden, 

and output layers.  The hidden layer consists of radial units.  It models the Gaussian 

response surface.  The two most common methods for assigning the center of the radial 

units are sub-sampling and K-Means algorithm (Bishop, 1995; Hill and Lewicki., 2006).  

The RBFN model has one hidden layer. A trial and error approach was used to 

determine the optimum number of node in the hidden layer. Following this approach, the 

optimum number of node in the hidden layer producing the least root mean square error 

(RMSE) was found to be 18, as shown in Figure 5.7. The R2 value of the RBFN model is 

0.6207, which is lowest among all the statistical and ANN models used in this study. 

Figure 5.8 shows an overall comparison between measured and predicted Mr values for 

this model. Significant scatter is observed for the entire data range, justifying a low R2 

value. Based on these results, it is clear that RBFN is incapable of predicting the 

development dataset. However, the R2 value for fewer specimens is close to 1. For 

example, predicted Mr values show a good correlation (R2 = 0.9012) with experimental 

Mr values for 3% lime-stabilized P-soil and 5% CKD-stabilized V-soil specimens, as 

shown in Figure 5.9. The correlation becomes weaker as more soil and additives types are 

included in the dataset.   

5.5.1.2 Multi-Layer Perceptrons Network (MLPN) 

The MLPN is one of the popular network architecture in use today (Rumelhart 

and McClelland, 1986; Bishop, 1995; Narayan, 2002; Zaman et al., 2010). The MLPN 
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consists of an input layer, a number of hidden layers, and an output layer.  In each of the 

hidden layers, the number of nodes (also called neuron) can be varied. Due to the number 

of layers and the number of nodes in each layer, the MLPN can adjust the architecture of 

the network based on the complexity of a problem.  In STATISTICA 8.0, the MLPN has 

up to three hidden layers available. Each of the nodes in the network performs a biased 

weighted sum of their inputs and passes this activation level through a transfer function to 

produce its output. The weights and biases in the network are adjusted using a training 

algorithm. The training algorithms available in STATISTICA 8 are back propagation, 

gradient descent, conjugate gradient, and quasi-Newton (Hill and Lewicki, 2006).  

In MLPN, the weighted sum of input components are calculated as (Yilmaz and 

Yuksek, 2007; Canakci and Pala, 2007): 
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where i is number of inputs, j is number of neurons in hidden layers, Sj is the weighted 

sum of the j th neuron for the input received from the preceding layer with n neurons (or 

inputs for MLPN with one hidden layer), Wij is the weight between the j th neuron and the 

i th neuron in the preceding layer, xi is the output of the i th neuron in the preceding layer 

(or inputs for MLPN with one hidden layer), and Qi is the constant bias term. Once the 

weighted sum Sj is computed, the output of the j th neuron yj is calculated with an 

activation function, sigmoid in this case, as follows: 
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where η is a constant used to control the slope of the semi-linear region. The sigmoid 

nonlinearity activates in every layer except the input layer (Yeh, 1998; Canakci and Pala, 

2007). 

In the present study, the MLPN model was developed with one hidden layer. The 

number of nodes in hidden layers was selected nine based on minimum RMSE by using a 

trial and error approach, as shown in Figure 5.10. The architecture of the developed 

MLPN model is illustrated in Figure 5.11. The neurons of input layer receive information 

from outside environment and transmit to the neurons of the hidden layer without 

performing any calculation. The hidden layer then processes the incoming information 

and extracts useful features to construct the mapping from the inputs space and 

interconnects each other through weights. The neuron of last layer called the output layer 

produce the network prediction to the outside world in the form of Mr values. 

The training algorithm used in the study is conjugate gradient algorithm, 

activation function is sigmoid function, and number of epochs is 5,000 producing an error 

of less than 10-6 per 100 cycles. As a result of the training, the network produced 9 x 25 

weights (W) and 9 bias values (Qi) connecting input and hidden layer, 9 x 1 weights (W2) 

and 1 bias value (Q) connecting hidden layer and output layer. Table 5.6 presents a list of 

the final weights and bias values. With these weights and bias values, the network is able 

to simulate Mr values with the trained data and to predict Mr values with the untrained 

data by using following equations: 
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Functions F2, F3,…, F9 can be obtained by employing weights Wi-2, Wi-3, …, Wi-9 

(i = 1 – 25), respectively in Eqn. 5.25. By employing the aforementioned approach, the 

R2 values of the MLPN model was found to be 0.9872, indicating that the MLPN model 

is expected to better correlate the Mr values than the RBFN (0.6207) model. Figure 5.12 

shows a comparison between the experimental and predicted values of Mr values for the 

MLPN model. It is clear that the level of scatter in data points reduced significantly for 

this model. Also, it is evident that the predicted values are closer to the equality line.   

5.5.2 Validation of Models 

As noted earlier, a different dataset of Mr values of stabilized V-soil specimens 

was used for validation. This provides different views on the prediction quality and the 

importance of datasets on regression analysis (Montgomery et al., 2006; Myers et al., 

2001; Solanki et al., 2008). Additionally, a comparison was made between the differences 

in the R2 values of the development/evaluation dataset and the validation dataset.   

The RBFN model predicted the Mr values of the validation dataset with a low R2 

value of 0.3172. Figure 5.13 shows a comparison of the prediction quality of the RBFN 
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model for the validation dataset. It is observed that the data points start to deviate to a 

“banded” distribution ranging between approximately 700 – 1000 MPa, as shown in 

Figure 5.13. The effect is presented as a narrow band across indicating a poor prediction. 

Also, Se/Sy value of greater than 1 indicates low quality of Mr prediction achieved by 

using the RBFN model. On the other hand, the R2 of the validation dataset for the MLPN 

model was found to be 0.9582 (Figure 5.13). The corresponding Se/Sy value for the 

MLPN model was found to be less than 1 (0.5985). It is also evident from Figure 5.13 

that the scatters for MLPN model are closer to equality line as compared to scatter of the 

RBFN model. Overall, the MLPN model appears to be the best model for the present 

(development/evaluation and validation) datasets. 

5.6 Sensitivity Analysis 

A sensitivity study was conducted on the best performing statistical (Model 3) and 

ANN (MLPN) model to evaluate the effect of each independent variable. In pursuing this 

sensitivity analysis, only one independent variable was changed at a time.  First, the 

average and standard deviation of each independent variable were determined from the 

combined evaluation/development and validation datasets. The corresponding results of 

the mean and standard deviation of each independent variable for Model 3 and MLPN 

models are shown in Tables 5.7 and 5.8, respectively. Then, Mr value was calculated by 

inputting the average values of each independent variable into the corresponding models 

and this calculated value was called the “primary Mr value.” A series of Mr values were 

then calculated by changing (within plus and minus of one-half standard deviation) one 

independent variable at a time, while the rest of the independent variables were kept at 

their mean values.  The series of the Mr values thus obtained were compared with the 



172 
 

primary Mr value.  Also, it is worth noticing that one-half standard deviation was used 

instead of one standard deviation because it was found that one standard deviation may 

change the independent value to an extent beyond the range of the original independent 

parameters used in this study. 

5.6.1 Sensitivity Analysis For Stress-Based Statistical Model 3 

The results (as percent difference) of the sensitivity analysis of the stress-based 

statistical Model 3 are presented in Table 5.7. It is seen that unconfined compressive 

strength, pH of soil, cationic exchange capacity, silica content of additive, and SSR of 

soil-additive mixture were more sensitive variables in the statistical Model 3. These five 

independent variables contributed to more than 2% differences in the comparison of Mr 

values. The unconfined compressive strength had the highest (approximately 24%) 

sensitivity followed by the pH of soil, SSR of soil-additive mixture, silica content of 

additive, and CEC of soil. The confining and deviatoric stress contributed to less than 2% 

of difference for the dataset considered herein which is consistent with the observation 

reported in Section 2.7.4. The dry unit weight and deviatoric stress had the least 

sensitivity of less than 0.5%.   

5.6.2 Sensitivity Analysis For Neural Network MLPN Model 

The results of the sensitivity analysis of MLPN model are presented in Table 5.8.  

Only unconfined compressive strength followed by moisture content showed significant 

sensitivity in the MLPN model. These two independent variables had more than 5% 

differences in the comparison of Mr values. Free-lime content followed by passing No. 

325 sieve of additive, passing No. 200 sieve of additive, SSA of additive, percent of 
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additive, PI of soil, calcium oxide content of additive, Fe2O3 content, loss on ignition, 

deviatoric stress, SSR of soil-additive mixture had only modest influence (2 – 5 percent) 

on Mr. This behavior is consistent with the observations reported in Section 2.9; Mr 

values are better correlated with free-lime content, loss on ignition, percent passing No. 

325 sieve, SSA of additive, and SSR of soil-additive mixture. Dry unit weight, clay 

content, pH of soil, CEC, and confining stress had less than 1% difference in the 

comparison of Mr values. The rank of each independent variable considered here based 

on the sensitivity result is presented in Table 5.8.  Dry unit weight and confining stress 

showed the least significance in the sensitivity analysis. The reason for the low effect of 

dry unit weight may be that the influence of dry unit weight is over shadowed by other 

material parameters. Low sensitivity of confining stress is consistent with the 

observations reported in Section 2.7.4. 

The overall sensitivity study showed that the sensitivity of independent variables 

was dependent on the type of models. The sensitivity ranking of independent variables 

was different for each model (Tables 5.7 and 5.8). However, unconfined compressive 

strength consistently remained one of the most sensitive independent variables in both 

statistical Model 3 and MLPN models. The confining stress, on the other hand, was 

always the least sensitive independent variable for the soils and additives considered in 

this study.  Also, SSR of soil-additive mixture showed intermediate influence on the Mr 

values predicted by using both statistical Model 3 and MLPN model. These observations 

are consistent with the observations reported in Section 2.9. 
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5.7 Concluding Remarks 

In this study, a total of four stress-based statistical models and two feed-forward-

type ANN models, were evaluated to correlate resilient modulus with specimen 

characteristics and soil/additive properties. A Mr database developed using laboratory test 

results on 160 specimens prepared by using four soils stabilized with three additives 

namely, lime (3%, 6% and 9%), CFA (5%, 10% and 15%) and CKD (5%, 10% and 15%) 

was used. Of these, three soils namely, P- (silty clay), V- (lean clay) and C- (fat clay) soil 

were used in development/evaluation, and the remaining one soil (K-soil, lean clay) was 

used in the validation of the selected models. The following points highlight the 

assessments and evaluations of these models: 

1. One semi-log (σ3, σd) and three log-log (θ, σd; σ3, σd; θ, τoct) stress-based statistical 

models were evaluated. The log-log model recommended by AASHTO 2002 Design 

Guide (θ, τoct) for unbound materials showed the least acceptable performance.  

2. The model constants of the three selected statistical models were calibrated through 

multiple linear regressions by using common compacted specimen characteristics and 

soil/additive properties. The developed correlations were the most accurate in 

producing R2 values ranging from 0.90 to 0.93.  

3. All three stress-based statistical models were validated by using additional Mr data of 

stabilized K-soil specimens. Overall, a semi-log (σ3, σd) model was found to show 

best acceptable performance with the highest R2 value (0.98) and lowest average 

Se/Sy value of 0.48.  

4. From the correlations of best performing statistical model (Model 3), it appears that 

the model constants for 28-day Mr were mainly governed by compacted specimen 
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characteristics – UCS, molding moisture content, molding dry unit weight, percentage 

of additive, silica sesquoxide ratio of soil-additive mixture; soil properties – clay 

content, pH, cationic exchange capacity; and additive properties – silica content, 

calcium oxide, magnesium oxide content, loss on ignition.  

5. Model 3 developed using selected parameters showed that the model constants are 

governed by compacted specimen characteristics – UCS, molding moisture content, 

molding dry unit weight, percentage of additive; soil properties – clay content, 

plasticity index, pH; and additive properties – free lime content, percent passing No. 

325 sieve.  

6. For the RBFN model, with one hidden layer, the R2 value for the 

development/evaluation dataset showed worst performance (0.62) among all the 

statistical and ANN models used in this study. Also, it was found that the R2 value for 

fewer specimens is close to 1 but the correlation becomes weaker and appears in a 

“banded” distribution as more soil and additives types are included in the dataset. 

Further, study showed that RBFN model predicts Mr values of validation dataset with 

lowest reliability (R2 = 0.32, Se/Sy = 1.26). 

7. The R2 value of the MLPN model with one hidden layer was found to be 0.99 for 

evaluation/development dataset. Based on R2 value and visual examination, this 

model appeared to be the best model. Further, validation of MLPN model using a 

different dataset showed Se/Sy value of 0.60 and R2 value of 0.96 indicating high 

quality of Mr prediction achieved by using the MLPN model.  
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8. Overall, the MLPN model was found to be the best model for the present 

development/evaluation and validation datasets. This model as well as the other 

models could be refined using an enriched database.  

9. The sensitivity ranking of independent variables was different for each model. 

However, unconfined compressive strength consistently remained one of the most 

sensitive independent variables in both statistical Model 3 and MLPN models. The 

confining stress, on the other hand, was always the least sensitive independent 

variable for the soils and additives considered in this study. Also, SSR of soil-additive 

mixture showed intermediate influence on the Mr values predicted by using both 

statistical Model 3 and MLPN model.  
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Table 5.1 A Summary of Relevant Laboratory Studies on Soils Stabilized with Different 

Additives  
 

Reference Type of 
soila 

Type of 
additive 

Parameters/Testsb (Statistical 
Analysis for Mr: Yes/No) 

Chang (1995) Lateritic soil FA, Lime UCS, Mr (No) 
Achampong (1996) CL, CH PC, Lime UCS, Mr (Yes) 
Misra (1998) Clays FA UCS (No) 
Little (2000) Fine grained 

soils 
Lime UCS, Mr, Swell (No) 

Miller and Azad (2000) CH, CL, ML CKD UCS (No) 
Qubain et al. (2000) CL  Lime UCS, Mr (No) 
Kim and Siddiki (2004) A-4, A-6, A-7-

6 
Lime, LKD UCS, CBR, volume stability, Mr (Yes) 

Rahim and George (2004) A-2-4, A-3, A-
6 

None Mr (Yes) 

Arora and Aydilek (2005) SM FA UCS, CBR, Mr (Yes) 
Hillbrich and Scullion (2006) A-3 PC Mr, Seismic Modulus (Yes) 
Osinubi and Nwaiwu (2006) CL Lime UCS (No) 
Peethamparan et al. (2008) Kaolinite clay CKD, Lime UCS, Modulus (No) 
Ling et al. (2008) Silty clay Lime, PC Mr (Yes) 
Hossain (2009) A-1, A-2, A-4, 

A-5, A-6, A-7 
None Mr (Yes) 

Mohammad et al. (2009) A-4, A-6, A-7-
5, A-7-6 

None Mr (Yes) 

Mooney and Toohey (2010) A-6, A-7-6 Lime UCS, Mr (Yes) 
aSoils according to USCS and AASHTO classification; bCompaction and Atterberg limit tests are not included in the 
list; Mr: Resilient Modulus test; CBR: California Bearing Ratio; FA: Fly Ash; PC: Portland Cement; CKD: Cement 
Kiln Dust; LKD: Lime Kiln Dust 
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Table 5.2 Average Model Constants for P-soil Stabilized with Lime, CFA and CKD 
 

k1 k2 k3 M r* k1 k2 k3 M r*

Raw soil 803 0.342 -0.341 103 1,266 0.223 -0.248 103

3% Lime 3,946 0.095 -0.482 604 4,595 0.074 -0.456 604

6% Lime 4,384 0.073 -0.545 713 5,087 0.037 -0.522 764

9% Lime 4,177 0.274 -0.541 650 5,754 0.143 -0.470 668

5% CFA 1,297 0.403 -0.323 162 2,285 0.276 -0.209 161

10% CFA 4,145 0.195 -0.175 472 5,415 0.134 -0.122 468

15% CFA 7,960 0.025 -0.635 1,417 8,185 0.013 -0.625 1,415

5% CKD 2,924 0.110 -0.371 404 3,396 0.073 -0.340 403

10% CKD 14,547 0.004 -0.296 1,920 14,805 0.005 -0.295 1,935

15% CKD 22,399 -0.046 -0.100 2,505 21,163 -0.024 -0.117 2,500

Percentage 
of additive
Raw soil 1,296 2.563 0.439 107 1,425 0.040 -1.580 118

3% Lime 10,801 1.410 0.246 646 8,593 -0.217 -2.352 685

6% Lime 11,881 1.699 0.303 794 9,454 -0.317 -2.030 799

9% Lime 9,551 2.013 0.397 730 8,462 0.007 -1.932 678

5% CFA 1,797 3.339 0.528 165 2,251 0.275 -1.748 175

10% CFA 5,176 1.770 0.652 476 5,402 0.098 -0.364 513

15% CFA 23,751 1.057 0.277 1,436 17,650 -0.362 -2.424 1,436

5% CKD 6,328 1.367 0.373 447 5,256 -0.142 -1.476 458

10% CKD 27,751 0.943 0.441 1,997 22,667 -0.211 -1.549 1,988

15% CKD 29,077 0.889 0.719 2,534 26,139 -0.110 -0.548 2,534

*M r values calculated at pa = 101.28 kPa, σ3 = 13.78 kPa, σd = 41.34 kPa, θ = 82.68 kPa, τoct = 12.99 kPa

Percentage 

of additive

Model 1: Mr = k1pa x (θ/pa)
k2 x (σd/pa)

k3 Model 2: Mr = k1pa x (σ3/pa)
k2 x (σd/pa)

k3

Model 3: Mr = k1pa x (k2)
σ3/pa x (k3)

σd/pa Model 4: Mr = k1pa x (θ/pa)
k2 x (τoct/pa+1)

k3

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



179 
 

 
 
 

Table 5.3 Average Model Constants for V-soil Stabilized with Lime, CFA and CKD 
 

k1 k2 k3 M r* (MPa) k1 k2 k3 M r* (MPa)

Raw soil 575 0.285 -0.408 79 856 0.198 -0.328 78

3% Lime 8,419 0.010 0.030 828 8,546 0.011 0.032 822

6% Lime 6,430 0.030 -0.074 692 6,698 0.020 -0.066 692

9% Lime 6,098 0.043 -0.085 660 6,460 0.028 -0.071 660

5% CFA 4,695 0.082 -0.145 533 5,252 0.055 -0.119 531

10% CFA 8,763 0.016 -0.092 960 8,964 0.016 -0.089 954

15% CFA 11,116 0.060 -0.010 1,123 12,032 0.038 0.008 1,122

5% CKD 4,827 0.117 -0.182 562 5,342 0.079 -0.149 529

10% CKD 14,013 -0.015 -0.136 1,609 13,773 -0.013 -0.141 1,624

15% CKD 18,950 0.028 0.016 1,881 19,370 0.015 0.024 1,865

Percentage 
of additive
Raw soil 1,122 2.310 0.337 82 1,102 0.012 -1.852 89

3% Lime 7,792 1.077 1.111 832 8,147 0.038 -0.069 812

6% Lime 7,416 1.098 0.807 697 7,198 -0.018 -0.274 708

9% Lime 7,130 1.132 0.799 670 6,961 -0.011 -0.399 673

5% CFA 5,884 1.270 0.718 538 5,728 -0.017 -0.322 560

10% CFA 10,729 0.583 0.318 632 10,188 -0.050 -0.320 1,003

15% CFA 10,804 1.177 1.012 1,124 11,267 0.053 -0.014 1,127

5% CKD 6,034 1.431 0.624 529 5,936 -0.011 -0.840 545

10% CKD 19,512 0.970 0.703 1,704 16,979 -0.098 -0.423 1,667

15% CKD 17,549 1.090 1.166 1,915 17,092 -0.094 0.653 1,909

*M r values calculated at pa = 101.28 kPa, σ3 = 13.78 kPa, σd = 41.34 kPa, θ = 82.68 kPa, τoct = 12.99 kPa

Percentage 

of additive

Model 1: Mr = k1pa x (θ/pa)
k2 x (σd/pa)

k3 Model 2: Mr = k1pa x (σ3/pa)
k2 x (σd/pa)

k3

Model 3: Mr = k1pa x (k2)
σ3/pa x (k3)

σd/pa Model 4: Mr = k1pa x (θ/pa)
k2 x (τoct/pa+1)

k3
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Table 5.4 Average Model Constants for C-soil Stabilized with Lime, CFA and CKD 
 

k1 k2 k3 M r* (MPa) k1 k2 k3 M r* (MPa)

Raw soil 1,214 0.026 -0.315 162 1,275 0.026 -0.306 161

3% Lime 3,432 0.060 -0.173 401 3,736 0.042 -0.155 400

6% Lime 5,879 0.044 -0.154 678 6,257 0.029 -0.139 677

9% Lime 4,332 0.086 -0.204 518 4,863 0.058 -0.180 516

5% CFA 2,057 0.163 -0.249 252 2,583 0.115 -0.203 250

10% CFA 2,591 0.175 -0.221 309 3,286 0.121 -0.170 304

15% CFA 3,420 0.231 -0.179 388 4,735 0.159 -0.113 386

5% CKD 1,235 0.171 -0.294 157 1,566 0.119 -0.248 156

10% CKD 2,958 0.076 -0.143 335 3,295 0.053 -0.121 335

15% CKD 7,732 -0.030 -0.111 871 7,447 -0.021 -0.115 872

Percentage 
of additive
Raw soil 2,477 1.118 0.354 167 2,050 -0.186 -1.679 176

3% Lime 4,830 1.197 0.603 408 4,531 -0.055 -0.829 420

6% Lime 7,884 1.123 0.663 686 7,424 -0.060 -0.750 695

9% Lime 6,413 1.279 0.544 524 5,920 -0.080 -0.637 564

5% CFA 3,121 1.622 0.514 257 3,086 -0.002 -1.287 268

10% CFA 3,615 1.219 0.305 232 3,705 0.019 -1.234 322

15% CFA 4,111 1.973 0.693 393 4,591 0.121 -0.951 404

5% CKD 2,089 1.648 0.437 162 2,034 -0.041 -1.646 170

10% CKD 3,811 1.261 0.673 339 3,725 -0.019 -0.712 348

15% CKD 10,126 0.936 0.718 888 9,261 -0.099 -0.597 890

*M r values calculated at pa = 101.28 kPa, σ3 = 13.78 kPa, σd = 41.34 kPa, θ = 82.68 kPa, τoct = 12.99 kPa

Percentage 

of additive

Model 1: M r = k1pa x (θ/pa)
k2 x (σd/pa)

k3 Model 2: M r = k1pa x (σ3/pa)
k2 x (σd/pa)

k3

Model 3: Mr = k1pa x (k2)
σ3/pa x (k3)

σd/pa Model 4: Mr = k1pa x (θ/pa)
k2 x (τoct/pa+1)

k3
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Table 5.5 Analyses of Variance on Test Results of Lime-, CFA- and CKD-Stabilized P-, 
V- and C-Soil Specimens Using Statistical Model 3 

 
Independent Variable Parameter 

Estimate 
Standard 
Error 

Type II Sum 
of Squares 

F-value Pr>F aSignificant 

Intercept 1.64172 0.09938 2.11074 272.91 <.0001 Yes 
Log(UCS/Pa)

b 1.31709 0.03879 8.91834 1153.12 <.0001 Yes 
Log(MC)b -0.25544 0.05975 0.14135 18.28 <.0001 Yes 
Log(pHs)

c -0.59169 0.15015 0.1201 15.53 <.0001 Yes 
Log(CECs)

c 0.15846 0.06837 0.04154 5.37 0.0206 Yes 
Log(PA)b -0.12202 0.01743 0.37903 49.01 <.0001 Yes 
Log(SiO2)

d -0.10662 0.00984 0.90738 117.32 <.0001 Yes 
Log(SSRm)b 0.29422 0.04942 0.27408 35.44 <.0001 Yes 
(σ3/Pa) x Log(UCS/Pa)

b -0.33687 0.08824 0.11271 14.57 0.0001 Yes 
(σ3/Pa) x Log(MgO)d -0.19567 0.13117 0.01721 2.23 0.0136 Yes 
(σ3/Pa) x Log(LOI)d -0.15934 0.06462 0.04703 6.08 0.0138 Yes 
(σ3/Pa) x Log(SSRm)b 0.26706 0.09875 0.05657 7.31 0.0069 Yes 
(σd/Pa) x Log(UCS/Pa)

b 0.43256 0.06043 0.3963 51.24 <.0001 Yes 
(σd/Pa) x Log(DUW/γw)b -1.04209 0.3414 0.07206 9.32 0.0023 Yes 
(σd/Pa) x Log(CC)c 0.27905 0.04761 0.26567 34.35 <.0001 Yes 
(σd/Pa) x Log(CaO)d -0.18864 0.05323 0.09714 12.56 0.0004 Yes 
aSignificant at probability level (alpha) = 0.05;  bmolded specimen properties; csoil properties; dadditive properties; 
σd: deviatoric stress; σ3: confining stress; Pa: atmospheric pressure (101.283 kPa); UCS: 28-day unconfined 
compressive strength; MC: molding moisture content; DUW: molding dry unit weight (kN/m3);  γw: unit weight of 
water (9.81 kN/m3); PA: additive content (%); pHs: pH of pure soil; CC: clay content in soil (%); SiO2: silica 
content of additive (%); MgO: magnesium oxide content of additive (%); LOI: loss on ignition; SSR: silica 
sesquoxide ratio of mix 
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Table 5.6 Weight and Bias Values for MLPN 25-9-1 

 

Weights (ij) 
Number of hidden layer neurons (j) 
1 2 3 4 5  6 7 8 9 

Between Input and Hidden Layer 
W1j (UCS/Pa) 0.7849 -0.2768 -0.4757 -0.7488 -0.3004 -0.6057 -0.2175 -0.6374 -0.5808 
W2j (MC) -0.2339 -0.3610 -0.4485 -0.3660 0.1410 0.0192 -0.3717 -0.2784 -0.0769 
W3j (DUW/γw) 0.1414 0.0763 0.1269 0.0510 0.3162 -0.4473 -1.9853 -1.0919 0.9099 
W4j (P200) -0.1455 0.2050 -0.6296 -0.3227 -0.0140 0.2394 -0.0842 -0.6616 -0.0189 
W5j (PI) -0.1268 -0.0302 0.4097 -0.0823 -0.0651 0.1827 -0.2170 0.0563 -0.0482 
W6j (CC) 0.0414 -0.0964 0.0139 -0.0245 -0.1234 0.5100 -0.2283 0.1011 0.3436 
W7j (pHs) 0.6026 0.6030 -0.1112 0.4181 0.0286 0.5532 0.2384 0.2701 0.2605 
W8j (SSAs)  0.0932 -0.0469 0.2761 0.2811 -0.0070 0.0062 -0.0125 -0.0087 -0.0044 
W9j (CEC) -0.1407 0.5116 1.4874 0.7090 0.1179 0.2400 -0.1110 0.4663 0.3095 
W10j (PA) 0.3427 -0.4081 0.5317 0.5927 -0.1045 -0.1115 -0.0787 -0.0072 -0.0460 
W11j (SiO2) -0.0769 -0.0565 -0.0937 -0.0767 -0.0852 -0.0178 -0.0697 0.0973 0.0112 
W12j (Al2O3) 0.2679 0.0830 0.2180 0.3672 -0.1492 0.1319 0.0133 -0.1156 -0.2717 
W13j (Fe2O3) 0.0508 0.8503 -0.1267 -0.1323 -0.1328 0.0454 -0.2398 -0.1594 -0.1061 
W14j (SSRa) -0.3170 -0.2456 -0.2431 -0.2376 -0.2884 -0.0872 0.0412 0.6130 -0.0230 
W15j (CaO) -0.0830 -0.0955 -0.2227 0.0881 -0.0618 0.1889 -0.3144 0.0350 0.4890 
W16j (MgO) -0.0860 0.0378 -0.0123 -0.4499 0.1731 0.0169 -0.2102 0.3254 0.0249 
W17j (ACC) 0.1233 0.0478 0.1394 0.1016 0.0063 -0.1280 0.2603 0.4927 -1.0806 
W18j (FL) 0.6707 -1.5454 -0.7059 0.0926 0.8779 0.0639 0.4461 0.1220 0.2625 
W19j (LOI) 0.2201 -0.7126 0.0994 0.2387 -0.2065 0.3945 -0.1745 -0.0968 -0.1482 
W20j (P325) 0.0653 -0.5064 -0.0065 0.2077 -2.7049 -0.6988 0.1553 0.2068 -0.3732 
W21j (pHa) -0.1558 -0.0510 0.2445 -0.0054 0.6924 0.0392 -0.1549 -0.0408 0.9005 
W22j (SSAa) -0.1839 -0.0622 0.4394 -0.5280 0.1013 -0.0296 0.0777 -0.1034 0.0928 
W23j (SSRm) 0.0014 0.2497 0.0841 -0.3350 -0.3646 -0.1201 -0.1905 -0.2597 -0.3332 
W24j (σ3/Pa) 0.2257 -0.6296 -0.3056 0.1483 0.1646 0.1695 0.0118 0.1503 0.1561 
W25j (σd/Pa) 0.1277 0.1610 0.1236 0.1076 0.0899 0.1620 0.0953 0.0014 -0.5593 
Bias Qj -0.3421 -0.0373 0.2645 -0.1617 -0.3442 0.0294 0.0885 -0.0228 0.2484 

Between Hidden and Output Layer 
W2

j (Mr/Pa) 1.4071 0.6943 0.7252 1.3595 0.4442 -0.3108 -0.2729 -0.7253 0.6157 
Bias Q 0.6435         
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Table 5.7 Sensitivity Study for the Statistical Model 3 
 

Independent 
Variables 

Averagea Standard 
Deviation 

Percent 
Differentb + 

Rankb + Percent 
Differentc –  

Rankc –  

Primary Mr (MPa) 690.4 --- --- --- --- --- 
UCS (kPa) 810.5 543.3 17.85 1 -23.76 1 
MC (%) 77.3 43.3 -1.31 8 1.45 8 
DUW (kN/m3) 19.3 4.0 -0.48 13 0.49 13 
CC (%) 17.6 9.1 0.91 9 -1.10 10 
pHs 37.5 13.6 -4.04 2 4.65 2 
CEC (meq/100g) 98.3 25.6 1.78 5 -2.27 5 
PA (%) 14.4 6.9 -1.36 7 1.74 6 
SiO2 (%) 8.4 4.0 -1.99 4 3.12 4 
CaO (%) 3.6 1.8 -0.66 12 0.80 12 
MgO (%) 46.2 18.0 -0.88 10 1.29 9 
LOI (%) 17.1 20.1 -0.66 11 0.94 11 
SSRm 11.6 4.5 3.70 3 -4.59 3 
σ3 (kPa) 10.6 4.5 0.18 14 -0.18 14 
σd (kPa) 27.6 11.2 -1.64 6 1.64 7 
areference value; bindependent variable plus one-half standard deviation (Note: some plus one standard 
deviation values are out of variables range); cindependent variable minus one-half standard deviation 
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Table 5.8 Sensitivity Study for the Neural Network MLP 25-9-1 Model 
 

Independent 
Variables 

Averagea Standard 
Deviation 

Percent 
Differentb + 

Rankb + Percent 
Differentc –  

Rankc –  

Primary Mr (MPa) 889.8 --- --- --- --- --- 
UCS (kPa) 810.5 543.3 32.72 1 -36.14 1 
MC (%) 77.3 43.3 6.34 2 -5.86 2 
DUW (kN/m3) 19.3 4.0 1.30 14 0.13 25 
P200 (%) 16.5 0.8 -3.04 5 3.65 5 
PI 92.8 4.7 3.94 3 -2.96 8 
CC (%) 17.6 9.1 0.08 24 -0.59 22 
pHs 37.5 13.6 1.59 9 -0.84 21 
SSAs (m

2/g) 7.3 2.0 -2.67 7 1.03 18 
CEC (meq/100g) 98.3 25.6 -1.37 13 0.96 20 
PA (%) 14.4 6.9 -3.35 4 3.01 7 
SiO2 (%) 8.4 4.0 0.85 20 -0.99 19 
Al 2O3 (%) 17.8 15.3 -0.24 23 -1.07 17 
Fe2O3 (%) 7.1 7.4 -1.40 12 -2.47 10 
SSRa 2.7 2.3 -2.59 8 0.28 23 
CaO (%) 3.6 1.8 1.26 15 -2.81 9 
MgO (%) 46.2 18.0 -0.79 22 -1.89 14 
ACA (%) 2.5 1.9 -0.95 17 -1.54 16 
FL (%) 1.4 0.9 -0.92 18 -4.23 3 
LOI (%) 17.1 20.1 0.97 16 -2.27 11 
P325 (%) 19.7 13.5 1.47 11 -3.66 4 
pHa 92.7 5.2 2.73 6 -1.81 15 
SSAa 12.3 0.3 0.80 21 -3.36 6 
SSRm 11.6 4.5 0.85 19 -2.12 13 
σ3 (kPa) 10.6 4.5 -0.02 25 0.16 24 
σd (kPa) 27.6 11.2 -1.55 10 2.12 12 
areference value; bindependent variable plus one-half standard deviation (Note: some plus one standard 
deviation values are out of variables range); cindependent variable minus one-half standard deviation 
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Figure 5.1 Frequency diagram for (a) Coefficient of Regression (R2), and (b) Se/Sy 
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Figure 5.2 Predicted Mr Versus Measured Mr for P-, V- and C-soil using Statistical 
Model 1 

 
Figure 5.3 Predicted Mr Versus Measured Mr for P-, V- and C-soil using Statistical 

Model 2 
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Figure 5.4 Predicted Mr Versus Measured Mr for P-, V- and C-soil using Model 3 

 
Figure 5.5 Predicted Mr Versus Measured Mr for K-soil using Statistical Models 1, 2 and 

3 
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Figure 5.6 Predicted Mr Versus Measured Mr for P-, V- and C-soil using Statistical 

Model 3 Developed using All and Selected Parameters 
 
 

 
Figure 5.7 Selection of Number of Nodes in Hidden Layer (RBFN) for Training and 

Testing Sets 
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Figure 5.8 Predicted Mr Versus Measured Mr for P-, V- and C-soil using RBFN 25-18-1 

Neural Network Model 

 
Figure 5.9 Predicted Mr Versus Measured Mr for Two Mr Tests: 3% lime-stabilized P-soil 

and 5% CKD-stabilized V-soil using RBFN 25-10-1 Neural Network Model 
 
 

0

500

1000

1500

2000

2500

3000

3500

0 500 1000 1500 2000 2500 3000 3500

P
re

d
ic

te
d

 M
r
(M

P
a)

Measured Mr (MPa)

P-soil V-soil
C-soil Equality Line

R2 = 0.6207

0

500

1000

1500

2000

2500

3000

3500

0 500 1000 1500 2000 2500 3000 3500

P
re

d
ic

te
d

 M
r
(M

P
a)

Measured Mr (MPa)

Equality Line

R2 = 0.9012



190 
 

 
Figure 5.10 Selection of Number of Nodes in Hidden Layer (MLPN) for Training and 

Testing Sets 
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Figure 5.11 Neural Network Architecture of MLPN 25-9-1  
 
 
 
 

 

I 1 

  I 2 

I 25 

W1-1 

W1-2 

W1-3 

W1-9 

W2-1 

W2-2 

W2-3 

W2-4 

W2-9 

W25-1 

W25-2 

W1-4 

W25-3 

W25-4 

W25-9 

W21-1 

W22-1 

W23-1 

W24-1 

W225-1 

Input 
Layer 

Hidden 
Layer 

Output 
Layer 



192 
 

 
Figure 5.12 Predicted Mr Versus Measured Mr for P-, V- and C-soil using MLPN 25-9-1 

Neural Network Model 

 
Figure 5.13 Predicted Mr Versus Measured Mr for K-soil Using RBFN 25-18-1 and 

MLPN 25-9-1 Neural Network Models 
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CHAPTER 6                                                                          
BEHAVIOR OF CEMENTITIOUSLY STABILIZED SUBGRADE SOILS UNDER 

TENSION AND FLEXURE  

6.1 Introduction 

In the absence of any stress relief layer such as aggregate base, the location of 

critical tensile stress completely changes the potential performance of the flexible 

pavement, from the mechanistic standpoint (e.g., AASHTO, 2004; Adaska and Luhr, 

2004; Lav et al., 2006; Molenaar and Pu, 2008; Agostinacchio et al., 2008). This 

phenomenon is demonstrated through parametric study of different pavement sections, as 

illustrated in Table 6.1. The pavement configuration is shown in Figure 6.1 which is 

commonly used by Oklahoma Department of Transportation (ODOT) in low water table 

regions and defined as semi-rigid type flexible pavement by the new MEPDG, as will be 

discussed later in Section 7.2. The section consists of three layers: (1) The top layer is 

178 mm (7 in) thick asphalt concrete (AC); type “S-4” asphalt concrete with Mr value of 

approximately 3,445 MPa containing PG 64-22 binder is used. (2) The layer below is a 

203 mm (8 in) thick cementitiously stabilized subgrade layer; V-soil stabilized with 6% 

lime or 10% CFA or 10% CKD is used for making the case realistic and design Mr values 

are reproduced from Table 5.3. (3) The bottom layer is the natural subgrade soil (V-soil). 

The linear analysis of the aforementioned section is conducted using a multi-layer elastic 

theory-based computer program, KENLAYER (Huang, 2004), for different cases. Case 1 

is the only case without any stabilized layer. This is achieved by using design Mr value of 

raw V-soil for both stabilized and natural subgrade layers. In Case 2, analysis was 

conducted after reducing the thickness of AC layer by 50%, whereas for Case 3 thickness 

of stabilized layer was reduced by 50%. Case 4 consists of AC layer with a Mr value of 
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1,723 MPa which is approximately 50% of the Mr value of 10% CKD-stabilized V-soil. 

Cases 5 (6% lime-stabilized layer), 6 (10% CFA-stabilized layer) and 7 (10% CKD-

stabilized layer) were evaluated to demonstrate the effect of stabilized subgrade layer 

moduli on critical stresses. Following discussion can be drawn from the critical responses 

calculated by using KENLAYER and presented in Table 6.1:  

1. Case 1 indicates that the critical tensile stresses are present only at the bottom of AC 

layer. However, a comparison of Cases 5, 6, and 7 with Case 1 reveals increase in 

tensile stresses with increase in the Mr value of stabilized subgrade layer. For 

example, an increase in Mr value by 1,978% (10% CKD) induced tensile stresses of 

approximately 372 kPa (54 psi) at the bottom of stabilized subgrade layer. Also, 

decrease in tensile stresses at the bottom of AC layer by 85% is evident from Table 

6.1.  

2. A comparison of Case 3 with Case 7 indicates that decrease in stabilized subgrade 

layer thickness by 50% causes approximately 59% increase in tensile stresses at the 

bottom of stabilized subgrade layer. However, the tensile stresses at the bottom of AC 

layer also increases by approximately 108%.  

3. A comparison of Cases 2 and 4 with Case 7 shows disappearance of tensile stresses at 

the bottom of AC layer (positive stresses). On the other hand, an increase in tensile 

stress at the bottom of stabilized subgrade by a factor of 63% and 16% was observed 

for Case 2 and 4 with respect to Case 7, respectively.  

4. It is also interesting to note that the maximum tensile stress of 605 kPa (88 psi) is 

generated at the bottom of stabilized subgrade layer for Case 2. This tensile stress 
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value is higher than the indirect tensile strength and modulus of rupture values of 6% 

lime-, 10% CFA- and 10% CKD-stabilized V-soil specimens, as presented later. 

From above discussion, it is clear that the presence of thin AC layers in 

combination with stabilized subgrade layer having high Mr values generates critical 

tensile stresses at the bottom of stabilized subgrade layer. As the pavement is subjected to 

repeating loading, stabilized subgrade layer experiences fatigue-induced cracking which 

may accelerate to surface in the form of reflective cracking (Adaska and Luhr, 2004; Lav 

et al., 2006; Molenaar and Pu, 2008; Agostinacchio et al., 2008; Saxena et al., 2010; 

Prozzi and Aguiar-Moya, 2010).  

Consequently, the primary objective of the study presented herein is to evaluate 

engineering properties, namely, flexural strength (or modulus of rupture), flexural 

stiffness (Mrf) and fatigue life of selected soils stabilized with different cementitious 

additives namely, 6% lime, 10% CFA and 10% CKD. However, due to difficulties 

associated with preparing and handling of a beam specimen, indirect tensile strength and 

resilient modulus in indirect tension (Mrt) on cylindrical specimens are also evaluated, as 

a possible alternative to the flexural beam test. 

It is important to note that the potential of reflection of stabilized subgrade cracks 

through asphalt surface could be minimized by reducing crack size through the use of 

“pre-cracking” (Scullion, 2002; Guthrie et al., 2002; Adaska and Luhr, 2004), and relief 

of stress concentrations through the use of aggregate bases and geosynthetic layers 

(Adaska and Luhr, 2004; Luo and Prozzi, 2008) in the pavement structure. Also, the 

actual stresses and strains measured in the field will be different than the responses 

calculated using KENLAYER (Solanki et al., 2009c). This difference between the 
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measured and calculated responses could be attributed to the major assumptions of the 

layered elastic theory used by KENLAYER. The major assumptions of the layered elastic 

theory are the following (Huang, 2004; Loulizi et al., 2006): (1) each layer is assumed 

homogeneous, isotropic, and linear elastic; (2) all materials are weightless (no inertia 

effect is considered); (3) all layers are assumed to be infinite in lateral extent and layer 

interfaces are assumed to be completely bonded; (4) all layers have a finite thickness 

except for the subgrade, which is assumed to be infinite; (5) pavement systems are loaded 

statically over a uniform circular area; and (6) the compatibility of strains and stresses is 

assumed to be satisfied at all layer interfaces.   

6.2 Previous Studies 

As noted in Section 6.1, cementitiously stabilized subgrade layer is subjected to 

tensile stresses and strains under applied traffic loads. Therefore, tensile properties are 

typically required for design purposes. The direct tension test is generally believed to 

provide a more accurate measure of tensile characteristics. However, the primary 

disadvantage with the direct tension test is that no standard test has been adopted by 

ASTM or AASHTO to provide a direct measurement of the tensile strength of 

cementitiously stabilized materials because the means of holding the specimens create 

secondary stresses that influence the test results. Thus, the test results are difficult to 

reproduce (Arellano and Thompson, 1998). The splitting tension and the flexural test are 

the two primary types of indirect tension modes utilized to characterize tensile behavior. 

The following section details the findings from previous studies conducted for 

characterizing cementitiously stabilized materials in indirect tensile or fatigue modes.  
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6.2.1 Indirect Tensile Characteristics 

Only a few studies are available in the literature which evaluated indirect tensile 

characteristics of cementitiously stabilized materials (Table 6.2). These studies are either 

limited to one type of additive (e.g., Mohammad et al., 2000; Khattak and Alrashidi, 

2006) or applicable for stabilized aggregate base courses (e.g., White and Gnanendran, 

2005; Gnanendran and Piratheepan, 2008).  

In his earlier study, Raad (1976) demonstrated that the tensile strengths from the 

indirect tensile strength test and the direct tension test are about equal. The validity of 

analysis was subsequently demonstrated through comparisons of direct tension and 

indirect tensile strength tests. In another study, Raad (1988) explained the difference of 

modulus in tension and compression (i.e., bimodular properties) and the practical 

significance of bimodular behavior in response prediction and fracture of stabilized 

layers. It was found that the tensile modulus for a given applied stress is lower than the 

compressive modulus. Also, tensile modulus was found much greater (2.6 to 11.6 times) 

than the flexural modulus obtained from central beam deflections. The bimodular ratio 

(modulus in compression/modulus in tension) was found to be stress dependent and 

increased in general for stress ratio (applied stress/ultimate strength) greater than 80%.  

In a laboratory study, Mohammad et al. (2000) evaluated indirect tensile 

characteristics of soil-cement mixtures used in the construction of soil base courses for 

test lanes at the Louisiana Pavement Testing Facilities. The soil used in the mixtures was 

silty clay (A-4) with a plasticity index of 22. The indirect tensile characterization test 

matrix included indirect tensile strength and indirect tensile resilient modulus tests on 

cylindrical specimens having 102 mm diameter (4 in) and 64 mm (2.5 in) height. It was 
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found that increase in compaction effort and curing period significantly increased the 

indirect tensile strength. Also, decrease in cement content significantly reduced the 

indirect tensile strength and Mrt.  

Sobhan and Mashnad (2003a) evaluated indirect tensile strength of recycled 

aggregates stabilized with Portland cement, fly ash and high density polyethylene 

(HDPL) fibers. Twenty-one different mixture designs were utilized to test cylindrical 

specimens in indirect tension. The mixture proportions included 4 – 8% cement, 4 – 8% 

fly ash, 0.25 – 1.25% waste HDPE strips, and 84 – 92% recycled aggregate. It was found 

that inclusion of 0.5% of plastic strips to this mixture significantly improved the post 

peak load-bearing capacity or toughness of the specimens in indirect tension mode. The 

toughness was determined by calculating the total areas under the load deformation 

curves.  

In a study from Australia, White and Gnanendran (2005) evaluated effect of 

compaction methods and density on the indirect tensile strength and Mrt. Two host 

materials, namely, reclaimed material from the base of an existing road pavement, and 

new quarried crushed rock stabilized with slag-lime were investigated. Specimens were 

compacted by using standard Proctor as well as gyratory compaction methods. It was 

found that the influence of compaction method on indirect tensile strength and Mrt is not 

significant.  

In a recent study, Gnanendran and Piratheepan (2008) characterized lightly 

stabilized granular material by indirect tensile testing. The material selected for this 

research was a freshly quarried granular base material (sandy gravel with some fines) 

which was stabilized with slag-lime. The cylindrical specimens were prepared by using 
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gyratory compaction method and cured in a humidity room. After 28 days, specimens 

were tested for indirect tensile strength and Mrt. It was found that the addition of slag-

lime is effective in enhancing the indirect tensile strength. For example, the strength 

value increased by approximately 50% when the slag-lime content was increased from 3 

to 4%. The Mrt was found to increase approximately linearly with the amount of slag-

lime, density and indirect tensile strength.  

6.2.2 Flexure Characteristics 

The flexural characteristics of cementitiously stabilized materials have been 

studied in terms of radius of curvature, flexural stiffness, modulus of rupture, and fatigue 

life. One of the earliest studies of the flexural characteristics of lime- and cement-

stabilized soil was conducted by Laguros (1965). The Winkler model was used to provide 

the approximation for stabilized beams resting on natural subgrade. This model required 

evaluation of modulus of rupture of stabilized beams. In this study, however, no 

laboratory tests were performed for evaluating the fatigue life and flexural strength of 

stabilized soil specimens.  

In another early study, Larsen and Nussbaum (1967) attempted to duplicate 

pavement loading conditions by testing cement-stabilized soil beams supported on a 

simulated subgrade composed of neoprene pads. Varying the number of pads simulated 

variations in subgrade support. A total of one fine-grained and two coarse-grained soils 

were used for preparing beams. The following fatigue model based on radius of curvature 

of the loaded beam as the basic response was used to characterize the observed behavior: 

Rc/Ri = a Nf
-b         (6.1) 
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where, Rc = critical radius of curvature, the radius of curvature that would cause failure 

due to a single load application, Ri = the initial radius of curvature of the test beam under 

the fatigue loading, Nf = number of load applications to failure, and a, b = fatigue factors 

determined from the tests. It is important to note that the failure was defined as the 

development of a visible crack. Also, no affect of subgrade strength on flexural 

characteristics demonstrated need of more fundamental models based on stress or strain 

levels. 

Raad (1985) conducted flexural tests on cement-stabilized silty clay specimens. 

Cylindrical specimens (diameter = 101.6 mm, i.e., 4 in; height = 76.2 mm, i.e., 3 in) and 

beam specimens 533 mm x 152 mm x 152 mm (21 in x 6 in x 6 in) were prepared using a 

drop hammer compactor. All the specimens were tested after curing for 42 days in a 

humidity room. However, this study was limited to only one soil and one additive. No 

attempt was made to evaluate the flexural characteristics of soils stabilized with additives 

commonly used in Oklahoma, namely, lime, CFA and CKD. 

Bhattacharya and Pandey (1986) stabilized laterite soil with lime to evaluate the 

flexural strengths and fatigue life. Tests were carried out on four types of stabilized 

laterite soil beams compacted at three dry density ranges – light, medium, and heavy. The 

beams were subjected to rate of loading of 1.83 Hz (110 cycles/min) with a cycle length 

of 0.54 sec and the distribution of loading to unloading time adjusted to 1:1. It was 

reported that the fatigue resistance of lime-laterite soils is increased to a considerable 

extent at the higher dry density. Heavily compacted materials can be subjected to almost 

twice the flexural stresses as compared with the lightly compacted beams for the same 

number of repetitions of failure. 
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In another study by Laguros and Keshawarz (1987), the effectiveness of shale 

stabilization with cement (14%), quicklime (4.5%), fly ash (25%) and a mixture of 8% 

cement + 3% quicklime + 18% fly ash was evaluated under flexural loads. Beam 

specimens 406 mm x 101 mm x 76 mm (16 in x 4 in x 3 in) were molded, cured and 

tested under the third point beam loading configuration. An increase in modulus of 

rupture and modulus of elasticity in flexure due to stabilization was reported. 

In the laboratory, two types of controlled loading are generally applied for 

flexural characterization: constant stress (load) and constant strain (deformation). In 

constant stress testing, the applied stress during the fatigue testing remains constant. As 

the repetitive load causes damage in the test specimen, the stiffness of the specimen is 

decreased while tensile strain is increased (El-Basyouny and Witczak, 2005). In the 

constant strain test, however, the strain remains constant with the number of repetitions. 

Because of specimen damage due to repetitive loading, the stress is reduced leading 

decreased stiffness. The constant stress type of loading is generally considered applicable 

to thick asphalt pavements (> 200 mm, i.e., 8 in). On the other hand, the constant strain 

type of loading is considered more applicable to thin asphalt pavement layers (El-

Basyouny and Witczak, 2005).  

In the literature, both stress- and strain-based model are available for 

cementitiously stabilized layers. A summary of such stress- and strain-based models is 

provided in Table 6.3. Thompson (1986, 1994) used a stress-based model which was later 

adopted by Illinois Department of Transportation for pavement designs. The relationship 

which shows the stress ratio (applied stress/ultimate strength) as a function of the number 

of loading cycles to failure is represented by the following equation: 
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log(Nf) = (0.9722 – S)/0.0825       (6.2) 

where, S = stress ratio (applied flexural stress/modulus of rupture). 

Sobhan and Mashnad (2003a) evaluated the improvement in flexural strength and 

fatigue life due to the addition of HDPE fibers to recycled aggregates and Portland 

cement, with or without fly ash. Beam specimens 762 mm x 152 mm x 152 mm (30 in x 

6 in x 6 in) were prepared by compacting the mix in detachable steel molds in three equal 

layers. The compacted beams were cured for 28 days and tested in a third-point loading 

configuration for modulus of rupture and fatigue life. It was reported that aggregates 

stabilized with cement and fly ash could develop adequate strength to serve as a high 

quality base course material. Additionally, the following relationship between the stress 

ratio and number of loading cycles to failure (or fatigue life) was reported: 

S = - 0.038 ln(Nf) + 1.047       (6.3) 

Mallela et al. (2004) and AASHTO (2004) also identified 28-day flexural strength 

as one of the important pavement performance parameters for stabilized materials. 

According to AASHTO (2004), the stabilized layer must resist flexural and tensile 

stresses to prevent the occurrence of fatigue cracks. Thus, its fatigue strength needs to be 

considered. In such instances, the number of allowable load applications is calculated in 

accordance with the following equation, also known as ‘transfer function’: 

log(Nf) =(k1β1 – S)/ k2β2        (6.4) 

or, log(Nf) =(a1 – S)/ a2         (6.5) 

where, k1, k2 = global calibration factors, β1, β2 = local calibration factors, and a1, a2 = 

constants.  
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Lav et al. (2006) also recognized fatigue cracking as the primary mode of failure 

of stabilized materials in which cracks initiate due to the repeated tensile stresses. 

Mixtures of class F fly ash with different percentages of cement (2%, 4%, 8%, and 10%) 

were used as stabilized base material. Utilizing accelerated full scale road test data for the 

fatigue performance of mixtures and performing a mechanistic-empirical design 

procedure, required layer thickness for different lives were obtained for different amount 

of cement content. It was reported that cement content is the most important parameter 

controlling the design life (fatigue performance) of stabilized layers. Also, fatigue 

performance of stabilized fly ash was established using the following relationship: 

Nf =(a/ µε)b         (6.6) 

where, µε = maximum value of the initial tensile strain (microstrain), and a, b = 

regression coefficients. 

In another study by Sobhan and Das (2007), flexural characteristics were 

evaluated by testing stabilized beam specimens under a constant stress mode. A total of 

three different mixes containing different percentages of recycled aggregates, cement and 

fly ash were used. Eight prismatic beam specimens with dimensions of 762 mm x 152 

mm x 152 mm (30 in x 6 in x 6 in) were prepared for the flexural fatigue tests. It was 

found that the fatigue endurance limit of stabilized recycled aggregate is comparable to 

concrete and other traditional stabilized materials. Also, a best-fit curve through the data 

for stabilized beams tested for fatigue life gave following relationship: 

S = - 0.038 ln(Nf) + 1.08       (6.7) 

In a study from Europe, Molenaar and Pu (2008) developed a field fatigue 

relationship for sand cement treated bases which are often used in the Netherlands. The 
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relationship was obtained by an extensive analysis of the Strategic Highway Research 

Program-Netherlands (SHRP-NL) data base which contained performance data of a 

number of pavements with a cement treated base. The following equation for the 

prediction of the fatigue life of cement treated base course materials was proposed: 

log(N) = 8.5 -0.034ε        (6.8) 

where, N = allowable number of 100 kN equivalent single axles, and ε = tensile strain at 

the bottom of the cement treated base due to a 50 kN falling weight load (µm/m). Also, 

an endurance limit for cement treated bases was developed. In case of good load transfer 

across transverse cracks is guaranteed, a strain value of 50 µm/m can be taken as such a 

limit. In case the load transfer across cracks must be assumed to be poor, this limit is 41 

µm/m. 

It is also important to note that the flexural test better simulates the mode of stress 

to which a pavement layer is subjected by wheel loading (Arellano and Thompson, 

1998). However, because elastic behavior does not occur up to failure, the tensile strength 

(i.e., modulus of rupture) obtained by the flexural test is higher than the values obtained 

from direct tension tests (Williams, 1986; Arellano and Thompson, 1998).  

6.3 Soils and Additives 

The two soils: (1) Port series soil (P-soil) and (2) Vernon series soil (V-soil), were 

used to evaluate the indirect tensile and fatigue characteristics. Their properties are 

presented in Section 2.3.1, Chapter 2. P-soil is classified as silty clay with sand (CL-ML) 

while V-soil is classified as lean clay (CL) in accordance with USCS. Also, 6% hydrated 

lime, 10% class C fly ash (CFA) and 10% cement kiln dust (CKD) were used as 
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cementitious additives. Their properties are presented in Section 2.3.2, and summarized 

in Table 2.4.  

6.4 Testing Plan and Details 

As noted earlier, the performance tests conducted in this study included tensile 

strength and resilient modulus in indirect tension for indirect tensile characteristics. On 

the other hand, flexural strength (or modulus of rupture) and fatigue life tests were 

performed for evaluating characteristics of stabilized soil specimens in flexure. All the 

aforementioned tests except fatigue tests were conducted on two replicate specimens for 

each of the eight soil-additive mixtures (raw P-soil, P-soil + 6% lime, P-soil + 10% CFA, 

P-soil + 10% CKD, raw V-soil, V-soil + 6% lime, V-soil + 10% CFA, V-soil + 10% 

CKD) evaluated in this study. Fatigue tests were conducted only on P- and V-soil beams 

stabilized with 6% lime and 10% CKD.   

6.4.1 Specimen Preparation 

The specimens were prepared in a rather unique manner for this study. For 

indirect tensile strength and Mrt, cylindrical specimens having diameter of 101.6 mm (4 

in) and 63.5 mm (2.5 in) were compacted using the Superpave gyratory compactor in a 

single lift. The weight of soil-additive-water mixture used for compaction was selected to 

achieve near OMC and MDD, as discussed in Section 2.5 (Tables 2.6 and 2.8). After 

compaction, specimens were extruded and covered with latex membranes for avoiding 

any moisture loss. Compacted specimens were cured for 28 days in a controlled 

environment as discussed in Section 2.5. A total of 32 cylindrical specimens were 
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prepared, of which 16 were tested for indirect tensile strength, and the remaining 16 for 

Mrt. 

A new laboratory procedure was employed in molding the beam specimens 

(length = 381 mm i.e., 15 in; width = 63.5 mm i.e., 2.5 in; height = 50.8 mm i.e., 2 in) for 

determining flexural characteristics. The procedure consisted of the following steps: (1) 

adding specified amount of additive (6% for lime, 10% for CFA and CKD of dry weight 

of soil) and mixing thoroughly with the raw soil; (2) adding half of the required water 

based on OMC (Tables 2.6 and 2.8) to the soil-additive mixture and mixing thoroughly; 

(3) adding the remaining water and mixing thoroughly until a uniform mixture was 

achieved. The resulting mixture was weighed for required amount to achieve near MDD 

and additional mixture was discarded. A split compaction mold assembly was designed 

and fabricated for compaction (see Figure 6.2a). The mold assembly consists of four parts 

namely, Part A, Part B, Part C and Part D, as shown in Figures 6.2 (a) and (b). Part A 

(406.4 mm x 152.4 mm x 3.6 mm, i.e., 16 in x 6 in x 1/7 in) is the bottom rectangular 

plate and is used to lift the beam once it is extracted from the mold. Parts B (406.4 mm x 

88.9 mm x 158.75 mm, i.e., 16 in x 3.5 in x 6.25 in) and C (152.4 mm x 63.5 mm x 25.4 

mm, i.e., 6 in x 2.5 in x 1 in) are hollow and solid plates, respectively, used for 

supporting the specimen. Part D (381 mm x 63.5 mm x 107.95 mm, i.e., 15 in x 2.5 in x 

4.25 in) is a hollow plate which is pressed inside the mold for preparing the specimen. All 

the four parts were covered with plastic wrap on the facing exposed to the specimen and 

placed inside the main mold assembly of Linear Kneading Compactor, as shown in 

Figure 6.3. It is important to note that according to ASTM C 192 for concrete, the 

minimum cross-sectional dimension of a rectangular section shall be at least three times 
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the nominal maximum size of the coarse aggregate in the concrete for minimizing size 

effect. For the soils used in the study, the nominal maximum size of coarsest particle is 

less than 4.75 mm (0.18 in). Hence, the minimum cross-sectional dimension of 63.5 mm 

(2.5 in) of beam specimen is justified. 

Each beam specimen was compacted in a single lift. Soil-additive-water mixture 

was poured and compacted in the mold by applying a pressure ranging between 3,445 – 

4,823 kPa (500 – 700 psi) using the hydraulic cylindrical arm until the compacted height 

of beam was 50.8 mm (2 in), as shown in Figure 6.3. The average time for preparing a 

beam specimen varied between 45 and 60 minutes. Following the compaction process, 

each specimen was wrapped carefully with a plastic wrap and placed in a controlled 

environment of temperature 23.0 ± 1.7oC (73.4 ± 3.1oF) and a relative humidity of 

approximately 96% for 28 days. A total of 24 beams were prepared, of which 16 were 

tested for modulus of rupture, and the remaining 8 for fatigue life. In fact, the actual test 

matrix included a number of exploratory fatigue tests in addition to the 8 tests. For 

example, some of the beams were tested at lower (< 300) or higher (> 600) microstrain 

level. But those results were not reported in this study because beams either failed within 

few cycles (< 5) or didn’t fail at all in 2 million cycles. No fatigue life test was conducted 

on raw and 10% CFA-stabilized P- and V-soil beam specimens. 

6.4.2 Indirect Resilient Modulus and Tensile Strength Tests 

The test procedure for Mrt consisted of applying six stress sequences, as listed in 

Table 6.4. Each test sequence consisted of a haversine-shaped load pulse having a 

duration of 0.1 second and a rest period of 0.9 second. A Material Testing System (MTS) 

electro-hydraulic test system was used to load the specimen. The load-deformation 
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response was recorded for the last 5 cycles of each stress sequence by using a computer 

controlled FlexTest SE Test Controller, as discussed in Section 2.6.1 (see Figure 2.3). A 

22.2 kN (5,000 lbs) load cell was used for applying load on the specimens, as shown in 

Figure 6.4. The vertical and horizontal deformations were measured by two LVDTs 

having a stroke length of 2.54 mm (0.1 in), attached in the diametrically perpendicular 

direction of one face of the specimen, as shown in Figure 6.4. A closer look of specimens 

with LVDTs is shown in Figure 6.5. As evident from Figure 6.5, specially prepared brass 

rods with pin on one end were prepared. To keep the rods stable on the specimen’s wet 

surface, instant Krazy glue was applied on the end with pin and inserted inside the 

specimen. A gauge length of approximately 71 mm (2.8 in) was used to mount the 

LVDTs on one face of the specimen, as shown in Figure 6.5.  

A set of four specimens were prepared for each soil-additive mixture. Two 

specimens were tested for indirect tensile strength without any LVDTs by loading them 

at a deformation rate of 50.8 mm/min (2 in/min) in accordance with ASTM D 6931 test 

method. The other two specimens were tested for Mrt by applying different stress levels. 

The applied stress level for Mrt test was chosen according to the indirect tensile strength 

of the specimen of each set. A load corresponding to 0.20 stress ratio (applied 

stress/tensile strength) was used for the conditioning sequence. For the remaining five 

sequences, a starting load at the first sequence corresponding to 0.30 stress ratio was used 

and a 0.10 stress ratio increment in each subsequent sequence was applied. In order to 

make full contact between specimen and loading strip, 10% of the peak applied load was 

used as the seating load in each loading cycle. The Mrt for each sequence was calculated 
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from the average recoverable deformation and average load from last five cycles by using 

the following expression (Tarefder, 2003; Navratnarajah, 2006): 
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where, t = thickness of the specimen, P = repeated load, ∆HT = total recoverable 

horizontal deformation, D = diameter of specimen, υ = Poisson’s ratio, and Dg = distance 

between LVDTs measuring horizontal deformations. The value of Poisson’s ratio was 

used as 0.2 consistent with the range of 0.1 – 0.3 reported by the new MEPDG 

(AASHTO, 2004). 

6.4.3 Flexural Strength and Fatigue Life Tests 

As noted in Section 6.2.2, there is no widely accepted laboratory test procedure to 

determine the flexural strength and fatigue life of cementitiously stabilized beam 

specimens. In the present study, beams were tested for flexural strength and fatigue life 

under four-point loading inside a beam fatigue apparatus in accordance with AASHTO T 

321 test method (Figure 6.6). The advantage of using four-point fatigue apparatus is that 

it produces a constant bending moment over the center third span between the H-frame 

contact points on the beam specimen (ASTM D 7460). This apparatus also allows free 

rotation and translation at all load and reaction points, as shown in Figure 6.6.  

To evaluate the modulus of rupture, flexural strength was performed by subjecting 

specimens to vertical displacement control loading rate of 1.27 mm/min (0.05 in/min) in 

accordance with ASTM D 1635 test method. This loading rate produced a tensile stain of 

approximately 2300 microstrain at the bottom of beam specimens. Deformation values 

were recorded during the test using LVDTs having a maximum stroke length of 5.0 mm 
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(127 mm). The tip of the LVDT was supported on the aluminum target glued at the center 

of the neural axis of the beam, as shown in Figure 6.7 (a). The load values were obtained 

from a load cell having a capacity of 2.23 kN (500 lb). The modulus of rupture was 

calculated from failure load by using the following expression: 

2bh

PL
MOR =           (6.10) 

where, MOR = modulus of rupture, P = failure load, L = length of the beam between 

supports (35.56 mm, i.e., 14 in), b = average width of beam specimen, and h = average 

height of beam specimen. 

The fatigue life tests consist of applying a repeated constant vertical strain to a 

beam specimen in flexural tension mode until failure or up to a specified number of load 

cycles. In this test, the input strain was sinusoidal shaped, applied at a frequency of 5 Hz 

in accordance with AASHTO T 321 test method for asphalt concrete specimens. The test 

was conducted at a strain level of approximately 500 microstrain (deflection of 

approximately 0.27 mm, i.e., 0.01 in) consistent with the AASHTO T 321 and ASTM D 

7460 test method recommendations for conventional asphalt concrete. Although Table 

6.1 showed a strain level ranging between 150 and 300 microstrain at the bottom of 

stabilized subgrade layer, a higher strain level was selected to reduce the test time while 

at the same time capturing sufficient data for analysis. Failure is assumed to occur when 

the stiffness reached half of its initial value, which is determined from the load at 50th 

cycle. The fatigue life (Nf) is the total number of load repetitions that cause a 50 percent 

decrease in initial stiffness (AASHTO T 321). The test is terminated manually when the 

initial stiffness has diminished by 50 percent or when a preset number of load cycles 
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(2,000,000) is reached. The flexural stress, strain and stiffness of beams were determined 

by using the following expressions (AASHTO T 321): 
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where, σf = tensile stress at the bottom of beam, εt = tensile strain at the bottom of beam, 

Mrt = flexural stiffness, P = applied peak load, a = spacing between inside clamps (119 

mm, i.e., 4.69 in), b = average beam width, h = average beam height, δ = beam deflection 

in neutral axis, L = length of beam between outside clamps or supports (35.56 mm, i.e., 

14 in). The duration of fatigue test ranged between 1 and 110 hours (approximately 4 

days and 14 hours). Hence, each beam specimen was covered with a plastic wrap before 

placing inside the beam fatigue apparatus to avoid any moisture loss due to exposure of 

specimen to open environment for extended period of time (Figure 6.7b). Figure 6.7 (c) 

shows photographic view of a typical beam specimen after failure.  

6.5 Presentation and Discussion of Results 

6.5.1 Resilient Modulus in Indirect Tension 

The variations of Mrt values with the stress ratio are presented in Tables 6.5 and 

6.6 for specimens prepared by using P- and V-soil, respectively. It is clear that the Mrt 

values increased due to stabilization. This increase, however, depends on the type of 

additive and soil. For example, at a stress ratio of 0.36, 6 % lime, 10% CFA and 10% 
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CKD provided an increase of approximately 1,066%, 649% and 1726% with P-soil (CL-

ML), respectively. On the other hand, an increase of approximately 1,071%, 1,322% and 

1,451% was observed for V-soil (CL) specimens stabilized with 6% lime, 10% CFA and 

10% CKD, respectively, at a stress ratio of 0.36. Overall, CKD provided the highest Mrt 

values ranging between 776 – 1,673 MPa (113 – 243 ksi) for P-soil and 641 – 915 MPa 

(93 – 133 ksi) for V-soil. In the case of CKD-stabilized specimens, the current test results 

are similar to those reported by Mohammad et al. (2000) and Khattak and Alrashidi 

(2006) for 28-day cured Portland cement-stabilized specimens. For example, Mohammad 

et al. (2000) reported Mrt values ranging between approximately 1,000 and 2,000 MPa 

(145 – 290 ksi) for 28-day cured Portland cement-stabilized specimens of CL-ML soil. 

The Mrt studies on lime- and CFA-stabilized specimens were not available or reported in 

the literature and, hence, no comparison related assessments were made. 

The variation of Mrt with the stress ratio is graphically illustrated in Figure 6.8. As 

depicted in these figures, the Mrt value decreased with the stress ratio. This behavior is 

consistent for all the soil-additive mixtures tested in this study. For example, the Mrt 

value of P-soil specimen stabilized with 6% lime exhibited a decrease from 

approximately 908 MPa (132 ksi) to 443 MPa (64 ksi) as the stress ratio increased from 

0.27 to 0.63. It is also clear from Figure 6.8 that the amount of decrease in Mrt with 

increase in stress ratio is dependent on soil and additive properties. For example, an 

increase of stress ratio from 0.27 to 0.63 reduced the Mrt value by approximately 51%, 

52% and 54% for P-soil specimens stabilized with 6% lime, 10% CFA and 10% CKD, 

respectively. For a similar change in stress ratio, V-soil specimens stabilized with 6% 

lime, 10% CFA and 10% CKD exhibited a decrease in Mrt values by approximately 36%, 
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31% and 30%, respectively. Hence, it can be concluded that stabilized P-soil specimens 

were more sensitive towards change in stress level as compared to stabilized specimens 

prepared by using V-soil.  

Further, resilient modulus values of specimens in compression and tension mode 

were plotted on same graphs for comparison. Figures 6.9 and 6.10 illustrate the variation 

of Mrt and Mr with deviatoric stress for P- and V-soil specimens, respectively. It should 

be noted that specimens discussed in Section 2.6.1 were subjected to additional five 

sequences (σ3 = 0 kPa; σd = 12, 25, 37, 50, 62 kPa, i.e., 1.8, 3.6, 5.4, 7.2, 9 psi) after first 

15 sequences. The Mr values calculated from the aforementioned additional data was 

used for comparison with Mrt. It is clear from Figures 6.9 and 6.10 that the magnitude of 

Mr is higher than the Mrt values at similar deviatoric stress levels. For example, at a σd of 

50 kPa (7.2 psi), the Mrt values of 6% lime-, 10% CFA- and 10% CKD-stabilized P-soil 

specimens were approximately 38%, 30% and 2% lower, respectively, with respect to Mr 

values of corresponding specimens. For V-soil specimens (σd = 50 kPa, i.e. 7.2 psi), 

however, 6% lime, 10% CFA and 10% CKD exhibited Mrt values approximately 22%, 

24% and 45% lower with respect to Mr values of corresponding specimens, respectively. 

The lower resilient modulus values in tension than it is in compression is consistent with 

the studies conducted by other researchers on cementitiously stabilized materials (see 

e.g., Raad, 1976; Das and Dass, 1995). For example, Das and Dass (1995) reported that 

the Mrt ranges in the order of 1.0 – 0.6 times of Mr for sand stabilized with Portland 

cement. 
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6.5.2 Indirect Tensile Strength and Modulus of Rupture 

The maximum indirect tensile strength (σt) of the raw and stabilized specimens 

from monotonic loading in indirect tension was calculated according to the following 

elastic theory solution (ASTM D 6931): 

Dt

P
t π

σ 2=
         

(6.15) 

Figure 6.11 illustrates the variation of indirect tensile strength of P- and V-soil 

specimens with different type of additives. It is evident that for both P- and V-soil 

specimens, 10% CKD provided highest increase in tensile strength values followed by 

10% CFA and 6% lime. For example, the tensile strength values of P-soil specimens 

stabilized with 10% CKD is approximately 835% higher than the corresponding indirect 

tensile strength of raw P-soil specimens. The corresponding percentage increase is 288% 

and 406% for 6% lime- and 10% CFA-stabilized specimens, respectively.  

A summary of the MOR values along with the standard deviation and coefficient 

of variation is presented in Table 6.7. It can be observed that the MOR improved with the 

addition of additives. The average MOR value of P-soil specimens increased by 

approximately 76%, 137% and 333% with the addition of 6% lime, 10% CFA and 10% 

CKD, respectively. Similarly, V-soil specimens stabilized with 6% lime. 10% CFA and 

10% CKD showed an increase by approximately 166%, 181% and 203%, respectively. 

These observations are consistent with the earlier observations of UCS and σt where 10% 

CKD provided highest enhancements with both P- and V-soil specimens. 

To compare the tensile and flexural behavior with compressive strength, variation 

of MOR and σt with UCS of corresponding specimens were plotted on the same graph 

(Figure 6.12). It is evident that for both P- and V-soil specimens, UCS was consistently 
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higher followed by MOR and σt values. For example, P-soil specimens stabilized with 

6% lime provided a UCS, MOR and σt value of 392, 187 and 66 kPa (i.e., 57, 27 and 10 

psi), respectively. These results are consistent with the observations made by Arellano 

and Thompson (1998) and Sobhan and Mashnad (2003b). The best-fit curve through all 

points can be represented by the following equations: 

σt = 0.16 UCS     (R2 = 0.93)      (6.16) 

MOR = 0.41 UCS  (R2 = 0.84) 
     

(6.17) 

The R2 value associated with Eqns. 6.16 and 6.17 is comparatively high at 0.93 

and 0.84, respectively. Thus, a strong correlation exists between UCS values and σt or 

MOR values. According to above correlations, indirect tensile strength can be estimated 

as approximately 16% of UCS. On the other hand, MOR is approximately 41% of UCS. 

Based on the literature, the σt is generally about 10 to 15 percent of the UCS and the 

MOR is about 20 to 25 percent of the compressive strength (Kennedy et al., 1971; Little, 

1995; Sobhan and Mashnad, 2003a). In the current study, σt versus UCS correlation is 

similar to previous studies. However, correlation between MOR and UCS values over-

predict the MOR values. This could be attributed to the fact that the previous MOR 

versus UCS correlations (Little, 1995) were developed by evaluating MOR values in a 

three-point loading mode. Based on theory of elasticity, three-point loading on a beam 

specimen (ASTM C 78) develops a bending stress 1.5 times higher than the bending 

stress developed in four-point loading mode (ASTM C 293; Hibbeler, 2008). Thus, 

higher MOR values for a four-point loading configuration are expected. Also, higher 

MOR values with respect to σt values of corresponding specimens can be explained by 

the fact that the flexure formula assumes that the stress varies linearly across the cross-
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section of the beam. However, cementitiously stabilized beams have a nonlinear stress-

strain curve. Additionally, a relatively small volume of the specimen near the bottom of 

the beam is stressed under flexure.  

6.5.3 Flexural Stiffness and Fatigue Life 

Testing data were analyzed using Eqns. 6.11 – 6.13 presented earlier to compute 

the stress, strain and flexural stiffness per cycle as the function of the number of load 

cycles. In this study, fatigue life was defined as the number of repeated cycles 

corresponding to a 50 percent reduction in initial stiffness, which was measured at the 

50th load cycle. Figure 6.13 illustrates flexural stiffness (Mrf) which was computed at 

various cycles from the raw data of stabilized P- and V-soil specimens. It can be seen that 

the Mrf decreases as the number of cycles increases. That is, at the same strain level, a 

greater stress is needed to reach the desired strain values at the beginning of fatigue test 

than at the end of the test.  

The initial Mrf values and number of cycles to failure (Nf) of fatigue beams 

determined by initial tensile stress and strain, are presented in Table 6.8. It is clear that 

the Mrf values of stabilized specimens are strongly associated with type of additive, the 

beams stabilized with 10% CKD exhibited a greater initial stiffness value, but its stiffness 

reduces more rapidly than 6% lime-stabilized beams under repeated load. The average 

Mrf of P-soil specimens stabilized with 6% lime and 10% CKD were 563 MPa (81,713 

psi) and 1,056 MPa (153,266 psi), respectively. The set#2 beam of 10% CKD-stabilized 

P-soil showed very low (47%) initial Mrf as compared to corresponding beam of set#1 

because the beam in set#1 failed in less than 50 cycles. On the other hand, the average 

Mrf of 6% lime- and 10% CKD-stabilized V-soil specimens showed an initial average Mrf 
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value of 801 MPa (116,255 psi) and 990 MPa (143,687 psi), respectively. It is clear that 

10% CKD provided higher initial Mrf values (88% for P-soil and 24% for V-soil) as 

compared to 6% lime.  

Table 6.8 shows that the mean fatigue life of P-soil beams stabilized with 6% lime 

is greater than 2 million cycles. On the other hand, beams of P-soil stabilized with 6% 

lime failed at a relatively low Nf value (approximately 50). The 6% lime- and 10% CKD-

stabilized beams of V-soil exhibited mean fatigue life of 1,430,000 and 965,000, 

respectively. The standard deviations of the fatigue test results for each soil-additive 

mixture are large since the variability of fatigue life is generally based upon the 

microstructure of beams (e.g., the soil-additive interface, moisture and void size 

distribution, distribution of cementitious products). Similar behavior has been reported by 

other researchers for the recycled asphalt concrete beam specimens (Xiao, 2006).  

Attempts were made to develop the strain-based model (or transfer function) for 

predicting fatigue life of cementitiously stabilized beams using the limited fatigue data; 

Figure 6.14 was plotted between log(Nf) and strain ratio (tensile strain at bottom of 

beam/maximum tensile strain at bottom of beam from flexural strength test, εt/εm) in this 

regard. The best-fit curve through all points (except P-soil + 10% CKD due to high 

standard deviation) can be represented by the following equations: 

log(Nf) = -0.68 (εt/εm) + 6.55     (R2 = 0.69)    (6.18) 

Although the R2 value associated with Eqn. 6.18 is high (R2 = 0.69), it is based 

only on four data points. Hence, to see the validity of above equation, Nf values were 

predicted from another recent strain-based model proposed by Prozzi and Aguiar-Moya 

(2010) for cementitiously stabilized materials (see Table 6.3). It is clear from Figure 6.14 
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that the experimental fatigue life and predicted Nf values from Eqn. 6.18 and model 

proposed by Prozzi and Aguiar-Moya (2010) are very similar (difference < 10%) for 6% 

lime- and 10% CKD-stabilized V-soil specimens. However, a considerable percent 

difference (> 50%) exists between experimental fatigue life and predicted Nf values from 

Prozzi and Aguiar-Moya (2010) for P-soil specimens stabilized with 10% CKD. This 

could be attributed to the fact that P-soil specimens stabilized with 10% CKD failed at a 

very low number of cycles (< 100) with very high coefficient of variation (60%). The 

models developed by Prozzi and Aguiar-Moya (2010) and others (Table 6.3) are typically 

based on fatigue life greater than 10,000. Hence, lower reliability of Prozzi and Aguiar-

Moya (2010) fatigue model is expected. 

6.6 Conclusions 

This study was undertaken to evaluate two soils namely, P-soil (silty clay) and V-

soil (lean clay) from Oklahoma for the effect of type of additive on the indirect tensile 

and fatigue characteristics for critical performance prediction. Cylindrical specimens 

stabilized with 6% lime, 10% CFA and 10% CKD were molded using a Superpave 

gyratory compactor, cured for 28 days and subjected to different stress sequences in 

indirect tension mode to study the Mrt. On the other hand, 6% lime-, 10% CFA- and 10% 

CKD-stabilized beam specimens were compacted using a Linear Kneading Compactor 

and subjected to repeated cycles of reloading-unloading after 28 days of curing for 

evaluating fatigue life and flexural stiffness. Also, stabilized cylindrical and beam 

specimens were tested for indirect tensile strength and modulus of rupture, respectively. 

Based on the study presented in this chapter the following conclusions can be derived: 
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1. All the three additives improved the Mrt, σt and MOR values of P- and V-soil 

specimens; however, degree of improvement varied with the type of additive and soil.  

2. The resilient modulus in tension ranged between approximately 443 – 908 MPa (64 – 

132 ksi), 315 – 656 MPa (46 – 95 ksi) and 776 – 1,673 MPa (113 – 243 ksi), 

respectively, for 6% lime-, 10% CFA-, and 10% CKD-stabilized silty clay specimens. 

On the other hand, stabilization of lean clay with 6% lime, 10% CFA and 10% CKD 

provided Mrt values ranging between approximately 444 – 691 MPa (64 – 100 ksi), 

580 – 839 MPa (84 – 122 ksi) and 641 – 915 MPa (93 – 133 ksi), respectively. 

Overall, CKD provided highest Mrt values with both silty (P-soil) and lean clay (V-

soil). 

3. The test results suggest that the Mrt depends on the applied load. Based on the test 

results, the Mrt decreased with increase in stress ratio. 

4. The magnitude of resilient modulus in tension is lower than it is in compression, 

consistent with the studies conducted by other researchers on cementitiously 

stabilized materials. 

5. For both silty clay and lean clay specimens, 10% CKD provided highest increase in 

tensile strength values followed by 10% CFA and 6% lime. 

6. The average MOR value of silty clay specimens increased by approximately 76%, 

137% and 333% with the addition of 6% lime, 10% CFA and 10% CKD, 

respectively. Similarly, lean clay specimens stabilized with 6% lime. 10% CFA and 

10% CKD showed an increase by approximately 166%, 181% and 203%, 

respectively.  
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7. The range of MOR values (187 – 255 kPa, i.e., 27 – 37 psi) of lime-stabilized soil 

specimens is similar to the MOR value of 172 kPa (25 psi) recommended by MEPDG 

for lime-stabilized specimens. The MOR value of CFA- and CKD-stabilized 

specimens are approximately 50% lower than the recommended MOR value of 689 

kPa (100 psi) for soil-cement by the new MEPDG. 

8. Correlations developed between indirect tensile strength, MOR and UCS suggest that 

σt can be estimated as approximately 16% of UCS. On the other hand, MOR is 

approximately 41% of UCS. 

9. The beams stabilized with 10% CKD exhibited greater initial stiffness value, but its 

stiffness reduces more rapidly than 6% lime-stabilized beams under repeated load. 

10. Beam specimens stabilized with 10% CKD provided higher initial Mrf values (88% 

for P-soil and 24% for V-soil) as compared to 6% lime. 

11. The fatigue life tests conducted on beam specimens showed that the mean fatigue life 

of silty clay (P-soil) beams stabilized with 6% lime is greater than 2 million cycles. 

On the other hand, beams of silty clay stabilized with 6% lime failed at a relatively 

low Nf value (approximately 50). The 6% lime- and 10% CKD-stabilized beams of 

lean clay (V-soil) exhibited mean fatigue life of 1,430,000 and 965,000, respectively. 

12. A strain-based model was proposed for predicting fatigue life of cementitiously 

stabilized soil and comparisons were made with the existing model in the literature. 

This model could be refined using an enriched database.  

13. Although CKD-stabilized specimens showed best performance in enhancing the 

indirect tensile characteristics (Mrt, σt) and MOR, worst performance was observed in 

the fatigue life tests.  
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Table 6.1 Effect of Stabilized Subgrade Layer (V-Soil) on Pavement Response by Using 

Linear Analysis (KENLAYER) 
 

Location Response 

Case 1: 
Mr,SSG = 
Mr,SG  = 
82 MPa 

Case 2: 
hAC = 89 
mm.; 
Mr,SSG = 
1,704 MPa 

Case 3: 
hSSG = 102 
mm; Mr,SSG 

= 1,704 
MPa 

Case 4 
Mr,AC = 
1,723 MPa; 
Mr,SSG = 
1,704 MPa 

Case 5: 
Mr,SSG = 
697 MPa 
(6% 
lime) 

Case 6: 
Mr,SSG = 
632 MPa 
(10% 
CFA) 

Case 7: 
Mr,SSG = 
1,704 
MPa (10% 
CKD) 

Bottom 
of AC 

σr (kPa) -1834 50 -567 53 -800 -859 -272 
εt (µm/m) -357 -63 -135 -75 -179 -189 -90 

Top of 
SSG 

σz (kPa) 111 710 275 467 273 262 377 
εc (µm/m) 1318 364 236 268 444 470 242 

Bottom 
of SSG 

σr (kPa) 3 -605 -592 -433 -202 -186 -372 
εt (µm/m) -192 -260 -254 -186 -226 -232 -160 

Top of 
SG 

σz (kPa) 60 66 65 48 51 53 39 
εc (µm/m) 754 857 836 619 675 692 511 

AC: Asphalt Concrete; SSG: Stabilized Subgrade Layer; SG: Natural Subgrade; σz: Vertical Stress; σr: Radial Stress; εt: Radial Strain; εc: Vertical 
Strain; h: Thickness of Layer; Mr: Design Resilient Modulus (σ3 = 13.78 kPa, σd = 41.34 kPa; See Table 5.3, Model 3); Note: Negative sign indicate 
tensile stresses and strains 
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Table 6.2 A Summary of Relevant Resilient Modulus Studies in Indirect Tension for 

Cementitiously Stabilized Materials 
 

Reference 
Type of 
Additive 

Resilient modulus 
(M rt)/Modulus of Elasticity 
in tension (MEt) 

Horizontal tensile 
strain/Poisson’s 
Ratio 

Cylindrical 
Specimen 
Size 

Load 

ASTM D 
4123 

Not 
Applicable 

( )
TT

rt Vt

P

Ht

P
M

∆
=

∆
+=

.

59.3

.

27.0ν
 27.0

59.3 −
∆

∆=
T

T

V

Hν

 

100 mm 
diameter by 
50 mm height 

Haversine 
(0.33, 0.5 
and 1.0 Hz) 

Raad 
(1985) 

Not 
Applicable 

( )
T

Et Ht

P
M

∆
+=
.

2732.0ν
 None 

100 mm 
diameter by 
75 mm height 

NA 

Mohammad 
et al. 
(2000) 

Portland 
Cement 

T
rt Vt

P
M

∆
=

.

59.3
 

 
 

Tt H5207.0=ε  

100 mm 
diameter by 
63 mm height 
 

Haversine (2 
Hz) 
(0.1s 
Loading, 
0.5s Rest) 

White and 
Gnanendran 
(2005) 

Slag+Lime 
MEt from slope of stress versus 
strain curve from Indirect Tensile 
Strength test 

None Not Available Static load 

Navaratnaraj
ah (2006) 

Not 
Applicable 

( )
( ) ( )

( )



















































+−
−++

+∆
=

−
D

D
DDDD

DD

DDHDt

P
M

g

gg

g

gT
rt

1

223

2

22

tan

2

13

.

2

νν
π

 

35.0=ν  
100 mm 
diameter by 
75 mm height 

Haversine 
(1.0 Hz) 
(0.1s 
Loading, 
0.9s Rest) 

Khattak and 
Alrashidi 
(2006) 

Portland 
Cement 

( )
T

rt Ht

P
M

∆
+=

.

27.0ν
 27.0

59.3 −
∆

∆=
T

T

V

Hν

 

100 mm 
diameter by 
63 mm height 

Haversine 
(2.0 Hz) 
(0.1s 
Loading, 
0.9s Rest) 

Gnanendran 
and 
Piratheepan 
(2008) 

Slag+Lime 
( )

T
rt Ht

P
M

∆
+=

.

27.0ν
 None 

150 mm 
diameter 

Sinusoidal (3 
Hz) 

t = thickness of the specimen; Mrt = resilient modulus in indirect tension; P = repeated load; ∆HT  = total recoverable horizontal 
deformation; ∆VT = total recoverable vertical deformation; D = diameter of specimen; υ = Poisson’s ratio; εt = horizontal tensile 
strain; Dg = distance between LVDTs measuring horizontal deformations 
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Table 6.3 A Summary of Relevant Fatigue Relationships for Cementitiously Stabilized 
Materials 

 
Reference  Type of 

material  
Specimen 
size  

Experimental details (Parameter 
evaluated)  

Fatigue Model  

Verstraeten 
et al. (1982) 

NA NA NA εt/εm = 1- 0.05log(Nf) 

Raad (1985)  Silty clay 
with cement  

21 in. x 6 in. 
x 6 in.  

Strain gages at the top and bottom of specimen in 
middle-third portion. Displacement controlled third-
point loading of 0.0120 in./min. (Flexural modulus)  

NA  

Bhattacharya 
and Pandey 
(1986)  

Laterite soil 
with lime  

---  Beams were subjected to third-point loading at a 
loading frequency of 1.83 Hz (110 cycles/min.) 
(Fatigue life); Rate of loading = 0.05 in./min 
(Flexural strength)  

S = 0.96 – 0.114 log(Nf)  

Laguros and 
Keshawarz 
(1987)  

Shale 
stabilized 
with cement, 
quicklime, 
fly ash  

16 in. x 4 in. 
x 3 in.  

Beams were tested under third-point loading 
(Flexural strength)  

NA  

ACAA 
(1991); 
Thompson 
(1994)  

CSM  NA  NA log(Nf) = (0.9722-
S)/0.0825  

Lav et al. 
(2006)  

Fly ash with 
cement  

NA  Accelerated loading facility  Nf = (a/µε)b  

Sobhan and 
Mashnad 
(2003)  

Aggregates 
with cement 
+ fly ash + 
HDPE strips  

30 in. x 6 in. 
x 6 in.  

Beams were tested in a third-point loading 
configuration under load control conditions using a 
sinusoidal load pulse with a constant amplitude at a 
frequency of 2 Hz (120 cycles/min.) (Fatigue life)  

S = -0.038 ln(Nf) + 1.047  

AASHTO 
2002 
MEPDG 
(2004)  

CSM  NA  NA  log(Nf) = (a1-S)/a2  

Molenaar 
and Pu 
(2008)  

Cement 
treated base  

NA  Used pavement database (SHRP-NL)  log(N) = 8.5 – 0.034εt  

Prozzi and 
Aguiar-Moya 
(2010) 

Cement 
treated base 

NA Pavement data from South Africa log(Nf) = 7.131 -0.8629 
εt/εm 

NA: Not applicable; Nf: No. of cycles to failure; S: Stress ratio = applied stress/ultimate strength; µε: maximum value of initial tensile strain; HDPE: 
High density polyethylene; ε: tensile strain at the bottom of cement treated base due to a 50 kN falling weight load; N: allowable no. of 100 kN ESAL; 
CSM: cementitiously stabilized material; a: material constants; εt: tensile strain at bottom of layer; εm: maximum allowable strain at bottom of beam 
from  flexural strength tests  
 

 
Table 6.4 Testing Sequence used for Resilient Modulus Test in Indirect Tension 

 

Sequence 
Number 

Maximum 
Tensile Stress  

Cyclic 
Tensile 
Stress 

Constant 
Tensile 
Stress  

No. of Load 
Applications 

Conditioning 0.20σt 0.18σt 0.02σt 500 
1 0.30σt 0.27σt 0.03σt 100 
2 0.40σt 0.36σt 0.04σt 100 
3 0.50σt 0.45σt 0.05σt 100 
4 0.60σt 0.54σt 0.06σt 100 
5 0.70σt 0.63σt 0.07σt 100 

σt: Average indirect tensile strength of 28-day cured stabilized specimen 
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Table 6.5 A Summary of Resilient Modulus Values in Indirect Tension of Stabilized P-

soil Specimens 
 

Raw SD CV 6% Lime SD CV 10% CFA SD CV 10% CKD SD CV

0.27 75 2 2 908 152 17 656 67 10 1,673 214 13
0.36 65 2 3 758 117 15 487 21 4 1,187 36 3
0.45 60 1 2 648 24 4 429 19 4 965 50 5
0.54 55 1 2 516 17 3 351 9 3 848 28 3
0.63 49 0 1 443 9 2 315 6 2 776 25 3

σd/σt

σd : deviator stress; σt : tensile strength; Mrt : resilient modulus in indirect tension
1 psi = 6.89 kPa; 1 ksi = 6.89 MPa; SD: standard deviation; CV: coefficient of variation (%)

Mrt (MPa)

 
 
 

Table 6.6 A Summary of Resilient Modulus Values in Indirect Tension of Stabilized V-
soil Specimens 

 

Raw SD CV 6% Lime SD CV 10% CFA SD CV 10% CKD SD CV

0.27 59 8 14 691 25 4 839 32 4 915 8 1
0.36 29 4 14 633 15 2 722 23 3 862 10 1
0.45 18 1 5 570 24 4 670 5 1 822 16 2
0.54 13 1 6 506 7 1 614 12 2 733 9 1
0.63 11 0 3 444 3 1 580 7 1 641 6 1

σd/σt

σd : deviator stress; σt : tensile strength; Mrt : resilient modulus in indirect tension
1 psi = 6.89 kPa; 1 ksi = 6.89 MPa; SD: standard deviation; CV: coefficient of variation (%)

Mrt (MPa)

 
 

Table 6.7 A Summary of Modulus of Rupture Values of Raw and Stabilized P- and V-
Soil Specimens 

 
Soil Type Additive Type Average MOR (kPa) SD (kPa) CV (%) 

P-Soil 

None 106 12 11 
6% Lime 187 26 14 
10% CFA 251 43 17 
10% CKD 459 87 19 

V-Soil 

None 96 12 13 

6% Lime 255 16 6 

10% CFA 270 41 15 

10% CKD 291 28 9 

MOR: Modulus of Rupture or Flexural Strength; SD: Standard Deviation; CV: 
Coefficient of Variation  
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Table 6.8 Results of Fatigue Test on Stabilized P- and V-Soil Specimens 

 

Soil 
Type 

Additive 
Type 

Set#1 Set#2 SD 
(Nf) 

CV  
(Nf) M rf (Cycle 

50) (MPa) 
Cycles to 

Failure (Nf)
a 

M rf (Cycle 
50) (MPa) 

Cycles to 
Failure (Nf)

a 

P-Soil 6% Lime 535 * 591 * NA NA 

 
10% CKD 731 < 50 (29)** 1,381 72 30 60 

V-Soil 6% Lime 839 1,250,000 763 1,610,001 254,559 18 

 
10% CKD 952 1,100,001 1,028 830,000 190,920 20 

aCycle at which specimen stiffness is reduced to 50 percent of the initial stiffness; *Specimen didn’t fail in 
2 million cycles; **Stiffness dropped suddenly at 29th cycle; NA: not applicable; SD: standard deviation; 
CV: coefficient of variation (%) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



226 
 

 
 
 
 
 
 

 
 
 

Figure 6.1 Pavement Configuration with Stabilized Subgrade Layer 
 
 
 
 
 
 
 
 
 
 
 

Asphalt Concrete     

Stabilized Subgrade 

    

    Natural Subgrade 

  

Wheel Load 

σc : Critical compressive strain

 

 
 

σr : Critical tensile strain

σc  

σr

σr

Wheel Load = 965 kPa  
Diameter = 305 mm  

Natural Subgrade 
Mr,SG = 82 MPa, ν = 0.40  
 

Asphalt Concrete 
Mr,AC = 3,445 MPa, ν = 0.35  

Stabilized Subgrade  
Mr,SSG = See Table 6.1, ν = 0.20  
 hSSG = 203 mm 

 

hAC= 178 mm 
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(a) 

 
(b) 

Figure 6.2 Photograph Showing the Fatigue Specimen Preparation Mold 

63.5 mm 

158.75 mm 

381 mm 

50.8 mm 

107.95 mm 

Specimen 

Hollow Steel Plate 
Part D 

Plastic Wrap 

Rectangular Plate 
Part A 

Hollow Steel Plate 
Part B 

Aluminum Plate 
Part C 

Hollow Steel Plate 
Part B 

88.9 mm 

406.4  mm 
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Figure 6.3 Compaction of Fatigue Specimen Using Linear Kneading Compactor 
 

  
 

Figure 6.4 Setup for Resilient Modulus Test in Indirect Tension 
 

Main Mold 
Assembly 
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431.8 mm 
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Figure 6.5 LVDTs Attached to Resilient Modulus in Indirect Tension Test Specimen 
 

 
 

Figure 6.6 Setup for Four-Point Fatigue Test 
 

Brass Rods LVDTs 

Reaction 

Reaction 

Load Load 

Free Translation and Rotation 

Load Cell 

Specimen 

LVDT  
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(a) 

 
(b) 

 
(c) 
 

Figure 6.7 Fatigue Beams (a) Before Testing (b) Covered With Plastic Wrap To Prevent 
Moisture Loss During Testing (c) After Testing 

Target for 
LVDT 

Plastic Wrap 

Crack 

381 mm 

63.5 mm 

50.8 mm 
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Figure 6.8 Variation of Mrt of P- and V-soil Specimens with Stress Ratio 

 
Figure 6.9 Comparison of Resilient Modulus Values of Raw and Stabilized P-Soil 

Specimens Tested in Compression and Indirect Tension Modes 
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Figure 6.10 Comparison of Resilient Modulus Values of Raw and Stabilized V-Soil 

Specimens Tested in Compression and Indirect Tension Modes 
 
 

 
Figure 6.11 Indirect Tensile Strength Values of Raw and Stabilized V- and P-Soil 
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Figure 6.12 Correlation Between Indirect Tensile Strength, Modulus of Rupture and 

Unconfined Compressive Strength 
 
 
 
 

 
Figure 6.13 Flexural Stiffness Versus Number of Fatigue Cycles for Stabilized P- and V-

Soil Specimens 
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Figure 6.14 Strain-Based Model (Transfer Function) for Fatigue Life of 6% Lime- and 

10% CKD-Stabilized P- and V-Soil Beams 
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CHAPTER 7                                                                               
DESIGN OF SEMI -RIGID TYPE FLEXIBLE PAVEMENT  

7.1 Introduction 

The basis of the AASHTO 1993 flexible pavement design method was a landmark 

pavement performance test (AASHO Road Tests) conducted in the late 1950s near 

Ottawa, Illinois, at a cost of $27 million (1960 dollars) (Huang, 2004; Papagiannakis and 

Masad, 2007). This experiment consisting of 288 flexible pavements generated 

substantial database of pavement performance observations, which formed the basis for 

the pavement design methodology adopted by AASHTO. However, the new MEPDG 

adopted a mechanistic-empirical approach to the damage analysis of flexible pavements. 

The design process involves computing the pavement structural response to the load (i.e., 

stresses and strains), translating them into damage, and accumulating the damage into 

distresses, which reduce pavement performance over time (Papagiannakis and Masad, 

2007).  

Due to the effort towards implementation of the new MEPDG, several state 

agencies and researchers have evaluated flexible and rigid pavement sections using both 

empirical and mechanistic-empirical design methods (see e.g., Kim et al., 2005; Mulandi 

et al., 2006; Carvalho and Schwartz, 2006; Li et al., 2010). However, no studies to the 

author’s knowledge compared design of semi-rigid type flexible pavements using both 

AASHTO 1993 and new MEPDG. Also, only a limited level of attention has been 

devoted to the MEPDG performance prediction capabilities of pavement systems 

involving stabilized layers (Saxena et al., 2010). Since the new MEPDG is intended to 

replace the previous AASHTO 1993 pavement design guide, which based primarily on 
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empirical methods, it is important to evaluate and compare semi-rigid pavement designs 

using both the AASHTO 1993 and the new MEPDG guides.  

Consequently, the primary objective of the study presented herein is to develop 

design curves for performance prediction of stabilized layers and to compare semi-rigid 

flexible pavement designs between the empirical AASHTO 1993 and the mechanistic-

empirical AASHTO 2002 pavement design methodologies. These comparisons span a 

range of different sections consisting of cementitious layers stabilized with different 

types and percentages of additives. Also, specific emphasis is devoted to the influence of 

stabilized subgrade layer properties and reliability levels on the comparisons. Further, 

cost comparisons of different sections stabilized with different additive types and 

contents were also pursued. 

7.2 Semi-Rigid Type Flexible Pavement 

Several classical books and references (e.g., AASHTO, 1993; Huang, 2004; 

AASHTO, 2004; Papagiannakis and Masad, 2007; Mallick and El-Korchi, 2008) are 

available that present the terms rigid or flexible to separate different possibilities of 

pavement structures. The term rigid refers to pavements with the top layer made of 

cement concrete material; the term flexible is associated with pavements with asphalt 

concrete (AC) layer on the top. The conventional flexible and rigid pavements differ in 

the way each structure distributes the vertical pressure over the subgrade. A rigid 

pavement tends to cause a dispersed spread of pressure over the lower layers. On the 

other hand, the response to loads on a flexible structure is more concentrated near the 

loaded area. Thus, considering the presence of a cementitiously stabilized layer on the 

subgrade of a flexible pavement, the pressure spread over the subgrade tends to become 
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more diffused compared to a conventional flexible pavement case. This behavior of 

flexible pavement having a cementitiously stabilized layer puts it into a new category 

called semi-rigid type flexible pavement (Balbo and Cintra, 1994). According to the new 

MEPDG, a pavement section having some type of chemically stabilized (pozzolanic) 

layer below the asphalt concrete layer is defined as a semi-rigid pavement (AASHTO, 

2004).  

7.3 Overview of the AASHTO 1993 and AASHTO 2002 MEPDG 

7.3.1 AASHTO 1993 Design Guide 

The AASHTO Guide for Design of Pavement Structures (AASHTO, 1993) is the 

primary document used to design new and rehabilitated pavements in the United States 

(Li, 2009). As noted earlier, AASHTO 1993 guide is primarily based on findings from 

the AASHO Road Test program conducted between October, 1958 and November, 1960. 

During the AASHO road tests, performance measurements of pavement sections were 

taken at regular interval. The performance data along with pavement material properties 

and traffic data was used to develop empirical models for pavement design.  

7.3.1.1 Design Inputs 

Following are the specific design inputs required for designing a pavement using 

AASHTO 1993 Design Guide (AASHTO, 1993): 

1. Time Constraints: AASHTO categorized two types of time constraints namely, 

performance period and analysis period. Performance period is defined as the period 

of time that an initial pavement structure will last before it needs rehabilitation. On 
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the other hand, analysis period (or design life), refers to the period of time for which 

the analysis is conducted.  

2. Traffic: The design procedure is based on number of Equivalent Single Axle Load 

(ESAL) applications. ESAL is defined as total number of applications of a standard 

axle (generally 80 kN, i.e., 18 kip single) required to produce the same damage or 

loss of serviceability as number of application of one or more different axle loads 

and/or configurations over life of pavement (Huang, 2004). It is a convenient way for 

converting mixed traffic data to a number of standard axles for design of a pavement.  

3. Reliability: It is used for incorporating some degree of certainty into the design 

process to ensure that the various design alternatives will last the analysis period. 

Specifically, reliability accounts for variations in both traffic predictions and the 

performance prediction. Table 7.1 presents recommended levels of reliability for 

various functional classifications. For a given level of reliability, the reliability factor 

is defined by standard normal deviate (ZR) and overall standard deviation (So). The 

recommended values of So for flexible and rigid pavements are 0.45 and 0.35, 

respectively (AASHTO, 1993). 

4. Performance Criteria: Both functional and structural performances are considered in 

AASHTO 1993 design guide by using the concept of serviceability. The 

serviceability of a pavement is defined as its ability to serve the type of traffic which 

uses the facility. The primary objective measure of serviceability is the Present 

Serviceability Index (PSI) which ranges from 0 (impossible road) to 5 (perfect road). 

The difference in present serviceability index (∆PSI) between construction/initial and 

end-of-life/terminal is the serviceability life.  
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5. Material Properties: The subgrade layer properties are incorporated in terms of 

effective resilient modulus. Other layer properties are accounted by using layer 

coefficients. The layer coefficients measure the relative ability of a unit thickness of a 

given material to function as structural component of the pavement. The AASHTO 

1993 design guide provide correlations and charts between resilient modulus of 

material and layer coefficients (AASHTO, 1993). For example, following equation is 

recommended for granular base material: 

a = 0.277 log(Mr) – 0.839      (7.1) 

where, a = layer coefficient (in-1) and Mr is in psi. 

6. Drainage Characteristics: The level of drainage for a flexible pavement is accounted 

through the use of modified layer coefficient, i.e., a higher layer coefficient is used 

for improved drainage condition. The factor for modifying the layer coefficient to 

account for drainage effect is referred to as an ‘m’ value and depends on drainage 

quality and percent of time during the year pavement structure is normally exposed to 

moisture levels approaching saturation. The m value ranges between 0.40 for very 

slow draining layer and 1.40 for quick draining layer that never saturate. 

7.3.1.2 Design Method 

The AASHTO 1993 method utilizes the term Structural Number (SN) to quantify 

the structural strength of a pavement required for a given combination of pavement layer 

properties, total traffic, reliability, and serviceability level. The required SN is converted 

to actual thickness of surface, base and subbase, by means of appropriate layer 

coefficients representing the relative strength of the construction materials. The design 

equation used is as follows: 
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SN = a1 D1 + a2 D2 m2 + a3 D3 m3          (7.2) 

where, ai = ith layer coefficient, Di = ith layer thickness, and mi = ith layer drainage 

coefficient. For a semi-rigid pavement, the subscripts 1, 2 and 3 refer to the asphalt 

concrete, stabilized subgrade and subbase layer (if applicable), respectively. The basic 

design equation for flexible pavements in the AASHTO 1993 design guide is as follows: 
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where, W18 = predicted number of 80 kN (18 kip) ESAL applications. Eqn. 7.3 can be 

solved iteratively or by using nomographs for required SN value. The required design 

thickness of each layer is derived by using Eqn. 7.2 in combination with material 

properties of each layer. 

7.3.2 AASHTO 2002 MEPDG 

The AASHTO 2002 MEPDG developed in the NCHRP 1-37A study is a 

mechanistic-empirical (M-E) method for designing and evaluating pavement structures. 

The M-E design and analysis process, shown conceptually in Figure 7.1, integrates the 

environmental conditions and material properties of the asphalt concrete layer and 

underlying layers into the pavement structure. The responses of pavement structure to 

load (i.e., stresses and strains) are mechanistically calculated based on material 

properties, environmental conditions, and traffic characteristics. Thermal and moisture 

distributions are mechanistically determined using the Enhanced Integrated Climatic 

Model (EICM). These responses are then used as inputs in empirically derived distress 

models (or transfer functions), translating them into damage, and accumulating the 
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damage into distresses (e.g., permanent deformation, fatigue cracking, thermal cracking 

and roughness) that are responsible for reduced pavement performance over time (Priest 

and Timm, 2006; Papagiannakis and Masad, 2007). The damage for each condition is 

typically added together using Miner’s hypothesis, shown in Eqn. 7.4, where the failure 

criteria is reached when the ratio approaches unity (Miner, 1959): 

∑
=

=
1i i

i

N

n
D          (7.4) 

where, D = total damage, ni = number of load applications at condition i, Ni = number of 

load application at failure for condition i. The distress models were calibrated by using 

data from the Long Term Pavement Performance (LTPP) database for conditions 

representative of the entire United States (Li, 2009). Because the design process is 

modular, varying degrees of accuracy and sophistication can be used at each step 

depending on the needs of the design (Priest and Timm, 2006). This section further 

briefly describes the MEPDG design procedure and inputs. 

7.3.2.1 Design Process 

The MEPDG design process is not as straightforward as the 1993 AASHTO 

guide, in which the structure’s thicknesses are obtained directly from the design equation 

(Li, 2009). In general, the design process consists of three major stages. Stage 1 of 

MEPDG design procedure involves development of input values. In this stage, the 

potential strategies for analysis are identified. The input data of pavement materials (as 

discussed later), traffic characterization and EICM model are developed. In Stage 2, 

performance analysis is conducted using an iterative process that begins with the 

selection of an initial trial design. If the trial design does not meet the performance 
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criteria, the design (thicknesses or material selection) must be modified and the 

calculations repeated until the design is acceptable. Stage 3 of the design process consists 

of the evaluation of structurally viable alternatives, such as an engineering analysis and 

life cycle cost analysis. 

The MEPDG has a hierarchical approach for the design inputs, which provides 

designer with flexibility in obtaining the design inputs for a design project based on the 

availability of resources and the importance of the project (Von Quintus and Moulthrop, 

2007). There are three levels: 

Level 1 – This level provides most accurate designs with lowest level of 

uncertainty or error.  Level 1 material inputs require laboratory measured material 

properties (e.g., dynamic modulus master curve for asphalt concrete, resilient modulus or 

modulus of elasticity for unbound and chemically stabilized materials) and project-

specific traffic data (e.g., vehicle class, load distribution, axle configuration, monthly 

adjustments).  

Level 2 – This level provides an intermediate design. Level 2 inputs are obtained 

through empirical correlations (e.g., resilient modulus estimated from soil and additive 

properties) or possibly from an agency database. 

Level 3 – This level provides a design with lowest level of accuracy. Inputs are 

selected from a database of national or regional default values according to the material 

type or highway class (e.g., soil classification to determine the range of resilient modulus, 

highway class to determine vehicle class distribution). Level 3 is recommended for minor 

projects, usually low traffic roads. In addition, Level 3 may be appropriate for pavement 

management programs widely implemented in highway state agencies (AASHTO, 2004; 
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Schwartz and Carvalho, 2007). In this study, Level 3 was used throughout because (a) at 

present there are rarely all the Level 1 input data to be used on a consistent basis, and (b) 

the final version of the MEPDG software was calibrated using Level 3 (Schwartz and 

Carvalho, 2006). Also, Level 1 and 2 for stabilized subgrade layer are disabled in the 

MEPDG software.  

7.3.2.2 Design Inputs 

Following are the specific design inputs required for designing a pavement using 

MEPDG software (AASHTO, 2004): 

1. General Information: This includes information regarding expected pavement design 

life, base/subgrade construction month, paving month, traffic opening month and 

pavement type. Information related to construction is used for establishing reference 

time for the EICM. On the other hand, selection of flexible or rigid pavement 

establishes the method of design and applicable performance models. 

2. Site/Project Identification: Project site is identified using project ID, section ID and 

functional class of the pavement. The location of the project is provided in the form 

of latitude, longitude and height above sea level. This defines the climatic condition 

which is extracted from available database of nearly 800 weather stations throughout 

the United States, which allows the user to select a given station or to generate virtual 

weather stations for a project site under design.  

3. Analysis Parameters: Analysis parameters are defined by initial International 

Roughness Index (IRI) and performance criteria. The typical initial IRI values range 

between 789 to 1,579 mm/km (i.e., 50 to 100 in/mile). For semi-rigid pavements, an 

initial IRI value of 1,026 mm/km (65 in/mile) is recommended by the new MEPDG. 
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The current MEPDG software Version 1.1 supports six different performance criteria 

namely, AC surface down cracking (longitudinal cracking), AC bottom up cracking 

(fatigue or alligator cracking), AC thermal cracking, fatigue cracking in chemically 

stabilized layer, permanent deformation, and terminal IRI. A designer may specify the 

desired level of reliability for each distress type and roughness. Table 7.2 provides 

values that are suggested for use in design by the new MEDPG. It is important to note 

here that the MEPDG is currently uncalibrated for semi-rigid pavements and is not 

recommended for analysis until it is globally calibrated (AASHTO, 2004; Saxena et 

al., 2010).  

4. Traffic Characterization: The MEPDG requires the full axle-load spectrum traffic 

inputs for estimating the magnitude, configuration and frequency of the loads to 

accurately determine the axle loads that will be applied on the pavement in each time 

increment of the damage accumulation (AASHTO, 2004; Li, 2009). The traffic 

characterization information is provided through four separate modules namely, basic 

information, traffic volume adjustment factors, axle load distribution factors, and 

general traffic inputs. The basic information includes Annual Average Daily Truck 

Traffic (AADTT) for base year, directional distribution factor, lane distribution factor 

and operational speed of vehicles. The traffic volume adjustment is comprised of 

monthly adjustment factors, vehicle class distribution, hourly truck traffic 

distribution, and traffic growth factors. The general traffic inputs are used for 

calculating pavement response and includes mean wheel location (default value = 457 

mm, i.e. 18 in), traffic wander standard deviation (default value = 254 mm, i.e. 10 in), 
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design lane width (default value = 3.66 m, i.e. 12 ft), number of axle types per truck 

class, axle configuration, and wheelbase.  

5. Climate: The climatic inputs include hourly air temperature, precipitation, wind 

speed, percentage sunshine, and ambient relative humidity values over the design 

period. These data are used for considering the changes of temperature and moisture 

profiles in the pavement structure and subgrade over the design life of a pavement 

through the incorporation of the EICM model into the MEPDG design software. The 

EICM is a one-dimensional coupled heat and moisture flow program that simulates 

changes in the behavior and characteristics of pavement and subgrade materials in 

conjunction with climatic conditions (AASHTO, 2004). 

6. Pavement Structure: This input data includes drainage/surface characteristics and 

layer properties. Further, the material parameters for each layer needed for the design 

process are classified into three major categories, namely, pavement response model 

material inputs, material related pavement distress criteria inputs, and other material 

properties. The pavement response model material inputs relate to the modulus and 

Poisson’s ratio used to characterize layer behavior within the specific model (Li, 

2009). Material parameters associated with pavement distress criteria are linked to 

some measure of material strength or to some manifestation of the actual distress 

effect (e.g., modulus of rupture, repeated load permanent deformation). The “other” 

category of material properties constitutes those associated with special properties 

such as thermal expansion and contraction coefficient of asphalt mixtures. 
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7.3.3 Conceptual Difference: AASHTO 1993 and AASHTO 2002 MEPDG 

The main conceptual differences between AASHTO 1993 and the new MEPDG 

can be summarized as follows (AASHTO, 2004; Schwartz and Carvalho, 2007; Li, 

2009): 

1. The AASHTO 1993 guide designs pavements for a single performance criterion, the 

present serviceability index (PSI), whereas the MEPDG approach simultaneously 

considers multiple performance criteria (e.g., rutting, cracking, and roughness).  

2. The AASHTO 1993 guide directly computes the layer thicknesses. On the other hand, 

MEPDG is an iterative procedure.  

3. The MEPDG requires more input parameters such as environmental and material 

properties. It also employs a hierarchical concept in which designer may choose 

different quality levels.  

4. The AASHTO 1993 was developed on the basis of limited field data from AASHO 

Road Test conducted at only one location. The seasonally adjusted subgrade resilient 

modulus and the layer drainage coefficients are the only variables for environmental 

condition. The new MEPDG utilizes a set of project-specific climate data (e.g., air 

temperature, precipitation, wind speed, and relative humidity) and the EICM to 

determine the material properties for different environmental conditions throughout 

the year 

5. The AASHTO 1993 guide uses the concept of ESALs to define traffic levels, while 

the MEPDG adopts the more detailed load spectra concept. Pavement materials 

respond differently to traffic pattern, frequency and loading. Traffic loading in 

different seasons of the year also has different effects on the response of the pavement 
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structure. These factors can be most effectively considered using the load spectra 

concept.  

7.4 Design Curves for Fatigue Life of Stabilized Subgrade Layer 

7.4.1 Structural Model 

The computer program KENLAYER (Huang, 2004), which is based on multi-

layer elastic theory, was employed to calculate the structural response in terms of 

stresses, strains, and deflections in various layers of 25 hypothetical pavement sections 

(described in the next section).  

7.4.2 Thickness and Material Properties 

    All 25 pavement sections contain a 101.6 mm (4 in) thick asphalt concrete 

surface course with a resilient modulus of 3,445 MPa (500,000 psi) and a Poisson’s ratio 

of 0.35, and they are underlain by a V-soil subgrade having a design Mr value of 80 MPa 

(11,611 psi) and a Poisson’s ratio of 0.4. Each section (except section P1) also has a 

stabilized subgrade layer with either different thickness or additive type (Poisson’s ratio = 

0.2 as recommended by MEPDG). All layers are assumed to be linear elastic. The 

pavements are designated as P1 through P25, and various combinations of thicknesses 

and resilient modulus values are shown in a design matrix in Table 7.3. Overall, twelve 

sections consider resilient modulus (Mr) in compression while the remaining twelve 

sections consider resilient modulus in tension (Mrt). As noted in Section 5.4.1, design Mr 

values were calculated at a deviatoric stress of 41.34 kPa (6.0 psi) and a confining 

pressure of 13.78 kPa (2.0 psi), as recommended by Jones and Witczak (1977) and Ping 

et al. (2001). On the other hand, Mrt were also calculated at a deviatoric stress of 41.34 
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kPa (6.0 psi) and effect of confinement on Mrt was neglected. As demonstrated in Section 

2.7.4, Mr values of stabilized soil specimens showed low sensitivity towards low 

confining pressure (15 kPa, i.e., 2.2 psi). Similar behavior of low sensitivity of resilient 

modulus towards confining pressure is expected for stabilized soil specimens in tension. 

A schematic diagram of a pavement section showing all properties used is presented in 

Figure 7.2. 

7.4.3 Traffic Load 

As discussed in Section 7.3, AASHTO 1993 design uses 80 kN (18 kips) 

Equivalent Single Axle Loads (ESAL) while new MEPDG allows use of actual load 

distributions. Accordingly, pavement response is calculated due to application of a 40 kN 

(9 kips) wheel load on the surface layer. A tire pressure of 120 psi (default value 

recommended by MEPDG) is assumed to be the contact pressure applied to a circular 

area on the pavement surface. 

7.4.4 Structural Response 

The program KENLAYER treats the flexible pavement structure as an elastic 

multi-layer system under a circular loaded area (Huang, 2004). It analyze loading in axi-

symmetric space and give outputs namely, stresses, strains, and vertical deflections, at 

user specified locations within the pavement system. For each pavement section, the 

maximum horizontal (radial) tensile strain at the bottom of the stabilized subgrade layer 

was obtained from the KENLAYER, and these outputs are presented in Table 7.4 and 

plotted in Figure 7.3. It is seen that, for the same resilient modulus value, the higher the 

thickness, the lower the tensile strain which is the expected trend. The curves tend to 
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flatten out for a stabilized subgrade layer thickness of more than 254 mm (10 in). Also, 

for the same thickness, lower tensile strain is induced in stabilized section having a 

higher resilient modulus, as expected, since increased resilient modulus corresponds to 

increased “rigidity” of the system (Sobhan, 1997; Huang, 2004). It is also clear from 

Figure 7.3 that for sections with same additives, Mr provides lower tensile strain 

compared to Mrt. This could be contributed to the fact that the magnitudes of Mr values 

are higher than the Mrt values, as discussed in Section 6.5.1.  

7.4.5 Prediction of Stabilized Subgrade Layer Performance 

The tensile strains reported in Table 7.4 were divided by the appropriate 

maximum allowable tensile strain from flexural strength tests to calculate the strain ratio 

(applied strain/maximum allowable tensile strain). Equation 6.18 and model proposed by 

Prozzi and Aguiar-Moya (2010) (see Table 6.3) were then employed to predict the 

allowable number of cycles beyond which fatigue failure occurs in each pavement; these 

values are presented in Tables 7.5 and 7.6 for Eqn. 6.18 and Prozzi and Aguiar-Moya 

(2010) model, respectively.  

7.4.6 Thickness Design Curves 

The variation in the predicted number of cycles to failure with the thickness of the 

stabilized subgrade layer is plotted in Figures 7.5 and 7.6 using Eqn. 6.8 and Prozzi and 

Aguiar-Moya (2010), respectively, for various values of the resilient modulus. For the 

given asphalt concrete course and subgrade properties, these charts provide the required 

minimum thickness of stabilized subgrade layer to prevent fatigue failure in the 

pavement. Similar charts can be prepared for other asphalt concrete and subgrade 
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properties. It is found that the curves representing different resilient modulus are almost 

parallel to each other. The location of the design curve for any other combination of soil 

and additive can be found by evaluating its resilient modulus and then interpolating its 

value on the chart.  

7.4.6.1 Effect of Selection of Model 

An examination of Tables 7.5 and 7.6 reveal that the model recommended by 

Prozzi and Aguiar-Moya (2010) provides higher fatigue life for all the stabilized sections. 

For example, Section P2 (V-soil stabilized with 6% lime) provided a fatigue life of 

1,691,915 and 5,353,535 by using Eqn. 6.8 and model recommended by Prozzi and 

Aguiar-Moya (2010). It should be noted that the model recommended by Prozzi and 

Aguiar-Moya (2010) was calibrated by using the field data. The model provides 

allowance for a period of crack propagation from the time of crack initiation in stabilized 

layer to the time when the layer is extensively cracked. On the other hand, the model 

proposed in this study (Equation 6.8) is based on the laboratory data. The model assumes 

that fatigue failure is equal to the number of cycles required to reduce the initial stiffness 

by 50%. Fatigue life of stabilized subgrade layer in field is expected to be higher than 

laboratory due to several factors such as difference in stress state, traffic wander and 

material compaction (Al-qadi and Nassar, 2003). For example, fatigue laboratory testing 

applies the test control parameter, whether stress or strain, repetitively to the same exact 

location on the specimen. However, it is well recognized that traffic does not constrain 

itself to the same position on the wheel path. 
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7.4.6.2 Effect of Selection of Material Property 

It is evident from Tables 7.5 and 7.6 that the selection of resilient modulus in 

compression or tension influences the fatigue life of the stabilized sections; sections 

utilizing Mr consistently showed higher fatigue life as compared to sections utilizing Mrt. 

For example, Section P4 (V-soil stabilized with 10% CKD) provided a fatigue life of 

1,621,876, whereas Section P7 provided a fatigue life of 1,333,899. Thus, decrease in 

resilient modulus (compression to tension mode) value by approximately 42% reduced 

the fatigue life by approximately 18%. From the above discussion, it can be concluded 

that the selection of resilient modulus value is very important for predicting the fatigue 

life of semi-rigid pavement.  

7.4.6.3 Effect of Additive Type 

Since tension mode is more conservative and reasonable to use, it was decided to 

compare the additive performance for the sections utilizing M rt values (i.e., P5 – P7, P11 

– P13, P17 – P19, P23 – P25). Both Figures 7.4 and 7.5 illustrate that sections stabilized 

with 6% lime showed highest resistance towards fatigue failure followed by 10% CFA 

and 10% CKD. For example, the fatigue life of Section P11 (6% lime-stabilized) is 

2,003,189, as compared to 1,934,128 and 1,717,592 for Sections P12 (10% CFA-

stabilized) and P13 (10% CKD-stabilized), respectively (Table 7.5). Further, to illustrate 

the effect of additive type on fatigue life, the percentage increase in fatigue life of 6% 

lime- and 10% CFA-stabilized sections with respect to (w.r.t.) fatigue life of 10% CKD-

stabilized specimens having similar thickness are plotted, as shown in Figure 7.6. It is 

interesting to note that the percent difference in the fatigue life of sections stabilized with 

different additives decreases with the increase in the thickness of stabilized layer. For 
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example, Sections P5 (6% lime-stabilized) and P6 (10% CFA-stabilized) having 

thickness of 101.6 mm (4 in) showed fatigue life of approximately 25% and 18% higher 

than fatigue life of Section P7 (10% CKD-stabilized). On the other hand, Sections P23 

(6% lime-stabilized) and P24 (10% CFA-stabilized) having thickness of 254 mm (10 in) 

projected fatigue life approximately 8% and 7% higher than corresponding CFA-

stabilized section, i.e., Section P25. 

7.4.6.4 Overall Pavement Performance 

To study the overall performance of pavement, fatigue life of asphalt concrete 

was also evaluated by using the fatigue cracking model recommended by the new 

MEPDG. This model is given by the following equation (AASHTO, 2004): 
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where, εta = maximum tensile strain below the asphalt concrete layer (from 

KENLAYER), hac = thickness of AC layer (101.6 mm, i.e., 4 in), Mra = resilient modulus 

of asphalt concrete layer (3,445 MPa, i.e., 500,000 psi), Vb = effective binder content 

(4.1%), and Va = percent air voids (7%). The fatigue life of asphalt concrete layer for 

different sections computed by using Eqn. 7.8 is presented in Table 7.7. It is clear from 

Table 7.7 that at a particular thickness, section with stabilized subgrade layer having 
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highest resilient modulus showed maximum resistance towards fatigue failure of asphalt 

concrete. For example, among pavement Sections P20 through P25 having 254 mm thick 

stabilized subgrade layer, Section P22 having the highest resilient modulus value (1,575 

MPa, i.e. 228,592 psi) produced the highest resistance towards fatigue failure of asphalt 

concrete (fatigue life = 48,618,672 cycles). On the other hand, among same 

aforementioned pavement sections, P23 having the lowest resilient modulus value (611 

MPa, i.e., 88,679 psi) showed least resistance towards fatigue failure of asphalt concrete 

(fatigue life = 1,524,547 cycles). Thus, it can be concluded that 10% CKD providing 

higher resilient modulus value helped by increasing the number of cycles to failure of 

asphalt concrete. On the contrary, 6% lime producing the lowest resilient modulus values 

reduced the fatigue life of asphalt concrete layer.  

Further, the fatigue life of stabilized subgrade layer (Tables 7.5 and 7.6) was 

compared with the fatigue life of asphalt concrete layer (Table 7.7). It is clear that 

Sections P4, P9, P10, P13, P15, P16, P18, P19, P21, P22, P24 and P25 showed fatigue 

life of stabilized subgrade layer lower than the fatigue life of asphalt concrete layer 

(Table 7.5). Similarly, using the Prozzi and Aguiar-Moya (2010), Sections P4, P10, P16 

and P22 (10% CKD-stabilized) showed lower fatigue life of stabilized subgrade layer as 

compared to corresponding fatigue life of asphalt concrete layer (Table 7.6). Overall, 

improvement in the stiffness (Mr) of stabilized layer increased the fatigue life of asphalt 

concrete layer. Also, increase in the thickness of stabilized subgrade layer helped by 

increasing fatigue life of both stabilized subgrade and asphalt concrete layer.  
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7.5 AASHTO 1993 and AASHTO 2002 MEPDG Analysis 

An attempt was made to compare AASHTO 1993 and AASHTO 2002 MEPDG 

design methods by analyzing 16 hypothetical pavement sections containing V-soil and K-

soil stabilized layers. The objective is to predict the thickness of asphalt concrete layer 

for each pavement section using AASHTO 1993 and MEPDG and to compare the level 

of agreement between the two design methods. But before one can proceed with the 

design, there are several design parameters that need to be determined or assumed for 

AASHTO 1993 and MEPDG analysis (AASHTO, 1993; Huang, 2004; AASHTO, 2004). 

These design inputs are discussed briefly in the next section. 

7.5.1 Design Parameters 

It was decided to select common design inputs for both AASHTO 1993 and 

MEPDG analysis. However, as noted earlier, MEPDG requires more design inputs as 

compared to AASHTO 1993 Design Guide. In such cases Level 3 default design inputs 

were selected for MEPDG, as discussed below. 

1. Design Period: The design period for the selected pavement sections is assumed to be 

20 years. 

2. Traffic Characteristics: A summary of design traffic used in the analysis is presented 

in Table 7.8. The initial two-way annual average daily traffic (AADT) for this design 

is assumed to as 11,378 with 3% of the traffic being heavy trucks (Yoder and 

Witczak, 1975; AASHTO, 1993; Huang, 2004). The ESAL is calculated from the 

information presented in Table 7.8.  The ESAL for the present traffic and annual 

truck volume growth rate of 1.5% is found to be 3,138,596. Since it is customary to 

use 80 kN (18,000 lb) axle load in AASHTO 1993, it was decided to use axle load 
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distribution consisting of only 80 kN (18,000 lb) axle loads in MEPDG. For the 

ESAL simulation, the default vehicle class distribution was modified to include only 

class 9 vehicles. This class of vehicle has one single axle and two tandem axles; 

however, to represent the standard single axles load of 80 kN (18,000 lb) only single 

axle load of 80 kN (18,000 lb) are considered (Carvalho and Schwartz, 2007). The 

load distribution was also modified so that only a 80 kN (18,000 lb) load level was 

considered in the axle load distribution. These two modifications guaranteed only a 

standard single axle would be used as the traffic loading. Additional MEPDG inputs 

such as design lane width, traffic operation speed, tire pressure, mean wheel location 

and traffic wander standard deviation were taken as default value for Level 3 design, 

as presented in Table 7.8.  

3. Reliability and Performance Characteristics: Table 7.9 presents the reliability and 

serviceability values used in this design application. These values are based on the 

recommendations by the AASHTO 1993 and MEPDG, as discussed in Section 7.3  

Based on the AASHTO recommendation, a reliability level of 90% was selected as an 

input parameter (AASHTO, 1993; AASHTO, 2004). An overall standard deviation of 

0.46 was used, as recommended by Oklahoma Department of Transportation. The 

initial and final serviceability values of the pavement are assumed as 4.2 and 3.0, 

respectively (AASHTO, 1993; Huang, 2004; Papagiannakis and Masad, 2007). For 

MEPDG, performance characteristics were assumed to be default values for a Level 3 

design of a flexible pavement, as discussed in Section 7.3.   

4. Properties of Asphalt Concrete Layer: As noted earlier, AASHTO 1993 requires layer 

coefficient (determined from resilient modulus) for asphalt concrete, whereas 
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MEPDG uses dynamic modulus and Superpave binder grading as input parameters. 

To use consistent properties of asphalt concrete in both AASHTO 1993 and MEPDG, 

it was decided to select a particular gradation of asphalt concrete mixture. Table 7.10 

presents the gradation, binder and mix properties of the asphalt concrete used in the 

current study. The properties of the S3 mix are reproduced from Solanki et al. (2009c) 

which was used in the construction of an instrumented section on I-35 in the 

southbound lane. Further, details of the mix are given by Solanki et al. (2009c). The 

resilient modulus of the mix was determined by using the following correlations 

recommended by Navratnarajah (2006): 

Mra = (3048.96 – 23.12T – 148.36Va – 280.39Vb + 443.04P200) 

*(0.803 – 0.010T+0.053Va)
S     (7.9) 

where, T = temperature (70oF, i.e., 21oC), S = stress ratio (0.030 – 0.375 from 

KENLAYER). On the other hand, dynamic modulus was computed by using Level 3 

inputs in the MEPDG. The resultant master curve of dynamic modulus is presented in 

Figure 7.7.  It is interesting to note that the dynamic modulus and resilient modulus 

value at a reference temperature of 70oF (21oC) (frequency = 10 Hz) are 3,149 MPa 

(457,039 psi) and 7,727 MPa (1,121,480 psi), respectively. Previous studies reported 

that the performance of pavements is affected by the choice of the asphalt concrete 

modulus (e.g., Loulizi et al., 2006; Lacroix et al., 2007). 

5. Stabilized Subgrade and Subgrade Properties: The stabilized subgrade and subgrade 

properties were changed to examine the influence of additive and soil type on the 

design thickness. A summary of design matrix of 16 different pavement sections (S1 

– S16) used in this study is presented in Table 7.12. A total of two different soils, 
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namely, V- and K-soil were evaluated. Sections S1 through S6 are underlain by a V-

soil subgrade (design Mr value = 80 MPa, i.e., 11,611 psi), whereas Section S7 

through S16 are underlain by raw K-soil subgrade (design Mr value = 56 MPa, i.e., 

8,128 psi). Only Section S16 was assumed to have no stabilized soil layer. For 

AASHTO 1993 design, stabilized subgrade layer is counted as a subbase and 

assigned an appropriate structural layer coefficient (Qubain et al., 2000; Bin-Shafique 

et al., 2004). According to the AASHTO Design Guide (AASHTO, 1993), the 

relationship between the layer coefficient (a) of the subbase layer and its resilient 

modulus (in psi) is given by Eqn. 7.1. However, Eqn. 7.1 is valid for granular 

materials relating subbase layer coefficient to resilient modulus, but no such equation 

is available for the stabilized subgrade layer. Thus, in lieu of equation or charts 

specifically for the stabilized subgrade, the equation for granular subbase was 

assumed to apply to the stabilized subgrade layer to estimate the layer coefficient. 

This assumption was validated through field testing by other researchers (e.g., Bin-

Shafique et al., 2004). The measured resilient modulus values for all the fifteen (S1 – 

S15) sections were used for calculating layer coefficients using Eqn. 7.1, as presented 

in Table 7.12. For MEPDG analysis, resilient modulus values were used directly for a 

Level 3 design. 

7.5.2 Layer Thickness 

Based on the design parameters selected, SN for AASHTO 1993 design is 

calculated using DARWin 3.1 – AASHTO 1993 Design Guide software (AASHTO, 

1993). For the V- and K-soil subgrade, a SN of 3.87 (S1 – S6) and 4.48 (S7 – S16) is 

obtained, respectively. In order to convert the design SN to actual pavement thickness, a 
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semi-rigid type flexible pavement section which has an asphalt concrete layer on the top 

of 152.4 mm (6 in) stabilized subgrade layer is considered. Based on the AC layer 

coefficient (0.0176 mm-1, i.e., 0.447 in-1), the required asphalt concrete thickness can be 

determined by using specified thickness design method provided in DARWin 3.1 

software. Table 7.12 presents the required AC thickness (DE) for the calculated SN 

pertaining to Sections S1 through S16. The MEPDG analysis was conducted for all the 

sections (S1 through S16) by using the MEPDG software version 1.100 (AASHTO, 

2004). The trial thickness of AC layer was selected from the AASHTO 1993 analysis 

results. If the section failed the criteria for the smoothness (IR) and other distresses, the 

thickness of AC layer was increased by 12.7 mm (one-half inch) and the analysis was 

redone. Analysis of each section took approximately 5 – 10 minutes on a Dell Inspiron 

1501 laptop. This process was repeated until the section passed all the performance 

criteria. The AC thickness (DM) that was eventually obtained was taken to be the 

equivalent MEPDG section as shown in Table 7.12. Also, KENLAYER (Huang, 2004) 

was used for analyzing the fatigue life of stabilized subgrade layer in Sections S1 through 

S6. The fatigue life of stabilized subgrade was computed in a similar manner as discussed 

in Section 7.4.5, except that the analyses were carried for only Eqn. 6.18. The minimum 

thickness of AC layer (DK) required to prevent fatigue failure of stabilized subgrade layer 

in different pavement sections is presented in Table 7.12. A summary of required AC 

thicknesses for Sections S1 through S16 using both AASHTO 1993 and MEPDG is 

presented graphically in Figure 7.8. 
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7.5.2.1 Effect of Selection of Material Property 

In the present study, both resilient modulus in compression (Sections S1 through 

S3) and tension (Sections S4 through S6) were considered for designing pavement 

sections. The required AC thicknesses computed using both AASHTO 1993 and MEPDG 

are presented in Table 7.12. It is evident from Table 7.12 that the selection of resilient 

modulus in compression or tension mode influences the design thickness of the stabilized 

sections. Sections utilizing Mr consistently showed lower design thickness as compared 

to corresponding stabilized section utilizing Mrt. For example, Section S1 (V-soil 

stabilized with 6% lime) provided an AASHTO 1993 design thickness of 117.9 mm (4.64 

in), whereas Section S4 provided an AASHTO 1993 design thickness of approximately 

122.9 mm (4.84 in). It is also clear that the influence of selection of resilient modulus in 

compression or tension mode is dependent on the selection of design method. For 

example, pavement Sections S4, S5 and S6 designed by AASHTO 1993 method showed 

an increase in AC thickness by approximately 5.0, 7.1 and 19.0 mm (i.e., 0.19, 0.28 and 

0.75 in) with respect to AC thicknesses of S1, S2 and S3 sections, respectively. On the 

other hand, MEPDG showed an increase in AC thickness by approximately 7.5, 13.0 and 

38.1 mm (i.e., 0.30, 0.51 and 1.50 in) between the similar aforementioned sections. 

7.5.2.2 Effect of Soil and Additive Type 

As noted earlier, V-soil was used in Sections S1 through S5 while K-soil was 

used in Section S7 through S16. Due to similar additive type and content, Sections S1 (V-

soil stabilized with 6% lime), S2 (V-soil stabilized with 10% CFA) and S3 (V-soil 

stabilized with 10% CKD) were compared with Sections S8 (K-soil stabilized with 6% 

lime), S11 (K-soil stabilized with 10% CFA) and S14 (K-soil stabilized with 10% CKD), 
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respectively. It is clear that Sections S1, S2 and S3 consistently provided lower AASHTO 

1993 AC design thickness as compared to Sections S8, S11 and S14, respectively. For 

example, the required AC design thickness of Sections S8, S11 and S14 were 

approximately 20.5, 41.1 and 47.0 mm (i.e., 0.81, 1.62 and 1.85 in) higher as compared to 

design thickness of S1, S2 and S3 sections, respectively (Figure 7.8). On the other hand, 

Sections S1 and S2 provided approximately 41.9 and 4.8 mm (i.e., 1.65 and 0.19 in) 

higher MEPDG AC design thickness as compared to Sections S8 and S11, respectively. 

Section S14 showed approximately 7.6 mm (0.30 in) higher MEPDG design thickness as 

compared to Section S3. The higher AASHTO 1993 design thicknesses of K-soil 

stabilized sections (S8, S11, S14) as compared to corresponding V-soil stabilized sections 

(S1, S2, S3) could be attributed to the fact that the design Mr value of K-soil (56 MPa, 

i.e., 8,128 psi) is lower than the design Mr value of V-soil (80 MPa, i.e., 11,611 psi). On 

the contrary, MEPDG design thicknesses showed a combined effect of both subgrade and 

stabilized subgrade layer. Although design Mr of V-soil is higher than the Mr of K-soil, 

Mr of K-soil stabilized with 6% lime (S8) is higher than the Mr of V-soil stabilized with 

6% lime (S1).  

Further, to evaluate the effect of additive type and content, the design thicknesses 

of Sections S8 through S15 were compared (Table 7.12). It is evident from Table 7.12 

that increase in lime content showed a decrease in both AASHTO 1993 and MEPDG 

design thicknesses up to 6% of lime, followed by an increase in design thickness for 9% 

lime. On the other hand, CFA and CKD content in the stabilized subgrade layer helped 

by decreasing the design thickness of AC layer. For example, 6% lime (S8), 15% CFA 

(S12) and 15% CKD (S15) decreased the AASHTO 1993 design thickness of raw 
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subgrade soil (S16) by approximately 46%, 44% and 53%, respectively. The trend of 

design AC thickness is similar to the trend of Mr values of stabilized layer, as expected 

(Figure 7.8). 

7.5.2.3 Overall Pavement Performance 

It is clear from Figure 7.8 that for all the sections containing V-soil (S1 – S3), 

MEPDG consistently showed higher (approximately 50%) AC design thickness than the 

AASHTO 1993 thickness of corresponding sections. This behavior is consistent with the 

observations reported by other researchers for conventional flexible pavement without 

stabilized subgrade layer. For example, Carvalho and Schwartz (2006) concluded that the 

AASHTO 1993 over-estimates the performance of pavements (i.e., lower thickness) for 

pavements in warm locations. On the contrary, all the sections containing stabilized K-

soil (S7 – S16) showed low percentage (< 10%) difference between the design 

thicknesses obtained from AASHTO 1993 and MEPDG methods. Additionally, Sections 

S7, S14, S15 and S16 provided higher AASHTO 1993 thickness than MEPDG design 

thickness. According to a study conducted by Mulandi et al. (2006) on lime-stabilized 

sections, the MEPDG procedure resulted in much thinner sections when compared to the 

sections obtained following the AASHTO 1993 design method.  

The fatigue life prediction for Sections S1 through S6 showed that a 

comparatively thicker section is required for preventing fatigue failure of stabilized 

subgrade layer. For example, KENLAYER analysis showed that a design AC thickness 

of approximately 111%, 150%, 240%, 110%, 139% and 185% higher than MEPDG 

design thickness is required for Sections S1, S2, S3, S4, S5 and S6, respectively. 

However, it is important to note that the design thickness predicted by KENLAYER is 
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based on a model developed using limited laboratory data. The developed model may not 

be applicable directly in the field due to several factors such as difference in stress state, 

traffic wander and material compaction between laboratory and field (Al-qadi and 

Nassar, 2003). 

7.5.3 Reliability Sensitivity 

Three different reliability levels of 80%, 90% and 95% were considered for this 

study. Table 7.14 summarizes the effect of reliability level on the AASHTO 1993 and 

MEPDG design thickness of Sections S4, S13 and S16. Based on Table 7.14, it is clear 

that an improvement in the reliability from 80% to 95% resulted in an increase in the 

percent difference between pavement thicknesses (when using AASHTO 1993 design) by 

approximately 33%, 22% and 15% for Sections S4, S13 and S16, respectively. On the 

other hand, MEPDG showed comparatively less sensitiveness towards change in 

reliability level. For example, an increase in reliability level from 80% to 95% increased 

the required AC thickness (MEPDG) by approximately 23%, 16% and 12% for Sections 

S4, S13 and S16, respectively.  According to Carvalho and Schwartz (2006), the 

performance predicted with the AASHTO 2002 MEPDG is relatively insensitive to the 

reliability level as compared to AASHTO 1993 designs.  

7.6 Cost Comparisons 

In addition to the reduction of thickness of AC layer achieved by utilizing 

cementitious additives in highway pavements, there is also a potential for economic 

savings. Also, selection of an additive depends on cost consideration of materials and 

hauling. Table 7.14 provides a comparison of costs associated with the delivery of lime, 
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CFA and CKD for the construction of a hypothetical pavement section in Norman, 

Oklahoma. Also, cost of a control section constructed using 152.4 mm (6 in) of ODOT 

Type A aggregate base (properties reproduced from Solanki et al., 2009c) is evaluated for 

comparison purposes. Cost figures shown in Table 7.14 were provided by the suppliers. 

Specifically, cost of hydrated lime was provided by the Texas Lime Company located in 

Cleburne, Texas. On the other hand, cost of CFA and CKD was provided by Lafarge 

North America located in Tulsa, Oklahoma. An aggregate base quarry located in Davis, 

Oklahoma (Dolese Bros Co.) provided material and freight cost of Type A aggregate 

base. Costs were calculated for aggregate base layer and Sections S7 through S15 by 

assuming a 305 m (1000 ft) wide stabilized subgrade layer stabilized to a depth of 152.4 

mm (6 in). It is clear that Type A aggregate base provided highest cost. Further, cost 

comparisons indicate that the use of CKD was least expensive due to low material costs 

($19/ton) and close proximity to the site. Sections stabilized with hydrated lime showed 

relatively high prices due to higher material cost ($123/ton). However, it is important to 

note that freight charges for lime may vary slightly depending on location in Oklahoma, 

but generally, lime prices are relatively insensitive to location within the State (Miller et 

al., 2003). 

In Figure 7.9 a comparison of total aggregate base, lime, CFA and CKD costs is 

shown for different sections along with design Mr values. It is clear from Figure 7.9 that 

aggregate base layer provides most expensive section but with lowest design Mr value. 

Also, 15% CKD (S15) provides highest Mr values and lower costs as compared to 6% 

lime- (S9) and 15% CFA- (S12) stabilized sections. Further, costs were compared for 

different additive contents providing similar design Mr values. Sections S7 (3% lime), 
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S12 (15% CFA) and S14 (10% CKD) were selected for this purpose. It is evident from 

Figure 7.9 that the total additive cost of Sections S7 and S12 are approximately $3,566 

and $7,265. On the other hand, Section S14 provided slightly higher Mr values and lower 

cost ($345 - $4,044 savings) as compared to Sections S8 and S12. Thus, based on 

material and hauling costs, CKD can be cheaper than hydrated lime and CFA. In 

addition, other factors should be considered in comparing the costs of lime-, CFA- and 

CKD-stabilized layers. For example, after capillary soaking CKD-stabilized soil appears 

to loose more strength as compared to lime- and CFA-stabilized specimens (see Section 

3.5.4), which could result in more money for the maintenance of CKD-stabilized 

sections.  

7.7 Concluding Remarks 

In this study, design curves for fatigue performance prediction of stabilized layers 

were developed for different stabilized pavement sections. The effect of selection of 

fatigue model, soil type and additives on thickness of stabilized section was discussed. 

Further, semi-rigid flexible pavement designs of different sections between the empirical 

AASHTO 1993 and the mechanistic-empirical MEPDG pavement design methodology 

were compared and discussed. Specifically, comparisons spanning a range of different 

sections consisting of cementitious layers stabilized with different type and percentage of 

additives were discussed. Costs of different sections stabilized with different additive 

types and contents were also presented. The following points highlight the conclusions 

drawn from this study: 

1. The selection of resilient modulus value is very important for predicting the fatigue 

life of semi-rigid pavement. It was found that sections utilizing Mr values consistently 
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showed a higher fatigue life as compared to corresponding sections utilizing Mrt 

values. 

2. The sections stabilized with 6% lime showed highest resistance towards fatigue 

failure followed by 10% CFA and 10% CKD. However, the percent difference in the 

fatigue life of sections stabilized with different additives decreases with the increase 

in the thickness of stabilized layer. 

3. Increase in the stiffness (Mr) of stabilized layer increased the fatigue life of asphalt 

concrete. Also, increase in the thickness of stabilized subgrade layer helped by 

increasing fatigue life of both stabilized subgrade and asphalt concrete layer.  

4. The selection of resilient modulus in compression or tension mode influences the 

required AC design thickness. Sections utilizing Mr consistently showed lower design 

thickness as compared to corresponding stabilized sections utilizing Mrt. 

5. The degree of influence of selection of resilient modulus in compression or tension 

mode is dependent on the design method (i.e., AASHTO 1993 and MEPDG). 

6. The trend of the AC design thicknesses of different sections is similar to the trend of 

Mr values of stabilized layer. 

7. The trend of AC design thicknesses predicted by using AASHTO 1993 and MEPDG 

were mixed. For the Sections S1 through S3 containing V-soil (design Mr = 80 MPa, 

i.e., 11,611 psi), MEPDG consistently showed higher (approximately 50%) AC 

design thicknesses than the AASHTO 1993 thickness of corresponding sections. On 

the contrary, Sections S7 through S16 containing K-soil (design Mr = 56 MPa, i.e., 

8,128 psi) showed low percentage (< 10%) difference between the design thicknesses 

computed from AASHTO 1993 and MEPDG methods. 
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8. The fatigue life prediction for all the pavement sections showed that a relatively 

thicker AC section is required for preventing fatigue failure of stabilized subgrade 

layer. 

9. MEPDG showed comparatively less sensitiveness towards change in reliability level 

as compared to AASHTO 1993 design methodology. 

10. At a similar Mr level, CKD-stabilization provided economically low cost sections as 

compared to lime- and CFA-stabilized sections. 
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Table 7.1 Suggested Levels of Reliability by AASHTO 1993 (Source: AASHTO, 1993) 
 

Functional Classification 
Recommended Level of Reliability 
Urban Rural 

Interstate and Other Freeways 85 – 99.9 80 – 99.9 
Principal Arterials 80 – 99 75 – 95 
Collector 80 – 95 75 – 95 
Local 50 – 80 50 – 80 

 
Table 7.2 Suggested Levels of Reliability by MEPDG (Source: AASHTO, 2004) 

 

Functional Classification 
Recommended Level of Reliability 
Urban Rural 

Interstate and Other Freeways 95 95 
Principal Arterials 90 85 
Collector 80 75 
Local 75 70 

 
 

Table 7.3 Design Matrix Showing 25 Different Pavement Sections for Design Curves of 
Stabilized Subgrade Layer 

 
Thickness 
of 
Stabilized 
Subgrade 
Layer (in) 

Resilient Modulus in Compression, Mr 
(MPa)* 

Resilient Modulus in Tension, 
Mrt (MPa)** 

Raw 
V-soil 
(80) 

V-soil + 
6% Lime 

(715) 

V-soil + 
10% CFA 

(951) 

V-soil 
+10% CKD 

(1,575) 

V-soil + 
6% Lime 

(611) 

V-soil + 
10% CFA 

(785) 

V-soil + 
10% CKD 

(916) 
101.6 

P1 

P2 P3 P4 P5 P6 P7 
152.4 P8 P9 P10 P11 P12 P13 
203.2 P14 P15 P16 P17 P18 P19 
254.0 P20 P21 P22 P23 P24 P25 

*M r value at pa = 101.28 kPa, σ3 = 13.78 kPa, σd = 41.34 kPa; ** Mrt value at σd = 41.34 kPa, σ3 = 0 kPa 

 
 

Table 7.4 Maximum Tensile Microstrain at Bottom of Stabilized Subgrade Layer 
Computed By KENLAYER 

 
Thickness 
of 
Stabilized 
Subgrade 
Layer 
(mm) 

Resilient Modulus in Compression, Mr 
(MPa)* 

Resilient Modulus in Tension, 
Mrt (MPa)** 

Raw 
V-soil 
(80) 

V-soil + 
6% Lime 

(715) 

V-soil + 
10% CFA 

(951) 

V-soil 
+10% CKD 

(1,575) 

V-soil + 
6% Lime 

(611) 

V-soil + 
10% CFA 

(785) 

V-soil + 
10% CKD 

(916) 

101.6 
275 – 
403 

403 368 297 410 380 372 
152.4 303 270 212 310 282 275 
203.2 233 205 158 238 214 208 
254.0 183 159 121 188 167 162 

* M r value at σ3 = 13.78 kPa, σd = 41.34 kPa; **Mrt value at σd = 41.34 kPa, σ3 = 0 kPa 
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Table 7.5 Prediction of Fatigue Life of Stabilized Subgrade Layer Using Equation 6.18 
 

Thickness 
of 
Stabilized 
Subgrade 
Layer 
(mm) 

Resilient Modulus in Compression, Mr 
(MPa)* 

Resilient Modulus in Tension, Mrt 
(MPa)** 

Raw 
V-
soil 
(80) 

V-soil + 
6% Lime 

(715) 

V-soil + 
10% CFA 

(951) 

V-soil 
+10% CKD 

(1,575) 

V-soil + 
6% Lime 

(611) 

V-soil + 
10% CFA 

(785) 

V-soil + 
10% CKD 

(916) 

101.6 

NA 

1,691,915 1,611,689 1,621,8761 1,670,545 1,571,193 1,333,899 

152.4 2,028,815 1,983,9781 2,024,0971 2,003,189 1,934,128 1,717,5921 

203.2 2,303,813 2,277,1951 2,329,9981 2,282,990 2,234,1451 2,045,3101 

254.0 2,522,778 2,510,5281 2,565,8831 2,499,976 2,468,2961 2,305,8331 
*M r value at σ3 = 13.78 kPa, σd = 41.34 kPa; **Mrt value at σd = 41.34 kPa, σ3 = 0 kPa; NA: Not Applicable; 
1Fatigue life lower than the fatigue life of asphalt concrete layer of same section 

 
 

Table 7.6 Prediction of Fatigue Life of Stabilized Subgrade Layer Using Equation 
Recommended By Prozzi and Aguiar-Moya (2010) 

 
Thickness 
of 
Stabilized 
Subgrade 
Layer 
(mm) 

Resilient Modulus in Compression, Mr 
(MPa)* 

Resilient Modulus in Tension, Mrt 
(MPa)** 

Raw 
V-soil 
(80) 

V-soil + 
6% Lime 

(715) 

V-soil + 
10% CFA 

(951) 

V-soil 
+10% CKD 

(1,575) 

V-soil + 
6% Lime 

(611) 

V-soil + 
10% CFA 

(785) 

V-soil + 
10% CKD 

(916) 

101.6 

NA 

5,353,535 5,034,215 5,074,5301 5,268,073 4,874,616 3,962,050 

152.4 6,737,235 6,549,294 6,717,4081 6,629,684 6,341,663 5,456,599 

203.2 7,913,533 7,797,960 8,027,5741 7,823,091 7,611,802 6,806,655 

254.0 8,877,505 8,822,964 9,069,9671 8,776,046 8,635,489 7,922,318 
*M r value at σ3 = 13.78 kPa, σd = 41.34 kPa; **Mrt value at σd = 41.34 kPa, σ3 = 0 kPa; NA: Not Applicable; 
1Fatigue life lower than the fatigue life of asphalt concrete layer of same section 

 
Table 7.7 Prediction of Fatigue Life of Asphalt Concrete Layer Using MEPDG Transfer 

Function 
 

Thickness 
of 
Stabilized 
Subgrade 
Layer 
(mm) 

Resilient Modulus in Compression, Mr 
(MPa)* 

Resilient Modulus in Tension, Mrt 
(MPa)** 

Raw 
V-soil 
(80) 

V-soil + 
6% Lime 

(715) 

V-soil + 
10% CFA 

(951) 

V-soil 
+10% CKD 

(1,575) 

V-soil + 
6% Lime 

(611) 

V-soil + 
10% CFA 

(785) 

V-soil + 
10% CKD 

(916) 

101.6 

NA 

460,580 1,003,161 6,170,499 392,573 760,544 899,744 

152.4 960,093 2,434,920 20,869,618 809,347 1,771,250 2,125,887 

203.2 1,451,999 4,013,787 36,589,815 1,201,682 2,802,381 3,441,992 

254.0 1,864,465 5,030,228 48,618,672 1,524,547 3,547,747 4,414,530 
*M r value at σ3 = 13.78 kPa, σd = 41.34 kPa; **Mrt value at σd = 41.34 kPa, σ3 = 0 kPa; NA: Not Applicable;  
Note: Fatigue life: Nf = 0.00432xk1’xC(1/εta)

3.9492(1/Mra)
1.281 where k1’ = 262, C = -1.55, εta: tensile strain below 

asphalt concrete layer; Mra: modulus of asphalt concrete layer (500,000 psi) 
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Table 7.8 Traffic Characteristics 
 

Parameter Value 
Two-way annual average daily traffic AADT 11,378 (M,E) 
Number of Lanes in Design Direction 2 (M,E) 
Percent Heavy Trucks (of ADT) FHWA Class 4 or Higher* 3% (M,E) 
Initial two-way AADTT 341 (M,E) 
AADTT Vehicle Class Distribution (Class 9) 100% (M) 
AADTT Vehicle Class Distribution (All Other Class) 0% (M) 
Axle Load Distribution Factor (Class 9) 18,000 lbs 100% (M) 
Axle Load Distribution Factor (Class 9) All Other 0% (M) 
Design Lane Width 3.65 m (12 ft) (M) 
Percent of All Trucks in Design Lane 80% (M,E) 
Percent Trucks in Design Direction 50% (M,E) 
Traffic Operation Speed  96 km/h (60 mph) (M) 
Tire Pressure 827 kPa (120 psi) (M) 
Mean Wheel Location 457.2 mm (18 in) (M) 
Traffic Wander Standard Deviation 254 mm (10 in) (M) 
Average Initial Truck Factor (ESALs/truck) 2.338 (E) 
Annual Truck Volume Growth Rate (Compound Growth) 1.5% (M,E) 
Total Calculated Cumulative ESALs 3,138,596 (E) 
M: MEPDG Input; E: AASHTO 1993 Input; Only class 9 vehicles are considered 

 
 
 

Table 7.9 Reliability and Serviceability 
 

Parameter Value 
Reliability Level 90% (M,E) 
Overall Standard Deviation 0.46 (E) 
Initial Serviceability 4.2 (E) 
Terminal Serviceability 3.0 (E) 
Design Roadbed Resilient Modulus (MPa) (V-soil) 80 (E) 
Drainage Factor for Layer Coefficient (Fair to Good) 1.0 (E) 
M: MEPDG Input; E: AASHTO 1993 Input;  
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Table 7.10 Properties of Asphalt Concrete for Pavement Design 
 

Parameter Value 
Mix Type S3 

Binder Type PG 64-22 (M) 
Binder Content (Vb) 4.1% (M) 
Percent Passing 1 in Sieve 100% (M) 
Percent Passing ¾ in Sieve 98% (M) 
Percent Passing 3/8 in Sieve 80% (M) 
Percent Passing No. 4  Sieve 58% (M) 
Percent Passing No. 200 Sieve (P200) 2.9% (M) 
Percent Air Voids (Va) 7.0% (M) 
Total Unit Weight 20.91 kN/m3 (M) 
Poisson’s Ratio 0.35 (M) 
Reference Temperature  (T) 70 oF (M,E) 
Tensile Strength  2,756 kPa 

Applied Stress (Elastic Analysis of Pavement Configuration 
shown in Figure 7.1)  

90 – 1,034 kPa 

Stress Ratio (S) 0.030 – 0.375 
Resilient Modulus in Indirect Tension (Navaratnarajah, 2006) 
at 70oF (Frequency = 10 Hz) (Mra)* 

2,746 – 3,552 MPa  

Average Resilient Modulus in Indirect Tension (70oF) 3,149 MPa (E) 
Structural Layer Coefficient (Asphalt Concrete) mm-1 0.0176 mm-1(E) 
Dynamic Modulus Master Curve from AASHTO 2002 MEPDG See Figure 7.7 (M) 
Dynamic Modulus Value (Frequency = 10 Hz) 7,727 MPa 
*M ra = (3048.96-23.12T-148.36Va-280.39Vb+443.04P200) x (0.803-0.010T+0.053Va)

S; M: 
MEPDG Input; E: AASHTO 1993 Input 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



271 
 

 
 
 
 

Table 7.11 Input Parameters for Stabilized Subgrade and Subgrade 
 

Parameter Value 
Subgrade  
Design Roadbed Resilient Modulus (MPa) (V-soil) 80 MPa (M,E) 
Drainage Factor for Layer Coefficient (Fair to Good) 1.0 (E) 
Poisson’s Ratio 0.4 (M) 
Gradation, Atterberg Limits See Table 2.2 (M) 
Maximum Dry Unit Weight and Optimum Moisture Content See Table 2.8 (M) 
Stabilized Subgrade  
Design Resilient Modulus  See Table 7.12 (M,E) 
Drainage Factor for Layer Coefficient (Fair to Good) 1.0 (E)  
Structural Layer Coefficient, a*  See Table 7.12 (E) 
Poisson’s Ratio 0.2 (M) 
Modulus of Rupture See Table 6.7 (M) 
Unit Weight See Table 2.8 (M) 
M: MEPDG Input; E: AASHTO 1993 Input; *a = 0.227log (Mr)-0.839 (where, Mr: psi, a: in-1) 
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Table 7.12 Pavement Design Matrix and Sections Using AASHTO 1993 and MEPDG 
Analysis 

 
Section 
Number S1 S2 S3 S4 S5 S6 S7 S8 

Soil Type1 V-soil V-soil V-soil V-soil V-soil V-soil K-soil K-soil 
Additive 
Type 

Lime CFA CKD Lime CFA CKD Lime Lime 

Percent 6 10 10 6 10 10 3 6 
M r or Mrt Mr Mr Mr Mrt Mrt Mrt Mr Mr 
Design Mr 
(MPa) 

715 951 1,575 611 785 916 1,017 1,081 

a (mm-1) 0.0118 0.0129 0.0149 0.0112 0.0122 0.0128 0.0132 0.0134 
SN 3.87 3.87 3.87 3.87 3.87 3.87 4.48 4.48 
DE (mm)2  117.9 108.0 90.7 122.9 115.1 109.7 140.5 138.4 
DM (mm)2 180.3 162.3 127.0 187.8  175.3 165.1 139.7 138.4 
DK (mm)2 381.0 406.4 431.8 393.7 419.1 469.9 NA NA 
Section 
Number S9 S10 S11 S12 S13 S14 S15 S16 

Soil Type1 K-soil K-soil K-soil K-soil K-soil K-soil K-soil K-soil 
Additive 
Type 

Lime CFA CFA CFA CKD CKD CKD None 

Percent 9 5 10 15 5 10 15 0 
M r or Mrt Mr Mr Mr Mr Mr Mr Mr Mr 
Design Mr 
(MPa) 

719 435 801 948 291 1,122 1,880 56 

a (mm-1) 0.0118 0.0099 0.0122 0.0129 0.0083 0.0135 0.0155 NA 
SN 4.48 4.48 4.48 4.48 4.48 4.48 4.48 4.48 
DE (mm)2 152.4 169.4 149.1 142.7 182.4 137.7 119.9 254.8 
DM (mm)2 165.1 182.9 157.5 147.32 195.6 134.6 73.7 228.6 
Mr: Resilient Modulus in Compression; Mrt: Resilient Modulus in Tension; a: Structural Layer Coefficient; a = 
0.227log (Mr)-0.839 (where, Mr: psi, a: in-1); SN: Structural Number (for AASHTO 1993 Design); DE: Required 
asphalt concrete thickness using AASHTO 1993 Design; DM: Required asphalt concrete thickness using new MEPDG; 
DK: Required asphalt concrete thickness using KENLAYER (Eqn. 6.18); NA: Not Applicable; 1Roadbed soil is raw 
V-soil for Sections 1 through 6 and K-soil for Sections 7 through 16; 2Thickness of stabilized subgrade layer = 152.4 
mm 
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Table 7.13 Comparison of the Effect of Reliability Levels in Pavement Design on 
Sections S4, S13 and S16 

 
Section 
Number 

Reliability 
Level 

Design Structural 
Number (SN) 

Required AC Thickness 
(AASHTO 1993) (mm) 

Required AC Thickness 
(MEPDG) (mm) 

S4 
80 3.54 104.1 165.1 
90 3.87 122.9 187.8 
95 4.15 138.4 203.2 

S13 
80 4.13 162.6 180.3 
90 4.48 182.4 195.6 
95 4.77 199.1 208.3 

S16 
80 4.13 235.0 213.4 
90 4.48 254.8 228.6 
95 4.77 271.3 238.8 

AC: Asphalt Concrete; MEPDG: Mechanistic-Empirical Pavement Design Guide 

 
 

Table 7.14 Cost Comparisons for Constructing Stabilized Subgrade Layer in Norman, 
OK 

 

Section 
No. 

Additive 
Type 

Percent 
Dry 

Density 
(kN/m3) 

Soil/Agg 
Weight 
(tons) 

Additive 
Weight 
(tons) 

Additive 
Cost ($ 

per tons)1 

Freight 
Cost ($ 

per tons)1 

Total 
Cost 
($) 

Type A 
Agg 

Base2 
None 100 22.7 1,088 0 6.5 10.50 18,488 

S7 Lime 3 17.0 813 24 123 23.20 3,566 
S8 Lime 6 16.8 800 48 123 23.20 7,013 
S9 Lime 9 16.3 779 70 123 23.20 10,244 
S10 CFA 5 17.4 831 42 36 21.92 2,407 
S11 CFA 10 17.4 833 83 36 21.92 4,822 
S12 CFA 15 17.5 836 125 36 21.92 7,265 
S13 CKD 5 17.3 827 41 19 20.55 1,634 
S14 CKD 10 17.1 815 81 19 20.55 3,221 
S15 CKD 15 16.9 809 121 19 20.55 4,796 

Roadway width = 9.144 m (30 ft); Thickness of stabilized subgrade layer = 152.4 mm ( 6 in); Road length = 305 m (1000 ft); 1Cost 
provided by Lafarge North America, Tulsa for CKD and CFA, Texas Lime Company for lime, and Dolese Bros Co, Davis for 
aggregate; 2152.4 mm (6 in) thick ODOT Type A aggregate base (Solanki et al, 2009c); Agg: Aggregate 
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Figure 7.1 Schematic Summary of Mechanistic-Empirical Pavement Design 
 

 
Figure 7.2 Pavement Configuration with Stabilized Subgrade Layer 

 

Pavement Structure

EnvironmentMaterial 
Properties

Traffic

Stress/Strain
Response

Empirical Models 

(or Transfer Functions)

Asphalt Concrete     

Stabilized Subgrade 

    

    Natural Subgrade 

  

Wheel Load 

σc : Critical compressive strain

 

 
 

σr : Critical tensile strain

σc  

σr

σr

Wheel Pressure = 826.8 kPa  
Wheel Load = 40 kN  

Natural Subgrade 
Mr,SG = 82 MPa, ν = 0.40  
 

Asphalt Concrete 
Mr,AC = 3,445 MPa, ν = 0.35  

Stabilized Subgrade  
Mr,SSG = See Table 7.1, ν = 0.20  
 hSSG = 101.6 – 

254  mm 
 

hAC= 101.6 mm 
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Figure 7.3 Variations in Tensile Strain Below Stabilized Subgrade Layer with Stabilized 

Subgrade Thickness 

 
Figure 7.4 Thickness Design Curves for Stabilized Subgrade Layer Using Equation 6.18 
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Figure 7.5 Thickness Design Curves for Stabilized Subgrade Layer Using Equation 

Recommended By Prozzi and Aguiar-Moya (2010) 
 
 

 
Figure 7.6 Percent Increase in Fatigue Life of 6% Lime- and 10% CFA-Stabilized 

Sections w.r.t Corresponding 10% CKD-Stabilized Sections 
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Figure 7.7 Dynamic Modulus Master Curve for Asphalt Concrete Mix from MEPDG 

 
 
 

 
Figure 7.8 Required AC Thicknesses for Different Sections Using AASHTO 1993 and 

MEPDG 
 
 
 
 
 
 
 
 

100

1,000

10,000

100,000

1.E-07 1.E-05 1.E-03 1.E-01 1.E+01 1.E+03 1.E+05 1.E+07

D
yn

am
ic

 M
od

u
lu

s 
(M

P
a)

Reduced Frequency (Hz)

1
1

8

1
0

8

9
1

1
2

3

1
1

5

1
1

0

1
4

1

1
3

8 1
5

2 1
6

9

1
4

9

1
4

3

1
8

2

1
3

8

1
2

0

1
8

0

1
6

2

1
2

7

1
8

8

1
7

5

1
6

5

1
4

0

1
3

8

1
6

5 1
8

3

1
5

8

1
4

7

1
9

6

1
3

5

7
4

0

500

1,000

1,500

2,000

0

50

100

150

200

250

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15

R
es

ili
en

t M
od

u
lu

s 
(M

P
a)

R
eq

u
ire

d
 T

h
ic

kn
es

s 
of

 A
C

 (
m

m
)

Pavement Section Number

Thickness (AASHTO 1993) Thickness (MEPDG) Resilient Modulus
V-soil K-soil



278 
 

 
 

 
 

Figure 7.9 Total Additive Cost and Resilient Modulus of Different Sections  
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CHAPTER 8                                                                               
SUMMARY AND RECOMMENDATIONS  

8.1 Summary 

The evaluation of engineering properties indicating short- and long-term 

performance of pavement is important for overall characterization of cementitiously 

stabilized subgrade soils. Variation in pavement performance with time indicates possible 

changes in the engineering properties of pavement materials. 

In this study, the effect of type and amount of additive on the short-term 

performance in terms of material properties recommended by new MEPDG was 

examined. Four soils commonly encountered as subgrades in Oklahoma were utilized: (1) 

Port Series (P-soil); (2) Kingfisher Series (K-soil); (3) Vernon Series (V-soil); and (4) 

Carnasaw Series (C-soil). Cylindrical specimens stabilized with lime (3%, 6% and 9%), 

CFA (5%, 10% and 15%) and CKD (5%, 10% and 15%) were molded, cured for 28 days, 

and then subjected to different stress sequences to study the Mr followed by ME and UCS 

test. Results showed that all the three additives improved the Mr, ME and UCS values of 

P-, K-, V- and C-soil specimens; however, degree of improvement varied with the type of 

additive and soil. For CFA- and CKD-stabilization, the amount of improvement increases 

with increase in the additive content; however, a reduction in Mr, ME and UCS values 

was observed beyond a certain percentage of lime content (between 6 – 9% for K- and C-

soil, between 3 – 6% for V-soil). At lower application rates (3% to 6%), lime showed 

highest improvement in the Mr values. At higher application rates (> 10%), CKD 

provided maximum enhancements. The Mr values of stabilized soil specimens were 

found to have relatively low sensitivity towards change in stress level as compared to 
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untreated specimens. It was also found that the percentage of increase in Mr values 

correlate better with soil properties – cation exchange capacity; additive properties – free-

lime content, alkali content, loss on ignition, percent passing No. 325 sieve, specific 

surface area, pH; and soil-additive mixture properties – silica sesquioxide ratio. Further, 

microscopic analysis confirmed the formation of reaction products such as C-S-H, C-A-

S-H and ettringite which contributed to strength and stiffness development of stabilized 

soil specimens. 

The long-term performance (or durability) of stabilized soil specimens was 

evaluated by conducting freeze-thaw (F-T) cycling, vacuum saturation and tube suction 

tests on 7-day cured P-, K- and C-soil specimens stabilized with 6% lime, 10% CFA and 

10% CKD. Also, specimens were capillary-soaked for 60 days and tested for Mr, as an 

additional indicator for evaluating long-term performance. This study is motivated by the 

fact that during the service life of pavement stabilized layers are subjected to F-T cycles 

and moisture variations. Results showed that UCS values of all the specimens decreased 

with increase in the number of F-T cycles. Such a decrease could be explained by the 

increase in moisture absorbed by specimen during the thawing portion of the cycle and 

pore structure of the stabilized specimen. For the different percentages and types of 

additives used in this study, results showed that lime offers highest resistance against F-T 

cycles for lean clay (K-soil) and fat clay (C-soil). On the other hand, CKD-stabilization is 

more effective with silty clay (P-soil) against damage caused by F-T cycles. A similar 

qualitative trend of behavior was observed for retained UCS after vacuum saturation test. 

It was also found that the 12 F-T cycles are more severe than the vacuum saturation test 

for the particular soils used in this study. A strong correlation was observed between 
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UCS values retained after vacuum saturation and F-T cycles. The final dielectric constant 

values (DV) measured by conducting tube suction test are influenced by the method of 

specimen preparation. Stabilization with 10% CFA is more effective in reducing the DV 

of silty clay specimens followed by 6% lime. However, 6% lime proved more effective in 

reducing DV of lean clay and fat clay specimens. On the contrary, 10% CKD was found 

to show no significant improvement in DVs for the soils used in this study. After 

capillary soaking, 6% lime-stabilization of lean clay and fat clay showed the best 

performance by providing highest Mr values. With silty clay, the degree of effectiveness 

after capillary soaking was found more for 10% CFA-stabilized specimens than 

corresponding 6% lime-stabilized specimens. Contrary to short-term performance, CKD-

stabilized specimens showed the worst long-term performance after 60-day capillary 

soaking. Also, the different test procedures employed in this study are expected to benefit 

future studies in this area. 

The long-term performance of natural sulfate bearing lean clay (V-soil) specimens 

stabilized with high (lime), low (CFA), and moderate (CKD) calcium-based additives 

were evaluated by subjecting specimens to 120 days of capillary soaking. During 

soaking, specimens were tested for 3-D swell to compare the effect of additive type on 

the phenomenon of sulfate-induced heave. After 120 days of capillary soaking, 

specimens were further tested for Mr, ME, and UCS. It was found that after 120 days of 

capillary soaking, raw and all stabilized specimens showed reduction in Mr, UCS, and ME 

values. For example, ME and UCS values of lime-, CFA- and CKD-stabilized specimens 

showed decrease ranging between approximately 86 – 89%, 31 – 92%, and 77 – 95% due 

to 120 days of capillary soaking. Overall, the 15% CKD-stabilized specimen (moderate 



282 
 

calcium-based additive) showed the highest improvement after 28 days of curing, while 

the 15% CFA-stabilized specimen (low calcium-based additive) showed the highest Mr, 

UCS, and ME values after 120 days of capillary soaking. For CFA-stabilization, the 

amount of improvement after capillary soaking increased with increase in the additive 

content; however, a reduction in Mr, ME and UCS values was observed beyond a certain 

percentage of lime or CKD content (between 3 – 6% for lime, between 10 – 15% for 

CKD). Three-dimensional swelling test showed an increase in volume for lime- (22.3% 

for 9% lime) and CKD-stabilized (6.4% for 15% CKD) specimens, while a reduction in 

volume for the CFA-stabilized specimen, as compared to raw sulfate bearing clay 

specimens. This increase in volume is attributed to sulfate-induced heaving which results 

in the formation of expansive mineral ettringite. Further, the presence of ettringite was 

verified using SEM/EDS tests in conjunction with XRD analyses. Also, pH value greater 

than 10.0 (or calcium content) and availability of moisture were verified as two dominant 

factors required for sulfate-induced heaving. 

For Level 2 design of pavements, a total of four stress-based statistical models 

and two feed-forward-type ANN models, were evaluated to correlate resilient modulus 

with specimen characteristics and soil/additive properties. The Mr data of stabilized P-, 

V- and C-soil was used for evaluation/development of different models, whereas Mr data 

of K-soil was used for the validation of the models. Specifically, one semi-log (σ3, σd) 

and three log-log (θ, σd; σ3, σd; θ, τoct) stress-based statistical models were evaluated. The 

log-log model recommended by AASHTO 2002 Design Guide (θ, τoct) for unbound 

materials was found to show the least acceptable performance. Further, all three stress-

based statistical models were validated by using additional Mr data of stabilized K-soil 
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specimens. Overall, a semi-log (σ3, σd) model was found to show best acceptable 

performance with the highest R2 value (0.98) and lowest average Se/Sy value of 0.48. 

From the correlations of best performing statistical model (Model 3), it appears that the 

model constants for 28-day Mr were mainly governed by compacted specimen 

characteristics – UCS, molding moisture content, molding dry unit weight, percentage of 

additive, silica sesquoxide ratio of soil-additive mixture; soil properties –clay content, 

pH, cationic exchange capacity; and additive properties – silica content, calcium oxide, 

magnesium oxide content, loss on ignition. For the RBFN model, with one hidden layer, 

the R2 value for the development/evaluation dataset showed worst performance (0.62) 

among all the statistical and ANN models used in this study. The R2 value of the MLPN 

model with one hidden layer was found to be 0.99 for evaluation/development dataset. 

Overall, the MLPN model was found to be the best model for the present 

development/evaluation and validation datasets. This model as well as the other models 

could be refined using an enriched database.  

Further, the effect of type of additive on indirect tensile and fatigue characteristics 

of stabilized P- and V-soil was evaluated. This study is based on the fact that stabilized 

layer is subjected to tensile stresses under wheel loading. Cylindrical specimens 

stabilized with 6% lime, 10% CFA and 10% CKD were molded using a Superpave 

gyratory compactor, cured for 28 days and subjected to different stress sequences in 

indirect tension to study the Mrt. On the other hand, 6% lime-, 10% CFA- and 10% CKD-

stabilized beam specimens were compacted using a Linear Kneading Compactor and 

subjected to repeated cycles of reloading-unloading after 28 days of curing in a four-point 

beam fatigue apparatus for evaluating fatigue life and flexural stiffness. It was found that 
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all three additives improved the Mrt, σt and MOR values of P- and V-soil specimens; 

however, degree of improvement varied with the type of additive and soil. Overall, 

specimens stabilized with 10% CKD provided highest Mrt values with both silty (P-soil) 

and lean clay (V-soil). The test results suggested that the Mrt depends on the applied load. 

Based on the test results, the Mrt decreased with increases in stress ratio. The magnitude 

of resilient modulus in tension is lower than it is in compression, consistent with the 

studies conducted by other researchers on cementitiously stabilized materials. For both 

silty clay and lean clay specimens, 10% CKD provided highest increase in tensile 

strength values followed by 10% CFA and 6% lime. Correlations developed between 

indirect tensile strength, MOR and UCS suggest that σt can be estimated as 

approximately 16% of UCS. On the other hand, MOR is approximately 41% of UCS. The 

beams stabilized with 10% CKD exhibited greater initial stiffness value, but its stiffness 

reduced more rapidly than 6% lime-stabilized beams under repeated load. The fatigue life 

tests conducted on beam specimens showed that the mean fatigue life of P-soil beams 

stabilized with 6% lime is greater than 2 million cycles. On the other hand, beams of silty 

clay stabilized with 6% lime failed at relatively a low Nf value (approximately 50). The 

6% lime- and 10% CKD-stabilized beams of lean clay exhibited mean fatigue life of 

1,430,000 and 965,000, respectively. A strain-based model was proposed for predicting 

fatigue life of cementitiously stabilized soil and comparisons were made with the existing 

model in the literature. This model could be refined using an enriched database. Although 

CKD-stabilized specimens showed best performance in enhancing the indirect tensile 

characteristics (Mrt, σt) and MOR, worst performance was observed in the fatigue life 

tests. 
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In order to illustrate the application of the evaluated engineering properties, the 

design curves for fatigue performance prediction of stabilized layers were developed for 

different stabilized pavement sections. Further, semi-rigid flexible pavement designs of 

different sections between the empirical AASHTO 1993 and the mechanistic-empirical 

MEPDG pavement design methodology were compared. It was found that the selection 

of resilient modulus value is very important for predicting the fatigue life of semi-rigid 

pavement. The sections utilizing Mr values consistently showed higher fatigue life as 

compared to sections utilizing Mrt values. The sections stabilized with 6% lime showed 

highest resistance towards fatigue failure followed by 10% CFA and 10% CKD. Increase 

in the stiffness (Mr) of stabilized layer increased the fatigue life of asphalt concrete layer. 

The degree of influence of selection of resilient modulus in compression or tension mode 

is dependent on the design method (i.e., AASHTO 1993 and MEPDG). The fatigue life 

prediction for all the pavement sections showed that a relatively thicker AC section is 

required for preventing fatigue failure of stabilized subgrade layer. The new MEPDG 

showed comparatively less sensitiveness towards change in reliability level as compared 

to AASHTO 1993 design methodology. At similar Mr level, CKD-stabilization provided 

economically low cost sections as compared to lime- and CFA-stabilization. 

8.2 Recommendations 

Based on the observations from this study, the following recommendations are 

made for future studies: 

1. As indicated in this study, only short-term properties such as strength (UCS) and 

stiffness (Mr, ME) alone can be misleading. In the present study, for example, CKD 

showed highest acceptable short-term performance but poor long-term performance. 
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It is also worth noticing that properties of CKD can vary significantly from plant to 

plant depending on the raw materials and type of collection process used (Miller and 

Zaman, 2000). Similarly, fly ash properties may be unique to same source while it 

may differ from ashes obtained from other sources (Ferguson and Levorson, 1999). 

These differences in physical and chemical properties can lead to different short- and 

long-term performances of stabilized soil specimens. Hence, it is recommended that a 

proper mix design be done with locally available traditional stabilizers considering all 

the short- and long-term performance parameters. Such designs, including the type 

and amount of additive, will ensure compatibility and satisfactory shot- and long-term 

performance. 

2. Although CKD might help by increasing properties such as Mr and UCS, it can 

negatively influence the fatigue life of stabilized subgrade and hence performance 

and the service life of the pavement. Therefore, it is recommended that future studies 

be conducted focusing on the evaluation of fatigue parameters for different soil types 

stabilized with different percentage and types of cementitious additives. Also, field 

studies should be conducted for comparing performance of stabilized subgrade layer 

in laboratory and field. 

3. This study projected relatively low calcium-based additive, CFA, showing best 

acceptable performance with sulfate bearing soil. However, this study was limited to 

only one soil (V-soil) from northwestern Oklahoma. Further, short- and long-term 

performance of CFA should be evaluated with other sulfate bearing soils. Also, full-

scale test sections should be built to test this hypothesis in the field. 
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4. The combined development and evaluation dataset in this study consisted of 160 soil 

specimens consisting of four soils stabilized with three additives namely, lime, CFA 

and CKD. It is recommended that these datasets be enriched by adding additional 

sites from throughout Oklahoma.  It is suggested that different geological features be 

considered in selecting additional sites. Training the statistical and ANN models 

using an enriched dataset is likely to improve the predictive capabilities of these 

models. Also, as the datasets include more soils from different locations, the models 

will become more representative of diversity in Oklahoma soils. 

5. It is recommended to develop a field testing program to measure pavement distresses 

at the selected representative semi-rigid type flexible pavement sites and compare 

field data to MEPDG distress predictions. The field data in combination with 

laboratory data will be essential for eventual calibration of the MEPDG for semi-rigid 

pavements. 
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LIST OF SYMBOLS AND ABBREVIATIONS 
 
LIST OF SYMBOLS 

η   Constant 

γd  Dry Density 

γw  Unit Weight of Water 

b  Average Width of Beam 

D   Diameter of Cylindrical Specimen 

Dg   Distance Between LVDTs measuring Deformation 

h  Average Height of Beam 

hac  Thickness of Asphalt Concrete Layer 

LL  Liquid Limit 

ME  Modulus of Elasticity 

Mr  Resilient Modulus of Raw or Stabilized Soil in Compression 

Mra  Resilient Modulus of Asphalt Concrete in Indirect Tension 

Mrf  Flexural Stiffness 

Mrt  Resilient Modulus of Raw or Stabilized Soil in Indirect Tension 

Nf  Number of Cycles to Fatigue Failure  

NMr  Normal Percent Increase in Resilient Modulus 

P  Applied Maximum Load 

P200  Percent Passing No. 200 Sieve 

P325  Percent Passing No. 325 Sieve 

Pa  Atmospheric Pressure 

PL  Plastic Limit 
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Qi   Constant Bias Term 

R2  Coefficient of Regression 

S  Stress Ratio  

Se  Standard Deviation of Errors 

Sj   Weighted Sum of the j th Neuron 

So  Overall Standard Deviation 

Sy  Standard Deviation of Sample 

T  Temperature 

t  Thickness of Cylindrical Specimen 

Va  Percent Air Voids 

Vb  Binder Content 

Wij   Weight Between the jth Neuron and the ith Neuron in the Preceding Layer 

ZR  Standard Normal Deviate 

α  Significance Level 

δ    Beam deflection in Neutral Axis 

∆HT  Total Recoverable Horizontal Deformation 

∆VT  Total Recoverable Vertical Deformation 

εf  Tensile Strain at the Bottom of Beam 

εm  Maximum Tensile Strain at the Bottom of Beam from Flexural Strength 

Tests 

εr  Resilient Strain 

εt  Tensile Strain at the Bottom of Beam 

εta  Tensile Strain at the Bottom of Asphalt Concrete Layer 
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θ  Bulk Stress 

σ3  Confining Stress 

σd  Deviatoric Stress 

σf  Tensile Stress at the Bottom of Beam 

σt  Indirect Tensile Strength 

τoct  Octahedral Shear Stress 

υ   Poisson’s Ratio 

 

LIST OF ABBREVIATIONS 

1-D  One-Dimensional 

3-D  Three-Dimensional 

AADTT Annual Average Daily Truck Traffic 

AASHTO American Association of State Highway and Transportation Officials 

AC  Asphalt Concrete 

ACA  Alkali Content of Additive 

ACAA  American Coal Ash Association 

ANN  Artificial Neural Network  

ASCE  American Society for Civil Engineers 

ASTM  American Society for Testing of Materials 

C-A-S-H Calcium-Alumino-Silicate-Hydrate 

CBR  California Bearing Ratio 

CC  Clay Content 

CEC  Cationic Exchange Capacity 
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CFA  Class C Fly Ash 

CKD  Cement Kiln Dust 

C-S-H  Calcium-Silicate-Hydrate 

CSM  Cementitiously Stabilized Material 

C-soil  Carnasaw Series Soil 

CV  Coefficient of Variation 

DI  De-Ionized 

DOT  Department of Transportation 

DUW  Molding Dry Unit Weight 

DV  Dielectric Constant Value 

EDS  Energy Dispersive Spectroscopy 

EGME  Ethylene Glycol Monoethyl Ether 

EICM  Enhanced Integrated Climatic Model 

EPA  Environmental Protection Agency 

ESAL  Equivalent Single Axle Load 

FA  Fly Ash 

FHWA  Federal Highway Administration 

FL  Free-Lime Content 

F-T  Freeze-Thaw 

FWD  Falling Weight Deflectometer 

HDPE  High Density Polyethylene 

IRC  Indian Road Congress 

IRI  International Roughness Index 
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K-soil  Kingfisher Series Soil 

LKD  Lime Kiln Dust 

LMO  Lime Modification Optimum 

LOI  Loss on Ignition 

LSO  Lime Stabilization Optimum 

LTPP  Long-Term Pavement Performance 

LVDT  Linear Variable Differential Transformer 

MC  Molding Moisture Content 

MDD  Maximum Dry Density  

M-E  Mechanistic-Empirical 

MEPDG Mechanistic-Empirical Pavement Design Guide 

MLPN  Multi-Layer Perceptrons Network 

MOR  Modulus of Rupture 

MTS  Material Testing System 

NA  Not Applicable 

ODOT  Oklahoma Department of Transportation 

OHD  Oklahoma Highway Department 

OMC  Optimum Moisture Content 

PA  Percentage of Additive 

PC  Portland Cement 

PDG  Pavement Design Guide 

PI  Plasticity Index 

PSI  Present Serviceability Index 
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P-soil  Port Series Soil 

RBFN  Radial Basis Function Network 

RLTT  Repeated Load Triaxial Test 

SD  Standard Deviation 

SEM  Scanning Electron Microscopy 

SHRP  Strategic Highway Research Program 

SN  Structural Number 

SSA  Specific Surface Area 

SSR  Silica Sesquoxide Ratio 

TRB  Transportation Research Board 

TST  Tube Suction Test 

UCS  Unconfined Compressive Strength 

USCS  Unified Soil Classification System 

V-soil  Vernon Series Soil 

W-D  Wet-Dry 

XRD  X-Ray Diffraction 

XRF  X-Ray Fluorescence 

 

 


