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Abstract

In this thesis we study an identification problem for physical parameters asso-
ciated with damped sine-Gordon equation with Neumann boundary conditions.
The existence, uniqueness, and continuous dependence of weak solution of sine-
Gordon equations are established. The method of transposition is used to prove
the Gateaux differentiability of the solution map. The Gateax differential of the
solution map is characterized. The optimal parameters are established. Ftechet
differentiability of the cost functional .J is established. Computational algorithm

and numerical results are presented.
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Chapter 1

Introduction

Sine-Gordon equation models the dynamics of a series of small-area Josephson
junctions driven by a current source by taking into the account a damping effect.
It is numerically verified in Bishop et al [1] that the solution of the sine-Gordon
equation with periodic boundary conditions shows a chaotic behavior. However,
there are no proofs of existence, uniqueness, and chaotic behavior of solutions
in [1]. The chaotic behavior suggests that the problem of controlling the solu-
tions of sine-Gordon equations by forcing and initial functions is very delicate
and important. In recent years, some attentions has also been paid to mod-
els which possess soliton-like structures in higher dimensions [13], in particular,
the Josephson junction model [14] which consists of two layers of superconduct-
ing material separated by an isolating barrier. This model can be described by
sine-Gordon equations. In addition, sine-Gordon equations possess soliton-like
solutions [15]. Solitons have been shown to play a central role in the theory of

nonlinear differential equations.



Let © be an open bounded set of R® with C! boundary. Let us consider the

following sine-Gordon equation

up(t, 2) + aw(t,x) — B A u(t,z) + dsinu(z, t) = f(x,t); (t,2) € Q

O 4)leer =0, 1€ (0,7)
w(0,2) = up(x), w(0,z) =u(x), x€Q (1.1)

where T > 0, Q@ = (0,T)xQ, f € L*(Q), up €V =H'Q) and u; € H = L*(Q).

Solutions of (1.1) furnish a description of the dynamic behavior of the Josephson
junction tunnel. The Josephson junction tunnel consists of two super conducting
strips separated by a thin dielectric film. The dependent variable u(z,t) is related
to the current passing through dielectric. The boundary condition (1.1) implies

that the current at the end of the junction vanishes.

Many scientists have had great interests in damping effects as appeared in
(1.1). For instance, Nakajima and Onodera [2], studied parameters by numerical
simulations based on the finite difference method. Levi [3], verified numerically
that for special choices of parameters and forcing functions (1.1) leads to chaotic
behaviors. Temam [4], has extensively studied the stability of (1.1). In Gutman
[5], Fréchet differentiability of solution of the (1.1) is shown for Dirichlet boundary
condition settings. The main goal of this thesis consists in finding the parameters

a, 3, and § such that the solution of (1.1) exhibits the desired behavior.



More precisely, let

P = {C] = (a, 67 6) S [&mm; amax] X [ﬁmma Bmam] X [6mm7 6max]}; (12)

where [, > 0. Define the cost functional J(q) by
J(q) = krlul(g; T) — 24|* + kallu(a; t) — 23l 720.m) (1.3)

where 2} € H, 22 € L*(0,T;H) and k; > 0 for ¢ = 1,2 with k; + ky > 0.
The data z; and 22 can be thought of as the targeted behavior of (1.1). The
parameter identification problem for (1.1) with the objective function (1.3) is to

find ¢* = (o, 5%, 0*) € Pyq satisfying

J(¢*) = inf J(q). (1.4)

q€Pud

For solving the above identification problem, we utilize the method which is used
by Lions [6] for solving the optimal control problems. We show the Gateaux
differentiability of the solution map u. Since the second order evolution equation
(1.1) has the forcing term containing the diffusion operator, it is not easy or
impossible to solve the equation by the standard variational manner as in [7].
In order to overcome this difficulty, we use the method of transposition studied
in Lions and Magenes [8]. In our identification problem we use the method of
transposition to prove the Gateaux differentiability of the solution map, and to

characterize the Gateaux differential of the solution map.



The thesis is organized as follows. In Chapter 2 we introduce appropriate function
spaces with their respective inner products and norms. In addition, we show the
existence of eigenvalues and eigenfunctions of the operator —8A + I. In general,
equation (1.1) does not have a classical solution. To overcome such a problem, we
define weak solution of (1.1) in Chapter 3. In Chapter 4 we prove the uniqueness
of weak solutions of (1.1). The existence of weak solutions of (1.1) is proved by
using approximate solutions. Continuity of the weak solution of (1.1) with respect
to the parameters is proved in Chapter 5. In Chapter 6 we show that the weak
solution of (1.1), as a function of ¢, is weakly Gateaux differentiable by using the
method of transposition by Lions and Magenes [8]. In Chapter 7 we show that
the cost functional (1.3) is Gateaux differentiable on P. We derive the optimal
parameters and finally we show that the cost functional (1.3) is differentiable.
In Chapter 8 we develop a computational algorithm. In Chapter 9 we present

numerical results. We present the conclusion of the thesis in Chapter 10.



Chapter 2

Problem Setup

Let H = L*(2) be a Hilbert space with following inner product and norm

(6,0) = /Q pa)p(e)dz,  |9] = (6, 0)} (2.1)

for all ¢ , ¢ € L*(Q). Let V = H'(Q) be a Hilbert space with following inner

product and norm

(6, %) = (6,0) + (V6, V), 6]l = ((8,0))? (2.2)

for all ¢ , ¢ € H'(Q2). The dual H' is identified with H leading to V C H C V'
with compact, continuous, and dense injections [9]. Hence there exists a constant

K; = K;(€2) such that

|lw| < Ki||w|| for any w € V. (2.3)



Let < u,v >y denote the duality pairing between V' and V'. To use the

variational formulation let us define the following bilinear form on V' x V/

ag(u,v) = /Qu vdx +6/QVqudx (2.4)

for any u,v € H'(Q) and diffusion coefficient j3.
Lemma 2.1. Let § > 0, then az(u,v) is bounded and coercive in V.

Proof. Using Cauchy-Schwartz inequality in (2.4) we have,

|ag(u, v)| = | [ uvdz + B [, VuVvdz| < C(lullv] + [Vu|[Vo]) < Cllull||v].
Similarly,

ag(u,u) = [udz+p [, VuVudz > min{l, B}( [, v’dz + [, VuVudz) > c||u]|*.

where ¢ is some positive constant. ]

Define a linear operator Az : D(Ag) = {u : v € V,Apu € H} into H by
ag(u,v) = (Agu,v) for all w € D(Ag) and for all v € V. Let the norm on D(Ap)

be [lull3 = [, [ul*de + 3 [, |[Vul*dx
Lemma 2.2. Ag is an isomorphism between D(Ag) and H.

Proof. 1) Ag is linear:

Let uy, ug € D(Ap) then (Ag(us + uq),v) = ag(us + ug, v)

= [ (ur +ug)vdz + B [, V(uy + uz) Voda

= [yuvdz + [ uvdz + B [, Vu Vudz + 3 [, VusVodz

= (Aguy,v) + (Agua, v).

Similarly,

(Agou,v) = aglau,v) = [, owvds+p [, V(ou)Vode = af [, vvdz+p [, VuVuvdz]

= a(Apu, v)



IT) As is one to one:

Let uy, us € D(Ap) with Aguy = Agus, then for any v € V' (Aguy,v) = (Aguz, v)
which implies (Ag(uy — ug),v) = 0 for any v € V. If Ag(uy —ug) € V, we can
choose v = Ag(u; — ug). which implies uy = uo. But if Ag(u; — us) does not
belong to V', being V' dense in H there exist a sequence v, € V such that {v,}
converges to Ag(u; — uy) in V' but V' is complete so Ag(u; — ug) € V hence

U1p = Ug.

IIT) Ap is onto:
For any f € H we can define L(v) = [, fvdz = ag(u,v) so L is bounded linear
functional on H hence by Riesz Representation Theorem there exist unique u €

D(Ap) such that Asu = f. Hence R(Ag) = H.

Norms [|ul]* = [, [u*dz+ [, [Vul*dz and |Ju||} = [, |ul*dz+ B [, [Vu|*dz are
equivalent. From (2.1) oulull® < ag(u,u) = [Jullj = [, lul*dz + B [, [Vul’dz <
aollul|?. Since |Agul* = (Agu, Agu) = ag(u, Agu) < C|lu||s|Asu| which im-
plies |Agu| < Cllulls for all w € D(Ag), hence Ag is bounded. Since Ag

from D(Az) C V to H is bounded bijective linear operator so its inverse ex-

—1
ist. ||AEI|| = sup{w . ||v]| # 0} for any v € H. Since Ap is surjective, for

lloll

v € H there exist w € D(Ag) such that Agw = v. Hence

||A51A5w|| ||wl| 1
2o s 20y < b <2 e

145 = sup{
’ v[wll

for some v = B > 0. O



Lemma 2.3. The operator Ag : D(Ap) C H into H is a self-adjoint.

Proof. Enough to show that Ag is symmetric and R(Ag) = H. For any u,v €
D(Ap), we have (Agu,v) = ag(u,v) and (u, Agv) = ag(v,u) so (Apu,v) =
(u, Agv). Hence Ag is symmetric bounded linear operator. From Lemma (2.2)

R(Ap) = H. Therefore Ag is self adjoint operator. O

Since Ag is bounded self-adjoint operator with AEI as an inverse, AEI is self-
adjoint. Now it remains to show that Agl is compact. Let B be any bounded set
in H. Aj'is bounded thus for any h € H, ||A;'h|| < [|A5"||[h]. Hence the set
A;l(B) is bounded in V. AEI is compact [9]. So there exist A\, for £ = 1,2, ...
such that (8Vwg, Vo) + (wg,v) = M(wy,v) for all v € V. which shows that
Ar and wy respectively are the nonzero eigenvalues and eigenfunctions for the

operator Az defined in V' such that {wg }72, form an orthonormal basis in H.

Lemma 2.4. Functions {%}?21 form an orthonormal basis in V.
k

Proof. Since \; are nonzero eigenvalues of Ag, we have (wy, w) + (BVwy, Vw) =
A (wg, w) for any w € V. Since {wy} forms an orthonormal basis in H, {%}
k
forms an orthonormal set in V. It remains to show that orthonormal set {\“’F—)\’“k]»,?:1
in V is complete. Assume (wg, h) + (BVwy, Vh) = 0 for h € H. We have
(wg, h) + (BVwy, Vh) = Mg (wy, h) = 0. Since A\ # 0, (wg, k) has to be 0 for all
h € H. Hence h =0 a.e. in H. Thus {%},‘;‘;1 is a complete orthonormal set in

V' and thus forms a basis for V. O]



Remark 2.5.

The computations in Chapter 8 is done with € = (0,1). Thus the computa-
tions of the eigenvalues and eigenfunctions for the —A with Neumann Bound-
ary conditions is explicit in this case. These eigenvalues and eigenfunctions can
be used to compute the eigenvalues and eigenfunctions of the operator Az =
—B A +1. Thus we relate the eigenvalues and the eigenfunctions of the operator
Ap to the eigenfunctions and the eigenvalues of the operator —A with Neumann
boundary conditions.

Let pr and g, be the eigenvalues and the eigenfunctions of the operator —A

respectively. Thus we have
— Ny =ppyr for k=0,1,2.... (2.5)

Similarly, let A, and w, be the eigenvalues and the eigenfunctions of the operator

Ag = —f A +1 respectively. Thus we have
1
- Nw, = E(An—l)wn, for n=1,2,3,..., (2.6)

Comparing (2.5) and (2.6) we have y, = w, and pp = (A, — 1). Let k =n — 1.

1
g

then we have y, 1 = [r(n — 1)]* for n =1,2,3, ..., and

V2cos(n(n —1)x), n=2,3,4,..,
Yp—1 = (27)
1, n=1.



Hence, A\, = B[r(n —1)]*> + 1 and

V2cos(n(n — 1)), n=2,34, ..,
w, =
1, n=1.

10

(2.8)



Chapter 3

Weak formulation of the

sine-Gordon equation

From now on the dependency on x is suppressed, and ’ and ” stand for the time

derivatives. Let
W(0,T)={u : uec L*0,T;V),u € L*(0,T; H),u" € L*(0,T;V")}.  (3.1)

v’ and u" are the derivatives in the distributional sense. That is, u' € L*(0,T; H)
is derivative of u € L*(0,7;V) in the distributional sense if for any ¢ € C§°(0,7)

andveV

/0 (' (), 0) (1)t = — / (ult). o) (B)dt (3.2)

similarly, u” € L*(0,T;V") is second derivative of v € L?(0,T;V) in the distri-

butional sense if for any ¢ € C§°(0,7) and v € V

/0 (W (1), ) b(t)dt = /0 (u(t), v)" ()dt. (3.3)

11



For more details see [10].
Definition 3.1. Let {w;}32, be the eigenfunctions of the operator Ag as intro-

duced in (2.4). The weak solution of (1.1) is a function v € W(0,T') satistying

(u", wy) + au', wy) + ag(u, wy) + 0(sin(w), wy) = (f, wy) + (u,wy), Vj €N,
uw(0) =up €V, '(0)=u; € H, (3.4)

where the equations in ¢ are satisfied in the distributional sense. Since the

span {wy, we, ws, ...} is dense in V', (3.4) is satisfied for any v € V'
(u"+ou'+Agu+dsinu, vy = (f+u,v), u0)=uy €V, u'(0)=u € H. (3.5)
Thus
u"+ou' + Agu+dsinu=f+u, u0)=u €V, u0)=u €H (3.6

which is understood in the sense of distributions on (0,7") with the values in V.
For more details see [4].

Remark : The Neumann boundary condition does not explicitly appear in the
weak formulation (3.4) but it is implicitly contained in it.

Suppose that the solution u € C?(Q x [0,7]). Let v € D(Q) = {v|g : v €

D(RM)} € H'(Q). Then by Green’s Theorem
" ’ . au
(u +au — fAu+dsin u— fluvde+ | v—ds=0. (3.7)
0 a

Qan

Suppose v € D(Q). Since v = 0 € €, then in (3.8) [, v2%ds = 0. Therefore for

12



all v € D()
/(u” +au — fAu+dsin u— f)vdz = 0. (3.8)
0

Since D() is dense in L?(Q), we conclude that (3.8) is true for any v € L*(Q).

Let us choose v = u" + au — BAu+ dsin u — f. Then (3.8) can be written as
/ lu" + ou' — BAu+ dsin u— f|* dz =0, (3.9)
Q

which implies that v + ou' — fAu+dsin v — f =0 a.e. on Q.

Suppose v € C*(Q). Then (3.8) can be written as

ou
“ds = 1
/ Yon ds (3-10)

for any v € C*(Q). Since Q is bounded and 9 is C*, then there exist a bounded

linear operator 7' : V — H(9Q) such that Tv = v|sq for all v € V(Q) N C(Q),

[11]. Thus
ou
v=—ds =0 3.11
| 5 (311
is true for any v € L*(9€2). Take v = 2% in (3.12) to get
2
/ Gul” s = 0 (3.12)
aa |On

which implies that g—z = 0 a.e. on J€). Since we assume u, v, and f are continuous

up to the boundary, then g—z in fact, equals to zero at each point on the boundary

o5

13



Chapter 4

Existence and Uniqueness of

Weak Solutions

Now we first show the uniqueness of the solutions of equation (3.6) which we
later use to show the existence of a solution of the equation (3.6). The following
two Lemmas are of critical importance for the existence and uniqueness of weak

solutions.

Lemma 4.1. Letw € L*(0,T;V), w' € L*(0,T; H) and w"+ Agw € L*(0,T; H).
Then, after a modification on the set of measure zero, w € C([0,T];V), w' €

C([0,T); H) and, in the sense of distributions on (0,1) one has

n ! ]' d !
(" + Agw,w') = 5 S {0/ + ag(w,w)} (4.1)

For proof see [4].

Lemma 4.2. (Gronwall’s Lemma) Let (1) be a nonnegative, summable function

on [0,T] which satisfies the integral inequality

14



t
£(t) < Cl/ &(s)ds + Cy for constants Cy ,Cy > 0 (4.2)
0

almost everywhere t € [0,T]. Then
E(t) < Co(1 + Crte“") ae.on 0 <t < T. (4.3)
In particular, if
¢
£(t) < 01/ £(s)ds a.e.on 0 <t <T, then £t) = 0 ae.on[0, T] (4.4)
0

For proof see [11].
Lemma 4.3. The solution of equation (3.6) is unique.

Proof. Let z; and 29 be two solutions of (3.6). Then we have the following

equations
Zi’ + ozzi + AﬁZl +dsinz; = f + z1, 21(0) =z €V, 21(0) =2z € H. (45)

Zg + OéZé + AﬂZQ + dsin zy = f + 29, ZQ(O) =z €V, Zé(O) =z € H. (46)

Subtracting (4.6) from (4.5) one has
w'+oaw' + Agw+(sinzg—sinz) =w, w(0)=0€V, ' (0)=0¢€ H, (4.7)

where w = (22 — 2;1). Using lemma (4.1) one can obtain

1d /
5%{\11)'\2 +ag(w,w)} = —a|w |* — §(sin(z9) — sin(z1), w

!

)+ (w,w')  (4.8)

15



Integrating (4.8) over 0 <t < T, we get

| 5P+ astw.w)kds = [ ol = 6sin(z0) = sina). o) + (v w)lds

/|2 + 4w, w) = 2/0 alw P — 6(sin(z) — sin(z), w') + (w, ) Ids

¢ ¢ ¢
< 2[04\/ lw' [ds + 2]5\/ |(sin(zy) — sin(zy), w )|ds + 2/ |(w, w')|ds
0 0 0

Let ¢ > 0. Using Cauchy Schwartz inequality and the fact that V CC H, we

have

WO+ 0] < 240l [ )P +200] [ Twls) s
#2 [ o))/l
<2lal [ 16y + 11 [ G + o'
+ [ Gl + )P
<o [trds+ [were) @)

1+K2\6\}

where ¢ = max {2|a| + €[0] + €, =

By lemma (4.2) |w'(¢)|* + [Jw(t)||* = 0. Therefore w = 0 a.e. in W(0,7T) Hence
2z = 2z a.e. in W(0,T). O

Fix m € N and let V,,, = span{w;, wo,....,w,}. Let P, : H — V,, be the

projection operator defined by P,v =3 " (v, wy)wy, for any v € H.

16



The approximate solution of (3.4) is a function w,,(t) € W(0,T") that satisfies

e + au, + Agtiy, + 0Py, sin(uy,) = Py f + tun,
um(0) = Ppug  ul (0) = Pphuy. (4.10)
Lemma 4.4. The solution of equation (4.10) is unique.
Proof. Assume z; and 25 be two solutions of (4.10). Then their difference w =
z1 — zo satisfies
w" + Ag(w) = w — aw' — §P,((sin 2) — (sinz,)) € L*(0,7T; H) (4.11)
with zero initial conditions. The fact |P,u| < |u| for any v € H and lemma (4.3)

provides the result. O

Let
Zm(t) = Z jm (t)w; () (4.12)

satisty
d2
@(zm, wj) + aa(zm, w;) + ag(zm, w;) + (P, sin 2y, w;)
d
2m(0) = Pphzy  and Ezm(O) =P,z for any jeN (4.13)
Theorem 4.5. For each integer m = 1,2,..., there exist a unique function

Zm(t) = D700 gim(D)w;i(z) satisfying (4.13).

Proof. Let P,, : H — V,, be the projection operator defined by

Pov=>"" (v,wy)wy for any v € H. We can write equation (4.13) as the vector

17



differential equation

a4z d . =
ﬁgm(t) + aagm(t) + 6Agm(t) = F(t, Zm) (414)

with the initial values

(PmZOJ wl)

(Pm20> w2)

(PmZOa wm)

and
(szb wl)

(szl7 w?)

Here

9im <t)

18



Similarly

(P f(t), wi) + (zm, w1) — 6(sin(zp), w1)
(P f(t), ws) + (2m, wa) — d(sin(z,,), ws)

F(t, zm) =
(me(t)7 wm) + (Zm7 wm) - 5(Sin(zm), wm)
and
N 00 0
0 X O 0

o 0 0 . . . A\n

Lemma 4.6. Function F(t,Z,) is Lipschitz continuous.

Proof. Let 2,(t) = 3270, gim(t)w; and v (t) = 3270 hjm(t)w; .

1 € H. We have the following inequality

/Q |sin ¢(x) — sin ¥ (z)2dzr < /Q \p(z) — (x)|*dx.

19

For any ¢,

(4.15)



Using (4.15) and Schwartz inequality we have

|ﬁ(t7 Zm( )) ﬁ(t Um( ))|2 = 522 sin Zgjm U)J) - SIH(Z hjm(t)wj)awi)|2
H(Z gjm(H)w; — Z hjm (t)w;, w;)|?

< 0%m|(sin (325 gim (D)w;) — sin(3250 hym (D)wy) [P+ ml 32501 (gim (1) = g (1)) 2
< 0% m? 30 |gjm (8) = By ()2 1002 g (8) = hjm () * < M 32501 |Gjm () = jm ()]

< M|Gm — hm|?. Hence F (¢, zy,) is Lipschitz continuous. O

Definition 4.7. Carathéodory Condition: f(z, ¢/) is continuous as a function of

i/ for fixed x and measurable as a function of x for each fixed .

Theorem 4.8. Let J = [, £+ a], S =.J xR”, and assume that the function e
S — R" satisfies the Carathéodory condition in S. Let f satisfy f(x,§) € L(J),
the class of functions that are integrable and measurable over J for each fived v,

and satisfying the generalized Lipschitz condition

-

f (@, ) = Fla, §)| < 1(@)|F - 7] in S (4.16)

—

where [(x) € L(J). Then there exists a unique solution of j = f(z,¥) , (&) =17
in J. For details see [16].

Hence the system of m second order vector differential equations admits a
unique solution g, (t) on [0,7]. This is shown by reducing it into a system of first

order vector differential equations and by applying Carathéodory type extension

Theorem 4.8.

20



Lemma 4.9. Function zy,(t) = Y71 gjm(t)w;(x) satisfies

d2
ﬁ(zm, wj) + a%(zm, w;) + ag(zm, w;) + (P, 8in 2y, w;)
d
2m(0) = Ppzo  and azm(()) = Pnz (4.17)

for j > m.

Proof. Tt sufficies to show that (Agzy, w;) = ag(2m, w;) is zero for j > m. Since
{w;}32, are the eigenfunctions of the operator As, we have

(2m, wj) + B(Vzm, Vw;) = Nj(2m, w;). This implies 8(V 2y, Vw,) = \j(2m, w;) —
(2m, w;) = (Aj—1)(2m, w;). For j > m, B(Vzy,, Vw;) = 0. Hence, (Agzm,w;) =0
for j > m.

]

Hence z,, is a weak solution of the sine-Gordon equation. Furthermore, z,,
also satisfies (4.10). By Lemma 4.4 the approximate solution u,, is in fact a weak

solution of the sine-Gordon equation (1.1). O

Theorem 4.10. Let ¢ = (o, 3,0) € P, up € V, uy € H and f € L*(0,T; H).
Then
(i). There ezists a unique weak solution u(t; q) of (1.1). This solution satisfies
uwe C0,T; V)nW(0,T), v € C([0,T]; H), and
max ([[u@)* + [u' (OF) + 1" O)lz2 0057 < C |[luoll® + fua* + [ 1 z20,mm) |
- (4.18)
where C' is a constant independent of ¢ € P. The approzimate solutions un,(t; q)

also satisfy the energy estimate (4.18) with the same constant C.
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(ii). The solution u(t;q) and its approximations u,,(t;q) satisfy the following

convergence estimate

[0/ (t) = up (O + ut) — un(B)]* < Callur — Prwn[* + [Juo — Pruo*
t

41 = Puf oo + [ [sinu(sia) = Psinu(sig)Pds) (419)
0

where Cy is a constant independent of ¢ € P.
(111). Furthermore, u, — u in C([0,T];V) and ul, — u' in C([0,T]; H) as

m — OQ.

Proof. Part 1. A priori estimates. Multiply (4.17) by g}m(t) on both sides and

sum from j =1 to m to get

Z d_ gjm Z d_ g]m Z g]m( )
> W) Gy () + D (i (1), w05) g5, (£)
7=1 j=1
= " 5(sin wn(t), w;) gy (1).
j=1
We claim that
T2 : 1d
D 2 (0, 0) g5 (1) = 5 [l (4.20)
j=1
=\ d : o
ay’ 7 (un (), 05) g5 () = cdfuy, 7, (4.21)
j=1
” , 1d
Zaﬁ(um>wj)gjm(t) = §%a5(UM7UM)7 (4'22)
j=1
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> (. w) g () = (f, ). (4.23)
j=1

and

> (i (), )Gy (£) = (i, 1,). (4.24)

Jj=1

Verification of (4.20)

Zdtg( (t g]m Z m?w] gjm Z/u wj g]mdx
j=1
" / ]_ n ]_ d !
- [ Zgjmwjdx— t) = S + )] = S0

Verification of (4.21)

m
OJZ %(um(t) gjm = O{Z um7wj g]m = Oé(’LL;n, Zg;mwj)

!

Of(”m? um) - CY”LLmF.

Verification of (4.22)

m

Zag(um(t), gjm Z/um wj(x gjm( ydz +

zm: /Q BVt V() g ()l = /Q um(t)zj: g (D ()
/5VumZg]m )Vw;(x )gjm( )d:z:—/umu dx +

Jj=1 &

/QﬁVumVu;nd:v = ag(Um, u'm)

23



Verification of (4.23)

; J / Z J J /
Verification of (4.24)
> (0 0)(®) = [ Zgjm () = (1 1)
=1
Using (4.20), (4.21), (4.22), (4.23), and (4.24) in (4.20) we get
1d / ’ ’ ’ ’ . /
57 | tml” F as(m, wn) | = (F(0),105) + (tm, ) = ety 10,) = S(sin(tnn), )
(4.25)

Integrate (4.25) from 0 to ¢ and use Cauchy Schwartz Inequality to get

t t
7 ap (i) <2 [ ()l ds 42 [ )l
0 0
t t
w2l [ i) ds + 208] [ [(sin(un) i) ds
0 0

t
< [Prn]? + || Poioll? +2 / F(3) 1l (5)]ds
J0

t t t
12 / i ()1 (5) s + 2] / f (3)Pds + 210] / i (3) 1 (5) .
0 0 0

Using the coerciveness estimate ag(u,u) > v||u||* for some constant v > 0 we

have

[t + VP < e P+ a (1) < [ Pra]® + || Bso |

+2/yf et \ds+2/\um it ( yds+2\a\/\u $)[2ds

+2|5|/ i () (5)ds.
0
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Therefore
i+ |2 2 min 1, v} [ 2+ N 12] = € [, + lu]
where ¢ = min{1,v}. Thus

WF+mm“wJWF+NMWLwMﬂMFHWuW

+2/|f et ( |d5+2/|um It |ds+2|a|/|u 5)[2ds

HW/hm e (5)1ds).
Using |ab| < % we get

[t |* + N |* < (| Prva P+ | Brvtoll® + L 120,701

(1ol +18)) [l Pds) + (1 +15) [ )

< maz{(1+16]), (2 + |a| + [6) (| Prur|* + || Pruol?
HIman + [ Wl’ds) + [ il

t t
=WAWWK+MWM“WMMMM+/h%Wﬁ+/hw%$
0 0

where ¢; = max {(1+16]), (2+ |a| +|d])}. Using Poincare inequality for the last

integral we get

[t * - NP < co(l P * + || Pl * + || £ 20,20

[4
ter [ Qi+ flum )
0
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where ¢3 = max {1, K?}. Hence we have

[t * + [ < C(Jal® + Nl + 1 £ 200,711

¢
[+ unl)ds) (1.26)
0
where C' = max {cs, c3}. The Gronwall’s Lemma gives
[t * + [ | < © [\UMQ +lluoll* + 1 12202 | -t € 10,71, (4.27)

Since u,, is an approximate solution of (1.1) and for any v € V' with [|v|| < 1, we

have

"

[(ttgs 0)] < L]+ atg] + ] + [Jal]) (4.28)

where ¢ = max{1,(1 +|9]), |o|}. Using |u,| < Ki||lun|| and integrating from 0

to T we get

||U%||%2(0,T;V') < C(|f|%2(O,T;H) + |ulm|%2(0,T;H) + ||um||%2(0,T;V))' (4.29)
From (4.27) and (4.29) we conclude that

1 ([l ($)]* + [t (8)°) + [ (D)2 0, 207y < C | luoll® + Jua* + N 220,70 |
(4.30)
where C' is a constant independent of ¢ € P = {¢ = (o, 3,9) € [Cmins ¥maz] ¥

[6min; 6maa:] X [(5mm7 5max]}-
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Part II. Existence and convergence.

Estimate (4.30) shows that for any ¢ € P and m € N the approximate solutions
um(q) belong to same bounded convex ball |w||y < C of W(0,T) for the same
C > 0. Fix a ¢ € P. Since W(0,T) is a reflexive space, there exists a subse-
quence uy,, of u, that converges weakly to a function z € W(0,T). According
to the energy estimate (4.30) we see that the sequence {u,,}5_, is bounded in
L2(0,T;V), {u,,}°_, is bounded in L%(0,7; H), and {u, }>°_, is bounded in
L*(0,T; V"), where V' is the dual space of V. Since L(0,7;V), L*(0,T; H), and
L2(0,7; V") are reflexive spaces, there exist a subsequence {u,,, 3¢, C {un}32,

and z € L2(0,T;V), d' € L*(0,T; H), d> € L*(0,T; V") such that

U, — 2, in L*(0,T;V),
Up, —d', in L*(0,T; H),
Up, —d?, in L*(0,T;V), (4.31)

where — indicates the weak convergence. Since the convergence in W(0,7) is

the distributional convergence, we have

!

w, —z, in L*0,T;H),

mg

" "

u, —z in L*0,T;V') as k— oo. (4.32)

But the weak limit is unique when it exists. So d* = 2" and d®> = z". Energy
estimate (4.30) also implies that {u,,}_, is bounded in L*°(0,7;V) and the
sequence {u, }2°_, is bounded in L*°(0,T; H). By the Alaoglu Theorem, [15]

we can find subsequences {up, }5°_, and {u’m % of {un >, and {u, }>_,
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respectively such that

— z weak starin L>(0,T;V),

u, —z weakstarin L%(0,T; H). (4.33)
Now we show that z is a weak solution. Since V' is compactly imbedded in
H, then by the classical compactness theorem [4] w,,, — z in L*(0,T; H). Us-
ing Cauchy Schwartz inequality, |(sin(up,,) — sin(z), wk) r20mm | < | sin(um, ) —
sin(2)|| 220,50y || Wil p20,;m)- Since {wy}32, is orthonormal in H the sequence
{wr}32, is bounded in L*(0,T; H).
Thus |(sin(up,) — sin(2), we) 200y < || sin(up, ) — sin(2)||z20mmy — 0 as
k — oo by (4.15). Hence sin(uy,) — sin(z) in L*(0,T; H). Rewrite (4.17)

as

"

(U, W5 ) + oz(u;n, w;) + ag(tpm, w;) + (P sin(uyy,), w;)
um(0) = Ppug, u,,(0)=Puuy for j=1,2,...m. (4.34)

We pass to the limit in (4.34) to obtain

(2" wy) + a2 wy) + ag(z,wy) +8(sin(2), wy) = (f,wy) + (2,wy)
2(0) =ug, 2'(0)=wy for j=1,2,...,m. (4.35)

Thus z is a weak solution of (1.1). It satisfies the energy estimate

i (= + =20 P14+ 120 1oy < Callluoll? + s P+ 11 ll2oizn)
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where C is a constant independent of ¢ € P = {q¢ = (&, 5,9) € [Qmin, ¥maz) ¥
[Bmins Bmaz] X [Omin, Omaz]- By Lemma (4.3) the solution z is unique. Therefore
Uy — 2z as m — oo in L2(0,T; H) for the entire sequence. Hence (3.6) can be
rewritten as 2 + Agz = f + 2z — az — dsin z. Hence 2" + Agz € L*(0,T; H).
Similarly (4.17) can be rewritten as u;'n + A, = P f +upm — au’m — 0P, sin ,y,.

Therefore u,, + Agu, € L*(0,T; H). Subtract (4.34) from (4.35) to get

(2 = Um) + Ag(z — upm) = f — Puf — a(z — up)’ (4.36)

—6(sin(z) — Py sin(up)) + (2 — uy,) € L2(0,T; H).
Therefore by Lemma (4.1) we have

5 dt{‘z Un|* + a5(2 = U, 2 — Um) } = (2 = um)" + Ap(2 — um), 2’ — 1))
=(f = Puf —a(? —u,) —d(sin(z) — Py sinfuy)) + 2 — up, 2 —ul,)
= (f = Puf, 7 —ul) —ald —ul > — d(sin(z) — Ppsin(uy,), 2 —u')

m

+(z =, 2" — ).

Integrating both sides over [0, ¢] we get

[2'(t) = () + ap(2(t) — wm(t), 2(t) — um(t)) < Juy — Py |

+(ug — Ppug, ug — Ppug —i—2/ — P )2 —ul,)|ds
0

0
—|—2|a|/ (2 — )2 ds+2|5|/ ((sin(2) — Py sin(un))(=' — 21 Y|ds
0

/ (2 — um) (2 — ul,)|ds.
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Use |ab| < @ to get

[2'(t) = (O + 12(2) = um (D" < Jur — P [* + [luo — Proio”

t
1 = Pt sz + 2+ la] + 3] / 12—l [P (s)ds

¢ ¢
+/ |2 — um|*(s)ds +/ |sin(2) — B, sin(u,,)|*(s)ds. (4.37)
0 0
Since V' is compactly embedded in H, (4.37) can be rewritten as

[2'(t) = up ()] + [|2(t) — um()|* < Cllus — Prta|* + [uo — Prvio

t
1 = Puflgn + [ 15i0(:) — Pasin(un) P(s)ds
0

[ =P+ [ =l (438)

where C' = maz{1, (2 + |a| + |9]), 4K?}.

Using Gronwall’s lemma we get

[2'(t) = up (O + [|2(t) — um(®)|* < Cllus — Prua[* + [|uo — Prvio*

t
+||f — me||%2(07T;H) + /0 |sin(2) — P, sin(u,,)|*(s)ds]. (4.39)

Therefore |2'(t) — ul,(®)]*> + ||z(t) — um(¥)]|*> — 0 as m — oo. This implies
Up — z in L®(0,7;V) and v, — 2" in L>(0,T; H). But uy, u, € C([0,T];V),
being the solutions of the systems of ODEs. This implies z € C([0,7]; V) and

2 € C([0,T]; H) after a modification on a set of measure zero on [0, 7. O
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Chapter 5

Continuity of the Solution Map

Lemma 5.1. Let v € V.. Then the mapping B — Agv from [Bmin, Bmaz) into V'

18 continuous.

Proof. Suppose that 3, — fin R as n — oco. We denote A = Ag and A, = Ag,.

We claim that ||(A, — A)v||y» — 0 as n — oo. Let w € V with ||w|| < 1. Then

(A — Ay, w)? < ( 1.~ 6||Vv(x)l|Vw(x)|d-’r>
<18 — 6|2/Q|VU(I)|2dx —0 as n— oo.
L]

Lemma 5.2. Suppose that 5, — [ in R, and v, — v weakly in V, as n — oo.

Then A,v, — Av weakly in V'.

Proof. Let w € V', then

(A vy, w) — (Av, w)| = [{(Apw, v,) — (Aw, v)|
< (A, — Aw, vy)| + [{(Aw, v, — v)]. (5.1)
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Since a weakly convergent sequence is bounded, we have
(A, — Aw,v,)| < ||Apw — Awl||y||vg|| < ¢||Apw — Awl|y — 0

as n — oo by Lemma 5.1. The second term |(Aw, v, —v)| — 0 since v, = v. O

Lemma 5.3. Let g € P. Then the solution map g — u(q) from P into C([0,T]; H)

1S CONLINUOUS.
Proof. Let g, — ¢ in P as n — oo. Since u(t; ¢) is the weak solution of (1.1) for
any q € P, we have the following estimate

. 2 I(q. 2 "y, 2‘) ,
i (s g + Jo (1 00) ) 4 [l (85 ) 00

< C | [uol* + fual* + 1 f 122071y | - (5.2)

where C' is a constant independent of ¢ € P. Estimate (5.2) shows that u(¢; ¢,)
is bounded in W (0, T). Since W (0, T) is reflexive, we can choose a subsequence
u(t; gn, ) weakly convergent to a function z in W(0,7). The fact that u(¢;q,) is
bounded in W (0,T) implies that u(t;¢,) is bounded in L*(0,T; V), so u(t;qn,)
weakly convergent to a function z in L?(0,T; V). Since V is compactly imbedded
in H, then by the classical compactness theorem [4] u(t;q,) — z in L*(0,T; H).
Using Cauchy Schwartz inequality, |(sin(um, ) —sin(2), wi)20,r;my| < || sin(tm, ) —
sin(2) || 20,5y |[willz20,mm)- Since {wg}2, is orthonormal in H the sequence
{wp}, is bounded in L*(0,75H). Thus |(sin(up,) — sin(z), wg)r2mm| <
|| sin(tm,, ) — sin(2)||20m) — 0 as k — oo by (4.15) By (4.18) the deriva-
tives u'(t;¢n,) and 2’ are uniformly bounded in L*(0,7; H). Therefore func-
tions {u(t; ¢n, ), 2}52, are equicontinuous in C([0,T]; H). Thus u(t; gy, ) — z in

C([0,T]; H). In particular, u(t; ¢, ) — 2(¢) in H and u(?; ¢,,, ) — 2(t) weakly in V/
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for any ¢ € [0,7]. By Lemma 5.2, Ay, u(t; gn,) — Az(t) weakly in V’. Now we see
that z satisfies equation (3.4), i.e. it is the weak solution u(g). The uniqueness
of the weak solutions implies that u(g,) — u(q) as n — oo in C([0,T]; H) for the
entire sequence u(g,) and not just for its subsequence. Thus u(t;g,) — u(q) in

C([0,T]; H) as ¢, — ¢q in P as claimed. O

Theorem 5.4. Let ¢ € P. Then the solution maps ¢ — u(q) from P into
C([0,T);V) and ¢ — u'(q) from P into C([0,T]; H) are continuous.

Proof. Part I. First, we establish the continuity of the approximate solution maps
q — Uy (q) from P into C([0,T]; V), and ¢ — ], (¢) from P into C'([0,T]; H).
Fix m € N. Suppose that ¢, — ¢ in R* as n — co. That is a,, = o, B, — 3,

and ¢, — d in R. The approximate solutions u,,(¢g,) and u,,(q) satisfy

U;In(%z) + Anum(Qn) = me + um(Qn) - anulm(Qn) - 6an Sin(um(Qn))a

ur (q) + Aty (q) = P f + um(q) — aul,(q) — 6 Py sin(un(q)),  (5.3)

where we write A = Ag and A,, = Ag, to simplify the notation. In each case the
initial conditions are the same for ¢ and ¢,: u(0,q) = P,ue and u'(0;¢) = P u;.

Let w = u(¢n) — um(gq). Subtracting the equations in (5.3) gives

w" + Ap(w) = (A — Ap)um(q) +w — apw'’ + (o — an)u;n(Q)
— 0 P, (8101, (@) — sin(u(q))) + (6 — 85) Py sin(uy, (q)). (5.4)
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Take the H inner product of each side with w' to get

(" + Ap(w),w') = (A = Ap)um(g), ') + (w,w') — ay|w'f
+(a = ) (U, (@), ') — 0n (P (sin(un () — sin(um(q))), w')
(8 = 6,) (P sin(um (q)), w'). (5.5)

Since w(t) € L*(0,T; V), w'(¢t) € L*(0,T; H) and w"+ A, (w) € L*(0,T; H), then

by Lemma 4.1 we have

S P+ anw,0)} = (A= An)um(g), ) + (0, 0) = gl
(0= ) (1 (0), ) = B (Po(sin(it ) = sin(u ) ')
(5 = 8,)(Pyy sin(um(q)), w'). (5.6)

Integrate both sides from 0 to ¢ and use Cauchy-Schwartz Inequality to get

W (OF + lw(B)] < 2 / (A = A)un() |/ ()|ds
2o — ay) / (5 ) [ (5) s + 216 — 6] / (53 ) [ (5)]ds

+2|o¢n|/0 |w'(s)|2ds+2|5n|/0 w(s)][w' (5)|ds. (5.7)

Use |ab| < # and use the fact that V' is compactly embedded in H to get

WO+ 1w < [ 10 A s+ [ (o)

Ho =l [ (s ds + la =l [ ')

5=l [ (i) s + ol [ o)+ 10 [ Tt P
+\5n\/0t\w'(s)]2ds. (5.8)
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In a finite dimensional normed space all norms are equivalent. Hence there exists
a constant C'(m) such that ||w'(s)|] < C(m)|w'(s)| for any s € [0,T].

Now the Gronwall’s inequality and the energy estimate (4.18) give

|t (£ ) —Y%(t; Q) + |[um(t; n) — um(t; @)
< ¢(m) (/0 (A = A)up(s: ) [2ds + o — v + |6 — 5n|>  (59)

By the assumption ¢, — ¢ in P, that is oo, = «, 6, — 0 and 3, — fin R
as n — o0o. The integral term in the right hand side of (5.9) approaches zero
by Lemma 5.1 and the Lebesgue Dominated Convergence Theorem. Hence the
required convergence U, (¢,) — uy(g) in C([0,7];V) and ), (¢,) — u,,(¢) in
C([0,T]; H) as n — oo follows.

Part II. Next we prove that u,,(q) — u(q), m — oo in C([0,T]; V') uniformly
on P.

Estimate (4.39) shows that it is enough to establish the uniform convergence
of

T
/0 |sin(u(s;q)) — Pusin(u(s; q))|*ds — 0, m — o0 (5.10)

for ¢ € P. Note that the mapping [0,7] x P — H defined by (s,q) — u(s;q) is
continuous, since ¢ — u(q) € C([0,T]; H) is continuous by Lemma 5.3. Therefore
the mapping [0,7] x P — H defined by (s, q) — sin(u(s;q)) is continuous. Thus
it takes the compact set [0,7] x P into a compact set in H, and the uniform
convergence of the integrals in (5.10) follows from the Dini’s Theorem.

Finally, let ¢, — ¢ in P. By Part I the map ¢ — u,,(¢) is continuous on P for
every m € N. By Part II the convergence u,,(¢) — u(q) is uniform on P. There-

fore u(q,) — u(q), m — oo in C([0,T]; V) as claimed. This argument applied to
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the estimate (4.19) also shows the convergence of the derivatives u'(q,) — u'(q)

in C([0,T]; H). O
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Chapter 6

Weak Gateaux Differentiability

of the Solution Map

H{G(g):feﬂ wdgeﬁmjuﬂ}. (6.1)
g

Then H is a Hilbert space with the following inner product and the norm

(G1>G2)?{ = (51;52)17 + (91792)L2(0,T;H)> ||G||H = (G,G)%, (6-2)

where G, = 2 € H and Gy = = cH.
g1 92

To show the Gateaux differentiability of J(g) at ¢* € P we have to estimate the

quotient

_ ugy) —ulg)
3 ,

ZX
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where ¢y = ¢* + A(¢ — ¢*), X € (0,1]. Generally it is desirable to estimate z
in the solution space W (0,T). Since the second order evolution equations for z)
in (6.24) have the forcing term containing a diffusion operator, it is not easy or

impossible to solve the equation (6.24) by standard variational manner as in [7].

Z\ T
Hence we will restrict ourselves to an estimate of 1) € Hx L*0,T; H)

(1)
as A — 0 based on the method of transposition presented in [8].

u(q; T)

u(g;t)
of P into H x L*(0,T; H) via the method of transposition and characterize its

Now we show the Gateaux differentiability of the solution map ¢ —

Gateaux derivative.

Fix ¢ = (0, 3,8) € P and h € L*(0,T; H). Let G = . e M.

g
Let us consider the following linear terminal value problem

" —ad' + Agp+ (0h—1)p=¢g in (0,7)
o(T) =0, ¢'(T)=¢. (6.4)

Let (T —s,x) = w(s, ) for any x € (0,1), then we have ¢,(T —s,2) = —w,(s, x)

and ¢y (T — s,x) = wss(s, x), then (6.4) can be written as

w' 4+ aw' + Agw+ (h—1w=g¢ in (0,7)
w(0) =0, w'(0)=—¢. (6.5)

Arguing as in Chapter 4, we can conclude that (6.5) has a unique weak solution.

Hence (6.4) has a unique weak solution ¢ = ¢(§,g) € W(0,T) that satisfies the
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energy estimate

['OF + eI < c(lg + N9l € [0,T]. (6.6)

Definition 6.1. Solution map: Given G’ € H define the solution map from H
into W(0,7) by 7(G) = ¢, where ¢ is the weak solution of (6.4).

Definition 6.2. Fix ¢ = («,3,8) € P and h € L?(0,T; H). Let the solution
space X (g; h) = 7(H) be defined by

X(q,h) = {¢ : ¢ is solution of (6.4) for each G € H}.
Let the linear operator £(g; h) from X(q; h) into H be defined by

L(g;h)¢ = #T) _ [ oD . (6.7)
¢" —ag' + Agp + (6h — 1)¢. g

Let the inner product (. ,.) in X(g; h) be defined by
(&, V) xqm) = (L(a; h)p, L{q; h)1)s, - (6.8)
In terms of the operator L£(g; h) the energy estimate (6.6) can be written as

'O + lo@I* < c(I£(a: Mell5,) = clldllzgn- (6.9)

Definition 6.3. Given ¢ € P, h € L*(0,T; H), and f € L*(0,T;V"), the element

z

z= ' €M,z € H, € L*(0,T; H) is called a weakened solution of the
z

problem
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2"(t) + a2/ (t) + Agz(t) + (dh(t) — 1)2(t) = f(t)
2(0)=0, 2'(0)=0, te€(0,7), (6.10)

if
@awwmzlqwﬂmﬁ (6.11)

for any ¢ € X(q;h). That is,

%ﬂHﬁA@WMWﬁZAUWﬁww (6.12)

for all ¢ € X (¢, h).

Remark 6.4. If f € L*(0,T; H) and z(t) is the weak solution (in the sense of
Chapter 4) of the problem (6.10), then the integration by parts shows that z =
Z(T)
2(t)

Lemma 6.5. If f € L?(0,T; V"), then there exists a unique weakened solution of

also is its weakened solution.

the problem (6.10).

Proof. By the method of transposition of Lions, if F'is a bounded linear functional

on X(q; h), then there exists a unique & € H such that

F(¢) = (£(t), L(g:h)(9)())» for any ¢ € X(g;h). (6.13)

Let



Using the energy estimate (6.9) we get

T
F(D)] < | fllz20,0:9 |9l 22 0,m5) = | llz20,0:07) \//O |o(2)][3-dt

T
< Wl VE [ 190Nt
0
< V|| fllezrvny 10 xg.n) (6.14)
and the result follows. O]

Let @ and © be two measurable functions on 2. Define the function B(u,0)(x)

for x € Q) by

B(i,d)(z) = i) =o(o) (6.15)

Then B is an integrable function on Q with |B(4, 0)(x)| < 1 for any = € 2.
If 4, = u a.e onQ,and 0, = 0 a.e. on {2, then B(uy,0,) = B(u,0) a.e. on €.
Thus B(u,v) : H x H — H is well defined by (6.15).

Furthermore, the inequality

sin(a) — sin(b)

b) — <la—1b 6.16
Jcos(h) — =) | < oy (6.16)
for a,b € R, a # b implies that

| cos(b) — B(u,v)|g < |u—v|g (6.17)

for any w,v € H.

Definition 6.6. Let ¢,¢* € P. Let gy = ¢* + Mg — ¢*) for A € (0,1]. The
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u'(T;q
solution map ¢ — u(q) = (T59) of P into H is said to be weakly Gateaux
u(t; )

differentiable at ¢* in the direction ¢ — ¢* if there exist z € H such that

Jim () ~ 5(a"), ) = (2, D) (6.18)

for any v € H.

Theorem 6.7. Let ¢ = (o, 8,0),¢* = (a*, 5*,0%) € P. Then the weak Gateaur
deriwvative Z € H at g* € P in the direction ¢ — q* is the unique weakened solution

of the problem

2'(t) + o2 (t) + Ag-2(t) + (6% cos u(t; ¢*) — 1)2(¢) = fo(t),

2(0) =0, 2'(0) =0, t € (0,T), (6.19)

where fo(t) = (0" — a)u'(t;¢*) + (Ag- — Ag)u(t; ¢*) + (0% — 0) sin(u(t; ¢)).

Remark 6.8. For X and L defined by (6.8) and (6.7) respectively with ¢* and

h = cos(u(g*)) the solution z = 1) satisfies
2(1)
(30, £(0"scosultia Vo) = [ (falt) o0t (6:20)

for any ¢ € X (¢*; cos(u(q*))).

Proof. Let gy = q* + Mg — ¢*) = (aa, By, 0,) and denote Ay = Az, . Then

Ay = Ag-. By (3.6) functions u(gy) and u(¢*) are the weak solutions of the
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equations

u”(qx) + o/ (gn) + Axu(ga) + dxsin(u(gn)) = f + ulgn)

ux(0,q) = ug, u\(0;¢) = uy (6.21)
and

u’(¢") + o' (¢") + Ag-ulq”) + 0" sin(u(q")) = f + u(q”)

u(0,¢*) = ug, u'(0;¢*) = wy (6.22)
correspondingly.

Then the quotient zy = (u(gy) — u(g*))/\ satisfies

sin(u(gy)) — sin(u(g*))

Zy + a2y + Agzy + 07 3 — 2)
= (0" = a)u'(qr) + (Ag- — Ap)u(gr) + (6" — 8) sin(u(qn)),
2x(0) =0, 2,(0) =0. (6.23)

Let

Iat) = (0" —a)u'(t;q0) + (A= — Ag)ult; ¢a) + (6" — 0) sin(u(t; gr))-

Using the notation (6.15) we let By(t) = B(u(t;q)\),u(t;¢*)) € H for 0 <t < T.
Then

2N+ ot + Ag-zy + (0°Ba(t) — 1)zy = f,
zx(0) =0, Z,(0) =0. (6.24)
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Since H is continuously imbedded in V' there exists a constant Ko = K5(2) such

that ||v|[y» < Kjlv| for any v € H. Therefore one can estimate

1A@lv < Ka(la” —allu (t o) [+ 20K [[ult; ga)l| + K |67 = 6][|u(t; gx)). (6.25)

Now the energy estimate (4.18) shows that there exists Cy > 0 independent of

q € P such that
1£2l

LZ(O,T;V’) S CQ (626)

for all A € (0,1].

Since zy is a weak solution of (6.24) it is also its weakened solution, i.e.
T
N R GR I (6.27)
0
for any ¢ € X(¢*; By).
Since z), € H and L(q*; By) from X(¢*; By) — H is surjective, there exists

o) € X(q*; B)\) such that E(q*; B,\)¢)\ = 2.

For such a function ¢, one gets from (6.27)

1215 < 1A 2y lldallLeo,rv)- (6.28)

This inequality and estimates (6.9) and (6.26) give

12115 < Callzall3-

Thus ||zx]|% < C; for some constant Cy independent of A € (0, 1]. Here we used
the fact that |By(¢)] < 1 for any ¢, A and ¢, ¢* € P. Therefore one can extract a

subsequence Zz,,, A\, — 0+, such that z,, — Z weakly in H. Now we would like
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to pass to the limit in (6.27) as A\y — 0 to obtain (6.32). However, the domains

of the operators L(¢*; B)) depend on A, so one has to proceed differently. Let
folt) = (" — )/ (50°) + (Ag- — Ag)ults ) + (6" — d)sinu(tiq").  (6.29)

From Lemma 5.3 we get u(gy) — u(q*) in L*(0,7;V), and «'(gx) — «'(¢*) in
L?*(0,T; H). Therefore fy — fo weakly in L*(0,7;V’'). In fact, Theorem 5.4
shows that this is a strong convergence. Thus || fo||z2(0,rv1) < Co.

Write £y = L(g*; cos u(¢*)) and Ly = L(¢*; B,,) to simplify the notation. Let

¢ € X(q*;cos u(q*)). Then Lop € H. Therefore

(Za, Lod(t))n — (2(1), Loo(t))p, and
/ (fx (1), 0(t))dt — / (fo(t) (6.30)

On the other hand,

as A\, — 0+.

(B0 £ = i O+ [ 4,0+ 04,0+ Ao 0 0t
6" cosutt ) = a0 60t

- /0 (1) + 0t (8) + A (), 0(0))dt

Hen O+ [ (0Brt) = o0, 00

19 [ (feos utsa") = B0, (0,600

= GO+ [ )00

197 [ (feos utsa) = B ()2, (0 60t (6.31)
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Using ||Zx||x < Ca, ¢ € W(0,7) and the estimate (6.17), the last term in (6.31)
can be estimated by c[[u(qr,) — w(¢*)||r20,m:m)||@| L 0,7:m)- Since the mapping
q — u(q) from P into L?(0,T; H) is continuous, then the last term of (6.31) tends
to 0 as A\, — 0+.
Now we can pass to the limit as Ay — 0+ in (6.31), and conclude that
T
(2, Lla"sc0s ultiq)éhe = [ (o0 (6:32)
0

for any ¢ € X(¢*;cos u(q*)). Since || fo||r2(0,r;v7y < C2, Lemma (6.5) shows that
that Z is the unique weakened solution of (6.19). Hence zy — Z as A — 0+ weakly

in H by Definition 6.6. This proves that the z is the weak Gateaux derivative of

the map ¢ — (q).
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Chapter 7

Optimal Parameters

From Theorem 6.7 the map ¢ — u(q) is weakly Gateaux differentiable at ¢ =
¢* € P in any direction of ¢ — ¢*, and its weak Gateaux derivative z(t,x) =
Du(q*;q — q*)(t, ) can be described by (6.20).

Let us consider the functional
J(q) = kalu(q; T) = 24° + kallula; t) — 241720 (7.1)

where 2} € H, 22 € L*(0,T; H) and k; > 0 for i = 1,2 with k; + ko > 0.
Lemma 7.1. J(q) is Gateaux differentiable, and its Gdteaux derivative is given
by

DJ(q*5q — q) = 2k ((u(q*; T) — 2),21) + 2k2/0 (u(q*st) — 23), z)dt  (7.2)

where Z is the solution of integral equation (6.20).

Proof. In the previous section we have shown that the weak solution u(g;?) is

weakly Gateaux differentiable in the admissible set of parameters P. Hence the
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following limits exist

lim
A—0+

(u(q*+)\(q—q’;\);T)—U(q*;T)7v1>H: (21,v1) (7.3)

for any v; € H and

lim
A—0+

u(q" + Mg —q*);t) —u(q";t
( (" + Mg qA) ) — u(q )7U2> = o)  (74)
L2(0,T3H)
for any v, € L*(0,T; H).
To show that the cost functional J(q) is Gateaux differentiable at ¢*, it sufficies

to show that the following limit exists

(I +Me=q) = J(@) .. :
Jim. ( . = DI 4 ). (7.5)
Evaluating the limit in (7.5)
lim (J(q + Mg —q) — J(q ))
A0+ A
=k lim ~ ([(u(g” + Mg — ¢*); T) — zgulg* + Mg — ¢); T) — 2))

A0+ A
—(u(q";T) = 24, u(q"; T) — 2g)])

+ho lim —[(u(g* + Mg — ¢*);t) — 25, ulg" + Xg — ¢*);t) — 23) 2 0.mm)
A0+ A

—(ulq;t) — 25, ulq;t) — ZS)B(O,T;H)]- (7.6)

Consider the first part of limit from (7.6)

Fa lim ~[(u(g" + Mg = ¢"); T) = 2 ulg” + Mg = ') T) = 2)
-0+ A
—(u(g* + Mg —¢); T) — 23, u(d; T) — z})

+(ulg* + Mg — ¢*);T) — 25, u(q"; T) — z3) — (u(q™; T) — 25, u(q"; T) — z4)]
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f lim [(u(q” + Mg = ¢ T) = 24 = uld; ) + 2, + Mg = ¢'); T) = 24)

A—0+
(g5 T) = z4),ulg’ + Mg = ¢°); T) = 2 — u(g; T) + 2,)]
= 2k (u(q¢*;T) — 2, 21)- (7.7)
Similarly,

s 1 * * * *
Fo lim S[(u(g” +Ma = 4)i0) = 24, u(q” + Mg = )3 ) = 22) 20,05m)

—(ulg™;t) — Z?z; u(q*;t) — Z§)L2(0,T;H)]
= 2ko(ul(q™st) — 23, 2) 20,710 (7.8)
Using (7.7) and (7.8) we get

DJ(q" 9 —q*) = 2k1((u(q5T) — 24), 21) + 2kz/0 (u(q*;t) — 27), z)dt.  (7.9)

O
Since P = {q - (a, 67 6) € [amim amax] X [6mm7 ,5maac] X [5mm7 5mam]} is a closed
and convex subset of R?, then we have the following optamility condition

T
2k ((u(g*; T) — 23), 21) + ng/ (u(q*;t) — 23),2)dt >0 for qe€ P, (7.10)
0

21
where is a solution of the integral equation (6.20).
z

Let us introduce the adjoint state p defined to be the weak solution of the
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following adjoint system

P = a4+ Afp + (6" cos(u(q®) — 1))p = ka(u(gs;t) — 25)
p(T) =0 p(T)=ki(u(g"sT) — zy). (7.11)

System (7.11) can be written as

kyu(qT) — 2}
L(q"; cos(u(q*))p(q*) = “len
kou(q*;t) — 22

p(T) =0, p(T)=ki(ulg";T) — zg). (7.12)

Since ko (u(q*;t) —22) € L*(0,T; H), as shown in Chapter 4 problem in (7.11) has
a unique weak solution. Using p(¢*) in place of ¢ in (6.20) equation (7.2) can be

written as

DJ(¢q—q) =2 i (" = a)u/(t;¢") + (Ap- — Ap)ult; ¢)

+(6* — §) sinu(t; ¢%), p(q*)) (7.13)

Thus we obtain the following result.

Theorem 7.2. The Gdteaux derivative of the objective function J(q) has the

following representation

DJ(g"; 9 —q") = (& — a)alq”) + (8" = B)b(q") + (6" — d)c(q"), (7.14)
where
a = _g_i = _2/0 (ut(taw;q*%p(t?x;q*))a (715)
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=20 = / (sin(u(t, 7:07), p(t, 3 0°)), (7.16)

and

0.J r
b= 95" —2/0 (Vu(t,z), Vp(t,x)), (7.17)

The optimality condition DJ(q*;q — q*) > 0 for any q € P is
(a" — a)alq”) + (6" = B)b(q") + (6" — 0)c(q") = 0 (7.18)

for any («, 8,9) € P.

In addition, the optimal coefficient ¢* € P for nonzero (a, b, c) can be com-

pactly written as

o = %{sign(a) + 1}amez — %{sign(a) — 1}amin, (7.19)
g = %{sign(b) + 1} Brnaz — %{sign(b) — 1} Brin, (7.20)

and
5 = %{sign(c) + 1} — %{sign(c) Y (7.21)

for more detail see [5].

Now we have the following Theorem

Theorem 7.3. If the optimal coefficient ¢* is located in the interior int P of the

admissible set P, then

a=0, b=0, and ¢=0 in €.
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Proof. In the interior of P, % = g—g = g—‘g =0. Thusa=b=c=0. O]
Theorem 7.4. Consider the sine-Gordon equation (1.1) with a constant diffusion
coefficient 3. Let the admissible set be

73 = [amim amam] X [6mm7 Bmaoc] X [5mm; 5ma;1:]

Let the objective function be defined by

2

J(Q) = kalu(q; T) = 24° + kea|u(g; t) — 23 L2(0,T;H)"

Then the mapping g — J(q) from int P C R? into R is differentiable. Its gradient
VJ(q) = (a,b,c), where a,b,c are defined in (7.22),(7.24), and (7.23). If the

parameter ¢* € intP is optimal, then VJ(qg*) = 0.

Proof. To show that the mapping ¢ — J(q) from int P C R3 into R is differen-

tiable it sufficies to show that V.J(¢) = (a,b,c) is continuous in P where

a=-22 = / (uelt, 2.4, plts 75 °)). (7.22)
=20 = / (sin(u(t, 7:07), plt, 3 0°)), (7.23)

and
b= —g—g = —2/0 (Vu(t,z), Vp(t,x)), (7.24)

Arguing as in Chapter 4, we can conclude that (7.11) has a unique weak solution
p € W(0,T). Suppose h(g*) = 6*cos(u(g®)) — 1 and g(¢*) = ko(u(q*;t) — 23).

From Theorem 5.4 the mappings ¢* — u(q*) , ¢* — h(¢*) , and ¢* — g(¢*) from
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P into C([0,7]); V') are continuous, similarly the mapping ¢* — u'(¢*) from P
into C'([0,T]); H) is continuous. Continuity of ¢* — p(¢*) P into C([0,T]); V)
and ¢* — p'(¢*) P into C([0,T]); H) can be proved similar as Theorem 5.4. Thus
partial derivatives a, b, ¢ defined in (7.22),(7.24), and (7.23) are continuous. Hence

by [17] the mapping ¢ — J(g) from int P C R? into R is differentiable. ]
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Chapter 8

Computational Algorithm

In this chapter we discuss the computational algorithm to find the approximate
solutions of (3.4). As mentioned in 2.5, let {w;}32, be eigenfunctions of —FA+1
that form an orthonormal basis in H. Then {\wf—)\fj};‘il is an orthonormal basis
on V as in Chapter 3 . Fix N € N. Let Viy = span{w;,wy,...,wy}. Let
Py : H — Vi be the projection operator defined by Pyv = Z?le(v,wj)wj for

any v € H. As defined in Chapter 4, the approximate solution of (3.4) is

un(t, z) = Zgjzv(t)wj(w) (8.1)

that satisfies

d? X

7z (s wy) + e (un, wy) + agluy, wy) +0(sin(un), wy) = (f, wj) + (u. wj)
d

un(0) = Pyug and —un(0) = Pyu; for any j €N (8.2)

dt
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Let gy = {g;n} =, € RY. We can rewrite (8.2) as the following vector differential

equation

with the initial data

and

gn(t) + agy(t) + BAgN(t) = F(t, gw)

(Pnug, wy)

(PNU0> wz)

(Pnug, wy)

(Pyuy,w)

(PNUD wz)

(Pyuy, wy)

fl updx

0

\/§f01 ug cos(mx)dz

\/§f01 ug cos((N — 1)mx)dx

fol u dx
\/§f01 uy cos(mx)dz

I \/§f01 uy cos((N — 1)mx)dx

where ug € L?(0,T;V) and u; € L*(0,T; H).
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Here,
ain (1)

gon (t)

| INN (1) |

As in Chapter 4, define

(f(t), wi) + (un,wi) — o(sin(uy), wi)

(f(t), w2) + (un, w2) — 0(sin(uy), wy)

i (f(t),wn) + (un, wn) — 6(sin(uy), wy) |

F(t,up) =U+V — W, where
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=i
Il

]
I

and

d(sin up, w)

d(sin up, wo)

d(sin upy, wy)

(UN> w1)

(UN7 wz)

i (un, wy) |

\/§f01 f(t) cos(mz)dx

I \/§f01 f(&) cos((N — 1)mzx)dz |

) fol sin

6f1sin

0

) fol sin

o7

fol f(t)dz

gin (1)

gon (1)

I gnn (%) |

Y, gty (@) (@) |
(0, gin (Bw; (@) we(z)dz

(o win (tw; () wy (z)dz |




0 0 0 C 1T (N = 1)n)?

Let Zi(t) = gn(t) and Zy(t) = giy(t). Then the initial value problem (8.3) can

be reduced into the following system of first order ODEs

Zé(t) = —CYZQ(t) - /6/\21 (t) + F(t, EN)

Z,(0) = gn(0),  Z2(0) = gy (0).

The approximate solution of (3.6) is

ZQJN V2cos((j — 1))

Now we compute the approximate solution of the adjoint system

P —ap + Agp+ (0" cos(u(q™) — 1))p = ka(u(q™;t) —

p(T)=0, p(T)=ki(u(g;T)— z}).

Let p(T'—s,z) = w(s, z) for any = € (0,1), then we have p,(T' —s,z) =

o8

%)

(8.6)

—w;($, )



and py (T — s,x) = wgs(s,x). The adjoint system (8.6) can be written as

w" + aw' + Agw + (6 cos(u(q) — 1))w = ko(u(g;t) — 23)
w(0,2) =0 w'(0,2) = ki (u(¢";T) — 2}). (8.7)

The approximate solution of the adjoint system (8.7) is given by

(Ynrs wi) + (Y, wi) + (Agyn, wi) + 6(Py cos(un(q))yw, wy)
= (kaPy(un(g;t) — 23), wi) + (yn, wi)
ynv(0) = Qn0, yx(0) = Puki(u(qT) — z) (8.8)

where yy = Zjvzl h;(t)w;(x).

Equation (8.8) is equivalent to the following vector differential equation
R (5) + ahy(s) + BAhN(s) = H(s, hy) (8.9)

with the initial data

and
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(Pl T) - =) || Ji s T) = 2y
(Pxki(u(q; T) — 2)), we) \/_fo u(q; T) — z}) cos(mx)dx
Ry (0) = -
I (Pnki(u(q; T) — 2}4), wy) | \/_fo u(q; T) — z3) cos((N — 1)wx)dx ]
Here,
hl(S)
hQ(S)
hy(s) = eR"
L hN(S) A

As in Chapter 4, define

| (Pnka(un(g;t) — 22),w1) + (hy, wy) — (Pyé(cos(un)hy, w) ]
(PNk:g(uN(q; Zf) - 23), U)Q) + (hN, wg) — (PN5(COS(UN)hN, wl)

I (Pxnka(un(g;t) — 22), wy) + (hy,wy) — (Pyd(cos(un)hy, wy) |
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where
(Pyko(u(g;t) — 23
(Pxko(u(g;t) — 22
A=
I (Pyko(ulg; t) — 23),
B =
and

wN) |

(yN7 w1)

(Z/N> wz)

i (CUN7U)N) |

| V2 [y (u
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V2 [ (u

L hN(S) .

Jy (u

u(gq;t) — zd) cos(mz)dx

u(g;t) — 23) cos((N — 1)mz)dz |




O]

(PNé(COS uN)yN7 wl)

(Pnd(cos un)yn, ws)

(PNé(COS uN)yN7 U)N)

62

dcos unhy

6 cos unhs

dcos unhn




Chapter 9

Numerical results

For our numerical experiments we choose to use a Fourier series method for the
solution of the sine-Gordon equation (1.1), and MATLAB function fminicon for
the minimization of the cost functional. As described in Chapter 2 eigenfunctions
of the operator Ag, w; = cos(n(j—1)x),j = 1,2, ..., are chosen as an orthonormal
basis in H. As described in Chapter 8, let Py : H — Vx be the projection op-
erator defined from H onto Vy = span{w;, ws, ..., wy}. Expanding the functions

in (4.13) into the Fourier cosine series we have

g + gy, + Brgi + 0S5, = Fy

9x(0) = Pyug, g;,(0) = Pyuy, (9.1)

where 8, = B[1 + (n(k — 1))?%], gx(t), Fi(t), Pyug and Pyu; are the Fourier co-
efficients of the solution uy(¢) in (4.13). Similarly Si(¢) is the Fourier cosine
coefficient of Py sin(uy)(t). The cost functional Jy(¢q) can be written as

N

In(g) = ko YD Vilaits) = Z(t)P + ki Y _[Vala:T) = Z(T)P, (9.2)

1=1 k=1 k=1

63



where k1 + ks > 0 and Z(¢;) for i = 1,2,...,T are observations for the parameter
set ¢ = (@, f3,9).
In all the numerical experiments we used observation times ¢; = T.j/K where

7=0,1,2,...., K and T = 4. The model values are specified in the following table

Table 9.1: Parameter values for numerical simulations

Time and spatial intervals [0,7] x [0,1] = [0,4] x [0,1]
Admissible set Poa = [0.1,1] x [0.1,1] x [0, 2]
Initial conditions up(z) = sin(rz), wu(z) ==z
Forcing function flt,z)=1
Dimension of system of ODE = N 64
Number of Partitions in [0,4] = M 64
Number of Partitions in [0,1] = K 128

To simulate the data z}(T,z) and 23(¢,z), let ¢ = (.2, .2,.3) € P,q be the set
of test parameters. Numerical solution of (1.1) is computed by using 4th order

Runge-Kutta method. Since real data always contain some noise, we set

z(t, z) = u(g;t, ) + ey(z), (9:3)

where € is noise level and y(z) is a random variable uniformly distributed on
interval [-.5,.5].

Let g9 € P.q be an arbitrary chosen set of parameters. A MATLAB function
called fminicon is used for minimization of the cost functional Jy. The minimizers

¢y, minimum values of functional Jy(gy), and error

lg* — qllrs

E=1_
1]l

at different noise levels ¢ are given in the following tables. The first row of each

table shows that the identification algorithm is successful for data z; without
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noise, whereas the precision of the identification decreases with the increasing
noise level. Without loss of generalities we can assume that k, = 1 in all the
examples. Our experiments revealed that for ¢ = 0, identification algorithm is
successful for any k;. For ¢ = 0.001, the best identification is achieved for k; = 1,

and for e = 0.01, the best identification is achieved for k; = 2.

Table 9.2: Identification results for £y = 0 and ks = 1

€ qN In(ax) E
0 (0.1998, 0.1996, 0.3017) 9.7130e-008 0.0041

0.001  (0.1945, 0.1991, 0.2726) 0.0029 0.0679

0.01 (0.2737, 0.2751, 0.1910) 0.3458 0.3674

Table 9.3: Identification results for k; = 1 and ks = 1

€ IN JN(Q?V) E
0 (0.2001, 0.2001, 0.3000) 1.7996e-007 2.1820e-004

0.001 (0.2056, 0.2040, 0.3031) 0.0155 0.0182

0.01 (0.1218, 0.1470, 0.2870) 1.6254 0.2312

Table 9.4: Identification results for £y = 2 and ks = 1

€ Iy N E
0 (0.2000, 0.2000, 0.3000) 2.7806e-007 1.2957e-004

0.001 (0.2017, 0.1997, 0.3100) 0.0293 0.0245

0.01  (0.2077, 0.2096, 0.2745) 3.1094 0.0687
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Table 9.5: Identification results for k; = 25 and k3 =1

€ qN In(ax) E

0 (0.2000, 0.2000, 0.3000)  2.2272¢-007 7.4062¢-005
0.001  (0.2013, 0.2026, 0.2905) 0.1534 0.0242

0.01 (0.1901, 0.1887, 0.3541) 14.0577 0.1362

Table 9.6: Identification results for k1 = 50 and ky = 1

€ Iy NI E

0 (0.2000, 0.2000, 0.3000)  2.3466e-007 5.4141e-005
0.001  (0.2001, 0.2022, 0.2925) 0.3265 0.0190

0.01 (1 0.1735, 0.1713, 0.3546) 31.3486 0.1628

Figure 9.1: Data z; for noise level e = (.00
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Figure 9.2: Data z4 for noise level ¢ = 0.01
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Chapter 10

Conclusions

In this thesis we proved existence and uniqueness of the weak solution of damped
sine-Gordon equation with Neumann boundary condition. We showed that the
weak solution is continuous with respect to the parameters. Weak Gateaux dif-
ferentiability of the solution is established by using the method of transposition
by Lions and Magenes [8]. Weak Gateaux differentiability of the solution map
is used to establish the Gateaux differentiability of the cost functional .J. An
adjoint system is established and used to represent the Gateaux derivative of the
cost functional J. We proved that the partial derivatives g—i, g—g, and g—g are 0
when optimal parameter ¢* € intP. Continuity of partial derivatives with re-

spect to a, 3, and ¢ is used to prove differentiability of cost functional J on the

admissible set of parameters Pyq.

In addition, we developed a computational algorithm for approximate solutions
of the adjoint system. A Fourier method is used to compute numerical solution

of the sine-Gordon equation (1.1). MATLAB function fminicon is used for the
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minimization of the cost functional J. Our experiments showed that the identi-
fication algorithm is successful for data without noise, whereas the precision of
identification decreases with the increasing noise level. In addition, our experi-
ments revealed that for e = 0, identification algorithm is successful for any k;.
For e = 0.001, the best identification is achieved for k; = 1, and for € = 0.01, the

best identification is achieved for k; = 2.
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