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Abstract 

Tracking of targets in remote inaccessible areas is an important application of Wireless 

Sensor Networks (WSNs). The use of wired networks for detecting and tracking of 

intruders is not feasible in hard-to-reach areas. An alternate approach is the use of 

WSNs to detect and track targets. Furthermore, the requirements of the tracking 

problem may not necessarily be known at the time of deployment. However, issues such 

as low onboard power, lack of established network topology, and the inability to handle 

node failures have limited the use of WSNs in these applications. In this dissertation, 

the performance of WSNs in remote surveillance type of applications will be addressed 

through the development of distributed tracking algorithms. The algorithm will focus on 

identifying a minimal set of nodes to detect and track targets, estimating target location 

in the presence of measurement noise and uncertainty, and improving the performance 

of the WSN through distributed learning. 

The selection of a set of sensor nodes to detect and track a target is first studied. 

Inactive nodes are forced into ‘sleeping’ mode to conserve power, and activated only 

when required to sense the target. The relative distance and angle of the target from 

sensor nodes are used to determine which of the sensors are needed to track the target. 

The effect of noisy measurements on the estimation of the position of the target is 

addressed through the implementation of a Kalman filter. Contrary to centralized 

Kalman filter implementations reported in the literature, implementation of the 

distributed Kalman filter is considered in the proposed solution.  
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Distributed learning is implemented by passing on the knowledge of the target, i.e. 

the filter state and covariance matrix onto the subsequent node running the filter. The 

problem is mathematically formulated, and the stability and tracking error of the 

proposed strategy are rigorously examined. Numerical examples are then used to 

demonstrate the utility of the proposed technique. 

It will be shown by mathematical proofs and numerical simulation in this dissertation 

that distributed detection and tracking using a limited number of nodes can result in 

efficient tracking in the presence of measurement noise. Furthermore, minimizing the 

number of active sensors will reduce communication overhead and power consumption 

in networks, improve tracking efficiency, and increase the useful life span of WSNs.                                                                          

. 
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Chapter 1 

Introduction 

1.1  Background on Wireless Sensor Networks 

Recent advances in communication technologies and electronic systems have enabled 

the widespread use of Wireless Sensor Networks (WSNs). A sensor network is an ad 

hoc network comprising of a large number of sensor nodes that can individually sense 

their environment and communicate the sensed data to a network sink, typically in a 

multi-hop fashion.  The low cost and small size of sensor nodes have resulted in WSNs 

being used in a variety of applications such as military, health care, environmental 

monitoring, structural health monitoring, industrial automation, and remote 

surveillance. However, WSNs are yet to reach their full potential as their performance is 

limited by the lack of organization, the constrained onboard power and processing 

capability, and the issues with routing and communication of the sensed data. To 

overcome these limitations, researchers have extensively investigated many aspects of 

WSNs through the development of algorithms for deployment [1-3], coverage [4-7],  

medium access control (MAC) protocols [8, 9], routing protocols [10, 11], and the use 

of WSNs in applications [12]. Some of these results are discussed in the following 

subsections. 

1.1.1  Deployment and Coverage 

The key issues to be addressed during the deployment of WSNs are the abilities of the 

network to sense parameters of interest in a given region and to transmit the sensed data 

to users outside the network. Given a geographic area, the problem is to find an optimal 
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deployment strategy that minimizes the number of required sensors to meet the sensing 

criterion.  In environments that are easy to access, sensor nodes can be deployed in a 

deterministic manner [13, 14]. Placement of sensor nodes at the vertices of a hexagonal 

lattice is known to provide optimum coverage of a two-dimensional region. Similarly, 

placement of sensor nodes at the vertices of a face-centered cubic lattice is known to 

provide optimum coverage of a three-dimensional region [15]. However, it is infeasible 

and impractical to archive deterministic deployment in inaccessible or hazardous areas. 

Deployment of WSNs in such inaccessible regions is usually performed in a random 

manner. Consequently, the determination of the extent and type of coverage are the 

issues to be examined during the deployment of sensor networks [16, 17]. Several 

applications also require the coverage of every location in the sensed region by multiple 

sensor nodes. This problem is usually formulated as a k-cover problem where each 

location is covered by at least ‘k’ sensor nodes [6].  

Several researchers have investigated coverage issues in WSNs [18]. Li [4] 

developed an algorithm for optimum best-coverage-path with the least energy 

consumption. The problem of sensor placement and border perambulation have been 

investigated by Watfa and Commuri in [1, 7]. Solution to the energy-efficient coverage 

problem was also investigated by Cardei in [19]. 

While existing results in the literature address several key issues in the deployment 

of WSNs and their region of coverage, requirements of specific node distribution or 

coverage by multiple nodes have to be addressed prior to their use in target tracking 

applications. The use of multiple sensor nodes to track a dynamic target increases the 



3 

 

risk of bottlenecks in communication of the target information. This could also result in 

rapid depletion of onboard power and early failure of the sensor nodes. 

1.1.2  Medium Access Control (MAC) Protocols 

Since sensor nodes share the wireless medium, MAC [9] protocols are required to 

operate a sensor network, to utilize the shared wireless spectrum by all the nodes in the 

network. Additional, these protocols schedule the transmissions by individual nodes, to 

avoid collision between data packets in the network.  Issues such as fairness, 

throughput, latency, energy efficiency, and bandwidth utilization in WSNs can be also 

addressed through MAC protocols [9, 20]. 

Energy utilization in a WSN is usually investigated by forcing individual nodes into 

the ‘sleeping’ mode, when the nodes consume the least amount of energy. Nodes are 

‘woken’ up periodically to ‘sense and report’ before being forced back into the sleeping 

mode. Since these nodes function in an ad-hoc manner, they need to contend for the 

wireless channel before transmitting any data. Contention-based MAC protocols [20, 

21] minimize the simultaneous transmissions of data packets by more than one node,  

and avoid collision of data packets. Thus, individual nodes can effectively use available 

onboard power. MAC protocols, which schedule individual nodes to transmit data 

sequentially, perform better than Time Division Multiple Access (TDMA) techniques. 

  Contention for wireless resource among sensor nodes can also be resolved through 

reservation mechanisms or scheduling mechanisms. In reservation mechanisms, a node 

is reserved a time slot for sending data.  In contrast, a node is scheduled to send data in 

a specific time slot in scheduling mechanisms [22]. Energy consumption in a WSN was 
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also studied through Sensor-MAC (SMAC) protocol [23] where synchronization and 

periodic sleep-listen schedules were managed locally by each node.  Some researchers 

[22-26] proposed dynamic low duty cycle or increased inactive time of sensor nodes to 

manage power consumption in a WSN. Unfortunately, such techniques can result in 

lower overall performance of the WSN.  In an attempt to further conserve power and 

improve performance, Pattern-MAC (PMAC) [27] was proposed to address the changes 

in duty cycle time of sensor nodes depending on the traffic pattern in the network. 

Most of the available protocols implemented the same active and inactive pattern for 

all sensor nodes, which is not efficient for the target tracking application. When a target 

is in the proximity of sensor nodes, these nodes need to be active all the time and be 

ready to take measurements. In contrast, the sensor nodes can set their duty cycle much 

lower if a target moves out of their sensing range. This issue needs to be examined for 

the successful use of WSN in target tracking applications.  

1.1.3  Routing Protocols 

The main goal of routing protocols in WSNs [28]  is to deliver accurately and timely 

sensed data from sensor nodes to the network sink. Important characteristics of routing 

protocols are energy efficiency, scalability, and adaptability to changes in the network. 

Energy efficiency probably plays the most important role of routing protocols as it 

determines the life span of WSNs.  

Routing protocols can be categorized in terms of network structure as flat, 

hierarchical, or location-based. In flat routing, every node has the same role, while in 

hierarchical protocols cluster head nodes aggregate data from their neighbor nodes, 

process the collected data, and transmit the processed data to the network sink. Flat 
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routing techniques are extensively studied in works such as ‘Sensor Protocols for 

Information via Negotiation’ (SPIN) [29],  ‘Sequential Assignment Routing’ (SAR) 

[30], direct diffusion protocol [31], among others. ‘Low Energy Adaptive Clustering 

Hierarchy’ (LEACH) [32] and ‘PEGASIS: Power-Efficient Gathering in Sensor 

Information Systems’ [33]  are typical examples of hierarchical protocols. In location-

based protocols [34, 35], routing paths are computed depending on the network 

structure and the locations of sensor nodes. 

 Routing protocols also can be categorized according to their operation as multipath-

based, query-based, QoS-based, and coherent-based [36, 37]. Routing protocols can be 

classified through the nature of their operation as: proactive, reactive, or hybrid [20]. In 

proactive or table-driven protocols [38, 39], all routes are computed in advance. Thus, 

when a sensor node has to transmit data, it can send the data immediately without any 

delay. However, such an approach is not desirable as it requires significant amount of 

energy to compute all routing paths in advance. Moreover, these routing paths may not 

be available as sensor nodes fail due to depletion of power. In reactive or ‘on demand’ 

protocols [39, 40], routes are computed at the time of transmission. In comparison to 

their proactive counterparts, reactive protocols are more energy efficient, but subject to 

higher latency in transmission due to route calculation. A balance between these two 

approaches is achieved in hybrid protocols [41, 42]  where a combination of proactive 

and reactive protocols are used depending on the nature of transmission. One approach 

to reduce the number of data packets transmitted in the network, thus reducing total 

power consumption, is to aggregate data from several sources before transmitting it to a 
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network sink. Another method is to process the raw data and report only the information 

contained therein.  

While routing protocols in the literature adequately address the majority of issues in 

WSNs, further research is needed prior to their use in target tracking. When there is no 

target present in the network, only the sensor nodes on the border of the surveillance 

region need to be active, and all the nodes inside the region can be placed in a ‘sleeping’ 

mode. If the target is within the range of the WSN, all the nodes that actively track the 

target must be in full operational mode. Additionally, the quality of service of the 

transmission route from the sensor nodes to the network sink must be guaranteed.  

1.1.4  Applications 

In recent years, WSNs have been used in a variety of applications including health care 

[43], structural health monitoring [44],  military applications [45], environment 

monitoring [46], surveillance, and security applications. WNSs are also used in 

commercial applications such as inventory management and industrial process control. 

Since each application has its unique characteristics and requirements, no single 

protocol can be suited for all applications. Since most of the MAC and routing protocols 

in WSNs are designed for low-data rate applications, additional research is needed prior 

to their use in target tracking type of applications that typically involve sporadic but 

high rate of communication.     

Target tracking using WSNs has been u 
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1.2  Target Tracking in Wireless Sensor Networks 

Tracking targets in remote inaccessible areas has emerged as one of the important 

applications of WSNs [47]. The goal of the tracking algorithm is to determine the 

position of target with minimum error. To meet this goal, the location of the target has 

to be determined. Consequently, estimation techniques can be used to minimize the 

tracking error. Moreover, an autonomous vehicle can be used in conjunction with static 

sensor nodes to increase both the computational capability and reliability of the tracking 

algorithm. Finally, extending the useful life of the sensor network is one of the primary 

goals for the tracking system. 

1.2.1  Localizing Methods  

There are several approaches to the problem of detecting the location of a target from 

disparate sensor measurements. Trilateration is a popular approach when the range of 

the target from each sensor node is known. Triangulation [48, 49] on the other hand, is 

the preferred method when only the bearing of the target from the sensor node is 

known. For example, common  trilateration techniques use Global Positioning System 

(GPS) [50], Received Signal Strength (RSS), or Time of Arrival (TOA) to localize [51-

55] targets. Triangulation, on the other hand, uses techniques such as Angle of Arrival 

(AOA) [49] to estimate the location of the target .   

Trilateration is an algorithm for estimating the coordinates of an object given its 

distances from known locations. This process is straightforward if the range 

measurements are error free. However, in practice, the uncertainty in range 

measurements and the spatial distribution of reference locations affect the accuracy of 
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the algorithm. A number of methods have been proposed to improve the performance of 

trilateration algorithm. Groginsky [56] proposed a recursive formula to analyze the 

effect of spatial distribution of referenced locations and range measurement error on the 

accuracy of the calculated position. Fang [51] proposed a closed-form approach to 

estimate the position of an object and the time of its measurement using GPS data. 

Manolakis [44] derived formulae for the joint variance and bias of the position 

estimates based on special distribution of reference points and uncertainty in the range 

measurements. Recently, Thomas and Ros [54] used the Cayley-Menger determinant to 

derive the trilateration error in the presence of both measurement errors and station 

location errors. 

The error resulting from trilateration algorithm is the combination of the joint 

distribution of range measurement errors and station location errors. The uncertainty of 

the error has to be bounded if further estimation techniques are used to minimize the 

error in measurement. However, the uncertainty in measurements is not necessarily 

bounded in randomly deployed WSNs. Therefore, conditions under which this 

uncertainty is bounded have to be determined.  

Triangulation is a method for determining the location of an object by the angular 

measurements from two known locations. Triangulation method has been widely used 

in military applications such as missile guidance, air defense, as well as in civilian 

applications. Pieper et al., [57] proposed a dual-based line algorithm using passive 

sensors to address the relationship between the tracking range and the precision of 

triangulation algorithm. Shams [58] used an artificial neural network to determine the 

optimal triangulation algorithm for target localization. The determination of the location 



9 

 

of a sensor node in a random deployment can also be addressed using triangulation 

algorithm [59]. The accuracy of the triangulation algorithm depends on several factors 

including the error in angular measurements, the distance between the reference 

locations, and the location of the target.  

1.2.2  Estimation Techniques for Target Tracking 

While localization techniques can be used to determine the location of the target, the 

accuracy of the measurement is affected by the range measurement error as well as the 

errors caused by spatial distribution of sensor nodes. Estimation techniques can be used 

to reduce the effect of these errors on the estimated position of the target. The Kalman 

filter [60], which requires the state of the system be linear and the distribution of 

measurement noise be Gaussian, is one of the most well-known techniques for 

estimation. Particle filters offer an alternative technique for estimating the location of 

the target when the distribution of measurements is not Gaussian and/or the state of the 

system is nonlinear. 

1.2.3  Kalman Filters  

Since its introduction in 1960, the Kalman filter [60] has been one of the most popular 

estimation techniques, especially for the tracking type of applications. Under the 

assumptions of linearity in the system dynamics and Gaussian distribution of 

measurement noise, the Kalman filter can be shown to result in the minimum variance 

of the estimation error [61]. However, since most of the practical systems are nonlinear, 

the Extended Kalman filter (EKF) was proposed to address the nonlinearity in the 

system dynamics. The EKF guarantees the stability and convergence of estimated errors 
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[62, 63]  provided that the system meets some specific conditions. Otherwise, the 

estimated errors of the EKF can diverge [64, 65].  

Recently, Kalman filters have been proposed to overcome the effects of 

measurement noise and uncertainties in WSNs in target tracking applications [66-72]. 

Two classes of Kalman filter-based approaches have been implemented in WSNs.The 

first approach is a centralized implementation of the Kalman filter [72] where every 

sensor node takes measurements and sends the measured data to a centralized node 

which runs the filter. In this approach, the power of the sensor node will be depleted 

quickly because of excessive measurements and inter-node communication. Moreover, 

it is impractical for all sensor nodes to communicate with a centralized node due to 

limitations in communication range.  

In the decentralized approach, only a finite set of sensor nodes within the proximity 

of the target take measurements and communicate the measured data to other nodes. 

The Kalman filter is implemented locally on one node in each sensing region. This 

method is scalable and can be applied effectively in WSNs. Decentralized, as well as 

distributed Kalman filters were investigated by Olfati-Saber [70, 71] and by Cattivelli et 

al., in [66]. Distributed Kalman filters in these approaches implement distributed 

processing of the estimation algorithm wherein each node runs its own version of 

Kalman filter and shares the learned information with other neighbor nodes in order to 

reach a consensus value of the estimate. The number of neighbor nodes determines the 

cost of the algorithm in terms of power consumption and communication complexity. 

Consequently, these approaches are not efficient for target tracking problems as they 

require extensive inter-communication among neighbor nodes.  
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1.2.4  Particle Filters 

Practical tracking systems are not necessarily linear, and the noise distribution is non-

Gaussian. Recently, particle filters [73, 74], also known as Sequential Monte Carlo 

methods (SMC), have been used in WSN to track targets [75-77]. These techniques are 

power intensive and require significant amounts of onboard power for communication 

and computation thereby resulting in shorter life span of the sensor network.  Moreover, 

it is challenging to choose the right number of particles used in SMC methods, as this 

parameter can affect the convergence properties of the particle filter. On the other hand, 

in a dense sensor network it is feasible to select a set of sensor nodes in the 

neighborhood of the target, thereby guaranteeing bounded uncertainty in the joint 

measurement. However, Kalman filters are still preferred for achieving desired trade-off 

between energy consumption in the network and the reduction of tracking errors. 

1.2.5 Mobile Robot Assisted Target Tracking 

The use of mobile robots in surveillance, perimeter patrol, and target tracking 

applications has also been widely studied [78]. Motion planning of nonholonomic 

mobile robot was first presented [79, 80]. Coordinated control of mobile robots was 

studied by Jung and Sukhatme in [81]. However, determining the location of a target 

using one mobile node is not an easy task. The use of mobile robots in conjunction with 

WSNs can address this problem. Moreover, due to mobile robots’ higher computational 

capacity in comparison with that of statistic sensor nodes and their ability to move in the 

sensor field, the tracking quality is improved greatly.  
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1.2.6  Energy Efficiency 

Energy efficiency and extending the useful life of the WSN are some of the other major 

challenges. In order to save energy, a sensor node should be put in the sleep mode for the 

majority of the time either by reducing its duty cycle or through smart scheduling. 

However, in the target tracking application, a set of sensor nodes is required to be active 

when the target moves to its proximity. Thus, the first challenge to be discussed is the 

selection of a set of  sensors [82, 83] within the measurement range of the target, that 

results in the smallest bias in estimation. Due to the effect of geometric dilution of 

precision [84, 85], increasing the number of sensors used for tracking does not always 

result in improving the accuracy of the estimates. 

Kalandros and Pao [86] proposed a covariance control method for selecting a group 

of sensor nodes satisfying a given error covariance matrix. On the other hand, Atia et al., 

[87] used partially observable Markov decision process to schedule sensor nodes that 

optimized the trade-off between tracking performance and energy consumption.  Once 

sensed nodes are determined, then the second challenge is to determine the trilateration 

uncertainty. Extending the life time of WSNs by reducing the overall power 

consumption is another challenge that has to be investigated [31, 88]. Generally, the 

sensor nodes that have more residual power are preferred over nodes with less residual 

power for use in tracking and sensing applications. Furthermore, in a tracking system 

using range measurement sensors, it should be ascertained that the selected sensor nodes 

satisfy the constraint on trilateration uncertainty. 
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1.3  Scope of the Dissertation 

The challenge of acquiring and tracking a dynamic target using WSNs is addressed in 

this research. Issues specific to deployment, coverage, scheduling of the sensor nodes, 

as well as target acquisition and location will be studied and their impact on the tracking 

accuracy will be analyzed. Throughout the dissertation, the sensor nodes are assumed to 

be stationary and densely deployed. Each sensor is assumed to be able to measure the 

range of the target. The range measurement noise of each sensor node is assumed to 

have Gaussian distribution. 

The problem is divided into four sub-problems. The distributed implementation of 

Kalman filter is first proposed in conjunction with the least square trilateration 

algorithm: to reduce the tracking error and to save the power consumption of sensor 

nodes. Secondly, the uncertainty of trilateration algorithm is rigorously analyzed. 

Consequently, a set of minimum number of sensor nodes can be selected to track a 

target, still resulting in small tracking errors. Moreover, the use of a mobile robot can 

enhance the reliability of the tracking system because the mobile robot can be equipped 

with faster microcontrollers and longer battery life. The mobility of the mobile robot 

also eliminates the hand-over of the learned information between leader nodes, and the 

need to transmit data to the network sink. Finally, extending the life time of the network 

was studied by solving an optimization problem which maximized the network life time 

under the constraint of tracking performance.  

1.4  Contributions 

The contributions of the dissertation are as follows.  
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 A distributed tracking algorithm using Kalman filter was developed in a 

WSN to track a dynamic target. At any given instant, the Kalman filter is run 

on only one master node. The position and velocity of the target estimated by 

this filter are communicated to the nodes that are within the measurement 

range of the target. As the location of the target changes, a different node is 

selected to run the Kalman filter. The convergence of the proposed tracking 

algorithm is verified through mathematical proofs. Simulations examples are 

used to demonstrate the reduction in tracking error obtained by the proposed 

algorithm. 

 The uncertainty in target position calculated using trilateration algorithm is 

formulated using a linearization based approach. The relationship between 

trilateration uncertainty and spatial distribution of the sensor nodes is 

exploited to design an algorithm to choose a minimum number of sensor 

nodes to track the target while still maintaining the required tracking quality.  

 The hand-over of the Kalman filter from one master node to the next during 

the tracking of dynamic target is circumvented through the use of mobile 

robot. The estimated position and velocity of the target is used to determine 

the ground path for the robot. The robot carries the master node that executes 

the Kalman filter and the communication device for transmitting the 

estimated data to a network sink. Offloading power intensive aspect of target 

tracking is shown to reduce energy expenditure and prolong the useful life of 

a WSN.  
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 An optimization based approach to the maximization of the life time of the 

WSN while still maintaining a required tracking performance is also 

proposed.  The algorithm selects the sensors with larger residual power and 

deactivates the sensors whose residual power is low. This approach is shown 

to reduce loss of coverage and increase the lifetime of the network. 

1.5  Organization 

In Chapter 2, the target tracking system using WSNs is studied. The application of 

WSNs in target tracking is first reviewed. Two classes of Kalman filter based 

approaches are then covered. Consequently, a new method for implementing distributed 

Kalman filter in tracking applications using WSNs is proposed. The stability and 

tracking error of the proposed technique are rigorously analyzed. Numerical simulations 

are used to demonstrate the reduction in power consumption.  

The estimate of uncertainty in target position determined by trilateration algorithm 

will be studied in Chapter 3. If the range measurement of each sensor node is corrupted 

with white Gaussian noise, then the uncertainty in the position computed by the 

trilateration algorithm is compounded. Therefore, a formula is derived for calculating 

the uncertainty resulting from the trilateration approach when two or more sensors are 

used. A procedure to select a group of sensors that results in minimum trilateration 

uncertainty is then proposed. 

In Chapter 4, the use of a mobile robot in conjunction with stationary sensor nodes is 

proposed. The current use of mobile robots in surveillance, perimeter patrol and target 

tracking is briefly surveyed. In the approach adopted in this chapter, the robot is 
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assumed to carry the master node that executes the Kalman filter and the 

communication device for transmitting the estimated data to a network sink. A path 

planning strategy for the mobile robot is then developed to maintain the robot within 

one communication hop from the nodes sensing the target. Offloading power intensive 

aspect of target tracking is shown to reduce energy expenditure and prolong the useful 

life of a WSN.  

In Chapter 5, the problem of enhancing the life time of a WSN in target tracking 

applications will be investigated. In this chapter, the problem is cast as an optimization 

problem where the life time of the sensor network is maximized under the constraints of 

tracking performance. The algorithm selects the sensors with larger residual power and 

deactivates the sensors whose residual power is low. To avoid the combinatorial 

problem associated with the selection of the nodes, the collinear elimination process is 

used to reduce the number of sensors, and a heuristic search algorithm is used to find 

the optimal solution.  Numerical examples are used to demonstrate the effectiveness of 

the proposed algorithm. 

Chapter 6 concludes the dissertation and discusses the future work. 
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Chapter 2 

Stability and Performance of Wireless Sensor Networks during the 

Tracking of Dynamic Targets 

The performance of Wireless Sensor Networks (WSNs) during the tracking of dynamic 

targets is addressed in this chapter.  The problem of tracking targets using a WSN is first 

formulated. The minimum number of sensors required to track the target is selected and 

the location of the target is ascertained using the trilateration algorithm. A distributed 

implementation of a Kalman filter is then used to track the target.  In contrast to the 

results reported in the literature, the approach in this chapter has the Kalman filter 

running on only one network node at any given time. The knowledge about the target 

acquired by this node, i.e., the system states and the covariance matrix, is passed on to 

the subsequent node running the filter. Since a finite subset of the sensor nodes is active 

at any given time, target tracking can be accomplished using lower power compared to 

centralized implementations of Kalman filter.  

2.1 Introduction 

Surveillance of remote inaccessible areas and the detection and tracking of intruders are 

some of the important applications of Wireless Sensor Networks (WSNs). Research in 

WSNs has addressed several important issues in optimal deployment, coverage, routing, 

and energy efficiency of the WSNs [1, 7, 10, 11, 19, 89]. Diffusion and directed 

diffusion approaches have been proposed to address coverage, route discovery, routing, 

and sensing fusion issues in WSNs [31]. The applications of WSNs in surveillance and 
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monitoring of target areas have also been widely researched [47]. While the results 

presented in these papers are encouraging, their applicability in low cost WSNs with 

large measurement noise and faulty measurements is fraught with problems. In recent 

years, Kalman filters have been used to address the uncertainty and the measurement in 

WSNs [66-72]. The convergence analysis of extended Kalman filters was also studied 

by several researchers [62, 90]. Both centralized and distributed implementation of the 

Kalman filter was proposed to make their use suitable to WSN applications. However, 

these techniques are still power intensive and require significant amounts of onboard 

power for computing the location of the target and communicating the information 

among sensor nodes and to the network sink. 

Two classes of Kalman filters have been implemented in WSNs to address the 

problem of tracking targets. In the first approach, centralized implementation of Kalman 

Filter was pursued [72]. In this approach, every sensor node is active and communicates 

its measurements to a central node in the network. The Kalman filter is implemented on 

the central node and computes the estimated location of the target using the 

measurements from all the active nodes. In this approach, the residual power of the 

nodes will be depleted quickly due to unnecessary measurements and inter-node 

communication. Moreover, it is sometimes impractical for a sensor node to 

communicate with all other nodes due to limitation of communication ranges. 

Addressing redundancies and latencies in reported measurements arising out of multi-

hop communication is also problematic.  

The use of distributed Kalman filters was the second approach proposed in literature 

to address target tracking using WSNs [66, 70, 71]. In this approach, every neighbor 
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node runs its own version of Kalman filter and shares the information with its 

neighbors. The estimates from all the filters are used to reach the consensus location of 

the target. The approaches are more efficient compared to the centralized 

implementation of the Kaman Filter. However, the efficiency obtained depends on the 

number of neighbor nodes that are active at any given instant and the complexity of the 

consensus algorithm. Consequently, these approaches have not been widely used for 

tracking targets using WSNs.   

In this chapter, the distributed Kalman filter is implemented to estimate the position 

of the target. The approach is different from the above two techniques in the sense that 

the Kalman filter is implemented in a distributed fashion across the WSNs. At a given 

instant, only one master node runs the Kalman filter using the measurements from its 

neighbors and shares the estimated knowledge with the subsequent master node. The 

neighbors within a certain distance from the target measure the distance to the target, 

and transmit measurements to the master node. On one hand, the procedure significantly 

reduces the communication costs among the neighbor nodes in comparison to the 

algorithms reported elsewhere in the literature. On the other hand, since the master node 

alone executes the Kalman filter and the neighbor nodes only perform measurement 

functions, the complexity of the WSN is greatly reduced. This results in lower 

communication costs in the entire network and reduced complexity of the tracking 

algorithm.  

The approach proposed in this chapter was validated through mathematical analysis 

and simulation examples. The algorithm was also able to track the target with random 

directions with acceptable estimated results. The numerical examples showed that this 
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method is robust to measurement noise and changes in velocity. The estimated 

knowledge of the Kalman filter including system states and covariance matrix are 

passed directly to the subsequent master node where the execution of the Kalman filter 

is transitioned to. Another aspect of the proposed algorithm is that the master node 

determines the direction and velocity of the intruder and wakes up appropriate sensor 

nodes in the direction of the target travel. Thus, nodes further away from the target are 

inactive and only a small subset of the nodes participates in sensing. Prior to the start of 

the tracking, the knowledge of  the  maximum target velocity can be used to activate the 

nodes along the boundary in a round-robin fashion in order to save energy [1].  

2.2 Problem Formulation 

A closed and bounded sensor field in three-dimensional (3D) Cartesian coordinate 

system is densely deployed with stationary sensor nodes. Each node is equipped with a 

computational platform, and a wireless transceiver with a predetermined communication 

range. Nodes within a known sensing range can detect the presence of a target, 

measuring the distance between the target and itself, and determining their source of 

power. The sensing capability of each sensor is assumed to be omnidirectional. The 

tracking problem can then be stated as (1) the detection of the entry of an intruder into 

the surveillance region; and (2) tracking the possibly nonlinear trajectory of motion of 

the intruder within this region.  

At time instant  , the dynamics of the target is assumed to satisfy the following 

equations: 
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              (2.1) 

             . (2.2) 

Where       
    

       is the state of the target;    
     and   

     represent 

the velocity and position, respectively in a 3D coordinate system.            is zero 

mean state noise with covariance matrix   , which is assumed to be positive 

semidefinite.    is the measurement noise, which will be discussed in detail in the next 

subsection. The state equation   and the measurement equation    are assumed to be 

continuous with respect to time and at least twice differentiable with respect to   . If the 

maximum velocity of a target is known, the domain      of          in (1.1) is a 

compact and connected set.  

2.2.1 Measurement Model and Trilateration Algorithm 

Suppose that at time  , the position of     sensor is      , and its range 

measurement to the target      is corrupted by white Gaussian noise          
   . 

The position of the target is      , and the measurement model is given by the 

following equation 

   ‖     ‖      (2.3) 

where ‖ ‖  is the standard Euclidean norm. Assuming that there are    sensors that can 

sense the target, there are    nonlinear measurement equations in the form of (2.3). For 

each pair of integers      ,            the       and     equations in (2.3) are 

squared and subtracted to represent the measurements in the following form  

        (2.4) 
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where    is     matrix,   
        

 
, while    is     column matrix. In (2.4),  

    row of     and    in equation (2.4) are given by  

   
          

   
        

   ‖  ‖         
  ‖  ‖

 
 .  

where         . The map                       is any one-to-one. 

Consequently,        
   

    
   and        

   
    

   

The least square solution of the trilateration algorithm (2.4) is given by 

         
        

   . (2.5) 

The measurement equation (5) can be linearized as 

             (2.6) 

where       is the measured position of the target, and       is jointly uncertainty 

with covariance matrix        , and the relationship between    and    is described 

by (2.3), (2.5) and (2.6). The measurement matrix    is given by 

   [
      
      
      

]. 

Since    is a constant matrix, from now on the subscript   is dropped to simplify the  

notation, i.e.,      .  
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Figure 2.1: Region of Activation   

 

 

2.2.2 Distributed Implementation of Kalman Filters 

Suppose that the target, represented by   symbol in Figure 2.1, is moving in the 

direction of vector   ⃗⃗ ⃗⃗ ⃗⃗  . The region   is defined by the sphere of radius   , the radius of 

   and angle    – the region limited by the bold lines.      , and                

are activation radius, sensing radius, and measurement radius of sensor nodes 

respectively. Figure 2.1 shows the projection of the region   onto a horizontal plane 

(on which the heading of the target lies). All the sensor nodes inside the region of 

activation   are activated, while the nodes outside the region are in sleep mode in order 

to conserve power. All the nodes inside the sphere        can sense the target while no 

node outside this sphere can detect the target. However, only nodes inside the 

sphere        are actively taking measurements and reporting the data to the master 

node.  
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A master node is selected depending on two criteria: its distance to the target and its 

residual power. The sensors, inside the sphere with radius   , measure the distance to 

the target and transfer the range measurements to the master node. The master node 

runs the extended Kalman filter for the system (2.1) and (2.2) in a distributed sense, 

obtaining the estimated position and direction of the target, broadcasting the learned 

information to its neighbors. After receiving the information, a neighbor node will turn 

on or off depending on whether it is inside or outside region  .  

The target is represented by   at point  . The boundary of the region of activation   

is limited by line   , curve    , line    and curve   . The curve     is formed by 

part of the sphere       . The extended Kalman filter is run on a master node 

according to the system equations (2.1) and (2.6).   

While the equations (2.7)-(2.9) reflect measurement updates, the equations (2.10)-

(2.13) reflect time updates for the Kalman filter.     is the Jacobian matrix of function   

 ̂     ̂                  ̂       (2.7) 

            
          

     
   (2.8) 

                      (2.9) 

 ̂         ̂     (2.10) 

           
        

  (2.11) 

    
      

   
      ̂

 (2.12) 

    
      

   
      ̂

 (2.13) 
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in (2.1) at time  .   , the initial value of    in (2.11), is a symmetric positive 

semidefinite matrix. If the sampling time    is fixed,    in (2.12) is a time invariant 

matrix. For simplicity in notation, the subscript   is dropped and the matrix F is 

represented as 

      

[
 
 
 
 
 
      
      
      
       
       
       ]

 
 
 
 
 

. 

By adopting a constant velocity model [91],  the Jacobian matrix,    , of derivative 

of   with respected to    in (2.13) is given by 

    

[
 
 
 
 
 
 
 
    
    
    

   

 
  

 
   

 
 

  
   

 ]
 
 
 
 
 
 
 

. 

2.3 Performance Analysis 

2.3.1 Assumptions  

The following assumptions are made to facilitate the stability analysis of the tracking 

system 

(i) Function           in (2.1) is twice differentiable with respect to   . 

(ii) The state error in (2.1) has a Gaussian distribution with a covariance matrix     

that is uniformly bounded. 

(iii) The range measurement error    in (2.3) has a Gaussian distribution. 
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(iv) The sensor nodes are densely deployed so that the joint measurement error    in 

(2.6) can be represented by a Gaussian distribution with zero mean and joint 

measurement covariance matrix    that is uniformly bounded.  

(v) The transition of the Kalman filter from one Master Node to the next can be 

achieved within one sample instant. 

(vi) The clocks of all sensing nodes are synchronized. 

(vii) Every node active during the sensing cycle is within one hop to the master node. 

2.3.2 Stability Analysis  

In this section, we analyze the convergence of the Kalman filter. A Lyapunov candidate 

function is chosen, which is positive semidefinite. The tracking errors converge when 

observability of the system (     ) and the bounded conditions on the trilateration 

uncertainty are met. 

Equation (2.1) can be linearized as follows.  

                            (2.14) 

where     and    are the diagonal matrices representing the nonlinear terms. If the 

system (2.1) is linear,        and    is an identity matrix.  

The Lyapunov function candidate is chosen as   

      ̃   
     

   ̃    (2.15) 

where  ̃          ̂   .   

Let  ̃       ̂          , and from (2.14) we have 

 ̃           ̂                     ̃ . (2.16) 

Let 
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                    ̃     . (2.17) 

Then, from (2.7)-(2.13) and assumption (i) we have 

     ( ̃             
      )

 
    

  ( ̃             
      ) 

  ̃     
     

   ̃          
    

           
      

        

(2.18) 

From (2.8), (2.9) and (2.11) we have      
         

      
     

            

  ̃ 
      

              
          

    ̃     
   

         
      

       

    ̃  
    

      
        

            
       ̃  

     
   

         
       

       

(2.19) 

 

  For any vector   we have 

       
      

        
            

        

                   
     ‖  ‖

 ‖ ‖                 ‖ ‖  

(2.20) 

Thus, if 

      
         and (2.21) 

         
          

     

                  
    

 (2.22) 

Then      . On the other hand, the matrix 
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]  where [
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Since    is full rank, and    and    are observable. Hence, by LaSalle’s invariance 

principle [92], we conclude that 

       ̃     . (2.23) 

 The equation (2.23) means that the expectation of the estimated error goes to zero as 

  goes to infinity. However, the variance of the estimated error depends on the variance 

of the tracking system, i.e., the uncertainty of trilateration algorithm    and the 

nonlinearity of the target trajectory   . 

2.4  Discussion 

The statistics of the range measurements noise in (2.3) is assumed to be Gaussian. 

However, this does not necessarily mean that the joint distribution in (2.6) is either 

Gaussian or zero mean. In this subsection, it is shown that if the sensors are deployed 

dense enough, then the joint measurement error    (2.6) is bounded and can be 

approximated as a Gaussian distribution. The joint distribution depends not only on the 

range measurement noise but also on the spatial distribution of the sensor nodes and the 

target.  

Suppose that the maximum sensing radius and range measurement error of each node 

is represented by    and   respectively. Further, if the probability that measurement 

error is smaller than   is   , then the target is in the shaded region in Figure 2.1a with 

the probability of   . When the target is covered by one sensor, its maximum 
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uncertainty is     . When the target is covered by two sensors, its maximum 

uncertainty is 

   √(
 

 
)
 

   
 

 

 (2.24) 

where            is the distance between two sensor nodes. The probability that 

the target lies in either one of the two shading regions in Figure 2.2b is   . The 

following theorem then yields a bound on the area of each shaded regions. 

 

Theorem 1.1: Suppose that the target   is covered by two sensor nodes    and   , and 

the angle at   formed by two vertices   , and    is      ̂     The maximum 

uncertainty of the target in one region is (one shaded region 2.2Error! Not a valid 

bookmark self-reference.b):  

     {
 √  

   
 
 

    }  (2.25) 

The first term in (2.25) can be easily verified through geometric calculations. The 

second term is the maximum uncertainty of a target represented in Error! Not a valid 

bookmark self-reference.a. 

Figure 2.2: The uncertainty in measurement when the target is covered by one 

sensor (a) and two sensors (b) 
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In Figure 2.2a, as   goes to ∞, the upper bound on uncertainty is reached:  

  
  

   
 
 

 (2.26) 

In short, the joint measurement uncertainty depends on both sensor measured 

uncertainty u and the angle α.  Thus, if   is given, sensor nodes can be deployed densely 

enough so that    
 

 
 is within a certain bound. By Theorem 1.1, the measurement noise 

covariance matrix    is uniformly bounded.  

The choice of the master node is determined by both the normalized residual power 

(         ) of each node and its distance to the target. At each instant, every active node, 

within the proximity of the target, computes the weighted sum of its residual power 

(         ) and its normalized distance to the target (D) as follows:      

               with          , and      . As    , the weighted sum 

depends greatly on the distance to target. Meanwhile, as    , the weighted sum is 

affected mainly by the residual power. A node will become the new master node if its 

weighted sum is smaller than that of the current master node. Consequently, the current 

Figure 2.3: Measurement uncertainty when distances to the target are (a) 

large (b) small. 
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master node transfers knowledge of the Kalman filter (i.e., measurement covariance 

matrix and state of the target) to the new one.  

2.5 Numerical Examples 

In this section, several numerical examples are presented to demonstrate the 

effectiveness of WSN in tracking dynamic targets. First, a power consumption model 

similar to the one proposed in [1] is assumed for the radio communications between 

individual sensor nodes. Several scenarios are considered to study the performance 

improvement obtained and the tracking error. 

2.5.1 Power Consumption Model 

To demonstrate the effectiveness of our approach, the power analysis in [1] was used 

without assuming any specific hardware platform for the numerical examples. The 

transmitted power     , received power    , idle power    and sleeping power     are 

1400 mW, 1000 mW, 830 mW, and 130 mW respectively. Let     be the number of 

sensor nodes inside sphere radius   ;    be outside the sphere     but inside the region 

 . Let    be total number of sensor nodes;    be number of active ones. The total 

power consumption of the sensor field in one sampling cycle is calculated as following. 

The    neighbors make    transmissions and the master node receives    times. 

                  (2.27) 

 

The master node broadcasts the target position and its directions, and it makes one 

transmission. Each of          neighbors in the cone area receives the information of 

the target once. 
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                             (2.28) 

   

Each active node, except measurement nodes, consumes an amount of the idle 

energy  

                (2.29) 

The other nodes are sleeping, and the total power consumed by these nodes is 

                      (2.30) 

 

Then total consumed power is  

                                 (2.31) 

2.5.2 Simulation  

We considered two scenarios to demonstrate the distributed Kalman filter for target 

tracking using a WSN. In the first scenario, sensor nodes were assumed to be uniformly 

distributed. This requirement was relaxed in the second scenario where the nodes were 

randomly deployed. It was further assumed that no hole in coverage existed within the 

regions to be monitored, and every point was covered by at least three sensors. The 

sensor field was a square of       units as seen in Figure 2.. By choosing the 

distance of any two closest nodes to be 0.5 units, the total number of uniformly 

distributed sensor nodes was 441. The target was assumed to move along the horizontal 

trajectory with the sinusoid velocity profile while the vertical coordinate remains at 

       In 10 seconds, the target traveled between the coordinates       and       , 

and  the sampling frequency was       . The following difference equations were used 

to model the dynamic behaviors of the moving target.  
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Figure 2.4: Example of sensor field and the trajectory of the target 

 

 
            

          
(2.32) 

                         Where     [
      
    

],    [
  

 

  
 ],           

  
  is the target velocity and;   

  is target position in x-direction at time  .    is the 

sampling time. Moreover,    and    were state noise and measurement noise. From 

scenario 1 to scenario 4, the initial condition for the Kalman filter was the same as the 

true value while it was nonzero in scenario 5. The sensor nodes were uniformly 

deployed in scenario 1 to scenario 5 while randomly deployed in scenario 6.  

Scenario 1: Without using the Kalman filter, more sensors used in measurement results 

in better estimated tracking. As seen in Table 2.1, when the average measured sensor 
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nodes increased from 4.5 to 17.5, the noise variance decreased from            

to           . However, the trade off was the total power consumption of the 

network increased from 1.38×105 to 2.09×105 (  ). The power consumption analysis 

is shown in Figure 2.5.  

Table 2.1: Performance analysis 
Average 

measured sensors 
Average 
active 

sensors 

Error variance 
without 

Kalman filter 
( 10

-3
) 

Error variance 
with Kalman 

filter 
( 10

-3
) 

Average total power 
consumption 
(mW × 10

5
) 

4.5 9.3 24.71 3.63 1.38 
17.5 39.2 13.49 1.57 2.09 
60.4 139.9 7.03 0.98 4.48 

130.8 275.5 4.62 0.31 7.88 
279.1 416.2 5.43 0.10 12.60 

 

 

 

 In Figure 2.5, without the Kalman filter, the lines numbered 1, 2, 3, 4, and 5 have 

average measured sensor nodes of 4.5, 17.5, 60.4, 130.8, and 279 respectively. For the 

lines numbered from 3 to 5, the total power consumption fluctuated because when the 

target moved close to the boundary, the decrease in the number of active sensors results 

Figure 2.5: Power consumption during (uniform distribution of sensor nodes) 
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in smaller total power consumption. Line #1 and #2 were reasonably flat because in 

these cases, the relatively small regions of activation   result in fewer active sensors 

irrespective of location of the target in the sensor field.  

  

As the average velocity increased in Figure 2.6, the estimated error had larger 

standard deviation. In Figure 2.7, when the measurement was subjected to a larger 

noise, the variance of the estimated tracking error increased. 

Scenario 2: When the Kalman filter was used, the variance of the estimated error was 

smaller and Figure 4 shows the smoother tracking performance compared to scenario 1. 

As shown in Table 2.1, by using the Kalman filter, only an average of 4.5 measured 

sensors was sufficient to achieve the error variance of 3.63      which was smaller 

than           resulted by an average of 279.1 measured sensors without using 

Kalman filtering. 

 Scenario 3: When the number of average measured sensors and the sampling 

frequency were fixed, slower average velocity resulted in smaller estimated tracking 

Figure 2.6: Average velocity and standard 

deviation of estimated error. 

Figure 2.7: Standard deviation of 

measurement noise and estimated error 

variance 
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error as shown in Figure 2.6. In this scenario, the sampling frequency is 200Hz, the 

standard deviation of state noise and measurement noise were 0.01 and 0.2 respectively, 

and the average number of measured sensors was 6.3.  

 

Figure 2.8: The true and the estimated trajectory with different measurement noise 

levels. The standard deviation of measurement noise is 0.5 on the left side while it is 

0.04 on the right side. 

Scenario 4: In this scenario, the sampling frequency was kept at       , average target 

velocity was three units per second, and the average number of measured sensors was 

6.5. In Figure 2.7, the standard deviation of state noise is fixed at 0.01 while the 

measurement noise has a standard deviation varying from 0.01 to 0.5. The variance of 

estimated error increased with the increase in measurement noise. In addition, with the 

same number of average measured sensors of 6.5, the smaller measurement noise leaded 

to the better tracking performance. The tracking performance, shown in Figure 7, was 

better when the measurement noise is smaller. 
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Figure 2.9: True, estimated, and measured trajectory of the target without sharing 

covariance matrix and state vector to the subsequent master node vs. time. 

Scenario 5: When the master node did not share the knowledge of the target (i.e., the 

target state and the covariance matrix) with the subsequent one, which has to run the 

Kalman filter from the default initial conditions. The change in master nodes was 

indicated by the abrupt jumps in estimated error as shown in Figure 2.9, and the Kalman 

filter required some extra time steps to converge. The measurement noise standard 

deviation was 0.2, while the number of average measured sensor nodes was 7.6. 

In Figure 2.10, the target's true trajectory was the solid black line, and its estimations 

using trilateration with the Kalman filter and without the Kalman filter were the solid 

gray line and the dashed black line respectively. The average number of measured 

sensors was 4.5, and the standard deviation of state noise and measurement noise were 
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0.01 and 0.2 respectively. The Kalman filter yielded both a smaller error variance and 

smoother estimated trajectory. As we zoomed in two small sub figures, the estimated 

position was close to the true position when the target moves in a linear part of the 

sinusoid trajectory. Without using the Kalman filter, the estimated trajectory was noisy.  

Scenario 6: As shown in Figure 2.11, when the sensor nodes were randomly 

distributed, similar results in comparison to the uniform scenario shown were observed 

in Figure 2.5. However, the power consumption line was not as smooth as it was in the 

uniform scenario. Due to the random nature, more sensor nodes covered a specific point 

while fewer sensor nodes covered other points. In order for our algorithm to work 

effectively, at least three sensor nodes had to cover each point in the sensor field. 

. 

Figure 2.10: Tracking performance with and without the Kalman filter 
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In Figure 2.11, the lines labeled 1, 2, 3, 4 and 5 have average measured sensors of 

3.4, 15.7 59.5, 127.2, and 259.7 respectively. Similar to the uniform deployment case, 

the more number of nodes were used for tracking, the higher power is consumed. 

The above results show that a distributed implementation of Kalman filter in a WSN 

was successful in tracking moving targets. The tracking error was small when the target 

follows a linear trajectory while nonlinear trajectories with high target velocities 

resulted in higher tracking errors. However, in all these scenarios, the tracking error was 

12.5% smaller than that obtained in the absence of the Kalman filter. In addition to the 

improved tracking performance, the distributed filter required fewer nodes to be active 

at any given instant, thereby reducing the overall power consumption of the WSN. This 

is significant because the lower power consumption increases the useful life of the 

WSN. 

Figure 2.11: Power consumption of one sampling cycle in random deployment 



40 

 

2.6 Conclusion 

In this chapter, a distributed computation approach was proposed for tracking 

dynamic targets using a Wireless Sensor Network (WSN). The tracking problem was 

mathematically formulated and the tracking error of the distributed Kalman filter was 

rigorously analyzed. It is shown that the proposed algorithm is stable and can track the 

target with predetermined error bounds on the performance. The algorithm is also 

robust to changes in the velocity of the target and measurement noises. It was shown 

that the algorithm reduces the total power consumption in the network compared to 

similar algorithms reported in literature. The theoretical proofs and numerical 

simulations demonstrated the flexibility and power of the proposed tracking algorithm. 
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Chapter 3 

Uncertainty of Trilateration Algorithm 

In the previous chapter, the sensor nodes are assumed to be deployed densely so that 

each point in the sensor field is covered by a large number of sensor nodes. 

Consequently, the uncertainty of the trilateration algorithm is close to Gaussian 

distribution. In this chapter, we relax the assumption of closeness to Gaussian 

distribution, and choose a smaller number of sensor nodes for tracking while still 

maintaining the desired tracking performance. The trilateration uncertainty and its 

relationship to spatial distribution of sensor nodes are addressed and a sensor selection 

algorithm is proposed. Finally, Kalman filter is implemented to further improve tracking 

quality. The approach will be verified by mathematical analyses and numerical 

examples. 

3.1 Introduction 

Surveillance and monitoring have become important applications using Wireless Sensor 

Networks (WSNs). Tracking of a target using range-only sensors poses several 

challenges. The first challenge is to determine the trilateration uncertainty [84, 85] 

associated with the measurements from a set of sensor nodes. The second challenge is 

the selection algorithm [82, 83, 93] that activates a minimum number of sensors within 

the measurement range of the target that result in smallest localizing error. Therefore, 

both total power consumption and communication bandwidth can be reduced greatly. 

The third challenge is to implement the estimation techniques to further improve tracking 
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quality in a distributed manner. Extending the useful life of WSNs by reducing the 

overall power consumption is another challenge that has to be addressed [31, 88]. 

Trilateration is an algorithm for estimating the coordinates of an object given the 

distances from it to known locations. The uncertainty in range measurements and the 

spatial locations of reference objects affect the accuracy of the algorithm. A number of 

methods have been proposed to improve the performance of trilateration algorithm:  

recursive formula [56], closed-form approach [50], joint covariance variance matrix [94], 

Clay-Menger determinant [53], among others. While these works analyzed the 

trilateration uncertainty comprehensively, the computation is complicated except in a 

few trivial cases. Additionally, most of the works used GPS data where the target, on the 

earth surface, lies in the center of a triangle formed by three satellites – resulting in 

smallest trilateration uncertainty. These analyses usually used only three reference 

objects to estimate position of a target while in a WSN four or more may be needed.  

Several approaches for selecting sensor nodes to track the target in systems using 

bearing-only measurements have been proposed in [85, 88]. Selection of sensor nodes to 

balance between the tracking performance and constraints such as communication cost, 

energy consumption, and bandwidth has been proposed in [31, 84]. After the target is 

localized by techniques such as trilateration or triangulation, Kalman filters [66, 95] and 

particle filters [96] have been used for further reducing the tracking errors.  

In this chapter, the trilateration uncertainty is analyzed using the linearization based 

method and the relationship between trilateration uncertainty and spatial distribution of 
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sensor nodes is determined. This relationship is used in the selection of sensor nodes for 

tracking the target. The search algorithm uses the heuristic ranking and greedy technique 

which significantly reduce the computation required. The total power consumption and 

the communication bandwidth are also reduced thereby extending the useful life of the 

WSN. The approach is not computationally intensive and is suitable for low cost WSNs. 

More importantly, trilateration uncertainty can be taken into account during the selection 

of the sensors and improves the performance of estimation techniques [70, 72, 97]. 

While trilateration techniques are used to localize the target, the localizing error is still 

affected by the range measurement error as well as the errors caused by spatial 

distribution of sensor nodes. Thus, the Kalman filter is proposed to further reduce the 

effect of these errors on the estimated position of the target, and a diffusion strategy is 

developed to pass the knowledge of the target in association with its moving trajectory. 

The rest of the chapter is organized as follows: In subsection 3.2, we formulate the 

problem. The trilateration uncertainty is mathematically derived in subsection 3.3. The 

sensor selection algorithm is discussed in subsection 3.5. The numerical analysis is 

presented in subsection 3.6. 

3.2 Problem Formulation 

The problem is formulated similar to the development in subsection 2.1 At time  , the 

dynamic of the tracking system is given by the following equations: 

                (3.1) 

              (3.2)  
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where, 

      : the state of the target, 

           : the process noise with covariance matrix   , 

   : the noise measurement process, 

  : the state equation, and 

  : the measurement equation. 

3.2.1 Measurement Model and Trilateration Algorithm 

The measurement model is given by the following equation 

   ‖     ‖      (3.3)  

where ‖ ‖  is standard Euclidean norm.  

-      : the position of     sensor, 

-        the position of the target, 

-     :  the measurement, and  

-          
  :  the noise measurement. 

Assume that    sensors can sense the target, resulting in    nonlinear measurement 

equations (3.3). For each pair of integers      ,            the     and     

equations in (3.3) are squared and subtracted to represent measurement in the following 

form: 

        (3.4)  

where         ,   
        

 
, and        .        

   
    

   and 

       
   

    
  . 
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   ‖  ‖         
   ‖  ‖

 
  

where         . The map                       is one-to-one.  

The least square solution of (3.4) is given by 

         
        

   . (3.5)  

The measurement equation (3.5) can be linearized as 

             (3.6)  

      : the measured position of the target, and 

      : the trilateration uncertainty with covariance matrix        . 

 The relationship between    and    is described by (3.3), (3.4), (3.5) and (3.6). The 

measurement matrix    is given by 

   [
      
      
      

]. 

Since matrix    is constant, from now on the subscript   is dropped for simpler 

notation     .  

3.2.2  Trilateration Uncertainty, Sensor Selection Algorithm, and Kalman Filters. 

In this chapter, we will find the solutions for the following four problems:  

Problem 3.1: Determine the characteristic of the trilateration uncertainty    or its 

covariance matrix    when    sensors are used in the trilateration algorithm (3.6).  

Problem 3.2: Determine the relationship between     and the spatial distribution of 

sensor nodes. 

Problem 3.3: Select a subset of    sensors that results in minimum trilateration 

uncertainty i.e., to minimize          . 



46 

 

Problem 3.4: Implement the distributed Kalman filter for further improving 

tracking quality in a distributed sense.   

The solutions for problem 3.1 and 3.2 will be presented in subsection 3.3, and 

solution for problem 3.3 will be in subsection 3.4. The Kalman filter is implemented in a 

distributed sense similar to the method proposed in previous chapter. 

3.3  Trilateration uncertainty 

In this subsection, we derive the formula of the trilateration uncertainty matrix    in 

equation (3.6) for: the two-dimensional case, where two and three sensors are used to 

track the target; for three-dimensional case, where four sensors are used. Moreover, the 

formula of    will be generalized in three-dimensional coordinate system with a large 

number of sensor nodes. It is assumed that the range measurement is large in comparison 

with the measurement error. 

The relationship between minimum covariance matrix i.e.,            and the spatial 

distribution of sensor nodes will be discussed. 

0=T m

n

u

v

Φ

α

S1 (m1, n1)

S2 (m2, n2)

m1m2

 

Figure 3.1: Coordinates of two sensors and the target 



47 

 

3.3.1 Uncertainty in Two Dimensions  

Let the coordinates of the target    be       in the two-dimensional Cartesian 

coordinate system represented by     shown in Figure 3.1. Let coordinates of two 

sensor nodes   ,    be          and           respectively. The range measurement 

errors of sensors     and    are random variable   and   respectively,           
  . 

The joint probability density function of two random variables       is given by 

         
 

√    
 
 

 
  

   
  

√    
 
 

 
  

   
 

 
 

    
  

 
     

   
 

. (3.7)  

Theorem 3.1: If the distance from the sensor nodes   ,    to the target   are sufficiently 

large and let the angle       
̂   , then the covariance matrix with respect to two 

random variables   and   in the Cartesian coordinates     is 

    
  

 

     
[

     
     

]. (3.8)  

 

Proof: In Cartesian coordinates    , we have 

  √                √  
    

  

  √                √  
    

  

Suppose that        and   are relatively small with respect to the distance from the 

sensors to the target        √  
    

  and        √  
    

 , we have  

                

                      . 
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Where   the angle between two is vectors    ⃗⃗    ⃗    and   is the angle between two 

vectors   ⃗        as shown in Figure 3.1.  

  √                √  
    

  
                

√                √  
    

 
 

Since      and     ,        ,       , and 
     

√  
    

 
  , then 

  
                

√                √  
    

 
   

  

√  
    

 
  

  

√  
    

 
 

From Figure 3.2,      
  

√  
    

 
 and      

  

√  
    

 
. Thus,          

     . 

The transformation from coordinates   ⃗        to   ⃗⃗    ⃗    is given by following matrix: 

   [
            
            

]. 

Since             , the probability density function with respect to random 

variables       is 

         
 

    
 

 

    
 

 
 

   
                                         

 
 

    
 

 

    
 

 
             

   
 

 

Thus, the covariance matrix with respect to coordinates       is  

    
  

 

     
[

     
     

].   



49 

 

Remark 3.1: The covariance matrix     depends only on the angle formed by the two 

sensors and the target, and the measurement variance of each sensor. Since     does not 

depend on the angle  , it is constant as long as two vectors  ⃗⃗  and  ⃗  are perpendicular.  

Two eigenvalues of     are    and   , and       
   

 

     
    

 . The equality 

holds when        . Thus, when the two sensors and the target form a right triangle, 

the measurement uncertainty is minimized. 
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Figure 3.2: Coordinates of three sensors and the target 

Theorem 3.2: Given three sensor nodes   ,       , and the target   at the origin, the 

angles        
̂   ,        

̂     Suppose that the distance from each sensor to the 

target is sufficiently large. The noise covariance matrix of the target in the Cartesian 

coordinates     is. 

     
  

 

     
[

                              

                          
] (3.9)  

Proof: In order to transform the probability density function (pdf) of three random 

variables  ,  , and   to the pdf of two random variable  , and  , we introduce a 

dummy variable    . The transformation matrix is given by: 
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[
 
 
 

]    [
 
 
 
] 

where 

  [
                    
                    

   

]. 

We have  

             
 

√    
 
   

 
        

   
 

. 

Since            , and  

                  

                                      . 

The pdf of three random variables      and   is given by 

             
 

√    
 
  

 

    
 

 
        

   
 

  

The pdf of two random variables  , and   is the marginal pdf of      and   

         ∫  
 

√    
 
  

 

    
 

 
        

   
 

    

    

  

 
 

    
 

 

     
 

 
 

   
    (           )                            (       ) 

 

From the joint Gaussian distribution property of the above pdf equation, the 

covariance matrix of two random variables   and   can be easily derived.   
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Remark 3.2: The two eigenvalues of     are    and   , and the total variance in two 

directions   and   is:  

                       
    

  

 
  

 

     
                    

(3.10)  

Corollary 3.3: Given a constant   such that       , the total variance    is 

minimized when 

[

  
 

 
             

 

 

  
 

 
 

 

 
           

 

 
    

 

 (3.11)  

where   is an integer. 

Proof:              
    

  
  

 

     
                    

 
  

 

     
[  

 

 
                 ]  

  
 

     
                  

Since   is constant, and                

  
 

     
              

  
 

     
           

Thus, if        or     
 

 
, then  

                
  

 

     
         when             or   

 

 
    

where   is an integer. 

If        or 
 

 
    , then 

                
  

 

     
         when              or   

 

 
 

 

 
 

  .   
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3.3.2  Uncertainty in Three Dimensions  

We now consider the three-dimensional (3D) case. Suppose that the coordinates of 

the target are (       in the Cartesian coordinate system represented by       The 

coordinates of three sensor nodes    ,   , and    are          ,     ,    , 0), and 

    ,    ,    ) respectively.       ,    ,  ) is the projection of    onto the plane    . 

Furthermore, let      
̂   ,               and               where   is the 

angle between     and the plane      and   is the angle between     and the plane 

      as shown in Figure 3.2.   

Theorem 3.4: Suppose the distances from the sensor nodes   ,   ,    to the target are 

sufficiently large,  Then, the sum variance with respect to three random variables  ,  , 

and   depends only on   but not  , and is minimized when        

Since          , the uncertainty in the    axis depends on the uncertainty in     

and    directions. By Theorem 3.1, this value is minimized when       ̂     .  

3.3.3  Uncertainty of Trilateration Algorithm  

The least square solution of equation (3.5) is 

         
        

      (3.12)  

Thus, the trilateration uncertainty is the measurement covariance matrix given by 

    {    
 }     

        
         

    
                                                           (3.13)  

where     {    
 }. 
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Figure 3.3: Trilateration uncertainty by three sensors 

 

Theorem 3.5: The measurement covariance matrix    given in (3.13) is uniformly 

bounded. 

Proof: Since matrix    is deterministic, it is sufficient to prove the matrix    is 

uniformly bounded in the sense that              . Without loss of generality, 

suppose that the target is at the origin.   Let   be a one on one mapping        

              ,         , and    
 

 
        . Thus, for each element  , 

       of                     from (3.13) we have: 

 {   
 }   {          

          
   }

     
   {  

 }  {  
 }  (   

   {  
 }) {  

 } 

 (   
     

 )  
     where 

  {  }      {  
 }    

 . 

 {   
 }                                                        (3.14)  

where and          .  
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Now, suppose            and            where          and        . 

Thus,  {      }    {(         
          

 )          
          

  } 

     
   

     

 {   
 }                                                        (3.15)  

If            and           , then  {      }   . 

Thus, the diagonal elements of matrix     in (3.13) are     some of the elements are 

   (equation (3.15)), and all the other elements are zero. Since matrix    is full rank and 

deterministic, from (3.13)    is bounded.  

3.4  Sensor Selection Algorithm 

In this subsection, an algorithm is proposed to choose three and four sensor nodes that 

minimize trilateration uncertainty. At each step, the algorithm does not need to calculate 

the trilateration uncertainty matrix   , but it exploits the relationship between spatial 

distribution of sensor nodes and   ; which results in significant reduction in required 

computational power. The input of the algorithm includes    sensor nodes within the 

measurement range of the target, their coordinates, and the estimate coordinates of the 

target. Meanwhile, the algorithm determines four sensors and their coordinates.  

The flowing pseudo code is used to select three sensor nodes in two-dimensional 

case.  

Function-2D(  ;  ;   )   

Step 1. Let       
̂    

Step 2. Choose  ,   such  that           is minimized 
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Step 3. For each  , let       
̂    

Step 4. Choose   such that  

i.            is maximized when     
 

 
 

ii.           is minimized when 
 

 
     

Return ( ,  ,  ) 

    is the number of neighbor sensor nodes. 

  =   ..    
  are the coordinates of    sensor nodes. 

    is the estimated position of target. 

   ,      and    are positions of sensors  ,  , and  . 

Theorem 3.6: The Function-2D yields the suboptimal solution that minimizes the 

trilateration uncertainty i.e.,           .  

Proof: By Theorem 3.1 and Remark 3.1, sensors    and     in step 2 are the best choice. 

By Theorem 3.2 and Corollary 3.3, the selection of    in step 4 minimizes           . 

The total number of calculations are: 

        

 
        

        

 
             (3.16)  

The complexity of the Function-2D  is equivalent to     
   which is much smaller 

than (
 
  

) of     
   when exhaustive search is used. 

The flowing pseudo code is used to select three sensor nodes in three-dimensional 

case.  

Function-3D(  ;  ;   )   
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Step 1. Choose  ,   such  that  |          
̂  | is minimized 

Step 2. Choose   such that |                  | is minimized 

Step 3. Choose   such that           is minimized 

Return ( ,  ,  ,  ) 

    is the number of neighbor sensor nodes. 

  =   ..    
  are the coordinates of    sensor nodes.. 

    is the estimated position of target. 

   ,      , and    are positions of sensor  ,  ,  , and  . 

              ) in step 2 is the angle between line      and plane       .  

 Matrix    is given by (3.13) where four selected sensors are   ,      , and   . 

Theorem 3.7: The Function-3D yields the suboptimal solution that minimizes the 

trilateration uncertainty, i.e.,           .  

Proof: By Theorem 3.1 and Remark 3.1, sensors    and     in step 1 are the best choice. 

By Theorem 3.4, the selection of    sensor minimizes the trilateration uncertainty.  

The total number of calculations are: 

        

 
               

        

 
             (3.17)  

The complexity of the Function-3D  is equivalent to     
   which is much smaller than 

(
 
  

) of     
   when exhaustive search is used.  
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3.5  Discussion 

3.5.1  Convergence of the Kalman Filter  

The convergence analysis of the Kaman filter is proved in a similar fashion in Section 

2.3. The noise measurement covariance matrix   , in this Chapter, varies for each 

tracking interval while    is assumed to be constant in Chapter 2. However, the proof is 

still valid.    

3.5.2  Effect of Nonlinear System 

The conditions for the stability of the Kalman filter in equations (2.21), (2.22) are 

necessary, but not sufficient. When the Kalman filter converges, the error covariance 

matrix      is expected to converge to a constant closed to zero, the condition 

      
       will be met easily. The second condition in (2.22) depends on the 

nonlinearity of the system. If the system is highly nonlinear (i.e.,          is large), the 

second condition does not hold. However, according to the proof of stability in Section 

2.3.2, we cannot conclude the Kalman filter is unstable. Thus, the assumptions in Section 

2.2.1 guarantee the convergence of the extended Kalman filter.  

3.6  Numerical Example 

In this section, we first demonstrate the importance of the relationship between 

trilateration uncertainty and spatial distribution of sensor nodes.  

In Figure 3.4a, six sensor nodes were deployed in an area of dimension       unit 

and the movement of the target is represented by a solid line. The coordinates of six 

nodes were given in Table 3.1. In Figure 3.4b, the trilateration uncertainty of all six 
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nodes was generally small than that of three sensors (#1, #2, #3). The trilateration 

uncertainty varied according to the relative location of the target and sensor nodes, and 

was smallest when the coordinate of the target (in x-direction) is about 0.9, where the 

target was close to the center of three nodes (#1, #2, #3). Moreover despite the error in 

the location of the target, the trilateration uncertainty could be estimated as it varied 

smoothly according to the target trajectory. In Figure 3.4c, the trilateration uncertainty, 

when five nodes (#1, #2, #4, #5, #6) were used was much bigger than the trilateration 

uncertainty of two cases in Figure 3.4b. These five nodes were almost collinear. In this 

case, the selection algorithm should choose the three node (#1, #2, #3) configuration 

over these five node one.  
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Figure 3.4:  Sensor distribution and trilateration uncertainty 

 

Table 3.1: Coordinates of sensor nodes 
Sensor node x-direction y-direction 

1 0 0 
2 1.8 0 
3 0.9 2.5 

4 1.9 0.3 
5 2.0 0.4 
6 2.3 0.6 
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Figure 3.5: Selection of three sensor nodes 

In Figure 3.5, 20 sensor nodes were randomly deployed, and the sensing radius was 

4.0 units. When the target was at the location A, three sensors #2, #11, and #19 result in 

smallest trilateration uncertainty. When the target was at the location B, three sensors 

#14, #18, and #19 were the best selection. Coincidently, the sensor node #19 appeared in 

both case. 
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Figure 3.6: Moving trajectory of the target and distribution of sensor nodes 

We now demonstrate the sensor selection algorithm and implementation of  the 

Kalman filter for tracking targets in 3D. The sensor field is assumed to be a cube of the 

dimension         units. Assume that 441 sensor nodes are uniformly distributed 

along a 3D parabolic surface. The target is assumed to move with a sinusoidal velocity 

profile in x and y-direction, while it moved in parabolic profile in z-direction at 0.5 unit 

above the sensor field, as shown in Figure 3.6. The power consumption profile is based 

on the analysis in subsection 2.6.2. 
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Figure 3.7: True and estimated trajectory of the target and distribution of the sensor 

nodes. Estimation error is smaller when more sensor nodes are used for tracking. Four 

sensor nodes used for tracking were selected based on the algorithm given in Theorem 

3.7. Tracking error is greatly reduced using Kalman filter. 

 

Figure 3.8: Power consumption of the sensor network during the tracking. 
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3.7  Conclusion 

This chapter addressed the trilateration uncertainty during the tracking of dynamic 

targets using a Wireless Sensor Network. The relationship between the trilateration 

uncertainty and the location of the sensor nodes can be exploited during the selection of 

the nodes to track a target. The tracking performance was further improved by 

implementing the Kalman filter. Moreover, the proposed algorithm reduces both the 

computational cost and the total power consumption in the network compared to similar 

algorithms reported in literature. The numerical simulations demonstrated the flexibility 

and power of the proposed tracking algorithm. 
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Chapter 4 

Mobile Robot Assisted Target Tracking 

Target tracking using Wireless Sensor Networks (WSNs) is a widely studied application 

area. However, the available power at each sensor node and the energy required to 

transmit the sensed information to a network sink have limited the use of WSNs in target 

tracking applications. In this chapter, we study the use of a mobile robot, working in 

conjunction with the WSN, to track a target. The trilateration approach from Chapter 2 

and 3 is used to detect the presence of the target and a Kalman filter is used to estimate 

its location. An algorithm is proposed that enables the selection of a minimum number of 

sensor nodes to track the target and to determine the path of the mobile robot for efficient 

tracking. Theoretical proofs are developed to mathematically demonstrate the 

convergence of the target tracking algorithm. 

4.1 Introduction 

 Target tracking using Wireless Sensor Networks (WSNs) is a widely studied application 

area. However, tracking of targets using WSNs poses several challenges. The first 

challenge is the selection of a set of sensor nodes [82, 83] within the measurement range 

of the target that results in the smallest bias in estimation. Due to the effect of geometric 

dilution of precision [93, 94], a set of small sensor nodes can improve the accuracy of the 

estimation while a large number of sensor nodes can result in significant localization 

errors. Once the required nodes are determined, the second challenge is to determine the 

uncertainty of the trilateration algorithm [83, 95, 96] and to further reduce localization 
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errors. Moreover, the implementation of complex tracking algorithms is difficult due to 

the low computational capability of the nodes. In a large scale sensor network, the 

tracking algorithm should be implemented in a distributed fashion [84]. In such 

distributed implementations, the handing over of knowledge of the target from one 

master node to the subsequent one is another challenge to be addressed. Further, the 

estimated data has to be transmitted to the sink, a process that requires significant power 

and bandwidth allocation. Extending the useful life of WSNs by reducing the overall 

power consumption is another challenge that has to be addressed [31, 88]. 

The use of mobile robots in surveillance, perimeter patrol, and target tracking 

applications has also been widely studied [78]. Motion planning of nonholonomic 

mobile robot was presented [79, 80]. Coordinated control of mobile robots was 

addressed by Jung and Sukhatme in [81]. However, determining the location of a target 

using one mobile node is not an easy task. The use of mobile robots in conjunction with 

WSN can address this problem. 

In this chapter, we propose a novel method for solving the above challenges by using 

a mobile robot to assist sensor nodes to track the target. The mobile robot uses the range 

measurements from the active nodes and executes the trilateration algorithm to 

determine the location of the target, and implements a Kalman filter to further reduce the 

tracking error. The mobile robot is assumed to move freely around the sensor field. 

Based on the estimated trajectory of the target and its current position, the mobile robot 

plans selects a trajectory that minimizes the total distance traveled.  In contrast to  

Chapters 2 and 3, this approach eliminates the need (1) to hand-over between leader 
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nodes and (2) to communicate with the network sink. Numerical simulations and 

mathematical analysis verify the effectiveness of the proposed method in reducing error 

in the estimated location of the target. The planning strategy also minimizes the path of 

the mobile robot. 
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Figure 4.1: System overview 

4.2 Problem Formulation 

 The tracking of the target is accomplished by a ground based mobile robot. The robot 

follows the trajectory of the target on the ground and is within one-hop communication 

of the sensor nodes in the neighborhood of the target. The mobile robot selects a set of 

sensor nodes to measure the distances to the target and to transmit these distances to the 

mobile robot. The mobile robot then runs the trilateration algorithm to localize the 

coordinates of the target and executes the Kalman filter for further noise reduction. The 

following assumptions are made for the theoretical development in this chapter: (1) 

Mobile robot has the necessary computational capability to determine its location by 

range measurements from sensors and, (2) the mobile robot can move freely in the 

sensor field. 
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4.2.1 Tracking System 

The settings of the problem are similar to the one given in subsection 3.2. We consider 

the tracking problem for only 2D coordinate system. At time  , the dynamic of the 

tracking system is given by the following equations: 

              (4.1)  

              (4.2)  

where 

      : the state of the target, 

           : the process noise with covariance matrix   , 

   : the measurement noise, 

  : the state equation, and  

  : the measurement equation. 

4.2.2 Measurement Model and Trilateration Algorithm 

The measurement model is given by the following equation 

   ‖     ‖      (4.3)  

where ‖ ‖  is standard Euclidean norm,  

-      : the position of     sensor, 

-        the position of the target  

-     :  the measurement, and  

-          
  :  the noise measurement. 
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Assuming that    sensors can sense the target, resulting in    nonlinear measurement 

equations (4.3). For each pair of integers      ,            the     and      in (4.3) 

are squared and subtracted to represent the measurement in the following form. 

        (4.4)  

where         ,   
        

 
, and        .        

   
    

   and 

       
   

    
  . 

   
         , 

   
        

   ‖  ‖         
  ‖  ‖

 
   

where         . The map                       is one-to-one.  

The least square solution of trilateration algorithm in (4.4) is given by 

         
    

    
     (4.5)  

The measurement equation (4.5) can be linearized as 

              (4.6)  

      : the measured position of the target, and 

      : the trilateration uncertainty with covariance matrix        . 

 The relationship between    and    is described by (4.3), (4.4), (4.5) and (4.6). The 

measurement matrix    is given by 

   [
   
   

 
 
]. 

Since matrix    is constant, the subscript   is dropped to simplify the notation, 

i.e.,     .  

4.2.3 Movement of the Mobile Robot 

A simplified dynamical representation of a car-like mobile robot can be expressed as  
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[
  ̇
  ̇

 ̇

]  [
    
    

 
]       [

 
 
 
]   (4.7)  

where         are the coordinates of the center of the mobile robot, and   is the 

orientation of the robot with respect to the East direction. Whereas,   ̇      ̇   ̇ represent 

their derivative counterparts.   is the speed, and   is the steering angle of the front 

wheels as shown in Figure 4.2. Let      and      be the maximum speed of the target 

and maximum steering angle of the mobile robot. The constraints of the system are  

φ

ω

East

North

 

Figure 4.2: Diagram of a car-like mobile robot 

 

{
      

      
. (4.8)  

Let          and         . The equation (4.7) can be expressed as  

[
  ̇
  ̇

 ̇

]  [
    
    

 
]    [

 
 
 
]   . (4.9)  

The constraint in (4.9) becomes 
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{
              

            
  (4.10)  

The control problem is to find an input   such that the mobile robot is still within one 

communication hop from the sensing nodes at time     while the total traversed 

distance is minimized. 

4.3 Movement Strategy of the Mobile Robot 

Let the coordinate of the mobile robot at the time   be           represented by point 

   in Figure 4.3. Let the estimated position of the target be at           represented by 

point   , and the target heading is          , i.e., the vector       
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗.  Let the sensing 

radius and communication radius be    and   , respectively. The uncertainty of the 

estimated target is    . In order for the mobile robot to be within one communication 

hop of the neighborhood of the target, the next position of the mobile robot      has to 

satisfy the following condition: 

                         (4.11)  

Thus,                                     . Obviously, if          

             , the mobile robot does not require to move. In order for the mobile 

robot to move from point    to point     , the system (4.7) needs to be locally 

controllable.  

Theorem 4.1: The system (4.7) of the car-like mobile robot with constraint (4.10) is 

locally controllable.  
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Theorem 4.2: There exists an optimal path from    to       which minimizes the 

travel distance. 

The proofs of Theorem 4.1 and 4.2 are given by Laumond [80] and Reeds [97]. 
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Figure 4.3: Movement of the mobile 

robot 
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Figure 4.4: Measurement uncertainty of one 

sensor 

Theorem 4.3: If at time   , the mobile robot is within one communication hop of the 

nodes that detect the target, the moving strategy described above guarantees that the 

mobile robot is within one communication hop of the target during the time    to       

Proof: When the target moves from    to     , the mobile robot moves from    to 

    .  Let                . We have          and            . 

If           , (the sampling time), is sufficiently small, both the target and mobile 

robot move in linear trajectory. Thus, for any            ,              .   
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4.4 Trilateration Uncertainty and Sensor Selection 

Suppose that the range measurement of each sensor node is subjected to white Gaussian 

noises       
  . After using the trilateration method, the covariance matrix of the 

measurement noise of the target in Equation (4.5) is   . If    nodes can sense the target, 

the mobile robot has to select a set of minimum number of sensors while still 

maintaining the predefined tracking performance. Understanding the relationship 

between    and the spatial distribution of sensor nodes, a greedy algorithm can select a 

set of sensors that minimizes the variance of trilateration uncertainty, i.e.,          .  

The sensor selection algorithm bases on the greedy approach. First, the intersection 

criterion removes nodes whose coordinates are closed to collinear. Secondly, the 

selection of two sensors that gives the best trilateration performance bases on Theorem 

3.1. When two sensors are chosen, the third sensor is selected according to Theorem 3.2. 

If more sensor nodes need to be selected for reducing trilateration uncertainty, the next 

selected sensor will minimize           in Equation (4.5). 

4.4.1 Intersection Criterion 

Let    be the distance from the sensor node    to the target, and   be the probability that 

the target is in the donut shape of radius      and      in Figure 4.4, where 

      (   is the standard deviation of the measurement noise). Let     and    be the 

distances from two sensors   and    to the target, respectively; and       . Thus,   is 

the probability of the target is in either one of two darker shaded areas in Figure 4.5c, if 

the following conditions hold. Assume       . 
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{
          
           

 (4.12)  

  The first condition in equation (4.12) avoids the case in Figure 4.5b, while the second 

condition guarantees that the scenario in Figure 4.5a does not happen. 

 

4.4.2 Angle Criterion and Choice of Two Sensor Nodes  

After the Intersection Criterion is met, any choice of two nodes results in small 

uncertainty of the target as shown in Figure 4.5c. A linear approximation of the shaded 

area can be represented as a parallelogram. By Theorem 3.1, the two nodes are selected 

if       is minimized, where the angle   is formed by the two nodes and the target. 

4.4.3 Choice of Three Sensor Nodes  

By Theorem 3.2, the third sensor node    is selected given the first two    and   . As 

shown in Figure 4.6, the     is the bisector of the angle      ̂.  

Figure 4.5: Measurement uncertainty of two sensor nodes. The settings in (a) and (b) 

result in larger uncertainty in comparison with the setting in (c) does. 
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Figure 4.6: Choice of the third sensor 

4.4.4 Choice of Four and More Sensor Nodes  

According to Equation (4.5), the measurement covariance matrix    is given by 

    {    
 }     

        
         

    
            (4.13)  

where     {    
 }.  

By Theorem 3.5, the trilateration uncertainty           is uniformly bounded. The 

fourth sensor is chosen so that            is minimized. 

4.5 Discussion 

The covariance matrix    in (4.13) depends only on both: the angle   (formed between 

the two sensors and the target shown in Figure 4.6) and the measurement variance of 

each sensor. Two sensors     and   , (whose angle between them and the target       
̂  

 ) result in minimum trilateration error when      . According to Theorem 3.2, the 

third sensor that minimizes trilateration errors is the sensor    such that     is the 

bisection of the angle       
̂  as shown in Figure 4.6. 
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Figure 4.8: Movement of the mobile robot with different communication ranges. 

The dots, triangular and square symbols represent the trajectory of the target; trajectory 

of the mobile robot with communication range of 2.0; communication range of 4.0, 

respectively. 

Figure 4.7:  Movement of the mobile robot along a sinusoid trajectory 
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4.6 Numerical Examples 

We considered some scenarios to demonstrate the effectiveness of the proposed system. 

The examples in this section refer to figures 4.7 - 4.10. Along the same lines as in 

chapter 3, the sensor field is assumed to be a square of the dimension        units, in 

which 441 sensor nodes are randomly deployed.  

In Figure 4.7, the dots represent the locations of sensor nodes. The bold curve 

represents the trajectory of the target, while the curve with triangular symbol represents 

the trajectory of the mobile robot when the communication range was 2.5. When the 

target moves along a sinusoid trajectory, the mobile robot is expected to move in a 

similar fashion. However, as the target changes its heading, the mobile robot tends to be 

moving less and sometimes does not move at all.  

4.7 Conclusion 

In this chapter, we studied the use of a mobile robot working in conjunction with the 

WSN to track a target. A path is selected for the mobile robot such that the target is 

tracked while minimizing the total distance traveled by the robot. The proposed 

algorithm enables the selection of a minimum number of sensor nodes to track a target 

resulting in lower power consumption in the WSN. The overall tracking performance is 

enhanced through the implementation of a Kalman filter. It was shown that the proposed 

technique eliminates: the handover process between master nodes and the 

communication between the nodes and the network sink. Hence, the mobile robot can 

track the target more efficiently and reliably. 
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Figure 4.9: True and estimated trajectory of the target in one direction. Without 

using the Kalman filter, the tracking error was high and fluctuated as shown in green 

line. When the Kalman filters were used (black and red lines), the tracking errors 

were reduced. 
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Chapter 5 

Enhancing the Life Time of a Wireless Sensor Network in Target 

Tracking Applications 

In this chapter, we propose a method to enhance the life span of the WSN under the 

constraint of tracking quality. The problem is cast as an optimization problem to 

minimize the power consumption cost function under the constraint of tracking quality. 

The cost function accounts for both the residual power of each sensor node and its 

sensing task. The cost function increases when the residual power of a sensor node 

decreases or a sensing task requires more power.  The improvement in the tracking 

performance obtained by the proposed method is demonstrated through numerical 

examples. 

5.1 Introduction 

Target tracking is one of the important applications of a Wireless Sensor Network 

(WSN). Difficulties in the deployment of WSNs and the limited capabilities of each 

node restrict their long term utility for most applications. Some of the challenges that 

need to be addressed are the energy consumption, useful life, and quality of information 

obtained using these networks. These problems take on added importance in target 

tracking applications where the target is dynamic and the sensor measurements are noisy.  

Energy consumption and tracking quality [98] are two main challenges in tracking of 

a dynamic target using WSNs. To save energy consumption, Fang and Li [99] proposed 

a distributed estimation method for reducing communication and compressing  data. 
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Other approach [100] minimized quantization error and transmission power. Lin at et. 

[101] investigated the energy-efficient multiple sensor scheduling, and calculated the 

optimal sampling time to meet the tracking performance. Several sensor activation 

schemes were used in [102] to reduce power consumption under the effect of tracking 

quality. Smart scheduling methods  [87, 103] were proposed to activate appropriate 

sensors for the tracking and to deactivate the  “low-quality” sensors. The main purpose 

of these methods is to save the energy consumption and to prolong the network life 

time. Moreover, the tracking quality metrics, defined in these works, did not address the 

relationship between trilateration uncertainty and geometric distribution of sensor 

nodes.   

To track a dynamic target using range-measurement sensors, the trilateration 

uncertainty [51-55] is used as a main metric for tracking quality, which depends on both 

the sensors’ locations and the location of the target as discussed in Chapter 3. Thus, a 

small number of sensor nodes can result in small tracking errors while a large number of 

nodes can result in poor tracking performance.  

 In this chapter, a method to improve the life span of the WSN while maintaining the 

desired level of tracking quality is proposed. The problem is formulated as an 

optimization problem where the power consumption is minimized under the constraint of 

tracking quality. The power consumption cost function depends on two parameters: the 

current residual power and the power expected to be consumed for a sensing mode. The 

cost is inversely proportional to the residual power of the node. Each sensor node 

operates in four modes (sleeping, active, sensing, and master mode) sorted as increasing 
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power consumption; a sleeping node consumes much less power than a master node 

does. By minimizing the cost function under the constraint of trilateration uncertainty, 

the nodes with more residual power are scheduled for more power-intensive tasks, while 

the nodes with low battery power are scheduled to be in sleeping mode. The selection 

algorithm is suboptimal while the computational cost is significantly reduced. Another 

aspect of the algorithm is that it is implemented in a distributed manner, and is scalable 

to a network of a larger number of sensor nodes.  The Kalman filter is proposed to 

further improve tracking quality. At a time instant, only one master node plays a role as 

the fusion center, which runs the Kalman filter and the selection algorithm.   

5.2 Problem Formulation 

 We consider the problem of target tracking using a wireless sensor network. A two-

dimensional sensor field is densely deployed with stationary sensor nodes, which are 

equipped with transceivers, computational platforms, and range measurement units.  

When a target is in the sensing field, the challenge is the scheduling of sensor nodes: 

which sensors should be in sleeping mode; which sensors sense the target; which sensors 

run the tracking algorithm. Due to the effect of geometric dilution of precision, the 

spatial distribution of selected sensor nodes affects the performance of the trilateration 

algorithm. In order to extend the life time of a sensor network, sensors with more 

residual  power are preferable to low residual  power ones. The proposed power 

consumption cost for using a specific sensor is a deceasing function with respect to its 

residual power. The optimization problem is to choose a set of sensor nodes that 

minimize the power cost function while still meeting the constraint of trilateration 
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uncertainty. The sensor selection algorithm also enables the distributed implementation 

of the tracking algorithm, i.e., Kalman filter. 

5.2.1 Power Consumption Model and Cost Function 

The power consumption cost function accounts for two conditions: the residual power of 

each node and its operating modes. To simplify the problems, it is assumed that each 

node has four operating modes (sorted as increasing power consumption) including: 

sleeping mode, active mode, sensing mode, and master mode.  Moreover, the power 

consumption of each sensor in a particular operating mode is constant. 

Let   be the number of sensor nodes in the sensor field. Let               , 

where     represents the operating mode of the     node, and    {       } (the values 

       and   represent sleeping, active, sensing, and master mode, respectively).   

Let the residual power of a node be   (if    , the node is depleted, while     the 

node has its full power). Let               be a continuous and decreasing function. 

Let the operating mode of the     node be   , and let     be the total amount of power 

consumed in a tracking interval. The power consumption cost for the     node is defined 

as  

   ∫       
     

 
. 

(5. 1) 

The total cost function of the network is        ∑   
 
   .  
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5.2.2 Power Saving Optimization Problem  

Let   be the power set of all the possible combination of of all the nodes’ operating 

mode. The size of   is   . 

Let       be a trilateration quality set function such that  

              . (5. 2) 

Where    is the trilateration uncertainty computed by (8) with the sensor nodes with 

    . 

Let       be the power consumption cost function such that 

     ∑∫       
     

  

 

 

 
(5. 3) 

where   ,   , and    are the residual power, operating mode, and power consumption, 

respectively, in one tracking interval of the  th node.  

Given a predefined bound on uncertainty error   our optimization problem is: 

             

                 

(5. 4) 

 

To solve this problem we divide it into three small problems: selection of the master 

node, selection of sensing nodes, and finally selection of the active nodes. 

5.3 Algorithm and Analysis 

In this section, the algorithm for selecting the master node, sensing nodes, and active 

nodes are discussed. Since only sensing nodes affect the performance of the trilateration 



83 

 

algorithm (i.e., matrix   ), the master node, sensing nodes, and active nodes can be 

selected independently in terms of trilateration quality function      in (5.4).   
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Figure 5.1: Distribution functions of the master node. The distribution of the cost 

function in the heading of the target should be the heavy tailed, and distributed of the 

cost function in the y-direction should be bell shape. 

5.3.1 Selection of Master Nodes  

During each tracking interval, the master node transmits a broadcast message, receives 

data messages from the nodes within the measurement range of the target, and computes 

the Kalman filter. The master node consumes more power than other nodes; hence, the 

node with more residual power is preferred. On the other hand, the master node should 

be in the heading direction of the target so that the hand-over process can be kept less 

frequent. The choice of the master node does not affect the choice of the sensing nodes 

in terms of tracking performance, but it has an effect on the total power consumption 

cost function.  

Suppose that the current location of the target at time   is    and the estimated 

position of the target at time     is     . The heading direction of the target       
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ is 

coincident with the  -direction. The optimal distribution function of the master node 

should be  
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              (5. 5) 

Where    and   , the bell shapes as shown in Figure 5.1, are distribution of the master 

node in   and   directions respectively. The optimal position of the master node is the 

position that         is maximized.  

Let    be the total normalized power consumption cost a master node and the cost 

for transmitting data packet to the network sink. The weighted cost function for 

selection the sensor node is  

               . 
(5. 6) 

Where  , and   are weight constants, and      .  

5.3.2 Selection of Active Sensor Nodes  

The active nodes that are in the sensing radius and along the heading of the target are 

selected based on the method proposed in Chapter 2.  

5.3.3 Schedule and Selection Algorithm  

After the master node and the active nodes are selected, the following algorithm will 

choose the set of sensing nodes that minimize the power consumption cost function.  

The inputs of the algorithm are:    sensor nodes     [           
], the target 

coordinate  , their residual power     for       , and range measurement    

for       . The output is a set of selected sensors               . 

The main idea of the algorithm is the use of heuristic ranking system which depends 

on the power consumption cost. The suboptimal approach is to minimize the total 
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indices of the sorted costs. Instead of minimizing the total cost          ∑   
 
   , the 

algorithm minimizes their sum of indices      .  

Step 1: Calculate the power costs    ∫       
     

  
 (   represents the sensing task) for 

each sensor by equation (5.1), and sort the cost such that  

              
. 

Step 2: Eliminate collinear nodes. If two or more sensor nodes together with the target 

are collinear or closed to collinear, all the nodes are eliminated from the selection pool 

except 2 nodes with maximum residual power. After the collinear elimination 

processes, no set of three collinear sensor nodes exists. Thus, nodes with large 

trilateration uncertainty are eliminated. 

Step 3. Search for three best nodes that minimized the power consumption cost. 

For each set                    . 

 Calculate      by (5.2) for nodes             , if        (  is  

predefined trilateration uncertainty). 

 Choose         such that      in (5.3) is maximized. 

Theorem 5.1: The algorithm above results in the suboptimal solution of the 

optimization problem (5.4).  

Proof: Suppose that a solution of the algorithm is the set            ], and      

   . Clearly,  

       
        

        
        

         
(5. 7) 
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Let                ] be another solution of the problem (5.4). 

Obliviously,               due to the condition for the algorithm to stop. There 

exists a set              such that  

{
 

 
       

       

       

             

 

Hence,          ,          , and           and by (2.7) 

       (            ]   (            ]         . 

Thus,   is the optimal solution for the Step 3. Since some sensor nodes are eliminated 

by Step 2, the solution is suboptimal.   

5.4 Discussion 

5.4.1 Selection of the Power Cost Function 

In equation (5.1), power profile function      is a decreasing continuous function and it 

is selected based on the characteristic of a specific type of sensor nodes and on the 

power management strategy.  

5.4.2 Selection of the Master Node 

 In equation (5.6), if   is large, the weighted cost depends more on the current residual 

power of the sensor and its cost to transmit data to the network sink. If    , (or   

 ) the node with lowest power consumption cost is selected, but it can be outside the 

communication range of the target’s sensed nodes in the next tracking interval. On the 
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other hand, if     (or     ), the selected master node is in the heading of the target, 

but its residual power may be low.  

5.4.3 The Selection Algorithm  

In worst case scenario, the calculation time of the selection algorithm is equal to that of 

exhaustive search. However, the proposed algorithm performs much better in practice.   

5.5 Numerical Example 

The following example uses a sensor field of dimensions       units to demonstrate 

the selection of a minimum number of sensor nodes and implementation of distributed 

Kalman filter for target tracking. Assume that 441 sensor nodes are randomly deployed 

in this sensor field. The power consumption profile using in the simulation was based 

on the analysis in [1], even though our approach did not depend on any specific 

hardware platform. Let     ,    ,        ,      ,       , and       be the transmitting 

power, receiving power, active power, sensing power, sleeping power, and 

computational power respectively. The power consumption in each operation modes is 

defined as follows. 

 Sleeping mode:          . 

 Active mode:               . 

 Sensing mode:                         . 

 Master mode                            where   is the number of 

sensing nodes. 
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Figure 5.2: Trajectory of the target and distribution of the sensor nodes. 

Figure 5.3: The sensor nodes represent by the dots. Radiuses of small circles are proportional 

to the residual power of sensor nodes. The squares represent the small group of sensors left 

after running the collinear elimination algorithm. The sensors inside the big circle are able to 

sense the target. Three sensors #1, #2, and #16 minimized the power cost while still 

satisfying the required trilateration uncertainty. Meanwhile, three sensors #1, #2, #3 yielded 

the minimum power consumption cost, but did not meet the trilateration uncertainty 

condition. 
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The target was assumed to move along a sinusoid trajectory as shown in Figure 5.2. 

The sensing radius was 1.4, and the simulation time was 10 seconds. The measurement 

noise variance   =0.1, and the state noise variance         . 

In Figure 5.3, the target were at (4.3, 6.2), and the sensing radius was 2.0. 20 nodes 

within the sensing range of the target were assumed to have uniformly random residual 

power. The trilateration constraint was        in equation (5.4). 

The overall tracking performance along the x-direction is shown in Figure 5.4. The 

tracking performance was improved by using the Kalman filter. The true coordinate of 

the target was 9.5 in x-direction while the initial value for the filter was 8.0. The 

estimated error was initially high, but it reduced greatly after about 0.3 second. The 

tracking performance (in black solid line) of three nodes (which resulted in minimum 

trilateration uncertainty) was better the performance of three nodes (red line) – which 

resulted in minimum power consumption cost. However, as shown in the Figure 5.4, the 

difference was not significant.  

In Figure 5.5, the average number of sensed nodes before collinear elimination was 

24.3, which resulted in 2,529 exhaustive search attempts. After collinear elimination, 

only average 6.1 sensed nodes remained, which the average total search attempts 

reduced to 27.9 while the average actual search attempts were 19.5.   
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Figure 5.5: Number of sensed nodes before and after collinear elimination 

 

Figure 5.4: True and estimated trajectory of the target in x-direction. Without using the 

Kalman filter, the tracking error was high and fluctuated as shown in green line. When 

the Kalman filters were used (black and red line), the tracking errors were reduced. The 

red line was the performance when three nodes (which minimized power cost) were used. 

When three nodes (which minimized trilateration uncertainty) were used for tracking 

(black line), the tracking error is smaller and smother  
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5.6  Conclusion 

In this chapter, a solution for the optimization problem to minimize the power cost 

function of a WSN was proposed. The algorithm reduced the computational complexity 

and extended the life time of the network while satisfying the required tracking quality. 

Nodes with more residual power were preferred for power intensive tasks while nodes 

with low residual power were scheduled to sleep. The numerical examples show that the 

validity of the proposed approach. 
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Chapter 6 

Conclusions and Scope for Future Work 

The tracking of a single target using a WSN was investigated in this dissertation. The 

sensor nodes were assumed to be stationary, have sensing and communication 

capabilities, and densely deployed in the region of interest. Further, the sensed 

information is transmitted to a network sink in a multi-hop fashion or through a cluster 

head that is one hop from the sensor node. The tracking of target using range-only 

sensors was divided into four small problems: implementing the distributed Kalman 

filter to reduce tracking error; analyzing the uncertainty of trilateration algorithm and 

tracking the target with minimum number of sensor nodes; using  a mobile robot to assist 

the tracking for improving reliability and performance; and increasing the life span of the 

network.  

The background of WSNs including issues such as deployment and coverage, MAC 

protocols, Routing protocols, and their applications were covered in Chapter 1. 

Consequently, the target tracking problem using a WSNs was surveyed. To track a 

dynamic target, the WSN has to localize the target first by localization methods (e.g., 

trilateration or triangulation), and then applying estimation techniques (e.g., Kalman 

filters or particle filters) to enhance the tracking performance. The use of autonomous 

vehicles and the energy efficiency issues were also reviewed. 
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In Chapter 2, distributed Kalman filter was implemented in a WSN to track dynamic 

targets. The approach was distributed in the sense that, at an instant, only one master 

node executes the Kalman filter using the range estimates from a set of sensor nodes in 

the proximity of the target. Several factors affecting the tracking quality are studied 

including velocity of the target, variance of the measurement noise, nonlinear trajectory 

of the target, number of sensor nodes used for tracking, and the retention of learned 

knowledge (i.e., states of the target and covariance matrix). The total power consumption 

was shown to decrease as the number of sensors (used for tracking) decreased. However, 

the trade-off was that the tracking quality also decreased. Mathematical proofs were 

developed to study the convergence of the estimated errors. Numerical simulations 

showed that the quality of tracking improved significantly with the use of Kalman filter. 

The uncertainty in the localization of the target through trilateration was rigorously 

analyzed in Chapter 3. The analysis showed that a small set of nodes is adequate to 

guarantee small trilateration errors. Increasing the number of nodes used for trilateration 

could result in large localizing errors. By understanding the relationship between 

trilateration uncertainty and the spatial distribution of sensor nodes, an algorithm was 

developed that could choose a set of minimum number of sensor nodes to effectively 

track the target.  

In Chapter 4, the use of a mobile robot in conjunction with the WNS was proposed to 

track target more efficiently and reliably. The mobile robot, equipped with powerful 

computational platform, eliminated both the hand-over process among sensor nodes and 

the need to transmit data from the sensors to the network sink. This significantly reduced 
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the power consumption of WSNs and improved the tracking quality. The moving 

strategy of the mobile robot assured that its traversed path was minimized and within 

one-hop communication of the sensor nodes (which measured the distances to the 

target).  

The central topic of Chapter 5 was to enhance the life time of the WSN. The problem 

was cast as an optimization problem that minimized the power consumption cost under 

the constraint of tracking quality (i.e., trilateration uncertainty). The cost function 

accounted for both the residual power and the computational requirement of each sensor 

node. The cost is inversely proportional to the residual power and directly proportional to 

the computational overhead of a node. The trilateration uncertainty was chosen as a 

quality metric. The optimization problem was solved by heuristic ranking method and 

linear elimination process. Numerical analysis showed that the algorithm was 

computationally efficient, and more importantly, extended the life span of the WSN. 

The dissertation opens some questions for future research. One of the questions that 

has to be addressed is the procedure for the tracking systems to deal with issues such as 

error in synchronization of the clocks on the sensor nodes, error in locations of sensor 

nodes, and the dependence of measurement noise on the distance to the target. 

In this dissertation, the mobile robot was assumed to be able to move independently 

in the sensor field. In reality, however, the mobility of the robot can be limited by 

obstacles. The robot might also not have a direct line to sight to the network sink causing 

it to the sink through multiple communication hops. The path planning in such 
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circumstances is bound to affect the tracking performance of the system. The practical 

deployment of mobile robots to augment WSN in tracking multiple dynamic targets is 

another area that future research has to address.  
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