
 

 
 

UNIVERSITY OF OKLAHOMA 
 

GRADUATE COLLEGE 
 
 
 
 
 
 
 

MODELING OF INTEGRAL ABUTMENT BRIDGES CONSIDERING SOIL- 
 

STRUCTURE INTERACTION EFFECTS 
 
 
 
 
 
 
 
 

A DISSERTATION 
 

SUBMITTED TO THE GRADUATE FACULTY 
 

in partial fulfillment of the requirements for the 
 

Degree of 
 

DOCTOR OF PHILOSOPHY 
 
 
 
 
 
 
 

By 
 

DANIEL KRIER 
Norman, Oklahoma 

2009 
 
  



 

 
 
 
 
 

MODELING OF INTEGRAL ABUTMENT BRIDGES CONSIDERING SOIL- 
STRUCTURE INTERACTION EFFECTS 

 
 

A DISSERTATION APPROVED FOR THE 
SCHOOL OF CIVIL ENGINEERING AND ENVIRONMENTAL SCIENCE 

 
 
 
 
 
 
 
 
 
 
 

BY 
 
 
 
 
_________________________________ 
Dr. K.K. Muraleetharan, Co-Chair 

 
 

_________________________________ 
Dr. K.D. Mish, Co-Chair 

 
 

_________________________________ 
Dr. G.A. Miller 

 
 

_________________________________ 
Dr. L.W. White 

 
 

_________________________________ 
Dr. L.M. Taylor 
  



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© Copyright by DANIEL KRIER 2009 
All Rights Reserved.  



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Dedicated to My Parents 
 
 



iv 

 

ACKNOWLEDGEMENT 

I would like to express my sincere thanks to Dr. K.K. Muraleetharan for all he has 

done for me over the past few years.  From helping me with a research project as an 

undergraduate to the completion of this degree, he has been nothing but supportive.  He 

has served as a wonderful teacher and mentor to me, and spent countless hours working 

to help me develop as a researcher, student, and human being.  I thank him for his help to 

me in all forms.  I thank Drs. G.A. Miller and L.W. White for serving on my committee.  

I would like to thank Dr. K.D. Mish for his invaluable guidance throughout this process.  

Observing his many talents and tremendous knowledge has made me want to become a 

better thinker and push myself to learn in many areas.  I would like to thank Dr. L.M. 

Taylor for his advice and support, which has been supremely helpful.  I thank Colin 

Potter of ANATECH Corp. for countless instances of support with computational issues.  

I also thank Dr. N. Ravichandran for his friendship and infinite patience with me as I 

struggled early in my research. 

I thank the Graduate Assistance in Areas of National Need (GAANN) Fellowship, 

the National Science Foundation (NSF) GK-12 Fellowship, and the Oklahoma 

Transportation Center (Project No. OTCREOS7-1-37) for the financial support that made 

my attendance of graduate school possible. 

I also want to thank the long string of teachers and mentors who have contributed 

to my learning over the years.  There are too many to name, but their interest in my 

success is greatly appreciated.  I also thank my family for the encouragement, care, and 

love I have received.  



v 

 

TABLE OF CONTENTS  

Acknowledgement……...………………………………………………………………...iv 

Table of Contents……...………………………………………………………….…….....v 

List of Tables……...…………………………………………………………..………...viii 

List of Figures……...……………………………………………...……………………...ix 

Abstract……...……………………………………………………..……….…………...xiii 

1. Introduction ................................................................................................................. 1 

1.1 General ...................................................................................................................... 1 

1.2 Modeling ................................................................................................................... 3 

1.3 Finite Element Technology ....................................................................................... 4 

1.4 Computational Framework ........................................................................................ 4 

1.5 Objectives .................................................................................................................. 5 

1.6 Dissertation Layout ................................................................................................... 5 

2. Literature Review ........................................................................................................ 6 

2.1 Integral Abutment Bridges ........................................................................................ 6 

2.2 Current Practices ....................................................................................................... 8 

2.3 Skewed IABs ............................................................................................................. 9 

2.4 Soil-Structure Interaction ........................................................................................ 11 

2.5 Instrumentation Projects .......................................................................................... 12 

2.6 Important Loading Cases ........................................................................................ 14 

3. Finite Element Technology ....................................................................................... 15 

3.1 Soil Element ............................................................................................................ 15 

3.1.1 Governing Equations ........................................................................................ 15 

3.1.2 Linear Elastic Constitutive Model .................................................................... 20 

3.1.3 Bounding Surface Constitutive Model for Clays ............................................. 21 

3.1.4 Bounding Surface Constitutive Model for Sands ............................................. 22 

3.2 Beam Element ......................................................................................................... 25 

3.2.1 Stiffness Matrix ................................................................................................ 26 

3.2.2 Mass Matrix ...................................................................................................... 32 

3.2.3 Damping Matrix ............................................................................................... 33 

3.2.4 Thermal Loading .............................................................................................. 33 

3.2.5 Element Transformation ................................................................................... 36 

3.2.6 Nonlinear EI ..................................................................................................... 38 



vi 

 

3.3 Plate Element........................................................................................................... 46 

3.3.1 Stiffness Matrix ................................................................................................ 47 

3.3.2 Numerical Integration ....................................................................................... 53 

3.3.3 Mass Matrix ...................................................................................................... 55 

3.3.4 Damping Matrix ............................................................................................... 56 

3.3.5 Thermal Loading .............................................................................................. 56 

3.3.6 Element Transformation ................................................................................... 59 

3.3.7 Hourglassing ..................................................................................................... 62 

3.4 Numerical Integration ............................................................................................. 67 

3.4.1 Time Integration Scheme .................................................................................. 67 

3.4.2 Ramped Loading............................................................................................... 70 

4. Soil-Structure Interaction .......................................................................................... 76 

4.1 Linear Problems ...................................................................................................... 76 

4.1.1 Beams on Elastic Foundation ........................................................................... 76 

4.1.2 Linear SSI Example Problem ........................................................................... 77 

4.2 Soil-Pile Interaction in a Soft Clay ......................................................................... 91 

4.2.1 Nonlinear SSI Example Problem ...................................................................... 91 

5. Thermal Modeling ................................................................................................... 102 

5.1 Linear Temperature Distribution ........................................................................... 102 

5.2 Skewed Plates Subjected to Thermal Loading ...................................................... 104 

5.3 Assemblies of Elements ........................................................................................ 113 

6. TeraGrande Modeling .............................................................................................. 118 

6.1 General .................................................................................................................. 118 

6.1.1 Explicit Dynamics .......................................................................................... 118 

6.1.2 ANATECH Concrete Model .......................................................................... 119 

6.1.3 Concrete Cracking .......................................................................................... 120 

6.1.4 Reinforcement Modeling ................................................................................ 121 

6.1.5 Tied Contact ................................................................................................... 122 

6.2 Prestressed Girder Modeling ................................................................................. 123 

6.3 Superstructure Model ............................................................................................ 127 

6.4 Thermal Analysis .................................................................................................. 130 

6.4.1 Temperature Increase ..................................................................................... 130 



vii 

 

6.4.2 Temperature Decrease .................................................................................... 133 

6.4.3 Blast Loading .................................................................................................. 136 

7. TeraDysac Modeling ............................................................................................... 140 

7.1 Problem Description .............................................................................................. 140 

7.2 Soil Properties ....................................................................................................... 142 

7.3 Structural Properties .............................................................................................. 143 

7.3.1 Weighted Average Example ........................................................................... 144 

7.3.2 Set-Up for Plane Strain Analysis .................................................................... 145 

7.3.3 Set-Up for 3D Analysis .................................................................................. 146 

7.4 Applied Thermal Loading ..................................................................................... 148 

7.4.1 Validation Technique ..................................................................................... 149 

7.5 Linear Elastic Analysis.......................................................................................... 151 

7.5.1 Temperature Increase ..................................................................................... 154 

7.5.2 Temperature Decrease .................................................................................... 157 

7.6 Bounding Surface Analysis ................................................................................... 160 

7.6.1 Bounding Surface Properties .......................................................................... 160 

7.6.2 Temperature Increase ..................................................................................... 163 

7.6.3 Temperature Decrease .................................................................................... 165 

7.7 Three-Dimensional Analysis ................................................................................. 166 

8. Conclusions ............................................................................................................. 171 

8.1 General .................................................................................................................. 171 

8.2 Recommendations ................................................................................................. 174 

 References……...……..…………………………………………..……….…………...182 

  



viii 

 

LIST OF TABLES 

Table 3.1: Bounding Surface Model Parameters for Speswhite Kaolin ........................... 22 
Table 3.2: Bounding Surface Model Parameters .............................................................. 24 
Table 3.3: Integration Points on the Master Element ....................................................... 53 
Table 7.1: Young’s Modulus as a Function of N-Value (NAVFAC 1986) .................... 142 
Table 7.2: Element Blocks by Color. .............................................................................. 152 
Table 7.3: Bounding Surface Properties for Sand Layers ............................................... 162 
Table 7.4: Results and Error Estimates for Heating Analysis ........................................ 164 
Table 7.5: Results and Error Estimates for Cooling Analysis ........................................ 166 

  



ix 

 

LIST OF FIGURES 

Figure 1.1: Schematic Drawing of a Traditional Bridge ..................................................... 2 
Figure 1.2: Schematic Drawing of an Integral Abutment Bridge ....................................... 3 
Figure 2.1: Skew Angle Depiction.................................................................................... 10 
Figure 2.2: Obtuse and Acute Corners in IABs ................................................................ 10 
Figure 3.1: Soil-Fluid Mixture .......................................................................................... 15 
Figure 3.2: Bounding Surface Representation (Clayey Soils) .......................................... 21 
Figure 3.3: Bounding Surface Representation (Sands) ..................................................... 23 
Figure 3.4: Beam Element Nodal Variables ..................................................................... 25 
Figure 3.5: Beam Element Coordinate Transformation .................................................... 25 
Figure 3.6: Temperature Distribution for Beams .............................................................. 34 
Figure 3.7: Local Coordinate System for Beam Element ................................................. 36 
Figure 3.8: X-Axis Directions for Beam Element ............................................................ 37 
Figure 3.9: Typical Moment-Curvature Relationship for a Beam .................................... 39 
Figure 3.10: Piece-wise Approximation of the Moment-Curvature Curve for a Beam .... 40 
Figure 3.11: Bending Stiffness vs. Bending Moment for a Beam .................................... 40 
Figure 3.12: Example Beam Geometry ............................................................................ 41 
Figure 3.13: Stress Distribution at Yield .......................................................................... 42 
Figure 3.14: Stress Distribution After Yield ..................................................................... 43 
Figure 3.15: Stress Distribution at Ultimate Moment ....................................................... 44 
Figure 3.16: Moment-Curvature Relationship for the Example Beam ............................. 44 
Figure 3.17: Nonlinear EI Example Problem Layout ....................................................... 45 
Figure 3.18: EI-Moment Relationship for the Example Beam ......................................... 45 
Figure 3.19: Plate Element Nodal Variables ..................................................................... 47 
Figure 3.20: Plate Element Layout ................................................................................... 50 
Figure 3.21: Plate Element Coordinate Transformation ................................................... 53 
Figure 3.22: Temperature Distribution for Plates ............................................................. 56 
Figure 3.23: Middle Chords for Plate Element ................................................................. 60 
Figure 3.24: Local Coordinate System for Plate Element ................................................ 61 
Figure 3.25: w-Hourglassing Mode .................................................................................. 63 
Figure 3.26: Problem Set-Up for Hourglassing Example ................................................. 65 
Figure 3.27: Deformed Shape for Corner-Supported Plate (No Hourglass Stiffness) ...... 65 
Figure 3.28: Deformed Shape for Corner-Supported Plate with Hourglass Stiffness ...... 66 
Figure 3.29: Simply-Supported Set-Up for Hourglassing Example ................................. 67 
Figure 3.30: Deformed Shape for Simply-Supported Plate (No Hourglass Stiffness) ..... 67 
Figure 3.31: Ramped Loading .......................................................................................... 70 
Figure 3.32: Cantilever Beam Problem Demonstrating Minor Oscillation ...................... 71 
Figure 3.33: Nodal Displacement-Time History for Cantilever Beam Tip ...................... 71 
Figure 3.34: Soil-Structure Interaction Problem Demonstrating Oscillation ................... 72 
Figure 3.35: Nodal Displacement-Time History (Full Mass) ........................................... 73 
Figure 3.36: Nodal Displacement-Time History (Full Mass, Extended Ramp) ............... 73 
Figure 3.37: Nodal Displacement-Time History (10% Mass) .......................................... 74 
Figure 3.38: Nodal Displacement-Time History (Zero Mass) .......................................... 74 
Figure 4.1: Beam on Elastic Foundation........................................................................... 76 
Figure 4.2: Problem Set-Up .............................................................................................. 77 



x 

 

Figure 4.3: Point Load Applied to Axial Bar .................................................................... 79 
Figure 4.4: Finite Element Set-Up for Point Load Analysis ............................................. 79 
Figure 4.5: Beam Displacement (Winkler vs. Vesic) ....................................................... 81 
Figure 4.6: Beam Rotation (Winkler vs. Vesic) ............................................................... 81 
Figure 4.7: Beam Shear Force (Winkler vs. Vesic) .......................................................... 82 
Figure 4.8: Beam Bending Moment (Winkler vs. Vesic) ................................................. 82 
Figure 4.9: Elastic Beam Analysis Set-Up ....................................................................... 83 
Figure 4.10: Euler-Bernoulli Beam Displacement Comparison ....................................... 84 
Figure 4.11: Euler-Bernoulli Beam Rotation Comparison ............................................... 84 
Figure 4.12: Finite Element Model Set-Up for Linear Soil-Structure Analysis ............... 85 
Figure 4.13: Beam Displacement (Vesic vs. TeraDysac) ................................................. 86 
Figure 4.14: Beam Rotation (Vesic vs. TeraDysac) ......................................................... 86 
Figure 4.15: Beam Shear Force (Vesic vs. TeraDysac) .................................................... 87 
Figure 4.16: Beam Bending Moment (Vesic vs. TeraDysac) ........................................... 87 
Figure 4.17: TeraDysac Linear SSI Analysis Deformed Shape ....................................... 88 
Figure 4.18: Beam Displacement (Vesic vs. TeraDysac – 3D) ........................................ 89 
Figure 4.19: Beam Rotation (Vesic vs. TeraDysac – 3D) ................................................ 89 
Figure 4.20: Beam Shear Force (Vesic vs. TeraDysac – 3D) ........................................... 90 
Figure 4.21: Beam Bending Moment (Vesic vs. TeraDysac – 3D) .................................. 90 
Figure 4.22: Nonlinear SSI Example Set-Up .................................................................... 91 
Figure 4.23: Problem Set-Up for Nonlinear SSI TeraDysac Analysis ............................. 92 
Figure 4.24: Loading and Node Sets for Nonlinear SSI TeraDysac Analysis .................. 92 
Figure 4.25: Initial Vertical Stress State Contours (kPa) .................................................. 93 
Figure 4.26: Deviator Stress-Strain Curve at 20 m Depth ................................................ 94 
Figure 4.27: Stress Paths at 20 m Depth ........................................................................... 94 
Figure 4.28: p-y Curves Obtained from LPILE ................................................................ 95 
Figure 4.29: Soil Contribution to Nodal Force ................................................................. 96 
Figure 4.30: Free Body Diagram of the Center Node ....................................................... 96 
Figure 4.31: p-y Curves Obtained from TeraDysac.......................................................... 97 
Figure 4.32: p-y Curve Comparison ................................................................................. 97 
Figure 4.33: Pile Deflection Comparison for Nonlinear SSI Analysis ............................. 98 
Figure 4.34: Pile Rotation Comparison for Nonlinear SSI Analysis ................................ 99 
Figure 4.35: Pile Shear Force Comparison for Nonlinear SSI Analysis........................... 99 
Figure 4.36: Pile Bending Moment Comparison for Nonlinear SSI Analysis .................. 99 
Figure 4.37: Pore Water Pressure Contours (kPa) .......................................................... 101 
Figure 4.38: Pore Water Pressure-Time History (kPa, s) ............................................... 101 
Figure 5.1: Deformed Shape (No Gradient) ................................................................... 102 
Figure 5.2: Curvature Depiction (Positive Gradient) ...................................................... 102 
Figure 5.3: Curvature Depiction (Negative Gradient) .................................................... 103 
Figure 5.4: Finite Element Mesh for Gradient Analysis ................................................. 103 
Figure 5.5: Deformed Shape for Gradient Analysis ....................................................... 104 
Figure 5.6: Square Test Plate Set-Up .............................................................................. 105 
Figure 5.7: Square Plate Corner Forces .......................................................................... 105 
Figure 5.8: Rhombus Plate Set-Up ................................................................................. 106 
Figure 5.9: Rhombus Plate Corner Forces ...................................................................... 106 
Figure 5.10.  Rectangular Plate Set-Up .......................................................................... 107 



xi 

 

Figure 5.11: Rectangular Plate Corner Forces ................................................................ 108 
Figure 5.12: Rectangular Plate (Deformed Shape) ......................................................... 109 
Figure 5.13: Parallelogram Plate Set-Up ........................................................................ 110 
Figure 5.14: Parallelogram Plate Corner Forces ............................................................. 110 
Figure 5.15: Skewed IAB Deck Idealization Highlighting Corner Forces ..................... 111 
Figure 5.16: Skewed Plate with Corner Connections ..................................................... 112 
Figure 5.17: Corner-Connecting Beams ......................................................................... 112 
Figure 5.18: 100 Element Plate for Mesh Assembly ...................................................... 113 
Figure 5.19: 10 Element Beam for Mesh Assembly ....................................................... 114 
Figure 5.20: Beam and Plate Mesh Assembly ................................................................ 115 
Figure 5.21: Deformed Shape (Both Element Blocks Heated) ....................................... 116 
Figure 5.22: Deformed Shape (Plate Element Block Heated Only) ............................... 116 
Figure 5.23: Deformed Shape (Beam Element Block Heated Only) .............................. 117 
Figure 6.1: Compressive Stress-Strain Curve (Pa) ......................................................... 120 
Figure 6.2: Tensile Stress-Strain Curve (Pa) .................................................................. 120 
Figure 6.3: Concrete Stress-Strain Diagram ................................................................... 121 
Figure 6.4: Bridge Girder Mesh ...................................................................................... 122 
Figure 6.5: Tied Contact Between Mesh Instances ........................................................ 123 
Figure 6.6: Prestressed Tendons in Bridge Girder .......................................................... 123 
Figure 6.7: Girder End Caps ........................................................................................... 124 
Figure 6.8: Loading Amplitudes for Girder Analysis ..................................................... 124 
Figure 6.9: Important Node Sets for Girder Analysis ..................................................... 125 
Figure 6.10: Crack Pattern at 0.15 s ................................................................................ 125 
Figure 6.11: Crack Pattern at 0.6 s .................................................................................. 125 
Figure 6.12: Midspan Displacement-Time History from Girder Analysis ..................... 126 
Figure 6.13: Minnesota IAB Model (Piers and Pier Piles Included) .............................. 127 
Figure 6.14: Pier Piles (Above Grade) Mesh .................................................................. 128 
Figure 6.15: Minnesota IAB Superstructure Model (Rebar Shown) .............................. 128 
Figure 6.16: Superstructure Interior Nodes .................................................................... 129 
Figure 6.17: Superstructure End Node Set ..................................................................... 129 
Figure 6.18: Superstructure Crack Pattern for Temperature Increase ............................ 130 
Figure 6.19: Girder Crack Pattern for Temperature Increase ......................................... 131 
Figure 6.20: Strain Contours for Temperature Increase ................................................. 132 
Figure 6.21: Strain Contours for Temperature Increase (Close-Up) .............................. 132 
Figure 6.22: Deck Schematic at Pier Locations .............................................................. 133 
Figure 6.23: Bridge Deck Stress (Pa) Contours for Temperature Decrease ................... 134 
Figure 6.24: Stress (Pa) Contours Viewed from Beneath Bridge ................................... 134 
Figure 6.25: Deck Crack Pattern for Temperature Decrease .......................................... 135 
Figure 6.26: Deck Compressive Stress-Strain Curve (Pa) .............................................. 135 
Figure 6.27: Blast Pressure (Pa) vs. Time (s) ................................................................. 137 
Figure 6.28: Blast Pressure (Pa) vs. Distance (m) .......................................................... 137 
Figure 6.29: Superstructure Pressure (Pa) 6 ms After Blast Initiation ........................... 137 
Figure 6.30: Superstructure Deformed Shape at 0.15 s (Magnified by 15) .................... 138 
Figure 6.31: Bridge Deck Crack Pattern ......................................................................... 138 
Figure 6.32: Bridge Girders Crack Pattern ..................................................................... 139 
Figure 7.1: Concrete IAB (Photo Courtesy of Huang et al. 2004) ................................. 140 



xii 

 

Figure 7.2: Elevation View of Minnesota IAB ............................................................... 141 
Figure 7.3: Transverse Section (Through Deck) ............................................................. 141 
Figure 7.4: Soil Stratigraphy with Used E/N Ratios ....................................................... 143 
Figure 7.5: Cross-Section Pier Piles Above Grade ......................................................... 144 
Figure 7.6: Bridge Details at Pier Locations ................................................................... 147 
Figure 7.7: 3D TeraDysac Superstructure Model ........................................................... 147 
Figure 7.8: Temperature Gradient (Sunny Summer Day, After Huang et al. 2004) ....... 148 
Figure 7.9: Temperature Gradient (Cloudy Winter Day, After Huang et al. 2004) ....... 149 
Figure 7.10: Superstructure Temperature Input (Heating) ............................................. 150 
Figure 7.11: 2D IAB Finite Element Model ................................................................... 151 
Figure 7.12: Element Block View .................................................................................. 152 
Figure 7.13: Structure Assembly at Abutment ............................................................... 153 
Figure 7.14: Junction Undeformed and Deformed Shapes ............................................. 153 
Figure 7.15: Boundary Nodes for 2D Analysis .............................................................. 154 
Figure 7.16: IAB Deformed Shape for Temperature Increase ........................................ 154 
Figure 7.17: Abutment and Abutment Pile Displacement for Temperature Increase ..... 155 
Figure 7.18: Developed Pore Water Pressure (kPa) During Temperature Increase ....... 157 
Figure 7.19: IAB Deformed Shape for Temperature Decrease ...................................... 158 
Figure 7.20: Abutment and Abutment Pile Displacement for Temperature Decrease ... 158 
Figure 7.21: Developed Pore Water Pressure (kPa) During Temperature Decrease ...... 159 
Figure 7.22: Soil Profile Composition (Nevada Sand and Speswhite Kaolin) ............... 161 
Figure 7.23: Initial Stress State (kPa) for Bounding Surface Analysis........................... 163 
Figure 7.24: Abutment and Abutment Pile Deformation Comparison ........................... 164 
Figure 7.25: Bounding Surface Pore Pressure Development (kPa) ................................ 165 
Figure 7.26: Abutment and Abutment Pile Deformation Comparison ........................... 166 
Figure 7.27: 3D Superstructure Model (Non-Skewed) ................................................... 167 
Figure 7.28: Plan View of 3D Superstructure Models .................................................... 168 
Figure 7.29: Abutment Deformations from 3D Analyses ............................................... 169 
Figure 7.30: 3D Superstructure Corner Forces ............................................................... 170 
Figure 8.1: Full 3D Minnesota IAB Model .................................................................... 176 
Figure 8.2: Full 3D Minnesota Bridge Model (Skewed) ................................................ 176 
Figure 8.3: 3D Reduced Model (Skewed IAB) .............................................................. 177 
Figure 8.4: Elevation View of 3D Reduced Model (Skewed IAB) ................................ 177 
Figure 8.5: Element Block Composition for Nonlinear Pile Analysis............................ 179 

  



xiii 

 

ABSTRACT 

Soil-structure interaction problems are both highly interesting and highly 

complex.  To model soil-structure interaction problems accurately, the constitutive parts 

(i.e. foundations, soils, and superstructures) must be considered.  Implementing the finite 

element technology necessary to analyze soil-structure interactions problems is a 

significant task.  In this work, structural elements were added to the soil analysis 

computer program TeraDysac (Muraleetharan et al. 2003, Ravichandran 2005) and the 

soil-structure interaction in integral abutment bridges (IABs) was studied.  IABs are a 

form of bridge where the superstructure ends are cast integrally with the abutments.  The 

abutments, which are supported on piles in weak-axis bending move into and away from 

the backfill soils when the bridge deck undergoes thermal loading.  These bridges provide 

numerous advantages to traditional bridges including reduced maintenance, simpler 

bridge hardware, and better water-tightness.  However, because the superstructure 

movement is not accommodated with rollers or bearing pads like in traditional bridges, a 

complex soil-structure interaction problem emerges. 

Three-dimensional (3D) Timoshenko beam elements and Reissner-Mindlin plate 

elements were developed.  The merging of soil and structural elements allows bridge 

models to be developed that consider all of the components of an actual bridge in a 

realistic manner.  In addition to the structural elements, a thermal loading scheme and a 

nonlinear beam bending stiffness (��) scheme were also developed.  In IABs, the 

abutment piles sometimes yield and hence enter a nonlinear range, so a nonlinear �� 

application may be important.  Both linear elastic and bounding surface soil models were 

considered in this work to model the stress-strain behavior of soils. 
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Several soil-structure interaction problems were analyzed in this work.  Beams on 

elastic foundations were studied and comparisons were made between analytical results 

and the solutions obtained from a TeraDysac finite element analysis.  A nonlinear soil-

structure interaction analysis using TeraDysac with a bounding surface clay model is 

compared with results obtained from LPILE (ENSOFT 2007), which uses a � � � 

approach. 

To test and validate the developed finite element technology, results from the 

field instrumentation of an IAB in Minnesota were used (see Huang et al. 2004).  Two 

thermal events were studied in this work, a heating event during the summer and a 

temperature drop during the winter.  The IAB used for the validation has a zero skew 

angle.  A series of two-dimensional (2D) analyses were used to study the bridge behavior.  

A method for obtaining the approximate 2D structural properties is discussed.  A 3D 

analysis comparing the Minnesota IAB superstructure (no skew) and a skewed version of 

the same superstructure is presented.  A non-uniform abutment movement and stress 

distribution in the backfill soils in the skewed example show the importance of a 3D 

analysis when IABs are skewed. 

The reinforced concrete behavior at the bridge site was studied in detail using the 

finite element program TeraGrande (ANATECH 2005).  TeraGrande models the rebar 

accurately and uses a smeared crack concrete model.  Significant nonlinear behavior (e.g. 

cracking) was not seen for the thermally-induced abutment movements.  Therefore, the 

developed linear structural elements were deemed acceptable for the IAB analyses 

performed in this work. 
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1. Introduction 

1.1 General 

Bridges present a challenge for both structural and geotechnical engineers.  The desirable 

characteristics of a bridge include simple construction, minimal maintenance, smooth 

riding for users (including transition areas over abutments and bents), water-tightness, 

and long service lives.  Bridges are interesting soil-structure interaction problems because 

cyclic loading due to heating and cooling causes the superstructure to move relative to 

foundation soils.  Generally speaking, these movements are small, but can be quite 

important from an engineering standpoint.  

Traditional bridges (see Figure 1.1) accommodate cyclic loading with the following 

components: simply-supported girders, roller supports at intermediate bents, and 

expansion joints at approach slabs.  These components allow for expansion and 

contraction of the roadway during thermal loading cycles without developing significant 

loads in the superstructure.  The major pitfalls of traditional bridges include: rough riding 

for users (specifically over the bridge abutments), poor water-tightness, leakage through 

joints, corrosion of bearings and girders, freezing of trapped water in joints, and high 

levels of required maintenance. 
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Figure 1.1: Schematic Drawing of a Traditional Bridge 

In an integral abutment bridge (IAB), there is continuity in the bridge system (see Figure 

1.2).  These systems have numerous advantages over traditional bridges.  Namely, the 

girder-supporting hardware is simpler, less maintenance is required, and construction is 

easier.  Today, IAB systems can be found in almost every state.  These systems are 

superior to traditional bridges in several areas, but are not fully pursued because there are 

still uncertainties with respect to their behavior and design (see Chapter 2).  A typical 

IAB system consists of the following components: a bridge superstructure (consisting of 

the roadway deck, abutments, piers, girders, parapet walls), drilled shafts and pile 

foundations, and select fill and native soils.  The bridge superstructure is generally a 

reinforced concrete deck sitting on pre-stressed concrete girders or heavy duty steel 

sections.  The piers are typically resting on drilled shaft foundations, while the abutments 

are located on driven steel H-piles in weak-axis bending.  The abutments move due to 

thermal effects in IABs as opposed to traditional bridges where rollers and expansion 

joints allow the bridge deck to move, but the abutments remain stationary. 

 

Batter pile Pier 

Girder 
Bearing 

Expansion joint Deck joints 
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Figure 1.2: Schematic Drawing of an Integral Abutment Bridge 

1.2 Modeling 

To study the behavior of IAB systems, modeling that considers soil, structure, and their 

interaction needs to be done.  Underlying and backfill soils in IAB systems need to be 

modeled accurately.  A soil model accounting for the complexities inherent to soils, 

namely solid, liquid, and gas constituents, hysteresis, plastic deformation, pore water 

pressure development, anisotropy, and load- and time-dependence is desirable.  A 

structural model which can account for the relevant behavior of the superstructure (i.e. 

the girders and deck) and the foundation (i.e. the piles and drilled shafts) is also needed.  

Coupling soil and structural models provides a basis for modeling IAB behavior 

accurately.  Once the finite element technology is in place and validated against 

instrumented results, then many different bridge geometries, foundation designs, and 

loading scenarios can be simulated to gain insight into IAB performance during various 

events. 

 

Pier 
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pile 

Integral 
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Bearing 
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1.3 Finite Element Technology 

Analytical solutions for real world problems are often impossible to obtain.  So 

mathematical models are formed and numerical techniques are used to find approximate 

solutions.  For example, the finite element and finite difference methods can be used to 

solve governing differential equations and find numerical approximations.  TeraDysac 

(Muraleetharan et al. 2003, Ravichandran 2005) is a fully-coupled soil analysis code with 

considerations for pore water and pore air pressure and soil nonlinearity.  Bounding 

surface plasticity soil models (Dafalias and Herrmann 1982, Yogachandran 1991) are 

available in addition to a linear elastic constitutive model.  This work consists of adding a 

Timoshenko beam element and a Reissner-Mindlin plate element to the TeraDysac 

computer code.  Also, the capability to model thermal events is developed.  Coupling 

beams, plates, and soil elements in a finite element model allow for a user to simulate 

real-world systems.  Though this work focuses on IABs, the technology developed can be 

extended to other systems (e.g. buildings and their foundations, port facilities, and 

offshore oil rigs). 

1.4 Computational Framework 

Models of complex systems such as an IAB require a high number of finite elements, 

sometimes on the order of hundreds of thousands to obtain accurate results.  This means 

that big problems can not be analyzed on single processor personal computers.  Even 

medium sized problems may take days or even weeks to analyze on a single processor 

machine.  In practice, this is unacceptable, so parallel computing must be used.  Dividing 

a large problem up into smaller parts and then using a different processor to analyze each 

part allows for a significant decrease in computational time.   In this work, the parallel 
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processing capabilities available within the TeraScale framework (ANATECH 2001) 

were utilized. 

1.5 Objectives 

The objectives of this work include the following: 

1. Develop and implement structural elements (beams and plates) in TeraDysac. 

2. Knowing that foundation elements (i.e. driven piles) can go beyond yielding in 

some IAB systems, implement an algorithm to account for this behavior. 

3. Develop thermal loading capabilities in the finite element code. 

4. Analyze IAB systems (soil and superstructure) for various thermal load cases and 

validate the results against instrumented field studies. 

5. Use an external nonlinear finite element application, TeraGrande (ANATECH 

2005) to verify that linear assumptions for superstructure elements are acceptable 

for this work. 

6. Gain insight into IAB performance and design. 

1.6 Dissertation Layout 

This dissertation is organized into 8 chapters.  Chapter 2 provides a literature review 

considering previous and relevant work to the field of IAB modeling.  Chapter 3 

discusses all of the relevant finite element technology.  Chapter 4 deals with soil-structure 

interaction.  Modeling thermal events is discussed in Chapter 5.  Chapter 6 contains the 

TeraGrande finite element analyses which substantiate the use of linear structural 

elements in TeraDysac.  Chapter 7 provides all of the TeraDysac results and comparisons 

with monitored field studies.  Chapter 8 contains concluding remarks and suggestions for 

future work. 
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2. Literature Review 

2.1 Integral Abutment Bridges 

In traditional bridges, structural releases are provided in bridges to permit thermal 

expansion and contraction.  These joints lead to water-tightness problems.  Water runoff 

into newly opened deck joints can cause extensive damage.  Water corrodes the 

underlying steel elements (girders, supports, connection hardware, etc).  Water can also 

damage the concrete and expose reinforcing steel and subsequently corrode that.  This 

problem is magnified in states subject to heavy snow storms, where sodium chloride and 

calcium chloride are commonly used in de-icing applications.  The emergence of joint 

problems came in the 1960s as traffic loads increased in speed, volume, and weight.  The 

cost of maintenance or replacement of expansion joints is a considerable portion of the 

total money spent by state Departments of Transportation (DOTs) every year.  Joints and 

bearings in traditional bridges have emerged as major sources of bridge maintenance 

problems (Wolde-Tinsae and Greimann 1988). 

In an IAB, there are no rollers or simple supports at the abutments.  Instead, the girder 

ends are cast integrally with the abutment, hence the terminology integral abutment 

bridge.  These bridges have been commissioned for some time.  States like Ohio, Oregon, 

and South Dakota have been employing IABs since the 1930s (Hassiotis and Roman 

2005).  IABs have shown to be better from a fiscal standpoint than traditional bridges.  

They generally have a lower construction cost and much lower life cycle costs because of 



7 

 

minimal maintenance.  Retrofitting traditional bridges with IAB features has also been 

shown to be cost effective (Nickerson 1996). 

In IABs, the thermal loading causes bending in the piles supporting the abutments.  

Flexibility at the abutment is provided by the use of a stub abutment supported by a 

single row of piles in weak-axis bending.  In some cases, piles are placed in predrilled 

holes and then filled with sandy material.  Approach slabs are usually poured behind 

integral abutments in order to prevent compaction of backfill soils by traffic loading and 

offer a smooth transition to the bridge (Arockiasamy et al. 2004). 

A numerical study conducted by Yang et al. (1985) investigated the effect predrilled 

oversized holes have on abutment pile response.  A finite element model of beam-column 

elements and nonlinear soil springs was used for the study.  The work revealed that 

oversized holes, especially holes drilled to significant depths did much to alleviate 

overstressing the steel H-piles used under the abutment.  Piles without oversized holes in 

harder materials such as stiff clay or compacted fill were shown to develop plastic hinges 

much quicker for prescribed transverse tip displacement than their counterparts with 

predrilled holes. 

IABs have proven to be economical and effective in eliminating joint maintenance issues, 

but they are not without problems.  When the bridge expands and contracts during 

thermal loading, soil at the interface is disturbed.  Ground subsidence adjacent to 

abutments (under approach slabs) has been observed.  Subsidence behind the abutment 

wall can cause structural problems in the approach slab if bending loads are significant as 

vehicles pass over the slab.  In the long term, these bridges can cause a buildup of lateral 
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earth pressures on the abutments due to the soil-mechanics phenomenon known as 

ratcheting (Horvath 2004).  

In some cases, special additions are made to IAB systems to alleviate high pressures 

behind the abutments and high stresses in the abutment piles.  A field experiment was 

conducted in North Dakota which addressed this matter (Jorgenson 1983).  A 137 m IAB 

with concrete box girders was instrumented and monitored for a period of one year.  10 

cm thick strips of compressible pressure relief material were placed in a slot between the 

abutments and the granular backfill.  5 cm layers of the material were placed on both 

sides of the abutment pile webs.  These piles were in oversized holes filled with sand.  

These methods were shown to be effective in this case, as little yielding of the abutment 

piles was observed and plastic hinges did not form. 

2.2 Current Practices 

IABs have been in use for many years, but there still is no comprehensive design 

procedure.  Each state highway department manages its own integral abutment program 

and establishes guidelines with regard to design and construction.  Not having an 

organized design and construction procedure leads to variation in the analysis, design, 

and construction practices of IABs between states (Arockiasamy et al. 2004). 

An excellent survey on current practices in the United States and Canada was conducted 

by Kunin and Alampalli (2000).  The responses from 39 states and Canadian provinces 

provided insight into the differences in IAB design and construction practices.  With the 

exception of one state, the opinion of the bridges was positive.  Due to some expensive 

repair operations on bridge approaches, Arizona did not recommend IAB use.  Most 

agencies were found to use AASHTO recommendations for temperature variation 
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according to their region and the following formula to calculate the estimated bridge 

thermal movement: 

�� � 	�
�           (2.1) 

where 	 is the coefficient of linear thermal expansion of the superstructure, �
 is the 

temperature change, and � is the bridge length.  Passive soil pressure was commonly used 

behind the abutments, but some states use an active and passive combination.  Three 

agencies reported not considering earth pressure in their designs.  A majority of the 

responses revealed that skew effects are not considered with respect to soil pressure.  A 

significant number of agencies (almost half) design piles solely for axial loads.  The 

� � � program LPILE (ENSOFT 2007) was used by some of the agencies for their pile 

design.  In addition to soil nonlinearity, LPILE can consider structural nonlinearity (e.g. 

loss of bending stiffness in the piles). 

2.3 Skewed IABs 

A skewed IAB is one in which the abutments are not perpendicular to the roadway 

centerline (see Figure 2.1).  A comprehensive survey of highway departments in all 50 

states was conducted to determine design practices and performance of skewed IABs 

(Greimann et al. 1983).  This survey revealed 26 states were using skewed IABs, but 

designing them primarily based on local experience.  No theoretical or computational 

methods were used in most of the designs.  There was noticeable variation in the 

practices from state to state, including abutment pile orientation and the use of batter 

piles for certain skew angles. 
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Figure 2.1: Skew Angle Depiction 

A field experiment on a Maine IAB with a 20° skew angle showed the backfill pressure 

behind the abutments is affected by skew angle (Sandford and Elgaaly 1993).  Pressure 

cells were mounted behind abutments to monitor skew effects.  The study lasted for 33 

months and revealed that the backfill behind the obtuse corners of IABs experienced 

significantly higher pressure (more than double in some locations) than the backfill 

behind the acute corners.  Figure 2.2 depicts the obtuse and acute angles in an IAB. 

 

Figure 2.2: Obtuse and Acute Corners in IABs 

Alampalli and Yannotti (1998) performed an in-service evaluation of IABs in New York.  

IABs were graded based on the New York State DOT condition rating scale for bridges.  

Bridge ratings were lower for both steel and concrete superstructures when the IABs 

were skewed.  Greater skew angles were linked to poorer ratings according to their work.  
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A recommendation of a maximum bridge skew angle of 30° was made pending further 

study.  In a paper by Comstock and Dagher (1993), rearranging the longitudinal 

reinforcement in the bridge was shown to delay cracking in the deck near the abutment 

walls.  By placing more steel in the obtuse corners, the bending moment and shear force 

capacities in the obtuse corners of the bridge were increased.  This delayed cracking in 

the obtuse corners and ultimately led to a more uniform crack pattern across the deck. 

In a study conducted by Steinberg et al. (2004) on two Ohio skewed semi-integral 

abutment bridges, the forces developed in the wingwalls were found to be significant.  It 

was recommended that these forces be considered in the design process, as opposed to 

designing the wingwalls simply as retaining walls.  A subsequent finite element analysis 

showed the reaction at the wingwalls to increase with bridge skew angle. 

2.4 Soil-Structure Interaction 

In analyzing soil-structure interaction problems, sometimes interface elements are used in 

finite element programs to simulate behavior at the interface.  The important phenomena 

at the interface are relative slipping and shear resistance (tangential behavior) and bearing 

and gapping (normal behavior).  Two dimensional (2D) elements or ‘Zero Thickness 

Elements’ have been around for years (e.g. Goodman et al. 1968, Beer 1985).  Zero 

thickness elements using a Mohr-Coulomb failure criterion have been shown to model 

interface behavior of retaining walls with good accuracy, but numerical stability issues 

emerge in some problems (Day and Potts 1994).  Three dimensional (3D) elements with a 

finite thickness or ‘Thin-Layer Elements’ have also been used to model soil-structure 

interfaces (e.g. Desai et al. 1984).  These elements require a constitutive model for 

implementation.  Usually experiments and simple lab tests are performed on the soil and 
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the interface (e.g. a direct shear test between concrete and clay) to obtain various 

parameters such as the normal and tangential stiffness.  Another approach models the 

structure and soil separately, but uses constraint equations to maintain compatibility of 

force and displacement between the two.  This so-called ‘Hybrid Method’ can 

accommodate the relevant modes at the interface and also has been shown to be more 

numerically stable than the above methods because there are no vastly different 

magnitudes of numbers in the stiffness matrix (Lai and Booker 1991).  This work will use 

tied contact between shared soil and structure nodes.  Although this procedure has its 

limitations, the coupling of soil and structural elements is a good first step to modeling 

soil-structure interaction.  The development of an interface element to be used in 

conjunction with this work may need to be pursued later.  However, for the small 

displacements in the IAB modeling for thermal effects considered here, tied contact 

should be acceptable. 

2.5 Instrumentation Projects 

There have been numerous IAB instrumentation projects in the literature (e.g. Fennema et 

al. 2005 and Sandford et al. 2006).  Fennema et al. instrumented and analyzed a three-

span bridge (52.4 m bridge length, zero skew angle) in Pennsylvania.  The project 

examined several uncertainties of IAB design, performed field-monitoring, and analyzed 

the bridge with three levels of numerical modeling.  The analysis levels included laterally 

loaded pile models using commercially available software, 2D single bent models, and 

3D finite element models.  Multilinear spring stiffnesses were developed through a 

sequence of linear regressions to fit � � � curves at depths corresponding to locations of 

soil springs defined in the bridge structural analysis model.  The instrument data from the 
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bridge site was used to refine the numerical models.  The models were then used to 

predict IAB behavior of other Pennsylvania bridges of similar construction. 

A field monitoring effort during the construction of an IAB in Maine (30 m bridge length, 

35° skew angle) revealed bending stresses from dead loads are quite important (Sandford 

et al. 2006).  Some agencies explicitly calculate bending effects, but many neglect dead 

load bending in piles.  This monitoring effort revealed stresses from bending by abutment 

rotation due to dead load should be included in the design process.  If the bridge is 

skewed, bending in piles perpendicular to the centerline should also be computed.   

Major work has been done in the field of IAB instrumentation, monitoring, and analysis 

through the University of Minnesota (see Huang et al. 2004).  An IAB located in 

Rochester, Minnesota (65.6 m bridge length, zero skew angle) was monitored from the 

beginning of construction through several years of service.  More than 180 instruments, 

including tiltmeters, strain gauges, and pressure cells, were installed in and around the 

bridge during construction to monitor loading effects.  Various weather recording devices 

were also set up at the bridge site to monitor temperature and solar radiation.  The 

primary movement of the abutment was found to be a horizontal translation to 

accommodate superstructure expansion and contraction due to seasonal changes.  There 

was a net inward movement of the abutments over time.  An extensive numerical study 

was also performed.  The numerical modeling showed that the � � � method could 

simulate soil-pile interaction reasonably well.  The work provided good insight into IAB 

performance and a wealth of results from instrumentation, some of which will be used to 

validate the proposed finite element code. 
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An IAB instrumentation effort is currently underway in Lawton, Oklahoma (64.3 m 

bridge length, 10° skew angle).  The Oklahoma Transportation Center project (No. 

OTCREOS7-1-37) will provide data including weather information, abutment translation, 

rotation, pile curvature, and earth pressure.  Skewed IABs are typically not built in 

Oklahoma, so the project results will help determine the course for the skewed IAB 

program in Oklahoma. 

2.6 Important Loading Cases 

There are many factors to be considered when designing these complicated systems.  

Static, live, cyclic, and dynamic loading scenarios are all possible.  Because of the size 

and weight of highway bridges, the effect of gravity loading alone is an important load 

case.  As discussed previously, thermal loading is of major importance in IABs.  In a 

paper by Paul et al. (2005), the thermal forces developed in prestressed girder IABs were 

found to be comparable in magnitude to those caused by live load.  Their work showed 

the largest thermally induced superstructure forces to be found near the abutments.  After 

studying several parameters that influence thermal loading, they concluded that bridge 

length and abutment height strongly influence thermal forces.  Taller abutments have a 

larger cross-sectional area exposed to the backfill soil, so upon bridge expansion there is 

a greater passive soil resistance leading to higher superstructure forces.  In addition to 

traffic loads and creep of the superstructure, earthquakes and blast loading may also need 

consideration.
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3. Finite Element Technology 

3.1 Soil Element 

3.1.1 Governing Equations 

The soils modeled in this work are assumed to be saturated (i.e. there is no air in the soil), 

but capabilities exist to model unsaturated soils in TeraDysac (see Ravichandran 2005).  

The governing equations are written in standard indicial notation below.  See 

Muraleetharan et al. (1994) for further reference to the formulation of the governing 

equations.  Tensile normal stresses and strains are assumed positive.  Porewater pressure, 

�, is assumed positive in compression.  The following equations apply to a representative 

unit volume of the soil-water mixture, see Figure 3.1. 

 

Figure 3.1: Soil-Fluid Mixture 

The equation of motion for the grain-fluid mixture is given by: 

��, � ��� � �1 � ������� � ��� ���� � �� ��  � 0      (3.1) 

where �� is the total stress tensor, � is the displacement of the soil skeleton, �� is the 

density of the solid grains, �� is the density of the pore fluid, � is the body force per unit 

 

Solid grains 
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Pore fluid 
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volume (generally, gravitational acceleration), � is the porosity of the mixture, " is the 

average displacement of the fluid relative to the soil skeleton such that "#  is the Darcy 

velocity.  The density of the mixture, �, is given by Equation 3.2.   

� � �1 � ���� � ���         (3.2) 

The porosity is related to the void ratio $ through: 

� � %&'%           (3.3) 

Using Equation 3.2, the Equation 3.1 can be rewritten as follows: 

��, � ��� � ���� � ��"�� � 0        (3.4) 

The equation of motion for a unit volume of pore fluid is given by Equation 3.5. 

"#  � �(�) *�,� � ���� � �� ���� � �� ��  +       (3.5) 

Conservation of mass for the solid-fluid mixture is given by: 

,# � �"# , � - �./ � &0�.1 2 �# � &0�3 4� 5# 6�7.1        (3.6) 

where ,� is the strain tensor for the soil skeleton, 8� is the bulk modulus of the pore fluid 

(typically on the order of 105 – 106 kPa), 8� is the bulk modulus of the solid grains 

(typically on the order of 1010 – 1020 kPa), and 4� is the Kronecker delta.  Due to the 

magnitude of 8�, the compression of the solid grains due to inter-granular pressure (the 

last term on the right-hand side of Equation 3.6) is essentially zero.  Therefore, this term 

will be omitted from this point further.  The combined bulk modulus, 9, can be found by 

evaluating Equation 3.7. 

&: � �./ � &0�.1            (3.7) 

Therefore, Equation 3.6 can be rewritten as follows: 
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,# � �"# , � ;#:          (3.8) 

The equation used for classical small-strain kinematics is given by Equation 3.9. 

,� � &< ��,� � ��,�          (3.9) 

A large deformation formulation is also available in TeraDysac (see Ravichandran 2005). 

The effective stress, total stress minus pore fluid pressure, for the soil skeleton is given 

by Equation 3.10. 

��= � �� � �4�          (3.10) 

The fourth-rank tensor >�?@ holds the various elastoplastic moduli.  The relationship 

given by Equation 3.11 is sufficiently general to accommodate any constitutive 

relationship describing the effective stress-strain relationship of the soil skeleton.  The 

last term on the right-hand side includes the rate of change of strain-independent stresses. 

�#�= � >�?@,#?@ � �#�A=           (3.11) 

The boundary conditions applied on the soil boundaries are given in the form of 

Equations 3.12 and 3.13. 


#� � �#�B   or   �#�  given         (3.12) 

D#    or   �#  given          (3.13) 

where B is the unit normal and D is the fluid flow rate across the boundary.  The total 

displacement of the fluid is given by: 

E � � � �6�            (3.14) 

The final forms of the governing equations are given in Equations 3.15 and 3.16. 

 �1 � ������� � �<(�)FGHE#  � �# I � 9��1 � ��E,� � 9�1 � ��<�,� 

��1 � ������ � ��,= � 0         (3.15) 
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���E�� � �<(�)FGHE#  � �# I � 9�<E,� � 9��1 � ���,� � ����� � 0   (3.16) 

Note: 

� � JKL�K           (3.17) 

E � JKMEK           (3.18) 

where � is the nodal solid displacement and E is the nodal fluid displacement.  

Generally, the shape functions JKL and JKM are different, but in this work they are the 

same. 

The bilinear shape functions are given by: 

JK�N, O� � &P H1 � NKNI�1 � OKO�        (3.19) 

no summation over Q. 
The governing equations can be written in matrix form as follows: 

RS � TU � 8VW � � � X         (3.20) 

S � vector of nodal accelerations � Y��KE�KZ       (3.21) 

U � vector of nodal velocities � Y�#KE#KZ       (3.22) 

W � vector of nodal displacements � Y�KEKZ       (3.23) 

In the definitions of S, U, and W, the indices � and Q indicate node numbers and [ and \ are 

associated with the spatial coordinates of the displacement, velocity, or acceleration 

vector.  The solution vectors S, U, and W are multiplied by the coefficient matrices R, T, 

and 8V, and the resultant inertial, damping, and stiffness force vectors are augmented by 

the internal and external load vectors � and X, respectively.  The integrals are defined 
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over elemental domains Ω^, where _ ranges over the number of elements (J�) and over 

boundary segments Φ�, and where a ranges over the number of element sides (Jb).  The 

finite element matrices are defined by: 

R � mass matrix � cR& 00 R<d        (3.24) 

R& � ∑ f JgL�1 � ����JKLWΩΩhiĵk&         (3.25) 

R< � ∑ f JgM���JKMWΩΩhiĵk&         (3.26) 

T � damping matrix � c T& �T<�T<l T3 d       (3.27) 

T& � ∑ f JgLH�<(�)FGIJKLWΩΩhiĵk&         (3.28) 

T< � ∑ f JgLH�<(�)FGIJKMWΩΩhiĵk&         (3.29) 

T3 � ∑ f JgMH�<(�)FGIJKMWΩΩhiĵk&         (3.30) 

8V � pore fluid stiffness matrix � c8& 8<8<l 83d      (3.31) 

8& � ∑ f Jg,�L 9�1 � ��<JK,L WΩΩhiĵk&        (3.32) 

8< � ∑ f Jg,�L 9��1 � ��<JK,M WΩmhiĵk&        (3.33) 

83 � ∑ f Jg,�M 9�<JK,M WΩΩhiĵk&         (3.34) 

� � internal load vector � n�&0 o        (3.35) 

�& � ∑ f Jg,L ��= WΩΩhiĵk&          (3.36) 

X � applied load vector � YX&X<Z        (3.37) 
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X& � ∑ f JgL�1 � ������WΩΩhiĵk& � ∑ f JgLH
� � ��B�I����WΦpqir�k&    (3.38) 

X< � ∑ f JgM�����WΩΩhiĵk& � ∑ f JgM��B�WΦpqir�k&      (3.39) 

The integration of the element matrices for the four node quadrilaterals is performed 

using a Gauss-Quadrature (2x2) or a Uniform Gradient (one-point selective reduced 

integration with Belytschko hourglass control) formulation.  A detailed discussion of the 

Uniform Gradient element is discussed in Ravichandran (2005).  

3.1.2 Linear Elastic Constitutive Model 

In 3D, the constitutive model is given by: 
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where � is Young’s modulus and B is Poisson’s ratio. 

The 2D model in TeraDysac uses a plane strain assumption, thus 

,33 � ,3& � ,<3 � 0          (3.41) 

The constitutive relationship collapses to the following: 
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3.1.3 Bounding Surface Constitutive Model for Clays 

For clayey soils in TeraDysac, the constitutive model used is the one developed by 

Dafalias and Herrmann (1982, 1986).  The model is based on the concept of the bounding 

surface in stress space (see Figure 3.2).  The bounding surface is comprised of two 

ellipses and a hyperbola.  The three-surface model yields a better description of the 

material response for heavily overconsolidated soil (Dafalias and Herrmann 1986).  

Inelastic deformations are allowed to occur for stress points within the bounding surface.  

A radial mapping rule is used to relate the actual stress point (�, Q) to an “image” stress 

point on the bounding surface (� z, Q z).  The value of the plastic modulus depends on the 

distance between the actual stress point and the “image” stress point. 

 

Figure 3.2: Bounding Surface Representation (Clayey Soils) 

The bounding surface parameters for Speswhite Kaolin, the soft clay used in a later 

analysis, were determined from experimental results.  The parameters (from 

Muraleetharan et al. 1994) are given in Table 3.1: 
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Table 3.1: Bounding Surface Model Parameters for Speswhite Kaolin 
Property  Value 
Liquid limit  69% 
Plasticity index  31% 
Specific gravity  2.62 
Permeability (m/s)  1.7*10-9 
Traditional Model Parameters   

Slope of isotropic consolidation line on $ – ln �= plot � 0.25 

Slope of elastic rebound line on $ – ln �= plot � 0.05 

Slope of critical state line in � – �= space (compression) R� 0.88 
Ratio of extension to compression value of R R% R�⁄  1.0 
Poisson’s ratio B 0.3 
Bounding Surface Configuration Parameters   
Value of parameter defining ellipse 1 in compression �� 2.4 
Value of parameter defining the hyperbola in compression �� 0.01 
Parameter defining ellipse 2 (the tension zone) 
 0.01 
Projection center parameter T 0.0 
Elastic nucleus parameter b 1.0 
Ratio of triaxial extension to triaxial compression value of � �% ��⁄  1.2 
Hardening Parameters   
Shape hardening parameter in triaxial compression �� 3.0 
Ratio of triaxial extension to triaxial compression value of � �% ��⁄  1.0 
Shape hardening parameter on the �-axis �< 2.0 
Notes:   $ = void ratio,  �= � ��&= � 2�3=� 3⁄ ,  � � �&= � �3=   

3.1.4 Bounding Surface Constitutive Model for Sands 

A bounding surface constitutive model for sands developed by Yogachandran (1991) is 

available in TeraDysac.  The model uses the theory first developed by Dafalias and 

Popov (1976).  The important features of the model include: the allowance of plastic 

strains to occur within the bounding surface, a non-associative flow rule which more 

accurately describes the behavior of dense sands (e.g. dilation), and consideration of 

plastic strain during unloading which can help capture cyclic mobility and liquefaction.  

Figure 3.3 is a schematic of the bounding surface for sands.  Two ellipses define the 
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bounding surface and a plastic potential is used to define the incremental plastic strain 

direction. 

 

Figure 3.3: Bounding Surface Representation (Sands) 

To calibrate the bounding surface parameters for sands a total of at least six laboratory 

tests should be performed (Yogachandran 1991).  These tests include: 

• isotropic or anisotropic (K0) consolidation or drained compression test with both 

loading and unloading (one test) 

• consolidated-undrained (preferably) or drained triaxial compression and extension 

tests, with pore water pressure measurements on specimens in loose and dense 

states (four tests) 

• consolidated-undrained triaxial cyclic loading test with pore water pressure 

measurements (one test) 

The model parameters for Nevada Sand with relative densities of 40 and 60% have been 

presented previously (see Muraleetharan 1995).  They are used to guide the selection of 
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bounding surface parameters for the Minnesota IAB analysis discussed in Chapter 7.  

Generally, only the parameters given in the two right hand columns of Table 3.2 require 

calibration. 

Table 3.2: Bounding Surface Model Parameters 
  All Sands Nevada 

Sand  
(Dr = 40%) 

Nevada 
Sand  

(Dr = 60%)  
Traditional Model Parameters     
Slope of isotropic consolidation line 
on $ – ln �= plot 

� - 0.007 0.009 

Slope of elastic rebound line on $ – ln �= plot 
� - 0.003 0.002 

Poisson’s ratio B 0.3 - - 
Bounding Surface 
Configuration Parameters 

    

Slope of line OA (Fig. 3) in � – �= 
space (compression) 

R� - 0.89 0.89 

Ratio of extension to compression 
value of R 

R% R�⁄  - 0.61 0.61 

Value of R in triaxial compression �� - 1.5 1.5 
Ratio of extension to compression 
value of � 

�% ��⁄  1.0 - - 

Related to gradient of ellipse 2 on �-axis 
	 - 5.0 5.0 

Projection center parameter T 0.0 - - 
Tension zone parameter 
 0.005 - - 
Parameter defining the initial size 
of the bounding surface 

�� �⁄  - 1.0 1.5 

Plastic Potential Surface 
Configuration Parameter 

    

Slope of critical state line 
(compression) in � – �= space  

�RL�� - 1.33 1.44 

Hardening Parameters During 
Loading 

    

Shape hardening parameter in 
triaxial compression 

�� - 2.0 2.0 

Ratio of triaxial extension to 
triaxial compression value of � 

�% ��⁄  - 0.05 0.05 

Shape hardening parameter on the �-axis 
�< ��� � �%� 2.0⁄   - - 

Hardening parameter _ 0.02 - - 
Deviatoric hardening parameter �� 1.0 - - 
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Deviatoric hardening parameter �& - 0.5 0.4 
Hardening Parameters During 
Unloading 

    

Unloading hardening parameter �L - 0.2 0.2 
Unloading hardening parameter �L 0.9 - - 
Additional Parameters     
Atmospheric pressure (kPa) �� 101.4 - - 
Transitional value of confining 
pressure 

�@ �� 3⁄  - - 

Notes:     $ = void ratio, �= � ��&= � 2�3=� 3⁄ ,  � � �&= � �3=     

3.2 Beam Element 

A low order beam element has been developed for TeraDysac.  The low order element is 

compatible with the four node soil quadrilaterals and eight node hexagonal soil elements, 

which have a linear variation of displacement between nodes.  The line element has six 

degrees of freedom at each node (three displacements and three rotations).  Figure 3.4 

shows a typical element with nodal variables designated for the right node.   

 

Figure 3.4: Beam Element Nodal Variables 

Linear interpolation is used between the nodes.  Figure 3.5 shows the coordinate 

transformation needed to interpolate nodal unknowns. 

 

Figure 3.5: Beam Element Coordinate Transformation 
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x can be written as a function of N: 

� � �< �1 � N�           (3.43) 

where � is the length of the beam. 

The linear interpolation functions are: 

J1�N� � &< �1 � N�          (3.44) 

J2�N� � &< �1 � N�          (3.45) 

The Jacobian is given by: 

Q � ���� � �<           (3.46) 

The inverse of the Jacobian is given by: 

Q-1 � <�            (3.47) 

3.2.1 Stiffness Matrix 

Axial Stiffness 

The displacement components for the element are given as follows: 

� � ���� � ∑ J�<k&          (3.48) 

The axial strain in the beam is given by: 

, � �L��            (3.49) 

The constitutive relationship is given as follows: 

� � �,           (3.50) 

where E is Young’s modulus. 

The total strain energy in the element is given as follows: 

E � &< f ,l� � W� � &< f ,l� �, W�        (3.51) 



27 

 

where � is the element volume.  The 2x2 stiffness matrix, 8���@, can be found by 

minimizing the total strain energy.  Denoting � as the axial force at node [ and � as the 

displacement in x-direction at node [, the result is given as follows: 

��&
�<

� �   j¡� 0j¡�
0j¡� j¡�

¢ ��&
�<�         (3.52) 

where � is the cross-sectional area of the beam. 

Torsional Stiffness 

The displacement components for the element are given as follows: 

£� � £���� � ∑ J£�<k&          (3.53) 

The shear strain in the beam is given by: 

� � ¤ �¥¦��            (3.54) 

where ¤ is the distance from the centroid of the beam. 

The constitutive relationship is given as follows: 

§ � ¨�           (3.55) 

where ̈  is the shear modulus of the beam. 

The total strain energy in the element is given as follows: 

E � &< f �l� § W� � &< f �l� ¨� W�        (3.56) 

The 2x2 stiffness matrix, 8©ª«�ª��@, can be found by minimizing the total strain energy.  

Denoting 
 as the torque at node [ and £� as the rotation about the x-axis at node [, the 

result is given as follows: 

�
&

<

� �   ¬K� 0¬K�
0¬K� ¬K�

¢ �£�&
£�<

�         (3.57) 
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where Q is the polar moment of inertia of the beam. 

Bending Stiffness 

Timoshenko beam theory (Timoshenko 1921) is used with reduced integration on the 

shear terms to develop the beam elements for TeraDysac.  The reduced integration 

eliminates the shear locking problem that emerges for thin beams.   

The displacement components for the element are given as follows: 

U � U��� � ∑ JU<k&          (3.58) 

£ � £��� � ∑ J£<k&          (3.59) 

The total rotation of the plane originally normal to the neutral axis of the beam is given 

by: 

£ � ®¯®� � �           (3.60) 

where U is transverse displacement, 
®¯®� is the slope of the mid-surface, and � is the 

constant shearing strain across the section. 

Rearranging, the shear strain in the beam can be written as follows: 

� � ®¯®� � £           (3.61) 

Because the actual shearing stress and strain vary over the beam area, �, the shearing 

strain given above is an equivalent constant strain on a corresponding shear area, ��.  A 

constant, ( is introduced to account for this. 

( � ¡1¡             (3.62) 

The constitutive relationship is given as follows: 

§ � (¨�           (3.63) 

where ̈  is the shear modulus of the beam. 
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The bending strain in the beam is given by: 

,° � � �¥±��            (3.64) 

where � is the distance above the neutral axis of the beam. 

The constitutive relationship is given as follows: 

�° � �,°           (3.65) 

where � is Young’s modulus. 

The total strain energy of the beam is given by: 

E � &< f ,°l� �° W� � &< f �l� § W� � &< f ,°l� �,° W� � ?< f �l� ¨� W�   (3.66) 

The 4x4 stiffness matrix, 8°%�®�², can be found by minimizing the total strain energy.  

Denoting �³ as the shear force in the y-direction at node [, R as the bending moment 

about the z-axis at node [, U as the displacement in the y-direction at node [, and £ as 

the rotation about the z-axis at node [, the result is given as follows: 

µ́µµ
¶
µµµ
· �³&

R&
�³<
R<µ̧µµ

¹
µµµ
º

�
st
tt
tt
tt
u ¬¡?� ¬¡?< 0¬¡?� ¬¡?<

¬¡?< jg±� � ¬¡?�P 0¬¡?< 0jg±� � ¬¡?�P
0¬¡?� 0¬¡?< ¬¡?� 0¬¡?<
¬¡?< 0jg±� � ¬¡?�P 0¬¡?< jg±� � ¬¡?�P vw

ww
ww
ww
x

µ́µ
¶
µµ
· U&

£&
U<
£<µ̧µ

¹
µµ
º

   (3.67) 

where � is the moment of inertia about the z-axis of beam. 

The above relationship applies to bending of the beam in the x-y plane.  An analogous 

formulation can be applied to obtain the bending stiffness in the z-x plane.  The result is 

given by: 
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µ́µµ
¶
µµµ
· �&

R³&
�<
R³<µ̧µµ

¹
µµµ
º

�
st
tt
tt
tt
u ¬¡?� 0¬¡?< 0¬¡?� 0¬¡?<

0¬¡?< jg»� � ¬¡?�P ¬¡?< 0jg»� � ¬¡?�P
0¬¡?� ¬¡?< ¬¡?� ¬¡?<
0¬¡?< 0jg»� � ¬¡?�P ¬¡?< jg»� � ¬¡?�P vw

ww
ww
ww
x

µ́µµ
¶
µµµ
· "&

£³&
"<
£³<µ̧µµ

¹
µµµ
º

   (3.68) 

where �³ is the moment of inertia about the y-axis of beam.  Putting all of the components 

together yields the full stiffness matrix for the 3D beam element: 



31 

 

µ́µ
µµ
µµ
µµ
µµ
µµ
µ¶
µµ
µµ
µµ
µµ
µµ
µµ
µ· �&

�³&
�&

&

R³&
R&
�<

�³<
�<

<

R³<
R<µ̧µ

µµ
µµ
µµ
µµ
µµ
µ¹
µµ
µµ
µµ
µµ
µµ
µµ
µº

�

st
tt
tt
tt
tt
tt
tt
tt
tt
tt
tt
tt
tt
tt
tu j¡� 0 0 0 0 0 0j¡� 0 0 0 0 0

0 ¬¡?� 0 0 0 ¬¡?< 0 0¬¡?� 0 0 0 ¬¡?<
0 0 ¬¡?� 0 0¬¡?< 0 0 0 0¬¡?� 0 0¬¡?< 0
0 0 0 ¬K� 0 0 0 0 0 0¬K� 0 0
0 0 0¬¡?< 0 jg»� � ¬¡?�P 0 0 0 ¬¡?< 0 0jg»� � ¬¡?�P 0
0 ¬¡?< 0 0 0 jg±� � ¬¡?�P 0 0¬¡?< 0 0 0 0jg±� � ¬¡?�P

0j¡� 0 0 0 0 0 j¡� 0 0 0 0 0
0 0¬¡?� 0 0 0 0¬¡?< 0 ¬¡?� 0 0 0 0¬¡?<
0 0 0¬¡?� 0 ¬¡?< 0 0 0 ¬¡?� 0 ¬¡?< 0
0 0 0 0¬K� 0 0 0 0 0 ¬K� 0 0
0 0 0¬¡?< 0 0jg»� � ¬¡?�P 0 0 0 ¬¡?< 0 jg»� � ¬¡?�P 0
0 ¬¡?< 0 0 0 0jg±� � ¬¡?�P 0 0¬¡?< 0 0 0 jg±� � ¬¡?�P vw

ww
ww
ww
ww
ww
ww
ww
ww
ww
ww
ww
ww
ww
wx

µ́µµ
µµµ
µµµ
µµµ
µ¶
µµµ
µµµ
µµµ
µµµ
µ· �&

U&
"&
£�&
£³&
£&
�<
U<
"<
£�<
£³<
£<µ̧µµ

µµµ
µµµ
µµµ
µ¹
µµµ
µµµ
µµµ
µµµ
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  (3.69)
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Denoting the 12x1 vector of forces and moments as X, the 12x12 stiffness matrix as 8, 

and the 12x1 vector of displacements and rotations as �, Equation 3.69 can be rewritten 

as: 

X � 8�           (3.70) 

3.2.2 Mass Matrix 

A consistent mass matrix is used which can be found by evaluating: 

R � �� f YJ1�N�J2�N�Z ¼J1�N� J2�N�½ �<  WN&0&        (3.71) 

which yields: 

R � ¾¡�¿ c2 11 2d          (3.72) 

where � is the density of the beam (units of 
À�Á). 

The 2x2 matrix above is applied to appropriate locations for each of the six degrees of 

freedom Â� , U , ", £� , £³ , £Ã, resulting in a 12x12 mass matrix, R.  On terms applied 

to nodal rotations, a characteristic length needs to be utilized in order to make the units 

consistent in the formulation.  The characteristic length has been set as 
�<.  The full mass 

matrix is given by: 
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    (3.73) 

3.2.3 Damping Matrix 

Rayleigh damping is used in the beam element formulation.  The user is allowed to input 

both a mass proportional damping coefficient, ¤&, and a stiffness proportional damping 

coefficient, ¤<.  Thus, the 12x12 damping matrix, T, is given as follows: 

T � ¤&R � ¤<8          (3.74) 

3.2.4 Thermal Loading 

The thermal strain in a beam is given by: 

,©;%«^ � 	Δ
          (3.75) 
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where 	 is the coefficient of linear thermal expansion and Δ
 is the temperature change.  

The thermal loading formulation allows a linear temperature distribution between the top 

and bottom surfaces of the beam.  Figure 3.6 depicts this relationship.  A thermal gradient 

in the z-direction (through the width of the beam) is not considered.  Przemieniecki 

(1968) can be consulted for further reference to the formulation. 

 

Figure 3.6: Temperature Distribution for Beams 

where Å is the beam width and � is the beam height. 

Axial Loads 

Due to the linear relationship between Δ
©ªV and Δ
°ª©©ª^, the temperature change along 

the middle surface (� � 0) is given by: 

Δ
̂ ® � &< �Δ
©ªV � Δ
°ª©©ª^�        (3.76) 

This temperature change results in axial loading.  The thermal axial forces are found by 

evaluating the following: 

X©� � � f ,l�� ,©;%«^ W� � ��� f ,l	Δ
̂ ®W���      (3.77) 

The resulting forces are given by: 

X©� � Y ��	Δ
̂ ®���	Δ
̂ ®Z          (3.78) 
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Bending Moments 

The gradient effect allows for curvature in the x-y plane to be introduced in the beam.  

The temperature change needs to be written as a function of vertical position (�) in the 

element to find thermal-induced bending moments. 

Δ
²«�® � Δ
̂ ® � �ÆlÇÈÉ0 ÆlÊÈÇÇÈh;  �       (3.79) 

The thermal-induced bending moments are found by evaluating the following: 

X©° � f ,°l�� ,©;%«^ W� � �Å f f ,°l	Δ
²«�®; <⁄0; <⁄ W� W���      (3.80) 

The resulting moments are given by: 

X©° � µ́¶
µ· 00j¡;Ë&< �Δ
©ªV � Δ
°ª©©ª^�0j¡;Ë&< �Δ
©ªV � Δ
°ª©©ª^� µ̧¹

µº
        (3.81) 

Finally, the axial and bending effects can be combined into a single thermal load vector 

represented by: 

X©;%«^ �

µ́µ
µµ
µµ
µ¶
µµ
µµ
µµ
µ· ��	Δ
̂ ®00000j¡;Ë&< �Δ
©ªV � Δ
°ª©©ª^����	Δ
̂ ®0000j¡;Ë&< �Δ
©ªV � Δ
°ª©©ª^� µ̧µ

µµ
µµ
µ¹
µµ
µµ
µµ
µº

       (3.82) 
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Now that thermal effects have been introduced, Equation 3.70 can be augmented: 

X � 8� � X©;%«^          (3.83) 

3.2.5 Element Transformation 

Until this point, the beam formulation has only been discussed in terms of the local 

coordinate system.  The assembled element equations are solved in the global coordinate 

system.  To accommodate beams in any orientation, the local stiffness matrices need to 

be transformed into global stiffness matrices.  Establishing the local coordinate system 

for the beam in Ì3 involves finding the direction cosines of the beam.  In TeraDysac, a 

web vector establishes the strong and weak axes of the beam.  The Gram-Schmidt 

process is used to establish the local coordinate system of the beam. 

The local x-axis is defined by the coordinates of the nodes of the element.  An initial web 

vector is furnished by the program.  Unless the beam element is oriented within 5% of the 

global y-axis, the default initial web vector is given by Í0,1,0Î.  If the beam is effectively 

aligned with the global y-axis, the default initial web vector is given by Í0,0,1Î.  The 

Gram-Schmidt process is used to establish the final web vector.  The final web vector is 

also the local y-axis.  Crossing the local x-axis with the local y-axis yields the local z-

axis.  Figure 3.7 depicts the geometry involved in the process.  

 

Figure 3.7: Local Coordinate System for Beam Element 
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The relationship between the local and global coordinate systems is defined by the 

direction cosines of the element.  Figure 3.8 shows the relationship between a beam’s 

local axis and the global coordinate system. 

 

Figure 3.8: X-Axis Directions for Beam Element 

The direction cosines are defined as follows: 

�@%�²©; � �< � �&          (3.84) 

�@%�²©; � �< � �&          (3.85) 

Ï@%�²©; � Ï< � Ï&          (3.86) 

Ð$��Ñ� � ��@%�²©; � �@%�²©; � Ï@%�²©;�& <Ò        (3.87) 

ÓÔaÕ� � �Ö×qØÇÙ@%�²©;           (3.88) 

ÓÔaÕ� � ³Ö×qØÇÙ@%�²©;           (3.89) 

ÓÔaÕÏ � Ö×qØÇÙ@%�²©;          (3.90) 

The angles depicted in Figure 3.8 are given by the following: 

£Ú� � ÓÔa0&�ÓÔaÕ��          (3.91) 

£Ú³ � ÓÔa0&�ÓÔaÕ��         (3.92) 

£Ú � ÓÔa0&�ÓÔaÕÏ�          (3.93) 
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Direction cosines for the local y-axis (ÓÔaÛ�, ÓÔaÛ�, ÓÔaÛÏ) and the local z-axis 

(ÓÔaÜ�, ÓÔaÜ�, ÓÔaÜÏ) are determined in a similar fashion.  The matrix of direction 

cosines is given by: 

Θ �  ÓÔaÕ� ÓÔaÕ� ÓÔaÕÏÓÔaÛ� ÓÔaÛ� ÓÔaÛÏÓÔaÜ� ÓÔaÜ� ÓÔaÜÏ¢        (3.94) 

The local stiffness matrix for the beam element is a 12x12 matrix.  Therefore, the 

transformation matrix for the beam is given by: 


 �
st
tt
uΘ 0 0 00 Θ 0 00 0 Θ 00 0 0 Θvw

ww
x
          (3.95) 

Unknowns and forces in the local coordinate system can be written in the global 

coordinate system as follows: 

�Þ � 
l�            (3.96) 

Xz � 
lX            (3.97) 

Xz©;%«^ � 
lX©;%«^          (3.98) 

Furthermore, the equation 3.83 can be re-written in the global coordinate system as 

follows: 

Xz � 
l8 
�Þ � Xz©;%«^         (3.99) 

3.2.6 Nonlinear EI 

Piles located at the abutments in IABs are usually oriented in weak-axis bending.  These 

piles are intentionally flexible to accommodate the expansion and contraction of the 

roadway.  In some IABs, abutment piles yield under certain loading situations.  Plastic 
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hinges may form in the region near the abutment (Hassiotis and Roman 2005).  

Therefore, an analysis considering Moment-Curvature behavior in the abutment piles 

may be needed in some cases.   

A scheme for modeling beams in the nonlinear range has been developed for TeraDysac.  

The relationship between the bending moment in a beam and its curvature can be stated 

as follows: 

Àß � ��           (3.100) 

where:  R = bending moment 
 � = Young’s modulus 
 � = beam moment of inertia 
 à = curvature 

While in the elastic range, this relationship is linear.  However, at the onset of yield the 

relationship becomes nonlinear until it reaches a plastic state.  Figure 3.9 shows a typical 

Moment-Curvature curve for a beam. 

 

Figure 3.9: Typical Moment-Curvature Relationship for a Beam 

A small piece of computer code controls the nonlinear �� application.  The user must 

furnish the Moment-Curvature relationship to TeraDysac by specifying (Curvature, 

Moment) points.  The slope between adjacent points is linear, so the input curve gets 

  

M
om

en
t

Curvature

Onset of yield 
Plastic hinge 
formation 

Elastic range 



40 

 

more accurate as more points are included.  Figure 3.10 shows an example piece-wise 

curve. 

 

Figure 3.10: Piece-wise Approximation of the Moment-Curvature Curve for a Beam 

The bending stiffness, �� of the beam is calculated as a function of the bending moment 

from the previous time step.  In the linear range, �� doesn’t change with bending moment 

(see Figure 3.11). 

 

Figure 3.11: Bending Stiffness vs. Bending Moment for a Beam 
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Once the yield moment is reached in the section, the bending stiffness diminishes and 

must be updated.  In this range, iteration occurs until the bending moment in the section 

and bending stiffness agree with Equation 3.100. 

Example problem 

To illustrate how to set-up a nonlinear beam analysis in TeraDysac, a simple example is 

carried out below.  Beginning with section geometry and material properties, the 

nonlinear �� relationship is developed and then an analysis in TeraDysac is performed. 

Consider a rectangular steel beam with the following geometry: 

 

Figure 3.12: Example Beam Geometry 

The beam properties are given here: 
 � = 0.02 m2  
 � = 6.67 * 10-5 m4 
 � = 200 * 106 kPa  
 X³ = 415 * 103 kPa 
 B = 0.3 
 ( = 5/6 
 
where X³ is the yield stress and B is Poisson’s ratio.  At yield, the stress diagram for the 

beam is given by Figure 3.13 with equivalent point loads, �, shown.  The beam height is 

denoted by � and the beam width is denoted by Å. 
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Figure 3.13: Stress Distribution at Yield 

The equivalent point load on each half of the beam, � is given in Equation 3.101. 

� � °;�»P            (3.101) 

The moment at yield, R³ is given by Equation 3.102. 

R³ � <á;3 � �»°;â¿           (3.102) 

The equation for bending stress in the beam (Equation 3.103) can also be rearranged to 

find the bending moment in the beam at the onset of yield. 

X � À�g            (3.103) 

For the rectangular section in this example, 

Ó � ;<            (3.104) 

� � °;Á&<            (3.105) 

Making appropriate substitutions in Equation 3.103, Equation 3.102 can be obtained. 

R � �»ÊÙÁGâÙâ � �»°;â¿ � R³         (3.106) 

After the outer fibers in the beam yield, the stress diagram is given in Figure 3.14. 
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Figure 3.14: Stress Distribution After Yield 

The stress, � at a particular location above the neutral axis, O is given by Equation 3.107.  

The strain is related to the curvature, à through Equation 3.108. 

� � �, � Àãg            (3.107) 

, � àO           (3.108) 

Using these equations, the yield strain can be found as follows: 

,³ � 5»j � P&ä)&�Á kPa<��)&�å kPa
� 0.002075 m

m
        (3.109) 

Using similar triangles, � from Figure 3.14 can be written as follows: 

� � ;< � ;<è H, � ,³I          (3.110) 

Applying equivalent point loads to represent the triangular and rectangular parts in Figure 

3.14, the bending moment in the beam can be written as follows: 

R � ÅX³ �;âP � �â3            (3.111) 

When the beam reaches the ultimate moment, the entire beam section has yielded.  It is at 

this point where a plastic hinge forms.  Figure 3.15 shows the stress distribution in a 

beam that has reached the ultimate moment. 
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Figure 3.15: Stress Distribution at Ultimate Moment 

The Moment-Curvature relationship for the example section is given in Figure 3.16.  

Developing the relationship for circular sections, reinforced concrete sections, and H-

piles is more difficult, but must be done for an accurate nonlinear pile analysis.   

 

Figure 3.16: Moment-Curvature Relationship for the Example Beam 

To illustrate the nonlinear �� beam application implemented in TeraDysac, an analysis of 

the example section was performed.  Figure 3.17 shows the problem geometry and 

boundary conditions. 
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Figure 3.17: Nonlinear EI Example Problem Layout 

The example section begins to yield at a bending moment of 276.67 kN-m.  The loading 

given in Figure 3.17 forces the moment at midspan and at the rigid connection into the 

nonlinear range.  The highest bending moment in the mesh is used to determine the 

bending stiffness.  Figure 3.18 shows the relationship between the bending stiffness and 

moment for the example section.  It is apparent that bending stiffness quickly diminishes 

after the moment reaches 300 kN-m.  A plastic hinge forms in the section as �� tends to 

zero. 

 

Figure 3.18: EI-Moment Relationship for the Example Beam 

An 8-element mesh was used for the analysis.  If the nonlinear �� feature is not used, 

TeraDysac gives a midpoint displacement of 0.011943 m.  This is within 0.5% of the 
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analytical solution given by Euler-Bernoulli beam theory.  With the algorithm active, the 

displacement at the midpoint is 0.015059 m and the maximum bending moment in the 

section was found to be 366.06 kN-m. 

As a check on the scheme, another analysis was performed.  Knowing the maximum 

bending moment in the mesh is 366.06 kN-m, a value of �� of 10,492.38 kN-m2 can be 

found (see Figure 3.18).  Substituting this value of bending stiffness and re-running the 

problem without using the nonlinear �� feature should yield the same solution as when 

the feature was active previously.  The obtained midpoint displacement is 0.015059 m 

which reveals that the algorithm is working properly. 

3.3 Plate Element 

A low order plate element has been developed for TeraDysac.  The general quadrilateral 

element has six degrees of freedom at each node (three displacements and three 

rotations).  Figure 3.19 shows a typical element with nodal variables designated for the 

upper-right node. 
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Figure 3.19: Plate Element Nodal Variables 

The total stiffness matrix for the plate (24x24) is formed by coupling the in-plane and 

out-of-plane effects.  Plane stress with a rotation penalty formulation is used to form the 

in-plane stiffness matrix (12x12).  Reissner-Mindlin plate theory (Reissner 1945, Mindlin 

1951) is used to develop the bending stiffness matrix (12x12). 

3.3.1 Stiffness Matrix 

In-Plane Stiffness 

The in-plane effects of the plate deal with the in-plane displacements (two per node) and 

the in-plane rotations (one per node), yielding a total of 12 nodal unknowns.  If one 

wished to neglect in-plane rotations for the quadrilateral element, plane stress alone could 

be used to develop an 8x8 in-plane stiffness matrix.  However, for completeness (and for 

compatibility with beam elements which have a torsional component), the plate element 
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will consider in-plane rotations at each node.  To develop the 12x12 matrix for the in-

plane stiffness, plane stress assumptions and a penalty formulation are utilized together. 

The nodal displacement in the x-direction is denoted by �, displacement in the y-

direction is denoted by U, and rotation about the z-axis is denoted by £.  The penalty 

formulation penalizes the difference between the nodal rotation field £, and the exact 

rotation due to � and U. 

The penalty formulation is given by: 

�̂ *£ � &< ��¯�� � �L�³ +<
         (3.112) 

The elemental strain, including plane stress and the in-plane rotation, is given below: 

, �
µ́µ¶
µµ·

$��
$³³
$�³

¤ µ̧µ¹
µµº �

µ́µ¶
µµ·

�L���¯�³�L�³ � �¯��£ � &< ��¯�� � �L�³ µ̧µ¹
µµº

        (3.113) 

The constitutive relationship is given as: 

� � µ́¶
µ·����³³��³�« µ̧¹

µº � j&0yâ
st
tt
tu1 B 0 0B 1 0 00 0 &0y< 00 0 0 &0yâj �̂ vw

ww
wx

µ́¶
µ·$��$³³$�³¤ µ̧¹

µº
      (3.114) 

where � is Young’s modulus and B is Poisson’s ratio.  Setting �̂  to 5% of Young’s 

modulus did not severely distort the results from a truly plane stress case (�̂  = 0.0), yet 

allowed compatibility with connecting beams undergoing torsion. 
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The strain-displacement matrix is given by: 

> �
stt
ttt
tu ��� 0 0

0 ��³ 0
��³ ��� 0

&< ��³ � &< ��� 1vww
www
wx
         (3.115) 

The constitutive parameter matrix is given as: 

T � j&0yâ
st
tt
tu1 B 0 0B 1 0 00 0 &0y< 00 0 0 &0yâj �̂ vw

ww
wx
        (3.116) 

The displacement vector of unknowns for the element is given as follows: 

W � é ���, ��U��, ��£��, ��ê          (3.117) 

The strain can be written in terms of the strain-displacement matrix and the displacement 

vector. 

, � >W           (3.118) 

The total strain energy in the element is given as follows: 

E � &< f ,l� � W� � &< f ,l� T, W� � &< f ë>WìlTë>Wì� W�    (3.119) 

where � is the element volume.  The 12x12 stiffness matrix, 8�0V@��%, can be found by 

minimizing the total strain energy. 
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Bending Stiffness 

Reissner-Mindlin plate theory is used to develop the bending effects for the plate 

element.  The bending effects of the plate deal with the transverse displacements (one per 

node) and the rotations due to bending (two per node).  The theory leads to a 12x12 

stiffness matrix.  The nodal displacement in the z-direction is denoted by ", rotation 

about the x-axis is denoted by £�, and rotation about the y-axis is denoted by £³.  The 

subscript Å is used to designate bending terms, while the subscript a is used to designate 

shear terms. 

Bathe (1982) can be used for further reference to the formulation.  Like Timoshenko 

beam theory, plane sections are assumed to remain plane, but not necessarily 

perpendicular to the neutral axis.  Figure 3.20 shows the layout of the plate element used 

in the formulation. 

 

Figure 3.20: Plate Element Layout 

The displacement components for the element are given as follows: 

� � Ï£³��, ��          (3.120) 

U � �Ï£���, ��          (3.121) 

" � "��, ��           (3.122) 
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The bending strains, $��, $³³, and $�³, are assumed to vary linearly through the plate 

thickness: 

,° � µ́¶
µ·$��

$³³
$�³µ̧¹

µº � Ï µ́¶
µ· �¥»��� �¥¦�³�¥»�³ � �¥¦�� µ̧¹

µº
        (3.123) 

The transverse shear strains, $³ and $�, are assumed constant through the plate 

thickness: 

,� � í$³
$�î � ����³ �£����� �£³�         (3.124) 

The constitutive relationships are given by: 

�° � ¶́·
����³³��³¹̧º � j&0yâ stt

tu1 B 0B 1 00 0 &0y< vww
wx ¶́·

$��$³³$�³¹̧º       (3.125) 

�� � Y�³��Z � j<�&'y� c1 00 1d Y$³$�Z        (3.126) 

The strain-displacement matrices are given by: 

>° �
stt
ttu
0 0 Ï ���0 �Ï ��³ 0
0 �Ï ��� Ï ��³vww

wwx         (3.127) 

>� � ï ��³ �1 0
��� 0 1ð         (3.128) 
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The constitutive parameter matrices are given by: 

T° � j&0yâ stt
tu1 B 0B 1 00 0 &0y< vww

wx         (3.129) 

T� � j<�&'y� c1 00 1d          (3.130) 

The vector of unknowns for the element is given as follows: 

W � é "��, ��£���, ��£³��, ��ê          (3.131) 

The strains can be written in terms of the strain-displacement matrices and the 

displacement vector. 

,° � >°W           (3.132) 

,� � >�W           (3.133) 

The total strain energy in the element is given as follows: 

E � &< f ,°l� �° W� � ?< f ,�l� �� W� � &< f ,°l� T°,° W� � ?< f ,�l� T�,� W� �
&< f ë>°WìlT°ë>°Wì� W� � ?< f ë>�WìlT�ë>�Wì� W�      (3.134) 

where ( is a constant to account for the actual shear stress distribution.  The 12x12 

stiffness matrix, 8°%�®�², can be found by minimizing the total strain energy. 

The total stiffness matrix is shaped by combining the in-plane and bending stiffness 

matrices. 

8�0V@��% is a 12x12 matrix dealing with the following unknowns:  

¼�1, U1, £&, �2, U2, £<, �3, U3, £3, �4, U4, £P½. 
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8°%�®�² is a 12x12 matrix dealing with the following unknowns:  

Â"1, £�&, £³&, "2, £�<, £³<, "3, £�3, £³3, "4, £�P, £³PÃ. 
Because the plate element is linear elastic, the matrices are independent of one another 

and can be combined to shape the complete stiffness matrix, 8, a 24x24 matrix 

containing stiffness terms for all 24 degrees of freedom. 

3.3.2 Numerical Integration 

The plate element implemented is a general quadrilateral.  Numerical integration is used 

to evaluate the element stiffness matrices.  Figure 3.21 shows the coordinate 

transformation used for the numerical integration. 

 

Figure 3.21: Plate Element Coordinate Transformation 

The integration points on the master element are as follows: 

Table 3.3: Integration Points on the Master Element 
Node ξξξξ    ηηηη    

1 1 √3⁄  1 √3⁄  
2 �1 √3⁄  1 √3⁄  
3 �1 √3⁄  �1 √3⁄  
4 1 √3⁄  �1 √3⁄  

 
In the bending stiffness matrix, reduced integration is used on the shear terms.  These 

terms are evaluated at the origin of the master element (N = 0, O = 0).   
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The bilinear shape functions are given by: 

J&�N, O� � &P �1 � N��1 � O�         (3.135) 

J<�N, O� � &P �1 � N��1 � O�         (3.136) 

J3�N, O� � &P �1 � N��1 � O�         (3.137) 

JP�N, O� � &P �1 � N��1 � O�         (3.138) 

The coordinate interpolations are stated as follows: 

� � ∑ J�Pk&            (3.139) 

� � ∑ J�Pk&           (3.140) 

To evaluate the element stiffness matrices, strains (and subsequently derivatives of the 

coordinate transformations) are needed.  They can be evaluated by using the Jacobian 

matrix given as follows: 

Q �  ���� ���ã
�³�� �³�ã

¢           (3.141) 

Partial differentiation with respect to � and � on the actual element is related to partial 

differentiation with respect to N and O on the master element through the following 

relationship: 

é ���
��³

ê �  ���� �ã��
���³ �ã�³

¢ é ���
��ã

ê � ë Qlì0& é ���
��ã

ê       (3.142) 
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3.3.3 Mass Matrix 

A consistent mass matrix is used which can be found by evaluating: 

R � �� f f µ́¶
µ·J1�N, O�J2�N, O�J3�N, O�J4�N, O�µ̧¹

µº ¼J1�N, O� J2�N, O� J3�N, O� J4�N, O�½| Q| WN WO&0&&0&   (3.143) 

which yields: 

R � ¾;| K|ô st
tt
u4 2 1 22 4 2 11 2 4 22 1 2 4vw

ww
x
         (3.144) 

where � is the density of the plate (units of 
À�Á) and � is the plate thickness. 

The 4x4 matrix above is applied to appropriate locations for each of the six degrees of 

freedom Â� , U , ", £� , £³ , £Ã, resulting in a 24x24 mass matrix, R.  On terms applied 

to nodal rotations, a characteristic length needs to be utilized in order to make the units 

consistent in the formulation.  The characteristic length has been set as õ| Q|.   
The identity matrix � is given by: 

� � ö1 0 00 1 00 0 1÷          (3.145) 
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The full mass matrix is given by: 

R � ¾;| K|ô

st
ttt
ttt
ttt
ttt
tu4� 0 2� 0 � 0 2� 0

0 4õ| Q|� 0 2õ| Q|� 0 õ| Q|� 0 2õ| Q|�
2� 0 4� 0 2� 0 � 0
0 2õ| Q|� 0 4õ| Q|� 0 2õ| Q|� 0 õ| Q|�
� 0 2� 0 4� 0 2� 0
0 õ| Q|� 0 2õ| Q|� 0 4õ| Q|� 0 2õ| Q|�
2� 0 � 0 2� 0 4� 0
0 2õ| Q|� 0 õ| Q|� 0 2õ| Q|� 0 4õ| Q|�vw

www
www
www
www
wx

  (3.146) 

3.3.4 Damping Matrix 

Rayleigh damping is used in the plate element formulation.  The user is allowed to input 

both a mass proportional damping coefficient, ¤&, and a stiffness proportional damping 

coefficient, ¤<.  Thus, the 24x24 damping matrix, T, is given as follows: 

T � ¤&R � ¤<8          (3.147) 

3.3.5 Thermal Loading 

The thermal loading formulation allows a linear temperature distribution between the top 

and bottom surfaces of the plate.  Figure 3.22 depicts this relationship. 

 

Figure 3.22: Temperature Distribution for Plates 
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where � is the plate thickness.  The entire top of the plate is subjected to Δ
©ªV and the 

entire bottom of the plate is subjected to Δ
°ª©©ª^.  Thus, there are only stresses and 

strains in the local x- and y-directions and there is no thermal induced shear stress. 

The thermal stresses are represented by: 

�©;%«^ � 0jËÆl&0y Y11Z          (3.148) 

where 	 is the coefficient of linear thermal expansion and Δ
 is the temperature change. 

In-Plane Loads 

Rewriting the strain in the element as: 

, � í$��
$³³î � ��L���¯�³�          (3.149) 

The strain-displacement matrix is given by: 

> � ï ��� 0
0 ��³

ð          (3.150) 

The displacement vector of unknowns for the element is given as follows: 

W � Y���, ��U��, ��Z          (3.151) 

The strain can be written in terms of the strain-displacement matrix and the displacement 

vector. 

, � >W           (3.152) 

Due to the linear relationship between Δ
©ªV and Δ
°ª©©ª^, the temperature change along 

the middle surface (Ï = 0.0) is given by: 

Δ
̂ ® � &< �Δ
©ªV � Δ
°ª©©ª^�        (3.153) 
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For the in-plane loading, the thermal stress can be rewritten as follows: 

�©;%«^ � 0jËÆlh6ø&0y Y11Z         (3.154) 

The thermal in-plane forces are found by evaluating the following: 

X©V � f ,l� �©;%«^ W� � � f ë>Wìl�©;%«^ W�¡       (3.155) 

where � is the in-plane element area.  The resulting force vector is 8x1 and deals only 

with the unknowns: 

 ¼�1, U1, �2, U2, �3, U3, �4, U4½ 
Bending Moments 

The gradient effect allows for curvature to be introduced in the plate.  The temperature 

change needs to be written as a function of vertical position (Ï) in the element to find 

thermal-induced bending moments. 

Δ
²«�® � Δ
̂ ® � �ÆlÇÈÉ0 ÆlÊÈÇÇÈh;  Ï       (3.156) 

For the out-of-plane loading, the thermal stress can be rewritten as follows: 

�©;%«^ � 0jËÆlØùúø&0y Y11Z         (3.157) 

The bending strains, $�� and $³³, vary linearly through the plate thickness: 

,° � í$��
$³³î � Ï � �¥»��� �¥¦�³ �         (3.158) 

The strain-displacement matrix is given by: 

>° � ï 0 Ï ����Ï ��³ 0 ð         (3.159) 
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The vector of unknowns is given by: 

W � Y£���, ��£³��, ��Z          (3.160) 

The strains can be written in terms of the strain-displacement matrices and the 

displacement vector. 

,° � >°W           (3.161) 

The thermal bending moments are found by evaluating the following: 

X©°V � f ,°l� �©;%«^ W� � f f ë>Wìl�©;%«^; <⁄0; <⁄ WÏ W�¡      (3.162) 

The resulting force vector is 8x1 and deals only in the unknowns: 

 Â £�&, £³&, £�<, £³<, £�3, £³3, £�P, £³PÃ 
Finally, the axial and bending effects can be combined into a single thermal load vector 

represented as X©;%«^. 

3.3.6 Element Transformation 

Until this point, the plate formulation has only been discussed in terms of the local 

coordinate system.  The assembled element equations are solved in the global coordinate 

system.  To accommodate plates in any orientation, the local stiffness matrices need to be 

transformed into global stiffness matrices.  Establishing the local coordinate system for 

the plate in Ì3 involves finding the direction cosines of the plate.  The procedure to find 

the direction cosines is described below. 

The first step is to find the chords which split the element into four parts.  These chords 

will be referred to as �^� and �̂ �, the middle chords in the local x- and y-directions; 

they connect the midpoints of opposite element edges.  Figure 3.23 shows this 

relationship.   
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The middle chords are found by evaluating the following: 

�^� � &< é�< � �3 � �P � �&�< � �3 � �P � �&Ï< � Ï3 � ÏP � Ï&
ê        (3.163)  

�̂ � � &< é�3 � �P � �< � �&�3 � �P � �< � �&Ï3 � ÏP � Ï< � Ï&
ê        (3.164) 

The local z-axis is found by crossing the middle chord vectors.  Depending on the plate 

orientation, the local z-axis is then crossed with the global x-axis or the global z-axis to 

find the local y-axis.  Finally, the local y- and z-axes are crossed to find the local x-axis.  

Figure 3.24 illustrates the local coordinate system of the plate.  All of these axes are unit 

vectors so the direction cosines are defined by the components of each vector in the 

global coordinate system. 

 

Figure 3.23: Middle Chords for Plate Element 

 

 

zlocal 

ymc 

xmc 

(x4,y4,z4) 

(x3,y3,z3) 

(x2,y2,z2) 

(x1,y1,z1) 

zglobal 

yglobal 

xglobal 



61 

 

 

Figure 3.24: Local Coordinate System for Plate Element 

The direction cosines for the local x-axis (ÓÔaÕ�, ÓÔaÕ�, ÓÔaÕÏ), local y-axis 

(ÓÔaÛ�, ÓÔaÛ�, ÓÔaÛÏ), and the local z-axis (ÓÔaÜ�, ÓÔaÜ�, ÓÔaÜÏ) fill the matrix of 

direction cosines given by: 

Θ �  ÓÔaÕ� ÓÔaÕ� ÓÔaÕÏÓÔaÛ� ÓÔaÛ� ÓÔaÛÏÓÔaÜ� ÓÔaÜ� ÓÔaÜÏ¢        (3.165) 

The local stiffness matrix for the plate element is a 24x24 matrix.  Therefore, the 

transformation matrix for the plate is given by: 


 �

stt
ttt
ttt
ttu
Θ 0 0 0 0 0 0 00 Θ 0 0 0 0 0 00 0 Θ 0 0 0 0 00 0 0 Θ 0 0 0 00 0 0 0 Θ 0 0 00 0 0 0 0 Θ 0 00 0 0 0 0 0 Θ 00 0 0 0 0 0 0 Θvww

www
www
wwx
       (3.166) 
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Denoting the 24x1 vector of forces and moments as X, the 24x24 stiffness matrix as 8, 

and the 24x1 vector of displacements and rotations as �, the equations to be solved in the 

local coordinate system are defined as follows: 

X � 8� � X©;%«^          (3.167) 

The unknowns and forces in the global coordinate system can be written as follows: 

�Þ � 
l�            (3.168) 

Xz � 
lX            (3.169) 

Xz©;%«^ � 
lX©;%«^          (3.170) 

Furthermore, Equation 3.167 can be re-written in the global coordinate system as follows: 

Xz � 
l8 
�Þ � Xz©;%«^         (3.171) 

3.3.7 Hourglassing 

The use of single point integration on the shear terms in the bending stiffness for the plate 

element can lead to hourglassing problems.  Namely, in situations where no two adjacent 

nodes are restrained, hourglassing in the z-direction can occur.  The nodal displacement 

in the z-direction is denoted by ", so this hourglassing mode is referred to as "-

hourglassing.  Figure 3.25 illustrates the "-hourglassing mode. 
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Figure 3.25: w-Hourglassing Mode 

The stabilization scheme described by Belytschko and Tsay (1983) is used to supress the 

spurious mode.  Using the node numbers given in Figure 3.25, the hourglass shape, �� is 

given by the following displacement pattern in the z-direction: 

�� � µ́¶
µ· 1�11�1µ̧¹

µº
           (3.172) 

The coefficient for the hourglass matrix is given by: 

Ó;² � «û?¬©Á&< ¡â �Å&lÅ& � Å<lÅ<�         (3.173) 

where ¤� is a constant (~10-2), ( is the shear correction factor, ¨ is the shear modulus, Ñ 

is the element thickness, and � is the element area. 

The vectors Å& and Å< are given by: 

Å& � &< µ́¶
µ·�< � �P�3 � �&�P � �<�& � �3µ̧¹

µº
          (3.174) 
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Å< � &< µ́¶
µ·�P � �<�& � �3�< � �P�3 � �&µ̧¹

µº
          (3.175) 

where � and � are the locations of the nodes in local x-y coordinate system.  The 

element area is given by: 

� � �lÅ& � �lÅ<          (3.176) 

where: 

� � µ́¶
µ·�&�<�3�Pµ̧¹

µº
            (3.177) 

� � µ́¶
µ·�&�<�3�Pµ̧¹

µº
            (3.178) 

The hourglass matrix is given by: 

8;² � Ó;²��l �� � Ó;²
st
tt
u 1 �1 1 �1�1 1 �1 11 �1 1 �1�1 1 �1 1 vw

ww
x
      (3.179) 

The 4x4 matrix above is applied to appropriate locations for each of the transverse 

displacement degrees of freedom resulting in a 24x24 matrix hourglass stiffness matrix 

denoted by 8;². 

Hourglass Example 

One case where "-hourglassing will emerge is a plate supported by corner nodes 

subjected to loading in the transverse direction.  Consider a plate with the following 
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properties: dimensions 5.0 m x 5.0 m x 0.05 m, E  = 3 * 106 kPa, ν  = 0.3, ρ  = 0.1 

Mg/m3, and k  = 5/6.  The plate corners are pinned and there is a concentrated load of 1 

kN applied at the mesh center.  Figure 3.26 shows the finite element mesh with the corner 

nodes highlighted.   

 

Figure 3.26: Problem Set-Up for Hourglassing Example 

Two analyses were performed.  The first sets wr  in hourglass stiffness coefficient equal to 

0.0.  Figure 3.27 shows the deformed shape of the plate (magnified by 10).  It is apparent 

that severe hourglassing has occurred. 

 

Figure 3.27: Deformed Shape for Corner-Supported Plate (No Hourglass Stiffness) 

The second analysis sets wr  in hourglass stiffness coefficient equal to 0.01, as 

recommended by Belytschko and Tsay (1983).  Figure 3.28 shows the deformed shape of 

the plate (magnified by 10). 

 1 kN 
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Figure 3.28: Deformed Shape for Corner-Supported Plate with Hourglass Stiffness 

It is apparent that the hourglassing has been significantly reduced by incorporating the 

hourglass stiffness matrix.  As a further check on the hourglass control scheme, the 

computed center deflection (centerw  = 0.027892 m) of the plate is in good agreement with 

the thin plate theory (Kirchhoff 1850) solution and the obtained reaction at each corner is 

0.25 kN (1/4 of the applied load, as expected).  The TeraDysac displacement solution is 

within 0.9% of the 8x8 element Kirchhoff solution provided by ANSYS (2007).  

SHELL63 elements were used, which are four node quadrilaterals comprised of four 

overlaid triangles.  The addition of the hourglass stiffness has curtailed the hourglassing 

and not distorted the results.  Setting wr  to 0.01 for future problems is recommended as it 

has a negligible effect on the solution and ensures that hourglassing is contained. 

This hourglassing mode only appears for some problems and loading conditions.  For 

example, the same plate geometry, material properties, and loading applied, but with the 

transverse displacement at every edge node fixed does not show hourglassing.  An 

analysis was run with wr  = 0.0.  Figures 3.29 and 3.30 show the undeformed and 

deformed (magnified by 10) meshes. 



67 

 

 

Figure 3.29: Simply-Supported Set-Up for Hourglassing Example 

 

 

Figure 3.30: Deformed Shape for Simply-Supported Plate (No Hourglass Stiffness) 

The deformed shape reveals that this problem does not require any hourglass stiffness.  

The computed center deflection (centerw  = 0.008566 m) of the plate is within 0.6% of the 

8x8 element solution provided by Zienkiewicz and Taylor (2005), which uses Kirchhoff 

theory. 

3.4 Numerical Integration 

3.4.1 Time Integration Scheme 

The Hilber-Hughes-Taylor α -method (Hilber et al. 1977) is used together with a 

predictor/multi-corrector algorithm to integrate the finite element equations.  The final 

form is given by Hughes (1983).  Equation 3.20 can be rewritten as follows: 
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RS�'& � �1 � 	�TU�'& � 	TU� � �1 � 	�8VW�'& � 	8VW� � �1 � 	���'& � 	�� �
�1 � 	�X�'& � 	X�          (3.180) 

The nodal velocity and displacement are given by: 

U�'& � U� � ë�S�'& � �1 � ��S�ìΔÑ       (3.181) 

W�'& � W� � U�ΔÑ � ë�S�'& � �&< � � S�ìΔÑ<      (3.182) 

In the 	-method, the relationship between acceleration, velocity, and displacement is 

controlled by the time-integration parameters (	, �, �).  Popescu and Prevost (1993) used 

	 = 0.0, � = 1.0, and � = 1.5 to calculate consolidation in a dynamic problem.  These are 

the parameters used throughout this work in an attempt to solve the essentially static 

problems using the dynamic algorithm available within TeraDysac.  Substituting these 

parameters into Equations 3.180-3.182, the following forms emerge: 

RS�'& � TU�'& � 8VW�'& � ��'& � X�'&      (3.183) 

U�'& � U� � ë3< S�'& � &< S�ìΔÑ       (3.184) 

W�'& � W� � U�ΔÑ � ëS�'& � &< S�ìΔÑ<       (3.185) 

The iterative time-marching scheme is given by the following equations ([ is the iteration 

counter).  Note: this is the scheme after setting 	 = 0.0, � = 1.0, and � = 1.5.  The general 

scheme for dynamic problems can be found in Muraleetharan et al. (1994). 

Step 1:  Initialize iteration counter [ to zero 

Step 2:  Predictor 

W�'&�� � Wz�'& � W� � U�ΔÑ � &< S�ΔÑ<       (3.186) 

U�'&�� � Uz�'& � U� � &< S�ΔÑ         (3.187) 

S�'&�� � 0           (3.188) 
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Step 3: 

ü�� � X�'& � RS�'&�� � TU�'&�� � 8VW�'&�� � ��'&��       (3.189) 

Step 4: 

R%���� � R � 3< �ÑT � �Ñ<8V � ΔÑ<8l��       (3.190) 

where 

8l � �VqýG�®qýG � global tangent stiffness matrix     (3.191) 

Step 5:  Solve 

R%���� ΔS�þ'&� � ü��          (3.192) 

for the incremental acceleration ΔS�þ'&�       

Step 6:  Corrector 

S�'&�'&� � S�'&�� � ΔS�'&�         (3.193) 

U�'&�'&� � Uz�'& � 3< S�'&�'&�ΔÑ         (3.194) 

W�'&�'&� � Wz�'& � S�'&�'&�ΔÑ<         (3.195) 

Step 7: 

ü�'&� � X�'& � RS�'&�'&� � TU�'&�'&� � 8VW�'&�'&� � ��'&�'&�     (3.196) 

Step 8:  Convergence check.  If 

�Æ��6ýG��
��qýG�6ýG�� � �           (3.197) 

where � is a small number (~0.01), then go to the next time step.  Else set [ �  [ � 1 and 

go to Step 4. 

The user controls the damping for the structural elements (Rayleigh damping) directly.  

For the static problems solved in this work, there was no damping applied to the 
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structural elements (beams and plates).  Although only static problems were solved in this 

work, the structural elements developed can be used for dynamic problems by 

introducing damping and changing the time-integration parameters. 

3.4.2 Ramped Loading 

The amount of load applied to a finite element mesh at any time step is controlled by the 

user.  The use of a ramped loading (see Figure 3.31) was found to be an effective way to 

apply loads. 

 

Figure 3.31: Ramped Loading 

The x-axis is the time in seconds and the y-axis is the portion of the load applied at a 

given time.  Therefore, for the ramp shown in Figure 3.31, the analysis would begin with 

no applied load and at 1.0 s, the full load would be applied.  The ramp is held constant 

value for a period of time after the full value of the loading has been reached to allow any 

solution oscillation to end.  Checking the nodal displacement histories upon analysis 

completion is important to confirm the solution has fully developed.  Two analyses which 

both use the ramped loading shown in Figure 3.31 illustrate oscillation in the dynamic 

solution. 

The cantilever beam problem shown in Figure 3.32 was found to only exhibit minor 

solution oscillation after the ramp leveled off (i.e. the full load was developed). 
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Figure 3.32: Cantilever Beam Problem Demonstrating Minor Oscillation 

The beam properties are given here: 
 � = 0.196 m2 
 � = 3.07 * 10-3 m4 
 � = 3 * 107 kPa 
 B = 0.3 
 ( = 5/6 
 � = 2.4 Mg/m3 
 
Figure 3.33 shows the nodal displacement-time history of the beam node directly under 

the point of load application. 

 

Figure 3.33: Nodal Displacement-Time History for Cantilever Beam Tip 

It is apparent that the displacement solution has fully developed at 1.5 s.  There was 

miniscule oscillation after the ramp terminated, but it quickly ended.  Successive tip 

displacements after 1.3 s are identical. 

An example exhibiting more solution oscillation is the soil-structure interaction problem 

described in Figure 3.34.  

 

  50 kN 

 1 m 
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Figure 3.34: Soil-Structure Interaction Problem Demonstrating Oscillation 

The soil properties are given here: 
 E = 15,000 kPa 
 ν = 0.3 
 sρ = 2.67 Mg/m3 

 fρ = 1.0 Mg/m3 

 Γ = 0.0 kPa 
 
The beam in the problem has the same properties used in the preceding cantilever 

example.  Figure 3.35 shows the displacement-time history of the beam node under the 

point load.  

 

 10 kN 

 5 m  5 m  5 m  5 m 

  20 m 

 20 m 
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Figure 3.35: Nodal Displacement-Time History (Full Mass) 

It is apparent that the nodal displacement has not settled on a final value.  To find the true 

displacement of the node, the loading needs held constant for a longer period of time to 

allow the oscillation to end.  Figure 3.36 shows the displacement history for an analysis 

where the load is ramped up over 1 s (similar to Figure 3.31), but held constant for 

another 7 s. 

 

Figure 3.36: Nodal Displacement-Time History (Full Mass, Extended Ramp) 

There is oscillation in the solution after the ramp-up ends at 1 s.  After about 6 s, the 

solution oscillation ends and the true displacement solution is reached.  In the study of 

various problems, it was discovered that reducing the mass of the element blocks lead to 

less oscillation in some cases.  Figures 3.37 and 3.38 are the nodal displacement-histories 

for meshes with 10% mass and zero mass, respectively. 
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Figure 3.37: Nodal Displacement-Time History (10% Mass) 

 

Figure 3.38: Nodal Displacement-Time History (Zero Mass) 

For the problem in question, reducing the mass by 90% has significantly trimmed the 

solution oscillation.  Setting the mass to zero has essentially provided the static solution 

to the problem.  Figure 3.38 shows no oscillation in the solution.  The obtained solution 

(after all oscillation dies), is the same for all three analyses (Figure 3.36-3.38), as 

expected.   

As the load is ramped up, there is acceleration of the spatial nodes.  Once the ramp tapers 

off, the load is held constant and the true static solution will eventually develop.  In the 

predictor, specifically Equation 3.190, R%�� is calculated.  R is contained in this 

equation, therefore the mass of the model is affecting the problem solution as the load is 

being ramped up.  The incremental acceleration ΔS�þ'&� (see Equation 3.192) is 

dependent on the value of R%��.  Once the full load has been developed and the nodal 

displacements become constant, the nodal accelerations go to zero. 
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Reducing the element block mass was found to reduce solution oscillation.  However, the 

mass in the problems should not be reduced without proper cause.  Displacement-time 

histories should be consulted to see if significant solution oscillation is occurring.  In 

some problems, such as gravity loading, the element mass is integral to the solution, so it 

can not be reduced.  An unreduced mass matrix may also be important for stability issues 

(i.e. solution convergence at each time step), especially in 3D problems and problems 

utilizing the bounding surface soil model.  For these problems, reducing the mass also 

required increasing the number of time steps.  So there is some trade-off involved in 

reducing the mass which trims oscillation, yet may require more time steps.  The right 

combination of element mass and time step should be selected based on the needs of the 

individual analysis and the exhibited solution behavior.  Yet to be implemented in 

TeraDysac is a true static procedure, which would be ideal for solving the problems 

discussed in this work.
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4. Soil-Structure Interaction 

4.1 Linear Problems 

4.1.1 Beams on Elastic Foundation 

The theory for beams on elastic foundations began with the work of Winkler (1867).  

Winkler theory assumes an infinitely long linear elastic beam is resting on an elastic 

foundation under a uniformly distributed load (see Figure 4.1). 

 

Figure 4.1: Beam on Elastic Foundation 

The soil is modeled with an infinite number of discrete elastic springs.  The displacement 

(�) at any given position along the beam (�) is assumed to only depend on the load at that 

point.  The spring force per unit length is given by: 

 � � �(�          (4.1) 

where ( is the modulus of subgrade reaction (units of ��03) 

Equation 4.2 is the governing fourth-order differential equation in Winkler theory. 

�� ®�³®�� � �(� � � � 0         (4.2) 

 
where: 
 � = Young’s modulus for the beam 
 � = area moment of inertia for the beam 
 
 

 

Beam width, B 

Uniform load, q (force/unit length) 

∞ -∞ 
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The governing differential equation has a general solution given by: 
 � � $����1 cos �� � �2 sin ��� � $0����3 cos �� � �4 sin ��� � �p   (4.3) 
 
 where:  � � �?Pjg G

�           (4.4) 

 �&, �<, �3, �P are integration constants to be determined from boundary conditions and �V 
is the particular solution for the given loading 
 
Solutions according to Winkler theory can be developed for distributed loads, point loads, 

concentrated moments, and combinations thereof.  Solutions for “short” or non-infinite 

beams can also be developed.   

4.1.2 Linear SSI Example Problem 

A soil-structure interaction example is considered here with a concentrated moment 

applied at the center of an infinitely long beam (see Figure 4.2).   

 

Figure 4.2: Problem Set-Up 

The relevant problem parameters are given here: 
 � = 0.3 m 
 �� = 948.27 kN-m2 
 ( = 30,093.93  kN/m3 
 
The analytical solutions for the Winkler theory (� > 0) are given here: 

� � ÀA�â
? $0���a[� ���         (4.5) 

 £ � ÀA�Á
? $0���cos �� � a[� ���         (4.6) 

 M0 

-∞ 

y 

∞ x 
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� � 0ÀA�<  $0���cos �� � a[� ���        (4.7) 

 R � ÀA< $0���ÓÔa ���         (4.8) 

 
where: 
 � = deflection 
 £ = rotation 
 � = shear force 
 R = bending moment 
 R� = applied concentrated moment 
 
A concentrated moment problem was selected for the example because the soil boundary 

conditions had minimal effect on the finite element solution.  The soil elements do not 

have rotation as a nodal variable.  Therefore, the beam takes a majority of the loading and 

the soil in the far field does not influence the results adjacent to the beam.  In the finite 

element analysis of a point load applied to the beam, as expected for this linear elastic 

case, the soil boundary was shown to have a significant effect on the results.  The 

displacement at the point of load application increased as the depth of the soil stratum 

increased, therefore the solution did not converge.  Just as the deformation of an axial bar 

(Equation 4.9) is a function of bar length, the displacement solution for the point load is a 

function of the soil depth. 

4 � á�j¡           (4.9) 

where: 
 4 = deformation 
 � = point load 
 � = bar length 
 � = Young’s modulus 
 � = bar area 
 
In studying equation 4.9, for a given �, �, and �, as � increases so too does the 

deformation.  Comparing Figures 4.3 and 4.4, the relationship between the two problems 

is apparent. 
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Figure 4.3: Point Load Applied to Axial Bar 

 

Figure 4.4: Finite Element Set-Up for Point Load Analysis 

 P 

 P 
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Convergence for the problem illustrated in Figure 4.4 will occur for a nonlinear 

constitutive soil model.  For a big enough mesh, the bounding surface model will 

eventually provide a solution that does not have an influence from the soil boundaries. 

In a finite element analysis of a beam on a continuum, the subgrade modulus, (, is not 

used directly.  Instead, Young’s modulus of the soil, ��, has to be related to the subgrade 

modulus.  Two forms of an equation relating these two properties are presented by Biot 

(1937) and Vesic (1961).  Biot developed the analytical solution of an infinite beam on an 

elastic foundation subjected to a point load.  By equating the maximum bending moments 

obtained from his solution and the solution presented by Winkler, he expressed ( as a 

function of the soil and beam properties.  Vesic extended the work of Biot by developing 

complete solutions for elastic beams resting on isotropic elastic solid continuum 

subjected to both point loads and concentrated moments.  Vesic also developed a 

relationship between ( and �� which matches all solution components (displacement, 

rotation, bending moment, and shear force) reasonably well.  The equation developed by 

Vesic is given by: 

( � �.¿ä j1�&0y�â   �j1 �jg  GGâ
          (4.10) 

Assuming a Poisson’s ratio for the soil of 0.3, Equation 4.10 sets �� to 15,000 kPa for the 

example problem.  Figures 4.5-4.8 show the comparison of the Winkler and Vesic 

solutions for R� = 100 kN-m. 
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Figure 4.5: Beam Displacement (Winkler vs. Vesic) 

 

Figure 4.6: Beam Rotation (Winkler vs. Vesic) 

 

-6.0

-4.0

-2.0

0.0

2.0

4.0

6.0

-9 -6 -3 0 3 6 9

D
is

pl
a

ce
m

en
t (

m
m

)

Position (m)

Winkler

Vesic

-0.005

0.000

0.005

0.010

0.015

0.020

0.025

-9 -6 -3 0 3 6 9

R
o

ta
tio

n 
(r

a
d.

)

Position (m)

Winkler

Vesic



82 

 

 

Figure 4.7: Beam Shear Force (Winkler vs. Vesic) 

 

 

Figure 4.8: Beam Bending Moment (Winkler vs. Vesic) 

The curves are in good agreement, but there are slight differences between the Winkler 

and Vesic solutions.  The error between the two solutions depends on the relative 

stiffness of the beam (Vesic 1961).     

The beam theory embedded in the Vesic solution is Euler-Bernoulli.  Timoshenko beams 

are implemented in TeraDysac, so before the soil-structure interaction problem was run, 

an elastic analysis was performed on the beam only to verify convergence to the Euler-

Bernoulli solution for the given beam properties and mesh size.  A simply-supported 
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beam with identical properties to the example beam (� = 0.15 m2, � = 303,446.55 kPa, � 

= 0.003125 m4, B = 0.3, ( = 5/6) was analyzed.  Explicit equations can be written for the 

displacement and rotation of the beam shown in Figure 4.9 using Euler-Bernoulli beam 

theory. 

 

Figure 4.9: Elastic Beam Analysis Set-Up 

The elastic curves are given by: 

For 0 � � � �<, 

�� ���� � À�Á¿� � À��<P           (4.11) 

�� £��� � À�â<� � À�<P           (4.12) 

For 
�< � � � �, 

�� ���� � À�Á¿� � À�â< � &&À��<P � 3À�â<P         (4.13) 

�� £��� � À�â<� � R� � &&À�<P          (4.14) 

Letting R = 100 kN-m and � = 18 m, the comparison between the curves provided by 

Equations 4.11 – 4.14 and the TeraDysac analysis is shown in Figures 4.10 and 4.11. 

 

 x 

 y 

 M 

 L/2  L/2 
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Figure 4.10: Euler-Bernoulli Beam Displacement Comparison 

 

Figure 4.11: Euler-Bernoulli Beam Rotation Comparison 

Figures 4.10 and 4.11 reveal that an 18 element mesh (i.e. 1 m beam elements) is 

sufficient for the beam to converge to the Euler-Bernoulli solution for this particular 

problem.  Therefore, 1 m elements were used as the starting point for the soil-structure 

interaction analysis.  Soil nodes were fixed at the base in all directions and in the 

horizontal direction only on the sides.  Pore water pressure was suppressed by setting 9 = 

0.0 kPa (see Equation 3.31).  Ultimately, 0.25 m beam elements were used to get a 

smooth displacement shape.  Figure 4.12 shows the finite element mesh and the loading 
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condition.  All beam nodes are tied to soil nodes at the top of the mesh.  In the vertical 

direction, there is a gradient of elements with the finer elements near the beam. 

To validate the soil-structure interaction capabilities in TeraDysac, the finite element 

solution was compared to the analytical solution presented by Vesic.  Figures 4.5-4.8 

reveal that displacement, rotation, shear force, and bending moment all become 

negligible at a beam length of 18 m.  Thus, an 18 m beam finite element solution can 

reasonably be compared to the infinite beam solution presented by Vesic. 

 

Figure 4.12: Finite Element Model Set-Up for Linear Soil-Structure Analysis 

Figures 4.13-4.16 show the results from the TeraDysac analysis compared with the 

analytical solution presented by Vesic. 

  100 kN-m 

 

100 m 

 27 m 
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Figure 4.13: Beam Displacement (Vesic vs. TeraDysac) 

 

 

Figure 4.14: Beam Rotation (Vesic vs. TeraDysac) 
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Figure 4.15: Beam Shear Force (Vesic vs. TeraDysac) 

 

Figure 4.16: Beam Bending Moment (Vesic vs. TeraDysac) 

Figure 4.17 shows the displaced shape.  The Uniform Gradient formulation is used for the 

soil elements, so it is important to check the deformed shape to confirm that no 

hourglassing has taken place in the analysis.  The figure zooms in on the beam center and 

magnifies the displacement by 20.  It is apparent that no hourglassing has occurred and 

the deformed shape of the beam is smooth. 
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Figure 4.17: TeraDysac Linear SSI Analysis Deformed Shape 

The beam shear force and bending moment curves are in concurrence with the Vesic 

solution.  While the TeraDysac solution for displacement and rotation show good 

agreement near the point of load application, the beam displacement is slow to diminish 

in the finite element solution.  The rotation subsequently has deviation from the Vesic 

solution after the displacement reaches a maximum (about 0.6 m from the beam 

midpoint).  It is important to note that the Vesic solution presented is for a 3D elastic 

foundation.  Therefore, a 3D mesh (extruded 18 m in the z-direction) was also analyzed.  

A fine mesh in 3D was not investigated because of the tremendous amount of 

computational effort necessary for an analysis.  A course mesh (1 m beam elements) 

analysis provided enough insight to draw the conclusion that a 3D finite element solution 

will converge to the Vesic solution.  Figures 4.18-4.21 show the 3D analysis compared 

with the Vesic solution. 
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Figure 4.18: Beam Displacement (Vesic vs. TeraDysac – 3D) 

 

 

Figure 4.19: Beam Rotation (Vesic vs. TeraDysac – 3D) 
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Figure 4.20: Beam Shear Force (Vesic vs. TeraDysac – 3D) 

 

 

Figure 4.21: Beam Bending Moment (Vesic vs. TeraDysac – 3D) 

Figures 4.18 and 4.19 show the 3D displacement and rotation solutions diminish much 

quicker after the maximum displacement is reached than the 2D solutions.  For this 

particular problem, the 2D (plane strain) solutions were slow to diminish.  It is believed 

that the zero strain condition on the soil in the z-direction is responsible for this departure 

from the true solution. 
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4.2 Soil-Pile Interaction in a Soft Clay 

More interesting (and realistic) soil-structure interaction problems are the ones where the 

nonlinear constitutive properties of the soil are considered.  In practice, advanced 

analyses use the � � � method with a program like LPILE (ENSOFT 2007).  In LPILE, 

the user is allowed to manually input � � � curves or use program-furnished curves 

based on soil type.  The program-furnished curves are empirical curves obtained using 

limited full-scale cyclic loading of piles.  In TeraDysac, clays are analyzed using the 

bounding surface model developed by Dafalias and Herrmann (1982, 1986).  This model 

was discussed in Chapter 3.   

4.2.1 Nonlinear SSI Example Problem 

To evaluate TeraDysac capabilities for nonlinear soil-structure interaction problems, a 

soil-pile analysis was performed using saturated soft clay.  The pore pressure effects are 

considered by setting 9 = 2.2 * 106 kPa.  Figure 4.22 depicts the problem set-up.   

 

Figure 4.22: Nonlinear SSI Example Set-Up 

The bounding surface parameters for Speswhite Kaolin (see Chapter 3) are those 

recommended by Muraleetharan et al. (1994).   
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The beam properties are given here:  
 E = 30 * 106 kPa 
 A = 0.1963 m2 
 I = 0.003068 m4 
 ν = 0.2 
 k = 0.8475 
 
Figures 4.23 and 4.24 show the TeraDysac analysis set-up. 

 

Figure 4.23: Problem Set-Up for Nonlinear SSI TeraDysac Analysis 

 

 

Figure 4.24: Loading and Node Sets for Nonlinear SSI TeraDysac Analysis 

In the analysis of soft clay, the initial stress state is important.  TeraDysac allows the 

initial stress state to be specified.  The initial stress state was calculated as follows: 

hy γσ ′=′           (4.15) 

yzx K σσσ ′=′=′ 0          (4.16) 

0=′=′=′ zxyzxy σσσ          (4.17) 

where γ ′  is the effective unit weight of the soil and h  is the depth below the soil surface.  

Figure 4.25 shows the initial vertical effective stress state for the pile loading problem. 

 

 200 m 

20 m 

 100 m 

20 kN
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Figure 4.25: Initial Vertical Stress State Contours (kPa) 

The TeraDysac analysis results were then compared with results from LPILE.  LPILE 

allows the user to enter yp −  curves for soil layers or use program furnished yp −  

curves based on the soil type (soft clay in the presence of free water, sands, etc).  In 

addition to yp −  information, LPILE requires the user to input the strain corresponding 

to one-half the maximum principle stress difference (50ε ) and the shear strength of the 

clay.  A single element computer code (EVALK) utilizing the same bounding surface 

model implemented in TeraDysac was used to determine the shear strength of the clay.  

The single element program simulates an undrained triaxial test to determine the strength 

of the soil.  The user is allowed to specify the initial stress state, OCR, and loading type.  

At a depth of 20 m for the example problem, the EVALK results are given in Figures 

4.26 and 4.27.   
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Figure 4.26: Deviator Stress-Strain Curve at 20 m Depth 

 

Figure 4.27: Stress Paths at 20 m Depth 

The value of ,ä� used was 0.02, which was recommended in the LPILE technical manual 

(ENSOFT 2004).  However, ,ä� can be determined from EVALK analysis results.  

According to Figure 4.26, the strain corresponding to one-half the principal stress 

difference is 1.55% (,ä� = 0.0155).  This is sufficiently close to the recommended value 

of 0.02, which was used at all soil depths in the subsequent analyses. 

Note that �= and � follow the Cambridge notation where: 

�= � 5G7 '<5Á73            (4.18) 
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31 σσ ′−′=q           (4.19) 

The shear strength input to LPILE was one-half the final q  values obtained from 

EVALK.  In the first LPILE analysis, the obtained value of soil strength at a depth of 10 

m was used for the entire stratum.  This is comparable to a design firm having only one 

triaxial test to describe the soil stratum.  The second LPILE analysis uses EVALK-

obtained strength values at 1 m increments through the soil depth.  This is representative 

of a highly tested field site.  In both of these analyses, the LPILE-furnished yp −  curves 

for soft clay in the presence of free water (Matlock 1970) were used.  Figure 4.28 shows 

the LPILE-generated yp −  curves for the first analysis (single value of shear strength).   

 

Figure 4.28: p-y Curves Obtained from LPILE 

In the third and final LPILE analysis, yp −  curves obtained from TeraDysac were 

furnished to LPILE.  To construct yp −  curves from TeraDysac output, the beam shear 

force-time histories and displacement-time histories must be used in conjunction.  

Because beam nodes are tied into the soil mesh, the equilibrium of each node mandates 

that the shared forces between the two adjoining beam elements and the soil reaction 

from the four connecting soil elements must combine to produce no net force.  Figure 
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4.29 illustrates the four soil elements which have a contribution to the soil reaction at a 

node.  Figure 4.30 shows a free-body-diagram of the center node in Figure 4.29. 

 

Figure 4.29: Soil Contribution to Nodal Force 

 

Figure 4.30: Free Body Diagram of the Center Node 

If a beam is analyzed alone, the shear forces of the connecting beam elements are of 

equal magnitude and opposite direction.  However, in soil-structure interaction problems, 

|�&| � |�<|.  The difference between the two is the contribution from the soil reaction.  

This force is denoted by ��.  �, by definition is a force per unit length.  � is be found by 

dividing �� by the beam element length.  � is nodal displacement obtained directly from 
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the displacement-time history.  Figure 4.31 shows the yp −  curves generated from the 

TeraDysac analysis. 

 

Figure 4.31: p-y Curves Obtained from TeraDysac 

Because the yp −  curves from LPILE are empirical, there will not be complete 

agreement with the curves obtained from TeraDysac.  Figure 4.32 compares the empirical 

LPILE yp −  curves and the yp −  curve obtained from TeraDysac at a depth of 2 m. 

 

Figure 4.32: p-y Curve Comparison 

The black line is the empirical curve using the recommended value of 50ε  and the 

accurate value of shear strength (c ) obtained from EVALK.  The dotted blue line uses 
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both the accurate shear strength and 50ε  values obtained from EVALK.  It is apparent 

that furnishing accurate c  and 50ε  values to LPILE produces a curve more closely 

representing the TeraDysac curve.  However, both LPILE curves show the soil to be 

stiffer initially and softer ultimately than what the TeraDysac curve shows. 

Figures 4.33-4.36 show the combined results from the soil-pile interaction analysis.  The 

curves are identified in the legend by: 

• LPILE – Single: a single value of soil shear strength (obtained at a depth of 10 m) 

was assumed throughout the depth 

• LPILE – Multi: shear strength values at 1 m depth increments were used 

• TeraDysac: the results from the TeraDysac analysis 

• LPILE – yp − : the yp −  curves obtained from the TeraDysac analysis were 

furnished to LPILE 

 

Figure 4.33: Pile Deflection Comparison for Nonlinear SSI Analysis 
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Figure 4.34: Pile Rotation Comparison for Nonlinear SSI Analysis 

 

Figure 4.35: Pile Shear Force Comparison for Nonlinear SSI Analysis 

 

Figure 4.36: Pile Bending Moment Comparison for Nonlinear SSI Analysis 
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Looking at the first three curves (LPILE – Single, LPILE – Multi, and TeraDysac), it is 

apparent that there is disparity between the results.  Considering the accurate portrayal of 

shear strength in the LPILE – Multi analysis, results were expected to be closer to that of 

TeraDysac.  The observed differences can be attributed to the LPILE � � � curves.  The 

empirical curves and the bounding surface elastoplasticity models disagree.  Note that the 

bounding surface model parameters were calibrated against laboratory test results 

(Muraleetharan et al. 1994) and therefore the bounding surface elastoplastic model can be 

expected to represent the stress-strain response of this soil better.  Comparing the last two 

curves (TeraDysac and LPILE – � � �), the results are much more agreeable.  Because 

the bounding surface model was used to obtain the shear strength at various depths and 

the � � � curves were developed from the TeraDysac analysis, one would expect the 

results to concur.  As this analysis illustrates, the empirical LPILE � � � curves may not 

be suitable for the analysis of all soft clays.  In addition to information on the beam 

(displacement, rotation, shear force, and bending moment), TeraDysac also provides 

output on the soil.  The pore water pressure contours at the end of the analysis are shown 

in Figure 4.37.  Figure 4.38 is the pore water pressure-time history for the element 

adjacent to the point of load application. 
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Figure 4.37: Pore Water Pressure Contours (kPa) 

 

Figure 4.38: Pore Water Pressure-Time History (kPa, s) 

Figure 4.37 reveals an accumulation of positive pore water pressure near the pile on the 

side being compressed.  Pore water pressure may not be important for all loading cases, 

but when analyzing saturated soil, the capability to monitor pore water pressure is a 

desirable feature.  Although the magnitude of the pore pressure shown in Figure 4.38 is 

small (maximum value of only 1.8 kPa), pore pressures can accumulate during cyclic 

loading to larger values in clays.  The obtained pore pressure is a function of the load 

duration.  In this example, the load was ramped up over 1.0 s and held constant for an 

additional 2.0 s.
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5. Thermal Modeling 

The thermal loads for the structural elements are calculated numerically and are discussed 

in detail in Chapter 3.  Several examples illustrating the thermal analysis capabilities in 

TeraDysac are presented here. 

5.1 Linear Temperature Distribution 

Instrumentation projects have shown that the temperature varies through the 

superstructure (e.g. Huang et al. 2004).  If no gradient is allowed in the formulation, 

beam and plate curvature due to temperature can not be captured; all of the thermal-

induced deformation will be in the plane of the element local axis (see Figure 5.1).  The 

thermal loading feature implemented in TeraDysac allows a temperature change on the 

top and bottom of the structure elements with a linear distribution between the two.  The 

difference between the top and bottom temperature changes controls the element 

curvature.  Figures 5.2 and 5.3 illustrate the curvature possibilities.  The dotted lines 

represent the deformed shape due to the thermal effects. 

 

Figure 5.1: Deformed Shape (No Gradient) 

 

Figure 5.2: Curvature Depiction (Positive Gradient) 
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Figure 5.3: Curvature Depiction (Negative Gradient) 

For plate elements, thermally induced curvature occurs in two directions (the local x- and 

y-axes of the element).  The following problem is meant to illustrate the capabilities that 

having a temperature distribution through the element depth will allow.  Figures 5.4 

shows the finite element setup.  The 300 element steel plate is pinned at the corner nodes 

and subjected to a temperature difference between the top and bottom surface of °10 F  

( bottomtop TT ∆>∆ ).   

 

Figure 5.4: Finite Element Mesh for Gradient Analysis 

The plate measurements are 2 m x 1.5 m x 20 mm.  The other relevant parameters are as 

follows: E  = 200 * 106 kPa, ν  = 0.3, α  = °− /10*6 6 F, ρ  = 7.85 Mg/m3.  Figure 5.5 

shows the deformed shape (displacements magnified by 100). 
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Figure 5.5: Deformed Shape for Gradient Analysis 

It is apparent that the plate has taken a dome-like shape with curvature occurring in both 

the local x- and y-axes.  This is exactly what one would expect the deformed shape to 

look like.  As the top fibers of the plate are heated to a higher extent than the bottom 

fibers, the plate develops curvatures in two directions. 

5.2 Skewed Plates Subjected to Thermal Loading 

In skewed IAB bridges, instrumental results have shown that the backfill pressure is not 

uniform behind the abutments (e.g. Sandford and Elgaaly 1993).  To study this 

phenomenon, a series of single element thermal analyses were carried out in TeraDysac.  

The plate is used to simulate the deck of an IAB.  The steel plate parameters are given by: 

E  = 200 * 106 kPa, ν  = 0.3, α  = °− /10*6 6 F, ρ  = 7.85 Mg/m3.  The plate thickness in 

all the cases that follow is 30 mm.  The four corner nodes are pinned.  The global 

temperature change (uniform through the plate thickness) is °1 F.  Only the dimensions in 

the plane of the element are changing from problem to problem. 

Square Plate 

Consider a square plate measuring 0.5 m x 0.5 m (see Figure 5.6). 
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Figure 5.6: Square Test Plate Set-Up 

The corner nodes are pinned so forces develop in the plate corners.  A depiction of the 

plate forces is presented in Figure 5.7. 

 

Figure 5.7: Square Plate Corner Forces 

The plate geometry and loading are symmetric.  The forces developed in the corners are 

also symmetric as one would expect. 
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Skewed Plate (Rhombus) 

In the first single-element analysis of a skewed plate, the top two nodes from the square 

plate were each translated 0.1 m to the right (see Figure 5.8).  The plate is 0.5 m high, the 

top and bottom widths are still 0.5 m, but the plate is now skewed. 

 

Figure 5.8: Rhombus Plate Set-Up 

The plate forces developed in the thermal analysis are shown in Figure 5.9. 

 

Figure 5.9: Rhombus Plate Corner Forces 
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The vertical forces in the plate corners are not identical to each other after the skew has 

been introduced.  The element is still in equilibrium (summation of forces in each 

direction and summation of moments about a point equal zero), but there is an imbalance 

between the vertical forces on the top and bottom of the plate.  The vertical forces 

developed in obtuse corners are higher than those in the acute corners. 

Rectangular Plate 

The thermal load vector is calculated numerically at the elemental level (see Chapter 3), 

so the element layout controls the loading.  The element shown in Figure 5.10 is 0.25 m 

wide and 0.5 m high and has the same boundary conditions, properties, and loading as the 

previous two examples.   

 

Figure 5.10.  Rectangular Plate Set-Up 

The plate forces developed in the thermal analysis are shown in Figure 5.11. 
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Figure 5.11: Rectangular Plate Corner Forces 

If there were no corner restraints, the strain in the plate would be: 

, � 	Δ
 � 6 ) 100¿ �⁄ ) 1� � 6 �,       (5.1)  

and the plate edge deformations would be: 

∆"[WÑ� � 	Δ
 ) "[WÑ� � 6 ) 100¿ ) 0.25 m � 0.0015 mm    (5.2)  

and 

∆�$[��Ñ � 	Δ
 ) �$[��Ñ � 6 ) 100¿ ) 0.5 m � 0.003 mm    (5.3)  

Figure 5.12 shows the deformed shape of the rectangular plate if it were free to expand. 
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Figure 5.12: Rectangular Plate (Deformed Shape) 

It is apparent that the displacement in the horizontal direction is one-half of the 

displacement in the vertical direction.  Looking at the plate dimensions, this makes sense 

as there is twice as much material length along the vertical axis to expand compared with 

the horizontal axis.  The corner forces (see Figure 5.11) developed when the plate is 

restrained however show a reversal.  The horizontal forces are twice that of the vertical 

forces.  This is because the cross-section in horizontal direction is double the cross-

section in the vertical direction.  Intuitively, there is twice as much material to create a 

force in the horizontal direction as there is in the vertical direction; hence, twice the 

force. 

Skewed Plate (Parallelogram) 

In the second single-element analysis of a skewed plate, the top two nodes from the 

rectangular plate were each translated 0.15 m to the right (see Figure 5.13).  The plate is 

0.5 m high, the top and bottom widths are still 0.25 m, but the plate is now skewed. 

 0.00075 mm 

0.0015 mm 
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Figure 5.13: Parallelogram Plate Set-Up 

The plate forces developed in the thermal analysis are shown in Figure 5.14.  The vertical 

forces in the plate corners are again unequal with higher force in the obtuse corners. 

 

Figure 5.14: Parallelogram Plate Corner Forces 

The parallelogram plate was analyzed because its shape is similar to a skewed IAB deck.  

Figure 5.15 depicts an idealization of a skewed IAB deck with corner forces highlighted 
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based on the results of the parallelogram plate analysis.  The results of the single element 

analyses are in agreement with published reports of the higher stresses in the obtuse 

corners.  For example, the monitoring study conducted by Sandford and Elgaaly (1993) 

on an IAB with a skew angle of 20° showed backfill pressures behind the obtuse corners 

to be nearly three times the pressures in the acute corners when the bridge was 

experiencing maximum expansion. 

 

Figure 5.15: Skewed IAB Deck Idealization Highlighting Corner Forces 

Mechanics of Skewed Plate Loading 

A skewed bridge deck mainly carries load between the obtuse corners, i.e. the shortest 

path between supports (Hartmann and Katz 2004).  The single element in-plane thermal 

tests agree with this.  The forces developed in the obtuse plate corners were higher than 

those in the acute corners.  In attempting to visualize why this force imbalance emerges 
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in skewed plates, a sketch is helpful.  Figure 5.16 shows a skewed bridge deck with 

idealized beams connecting the obtuse corners and the acute corners. 

 

Figure 5.16: Skewed Plate with Corner Connections 

It is apparent that the distance between the obtuse corners is less than the distance 

between the acute corners.  Figure 5.17 shows the two beams each subjected to the same 

axial load, �.  

 

Figure 5.17: Corner-Connecting Beams 

The beam connecting the acute corners (Acute-Acute) is longer than the beam connecting 

the obtuse corners (Obtuse-Obtuse).  Assuming each beam has the same cross section (�) 

and Young’s modulus (�), the elongation of each beam is given by: 

4 � á�j¡           (5.4) 

Note the beam length (�) is in the numerator of Equation 5.4.  So for equivalent point 

loads, the elongation of the Acute-Acute beam is greater than the elongation of the 

Obtuse-Obtuse beam.  Relative to the beam connecting the acute corners, the beam 
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connecting the obtuse corners is stiffer and will subsequently carry more load.  This 

manifests as higher support reactions in the obtuse corners than in the acute corners of 

skewed bridge decks.  

5.3 Assemblies of Elements 

Using the technology available in the TeraDysac mesher, element blocks can be 

assembled together.  For example, beams can be assembled together with a plate.  Figure 

5.18 shows a 10 x 10 element mesh of a square plate measuring 1 m x 1 m.  Figure 5.19 

is a 10 element mesh of a 1 m beam.   

 

Figure 5.18: 100 Element Plate for Mesh Assembly 



114 

 

 

Figure 5.19: 10 Element Beam for Mesh Assembly 

In the mesher, there is an option to merge out nodes from different element blocks that 

exist within a user-supplied equivalence tolerance (usually a small number, ~10-6).  In the 

plate, there are 11 nodes in each direction.  The beam element also has 11 nodes at a 

spacing equivalent to the plate mesh.  Therefore, any beam lined up vertically with the 

plate and at any position horizontally incremented by 0.1 m from the left edge of the plate 

will have 11 equivalence nodes.  An assembly of the plate and five beams is shown in 

Figure 5.20. 
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Figure 5.20: Beam and Plate Mesh Assembly 

The mesher outputs the results from any node set equivalence.  In the example described, 

there are 55 equivalence nodes (5 beams with 11 each).  After the successful meshing, the 

beams are tied into the plate.  Mesh assemblies are key to setting up the bridge models 

used in this work. 

The thermal loading is applied by element block in TeraDysac.  When thermal loads are 

applied to assemblies of structural elements, there is interaction between the two element 

blocks.  A few thermal analyses of the plate-beam assembly illustrate this interaction 

effect.  Both element blocks are steel: E  = 200 * 106 kPa, ν  = 0.3, α  = °− /10*6 6 F, ρ  

= 7.85 Mg/m3.  The beams are 0.1 m wide and both the beams and the plate are 0.1 m 

thick.  The temperature loading for the following three cases is a uniform temperature 

increase of °10 F.  To illustrate the interaction between the element blocks, three analyses 

were carried out.  In the first analysis, the entire assembly is heated.  In the second 

analysis, only the plate is heated and in the final analysis, only the beams are heated.  The 

deformed shapes are shown in Figures 5.21-5.23.  The magnification factor in all three 

figures is 1500. 
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Figure 5.21: Deformed Shape (Both Element Blocks Heated) 

 

Figure 5.22: Deformed Shape (Plate Element Block Heated Only) 
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Figure 5.23: Deformed Shape (Beam Element Block Heated Only) 

It is apparent that when both element blocks are heated together, the uniform expansion 

across the beams and plate does not lead to any contortion in the deformed shape (see 

Figure 5.21).  The nodal displacement-histories for the beam ends are identical to those of 

the plate edges.  No forces or moments develop in either element block.  The second 

analysis heats only the plate.  The beams restrain the plate expansion as depicted in 

Figure 5.22.  The reverse is true when only the beams are heated (see Figure 5.23).  This 

element block interaction is important in regions like the bridge deck where three 

sections (deck, girders, and pier caps) are all tied together and being thermally loaded. 
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6. TeraGrande Modeling 

6.1 General 

The structural elements implemented in TeraDysac are low order linear elastic elements.  

To validate the use of these elements, several thorough analyses of the superstructure 

were performed using the finite element application TeraGrande (ANATECH 2005).  The 

program considers all the material nonlinearity applicable to reinforced concrete 

modeling.  In addition to stress and deformation outputs, concrete cracking can be 

monitored.  The purpose of this section of the dissertation is to illustrate that although 

cracking does occur during the thermal loading cycles, the cracking is only minimal and 

therefore linear elements are acceptable for IAB analysis in TeraDysac.  The 

instrumented Minnesota bridge is used as an example.  The TeraGrande User’s Manual 

(ANATECH 2005) should be consulted for a full description of the features available in 

and theory behind the TeraGrande computer program.  A cursory explanation of the 

pertinent details to this work is presented in the following five sections. 

6.1.1 Explicit Dynamics 

This work uses the explicit dynamics procedure for all analyses.  The equations of motion 

of a body are integrated through time using an explicit central difference integration rule 

given by the following: 

��  � � � �           (6.1) 

�# 'Gâ � �# 0Gâ � �Æ©6'Æ©6ýG�< ��          (6.2) 

�'& � � � ΔÑ�# 'Gâ          (6.3) 
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where � are the nodal displacements at time increment [, �# 'Gâ are the nodal mean 

velocities at the mid-increment, ��  are the nodal accelerations at time increment [, � are 

the external applied loads, and � are the internal forces (due to stresses) at time increment 

[.  The time increment, ΔÑ, changes as the body deforms and is governed by the damped 

Courant stability limit of the mesh given by: 

ΔÑ�« � <
�hú¦ Hõ1 � N< � NI         (6.4) 

where �^�� is the highest natural frequency of the mesh and N is the fraction of critical 

damping in the highest mode.  The time steps in the various analysis runs in this work 

were quite small.  Analysis times of 0.5 seconds (or thereabouts) required hundreds of 

thousands of time steps. 

6.1.2 ANATECH Concrete Model 

The smeared-crack finite element technology used in the model was developed by the 

founder of ANATECH Corp., Dr. Y.R. Rashid (Rashid 1968).  The compressive strength 

of concrete (X�=) is the only input required from the user for the concrete constitutive 

model.  All other model parameters are obtained using correlations to X�=.  This nonlinear 

model has been shown to accurately predict laboratory tests of reinforced concrete bridge 

components, capturing cracking, plasticity, and hysteresis among other phenomena 

(Dunham et al. 1991, Dameron and Dunham 1992).  For X�= = 40.68 * 103 kPa (5900 psi), 

the generated curves representing the concrete constitutive behavior are given Figures 6.1 

and 6.2.  This is the value of compressive strength at the time of prestress transfer for the 

example that follows. 
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Figure 6.1: Compressive Stress-Strain Curve (Pa) 

 

Figure 6.2: Tensile Stress-Strain Curve (Pa) 

6.1.3 Concrete Cracking 

The Young’s modulus for the concrete is computed in the TeraGrande input file, although 

a user-furnished Young’s modulus option is available.  The value of Young’s modulus 

for the concrete is computed using Equation 6.5 in accordance with ACI 318-02. 

� � 57000õX�=          (6.5) 

where the units of X�= and � are psi. 

The girder concrete compressive strength was given in the bridge plans (X�= = 5900 psi).  

Therefore, 

� � 57000√5900 � 4.378 ) 10¿ psi � 30.19 ) 10¿ kPa      

The tensile cracking strain is specified in the input file as 10-4.  The tensile cracking stress 

is determined using Young’s modulus (see Figure 6.3). 
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Figure 6.3: Concrete Stress-Strain Diagram 

The initial slope of the concrete stress-strain curve is Young’s modulus.  The cracking 

stress occurs at the specified tensile cracking strain following the slope of the curve.  The 

concrete cracking stress is given by: 

��« � �,�« � 30.19 ) 10¿ kPa ) 100P � 3.019 ) 103 kPa     

This value of cracking stress agrees with the figure furnished by TeraGrande (Figure 6.2).  

The tensile strength of the concrete quickly diminishes after the cracking stress is 

reached.  Cracking behavior is treated at the element integration stations using the 

smeared crack model.  Cracks are assumed to form perpendicular to the directions of 

largest tensile strains which exceed the cracking strain.  The crack direction remains fixed 

although the crack can close, resist compression, and re-open under load reversal 

(ANATECH 2005). 

6.1.4 Reinforcement Modeling 

TeraGrande allows the user to model individual rebar strands.  Uniaxial rebar strands (2D 

line elements) pierce the concrete elements (3D hexagonal 8-node bricks).  Figure 6.4 

shows the finite element mesh of one of the bridge girders. 
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Figure 6.4: Bridge Girder Mesh 

Figure 6.4 illustrates that the rebar can be accurately modeled in TeraGrande.  The 

stirrups, prestressed rebar strands, and longitudinal reinforcement (no prestress) are all 

shown in the beam. 

6.1.5 Tied Contact 

The bridge model is built by connecting 3D mesh instances.  An instance is an individual 

component of the bridge (i.e. a girder or a bent cap).  When rebar is connecting instances 

(i.e. the girder connection to the deck), tied contact is used between the instances.  A 

simple example of tied contact is shown in Figure 6.5.  Three instances (two flat blocks 

and a bar) are connected using tied contact.  The red nodes are shared nodes between 

instances.  When the problem gets meshed, a set of shared node sets on each side of the 

bar is merged out and three mesh instances become one mesh assembly.   
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Figure 6.5: Tied Contact Between Mesh Instances 

6.2 Prestressed Girder Modeling 

To show the accuracy that a reinforced concrete analysis in TeraGrande yields, the 

analysis of a prestressed girder from the bridge model is presented here.  Figure 6.6 

shows the tendons subjected to prestressing.  The draped strands are located in the girder 

web. 

 

Figure 6.6: Prestressed Tendons in Bridge Girder 

A set of plans was available from the IAB project.  In addition to the design details (rebar 

layout, section geometry, etc), the plans provided design strengths, prestress loading 

magnitude, and camber information.  The compressive strength at the time of the transfer 

of prestress (cf ′ ) was 40.68 * 103 kPa.  12.7 mm steel plates were merged on to the girder 

ends (see Figure 6.7).  The plates help support elements near the girder ends as the 

prestress load develops. 
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Figure 6.7: Girder End Caps 

An explicit dynamics analysis was performed on the girder with two procedures.  The 

prestress was added to mesh followed by the self-weight of the girder.  The loading 

scheme is presented in Figure 6.8. 

 

Figure 6.8: Loading Amplitudes for Girder Analysis 

The y-axis value in Figure 6.8 is a portion of the loading magnitude.  Therefore, when the 

value is 0.0 there is no load and when it is 1.0, the load is applied fully.  It is apparent that 
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the loads are each ramped up over 0.15 seconds.  The first procedure (prestressing) lasts 

for 0.15 s.  Immediately after the prestress amplitude reaches its full value, this procedure 

ends and the gravity procedure begins.  TeraGrande allows procedures to import 

mechanical states from other procedures.  So at 0.15 s, the gravity loading begins with the 

full prestress load already developed in the girder.  The gravity ramps up and reaches its 

full value at 0.3 s.  The loads are then held at their full values for another 0.3 s.  Figure 

6.9 shows the node sets pertinent to the analysis.  The boundary nodes on the left are 

fixed in both the vertical and longitudinal direction of the girder and the nodes on the 

right are fixed in the vertical direction only.  The middle node shown is at the girder 

midspan on the top of the girder.  A nodal displacement-time history was written for this 

node. 

 

Figure 6.9: Important Node Sets for Girder Analysis 

The cracking pattern was tracked during the analysis.  Figures 6.10 and 6.11 show the 

cracked girder at 0.15 s and 0.6 s, respectively.  A red marking indicates there is an open 

tension crack.  A blue marking indicates that a once open tension crack is now closed in 

compression.  The displacement is magnified by a factor of 5. 

 

Figure 6.10: Crack Pattern at 0.15 s 

 

Figure 6.11: Crack Pattern at 0.6 s 

It is apparent that there is significant cracking near the beam ends.  Focusing on the 

cracking away from the beam ends, the crack pattern agrees with intuition.  There are 
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open tension cracks at the end of the prestressing.  The gravity loading subsequently 

closes most of these cracks, as indicated by the blue markings.  Although the cracking 

pattern looks ominous, it is important to realize that the red makers simply mean the 

cracking strain has been reached in the concrete.  As over a 5200 kN (1.1 million lbs.) of 

prestress force and 215 kN (24.2 tons) of self-weight are transferred to the beam, 

cracking is expected.  An important check on the validity of the results is found with a 

nodal displacement-time history.  A nodal displacement history of a node at the top-

center of the beam at midspan reveals information about the beam deflection and residual 

camber.  According to the bridge plans, the residual camber in the beam is about 6 cm.  

Figure 6.12 shows the displacement-time history. 

 

Figure 6.12: Midspan Displacement-Time History from Girder Analysis 

Although there is still some oscillation left to occur in the girder, it is apparent that the 

midspan deflection is converging to the residual camber specified by the bridge plans.  

This analysis is an excellent check on the reinforced concrete analysis in TeraGrande.  

Considering the mesh size (9216 concrete elements, 9820 rebar elements), the model 
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complexity, and the load magnitude, it is a very encouraging result to have the nodal 

displacement so close to the actual camber observed in the field. 

6.3 Superstructure Model 

A full 3D model of the Minnesota bridge was created in TeraGrande (see Figure 6.13).  

However, the model was reduced to only the superstructure (girders and deck) for several 

reasons.  Mainly, the analysis was designed to only study the superstructure response to 

abutment movements.  As the girder ends sit on elastomeric bearing pads, abutment 

movement does not elicit any appreciable response in the piers and pier piles. 

 

Figure 6.13: Minnesota IAB Model (Piers and Pier Piles Included) 

Also, some of the elements in the pier piles above grade had very poor aspect ratios.  

Figure 6.14 shows a 2D view of the cross section.  The red element block is steel and the 

blue element block is concrete.  The thin steel casing around the piles and the piles 

themselves are quite thin (~10 mm).  To make reasonable element aspect ratios for these 

elements would make the model size grow significantly. 
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Figure 6.14: Pier Piles (Above Grade) Mesh 

Removing the pier caps and the pier piles above grade resulted in a superstructure model 

with 366,272 elements.  The element count includes 193,908 uniaxial rebar elements (see 

Figure 6.15). 

 

Figure 6.15: Minnesota IAB Superstructure Model (Rebar Shown) 

The important regions for boundary condition application in the superstructure model 

include the locations of the bearing pads and the abutments in the field.  A node set is 

created at the girder ends on the superstructure interior (see Figure 6.16).  These nodes 

are fixed in the vertical direction only to simulate resting on bearing pads.  Translation in 

the longitudinal direction of the bridge is allowed. 
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Figure 6.16: Superstructure Interior Nodes 

The girder ends and deck are cast integrally into the bridge abutments.  Because of the 

rigidity in this region, the abutment boundary conditions can be applied directly to the 

ends of the superstructure model.  A portion of the superstructure end node set is shown 

in Figure 6.17. 

 

Figure 6.17: Superstructure End Node Set 

The ultimate goal of the TeraGrande modeling in this work is to show that significant 

nonlinear behavior (e.g. concrete cracking) is not occurring during the thermal loading of 

the IAB.  This section is meant to show that the linear structural elements developed for 

TeraDysac are acceptable for the thermal analysis of IABs. 
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6.4 Thermal Analysis 

Because the abutment movements due to the thermal loading are known from the 

instrumentation, a thermal analysis does not need to be performed on the superstructure.  

Instead the measured abutment displacements can be applied directly to the node sets on 

the ends of the superstructure. 

6.4.1 Temperature Increase 

A °10 F increase in the bridge temperature induced abutment translations of 2 mm at each 

abutment.  This displacement was applied to each superstructure end to simulate the 

thermal event used for the TeraDysac validation.  These histories were applied to a 

pristine bridge model.  A model with no cracks or residual stress is used so that the 

observed stress, strain, cracks, etc are all due to the loading in question.  Figures 6.18 and 

6.19 show the crack pattern in the bridge deck and the bridge girders at the end of the 

loading. 

 

Figure 6.18: Superstructure Crack Pattern for Temperature Increase 
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Figure 6.19: Girder Crack Pattern for Temperature Increase 

There is negligible cracking in the bridge girders.  As these girders are free to translate in 

the longitudinal direction (their interior ends are resting on bearing pads), there is 

relatively no induced tensile strain.  The applied displacement boundary conditions have 

led to tension cracks at the locations of the bridge pier caps.  Intuitively, crack 

accumulation here makes sense because the section is reduced at these locations because 

the girder ends are separated.  The strain contours in the superstructure (longitudinal 

direction, ZZ) are shown in Figures 6.20 and 6.21. 
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Figure 6.20: Strain Contours for Temperature Increase 

 

Figure 6.21: Strain Contours for Temperature Increase (Close-Up) 

It is apparent that in the three spans of the superstructure, the tensile strain has not been 

reached.  This is evident because there are no red markers in main spans and the strain 

contours show the tensile strain to be low.  The crack pattern and strain contours 

illustrated in Figures 6.18-6.21 are conservative.  The finite element model of the deck is 

continuous and uniform across the gap between the bridge girders.  In the field, a saw cut 

and a V-joint are used at the piers (see Figure 6.22). 
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Figure 6.22: Deck Schematic at Pier Locations 

Reducing the section even further with the joints will ensure that any cracking in the deck 

will occur under the saw cut and because it is sealed, there will be little trouble with 

degradation (water tightness, de-icing salts seeping into the deck).  If the saw cut and V-

joint were modeled in the TeraGrande analysis, the width of the crack pattern shown in 

Figure 6.18 would be trimmed.  Considering the crack-free main spans of the bridge deck 

and conservative crack portrayal at the pier locations, it is concluded that the 

superstructure is not experiencing severe nonlinear behavior.  However, this is only the 

case for the displacement-time history applied at the superstructure ends, which directly 

relates to an actual temperature change, in this case a temperature increase of 10°F.  For a 

temperature increase of this magnitude (or less), the linear elements developed for 

TeraDysac should be satisfactory. 

6.4.2 Temperature Decrease 

A temperature drop at the bridge site was also investigated.  In a two-week period in 

January 1998, the bridge temperature dropped by 8°F.  The resulting abutment 

movements measured by the horizontal extensometers (1.6 mm) were applied to the 

superstructure end node sets (similar to the bridge heating analysis).  Again, a pristine 
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model was used.  The stress contours (longitudinal, ZZ) are shown in Figures 6.23 and 

6.24. 

 

Figure 6.23: Bridge Deck Stress (Pa) Contours for Temperature Decrease 

 

Figure 6.24: Stress (Pa) Contours Viewed from Beneath Bridge 

Again, the response is quite uniform in the main spans and there are some stress 

concentrations in the pier regions.  Figure 6.24 shows a view from below the 

superstructure which reveals the highest regions of compression are on the bottom side of 
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the deck between girder ends.  A small tension zone exists on the top side of the deck in 

this region.  This minor tension resulted in a crack pattern shown in Figure 6.25. 

 

Figure 6.25: Deck Crack Pattern for Temperature Decrease 

The compressive strength of the deck concrete (cf ′ ) is 39.99 MPa (5800 psi).  The 

ANATECH generated compressive stress-strain curve is given in Figure 6.26.  Added to 

the curve are two indicators: the ∇  marks the maximum compressive stress in the deck 

and the ×  marks the compressive stress in the deck as indicated by the lime coloring in 

Figures 6.23 and 6.24. 

 

Figure 6.26: Deck Compressive Stress-Strain Curve (Pa) 

Figure 6.26 illustrates that for the cooling modeled, the compressive stress in the deck 

does not enter the nonlinear range (i.e. it is consistent with the slope Young’s modulus 

provides on the stress-strain curve).  A majority of the compressive stress in the 
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superstructure is quite small when compared with the compressive strength of the 

concrete.  The compressive stress in the superstructure as indicated by the lime coloring 

is around 1.9 MPa (about 275 psi).  Upon studying the stress-strain curve for the deck 

concrete and knowing the cooling-induced compressive stresses, it is concluded that the 

linear plate element developed in TeraDysac is acceptable to model the superstructure in 

this temperature range.  For the temperature drop of 8°F to be modeled in TeraDysac, the 

developed linear elements should be satisfactory. 

6.4.3 Blast Loading 

It has been concluded that using linear elements in the superstructure is acceptable for the 

temperature loading modeled previously.  Depending on the analysis, more advanced 

elements may be necessary.  To illustrate one instance of such an analysis, a blast loading 

event was simulated using the superstructure model.  A 3D moving pressure loading 

feature is available in TeraGrande.  A surface blast was initiated on the deck top at the 

center of the middle span.  Again, a pristine model was used.  The superstructure end 

node sets and the girder end node sets were restrained in the vertical direction only.  The 

user is allowed to control the peak overpressure, wave speed, and how the blast pressure 

diminishes with time and distance.  The applied blast has a peak overpressure of 413.68 

kPa (60 psi) and a wave speed of 762 m/s (30000 in/s).  Figure 6.27 shows the pressure as 

a function of time at increasing distances from the propagation center.  Figure 6.28 shows 

pressure as a function of distance from the propagation center at increasing times.  This is 

a significant blast event, albeit a fictitious one, that is modeled for illustrative purposes 

only. 
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Figure 6.27: Blast Pressure (Pa) vs. Time (s) 

 

Figure 6.28: Blast Pressure (Pa) vs. Distance (m) 

The pressure on the bridge deck 6 ms after the blast load initiation is shown in Figure 

6.29. 

 

Figure 6.29: Superstructure Pressure (Pa) 6 ms After Blast Initiation 
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The deformed shape of the bridge 0.15 s after the blast initiation is shown in Figure 6.30.  

The peak displacement in the vertical direction at this time is 7.29 cm. 

 

Figure 6.30: Superstructure Deformed Shape at 0.15 s (Magnified by 15) 

Figures 6.31 and 6.32 show the crack pattern in the bridge deck and the bridge girders, 

respectively. 

 

Figure 6.31: Bridge Deck Crack Pattern 
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Figure 6.32: Bridge Girders Crack Pattern 

It is apparent that the bridge has suffered serious damage due to the blast load.  Open 

tension cracks (in very high density) throughout both the deck and girders indicate that 

the bridge has been destroyed.  This is a severe loading event and any soil-structure 

interaction analysis will require nonlinear structural elements. 
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7. TeraDysac Modeling 

7.1 Problem Description 

To validate the developed technology in TeraDysac, results from a project conducted at 

the University of Minnesota (see Huang et al. 2004) were used.  The published report 

provided a detailed description of the bridge site, soil testing results, and numerous 

instrumentation results.  Bridge #55555, located in Rochester, Minnesota is a reinforced 

concrete IAB with no skew angle and prestressed girders.  Figures 7.1-7.3 describe the 

bridge.   

 

Figure 7.1: Concrete IAB (Photo Courtesy of Huang et al. 2004) 
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Figure 7.2: Elevation View of Minnesota IAB 

 

Figure 7.3: Transverse Section (Through Deck) 

The monitoring effort was carried on from bridge construction in 1996 to 2004.  Report-

furnished air temperature, abutment translation, abutment rotation, and abutment pile 

curvature from the year 1998 were used in the validation of the proposed modeling 

scheme.  The used instrumentation results came from a weather station, horizontal 

extensometers, tiltmeters, and vibrating wire strain gages, respectively.  The report also 

included the soil testing results from the bridge site which provided stratigraphy 

information and standard penetration test (SPT) results.  A set of bridge plans was also 

obtained from the Minnesota Department of Transportation (Mn/DOT).  The bridge is 

built over the Zumbro River in southeastern Minnesota.  The water table is located about 

4.5 m below the abutments, but the soils are assumed to be saturated in this work. 

  21.7805 m  21.9964 m  21.7805 m 
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7.2 Soil Properties 

Two sets of analyses were carried out in 2D.  The first assumes all of the soil is linear 

elastic.  The second uses a combination of a bounding surface clay model and a sand 

model.  In the 3D analyses (skewed vs. zero skew), only linear elastic soil properties are 

used.  The soil exploration reported the blows per foot (BPF) from the SPT.  For the 

linear elastic problems, only Young’s modulus and Poisson’s ratio are required.  

Poisson’s ratio was set to 0.3 for all soils.  Young’s modulus was computed in 

accordance with the method described in the Naval Facilities Engineering Command 

design manual (NAVFAC 1986).  With the exception of the two relatively thin clay 

layers at the site, the soils are loose and poorly graded sands.  The method described in 

the design manual provides Young’s modulus (�) as a function of J-value, where the 

units of � are tsf. 

Table 7.1: Young’s Modulus as a Function of N-Value (NAVFAC 1986) 
Soil Type �/� 

Silts, sandy silts, slightly cohesive silt-sand 
mixtures 

4 

Clean, fine to medium sands and slightly 
silty sands 

7 

Coarse sands and sands with little gravel 10 
Sandy gravels and gravel 12 

 
Figure 7.4 shows the stratigraphy at the bridge site with the values of �/J used in the 

linear elastic analysis.  In both the linear elastic and the bounding surface analysis, pore 

pressure effects were captured by setting 9 = 2.2 * 106 kPa. 
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Figure 7.4: Soil Stratigraphy with Used E/N Ratios 

7.3 Structural Properties 

The bridge deck, bridge girders, abutments, pier caps, and the pier piles above grade are 

all combinations of concrete and steel.  The bridge deck, girders, abutments, and pier 

caps are made of reinforced concrete.  The pier piles above grade and to a depth of about 

1.524 m below grade are encased in concrete and steel pipes.  Because these components 

consist of two materials, a weighted average approach was used to obtain the material 

properties input for the beam and plate elements. 
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7.3.1 Weighted Average Example 

The piles supporting the piers are HP 10 x 57 sections in strong-axis bending surrounded 

by concrete and steel shells (see Figure 7.5).  At about 1.5 m below the ground surface, 

the concrete and shells end and only the piles continue to significant depth. 

 

Figure 7.5: Cross-Section Pier Piles Above Grade 

The required beam element properties for the TeraDysac input include Young’s modulus 

(�), Poisson’s ratio (B), area (�), strong axis moment of inertia (��), weak axis moment of 

inertia (�³), and the coefficient of thermal expansion (	). 

These properties were obtained as follows: 

The modulus of concrete and the coefficients of thermal expansion for the steel and 

concrete at the site were reported in the Huang et al. (2004) study.  The subscripts Ó, a, 

and Ñ designate concrete, steel, and total respectively.   
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To calculated the composite properties, the following are used: �� � 30.3 ) 10¿ kPa, 

�� � 200 ) 10¿ kPa, �� � 1110.52 cm2, �� � 186.65 cm2, �� � 2.4 Mg m3⁄ , �� �
7.85 Mg m3⁄ , B� � 0.2, B� � 0.3, 	� � 6.15 ) 100¿ �⁄ , 	� � 6.7 ) 100¿ �⁄ .  The 

bending stiffness �� is different in the strong and weak axis directions. 

����� � ����V@%�� � �����;%@@�� � ������� � 88,150.75 kN-m2  

����³ � ����V@%�³ � �����;%@@�³ � ������³ � 74,819.71 kN-m2  

�© � j1¡1'j�¡�¡Ç � 54.72 ) 10¿ kPa  

�� � �jg�¦j � 0.00161 m4  

�³ � �jg�»j � 0.00137 m4  

The composite beam density, Poisson’s ratio, and coefficient of thermal expansion were 

also found using this weighted average approach.  The obtained values are given by: 

�© � 3.18 Mg m3⁄   

B© � 0.214  

	© � 6.23 ) 100¿ �⁄   

7.3.2 Set-Up for Plane Strain Analysis 

The obtained properties described in the above example are input directly for the beams 

and plates in the 3D analyses.  In the 2D analyses, another calculation is needed.  The 2D 

version of TeraDysac uses plane strain theory for the soil elements.  Across the width of 

the bridge, there are four girders and six piles at each abutment and bent.  Because the 

soil is represented by a unit width, the section properties (� and �) for the girders and 

piles are spread over the bridge width.  For example, the moment of inertia for an 

abutment pile was found to be 5.218 * 10-6 m4.  Across the bridge width, the six abutment 
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piles combined have a total moment of inertia equal to 6 * 5.218 * 10-6 m4 = 3.131 * 10-6 

m4.  To find an approximate value of this moment of inertia over a unit width, the value is 

divided by the bridge width (3.131 * 10-6 m4 / 11.9888 m = 2.611 * 10-5 m4/m).  In the 

2D model, the ‘Deck/Girder’ element block (see Figures 7.11 and 7.12 and Table 7.2) is a 

weighted average combination of the roadway and the four girders which support it.  The 

abutments are uniform across the bridge width, so the abutment section properties are 

based a unit width.     

7.3.3 Set-Up for 3D Analysis 

Significant reinforcement is used to connect the girders to the bridge deck.  In the 3D 

bridge model, the girder elements are meshed directly into the deck via tied contact.  The 

bent cap is also merged into the plane of the deck.  This is not entirely accurate because 

the girder ends are sitting on elastomeric bearing pads which rest on the pier caps (see 

Figure 7.6).  The diaphragms which connect the girder webs at midspan were neglected 

in the model.  This work is concerned with the thermal response of the bridge, especially 

behind the abutments so unnecessary elements were not modeled.  The parapet wall 

(concrete railing) on either side of the roadway was also neglected.  The railing is divided 

into roughly 6 m sections with cork deflection joints.  This rail was deemed to only 

marginally influence the response of the bridge deck.  The meshed superstructure is 

shown if Figure 7.7.  
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Figure 7.6: Bridge Details at Pier Locations 

 

Figure 7.7: 3D TeraDysac Superstructure Model 
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In the above figure, the girders are colored in green and the bent caps are colored in blue.  

The three element blocks (deck, girders, and bent caps) are meshed together via tied 

contact. 

7.4 Applied Thermal Loading 

In the study conducted by Huang et al. (2004), thermocouples were installed in the 

superstructure cross-section to develop temperature profiles through the deck and girders.  

Figures 7.8 and 7.9 show the temperature profiles for a sunny summer day and a cloudy 

winter day, respectively.  The figures were obtained from an electronic version of the 

Minnesota report (Huang et al. 2004). 

 

Figure 7.8: Temperature Gradient (Sunny Summer Day, After Huang et al. 2004) 
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Figure 7.9: Temperature Gradient (Cloudy Winter Day, After Huang et al. 2004) 

It is apparent that on sunny summer days there is an appreciable temperature difference 

through the superstructure, especially in the afternoon.  Included in the instrumentation 

plan on the Minnesota bridge were pyranometers used to measure solar radiation.  On the 

two days in question (Figures 7.8 and 7.9), solar radiation was high in the afternoon on 

the summer day and relatively minimal throughout the winter day. 

7.4.1 Validation Technique 

For the results comparison, temperature loading was applied to the TeraDysac models 

and the abutment rotation, displacement, and pile curvature were compared to the 

instrumental data from the Minnesota report.  Abutment movement was reported in two 

week intervals from horizontal rod extensometers during the year 1998.  The bridge 

temperature, abutment rotation, and pile curvature were reported on a more frequent basis 

(every 6 hours) through the use of data loggers and a computer.  A two-week period in 
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June was selected for the temperature increase TeraDysac analysis and a two-week period 

in January was selected for the temperature decrease analysis.   

In the summer analysis, a temperature gradient was applied through the superstructure.  

The bridge temperature change from the beginning to the end of the two weeks (10°F) 

was applied at the mid-depth of the composite superstructure.  The exact temperature 

distribution during this time was not reported, so the gradient was estimated based on the 

observed temperature distribution during similar times of the year (see Figure 7.8).  The 

temperature loading input to TeraDysac is shown in Figure 7.10. 

 

Figure 7.10: Superstructure Temperature Input (Heating) 

In the temperature drop analysis, the bridge temperature change from the beginning to the 

end of the two weeks (8°F) was applied throughout the superstructure.  Consistent with 

Figure 7.9, no thermal gradient was used.  The thermal loading was ramped up over 1.0 s 

and then held to allow any oscillations in the solution to level off.  Note that the obtained 

pore water pressure contours presented for the subsequent analyses are a function of the 

load duration.  As a two-week event is simulated over 1.0 s of problem time, the obtained 

pore water pressures may not reflect field values.  The ability to track pore water pressure 
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generation is a nice feature of TeraDysac and the results are presented to provide insight 

into what soil regions may experience a gains or losses in pore water pressure during the 

simulated event.  The obtained abutment displacement, abutment rotation, and pile 

curvature from the TeraDysac analysis were compared with the respective values 

incurred over the two weeks of analysis. 

7.5 Linear Elastic Analysis 

The first analysis performed on the bridge model uses the calculated Young’s modulus 

values in a linear elastic saturated soil model.  Several analyses were used to ensure the 

mesh has a minimum size (spatially) with minimal effect from the soil boundaries.  The 

finite element model is shown in Figure 7.11.  There are 316 line elements (structure) and 

7302 quadrilateral elements (soil) in the mesh. 

 

Figure 7.11: 2D IAB Finite Element Model 

A gradient is applied away from the abutments on each side to reduce the model size 

without sacrificing accuracy near the bridge.  Figure 7.12 shows a zoomed in view of the 

bridge with the various element blocks colored. 
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Figure 7.12: Element Block View 

The various colors in Figures 7.11 and 7.12 represent the following element blocks: 

Table 7.2: Element Blocks by Color. 
Soil 

Color Element Block 
Pink Fill / Loose Sand 
Green Lean Clay 
Maroon Poorly Graded Sand 
Blue Poorly Graded Sand 
Gold Poorly Graded Sand 
Purple Lean Clay 
Turquoise Poorly Graded Sand 

Structure 
Color Element Block 
Green Deck/Girder 
Blue Abutment 
Red Abutment Pile 
Aqua Pier Piles (Above Grade) 
Yellow Pier Piles (Below Grade) 

 
The various poorly graded sand layers are differentiated by locations where the SPT 

values changed significantly in the soil exploration.  The nodal equivalence scheme 

allows for two nodes at the same location to be merged together.  The deck is merged into 

the abutment and the pile sections change at locations away from soil nodes (see Figure 

7.13).  
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Figure 7.13: Structure Assembly at Abutment 

Ideally the deck should be merged into the abutment at the top of the abutment element 

block.  However, because a soil node is already tied to the abutment at this location, 

merging a deck node at this location is not allowed.  This situation does provide the 

possibility of some analysis problems.  Because the junction of the deck and the abutment 

is not located at a soil node, the junction node can deviate from the soil displacement 

(linear between soil nodes).  Figure 7.14 illustrates this phenomenon. 

 

Figure 7.14: Junction Undeformed and Deformed Shapes 

The deformed shape in Figure 7.14 is grossly exaggerated.  The actual deformed shape in 

this region on the bridge models is much more agreeable with the soil element edge 

displacement because of the huge stiffness of the abutment relative to the soil. 

The entire soil stratum is assumed to be saturated.  The applied boundary conditions for 

the model include fixing the solid and fluid displacement in both the horizontal and 

vertical directions on the bottom soil nodes and in the horizontal direction only on the 

side soil nodes.  Figure 7.15 highlights the boundary nodes. 
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Figure 7.15: Boundary Nodes for 2D Analysis 

7.5.1 Temperature Increase 

The first linear elastic analysis considers the temperature raise measured during a two-

week period in the summer of 1998.  Figure 7.16 shows the deformed shape of the bridge 

(magnified by 100).  No hourglassing has taken place in the soil elements (Uniform 

Gradient formulation). 

 

Figure 7.16: IAB Deformed Shape for Temperature Increase 

A more accurate depiction of the abutment and abutment pile deformation is presented in 

Figure 7.17.  During the two weeks of temperature variation at the IAB site, the 

horizontal extensometers revealed an abutment movement of about 2 mm.  Figure 7.17 

shows the TeraDysac displacement results to be in good agreement this value.  
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Figure 7.17: Abutment and Abutment Pile Displacement for Temperature Increase 

The transition from the abutment to the abutment pile occurs at a depth of 2.35 m.  The 

abutment is moving as a rigid unit and the behavior illustrated in Figure 7.14 is not 

occurring.  Knowing the length of the bridge deck in the model, the coefficient of thermal 

expansion, and the applied temperature change, a free expansion calculation revealed an 

abutment displacement of about 2 mm.  It is apparent the relatively high stiffness of the 

composite superstructure (deck and girder) to the soil stiffness allows the abutment 

movement to approach a free expansion.  A free expansion would lead to a stress-free 

superstructure and a fully restrained loading (zero abutment movement) would lead to 

maximum thermal superstructure stresses, with the field behavior residing somewhere 

between the two.  As the field response is much closer to a free expansion, the thermal 

superstructure stresses are low. 

In addition to the abutment displacement, abutment rotation was checked against 

tiltmeter-measured abutment rotation in the field.  The abutment rotated away from the 

river by 0.014° over the two week period.  Because the abutment is comprised of beam 
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elements, there is a nodal rotation output for each node.  The values of nodal rotation for 

the seven abutment nodes ranged from 0.0046° to 0.0050°.  As Figure 7.17 illustrates, 

there appears to be no significant bending in the abutment (it rotated as a unit), so these 

rotation values are expected to be very close.  Another approach to obtain the abutment 

rotation is to treat the abutment as a straight line that has deviated from vertical by some 

angle.  This angle, which can be easily calculated, is the abutment rotation.  Using the top 

and the bottom of the abutment as the line endpoints, the calculated abutment rotation is 

0.0048°. 

The Minnesota study also reported the abutment pile curvatures.  After the piles were 

driven, arc-weldable strain gages were installed at depths of 15 cm and 91 cm below the 

bottom of the abutment.  The bending moment value for each abutment pile node was 

obtained in the analysis.  Using Equation 7.1, the pile curvature at various locations can 

be calculated. 

Àß � ��           (7.1) 

The reported pile curvature change over the two weeks was 866 µε/m.  Using Equation 

7.1, the curvature immediately below the abutment was found to be 552 µε/m.  

Considering the assumptions made (linear elastic soil and structure) and techniques used 

(weighted average approach for structural properties, SPT values to obtain Young’s 

modulus), the results from the linear elastic analysis are encouraging.  The obtained 

abutment translations agree with the field values.  The abutment rotation and abutment 

pile curvature are both under-estimated. 

In addition to the results already discussed, one of the main advantages of using 

TeraDysac is that the pore water pressure development during loading can be captured.  
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Figure 7.18 shows the pore pressure contours at the end of the analysis run.  As the 

bridge deck is heated, it expands pushing the abutments into the backfill soil.  This 

loading creates a positive pore pressure buildup in the backfill soils.  On the interior sides 

of the abutments, negative pore pressure has developed.  This stems from the tied contact 

between the soil and structure elements.  The pore pressure variations are small, with 

range of only about 0.9 kPa.  

 

Figure 7.18: Developed Pore Water Pressure (kPa) During Temperature Increase 

7.5.2 Temperature Decrease 

The second linear elastic analysis considers the bridge temperature drop measured during 

a two-week period in the winter of 1998.  Figure 7.19 shows the deformed shape of the 

bridge (magnified by 100). 
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Figure 7.19: IAB Deformed Shape for Temperature Decrease 

A more accurate depiction of the abutment and abutment pile deformation is presented in 

Figure 7.20.  During the two weeks of temperature variation at the IAB site, the 

horizontal extensometers revealed an abutment movement of about 1.6 mm.  Figure 7.20 

shows the TeraDysac displacement results to be in good agreement this value. 

 

Figure 7.20: Abutment and Abutment Pile Displacement for Temperature Decrease 

In addition to the abutment displacement, abutment rotation was checked against 

tiltmeter-measured abutment rotation in the field.  The abutment rotated toward the river 

by about °01.0  over the two week period.  As Figure 7.20 illustrates there appears to be 

no significant bending in the abutment (it rotated as a unit).  The abutment rotation using 
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the top and the bottom of the abutment as the endpoints of straight line, the calculated 

abutment rotation is °0015.0 .  The reported pile curvature change over the two weeks 

was 709 µε/m.  Using Equation 7.1, the curvature immediately below the abutment was 

found to be 515 µε/m.  Again, the linear elastic analysis results are encouraging.  The 

obtained abutment translations agree with the field values.  The abutment rotation is still 

under-estimated, but the calculated pile curvature is closer to the measured curvature than 

in the heating analysis.  This could be attributable to the uncertainty in the gradient 

applied in the heating analysis.  Gradients are low in the winter (for this analysis, no 

gradient was used) so the guesswork is reduced. 

Figure 7.21 shows the pore pressure contours at the end of the analysis run.  As the 

bridge deck is cooled, it contracts pulling the abutments toward the river.  This loading 

creates a negative pore pressure buildup in the backfill soils and positive pore pressure on 

the interior sides of the abutments.  

 

Figure 7.21: Developed Pore Water Pressure (kPa) During Temperature Decrease 
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7.6 Bounding Surface Analysis 

7.6.1 Bounding Surface Properties 

The soil stratum at the bridge site consists of two relatively thin layers of soft clay, but is 

mostly comprised of loose and poorly graded sands (see Figures 7.4 and 7.12).  The soil 

exploration revealed the soil classification and the SPT N-values.  Lab testing of the site 

soils would have provided more detailed information and made determining the bounding 

surface model parameters easier.  But as this was not the case, some engineering 

judgment was used to determine what bounding surface properties to input for the data 

model.  The clay at the bridge site was soft based on low N-values.  The parameters for 

Speswhite Kaolin, a soft clay with calibrated parameters (see Muraleetharan 1994 and 

Table 3.1) were used in the finite element model.  The N-values in the sand layers were 

used to determine the relative densities using the method outlined in Tokimatsu and Seed 

(1986).  The calibrated bounding surface properties for Nevada Sand with relative 

densities of 40 and 60% are available (see Muraleetharan 1995).  The sand at the bridge 

site was assumed to be Nevada Sand and the bounding surface properties for the 

respective layers were set based on the relative densities for the sand layers at the bridge 

site.  Bounding surface model parameters for the denser sand layers (Dr = 82% and 84%) 

were estimated based on the calibrated values of Nevada Sand (Dr = 40% and 60%).  

Figure 7.22 shows the soil stratum with the obtained relative densities for the sand layers.  

The OCRs used in the analysis for the clay layers are also shown.  The OCR sets the 

initial bounding surface size which controls the soil response.  A higher OCR 

corresponds to a stiffer clay.  The top clay layer was softer than the layer at depth, so it 

was assumed to be slightly less over-consolidated than the deep layer. 
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Figure 7.22: Soil Profile Composition (Nevada Sand and Speswhite Kaolin) 

The five sand layers break into three distinct groups with relative densities near 40, 60, 

and 80%.  The calibrated bounding surface properties for 40 and 60% relative density 

were used directly and the values for 80% relative density were estimated.  The bounding 

surface properties for the sand layers are given in Table 7.3. 
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Table 7.3: Bounding Surface Properties for Sand Layers 
  Nevada 

Sand (Dr = 
40%) 

Nevada 
Sand (Dr = 

60%) 

Nevada 
Sand (Dr = 

80%)  
Traditional Model Parameters     
Slope of isotropic consolidation line on $ – ln �= plot 

� 0.017 0.009 0.007 

Slope of elastic rebound line on $ – ln �= plot 
� 0.003 0.002 0.0014 

Bounding Surface Configuration 
Parameters 

    

Slope of line OA (Fig. 3) in � – �= 
space (compression) 

R� 0.89 0.89 0.89 

Ratio of extension to compression 
value of R 

R% R�⁄  0.61 0.61 0.61 

Value of R in triaxial compression �� 1.5 1.5 1.5 
Related to gradient of ellipse 2 on �-
axis 

	 5.0 5.0 5.0 

Parameter defining the initial size of 
the bounding surface 

�� �⁄  1.5 1.5 2.5 

Plastic Potential Surface 
Configuration Parameter 

    

Slope of critical state line 
(compression) in � – �= space  

�RL�� 1.33 1.44 1.55 

Hardening Parameters During 
Loading 

    

Shape hardening parameter in triaxial 
compression 

�� 2.0 2.0 2.0 

Ratio of triaxial extension to triaxial 
compression value of � 

�% ��⁄  0.05 0.05 0.05 

Deviatoric hardening parameter �& 0.5 0.4 0.4 
Hardening Parameters During 
Unloading 

    

Unloading hardening parameter �L 0.2 0.2 0.2 
Notes:     $ = void ratio,  �= � ��&= � 2�3=� 3⁄ ,  � � �&= � �3=     

 
The initial stress state is important when using the bounding surface models.  The initial 

stress state provides the starting location inside the bounding surface.  Assuming a 

saturated soil stratum and using the soil unit weights, the initial stress state was calculated 

by hand.  After the mesh was created, the mid-element depths were used to find the 
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effective stresses.  A K0 value of 0.5 was assumed.  Figure 7.23 shows the initial effective 

stress in the vertical direction. 

 

Figure 7.23: Initial Stress State (kPa) for Bounding Surface Analysis 

To set up the initial stress state, a spreadsheet was used to calculate the stresses by 

element group.  The data was then imported to the TeraDysac input file. 

7.6.2 Temperature Increase 

The temperature increase was also applied to the bounding surface model.  A comparison 

between the abutment and abutment pile deformations in the two analyses (linear elastic 

and bounding surface soils) is given in Figure 7.24.  The abutment translation in the two 

analyses is nearly the same.  The superstructure is very stiff compared with the backfill 

soil that when it is thermally loaded, it is almost expanding as it would in a free 

expansion.  The more important behavior to study in Figure 7.24 is the abutment rotation 

and the pile response.  Knowing the soil stratigraphy (see Figure 7.22), the results from 

the bounding surface model agree with expected pile behavior at depth.  The clay layer 

(highlighted in Figure 7.24) is located between depths of 3.96 m and 5.49 m, with sand 
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on either side.  As the pile transitions from the soft clay layer to the sand layer, one would 

expect the pile deformation to markedly decrease.  This is the case in the bounding 

surface model, but in the linear elastic model, the transition is not distinguishable. 

 

Figure 7.24: Abutment and Abutment Pile Deformation Comparison 

The abutment displacements from both the linear elastic and bounding surface analysis 

are essentially the same.  The superstructure in both cases was found to almost have a 

free expansion.  The values of abutment rotation and pile curvature under the abutment 

were provided by the instrumentation study (Huang et al. 2004).  The error magnitudes of 

the respective analyses are given in Table 7.4. 

Table 7.4: Results and Error Estimates for Heating Analysis 
 True Linear 

Elastic 
% Error Bounding 

Surface 
% Error 

Rotation (°) 0.014 0.0048 65.7 0.0079 43.6 
Pile Curvature (�, _�⁄  866 552 36.3 784 9.5 
 
The error calculations show the bounding surface analysis to be more accurate.  The pore 

pressure developed during the loading is shown in Figure 7.25.  The noticeable band of 

pore pressure is the clay layer.  Part of the pore pressure developed in this layer is from 
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the specified K0 condition and OCR.  The specified OCR (1.5) in this layer forms a 

relatively small initial bounding surface and as the initial stress state is brought into the 

bounding surface there is pore water pressure development.  In the deep clay layer (OCR 

= 3), the pore pressure development is not nearly as defined as in the top layer. 

 

Figure 7.25: Bounding Surface Pore Pressure Development (kPa) 

7.6.3 Temperature Decrease 

The temperature decrease was also applied to the bounding surface model.  A comparison 

between the abutment and abutment pile deformations in the two analyses (linear elastic 

and bounding surface soils) is given in Figure 7.26.  Again, the abutment translation in 

the two analyses is nearly the same. 
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Figure 7.26: Abutment and Abutment Pile Deformation Comparison 

The results comparison and error values are given in Table 7.5. 

Table 7.5: Results and Error Estimates for Cooling Analysis 
 True Linear 

Elastic 
% Error Bounding 

Surface 
% Error 

Rotation (°) 0.01 0.0015 85.0 0.0045 55.0 
Pile Curvature (�, _�⁄  709 515 27.4 687 3.1 
 
The error calculations show the bounding surface analysis to be more accurate.   

7.7 Three-Dimensional Analysis 

Full 3D models of the Minnesota bridge and 15° skewed version of it were made in 

TeraDysac.  However, the analysis of these models is not possible until a new solver has 

been implemented.  Therefore, to illustrate the developed technology, these models were 

reduced to a size capable of running on a single processor machine.  By removing the 

piles from the models, a substantial number of elements in the vertical direction could be 

eliminated.  And because the bridge girders rest on elastomeric pads over the piers, no 

elements were modeled in the pier regions either.  These models consist only of the 
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superstructure (girders and deck), the abutments, and the top two soil layers.  They are 

small enough to be analyzed on a single processor in a feasible amount of time.  The 

meshes have 918 quadrilateral elements (deck and abutments), 256 line elements 

(girders), and 1344 hexagonal elements (soil), for a total of 2518 elements.  The soil was 

modeled with the linear elastic elements and Γ was set to zero.  Setting Γ = 0.0 kPa does 

not allow pore water pressure generation, but it permits a larger time step (and 

subsequently less computational effort).  The 3D model (non-skewed) is shown in Figure 

7.27. 

 

Figure 7.27: 3D Superstructure Model (Non-Skewed) 

A plan view of the two 3D models is shown in Figure 7.28. 



168 

 

 

Figure 7.28: Plan View of 3D Superstructure Models 

The bridges are both 66.0 m long and have a linear coefficient of thermal expansion of 

°− /10*162.6 6 F.  The coefficient of thermal expansion was calculated using the weighted 

average approach described earlier.  Both models were subjected to uniform temperature 

increase of °10 F.  In addition to heating the superstructure, the abutments were also 

heated by the global temperature increase.  This was done to strip away any interaction 

between the deck and the abutments (see Section 5.3).  A plot showing the deformed 

shapes of the abutments is given in Figure 7.29.  The line of nodes at the deck-abutment 

connection is used for the plot.  The displacements correspond to the abutments at the top 

of Figure 7.28.  Therefore, for the skewed bridge the obtuse corner is at a ‘Position’ of 

0.0 m. 
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Figure 7.29: Abutment Deformations from 3D Analyses 

A hand calculation of a free expansion of the non-skewed superstructure reveals 

abutment displacements of 2.03 mm, so it is evident that the implemented finite element 

technology and thermal loading scheme are working properly.  It is also apparent that the 

backfill soils are not providing significant resistance, similar to what was observed in the 

2D analyses.  In studying Figure 7.29, it is clear that the bridge with no skew has a 

uniform displacement into the backfill soil.  There is variation between the abutment 

corners in the skewed case though.  The obtuse corner (‘Position’ = 0.0 m), is pushed 

farther into the backfill than the acute corner.  The difference between the two corners is 

minor for this particular case, but the results provide insight into the general behavior of 

skewed IABs.  In the obtuse corner, where the abutment has more displacement, the 

backfill pressure and stress in the superstructure will all be higher than in the acute 

corner.  Figure 7.30 shows the forces at the abutment corners obtained from the analysis. 

1.995

2.000

2.005

2.010

2.015

2.020

2.025

2.030

2.035

0.0 2.0 4.0 6.0 8.0 10.0 12.0

D
is

pl
a

cm
e

nt
 (m

m
)

Position (m)

Skewed

No Skew



170 

 

 

Figure 7.30: 3D Superstructure Corner Forces 

The corner forces are equal in the non-skewed superstructure.  In the skewed version, the 

forces in the obtuse corners are higher than the forces in the acute corners.  This agrees 

with expected results and previous instrumentation results (e.g. Sandford and Elgaaly 

1993). 
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8. Conclusions 

8.1 General 

Beam and plate elements have been developed and implemented in the TeraDysac 

computer code (Muraleetharan et al. 2003, Ravichandran 2005).  The low order elements 

are computationally efficient and have compatibility with the soil 2D quadrilaterals and 

3D hexagonal brick edges.  Numerous problems involving plates, beams, and soils have 

been successfully run.  The goal in the development of these elements was to analyze 

IABs subjected to thermal events.  To do so, thermal loading capability has also been 

added to TeraDysac.  The available thermal applications allows for a linear temperature 

distribution through structural sections.  In structures where thermal radiation is a factor, 

being able to account for a temperature gradient is a required feature.  The user is allowed 

to specify the temperature change on both sides of the structural elements which can 

allow thermal curvature in beams and plates.  

A study of soil-structure interaction has been presented.  For beams on elastic 

foundations, comparisons have been made between analytical solutions presented by 

Winkler (1867) and the continuum solutions presented by Vesic (1961).  The Vesic 

solutions have also been compared with the finite element solutions obtained from a 

TeraDysac finite element analysis.  The program-obtained solutions showed good 

agreement with the Vesic solutions, which serves as validation of the soil-structure 

interaction capabilities for linear problems.  In soil-structure interaction, more realistic 

and interesting problems are ones where soil nonlinearity is considered.  Solutions of a 
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pile in soft clay were presented and compared with solutions obtained from the � � � 

program LPILE (ENSOFT 2007).  The user-input soil strengths were obtained using the 

same bounding surface algorithm implemented in TeraDysac.  A series of analyses were 

performed, including one where the � � � curves furnished to LPILE were obtained from 

the TeraDysac analysis.  The results between the two were in good agreement.  A method 

for extracting the � � � information from the finite element analysis was also presented.  

The empirical � � � curves in LPILE may not be accurate for all soils. 

In the analysis of IABs, the capability to capture the nonlinear bending stiffness of the 

abutment piles may be important.  These piles may experience high stress near the 

abutments and some yielding may occur.  A nonlinear �� application has been written for 

TeraDysac.  The algorithm uses the equation relating moment, curvature, and bending 

stiffness to find the bending stiffness as a function of bending moment.  Prior to yield, �� 

is constant but when the pile begins to yield the bending stiffness diminishes.  As a 

plastic hinge forms, the bending stiffness goes to zero.  An example was presented on 

how to obtain the Moment-Curvature relationship for a rectangular steel section.  The 

example section was analyzed using the nonlinear �� application and the results were 

discussed. 

A series of finite element analyses of the Minnesota IAB superstructure were performed 

using the program TeraGrande (ANATECH 2005).  The advanced reinforced concrete 

analyses which model rebar accurately and use a smeared crack model to study nonlinear 

concrete behavior showed that for the deformations experienced during the thermal 

loading modeled in this work, the linear structural elements developed for TeraDysac are 

adequate.  Significant concrete cracking was not observed in the superstructure and 
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stresses and strains were low enough that the linear elastic assumptions embedded in 

beam and plate formulations are acceptable.  To illustrate when more advanced structural 

elements are necessary, a blast loading simulation was also performed on the Minnesota 

IAB superstructure. 

The Minnesota IAB has no skew angle.  Because the bridge abutment translates and 

rotates uniformly across the bridge width, a 2D analysis can approximate the field 

behavior.  The 2D soil analysis in TeraDysac uses a plane strain assumption for the soil 

elements.  A procedure for obtaining structural properties (area and moment of inertia) 

based on a unit width of bride was presented.  The structural components of the bridge 

consist of steel and concrete.  Using a weighted-average approach, material parameters 

such as Young’s modulus, linear coefficient of thermal expansion, and Poisson’s ratio 

were determined.  The series of 2D TeraDysac analyses showed reasonable agreement 

with the instrumented results.  There were four analyses performed: a temperature 

increase and decrease using linear elastic and bounding surface soils.  In each loading 

case, the bounding surface models provided more accurate results.  The results for the 

temperature decrease analysis were generally better than for the heating analysis.  This is 

attributed to the fact that in the winter (January in this case), thermal gradients are 

minimal through the superstructure depth.  Therefore, the deck temperature change can 

be applied directly to the model without having to estimate what the thermal gradient 

might be (as was done in the summer heating analysis).  

Full 3D models of the Minnesota IAB and a skewed version of it were developed.  These 

models were not analyzed in their entirety, but reduced models considering the 

superstructures and the top two soil layers were studied.  Each model was subjected to a 
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uniform temperature increase and the behavior at the abutments was observed.  In the 

non-skewed bridge, the abutment deformation was uniform across its width.  The skewed 

superstructure (15°) had a non-symmetric response at the abutments.  The deformation at 

the obtuse corner was greater than at the acute corner.  The difference was minor, but the 

analysis revealed that the abutment deformation and subsequently the developed pore 

water pressure and earth pressure behind the abutments will be varied.  For small skew 

angles, a 2D approach may be acceptable.  Not capturing the variation in response behind 

the abutments may be worth the computational savings.  A 3D model is more demanding 

computationally and requires more effort to build, but is required for accurate results, 

especially for large skew angles in IABs. 

8.2 Recommendations 

Full versions of the Minnesota IAB (and its 15° skew counterpart) have been created (see 

Figures 8.1 and 8.2).  Although these models were not analyzed due to the current solver 

capabilities, reduced models were successfully studied (see Section 7.7).  The 3D 

analyses, although simplified, show that the plate, beam, and soil element assemblies and 

the thermal loading application are working properly.  In anticipation of solving the full 

models, some thought has been given on how to set up the meshes.  When studying IAB 

response to thermal events the meshes need to be large enough spatially that the soil 

boundaries are not influencing the results severely, yet are not unnecessarily large to 

waste computational effort.  A series of analyses can be performed with different 

dimensions of backfill behind the abutments to reveal an appropriate mesh size.  Studying 

the deformed shape of the abutments and abutment piles between the analyses will help 

to find an appropriate model size.  It is recommended to start with large amount of soil 
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behind the abutments (~one-half the bridge length).  Then plot the deformed shape of the 

abutment and abutment piles.  Next increase the dimension of backfill soil and re-plot the 

deformed shape.  If the plots are identical, then the first mesh is large enough and can be 

trimmed.  Begin to decrease the backfill dimension until a departure is noticed between 

the deformed shapes.  The smallest mesh providing the true displacement results is the 

one that will minimize computational effort.  For loading events of the magnitude used 

for the analysis or less, the mesh size will be adequate.  For more severe loading, the soil 

boundaries may be influencing the results and this must be investigated.  This procedure 

was used in preparing the 2D models used throughout this work. 

In preparing the full 3D models, some thought has been given on how to minimize 

computational effort on the skewed models.  Figure 8.1 shows the 3D model with no 

skew.  There are a total of 56,112 elements in this mesh.  When building the skewed 

models, as the skew angle increases, so too does the mesh size.  A bigger skew angle 

requires a bigger mesh extrusion in the transverse direction to the bridge.  Figure 8.2 

shows the skewed IAB model.  There are 95,712 elements in the mesh, which is a 

sizeable increase from the model with no skew. 
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Figure 8.1: Full 3D Minnesota IAB Model 

 

Figure 8.2: Full 3D Minnesota Bridge Model (Skewed) 

Studying Figure 8.2 shows a large number of soil elements which do not have a major 

contribution to the solution are located in the two mesh corners away from the abutments.  
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A plan for building the skewed models in a more efficient manner is illustrated in Figure 

8.3. 

 

Figure 8.3: 3D Reduced Model (Skewed IAB) 

Figure 8.4 shows the elevation view of the mesh.  A single row of elements at the bridge 

centerline has been removed.  Doing so allows the soil stratum to be modeled with two 

separate blocks which makes the model size significantly smaller. 

 

Figure 8.4: Elevation View of 3D Reduced Model (Skewed IAB) 

The model shown in Figures 8.3 and 8.4 has 65,952 elements, a reduction in mesh size of 

about 30%.  The viability of the proposed scheme needs to be investigated, but it is 

anticipated that the reduced models will give accurate results because the soil element 
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removal takes place only in areas that see minimal load during the thermal events (i.e. the 

bridge centerline and in the corners away from the abutments). 

The nonlinear �� application developed in this work needs further refinement.  Currently, 

the maximum bending moment in the beam element block is used to determine the value 

of bending stiffness for the entire element block.  Ideally, the bending stiffness should be 

calculated for each element in the beam mesh and the provided stiffness should be 

applied only to that element.  This is important in abutment piles near the ground surface 

where they might go into the yielding range.  It is incorrect to apply the reduced stiffness 

throughout the pile depth.  This problem can be circumnavigated by breaking the pile into 

separate element blocks, putting a high density in regions where nonlinear behavior may 

be anticipated.  Figure 8.5 illustrates this concept.  The different shading in the abutment 

pile shows the different element blocks used to comprise the pile.  There are several small 

pile pieces near the abutment where the possibility of yielding is the highest.  In regions 

where the pile is not expected to yield, larger pieces can be used. 
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Figure 8.5: Element Block Composition for Nonlinear Pile Analysis 

In addition to changing the bending stiffness from a datum to a field for the beam 

elements, a predictor algorithm needs to be written for the nonlinear �� application.  In its 

current form, the Moment-Curvature curve alone is furnished to the program and iteration 

is allowed until the bending moment and curvature are in agreement.  A method for 

increasing the convergence rate needs to be developed. 

A discussion has been presented on how to handle static problems using the dynamic 

time-marching scheme implemented in TeraDysac.  In the future, a true static algorithm 

should be developed for solving thermal loading problems (among others).  Reducing the 

element block mass and holding the load at a constant value has been shown to yield the 

static solution in an approximate sense.  In the bounding surface soil analyses, the full 

element mass was used.  A reduced mass decreased the time step and adversely affected 

the convergence.  Therefore, the bounding surface results presented, especially in regions 
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away from point of load application (the deck-abutment connection) exhibited some 

oscillatory behavior.  In the linear elastic analyses, zero model mass was successfully 

used to obtain solutions. 

The use of the Uniform Gradient formulation for the linear elastic and bounding surface 

clay soil elements showed good behavior in all problems analyzed in this work.  

However, severe hourglassing was observed when the Uniform Gradient formulation was 

used for the sand elements.  Therefore, the 2D IAB bounding surface analyses were 

carried out using Gauss-Quadrature (2x2) integration.  This adds a significant amount of 

computation time.  Further work needs to be done to allow the use of the Uniform 

Gradient formulation in the bounding surface sand models.  The hourglass stiffness 

parameter may need to be adjusted for the sand model, but this was not investigated.    

Bounding surface elements for saturated and unsaturated clays and sands are currently 

available in TeraDysac.  Structural elements (low order beams and plates) have also been 

developed.  Tied contact has been shown to give fairly accurate results for the problems 

solved in this work.  Naturally, the next evolution in using TeraDysac for soil-structure 

interaction is the development of an interface element.  The accurate capture of behavior 

at the interface between soils and structures would be a nice addition to the computer 

program.  This is a sizeable task because of the fluid flow that will emerge when there is 

separation at the interface, but it is certainly a worthwhile endeavor.  In the solution of 

dynamic problems (e.g. earthquakes) an interface element would be very desirable. 

The bounding surface soil models in TeraDysac can capture nonlinear soil behavior and 

pore pressure generation in soil-structure interaction problems.  But the structural 

elements developed in this work are limited because of the embedded linear elastic 
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assumption.  The structural element technology in TeraGrande is superior because it 

models reinforced concrete and rebar prestressing accurately.  The combination of the 

bounding surface soil models in TeraDysac, the structural element technology in 

TeraGrande, and an interface element would make a supreme tool for modeling civil 

engineering systems accurately.  
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