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Abstract

In this thesis we study an identi�cation problem for physical parameters asso-

ciated with damped sine-Gordon equation with Neumann boundary conditions.

The existence, uniqueness, and continuous dependence of weak solution of sine-

Gordon equations are established. The method of transposition is used to prove

the Gâteaux di�erentiability of the solution map. The Gâteax di�erential of the

solution map is characterized. The optimal parameters are established. F�rechet

di�erentiability of the cost functional J is established. Computational algorithm

and numerical results are presented.
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Chapter 1

Introduction

Sine-Gordon equation models the dynamics of a series of small-area Josephson

junctions driven by a current source by taking into the account a damping e�ect.

It is numerically veri�ed in Bishop et al [1] that the solution of the sine-Gordon

equation with periodic boundary conditions shows a chaotic behavior. However,

there are no proofs of existence, uniqueness, and chaotic behavior of solutions

in [1]. The chaotic behavior suggests that the problem of controlling the solu-

tions of sine-Gordon equations by forcing and initial functions is very delicate

and important. In recent years, some attentions has also been paid to mod-

els which possess soliton-like structures in higher dimensions [13], in particular,

the Josephson junction model [14] which consists of two layers of superconduct-

ing material separated by an isolating barrier. This model can be described by

sine-Gordon equations. In addition, sine-Gordon equations possess soliton-like

solutions [15]. Solitons have been shown to play a central role in the theory of

nonlinear di�erential equations.
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Let 
 be an open bounded set of Rn with C1 boundary. Let us consider the

following sine-Gordon equation

utt(t; x) + �ut(t; x)� � 4 u(t; x) + � sinu(x; t) = f(x; t); (t; x) 2 Q
@u

@n
(t; x)jx2� = 0; t 2 (0; T )

u(0; x) = u0(x); ut(0; x) = u1(x); x 2 
 (1.1)

where T > 0; Q = (0; T )�
; f 2 L2(Q); u0 2 V = H1(
) and u1 2 H = L2(
).

Solutions of (1:1) furnish a description of the dynamic behavior of the Josephson

junction tunnel. The Josephson junction tunnel consists of two super conducting

strips separated by a thin dielectric �lm. The dependent variable u(x; t) is related

to the current passing through dielectric. The boundary condition (1:1) implies

that the current at the end of the junction vanishes.

Many scientists have had great interests in damping e�ects as appeared in

(1:1). For instance, Nakajima and Onodera [2], studied parameters by numerical

simulations based on the �nite di�erence method. Levi [3], veri�ed numerically

that for special choices of parameters and forcing functions (1:1) leads to chaotic

behaviors. Temam [4], has extensively studied the stability of (1:1). In Gutman

[5], Fr�echet di�erentiability of solution of the (1:1) is shown for Dirichlet boundary

condition settings. The main goal of this thesis consists in �nding the parameters

�; �, and � such that the solution of (1.1) exhibits the desired behavior.
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More precisely, let

P = fq = (�; �; �) 2 [�min; �max]� [�min; �max]� [�min; �max]g; (1.2)

where �min > 0. De�ne the cost functional J(q) by

J(q) = k1ju(q;T )� z1dj2 + k2ku(q; t)� z2dk2L2(0;T ;H) (1.3)

where z1d 2 H, z2d 2 L2(0; T ;H) and ki � 0 for i = 1; 2 with k1 + k2 > 0.

The data z1d and z2d can be thought of as the targeted behavior of (1.1). The

parameter identi�cation problem for (1.1) with the objective function (1.3) is to

�nd q� = (��; ��; ��) 2 Pad satisfying

J(q�) = inf
q2Pad

J(q): (1.4)

For solving the above identi�cation problem, we utilize the method which is used

by Lions [6] for solving the optimal control problems. We show the Gâteaux

di�erentiability of the solution map u. Since the second order evolution equation

(1:1) has the forcing term containing the di�usion operator, it is not easy or

impossible to solve the equation by the standard variational manner as in [7].

In order to overcome this di�culty, we use the method of transposition studied

in Lions and Magenes [8]. In our identi�cation problem we use the method of

transposition to prove the Gâteaux di�erentiability of the solution map, and to

characterize the Gâteaux di�erential of the solution map.
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The thesis is organized as follows. In Chapter 2 we introduce appropriate function

spaces with their respective inner products and norms. In addition, we show the

existence of eigenvalues and eigenfunctions of the operator ���+ I. In general,

equation (1:1) does not have a classical solution. To overcome such a problem, we

de�ne weak solution of (1:1) in Chapter 3. In Chapter 4 we prove the uniqueness

of weak solutions of (1:1). The existence of weak solutions of (1:1) is proved by

using approximate solutions. Continuity of the weak solution of (1:1) with respect

to the parameters is proved in Chapter 5. In Chapter 6 we show that the weak

solution of (1:1), as a function of q, is weakly Gâteaux di�erentiable by using the

method of transposition by Lions and Magenes [8]. In Chapter 7 we show that

the cost functional (1:3) is Gâteaux di�erentiable on P . We derive the optimal

parameters and �nally we show that the cost functional (1:3) is di�erentiable.

In Chapter 8 we develop a computational algorithm. In Chapter 9 we present

numerical results. We present the conclusion of the thesis in Chapter 10.
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Chapter 2

Problem Setup

Let H = L2(
) be a Hilbert space with following inner product and norm

(�;  ) =

Z



�(x) (x)dx; j�j = (�; �)
1

2 (2.1)

for all � ,  2 L2(
). Let V = H1(
) be a Hilbert space with following inner

product and norm

((�;  )) = (�;  ) + (r�;r ); k�k = ((�; �))
1

2 (2.2)

for all � ,  2 H1(
). The dual H 0 is identi�ed with H leading to V � H � V 0

with compact, continuous, and dense injections [9]. Hence there exists a constant

K1 = K1(
) such that

jwj � K1kwk for any w 2 V: (2.3)
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Let < u; v >V; V
0 denote the duality pairing between V and V

0

. To use the

variational formulation let us de�ne the following bilinear form on V � V

a�(u; v) =

Z



u vdx+ �

Z



rurvdx (2.4)

for any u; v 2 H1(
) and di�usion coe�cient �.

Lemma 2.1. Let � > 0, then a�(u; v) is bounded and coercive in V .

Proof. Using Cauchy-Schwartz inequality in (2.4) we have,

ja�(u; v)j = j R


uvdx+ �

R


rurvdxj � C(jujjvj+ jrujjrvj) � Ckukkvk.

Similarly,

a�(u; u) =
R


u2dx+�

R


rurudx � minf1; �g(R



u2dx+

R


rurudx) � ckuk2.

where c is some positive constant.

De�ne a linear operator A� : D(A�) = fu : u 2 V;A�u 2 Hg into H by

a�(u; v) = (A�u; v) for all u 2 D(A�) and for all v 2 V . Let the norm on D(A�)

be kuk2� =
R


juj2dx+ �

R


jruj2dx

Lemma 2.2. A� is an isomorphism between D(A�) and H.

Proof. I) A� is linear:

Let u1; u2 2 D(A�) then (A�(u1 + u2); v) = a�(u1 + u2; v)

=
R


(u1 + u2)vdx+ �

R


r(u1 + u2)rvdx

=
R


u1vdx+

R


u2vdx+ �

R


ru1rvdx + �

R


ru2rvdx

= (A�u1; v) + (A�u2; v).

Similarly,

(A��u; v) = a�(�u; v) =
R


�uvdx+�

R


r(�u)rvdx = �[

R


uvdx+�

R


rurvdx]

= �(A�u; v)

6



II) A� is one to one:

Let u1; u2 2 D(A�) with A�u1 = A�u2, then for any v 2 V (A�u1; v) = (A�u2; v)

which implies (A�(u1 � u2); v) = 0 for any v 2 V . If A�(u1 � u2) 2 V , we can

choose v = A�(u1 � u2). which implies u1 = u2. But if A�(u1 � u2) does not

belong to V , being V dense in H there exist a sequence vn 2 V such that fvng
converges to A�(u1 � u2) in V but V is complete so A�(u1 � u2) 2 V hence

u1 = u2.

III) A� is onto:

For any f 2 H we can de�ne L(v) =
R


fvdx = a�(u; v) so L is bounded linear

functional on H hence by Riesz Representation Theorem there exist unique u 2
D(A�) such that A�u = f . Hence R(A�) = H.

Norms kuk2 = R


juj2dx+R



jruj2dx and kuk2� =

R


juj2dx+� R



jruj2dx are

equivalent. From (2.1) �1kuk2 � a�(u; u) = kuk2� =
R


juj2dx + �

R


jruj2dx �

�2kuk2. Since jA�uj2 = (A�u;A�u) = a�(u;A�u) � Ckuk�jA�uj which im-

plies jA�uj � Ckuk� for all u 2 D(A�), hence A� is bounded. Since A�

from D(A�) � V to H is bounded bijective linear operator so its inverse ex-

ist. kA�1� k = supfkA
�1

�
vk

kvk : kvk 6= 0g for any v 2 H. Since A� is surjective, for

v 2 H there exist w 2 D(A�) such that A�w = v. Hence

kA�1� k = supfkA
�1
� A�wk
kA�wk : kA�wk` 6= 0g � kwk

�kwk <
1

�
<1

for some � = �min > 0.

7



Lemma 2.3. The operator A� : D(A�) � H into H is a self-adjoint.

Proof. Enough to show that A� is symmetric and R(A�) = H. For any u; v 2
D(A�), we have (A�u; v) = a�(u; v) and (u;A�v) = a�(v; u) so (A�u; v) =

(u;A�v). Hence A� is symmetric bounded linear operator. From Lemma (2.2)

R(A�) = H. Therefore A� is self adjoint operator.

Since A� is bounded self-adjoint operator with A�1� as an inverse, A�1� is self-

adjoint. Now it remains to show that A�1� is compact. Let B be any bounded set

in H. A�1� is bounded thus for any h 2 H, kA�1� hk � kA�1� kjhj. Hence the set

A�1� (B) is bounded in V . A�1� is compact [9]. So there exist �k for k = 1; 2; :::

such that (�rwk;rv) + (wk; v) = �k(wk; v) for all v 2 V . which shows that

�k and wk respectively are the nonzero eigenvalues and eigenfunctions for the

operator A� de�ned in V such that fwKg1k=1 form an orthonormal basis in H.

Lemma 2.4. Functions f wkp
�
k

g1K=1 form an orthonormal basis in V .

Proof. Since �k are nonzero eigenvalues of A�, we have (wk; w) + (�rwk;rw) =
�k(wk; w) for any w 2 V . Since fwkg forms an orthonormal basis in H, f wkp

�
k

g
forms an orthonormal set in V . It remains to show that orthonormal set f wkp

�k
g1k=1

in V is complete. Assume (wk; h) + (�rwk;rh) = 0 for h 2 H. We have

(wk; h) + (�rwk;rh) = �k(wk; h) = 0. Since �k 6= 0, (wk; h) has to be 0 for all

h 2 H. Hence h = 0 a.e. in H. Thus f wkp
�k
g1k=1 is a complete orthonormal set in

V and thus forms a basis for V .

8



Remark 2.5.

The computations in Chapter 8 is done with 
 = (0,1). Thus the computa-

tions of the eigenvalues and eigenfunctions for the �4 with Neumann Bound-

ary conditions is explicit in this case. These eigenvalues and eigenfunctions can

be used to compute the eigenvalues and eigenfunctions of the operator A� =

��4+I. Thus we relate the eigenvalues and the eigenfunctions of the operator

A� to the eigenfunctions and the eigenvalues of the operator �4 with Neumann

boundary conditions.

Let �k and yk be the eigenvalues and the eigenfunctions of the operator �4
respectively. Thus we have

�4 yk = �kyk for k = 0; 1; 2:::: (2.5)

Similarly, let �n and wn be the eigenvalues and the eigenfunctions of the operator

A� = �� 4+I respectively. Thus we have

�4 wn =
1

�
(�n � 1)wn; for n = 1; 2; 3; :::; (2.6)

Comparing (2:5) and (2:6) we have yk = wn and �k =
1
�
(�n � 1). Let k = n� 1.

then we have �n�1 = [�(n� 1)]2 for n = 1; 2; 3; :::; and

yn�1 =

8><
>:
p
2 cos(�(n� 1)x); n = 2; 3; 4; :::,

1; n = 1.
(2.7)

9



Hence, �n = �[�(n� 1)]2 + 1 and

wn =

8><
>:
p
2 cos(�(n� 1)x); n = 2; 3; 4; :::,

1; n = 1.
(2.8)

10



Chapter 3

Weak formulation of the

sine-Gordon equation

From now on the dependency on x is suppressed, and 0 and 00 stand for the time

derivatives. Let

W (0; T ) = fu : u 2 L2(0; T ;V ); u0 2 L2(0; T ;H); u00 2 L2(0; T ;V 0)g: (3.1)

u0 and u00 are the derivatives in the distributional sense. That is, u0 2 L2(0; T ;H)

is derivative of u 2 L2(0; T ;V ) in the distributional sense if for any � 2 C1
0 (0; T )

and v 2 V Z T

0

(u0(t); v)�(t)dt = �
Z T

0

(u(t); v)�0(t)dt (3.2)

similarly, u00 2 L2(0; T ;V 0) is second derivative of u 2 L2(0; T ;V ) in the distri-

butional sense if for any � 2 C1
0 (0; T ) and v 2 V

Z T

0

(u00(t); v)�(t)dt =
Z T

0

(u(t); v)�00(t)dt: (3.3)

11



For more details see [10].

De�nition 3.1. Let fwjg1j=1 be the eigenfunctions of the operator A� as intro-

duced in (2:4). The weak solution of (1.1) is a function u 2 W (0; T ) satisfying

hu00; wji+ �(u0; wj) + a�(u;wj) + �(sin(u); wj) = (f; wj) + (u;wj); 8j 2 N;
u(0) = u0 2 V; u0(0) = u1 2 H; (3.4)

where the equations in t are satis�ed in the distributional sense. Since the

span fw1; w2; w3; :::g is dense in V , (3.4) is satis�ed for any v 2 V

hu00+�u0+A�u+� sinu; vi = hf+u; vi; u(0) = u0 2 V; u0(0) = u1 2 H: (3.5)

Thus

u00 + �u0 + A�u+ � sinu = f + u; u(0) = u0 2 V; u0(0) = u1 2 H (3.6)

which is understood in the sense of distributions on (0; T ) with the values in V 0.

For more details see [4].

Remark : The Neumann boundary condition does not explicitly appear in the

weak formulation (3:4) but it is implicitly contained in it.

Suppose that the solution u 2 C2(
 � [0; T ]). Let v 2 D(
) = fvj
 : v 2
D(RN )g � H1(
). Then by Green's Theorem

Z



(u
00

+ �u
0 � ��u+ � sin u� f)vdx+

Z
@


v
@u

@n
ds = 0: (3.7)

Suppose v 2 D(
). Since v = 0 2 @
, then in (3:8)
R
@

v @u
@n
ds = 0. Therefore for

12



all v 2 D(
) Z



(u
00

+ �u
0 � ��u+ � sin u� f)v dx = 0: (3.8)

Since D(
) is dense in L2(
), we conclude that (3:8) is true for any v 2 L2(
).

Let us choose v = u
00

+ �u
0 � ��u+ � sin u� f . Then (3:8) can be written as

Z



ju00 + �u
0 � ��u+ � sin u� f j2 dx = 0; (3.9)

which implies that u
00

+ �u
0 � ��u+ � sin u� f = 0 a.e. on 
.

Suppose v 2 C1(
). Then (3:8) can be written as

Z
@


v
@u

@n
ds = 0 (3.10)

for any v 2 C1(
). Since 
 is bounded and @
 is C1, then there exist a bounded

linear operator T : V ! H(@
) such that Tv = vj@
 for all v 2 V (
) \ C(
),
[11]. Thus Z

@


v
@u

@n
ds = 0 (3.11)

is true for any v 2 L2(@
). Take v = @u
@n

in (3:12) to get

Z
@


����@u@n
����
2

ds = 0 (3.12)

which implies that @u
@n

= 0 a.e. on @
. Since we assume u; v; and f are continuous

up to the boundary, then @u
@n

in fact, equals to zero at each point on the boundary

@
.

13



Chapter 4

Existence and Uniqueness of

Weak Solutions

Now we �rst show the uniqueness of the solutions of equation (3:6) which we

later use to show the existence of a solution of the equation (3:6). The following

two Lemmas are of critical importance for the existence and uniqueness of weak

solutions.

Lemma 4.1. Let w 2 L2(0; T ;V ); w0 2 L2(0; T ;H) and w00+A�w 2 L2(0; T ;H).

Then, after a modi�cation on the set of measure zero, w 2 C([0; T ];V ); w0 2
C([0; T ];H) and, in the sense of distributions on (0; T ) one has

(w00 + A�w;w
0) =

1

2

d

dt
fjw0j2 + a�(w;w)g: (4.1)

For proof see [4].

Lemma 4.2. (Gronwall's Lemma) Let �(t) be a nonnegative, summable function

on [0,T] which satis�es the integral inequality

14



�(t) � C1

Z t

0

�(s)ds+ C2 for constants C1 ; C2 � 0 (4.2)

almost everywhere t 2 [0,T]. Then

�(t) � C2(1 + C1te
C1t) a:e: on 0 � t � T: (4.3)

In particular, if

�(t) � C1

Z t

0

�(s)ds a:e: on 0 � t � T; then �(t) = 0 a:e: on [0; T ] (4.4)

For proof see [11].

Lemma 4.3. The solution of equation (3.6) is unique.

Proof. Let z1 and z2 be two solutions of (3:6). Then we have the following

equations

z001 + �z01 + A�z1 + � sin z1 = f + z1; z1(0) = z0 2 V; z01(0) = z1 2 H: (4.5)

z002 + �z02 + A�z2 + � sin z2 = f + z2; z2(0) = z0 2 V; z02(0) = z1 2 H: (4.6)

Subtracting (4:6) from (4:5) one has

w00+�w0+A�w+ �(sin z2� sin z1) = w; w(0) = 0 2 V; w0(0) = 0 2 H; (4.7)

where w = (z2 � z1). Using lemma (4:1) one can obtain

1

2

d

dt
fjw0j2 + a�(w;w)g = ��jw0 j2 � �(sin(z2)� sin(z1); w

0

) + (w;w0) (4.8)

15



Integrating (4:8) over 0 � t � T , we get

Z t

0

1

2

d

dt
fjw0j2 + a�(w;w)gds =

Z t

0

[��jw0j2 � �(sin(z2)� sin(z1); w
0

) + (w;w0)]ds

jw0j2 + a�(w;w) = 2

Z t

0

[��jw0j2 � �(sin(z2)� sin(z1); w
0

) + (w;w0) ]ds

� 2j�j
Z t

0

jw0 j2ds+ 2j�j
Z t

0

j(sin(z2)� sin(z1); w
0

)jds+ 2

Z t

0

j(w;w0)jds

Let � > 0. Using Cauchy Schwartz inequality and the fact that V �� H, we

have

jw0(t)j2 + kw(t)k2 � 2j�j
Z t

0

jw0(s)j2ds+ 2j�j
Z t

0

jw(s)j:jw0(s)jds

+2

Z t

0

jw(s)j:jw0(s)jds

� 2j�j
Z t

0

jw0(s)j2ds+ j�j
Z t

0

(
1

�
jw(s)j2 + �jw0(s)j2)ds

+

Z t

0

(
1

�
jw(s)j2 + �jw0(s)j2)ds

� c(

Z t

0

jw0(s)j2ds+
Z t

0

kw(s)k2ds) (4.9)

where c = max f2j�j+ �j�j+ �; 1+K
2j�j
�

g.
By lemma (4:2) jw0(t)j2 + kw(t)k2 = 0. Therefore w = 0 a.e. in W (0; T ) Hence

z1 = z2 a.e. in W (0; T ).

Fix m 2 N and let Vm = spanfw1; w2; ::::; wmg. Let Pm : H ! Vm be the

projection operator de�ned by Pmv =
Pm

k=1(v; wk)wk for any v 2 H.

16



The approximate solution of (3:4) is a function um(t) 2 W (0; T ) that satis�es

u00m + �u0m + A�um + �Pm sin(um) = Pmf + um

um(0) = Pmu0 u0m(0) = Pmu1: (4.10)

Lemma 4.4. The solution of equation (4:10) is unique.

Proof. Assume z1 and z2 be two solutions of (4:10). Then their di�erence w =

z1 � z2 satis�es

w00 + A�(w) = w � �w0 � �Pm((sin z2)� (sin z1)) 2 L2(0; T ;H) (4.11)

with zero initial conditions. The fact jPmuj � juj for any u 2 H and lemma (4:3)

provides the result.

Let

zm(t) =
mX
j=1

gjm(t)wj(x) (4.12)

satisfy

d2

dt2
(zm; wj) + �

d

dt
(zm; wj) + a�(zm; wj) + �(Pm sin zm; wj)

= (Pmf; wj) + (zm; wj)

zm(0) = Pmz0 and
d

dt
zm(0) = Pmz1 for any j 2 N (4.13)

Theorem 4.5. For each integer m = 1; 2; :::; there exist a unique function

zm(t) =
Pm

j=1 gjm(t)wj(x) satisfying (4.13).

Proof. Let Pm : H ! Vm be the projection operator de�ned by

Pmv =
Pm

k=1(v; wk)wk for any v 2 H. We can write equation (4.13) as the vector

17



di�erential equation

d2

dt2
~gm(t) + �

d

dt
~gm(t) + ��~gm(t) = ~F (t; ~zm) (4.14)

with the initial values

~gm(0) =

2
666666666666664

(Pmz0; w1)

(Pmz0; w2)

:

:

:

(Pmz0; wm)

3
777777777777775

;

and

d

dt
~gm(0) =

2
666666666666664

(Pmz1; w1)

(Pmz1; w2)

:

:

:

(Pmz1; wm)

3
777777777777775

:

Here

~gm(t) =

2
666666666666664

g1m(t)

g2m(t)

:

:

:

g1m(t)

3
777777777777775

:
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Similarly

~F (t; zm) =

2
666666666666664

(Pmf(t); w1) + (zm; w1)� �(sin(zm); w1)

(Pmf(t); w2) + (zm; w2)� �(sin(zm); w2)

:

:

:

(Pmf(t); wm) + (zm; wm)� �(sin(zm); wm)

3
777777777777775

and

� =

2
66666666664

�1 0 0 : : : 0

0 �2 0 : : : 0

0 0 �3

: : :

0 0 0 : : : �m

3
77777777775
.

Lemma 4.6. Function ~F (t; ~zm) is Lipschitz continuous.

Proof. Let zm(t) =
Pm

j=1 gjm(t)wj and vm(t) =
Pm

j=1 hjm(t)wj . For any �,

 2 H. We have the following inequality

Z



j sin�(x)� sin (x)j2dx �
Z



j�(x)�  (x)j2dx: (4.15)
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Using (4:15) and Schwartz inequality we have

j~F (t; zm(t))� ~F (t; vm(t))j2 = �2
mX
i=1

j(sin(
mX
j=1

gjm(t)wj)� sin(
mX
j=1

hjm(t)wj); wi)j2

+j(
mX
j=1

gjm(t)wj �
mX
j=1

hjm(t)wj; wi)j2

� �2mj(sin(Pm

j=1 gjm(t)wj)� sin(
Pm

j=1 hjm(t)wj)j2+ mjPm

j=1(gjm(t)� hjm(t))j2

� �2m2
Pm

j=1 jgjm(t)�hjm(t)j2+m2jgjm(t)�hjm(t)j2 �M
Pm

j=1 jgjm(t)�hjm(t)j2

�M j~gm � ~hmj2. Hence ~F (t; zm) is Lipschitz continuous.

De�nition 4.7. Carath�eodory Condition: ~f(x; ~y) is continuous as a function of

~y for �xed x and measurable as a function of x for each �xed ~y.

Theorem 4.8. Let J = [�; � + a], S = J �Rn, and assume that the function ~f :

S ! R
n satis�es the Carath�eodory condition in S. Let ~f satisfy ~f(x; ~y) 2 L(J),

the class of functions that are integrable and measurable over J for each �xed ~y,

and satisfying the generalized Lipschitz condition

j~f(x; ~y)� ~f(x; ~y1)j � l(x)j~y � ~y1j in S (4.16)

where l(x) 2 L(J). Then there exists a unique solution of ~y0 = ~f(x; ~y) , ~y(�) = ~�

in J . For details see [16].

Hence the system of m second order vector di�erential equations admits a

unique solution ~gm(t) on [0; T ]. This is shown by reducing it into a system of �rst

order vector di�erential equations and by applying Carath�eodory type extension

Theorem 4:8.
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Lemma 4.9. Function zm(t) =
Pm

j=1 gjm(t)wj(x) satis�es

d2

dt2
(zm; wj) + �

d

dt
(zm; wj) + a�(zm; wj) + �(Pm sin zm; wj)

= (Pmf; wj) + (zm; wj);

zm(0) = Pmz0 and
d

dt
zm(0) = Pmz1 (4.17)

for j > m.

Proof. It su�cies to show that (A�zm; wj) = a�(zm; wj) is zero for j > m. Since

fwjg1j=1 are the eigenfunctions of the operator A�, we have

(zm; wj) + �(rzm;rwj) = �j(zm; wj). This implies �(rzm;rwj) = �j(zm; wj)�
(zm; wj) = (�j�1)(zm; wj). For j > m, �(rzm;rwj) = 0. Hence, (A�zm; wj) = 0

for j > m.

Hence zm is a weak solution of the sine-Gordon equation. Furthermore, zm

also satis�es (4:10). By Lemma 4:4 the approximate solution um is in fact a weak

solution of the sine-Gordon equation (1:1).

Theorem 4.10. Let q = (�; �; �) 2 P ; u0 2 V; u1 2 H and f 2 L2(0; T ;H).

Then

(i). There exists a unique weak solution u(t; q) of (1.1). This solution satis�es

u 2 C([0; T ];V ) \W (0; T ), u0 2 C([0; T ];H), and

max
0�t�T

(ku(t)k2 + ju0(t)j2) + ku00(t)k2L2(0;T ;V 0) � C
h
ku0k2 + ju1j2 + kfk2L2(0;T ;H)

i
;

(4.18)

where C is a constant independent of q 2 P. The approximate solutions um(t; q)

also satisfy the energy estimate (4.18) with the same constant C.
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(ii). The solution u(t; q) and its approximations um(t; q) satisfy the following

convergence estimate

ju0(t)� u0m(t)j2 + ku(t)� um(t)k2 � C2(ju1 � Pmu1j2 + ku0 � Pmu0k2

+kf � Pmfk2L2(0;T ;H) +

Z t

0

j sinu(s; q)� Pm sinu(s; q)j2ds) (4.19)

where C2 is a constant independent of q 2 P.
(iii). Furthermore, um ! u in C([0; T ];V ) and u0m ! u0 in C([0; T ];H) as

m!1.

Proof. Part I. A priori estimates. Multiply (4.17) by g
0

jm(t) on both sides and

sum from j = 1 to m to get

mX
j=1

d2

dt2
(um(t); wj)g

0

jm(t) + �
mX
j=1

d

dt
(um(t); wj)g

0

jm(t)
mX
j=1

a�(um(t); wj)g
0

jm(t)

=
mX
j=1

(f(t); wj)g
0

jm(t) +
mX
j=1

(um(t); wj)g
0

jm(t)

�
mX
j=1

�(sin um(t); wj)g
0

jm(t):

We claim that
mX
j=1

d2

dt2
(um(t); wj)g

0

jm(t) =
1

2

d

dt
ju0mj2; (4.20)

�
mX
j=1

d

dt
(um(t); wj)g

0

jm(t) = �ju0mj2; (4.21)

mX
j=1

a�(um; wj)g
0

jm(t) =
1

2

d

dt
a�(um; um); (4.22)
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mX
j=1

(f; wj)g
0

jm(t) = (f; u
0

m); (4.23)

and
mX
j=1

(um(t); wj)g
0

jm(t) = (um; u
0

m): (4.24)

Veri�cation of (4.20)

mX
j=1

d2

dt2
(um(t); wj)g

0

jm(t) =
mX
j=1

(u
00

m; wj) g
0

jm =
mX
j=1

Z



u
00

mwj g
0

jmdx

=

Z



u
00

m

mX
j=1

g
0

jmwjdx = (u
00

m; u
0

m) =
1

2
[(u

00

m; u
0

m) + (u
0

m; u
00

m)] =
1

2

d

dt
ju0mj2

Veri�cation of (4.21)

�
mX
j=1

d

dt
(um(t); wj)g

0

jm(t) = �
mX
j=1

(u
0

m; wj)g
0

jm = �(u
0

m;
mX
j=1

g
0

jmwj)

= �(u
0

m; u
0

m) = �ju0mj2:

Veri�cation of (4.22)

mX
j=1

a�(um(t); wj(x))g
0

jm(t) =
mX
j=1

Z



um(t)wj(x)g
0

jm(t)dx+

mX
j=1

Z



�rumrwj(x)g
0

jm(t)dx =

Z



um(t)
mX
j=1

g
0

jm(t)wj(x)

+

Z



�rum
mX
j=1

g
0

jm(t)rwj(x)g
0

jm(t)dx =

Z



umu
0

mdx+Z



�rumru0mdx = a�(um; u
0

m):
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Veri�cation of (4.23)

mX
j=1

(f(t); wj)g
0

jm(t) =

Z



f(t)
mX
j=1

g
0

jm(t)wj(x)dx =

Z



f(t)u
0

mdx = (f; u
0

m):

Veri�cation of (4.24)

mX
j=1

(um(t); wj)g
0

jm(t) =

Z



um

mX
j=1

g
0

jm(t)wj(x) = (um; u
0

m)

Using (4:20), (4:21), (4:22), (4:23), and (4:24) in (4:20) we get

1

2

d

dt

h
ju0mj2 + a�(um; um)

i
= (f(t); u

0

m) + (um; u
0

m)� �(u
0

m; u
0

m)� �(sin(um); u
0

m):

(4.25)

Integrate (4:25) from 0 to t and use Cauchy Schwartz Inequality to get

h
ju0mj2 + a�(um; um)

i
� 2

Z t

0

j(f; u0m)jds+ 2

Z t

0

j(um; u0m)jds

+2j�j
Z t

0

j(u0m; u
0

m)jds+ 2j�j
Z t

0

j(sin(um); u0m)jds

� jPmu1j2 + kPmu0k2 + 2

Z t

0

jf(s)jju0m(s)jds

+2

Z t

0

jum(s)jju0m(s)jds+ 2j�j
Z t

0

ju0m(s)j2ds+ 2j�j
Z t

0

jum(s)jju0m(s)jds:

Using the coerciveness estimate a�(u; u) � �kuk2 for some constant � > 0 we

have

ju0mj2 + �kumk2 � ju0mj2 + a�(u; u) � jPmu1j2 + kPmu0k2

+2

Z t

0

jf(s)jju0m(s)jds+ 2

Z t

0

jum(s)jju0m(s)jds+ 2j�j
Z t

0

ju0m(s)j2ds

+2j�j
Z t

0

jum(s)jju0m(s)jds:
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Therefore

ju0mj2 + �kumk2 � minf1; �g
h
ju0mj2 + kumk2

i
= c

h
ju0mj2 + kumk2

i

where c = minf1; �g. Thus

ju0mj2 + kumk2 � c1

h
ju0mj2 + �kumk2

i
� c1(jPmu1j2 + kPmu0k2

+2

Z t

0

jf(s)jju0m(s)jds+ 2

Z t

0

jum(s)jju0m(s)jds+ 2j�j
Z t

0

ju0m(s)j2ds

+2j�j
Z t

0

jum(s)jju0m(s)jds):

Using jabj � a2+b2

2
we get

ju0mj2 + kumk2 � c1(jPmu1j2 + kPmu0k2 + kfk2L2(0;T ;H)

+(1 + j�j+ j�j)
Z t

0

ju0mj2ds) + (1 + j�j)
Z t

0

jumj2ds)
� maxf(1 + j�j); (2 + j�j+ j�j)g(jPmu1j2 + kPmu0k2

+kfk2L2(0;T ;H) +

Z t

0

ju0mj2ds) +
Z t

0

jumj2ds)

= c2 (jPmu1j2 + kPmu0k2 + kfk2L2(0;T ;H) +

Z t

0

ju0mj2ds) +
Z t

0

jumj2ds)

where c2 = max f(1 + j�j); (2 + j�j+ j�j)g. Using Poincare inequality for the last

integral we get

ju0mj2 + kumk2 � c2(jPmu1j2 + kPmu0k2 + kfk2L2(0;T ;H)

+c3

Z t

0

(ju0mj2 + kumk2ds)
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where c3 = max f1; K2
1g. Hence we have

ju0mj2 + kumk2 � C(ju1j2 + ku0k2 + kfk2L2(0;T ;H)

+

Z t

0

(ju0mj2 + kumk2)ds); (4.26)

where C = max fc2; c3g. The Gronwall's Lemma gives

ju0mj2 + kumk2 � C
h
ju1j2 + ku0k2 + kfk2L2(0;T ;H)

i
; t 2 [0; T ]: (4.27)

Since um is an approximate solution of (1:1) and for any v 2 V with kvk � 1, we

have

jhu00m; vij � c(jf j+ ju0mj+ jumj+ kumk) (4.28)

where c = maxf1; (1 + j�j); j�jg. Using jumj � K1kumk and integrating from 0

to T we get

ku00mk2L2(0;T ;V 0) � c(jf j2L2(0;T ;H) + ju0mj2L2(0;T ;H) + kumk2L2(0;T ;V )): (4.29)

From (4:27) and (4:29) we conclude that

max
0�t�T

(kum(t)k2 + ju0m(t)j2) + ku00m(t)k2L2(0;T ;V 0) � C
h
ku0k2 + ju1j2 + kfk2L2(0;T ;H)

i
;

(4.30)

where C is a constant independent of q 2 P = fq = (�; �; �) 2 [�min; �max] �
[�min; �max]� [�min; �max]g.
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Part II. Existence and convergence.

Estimate (4.30) shows that for any q 2 P and m 2 N the approximate solutions

um(q) belong to same bounded convex ball kwkW � C of W (0; T ) for the same

C > 0. Fix a q 2 P . Since W (0; T ) is a re
exive space, there exists a subse-

quence umk
of um that converges weakly to a function z 2 W (0; T ). According

to the energy estimate (4.30) we see that the sequence fumg1m=1 is bounded in

L2(0; T ;V ), fu0mg1m=1 is bounded in L2(0; T ;H), and fu00mg1m=1 is bounded in

L2(0; T ;V
0

), where V
0

is the dual space of V . Since L2(0; T ;V ), L2(0; T ;H), and

L2(0; T ;V
0

) are re
exive spaces, there exist a subsequence fumk
g1k=1 � fumg1k=1

and z 2 L2(0; T ;V ), d1 2 L2(0; T ;H), d2 2 L2(0; T ;V
0

) such that

umk
* z; in L2(0; T ;V );

u
0

mk
* d1; in L2(0; T ;H);

u
00

mk
* d2; in L2(0; T ;V

0

); (4.31)

where * indicates the weak convergence. Since the convergence in W (0; T ) is

the distributional convergence, we have

u
0

mk
* z

0

; in L2(0; T ;H);

u
00

mk
* z

00

in L2(0; T ;V
0

) as k !1: (4.32)

But the weak limit is unique when it exists. So d1 = z
0

and d2 = z
00

. Energy

estimate (4.30) also implies that fumg1m=1 is bounded in L1(0; T ;V ) and the

sequence fu0mg1m=1 is bounded in L1(0; T ;H). By the Alaoglu Theorem, [15]

we can �nd subsequences fumk
g1m=1 and fu0mk

g1m=1 of fumg1m=1 and fu0mg1m=1
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respectively such that

umk
* z weak star in L1(0; T ;V );

u
0

mk
* z

0

weak star in L1(0; T ;H): (4.33)

Now we show that z is a weak solution. Since V is compactly imbedded in

H, then by the classical compactness theorem [4] umk
! z in L2(0; T ;H). Us-

ing Cauchy Schwartz inequality, j(sin(umk
) � sin(z); wk)L2(0;T ;H)j � k sin(umk

) �
sin(z)kL2(0;T ;H) kwkkL2(0;T ;H). Since fwkg1k=1 is orthonormal in H the sequence

fwkg1k=1 is bounded in L2(0; T ;H).

Thus j(sin(umk
) � sin(z); wk)L2(0;T ;H)j � k sin(umk

) � sin(z)kL2(0;T ;H) ! 0 as

k ! 1 by (4:15). Hence sin(umk
) ! sin(z) in L2(0; T ;H). Rewrite (4:17)

as

hu00m; wji+ �(u
0

m; wj) + a�(um; wj) + �(Pm sin(um); wj)

= (Pmf; wj) + (um; wj);

um(0) = Pmu0; u0m(0) = Pmu1 for j = 1; 2; :::;m: (4.34)

We pass to the limit in (4:34) to obtain

hz00 ; wji+ �(z
0

; wj) + a�(z; wj) + �(sin(z); wj) = (f; wj) + (z; wj)

z(0) = u0; z0(0) = u1 for j = 1; 2; :::;m: (4.35)

Thus z is a weak solution of (1:1). It satis�es the energy estimate

max
0�t�T

[kz(t)k2 + jz(t)0 j2] + kz(t)00k2
L2(0;T ;V 0 )

� C1[ku0k2 + ju1j2 + kfkL2(0;T ;H)];
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where C1 is a constant independent of q 2 P = fq = (�; �; �) 2 [�min; �max] �
[�min; �max] � [�min; �max]. By Lemma (4:3) the solution z is unique. Therefore

um ! z as m ! 1 in L2(0; T ;H) for the entire sequence. Hence (3:6) can be

rewritten as z
00

+ A�z = f + z � �z
0 � � sin z. Hence z

00

+ A�z 2 L2(0; T ;H).

Similarly (4:17) can be rewritten as u
00

m+A�um = Pmf+um��u0m��Pm sin um.

Therefore u
00

m + A�um 2 L2(0; T ;H). Subtract (4:34) from (4:35) to get

(z � um)
00

+ A�(z � um) = f � Pmf � �(z � um)
0

(4.36)

��(sin(z)� Pm sin(um)) + (z � um) 2 L2(0; T ;H):

Therefore by Lemma (4:1) we have

1

2

d

dt
fjz0 � u0mj2 + a�(z � um; z � um)g = ((z � um)

00 + A�(z � um); z
0 � u0m))

= (f � Pmf � �(z0 � u0m)� �(sin(z)� Pm sin(um)) + z � um; z
0 � u0m)

= (f � Pmf; z
0 � u0m)� �jz0 � u0mj2 � �(sin(z)� Pm sin(um); z

0 � u0m)

+(z � um; z
0 � u0m):

Integrating both sides over [0; t] we get

jz0(t)� u0m(t)j2 + a�(z(t)� um(t); z(t)� um(t)) � ju1 � Pmu1j2

+(u0 � Pmu0; u0 � Pmu0) + 2

Z t

0

j(f � Pmf)(z
0 � u0m)jds

+2j�j
Z t

0

j(z0 � u0m)j2 ds+ 2j�j
Z t

0

j(sin(z)� Pm sin(um))(z
0 � z0m)jds

+

Z t

0

j(z � um)(z
0 � u0m)jds:
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Use jabj � a2+b2

2
to get

jz0(t)� u0m(t)j2 + kz(t)� um(t)k2 � ju1 � Pmu1j2 + ku0 � Pmu0k2

+kf � Pmfk2L2(0;T ;H) + (2 + j�j+ j�j)
Z t

0

jz0 � u0mj2(s)ds

+

Z t

0

jz � umj2(s)ds+
Z t

0

j sin(z)� Pm sin(um)j2(s)ds: (4.37)

Since V is compactly embedded in H, (4:37) can be rewritten as

jz0(t)� u0m(t)j2 + kz(t)� um(t)k2 � C[ju1 � Pmu1j2 + ku0 � Pmu0k2

+kf � Pmfk2L2(0;T ;H) +

Z t

0

j sin(z)� Pm sin(um)j2(s)ds

+

Z t

0

jz0 � u0mj2(s)ds+
Z t

0

kz � umk2(s)ds] (4.38)

where C = maxf1; (2 + j�j+ j�j); 4K2
1g.

Using Gronwall's lemma we get

jz0(t)� u0m(t)j2 + kz(t)� um(t)k2 � C[ju1 � Pmu1j2 + ku0 � Pmu0k2

+kf � Pmfk2L2(0;T ;H) +

Z t

0

j sin(z)� Pm sin(um)j2(s)ds]: (4.39)

Therefore jz0(t) � u0m(t)j2 + kz(t) � um(t)k2 ! 0 as m ! 1. This implies

um ! z in L1(0; T ;V ) and u0m ! z0 in L1(0; T ;H). But um, u
0
m 2 C([0; T ];V ),

being the solutions of the systems of ODEs. This implies z 2 C([0; T ];V ) and

z0 2 C([0; T ];H) after a modi�cation on a set of measure zero on [0; T ].
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Chapter 5

Continuity of the Solution Map

Lemma 5.1. Let v 2 V . Then the mapping � ! A�v from [�min; �max] into V
0

is continuous.

Proof. Suppose that �n ! � in R as n!1. We denote A = A� and An = A�n .

We claim that k(An � A)vkV 0 ! 0 as n!1. Let w 2 V with kwk � 1. Then

jh(An � A)v; wij2 �
�Z




j�n � �jjrv(x)jjrw(x)jdx
�2

� j�n � �j2
Z



jrv(x)j2dx! 0 as n!1:

Lemma 5.2. Suppose that �n ! � in R, and vn * v weakly in V , as n ! 1.

Then Anvn * Av weakly in V 0.

Proof. Let w 2 V , then

jhAnvn; wi � hAv;wij = jhAnw; vni � hAw; vij
� jh(An � A)w; vnij+ jhAw; vn � vij: (5.1)
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Since a weakly convergent sequence is bounded, we have

jh(An � A)w; vnij � kAnw � AwkV 0kvnk � ckAnw � AwkV 0 ! 0

as n!1 by Lemma 5.1. The second term jhAw; vn� vij ! 0 since vn * v.

Lemma 5.3. Let q 2 P. Then the solution map q ! u(q) from P into C([0; T ];H)

is continuous.

Proof. Let qn ! q in P as n!1. Since u(t; q) is the weak solution of (1:1) for

any q 2 P , we have the following estimate

max
0�t�T

(ku(t; qn)k2 + ju0(t; qn)j2) + ku00(t; qn)k2L2(0;T ;V 0)
� C

h
ku0k2 + ju1j2 + kfk2L2(0;T ;H)

i
; (5.2)

where C is a constant independent of q 2 P . Estimate (5.2) shows that u(t; qn)
is bounded in W (0; T ). Since W (0; T ) is re
exive, we can choose a subsequence

u(t; qnk) weakly convergent to a function z in W (0; T ). The fact that u(t; qn) is

bounded in W (0; T ) implies that u(t; qn) is bounded in L2(0; T ;V ), so u(t; qnk)

weakly convergent to a function z in L2(0; T ;V ). Since V is compactly imbedded

in H, then by the classical compactness theorem [4] u(t; qn) ! z in L2(0; T ;H).

Using Cauchy Schwartz inequality, j(sin(umk
)�sin(z); wk)L2(0;T ;H)j � k sin(umk

)�
sin(z)kL2(0;T ;H) kwkkL2(0;T ;H). Since fwkg1k=1 is orthonormal in H the sequence

fwkg1k=1 is bounded in L2(0; T ;H). Thus j(sin(umk
) � sin(z); wk)L2(0;T ;H)j �

k sin(umk
) � sin(z)kL2(0;T ;H) ! 0 as k ! 1 by (4:15) By (4.18) the deriva-

tives u0(t; qnk) and z0 are uniformly bounded in L1(0; T ;H). Therefore func-

tions fu(t; qnk); zg1k=1 are equicontinuous in C([0; T ];H). Thus u(t; qnk) ! z in

C([0; T ];H). In particular, u(t; qnk)! z(t) in H and u(t; qnk)* z(t) weakly in V
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for any t 2 [0; T ]. By Lemma 5:2, Anku(t; qnk)* Az(t) weakly in V 0. Now we see

that z satis�es equation (3.4), i.e. it is the weak solution u(q). The uniqueness

of the weak solutions implies that u(qn)! u(q) as n!1 in C([0; T ];H) for the

entire sequence u(qn) and not just for its subsequence. Thus u(t; qn) ! u(q) in

C([0; T ];H) as qn ! q in P as claimed.

Theorem 5.4. Let q 2 P. Then the solution maps q ! u(q) from P into

C([0; T ];V ) and q ! u0(q) from P into C([0; T ];H) are continuous.

Proof. Part I. First, we establish the continuity of the approximate solution maps

q ! um(q) from P into C([0; T ];V ), and q ! u0m(q) from P into C([0; T ];H).

Fix m 2 N. Suppose that qn ! q in R3 as n!1. That is �n ! �, �n ! �,

and �n ! � in R. The approximate solutions um(qn) and um(q) satisfy

u00m(qn) + Anum(qn) = Pmf + um(qn)� �nu
0
m(qn)� �nPm sin(um(qn));

u00m(q) + Aum(q) = Pmf + um(q)� �u0m(q)� �Pm sin(um(q)); (5.3)

where we write A = A� and An = A�n to simplify the notation. In each case the

initial conditions are the same for q and qn: u(0; q) = Pmu0 and u
0(0; q) = Pmu1.

Let w = um(qn)� um(q). Subtracting the equations in (5.3) gives

w00 + An(w) = (A� An)um(q) + w � �nw
0 + (�� �n)u

0
m(q)

��nPm(sin(um(qn))� sin(um(q))) + (� � �n)Pm sin(um(q)): (5.4)
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Take the H inner product of each side with w0 to get

(w00 + An(w); w
0) = ((A� An)um(q); w

0) + (w;w0)� �njw0j2

+(�� �n)(u
0
m(q); w

0)� �n(Pm(sin(um(qn))� sin(um(q))); w
0)

+(� � �n)(Pm sin(um(q)); w
0): (5.5)

Since w(t) 2 L2(0; T ;V ), w0(t) 2 L2(0; T ;H) and w00+An(w) 2 L2(0; T ;H), then

by Lemma 4:1 we have

1

2

d

dt
fjw0j2 + an(w;w)g = ((A� An)um(q); w

0) + (w;w0)� �njw0j2

+(�� �n)(u
0
m(q); w

0)� �n(Pm(sin(um(qn))� sin(um(q))); w
0)

+(� � �n)(Pm sin(um(q)); w
0): (5.6)

Integrate both sides from 0 to t and use Cauchy-Schwartz Inequality to get

jw0(t)j2 + kw(t)k2 � 2

Z t

0

j(A� An)um(q)jjw0(s)jds

+2j�� �nj
Z t

0

ju0m(s; q)jjw0(s)jds+ 2j� � �nj
Z t

0

jum(s; q)jjw0(s)jds

+2j�nj
Z t

0

jw0(s)j2ds+ 2j�nj
Z t

0

jw(s)jjw0(s)jds: (5.7)

Use jabj � a2+b2

2
and use the fact that V is compactly embedded in H to get

jw0(t)j2 + kw(t)k2 �
Z t

0

k(A� An)um(q)k2V 0ds+
Z t

0

jw0(s)j2ds

+j�� �nj
Z t

0

ju0m(s; q)j2ds+ j�� �nj
Z t

0

jw0(s)j2ds

+j� � �nj
Z t

0

kum(s; q)k2ds+ j�nj
Z t

0

jw0(s)j2ds+ j�nj
Z t

0

kw(s)k2ds

+j�nj
Z t

0

jw0(s)j2ds: (5.8)
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In a �nite dimensional normed space all norms are equivalent. Hence there exists

a constant C(m) such that kw0(s)k � C(m)jw0(s)j for any s 2 [0; T ].

Now the Gronwall's inequality and the energy estimate (4.18) give

ju0m(t; qn)� u0m(t; q)j2 + kum(t; qn)� um(t; q)k2

� c(m)

�Z T

0

k(A� An)um(s; q)k2V 0ds+ j�� �nj+ j� � �nj
�
: (5.9)

By the assumption qn ! q in P , that is �n ! �; �n ! � and �n ! � in R

as n ! 1. The integral term in the right hand side of (5.9) approaches zero

by Lemma 5.1 and the Lebesgue Dominated Convergence Theorem. Hence the

required convergence um(qn) ! um(q) in C([0; T ];V ) and u0m(qn) ! u0m(q) in

C([0; T ];H) as n!1 follows.

Part II. Next we prove that um(q)! u(q); m!1 in C([0; T ];V ) uniformly

on P .
Estimate (4.39) shows that it is enough to establish the uniform convergence

of Z T

0

j sin(u(s; q))� Pm sin(u(s; q))j2ds! 0; m!1 (5.10)

for q 2 P . Note that the mapping [0; T ] � P ! H de�ned by (s; q) ! u(s; q) is

continuous, since q ! u(q) 2 C([0; T ];H) is continuous by Lemma 5.3. Therefore

the mapping [0; T ]�P ! H de�ned by (s; q)! sin(u(s; q)) is continuous. Thus

it takes the compact set [0; T ] � P into a compact set in H, and the uniform

convergence of the integrals in (5.10) follows from the Dini's Theorem.

Finally, let qn ! q in P . By Part I the map q ! um(q) is continuous on P for

every m 2 N. By Part II the convergence um(q)! u(q) is uniform on P . There-
fore u(qn)! u(q); m!1 in C([0; T ];V ) as claimed. This argument applied to
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the estimate (4.19) also shows the convergence of the derivatives u0(qn) ! u0(q)

in C([0; T ];H).
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Chapter 6

Weak Gâteaux Di�erentiability

of the Solution Map

Let

H =

8><
>:G =

0
B@ �

g

1
CA : � 2 H and g 2 L2(0; T ;H)

9>=
>; : (6.1)

Then H is a Hilbert space with the following inner product and the norm

(G1; G2)H = (�1; �2)H + (g1; g2)L2(0;T ;H); kGkH = (G;G)
1

2

H; (6.2)

where G1 =

0
B@ �1

g1

1
CA 2 H and G2 =

0
B@ �2

g2

1
CA 2 H.

To show the Gâteaux di�erentiability of J(q) at q� 2 P we have to estimate the

quotient

z� =
u(q�)� u(q�)

�
; (6.3)
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where q� = q� + �(q � q�); � 2 (0; 1]. Generally it is desirable to estimate z�

in the solution space W (0; T ). Since the second order evolution equations for z�

in (6:24) have the forcing term containing a di�usion operator, it is not easy or

impossible to solve the equation (6:24) by standard variational manner as in [7].

Hence we will restrict ourselves to an estimate of

0
B@ z�(T )

z�(t)

1
CA 2 H � L2(0; T ;H)

as �! 0 based on the method of transposition presented in [8].

Now we show the Gâteaux di�erentiability of the solution map q !

0
B@ u(q;T )

u(q; t)

1
CA

of P into H � L2(0; T ;H) via the method of transposition and characterize its

Gâteaux derivative.

Fix q = (�; �; �) 2 P and h 2 L2(0; T ;H). Let G =

0
B@ �

g

1
CA 2 H.

Let us consider the following linear terminal value problem

�00 � ��0 + A��+ (�h� 1)� = g in (0; T )

�(T ) = 0; �0(T ) = �: (6.4)

Let �(T�s; x) = w(s; x) for any x 2 (0; 1), then we have �t(T�s; x) = �ws(s; x)

and �tt(T � s; x) = wss(s; x), then (6:4) can be written as

w00 + �w0 + A�w + (�h� 1)w = g in (0; T )

w(0) = 0; w0(0) = ��: (6.5)

Arguing as in Chapter 4, we can conclude that (6:5) has a unique weak solution.

Hence (6:4) has a unique weak solution � = �(�; g) 2 W (0; T ) that satis�es the
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energy estimate

j�0(t)j2 + k�(t)k2 � c(j�j2 + kgk2L2(0;T ;H)); t 2 [0; T ]: (6.6)

De�nition 6.1. Solution map: Given G 2 H de�ne the solution map from H
into W (0; T ) by �(G) = �, where � is the weak solution of (6:4).

De�nition 6.2. Fix q = (�; �; �) 2 P and h 2 L2(0; T ;H). Let the solution

space X (q;h) = �(H) be de�ned by

X (q; h) = f� : � is solution of (6:4) for each G 2 Hg :

Let the linear operator L(q;h) from X (q;h) into H be de�ned by

L(q;h)� =

0
B@ �0(T )

�00 � ��0 + A��+ (�h� 1)�:

1
CA =

0
B@ �0(T )

g

1
CA : (6.7)

Let the inner product (. , .) in X (q;h) be de�ned by

(�;  )X (q;h) = (L(q;h)�;L(q;h) )H : (6.8)

In terms of the operator L(q;h) the energy estimate (6:6) can be written as

j�0(t)j2 + k�(t)k2 � c(kL(q;h)�k2H) = ck�k2X (q;h): (6.9)

De�nition 6.3. Given q 2 P , h 2 L2(0; T ;H), and f 2 L2(0; T ;V 0), the element

�z =

0
B@ z1

z

1
CA 2 H, z1 2 H ; z 2 L2(0; T ;H) is called a weakened solution of the

problem
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z00(t) + �z0(t) + A�z(t) + (�h(t)� 1)z(t) = f(t)

z(0) = 0 ; z0(0) = 0; t 2 (0; T ); (6.10)

if

(�z;L(q;h)�)H =

Z T

0

hf(t); �(t)idt (6.11)

for any � 2 X (q;h). That is,

(z1; �)H +

Z T

0

(z(t); g(t))dt =

Z T

0

hf(t); �(t)idt (6.12)

for all � 2 X (q; h).

Remark 6.4. If f 2 L2(0; T ;H) and z(t) is the weak solution (in the sense of

Chapter 4) of the problem (6:10), then the integration by parts shows that �z =0
B@ z0(T )

z(t)

1
CA also is its weakened solution.

Lemma 6.5. If f 2 L2(0; T ;V 0), then there exists a unique weakened solution of

the problem (6:10).

Proof. By the method of transposition of Lions, if F is a bounded linear functional

on X (q;h), then there exists a unique �� 2 H such that

F (�) = (��(t);L(q;h)(�)(t))H for any � 2 X (q;h): (6.13)

Let

F (�) =

Z T

0

hf(t); �(t)idt; � 2 X (q; h):
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Using the energy estimate (6:9) we get

jF (�)j � kfkL2(0;T :V 0)k�kL2(0;T ;V ) = kfkL2(0;T :V 0)
sZ T

0

k�(t)k2V dt

� kfkL2(0;T :V 0)
p
c

Z T

0

k�(t)k2X (q;h)dt

�
p
cTkfkL2(0;T :V 0) k�(t)kX (q;h) (6.14)

and the result follows.

Let û and v̂ be two measurable functions on 
. De�ne the function B(û; v̂)(x)

for x 2 
 by

B(û; v̂)(x) =

8><
>:

sin(û(x))�sin(v̂(x))
û(x)�v̂(x) ; û(x) 6= v̂(x),

cos(v̂(x)); û(x) = v̂(x),
(6.15)

Then B is an integrable function on 
 with jB(û; v̂)(x)j � 1 for any x 2 
.

If û1 = û a.e. on 
 , and v̂1 = v̂ a.e. on 
, then B(û1; v̂1) = B(û; v̂) a.e. on 
.

Thus B(u; v) : H �H ! H is well de�ned by (6:15).

Furthermore, the inequality

j cos(b)� sin(a)� sin(b)

a� b
j � ja� bj (6.16)

for a; b 2 R, a 6= b implies that

j cos(b)�B(u; v)jH � ju� vjH (6.17)

for any u; v 2 H.

De�nition 6.6. Let q; q� 2 P . Let q� = q� + �(q � q�) for � 2 (0; 1]. The
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solution map q ! �u(q) =

0
B@ u0(T ; q)

u(t; q)

1
CA of P into H is said to be weakly Gateaux

di�erentiable at q� in the direction q � q� if there exist �z 2 H such that

lim
�!0+

1

�
(�u(q�)� �u(q�); �v)H = (�z; �v)H (6.18)

for any �v 2 H.

Theorem 6.7. Let q = (�; �; �); q� = (��; ��; ��) 2 P. Then the weak Gâteaux

derivative �z 2 H at q� 2 P in the direction q� q� is the unique weakened solution

of the problem

z00(t) + ��z0(t) + A��z(t) + (�� cos u(t; q�)� 1)z(t) = f0(t);

z(0) = 0; z0(0) = 0; t 2 (0; T ); (6.19)

where f0(t) = (�� � �)u0(t; q�) + (A�� � A�)u(t; q
�) + (�� � �) sin(u(t; q�)).

Remark 6.8. For X and L de�ned by (6:8) and (6:7) respectively with q� and

h = cos(u(q�)) the solution �z =

0
B@ z(T )

z(t)

1
CA satis�es

(�z(t);L(q�; cosu(t; q�)�(t))H =

Z T

0

hf0(t); �(t)idt (6.20)

for any � 2 X (q�; cos(u(q�))).

Proof. Let q� = q� + �(q � q�) = (��; ��; ��) and denote A� = A�� . Then

A0 = A�� . By (3.6) functions u(q�) and u(q�) are the weak solutions of the
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equations

u00(q�) + ��u
0(q�) + A�u(q�) + �� sin(u(q�)) = f + u(q�)

u�(0; q) = u0; u
0
�(0; q) = u1 (6.21)

and

u00(q�) + ��u0(q�) + A��u(q
�) + �� sin(u(q�)) = f + u(q�)

u(0; q�) = u0; u
0(0; q�) = u1 (6.22)

correspondingly.

Then the quotient z� = (u(q�)� u(q�))=� satis�es

z00� + ��z0� + A��z� + ��
sin(u(q�))� sin(u(q�))

�
� z�

= (�� � �)u0(q�) + (A�� � A�)u(q�) + (�� � �) sin(u(q�));

z�(0) = 0; z0�(0) = 0: (6.23)

Let

f�(t) = (�� � �)u0(t; q�) + (A�� � A�)u(t; q�) + (�� � �) sin(u(t; q�)):

Using the notation (6.15) we let B�(t) = B(u(t; q�); u(t; q
�)) 2 H for 0 � t � T .

Then

z00� + ��z0� + A��z� + (��B�(t)� 1)z� = f�;

z�(0) = 0; z0�(0) = 0: (6.24)
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Since H is continuously imbedded in V 0 there exists a constant K2 = K2(
) such

that kvkV 0 � K2jvj for any v 2 H. Therefore one can estimate

kf�(t)kV 0 � K2(j����jju0(t; q�)j+2�K1ku(t; q�)k+K1j����jku(t; q�)k): (6.25)

Now the energy estimate (4.18) shows that there exists C2 > 0 independent of

q 2 P such that

kf�kL2(0;T ;V 0) � C2 (6.26)

for all � 2 (0; 1].

Since z� is a weak solution of (6.24) it is also its weakened solution, i.e.

(�z�;L(q�;B�)�)H =

Z T

0

hf�(t); �(t)idt (6.27)

for any � 2 X (q�;B�).

Since �z� 2 H and L(q�;B�) from X (q�;B�) ! H is surjective, there exists

�� 2 X (q�;B�) such that L(q�;B�)�� = �z�.

For such a function �� one gets from (6.27)

k�z�k2H � kf�kL2(0;T ;V 0)k��kL2(0;T ;V ): (6.28)

This inequality and estimates (6.9) and (6.26) give

k�z�k2H � C2k�z�kH:

Thus k�z�kH � C2 for some constant C2 independent of � 2 (0; 1]. Here we used

the fact that jB�(t)j � 1 for any t; � and q; q� 2 P . Therefore one can extract a

subsequence �z�k ; �k ! 0+, such that �z�k * �z weakly in H. Now we would like
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to pass to the limit in (6.27) as �k ! 0 to obtain (6.32). However, the domains

of the operators L(q�;B�) depend on �, so one has to proceed di�erently. Let

f0(t) = (�� � �)u0(t; q�) + (A�� � A�)u(t; q
�) + (�� � �) sinu(t; q�): (6.29)

From Lemma 5.3 we get u(q�) ! u(q�) in L2(0; T ;V ), and u0(q�) ! u0(q�) in

L2(0; T ;H). Therefore f� * f0 weakly in L2(0; T ;V 0). In fact, Theorem 5.4

shows that this is a strong convergence. Thus kf0kL2(0;T ;V 0) � C2.

Write L0 = L(q�; cos u(q�)) and Lk = L(q�;B�k) to simplify the notation. Let

� 2 X (q�; cos u(q�)). Then L0� 2 H. Therefore

(�z�k ;L0�(t))H ! (�z(t);L0�(t))H; and

Z T

0

hf�k(t); �(t)idt!
Z T

0

hf0(t); �(t)idt (6.30)

as �k ! 0+.

On the other hand,

(�z�k(t);L0�(t))H = (z1�k ; �)H +

Z T

0

(z00�k(t) + ��z0�k(t) + A��z�k(t); �(t))dt

+

Z T

0

(�� cos u(t; q�)� 1)z�k(t); �(t))dt

=

Z T

0

(z00�k(t) + ��z0�k(t) + A��z�k(t); �(t))dt

+(z1�k ; �)H +

Z T

0

((��B�k(t)� 1)z�k(t); �(t))dt

+��
Z T

0

((cos u(t; q�)�B�k(t)))z�k(t); �(t))dt

= (z1�k ; �)H +

Z T

0

hf�k(t); �(t)idt

+��
Z T

0

((cos u(t; q�)�B�k(t))z�k(t); �(t))dt: (6.31)
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Using k�z�kH � C2; � 2 W (0; T ) and the estimate (6:17), the last term in (6:31)

can be estimated by cku(q�k) � u(q�)kL2(0;T ;H)k�kL1(0;T ;H). Since the mapping

q ! u(q) from P into L2(0; T ;H) is continuous, then the last term of (6:31) tends

to 0 as �k ! 0+.

Now we can pass to the limit as �k ! 0+ in (6:31), and conclude that

(�z;L(q�; cos u(t; q�))�)H =

Z T

0

hf0; �(t)idt (6.32)

for any � 2 X (q�; cos u(q�)). Since kf0kL2(0;T ;V 0) � C2, Lemma (6:5) shows that

that �z is the unique weakened solution of (6.19). Hence �z� * �z as �! 0+ weakly

in H by De�nition 6:6. This proves that the �z is the weak Gâteaux derivative of

the map q ! �u(q).
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Chapter 7

Optimal Parameters

From Theorem 6:7 the map q ! �u(q) is weakly Gâteaux di�erentiable at q =

q� 2 P in any direction of q � q�, and its weak Gâteaux derivative �z(t; x) =

D�u(q�; q � q�)(t; x) can be described by (6:20).

Let us consider the functional

J(q) = k1ju(q;T )� z1dj2 + k2ku(q; t)� z2dk2L2(0;T ;H) (7.1)

where z1d 2 H, z2d 2 L2(0; T ;H) and ki � 0 for i = 1; 2 with k1 + k2 > 0.

Lemma 7.1. J(q) is Gâteaux di�erentiable, and its Gâteaux derivative is given

by

DJ(q�; q � q�) = 2k1((u(q
�;T )� z1d); z1) + 2k2

Z T

0

(u(q�; t)� z2d); z)dt (7.2)

where �z is the solution of integral equation (6:20).

Proof. In the previous section we have shown that the weak solution u(q; t) is

weakly Gâteaux di�erentiable in the admissible set of parameters P . Hence the
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following limits exist

lim
�!0+

�
u(q� + �(q � q�);T )� u(q�;T )

�
; v1

�
H

= (z1; v1) (7.3)

for any v1 2 H and

lim
�!0+

�
u(q� + �(q � q�); t)� u(q�; t)

�
; v2

�
L2(0;T ;H)

= (z; v2)L2(0;T ;H) (7.4)

for any v2 2 L2(0; T ;H).

To show that the cost functional J(q) is Gâteaux di�erentiable at q�, it su�cies

to show that the following limit exists

lim
�!0+

�
J(q� + �(q � q�))� J(q�)

�

�
= DJ(q�; q � q�): (7.5)

Evaluating the limit in (7:5)

lim
�!0+

�
J(q� + �(q � q�))� J(q�)

�

�
= k1 lim

�!0+

1

�

�
[(u(q� + �(q � q�);T )� z1d; u(q

� + �(q � q�);T )� z1d)

�(u(q�;T )� z1d; u(q
�;T )� z1d)])

+k2 lim
�!0+

1

�
[(u(q� + �(q � q�); t)� z2d; u(q

� + �(q � q�); t)� z2d)L2(0;T ;H)

�(u(q�; t)� z2d; u(q
�; t)� z2d)L2(0;T ;H)]: (7.6)

Consider the �rst part of limit from (7:6)

k1 lim
�!0+

1

�
[(u(q� + �(q � q�);T )� z1d; u(q

� + �(q � q�);T )� z1d)

�(u(q� + �(q � q�);T )� z1d; u(q
�;T )� z1d)

+(u(q� + �(q � q�);T )� z1d; u(q
�;T )� z1d)� (u(q�;T )� z1d; u(q

�;T )� z1d)]
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k1 lim
�!0+

1

�
[(u(q� + �(q � q�);T )� z1d � u(q�;T ) + z1d; u(q

� + �(q � q�);T )� z1d)

+(u(q�;T )� z1d); u(q
� + �(q � q�);T )� z1d � u(q�;T ) + z1d)]

= 2k1(u(q
�;T )� z1d; z1): (7.7)

Similarly,

k2 lim
�!0+

1

�
[(u(q� + �(q � q�); t)� z2d; u(q

� + �(q � q�); t)� z2d)L2(0;T ;H)

�(u(q�; t)� z2d; u(q
�; t)� z2d)L2(0;T ;H)]

= 2k2(u(q
�; t)� z2d; z)L2(0;T ;H): (7.8)

Using (7:7) and (7:8) we get

DJ(q�; q � q�) = 2k1((u(q
�;T )� z1d); z1) + 2k2

Z T

0

(u(q�; t)� z2d); z)dt: (7.9)

Since P = fq = (�; �; �) 2 [�min; �max]� [�min; �max]� [�min; �max]g is a closed
and convex subset of R3, then we have the following optamility condition

2k1((u(q
�;T )� z1d); z1) + 2k2

Z T

0

(u(q�; t)� z2d); z)dt � 0 for q 2 P ; (7.10)

where

0
B@ z1

z

1
CA is a solution of the integral equation (6:20).

Let us introduce the adjoint state p de�ned to be the weak solution of the
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following adjoint system

p00 � ��p0 + A��p+ (�� cos(u(q�)� 1))p = k2(u(q�; t)� z2d)

p(T ) = 0 p0(T ) = k1(u(q
�;T )� z1d): (7.11)

System (7:11) can be written as

L(q�; cos(u(q�))p(q�) =

0
B@ k1u(q

�;T )� z1d

k2u(q
�; t)� z2d

1
CA 2 H

p(T ) = 0; p0(T ) = k1(u(q
�;T )� z1d): (7.12)

Since k2(u(q
�; t)�z2d) 2 L2(0; T ;H), as shown in Chapter 4 problem in (7:11) has

a unique weak solution. Using p(q�) in place of � in (6:20) equation (7:2) can be

written as

DJ(q�; q � q�) = 2

Z T

0

h(�� � �)u0(t; q�) + (A�� � A�)u(t; q
�)

+(�� � �) sinu(t; q�); p(q�)i: (7.13)

Thus we obtain the following result.

Theorem 7.2. The Gâteaux derivative of the objective function J(q) has the

following representation

DJ(q�; q � q�) = (�� � �)a(q�) + (�� � �)b(q�) + (�� � �)c(q�); (7.14)

where

a = �@J
@�

= �2
Z T

0

(ut(t; x; q
�); p(t; x; q�)); (7.15)
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c = �@J
@�

= �2
Z T

0

(sin(u(t; x; q�)); p(t; x; q�)); (7.16)

and

b = �@J
@�

= �2
Z T

0

(ru(t; x);rp(t; x)); (7.17)

The optimality condition DJ(q�; q � q�) � 0 for any q 2 P is

(�� � �)a(q�) + (�� � �)b(q�) + (�� � �)c(q�) � 0 (7.18)

for any (�; �; �) 2 P .

In addition, the optimal coe�cient q� 2 P for nonzero (a; b; c) can be com-

pactly written as

�� =
1

2
fsign(a) + 1g�max � 1

2
fsign(a)� 1g�min; (7.19)

�� =
1

2
fsign(b) + 1g�max � 1

2
fsign(b)� 1g�min; (7.20)

and

�� =
1

2
fsign(c) + 1g�max � 1

2
fsign(c)� 1g�min (7.21)

for more detail see [5].

Now we have the following Theorem

Theorem 7.3. If the optimal coe�cient q� is located in the interior intP of the

admissible set P, then

a = 0; b = 0; and c = 0 in 
:
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Proof. In the interior of P , @J
@�

= @J
@�

= @J
@�

= 0. Thus a = b = c = 0.

Theorem 7.4. Consider the sine-Gordon equation (1.1) with a constant di�usion

coe�cient �. Let the admissible set be

P = [�min; �max]� [�min; �max]� [�min; �max]

with �min > 0.

Let the objective function be de�ned by

J(q) = k1ju(q;T )� z1dj2 + k2ku(q; t)� z2dk2L2(0;T ;H):

Then the mapping q ! J(q) from intP � R3 into R is di�erentiable. Its gradient

rJ(q) = (a; b; c), where a; b; c are de�ned in (7.22),(7.24), and (7.23). If the

parameter q� 2 intP is optimal, then rJ(q�) = 0.

Proof. To show that the mapping q ! J(q) from intP � R
3 into R is di�eren-

tiable it su�cies to show that rJ(q) = (a; b; c) is continuous in P where

a = �@J
@�

= �2
Z T

0

(ut(t; x; q
�); p(t; x; q�)); (7.22)

c = �@J
@�

= �2
Z T

0

(sin(u(t; x; q�)); p(t; x; q�)); (7.23)

and

b = �@J
@�

= �2
Z T

0

(ru(t; x);rp(t; x)); (7.24)

Arguing as in Chapter 4, we can conclude that (7:11) has a unique weak solution

p 2 W (0; T ). Suppose h(q�) = �� cos(u(q�)) � 1 and g(q�) = k2(u(q
�; t) � z2d).

From Theorem 5:4 the mappings q� ! u(q�) , q� ! h(q�) , and q� ! g(q�) from
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P into C([0; T ]);V ) are continuous, similarly the mapping q� ! u0(q�) from P
into C([0; T ]);H) is continuous. Continuity of q� ! p(q�) P into C([0; T ]);V )

and q� ! p0(q�) P into C([0; T ]);H) can be proved similar as Theorem 5:4. Thus

partial derivatives a; b; c de�ned in (7.22),(7.24), and (7.23) are continuous. Hence

by [17] the mapping q ! J(q) from intP � R3 into R is di�erentiable.
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Chapter 8

Computational Algorithm

In this chapter we discuss the computational algorithm to �nd the approximate

solutions of (3:4). As mentioned in 2:5, let
�
wjg1j=1 be eigenfunctions of ���+I

that form an orthonormal basis in H. Then f wjp
�j
g1j=1 is an orthonormal basis

on V as in Chapter 3 . Fix N 2 N. Let VN = spanfw1; w2; ::::; wNg. Let

PN : H ! VN be the projection operator de�ned by PNv =
PN

j=1(v; wj)wj for

any v 2 H. As de�ned in Chapter 4, the approximate solution of (3:4) is

uN(t; x) =
NX
j=1

gjN(t)wj(x) (8.1)

that satis�es

d2

dt2
(uN ; wj) + �

d

dt
(uN ; wj) + a�(uN ; wj) + �(sin(uN); wj) = (f; wj) + (u;wj)

uN(0) = PNu0 and
d

dt
uN(0) = PNu1 for any j 2 N: (8.2)
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Let �gN = fgjNgNj=1 2 RN . We can rewrite (8:2) as the following vector di�erential

equation

�g00N(t) + ��g0N(t) + ���gN(t) = �F (t; �gN) (8.3)

with the initial data

~gN(0) =

2
666666666666664

(PNu0; w1)

(PNu0; w2)

:

:

:

(PNu0; wN)

3
777777777777775

=

2
666666666666664

R 1

0
u0dx

p
2
R 1

0
u0 cos(�x)dx

:

:

:
p
2
R 1

0
u0 cos((N � 1)�x)dx

3
777777777777775

:

and

~g0N(0) =

2
666666666666664

(PNu1; w1)

(PNu1; w2)

:

:

:

(PNu1; wN)

3
777777777777775

=

2
666666666666664

R 1

0
u1dx

p
2
R 1

0
u1 cos(�x)dx

:

:

:
p
2
R 1

0
u1 cos((N � 1)�x)dx

3
777777777777775

:

where u0 2 L2(0; T ;V ) and u1 2 L2(0; T ;H).
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Here,

~gN(t) =

2
666666666666664

g1N(t)

g2N(t)

:

:

:

gNN(t)

3
777777777777775

2 RN :

As in Chapter 4, de�ne

~F (t; �gN) =

2
666666666666664

(f(t); w1) + (uN ; w1)� �(sin(uN); w1)

(f(t); w2) + (uN ; w2)� �(sin(uN); w2)

:

:

:

(f(t); wN) + (uN ; wN)� �(sin(uN); wN)

3
777777777777775

:

Write

~F (t; �uM) = �U + �V � �W , where
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~U =

2
666666666666664

(f(t); w1)

(f(t); w2)

:

:

:

(f(t); wN)

3
777777777777775

=

2
666666666666664

R 1

0
f(t)dx

p
2
R 1

0
f(t) cos(�x)dx

:

:

:
p
2
R 1

0
f(t) cos((N � 1)�x)dx

3
777777777777775

~V =

2
666666666666664

(uN ; w1)

(uN ; w2)

:

:

:

(uN ; wN)

3
777777777777775

=

2
666666666666664

g1N(t)

g2N(t)

:

:

:

gNN(t)

3
777777777777775

and

~W =

2
666666666666664

�(sin uN ; w1)

�(sin uN ; w2)

:

:

:

�(sin uN ; wN)

3
777777777777775

=

2
666666666666664

�
R 1

0
sin (

PN

j=1 gjN(t)wj(x))w1(x)dx

�
R 1

0
sin (

PN

j=1 gjN(t)wj(x))w2(x)dx

:

:

:

�
R 1

0
sin (

PN

j=1wjN(t)wj(x))wN(x)dx

3
777777777777775

;
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� =

2
66666666664

1 0 0 : : : 0

0 1 + (�)2 0 : : : 0

0 0 1 + (2�)2

: : :

0 0 0 : : : 1 + ((N � 1)�)2

3
77777777775
.

Let �Z1(t) = �gN(t) and �Z2(t) = �g0N(t). Then the initial value problem (8:3) can

be reduced into the following system of �rst order ODEs

�Z 01(t) = �Z2(t)

�Z 02(t) = �� �Z2(t)� �� �Z1(t) + �F (t; �uN)

�Z1(0) = �gN(0); �Z2(0) = �g0N(0): (8.4)

The approximate solution of (3:6) is

uN(t; x) =
NX
j=1

gjN(t)
p
2 cos((j � 1)�x): (8.5)

Now we compute the approximate solution of the adjoint system

p00 � ��p0 + A��p+ (�� cos(u(q�)� 1))p = k2(u(q
�; t)� z2d)

p(T ) = 0; p0(T ) = k1(u(q
�;T )� z1d): (8.6)

Let p(T �s; x) = w(s; x) for any x 2 (0; 1), then we have pt(T �s; x) = �ws(s; x)
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and ptt(T � s; x) = wss(s; x). The adjoint system (8:6) can be written as

w00 + �w0 + A�w + (� cos(u(q)� 1))w = k2(u(q; t)� z2d)

w(0; x) = 0 w0(0; x) = k1(u(q
�;T )� z1d): (8.7)

The approximate solution of the adjoint system (8:7) is given by

hy00N ; wki+ �(y0N ; wk) + (A�yN ; wk) + �(PN cos(uN(q))yN ; wk)

= (k2PN(uN(q; t)� z2d); wk) + (yN ; wk)

yN(0) = QN0; y0N(0) = PNk1(u(q
�;T )� z1d) (8.8)

where yN =
PN

j=1 hj(t)wj(x).

Equation (8:8) is equivalent to the following vector di�erential equation

�h00N(s) + ��h0N(s) + ���hN(s) = �H(s; �hN) (8.9)

with the initial data

~hN(0) =

2
666666666666664

0

0

:

:

:

0

3
777777777777775

and
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~h0N(0) =

2
666666666666664

(PNk1(u(q;T )� z1d); w1)

(PNk1(u(q;T )� z1d); w2)

:

:

:

(PNk1(u(q;T )� z1d); wN)

3
777777777777775

=

2
666666666666664

R 1

0
(u(q;T )� z1d)dx

p
2
R 1

0
(u(q;T )� z1d) cos(�x)dx

:

:

:
p
2
R 1

0
(u(q;T )� z1d) cos((N � 1)�x)dx

3
777777777777775

:

Here,

~hN(s) =

2
666666666666664

h1(s)

h2(s)

:

:

:

hN(s)

3
777777777777775

2 RN :

As in Chapter 4, de�ne

~H(s; �hN) =

2
666666666666664

(PNk2(uN(q; t)� z2d); w1) + (hN ; w1)� (PN�(cos(uN)hN ; w1)

(PNk2(uN(q; t)� z2d); w2) + (hN ; w2)� (PN�(cos(uN)hN ; w1)

:

:

:

(PNk2(uN(q; t)� z2d); wN) + (hN ; wN)� (PN�(cos(uN)hN ; w1)

3
777777777777775

;
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write

~H(t; �wN) = �A+ �B + �C,

where

~A =

2
666666666666664

(PNk2(u(q; t)� z2d); w1)

(PNk2(u(q; t)� z2d); w2)

:

:

:

(PNk2(u(q; t)� z2d); wN)

3
777777777777775

=

2
666666666666664

R 1

0
(u(q; t)� z2d)dx

p
2
R 1

0
(u(q; t)� z2d) cos(�x)dx

:

:

:
p
2
R 1

0
(u(q; t)� z2d) cos((N � 1)�x)dx

3
777777777777775

;

~B =

2
666666666666664

(yN ; w1)

(yN ; w2)

:

:

:

(yN ; wN)

3
777777777777775

=

2
666666666666664

h1(s)

h2(s)

:

:

:

hN(s)

3
777777777777775

;

and
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~C =

2
666666666666664

(PN�(cos uN)yN ; w1)

(PN�(cos uN)yN ; w2)

:

:

:

(PN�(cos uN)yN ; wN)

3
777777777777775

=

2
666666666666664

� cos uNh1

� cos uNh2

:

:

:

� cos uNhN

3
777777777777775

:
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Chapter 9

Numerical results

For our numerical experiments we choose to use a Fourier series method for the

solution of the sine-Gordon equation (1:1), and MATLAB function fminicon for

the minimization of the cost functional. As described in Chapter 2 eigenfunctions

of the operator A�, wj = cos(�(j�1)x); j = 1; 2; :::; are chosen as an orthonormal

basis in H. As described in Chapter 8, let PN : H ! VN be the projection op-

erator de�ned from H onto VN = spanfw1; w2; :::; wNg. Expanding the functions
in (4:13) into the Fourier cosine series we have

g00k + �g0k + �kgk + �Sk = Fk

gk(0) = PNu0; g0k(0) = PNu1; (9.1)

where �k = �[1 + (�(k � 1))2], gk(t); Fk(t); PNu0 and Pku1 are the Fourier co-

e�cients of the solution uN(t) in (4:13). Similarly Sk(t) is the Fourier cosine

coe�cient of PN sin(uN)(t). The cost functional JN(q) can be written as

JN(q) = k2

MX
i=1

NX
k=1

[Yk(q; ti)� Z(ti)]
2 + k1

NX
k=1

[Yk(q;T )� Z(T )]2; (9.2)
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where k1 + k2 > 0 and Z(ti) for i = 1; 2; :::; T are observations for the parameter

set �q = (��; ��; ��).

In all the numerical experiments we used observation times tj = T:j=K where

j = 0; 1; 2; :::; K and T = 4. The model values are speci�ed in the following table

Table 9.1: Parameter values for numerical simulations
Time and spatial intervals [0; T ]� [0; 1] = [0; 4]� [0; 1]

Admissible set Pad = [0:1; 1]� [0:1; 1]� [0; 2]
Initial conditions u0(x) = sin(�x); u1(x) = x
Forcing function f(t; x) = 1

Dimension of system of ODE = N 64
Number of Partitions in [0,4] = M 64
Number of Partitions in [0,1] = K 128

To simulate the data z1d(T; x) and z
2
d(t; x), let �q = (:2; :2; :3) 2 Pad be the set

of test parameters. Numerical solution of (1:1) is computed by using 4th order

Runge-Kutta method. Since real data always contain some noise, we set

zd(t; x) = u(�q; t; x) + �
(x); (9.3)

where � is noise level and 
(x) is a random variable uniformly distributed on

interval [-.5,.5].

Let q0 2 Pad be an arbitrary chosen set of parameters. A MATLAB function

called fminicon is used for minimization of the cost functional JN . The minimizers

q�N , minimum values of functional JN(q
�
N), and error

E =
kq� � �qkR3
k�qkR3

at di�erent noise levels � are given in the following tables. The �rst row of each

table shows that the identi�cation algorithm is successful for data zd without
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noise, whereas the precision of the identi�cation decreases with the increasing

noise level. Without loss of generalities we can assume that k2 = 1 in all the

examples. Our experiments revealed that for � = 0, identi�cation algorithm is

successful for any k1. For � = 0:001, the best identi�cation is achieved for k1 = 1,

and for � = 0:01, the best identi�cation is achieved for k1 = 2.

Table 9.2: Identi�cation results for k1 = 0 and k2 = 1

� q�N JN(q
�
N) E

0 (0.1998, 0.1996, 0.3017) 9.7130e-008 0.0041

0.001 (0.1945, 0.1991, 0.2726) 0.0029 0.0679

0.01 (0.2737, 0.2751, 0.1910) 0.3458 0.3674

Table 9.3: Identi�cation results for k1 = 1 and k2 = 1

� q�N JN(q
�
N) E

0 (0.2001, 0.2001, 0.3000) 1.7996e-007 2.1820e-004

0.001 (0.2056, 0.2040, 0.3031) 0.0155 0.0182

0.01 (0.1218, 0.1470, 0.2870) 1.6254 0.2312

Table 9.4: Identi�cation results for k1 = 2 and k2 = 1

� q�N JN(q
�
N) E

0 (0.2000, 0.2000, 0.3000) 2.7806e-007 1.2957e-004

0.001 (0.2017, 0.1997, 0.3100) 0.0293 0.0245

0.01 (0.2077, 0.2096, 0.2745) 3.1094 0.0687
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Table 9.5: Identi�cation results for k1 = 25 and k2 = 1

� q�N JN(q
�
N) E

0 (0.2000, 0.2000, 0.3000) 2.2272e-007 7.4062e-005

0.001 (0.2013, 0.2026, 0.2905) 0.1534 0.0242

0.01 ( 0.1901, 0.1887, 0.3541) 14.0577 0.1362

Table 9.6: Identi�cation results for k1 = 50 and k2 = 1

� q�N JN(q
�
N) E

0 (0.2000, 0.2000, 0.3000) 2.3466e-007 5.4141e-005

0.001 (0.2001, 0.2022, 0.2925) 0.3265 0.0190

0.01 ( 0.1735, 0.1713, 0.3546) 31.3486 0.1628

Figure 9.1: Data zd for noise level � = 0:00
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Figure 9.2: Data zd for noise level � = 0:01
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Chapter 10

Conclusions

In this thesis we proved existence and uniqueness of the weak solution of damped

sine-Gordon equation with Neumann boundary condition. We showed that the

weak solution is continuous with respect to the parameters. Weak Gâteaux dif-

ferentiability of the solution is established by using the method of transposition

by Lions and Magenes [8]. Weak Gâteaux di�erentiability of the solution map

is used to establish the Gâteaux di�erentiability of the cost functional J . An

adjoint system is established and used to represent the Gâteaux derivative of the

cost functional J . We proved that the partial derivatives @J
@�
, @J
@�
, and @J

@�
are 0

when optimal parameter q� 2 intP . Continuity of partial derivatives with re-

spect to �; �; and � is used to prove di�erentiability of cost functional J on the

admissible set of parameters Pad.

In addition, we developed a computational algorithm for approximate solutions

of the adjoint system. A Fourier method is used to compute numerical solution

of the sine-Gordon equation (1:1). MATLAB function fminicon is used for the
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minimization of the cost functional J . Our experiments showed that the identi-

�cation algorithm is successful for data without noise, whereas the precision of

identi�cation decreases with the increasing noise level. In addition, our experi-

ments revealed that for � = 0, identi�cation algorithm is successful for any k1.

For � = 0:001, the best identi�cation is achieved for k1 = 1, and for � = 0:01, the

best identi�cation is achieved for k1 = 2.
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