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ABSTRACT

Soil-structure interaction problems are both highly interesting higthly
complex. To model soil-structure interaction problems accuratetyconstitutive parts
(i.e. foundations, soils, and superstructures) must be considered. Imphgrike finite
element technology necessary to analyze soil-structure interacproblems is a
significant task. In this work, structural elements were addethé¢osoil analysis
computer program TeraDysac (Muraleetharan et al. 2003, Ravicha@d&h and the
soil-structure interaction in integral abutment bridges (IABay wtudied. |ABs are a
form of bridge where the superstructure ends are cast itiyegrth the abutments. The
abutments, which are supported on piles in weak-axis bending moventheway from
the backfill soils when the bridge deck undergoes thermal loading. These brolgds p
numerous advantages to traditional bridges including reduced maintenanpéer s
bridge hardware, and better water-tightness. However, becaussupleestructure
movement is not accommodated with rollers or bearing pads likadititnal bridges, a
complex soil-structure interaction problem emerges.

Three-dimensional (3D) Timoshenko beam elements and Reissner-Motatin
elements were developed. The merging of soil and structurakeets allows bridge
models to be developed that consider all of the components of an adtige for a
realistic manner. In addition to the structural elements, randlidoading scheme and a
nonlinear beam bending stiffnesg) scheme were also developed. In IABs, the
abutment piles sometimes yield and hence enter a nonlinear smgenonlineaik]
application may be important. Both linear elastic and bounding swstdcmodels were

considered in this work to model the stress-strain behavior of soils.
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Several soil-structure interaction problems were analyzed invtitls. Beams on
elastic foundations were studied and comparisons were made betvadgrcanresults
and the solutions obtained from a TeraDysac finite elementsasialA nonlinear soil-
structure interaction analysis using TeraDysac with a boundingcsudlay model is
compared with results obtained from LPILE (ENSOFT 2007), which asgps-y
approach.

To test and validate the developed finite element technology, résuttsthe
field instrumentation of an IAB in Minnesota were used (see Hearad. 2004). Two
thermal events were studied in this work, a heating event duringutimener and a
temperature drop during the winter. The IAB used for the vatidatas a zero skew
angle. A series of two-dimensional (2D) analyses were used to studydbe behavior.
A method for obtaining the approximate 2D structural properties izisiied. A 3D
analysis comparing the Minnesota IAB superstructure (no skewa akdwed version of
the same superstructure is presented. A non-uniform abutment movamiestress
distribution in the backfill soils in the skewed example show the itapoe of a 3D
analysis when IABs are skewed.

The reinforced concrete behavior at the bridge site was studabetail using the
finite element program TeraGrande (ANATECH 2005). TeraGrandedels the rebar
accurately and uses a smeared crack concrete model. Sigmiftcdinear behavior (e.g.
cracking) was not seen for the thermally-induced abutment movem&heyefore, the
developed linear structural elements were deemed acceptabtbefdAB analyses

performed in this work.
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1.Introduction

1.1 General

Bridges present a challenge for both structural and geotetkngiaeers. The desirable
characteristics of a bridge include simple construction, minine@htenance, smooth
riding for users (including transition areas over abutments and)perster-tightness,
and long service lives. Bridges are interesting soil-structure intargobblems because
cyclic loading due to heating and cooling causes the superstructoreve relative to
foundation soils. Generally speaking, these movements are smaltabube quite
important from an engineering standpoint.

Traditional bridges (see Figure 1.1) accommodate cyclic loaditiy the following
components: simply-supported girders, roller supports at interraediants, and
expansion joints at approach slabs. These components allow for expamsion
contraction of the roadway during thermal loading cycles withoutldewe significant
loads in the superstructure. The major pitfalls of traditiondigers include: rough riding
for users (specifically over the bridge abutments), poor wagbtriess, leakage through
joints, corrosion of bearings and girders, freezing of trapped wateints, and high

levels of required maintenance.
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_Figure 1.1: Schematic DraTving of a Traditional Bridgé

In an integral abutment bridge (IAB), there is continuity in thdde system (see Figure
1.2). These systems have numerous advantages over traditional .bridge=ly, the
girder-supporting hardware is simpler, less maintenancejisreel, and construction is
easier. Today, IAB systems can be found in almost every sitese systems are
superior to traditional bridges in several areas, but are ngtgutsued because there are
still uncertainties with respect to their behavior and desiga Gepter 2). A typical
IAB system consists of the following components: a bridge strpetsre (consisting of
the roadway deck, abutments, piers, girders, parapet wallsgddshafts and pile
foundations, and select fill and native soils. The bridge supersteus generally a
reinforced concrete deck sitting on pre-stressed concrete giadleneavy duty steel
sections. The piers are typically resting on drilled slmaftdations, while the abutments
are located on driven steel H-piles in weak-axis bending. abliments move due to
thermal effects in IABs as opposed to traditional bridges whelersahnd expansion

joints allow the bridge deck to move, but the abutments remain stationary.
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Figure 1.2: Schematic Drawing of an Integral Abutment Bridge

1.2 Modeling

To study the behavior of IAB systems, modeling that consideksssaicture, and their
interaction needs to be done. Underlying and backfill soils in $&ems need to be
modeled accurately. A soil model accounting for the complexitiesrent to soils,
namely solid, liquid, and gas constituents, hysteresis, plastic d&fonnpore water
pressure development, anisotropy, and load- and time-dependence #&bleesiA

structural model which can account for the relevant behavior a$uperstructure (i.e.
the girders and deck) and the foundation (i.e. the piles and drilléid)sisaalso needed.
Coupling soil and structural models provides a basis for modeling baBavior

accurately. Once the finite element technology is in place afidatel against
instrumented results, then many different bridge geometries, foondadé¢signs, and
loading scenarios can be simulated to gain insight into IABpeance during various

events.



1.3 Finite Element Technology

Analytical solutions for real world problems are often impossioleobtain. So
mathematical models are formed and numerical techniques areouised @pproximate
solutions. For example, the finite element and finite differenethods can be used to
solve governing differential equations and find numerical approximatidreyaDysac
(Muraleetharan et al. 2003, Ravichandran 2005) is a fully-couplednsdyiséss code with
considerations for pore water and pore air pressure and soil nonjine&aunding
surface plasticity soil models (Dafalias and Herrmann 1982, Yogdcia 1991) are
available in addition to a linear elastic constitutive model. This work dsrdiadding a
Timoshenko beam element and a Reissner-Mindlin plate element tdetad®ysac
computer code. Also, the capability to model thermal eventsvisiajeed. Coupling
beams, plates, and soil elements in a finite element model &dloa user to simulate
real-world systems. Though this work focuses on IABs, the technology dedelapéde
extended to other systems (e.g. buildings and their foundations, pditielgcand

offshore olil rigs).

1.4 Computational Framework

Models of complex systems such as an IAB require a high numbenitef elements,
sometimes on the order of hundreds of thousands to obtain accurate résidtmeans
that big problems can not be analyzed on single processor pecsonaliters. Even
medium sized problems may take days or even weeks to analyzsiogleaprocessor
machine. In practice, this is unacceptable, so parallel computirigogused. Dividing
a large problem up into smaller parts and then using a differecggsor to analyze each

part allows for a significant decrease in computational tinte.this work, the parallel



processing capabilities available within the TeraScale dvamnk (ANATECH 2001)

were utilized.

1.5 Objectives
The objectives of this work include the following:
1. Develop and implement structural elements (beams and plates) in TeraDysac
2. Knowing that foundation elements (i.e. driven piles) can go beyondingein
some IAB systems, implement an algorithm to account for this behavior.
3. Develop thermal loading capabilities in the finite element code.
4. Analyze IAB systems (soil and superstructure) for various takload cases and
validate the results against instrumented field studies.
5. Use an external nonlinear finite element application, TeraGraANATECH
2005) to verify that linear assumptions for superstructure elementeeptable
for this work.

6. Gain insight into IAB performance and design.

1.6 Dissertation Layout

This dissertation is organized into 8 chapters. Chapter 2 providésratulie review
considering previous and relevant work to the field of IAB modelinghapter 3
discusses all of the relevant finite element technology. Chapter 4 deals watrsciilire
interaction. Modeling thermal events is discussed in Chapter 5Sptetté contains the
TeraGrande finite element analyses which substantiate the udieeaf structural
elements in TeraDysac. Chapter 7 provides all of the TeraDgsalts and comparisons
with monitored field studies. Chapter 8 contains concluding remarksuggestions for

future work.



2.Literature Review

2.1 Integral Abutment Bridges

In traditional bridges, structural releases are provided in kidgepermit thermal

expansion and contraction. These joints lead to water-tightness psob&fater runoff

into newly opened deck joints can cause extensive damage. Watedesorthe

underlying steel elements (girders, supports, connection hardwaye,Vater can also
damage the concrete and expose reinforcing steel and subseqoerdtie that. This
problem is magnified in states subject to heavy snow stormsewbdium chloride and
calcium chloride are commonly used in de-icing applications. Tiergence of joint

problems came in the 1960s as traffic loads increased in speedgeyaindweight. The
cost of maintenance or replacement of expansion joints is a caide@ortion of the

total money spent by state Departments of Transportation (D&VEsy year. Joints and
bearings in traditional bridges have emerged as major soufd@sdge maintenance
problems (Wolde-Tinsae and Greimann 1988).

In an IAB, there are no rollers or simple supports at the abutmémttead, the girder
ends are cast integrally with the abutment, hence the terminohbggral abutment
bridge. These bridges have been commissioned for some tiates Bte Ohio, Oregon,
and South Dakota have been employing IABs since the 1930s (HassidtiRoman

2005). IABs have shown to be better from a fiscal standpoint thamidredibridges.

They generally have a lower construction cost and much lowerylifle costs because of



minimal maintenance. Retrofitting traditional bridges with Ifgtures has also been
shown to be cost effective (Nickerson 1996).

In IABs, the thermal loading causes bending in the piles supportingibhsments.
Flexibility at the abutment is provided by the use of a stub amitrsupported by a
single row of piles in weak-axis bending. In some cases, piéeplaced in predrilled
holes and then filled with sandy material. Approach slabs ardlyusoured behind
integral abutments in order to prevent compaction of backfill sgilsaffic loading and
offer a smooth transition to the bridge (Arockiasamy et al. 2004).

A numerical study conducted by Yang et al. (1985) investigateceffieet predrilled
oversized holes have on abutment pile response. A finite element ahdeéaim-column
elements and nonlinear soil springs was used for the study. Tikerexsealed that
oversized holes, especially holes drilled to significant depths dich nucalleviate
overstressing the steel H-piles used under the abutment. withesit oversized holes in
harder materials such as stiff clay or compacted fill gam@vn to develop plastic hinges
much quicker for prescribed transverse tip displacement than ihemezparts with
predrilled holes.

IABs have proven to be economical and effective in eliminating jpaibtenance issues,
but they are not without problems. When the bridge expands and contracig dur
thermal loading, soil at the interface is disturbed. Ground subgdad@acent to
abutments (under approach slabs) has been observed. Subsidence bediudintbat
wall can cause structural problems in the approach slab if lgeludids are significant as

vehicles pass over the slab. In the long term, these bridgesusa & buildup of lateral



earth pressures on the abutments due to the soil-mechanics phenomenon known as
ratcheting (Horvath 2004).

In some cases, special additions are made to IAB systemtevaat@ high pressures
behind the abutments and high stresses in the abutment pilesld AXperiment was
conducted in North Dakota which addressed this matter (Jorgenson ¥9&3Y. m IAB

with concrete box girders was instrumented and monitored for a perimake year. 10

cm thick strips of compressible pressure relief materiaévypéaced in a slot between the
abutments and the granular backfil. 5 cm layers of the miateei@ placed on both

sides of the abutment pile webs. These piles were in oversizesl filelé with sand.

These methods were shown to be effective in this case,layigiding of the abutment

piles was observed and plastic hinges did not form.

2.2 Current Practices

IABs have been in use for many years, but there still is no @&rapsive design
procedure. Each state highway department manages its own liglegi@aent program
and establishes guidelines with regard to design and construction. haMiolg an
organized design and construction procedure leads to variation in tysigndesign,
and construction practices of IABs between states (Arockiasamy et aJ. 2004

An excellent survey on current practices in the United State€andda was conducted
by Kunin and Alampalli (2000). The responses from 39 states and @anadvinces
provided insight into the differences in IAB design and constructionipeact With the
exception of one state, the opinion of the bridges was positive. DagMe expensive
repair operations on bridge approaches, Arizona did not recommend B Msst

agencies were found to use AASHTO recommendations for tempenzduiaion



according to their region and the following formula to calculate @stimated bridge
thermal movement:

AL = aATL (2.1)
where a is the coefficient of linear thermal expansion of the supersteicdT is the
temperature change, ahds the bridge length. Passive soil pressure was commonly used
behind the abutments, but some states use an active and passive combiiatiee
agencies reported not considering earth pressure in their desigmaajofity of the
responses revealed that skew effects are not considered vpidlttrés soil pressure. A
significant number of agencies (almost half) design piles ysdtel axial loads. The
p —y program LPILE (ENSOFT 2007) was used by some of the agemcid¢iseir pile
design. In addition to soil nonlinearity, LPILE can consider structwalinearity (e.g.

loss of bending stiffness in the piles).

2.3 Skewed IABs

A skewed IAB is one in which the abutments are not perpendiculdretooadway
centerline (see Figure 2.1). A comprehensive survey of highwartdegnts in all 50
states was conducted to determine design practices and perterrobskewed IABs
(Greimann et al. 1983). This survey revealed 26 states werg sistwed IABs, but
designing them primarily based on local experience. No thedreticeomputational

methods were used in most of the designs. There was noticealdgomam the

practices from state to state, including abutment pile orientaioihthe use of batter

piles for certain skew angles.
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Figure 2.1: Skew Angle Depiction

A field experiment on a Maine IAB with a 20° skew angle showed#ukfill pressure
behind the abutments is affected by skew angle (Sandford andyEl®®48). Pressure
cells were mounted behind abutments to monitor skew effects. Thelasied for 33
months and revealed that the backfill behind the obtuse corners af éfBerienced
significantly higher pressure (more than double in some locatitwas) the backfill

behind the acute corners. Figure 2.2 depicts the obtuse and acute angléd3in an |

AN
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Roadway center line

Obtuse corner

/
\

Figure 2.2: Obtuse and Acute Corners in IABs

Alampalli and Yannotti (1998) performed an in-service evaluatioABElin New York.
IABs were graded based on the New York State DOT conditiomgratiale for bridges.
Bridge ratings were lower for both steel and concrete strpetures when the 1ABs

were skewed. Greater skew angles were linked to poonegsadccording to their work.
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A recommendation of a maximum bridge skew angle of 30° was pewiging further
study. In a paper by Comstock and Dagher (1993), rearrangindoniggudinal
reinforcement in the bridge was shown to delay cracking in the mkgokthe abutment
walls. By placing more steel in the obtuse corners, the bendingemi@nd shear force
capacities in the obtuse corners of the bridge were increadad.ddlayed cracking in
the obtuse corners and ultimately led to a more uniform crack pattern acrosskthe dec
In a study conducted by Steinberg et al. (2004) on two Ohio skewedinsegnal
abutment bridges, the forces developed in the wingwalls werelfto be significant. It
was recommended that these forces be considered in the desigaspras opposed to
designing the wingwalls simply as retaining walls. A sgbset finite element analysis

showed the reaction at the wingwalls to increase with bridge skew angle.

2.4 Soil-Structure Interaction

In analyzing soil-structure interaction problems, sometimedaaieelements are used in
finite element programs to simulate behavior at the interfa¢® important phenomena
at the interface are relative slipping and shear resisttanogefitial behavior) and bearing
and gapping (normal behavior). Two dimensional (2D) elements or ‘Zeickiless
Elements’ have been around for years (e.g. Goodman et al. 1968, Beer 186).
thickness elements using a Mohr-Coulomb failure criterion have emmsto model
interface behavior of retaining walls with good accuracy, but nualestability issues
emerge in some problems (Day and Potts 1994). Three dimensional (3D) eleitieats w
finite thickness or ‘Thin-Layer Elements’ have also been usemddel soil-structure
interfaces (e.g. Desai et al. 1984). These elements requionstitutive model for

implementation. Usually experiments and simple lab tests ai@med on the soil and
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the interface (e.g. a direct shear test between concreteclaydto obtain various
parameters such as the normal and tangential stiffness. Anpipreraeh models the
structure and soil separately, but uses constraint equations t@imaiompatibility of
force and displacement between the two. This so-called ‘Hybrethdd’ can
accommodate the relevant modes at the interface and also hashbeents be more
numerically stable than the above methods because there aresthp different
magnitudes of numbers in the stiffness matrix (Lai and Booker 1991). This wbtlsevil
tied contact between shared soil and structure nodes. Althougprdicisdure has its
limitations, the coupling of soil and structural elements is a dosidstep to modeling
soil-structure interaction. The development of an interface elenwerdte used in
conjunction with this work may need to be pursued later. Howeverthéorsmall
displacements in the IAB modeling for thermal effects consiiérere, tied contact

should be acceptable.

2.5 Instrumentation Projects

There have been numerous IAB instrumentation projects in the literatyr&éanema et
al. 2005 and Sandford et al. 2006). Fennema et al. instrumented anccdraalymee-
span bridge (52.4 m bridge length, zero skew angle) in Pennsylvania. projeet
examined several uncertainties of IAB design, performed figdioring, and analyzed
the bridge with three levels of numerical modeling. The arsalgsels included laterally
loaded pile models using commercially available software, 20esiognt models, and
3D finite element models. Multilinear spring stiffnesses waegeloped through a
sequence of linear regressions tfit y curves at depths corresponding to locations of

soil springs defined in the bridge structural analysis modleé instrument data from the
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bridge site was used to refine the numerical models. The muodets then used to
predict IAB behavior of other Pennsylvania bridges of similar construction.

A field monitoring effort during the construction of an IAB in Maine (30 m brigegth,
35° skew angle) revealed bending stresses from dead loads arengoiteant (Sandford
et al. 2006). Some agencies explicitly calculate bending gffeat many neglect dead
load bending in piles. This monitoring effort revealed stresses liiending by abutment
rotation due to dead load should be included in the design process. Ifidpe isr
skewed, bending in piles perpendicular to the centerline should also be computed.
Major work has been done in the field of IAB instrumentation, monitpang analysis
through the University of Minnesota (see Huang et al. 2004). An I|ABtddcin
Rochester, Minnesota (65.6 m bridge length, zero skew anglejnaagored from the
beginning of construction through several years of service. khare 180 instruments,
including tiltmeters, strain gauges, and pressure cells, wstalled in and around the
bridge during construction to monitor loading effects. Various weatiterding devices
were also set up at the bridge site to monitor temperature aad radiation. The
primary movement of the abutment was found to be a horizontal tiansho
accommodate superstructure expansion and contraction due to seasonal. chihieges
was a net inward movement of the abutments over time. An esemsmerical study
was also performed. The numerical modeling showed thap theg method could
simulate soil-pile interaction reasonably well. The work providaatignsight into IAB
performance and a wealth of results from instrumentation, sonvaich will be used to

validate the proposed finite element code.
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An IAB instrumentation effort is currently underway in Lawton, Oklaa (64.3 m
bridge length, 10° skew angle). The Oklahoma Transportation Cpragrct (No.
OTCREOS7-1-37) will provide data including weather information, abuttnamslation,
rotation, pile curvature, and earth pressure. Skewed IABs araaltypret built in
Oklahoma, so the project results will help determine the courséhéoskewed IAB

program in Oklahoma.

2.6 Important Loading Cases

There are many factors to be considered when designing thegdicadeu systems.
Static, live, cyclic, and dynamic loading scenarios ar@adsible. Because of the size
and weight of highway bridges, the effect of gravity loadilone is an important load
case. As discussed previously, thermal loading is of major importanéds. In a
paper by Paul et al. (2005), the thermal forces developed in psestrgisder IABs were
found to be comparable in magnitude to those caused by live load. Tdrkiskhowed
the largest thermally induced superstructure forces to be foundheeabutments. After
studying several parameters that influence thermal loatiey, concluded that bridge
length and abutment height strongly influence thermal forces. rdilgments have a
larger cross-sectional area exposed to the backfill soil, so upore exgginsion there is
a greater passive soil resistance leading to higher sumptusérdorces. In addition to
traffic loads and creep of the superstructure, earthquakes atdollding may also need

consideration.
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3.Finite Element Technology

3.1 Soil Element

3.1.1 Governing Equations

The soils modeled in this work are assumed to be saturated (iesigimer air in the soil),
but capabilities exist to model unsaturated soils in TeraDysae Ravichandran 2005).
The governing equations are written in standard indicial notation beloBee
Muraleetharan et al. (1994) for further reference to the foriounlaif the governing
equations. Tensile normal stresses and strains are assumegkpd3aitiewater pressure,
h, is assumed positive in compression. The following equations apphepresentative

unit volume of the soil-water mixture, see Figure 3.1.

Pore fluid

Solid grains

Representative unit volume

Figure 3.1: Soil-Fluid Mixture

The equation of motion for the grain-fluid mixture is given by:
0iji + pg; — (1 —n)psii; — npy (uj + 7) =0 (3.1)
whereo;; is the total stress tensay; is the displacement of the soil skeletpy,is the

density of the solid graingy is the density of the pore fluig; is the body force per unit
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volume (generally, gravitational acceleration)is the porosity of the mixturey; is the
average displacement of the fluid relative to the soil skeletontbath; is the Darcy
velocity. The density of the mixturg, is given by Equation 3.2.

p=(1—-n)ps+nps (3.2)
The porosity is related to the void ratidhrough:

n = ﬁ (3.3)

Using Equation 3.2, the Equation 3.1 can be rewritten as follows:
0y + pg; — pl; — psWj =0 (3.4)
The equation of motion for a unit volume of pore fluid is given by Equation 3.5.

Conservation of mass for the solid-fluid mixture is given by:

. . n , 1-n\ - 1-n i
€ = —Wi; — (K_f+ K. )h + T5ij,<_l: (3.6)

whereg;; is the strain tensor for the soil skeletéfp,is the bulk modulus of the pore fluid
(typically on the order of T0— 1¢ kPa), K, is the bulk modulus of the solid grains
(typically on the order of 18 — 1G° kPa), ands;; is the Kronecker delta. Due to the
magnitude ofK,, the compression of the solid grains due to inter-granular pes@sar
last term on the right-hand side of Equation 3.6) is essentialby ZEnerefore, this term
will be omitted from this point further. The combined bulk modulys;an be found by

evaluating Equation 3.7.

= l-}— 1n (37)

1
r  Kf K

Therefore, Equation 3.6 can be rewritten as follows:

16



. . h
€ii = ~Wii — 1 (3.8)

The equation used for classical small-strain kinematics is given by &iq3a8.

€ij = %(ui,j + u;;) (3.9)

A large deformation formulation is also available in TeraDysac (see Radi@ra2005).
The effective stress, total stress minus pore fluid pressuréghd soil skeleton is given
by Equation 3.10.

oi; = 0;j — ho;; (3.10)

The fourth-rank tensob;;,; holds the various elastoplastic moduli. The relationship
given by Equation 3.11 is sufficiently general to accommodate anytitcbine
relationship describing the effective stress-strain relationshipe soil skeleton. The
last term on the right-hand side includes the rate of change of strain-indejsnelsses.

./

= Djjuiér + 6}j, (3.11)

The boundary conditions applied on the soil boundaries are given in the form of
Equations 3.12 and 3.13.

Tj = d;jV; Or u;given (3.12)

Q or hgiven (3.13)
wherev; is the unit normal an@ is the fluid flow rate across the boundary. The total
displacement of the fluid is given by:

Up = u; + 2 (3.14)

The final forms of the governing equations are given in Equations 3.15 and 3.16.

(1 - n)psu] - nzkfj_l(l']i - ul) - Fn(l - n)Ul-‘ij - F(l - n)zui,ij

—(1-n)psg; —0i;; =0 (3.15)
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Tlpr] - nzkfj_l(Ul- - ul) - I”anl-,l-j - Fn(l - n)ui,ij —Nnprgj = 0 (316)

Note:
ul- = N]uU.ﬁ (317)
U; =N/U, (3.18)

where u; is the nodal solid displacement amf is the nodal fluid displacement.
Generally, the shape functiong* and N]U are different, but in this work they are the

same.

The bilinear shape functions are given by:

NEM =7 (1+EE)A +nym) (3.19)
Nno summation ove.

The governing equations can be written in matrix form as follows:

Ma+Cv+K,d+p=f (3.20)
a = vector of nodal accelerations = {?]ji} (3.21)
!
v = vector of nodal velocities = {152} (3.22)
!
d = vector of nodal displacements = {Zfl} (3.23)

In the definitions ofx, v, andd, the indiced and/ indicate node numbers andnd; are
associated with the spatial coordinates of the displacement, yelocitacceleration
vector. The solution vectors v, andd are multiplied by the coefficient matricés C,
andK,, and the resultant inertial, damping, and stiffness force veateraugmented by

the internal and external load vectgrsand f, respectively. The integrals are defined
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over elemental domairns,,, wherem ranges over the number of elememd&’) and over
boundary segment,, and where ranges over the number of element sidé$)( The

finite element matrices are defined by:

M, O
M = mass matrix = [ l (3.24)
0 M,
My = X3 [y Ni*(1—n)psN}'dQ (3.25)
M, = ¥NE, me N/'np; Ny dQ (3.26)
G —G
C = damping matrix = l r l (3.27)
—C;  C3
¢, =3NE, [ N¥(nkj; )NjdQ (3.28)
C, =3NE, [ NP(n?k;; )NYdQ (3.29)
C;=3NE, [ NY(n2kj; )NV dQ (3.30)
Ki K
K,, = pore fluid stiffness matrix = 3.31
Pt leT KJ 53
Ky = XmZs Jo NI (1 —n)?NjidQ (3.32)
Ky = EmZs [, NijIn(1- n)2N};dQ (3.33)
K3 = YN me NIL,’anzle,]idQ (3.34)
. P1
p = internal load vector = { 0 } (3.35)
P1 = Xma me Nyjo{;dQ (3.36)
: fi
f = applied load vector = (3.37)
2
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fi =ZnE o, NI —n)psg;dQ + X2, [, N(T; + nhv;)psg,;d® (3.38)
f2=XN fﬂm N,Unpfgjdﬂ -2 fq,n NIUnthch (3.39)

The integration of the element matrices for the four node quadsistes performed
using a Gauss-Quadrature (2x2) or a Uniform Gradient (one-peiattise reduced

integration with Belytschko hourglass control) formulation. A dedadiscussion of the

Uniform Gradient element is discussed in Ravichandran (2005).

3.1.2 Linear Elastic Constitutive Model

In 3D, the constitutive model is given by:

(1-v)

0

011 v v 0 0 €11
Oyr v 1-v) % 0 0 0 €22
033 . v v 1-v) 0 0 0 €33
012 ~ @va-zv) 0 0 0 @ 0 0 €1 (3.40)
Oy 0 0 0 0 2 0 |ley
031 0 0 0 0 0 E2les
whereE is Young’s modulus and is Poisson’s ratio.
The 2D model in TeraDysac uses a plane strain assumption, thus
633 = 631 = 623 = 0 (341)
The constitutive relationship collapses to the following:
[011] (1 —v) v v 0 [6111
022 g v 1-v) % 0 ilexnl
S R— 3.42
0-33 (1+V)(1—2V) v vV (1 - V) 0 633 ( )
01z 0 0 o 3|,
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3.1.3 Bounding Surface Constitutive Model for Clays

For clayey soils in TeraDysac, the constitutive model usethasone developed by
Dafalias and Herrmann (1982, 1986). The model is based on the concept of thedpoundi
surface in stress space (see Figure 3.2). The bounding surfacensised of two
ellipses and a hyperbola. The three-surface model yields er loetscription of the
material response for heavily overconsolidated soil (Dafalia$ lderrmann 1986).
Inelastic deformations are allowed to occur for stress poirtksnwthe bounding surface.

A radial mapping rule is used to relate the actual stress (Ipjijitto an “image” stress
point on the bounding surfacg [). The value of the plastic modulus depends on the

distance between the actual stress point and the “image” stress point.

Critical State Line

GT N(cr)
J
4 Asymptote - D =A(a)lo

Bounding Surfac
F(IJ,a,eP) =0

’
’
’
’
__________________

Hyperbola\ I

F;1

o Ellipse 1

7 Elastic Nucleus!
Ellipse 2

=Tl | = lo(€”)
Projection Center

Figure 3.2: Bounding Surface Representation (Clayey Soils)

The bounding surface parameters for Speswhite Kaolin, the softusky in a later
analysis, were determined from experimental results. The p#aen (from

Muraleetharan et al. 1994) are given in Table 3.1:
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Table 3.1: Bounding Surface Model Parameters for Speswhite Kaolin

Property Value
Liquid limit 69%
Plasticity index 31%
Specific gravity 2.62
Permeability (m/s) 1.7*10°
Traditional Model Parameters

Slope of isotropic consolidation line en-Inp’ plot A 0.25
Slope of elastic rebound line en-Inp’ plot K 0.05
Slope of critical state line in - p’ space (compression) M, 0.88
Ratio of extension to compression valugvbf M,/M, 1.0
Poisson’s ratio v 0.3

Bounding Surface Configuration Parameters

Value of parameter defining ellipse 1 in compression R 2.4
Value of parameter defining the hyperbola in compression A, 0.01
Parameter defining ellipse 2 (the tension zone) T 0.01
Projection center parameter C 0.0
Elastic nucleus parameter S 1.0
Ratio of triaxial extension to triaxial compression valud of A. /A, 1.2
Hardening Parameters

Shape hardening parameter in triaxial compression h. 3.0
Ratio of triaxial extension to triaxial compression valué of h./h, 1.0
Shape hardening parameter on thaxis h, 2.0
Notes:

e = void ratio, p’ = (01 + 203)/3, q = 0, — 03

3.1.4 Bounding Surface Constitutive Model for Sands

A bounding surface constitutive model for sands developed by Yogachdd@&i) is

available in TeraDysac. The model uses the theory first ojgeelby Dafalias and
Popov (1976). The important features of the model include: the allovdngl@stic

strains to occur within the bounding surface, a non-associative flowwhitsh more

accurately describes the behavior of dense sands (e.g. dilation)pmasidecation of
plastic strain during unloading which can help capture cyclic molahty liquefaction.

Figure 3.3 is a schematic of the bounding surface for sands. Tiwseslldefine the
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bounding surface and a plastic potential is used to define the incedmkastic strain

direction.

éaN(e) Critical State Line

A PlasticPotential Surfac

- - N(0)
U(,],0) =0

Ellipse 2

!

Bounding Surface

F(TlTl 9' qn) = 0

Ellipse 1

1
1
I
I
I
I
!
1
1
1
1
1
I
I
I
r
1
1
1

T, [0 lc=Clo 1/RO) 1 lo
Figure 3.3: Bounding Surface Representation (Sands)

To calibrate the bounding surface parameters for sands a tatlezst six laboratory
tests should be performed (Yogachandran 1991). These tests include:

e isotropic or anisotropic (§ consolidation or drained compression test with both
loading and unloading (one test)

e consolidated-undrained (preferably) or drained triaxial compressidrextension
tests, with pore water pressure measurements on specimens iratabsense
states (four tests)

e consolidated-undrained triaxial cyclic loading test with poreewdgiressure
measurements (one test)

The model parameters for Nevada Sand with relative densit#3 ahd 60% have been
presented previously (see Muraleetharan 1995). They are usedi¢otlgeiiselection of
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bounding surface parameters for the Minnesota IAB analysis destua Chapter 7.
Generally, only the parameters given in the two right hand colafiable 3.2 require
calibration.

Table 3.2: Bounding Surface Model Parameters

All Sands Nevada Nevada
Sand Sand
(D = 40%) (D, = 60%)

Traditional Model Parameters

Slope of isotropic consolidation i 2 - 0.007 0.009
one -Inp’ plot

Slope of elastic rebound line on K - 0.003 0.002
e —Inp’ plot

Poisson’s ratio v 0.3 - -

Bounding Surface
Configuration Parameters

Slope of line OA (Fig. 3) ig - p' M, - 0.89 0.89
space (compression)

Ratio of extension to compressionM, /M, - 0.61 0.61
value ofM

Value of R in triaxial compression R, - 1.5 1.5
Ratio of extension to compressionR, /R, 1.0 - -
value ofR

Related to gradient of ellipse 2 on « - 5.0 5.0
[-axis

Projection center parameter C 0.0 - -
Tension zone parameter T 0.005 - -
Parameter defining the initial size 1,/1 - 1.0 1.5

of the bounding surface

Plastic Potential Surface
Configuration Parameter
Slope of critical state line (M), - 1.33 1.44

(compression) i - p’ space

Hardening Parameters During

Loading

Shape hardening parameter in h. - 2.0 2.0
triaxial compression

Ratio of triaxial extension to he/h¢ - 0.05 0.05

triaxial compression value af
Shape hardening parameter on the h, (he + he)/2.0 - -

[-axis
Hardening parameter m 0.02 - -
Deviatoric hardening parameter g, 1.0 - -
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Deviatoric hardening parameter - 0.5 0.4

Hardening Parameters During

Unloading

Unloading hardening parameter  H,, - 0.2 0.2
Unloading hardening parameter Yu 0.9 - -

Additional Parameters

Atmospheric pressure (kPa) P, 101.4 - -
Transitional value of confining P, P,/3 - -
pressure

Notes:

e = void ratio,

p' = (01 +203)/3, g =0y —0;

3.2 Beam Element

A low order beam element has been developed for TeraDysaclowlweder element is
compatible with the four node soil quadrilaterals and eight node hexagmhalements,
which have a linear variation of displacement between nodes. righelément has six
degrees of freedom at each node (three displacements and thremsptaFigure 3.4
shows a typical element with nodal variables designated for the right node.

y ¥

\

Rl
6,

Figure 3.4: Beam Element Nodal Variables

Linear interpolation is used between the nodes. Figure 3.5 showsodhginate

transformation needed to interpolate nodal unknowns.

Node 1 Node 2

@ @
é:-l é:O é=1

> ¢

Figure 3.5: Beam Element Coordinate Transformation
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x can be written as a function &f
x=2(1+8) (3.43)

wherel is the length of the beam.

The linear interpolation functions are:
M) =2 (1-9) (3.44)

N2(§) =>(1+9) (3.45)

The Jacobian is given by:

_ax_é
]—5—2 (3.46)

The inverse of the Jacobian is given by:

=2 (3.47)

L
3.2.1 Stiffness Matrix
Axial Stiffness
The displacement components for the element are given as follows:
u=ulx) =X, Ny (3.48)

The axial strain in the beam is given by:

=2 (3.49)
The constitutive relationship is given as follows:
o = Ee (3.50)
whereE is Young’s modulus.
The total strain energy in the element is given as follows:
U==[, e'odV ==2] e EeaV (3.51)
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where V is the element volume. The 2x2 stiffness matKy,;,;, can be found by
minimizing the total strain energy. DenotiRgas the axial force at nodeandu; as the

displacement in x-direction at nodethe result is given as follows:

— (3.52)
whereA is the cross-sectional area of the beam.
Torsional Stiffness
The displacement components for the element are given as follows:
Ox = 0x(x) = X1 Ny (3.53)
The shear strain in the beam is given by:
y = r% (3.54)
wherer is the distance from the centroid of the beam.
The constitutive relationship is given as follows:
T=0Gy (3.59)
wheregG is the shear modulus of the beam.
The total strain energy in the element is given as follows:
U=%fv yTTdeng vy Gy dv (3.56)

The 2x2 stiffness matrix(;,sionai,» &N be found by minimizing the total strain energy.
DenotingT; as the torque at nodeandéd,; as the rotation about the x-axis at nogthe

result is given as follows:

G -G
T 2 (0
_ (3.57)
-G G
n) |5 2\
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where] is the polar moment of inertia of the beam.

Bending Stiffness

Timoshenko beam theory (Timoshenko 1921) is used with reduced integratitwe on t
shear terms to develop the beam elements for TeraDysac. ed@lbeed integration
eliminates the shear locking problem that emerges for thin beams.

The displacement components for the element are given as follows:

v=v(x) = Y2, Ny, (3.58)
6, = 6,(x) = X, N0, (3.59)
The total rotation of the plane originally normal to the neutred akthe beam is given
by:

0,=——v (3.60)
where v is transverse displacemerajt;ié is the slope of the mid-surface, apds the

constant shearing strain across the section.

Rearranging, the shear strain in the beam can be written as follows:

y=%_¢g, (3.61)
Because the actual shearing stress and strain vary over tieabea,A, the shearing
strain given above is an equivalent constant strain on a correspondangasteeA,. A
constantk is introduced to account for this.

k== (3.62)
The constitutive relationship is given as follows:

T = kGy (3.63)

whereG is the shear modulus of the beam.
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The bending strain in the beam is given by:

€=y~ (3.64)
wherey is the distance above the neutral axis of the beam.

The constitutive relationship is given as follows:

o, = Eey (3.65)
whereE is Young’s modulus.

The total strain energy of the beam is given by:

U=:f, &"aydV+-f, y'rdv =1 € Eeydv +5[, vy Gydv (3.66)

The 4x4 stiffness matriX{y,cnqing, Can be found by minimizing the total strain energy.
DenotingV,,; as the shear force in the y-direction at nad#,; as the bending moment
about the z-axis at nodev; as the displacement in the y-direction at njdendé,; as

the rotation about the z-axis at nddéhe result is given as follows:

wherel, is the moment of inertia about the z-axis of beam.

V. GAk GAk —GAk GAk E v
(V1) L 2 L 2 (1)
GAk El GAKL —GAk —EI GAKL
M, Elg | GAKL 4 01
2 L 4 2 L 4
I \ (3.67)
—GAk —GAk GAk —GAk
A I Gak Gak v,
L 2 L 2
GAk —EIl, GAKL —GAk EI, GAKL
M) | T R D

The above relationship applies to bending of the beam in the x-y plameanalogous

formulation can be applied to obtain the bending stiffness in thplare. The result is

given

by:
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- GAk —GAk —GAk —GAk

(Va1 L 2 L 2 (V1Y
—GAk EL, = GAKL GAk —El, = GAKL
1\43/1 _— -y + — — —7 + — 9y1
2 L 4 2 L 4
X \ — $ b (3.68)
V., —GAk GAk GAk GAk w,
L 2 L 2
—GAk —El,  GAKL GAk EL, = GAKL
M) : oak £y cam | \g )
L L 4 2 L 4

wherel, is the moment of inertia about the y-axis of beam. Putting all of the components

together yields the full stiffness matrix for the 3D beam element:
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1€

( P1 \ T 0 0 0 0 0 T 0 0 0 0 0 r Uq W
Vys o Z£ o o 0 &k o = o o0 0 ex vy
L 2 L 2
Ve o o £ o L 0 o o = o —GAk 0 w,
L 2 L 2
T, o o o 2 0 0 o o o 0 0 021
My,| |0 o =& o Iy, &K 0 o o k& o b, o 0 0,1
2 L 4 2 L 4
My, o & o o 0 R = R 0 2 S 6
2 L 4 2 L 4
[ _ { ) (3.69)
P, = 0 0 0 0 0 = 0 0 0 0 0 Uy
Vys o = o o 0 —Gak o 2 o o 0 —GAk vy
L 2 L 2
V,o 0o o ==& 9 Gak 0 o o £ 9 Ak 0 w;
L 2 L 2
T, o o o < 0 0 o o o 2 0 0 02
My, 0o o &k o o 0 o o & o Dy o 0 Oy2
2 L 4 2 L 4
M) o 25 0 o 0 ZBlp | GAKL o ZGAk 5 0 Bty y S4KL | g,,)

2 L 4 2 L 4



Denoting the 12x1 vector of forces and momentg,abe 12x12 stiffness matrix &§
and the 12x1 vector of displacements and rotations &sjuation 3.69 can be rewritten
as:

f=Ku (3.70)

3.2.2 Mass Matrix

A consistent mass matrix is used which can be found by evaluating:

1 (N1(§)
Mi=pAf_1{N:(§)}{N1(f) N2(§)}s d¢ (3.72)
which yields:
m, = 2] 1] (3.72)
¢f1 2

wherep is the density of the beam (unitsz”é)‘.

The 2x2 matrix above is applied to appropriate locations for eadedix degrees of

freedom{ui,vi,wi, 0, 0 Hzi}, resulting in a 12x12 mass matrid, On terms applied

yir
to nodal rotations, a characteristic length needs to be utilizedder to make the units
consistent in the formulation. The characteristic length has skxﬂeasg-. The full mass

matrix is given by:
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M == (3.73)

3.2.3 Damping Matrix

Rayleigh damping is used in the beam element formulation. TEresuallowed to input
both a mass proportional damping coefficient,and a stiffness proportional damping
coefficient,r,. Thus, the 12x12 damping matri, is given as follows:

C = T'lM + rzK (374)

3.2.4 Thermal Loading
The thermal strain in a beam is given by:

€therm = AT (3.75)
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wherea is the coefficient of linear thermal expansion afdis the temperature change.
The thermal loading formulation allows a linear temperatureilgligion between the top
and bottom surfaces of the beam. Figure 3.6 depicts this relationship. A thexdiahg
in the z-direction (through the width of the beam) is not considerademnireniecki

(1968) can be consulted for further reference to the formulation.

o ATy —] Ly

—— o

fe—=
ATbottom |‘_ b _>|

Figure 3.6: Temperature Distribution for Beams

4
h
v

whereb is the beam width anidis the beam height.

Axial Loads

Due to the linear relationship betwe&ft,, andAT;,,..m, the temperature change along
the middle surfacey(= 0) is given by:

ATmia = %(ATtOp + AThottom) (3.76)
This temperature change results in axial loading. The thertalfarces are found by
evaluating the following:

fra ==, €"E €tperm dV = —EA [ €T aATypzqdx (3.77)

The resulting forces are given by:

‘| —EAaAT,,, '
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Bending Moments
The gradient effect allows for curvature in the x-y plane tonbbeduced in the beam.
The temperature change needs to be written as a function afalg@msition ¢) in the

element to find thermal-induced bending moments.

ATtop= AThottom
ATgrad = ATmid + (tp+) y (379)

The thermal-induced bending moments are found by evaluating the following:

L rh/2
foo = J,; €0E €tnerm dV = Eb [} ["" €l ah Ty 0 dy dx (3.80)

The resulting moments are given by:

ey )
= 12 ! (ATto — AT ottom)
fir =1 A (3:81)

EAh
LTa (ATtop - ATbottom) J

Finally, the axial and bending effects can be combined into tedimgrmal load vector

represented by:

( EAQATyq \
0
0
0
0

~ (ATeop = Ayotcom)
fenerm = 1§ EAGAT,, ' (3.82)

0
0
0
0

\ %:a (ATtop — AThottom) )
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Now that thermal effects have been introduced, Equation 3.70 can be augmented:

f=Ku+ finerm (3.83)

3.2.5 Element Transformation

Until this point, the beam formulation has only been discussed in tefrtise local
coordinate system. The assembled element equations are solvedlwbtlecoordinate
system. To accommodate beams in any orientation, the lodakssifmatrices need to
be transformed into global stiffness matrices. Establistiirgocal coordinate system
for the beam iR3 involves finding the direction cosines of the beam. In TeraDysac, a
web vector establishes the strong and weak axes of the beam. rameSGhmidt
process is used to establish the local coordinate system of the beam.

The local x-axis is defined by the coordinates of the nodes @l¢hgent. An initial web
vector is furnished by the program. Unless the beam element is oriertted5#4t of the
global y-axis, the default initial web vector is given(by1,0). If the beam is effectively
aligned with the global y-axis, the default initial web vectgiven by(0,0,1). The
Gram-Schmidt process is used to establish the final web vetha .final web vector is
also the local y-axis. Crossing the local x-axis with thallgeaxis yields the local z-

axis. Figure 3.7 depicts the geometry involved in the process.

/ Xiocal

(X2,Y2,22)

we binala Yiocal
Wehnitial

(X1,Y1,22)

Zocal

Figure 3.7: Local Coordinate System for Beam Element
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The relationship between the local and global coordinate systemsfireed by the
direction cosines of the element. Figure 3.8 shows the relationshwedreta beam’s

local axis and the global coordinate system.

/ Xiocal

(X2,Y2,22)

yglobal

Xglobal

Zgloba
Figure 3.8: X-Axis Directions for Beam Element

The direction cosines are defined as follows:

Xlength = X2 — X1 (3.84)
Yiength = Y2 — V1 (3.85)
Ziength = Z2 — 71 (3.86)
length = (Xiength t Yiengtn t Zlength)1/2 (3.87)
cosXx = 2:’—;:: (3.88)
cosXy = %;’;}: (3.89)
cosXz = 2?—5;2 (3.90)

The angles depicted in Figure 3.8 are given by the following:

Oxx = cos (cosXx) (3.91)
Oxy, = cos~'(cosXy) (3.92)
Oy, = cos 1(cosXz) (3.93)
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Direction cosines for the local y-axixotYx,cosYy,cosYz) and the local z-axis
(cosZx,cosZy,cosZz) are determined in a similar fashion. The matrix of dioecti
cosines is given by:

cosXx cosXy cosXz
® = |cosYx cosYy cosYz (3.94)

cosZx cosZy cosZz
The local stiffness matrix for the beam element is a 12x1&ixna Therefore, the
transformation matrix for the beam is given by:
[G) 0 O O]
0 6 0 0
T = (3.95)
0 0 @ O

0 0 0 ©

Unknowns and forces in the local coordinate system can be writte¢heirglobal

coordinate system as follows:

i=TTu (3.96)
f=T"f (3.97)
ftherm =T finerm (3.98)

Furthermore, the equation 3.83 can be re-written in the global coordiystiem as
follows:

f=TTK T + finerm (3.99)

3.2.6 Nonlinear El
Piles located at the abutments in IABs are usually orienteegak-axis bending. These
piles are intentionally flexible to accommodate the expansion andacboh of the

roadway. In some IABs, abutment piles yield under certain loadlngtiens. Plastic
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hinges may form in the region near the abutment (Hassiotts Roman 2005).
Therefore, an analysis considering Moment-Curvature behavior imakthement piles
may be needed in some cases.

A scheme for modeling beams in the nonlinear range has been developedafdysac.
The relationship between the bending moment in a beam and its curvatube stated

as follows:
% = EI (3.100)

where:M = bending moment

E = Young’'s modulus

I = beam moment of inertia

¢ = curvature
While in the elastic range, this relationship is linear. Howeatthe onset of yield the
relationship becomes nonlinear until it reaches a plastic Sagere 3.9 shows a typical

Moment-Curvature curve for a beam.

\

Plastic hinge
Onset of yield formation

Moment

Elastic range

Curvature
Figure 3.9: Typical Moment-Curvature Relationship for a Beam

A small piece of computer code controls the nonlin®alapplication. The user must
furnish the Moment-Curvature relationship to TeraDysac by spegif(Curvature,

Moment) points. The slope between adjacent points is linear, sofghe durve gets
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more accurate as more points are included. Figure 3.10 shows an eexaatglwise

curve.

Moment

Curvature
Figure 3.10: Piece-wise Approximation of the Moment-Curvature Curvedr a Beam

The bending stiffness;! of the beam is calculated as a function of the bending moment

from the previous time step. In the linear rarfjedoesn’t change with bending moment

(see Figure 3.11).

El

Moment
Figure 3.11: Bending Stiffness vs. Bending Moment for a Beam
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Once the yield moment is reached in the section, the bendifigessifdiminishes and
must be updated. In this range, iteration occurs until the bending montbetsection
and bending stiffness agree with Equation 3.100.

Example problem

To illustrate how to set-up a nonlinear beam analysis in TeeDwssimple example is
carried out below. Beginning with section geometry and materigpepties, the
nonlinearE] relationship is developed and then an analysis in TeraDysac is performed.

Consider a rectangular steel beam with the following geometry:

A

0.2n

|<— O.lm—»‘

Figure 3.12: Example Beam Geometry

The beam properties are given here:
A=0.02 M4
1=6.67*10 m"
E =200 * 16 kPa
f, = 415 * 10 kPa
v=0.3
k =5/6

wheref, is the yield stress andis Poisson’s ratio. At yield, the stress diagram for the
beam is given by Figure 3.13 with equivalent point lo&dshown. The beam height is

denoted byh and the beam width is denoted hy
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Figure 3.13: Stress Distribution at Yield

The equivalent point load on each half of the befis,given in Equation 3.101.

p= @ (3.101)

The moment at yieldy/,, is given by Equation 3.102.

2Ph  fybh?
M, =2t =12 (3.102)

The equation for bending stress in the beam (Equation 3.103) can alsoraerges to

find the bending moment in the beam at the onset of yield.
f== (3.103)
For the rectangular section in this example,

c== (3.104)

2

=2 (3.105)

12
Making appropriate substitutions in Equation 3.103, Equation 3.102 can be obtained.

bh3
M = 1 _ fybh? M

- ) (3.106)

N

After the outer fibers in the beam vyield, the stress diagram is given ireRddu.
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Figure 3.14: Stress Distribution After Yield

The stressg at a particular location above the neutral axis given by Equation 3.107.

The strain is related to the curvatugethrough Equation 3.108.

o =Ee = - (3.107)

€ =¢n (3.108)
Using these equations, the yield strain can be found as follows:

%103
ey =2 =210 = 0,002075 = (3.109)

E ~ 200%106 kPa

Using similar trianglesy from Figure 3.14 can be written as follows:

X =E—£(e—ey) (3.110)

2 2€

Applying equivalent point loads to represent the triangular andngadiar parts in Figure

3.14, the bending moment in the beam can be written as follows:

2

M = bf, ("72 -5 (3.111)

3
When the beam reaches the ultimate moment, the entire beaon &t yielded. It is at
this point where a plastic hinge forms. Figure 3.15 shows thes sirssibution in a

beam that has reached the ultimate moment.
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Figure 3.15: Stress Distribution at Ultimate Moment
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The Moment-Curvature relationship for the example section is givefigure 3.16.
Developing the relationship for circular sections, reinforced cte@ections, and H-

piles is more difficult, but must be done for an accurate nonlinear pile analysis.

450
400 /
350 /
300

Moment (kN-m)

150
100
50
0

250 I

200 I
I
I

0 0.1 0.2 0.3 0.4 0.5
Curvature (rad/m)
Figure 3.16: Moment-Curvature Relationship for the Example Beam

To illustrate the nonlineafl beam application implemented in TeraDysac, an analysis of
the example section was performed. Figure 3.17 shows the problmetge and

boundary conditions.
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Figure 3.17: Nonlinear EI Example Problem Layout

The example section begins to yield at a bending moment of 276.67 kNvenlodding
given in Figure 3.17 forces the moment at midspan and at the agitection into the
nonlinear range. The highest bending moment in the mesh is usedetmide the
bending stiffness. Figure 3.18 shows the relationship between the bstiffmess and
moment for the example section. It is apparent that bendingestsffquickly diminishes
after the moment reaches 300 kN-m. A plastic hinge forms iretttos ast! tends to

Zero.
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Figure 3.18: EI-Moment Relationship for the Example Beam

An 8-element mesh was used for the analysis. If the nonlive&sature is not used,

TeraDysac gives a midpoint displacement of 0.011943 m. This isnwitbPo of the
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analytical solution given by Euler-Bernoulli beam theory. Withalgerithm active, the
displacement at the midpoint is 0.015059 m and the maximum bending momkeat in t
section was found to be 366.06 kN-m.

As a check on the scheme, another analysis was performed. Knth&mgaximum
bending moment in the mesh is 366.06 kN-m, a valu€l aff 10,492.38 kN-rhcan be
found (see Figure 3.18). Substituting this value of bending stifimedge-running the
problem without using the nonline&l feature should yield the same solution as when
the feature was active previously. The obtained midpoint displacem@m@15059 m

which reveals that the algorithm is working properly.

3.3 Plate Element

A low order plate element has been developed for TeraDysae.gdreral quadrilateral
element has six degrees of freedom at each node (three disphseand three
rotations). Figure 3.19 shows a typical element with nodal variaelgignated for the

upper-right node.
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Figure 3.19: Plate Element Nodal Variables

The total stiffness matrix for the plate (24x24) is formedcbypling the in-plane and
out-of-plane effects. Plane stress with a rotation penaltyulation is used to form the
in-plane stiffness matrix (12x12). Reissner-Mindlin plate théBsgissner 1945, Mindlin

1951) is used to develop the bending stiffness matrix (12x12).

3.3.1 Stiffness Matrix

In-Plane Stiffness

The in-plane effects of the plate deal with the in-plane displaats (two per node) and
the in-plane rotations (one per node), yielding a total of 12 nodal unknoWrene
wished to neglect in-plane rotations for the quadrilateral elermptane stress alone could
be used to develop an 8x8 in-plane stiffness matrix. Howeveroifopleteness (and for

compatibility with beam elements which have a torsional componéstplate element
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will consider in-plane rotations at each node. To develop the 12xfri rfea the in-
plane stiffness, plane stress assumptions and a penalty formulation aee tdigjether.
The nodal displacement in the x-direction is denotedubydisplacement in the y-
direction is denoted by, and rotation about the z-axis is denoteddby The penalty
formulation penalizes the difference between the nodal rotatdeh 6}, and the exact
rotation due tar andv.

The penalty formulation is given by:

1

P 6. ‘5(3‘2‘%)]2 (3.112)

The elemental strain, including plane stress and the in-plane rotation, is dmen be

(Cxx) ou )
ax
Cyy z—;
e={ =3 W’ i (3.113)
xy ay | ox
1 /0v ou
\ \92_5(5_5))

(O-xx] 1 v 0 0 1 reeny
oyl v 1 0 0 le,]
az{ }zl_vz 00 = (3.114)
| % | 2 Exy
_2
g, ) 00 o p|\,)

whereE is Young's modulus and is Poisson’s ratio. SettinB,, to 5% of Young’s
modulus did not severely distort the results from a truly plaesstaser, = 0.0), yet

allowed compatibility with connecting beams undergoing torsion.
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The strain-displacement matrix is given by:

. 0 0
0 % 0
D = (3.115)
2 2 0
ay ax
19 _19
L2 0y 20x
The constitutive parameter matrix is given as:
1 v 0 0
: Y 1 0 0
€= 0o o0 v 0 (3.116)
2
1— 2
0 0 0 —=R,
The displacement vector of unknowns for the element is given as follows:
u(x,y)
d =< v(x,y) (3.117)
6,(x,y)

The strain can be written in terms of the strain-displacemairix and the displacement

vector.
e =Dd (3.118)
The total strain energy in the element is given as follows:
1 T _1 T 1 T
U=3J, €' adV =3[ € CedV =[, [Dd]"C[Dd]dV (3.119)

whereV is the element volume. The 12x12 stiffness makjx, yqne, Can be found by

minimizing the total strain energy.
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Bending Stiffness

Reissner-Mindlin plate theory is used to develop the bending effectshe plate
element. The bending effects of the plate deal with theveass displacements (one per
node) and the rotations due to bending (two per node). The theoryttead$2x12
stiffness matrix. The nodal displacement in the z-direction motéd byw, rotation

about the x-axis is denoted By, and rotation about the y-axis is denoteddpy The

subscriptb is used to designate bending terms, while the subscrgptised to designate
shear terms.

Bathe (1982) can be used for further reference to the formulatidke Timoshenko
beam theory, plane sections are assumed to remain plane, but nosankces
perpendicular to the neutral axis. Figure 3.20 shows the layout pfateeelement used

in the formulation.

Figure 3.20: Plate Element Layout "
The displacement components for the element are given as follows:
u = z0,(x,y) (3.120)
v=—z0,(x,) (3.121)
w=w(x,y) (3.122)
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The bending straing,,, e,,, ande,,, are assumed to vary linearly through the plate
thickness:

(= (22

I I I 6;0 I

€p = 4 €yy I =z _6_; (3.123)
)l
exy ay ax}

The transverse shear straing,, and e,,, are assumed constant through the plate

thickness:
e ow
yz F -0,
€s = = (3.124)
s ow
€zx x +0,

The constitutive relationships are given by:

1 v

(axx\ |I 0 I| (exx\
Op = i"w} = 1_EVZI 10 Iiew} (3.125)
Oxy IO 0 1—ij exy

Oyz E 1 07 (€yz
o, = = (3.126)
Oc) 20 o 1l ey,

The strain-displacement matrices are given by:

<

0 0 —
D, =0 —z;—y 0 (3.127)
d a

0 —Za ZE—

P
p, =" (3.128)

a

Z 9 1

Lox
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The constitutive parameter matrices are given by:

1 v O
E
Cp =1V 1 0 (3.129)
1-v
0 0 —
2
;: [1 O
Cs = 5 L) 1] (3.130)

The vector of unknowns for the element is given as follows:

w(x,y)
d=<0,(xY) (3.131)
0y (x,y)

The strains can be written in terms of the strain-displanenneatrices and the
displacement vector.

€, = Dpd (3.132)
e = Dyd (3.133)
The total strain energy in the element is given as follows:

1 k 1 k
U:Efv 6bTUde+Efv esTastzsz ebTCbede+5fV €T Cse, dV =

~J, [Dd]"Cy[Dyd] aV +2 f, [Dsd]" C,[Dsd] AV (3.134)

where k is a constant to account for the actual shear stress disinbuffhe 12x12
stiffness matrixKpenaing, can be found by minimizing the total strain energy.

The total stiffness matrix is shaped by combining the in-pkame bending stiffness
matrices.

Kin—piane 1S @ 12x12 matrix dealing with the following unknowns:

{ul,v1,6,,,u2,v2,60,,,u3,v3,0,3,u4,v4,0,,}.
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Kpenaing 1S @ 12x12 matrix dealing with the following unknowns:
{W1,0,1,0,1,W2,052,0,,,W3,0y3,0y3, W4, Oy, 0,4 }.
Because the plate element is linear elastic, the maireeshdependent of one another

and can be combined to shape the complete stiffness m&trixg 24x24 matrix

containing stiffness terms for all 24 degrees of freedom.

3.3.2 Numerical Integration
The plate element implemented is a general quadrilateral. Mbainmtegration is used
to evaluate the element stiffness matrices. Figure 3.21 shibevscoordinate

transformation used for the numerical integration.

y

(X2, ¥2) '2 1.

(X1, Y1)

(Xar Ya)
:4X ) P ‘e
(-1,-1) a,-1)

Figure 3.21: Plate Element Coordinate Transformation

(X3, ¥3)

The integration points on the master element are as follows:

Table 3.3: Integration Points on the Master Element

Node 13 1
1 1/V3 1/V3
2 —1/3 1/V3
3 -1/V3 -1/V3
4 1/V3 —1/3

In the bending stiffness matrix, reduced integration is used oshiar terms. These

terms are evaluated at the origin of the master elerien0(n = 0).
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The bilinear shape functions are given by:

Ni(Em) =71+ +n) (3.135)
N = (1= H(A+1) (3.136)
N = (1-H(A—1) (3.137)
NyEm) =1+ —n) (3.138)

The coordinate interpolations are stated as follows:

x =Yg Nix; (3.139)

y = Yiea Ny (3.140)

To evaluate the element stiffness matrices, strains (and sub#gqierivatives of the
coordinate transformations) are needed. They can be evaluatginigythe Jacobian

matrix given as follows:
dx Ox
2 on
J= (3.141)
dy 09y
2s o

Partial differentiation with respect toandy on the actual element is related to partial

differentiation with respect t§ andn on the master element through the following

relationship:
] & onq s 0 ]
ax ox ox||ag ER
= =[JT™ (3.142)
] ¢ oan|| o ]
ay/ Loy oyl \oy an
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3.3.3 Mass Matrix

A consistent mass matrix is used which can be found by evaluating:

I(Nl(f,n)\l
N2(§,7m)
M =ph [’ [} My em Maem M) NEI I dEdy  (3.143)
N3(f;77)
kN4(f,T]))
which yields:
4 2 1 2
l-=&“|2 S (3.144)
? l1 2 4 2J
2 1 2 4

wherep is the density of the plate (unitsg-[gﬁ andh is the plate thickness.

The 4x4 matrix above is applied to appropriate locations for eadedix degrees of
freedom{ui,vi,wi, Hxi,é)yi,ezi}, resulting in a 24x24 mass matri, On terms applied
to nodal rotations, a characteristic length needs to be utilizedder to make the units
consistent in the formulation. The characteristic length has been\fef|as

The identity matrix is given by:

1 0 O
I={0 1 0

0 0 1

(3.145)
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The full mass matrix is given by:

Al 0 21 0 I 0 21 0
0 4JylJlI 0 2JlJII 0 | |1 0 2yIJlI
21 0 4] 0 21 0 I 0
0 2JJII 0 4JJII 0 2J|JII 0 [ |1
M:%IJI (3.146)
I 0 21 0 4] 0 21 0
0 [JII 0 2ylJII 0 4JylJII 0 2y|JlI
21 0 I 0 21 0 41 0
0 2ylJlI 0 | |1 0 2JlJlII 0 4J[JlI

3.3.4 Damping Matrix

Rayleigh damping is used in the plate element formulation. uSkeis allowed to input
both a mass proportional damping coefficient,and a stiffness proportional damping
coefficient,r,. Thus, the 24x24 damping matri, is given as follows:

C = T'lM + rzK (3147)

3.3.5 Thermal Loading
The thermal loading formulation allows a linear temperatureilgligsion between the top

and bottom surfaces of the plate. Figure 3.22 depicts this relationship.

z

|<_ ATtop _>| A
— e
fe—

ATbottom

Figure 3.22: Temperature Distribution for Plates
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whereh is the plate thickness. The entire top of the plate is subijéct&T,,, and the
entire bottom of the plate is subjectedAB,,:;om- Thus, there are only stresses and
strains in the local x- and y-directions and there is no thermal induced skear str

The thermal stresses are represented by:

_ 1
Otherm = EaAT{ } (3-148)

1-v 1
wherea is the coefficient of linear thermal expansion afidis the temperature change.

In-Plane Loads

Rewriting the strain in the element as:

exx a_u
. { } _ Jox (3.149)
Cyy 3y

The strain-displacement matrix is given by:

D= (3.150)

ay

The displacement vector of unknowns for the element is given as follows:

d = {u(x' y)} (3.151)
v(x,y)

The strain can be written in terms of the strain-displacemairix and the displacement
vector.

€ =Dd (3.152)
Due to the linear relationship betwe&f,, andAT,,.m, the temperature change along
the middle surfacez(= 0.0) is given by:

ATmia = 5 (BTeop + ATyoteom) (3.153)
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For the in-plane loading, the thermal stress can be rewritten as follows

1
- A mi
Otherm = L{l} (3.154)

1-v
The thermal in-plane forces are found by evaluating the following:

frip = fV €" Otnerm AV = h fA [Dd]" Otnerm dA (3.155)
whereA is the in-plane element area. The resulting force vest8x1l and deals only
with the unknowns:

{ul,vl,u2,v2,u3,v3,us, vd}

Bending Moments

The gradient effect allows for curvature to be introduced irptag. The temperature
change needs to be written as a function of vertical positipm (the element to find

thermal-induced bending moments.

ATtop— ATpottom
ATyraa = ATmia + ( =2 h bott )Z (3.156)

For the out-of-plane loading, the thermal stress can be rewritten as follows:

—EaAT grqq (1
Otherm = Mt} (3.157)

1-v

The bending straing,, ande,,, vary linearly through the plate thickness:

exx %
€p = { } =z{ % (3.158)
€yy oy

The strain-displacement matrix is given by:

z ox
D, = (3.159)
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The vector of unknowns is given by:

0.(x,
d={ (x y)} (3.160)
0y (x,¥)

The strains can be written in terms of the strain-displanenneatrices and the
displacement vector.

€, = Dpd (3.161)
The thermal bending moments are found by evaluating the following:

h/2
ftbp = fV 617; Otherm av = fA f_h/z[Dd]TUtherm dz dA (3-162)

The resulting force vector is 8x1 and deals only in the unknowns:
{ Hxli le; 8)62' 8)/2' 8)63) 9313) 9x4l 8)/4}
Finally, the axial and bending effects can be combined into &edimgrmal load vector

represented a8,crm-

3.3.6 Element Transformation

Until this point, the plate formulation has only been discussed in tefntise local
coordinate system. The assembled element equations are solvedlmbtdecoordinate
system. To accommodate plates in any orientation, the loifaést matrices need to be
transformed into global stiffness matrices. Establishing tha lomordinate system for
the plate inR3 involves finding the direction cosines of the plate. The procedifiedo
the direction cosines is described below.

The first step is to find the chords which split the element oo parts. These chords
will be referred to ax,,. andy,,., the middle chords in the local x- and y-directions;
they connect the midpoints of opposite element edges. Figure B®&s sthis
relationship.

59



The middle chords are found by evaluating the following:
(X3 + X3 — X4 — X1)
Xme =34Y2+ Vs = Ve =1} (3.163)
\Z2 t 23— 24— 21 )
X3+ X4 —Y2— Y1)

Yme = 33VstVa= Y2 =i (3.164)

\Z3 + 24 — 2 — 71 )

The local z-axis is found by crossing the middle chord vectorgeming on the plate
orientation, the local z-axis is then crossed with the globais<a the global z-axis to
find the local y-axis. Finally, the local y- and z-axes@uessed to find the local x-axis.
Figure 3.24 illustrates the local coordinate system of the phiteof these axes are unit
vectors so the direction cosines are defined by the componentlofvector in the

global coordinate system.

Ayglobal

(X1,Y1,21)

(X3,Y3,23)
Xglobal

Zglobal

(Xa,Y4,24)
Figure 3.23: Middle Chords for Plate Element
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“yglobal

—
Xglobal

Zglobal

Figure 3.24: Local Coordinate System for Plate Element

The direction cosines for the local x-axigo{Xx,cosXy,cosXz), local y-axis
(cosYx, cosYy,cosYz), and the local z-axisc§sZx,cosZy,cosZz) fill the matrix of

direction cosines given by:

cosXx cosXy cosXz
O = |cosYx cosYy cosYz (3.165)

cosZx cosZy cosZz
The local stiffness matrix for the plate element is a 24r#rix. Therefore, the

transformation matrix for the plate is given by:

(3.166)

© © o o o © © ©®
o O o O o o ©® o
O O ©o O o ® o o
© ©O © © ® © o o
©O ©O © ® © o o o
O O ® © ©o o o o
o ® ©o© © o o o o
® © © © o o o o
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Denoting the 24x1 vector of forces and momentg,abe 24x24 stiffness matrix &5
and the 24x1 vector of displacements and rotations #ge equations to be solved in the
local coordinate system are defined as follows:

f =Ku+ ftherm (3.167)

The unknowns and forces in the global coordinate system can be written as follows:

i=T"u (3.168)
Fo17f (3.169)
ftherm = TTftherm (3.170)

Furthermore, Equation 3.167 can be re-written in the global coordinate systaliowas: f

fF=TTK T + finerm (3.171)

3.3.7 Hourglassing

The use of single point integration on the shear terms in the bending stitindss plate
element can lead to hourglassing problems. Namely, in situatioe®wo two adjacent
nodes are restrained, hourglassing in the z-direction can occurno@iakédisplacement
in the z-direction is denoted by, so this hourglassing mode is referred touwas

hourglassing. Figure 3.25 illustrates thénourglassing mode.
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1 (X1, y1)
2 (X2, Y2)

> X
3 (X3, Ya)

4 (X4! y4)
Figure 3.25: w-Hourglassing Mode

The stabilization scheme described by Belytschko and Tsay (19883&d to supress the
spurious mode. Using the node numbers given in Figure 3.25, the hostglpss,, is
given by the following displacement pattern in the z-direction:
(1)
h,, = (3.172)
~1
The coefficient for the hourglass matrix is given by:

Cng = 2 (bTh, + bTby) (3.173)

12 A?
wherer,, is a constant (~1%), k is the shear correction factdt,is the shear modulus,
is the element thickness, aAds the element area.

The vectord; andb, are given by:

(Y2 7~ Va
bl:l{“”_“# (3.174)

21 Va— Y2

k}’l_)’3
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(¥~ X2
X1 — X3

b, =1 (3.175)
2 Ixz — X4 I

Vs — x,)

where x; andy; are the locations of the nodes in local x-y coordinate systéhe
element area is given by:

A=xTh, =yTh, (3.176)
where:

(X1
X2

x={ (3.177)
X3

\x,/

(Y1)
Y2
Y3

\ys/

(3.178)

<
Il

The hourglass matrix is given by:

[1 -1 1 —1]

-1 1 -1 1]
Kihgzchghahwzchgll - 1j (3.179)

-1 1 -1 1
The 4x4 matrix above is applied to appropriate locations for eadheofransverse
displacement degrees of freedom resulting in a 24x24 matrix hesirgil#fness matrix
denoted by "9,

Hourglass Example

One case wherav-hourglassing will emerge is a plate supported by corner nodes
subjected to loading in the transverse direction. Consider a pititethe following
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properties: dimensions 5.0 m x 5.0 m x 0.05E~= 3 * 1¢ kPa,v = 0.3, p = 0.1
Mg/m?, andk = 5/6. The plate corners are pinned and there is a concentatedfl1
kN applied at the mesh center. Figure 3.26 shows the finite element mesheagbrner

nodes highlighted.

|
Figure 3.26: Problem Set-Up for Hourglassing Example

Two analyses were performed. The first sgtin hourglass stiffness coefficient equal to

0.0. Figure 3.27 shows the deformed shape of the plate (magnifigd).byt is apparent

that severe hourglassing has occurred.

Figure 3.27: Deformed Shape for Corner-Supported Plate (No Hourglasgifiness)

The second analysis sets, in hourglass stiffness coefficient equal to 0.01, as

recommended by Belytschko and Tsay (1983). Figure 3.28 shows the deéhapedof

the plate (magnified by 10).

65



Figure 3.28: Deformed Shape for Corner-Supported Plate with HourglasStiffness

It is apparent that the hourglassing has been significaatlyced by incorporating the
hourglass stiffness matrix. As a further check on the hourglassol scheme, the
computed center deflectiomy,,, = 0.027892 m) of the plate is in good agreement with
the thin plate theory (Kirchhoff 1850) solution and the obtained reaatieach corner is
0.25 kN (1/4 of the applied load, as expected). The TeraDysac displaiceotution is
within 0.9% of the 8x8 element Kirchhoff solution provided by ANSYS (2007).
SHELL63 elements were used, which are four node quadrilaterals sechpf four
overlaid triangles. The addition of the hourglass stiffness haailedrthe hourglassing
and not distorted the results. Settiggto 0.01 for future problems is recommended as it
has a negligible effect on the solution and ensures that hourglassing is contained.
This hourglassing mode only appears for some problems and loadingiarmnditor
example, the same plate geometry, material properties, and Iagaphigd, but with the
transverse displacement at every edge node fixed does not shoglabsing. An

analysis was run withr,, = 0.0. Figures 3.29 and 3.30 show the undeformed and

deformed (magnified by 10) meshes.
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o
Figure 3.29: Simply-Supported Set-Up for Hourglassing Example

Figure 3.30: Deformed Shape for Simply-Supported Plate (No Hourglass 8tiess)

The deformed shape reveals that this problem does not require awjabsistiffness.

The computed center deflectiom(,, = 0.008566 m) of the plate is within 0.6% of the

8x8 element solution provided by Zienkiewicz and Taylor (2005), whiels srchhoff

theory.

3.4 Numerical Integration

3.4.1 Time Integration Scheme
The Hilber-Hughes-Taylora -method (Hilber et al. 1977) is used together with a
predictor/multi-corrector algorithm to integrate the finitened®t equations. The final

form is given by Hughes (1983). Equation 3.20 can be rewritten as follows:
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Many + (1 + a@)Cvpyq — aCvy + (1 + @)Kpdpy — aKpdy + (1 + @)ppyy — apy, =

1+ D fpsr —afu (3.180)

The nodal velocity and displacement are given by:

Unt1 = Un + [Yans1 + (1 —y)ay]At (3.181)

Aoy = dp + VAt + [Ban, + (% - ﬁ) a,]At? (3.182)

In the a-method, the relationship between acceleration, velocity, and displacésne
controlled by the time-integration parameters,y). Popescu and Prevost (1993) used
a = 0.0, = 1.0, andy = 1.5 to calculate consolidation in a dynamic problem. These are
the parameters used throughout this work in an attempt to solvesghatially static

problems using the dynamic algorithm available within TerabysSubstituting these

parameters into Equations 3.180-3.182, the following forms emerge:

May 1+ Copyq + Kpdn+1 + Pn+1 = foaa (3.183)
3 1

Uny1 = Up t+ [Ean+1 - Ean]At (3.184)

dpsy = dy + VAL + [Ayeq — %an]Atz (3.185)

The iterative time-marching scheme is given by the folhgnequationsi(is the iteration
counter). Note: this is the scheme after settirrg0.0,5 = 1.0, andy = 1.5. The general
scheme for dynamic problems can be found in Muraleetharan et al. (1994).

Step 1: Initialize iteration countei to zero

Step 2: Predictor

d)y = dne1 = dy + DAL — > apAt? (3.186)
vr(121 = VUpy1 = Uy — %anAt (3.187)
a0 =0 (3.188)
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Step 3:

PO = frp = Mar(zlJ)d - Cvr(121 - Kpdr(zlJ)d - pr(z?q (3.189)

Step 4:

MY =M +24¢C + At2K, + A2KD (3.190)
eff 2 P T '

where

Ky = % = global tangent stiffness matrix (3.191)

n+1
Step 5: Solve
M 8al0D = ® (3.192)

for the incremental acceleratida (1

Step 6: Corrector

altd = a®  + paltD) (3.193)
v = Bpy + 20l VA (3.194)
d D = dp,q +alT DA (3.195)
Step 7:

YD = oy = Mag [P = Cn50 — K d D — pl (3.196)

Step 8: Convergence check. If

||Aa(§i+1§)|| <e (3.197)
||an+1 ”

wheree is a small number (~0.01), then go to the next time step. &ise=si+ 1 and
go to Step 4.
The user controls the damping for the structural elements (Baytieimping) directly.

For the static problems solved in this work, there was no dampingeépia the
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structural elements (beams and plates). Although only static problems wes isahis
work, the structural elements developed can be used for dynamic msolig

introducing damping and changing the time-integration parameters.

3.4.2 Ramped Loading
The amount of load applied to a finite element mesh at anydiiepeis controlled by the
user. The use of a ramped loading (see Figure 3.31) was fobedato effective way to

apply loads.

107

a4

5t

Value (x10™

0 2 4 & 5 10 12 14
Time (x1071)

Figure 3.31: Ramped Loading

The x-axis is the time in seconds and the y-axis is the portidheoload applied at a
given time. Therefore, for the ramp shown in Figure 3.31, the analgsisl Wwegin with

no applied load and at 1.0 s, the full load would be applied. The ramplisdredtant
value for a period of time after the full value of the loadinglde®n reached to allow any
solution oscillation to end. Checking the nodal displacement histoges analysis
completion is important to confirm the solution has fully developed. Two analysels whi
both use the ramped loading shown in Figure 3.31 illustrate oscillatitmeidynamic
solution.

The cantilever beam problem shown in Figure 3.32 was found to only ertiimi

solution oscillation after the ramp leveled off (i.e. the full load was developed)
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Figure 3.32: Cantilever Beam Problem Demonstrating Minor Oscillation

The beam properties are given here:

A=0.196 M
[=3.07*1Cm’
E =3*10 kPa
v=0.3

k =5/6

p = 2.4 Mg/nt

Figure 3.33 shows the nodal displacement-time history of the beamditediy under

the point of load application.

~104

o] 2 4 & g 10 12 14

Tirme 1071
Figure 3.33: Nodal Displacement-Time History for Cantilever Beam Tip

It is apparent that the displacement solution has fully developed at 1.5 s. There was
miniscule oscillation after the ramp terminated, but it quickly ended. Sueedigsi
displacements after 1.3 s are identical.

An example exhibiting more solution oscillation is the soil-structure inieraptoblem

described in Figure 3.34.
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20m

I: 20 m :Il
Figure 3.34: Soil-Structure Interaction Problem Demonstrating Osdlation

The soil properties are given here:
E = 15,000 kPa
v=0.3
p.= 2.67 Mg/nd
p; = 1.0 Mg/n?

I'=0.0 kPa
The beam in the problem has the same properties used in the preceding cantilever
example. Figure 3.35 shows the displacement-time history of the beam node under the

point load.
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Figure 3.35: Nodal Displacement-Time History (Full Mass)

It is apparent that the nodal displacement has not settled ol eafma To find the true
displacement of the node, the loading needs held constant for a pmrget of time to
allow the oscillation to end. Figure 3.36 shows the displacementyhfstoan analysis
where the load is ramped up over 1 s (similar to Figure 3.31)hdddt constant for

another 7 s.

¥ (107

0 1 2 3 4 5 & 7 g

Time (x10%

Figure 3.36: Nodal Displacement-Time History (Full Mass, Extended Ramp)

There is oscillation in the solution after the ramp-up ends at 1 s. After about 6 s, the
solution oscillation ends and the true displacement solution is reached. In the study of
various problems, it was discovered that reducing the mass of the elementddocks

less oscillation in some cases. Figures 3.37 and 3.38 are the nodal displdustoees

for meshes with 10% mass and zero mass, respectively.
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Figure 3.37: Nodal Displacement-Time History (10% Mass)

0 2 4 & g 10 12 14

Time x107Y
Figure 3.38: Nodal Displacement-Time History (Zero Mass)

For the problem in question, reducing the mass by 90% has significantly trimmed the
solution oscillation. Setting the mass to zero has essentially provided tbeshatiion

to the problem. Figure 3.38 shows no oscillation in the solution. The obtained solution
(after all oscillation dies), is the same for all three analysesi@8)36-3.38), as

expected.

As the load is ramped up, there is acceleration of the spatial nodes. Once the resnp tape
off, the load is held constant and the true static solution will eventually develop. In the
predictor, specifically Equation 3.19¥, is calculated.M is contained in this

equation, therefore the mass of the model is affecting the problem solution as tise load i
being ramped up. The incremental acceleratiofi*V) (see Equation 3.192) is

dependent on the value Mt (.. Once the full load has been developed and the nodal

displacements become constant, the nodal accelerations go to zero.
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Reducing the element block mass was found to reduce solution oscillation. However, the
mass in the problems should not be reduced without proper cause. Displacement-time
histories should be consulted to see if significant solution oscillation is occulming.

some problems, such as gravity loading, the element mass is integral tautios ssb it

can not be reduced. An unreduced mass matrix may also be important fdystsioids

(i.e. solution convergence at each time step), especially in 3D problems and problem
utilizing the bounding surface soil model. For these problems, reducing the swass al
required increasing the number of time steps. So there is some trade-oféthvol

reducing the mass which trims oscillation, yet may require more tirpg. stéhe right
combination of element mass and time step should be selected based on the needs of the
individual analysis and the exhibited solution behavior. Yet to be implemented in
TeraDysac is a true static procedure, which would be ideal for solving themsoble

discussed in this work.
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4.Soll-Structure Interaction

4.1 Linear Problems

4.1.1 Beams on Elastic Foundation

The theory for beams on elastic foundations began with the work of Wi(l86é7).
Winkler theory assumes an infinitely long linear elastic béamesting on an elastic
foundation under a uniformly distributed load (see Figure 4.1).

Uniform load,q (force/unit length)

m > >
> - o0
Beam widthB
l

Figure 4.1: Beam on Elastic Foundation

The soil is modeled with an infinite number of discrete elagtings. The displacement
(v) at any given position along the beam is assumed to only depend on the load at that
point. The spring force per unit length is given by:

p = Bky (4.2)
wherek is the modulus of subgrade reaction (unitg bf3)

Equation 4.2 is the governing fourth-order differential equation in Winkler theory.
d*y .
E1m+Bky—q—O (4.2)

where:
E = Young’'s modulus for the beam
I = area moment of inertia for the beam
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The governing differential equation has a general solution given by:

y = e?(A; cos Ax + A, sinAx) + e (A3 cos Ax + A, sinAx) + Yp (4.3)
where:
1
__ [ Bk\2
1= (E) (4.4)

Ay, Ay, A3, A, are integration constants to be determined from boundary conditioryg and
is the particular solution for the given loading

Solutions according to Winkler theory can be developed for distributed loads, point loads,
concentrated moments, and combinations thereof. Solutions for “short” enfirore

beams can also be developed.

4.1.2 Linear SSI Example Problem
A soil-structure interaction example is considered here wittoracentrated moment

applied at the center of an infinitely long beam (see Figure 4.2).

Mo
-
— > —
2K l
y

Figure 4.2: Problem Set-Up

The relevant problem parameters are given here:
B=0.3m
EI = 948.27 kN-fi
k =30,093.93 kN/h

The analytical solutions for the Winkler theoryX 0) are given here:

y = Mg—fe‘lx(sin Ax) (4.5)
0 = Mg—fe"lx(cos Ax — sin Ax) (4.6)
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—MpA

V= 70 e **(cos Ax + sin Ax) 4.7)
M = % e **(cos Ax) (4.8)
where:

y = deflection

6 = rotation

V = shear force

M = bending moment

M, = applied concentrated moment
A concentrated moment problem was selected for the exampleseeitee soil boundary
conditions had minimal effect on the finite element solution. Theedmhents do not
have rotation as a nodal variable. Therefore, the beam takes a n@jthigyioading and
the soil in the far field does not influence the results adjaoethite beam. In the finite
element analysis of a point load applied to the beam, as exgecttids linear elastic
case, the soil boundary was shown to have a significant effect oreshiks. The
displacement at the point of load application increased as the detith sbil stratum
increased, therefore the solution did not converge. Just as the deforafan axial bar

(Equation 4.9) is a function of bar length, the displacement solutigdhdquoint load is a

function of the soil depth.

__PL

0= ” (4.9)
where:

6 = deformation

P = point load

L = bar length

E = Young’'s modulus

A = bar area

In studying equation 4.9, for a give®, E, and A, as L increases so too does the
deformation. Comparing Figures 4.3 and 4.4, the relationship between theotens
is apparent.
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Figure 4.3: Point Load Applied to Axial Bar
P

Figure 4.4: Finite Element Set-Up for Point Load Analysis
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Convergence for the problem illustrated in Figure 4.4 will occur gononlinear
constitutive soil model. For a big enough mesh, the bounding surfadel nill
eventually provide a solution that does not have an influence from the soil boundaries.
In a finite element analysis of a beam on a continuum, the sidgnadulusk, is not
used directly. Instead, Young’s modulus of the $0il,has to be related to the subgrade
modulus. Two forms of an equation relating these two propertigeresented by Biot
(1937) and Vesic (1961). Biot developed the analytical solution of an infinite beam on an
elastic foundation subjected to a point load. By equating the maximum bendirgntaom
obtained from his solution and the solution presented by Winkler, he sggiess a
function of the soil and beam properties. Vesic extended the worlobbydeveloping
complete solutions for elastic beams resting on isotropic elasiid continuum
subjected to both point loads and concentrated moments. Vesic also dev&loped
relationship betweett and E; which matches all solution components (displacement,
rotation, bending moment, and shear force) reasonably well. Thacegdaveloped by

Vesic is given by:

1

0.65Es (EsB*\12
T (1-v)?B ( EI ) (4.10)

Assuming a Poisson’s ratio for the soil of 0.3, Equation 4.10Fsdts 15,000 kPa for the
example problem. Figures 4.5-4.8 show the comparison of the Winkler asid Ve

solutions forM, = 100 kN-m.
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Displacement (mm)

Rotation (rad.)

6.0

4.0 l'
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2.0

\ =+ = Vesic
O-O —d-'-\\ p
2.0 5
-4.0 \U

-6.0
-9 -6 -3 0 3 6 9
Position (m!
Figure 4.5: Beam Displacement (Winkler vs. Vesic)
0.025
0.020
Winkler
0.015 = - = Vesic
0.010
0.005 / \
0.000
-0.005
-9 -6 -3 0 3 6 9
Position (m’

Figure 4.6: Beam Rotation (Winkler vs. Vesic)
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Figure 4.7: Beam Shear Force (Winkler vs. Vesic)
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Figure 4.8: Beam Bending Moment (Winkler vs. Vesic)

The curves are in good agreement, but there are slight differbatgeen the Winkler
and Vesic solutions. The error between the two solutions depends oeldheer
stiffness of the beam (Vesic 1961).

The beam theory embedded in the Vesic solution is Euler-Berndutioshenko beams
are implemented in TeraDysac, so before the soil-structuredtiten problem was run,
an elastic analysis was performed on the beam only toyvaiivergence to the Euler-

Bernoulli solution for the given beam properties and mesh size. mplyssupported
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beam with identical properties to the example beam 0.15 nf, E = 303,446.55 kP4,
=0.003125 fy v = 0.3,k = 5/6) was analyzed. Explicit equations can be written for the
displacement and rotation of the beam shown in Figure 4.9 using EereotBli beam

theory.

M
ha

7®7 X
— L/2 —+— L/2 —>{

Figure 4.9: Elastic Beam Analysis Set-Up

The elastic curves are given by:

For0 <x < é
Mx3 ML
El y(x) = % — 2—4" (4.11)
2

EI8(x) = ’Z—’Z - % (4.12)
L

FOI’ESx <L,

El ()_M_x3_M_x2+11MLx_3ML2 (4.13)
YWX) =" 2 24 24 '

2
EI 6(x) =1V;—’Z—Mx+% (4.14)

Letting M = 100 kN-m and. = 18 m, the comparison between the curves provided by

Equations 4.11 — 4.14 and the TeraDysac analysis is shown in Figures 4.10 and 4.11.
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Figure 4.10: Euler-Bernoulli Beam Displacement Comparison
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Figure 4.11: Euler-Bernoulli Beam Rotation Comparison

Figures 4.10 and 4.11 reveal that an 18 element mesh (i.e. 1 m beaemtg)ein
sufficient for the beam to converge to the Euler-Bernoulli solutanttis particular
problem. Therefore, 1 m elements were used as the starting @othefsoil-structure
interaction analysis. Soil nodes were fixed at the base idir@ttions and in the
horizontal direction only on the sides. Pore water pressure wasssp@iby settinfj =

0.0 kPa (see Equation 3.31). Ultimately, 0.25 m beam elements waeldouget a

smooth displacement shape. Figure 4.12 shows the finite element maetite doading

84



condition. All beam nodes are tied to soil nodes at the top of thie. mieshe vertical
direction, there is a gradient of elements with the finer elements near the bea

To validate the soil-structure interaction capabilities inaDstsac, the finite element
solution was compared to the analytical solution presented by.Vdésgures 4.5-4.8
reveal that displacement, rotation, shear force, and bending mortiebecame
negligible at a beam length of 18 m. Thus, an 18 m beam fi@teeslt solution can
reasonably be compared to the infinite beam solution presented by Vesic.

100 KN-m

—_

[
»

100

—— \ 4

|

Figure 4.12: Finite Element Model Set-Up for Linear Soil-StructureAnalysis
Figures 4.13-4.16 show the results from the TeraDysac analysisacemwith the

analytical solution presented by Vesic.
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Figure 4.13: Beam Displacement (Vesic vs. TeraDysac)
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Figure 4.14: Beam Rotation (Vesic vs. TeraDysac)
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Figure 4.15: Beam Shear Force (Vesic vs. TeraDysac)
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Figure 4.16: Beam Bending Moment (Vesic vs. TeraDysac)

Figure 4.17 shows the displaced shape. The Uniform Gradient formulation i®utes f
soil elements, so it is important to check the deformed shapeorfirne that no

hourglassing has taken place in the analysis. The figurezwoom the beam center and
magnifies the displacement by 20. It is apparent that no hourgjasas occurred and

the deformed shape of the beam is smooth.
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Figure 4.17: TeraDysac Linear SSI Analysis Deformed Shape

The beam shear force and bending moment curves are in concurrendbeMtbsic
solution. While the TeraDysac solution for displacement and eatathow good
agreement near the point of load application, the beam displacesysdotvito diminish
in the finite element solution. The rotation subsequently has deviationthe Vesic
solution after the displacement reaches a maximum (about O0.6omn tfie beam
midpoint). It is important to note that the Vesic solution presemstddria 3D elastic
foundation. Therefore, a 3D mesh (extruded 18 m in the z-directichplsa analyzed.
A fine mesh in 3D was not investigated because of the tremenamasint of
computational effort necessary for an analysis. A course Ifiesth beam elements)
analysis provided enough insight to draw the conclusion that a 3B @él@ment solution
will converge to the Vesic solution. Figures 4.18-4.21 show the 3sasaompared

with the Vesic solution.
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Figure 4.18: Beam Displacement (Vesic vs. TeraDysac — 3D)
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Figure 4.19: Beam Rotation (Vesic vs. TeraDysac — 3D)
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Figure 4.20: Beam Shear Force (Vesic vs. TeraDysac — 3D)
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Figure 4.21: Beam Bending Moment (Vesic vs. TeraDysac — 3D)

Figures 4.18 and 4.19 show the 3D displacement and rotation solutions dimiudeh m
quicker after the maximum displacement is reached than the 2Dosslut For this
particular problem, the 2D (plane strain) solutions were slow tindim It is believed
that the zero strain condition on the soil in the z-direction is redgperier this departure

from the true solution.
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4.2 Soil-Pile Interaction in a Soft Clay

More interesting (and realistic) soil-structure interaction goisl are the ones where the
nonlinear constitutive properties of the soil are considered. In @eacidvanced
analyses use the— y method with a program like LPILE (ENSOFT 2007). In LPILE,
the user is allowed to manually inppt—y curves or use program-furnished curves
based on soil type. The program-furnished curves are empiricascobtained using
limited full-scale cyclic loading of piles. In TeraDysacayd are analyzed using the
bounding surface model developed by Dafalias and Herrmann (1982, 1986)motak

was discussed in Chapter 3.

4.2.1 Nonlinear SSI Example Problem
To evaluate TeraDysac capabilities for nonlinear soil-strugtiezaction problems, a
soil-pile analysis was performed using saturated soft cldne pbre pressure effects are

considered by setting = 2.2 * 10 kPa. Figure 4.22 depicts the problem set-up.

v 20 kN:

e=1.z

20m Yt = 17.03 kN/mi
OCR=15
Ko=0.6

A 4

A
5m

A 4

Figure 4.22: Nonlinear SSI Example Set-Up

The bounding surface parameters for Speswhite Kaolin (see Chapiare Ihose

recommended by Muraleetharan et al. (1994).
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The beam properties are given here:
E=30*10 kPa
A=0.1963 M
| =0.003068 rf
v=0.2
k=0.8475

Figures 4.23 and 4.24 show the TeraDysac analysis set-up.

|« 100 m >

T
20m
4

|« 200 >
| |
Figure 4.23: Problem Set-Up for Nonlinear SSI TeraDysac Analysis

20 kN

Figure 4.24: Loading and Node Sets for Nonlinear SSI TeraDysac Analysis

In the analysis of soft clay, the initial stress statemportant. TeraDysac allows the

initial stress state to be specified. The initial stress stateal@dated as follows:

o,=7'h (4.15)
o, =0,=Kyo, (4.16)
0y=0,=0,=0 (4.17)

where y' is the effective unit weight of the soil amdis the depth below the soil surface.

Figure 4.25 shows the initial vertical effective stress state for teégaitling problem.
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Figure 4.25: Initial Vertical Stress State Contours (kPa)

The TeraDysac analysis results were then compared witiitssésom LPILE. LPILE
allows the user to entep—y curves for soil layers or use program furnished y
curves based on the soil type (soft clay in the presence efwager, sands, etc). In

addition to p—y information, LPILE requires the user to input the strain cpoeding
to one-half the maximum principle stress differeneg X and the shear strength of the

clay. A single element computer code (EVALK) utilizing th&me bounding surface
model implemented in TeraDysac was used to determine the sheagth of the clay.
The single element program simulates an undrained triaxigbte&termine the strength
of the soil. The user is allowed to specify the initial ste#éate, OCR, and loading type.
At a depth of 20 m for the example problem, the EVALK resultsgaren in Figures

4.26 and 4.27.
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Figure 4.27: Stress Paths at 20 m Depth

The value ok;, used was 0.02, which was recommended in the LPILE technical manual
(ENSOFT 2004). Howeveres, can be determined from EVALK analysis results.
According to Figure 4.26, the strain corresponding to one-half the ainstress
difference is 1.55%e¢, = 0.0155). This is sufficiently close to the recommended value
of 0.02, which was used at all soil depths in the subsequent analyses.

Note thatp’ andq follow the Cambridge notation where:

p! = A% (4.18)

3
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q=o! ol (4.19)
The shear strength input to LPILE was one-half the figalvalues obtained from
EVALK. In the first LPILE analysis, the obtained value of strength at a depth of 10
m was used for the entire stratum. This is comparable toignd@sn having only one
triaxial test to describe the soil stratum. The second LRihBlysis uses EVALK-
obtained strength values at 1 m increments through the soil depthisThpresentative
of a highly tested field site. In both of these analyses, thieB-Rirnished p—y curves
for soft clay in the presence of free water (Matlock 1970ewesed. Figure 4.28 shows

the LPILE-generateg — y curves for the first analysis (single value of shear strength).
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60.0 7 —Fe==F ===+ = ===
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E /’ 4
= ~ = = =3 m Depth
§’ 100 ’ — 10 m Depth
2 30.0 /,’

/
20.0 | —
10.0 //
0.0
0 0.1 0.2 0.3 04 0.5

y (m)
Figure 4.28: p-y Curves Obtained from LPILE

In the third and final LPILE analysisp—y curves obtained from TeraDysac were
furnished to LPILE. To construgb—y curves from TeraDysac output, the beam shear

force-time histories and displacement-time histories must le&l us conjunction.
Because beam nodes are tied into the soil mesh, the equilibriurohohede mandates
that the shared forces between the two adjoining beam elemm@htthe soil reaction

from the four connecting soil elements must combine to produce ne@nset fFigure
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4.29 illustrates the four soil elements which have a contribution tediheeaction at a

node. Figure 4.30 shows a free-body-diagram of the center node in Figure 4.29.

® 1 ®

N

e r L

Figure 4.29: Soil Contribution to Nodal Force

—\V,;
Vi —
Fe—»
_>V2
V, «——

Figure 4.30: Free Body Diagram of the Center Node

If a beam is analyzed alone, the shear forces of the connecting ddements are of
equal magnitude and opposite direction. However, in soil-structuractitar problems,
V1| # |[V,|. The difference between the two is the contribution from thersadtion.

This force is denoted bk;. p, by definition is a force per unit lengthn is be found by

dividing F; by the beam element lengtly. is nodal displacement obtained directly from
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the displacement-time history. Figure 4.31 shows pphey curves generated from the

TeraDysac analysis.
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Figure 4.31: p-y Curves Obtained from TeraDysac

Because thep—y curves from LPILE are empirical, there will not be complete

agreement with the curves obtained from TeraDysac. Figure 4.32 i@tpa empirical

LPILE p-y curves and thgg—y curve obtained from TeraDysac at a depth of 2 m.
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20.0 " el
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/
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)
0.0
0 50 100 150
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Figure 4.32: p-y Curve Comparison

The black line is the empirical curve using the recommendése vaf ¢, and the

accurate value of shear strength) @btained from EVALK. The dotted blue line uses
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both the accurate shear strength agg values obtained from EVALK. It is apparent
that furnishing accurate and &, values to LPILE produces a curve more closely
representing the TeraDysac curve. However, both LPILE cutves $he soil to be
stiffer initially and softer ultimately than what the TeraDysarve shows.
Figures 4.33-4.36 show the combined results from the soil-pile atitameanalysis. The
curves are identified in the legend by:

e LPILE - Single: a single value of soil shear strength (obtaihaddapth of 10 m)

was assumed throughout the depth

e LPILE — Multi: shear strength values at 1 m depth increments were used

e TeraDysac: the results from the TeraDysac analysis

e LPILE —p-y: the p—y curves obtained from the TeraDysac analysis were

furnished to LPILE

0.0 ’
’/ / L
! //
4.0 1
/ / ----- LPILE - Single
£ 80 , . IV
Z / LPILE - Multi
‘% . TeraDysac
a 120 — -+ LPILE -p-y
16.0
20.0
-10.0 0.0 10.0 20.0 30.0

Deflection (mm)
Figure 4.33: Pile Deflection Comparison for Nonlinear SSI Analysis
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Figure 4.34: Pile Rotation Comparison for Nonlinear SSI Analysis
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Figure 4.35: Pile Shear Force Comparison for Nonlinear SSI Analysis
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Figure 4.36: Pile Bending Moment Comparison for Nonlinear SSI Analysis
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Looking at the first three curves (LPILE — Single, LPILE — Muhd TeraDysac), it is
apparent that there is disparity between the results. Considegimgcurate portrayal of
shear strength in the LPILE — Multi analysis, results vesqgected to be closer to that of
TeraDysac. The observed differences can be attributed to th& P+ y curves. The
empirical curves and the bounding surface elastoplasticity modelgrde. Note that the
bounding surface model parameters were calibrated againstatiafyortest results
(Muraleetharan et al. 1994) and therefore the bounding surface edatitoplodel can be
expected to represent the stress-strain response of this sl @dmparing the last two
curves (TeraDysac and LPILEp— y), the results are much more agreeable. Because
the bounding surface model was used to obtain the shear strengtioas depths and
the p — y curves were developed from the TeraDysac analysis, one wopéttethe
results to concur. As this analysis illustrates, the empitledlE p — y curves may not
be suitable for the analysis of all soft clays. In additionnformation on the beam
(displacement, rotation, shear force, and bending moment), TeraDigea@ravides
output on the soil. The pore water pressure contours at the endanfallgsis are shown
in Figure 4.37. Figure 4.38 is the pore water pressure-time hikiorthe element

adjacent to the point of load application.
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Figure 4.37: Pore Water Pressure Contours (kPa)
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Figure 4.38: Pore Water Pressure-Time History (kPa, s)

Figure 4.37 reveals an accumulation of positive pore water pressure near thelpale on t
side being compressed. Pore water pressure may not be important for all tzesgisg

but when analyzing saturated soil, the capability to monitor pore water préesaure
desirable feature. Although the magnitude of the pore pressure shown in Figure 4.38 is
small (maximum value of only 1.8 kPa), pore pressures can accumulate during cycli
loading to larger values in clays. The obtained pore pressure is a functioraaftthe
duration. In this example, the load was ramped up over 1.0 s and held constant for an

additional 2.0 s.
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5.Thermal Modeling

The thermal loads for the structural elements are calculated numeaicdlbre discussed
in detail in Chapter 3. Several examples illustrating the thieamalysis capabilities in

TeraDysac are presented here.

5.1 Linear Temperature Distribution

Instrumentation projects have shown that the temperature varies thrhggh
superstructure (e.g. Huang et al. 2004). If no gradient is alloweidei formulation,
beam and plate curvature due to temperature can not be capturetlthal thermal-
induced deformation will be in the plane of the element local aris Figure 5.1). The
thermal loading feature implemented in TeraDysac allowsnpéeature change on the
top and bottom of the structure elements with a linear distributiovebetthe two. The
difference between the top and bottom temperature changes cotfteolslement
curvature. Figures 5.2 and 5.3 illustrate the curvature possibiliié® dotted lines

represent the deformed shape due to the thermal effects.

Figure 5.2: Curvature Depiction (Positive Gradient)
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Figure 5.3: Curvature Depiction (Negative Gradient)

For plate elements, thermally induced curvature occurs in twaidimeqthe local x- and
y-axes of the element). The following problem is meant to ifitestthe capabilities that
having a temperature distribution through the element depth will alléigures 5.4
shows the finite element setup. The 300 element steel platenisdpat the corner nodes
and subjected to a temperature difference between the top and bottom sutfade of

(ATtop > ATbottom )

Figure 5.4: Finite Element Mesh for Gradient Analysis

The plate measurements are 2 m x 1.5 m x 20 mne. oftter relevant parameters are as
follows: E = 200 * 16 kPa,v = 0.3, « = 6*10°/°F, p = 7.85 Mg/m. Figure 5.5

shows the deformed shape (displacements magnyid@®).
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Figure 5.5: Deformed Shape for Gradient Analysis

It is apparent that the plate has taken a domeslikge with curvature occurring in both
the local x- and y-axes. This is exactly what evoild expect the deformed shape to
look like. As the top fibers of the plate are leglato a higher extent than the bottom

fibers, the plate develops curvatures in two dioast.

5.2 Skewed Plates Subjected to Thermal Loading

In skewed IAB bridges, instrumental results havewshthat the backfill pressure is not
uniform behind the abutments (e.g. Sandford andadtyg 1993). To study this
phenomenon, a series of single element thermaysemwere carried out in TeraDysac.
The plate is used to simulate the deck of an IABRe steel plate parameters are given by:
E =200 * 10 kPa,v = 0.3, = 6*10°/°F, p = 7.85 Mg/ni. The plate thickness in
all the cases that follow is 30 mm. The four cornedes are pinned. The global
temperature change (uniform through the plate ttesk) isl°F. Only the dimensions in
the plane of the element are changing from proliteproblem.

Square Plate

Consider a square plate measuring 0.5 m x 0.5 enHggire 5.6).
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]
Figure 5.6: Square Test Plate Set-Up

The corner nodes are pinned so forces developeipldite corners. A depiction of the

plate forces is presented in Figure 5.7.

12.857 kM 12.857 kM
12.857 kM »Y Ye 12.857 kM
12.857 kM 7Y 2¢ 12.857 kM
12.857 kM 12.857 kM

Figure 5.7: Square Plate Corner Forces

The plate geometry and loading are symmetric. fohses developed in the corners are

also symmetric as one would expect.
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Skewed Plate (Rhombus)
In the first single-element analysis of a skewetigylthe top two nodes from the square
plate were each translated 0.1 m to the right Esg@re 5.8). The plate is 0.5 m high, the

top and bottom widths are still 0.5 m, but the platnow skewed.

a
Figure 5.8: Rhombus Plate Set-Up

The plate forces developed in the thermal anabgshown in Figure 5.9.

15.42¢kN 10.28¢kN
12.857 kM > < 12.857 kM
12.857 kM > T 12.857 kP
10.28¢kN 15.42¢kN

Figure 5.9: Rhombus Plate Corner Forces
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The vertical forces in the plate corners are nehital to each other after the skew has
been introduced. The element is still in equilibni (summation of forces in each
direction and summation of moments about a poinakgero), but there is an imbalance
between the vertical forces on the top and bottdnthe plate. The vertical forces
developed in obtuse corners are higher than thogeiacute corners.

Rectangular Plate

The thermal load vector is calculated numericalltha elemental level (see Chapter 3),
so the element layout controls the loading. Tieeneht shown in Figure 5.10 is 0.25 m
wide and 0.5 m high and has the same boundary tomsli properties, and loading as the

previous two examples.

| ]
Figure 5.10. Rectangular Plate Set-Up

The plate forces developed in the thermal anabgshown in Figure 5.11.
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Figure 5.11: Rectangular Plate Corner Forces

If there were no corner restraints, the strairhelate would be:
€ =aAT = 6% 107°/°F * 1°F = 6 ue (5.1)

and the plate edge deformations would be:

Awidth = aAT * width = 6 * 107 x 0.25 m = 0.0015 mm (5.2)
and
Aheight = aAT * height = 6 *x 107 * 0.5m = 0.003 mm (5.3)

Figure 5.12 shows the deformed shape of the reglanglate if it were free to expand.
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0.00075 mr

___________________

1; 0.0015 mr

Figure 5.12: Rectangular Plate (Deformed Shape)

It is apparent that the displacement in the hotalomlirection is one-half of the
displacement in the vertical direction. Lookingla plate dimensions, this makes sense
as there is twice as much material length along/éngcal axis to expand compared with
the horizontal axis. The corner forces (see Fidufd) developed when the plate is
restrained however show a reversal. The horizdotaks are twice that of the vertical
forces. This is because the cross-section in twi@ direction is double the cross-
section in the vertical direction. Intuitively,eite is twice as much material to create a
force in the horizontal direction as there is ie tvertical direction; hence, twice the
force.

Skewed Plate (Parallelogram)

In the second single-element analysis of a skewatk,pthe top two nodes from the
rectangular plate were each translated 0.15 metaigifit (see Figure 5.13). The plate is

0.5 m high, the top and bottom widths are stilB0n2, but the plate is now skewed.
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Figure 5.13: Parallelogram Plate Set-Up

The plate forces developed in the thermal anabgishown in Figure 5.14. The vertical

forces in the plate corners are again unequal vgher force in the obtuse corners.

10.28¢kN 2.571kN
12.857kN l L 12.857kN
12.857kN > < 12.857kN
2.571kN 10.28¢kN

Figure 5.14: Parallelogram Plate Corner Forces

The parallelogram plate was analyzed becauseatsesis similar to a skewed IAB deck.

Figure 5.15 depicts an idealization of a skewed b8k with corner forces highlighted
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based on the results of the parallelogram platé/sisa The results of the single element
analyses are in agreement with published reporthefhigher stresses in the obtuse
corners. For example, the monitoring study coretlidty Sandford and Elgaaly (1993)
on an IAB with a skew angle of 20° showed backffiéssures behind the obtuse corners
to be nearly three times the pressures in the acateers when the bridge was

experiencing maximum expansion.

Higher force
l Lower force

|

Lower force

Higher force

Figure 5.15: Skewed IAB Deck Idealization Highlighting Corner Forces

Mechanics of Skewed Plate Loading

A skewed bridge deck mainly carries load betweendabtuse corners, i.e. the shortest
path between supports (Hartmann and Katz 2004k slilgle element in-plane thermal
tests agree with this. The forces developed inothtese plate corners were higher than

those in the acute corners. In attempting to Vigseiavhy this force imbalance emerges
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in skewed plates, a sketch is helpful. Figure shéws a skewed bridge deck with

idealized beams connecting the obtuse cornershenacute corners.

3

Figure 5.16: Skewed Plate with Corner Connections

It is apparent that the distance between the obtoseers is less than the distance
between the acute corners. Figure 5.17 showsnthdoeéams each subjected to the same

axial load,P.

Obtuse - Obtuse

—P

> P

Acute - Acute

Figure 5.17: Corner-Connecting Beams

The beam connecting the acute corners (Acute-Adsilenger than the beam connecting
the obtuse corners (Obtuse-Obtuse). Assuming leeaim has the same cross sectin (

and Young's modulus(), the elongation of each beam is given by:

_PL
T EA

5 (5.4)

Note the beam lengthL) is in the numerator of Equation 5.4. So for gglént point
loads, the elongation of the Acute-Acute beam msatpr than the elongation of the

Obtuse-Obtuse beam. Relative to the beam congetti® acute corners, the beam
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connecting the obtuse corners is stiffer and wilbsequently carry more load. This
manifests as higher support reactions in the obtoseers than in the acute corners of

skewed bridge decks.

5.3 Assemblies of Elements

Using the technology available in the TeraDysac heeselement blocks can be
assembled together. For example, beams can balassketogether with a plate. Figure
5.18 shows a 10 x 10 element mesh of a square iplsuring 1 m x 1 m. Figure 5.19

is a 10 element mesh of a 1 m beam.

Figure 5.18: 100 Element Plate for Mesh Assembly
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Figure 5.19: 10 Element Beam for Mesh Assembly

In the mesher, there is an option to merge out sibaen different element blocks that
exist within a user-supplied equivalence tolerafuseially a small number, ~p In the
plate, there are 11 nodes in each direction. Tgsmbelement also has 11 nodes at a
spacing equivalent to the plate mesh. Therefarg,beeam lined up vertically with the
plate and at any position horizontally incremertigd.1 m from the left edge of the plate
will have 11 equivalence nodes. An assembly ofpla¢e and five beams is shown in

Figure 5.20.

114



Figure 5.20: Beam and Plate Mesh Assembly

The mesher outputs the results from any node setagnce. In the example described,
there are 55 equivalence nodes (5 beams with 1f).e&dter the successful meshing, the
beams are tied into the plate. Mesh assembliekegréo setting up the bridge models
used in this work.

The thermal loading is applied by element block @raDysac. When thermal loads are
applied to assemblies of structural elements, tiseirgteraction between the two element

blocks. A few thermal analyses of the plate-beasembly illustrate this interaction
effect. Both element blocks are steBl:= 200 * 10 kPa,v = 0.3, = 6*10°/°F, p

= 7.85 Mg/mi. The beams are 0.1 m wide and both the beamshanplate are 0.1 m
thick. The temperature loading for the followirlgde cases is a uniform temperature
increase ofL0° F. To illustrate the interaction between thenaet blocks, three analyses
were carried out. In the first analysis, the en@ssembly is heated. In the second
analysis, only the plate is heated and in the famallysis, only the beams are heated. The
deformed shapes are shown in Figures 5.21-5.22 nidgnification factor in all three

figures is 1500.
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Figure 5.21: Deformed Shape (Both Element Blocks Heated)

Figure 5.22: Deformed Shape (Plate Element Block Heated Only)
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Figure 5.23: Deformed Shape (Beam Element Block Heated Only)

It is apparent that when both element blocks aegduketogether, the uniform expansion
across the beams and plate does not lead to angrtton in the deformed shape (see
Figure 5.21). The nodal displacement-historieglierbeam ends are identical to those of
the plate edges. No forces or moments developthereelement block. The second
analysis heats only the plate. The beams resth@nplate expansion as depicted in
Figure 5.22. The reverse is true when only theriseare heated (see Figure 5.23). This
element block interaction is important in regionise | the bridge deck where three

sections (deck, girders, and pier caps) are @ltbgether and being thermally loaded.
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6. TeraGrande Modeling

6.1 General

The structural elements implemented in TeraDysadaw order linear elastic elements.
To validate the use of these elements, severabtigbr analyses of the superstructure
were performed using the finite element applicalienraGrande (ANATECH 2005). The
program considers all the material nonlinearity lipple to reinforced concrete
modeling. In addition to stress and deformationpots, concrete cracking can be
monitored. The purpose of this section of theatission is to illustrate that although
cracking does occur during the thermal loading &ycthe cracking is only minimal and
therefore linear elements are acceptable for IABRlams in TeraDysac. The
instrumented Minnesota bridge is used as an examphe TeraGrande User’'s Manual
(ANATECH 2005) should be consulted for a full deston of the features available in
and theory behind the TeraGrande computer progra&mcursory explanation of the

pertinent details to this work is presented inftil®wing five sections.

6.1.1 Explicit Dynamics
This work uses the explicit dynamics procedureafbanalyses. The equations of motion
of a body are integrated through time using aniexmentral difference integration rule

given by the following:

iil- S Pi - Ii (61)
. . At;+At; .

ui% = ui_% + %ui (6.2)
Uit1 = Ug + Atui% (63)
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where u; are the nodal displacements at time increment, .. are the nodal mean
2

velocities at the mid-incremenii; are the nodal accelerations at time increnight are
the external applied loads, ahdare the internal forces (due to stresses) atiticrement
i. The time incremeniit;, changes as the body deforms and is governedebgaimped

Courant stability limit of the mesh given by:

Aty <—2—(J1+E2-¢) (6.4)

Wmax

wherew,, 4, IS the highest natural frequency of the mesh&amlthe fraction of critical
damping in the highest mode. The time steps invdr®us analysis runs in this work
were quite small. Analysis times of 0.5 secondstljereabouts) required hundreds of

thousands of time steps.

6.1.2 ANATECH Concrete Model

The smeared-crack finite element technology usetthénmodel was developed by the
founder of ANATECH Corp., Dr. Y.R. Rashid (Rash#@68). The compressive strength
of concrete £) is the only input required from the user for twncrete constitutive
model. All other model parameters are obtainedgusorrelations tg,. This nonlinear
model has been shown to accurately predict labgrégsts of reinforced concrete bridge
components, capturing cracking, plasticity, andtérgsis among other phenomena
(Dunham et al. 1991, Dameron and Dunham 1992).f,Fer40.68 * 16 kPa (5900 psi),
the generated curves representing the concretditcbine behavior are given Figures 6.1
and 6.2. This is the value of compressive streagthe time of prestress transfer for the

example that follows.
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Figure 6.1: Compressive Stress-Strain Curve (Pa)

Tensile Stress (x10%
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Figure 6.2: Tensile Stress-Strain Curve (Pa)

6.1.3 Concrete Cracking

The Young’'s modulus for the concrete is computetthenTeraGrande input file, although
a user-furnished Young’s modulus option is avadablThe value of Young’s modulus
for the concrete is computed using Equation 6 &citordance with ACI 318-02.

E = 57000./f/ (6.5)
where the units of. andE are psi.

The girder concrete compressive strength was giveéhe bridge plansff = 5900 psi).
Therefore,

E = 57000v/5900 = 4.378 * 10° psi = 30.19  10° kPa

The tensile cracking strain is specified in theuinfile as 10*. The tensile cracking stress

is determined using Young’s modulus (see Figurg 6.3
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Ocr

Figure 6.3: Concrete Stress-Strain Diagram

The initial slope of the concrete stress-strairveus Young’'s modulus. The cracking
stress occurs at the specified tensile crackiragnstollowing the slope of the curve. The
concrete cracking stress is given by:

0. = E€,r = 30.19 * 106 kPa * 10~* = 3.019 = 103 kPa

This value of cracking stress agrees with the &durnished by TeraGrande (Figure 6.2).
The tensile strength of the concrete quickly disteis after the cracking stress is
reached. Cracking behavior is treated at the elermeegration stations using the
smeared crack model. Cracks are assumed to forpemdicular to the directions of
largest tensile strains which exceed the crackiregns The crack direction remains fixed
although the crack can close, resist compressiod, r@-open under load reversal

(ANATECH 2005).

6.1.4 Reinforcement Modeling
TeraGrande allows the user to model individual rel@ands. Uniaxial rebar strands (2D
line elements) pierce the concrete elements (3xdmnal 8-node bricks). Figure 6.4

shows the finite element mesh of one of the brglgeers.
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Figure 6.4: Bridge Girder Mesh

Figure 6.4 illustrates that the rebar can be atelyranodeled in TeraGrande. The
stirrups, prestressed rebar strands, and longaudeinforcement (no prestress) are all

shown in the beam.

6.1.5 Tied Contact

The bridge model is built by connecting 3D meshanses. An instance is an individual
component of the bridge (i.e. a girder or a bep).cAVhen rebar is connecting instances
(i.e. the girder connection to the deck), tied eohts used between the instances. A
simple example of tied contact is shown in Figui® 6Three instances (two flat blocks
and a bar) are connected using tied contact. €Henodes are shared nodes between
instances. When the problem gets meshed, a sttaoéd node sets on each side of the

bar is merged out and three mesh instances becoenmesh assembly.
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Figure 6.5: Tied Contact Between Mesh Instances

6.2 Prestressed Girder Modeling

To show the accuracy that a reinforced concretdysisain TeraGrande yields, the
analysis of a prestressed girder from the bridgelehts presented here. Figure 6.6
shows the tendons subjected to prestressing. fEped strands are located in the girder

web.

Figure 6.6: Prestressed Tendons in Bridge Girder

A set of plans was available from the IAB projebt.addition to the design details (rebar
layout, section geometry, etc), the plans providegdign strengths, prestress loading
magnitude, and camber information. The compressiength at the time of the transfer
of prestress {. ) was 40.68 * 10kPa. 12.7 mm steel plates were merged on toitterg

ends (see Figure 6.7). The plates help suppomezies near the girder ends as the

prestress load develops.
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Figure 6.7: Girder End Caps

An explicit dynamics analysis was performed on giveler with two procedures. The
prestress was added to mesh followed by the setfhveof the girder. The loading

scheme is presented in Figure 6.8.

1.2
1.0
/
. Prestress
038 ! Amplitude
! - - = Gravity

Value

0.6 7 Amplitude
[ |
0.4 ;
[ |
0.2 :

0.0
0.00 0.15 0.30 0.45 0.60

Time (s)
Figure 6.8: Loading Amplitudes for Girder Analysis

The y-axis value in Figure 6.8 is a portion of ib&ding magnitude. Therefore, when the

value is 0.0 there is no load and when it is h8,lbad is applied fully. It is apparent that
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the loads are each ramped up over 0.15 seconds.firfhprocedure (prestressing) lasts
for 0.15 s. Immediately after the prestress amgbditreaches its full value, this procedure
ends and the gravity procedure begins. TeraGralbevs procedures to import

mechanical states from other procedures. So &td).the gravity loading begins with the
full prestress load already developed in the girdene gravity ramps up and reaches its
full value at 0.3 s. The loads are then held airtfull values for another 0.3 s. Figure
6.9 shows the node sets pertinent to the analyBige boundary nodes on the left are
fixed in both the vertical and longitudinal diremsti of the girder and the nodes on the
right are fixed in the vertical direction only. @mmiddle node shown is at the girder
midspan on the top of the girder. A nodal disphaest-time history was written for this

node.

The cracking pattern was tracked during the amaly$tigures 6.10 and 6.11 show the
cracked girder at 0.15 s and 0.6 s, respectivBlyed marking indicates there is an open
tension crack. A blue marking indicates that aeoopen tension crack is now closed in

compression. The displacement is magnified byctofaf 5.

It is apparent that there is significant crackirgpnthe beam ends. Focusing on the

cracking away from the beam ends, the crack patgrees with intuition. There are
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open tension cracks at the end of the prestressifite gravity loading subsequently
closes most of these cracks, as indicated by the mlarkings. Although the cracking
pattern looks ominous, it is important to realibattthe red makers simply mean the
cracking strain has been reached in the concré$eover a 5200 kN (1.1 million Ibs.) of

prestress force and 215 kN (24.2 tons) of self-hieigre transferred to the beam,
cracking is expected. An important check on thieditg of the results is found with a

nodal displacement-time history. A nodal displaeamhistory of a node at the top-
center of the beam at midspan reveals informatimutthe beam deflection and residual
camber. According to the bridge plans, the residamber in the beam is about 6 cm.

Figure 6.12 shows the displacement-time history.
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: /
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0.0
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Figure 6.12: Midspan Displacement-Time History from Girder Analysis

Although there is still some oscillation left tocoe in the girder, it is apparent that the
midspan deflection is converging to the residuahloar specified by the bridge plans.
This analysis is an excellent check on the rei®drconcrete analysis in TeraGrande.

Considering the mesh size (9216 concrete elem8B&) rebar elements), the model
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complexity, and the load magnitude, it is a vergamaging result to have the nodal

displacement so close to the actual camber obsémtbé field.

6.3 Superstructure Model

A full 3D model of the Minnesota bridge was created eraGrande (see Figure 6.13).
However, the model was reduced to only the supeatstre (girders and deck) for several
reasons. Mainly, the analysis was designed to stolgly the superstructure response to
abutment movements. As the girder ends sit oncetesic bearing pads, abutment

movement does not elicit any appreciable respantieei piers and pier piles.

Figuré 6.13: Minnesota IAB Model (Piers and Pier Piles Included)

Also, some of the elements in the pier piles abgraale had very poor aspect ratios.
Figure 6.14 shows a 2D view of the cross sectibne red element block is steel and the
blue element block is concrete. The thin steelngagsround the piles and the piles
themselves are quite thin (~10 mm). To make residerelement aspect ratios for these

elements would make the model size grow signifigant
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Figure 6.14: Pier Piles (Above Grade) Mesh

Removing the pier caps and the pier piles aboveegrasulted in a superstructure model
with 366,272 elements. The element count incld®3908 uniaxial rebar elements (see

Figure 6.15).

Figure 6.15: Minnesota IAB Superstructure Model (Rebar Shown)

The important regions for boundary condition apdimn in the superstructure model
include the locations of the bearing pads and thémaents in the field. A node set is
created at the girder ends on the superstructteeian (see Figure 6.16). These nodes
are fixed in the vertical direction only to sim@aesting on bearing pads. Translation in

the longitudinal direction of the bridge is allowed
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Figure 6.16: Superstructure Interior Nodes

The girder ends and deck are cast integrally ineolridge abutments. Because of the
rigidity in this region, the abutment boundary citiods can be applied directly to the

ends of the superstructure model. A portion ofghperstructure end node set is shown

in Figure 6.17.

Figure 6.17: Superstructure End Node Set

The ultimate goal of the TeraGrande modeling its thork is to show that significant
nonlinear behavior (e.g. concrete cracking) isauaiurring during the thermal loading of
the IAB. This section is meant to show that timedir structural elements developed for

TeraDysac are acceptable for the thermal analys&sBs.
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6.4 Thermal Analysis

Because the abutment movements due to the thewading are known from the
instrumentation, a thermal analysis does not nedektperformed on the superstructure.
Instead the measured abutment displacements capplied directly to the node sets on

the ends of the superstructure.

6.4.1 Temperature Increase

A 1 F increase in the bridge temperature inducedhamittranslations of 2 mm at each
abutment. This displacement was applied to eagerstructure end to simulate the
thermal event used for the TeraDysac validatiorhesE histories were applied to a
pristine bridge model. A model with no cracks esidual stress is used so that the
observed stress, strain, cracks, etc are all dtieettpading in question. Figures 6.18 and
6.19 show the crack pattern in the bridge deck thedbridge girders at the end of the

loading.

Figure 6.18: Superstructure Crack Pattern for Temperature Increase
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Figure 6.19: Girder Crack Pattern for Temperature Increase

There is negligible cracking in the bridge girdesss these girders are free to translate in
the longitudinal direction (their interior ends amesting on bearing pads), there is
relatively no induced tensile strain. The appligsplacement boundary conditions have
led to tension cracks at the locations of the lwidqger caps. Intuitively, crack
accumulation here makes sense because the sectieduiced at these locations because
the girder ends are separated. The strain coniautise superstructure (longitudinal

direction, ZZ) are shown in Figures 6.20 and 6.21.
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Figure 6.20: Strain Contours for Temperature Increase
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Figure 6.21: Strain Contours for Temperature Increase (Close-Up)

It is apparent that in the three spans of the stipeture, the tensile strain has not been
reached. This is evident because there are nmegklers in main spans and the strain
contours show the tensile strain to be low. Thackrpattern and strain contours
illustrated in Figures 6.18-6.21 are conservatiVee finite element model of the deck is
continuous and uniform across the gap betweenritigebgirders. In the field, a saw cut

and a V-joint are used at the piers (see Figur2)6.2
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Figure 6.22: Deck Schematic at Pier Locations

Reducing the section even further with the joinié @nsure that any cracking in the deck
will occur under the saw cut and because it iseskahere will be little trouble with
degradation (water tightness, de-icing salts segjpito the deck). If the saw cut and V-
joint were modeled in the TeraGrande analysiswitth of the crack pattern shown in
Figure 6.18 would be trimmed. Considering the kifaee main spans of the bridge deck
and conservative crack portrayal at the pier locetj it is concluded that the
superstructure is not experiencing severe nonlibehavior. However, this is only the
case for the displacement-time history appliechatduperstructure ends, which directly
relates to an actual temperature change, in tlsis @gemperature increase of 10°F. For a
temperature increase of this magnitude (or les®), linear elements developed for

TeraDysac should be satisfactory.

6.4.2 Temperature Decrease

A temperature drop at the bridge site was alsosinyated. In a two-week period in
January 1998, the bridge temperature dropped by 8°Fhe resulting abutment
movements measured by the horizontal extensométessmm) were applied to the

superstructure end node sets (similar to the briveging analysis). Again, a pristine
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model was used. The stress contours (longitud#i&),are shown in Figures 6.23 and

6.24.

-9.03e+6

2.12e+6
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Figure 6.23: Bridge Deck Stress (Pa) Contours for Temperature Decrsa
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Figure 6.24: Stress (Pa) Contours Viewed from Beneath Bridge

Again, the response is quite uniform in the maimnspand there are some stress
concentrations in the pier regions. Figure 6.2éwsh a view from below the

superstructure which reveals the highest regiom®oifpression are on the bottom side of
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the deck between girder ends. A small tension sxn&s on the top side of the deck in

this region. This minor tension resulted in a krpattern shown in Figure 6.25.

Figure 6.25: Deck Crack Pattern for Temperature Decrease
The compressive strength of the deck concrédie) (s 39.99 MPa (5800 psi). The
ANATECH generated compressive stress-strain cug\g@vien in Figure 6.26. Added to
the curve are two indicators: thé marks the maximum compressive stress in the deck
and thex marks the compressive stress in the deck as tediday the lime coloring in

Figures 6.23 and 6.24.
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Figure 6.26: Deck Compressive Stress-Strain Curve (Pa)

Figure 6.26 illustrates that for the cooling modelthe compressive stress in the deck
does not enter the nonlinear range (i.e. it is ist&ist with the slope Young’s modulus

provides on the stress-strain curve). A majorifytlee compressive stress in the
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superstructure is quite small when compared with tompressive strength of the
concrete. The compressive stress in the supetisteuas indicated by the lime coloring
is around 1.9 MPa (about 275 psi). Upon studyhmey stress-strain curve for the deck
concrete and knowing the cooling-induced compresstvesses, it is concluded that the
linear plate element developed in TeraDysac is@abée to model the superstructure in
this temperature range. For the temperature dr@3Foto be modeled in TeraDysac, the

developed linear elements should be satisfactory.

6.4.3 Blast Loading

It has been concluded that using linear elementdsarsuperstructure is acceptable for the
temperature loading modeled previously. Dependingthe analysis, more advanced
elements may be necessary. To illustrate onenostaf such an analysis, a blast loading
event was simulated using the superstructure model3D moving pressure loading
feature is available in TeraGrande. A surfacetblass initiated on the deck top at the
center of the middle span. Again, a pristine moglas used. The superstructure end
node sets and the girder end node sets were restrad the vertical direction only. The
user is allowed to control the peak overpressueevspeed, and how the blast pressure
diminishes with time and distance. The appliedtolas a peak overpressure of 413.68
kPa (60 psi) and a wave speed of 762 m/s (30080 iffigure 6.27 shows the pressure as
a function of time at increasing distances fromphepagation center. Figure 6.28 shows
pressure as a function of distance from the prapamgaenter at increasing times. This is
a significant blast event, albeit a fictitious otigat is modeled for illustrative purposes

only.
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Figure 6.28: Blast Pressure (Pa) vs. Distance (m)

The pressure on the bridge deck 6 ms after the ldad initiation is shown in Figure

6.29.
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Figure 6.29: Superstructure Pressure (Pa) 6 ms After Blast Itiation
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The deformed shape of the bridge 0.15 s after ldmst itiation is shown in Figure 6.30.

The peak displacement in the vertical directiothit time is 7.29 cm.

Figure 6.30: Superstructure Deformed Shape at 0.15 s (Magnified by 15)
Figures 6.31 and 6.32 show the crack pattern irbtltge deck and the bridge girders,

respectively.
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Figure 6.31: Bridge Deck Crack Pattern
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Figure 6.32: Bridge Girders Crack Pattern

It is apparent that the bridge has suffered serdamage due to the blast load. Open
tension cracks (in very high density) throughouthbihe deck and girders indicate that
the bridge has been destroyed. This is a sevadinig event and any soil-structure

interaction analysis will require nonlinear strueltelements.
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7. TeraDysac Modeling

7.1 Problem Description

To validate the developed technology in TeraDysasullts from a project conducted at
the University of Minnesota (see Huang et al. 2004)e used. The published report
provided a detailed description of the bridge s#eil testing results, and numerous
instrumentation results. Bridge #55555, locate®athester, Minnesota is a reinforced
concrete IAB with no skew angle and prestressediegst Figures 7.1-7.3 describe the

bridge.

Figure 7.1: Concrte IAB (Poto Courtesy of Huag et I. 2004)
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Figure 7.2: Elevation View of Minnesota IAB
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Figure 7.3: Transverse Section (Through Deck)

The monitoring effort was carried on from bridgenswuction in 1996 to 2004. Report-
furnished air temperature, abutment translationytrabnt rotation, and abutment pile
curvature from the year 1998 were used in the stbd of the proposed modeling
scheme. The used instrumentation results came #&oweather station, horizontal
extensometers, tiltmeters, and vibrating wire stigages, respectively. The report also
included the soil testing results from the bridgee svhich provided stratigraphy
information and standard penetration test (SPT)lt®s A set of bridge plans was also
obtained from the Minnesota Department of Trangpart (Mn/DOT). The bridge is
built over the Zumbro River in southeastern Minriasol'he water table is located about

4.5 m below the abutments, but the soils are asduolee saturated in this work.
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7.2 Soil Properties

Two sets of analyses were carried out in 2D. Tist &ssumes all of the solil is linear
elastic. The second uses a combination of a bagnslirface clay model and a sand
model. In the 3D analyses (skewed vs. zero skemy, linear elastic soil properties are
used. The soil exploration reported the blows fpet (BPF) from the SPT. For the
linear elastic problems, only Young’s modulus andisBon’s ratio are required.
Poisson’s ratio was set to 0.3 for all soils. Ygsnmodulus was computed in
accordance with the method described in the Naeailites Engineering Command
design manual (NAVFAC 1986). With the exceptionté two relatively thin clay
layers at the site, the soils are loose and papdged sands. The method described in
the design manual provides Young’'s modulB% &s a function ofV-value, where the
units of £ are tsf.

Table 7.1: Young’s Modulus as a Function of N-Value (NAVFAC 1986)

Soil Type E/N
Silts, sandy silts, slightly cohesive silt-sand 4
mixtures
Clean, fine to medium sands and slightly, 7
silty sands
Coarse sands and sands with little grave 10
Sandy gravels and gravel 12

Figure 7.4 shows the stratigraphy at the bridge with the values of /N used in the
linear elastic analysis. In both the linear etasind the bounding surface analysis, pore

pressure effects were captured by setfing2.2 * 16 kPa.
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Figure 7.4: Soil Stratigraphy with Used E/N Ratios

7.3 Structural Properties

The bridge deck, bridge girders, abutments, pipscand the pier piles above grade are
all combinations of concrete and steel. The bridgek, girders, abutments, and pier

caps are made of reinforced concrete. The pies @ibove grade and to a depth of about
1.524 m below grade are encased in concrete aabdpspes. Because these components
consist of two materials, a weighted average ambrogas used to obtain the material

properties input for the beam and plate elements.
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7.3.1 Weighted Average Example
The piles supporting the piers are HP 10 x 57 @Bstin strong-axis bending surrounded

by concrete and steel shells (see Figure 7.5)abaut 1.5 m below the ground surface,

the concrete and shells end and only the pilesrasmto significant depth.

TﬁZS.Q?lS c

25.3746 ¢

Figure 7.5: Cross-Section Pier Piles Above Grade

The required beam element properties for the Tesabynput include Young's modulus
(E), Poisson’s ratioy), area f), strong axis moment of inertid §, weak axis moment of

inertia (), and the coefficient of thermal expansia). (

These properties were obtained as follows:

The modulus of concrete and the coefficients ofrtfa expansion for the steel and
concrete at the site were reported in the Huara). é2004) study. The subscriptss,

andt designate concrete, steel, and total respectively.
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To calculated the composite properties, the folimyvare usedE, = 30.3 = 10° kPa,
E; =200 * 10°kPa, A, = 1110.52cm?, A, = 186.65cm?, p, = 2.4 Mg/m?, p, =
7.85 Mg/m?, v, =0.2, v;=0.3, a.=6.15%10"°/°F, a, =6.7*107%/°F. The
bending stiffnes&1 is different in the strong and weak axis direcsion

(EDx = (Eslpie)x + (Eslsnen)x + (Eclc)x = 88,150.75 kN-m?

(ED)y = (Eslpite)y + (Eslsnen)y + (Eclc)y = 74,819.71 kN-m?

__ ESAs+EAc
Ap

E, = 54.72 * 10° kPa

I, = 2% = 000161 m*
E

1, = &% = 0.00137 m*
E

The composite beam density, Poisson’s ratio, aedficent of thermal expansion were
also found using this weighted average approadte obtained values are given by:

p; = 3.18 Mg/m’

v, = 0.214

a; = 6.23 x 106 /°F

7.3.2 Set-Up for Plane Strain Analysis

The obtained properties described in the above pbkaare input directly for the beams
and plates in the 3D analyses. In the 2D analysesther calculation is needed. The 2D
version of TeraDysac uses plane strain theoryHersbil elements. Across the width of
the bridge, there are four girders and six pilesaath abutment and bent. Because the
soil is represented by a unit width, the sectioopprties 4 andI) for the girders and
piles are spread over the bridge width. For examfiie moment of inertia for an

abutment pile was found to be 5.218 **18*. Across the bridge width, the six abutment
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piles combined have a total moment of inertia equ# * 5.218 * 1 m* = 3.131 * 1¢°

m*. To find an approximate value of this momentnefrtia over a unit width, the value is
divided by the bridge width (3.131 * fan® / 11.9888 m = 2.611 * T0m*m). In the
2D model, the ‘Deck/Girder’ element block (see Fegu7.11 and 7.12 and Table 7.2) is a
weighted average combination of the roadway andadthegirders which support it. The
abutments are uniform across the bridge width,hgoabutment section properties are

based a unit width.

7.3.3 Set-Up for 3D Analysis

Significant reinforcement is used to connect thelegs to the bridge deck. In the 3D
bridge model, the girder elements are meshed Hiriextd the deck via tied contact. The
bent cap is also merged into the plane of the dddks is not entirely accurate because
the girder ends are sitting on elastomeric beapagds which rest on the pier caps (see
Figure 7.6). The diaphragms which connect theegixdebs at midspan were neglected
in the model. This work is concerned with the thalrresponse of the bridge, especially
behind the abutments so unnecessary elements weérmaodeled. The parapet wall
(concrete railing) on either side of the roadwa b0 neglected. The railing is divided
into roughly 6 m sections with cork deflection j@in This rail was deemed to only
marginally influence the response of the bridgekded@he meshed superstructure is

shown if Figure 7.7.
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Figure 7.6: Bridge Details at Pier Locations

Figure 7.7: 3D TeraDysac Superstructure Model
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In the above figure, the girders are colored iregrand the bent caps are colored in blue.
The three element blocks (deck, girders, and baps)care meshed together via tied

contact.

7.4 Applied Thermal Loading

In the study conducted by Huang et al. (2004), loeouples were installed in the

superstructure cross-section to develop temperatofdes through the deck and girders.
Figures 7.8 and 7.9 show the temperature profdesfsunny summer day and a cloudy
winter day, respectively. The figures were obtdifi®m an electronic version of the

Minnesota report (Huang et al. 2004).
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Figure 7.8: Temperature Gradient (Sunny Summer Day, After Huang et al. 2004)

148



50
- 40 E
o
o
o
o
- 30 ‘g
H
2
’ Q
=
- 20 9
o
0
c
8
»
10 a

\UI 'IL L) L) L] L) L) L L] U

-4 -2 0 2 4 6 8 10 12 14 16

Temperature differance [°F}

Figure 7.9: Temperature Gradient (Cloudy Winter Day, After Huang et al. 2004)

It is apparent that on sunny summer days thera ispareciable temperature difference
through the superstructure, especially in the aften. Included in the instrumentation
plan on the Minnesota bridge were pyranometers tesateasure solar radiation. On the
two days in question (Figures 7.8 and 7.9), sadration was high in the afternoon on

the summer day and relatively minimal throughoetwhnter day.

7.4.1 Validation Technigque

For the results comparison, temperature loading aygdied to the TeraDysac models

and the abutment rotation, displacement, and pilevature were compared to the

instrumental data from the Minnesota report. Akerninrmovement was reported in two

week intervals from horizontal rod extensometersnguthe year 1998. The bridge

temperature, abutment rotation, and pile curvatteee reported on a more frequent basis

(every 6 hours) through the use of data loggersaandmputer. A two-week period in
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June was selected for the temperature increas®ysaa analysis and a two-week period
in January was selected for the temperature dexereadysis.

In the summer analysis, a temperature gradientappasied through the superstructure.
The bridge temperature change from the beginninidpeoend of the two weeks (10°F)
was applied at the mid-depth of the composite stpeture. The exact temperature
distribution during this time was not reported,tise gradient was estimated based on the
observed temperature distribution during similares of the year (see Figure 7.8). The

temperature loading input to TeraDysac is showRigure 7.10.

je—— AT = 14°F ——

Deck

+— AT = 10°F—

Iy
Iy
T

7Girde|

AT = 6°F |
Figure 7.10: Superstructure Temperature Input (Heating)

In the temperature drop analysis, the bridge teatpex change from the beginning to the
end of the two weeks (8°F) was applied throughbatduperstructure. Consistent with
Figure 7.9, no thermal gradient was used. Thertheloading was ramped up over 1.0 s
and then held to allow any oscillations in the soluto level off. Note that the obtained

pore water pressure contours presented for theequbat analyses are a function of the
load duration. As a two-week event is simulatedrdvO s of problem time, the obtained

pore water pressures may not reflect field valuBEse ability to track pore water pressure
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generation is a nice feature of TeraDysac anddhelts are presented to provide insight
into what soil regions may experience a gains ssde in pore water pressure during the
simulated event. The obtained abutment displacenmayutment rotation, and pile
curvature from the TeraDysac analysis were compavéd the respective values

incurred over the two weeks of analysis.

7.5 Linear Elastic Analysis

The first analysis performed on the bridge mode&suthe calculated Young's modulus
values in a linear elastic saturated soil modedve®al analyses were used to ensure the
mesh has a minimum size (spatially) with minimdéef from the soil boundaries. The
finite element model is shown in Figure 7.11. Ehare 316 line elements (structure) and

7302 quadrilateral elements (soil) in the mesh.

Figure 7.11: 2D IAB Finite Element Model

A gradient is applied away from the abutments ortheside to reduce the model size
without sacrificing accuracy near the bridge. Fegd.12 shows a zoomed in view of the

bridge with the various element blocks colored.
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Figure 7.12: Element Block View

The various colors in Figures 7.11 and 7.12 repitetbe following element blocks:

Table 7.2: Element Blocks by Color.

Soil
Color Element Block
Pink Fill / Loose Sand
Green Lean Clay
Maroon Poorly Graded Sand
Blue Poorly Graded Sand
Gold Poorly Graded Sand
Purple Lean Clay
Turquoise| Poorly Graded Sand
Structure
Color Element Block
Green Deck/Girder
Blue Abutment
Red Abutment Pile
Aqua Pier Piles (Above Grade
Yellow Pier Piles (Below Grade)

The various poorly graded sand

layers are diffeated by locations where the SPT

values changed significantly in the soil explomtio The nodal equivalence scheme
allows for two nodes at the same location to begeettogether. The deck is merged into

the abutment and the pile sections change at totmtway from soil nodes (see Figure
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Figure 7.13: Structure Assembly at Abutment

Ideally the deck should be merged into the abutraettie top of the abutment element
block. However, because a soil node is already tiiethe abutment at this location,
merging a deck node at this location is not allowebhis situation does provide the
possibility of some analysis problems. Becausguthetion of the deck and the abutment

is not located at a soil node, the junction node @aviate from the soil displacement

(linear between soil nodes). Figure 7.14 illussahis phenomenon.

Figure 7.14: Junction Undeformed and Deformed Shapes

The deformed shape in Figure 7.14 is grossly exagg®g The actual deformed shape in
this region on the bridge models is much more adpeewith the soil element edge
displacement because of the huge stiffness oflibgreent relative to the soil.
The entire soil stratum is assumed to be saturaldae applied boundary conditions for
the model include fixing the solid and fluid dispganent in both the horizontal and

vertical directions on the bottom soil nodes andhie horizontal direction only on the

side soil nodes. Figure 7.15 highlights the boundades.
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Figure 7.15: Boundary Nodes for 2D Analysis

7.5.1 Temperature Increase

The first linear elastic analysis considers theperature raise measured during a two-
week period in the summer of 1998. Figure 7.16wshihe deformed shape of the bridge
(magnified by 100). No hourglassing has taken elac the soil elements (Uniform

Gradient formulation).

Figure 7.16: IAB Deformed Shape for Temperature Increase

A more accurate depiction of the abutment and abotrpile deformation is presented in
Figure 7.17. During the two weeks of temperatuegiation at the IAB site, the
horizontal extensometers revealed an abutment meveof about 2 mm. Figure 7.17

shows the TeraDysac displacement results to bead ggreement this value.
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Figure 7.17: Abutment and Abutment Pile Displacement for Temperare Increase

The transition from the abutment to the abutmelet pccurs at a depth of 2.35 m. The
abutment is moving as a rigid unit and the behailiostrated in Figure 7.14 is not

occurring. Knowing the length of the bridge deckhe model, the coefficient of thermal

expansion, and the applied temperature changegaefitpansion calculation revealed an
abutment displacement of about 2 mm. It is appgarenrelatively high stiffness of the

composite superstructure (deck and girder) to thie diffness allows the abutment

movement to approach a free expansion. A freeresipa would lead to a stress-free
superstructure and a fully restrained loading (z#satment movement) would lead to
maximum thermal superstructure stresses, with i#ld behavior residing somewhere
between the two. As the field response is muckerldo a free expansion, the thermal
superstructure stresses are low.

In addition to the abutment displacement, abutmemation was checked against
titmeter-measured abutment rotation in the fielthe abutment rotated away from the

river by 0.014° over the two week period. Becatmeabutment is comprised of beam
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elements, there is a nodal rotation output for eame. The values of nodal rotation for
the seven abutment nodes ranged from 0.0046° @b50°0 As Figure 7.17 illustrates,
there appears to be no significant bending in theraent (it rotated as a unit), so these
rotation values are expected to be very close. th@raapproach to obtain the abutment
rotation is to treat the abutment as a straiglet firat has deviated from vertical by some
angle. This angle, which can be easily calculatethe abutment rotation. Using the top
and the bottom of the abutment as the line endpoihé calculated abutment rotation is
0.0048°.

The Minnesota study also reported the abutmentquitgatures. After the piles were
driven, arc-weldable strain gages were installedegths of 15 cm and 91 cm below the
bottom of the abutment. The bending moment vatwesch abutment pile node was
obtained in the analysis. Using Equation 7.1,dihe curvature at various locations can

be calculated.
M
i EIl (7.2)

The reported pile curvature change over the twokev@es 866.s/m. Using Equation
7.1, the curvature immediately below the abutmemts wound to be 552ue/m.
Considering the assumptions made (linear elasti@ad structure) and techniques used
(weighted average approach for structural propert®&PT values to obtain Young's
modulus), the results from the linear elastic asialyare encouraging. The obtained
abutment translations agree with the field valugfie abutment rotation and abutment
pile curvature are both under-estimated.

In addition to the results already discussed, ohdhe main advantages of using

TeraDysac is that the pore water pressure developtheging loading can be captured.
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Figure 7.18 shows the pore pressure contours aertdeof the analysis run. As the
bridge deck is heated, it expands pushing the amisninto the backfill soil. This

loading creates a positive pore pressure builduparbackfill soils. On the interior sides
of the abutments, negative pore pressure has gealoThis stems from the tied contact
between the soil and structure elements. The pagssure variations are small, with

range of only about 0.9 kPa.

-0.39e0

0.4e0
Pore Pressure

Figure 7.18: Developed Pore Water Pressure (kPa) During Temperatur@d¢rease

7.5.2 Temperature Decrease
The second linear elastic analysis considers tigdtemperature drop measured during
a two-week period in the winter of 1998. Figur&97shows the deformed shape of the

bridge (magnified by 100).
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Figure 7.19: IAB Deformed Shape for Temperature Decrease

A more accurate depiction of the abutment and abotrpile deformation is presented in
Figure 7.20. During the two weeks of temperatuegiation at the IAB site, the
horizontal extensometers revealed an abutment mevieai about 1.6 mm. Figure 7.20

shows the TeraDysac displacement results to bead ggreement this value.
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Figure 7.20: Abutment and Abutment Pile Displacement for Temperare Decrease

In addition to the abutment displacement, abutmemation was checked against
tiltmeter-measured abutment rotation in the fielthe abutment rotated toward the river
by about 001° over the two week period. As Figure 7.20silates there appears to be

no significant bending in the abutment (it rotadeda unit). The abutment rotation using
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the top and the bottom of the abutment as the entdpof straight line, the calculated
abutment rotation i9.001% . The reported pile curvature change over the weeks
was 709ue/m. Using Equation 7.1, the curvature immediatejow the abutment was
found to be 51e/m. Again, the linear elastic analysis results emeouraging. The
obtained abutment translations agree with the fi@ldes. The abutment rotation is still
under-estimated, but the calculated pile curvatumtoser to the measured curvature than
in the heating analysis. This could be attribwgatd the uncertainty in the gradient
applied in the heating analysis. Gradients are ilovihe winter (for this analysis, no
gradient was used) so the guesswork is reduced.

Figure 7.21 shows the pore pressure contours aenideof the analysis run. As the
bridge deck is cooled, it contracts pulling the tatents toward the river. This loading
creates a negative pore pressure buildup in thifibaoils and positive pore pressure on

the interior sides of the abutments.

-0.23e0

0.33e0
Pore Pressure

{ |

Figure 7.21: Developed Pore Water Pressure (kPa) During Temperatui@ecrease
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7.6 Bounding Surface Analysis

7.6.1 Bounding Surface Properties

The soil stratum at the bridge site consists of talatively thin layers of soft clay, but is
mostly comprised of loose and poorly graded sasés Figures 7.4 and 7.12). The soil
exploration revealed the soil classification anel 8PT N-values. Lab testing of the site
soils would have provided more detailed informaton made determining the bounding
surface model parameters easier. But as this wasthe case, some engineering
judgment was used to determine what bounding seiff@operties to input for the data
model. The clay at the bridge site was soft basetbw N-values. The parameters for
Speswhite Kaolin, a soft clay with calibrated pagtens (see Muraleetharan 1994 and
Table 3.1) were used in the finite element modehe N-values in the sand layers were
used to determine the relative densities usingrtéthod outlined in Tokimatsu and Seed
(1986). The calibrated bounding surface properfegs Nevada Sand with relative
densities of 40 and 60% are available (see Muffzeah 1995). The sand at the bridge
site was assumed to be Nevada Sand and the bousdifi@gce properties for the
respective layers were set based on the relatinsities for the sand layers at the bridge
site. Bounding surface model parameters for timselesand layers (B 82% and 84%)
were estimated based on the calibrated values vhdde Sand (P= 40% and 60%).
Figure 7.22 shows the soil stratum with the obthiredative densities for the sand layers.
The OCRs used in the analysis for the clay layeesagso shown. The OCR sets the
initial bounding surface size which controls theil sesponse. A higher OCR
corresponds to a stiffer clay. The top clay layeas softer than the layer at depth, so it

was assumed to be slightly less over-consolid&tad the deep layer.
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Figure 7.22: Soil Profile Composition (Nevada Sand and Speswhite Kaogjin

The five sand layers break into three distinct geowith relative densities near 40, 60,
and 80%. The calibrated bounding surface promefoe 40 and 60% relative density
were used directly and the values for 80% relatimesity were estimated. The bounding

surface properties for the sand layers are givéralie 7.3.
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Table 7.3: Bounding Surface Properties for Sand Layers

Nevada Nevada Nevada
Sand (= Sand (D= Sand (D=

40%) 60%) 80%)
Traditional Model Parameters
Slope of isotropic consolidation line on A 0.017 0.009 0.007
e -Inp’ plot
Slope of elastic rebound line on K 0.003 0.002 0.0014
e -Inp’ plot
Bounding Surface Configuration
Parameters
Slope of line OA (Fig. 3) i - p’ M, 0.89 0.89 0.89
space (compression)
Ratio of extension to compression M,/M, 0.61 0.61 0.61
value ofM
Value of R in triaxial compression R, 15 1.5 1.5
Related to gradient of ellipse 2 Hn a 5.0 5.0 5.0
axis
Parameter defining the initial size of  1,/1 15 1.5 2.5

the bounding surface

Plastic Potential Surface
Configuration Parameter
Slope of critical state line (My). 1.33 1.44 1.55

(compression) i - p’ space

Hardening Parameters During

Loading

Shape hardening parameter in triaxial  h, 2.0 2.0 2.0
compression

Ratio of triaxial extension to triaxial ~ h,/h, 0.05 0.05 0.05
compression value df

Deviatoric hardening parameter b1 0.5 0.4 0.4

Hardening Parameters During

Unloading

Unloading hardening parameter H, 0.2 0.2 0.2
Notes:

e = void ratio, p' = (g1 + 203)/3,

q=0y—03

The initial stress state is important when usirgltbunding surface models. The initial
stress state provides the starting location inside bounding surface. Assuming a
saturated soil stratum and using the soil unit Wsigthe initial stress state was calculated

by hand. After the mesh was created, the mid-aierdepths were used to find the
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effective stresses. Ad¢alue of 0.5 was assumed. Figure 7.23 showsthal ieffective

stress in the vertical direction.

1.54e0

1.92e+2
Effective Stress-1Y

v

————— ——————————————
Figure 7.23: Initial Stress State (kPa) for Bounding Surface Analysis

To set up the initial stress state, a spreadshast wged to calculate the stresses by

element group. The data was then imported to @ra0ysac input file.

7.6.2 Temperature Increase

The temperature increase was also applied to thediag surface model. A comparison
between the abutment and abutment pile deformatiotize two analyses (linear elastic
and bounding surface soils) is given in Figure 7.Z4e abutment translation in the two
analyses is nearly the same. The superstructwerysstiff compared with the backfill
soil that when it is thermally loaded, it is almastpanding as it would in a free
expansion. The more important behavior to studyigure 7.24 is the abutment rotation
and the pile response. Knowing the soil stratigyafsee Figure 7.22), the results from
the bounding surface model agree with expectedhaleavior at depth. The clay layer

(highlighted in Figure 7.24) is located betweentdsmf 3.96 m and 5.49 m, with sand
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on either side. As the pile transitions from tb# slay layer to the sand layer, one would

expect the pile deformation to markedly decrea3éis is the case in the bounding

surface model, but in the linear elastic modeltthasition is not distinguishable.

0.0
S —— e ~g— Soft Clay
~
N\
w
E 10.0 — — = LinearElastic
£
2 Bounding
o 15.0 Surface
20.0 }
25.0
-2.5 -2.0 -15 -1.0 -0.5 0.0 0.5

Displacement (mm)
Figure 7.24: Abutment and Abutment Pile Deformation Comparison

The abutment displacements from both the lineastieland bounding surface analysis

are essentially the same. The superstructure tim ¢tgses was found to almost have a

free expansion. The values of abutment rotatiah @le curvature under the abutment

were provided by the instrumentation study (Huang).2004). The error magnitudes of

the respective analyses are given in Table 7.4.

Table 7.4: Results and Error Estimates for Heating Analysis

True Linear | % Error | Bounding % Error
Elastic Surface
Rotation (°) 0.014 0.0048 65.7 0.0079 43.6
Pile Curvature e /m) 866 552 36.3 784 9.5

The error calculations show the bounding surfa@yaris to be more accurate. The pore

pressure developed during the loading is shownigaré 7.25. The noticeable band of

pore pressure is the clay layer. Part of the poessure developed in this layer is from
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the specified K condition and OCR. The specified OCR (1.5) irstlayer forms a
relatively small initial bounding surface and ase thitial stress state is brought into the
bounding surface there is pore water pressure dewent. In the deep clay layer (OCR

= 3), the pore pressure development is not nearteéined as in the top layer.

-0.27e0

1.07e+1
Pore Pressure

| M |

Figure 7.25: Bounding Surface Pore Pressure Development (kPa)

7.6.3 Temperature Decrease

The temperature decrease was also applied to thedbw surface model. A comparison
between the abutment and abutment pile deformatiotize two analyses (linear elastic
and bounding surface soils) is given in Figure 7.2@ain, the abutment translation in

the two analyses is nearly the same.
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Figure 7.26: Abutment and Abutment Pile Deformation Comparison

The results comparison and error values are givdrable 7.5.

Table 7.5: Results and Error Estimates for Cooling Analysis

True Linear | % Error | Bounding % Error
Elastic Surface
Rotation (°) 0.01 0.0015 85.0 0.0045 55.0
Pile Curvature e /m) 709 515 27.4 687 3.1

The error calculations show the bounding surfa@dyars to be more accurate.

7.7 Three-Dimensional Analysis

Full 3D models of the Minnesota bridge and 15° sk@wersion of it were made in
TeraDysac. However, the analysis of these modat®t possible until a new solver has
been implemented. Therefore, to illustrate theettgped technology, these models were
reduced to a size capable of running on a singdegzsor machine. By removing the
piles from the models, a substantial number of el@min the vertical direction could be
eliminated. And because the bridge girders res¢lastomeric pads over the piers, no

elements were modeled in the pier regions eithBhese models consist only of the
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superstructure (girders and deck), the abutment$ ttze top two soil layers. They are
small enough to be analyzed on a single processar feasible amount of time. The
meshes have 918 quadrilateral elements (deck amtinabts), 256 line elements
(girders), and 1344 hexagonal elements (soil)aftotal of 2518 elements. The soil was
modeled with the linear elastic elements @naas set to zero. Setting= 0.0 kPa does

not allow pore water pressure generation, but tmgs a larger time step (and

subsequently less computational effort). The 3R@h¢non-skewed) is shown in Figure

7.27.

Figure 7.27: 3D Superstructure Model (Non-Skewed)

A plan view of the two 3D models is shown in Figur28.
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Figure 7.28: Plan View of 3D Superstructure Models

The bridges are both 66.0 m long and have a lineefficient of thermal expansion of

6.162*10°/°F. The coefficient of thermal expansion was caitad using the weighted
average approach described earlier. Both models subjected to uniform temperature
increase ofl(° F. In addition to heating the superstructure, abbutments were also
heated by the global temperature increase. Thisdeae to strip away any interaction
between the deck and the abutments (see Sectipn B.Plot showing the deformed
shapes of the abutments is given in Figure 7.28 lihe of nodes at the deck-abutment
connection is used for the plot. The displacemeatsespond to the abutments at the top
of Figure 7.28. Therefore, for the skewed bridge ¢btuse corner is at a ‘Position’ of

0.0 m.
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Figure 7.29: Abutment Deformations from 3D Analyses

Displacment (mm)

1.995

A hand calculation of a free expansion of the nkewsed superstructure reveals
abutment displacements of 2.03 mm, so it is evitlet the implemented finite element
technology and thermal loading scheme are workmogerly. It is also apparent that the
backfill soils are not providing significant resiate, similar to what was observed in the
2D analyses. In studying Figure 7.29, it is cldaat the bridge with no skew has a
uniform displacement into the backfill soil. Thesevariation between the abutment
corners in the skewed case though. The obtuseerc§osition’ = 0.0 m), is pushed

farther into the backfill than the acute cornehe™ifference between the two corners is
minor for this particular case, but the resultsve insight into the general behavior of
skewed IABs. In the obtuse corner, where the abatnmas more displacement, the
backfill pressure and stress in the superstruciuilieall be higher than in the acute

corner. Figure 7.30 shows the forces at the amitow@ners obtained from the analysis.
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Figure 7.30: 3D Superstructure Corner Forces

The corner forces are equal in the non-skewed strpeture. In the skewed version, the
forces in the obtuse corners are higher than thee$oin the acute corners. This agrees
with expected results and previous instrumentatesults (e.g. Sandford and Elgaaly

1993).
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8.Conclusions

8.1 General

Beam and plate elements have been developed anémeaped in the TeraDysac
computer code (Muraleetharan et al. 2003, Ravial@ana005). The low order elements
are computationally efficient and have compatipilitith the soil 2D quadrilaterals and
3D hexagonal brick edges. Numerous problems imvglplates, beams, and soils have
been successfully run. The goal in the developroérthese elements was to analyze
IABs subjected to thermal events. To do so, thélowding capability has also been
added to TeraDysac. The available thermal appbieatallows for a linear temperature
distribution through structural sections. In stanes where thermal radiation is a factor,
being able to account for a temperature gradieatexuired feature. The user is allowed
to specify the temperature change on both sidehefstructural elements which can
allow thermal curvature in beams and plates.

A study of soil-structure interaction has been @msd. For beams on elastic
foundations, comparisons have been made betwedgtiealasolutions presented by
Winkler (1867) and the continuum solutions preseéridy Vesic (1961). The Vesic
solutions have also been compared with the finikgnent solutions obtained from a
TeraDysac finite element analysis. The progranaiokbtl solutions showed good
agreement with the Vesic solutions, which servesvaglation of the soil-structure
interaction capabilities for linear problems. Ioilstructure interaction, more realistic

and interesting problems are ones where soil neatity is considered. Solutions of a
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pile in soft clay were presented and compared witlutions obtained from thg — y
program LPILE (ENSOFT 2007). The user-input stisgths were obtained using the
same bounding surface algorithm implemented inDgsac. A series of analyses were
performed, including one where the- y curves furnished to LPILE were obtained from
the TeraDysac analysis. The results between thevsve in good agreement. A method
for extracting thep — y information from the finite element analysis wésogpresented.
The empiricap — y curves in LPILE may not be accurate for all soils.

In the analysis of IABs, the capability to capttine nonlinear bending stiffness of the
abutment piles may be important. These piles m@emrence high stress near the
abutments and some yielding may occur. A nonlidaapplication has been written for
TeraDysac. The algorithm uses the equation rgjatmoment, curvature, and bending
stiffness to find the bending stiffness as a fuorctf bending moment. Prior to yielkl]

is constant but when the pile begins to yield tleading stiffness diminishes. As a
plastic hinge forms, the bending stiffness goegedim. An example was presented on
how to obtain the Moment-Curvature relationship &orectangular steel section. The
example section was analyzed using the nonlid@aapplication and the results were
discussed.

A series of finite element analyses of the MinnadéiB superstructure were performed
using the program TeraGrande (ANATECH 2005). Tdeaaced reinforced concrete
analyses which model rebar accurately and use arscherack model to study nonlinear
concrete behavior showed that for the deformatiexgerienced during the thermal
loading modeled in this work, the linear structuielments developed for TeraDysac are

adequate. Significant concrete cracking was naeoied in the superstructure and
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stresses and strains were low enough that therligl@atic assumptions embedded in
beam and plate formulations are acceptable. Ustitite when more advanced structural
elements are necessary, a blast loading simulatasalso performed on the Minnesota
IAB superstructure.

The Minnesota IAB has no skew angle. Because tligd abutment translates and
rotates uniformly across the bridge width, a 2D lysia can approximate the field
behavior. The 2D soil analysis in TeraDysac uspkae strain assumption for the soil
elements. A procedure for obtaining structuralperties (area and moment of inertia)
based on a unit width of bride was presented. sthectural components of the bridge
consist of steel and concrete. Using a weightedteage approach, material parameters
such as Young's modulus, linear coefficient of thak expansion, and Poisson’s ratio
were determined. The series of 2D TeraDysac agslghowed reasonable agreement
with the instrumented results. There were fourlymes performed: a temperature
increase and decrease using linear elastic anddbayusurface soils. In each loading
case, the bounding surface models provided moreraecresults. The results for the
temperature decrease analysis were generally be#terfor the heating analysis. This is
attributed to the fact that in the winter (Januarythis case), thermal gradients are
minimal through the superstructure depth. Theggftme deck temperature change can
be applied directly to the model without havingestimate what the thermal gradient
might be (as was done in the summer heating asalysi

Full 3D models of the Minnesota IAB and a skewersiom of it were developed. These
models were not analyzed in their entirety, butuoed models considering the

superstructures and the top two soil layers werdisti. Each model was subjected to a
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uniform temperature increase and the behavior atathutments was observed. In the
non-skewed bridge, the abutment deformation wa®umiacross its width. The skewed

superstructure (15°) had a non-symmetric respongeabutments. The deformation at
the obtuse corner was greater than at the acutercom he difference was minor, but the
analysis revealed that the abutment deformation safisequently the developed pore
water pressure and earth pressure behind the abistwél be varied. For small skew

angles, a 2D approach may be acceptable. Notroagtihe variation in response behind
the abutments may be worth the computational savi#g3D model is more demanding
computationally and requires more effort to bulbdit is required for accurate results,

especially for large skew angles in IABs.

8.2 Recommendations

Full versions of the Minnesota IAB (and its 15° wkeounterpart) have been created (see
Figures 8.1 and 8.2). Although these models wetanalyzed due to the current solver
capabilities, reduced models were successfully istudsee Section 7.7). The 3D
analyses, although simplified, show that the plagam, and soil element assemblies and
the thermal loading application are working properin anticipation of solving the full
models, some thought has been given on how tops#teumeshes. When studying IAB
response to thermal events the meshes need tadee daough spatially that the soll
boundaries are not influencing the results sevengy are not unnecessarily large to
waste computational effort. A series of analyses be performed with different
dimensions of backfill behind the abutments to ata® appropriate mesh size. Studying
the deformed shape of the abutments and abutmiest etween the analyses will help

to find an appropriate model size. It is recomneghtb start with large amount of soil
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behind the abutments (~one-half the bridge lengihjen plot the deformed shape of the
abutment and abutment piles. Next increase thembsian of backfill soil and re-plot the
deformed shape. If the plots are identical, thenfirst mesh is large enough and can be
trimmed. Begin to decrease the backfill dimensiatil a departure is noticed between
the deformed shapes. The smallest mesh provitiedrtie displacement results is the
one that will minimize computational effort. Faaling events of the magnitude used
for the analysis or less, the mesh size will beqadee. For more severe loading, the soil
boundaries may be influencing the results andrthist be investigated. This procedure
was used in preparing the 2D models used through@sutvork.

In preparing the full 3D models, some thought hasrbgiven on how to minimize
computational effort on the skewed models. Figdu shows the 3D model with no
skew. There are a total of 56,112 elements in iesh. When building the skewed
models, as the skew angle increases, so too deesiésh size. A bigger skew angle
requires a bigger mesh extrusion in the transvdngetion to the bridge. Figure 8.2
shows the skewed IAB model. There are 95,712 alsnm the mesh, which is a

sizeable increase from the model with no skew.
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Figure 8.1: Full 3D Minnesota IAB Model

Figure 8.2: Full 3D Minnesota Bridge Model (Skewed)

Studying Figure 8.2 shows a large number of s@iineints which do not have a major

contribution to the solution are located in the twesh corners away from the abutments.
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A plan for building the skewed models in a morécefhit manner is illustrated in Figure

8.3.

Figure 8.3: 3D Reduced Model (Skewed IAB)

Figure 8.4 shows the elevation view of the meshsingle row of elements at the bridge
centerline has been removed. Doing so allows dilessatum to be modeled with two

separate blocks which makes the model size sigmifiz smaller.

Figure 8.4: Elevation View of 3D Reduced Model (Skewed IAB)

The model shown in Figures 8.3 and 8.4 has 65,#8eants, a reduction in mesh size of
about 30%. The viability of the proposed schemedeeto be investigated, but it is
anticipated that the reduced models will give aamuresults because the soil element
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removal takes place only in areas that see minioaal during the thermal events (i.e. the
bridge centerline and in the corners away fromaitigtments).

The nonlineakE application developed in this work needs furtledinement. Currently,
the maximum bending moment in the beam elemenkhbiased to determine the value
of bending stiffness for the entire element bloddteally, the bending stiffness should be
calculated for each element in the beam mesh aadptbvided stiffness should be
applied only to that element. This is importanabutment piles near the ground surface
where they might go into the yielding range. linsorrect to apply the reduced stiffness
throughout the pile depth. This problem can beucrmavigated by breaking the pile into
separate element blocks, putting a high densitggmons where nonlinear behavior may
be anticipated. Figure 8.5 illustrates this concéfhe different shading in the abutment
pile shows the different element blocks used tofmise the pile. There are several small
pile pieces near the abutment where the possilfityielding is the highest. In regions

where the pile is not expected to yield, largecegecan be used.
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Figure 8.5: Element Block Composition for Nonlinear Pile Analysis

In addition to changing the bending stiffness frandatum to a field for the beam
elements, a predictor algorithm needs to be writbetthe nonlineakl application. In its
current form, the Moment-Curvature curve alonairsished to the program and iteration
is allowed until the bending moment and curvature ia agreement. A method for
increasing the convergence rate needs to be deagklop

A discussion has been presented on how to hanalie groblems using the dynamic
time-marching scheme implemented in TeraDysacthénfuture, a true static algorithm
should be developed for solving thermal loadingofgms (among others). Reducing the
element block mass and holding the load at a cohstdue has been shown to yield the
static solution in an approximate sense. In thendong surface soil analyses, the full
element mass was used. A reduced mass decreaseohéhstep and adversely affected

the convergence. Therefore, the bounding surfesdts presented, especially in regions
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away from point of load application (the deck-abemtconnection) exhibited some
oscillatory behavior. In the linear elastic analszero model mass was successfully
used to obtain solutions.

The use of the Uniform Gradient formulation for fhreear elastic and bounding surface
clay soil elements showed good behavior in all |@mwmis analyzed in this work.
However, severe hourglassing was observed whedniierm Gradient formulation was
used for the sand elements. Therefore, the 2D b&Bnding surface analyses were
carried out using Gauss-Quadrature (2x2) integmnatidhis adds a significant amount of
computation time. Further work needs to be donallow the use of the Uniform
Gradient formulation in the bounding surface sanodets. The hourglass stiffness
parameter may need to be adjusted for the sandlnmdehis was not investigated.
Bounding surface elements for saturated and uradatliclays and sands are currently
available in TeraDysac. Structural elements (lodeobeams and plates) have also been
developed. Tied contact has been shown to givly faccurate results for the problems
solved in this work. Naturally, the next evolutionusing TeraDysac for soil-structure
interaction is the development of an interface eletn The accurate capture of behavior
at the interface between soils and structures wbelé nice addition to the computer
program. This is a sizeable task because of the flow that will emerge when there is
separation at the interface, but it is certainly@thwhile endeavor. In the solution of
dynamic problems (e.g. earthquakes) an interfamr@eht would be very desirable.

The bounding surface soil models in TeraDysac @gotuce nonlinear soil behavior and
pore pressure generation in soil-structure intevacproblems. But the structural

elements developed in this work are limited becanfs¢he embedded linear elastic
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assumption. The structural element technology énaGrande is superior because it
models reinforced concrete and rebar prestressingrately. The combination of the
bounding surface soil models in TeraDysac, thectiral element technology in
TeraGrande, and an interface element would makepeesie tool for modeling civil

engineering systems accurately.
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