
  
UNIVERSITY OF OKLAHOMA 

GRADUATE COLLEGE 

 

 

 

APPLICATIONS OF ENSEMBLE KALMAN FILTER DATA ASSIMILATION: 

FROM CONVECTIVE THUNDERSTORMS TO HURRICANES 

 

 

 

 

A DISSERTATION 

SUBMITTED TO THE GRADUATE FACULTY 

in partial fulfillment of the requirements for the 

Degree of 

DOCTOR OF PHILOSOPHY 

 
 
 
 
 

 
By 

 
JILI DONG 

Norman, Oklahoma 
2010 

 



  
 
 
 
 
 

APPLICATIONS OF ENSEMBLE KALMAN FILTER DATA ASSIMILATION: 
FROM CONVECTIVE THUNDERSTORMS TO HURRICANES 

 
 

A DISSERTATION APPROVED FOR THE 
SCHOOL OF METEROLOGY 

 
 
 

 
 
 
 
 
 
 

BY 
 
 
 
 
              
                                             Dr. Ming Xue, Chair 
 
          
              
                Dr. Frederick Carr 
 
 
              
                  Dr. Kelvin Droegemeier 
 
 
              
                   Dr. Lance Leslie 
 

 
              
                           Dr. Sivaramakrishnan Lakshmivarahan 
   



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© Copyright by JILI DONG 2010 
All Rights Reserved. 



IV 
 

ACKNOWLEDGMENTS 

 

First and foremost I wish to thank my advisor, Dr. Ming Xue, director of Center 

for Analysis and Prediction of Storms (CAPS). I would like to sincerely thank Dr. Xue, 

for his guidance, teaching, discussion and support during my study and research at the 

University of Oklahoma (OU). Dr. Xue not only gave me this opportunity to work at 

CAPS, but also trained me for many skills at all levels. He gave me many good and 

important suggestions on my EnKF data assimilation research. 

I would also like to gratefully acknowledge all the other members of my 

dissertation committee: Dr. Kelvin Droegemeier, Dr. Frederick Carr, Dr. Lance Leslie, 

and Dr. Sivaramakrishnan Lakshmivarahan, who have spent their time to read my 

dissertation and offered valuable advices. Without their important comments and 

suggestions on my research, this dissertation would not be completed. 

Many thanks also go to Dr. Mingjing Tong for her suggestions and discussions on 

the ensemble Kalman filre (EnKF) system developed by her. Thanks to Dr. Tong’s great 

works on the EnKF data assimilation system. I am grateful to Dr. Ming Hu for his help 

on Linux and FORTRAN programming. I thank Dr. Yunheng Wang for helping me on 

many Advanced Regional Prediction System (ARPS) issues patiently. 



V 
 

I would like to thank Dr. Youngsun Jung for her many suggestions and 

discussions on my study and research. Thanks to my office mate Guoqing Ge and Nate 

Snook for their friendship and help on my research. My research is also benefited from 

discussions with all members of the research group led by Dr. Xue. 

Thanks also extends to staffs at school of meteorology and CAPS, particularly, 

Celia Jones, Marcia Pallutto, Eileen Hasselwander and Scott Hill for their kind help. 

Outside the academic community, I shared with my family members. I want to 

thank my parents for their endless love, encouragement and support. Many thanks go to 

my fiancée, Fan Yang, for her support and love. She always encourages me on my 

research and careers with her enthusiasm. Without their constant support and 

encouragement, the research would not have been possible. 

This research was supported by NSF Grants ATM-0331594, AGS-080288, a 

DOC-NOAA Grant NA17RJ1227 and a US Department of Defense Grants EPSCoR 

N00014-10-1-0133. The experiments were performed on the supercomputers of OSCER, 

University of Oklahoma, supercomputers at Pittsburg Supercomputing Center, 

supercomputers at Texas Advanced Computing Center and supercomputers at National 

Institute of Computational Science, University of Tennessee.   

 



VI 
 

Table of Contents 

 
Acknowledgements.………………………………………………………………...IV

Table of Contents …………………………………………………………………VI

List of Tables …………….…...……………………………………………………....X

List of Figures…………………………...…………………………………………...XI

Abstract…………………………...…………...………………………........……...XXII

Chapter 1 Introduction and Overview………………………………………..…1

1.1 Background and motivation…………………………………………………………1

1.1.1 Background……………….......……………………………………………1

1.1.2 Motivation..….......……...…………………………………………………3

1.2 Overview of dissertation……………………………………………..………………7

Chapter 2 Ensemble Kalman Filter…………….……………………………..…9

2.1 Theoretical background of EnKF ………………………………...……………..…10

2.1.1 Stochastic dynamic models ………….………………………………..…10

2.1.2 Bayesian estimation……………………..…………………………......…10

2.1.3 The Monte Carlo method…………………...……………………………14

2.2 Kalman filter and EnKF……………………………………………………………14

2.2.1 Kalman filter and EKF…………...………………………………………14

2.2.2 Ensemble Kalman filter………………..…………………………………17

2.2.3 Stochastic methods……………………….………………………………20

2.2.4 Evaluation of error covariance in the practical implementation…………22

2.2.5 Sequential data assimilation………………………...……………………23

2.2.6 Parallelization Of EnKF………………………………….………………24

2.2.7 Deterministic methods……………………………………………………25

2.2.8 Ensemble square-root filter (EnSRF) …………………...……….………26

2.2.9 Ensemble transform Kalman filter (ETKF) ……………………...………27



VII 
 

2.2.10 Ensemble adjustment Kalman filter (EAKF) ……………………..……28

2.3 Issues related to EnKF implementation ……………………………………………29

2.3.1 Filter divergence……………………………………………………….…29

2.3.2 Sampling error and covariance inflation…………………………………29

2.3.3 Covariance localization ……………………………………………….…31

2.3.4 Model error……………………………………….………………………33

2.4 The EnKF flowchart ……………….………...............…….………………………34

Chapter 3 The Analysis and Impact of Simulated High-Resolution 
Surface Observations for Convective Storms with Ensemble Kalman
Filter……………………………………………………………………………………37

3.1 Introduction……………………………………………………………...…………37

3.2 Model and experiment settings………………………………………….…………41

3.2.1 Description of simulation and assimilating model………………….……42

3.2.2 Truth storm simulation……………………………………………...……42

3.2.3 Simulation of observations……………………………………….………44

3.2.4 The EnKF algorithm…...…………………………………………………45

3.2.5 Assimilation experiments……………………………………...…………47

3.3 Impact of surface observations………………………………………………..……48

3.3.1 Results of experiments Ra and RaSfc……………………………………48

3.3.2 Background error correlation structure…………………………..………57

3.4 Sensitivity experiments………………………………………………………….…62

3.4.1 Impact of surface measurement types……………………………………62

3.4.2 Varying surface network spacing…………………...……………………65

3.4.3 Varying radar distance……………………………………………………69

3.5 Impact of surface observations on forecast………………………………...………71

3.6 Impact of surface data in the presence of model error…………………………..…75

3.7 The case of imperfect storm environment…………………………………….……79

3.7.1 Experiment setup…………………………………………………………81

3.7.1.1 Truth simulation…………………………….………………………81



VIII 
 

3.7.1.2 Simulated observations………………...……………………………84

3.7.1.3 EnKF algorithm……………………..………………………………86

3.7.2 The impact of surface observations………………………………………87

3.7.2.1 The impact on storm environment…………………………………87

3.7.2.2 The impact on storm analysis…….…………………………………88

3.7.2.3 The impact on storm forecast…….…………………………………89

3.8 Summary and conclusions…………………………….……………………………93

Chapter 4 Assimilation of Radial Velocity and Reflectivity Data from
Coastal WSR-88D Radars Using EnKF for Hurricane Ike (2008) ……98

4.1 Introduction……………………………………………………...…………………98

4.2 Hurricane Ike (2008) ……………………………………………………………102

4.3 The prediction model and EnKF configurations…………………………….……104

4.3.1 The prediction model…………………………………..…………...…104

4.3.2 Radar observations………………………………….……………...…104

4.3.3 Observation operators for radar observations…………………….......…109

4.3.4 Generation of initial ensemble members……………..…………………110

4.3.5 Covariance inflation and localization……………...……………………112

4.4 Ensemble spread, observation innovation statistics and analysis increments….…113

4.5 Data assimilation impact on the analysis and deterministic forecast………..……116

4.5.1 Impact on analyzed hurricane structures……………………..…………116

4.5.2 Intensity and track forecasting…………………………….……………119

4.5.3 Precipitation forecasting……...…………………………………………123

4.6 Ensemble forecasts……………………………..…………………………………125

4.6.1 Ensemble forecasts of intensity and track………………………………125

4.6.2 Correlation of intensity and track forecast……………...………………129

4.6.3 Ensemble forecasts of precipitation…….………………………………131

4.7 Sensitivity of localization cutoff radius……….....………..………………………134

4.8 Sensitivity of assimilation interval………………………..………………………140

4.9 Sensitivity of single radars…………………………………………..……………143



IX 
 

4.10 Assimilation of MSLP……….....…………………………………..……………145

4.10.1 Experiment setup…………......................................………..…………146

4.10.2 Impact of MSLP on hurricane analysis....................………..…………148

4.10.3 Impact of MSLP on hurricane forecast....................………..…………152

4.10.4 Sensitivity of MSLP observation errors...................………..…………156

4.10.5 Sensitivity of MSLP assimilation intervals..............………..…………159

4.10.6 Assimilation of MSLP alone....................................………..…………164

4.11 Uncertainty growth from initial conditions and microphysical schemes …….…169

4.11.1 Motivation and past work.........................................………..…………170

4.11.2 Methodology.............................................................………..…………171

4.11.3 Single microphysical scheme vs. multiple microphysical schemes…...172

4.11.4 Comparison of contributions on uncertainty growth from IC and
microphysical schemes perturbations................................................................175

4.12 Summary……………………………………………...……………….…………177

Chapter 5 Summary and Future Plans………………….……………………181

5.1 Summary …………………........................................……………………….……181

5.2 Future plans………………………………………………………………….……184

References……………………………………………………………………………187

 



X 
 

List of Tables 

 
Table 3.1: List of OSSE experiments examining the impact of surface observation data of 

different spacings and for different radar distances under the scenario of perfect 
and imperfect model. ……………………………………………………………50 

Table 3.2: Relative rms error ratio (RER) of u, v and w, for microphysical variables, θ , 

vq  and all variables (total) for listed experiments. The errors are relative to 

experiment Ra, except for those of different radar distance where the error is 
relative to the radar-data-only experiment of the same distance. ……….………55 

Table 3.3. List of the experiments investigating the radar and surface impact under 
imperfect environment assumption. ..……………………………………………87 

Table 4.1. Summary of radar data assimilation experiments for different observation 
types, assimilation intervals and number of radars used. ……………………....111 

Table 4.2. Experiments of assimilating MSLP observations. .........................................147 

Table 4.3: The members in the ensemble forecasts of Exp4PERT. The initial condition of 
ensemble mean is from the ensemble mean analysis of ExpAll at 0600 UTC 0913. 
Initial conditions of IC1-IC3 are from 3 members of ExpAll final ensemble 
analysis at 0600 UTC. The acronyms of microphysical schemes can be found in 
Chapter 3 section 3.2.1.  . ....................................................................................172 

Table 4.4: The members in the ensemble forecasts of Exp4PHYS. The initial condition of 
ensemble mean is from the ensemble mean analysis of ExpAll at 0600 UTC 0913. 
The acronyms of microphysical schemes can be found in Chapter 3 section 
3.2.1. ....................................................................................................................172    

Table 4.5: The members in the ensemble forecasts of Exp4FULL. The acronyms have the 
same meanings as in Table 4.3 and Table 4.4. . ..................................................172 



XI 
 

List of Figures 

 
Fig. 2.1. Schematic plot of EnKF algorithm from Anderson (DART tutorial). The star 

denotes the ensemble state variables at the time level tk. y means the observations 
and h is the observation operator. Green line denotes the ensemble forecast. The 
blue arrow on the lower part means the update of the state variable. The 
explanation for the figure could be found in the text. …………………………...19 

Fig. 2.2. Flow chart of EnKF algorithm in this dissertation. …………………………...36 

Fig. 3.1. Perturbation wind vectors, simulated reflectivity Z (dBZ) and perturbation 
potential temperature 'θ  (K) (upper panel), and divergence fields (× 1000 s-1) 
(lower panel) at z = 100 m (first model level above ground) for truth (a, d), and 
experiments Ra (b, e) and RaSfc (c, f) at 60 min of model time. …………..…...51 

Fig. 3.2. As Fig. 3.1, but at 120 min. …………………………………………………....52 

Fig. 3.3. The rms error of ensemble mean forecasts and analyses plotted against time for 
Ra (solid) and RaSfc (dotted) for a) u (m s 1− ), b) v (m s 1− ), c) w (m s 1− ), d) 

potential temperature θ  (K), e) pressure p (Pa), f) cq  ( 1g kg− ), g) rq  ( 1g kg− ), h) 

(upper curves) vq  and (lower curves) iq  ( 1g kg− ), i) sq ( 1g kg− ), and j) hq  

( 1g kg− ). The sharp reductions in the error at the analysis times are due to analysis 

updates. See TX05 for further explanations of this type of plots. …………........56 

Fig. 3.4. The rms error profiles of the ensemble mean analyses of Ra (solid) and RaSfc 
(dotted), for a) u (m s-1), b) v (m s-1), c) w (m s-1), d) θ (K), e) p (Pa), f) 

cq ( 1g kg− ), g) rq  ( 1g kg− ), h) vq  ( 1g kg− ) and iq  ( 1g kg− ) , i) sq ( 1g kg− ), and j) 

hq ( 1g kg− ) at 120 min. …………………...................……..……………………57 



XII 
 

Fig. 3.5. The surface truth wind vectors, together with forecast error correlation 
coefficients  estimated from the forecast ensemble at 75 min for experiment RaSfc. 
Error correlation between (a) surface wind observation U (wind along C-D line) at 
station O2 (x = 57 km, y = 59 km) and u at the grid points, and (b) between 
surface temperature at station O2 and u. Solid (dashed) contours represent 
positive (negative) correlations at intervals 0.2; zero contours are omitted. CC and 
DC in (a) mark the low-level convergence and divergence centers, respectively, 
and lines A-B and C-D indicate location of the vertical cross sections shown in 
Fig. 3.6. …………………………………………………….……………………58 

Fig. 3.6. Forecast error correlation coefficients estimated from the forecast ensemble at 
75 min for experiment RaSfc, in the vertical cross section along line A-B (upper 
panels) and along C-D (lower panels) in Fig. 3.5. Error correlations (upper panels) 
between (a) surface temperature T at O1 (x = 73 km, y = 65 km) and w, (b) 
surface wind U at station O1 and θ, (c) U and u, (d) U and w. Error correlations 
(lower panels) between, (e) surface T at station O2 (x = 57 km, y = 59 km) and w, 
(f) U at O2 and θ, g) U and u, and (h) U and w. Thick solid (dashed) contours 
represent positive (negative) correlations at intervals 0.2. Shaded with thin 
contours shows the truth field of w in (a), (d), (e) and (h) with interval 2.5 m s 1− , 
and perturbation θ' in (b) and (f) with interval 2 K. Wind vectors in (c) and (g) 
show the truth perturbation wind field. ………………………..………………...60 

Fig. 3.7. Analysis rms errors relative to those of Ra for RaSfcUV (solid), RaSfcT (dotted), 
RaSfcP (dash-dotted) and RaSfcQv (dashed), as a function of analysis 
time. ………………………………………………………………………….….63 

Fig. 3.8. (a) The optimal horizontal covariance localization radius for surface data as a 
function of mean surface network spacing, (b) the total rms error ratio (TRER) as 
a function of the mean surface network spacing, and (c) the TRER as a function of 
the number of surface observations, plotted in a logarithmic space. The thick 
straight line in (c) represent the -1/2 slope. ………………………………….......66 

Fig. 3.9. As Fig. 3.7 but for RaSfc (solid), RaSfcS12 (dotted) and RaSfcS6 (dashed). All 
are errors relative to those of Ra. …………………………………..…………....67 



XIII 
 

Fig. 3.10. Analysis rms errors of RaD115 relative to those of Ra (dotted), of RaSfcD115 
relative to those RaD115 (solid), and of RaSfcD115S6 relative to those of 
RaD115 (dashed). ……………………………………………………………….70 

Fig. 3.11. The average relative rms error ratios of the u, v and w components (upper 
panel), θ and p (middle panel), and moisture and microphysical variables (lower 
panel), for 60-min-long forecasts starting from ensemble-mean analyses at 60 min 
(thick black lines), 90 min (thin black lines), and 120 min (thick gray lines). The 
solid curves are for the forecast errors starting from the analyses of RaSfc (with 
20 km station spacing) relative to the corresponding errors of Ra (radar only), and 
the dashed lines are for the forecast errors of RaSfcS6 (6 km station spacing) 
relative to those of Ra. ……………………………………...…………………...72 

Fig. 3.12. Perturbation wind vectors, Z (dBZ, shaded) and 'θ  (K, contours) fields, valid 
at 120 min, from the truth (a), and 1-hour forecasts starting from 60-min 
ensemble-mean analyses of Ra (b), RaSfc (c) and RaSfcS6 (d). ……………..…73 

Fig. 3.13. As Fig. 3.12, but for fields valid at 150 min, of truth (a) and 1-hour forecasts 
starting from 90-min ensemble-mean analyses of Ra (b), RaSfc (c) and RaSfcS6 
(d). ……………………………………………………………………………….74 

Fig. 3.14. (a) Total relative rms error ratios (TRERs) between imperfect and perfect 
model experiments for radar data only experiments RaNr0, RaLFO04, RaSchultz, 
and RaMulti, and (b) total relative rms error ratios (TRERs) for experiments with 
and without surface data when the model is imperfect. ………………………....78 

Fig. 3.15. Sounding to initialize the storm simulations. The gray lines below 700 hpa 
denote the environment errors added to the original sounding. …………...…….82 

Fig. 3.16. Simulated reflectivity Z (dBZ) and perturbation potential temperature 'θ  (K) z 
= 100 m (first model level above ground) for perfect environment simulation (a-c), 
simulation with moisture error in the environment (d-f),  simulation with potential 
temperature error in the environment (g-i) and simulation with moisture error in 
the environment (j-l) at 60 min (a, d, g, j), 120 min (b, e, h, k) and 180 min (c, f, i, 
l )  of model  t ime.  ……………………………………………..……...83 



XIV 
 

Fig. 3.17. The a) u, b) potential temperature and c) water vapor mixing ratio profiles at 
(86, 10) km from a) RaUVE (dotted) and RaSfcUVE (dot-dashed), b)  RaPTE 
(dotted) and RaSfcPTE (dot-dashed), c) RaME (dotted) and RaSfcME (dot-
dashed) and the truth simulation (solid). The profiles are all at 60 min. …….….88 

Fig. 3.18. The rms error of ensemble mean analyses plotted against time for RaME (solid) 
and RaSfcME (dotted) for a) u (m s 1− ), b) v (m s 1− ), c) w (m s 1− ), d) potential 

temperature θ  (K), e) pressure p (Pa), f) cq  ( 1g kg− ), g) rq  ( 1g kg− ), h) (upper 

curves) vq  and (lower curves) iq  ( 1g kg− ), i) sq ( 1g kg− ), and j) hq  ( 1g kg− ).....89 

Fig. 3.19. As Fig. 3.16 but at 120 min forecast from the analysis at 60 min and for a) 
RaME, b) RaPTE, c) RaUVE, d) RaSfcME, e) RaSfcPTE, f) RaSfcUVE. ……..90 

Fig. 3.20. As Fig. 3.19 but at 180 min forecast from the analysis at 120 min. ……….....90 

Fig. 3.21. The rms error of a) u (m s 1− ), b) v (m s 1− ), c) w (m s 1− ), d) potential 

temperature θ  (K), e) pressure p (Pa), f) cq  ( 1g kg− ), g) rq  ( 1g kg− ), h) (upper 

curves) vq  ( 1g kg− ), i) sq ( 1g kg− ), and j) hq  ( 1g kg− ) for 60-min-long forecasts 

starting from ensemble-mean analyses at 60 min (thick black lines) and 120 min 
(thin black lines). The solid curves are for the forecast errors starting from the 
analyses of RaME and the dashed lines are for the forecast errors of 
RaSfcME. ……………………………………………………………….…….....91 

Fig. 3.22. The average rms error a) u (m s 1− ), b) v (m s 1− ), c) w (m s 1− ), d) potential 
temperature θ  (K), e) pressure p (Pa), f) cq  ( 1g kg− ), g) rq  ( 1g kg− ), h) (upper 
curves) vq  ( 1g kg− ), i) sq ( 1g kg− ), and j) hq  ( 1g kg− ) for RaPTE analysis (C1 
solid),  RaSfcPTE analysis (C1 dotted), RaUVE analysis (C2 solid),  RaSfcUVE 
analysis (C2 dotted), one hour RaPTE forecast from the analysis at 60 min (C3 
solid),  one hour RaSfcPTE forecast from the analysis at 60 min (C3 dotted), one 
hour RaUVE forecast from the analysis at 60 min (C4 solid),  one hour 
RaSfcUVE forecast from the analysis at 60 min (C4 dotted), one hour RaPTE 
forecast from the analysis at 120 min (C5 solid),  one hour RaSfcPTE forecast 
from the analysis at 120 min (C5 dotted), one hour RaUVE forecast from the 
analysis at 120 min (C6 solid) and one hour RaSfcUVE forecast from the analysis 
at 120 min (C6 dotted). …………………...……………………………………..92 



XV 
 

Fig. 4.1. Ike’s path in Texas from 0600 UTC Sept. 13 to 0000 UTC Sept. 14, plotted 
every 6 hours. (from http://stormadvisory.org/map/atlantic/) ……………….....104 

Fig. 4.2. The physical domain and radar coverage for Ike. The circles of KHGX and 
KLCH both have a maximum range of 460 km. ………………………..……...105 

Fig. 4.3. LED technique used in 88D2ARPS. 9-point average in the box is calculated to 
check the spatial velocity continuity. If the difference between the current velocity 
(the circled one) and the average falls out of a threshold value, it will be dealiased. 
(From Eilts and Smith 1990) …………....................…………………………...107 

Fig. 4.4. Velocity field at 0.5  elevation angle and at 0410 UTC Sept. 13 for (a) no 

quality control, (b) with automatic 88D2ARPS quality control and (c) with 
manual quality control. …………………………………………………...…....108 

Fig. 4.5. The data assimilation and control simulation schemes. From top: 10-minute 
assimilation interval, 30-minute assimilation interval, 60-minute assimilation 
interval and NoDA simulation. ………………………………………………...112 

Fig. 4.6. Time evolution of ensemble forecast and analysis spread during the EnKF 
analysis cycles, spatially averaged in precipitation region (Z > 10 dBZ) for (a) u, 
(b) v, (c) cloud water mixing ratio (qc) and (d) pressure, from experiment ExpAll. 
Those for the background forecast are in red and those for analysis are in 
blue. …………………………………………………………………………….114 

Fig. 4.7. Time evolution of innovation rms during the analysis cycles, averaged in 
precipitation region (Z > 10 dBZ) for (a) Vr of KHGX and (b) KLCH, (c) Z of 
KHGX and (d) KLCH from experiment ExpAll. Those for the background 
forecast are in red and those for analysis are in blue. ………………………….114 

Fig. 4.8. Horizontal wind component increment at z=3km for (a) the first analysis and (b) 
the last analysis of ExpAll. ……………………………………...…………......116 

Fig. 4.9. Composite reflectivity (color shaded) and wind vectors at 3 km height analyzed 
and predicted by experiments (b, g, l and q) NoDA, (c, h, m and r) ExpVr, (d, i, n 



XVI 
 

and s) ExpZ, and (e, j, o, t) ExpAll, as compared with (a, f, k and p) 
corresponding observations. The times shown are 0600, 1200, 1800 UTC, 
September 13 and 0000 UTC September 14, 2008. ……………………………118 

Fig. 4.10. The predicted minimum sea level pressure for Hurricane Ike, plotted every 
three hours from 0600 UTC September 13 to 0000 UTC September 14. .......…120 

Fig. 4.11. The predicted track for Hurricane Ike, plotted every three hours from 0600 
UTC September 13 to 0000 UTC September 14. ………………………...……120 

Fig. 4.12. The predicted track error for Hurricane Ike, plotted every three hours from 
0600 UTC September 13 to 0000 UTC September 14. …………………..……121 

Fig. 4.13. 18-hour accumulated precipitation forecast from 0600 UTC September 13 to 
0000 UTC September 14 for (a) observations, (b) NoDA, (c) ExpVr, (d) ExpZ 
and (e) ExpAll. …………………………………………………………………123 

Fig. 4.14. ETS of 3-hour accumulated precipitation at the 30 mm threshold for NoDA, 
ExpVr, ExpZ and ExpAll. ………………………………………………….......124 

Fig. 4.15. ETS of 18-hour accumulated precipitation 0600 UTC September 13 to 0000 
UTC September 14 at the threshold of 30 mm, 60 mm, 90 mm and 120 mm for 
NoDA, ExpVr, ExpZ and ExpAll. ……………………………………...……...125 

Fig. 4.16. The predicted ensemble minimum SLP of ExpAll (red), compared with the best 
track (black), NoDA (brown), ensemble average (green) and the deterministic 
forecast (blue). ……………………………………………..…………………..126 

Fig. 4.17. The predicted ensemble track of ExpAll (red), compared with the best track 
(black), NoDA (brown), ensemble average (green) and the deterministic forecast 
(blue). ..................................................................................................................128 

Fig. 4.18. The predicted ensemble track error of ExpAll (red), compared with the best 
track (black), NoDA (brown), ensemble average (green) and the deterministic 
forecast (blue). ………………………………………………..………………..128 



XVII 
 

Fig. 4.19. The spread of ensemble tracks for ExpAll. ……….............…………..…….129 

Fig. 4.20. The correlation coefficients between the initial intensity error and the intensity 
error of different forecast times for ExpAll. ………………………….....……..130 

Fig. 4.21. The correlation coefficients between the initial track error and the track error of 
different forecast times for ExpAll. ……………......................……………......130 

Fig. 4.22. The correlation coefficients between the track error and the intensity error of 
different forecast times for ExpAll. ………………….......................………….131 

Fig. 4.23. The ensemble ETSs of 3-hour accumulated precipitation of ExpAll (red), 
against NoDA (brown) and the deterministic forecast (blue). The mean ETS 
(black) and the ETS of ensemble mean precipitation (green) is also plotted. …132 

Fig. 4.24. ETS of 3-hour accumulated precipitation at the 30 mm threshold for NoDA 
(brown), deterministic forecast (magenta), mean of ensemble forecast (blue) and 
probability matching of ensemble forecast (red). ………………….…………..134 

Fig. 4.25. The ETS of 18-hour accumulated precipitation of NoDA (blue), deterministic 
forecast of ExpAll (red), mean of ExpAll ensemble forecast (green) and 
probability matching of ExpAll ensemble forecast (purple) at various 
thresholds. ……………………………………………………………….……..134 

Fig. 4.26. The predicted minimum SLP of NoDA (red), ExpVrR24 (green), ExpVr (blue) 
and ExpVrR6 (also Exp10Min; magenta), compared with the best track 
(black). ................................................................................................................136  

Fig. 4.27. The predicted minimum SLP of NoDA (red), ExpZR24 (green), ExpZ (blue) 
and ExpZR6 (also Exp10Min; magenta), compared with the best track 
(black). ................................................................................................................136  

Fig. 4.28. The predicted track of NoDA (red), ExpVrR24 (green), ExpVr (blue) and 
ExpVrR6 (magenta), compared with the best track (black). ..............................137 



XVIII 
 

Fig. 4.29. The predicted track error of NoDA (red), ExpVrR24 (green), ExpVr (blue) and 
ExpVrR6 (magenta). ....................................................................................138 

Fig. 4.30. The predicted track of NoDA (red), ExpZR24 (green), ExpZ (blue) and 
ExpZR6 (magenta), compared with the best track (black). ................................139 

Fig. 4.31. The predicted track error of NoDA (red), ExpZR24 (green), ExpZ (blue) and 
ExpZR6 (magenta). .............................................................................................139 

Fig. 4.32. The predicted minimum SLP of NoDA (red), Exp30Min (green), Exp60Min 
(blue) and ExpAll (also Exp10Min; magenta), compared with the best track 
(black). ................................................................................................................141 

Fig. 4.33. The predicted track of NoDA (red), Exp30Min (green), Exp60Min (blue) and 
ExpAll (also Exp10Min; magenta), compared with the best track (black). ……141 

Fig. 4.34. The predicted track error of NoDA (red), Exp30Min (green), Exp60Min (blue) 
and ExpAll (also Exp10Min; magenta), compared with the best track (black)...142 

Fig. 4.35. The innovation for the radar KHGX (a) Vr and (b) Z during the analysis cycle 
for ExpAll (magenta), Exp30Min (green) and Exp60Min (blue). ......................142 

Fig. 4.36. The minimum sea level pressure of NoDA (red), ExpKHGX (green), 
ExpKLCH (blue) and ExpAll (magenta), compared with the best track 
(black). …………..............................................................................……..........144 

Fig. 4.37. The forecasted tracks of NoDA (red), ExpKHGX (green), ExpKLCH (blue) 
and ExpAll (magenta), compared with the best track (black). ………........…...144 

Fig. 4.38. The track error of NoDA (red), ExpKHGX (green), ExpKLCH (blue) and 
ExpAll (magenta), compared with the best track (black). ………….......….…..145 

Fig. 4.39. The assimilations schemes for MSLP assimilation with (a) 60 min. interval and 
(b) 10 min. interval. The red upward arrows denote radar data assimilation. The 
purple downward arrows denote MSLP assimilation. ........................................146 



XIX 
 

Fig. 4.40. Increment fields from assimilating MSLP at z=1km for (a) horizontal wind 
component and pressure (every 200 mb), and (b) potential temperature (every 1 K) 
at 0500 UTC 0913 of ExpZMSL. The black dot denotes the position of the MSLP 
observation. .........................................................................................................149 

Fig. 4.41. The minimum sea level pressure during the assimilation cycles of ExpVr (blue), 
ExpVrMSLP (red), ExpVrMSLP10MIN (thin green) and the best track (black). 
Analysis time 10 min. corresponds to 0410 UTC September 13 and 120 min 
corresponds to 0600 UTC September 13. . ..................................................150 

Fig. 4.42. The minimum sea level pressure during the assimilation cycles of ExpZ (blue), 
ExpZMSLP (red), ExpZMSLP10MIN (thin green) and the best track (black). 
Analysis time 10 min. corresponds to 0410 UTC September 13 and 120 min 
corresponds to 0600 UTC September 13. ...........................................................150 

Fig. 4.43. The minimum sea level pressure of NoDA (red), ExpVr (blue), and 
ExpVrMSLP (magenta), compared with the best track (black). .........................152 

Fig. 4.44. The minimum sea level pressure of NoDA (red), ExpZ (blue), and ExpZMSLP 
(magenta), compared with the best track (black). ...............................................152 

Fig. 4.45. The forecasted tracks of NoDA (red), ExpVr (blue) and ExpVrMSLP 
(magenta), compared with the best track (black). ...............................................154 

Fig. 4.46. The track error of NoDA (red), ExpVr (blue) and ExpVrMSLP (magenta). .154 

Fig. 4.47. The forecasted tracks of NoDA (red), ExpZ (blue) and ExpZMSLP (magenta), 
compared with the best track (black). .................................................................155 

Fig.  4.48.  The track error of NoDA (red),  ExpZ (blue) and ExpZMSLP 
(magenta). ...........................................................................................................155 

Fig. 4.49. The intensity errors of ExpVrMSLP, ExpVrMSLP2MB, ExpVr and NoDA 
experiments from 0600 UTC September 13 to 0000 UTC September 14. See text 
for the definition of intensity error. .....................................................................157 



XX 
 

Fig. 4.50. The track errors of ExpVrMSLP, ExpVrMSLP2MB, ExpVr and NoDA 
experiments from 0600 UTC September 13 to 0000 UTC September 14. .........157 

Fig. 4.51. The intensity errors of ExpZMSLP, ExpZMSLP2MB, ExpZ and NoDA 
experiments from 0600 UTC September 13 to 0000 UTC September 14. .........158 

Fig. 4.52. The track errors of ExpZMSLP, ExpZMSLP2MB, ExpZ and NoDA 
experiments from 0600 UTC September 13 to 0000 UTC September 14. .........158 

Fig. 4.53. The minimum sea level pressure of NoDA (red), ExpVr (blue), ExpVrMSLP 
(green), and ExpVrMSLP10MIN (magenta) compared with the best track 
(black). ................................................................................................................160 

Fig. 4.54. The minimum sea level pressure of NoDA (red), ExpZ (blue), ExpZMSLP 
(green), and ExpZMSLP10MIN (magenta) compared with the best track 
(black). ................................................................................................................161 

Fig. 4.55. The forecasted tracks of NoDA (red), ExpVr (blue), ExpVrMSLP (green) and 
ExpVrMSLP10MIN (magenta), compared with the best track (black). .............162 

Fig. 4.56. The track error of NoDA (red), ExpVr (blue), ExpVrMSLP (green) and 
ExpVrMSLP10MIN (magenta). .........................................................................163 

Fig. 4.57. The forecasted tracks of NoDA (red), ExpZ (blue), ExpZMSLP (green) and 
ExpZMSLP10MIN (magenta), compared with the best track (black). ...............163 

Fig. 4.58. The track error of NoDA (red), ExpZ (blue), ExpZMSLP (green) and 
ExpZMSLP10MIN (magenta). ...........................................................................164 

Fig. 4.59. The minimum sea level pressure of NoDA (red), ExpVr (blue), ExpZ (green), 
ExpMSLP (magenta) and ExpAllMSLP (brown) compared with the best track 
(black). ................................................................................................................165 

Fig. 4.60. The forecasted tracks of NoDA (red), ExpVr (blue), ExpZ (green), ExpMSLP 
(magenta) and ExpAllMSLP (brown) compared with the best track (black). ....166 



XXI 
 

Fig. 4.61. The minimum sea level pressure of NoDA (red), ExpVr (blue), ExpZ (green), 
ExpMSLP10MIN (magenta) and ExpAllMSLP10MIN (brown) compared with 
the best track (black). ..........................................................................................167 

Fig. 4.62. Mean track error in 18-hour forecast of NoDA, ExpVr, ExpZ, ExpMSLP and 
ExpAllMSLP. .....................................................................................................168 

Fig. 4.63. The minimum sea level pressure of NoDA (red), ExpVrMSLP (blue), 
ExpZMSLP (green), and ExpMSLP (magenta), compared with the best track 
(black). ................................................................................................................169 

Fig. 4.64. The predicted ensemble minimum SLP of ExpAllMulti (red), compared with 
the best track (black) and NoDA (brown). ..........................................................173 

Fig. 4.65. The spread of intensity forecasts of ExpAll (red) and ExpAllMulti (blue). .173 

Fig. 4.66. The track spread of ensemble forecasts of ExpAll (red) and ExpAllMulti 
(blue). ..................................................................................................................174 

Fig. 4.67. The spread of intensity forecasts of Exp4PHYS (blue), Exp4PERT (green) and 
Exp4FULL (red). ................................................................................................175 

Fig. 4.68. The track spreads of Exp4PHYS (blue), Exp4PERT (blue) and Exp4FULL 
(red). ....................................................................................................................176 

 

 

 

 

 

 



XXII 
 

 
 

Abstract 

For the numerical prediction of severe thunderstorm and hurricane, data 

assimilation is one of the necessary tools to obtain accurate initial conditions. Ensemble 

Kalman filter (EnKF) is a state of the art data assimilation algorithm, with the advantage 

of using flow-dependent error covariance information and retrieving unobserved model 

quantities. In this dissertation, EnKF is first employed to assimilate additional surface 

observation in the presence of radar data for severe thunderstorm analysis and prediction 

with Observing System Simulation Experiments (OSSEs). The EnKF is then used to 

assimilate real coastal WSR-88D radar observations for Hurricane Ike (2008), and the 

impact of radar data on the analysis and forecast is investigated. 

 Due to the earth curvature effect and the non-zero elevation of the lowest scan of 

ground-based radars, low-level coverage of radar data decreases as distance from the 

radar increases, causing loss of coverage for important low-level features including the 

cold pool and gust front. Observations from surface networks are expected to help fill 

such low-level data gaps. To investigate the impact of additional surface observations on 

the analysis and forecast of convective storms, a series of OSSEs are performed using the 

ARPS model and its EnKF data assimilation system.  
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When the radar is located at a significant distance (e.g., the 115 and 185 km 

distances considered) from the main convective storm, a clear positive impact on the 

storm analysis and forecast is achieved by assimilating surface observations with a 

spacing of about 20 km. When the radar is located just 45 km from the storm center, a 

network spacing of 6 km is needed to achieve any noticeable positive impact. The impact 

of surface data in terms of relative error reduction increases linearly with decreased 

surface network spacing until the spacing is close to the grid interval of truth simulation. 

Assimilating observations from a coarser network over a longer period of time helps to 

achieve a similar level of impact as would be seen from a network of higher density. 

The error correlation fields derived from the forecast ensemble exhibit 

dynamically consistent structures. Through flow-dependent error covariance and 

dynamical interactions in the prediction model, the surface observations not only correct 

the surface errors, but also improve analyses of state variables at the mid- and upper 

levels. Given typical observation error, surface wind observations produce the largest 

positive impact, followed by temperature measurements. Pressure measurements produce 

the least impact. Assimilating all surface observation variables together yields the largest 

impact.  
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The impact of surface data is sustained or even amplified during subsequent 

forecasts when their impact on the analysis is significant.  

In the second part of this dissertation, EnKF assimilation and forecasting 

experiments are performed for the case of Hurricane Ike (2008), the third most 

destructive hurricane hitting the United States. Data from two coastal WSR-88D radars 

were carefully quality controlled, including automatic and manual velocity dealiasing. 

For the control experiment, 32 ensemble members are used in the EnKF system, and 

reflectivity (Z) and radial velocity (Vr) data from the two coastal radars are assimilated at 

10-minute intervals over a 2-hour period shortly before Ike made landfall.  

Compared to the corresponding NCEP GFS analysis, the assimilation resulted in a 

much improved vortex intensity at the final analysis time, although it is still weaker than 

observed. Compared to the forecast starting from GFS analysis at the same initial time, 

the forecast intensity, track and structure of Ike over a 12 hour period are improved in 

both deterministic and ensemble mean forecasts. The ensemble spread is well maintained 

with the help of multiplicative covariance inflation and posterior additive perturbations 

during the assimilation cycles. Assimilation of either Vr or Z alone leads to improvement 

in hurricane intensity, track and quantitative precipitation forecast. Vr leads to more 

improvement in intensity and track forecast, emphasizing more importance of Vr data. 
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Ensemble forecast has shown uncertainty growth in track forecast but not in intensity 

forecast. 30-minute assimilation interval has the similar results with 10-minute 

assimilation interval and 60-minute assimilation interval shows weaker intensity forecast.  

Assimilation of additional minimum mean sea level pressure (MSLP) from best 

track data together with Z leads to further improvement in intensity and track forecast 

compared to assimilating Z alone. Assimilating MSLP in addition to Vr leads to track 

forecast improvement but only small improvement in intensity analysis and forecast. 
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Chapter 1  

Introduction and Overview 

 
1.1 Background and motivation 

1.1.1    Background 

Numerical Weather Prediction (NWP) demands accurate initial conditions to 

produce weather forecasts with complex numerical weather models. Owing to the chaotic 

nature of the atmosphere, small errors in the initial conditions will amplify with time and 

lead to huge differences between the prediction and the truth state (Lorenz 1963). To 

reduce the uncertainty on initial conditions, various data assimilation methods are 

designed to combine the observations and background model states into an optimal initial 

state.  

Most of the modern data assimilation methods provide a maximum likelihood 

estimation with a least square approach. Among these data assimilation methods, the 

optimal interpolation (OI) and the three-dimensional variational (3DVAR) methods have 

an assumption of constant background error statistics. This flow-independent assumption, 

however, is not realistic when the evolution of weather patterns is considered. The 

change of the background error statistics may be dramatic with time, like in convective-

scale thunderstorms. Ensemble Kalman filter (EnKF) and the four-dimensional 

variational methods (4DVAR) both include flow-dependent background error statistics. 

Although more computationally expensive than OI and 3DVAR, both 4DVAR and EnKF 

still show advantage in theory for the inclusion of the forecast error variability.   
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In recent years, 4DVAR has been implemented at several operational centers, 

including European Centre for Medium-Range Weather Forecasts (ECMWF), 

MeteoFrance, and Japan Meteorological Agency (JMA). However, 4DVAR requires 

much effort in developing and maintaining a complicated adjoint model. The cost of 

developing this adjoint code is more expensive for convective scales than for large scales 

since more details in the physical processes have to be included in the code. Also, 

4DVAR is still a deterministic method (Lewis et al, 2006). 4DVAR does not update the 

background error covariance for the next assimilation cycle, providing no uncertainty 

information about the forecast. 

Since it was first proposed by Evensen (1994), EnKF has gained popularity 

among the research community. Different from 4DVAR, EnKF can explicitly estimate 

the background error covariance and carry the information through assimilation cycles. 

The ensemble analyses provided by EnKF are the natural choice for initializing ensemble 

forecasts. Without the need for developing and maintaining the adjoint code, the 

implementation of EnKF is relatively simple. Given a proper interface, a general EnKF 

system can be linked to multiple prediction models. The Data Assimilation Research 

Testbed (DART) developed at the National Center for Atmospheric Research (NCAR) is 

such an example, which applies a general EnKF code to various numerical models. Still a 

method in development, EnKF is already applied operationally at the Meteorological 

Service of Canada and has shown very promising results (Houtekamer and Mitchell 2005; 

Houtekamer et al. 2005; Houtekamer et al. 2009; Buehner et al. 2010a; Buehner et al. 

2010b). 
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EnKF has bred an array of variants for the implementation in atmospheric science 

after it was initially proposed. Houtekamer and Mitchell (1998) perturbed the 

observations to increase ensemble spread and alleviate filter divergence problem. This 

perturbed observation approach was further justified by Burgers et al. (1998), who proved 

that without perturbed observations, the analysis covariance is always underestimated. 

However, as Whitaker and Hamill (2002) pointed out, the perturbed observations will 

introduce new sampling error. Another category of EnKF named square root filter (SRF) 

does not require perturbing the observations and is “deterministic” in this sense. Most of 

the current leading EnKF methods belong to this SRF category, such as the ensemble 

square-root filter (EnSRF) of Whitaker and Hamill (2002), the ensemble transform 

Kalman filter (ETKF) of Bishop et al. (2001), the ensemble adjustment Kalman filter 

(EAKF) of Anderson (2001), and the local ensemble Kalman filter (LEKF) of Ott et al. 

(2004) and local ensemble transform Kalman filter (LETKF) of Szunyogh et al. (2008). 

Some of these methods will be briefly introduced and discussed in section 2.2.  

 

1.1.2     Motivation  

The EnKF algorithms have been widely applied in meteorology. The application 

of EnKF ranges from the global (Houtekamer et al. 2009; Whitaker et al. 2008), synoptic 

(Zhang et al. 2006; Meng and Zhang 2007; Meng and Zhang 2008a; Meng and Zhang 

2008b) to the convective or storm scale (Zhang et al. 2004; Tong and Xue 2005; Xue et al. 

2006). Among these applications, EnKF is employed to assimilate observations from 

various platforms, including conventional (Fujita et al. 2007) and radar observations 

(Zhang et al. 2004; Tong and Xue 2005; Aksoy et al. 2009; Jung et al. 2010). Radar 
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observations are able to provide helpful information with high temporal and spatial 

resolutions on convective storms. Assimilating radar observations with EnKF for better 

thunderstorm forecasts has been investigated since Zhang et al. (2004). Most of the 

studies on convective storms with EnKF, however, are focused on assimilating radar 

observations only. When a radar is far away from the storm and fails to provide low level 

information for the storm, conventional observations including those from surface 

networks can help to analyze the low-level storm structure. Surface observations measure 

the wind, temperature, moisture and pressure at the surface. With the flow-dependent 

error covariance from EnKF, surface observations can not only provide storm 

information at low levels, such as the cold pool structure, but also are able to spread the 

impact upward to higher levels. Zhang et al. (2004) first examined the impact of 

assimilating both radar and surface observations on thunderstorm analysis with 

Observing System Simulation Experiments (OSSEs). But their simplifying assumptions 

about the simulated observations were not very realistic. Their investigation was also 

limited to a single set of experiments. No other study, to our knowledge, has examined 

the assimilation of both radar and surface observations systematically using the EnKF 

method. 

To investigate the impact of surface observations in addition to radar data, we 

perform a series of OSSE experiments with realistic observational networks and 

numerical model setups. This is the first time to examine the impact from assimilating 

additional surface observations with EnKF in the presence of radar data in a relatively 

comprehensive way. When the radar is far away from the thunderstorm, surface 

observations are expected to retrieve the low level storm information missed by the radar 
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and improve the storm analysis and forecasts. This is our major hypothesis in Chapter 3. 

Besides this hypothesis, several questions remain unanswered before. How far does the 

radar have to be away from the storms for the surface data to have significant impact?  

Does surface data help much when radar is very close to the storm? Among the typical 

surface measurements of wind, temperature, moisture and pressure, which ones have the 

largest and smallest impacts? Which surface observation network density is enough to 

provide significant additional improvement? The answers to these questions can help to 

design surface networks and use surface observations efficiently. To address these 

questions, sensitivity experiments will be conducted by putting radar to different 

locations, assimilating various surface measurement types and changing the surface 

observation network densities. We will also aim to answer the following questions: How 

will the impact from surface observations change if imperfect forecast models are used 

and imperfect storm environments are considered? Model error and storm environment 

error will be included to examine whether the impact from the surface observations will 

increase or decrease. A relatively complete perspective on how the assimilation of the 

surface observations with EnKF will influence the thunderstorm analysis and forecasts in 

the presence of radar data will be given in Chapter 3.   

To make accurate predictions for hurricanes, data assimilation is also needed to 

initialize the forecast. Numerical prediction of hurricane tracks has greatly improved 

recently (Houze et al. 2007) but improvement to hurricane intensity forecasting has been 

limited. It is believed that the internal meso- or convective scale structures of the wind, 

cloud and precipitation have direct or indirect impact on hurricane’s intensity and track 

forecast (Houze 2007; Wang 2009; Fovell et al. 2009; Fovell et al. 2010). Radar 
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observations can detect cloud-resolving structures within hurricanes and have the 

potential to produce better hurricane predictions. For an evolving hurricane system, 

EnKF can use radar observations to provide valuable flow-dependent error statistics 

information, rather than the static error covariance in 3DVAR, to update model states. In 

one of the few published papers on assimilating radar observations for hurricane analysis 

and forecast with EnKF, it is shown that the assimilation of radar radial velocity with 

EnKF can improve hurricane track and intensity predictions (Zhang et al. 2009). Many 

issues remain with this problem, such as the impact of radar data on quantitative 

precipitation forecasting and the impact of assimilating radar reflectivity data.  

The second part of this dissertation focuses on the assimilation of both radial 

velocity and reflectivity observations from two coastal WSR-88D radars with EnKF for 

Hurricane Ike (2008). The radial velocity and reflectivity observations assimilation with 

EnKF is expected to improve meso-scale hurricane vortex structure, thus improve the 

track, intensity and quantitative precipitation forecasts of Hurricane Ike (2008). This is 

our major hypothesis in Chapter 4. We will also plan to answer the following questions in 

Chapter 4: What will be the individual and combined impacts from assimilating radial 

velocity and reflectivity on Hurricane Ike’s track and intensity forecasts? Which 

assimilation interval is sufficient to give significant improvement? How does the 

uncertainty of track and intensity forecasts grow in ensemble forecasts? This is the first 

time to assimilate the reflectivity with EnKF for the cloud-resolving hurricane analysis 

and forecast. Aside from examining the impact of radar observations on the track and 

intensity forecasts, the impact of EnKF assimilation of radar data on precipitation 

forecast of a hurricane is investigated, for the first time according to our knowledge.  
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The assimilation of mean sea level pressure (MSLP) from the best track at the 

vortex center with EnKF is shown to be able to improve the meso-scale hurricane 

analysis and forecast (Hamill et al. 2010). In their experiments with relatively coarse 30-

45 km resolutions, however, the improvement on the intensity analysis is difficult to 

maintain for the subsequent forecasts. For our cloud-resolving hurricane forecasts with a 

4 km resolution, it is still an open question if there are any additional or individual 

improvements on the intensity and track forecast if MSLP is assimilated with radar 

observations or alone with EnKF. Our questions include: How much additional impact 

MSLP data might provide when radar observations are already used? Is assimilation of 

MSLP data effective in analyzing accurately the intensity of hurricane vortex, and if so, 

how long can the impact last in the forecast? These questions have not been addressed 

before to the author’s knowledge. We perform experiments assimilating MSLP with radar 

data or alone with EnKF to investigate its impact, aiming to give some insight to these 

issues mentioned above.  

The experiments mentioned above will be discussed in Chapter 4. It is the first 

time to assimilate reflectivity and MSLP with EnKF for the cloud-resolving hurricane 

analysis and forecast in a real case.    

 

1.2      Outline of dissertation 

This dissertation is organized as follows. The EnKF algorithm will be briefly 

introduced and discussed in Chapter 2.  The impact of EnKF assimilation of additional 

surface observations in the presence of radar data on thunderstorm analysis and forecast 

will be discussed in Chapter 3 with a series of OSSEs. Sets of sensitivity experiments are 
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also conducted to investigate the impacts of surface observation variables and surface 

network density when the radar is located at different distances from the storm. Such data 

impact was investigated in perfect and imperfect model scenarios, with and without error 

in the storm environment, as defined by a single sounding. The model error is introduced 

by using different microphysical parameterization schemes from the truth simulation, and 

the storm environment error is through the environmental sounding.  

The impact of assimilating radar reflectivity and radial velocity observations as 

well as minimum mean-sea-level-pressure from best track data on the track, intensity and 

precipitation forecast of Hurricane Ike’s (2008) is examined in Chapter 4. Besides 

deterministic forecasts starting from the ensemble mean analyses, ensemble forecasts 

starting from the EnKF ensemble analyses are also performed to examine uncertainty 

growth in the forecast. Summary and future plans are provided in Chapter 5.   
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Chapter 2  

Ensemble Kalman Filters 

 

All data assimilation methods can be approximately categorized into deterministic 

methods and statistical methods. Variational methods belong to the deterministic one. 

Statistical methods include statistical least squares, maximum likelihood method, 

Bayesian framework and minimum variance methods (or Gauss-Markov theorem) (Lewis 

et al. 2006).  

Different from deterministic variational methods, Kalman or Kalman-Bucy filter 

is related to stochastic dynamic systems and Bayesian estimation theory. However, the 

gold standard of data assimilation methods, extended Kalman filter (EKF), has several 

drawbacks. First the computation of EKF is extremely expensive when the order of the 

number of degrees of freedom of the model is large. EKF also has serious problems on 

closure scheme and boundary conditions (Evensen 1992; Evensen 1993). To overcome 

these problems, Evensen (1994) introduced the Monte Carlo method into Kalman filter, 

proposing EnKF. As one of the most promising data assimilation methods, EnKF 

combines ensemble-based assimilation approaches with the traditional Kalman filter to 

assimilate observations into numerical models. The ensemble forecast in the data 

assimilation system is used to estimate the forecast error covariance while the analysis is 

based on the Kalman filter.  
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In this section the background theory for EnKF, Bayesian estimation and Monte 

Carlo approach will be first briefly introduced. Then EnKF and its variants will be 

described. Finally some issues associated with EnKF will be discussed. 

2.1     Theoretical background of EnKF 

Much of the material in section 2 follows Jazwinski (1970), Anderson and 

Anderson (1999), Anderson (2003), Evensen (2003), Kalnay (2003), Miyoshi (2004), 

Lewis et al. (2006), Hamill (2006), Ehrendorfer (2007) and Anderson (2009). 

 

2.1.1    Stochastic dynamic models 

Following Lewis et al. (2006), a stochastic dynamic system can be described as  

1 1( )t t tx M x w+ += +                                                                                                 (2.1) 

where xt is the state variable x at discrete time t; M denotes a mapping of state space into 

itself; and wt is the random model uncertainty or error as an external forcing term. An 

observation in a stochastic dynamic model can be described as 

( )t t ty H x v= +                                                                                                      (2.2) 

where yt is the observation at time t; H is a mapping from model space into observation 

space; and vt denotes an additive observation error at time t, which is always assumed as 

a white noise sequence. 

 

2.1.2    Bayesian estimation  

The data assimilation problem in atmospheric science can be seen as an 

estimation problem in an uncertain world. The true states of atmosphere need to be 

estimated as accurately as possible given an imperfect numerical model and a set of 
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imperfect observations. Since the atmosphere is far from a deterministic system, 

statistical estimation theory is introduced to investigate the data assimilation problem.  

Let x represent the unknown quantity to be estimated, or true state of the 

atmosphere. x̂  is the estimate of x. The goal to obtain the best estimate can be achieved 

by minimizing the error in the estimate: 

ˆerrorx x x= −                                                                                                          (2.3) 

There are two stochastic approaches on how to obtain the optimal estimate. Fisher’s 

framework treated x as an unknown constant µ and developed the maximum likelihood 

method. Bayes framework, on the other hand, assumed x is a random variable with the a 

priori distribution p(x) which is known. p(x) can also be defined as a multivariate 

probability density function as 

Pr( ) ( )
b

a
a x b p x dx≤ ≤ = ∫                                                                                     (2.4) 

where probability density integrates to 1.0 over the entire phase space. Consider the 

observation model we introduced before. Define Yt as the set of all the observations that 

are taken at and before time t, e.g. 

1( , )t t tY y Y −=                                                                                                         (2.5) 

where Y0=y0. The conditional probability density function of xt can be indicated as  

( | )t tp x Y .                                                                                                             (2.6) 

The data assimilation problem now is to estimate this probability density function or the 

current atmosphere state as accurately as possible. 

This probability density function to be estimated is re-expressed with Bayes’ rule 

as  
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( | ) ( | ) ( ) / ( )t t t t t tp x Y p Y x p x p Y= .                                                                        (2.7) 

The denominator can be seen as a normalization term and can be dropped for simplicity. 

This normalization term will guarantee the total probability after the integration is 1. 

It is assumed that the observation additive noise vt is uncorrelated for different 

observation times. The observation error distribution at one time is independent from the 

observation error at a previous time. This assumption leads to  

1( | ) ( | ) ( | )t t t t t tp Y x p y x p Y x−= .                                                                           (2.8) 

Substituting (2.8) into (2.7) gives 

1( | ) ( | ) ( | ) ( ) / ( )t t t t t t t tp x Y p y x p Y x p x p Y−= .                                                        (2.9) 

Bayes’ rule is used again as 

1 1 1( | ) ( ) / ( ) ( | )t t t t t tp Y x p x p Y p x Y− − −= .                                                                (2.10) 

The final expression is given when combing (2.9) and (2.10) 

1( | ) ( | ) ( | )t t t t t tp x Y p y x p x Y −∝                                                                           (2.11) 

where the normalization terms are dropped.  

This equation 2.11 indicates that the posterior probability distribution function is a 

product of two terms. The first term ( | )t tp y x  represents the new information at the 

current time t. The second term 1( | )t tp x Y − is a prior or background probability 

distribution, which utilizes all the information from all the previous observations. 

Generally, the assimilation process will make the posterior distribution narrower than the 

prior distribution, leading to a reduction of uncertainty. This procedure, combined with 

the forecast, can be repeated recursively until the time of the latest observation.  

Another forecast model form different from (2.1) is 
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( ) ( )t t tdx M x dt G x dq= +                                                                                (2.12) 

where dq represents a Brownian motion process with covariance tQ dt and the G term 

denotes the model-error forcing. The time evolution of probability density function can 

be described by the Fokker-Planck or Kolmogorov equation for the vector 

2

1 , 1

[ ( )( ) ]( ) [ ( ) ] 1
2

Tn n
t t ijt t i

i i ji i j

p x GQ Gp x p x M
t x x x= =

∂∂ ∂
= − +

∂ ∂ ∂∑ ∑ .                                     (2.13) 

The derivation can be found in section 4.9 of Jawinski (1970) with the formula 4.119. If 

TGQG  is zero, or there is no model error, the second term vanishes and the Fokker-

Planck equation reduces to the Liouville equation. The resulting continuity equation 

indicates the conservation of probability. It is also clear that the second term of model 

error on the right hand side can lead to the probability diffusion with time due to the 

model uncertainty.    

Even with an elegant and simple expression of probability density function as in 

the update or forecast step, it is not practical to compute it directly. The computational 

cost will be extremely expensive for real-world numerical models. From Hamill (2006), a 

100-dimensional model state requires evaluating and modifying 100100 density estimates 

in the update/data assimilation step. For the typical numerical atmospheric model with 

dimensions of O(107), the computation will never be accomplished with the direct 

calculation of the exact probability density function. To solve this “curse of 

dimensionality” problem, the Monte Carlo method and Kalman filter come as two 

remedies for the approximation to Bayesian estimation. 
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2.1.3    The Monte Carlo method 

The Monte Carlo method provides the basis for ensemble-based data assimilation 

methods. The term “Monte Carlo method” was first proposed in the 1940s by physicists 

working on nuclear weapon projects in the Los Alamos National Laboratory. It is always 

applied when the deterministic solution is difficult to obtain due to the computation cost. 

The basic idea is to use random sampling to represent the actual distribution.  The explicit 

calculation of distribution is replaced by the simulation of random samples or ensemble 

members.  

First the ensemble members are generated as random samples from the initial 

probability distribution. Then the error growth can be simulated by adding random noise 

or other ensemble forecast techniques. By the law of large numbers, the Monte Carlo 

method will display a 1/ N  convergence rate, i.e., the error will approach zero at a rate 

proportional to1/ N .   

 

2.2     Kalman filter and EnKF 

2.2.1    Kalman filter and EKF 

The Kalman filter is a linear approximation to Bayesian state estimation with 

linear assumptions on error growth, model and observation operator. Using a linearized 

form of forecast model and observation operator 

1 1t t tx x w+ += +M                                                                                                  (2.14) 

t t ty x v= +H ,                                                                                                      (2.15) 

the Kalman filter can be summarized as below. In forecast step, 



15 
 

1
f a

t tx x −= M                                                                                                          (2.16) 

1
f a T

t t tP P Q−= +M M .                                                                                           (2.17) 

In assimilation step, 

( )a f f
t t t tx x K y x= + −H                                                                                       (2.18) 

1[ ]f T f T
t tK P P R −= +H H H                                                                                  (2.19) 

[ ]a f
t tP I K P= − H .                                                                                              (2.20) 

In these two steps, subscript “t” denotes the time level. The superscript “f” and “a” 

represents forecast and analysis respectively. Superscript “T” means the transpose of the 

matrix. K is the Kalman gain. P denotes the model state covariance. Q is the model error 

covariance cov(wt) and R is the observation covariance cov(vt). M and H are the 

linearized form of the forecast model M and the observation operator H, respectively. 

The EKF removes the linear assumption on the model and observation operators 

of the Kalman filter. As indicated in the name, it is an extension of the Kalman filter from 

linear version to nonlinearity. It is also a first order approximation of the exact moment 

dynamics of the nonlinear filter. The exact moment of nonlinear filter can be found in 

section 29.3 of Lewis et al. (2006) and will not be described here. Most of the difficulty 

of applying the exact moment of the nonlinear filter is the calculation of the conditional 

mean [ ( ) | ]t tE M x Y  and [ ( ) | ]t tE h x Y  since the conditional probability density is unknown.  

( )tM x  is expanded with a rth-order Taylor series expansion around a
tx , the current 

estimate. Then ( )a
tM x  and the first r moments are used to calculate an approximation 

to [ ( ) | ]t tE M x Y . To summarize, the steps of EKF or the first order approximation is 

shown below. In forecast step, 
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1( )f a
t t tx M x w−= +                                                                                                (2.21) 

1
f a T

t t tP P Q−= +M M .                                                                                           (2.22) 

In assimilation step, 

[ ( )]a f f
t t t tx x K y H x= + −                                                                                    (2.23) 

1[ ]f T f T
t tK P P R −= +H H H                                                                                  (2.24) 

[ ]a f
t tP I K P= − H .                                                                                              (2.25) 

These two steps are similar to the linear Kalman filter except that M and H in the Kalman 

gain and covariance calculations are replaced by M
x

∂
=

∂
M  and H

x
∂

=
∂

H , the Jacobian (or 

linearized form) of M(x) and H(x) at xt. Both the Kalman filter and EKF assume a 

Gaussian or normal distribution of background and observation error covariance. In the 

EKF analysis scheme, the analysis state variable a
tx  is a result of correcting the forecast 

value f
tx  by the observation increment ( )f

t ty H x−  weighted by Kalman gain K. The 

background error covariance is also updated with a reduction of f
tK PH , reflecting the 

loss of uncertainty by assimilating new observations. In the next forecast step, both the 

state variable and the error covariance are propagated with time until next observation is 

available. In this discrete filter, the estimator can provide the best linear unbiased 

estimate (BLUE). 

From Hamill (2006), there are three major limitations when EKF is used. First is 

the assumption of linear error growth and normal distribution of errors. When moisture or 

cloud cover observations are assimilated, the predictability time scale might be small, the 

error growth might be nonlinear and the distribution non-normal. The second limitation is 
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the requirement of accurately estimating background error and model error covariance. 

The estimate of model error covariance Q is particularly difficult. The third limitation is 

computation cost. Although the EKF reduce the computation cost from the Bayesian 

estimate greatly, the computational cost in EKF is still extremely high. For a state vector 

of dimension n, the computation cost for K is at least in an order of n2. It is not practical 

to implement EKF in a typical atmospheric model with the dimension over O(106). 

 

2.2.2 Ensemble Kalman filter 

Almost all of the variants of the ensemble-based data assimilation methods share 

some general properties. They all use an ensemble of forecasts to estimate the 

background error covariance. Then in the data assimilation step, all the ensemble 

members are updated to an ensemble analysis. Short-term ensemble forecasts follows 

until the next set of observations is available. When the error growth is linear and the 

error distribution is normal, the state estimate from the ensemble-based assimilation 

methods converges to EKF.  

To include the additional dimension from the ensemble, the notation for the 

forecast state variables at time t is changed to ,
f

t ix , where i=1,…,N, the ith member of the 

ensemble and N is the ensemble size. The state variable ensemble represents the random 

samples from the actual distribution of model space. For each ensemble member of the 

state variable, the dynamical model and observation operator (or observation model) (2.1) 

and (2.2) still apply. 

The ensemble mean for the forecast is defined as  

,
1

1 N
f f

t t i
i

x x
N =

= ∑ .                                                                                                   (2.26) 
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The perturbation is defined as , ,' f f f
t i t i tx x x= −  where i=1,…,N. Also define 

,1 ,' ( ' ,...... ' )f f f
t t t iX x x=                                                                                           (2.27) 

 as the matrix form for the perturbations. The forecast error covariance is estimated with 

the ensemble as 

1ˆ ' ( ' )
1

f f f T
t t tP X X

N
=

−
.                                                                                     (2.28) 

The analysis counterparts for ensemble mean, perturbation and error covariance are 

similar to the forecast ones and only the superscript “f” is replaced by “a”. The accent “^” 

means the estimate. 

The use of ensemble forecasts to estimate the background error covariance can 

mitigate the problem of linear assumption in EKF. In EKF, the nonlinear model is 

expanded with a Taylor expansion series and truncated to the first order approximation, 

which assumes the error growth from model advancing is linear. In ensemble-based data 

assimilation methods, the nonlinear forecast model is used for the ensemble forecasts. 

This non-linear error growth in ensemble data assimilation methods provides a more 

accurate estimate of the background error statistics. 
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Fig. 2.1. Schematic plot of EnKF algorithm from Anderson (DART tutorial). The star 
denotes the ensemble state variables at the time level tk. y means the observations and h is 
the observation operator. Green line denotes the ensemble forecast. The blue arrow on the 
lower part means the update of the state variable. The explanation for the figure can be 
found in the text.    
 

The ensemble data assimilation procedure is briefly outlined in Fig. 2.1. The state 

variable ensemble evolves with time simultaneously from time tk (or t) to tk+1 (or t+1). 

The uncertainty also grows during the forecast as indicated by the separation of the green 

arrows at time tk+1. At time tk+1, the observation operator h, is applied to the state variable 

ensemble to project them into the observation space (the black arrow with h). The 

ensemble increments in the observation space are calculated and transferred back into the 

state variable space (the black arrows at the right hand side). Then the forecast state 

variable ensemble is updated with the weighted analysis increment (the small blue arrows 

in the lower middle). After the update step, the new updated state variable ensemble is 

integrated with the dynamic model until the next set of observations is available again 

and this assimilation cycle is repeated.  

tk+1 
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The two major classes of ensemble filters include the stochastic (fully Monte 

Carlo) and deterministic schemes. The stochastic method adds random noise on the 

observations to simulate the uncertainty in the observations and is also called “perturbed 

observation” method. The deterministic method avoids the observation perturbations and 

the analysis ensemble perturbations are calculated by a linear combination of forecast 

ensemble perturbations. Since in these deterministic methods, the square root of the error 

covariance matrix is always used for the error covariance estimation, these deterministic 

methods are also called square root filters.  

In the following sections, both stochastic and deterministic methods will be 

introduced and discussed first. A description of the major variants of the deterministic 

methods, such as EAKF, ETKF and EnSRF will also be provided. Then the issues 

associated with the EnKF, like the sampling error and the model error are discussed. The 

algorithms to reduce the sampling error, such as covariance inflation and covariance 

localization, are also introduced.    

 

2.2.3    Stochastic methods   

The stochastic method is also known as the perturbed observation method. As the 

name indicates, the observations are perturbed with random noise. The random noise has 

a normal distribution of zero mean and error covariance R: 

1

1 ' 0
N

i
i

y
N =

=∑                                                                                                       (2.29) 

The observation perturbation vector is defined as 1' ( ' ,....., ' )Ny y y=  and  

1 '( ')
1

T
ey y R

N
=

−
                                                                                              (2.30) 



21 
 

where eR  is the observation error covariance estimation. The perturbation is added to the 

observation as 

' , 1,.....,i iy y y i N= + = .                                                                                     (2.31) 

  For simplicity, the subscript indicating the time level is dropped in the remaining 

part of the section since all of the discussion about the update algorithm is only related to 

the current time level t. The individual state variable member is updated as below: 

[ ( )]a f f
i i i ix x K y H x= + −                                                                                    (2.32) 

where 

1ˆ ˆ( )H H Hf T f TK P P R −= +                                                                                 (2.33) 

In the Kalman gain expression, H is still the Jacobian or linearized form of the 

observation operator H. The Kalman gain expression is similar to EKF. Only in EnKF the 

error covariance ˆ fP  is estimated with the ensemble, leading to a reduction of the 

computational cost. Burgers et al. (1998) shows that if the unperturbed observations are 

assimilated and the ensemble size approaches infinity, the estimated analysis error 

covariance ˆ aP  will be  

ˆ( ) ( )H Hf TI K P I K− − ,                                                                                      (2.34) 

which underestimates the error covariance in EKF: ( )H fI K P− . When the observation 

perturbation is added, the final ˆ aP  will be  

ˆ( ) ( )H Hf T TI K P I K KRK− − + .                                                                        (2.35) 

The last term above is related to the observation perturbations. This new error covariance 

estimation will converge to the EKF error covariance when the infinite ensemble is 

assumed. However, the introduction of observation perturbation can lead to the spurious 
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observation-background correlation and a bias in analysis error covariance (Whitaker and 

Hamill 2002). To correct the bias, several authors proposed their solution. To avoid the 

“inbreeding” problem of underestimating the error covariance, Houtekamer and Mitchell 

(1998) built a pair of EnKFs, using one set’s error covariance to update the other set. 

Pham’s (2001) second order exact EnKF adds perturbation to the background forecast 

members instead of observations.  

 

2.2.4    Evaluation of error covariance in the practical implementation 

For the practical implementation of EnKF, explicitly calculating the forecast error 

covariance matrix is still expensive. Instead, the covariance matrix components ˆ Hf TP  

and ˆH Hf TP are computed. Define  

1

1( ) ( )
N

f f

i
H x H x

N =

= ∑ .                                                                                       (2.36) 

Then  

1

1ˆ ( )[ ( ) ( )]
1

H
N

f T f f f f
i i

i
P x x H x H x

N =

= − −
− ∑                                                     (2.37) 

and 

1

1ˆ [ ( ) ( )][ ( ) ( )]
1

H H
N

f T f f f f
i i

i
P H x H x H x H x

N =

= − −
− ∑                                      (2.38) 

where ˆ fP  denotes the estimation of the forecast error covariance.  The first equation 

evaluates the covariance between the forecast state variables on the model grids and the 

observation points. The second equation evaluates the covariance between the forecast 

state variables projected in the observation space. The nonlinear observation operator in 
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the covariance calculation is opposite to the linearization of the observation operator in 

EKF and is more realistic. 

 

2.2.5    Sequential data assimilation 

This reduction of computational cost in the last section will be lost if the 

dimension of the observation is as large as the model space dimension. In that case, the 

size of ˆ Hf TP  and ˆH Hf TP  will be the same as ˆ fP . To avoid the expensive cost of 

manipulating and storing the large matrix, sequential data assimilation is always 

employed in EnKF implementation. Bishop et al. (2001) demonstrated that if the 

observation errors are independent from each other, the effect on error covariance 

estimation of serially assimilating these observations is equivalent to assimilating all of 

the observations simultaneously. The updated ensemble state variables after the first 

observation is assimilated will be used as the background for assimilating the second 

observation. For each observation assimilated, 
 

ˆH Hf TP  and R reduce to scalars. Thus the 

inverse of ( ˆH Hf TP R+ ) in the Kalman gain formula (eq. 2.33) will involve no matrix 

manipulation and is trivial to compute.  

The only problem is that in the real observation set, horizontal or vertical 

correlation may exist between the serially assimilated observations. In this case, the 

observations can be organized into small batches so that the correlation among these 

distinct batches is small enough for the independent correlation assumption (Houtekamer 

and Mitchell, 2001). Then these batches are assimilated sequentially while the 

observations in each batch will be analyzed simultaneously. The computational cost will 

not be too expensive in each batch for manipulating the matrix ( ˆH Hf TP R+ ).       
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2.2.6    Parallelization for EnKF 

Sequential EnKF algorithm still requires expensive computational cost. The high 

memory requirement for storing and analyzing the ensemble model states makes code 

parallelization necessary. Also, to speed up the assimilation, code optimization for 

parallelization is always welcome.  

In a shared-memory system, all of the computer processors access and address the 

system memory uniformly. OpenMP directives can be inserted into the code to parallelize 

the update step. For each serially assimilated observation, multiple model state variables 

can be updated simultaneously with OpenMP parallelization. OpenMP is easy to 

implement but this parallelization is limited to shared-memory systems or computer 

nodes with large memory. 

In a distributed-memory system, each processor has its own memory and other 

processors can access its memory only via network communications. Several authors 

proposed various parallelization algorithms. Keppnne and Rienecker (2002) used domain 

decomposition to realize parallelization. Each private sub-domain (or PE, processing 

element) contains its own set of model states of each ensemble member and the 

observations. The analysis can be conducted on each PE independently. And the analysis 

on each PE can be executed simultaneously. Houtekamer and Mitchell (2001) also used 

this domain decomposition method but their implementation still assimilated each batch 

of observations sequentially. Anderson’s (2007) scalable implementation of EnKF also 

discussed parallelization strategy. The model states are distributed over the PEs with 

certain loading balance criterion and need to be transposed over the PEs several times 

during the analysis. The observations are still assimilated sequentially.     
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2.2.7    Deterministic methods 

The observation perturbations added in the stochastic method introduce a new 

source of spurious observation-background error correlation if a small ensemble is used 

(Whitaker and Hamill, 2002). The correlation terms between y’o and x’b terms in (7) of 

Whitaker and Hamill’s (2002) are not negligible and can change the distribution shape of 

analysis error statistics. The analysis error covariance may be underestimated in the 

stochastic method. Several methods avoid the explicit calculation of the background error 

covariance and manipulate the square root of the error covariance matrix. They are called 

“deterministic” by avoiding random observation perturbations and “square root filter” by 

using the square root matrix. Define the square root of the forecast and analysis error 

covariance estimate as Ef and Ea: 

ˆ ( )f f f TP E E=  and ˆ ( )a a a TP E E= .                                                                  (2.39) 

which are also the scaled forecast or analysis ensemble perturbations: 

1 '
1

f fE X
N

=
−

.                                                                                              (2.40) 

Assume the scaled analysis ensemble perturbation is a linear combination of the forecast 

ensemble perturbation: 

a fE E U= .                                                                                                         (2.41) 

where U is the unknown matrix to be determined. Then the covariance update expression 

(2.25) can be rewritten as 

( ) [ ] ( )Hf T f T f f TE UU E I K E E= − .                                                                  (2.42) 

U can be solved with matrix factorization and used in (2.41) for the update scheme. For 

the covariance P=AAT, it also can be written as P=(AS)(AS)T, S representing any 
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orthonormal matrix such that SST=STS=I. Therefore the solution of the square root is not 

unique. Three square root filters with different solutions but the same analysis error 

covariance estimate are introduced below as the examples of the deterministic update 

algorithms. 

 

2.2.8    Ensemble square root filter (EnSRF) 

Whitaker and Hamill (2002) proposed this serial square root filter, or EnSRF. 

Assume the square root analysis matrix has the form of 

( )Ha f
rdE I K E= − .                                                                                          (2.43) 

The solution of the “reduced” gain rdK  is 

1 1 1
12 2 2ˆ ˆ ˆ[( ) ] [( ) ]H H H H Hf T f T T f T

rdK P P R P R R
− −= + + +                                     (2.44) 

(Andrews 1968), cf. (10) of Whitaker and Hamill 2002). When uncorrelated observations 

are assimilated sequentially, ˆH Hf TP  and R are scalars. The expression of rdK  can be 

simplified as 

1 1ˆ(1 ( ) )H Hf T
rdK R P R K− −= + +                                                                     (2.45) 

where K is the traditional Kalman gain in (2.24). Define 

1 1ˆ(1 ( ) )H Hf TR P Rα − −= + +                                                                            (2.46)                       

and rdK Kα= . α  is between 0 and 1, indicating a reduced Kalman gain relative to the 

traditional K. This expression is first derived by Potter (1964).  

Ensemble data assimilation cycles in EnSRF are similar to EnKF. For 

convenience, the update step is divided into two parts with updating the ensemble mean 

and the ensemble perturbation or deviation separately: 
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[ ( )]a f fx x K y H x= + − ,                                                                                   (2.47) 

' ' ( ' )a b b
i i rd ix x K H x= − .                                                                                        (2.48) 

The analysis ensemble is less modified by the observations than in the stochastic EnKF. 

This reduced weighting coefficient rdK  compensates for the over-reduction of variance 

by using the traditional K in the stochastic method. The computation cost of EnSRF is the 

same as the stochastic EnKF. As Whitaker and Hamill (2002) showed, with moderate 

ensemble size and Gaussian assumption, EnSRF produces better results than the 

perturbed observation method. 

 

2.2.9    Ensemble transform Kalman filter (ETKF) 

Bishop et al. (2001) proposed ETKF. Define 

a fE E T=                                                                                                           (2.49) 

where T is the transformation matrix. The Sherman-Morrison-Woodbury identity matrix 

formula 

1( )
1

T
T

m m T

cdI cd I
d c

−+ = −
+

,                                                                               (2.50) 

where c and d are m-dimension vectors, can be used to rewrite the Potter’s formula. The 

solution for T is  

1/2( )T C I −= Γ +                                                                                                  (2.51) 

where C is a matrix composed of eigenvectors of 
1 1
2 2( ) ( )H Hf T T T fE R R E

− −
 and Γ  is a 

diagonal matrix composed of eigenvalues of the same matrix.   
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ETKF has faster computation speed than EnSRF but the covariance localization 

(section 2.3.3) cannot be applied in ETKF, inducing large sampling error unless large 

ensembles are employed. 

 

2.2.10  Ensemble adjustment Kalman filter (EAKF) 

EAKF is proposed by Anderson (2001) in a joint observation-state space with 

Bayesian estimation theory, assuming error statistics are Gaussian. EAKF uses rotation 

and scaling to transform the forecast error covariance into an identity matrix in a 

reference frame (appendix A of Anderson 2001). The adjustment A is used to update the 

forecast states as  

a fE AE= .                                                                                                         (2.52) 

A singular value decomposition gives f TP FDF=  where F is unitary (or orthonormal for 

real counterpart) and D is a diagonal matrix with the singular value µp of fP  on the 

diagonal. The adjustment A is given by 

1/2 1/2 1/2[ ] TA FD U I D D F− −= +                                                                      (2.53) 

cf. (3.3.1) of Miyoshi 2005, where U is an orthonormal matrix. As Tippet (2003) pointed 

out, this update scheme is equivalent to  

1/2 1/2[ ]a f T fE E C I D F E− −= + Γ                                                                          (2.54) 

where C and Γ  are the same denotation as in section 2.2.9. This scheme is the same as 

applying a transformation 1/2 T fD F E−  to the ETKF analysis scheme. 
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2.3     Issues related to EnKF implementation 

2.3.1    Filter divergence  

Filter divergence always occurs when the analysis error covariance is 

underestimated. In the follow-up forecast cycles, the forecast errors will also be 

underestimated. The background will be falsely considered to be too accurate by the filter. 

This underestimation of background error will lead to a small impact from the 

observations or even disregarding the observations in the worst case when this effect 

accumulates. As more observations are ignored in cycles as the result of a feedback 

mechanism, the filter will diverge from the truth. Filter divergence can be caused by 

sampling error and model error. These two major sources of filter divergence will be 

briefly discussed below. 

 

2.3.2      Sampling error and covariance inflation 

  As van Leeuwen (1999) has shown, the finite and small ensemble size in EnKF 

is an essential source of underestimating the analysis error covariance. This 

underestimation is a systematic effect due to the finite ensemble size and the nonlinearity 

in Kalman gain. In EnKF, modeling the background error covariance as accurately as 

possible is one of the most important requirements to reduce sampling error and avoid 

filter divergence (Hamill 2006). There are at least two aspects in correctly modeling the 

background error statistics: variance magnitude and spatial covariance structure. To keep 

the correct background error variance, covariance inflation is always used to maintain the 

spread among the ensemble members. 
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   The idea behind covariance inflation is simple. It is assumed that the 

background correlation structure is correctly modeled but the variance of model state 

variables is too small. The error variance of the model state variables needs to be inflated 

by multiplying a constant or adding more perturbations with zero mean.  

Anderson and Anderson (1999) proposed the simple multiplicative covariance 

inflation scheme as 

( ) ( )f f f f
i new ix r x x x= − +                                                                                      (2.55) 

where r is a constant slightly larger than 1. The deviation of each member from ensemble 

mean is increased before the observations are assimilated. Although it is simple to 

implement, this constant inflation may not be suitable for heterogeneously distributed 

observation network. Tuning the inflation coefficient r is also a problem for large 

geophysical models. In the practical implementation, Tong and Xue (2005) choose to 

inflate the state variables within the observation coverage. Anderson (2009) designed a 

spatially and temporally varying adaptive inflation strategy with the Bayesian approach. 

This adaptive method showed promising results compared to the constant inflation when 

it is used in low-order model. Another simple adaptive algorithm from Whitaker and 

Hamill (2010 EnKF workshop presentation) is applied to the posterior state variables 

after the analysis as 

2 2

( ) 2' ' 1f aa a
i new i

f

x x r
σ σ
σ
−

= +                                                                                (2.56) 

 where 2
fσ  and 2

aσ  are the variance of the model state variables before and after the 

analysis, and r is a tuning coefficient. This adaptive method also adaptively considers the 
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impact of the increments and the density of observation network. However, the sharp 

spatial gradient of the inflation may occur and destroy the weather structures.  

Zhang et al. (2004) used a relaxation method as  

( )' ' (1 ) 'a f a
i new i ix rx r x= + −                                                                             (2.57) 

where r is a weighting coefficient to combine ' f
ix  and 'aix  linearly. This scheme modifies 

the analysis deviation by “relaxing” or weighting the forecast and analysis deviation.  

Besides the multiplicative inflation, additive noise or additive inflation is another 

method to increase the spread artificially (Mitchell and Houtekamer 2000; Houtekamer 

and Mitchel 2005; Houtekamer et al. 2005; Hamill and Whitaker 2005). The additive 

noise with the same dimension as the model state will be added to each ensemble 

member before or after analysis. As Hamill and Whitaker (2005) pointed out, additive 

error can account for the model error and should sample the statistics of the accumulated 

model error. The additive error will be discussed more in section 2.3.4.  

A combination of multiplicative and additive inflation can provide better results 

than single schemes (Whitaker and Hamill 2010 EnKF workshop presentation). 

 

2.3.3         Covariance localization 

    The sampling error also has negative impact on the spatial structure of 

background error covariance estimate. Covariance localization is based on the fact that 

the spatially distant error covariance estimates are much less accurate than the local 

estimates. This measure limits the impact of observations to the local grid points of 

model state and is expected to remove the spurious background error covariance 
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estimates at long distances. On the other hand, localization can reduce the computational 

cost and makes more efficient parallelization schemes possible. 

A widely used localization is to modify the background error covariance by 

building a Schur product between the background error covariance by a correlation 

function. The correlation function always decreases monotonically as the distance 

between the observation assimilated and the model state variable increases. Gaspari and 

Cohn (1999) constructed such a Gaussian-shaped function with a fifth order piece-wise 

polynomial. This distance-dependent correlation function is 1 at the observation point and 

decreases gradually as the distance increases. The correlation turns to 0 beyond some pre-

specified distance (Hamill et al. 2001).  Covariance localization can also increase the 

rank of the forecast covariance estimate to the dimension of the state vector thereby 

introducing the extra degrees of freedom (section 5.3 of Hamill 2001). 

The choice of localization cutoff radius requires efforts on tuning. If the radius is 

too large, spurious covariance will not be removed effectively. If the radius is too small, 

the observation will not have enough impact on the model states. Anderson (2007) 

developed an adaptive method to estimate the localization functions. A hierarchical 

ensemble filter, or an ensemble of ensemble filters, is used to estimate the impact of 

spurious correlations between the observations and model state variables, avoiding a prior 

specification of localization functions. 

Other issues include the imbalance caused by severe localization (i.e. small 

localization cutoff radius). The spatial coherence can be disrupted by localization and 

some physical balance can be disturbed (Mitchel et al. 2002). For non-local observation 
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operators, such as satellite radiance data or attenuation in the radar observations, it is still 

a problem to apply the localization and further study is needed. 

 

2.3.4    Model error     

During the whole EnKF discussion above, the model error term w in (2.1) is 

ignored. The numerical model is supposed to carry additional uncertainty due to the 

unresolved processes. To discuss the model error, another assumption is made that the 

model is unbiased. Ignoring the model error term leads to an evolved forecast error 

covariance as  

1
ˆ ˆM Mf a T
t tP P−≅ .                                                                                                  (2.58) 

The comparison with (2.22) reveals that during the ensemble forecast, EnKF will have 

small forecast error covariance estimate without the model error covariance Q. Filter will 

diverge from the truth due to the model error. 

There is several ways to deal with model error. The most ideal method is to use a 

stochastic dynamic model instead of a deterministic model. The error forcing can be 

added on the forecast model and integrated forward. Buizza et al. (1999) added noise to 

the parameterized physical process in the forecast model by multiplying a random 

number with the total parameterized tendency terms in the prognostic equations. Penland 

(2003) discussed several approaches for including the stochastic forcing in numerical 

models. However, the application to incorporate the stochastic forcing in real-time 

weather prediction model is still limited. 

The second approach to reduce the impact from the model error is adding additive 

error to the background before data assimilation to increase the forecast error variance: 
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( )
f f

i new i ix x η= +                                                                                                    (2.59) 

where  satisfies < ( )T
i iη η >=Q. Hamill and Whitaker (2005) tried several methods to 

generate the noise, such as using the structured difference between high and low 

resolution model forecasts as the sample, or using scaled time series perturbations 

obtained from subtracting a climatology mean. The sample from the resolution difference 

has the best result. Mitchell and Houtekamer (2000) used innovation information to 

estimate the model error with the maximum likelihood approach. The additive inflation 

method can span a different subspace from the original one spanned by the ensemble 

(Hamill and Whitaker 2005). It therefore can reduce both sampling error and model error. 

However, multiplicative inflation will not modify the subspace spanned by the ensemble 

and may not be effective in reducing the model error. 

The last method discussed here to reduce model error is the use of multiple 

models to generate ensemble forecasts (Houtekamer et al. 1996; Hou et al. 2001; Hansen 

2002). Even with the simplicity of implementation, there are still uncertainties involved 

in multi-model method. The balance and the representation of model error are some 

issues associated with multi-model ensemble (Hamill 2006).   

 

2.4     The EnKF flowchart 

The procedure for EnKF experiments in my PhD research is briefly listed step by 

step below: 

1. Random perturbations for state variables are generated.      
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2. Gaussian-shaped function or recursive filter are applied on the perturbations to 

smooth the perturbations and create some spatial correlations.  

3. Smoothed perturbations are added to the background filed to generate ensemble 

members. 

4. Ensemble forecasts are started. 

5. EnKF analysis is conducted when the observations are available. 

6. Steps 4-5 are repeated until all the analysis cycles end. 

7. The deterministic forecast or ensemble forecasts are started.  

A flowchart is given in Fig. 2.2 to illustrate the above steps. 

During step 5, EnSRF is used in Chapter 3 and Chapter 4. Eq. 2.47 and 2.48 are 

used to update ensemble mean and ensemble perturbations respectively. Eq. 2.33 and 

2.45 are used to calculate the traditional and reduced Kalman gains respectively. Eq. 2.37 

and 2.38 are used to evaluate the error covariance. The EnKF experiments in Chapter 3 

and 4 will follow this procedure generally. Some steps may vary and will be described in 

detail in Chapter 3 and 4.  
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Fig. 2.2. Flow chart of EnKF algorithm in this dissertation. 
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Chapter 3 
The Analysis and Impact of Simulated High-Resolution Surface 
Observations for Convective Storms with Ensemble Kalman Filter 
 
 

3.1     Introduction 
 

Successful numerical weather prediction (NWP) depends greatly on accurate 

initial conditions obtained with data assimilation. For convective storms, radar is the 

primary observational platform used. However, radars usually do not observe down to 

ground level, because of the non-zero elevation of the lowest scans and due to the earth 

curvature effect. This problem becomes worse when the storm is located far from the 

radar. For example, when a storm is 100 km away, the center of the lowest 0.5° elevation 

beam of a WSR-88D radar is more than 2 km above the ground. Even the lower edge of 

the half power beam does not reach ground (see, e.g., Fig. 2 of Xue et al. 2006, XTD06 

hereafter). Yet, for convective systems, the low-level flows and cold pool are critically 

important in storm development and evolution. At ground level, observations from 

automated meteorological stations and sometimes from mesoscale observing networks 

are available. Effective assimilation of these observations, in combination with radar data, 

has the potential to significantly improve storm analysis and forecasts. These data are 

also valuable for defining the low-level environment of the convective storms, where 

radar has very limited observing capabilities. The resolution of the surface network, 

however, is usually low compared to the scales of convective features; thus their 

quantitative impact when radar is also present is not necessarily clear. Further, it is not 

clear if the information contained in surface observations can be effectively retained by 
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the storm when observations are taken in the downdraft region, which is, however, 

primarily responsible for the cold pool. 

The assimilation of the surface observations into NWP models is not as easy as it 

might appear. One issue is differing elevation of surface observations from the model 

ground level. Complex terrain will complicate the issue of spatial representativeness of 

the observations, which affects the proper spatial spreading of observation increments 

(e.g., Lazarus et al. 2002; Deng and Stull 2007). A more general issue is the vertical 

spread of observation information; this is non-trivial because of the typically large spatial 

and temporal variations of the boundary layer error structures.  

For the prediction of convective initiation and its later evolution, Liu and Xue 

(2008) showed that the strength of analyzed cold pool is sensitive to the vertical 

correlation length scale specified in the ARPS (Xue et al. 2000) Data Analysis System 

(ADAS, Brewster 1996), when analyzing high-resolution surface observations. Similar 

sensitivity was found by Dawson and Xue (2006). Within ADAS, the vertical correlation 

length can be specified in terms of geometric height or potential temperature. The latter 

allows more vertical spreading of observation information in less stable condition, but the 

correlation scale is still empirical. Using ADAS and observations from both routine and 

special mesoscale surface networks that were gathered by the 2002 International H2O 

Project (IHOP_2002,  Weckwerth et al. 2004), Liu and Xue (2008)  demonstrated 

significant positive impact of hourly surface data over a 6-hour period on convective 

initiation forecast in the ARPS model. Similar results were obtained by Xue and Martin 

(2006) for another convective initiation case from IHOP_2002. 
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To optimally assimilate surface observations, flow-dependent background error 

covariance is needed. The ensemble Kalman filter method (EnKF, Evensen 2003) is one 

method that estimates and evolves flow-dependent background error covariance using 

ensemble forecasts through assimilation cycles. 

The assimilation of surface observations for the planetary boundary layer using 

EnKF has been examined recently in simple column model settings with simulated and 

real observations (Hacker and Snyder 2005; Hacker and Rostkier-Edelstein 2007). 

Simulated surface observations have also been tested with a mesoscale model for  the 

case of a synoptic-scale winter cyclone by Zhang et al. (2006) and Meng and Zhang 

(2007). Fujita et al. (2007) examined the performance of EnKF for synoptic to mesoscale 

flows with real surface observations. These studies generally address the situations where 

the atmospheric boundary layer is strongly influenced by the land surface processes; they 

do not address the specific situation where the thunderstorm downdraft and cold pool 

play an important role. 

Assimilation of high-resolution surface observations, from e.g., a high-density 

mesonet, for the initialization of explicit convective storms, however, is limited to the 

study of Zhang et al. (2004), which found positive impact of simulated surface 

observations at 10 km spacing when radar data were artificially limited to levels above 4 

km. Their study also made the simplifying assumptions that the radar observations are 

available at model grid points; one of the surface observation types considered is the 

liquid-water potential temperature which is not directly measured. Only warm rain 

microphysics was used. These simplifying assumptions make it impossible to address the 

issue of radar distance from the storm, which in many cases is the most important factor 
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determining the low-level data coverage. The assumption that the radar data are available 

at the model grid points also makes it impossible to include the effect of beam spreading 

which affects data coverage. The low-level data coverage is a key problem of the 

National Science Foundation (NSF) Engineering Research Center (ERC) for 

Collaborative Adaptive Sensing of the Atmosphere (CASA) project, which seeks to 

develop low-cost high-density radar networks (XTD06, McLaughlin et al. 2007) to 

improve lower atmospheric sensing. The lack of low-level radar data coverage is also 

suspected to be an important source of error in the EnKF analysis of thunderstorms in the 

studies of Dowell et al. (2004) and Tong (2006). 

We set out to perform a systematic OSSE (Observing System Simulation 

Experiment, Lord et al. 1997) study on the impact of assimilating high-resolution 

observations from hypothetical surface networks, in addition to observations from a radar 

located at different distances from the main storm. A realistic radar simulator is used, 

providing realistic data coverage. Surface observing networks of different mean spacing 

are examined, and the impact of surface data is interpreted with the help of ensemble 

error covariance structures and our understanding of convective storm dynamics. Both 

perfect and imperfect forecasting model scenarios are considered in the OSSEs; in the 

latter case model error is introduced by using wrong microphysics schemes. It should be 

noted that for simplicity, only OSSEs are conducted in this study. No calibration or 

validation procedures with real observations sensitivity experiments are performed. In a 

more complete OSSE framework, the error statistics between “existing” simulated 

observations and real observations, which is radar data in this study, and the data impact 

from the existing observations between OSSE and Observing System Experiments (OSE) 
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could be compared. Based on the guideline from the above validation, the impact of the 

“new” simulated observations from OSSEs could be better interpreted.    

The rest of this chapter is organized as follows. Section 3.2 describes the 

numerical model used, the design of the observational network, and the EnKF algorithm 

used. Experiments assimilating surface observations with EnKF are discussed in section 3 

and sensitivity tests are presented and analyzed in section 3.4. The impact of this 

assimilation on subsequent forecasts is discussed in section 3.5. Section 3.6 further 

examines the surface data impact in the presence of model error, and section 3.7 

discusses the impact from surface observations under imperfect storm environment. 

Section 3.8 gives a summary and conclusions. 

 

3.2       Model and experiment settings 

We take the OSSE approach in this study, partly because it is impossible or 

impractical to observe the same real storm many different times using the same radar 

from different distances, and the real surface observing networks often have limited 

density. In the case of real thunderstorms, full measurement on the complete atmospheric 

state is not available, making the quality of analysis difficult to judge. With OSSEs, a 

model simulation serves as the ‘truth’ or ‘nature run’ for all experiments. Realistic 

observations can be simulated from this model atmosphere using a radar simulator and 

assuming certain surface network characteristics. With OSSEs, observation 

configurations that are currently unavailable can be tested. This study builds upon and 

extends the earlier OSSE studies of Tong and Xue (2005a, TX05 hereafter), XTD06, and 

Tong and Xue (2008a), which focused on radar data. 
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3.2.1    Description of simulation and assimilating model 
 

The Advanced Regional Prediction System (ARPS, Xue et al. 2000; Xue et al. 

2001; Xue et al. 2003) is used as the simulation and prediction model in this study. 

ARPS is a compressible nonhydrostatic model that predicts velocity components u, v, w, 

potential temperature θ, pressure p, and mixing ratios for water vapor, cloud water, 

rainwater, cloud ice, snow, and hail/graupel (qv, qc, qr, qi, qs, and qh, respectively) 

associated with ice microphysics schemes in the model. These variables make up the 

state vector that is estimated or analyzed using EnKF. The model also predicts the 

turbulence kinetic energy (TKE), which is used in a 1.5-order subgrid-scale turbulence 

closure scheme.  TKE is not updated by the EnKF during assimilation as in our previous 

studies (e.g., TX05).  The ARPS includes several single-moment ice microphysics 

packages. The  Lin et al. (1983, LFO83 hereafter) scheme is the default and is used in 

the truth simulation and perfect model OSSEs. A modified version of the LFO83 

scheme (Gilmore et al. 2004a, LFO04 hereafter), the Schultz simplified ice scheme 

(Schultz 1995, Schultz hereafter), the WRF 6-category Single-Moment Microphysics 

scheme (Hong and Lim 2006, WSM6 hereafter), and their combinations are used in the 

imperfect-model OSSEs. 

 

3.2.2  Truth storm simulation 

 As in TX05 and XTD06, the 20 May 1977 Del City, Oklahoma, supercell storm 

(Ray et al. 1981) simulated by the ARPS is used as the truth for the OSSEs. A horizontal 

resolution of 2 km is chosen with a grid of 67 67 35× ×  points in the x, y and z directions, 

respectively, giving a physical domain of 128 × 128 × 16 km. Radar and surface 
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observations are assumed to be available only within a 64 × 64 km2 subdomain located at 

the center of the model grid. The main storm cells remained within this subdomain 

throughout assimilation and prediction, and this observation domain has the same size as 

that used by TX05. The larger domain used here is to avoid occasional problems arising 

from perturbations created by the open lateral boundary condition. In the vertical, a grid 

stretching scheme based on a hyperbolic tangent function is used and the vertical grid 

spacing is 200 m near the ground and increases to 800 m at the model top. 

An initial thermal bubble with a maximum potential perturbation of 4 K is 

centered at x = 80 km, y = 48 km and z = 1.5 km to initialize convection in the truth 

simulation. The radii of the bubble are 10 km in the horizontal and 1.5 km in the vertical. 

Open lateral and free-slip top and bottom boundary conditions are used in both 

simulation and assimilation. A constant wind of u = 3 m s-1 and v = 14 m s-1 is subtracted 

from the original sounding to keep the main storm (right mover) near the center of the 

domain. These configurations are the same as those used in TX05, except for the larger 

computational domain and the use of vertical grid stretching; the stretched grid gives 

better vertical resolution near the surface. 

The bubble-triggered storm updraft reaches its full updraft intensity within 30 min. 

At around 60 min, the supercell starts to split into two, with one right mover and one left 

mover (Fig. 1a). By 120 min, the left mover exists the northwest corner of the central 

subdomain (Fig. 2a). Additional details on the general evolution of the simulated storm 

can be found in TX05. The simulated model state is output every 5 min for observation 

simulation and for analysis/forecast verification. 
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3.2.3    Simulation of observations 

A hypothetical WSR-88D radar with 1 degree beamwidth is positioned to the 

southwest of the storm. For the first set of experiments, the radar is located at x = - 68 km 

and y = - 68 km (the coordinate origin is located at the southwest corner of the 128 × 128 

km model domain); this is about 185 km from the domain center; approximately where 

the right-moving cell is located. At this distance, the earth curvature effect combined with 

beam bending based on the 4/3 earth radius model (Doviak and Zrnic 1993) places the 

lower edge and the center of the half-power beam of 0.5 degree elevation at 1.98 and 3.60 

km above ground, respectively.  In another word, there is no direct radar data coverage 

below 1.98 km level at all at this distance.  The vertical beamwidth as well as the spacing 

between two consecutive beams is about 3.8 km at this distance; for this reason, proper 

vertical beam pattern weighting is important. Two other sets of experiments assume that 

the radar is located 115 or 45 km southwest of the main storm (see Table 1). 

As in XTD06, radar data are assumed to be available on the elevation levels in the 

vertical and already interpolated to model grid columns in the horizontal. The standard 

WSR-88D precipitation scanning mode is assumed (see Fig. 2 of XTD06). Radial 

velocity (Vr) is simulated as in XTD06, and the same Vr observation operator is used in 

the EnKF assimilation. The reflectivity formula described in TX05 is used for simulation 

and assimilation. This formula returns the reflectivity (Z) in dBZ from the mixing ratios 

of rain, snow and hail/graupel. 

Gaussian-distributed random errors with zero mean and standard deviations of 1 

m s-1 and 3 dBZ are added to simulated Vr and Z, respectively. The 3 dBZ standard 

deviation of Z error is smaller than the 5 dBZ used in TX05 and XTD06, but is suggested 
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to be more appropriate by Xue et al. (2007); the value is also used by Tong and Xue  

(2008a). Using the larger error value results in slightly worse analyses. 

Surface stations of a hypothetical mesoscale observing network are located inside 

the 64 × 64 km interior subdomain with station spacings of about 20 km in the control 

and other directly-related experiments for a total of 9 stations. To simulate a network 

whose stations are not on the grid point while keeping the network more or less uniform, 

the stations are placed randomly within 400 × 400 m square boxes that are centered on 

the grid points 20 km apart. The EnKF code is general; it does not require a uniform 

distribution of stations.  

The observed variables at these stations include the horizontal wind components, 

the temperature, pressure, and water vapor mixing ratio. The standard deviation of the 

zero-mean Gaussian errors added to the simulated surface observations are: 1 m s-1 for 

wind components, 1 K for temperature, 1 hPa for pressure and 1 g kg-1 for water vapor 

mixing ratio. In sensitivity experiments, different network densities are tested (see Table 

1). 

Both radar and surface observations are assumed to be available every 5 minutes. 

The latter is actually true with the Oklahoma Mesonet while the WSR-88D radar volume 

scan interval in precipitation mode is typically 5 min. 

3.2.4   The EnKF algorithm 
 

The EnKF algorithm used in this study is based on the serial ensemble square root 

filter (EnSRF) of Whitaker and Hamil (2002). In this study, we refer to the algorithm as 

EnKF in general. The implementation follows XTD06 exactly, except for the addition of 
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surface observations, which are assimilated after the radar data (results obtained 

assimilating surface observations first are very similar).  

The state variables analyzed include u , v , w , θ , p , vq , cq , rq , iq , sq , and hq . 

To initialize the first ensemble forecast cycle, random initial perturbations as used in 

XTD06 are added to a horizontally homogenous first guess defined using the May 20 

sounding of the truth simulation. The random perturbations are drawn from a Gaussian 

distribution with zero mean and standard deviations of 2 m s-1 for u , v , w , 2 K for θ , 

and 0.6 g kg-1 for vq  and all microphysical variables. Perturbations for all except for the 

microphysical variables are added in the entire subdomain. The perturbations for the 

latter are added only in the region where radar echo is present at 20 min, the start time of 

the first assimilation cycle. Reflectivity data in both the precipitation and clear air regions 

(negative Z values are set to zero) are used. Radial velocity data are only used in regions 

where Z is greater than or equal to 10 dBZ. We note here that because the storm 

environment is initialized with a perfect model sounding and there is no land surface 

process in the model, there is no error in the storm environment except for that introduced 

by the initial ensemble perturbations. The benefit of the surface observations is expected 

only where storm-induced disturbance exists. 

Covariance localization (Houtekamer and Mitchell 2001) is used to limit the 

spatial influence of observations and reduce sampling error. A Schur product is applied 

with a smooth 5th-order distance-dependent function (Eq.(4.10) of Gaspari and Cohn, 

1999) multiplying the calculated background error covariance. For radar observations, a 6 

km localization radius is chosen in all directions to ensure the best results when only 

radar data is used (XTD06). For surface observations, when the mean station spacing 
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(station spacing hereafter for short) is 20 km, a horizontal localization radius of 30 km 

and a vertical radius of 6 km are found to be optimal through experimentation. When the 

station spacing changes from 2 km through 32 km in sensitivity experiments, different 

optimal horizontal localization radii ranging between 6 km and 36 km are chosen, again 

based on experimentation. Further discussions can be found in section 3.4.2. Forty 

ensemble members are used for all experiments, as in XTD06. 

To avoid the filter divergence problem caused by underestimation of covariance 

due to small sample size and/or model error, covariance inflation is used in all 

experiments following the procedure of TX05. For cases using radar observations only, 

covariance inflation is only applied in and near (within 6 km of) the region where 

observed reflectivity exceeds 10 dBZ. In experiments with only radar observations, a 5% 

inflation factor is applied for perfect-model experiments and 15% is used for imperfect-

model experiments (see Section 6). For experiments including surface observations, 

additional covariance inflation is applied at the lower levels within the cutoff radius of 

the surface observations, in the entire subdomain, using the same inflation factor (at 

points influenced by both radar and surface data, covariance inflation is done only once). 

Therefore, covariance inflation in regions not directly reachable by observations is 

avoided. This avoids excessive increase in the ensemble spread where the ensemble is not 

constrained by any observations. 

 

3.2.5    Assimilation experiments 

A complete list of experiments can be found in Table 1. The control experiment, 

Cntl or Ra (for radar data only), uses only data from a radar located 185 km from the 
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domain center where the main storm is located; this case serves as the baseline. Other 

experiments add data from a surface network of different station spacing, and test radar 

distances of 185, 115 or 45 km respectively. Some experiments assimilate a particular 

surface observation variable. In the experiment names, ‘Ra’ denotes the use of radar data, 

‘Sfc’ indicates the use of surface observations, ‘D’ followed by a number indicates the 

radar distance, and ‘S’ followed by a number indicates the station spacing. For example, 

RaSfcD115S6 means that both radar and surface data are used and the radar is located 

115 km from the domain center and the station spacing is 6 km. Additional characters, 

such as T in RaSfcT, indicate which variables in the surface data are assimilated. The 

results of these experiments are reported in the next three sections, focusing on the 

impact of additional surface observations. The experiments with the default radar 

distance of 185 km and default mean station spacing of 20 km have abbreviated names. 

Experiments discussed in section 3.6 include model error. In all experiments, the 

assimilation starts at 20 min and the first EnKF analysis occurs at 25 min. 

 

3.3      Impact of surface observations 

3.3.1    Results of experiments Ra and RaSfc 

The control experiment Ra (Table 3.1) is first examined, together with RaSfc. 

Figures 3.1 and 3.2 show the surface fields of the truth simulation and the ensemble mean 

analyses of experiments Ra and RaSfc, at 60 and 120 min of model time, respectively. 

RaSfc adds data from a surface network of 20 km mean spacing with all observed 

variables (u, v, T, p, and qv) assimilated. The ensemble mean analysis fields are plotted. 

At 60 min, or after eight 5-min analysis cycles, precipitation and cold pool associated 
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with the storm are established in both Ra and RaSfc in general (Fig. 3.1b, 3.1c) but Ra 

does not capture the cell splitting or the left moving cell at this time. The cold pool is too 

broad in Ra based on the -1 K perturbation potential temperature, θ', contour (Fig. 3.1b) 

but is much closer to the truth in RaSfc (Fig. 3.1c). Ra completely misses the surface 

convergence center associated with the main updraft while the divergence center 

underneath the precipitation core is too weak and does not have the right pattern 

(compare Fig. 3.1e with Fig. 3.1d). In comparison, RaSfc does a much better job 

capturing the convergence pattern along the gust fronts on the south and north side, and 

reproduces the magnitude and pattern of the main divergence center much better (Fig. 

3.1f).  It does significantly underestimate the convergence associated with the main 

updraft. In both cases, the analyzed fields are not very accurate quantitatively at this time. 
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Experiment 

 
Obs. Type 

 
Sfc. 
Obs. 

Spacing 
(km) 

 
Radar 
Dist. 
(km) 

 
Remark/Aspects tested 

Ra/Cntl Radar only N.A. 185 Control Exp. 
RaSfc Radar+Sfc All 20 185 Cntl sfc obs spacing 

RaSfcUV Radar+Sfc V 20 185 Individual sfc obs  
RaSfcT Radar+Sfc T 20 185 Individual sfc obs  
RaSfcP Radar+Sfc Pres 20 185 Individual sfc obs  

RaSfcQv Radar+Sfc Qv 20 185 Individual sfc obs  
RaSfcS32 Radar+Sfc All 32 185 Sfc obs spacing  
RaSfcS16 Radar+Sfc All 16 185 Sfc obs spacing  
RaSfcS12 Radar+Sfc All 12 185 Sfc obs spacing  
RaSfcS6 Radar+Sfc All 6 185 Sfc obs spacing  
RaSfcS4 Radar+Sfc All 4 185 Sfc obs spacing  
RaSfcS2 Radar+Sfc All 2 185 Sfc obs spacing  
RaD115 Radar only N.A. 115 Radar Dist.  

RaSfcD115 Radar+Sfc All 20 115 Radar Dist.  
RaSfcD115S6 Radar+Sfc All 6 115 Radar Dist. and Sfc Obs 

spacing  
RaD45 Radar only N.A. 45 Radar Dist.  

RaSfcD45 Radar+Sfc All 20 45 Radar Dist.  
RaSfcD45S6 Radar+Sfc All 6 45 Radar Dist. and Sfc. Obs. 

spacing  
RaNr0 Radar only 20 185 Imperfect model with 10×Nr0 
RaLFO Radar only 20 185 Imperfect model with LFO84 

RaSchultz Radar only 20 185 Imperfect model with Schultz 
RaWSM6 Radar only 20 185 Imperfect model with WSM6 
RaSfcNr0 Radar+Sfc All 20 185 Imperfect model with 10×Nr0 
RaSfcLFO Radar+Sfc All 20 185 Imperfect model with LFO84 

RaSfcSchultz Radar+Sfc All 20 185 Imperfect model with Schultz 
RaSfcWSM6 Radar+Sfc All 20 185 Imperfect model with WSM6

RaSfcNr0 Radar+Sfc All 6 185 Imperfect model with 10×Nr0 
RaSfcS6LFO Radar+Sfc All 6 185 Imperfect model with LFO84 

RaSfcS6Schultz Radar+Sfc All 6 185 Imperfect model with Schultz 
RaSfcS6WSM6 Radar+Sfc All 6 185 Imperfect model with WSM6 

 
Table 3.1: List of OSSE experiments examining the impact of surface observation data of 
different spacings and for different radar distances under the scenario of perfect and 
imperfect model. 
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Fig. 3.1. Perturbation wind vectors, simulated reflectivity Z (dBZ) and perturbation 
potential temperature 'θ  (K) (upper panel), and divergence fields (× 1000 s-1) (lower 
panel) at z = 100 m (first model level above ground) for truth (a, d), and experiments Ra 
(b, e) and RaSfc (c, f) at 60 min of model time. 

 
At 90 min (not shown), the right and left moving cells as seen from the low-level Z 

are now reasonably well captured in both cases. However, the convergence field is still 

not accurately analyzed, especially along the gust fronts and in Ra. By 120 min (Fig. 3.2), 

the hook echo structure of the major storm is reproduced well in both Ra and RaSfc (Fig. 

3.2b,c) but we see more differences in the analyzed surface divergence fields.  Both the 

intensity and pattern of the divergence in RaSfc are reproduced accurately (Fig. 3.2f) but 

the divergence in Ra is generally broader and weaker. The tail of the divergence band at 

the southwest end of the gust front is missing in Ra. Also mostly missing is the 
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convergence center associated with the left mover near the northwest corner of the 

plotted domain (Fig. 3.2e). 
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Fig. 3.2. As Fig. 3.1, but at 120 min. 
 
 

There are also clear differences between the analyses of gust front. The temperature 

gradients along the gust fronts are significantly weaker in Ra (Fig. 3.2b) than in RaSfc 

(Fig. 3.2c) and there is also larger position error of the gust fronts in Ra, especially near 

the western and northern domain boundaries.  In general, the low-level analysis of RaSfc 

can be considered very good at this time.  

The subjective comparison between Ra and RaSfc indicates that the surface 

observations have a noticeable positive impact on the analysis of low-level features, 
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including the cold pool and associated flows, even though the network has a much 

coarser resolution (~20 km) than would be needed to resolve the sharp gradient along the 

gust fronts. The impact on the precipitation field seems smaller, presumably because of 

that the hydrometeors that descend to the ground level are well captured by the radar data 

above. Without surface data, we have to rely on the model alone to establish the cold pool 

through microphysical and dynamic processes. As the cold air spreads away from the 

precipitation region, no more radar data (except for the clear air information contained in 

the zero reflectivity values) is available. 

The root mean square (rms) error of the ensemble mean analysis calculated 

against the truth is used to further quantify EnKF performance and the impact of surface 

data. The evolution of rms error with time is shown in Fig. 3.3 for Ra and RaSfc. As in 

TX05, the errors were calculated at grid points where observed Z exceeds 10 dBZ. The 

errors decrease during the first few cycles rapidly, from the initially very high level 

associated with the poor sounding-based initial guess.  Errors starting from 40 min, or 

after 4 analysis cycles, are shown here. The relative error ratio (RER) averaged over the 

last 10 analysis cycles ending at 120 min is also calculated to evaluate the impact of 

surface observations. It is defined as 

91RER
10

in
Ra Sfc

i
i n Ra

E
E

−
+

=

= ∑ ,                                                                                           (3.1) 

where i
Ra SfcE +  is the analysis rms error of a given state variable at the ith cycle when 

using both radar and surface observations and i
RaE  denotes the corresponding error using 

radar data only. The averaging over the last ten analysis cycles removes temporal 

fluctuations and provides a more reliable measure of the analysis accuracy. The RERs of 
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various state variables can be combined further to form RERs for several major 

categories, such as that for the wind, which averages the RERs of u, v and w, and that for 

microphysical variables, which averages the RERs of 5 microphysics variables. The total 

RER (TRER) averages the RERs of all 11 state variables and is used as the main 

indicator quantifying the improvement by surface observations. The RERs or TRERs of 

all experiments are summarized in Table 3.2. A similarly defined error ratio has been 

used in Xu et al. (2008). 

At the end of assimilation, or 120 min, the analysis errors in most fields are 

clearly lower in RaSfc than in Ra (Fig. 3.3). The percent improvement due to surface data 

is largest in u and θ, with the errors in RaSfc being only about 50-60% those of Ra. The 

absolute analysis rms error reduction in RaSfc is 0.8 1ms−  for u and 0.27 K for θ. Other 

variables also display improvement to various extents. The rms error in RaSfc is 65% of 

Ra for v, 61% for w, 73% for p, and 60% for vq . Even for microphysical variables which 

are not directly observed by surface observations, significant improvements are also 

found: the rms error is 60% of Ra for cq , 62% for rq , 48% for iq , 62% for sq  and 54% 

for hq . This amounts to a 30% to 50% reduction in errors in various model fields due to 

the assimilation of surface observations. We note that there are temporary increases in the 

rms errors near 65 min; this also occurs in our earlier studies for this storm also (TX05 

and XTD06) and we believe it is related to the cell splitting at this time. The TRER of 

RaSfc also shows evident improvement in the last 10 analysis cycles (Table 3.2). The 

reduction in the total relative error (1 - TRER) is 32% with the help of surface 

observations. 
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Experiment uvw Micro θ vq  Total 
RaSfcS32 0.85 0.83 0.78 0.80 0.83 

RaSfc(S20) 0.72 0.67 0.67 0.67 0.68 
RaSfcS16 0.66 0.64 0.62 0.61 0.64 
RaSfcS12 0.61 0.62 0.55 0.56 0.60 
RaSfcS6 0.50 0.55 0.48 0.43 0.51 
RaSfcS4 0.47 0.53 0.45 0.39 0.48 
RaSfcS2 0.47 0.56 0.45 0.38 0.49 

      
RaSfcUV 0.80 0.76 0.73 0.76 0.77 
RaSfcT 0.84 0.75 0.80 0.86 0.80 

RaSfcQv 0.86 0.79 0.77 0.80 0.81 
RaSfcP 0.93 0.90 0.91 0.93 0.91 

      
RaSfcD115 0.71 0.71 0.72 0.68 0.70 

RaSfcD115S6 0.52 0.61 0.56 0.50 0.56 
RaSfcD45 0.97 1.04 0.96 0.95 0.99 

RaSfcD45S6 0.85 0.96 0.89 0.82 0.89 
      

RaSfcNr0 0.75 0.88 0.67 0.72 0.80 
RaSfcNr0S6 0.47 0.76 0.48 0.44 0.60 
RaSfcLFO 0.95 1.01 0.96 0.80 0.96 

RaSfcLFOS6 0.70 1.00 0.84 0.55 0.84 
RaSfcStz 0.88 1.03 0.91 0.79 0.94 

RaSfcStzS6 0.76 1.01 0.85 0.61 0.87 
RaSfcWSM6 0.92 0.98 0.96 0.86 0.94 

RaSfcWSM6S6 0.78 0.95 0.91 0.62 0.86 
RaSfcMulti 0.81 0.95 0.85 0.77 0.88 

RaSfcMultiS6 0.58 0.95 0.68 0.49 0.75 
      

RaNr0 1.19 1.19 1.56 1.49 1.27 
RaLFO 1.27 2.47 1.25 1.40 1.81 

RaSchultz 1.37 4.36 1.47 1.33 2.71 
RaWSM6 1.95 4.17 1.95 1.56 2.91 
RaMulti 1.35 2.95 1.27 1.33 2.04 

 
Table 3.2: Relative rms error ratio (RER) of u, v and w, for microphysical variables, θ , 

vq  and all variables (total) for listed experiments. The errors are relative to experiment 
Ra, except for those of different radar distance where the error is relative to the radar-
data-only experiment of the same distance.  
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Fig. 3.3. The rms error of ensemble mean forecasts and analyses plotted against time for 
Ra (solid) and RaSfc (dotted) for a) u (m s 1− ), b) v (m s 1− ), c) w (m s 1− ), d) potential 
temperature θ  (K), e) pressure p (Pa), f) cq  ( 1g kg− ), g) rq  ( 1g kg− ), h) (upper curves) 

vq  and (lower curves) iq  ( 1g kg− ), i) sq ( 1g kg− ), and j) hq  ( 1g kg− ). The sharp reductions 
in the error at the analysis times are due to analysis updates. See TX05 for further 
explanations of this type of plots.  

 

To examine the impact of surface data at different levels, vertical profiles of rms 

errors obtained by horizontal averaging over the precipitation regions are plotted in Fig. 

3.4 for 120 min. The rms errors for u, v, θ,  p, rq , and vq  are largest at the low levels and 

near the surface in Ra, primarily because of the lack of low-level radar data. The largest 

improvements in RaSfc for these variables are also found at the surface. For example, the 

rms error reductions are 2.6 1ms−  for u, 0.8 K for θ  and 12 Pa for p at the surface, 

reflecting the better analysis of surface cold pool and the associated fields with the use of 

surface observations. For w and all four microphysical variables shown ( cq , rq , sq  and 

hq ), the largest rms error reduction is generally found at the levels where the 

corresponding Ra errors are largest. For example, hq  error is reduced from about 0.28 g 
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kg-1 to about 0.14 g kg-1 near the 4 km level, and the maximum reduction in qs error, 

about 0.08 g kg-1, occurs close to 12 km. The error reduction in w is between 0.3 and 0.7 

m s-1 between the levels of 2 and 13 km. This general improvement in the storm analysis 

through the addition of surface data, even at the upper levels away from the ground, is 

very encouraging. 
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Fig. 3.4. The rms error profiles of the ensemble mean analyses of Ra (solid) and RaSfc 
(dotted), for a) u (m s-1), b) v (m s-1), c) w (m s-1), d) θ (K), e) p (Pa), f) cq ( 1g kg− ), g) rq  
( 1g kg− ), h) vq  ( 1g kg− ) and iq  ( 1g kg− ) , i) sq ( 1g kg− ), and j) hq ( 1g kg− ) at 120 min. 
 

3.3.2    Background error correlation structure 
 

To gain insight on how the surface data affect the model state, we examine a few 

ensemble-derived background error correlation (ρ) fields. The background error 

covariance estimated from the ensemble members determines how observation 

information is spread in space and helps improve the analysis of variables not directly 

observed. Accurate error correlations should reflect the physical structure of the storm. 
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Fig. 3.5. The surface truth wind vectors, together with forecast error correlation 
coefficients  estimated from the forecast ensemble at 75 min for experiment RaSfc. Error 
correlation between (a) surface wind observation U (wind along C-D line) at station O2 
(x = 57 km, y = 59 km) and u at the grid points, and (b) between surface temperature at 
station O2 and u. Solid (dashed) contours represent positive (negative) correlations at 
intervals 0.2; zero contours are omitted. CC and DC in (a) mark the low-level 
convergence and divergence centers, respectively, and lines A-B and C-D indicate 
location of the vertical cross sections shown in Fig. 3.6. 
 

We choose two locations of possible surface observations at 75 min (Fig. 3.5) to 

calculate the spatial forecast error correlations. The first location, O1, is in the inflow 

region of the storm, at (73, 65) km, and the second location, O2, is in the outflow region 

within the cold pool, at (57, 59) km (Fig. 3.5a). The surface inflow through O1 feeds the 

convergence center marked as CC and the outflow through O2 originates from the 

surface divergence center marked as DC in Fig. 3.5a. As in TX05, we calculate the 

correlation coefficients between a variable at a given observation location, and another 

(possibly different) variable at all other grid points. When these two variables are the 

same, we are calculating the spatial auto-correlation coefficient, and when they are 
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different, we obtain a spatial cross-correlation. Such correlation information, after being 

localized, is used directly in the EnKF algorithm for analysis update. 

We choose two vertical cross sections, along lines A-B and C-D, as shown in Fig. 

3.5a. The horizontal wind vector is projected onto each of these two lines (positive 

towards B and D, respectively), and we calculate the correlation between this wind 

component (referred to as U) with other state variables.  

We first present the ρ  field at the surface, between U at location O2 (wind along 

line C-D) and u at the grid points (Fig. 3.5a), and between surface temperature at O2 and 

u (Fig. 3.5b). Positive U-u correlations are found to occupy a large part of the cold pool 

outflow region and extend out to 20 to 30 km from O2 (Fig. 3.5a), and more so in the 

generally westward direction. This positive correlation indicates that when U is smaller 

(more negative) at O2, u is smaller (more negative), which is physically reasonable 

because these U and u are located within the same outflow region; a stronger outflow 

observed at O2 suggests stronger outflows at locations with positive correlations. To the 

northeast of O2, correlation contours are more closely packed, and the correlation 

coefficient becomes negative immediately beyond the divergence center (but before 

going into the inflow region). This demonstrates that the outflow on the other side of DC 

is also stronger when that on this side of divergence center near O2 is stronger.  

The correlation between surface temperature T at O2 and u shows a similar 

pattern as that between U and u (Fig. 3.5b), which shows that a stronger colder cold pool 

corresponds to stronger outflows, with more negative u west of DC and less positive u 

east of DC.  When such cross-correlation is estimated with reasonable accuracy, surface 

temperature observations can be used effectively to update the flow field, and vice versa. 
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The generally well-defined correlation patterns up to 30 km from the observation location 

suggest that the localization radius of 30 km used for the current surface network is 

appropriate.  
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Fig. 3.6. Forecast error correlation coefficients estimated from the forecast ensemble at 
75 min for experiment RaSfc, in the vertical cross section along line A-B (upper panels) 
and along C-D (lower panels) in Fig. 3.5. Error correlations (upper panels) between (a) 
surface temperature T at O1 (x = 73 km, y = 65 km) and w, (b) surface wind U at station 
O1 and θ, (c) U and u, (d) U and w. Error correlations (lower panels) between, (e) surface 
T at station O2 (x = 57 km, y = 59 km) and w, (f) U at O2 and θ, g) U and u, and (h) U 
and w. Thick solid (dashed) contours represent positive (negative) correlations at 
intervals 0.2. Shaded with thin contours shows the truth field of w in (a), (d), (e) and (h) 
with interval 2.5 m s 1− , and perturbation θ' in (b) and (f) with interval 2 K. Wind vectors 
in (c) and (g) show the truth perturbation wind field.       
 

In the upper panels of Fig. 3.6, the correlations between surface observations at 

O1 and other state variables in the vertical cross-section along line A-B, through O1 and 

CC, are shown (in contours), together with the corresponding state variable fields (shaded 

contours). For the correlation between T at O1 and vertical velocity w, the most 

prominent feature is a deep column  of positive correlation coinciding with the main 



61 
 

updraft (Fig. 3.6a), suggesting the presence of a stronger updraft when surface T in the 

low-level inflow region is higher. A similar pattern is found between U at O1 and w, 

suggesting a stronger updraft when surface inflow towards CC is stronger (Fig. 3.6d). 

Again, this is physically consistent with the expected storm dynamics. The negative 

correlation with potential temperature, θ, in the updraft region indicates enhancement of 

the warm core structure by low-level inflow (Fig. 3.6b). The correlation of U with u is 

negative in the lower part of the troposphere and positive above (Fig. 3.6c), suggesting 

that a stronger easterly component at the surface contributes to more westward tilt of the 

updraft at the low levels while at the upper levels this enhanced easterly component may 

turn into an enhanced westerly component as the updraft air parcels rise and overturn. 

The corresponding correlation fields in the C-D cross section are plotted in the 

lower panels of Fig. 3.6. In this case, the cross section passes through the surface 

divergence center (DC) with the observation located inside the cold pool (O2). Again, we 

find similar correlation patterns between surface T and U with w (Fig. 3.6e and Fig. 3.6h). 

The strong positive correlations between U, T in the downdraft outflow region and w in 

the updraft region, extending all the way from the surface to about 9 km, indicate a 

stronger downdraft (or weaker updraft) when temperature at O2 inside the cold pool is 

lower, or when the outflow near the surface is stronger. The positive correlation between 

U and θ in the downdraft region (Fig. 3.6f) also reflects the relation between outflow 

strength and the downdraft temperature. The correlation between U and u in this cross 

section changes sign at the middle troposphere (Fig. 3.6g), similar to what is observed in 

the A-B cross section (Fig. 3.6c).  
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The physically meaningful and dynamically consistent correlations of surface 

temperature and wind with the state variables presented here, taken in both the inflow and 

outflow regions, indicate that the ensemble system is able to properly estimate the spatial 

auto- and cross-correlations. Such flow-dependent error correlation information is 

valuable for optimally utilizing surface observations. The 6 km covariance localization 

radius that we use in the vertical allows the surface observations to directly influence 

state variables up to 6 km above the surface. Of course, the impact of surface 

observations is not limited to the lowest 6 km (see Fig. 3.4), because of information 

propagation in time and space by the prediction model. 

 

3.4.     Sensitivity experiments  

 In this section, we will further examine the impact of different observation 

variables or types, and the impact of surface data for different network densities and/or 

radar distances. 

 

3.4.1    Impact of surface measurement type 

In this sub-section, the surface measurement types or variables, including wind, 

temperature, pressure and water vapor, are assessed individually for their impact. The 

experiments are listed as RaSfcUV, RaSfcT, RaSfcP and RaSfcQv in Table 1, and are the 

same as RaSfc except that only the listed surface observation variables are included. 

The relative analysis error plots for these four experiments are shown in Fig. 3.7. 

The relative error is defined as the ratio of the rms error of the individual sensitivity 

experiment to that of the chosen reference, which in this case is Ra (c.f., Fig. 3.3). The 
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plots show that the surface wind observations have the largest impact while pressure 

observations have the least impact; the relative rms errors of RaSfcP are close to 1 at the 

end of assimilation cycles. In this case, the RERs or TRER are 93% to 90% (Table 3.2), 

indicating only 7% to 10% error reduction when only additional pressure observations are 

assimilated. For microphysical variables, temperature observations result in the smallest 

RER (Table 3.2). None of these individual measurements were able to produce as large 

an impact as RaSfc which assimilates all surface variables; it achieves a TRER of 68%. 
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Fig. 3.7. Analysis rms errors relative to those of Ra for RaSfcUV (solid), RaSfcT (dotted), 
RaSfcP (dash-dotted) and RaSfcQv (dashed), as a function of analysis time. 
 

It is noted that the largest improvements for state variables θ, p and vq  are also 

obtained when assimilating surface winds rather than direct measurements of these 

variables themselves. This seems to be at least partly because rms errors for θ, p and vq  

in Ra are already much smaller than the standard deviations of the corresponding surface 

observation errors (Fig. 3.3), which are 1 K for T, 100 Pa for p and 1 g kg-1 for qv. Such 

error-containing observations have a limited ability to further reduce the errors of the 
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corresponding state variables (however, keep in mind that local errors in θ, p and vq , 

especially underneath the active storms, are larger than those of precipitation-domain 

mean shown in Fig. 3.3, so the benefit of analyzing surface data should still be 

achievable). For u and v, the analysis errors from Ra are still relatively large (Fig. 3.3) 

compared to the surface wind observation errors; therefore there is more room for direct 

positive impact by the wind observations. When wind observations are improved, other 

variables benefit too.  In general, θ  benefits most from surface observations (73% RER) 

among all state variables; this is consistent with the fact the most important features at the 

surface are related to the cold pool. 

  That the impact of surface observations is largest when all of the measured 

variables are assimilated is expected, since in this case every individual measurement 

shows benefit. The total impact using all measurements together is smaller than the sum 

of individual impacts, in terms of the percentage error reduction. 

Zhang et al. (2004) show that liquid-water potential temperature observations 

have a larger impact than winds in retrieving cold pool. Since liquid-water potential 

temperature is typically not measured, we cannot directly compare our results with theirs. 

Simplistic radar data coverage assumption, the use of Vr data only, and simple model 

microphysics used there further hinder a direct comparison. 

In summary, the surface wind observations are found to have the largest impact 

on the analysis of wind and temperature fields for the chosen supercell and for the typical 

observation errors assumed. The improvement in analyzed cold pool temperature comes 

not only from thermodynamic observations, but even more from surface wind 

observations, which directly improve the analysis of convergence and divergence patterns 
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that are closely linked to updraft and downdraft intensities as well as gust front positions. 

Such inter-connections are reflected in the background error covariance derived from the 

forecast ensemble, which drives the multivariate EnKF analysis. Wind observations are 

used to update all state variables, not just wind components themselves. 

 

3.4.2   Varying surface network spacing 

A series of experiments are conducted to examine the impact of surface network 

spacing on the analysis. Additional experiments with network spacings ranging from 32 

km to 2 km are performed (Tables 3.1 and 3.2).  In these experiments, surface 

observations are still approximately uniformly distributed in the central subdomain and 

there are 4, 16, 25, 100, 256 and 961 surface stations in RaSfcS32, RaSfcS16, RaSfcS12, 

RaSfcS6, RaSfcS4 and RaSfcS2, respectively.  

For each network spacing, experiments are conducted to determine the optimal 

horizontal covariance localization radius. The optimal localization radius is plotted in Fig. 

3.8a against the network spacing. As the spacing decreases, the optimal radius also 

decreases. When a denser network is employed to resolve smaller-scale features, 

reducing the radius has the effect of keeping the influence of observations more localized. 

The sampling error in the ensemble filter can also be decreased when a smaller 

localization radius is used (Anderson et al. 2005). 
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Fig. 3.8. (a) The optimal horizontal covariance localization radius for surface data as a 
function of mean surface network spacing, (b) the total rms error ratio (TRER) as a 
function of the mean surface network spacing, and (c) the TRER as a function of the 
number of surface observations, plotted in a logarithmic space. The thick straight line in 
(c) represent the -1/2 slope. 
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We first examine the cases of medium and high-density networks of 12 and 6 km 

spacing. In RaSfcS12, for u, v, 'θ , 'p , vq , cq , rq  and sq , the relative analysis rms errors 

decrease faster and reach lower levels than in RaSfc by 90 min (Fig. 3.9). After 90 min, 

as the split left-moving cell propagates quickly towards the northwest corner of the 

subdomain, the rms errors start to grow in RaSfcS12 and become close to those of RaSfc 

for some variables at the end of the assimilation period; that is when the number of 

surface observations (which are confined to the subdomain) covering the split cell 

decreases. 
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Fig. 3.9. As Fig. 3.7 but for RaSfc (solid), RaSfcS12 (dotted) and RaSfcS6 (dashed). All 
are errors relative to those of Ra. 
 

When the number of surface stations is increased to 100, with a 6 km spacing, in 

RaSfcS6, the rms errors of the variables directly observed, i.e., of u, v, θ , p, and vq , 

remain consistently lower than in RaSfc and RaSfcS12. For cq , hq , rq and w, this smaller 

6-km spacing leads to an improvement at most of the analysis times but a slight 

degradation compared to the coarser-resolution cases in the last couple of cycles. Even so, 
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the improvement over Ra is still significant at the end of last cycle, with 10% to 45% 

error reductions. The degradation of analysis with increasing network density in some 

later cycles for some indirectly observed variables reflects the nonlinear nature of the 

storm-scale data assimilation problem. Relative to the generally large improvement in 

other variables and during other cycles, the amount and extent of the degradation are 

small.  

The TRERs of the above experiments are plotted in Fig. 3.8b against the network 

spacing. It is interesting that the TRER decreases roughly linearly with the decrease of 

network spacing, or with the increase of network resolution, until the spacing is close to 

the grid interval of truth simulation. Given that the number of surface observations is 

much smaller than the number of radar observations, the number of which is kept fixed, 

such a strong dependency of analysis accuracy on surface network density is very 

interesting; it suggests increasingly large impact of surface networks on the analysis of 

convective-scale features as the network density increases. 

Since Fig. 3.8b shows that TRER ∝  d, where d is the mean network spacing, then 

TRER ∝  A n-1/2 and log(TRER) 1 2 log/ ( )n∝ − , where A is the area covered by the 

network and n is the number of observation stations. Morss et al. (2001) point out that 

such a power-law behavior is expected of a network whose number of observations is 

much greater than the number of degrees of freedom in the analysis. This condition is 

obviously not met in our case, even if we include radar observations.  

In Fig. 3.8c, we plot the TRERs against the number of surface observations in 

logarithmic space where the thick straight line represents a slope of -1/2. It can be seen 

that for relatively coarse resolutions, the error reduction rate is close to the -1/2 power 
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law and for higher resolutions, the rate of error reduction is slower than the power law 

suggests. Morss et al. (2001) and Anderson et al. (2005) also found steep error reduction 

when the observations are relatively sparse (but not too sparse); for relatively dense 

network, the error reduction is close to or somewhat shallower than the power law 

suggests. While in our case, the error curve is never steeper than what the -1/2 power law 

suggests, the general trend is consistent with those two studies. Our case is more 

complicated because of the presence of much denser radar observations all the time. 

The above experiments clearly demonstrate the benefit of higher surface network 

densities for storm-scale analysis. For real storms that may contain even more small-scale 

structures than the simulated truth storm does, more benefit is potentially achievable with 

higher-density networks. 

 

3.4.3    Varying radar distance 

In the next set of experiments, the radar is moved closer to the storm, at a distance 

of 115 km in RaD115, RaSfcD115 and RaSfcD115S6, and a distance of 45 km in 

RaSfcD45 and RaSfcD45S6 (see Table 3.1). Fig. 3.10 shows the analysis rms errors of 

RaD115 relative to those of Ra, also those of RaSfcD115 and RaSfcD115S6 relative to 

those of RaD115. With the radar at a closer distance of 115 km, RaD115 is consistently 

able to produce better analyses than Ra, especially for microphysical variables (which are 

directly linked to Z measurements). The final levels of error are lower for all variables, 

and are even smaller during the intermediate cycles.  Relative error reductions reach 10% 

- 20% compared to Ra for most variables, with the largest error reduction around 75% at 

65 min for rq . In fact, the error peaks found in many variables in Ra (Fig. 3.3) and other 
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experiments of the same radar distance (not directly shown) at around 60 min are mostly 

gone, resulting in significantly smaller relative errors around this time (Fig. 3.10). The 

closer location of radar provides more low-level data coverage and better vertical 

resolution at the location of storm. When the radar is located at 115 km from the main 

storm, the impact of additional surface observations taken at 20 km mean spacing is 

smaller during the early assimilation cycles (RaSfcD115 v.s. RaD115), compared to the 

185 km case (RaSfc v.s. Ra), but the impact increases during later cycles (compare the 

solid curves in Fig. 3.10 and Fig. 3.9 noting the difference in vertical axis scales), partly 

because of the error increase in the case using no surface data (RaD115). The TRER of 

70% is slightly larger but still close to that of RaSfc (68%). 
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Fig. 3.10. Analysis rms errors of RaD115 relative to those of Ra (dotted), of RaSfcD115 
relative to those RaD115 (solid), and of RaSfcD115S6 relative to those of RaD115 
(dashed). 

 

RaSfcD115S6, with a 6-km network spacing, shows a much more pronounced 

impact of surface data, starting from the early cycles (Fig. 3.10). After 90 min, both 12 

and 6 km networks provide significant positive impacts, with the 6 km network providing 
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the most. Unlike the 20-km spacing case (see section 3.4b), we observe no degradation in 

the analyses of microphysical variables as the spacing decreases in this case. 

When the radar is located much closer to the storm center, at a distance of about 

45 km, radar observations alone give very good analyses; there is not much room left for 

further improvement by surface observations of 20 km spacing, with the achieved TRER 

being 99%. The assimilation of surface observations at a spacing of 6 km in RaSfcD45S6 

improves the results over those of RaD45, with an error reduction of 11% (TRER = 0.89, 

Table 3.2). 

 

3.5     Impact of surface observations on forecast 
 

To examine the impact of surface observations on the subsequent forecast, we 

perform one-hour forecasts from the ensemble mean analyses of Ra, RaSfc and RaSfcS6, 

at 60, 90 and 120 min, respectively. We plot the average relative error ratios for groups of 

state variables between the forecasts with and without surface data, where the station 

spacing is either 20 or 6 km. The groups of variables are wind components u, v and w, 

potential temperature and pressure, and microphysical variables. 

Fig. 3.11 shows that when the forecasts start at 60 min of model time and when 

the station spacing is 20 km, the RER (thick black lines) of the wind components grows 

quickly from the initial value of close to 0.7 to about 1 at 100 min and exceeds 1 after 

100 min. When the station spacing is 6 km, the corresponding RER (thick dashed lines) 

grows from about 0.56 at 60 min to about 0.75 by 90 min and remains about level 

afterwards. The RERs for the microphysical variable have very similar trends (Fig. 3.11c) 
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while those for θ and p show that the benefit of surface data is sustained for the entire 

period for the 20 km case and even increases with time in the 6 km case (Fig. 3.11b).  
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Fig. 3.11. The average relative rms error ratios of the u, v and w components (upper 
panel), θ and p (middle panel), and moisture and microphysical variables (lower panel), 
for 60-min-long forecasts starting from ensemble-mean analyses at 60 min (thick black 
lines), 90 min (thin black lines), and 120 min (thick gray lines). The solid curves are for 
the forecast errors starting from the analyses of RaSfc (with 20 km station spacing) 
relative to the corresponding errors of Ra (radar only), and the dashed lines are for the 
forecast errors of RaSfcS6 (6 km station spacing) relative to those of Ra.  
 

Fig. 3.12 shows that the 60-min forecast of RaSfc valid at 120 min is rather poor 

(Fig. 3.12c) and is of similarly poor quality as that of Ra (Fig. 3.12b); the reflectivity 
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associated with the main cell near the center is completely missing in both cases. The 

corresponding forecast of RaSfcS6 is much closer to the truth (Fig. 3.12d v.s. Fig. 3.12a). 

It is clear that when the surface data are assimilated for a relatively short period of time 

(8 cycles over 40 min), the benefit of a denser network is much greater. The benefit of the 

20 km network is more or less lost after 40 min of forecast while for a denser 6 km 

network the benefit is sustained for the entire hour of forecast and even increases slightly 

with time for thermodynamic variables (Fig. 3.11b). 
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Fig. 3.12. Perturbation wind vectors, Z (dBZ, shaded) and 'θ  (K, contours) fields, valid 
at 120 min, from the truth (a), and 1-hour forecasts starting from 60-min ensemble-mean 
analyses of Ra (b), RaSfc (c) and RaSfcS6 (d). 
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Fig. 3.13. As Fig. 3.12, but for fields valid at 150 min, of truth (a) and 1-hour forecasts 
starting from 90-min ensemble-mean analyses of Ra (b), RaSfc (c) and RaSfcS6 (d). 
 

When surface observations are assimilated until 90 min of model time, significant 

benefit of surface observations is sustained for the entire hour of forecast (thin black lines 

in Fig. 3.11), for both network densities. In this case, the RERs for the wind components 

and the microphysical variables decrease with time for much of the time period. Overall, 

the RERs are lower than in the previous case of shorter assimilation period, and the RERs 

for the 6 km network is lower than those of 20 km network in both cases throughout the 

forecast, but the difference due to network density is generally larger when the forecasts 

are initialized at the earlier 60 min. This says that when surface observations are 
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assimilated within fewer cycles, there is more benefit having a denser network. These are 

also supported by the plots of low-level forecast fields at 150 min (Fig. 3.13). The 

forecast of Ra (Fig. 3.13b) is poorest among the three and that of RsSfcS6 (Fig. 3.13d) is 

the best. The most noticeable differences are with the left-mover near the northwestern 

corner of the plotting domain. For the main cell near the center, the difference is smaller, 

especially when compared to the previous case where forecasts start from 60 min (c.f., 

Fig. 3.12). 

When the assimilation cycles continue until 120 min, the analysis RERs become 

closer between the 6 km (RaSfcS6) and 20 km (RaSfc) cases (gray lines in Fig. 3.11). In 

fact, the analysis RERs for the wind components (Fig. 3.11a) are so close that after 10 

min of forecast the RER of the 20 km case (thick gray curve) becomes lower than that of 

the 6 km case (this behavior is related to nonlinear error growth). The actual analysis 

errors at this time are already very small even with the 20 km spacing (c.f., Fig. 3.3) 

therefore further improvement due to higher network density becomes negligible. For 

temperature and pressure, the benefit of the denser network lasts a little longer (Fig. 

3.11b) while the benefit for microphysical variables is sustained throughout the hour of 

forecast (Fig. 3.11c). 

 

3.6     Impact of surface data in the presence of model error  
 

Model error can significantly impact the behavior EnKF analysis. For real world 

problems, model error is inevitable. Model error can originate from physical 

parameterizations, model numerics and resolution, and simplifying assumptions made to 

the dynamic equations. For short-range (~ a few hours) simulation/prediction of 
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convective storms, the microphysical parameterization (MP) is often the largest source of 

error or uncertainty (e.g., Gilmore et al. 2004b; Tong and Xue 2008b) and efforts to 

alleviate such uncertainty can be made through parameter estimation (Tong and Xue 

2008a). In this section, we simulate the potential MP error by using MP scheme(s) in the 

assimilating model different from the one used in the truth simulation. Such an approach 

had been used with cumulus parameterization schemes in the OSSEs of Meng and Zhang 

(2007) for larger-scale applications. Our main goal here is to assess the impact of surface 

data in the presence of a dominant form of model error. 

We first assess the impact of model error in the radar-only case. Experiments 

RaLFO04, RaSchultz and RaWSM6 are the same as Ra except for the use of “wrong” 

LFO04, Schultz and WSM6 (c.f., section 3.2.1) MP schemes, respectively. Experiment 

RaMulti uses LFO04, Schultz and WSM6 in 13, 13 and 14 of the 40 ensemble members 

and such a multi-physics approach has been found effective by Meng and Zhang (2007) 

and Fujita et al. (2007) in increasing the ensemble spread and reducing analysis error. 

Another experiment, RaNr0, uses the truth MP scheme (LFO83) but with the rain water 

intercept parameter, 0rN , increased by a factor of 10. This increases the number of rain 

drops and reduces their average sizes, leading to more rain evaporation and stronger cold 

pools. In the presence of model error, the covariance inflation coefficient is increased to 

15%. 

Fig. 3.14a shows the TRERs of the radar-only experiments with MP error, relative 

to perfect-model experiment Ra. In all cases, the TRER is larger than 1, indicating 

degradation of analysis due to model error. Among them, RaWSM6 has the largest TRER 

and RaNr0 has the smallest TRER. For RaNr0, the error is about 27% more while for 
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RaWSM6 the error is about a factor of 3 larger than the perfect-model case. For real 

cases, we do not know which MP scheme is more accurate and one way to account for 

such uncertainty is to use multiple MP schemes in the ensemble, which will at least help 

better sample the uncertainty. Fig. 3.14a shows that the TRER of RaMulti is smaller than 

those of RaWSM6 and RaSchultz but slightly larger than that of RaLFO04. Considering 

that LFO04 is a ‘close relative’ of LFO83 that is used in the truth simulation, the fact that 

RaMulti performs close to RaLFO04 suggests that the use of multiple MP schemes is 

rather effective. 

In the presence of MP error, it is shown in Fig. 3.14b that with a network of 20 

km spacing, surface observations still show positive impact on the storm analyses, but the 

magnitude of impact is reduced. The error reduction is largest for RaSfcNr0 with the 

TRER being about 80%. RaSfcNr0 has the smallest MP error since only the value of the 

rain intercept parameter is in error. The TRERs of all 20-km experiments using a single 

wrong microphysics scheme are close to 95%, indicating rather small positive impact 

from surface data. When multiple MP schemes are used in RaSfcMulti, the TRER is 

about 88%, smaller than the cases of single wrong scheme. We also notice that the 

microphysical state variables are improved least by the surface observations among these 

experiments (Table 3.1). A denser surface network of 6-km spacing is shown to produce 

larger positive impacts (Fig. 3.14b), with the error reduction in the multi-scheme case 

being about 25%, while that with wrong rain intercept parameter value is about 40%. The 

relative impacts among different schemes are similar to the 20-km case. 
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Fig. 3.14. (a) Total relative rms error ratios (TRERs) between imperfect and perfect 
model experiments for radar data only experiments RaNr0, RaLFO04, RaSchultz, and 
RaMulti, and (b) total relative rms error ratios (TRERs) for experiments with and without 
surface data when the model is imperfect. 
 

We note here that in this study, the environment of the convective storms is 

assumed perfect (apart from the noise introduced when initializing the initial forecast 

ensemble), being based on a perfect sounding. The surface data are to help analyze the 

perturbations associated with the convective storms, and near the surface the cold pool 
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and associated features are profoundly influenced by the microphysics (Snook and Xue 

2008); for this reason, microphysics error significantly reduces the ability of surface 

observations in improving state estimation. 

 

3.7 The case of imperfect storm environment  

Most prior OSSE studies based on EnKF with convective scale analysis make the 

assumption of a perfect storm environment while in reality the storm environment always 

contain error which cannot be neglected. The source of these errors might result from 

previous inaccurate forecast or/and erroneous observations. Numerical simulations have 

shown that the environmental factor can affect storm initialization and development in 

terms of storm structure and propagation (Weisman and Klemp 1982; Weisman and 

Klemp 1984; Crook 1996; McCaul and Weisman 2001). Crook (1996) showed that moist 

convection forced by boundary layer process is sensitive to low-level thermodynamic 

environmental fields, e.g. moisture and temperature, with typical observational variability. 

Typical boundary moisture variability turns out to have larger impacts on storm strength 

for the well-developed convection than temperature. It is also found that low-level 

environment parameter could also exert influence on storm structure even if the land 

surface process is ignored (Park and Droegemeier 2000; Richardson and Droegemier 

1999; Richardson et al. 2007). Park and Droegemeier (2000) examined the effect of 

prescribed subcloud water vapor error on storm evolution and suggested that the 

perturbation in ambient environment could affect both main and secondary storm. 

Richardson and Droegemier (1999) and Richardson et al. (2007) demonstrated that an 

inhomogeneous environment with horizontally variability of wind and low level moisture 
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could also influence storm structure as well as propagation significantly. Compared with 

the studies examining the environment impact on storm development, there are almost no 

researches discussing the impact to assimilate radar observations for storm analysis in the 

existence of low-level environmental error. It is noted that the environment error might 

be involved in the real case data assimilation. However, it is hard to isolate these errors in 

complicated real cases when they are blended with other error sources. One of the 

advantages of OSSE is to provide insight into this specific problem by quantitatively 

adding prescribed errors on the ambient storm environment.   

In this study, we try to investigate the impact of assimilating radar and surface 

observations in the existence of storm environment errors with the aid of OSSE. Various 

storm environment errors, e.g. moisture, temperature and wind, will be added to the 

background fields. Simulated radar and surface observations will be assimilated to study 

their individual and combined impact on storm analysis. We seek to answer the following 

questions in this study: What is the impact of assimilating radar observations on 

convective scale storm analysis in presence of various ambient storm environment errors? 

Could the assimilation of additional mesonet surface observations helps to correct the 

environment error and achieve improvement on analyses and forecasts? 

Since the focus of this study is the development of the supercell storm related to low 

level cold pool, rather than an investigation of convection initialization etc., there is no 

boundary layer process (surface physics) involved in all the simulations and analyses for 

simplicity. It is also known that the cold pool produced by convection would suppress the 

boundary layer activity significantly so it appears to us reasonable to ignore this process 

in our OSSE setting.    
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3.7.1    Experiment setup 

The horizontal grid resolution used in the model is 2 km and the vertical grid 

spacing stretches from 200 m near the ground to 800 m at the model top with the 

stretching scheme using a hyperbolic tangent function. A grid of 51×51×35 points in x, y 

and z direction is chosen, which gives a 96×96×16 km physical domain for all the 

simulations and analyses. The sounding extracted from the 20 May 1977 Del City, 

Oklahoma, supercell storm (Ray et al. 1981) is modified in low levels with a well mixed 

boundary layer (constant moisture and potential temperature) to initialize the truth storm 

simulation (Fig. 3.15). We refer this perfect sounding as PS thereafter. The low level 

environment moisture, potential temperature and wind error will be added to this 

sounding later to create an imperfect storm environment, with these erroneous soundings 

referred as MES, TES and WES thereafter respectively (Fig. 3.15). The environment 

error is -3 m/s for both u and v, 2 K for potential temperature and 2 g/kg for water vapor 

mixing ratio, respectively. 

 

3.7.1.1 Truth simulation 

An initial thermal bubble with a maximum potential perturbation of 4 K is centered 

at x = 48 km, y = 16 km and z = 1.5 km to trigger convection in the truth simulation. The 

radii of the bubble are 10 km in the horizontal and 1.5 km in the vertical. Open lateral and 

free-slip top and bottom boundary conditions are applied in both simulation and 

assimilation. 
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Fig. 3.15. Sounding to initialize the storm simulations. The gray lines below 700 hpa 
denote the environment errors added to the original sounding. 
 

The bubble-triggered storm reaches its full updraft intensity within 20 min. The 

supercell starts to split into two, with one right mover and one left mover (Fig. 3.16a) at 

around 60 min. By 120 min, the left mover propagates to northwest of the physical 

domain (Fig. 3.16b) and the third cell splits from the left mover. After another hour, the 

major part of the secondary and third cell both moves out of the physical domain on the 

north boundary. The right-moving cell stays around the centre of the physical domain 

during the whole simulation time and the updraft continues to strengthen to a peak of 44 

m/s at 180 min, the end of truth simulation, after a temporary weakening owing to the 
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splitting at about 60 min. The simulated model state is output every 5 min for observation 

simulation and for analysis/forecast verification. 

 

Fig. 3.16. Simulated reflectivity Z (dBZ) and perturbation potential temperature 'θ  (K) z 
= 100 m (first model level above ground) for perfect environment simulation (a-c), 
simulation with moisture error in the environment (d-f),  simulation with potential 
temperature error in the environment (g-i) and simulation with moisture error in the 
environment (j-l) at 60 min (a, d, g, j), 120 min (b, e, h, k) and 180 min (c, f, i, l) of 
model time. 
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Before examining the impact of assimilating radar and surface observations, we set 

out to perform a series of simulation using the erroneous soundings with no assimilations 

conducted, aiming to gain some insight into the impact of the environment error on the 

storm development. With the low level -2 g/kg moisture error in the environment and a 

drier sounding, the storm is located at the northeast of the domain center at 60 min and 

too weak without cell splitting (Fig. 3.16d). It dissipates quickly after 60 min (Fig. 3.16e 

and f). With the 2 K potential temperature error, the storm development during the first 

two hours is similar to the perfect environment simulation (Fig. 3.16g and h). At 180 min, 

the right mover propagates to the east faster and has a larger storm area than the perfect 

environment simulation (Fig. 3.16i). More small cells split from the left mover at the 

north boundary of the physical domain. With the 3 m/s wind error, storm evolution is also 

similar with to the perfect environment simulation in the first two hours (Fig. 3.16 j and 

k). Owing to the weaker inflow, the right mover also exhibits a faster propagation to the 

east at 180 min (Fig. 3.16l).  

   

3.7.1.2 Simulated observations 
 

In most sets of the experiments, a hypothetical WSR-88D radar with 1 degree 

beamwidth is positioned at x = - 34 km and y = - 34 km (the coordinate origin is located 

at the southwest corner of the physical domain) which gives about 115 km from the 

domain center; approximately where the right-moving cell is located. At this distance, the 

earth curvature effect combined with beam bending based on the ¾ earth radius model 

(Doviak and Zrnic 1993) places the lower edge and the center of the half-power beam of 
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0.5 degree elevation at 1.98 and 3.60 km above ground, respectively.  In another word, 

there is no direct radar data coverage below 1.98 km level at all at this distance.   

Radar observations to be assimilated include radial velocity (Vr) and reflectivity 

(Z). The observation operators used in both the simulator and analysis are the same as 

XTD06 (Vr ) and TX05 (Z). As in XTD06, radar data are assumed to be available on the 

elevation levels in the vertical and already interpolated to model grid columns in the 

horizontal. The standard WSR-88D precipitation scanning mode is assumed (see Fig. 2 of 

XTD06). Gaussian-distributed random errors with zero mean and standard deviations of 1 

m s-1 and 3 dBZ are added to simulated Vr and Z, respectively.  

The hypothetical mesoscale observing network has station spacings of about 20 

km in the assimilation experiments. To simulate a network whose stations are not on the 

grid point while keeping the network more or less uniform, the stations are located 

randomly within 400 × 400 m square boxes that are centered on the grid points 20 km 

apart.  

The horizontal wind components, the temperature, pressure, and water vapor 

mixing ratio consist of the assimilated surface measurements. The standard deviations of 

the zero-mean Gaussian errors added to the simulated surface observations are: 1 m s-1 

for wind components, 1 K for temperature, 1 hPa for pressure and 1 g kg-1 for water 

vapor mixing ratio.  

Both radar and surface observations are assumed to be available every 5 minutes, 

which is typical data update interval with the Oklahoma Mesonet and the WSR-88D 

radar volume scan in precipitation mode.  
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3.7.1.3 EnKF algorithm 

EnSRF is applied as the analysis algorithm. The implementation follows the 

perfect environment experiments in section 3.2 exactly: surface observations are 

assimilated after the radar data.  

The state variables analyzed include u , v , w , θ , p , vq , cq , rq , iq , sq , and hq . 

To handle the low level environment error, the initial sounding is perturbed with uniform 

random Gaussian noises in the vertical. These Gaussian noises have zero means and 

standard deviations of 3 m/s for horizontal wind components, 2 K for potential 

temperature and 2 g/kg for water vapor mixing ratio. To initialize the first ensemble 

forecast cycle, another set of random perturbations are drawn from a Gaussian 

distribution with zero mean and standard deviations of 2 m s-1 for u , v , w , 2 K for θ , 

and 0.6 g kg-1 for vq  and all microphysical variables. Perturbations for all except for the 

microphysical variables are added in the entire domain. The perturbations for the latter 

are added only in the region where radar echo is present at 20 min, the start time of the 

first assimilation cycle. Reflectivity data in both the precipitation and clear air regions 

(negative Z values are set to zero) are used. Radial velocity data are only used in regions 

where Z is greater than or equal to 10 dBZ.  

Covariance localization (Houtekamer and Mitchell 2001) is used to limit the 

spatial influence of observations and reduce sampling error. The same scheme as used in 

section 3.2 is applied with a smooth 5th-order distance-dependent function (Eq.(4.10) of 

Gaspari and Cohn, 1999) multiplying the calculated background error covariance. For 

radar observations, a 6 km localization radius is chosen in all directions to ensure the best 

results when only radar data is used (XTD06). For surface observations, when the mean 
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station spacing (station spacing hereafter for short) is 20 km, a horizontal localization 

radius of 30 km and a vertical radius of 6 km are found to be optimal through 

experimentation. Forty ensemble members are used for all experiments, as in XTD06. 

To avoid the filter divergence problem caused by underestimation of covariance 

due to small sample size and/or model error, covariance inflation is used in all 

experiments following the procedure of section 3.2. A 15% inflation factor is used for all 

the experiments with storm environment error.  

The data assimilation experiments are summarized in Table 3.3: 

                    Data Type     
Environment Error 

Radar alone Radar + surface 

Wind error RaUVE RaSfcUVE 

Potential temperature error RaPTE RaSfcPTE 

Moisture error RaME RaSfcME 

 
Table 3.3: List of the experiments investigating the radar and surface impact under 
imperfect environment assumption.   

 

3.7.2 The impact of surface observations 

3.7.2.1 The impact on environment 

The profiles at (86 km, 10 km) from the truth simulation and data assimilation 

experiments at 60 min, representing the storm environment, are extracted to investigate 

the impact of data assimilation on the environment (Fig. 3.17). For various environment 

errors, the radar data alone cannot correct the errors while the addition of the surface 

observations improves the storm environment significantly. The potential temperature 

profile from RaSfcPTE is close to the truth (Fig. 3.17b). The u profile from RaSfcUVE 

and the water vapor mixing ratio profile from RaSfcME are both close to the truth in the 
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lowest 1 km, and the improvements are also evident in the higher levels (Fig. 3.17a and 

c).   

 

Fig. 3.17. The a) u, b) potential temperature and c) water vapor mixing ratio profiles at 
(86, 10) km from a) RaUVE (dotted) and RaSfcUVE (dot-dashed), b)  RaPTE (dotted) 
and RaSfcPTE (dot-dashed), c) RaME (dotted) and RaSfcME (dot-dashed) and the truth 
simulation (solid). The profiles are all at 60 min.  
 

3.7.2.2 The impact on storm analysis 

The analysis rms error of RaME and RaSfcME in the precipitation region against 

time are plotted in Fig. 3.17. There is significant improvement on all the state variables 

from the assimilation of surface observations and the improvement increases with time 

during the assimilation cycles. For most of the state variables the relative improvement 

are over or around 50% at the end of the analysis cycles. Although with radar data 

assimilation, the storm develops and splits, there is no hook echo structure in the right 

mover (not shown). The surface observations retrieve the hook echo structure 

successfully (not sown). 

The improvement of adding surface data over assimilating radar observations 

alone is still noticeable in terms of the rms error reduction when wind or potential 

a b c
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temperature error exists but not as large as the moisture error experiment (Fig. 3.21 C1 

and C2).    

 

Fig. 3.18. The rms error of ensemble mean analyses plotted against time for RaME (solid) 
and RaSfcME (dotted) for a) u (m s 1− ), b) v (m s 1− ), c) w (m s 1− ), d) potential 
temperature θ  (K), e) pressure p (Pa), f) cq  ( 1g kg− ), g) rq  ( 1g kg− ), h) (upper curves) 

vq  and (lower curves) iq  ( 1g kg− ), i) sq ( 1g kg− ), and j) hq  ( 1g kg− ).  
 

3.7.2.3 The impact on forecast 

Two sets of forecasts start from 60 min analysis and 120 min analysis respectively. 

The forecasts at 120 min from the analyses at 60 min are plotted in Fig. 3.18. For RaME, 

the storm cell is too weak due to the relatively dry environment (Fig. 3.18a). RaPTE and 

RaUVE both have the right and left mover but both with another spurious cell splitting 

from the right mover (Fig. 3.18b and c).   

With the additional surface observations assimilated, the storm development and 

splitting are correctly forecasted in RaSfcME (Fig. 3.18d). In RaSfcPTE and RaSfcUVE, 

the spurious cell in RaPTE and RaUVE is removed (Fig. 3.18e and f). Generally, the 

a b c d e 

f g h i j 
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assimilation of both radar and surface observations helps to capture the position and the 

strength of the storms accurately. 

 

Fig. 3.19. As Fig. 3.16 but at 120 min forecast from the analysis at 60 min and for a) 
RaME, b) RaPTE, c) RaUVE, d) RaSfcME, e) RaSfcPTE, f) RaSfcUVE. 
 

 

Fig. 3.20. As Fig. 3.19 but at 180 min forecast from the analysis at 120 min. 

a b c 

d e f 

a b c 

d e f 
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When the forecast starts from the RaME analysis at 120 min, the storms of the 

analysis at 120 min have the similar strength with the truth simulation (not shown). 

However, they both dissipate very quickly in one hour, with the storm remnant left (Fig. 

3.19a). The RaPTE and RaUVE both have better forecast than RaME in terms of the 

storm strength and structure but with the right mover propagating faster to the east than 

the truth (Fig. 3.19b and c). There is a dramatic improvement from RaSfcME over RaME 

with the addition of surface observations with the structure, strength and the position of 

the storms much closer to the truth (Fig. 3.19e). The RaSfcPTE and RaSfcUVE both 

improve the position forecast of the right mover by around 10 km over RaPTE and 

RaUVE respectively. 

 

Fig. 3.21. The rms error of a) u (m s 1− ), b) v (m s 1− ), c) w (m s 1− ), d) potential 
temperature θ  (K), e) pressure p (Pa), f) cq  ( 1g kg− ), g) rq  ( 1g kg− ), h) (upper curves) 

vq  ( 1g kg− ), i) sq ( 1g kg− ), and j) hq  ( 1g kg− ) for 60-min-long forecasts starting from 
ensemble-mean analyses at 60 min (thick black lines) and 120 min (thin black lines). The 
solid curves are for the forecast errors starting from the analyses of RaME and the dashed 
lines are for the forecast errors of RaSfcME.  
 

To quantitatively explore the impact from the surface observations on the forecast, 

rms error in the precipitation region of the forecast is plotted for RaME and RaSfcME 

(Fig. 3.20). For the forecasts starting from 60 min, the improvement from the additional 

surface observations is clear during the first 40 min. The improvement over RaME 

a b c d e 

f g h i j 
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increases with time during the first 40 min for wind, pressure and some of the 

microphysical variables (qc, qr and qs). However, there is a degradation from the addition 

of the surface observations during the last 20 min in the one hour forecast, leading to a 

larger rms error than RaME for w and qc, or similar rms error with RaME for qr and qh at 

120 min. A careful investigation reveals that this degradation is from the phase error in 

RaSfcME. There is a 6 km forecast position error of the right mover in RaSfcME at 120 

min, reducing the improvement. Despite the rms error degradation for some state 

variables, it is still clear that the storm structure in RaSfcME is much better than RaME at 

120 min (Fig. 3.18a and d). 

Fig. 3.22. The average rms error a) u (m s 1− ), b) v (m s 1− ), c) w (m s 1− ), d) potential 
temperature θ  (K), e) pressure p (Pa), f) cq  ( 1g kg− ), g) rq  ( 1g kg− ), h) (upper curves) 

vq  ( 1g kg− ), i) sq ( 1g kg− ), and j) hq  ( 1g kg− ) for RaPTE analysis (C1 solid),  RaSfcPTE 
analysis (C1 dotted), RaUVE analysis (C2 solid),  RaSfcUVE analysis (C2 dotted), one 
hour RaPTE forecast from the analysis at 60 min (C3 solid),  one hour RaSfcPTE forecast 
from the analysis at 60 min (C3 dotted), one hour RaUVE forecast from the analysis at 60 
min (C4 solid),  one hour RaSfcUVE forecast from the analysis at 60 min (C4 dotted), 
one hour RaPTE forecast from the analysis at 120 min (C5 solid),  one hour RaSfcPTE 
forecast from the analysis at 120 min (C5 dotted), one hour RaUVE forecast from the 
analysis at 120 min (C6 solid) and one hour RaSfcUVE forecast from the analysis at 120 
min (C6 dotted). 

 

The forecast starting from the analysis at 120 min of RaSfcME shows positive 

impact on every state variables over RaME during all the forecast times, indicating an 

a b c d e 

f g h i j 
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improvement of assimilating additional surface observations not only on moisture but all 

other model fields (Fig. 3.20). 

The average rms error is used to quantify the impact from data assimilation when 

the potential temperature or wind error exists in the storm environment. The average rms 

error is calculated by averaging the rms error over the specified analysis or forecast times 

and plotted for RaPTE, RaUVE, RaSfcPTE and RaSfcUVE in Fig. 3.21. The average rms 

error of assimilating additional surface observations in the analysis shows noticeable 

improvement over assimilating radar alone for most of the state variables (Fig. 3.21 C1 

and C2). For the one hour forecasts starting from the analyses at 60 min or 120 min, the 

improvements from the additional surface observations are also evident (Fig. 3.21 C3-

C6).  

   

3.8     Summary and conclusions 

In this chapter, an ensemble square root Kalman filter is used to assimilate 

simulated radar and surface network observations together for a supercell storm, for the 

purpose of examining the impact of additional surface observations on the storm analysis 

and forecasting.  Realistic low-level radar data coverage, or the lack thereof, is simulated 

with a radar emulator using realistic beam pattern weighting. 

It is shown that the assimilation of mesonet-like surface observations can 

significantly improve convective storm analysis when compared to the cases using radar 

observations only, particularly when the radar is at a sufficient distance from the storm to 

have a poor low-level coverage. Surface observations help fill the low-level data gap and 

improve the storm analysis even when the resolution of these observations is much 
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coarser (e.g., at a 20 km spacing) compared to the radar data. The rms error reductions 

due to surface observations reach 30% to 50% in such a case when the assimilation 

model is perfect. Surface observations improve analyses of the cold pool and associated 

convergence and divergence in terms of pattern, magnitude and position while 

precipitation fields are improved less, because hydrometeors at higher levels are only 

indirectly related to surface observations and are better captured by radar.  

It is shown that the surface observations not only help correct the near surface 

errors, but also improve the analyses of state variables at the mid- and upper levels. The 

greatest improvement from surface observations usually occurs at levels where analysis 

errors without the use of surface data are largest. The flow-dependent background error 

covariance estimated from the ensemble and the dynamical interactions realized through 

the prediction model are believed to play an important role. The background error 

correlations estimated from the ensemble exhibit physically reasonable structures and 

confirm the ability of the surface observations to properly influence all state variables at 

other grid points. 

In general, a better analysis obtained using both radar and surface observations 

also improves the subsequent storm forecast. When the forecast starts at an early time 

when fewer assimilation cycles have been taken and when cold pool occupies a smaller 

area, a higher-density surface network shows a much greater positive impact. When many 

analysis cycles are performed, the 20-km spacing surface network is able to produce a 

similar level of positive impact as the 6-km network and the impact can last for at least 1 

hour in both cases during forecast. In some cases, the improvement in the forecast even 

increases with forecast time. 
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Among the four surface observation variables with typical observation errors, 

wind observations show the largest positive impact, reflecting the important role of low 

level flows in the storm development, maintenance and propagation. Temperature 

observations are found to have the second largest impact and pressure observations are 

found to have the least impact. Part of the reason for the small impact of pressure 

observations may be due to the relatively large error specified for the pressure 

observations (1 hPa standard deviation) as compared to the error level of analyzed 

pressure achieved with radar data alone. The largest positive impact is achieved when 

assimilating all surface observation variables together. 

Different covariance localization radii are used for radar and surface observations 

in the EnKF analysis. The optimal radii found through experimentation for surface 

observations generally decrease with the decrease in network spacing, and those of 

surface data are generally larger than those of radar data; such a ‘multi-scale’ analysis 

technique seems to be effective when dealing with data from networks of very different 

resolutions.  An argument in support of such an approach is that observation networks are 

often designed to capture their respective target flow scales (e.g., a rawinsonde network is 

designed to primarily capture synoptic-scale structures). A practical consideration is the 

desire to produce relatively smooth analyses given the observation networks, and to avoid 

‘bull’s eyes’ in the analyses.  Similar multi-scale technique has been used in the context 

of 3DVAR (e.g., Hu et al. 2006) and successive correction method (e.g., Xue and Martin 

2006).  

The rms error relative to the radar-only case is found to decrease linearly with the 

decrease in the mean surface network spacing until the spacing is close to the grid 
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interval of truth simulation. When plotted against the total number of surface stations, 

this relative error is approximately proportional to the inverse square root of the number 

of stations when the network is relatively coarse, similar to the behavior found by Morss 

et al. (2001). 

When the radar is located at a closer distance of 115 km, the radar-only analysis is 

significantly improved over that of 185 km case. In this case, the surface observations 

still show consistent positive impact and the impact increases with the network density. 

When the radar is only 45 km from the storm, a 6-km station spacing is needed to achieve 

a noticeable impact because the radar-only analysis is already very good. 

The impact of surface observations is also examined in the presence of 

microphysics-related model error. Such model error is found to reduce the relative impact 

of surface observations. With the use of multiple microphysics schemes in the forecast 

ensemble, a surface network of 20-km (6-km) spacing produces error reduction of about 

10% (25%). 

When there is low level error in the storm environment, surface observations 

could help to correct the environment error, improving storm analysis and forecast. When 

low level moisture error (being too dry) exists in the environment, the storms dissipate 

quickly in the forecast when radar observations alone are assimilated. The addition of 

surface observations allowed correct analysis of the storm development, including the 

splitting process. Surface observations also improve the storm movement forecasts and 

remove spurious storm cells developing when low-level potential temperature or wind 

error exists.    
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The impact of surface observations does depend on the quality of analysis using 

radar data only. It also depends on the general quality of state estimation that affects the 

estimated error covariance between the surface observations and unobserved state 

variables. Attempts to analyze the convective storms using surface data only were 

unsuccessful. Finally we note that while this study may share some of the common 

limitations of OSSEs, the results obtained do give us valuable insights that are difficult, if 

at all possible, to obtain with real data. 
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Chapter 4 
Assimilation of Radial Velocity and Reflectivity Data from Coastal 
WSR-88D Radars Using EnKF for Hurricane Ike (2008)  
 

4.1      Introduction 

Landfalling hurricanes can pose deadly threats to many lives and cause loss of 

billions of dollars. Accurate prediction of hurricane track, intensity and rainfall can save 

lives and properties. The official forecasts of the hurricane track from National Hurricane 

Center have improved greatly in recent years by the overall trend (Rappaport et al. 2009; 

National Hurricane Center 2010). However, the improvement in hurricane intensity 

forecasting has been limited (Houze et al. 2007). The accuracy of the current hurricane 

intensity forecasts are almost in the same level as in 1990 (Rappaport et al. 2009).  

Many efforts have been made to identify the factors affecting intensity prediction 

and to improve intensity forecasting (Anthes 1982; Emanuel 2005; Krishnamurti et al. 

2005; Rogers et al. 2006; Li and Pu 2009; Khain et al. 2010). These factors include the 

surface heat and moisture fluxes, sea surface temperature, and environment wind shear, 

etc. Among these factors, intensity forecasting is believed to be closely associated with 

the internal meso-scale or smaller scale structures of the wind, cloud and precipitation 

(Houze 2007; Wang 2009). On the other hand, while the hurricane track is primarily 

decided by the large scale steering flow, some of the cyclone scale factors and features, 

such as beta drift effect, convection distribution, vertical structure, microphysics 

processes and other asymmetries, can also influence the track forecasting (Kimberlain 

2007; Fovell et al. 2009; Fovell et al. 2010). Radar is one of the most effective 

observation platforms to provide essential information on hurricane structures at high 
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temporal and spatial resolutions. Radial velocity and reflectivity observed by Doppler 

radars can provide essential information about the wind and microphysics field of 

hurricanes at the meso-scale and convective scale.  

High-resolution numerical models have proven to be one of the most promising 

tools to generate reliable hurricane forecasts (Chen et al. 2007; Davies et al. 2008). To 

improve the ability of the numerical model to accurately predict hurricane track and 

intensity, some of the researches focused on the sensitivity of model resolution and 

parameterization on hurricane structure and forecast (McFarquhar et al. 2006; Fierro et al. 

2009). Other studies aimed to improve the initial condition with data assimilation 

methods. With bogus vortex data assimilated into numerical models, the hurricane 

forecast can be improved (Zou and Xiao 2000; Pu and Braun 2001; Kwon and Cheon 

2010; Xiao et al. 2009a; Zou et al. 2010). Even without vortex bogussing, radar 

observations can help to create relatively accurate initial conditions and lead to improved 

intensity and track forecasts when assimilated into high-resolution numerical models (e.g., 

Xiao et al. 2007; Zhao and Jin 2008; Pu et al. 2009; Xiao et al. 2009b; Zhang et al. 2009; 

Zhao and Xue 2009). 

Three-dimensional variational data assimilation method (3DVAR) is widely 

employed in most of the previous radar data assimilation researches for hurricane 

analysis and forecast. However, the static background error statistics assumption is not 

appropriate in the rapid evolving hurricanes. The use of independent background error 

covariance may lead to ill-suited problems for the initialization (Zhang et al. 2009). 

Among other advanced data assimilation methods, the ensemble Kalman filter (EnKF) 

employs ensemble forecasts to estimate flow-dependent background error covariance, 
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thus showing advantages over 3DVAR. It was first proposed by Evensen (1994) and has 

bred an array of variants since then. Its simple formulation and easy implementation 

compared to four-dimensional variational data assimilation method, allow it to enjoy 

popularity within the research community as a state of the art assimilation algorithm. 

EnKF also generates initial conditions for ensemble forecasts in a natural way, providing 

uncertainty information on hurricane analysis and forecasts. It also can be used for 

predictability research (Sippel and Zhang 2010).  

Previous studies have demonstrated that EnKF is a powerful tool for radar data 

assimilation, including radial velocity and reflectivity, to improve convective 

thunderstorm analysis (Dowell et al. 2004; Zhang et al. 2004; Tong and Xue 2005; Xue et 

al. 2006; Aksoy et al. 2009). Zhang et al. (2009) assimilated radial velocity from three 

coastal radars for the cloud-resolving hurricane analysis and prediction with EnKF for the 

first time. With the radial wind assimilation into Hurricane Humberto (2007) using EnKF, 

the analysis captures the best track position and intensity closely. The deterministic 

forecasts show improvement in track and intensity over operational forecasts and the 

forecasts initialized with 3DVAR. While radial velocity provides the wind structure from 

a hurricane, reflectivity includes information from the hydrometeors and microphysical 

fields. Assimilating reflectivity into numerical models with 3DVAR shows positive 

impact on hurricane quantitative precipitation forecasting (QPF) (Xiao et al. 2007). 

However, the assimilation of reflectivity for hurricane analysis and forecast with EnKF is 

still limited. 

 This study investigates for the first time the assimilation of both radar radial wind 

and radar reflectivity observations with EnKF for cloud-resolving hurricane analysis and 
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forecasting. As one of the variants of EnKF, the serial ensemble square root filter (EnSRF, 

Whitaker and Hamill 2002), which is used extensively for thunderstorm radar 

assimilation, is chosen to assimilate radar observations for a hurricane in this study. 

Mean sea level pressure (MSLP) from the best track at the vortex center has 

proven to be able to improve the hurricane track forecast when assimilated with EnKF 

and global models with 30-50 km resolutions (Hamill et al. 2010). In this study, “MSLP” 

hereafter always refers to the mean sea level pressure from the best track at the vortex 

center. The intensity forecast in Hamill et al’s study, however, is problematic probably 

because their relatively coarse resolution is not sufficient to resolve the realistic hurricane 

vortex structure. It remains unknown if MSLP can further improve the cloud-resolving 

hurricane analysis and forecast when it is assimilated with radar observations using EnKF. 

We will assimilate MSLP from the best track dataset with radar data to examine its 

additional impact for the first time.   

The intensity and track uncertainty in hurricane forecast can results from both 

model and initial condition uncertainties. It is still not clear which one of these two 

uncertainty sources has a larger contribution to the spread growth in intensity and track 

forecast. Experiments will be conducted to briefly investigate this issue.  

This chapter is organized as follows. Section 4.2 will briefly introduce Hurricane 

Ike. The forecast model, the radar observations and the EnKF experiment setup are 

described in section 4.3. Ensemble spreads and innovation statistics during the analysis 

cycles are discussed in section 4.4. Section 4.5 discusses the impact of radar data on the 

deterministic forecasting of hurricane intensity, track and precipitation while ensemble 

forecasting results are shown in section 4.6, with a comparison with the deterministic 
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forecasts. Sections 4.7, 4.8 and 4.9 examine the sensitivity to cutoff radius, data 

assimilation intervals, and use of single radars. The assimilation of MSLP from the best 

track will be presented and discussed in section 4.10. Section 4.11 will discuss the 

uncertainty growth issue briefly. A summary is given in section 4.12.    

 

4.2     Hurricane Ike (2008) 

Hurricane Ike (2008) studied here is the most intense hurricane during the 2008 

Atlantic hurricane season. It started as a tropical disturbance near Africa at the end of 

August. On Sept. 1, 2008, it became a tropical storm west of the Cape Verde islands. 

During Sept. 3 and 4, Ike is in an area that lacked strong wind shear. It developed into a 

category 4 hurricane on the Saffir-Simpson Scale during its strongest stage of 145 mph 

(230 kmh-1) with an estimated pressure of 935 hPa by the early morning at Sept. 4. The 

wind and pressure both are from satellite estimate since it was still too far from land for 

reconnaissance aircraft to reach (Berg 2009).  It made landfall twice in Cuba before 

entering the Gulf of Mexico in the afternoon of September 9. The interaction with Cuba 

leaded to a disruption of Ike’s inner core and an expansion of Ike’s wind field. The 

intensity weakened to a category 1 hurricane. An eyewall replacement also happened 

when Ike moved into the southeastern Gulf when the outer rainband started to move 

inward and replaced the inner eyewall. 

During the night of Sept. 10, Ike showed a rapid drop of minimum sea level 

pressure, falling from 963 hPa to 944 hPa as it passed over the Loop Current in the Gulf 

of Mexico. This drop was not reflected by the wind speed, however, which only 

increased to 100 mph (160 kmh-1) from 85 mph (140 kmh-1). Two well-defined wind 
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maxima of nearly equal strength were reported by the National Hurricane Center. This 

unusually broad distribution of strong winds indicates the structure was absorbing and 

distributing energy over a large area, rather than concentrating it near the center. During 

this intensification, Ike strengthened to a category 2 from category 1. 

During Sept. 11 and 12, Ike maintained its intensity and the broad wind field. 

When Ike moved toward Texas coast, the inner structure and eyewall became more 

organized. With a diameter of 900 mile, Ike is the largest Atlantic tropical cyclone in the 

recorded history. It made landfall in Galveston, Texas at 0700 UTC 13 September as a 

category 2 hurricane. After the first landfall, Ike passed over San Leon, Texas and made 

its final landfall near Baytown, Texas around 0900 UTC. Around and after landfall, Ike 

took a northwest, north, then northeast path (Fig. 4.1). It weakened to a tropical storm 

around 1800 UTC September 13 in the eastern Texas. During Ike’s inland path, it brought 

heavy precipitation and damages to 11 U.S. states: Arkansas, Illinois, Indiana, Kentucky, 

Michigan, Missouri, New York, Ohio, Pennsylvania, Tennessee and West Virginia. 

Before and after Ike’s landfall in the U.S., it caused 29.6 billion dollars of damage and 

112 deaths in the U.S., making it the third costliest hurricane in U.S. history, only after 

Hurricane Katrina (2005) and Hurricane Andrew (1992). This study investigates the 

effect of assimilating radar reflectivity and radial velocity data from coastal WSR-88D 

radars using EnKF on the analysis and forecast of Ike.  
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Fig. 4.1 Ike’s path in Texas from 0600 UTC Sept. 13 to 0000 UTC Sept. 14, plotted every 
6 hours. (from http://stormadvisory.org/map/atlantic/) 
 
 
4.3     The prediction model and EnKF configurations 

4.3.1    The prediction model 

The Advanced Regional Prediction System (ARPS, Xue et al. 2000) is used in 

this study as the prediction model. A 515x515x53 grid with a horizontal resolution of 4 

km defines the whole physical domain (Fig. 4.2). Mean vertical grid spacing is 625 m 

with a vertical grid stretching scheme having a grid spacing of 50 m at the surface. The 

Lin microphysical scheme (Lin et al. 1983) is used along with the 1.5 TKE-based sub-

grid scale turbulence and PBL parameterizations. Details on these physics options can be 

found in Xue et al. (2001; 2003). 

 

4.3.2    Radar observations  
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Coastal WSR-88D radars at Houston-Gavelston, Texas (KHGX) and Lake 

Charles, Louisiana (KLCH) provide the coverage for Ike when it approached to the east 

Texas coast (Fig. 4.2). From 2008 March to August, WSR-88D 

(Weather Surveillance Radar, 1988, Doppler) is upgraded with the super resolution 

capability. The radar data after August of 2008 can provide reflectivity data with a 

sample size of 0.25 km by 0.5 degree, and increases the range of Doppler velocity data to 

300 km in the lower scan elevations, compared with the 230 km of the legacy range. 

Reflectivity (Z) and radial velocity (Vr) data from these two radars are assimilated with 

observation errors specified as 2 dBZ and 1 ms-1, respectively. 

 

Fig. 4.2. The physical domain and radar coverage for Ike. The circles of KHGX and 
KLCH both have a maximum range of 460 km.  
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One problem associated with the Doppler radar data processing is the velocity 

aliasing. The maximum Doppler velocity measuring interval or Nyquist cointerval or 

Nyquist velocity, is decided by pulse repetition frequency (PRF) and the radar 

wavelength λ (Battan 1973): 

max / 4V PRF λ= ± × .                                                                                            (4.1)  

maxV  is proportional to PRF if λ is a constant for the specified radar. For the pulse 

Doppler radar, the Doppler dilemma is described as  

max max / 8V r c λ× = ± ×                                                                                            (4.2) 

where maxr  is the maximum range covered by Doppler radar and c is the speed of 

electromagnetic wave or light. This expression says that increasing maxV  will lead to the 

decrease of maxr  and vice versa. For the typical WSR-88D radar PRF of 1000 Hz, the 

maximum unambiguous velocity is 25 ms-1. So the environment wind speed with the 

magnitude more than 25 ms-1 will be aliased as max2aliased realV V n V= ± ×  where n 

represents the times the real velocity will be aliased. For the Ike dataset, the Nyquist 

velocity varies from 23.77 ms-1 to 35.55 ms-1 for different tilt scans. 

In the ARPS program 88D2ARPS, an automatic dealiasing process is provided 

based on the algorithm proposed by Eilts and Smith (1990). This local environmental 

dealiasing (LED) technique performs a gate-to-gate and a following 9-point average 

velocity continuity check (Fig. 4.3) to choose the dealiased velocity value correctly. 

However, this technique fails in some of Ike’s radar database. The radial velocity 

cannot be dealiased correctly with this automatic algorithm in 88D2ARPS. NCAR SOLO 

software package provides the access to peruse and edit the sweep files. The Vr from 
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Level-II data is further manually quality-controlled for each tilt with SOLO to ensure 

correct velocity dealising (Fig. 4.4). Although the automatic quality control correct some 

velocity aliasing (Fig. 4.4a and Fig. 4.4b), some of the area with large negative radial 

velocities is still aliased after 88D2ARPS.  Manual quality control provides the better 

dealiasing than 88D2ARPS (Fig. 4.4c).  

There are other automatic algorithms to dealiase the radial velocity except for the 

LED technique used in 88D2ARPS. One of them is the variational method by Gao and 

Droegemeier (2004) which dealises the radial velocity through minimizing a cost 

function. They proposed this method based on the assumption that the gradients of radial 

velocity in both radial and azimuthal directions are not aliased. Although more 

complicated and computationally expensive than the LED technique, this variational 

method should be more effective in dealiasing than LED method and can save many 

efforts by otherwise using the manual dealiasing.    

 

Fig. 4.3. LED technique used in 88D2ARPS. 9-point average in the box is calculated to 
check the spatial velocity continuity. If the difference between the current velocity (the 
circled one) and the average falls out of a threshold value, it will be dealiased. (From 
Eilts and Smith 1990) 
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Fig. 4.4. Velocity field at 0.5  elevation angle and at 0410 UTC Sept. 13 for (a) no 
quality control, (b) with automatic 88D2ARPS quality control and (c) with manual 
quality control.  
 

After the manual quality controlling, the Level-II data are bilinear-interpolated 

horizontally on the ARPS model grids. Since the horizontal resolution of the Level-II 

data (250m) is much smaller than the model resolution of 4 km, only the data closest to 

the model grid points are chosen and interpolated. No other data thinning schemes are 

applied in this study. The radar data to be assimilated are on the model grid horizontally 

and on the tilt vertically after the interpolation. No time interpolation is performed on the 

data. The radar observations which time is the closest to the regular model output time is 

used. For example, at 0410 UTC of the model output time, the radar observation with the 

first tilt scan at 0411 is chosen to be assimilated. How to assimilate the streaming data tilt 

by tilt is still under further study. In sensitivity experiments, using reflectivity to update 

the wind component, potential temperature and water vapor mixing ratio brings negative 

impact on intensity analysis. Hence the reflectivity only updates all the five 

microphysical variables: mixing ratio for snow, rain, hail, cloud and ice when Z is used. 

The radial velocity is used to update all of the eleven state variables.    

 

a b c 
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4.3.3    Observation operators for radar observations 

The forward observation operator used for Vr is from Tong and Xue (2005b). 

First the radial velocity on the scalar point of the model is calculated:   

cos sin cos cos ( )sinrg tV u v w wφ γ φ γ φ= + + − ,                                                  (4.3) 

where φ  is the elevation angle, γ  is the azimuth angle, u, v and w are model wind 

components and tw  is the fall speed of hydrometers. tw  is calculated from  

tr er ts es th eh
t

er es eh

w Z w Z w Zw
Z Z Z
+ +

=
+ +

,                                                                               (4.4) 

where trw , tsw  and thw  are the mass-weighted mean terminal velocities of rain, snow and 

hail, and erZ , esZ  and ehZ  are the equivalent reflectivity factors. The calculation of mass-

weighted mean terminal velocities follows Eqs (11)-(13) of Lin et al. (1983). After the 

radial velocity on the scalar point is calculated, the simplified radar emulator with power-

gain-based sampling assumption is used to convert the radial winds from the model 

vertical levels to the radar elevation levels.  

Reflectivity is also first calculated on the model vertical levels and then projected 

on the radar elevation levels using (4.3) and (4.4). The reflectivity formula in TX05 is 

applied as the Z observation operator to obtain the reflectivity in dBZ on the model levels 

from the mixing ratios of rain, snow and hail/graupel. First the equivalent reflectivity 

factor Ze is calculated as  

e er es ehZ Z Z Z= + + ,                                                                                             (4.5) 

where erZ , esZ  and ehZ  are contributions from rainwater, snow and hail with Eqs (4)-(6) 

in TX05. Then the logarithmic reflectivity factor is calculated as 
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10 6 310log ( )
1

er es ehZ Z ZZ
mm m−

+ +
= .                                                                               (4.6) 

4.3.4    Generation of initial ensemble members 

The baseline control forecast without radar data assimilation (NoDA) is run from 

0600 UTC 13 September, initialized with NCEP GFS analysis. In all other experiments 

with radar data assimilation, there are two steps for generating and adding perturbations 

on the GFS analysis. In the first step, Gaussian random perturbations with zero mean 

smoothed with a 100 km horizontal de-correlation scale are added in the whole domain to 

initialize the 32-member ensemble at 2200 UTC 12 September. The perturbed state 

variables include horizontal wind component u, v, potential temperature θ, pressure p and 

mixing ratio for water vapor qv. The standard deviations for these perturbations are 2 ms-1 

for wind, 1 K for θ and 1 hPa for p. For qv, 10% of the unperturbed value on the model 

grid is used as the magnitude of the perturbation. Six-hour-long ensemble forecasts were 

conducted from these perturbed initial conditions to allow evolved background error 

covariance to develop. The purpose of this procedure is to create reasonable meso-scale 

environment covariance for Hurricane Ike. In the second step, at 0400 UTC 13 

September, another set of perturbations with a smaller horizontal de-correlation scale of 

12 km and a vertical de-correlation of 4 km is added to the forecast fields in the observed 

precipitation regions (Z > 10 dBZ) only to introduce storm-scale perturbations. These 

storm-scale perturbations also have the Gaussian distribution with zero mean for u, v, 

vertical wind component w, θ, mixing ratio for water vapor qv, rain water qr, cloud water 

qc, ice water qi, snow water qs and hail water qh. The standard deviations are 2 ms-1 for 

the wind components, 2 K for θ, 1 gkg-1 for all the water content variables except for qv. 
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qv perturbations have the 10% relative perturbations smoothed with the similar small de-

correlation scale.  

The lateral boundary conditions are from National Center for Environmental 

Prediction’s (NCEP) Global Forecast System (GFS) analysis. They are also perturbed 

with the 100 km horizontal de-correlation scale to produce 32 ensemble lateral boundary 

conditions every 6 hours using the perturbations with the same standard deviations as the 

first step.  

 Observation 
type 

Radar assimilation 
interval 

Single or 
dual radars 

Radar 
localization 
radius (km) 

ExpVr Vr 10 min. Dual 12  
ExpZ Z 10 min. Dual 12 
ExpAll Vr+Z 10 min. Dual 12 
Exp30Min Vr+Z 30 min. Dual 12 
Exp60Min Vr+Z 60 min. Dual 12 
ExpKHGX Vr+Z 10 min. KHGX only 12 
ExpKLCH Vr+Z 10 min. KLCH only 12 
ExpVrR6 Vr 10 min. Dual 6 
ExpVrR24 Vr 10 min. Dual 24 
ExpZR6 Z 10 min. Dual 6 
ExpZR24 Z 10 min. Dual 24 

 

Table 4.1. Summary of radar data assimilation experiments for different observation 
types, radar assimilation intervals and the number of radars used.  
 

The first set of experiments employs 10-minute-long assimilation cycles. 

Experiments ExpVr, ExpZ and ExpAll assimilate Vr alone, Z alone and both Vr and Z, 

respectively. In these experiments, the first EnKF analysis of radar data occurs at 0410 

UTC, and the assimilation cycles end at 0600 UTC 13 September. Two additional 

experiments, named Exp30Min and Exp60Min, are performed which has the same 

assimilation window length but only assimilate both Vr and Z data every 30 and 60 

minutes, respectively. Instead of using both Doppler radars together, single radars KHGX 
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and KLCH are also used separately in ExpKHGX and ExpKLCH. To test the sensitivity 

of horizontal localization radius, 4 additional experiments with various localization radii 

are also conducted. The experiments are summarized in Table 4.1. At the end of the 

assimilation window, at 0600 UTC, 18-hour-long deterministic forecast and an ensemble 

of forecasts are performed until 0000 UTC 14 September. The data assimilation schemes 

and NoDA control simulation are plotted in Fig. 4.5. 

 

Fig. 4.5. The data assimilation and control simulation NoDA schemes. From top: 10-
minute assimilation interval, 30-minute assimilation interval, 60-minute assimilation 
interval and NoDA simulation. 
 
 
4.3.5    Covariance inflation and localization 

To reduce sampling error caused by the small ensemble, a prior multiplicative 

covariance inflation of 5% (Tong and Xue 2005; Xue et al. 2006) before the analysis and 

a posterior additive error after analysis are used on the model grids influenced by radar 

observations. The multiplicative inflation is added to all the eleven state variables. The 



113 
 

additive errors have a Gaussian distribution with zero mean. The standard deviations are 

1 ms-1 for wind components u, v, w and 1 K for θ. Before added to the posterior analysis, 

the additive errors are smoothed with a horizontal de-correlation scale of 9 km and a 

vertical scale of 4 km. Besides increasing the spread artificially, the additive error can 

also alleviate the model error problem through introducing uncertainty in the model state 

space. Whitaker and Hamill (2010) found the combination of multiplicative and 

“evolved” additive inflation has the best results in their study. For most of the 

experiments, a covariance localization to limit the spatial impact of the observations has 

cutoff radii of 12 km in the horizontal and 4 km in the vertical. The inflation and 

localization parameters were chosen based on a number of sensitivity experiments. 

 

4.4  Ensemble spread, observation innovation statistics and analysis 
increments 
 

The EnKF relies on a sufficiently accurate estimate of the background error 

covariance to update the state variables. Due to sampling error and the lack of explicit 

representation of model errors, the forecast ensemble tend to be underdispersive.  

Maintaining adequate ensemble spread is necessary to prevent filter divergence. An 

examination of the spread of the state variables in the precipitation region during the 

analysis cycles of ExpAll (Fig. 4.6) reveals that for the horizontal wind components and 

pressure, the largest spread reduction by the EnKF analysis occurs in the first two cycles, 

suggesting more observation impact during those cycles. Despite the gradual reduction in 

the forecast spread in the subsequent cycles, the variances of the state variables remain at 

a reasonable level, which was helped by multiplicative and additive inflation.  
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Fig. 4.6. Time evolution of ensemble forecast and analysis spread during the EnKF 
analysis cycles, spatially averaged in precipitation region (Z > 10 dBZ) for (a) u, (b) v, (c) 
cloud water mixing ratio (qc) and (d) pressure, from experiment ExpAll. Those for the 
background forecast are in red and those for analysis are in blue. 

 

Fig. 4.7. Time evolution of innovation rms during the analysis cycles, averaged in 
precipitation region (Z > 10 dBZ) for (a) Vr of KHGX and (b) KLCH, (c) Z of KHGX 
and (d) KLCH from experiment ExpAll. Those for the background forecast are in red and 
those for analysis are in blue. 

 

a b 

c d 
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The observation innovations, or the root-mean-square (rms hereafter) difference 

between observations and the model states projected to the observation space, denoted as 

y-H(x), measure how well the model state fit the observations. The rms innovations of 

ExpAll averaged in precipitation region are shown in Fig. 4.7. for the background 

forecasts and analyses. With respect to both radars, the rms innovations of both Z and Vr 

have the largest reduction in the first two assimilation cycles. After 10 to 20 minutes of 

forecast and analysis, the innovation reductions remain and continue until the end of the 

analysis cycles. At the end, the rms innovations of Vr and Z are 2 to 4 ms-1 and 5 dBZ, 

respectively, which are much smaller than the initial values of about 10 ms-1 and 20 dBZ, 

respectively. This says that both the forecast and analysis states are significantly 

improved by the EnKF data assimilation in terms of the fit to observations. 

To better understand the behavior of radar data analysis, the increments of 

horizontal wind components in the first and last analysis cycles are plotted in Fig. 4.8. It 

is found that during the first analysis at 0410 UTC, the horizontal wind increments appear 

to systematically enhance the hurricane vortex, with the increments having a well-

organized structure of cyclonic rotation (Fig. 4.8a). At the end of the analysis cycles, the 

error in the overall vortex of the background forecast has been significantly reduced by 

this time. The wind increments are much less organized, indicating that most of the 

corrections now correspond to storm-scale structures at the sub-vortex scale (Fig. 4.8b).  
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Fig. 4.8. Horizontal wind component increment at z=3km for (a) the first analysis and (b) 
the last analysis of ExpAll. 

    

4.5    Data assimilation impact on the analysis and deterministic forecast 

4.5.1   Impact on analyzed and forecasted hurricane structures 

The composite reflectivity and horizontal wind vectors at the 3 km height from 

NoDA, ExpVr, ExpZ and ExpAll are presented in Fig. 4.9, together with the observed 

composite reflectivity (OBS). The stronger and tighter inner cores in the final analyses 

are identified with all radar data assimilation experiments, compared that in the GFS 

analysis at 0600 UTC (Fig. 4.9a-e). The reflectivity field in ExpVr shows a broader and 

stronger rainband than observations (Fig. 4.9c). There is no reflectivity in the GFS 

analysis for comparison. ExpAll and ExpZ have similar rainband structures and are closer 

to the observations than ExpVr (Fig. 4.9d-e). This difference is also reflected in rms 

innovations of Z at this time (not shown), where for both radars, rms innovation of Z is 

about 15 dBZ in ExpVr and only about 5 dBZ in ExpAll and ExpZ. 

In the 6-hour forecast, the center of Ike is over the land north of Houston. 

Generally, all experiments with radar data assimilation display a more tightly wrapped 

a b
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rainband than NoDA. NoDA also has a spiral rainband on the north-west of the vortex 

center, which is too strong compared with the observation (Fig. 4.9f-j). 

During 6 additional hours of forecast, the rainband in Ike moves further inland 

and an axis-asymmetric structure is seen on Fig.4.9k. Two major precipitation regions 

covering eastern Texas develops in the north-west and south-east quadrants around the 

vortex center. A clear-air hole without precipitation is visible in the vortex center in 

NoDA (Fig. 4.9l). With the radar data assimilated, the precipitation patterns are closer to 

the observations (Fig. 4.9m-o). Amid the radar data assimilation experiments, ExpZ has a 

broader precipitation region in the south-east quadrant and a tighter inner core, more 

similar to the observations (Fig. 4.9n). 

At the final forecast time of 0000 UTC 14 September, most of the precipitation is 

out of Texas. The interaction with the cold front system to the north and the moisture 

transport from the Gulf leads to rainfall in Oklahoma and Arkansas and a more axis-

asymmetric structure (Fig. 4.9p). The clear-air hole in the vortex center is still identifiable 

in NoDA (Fig. 4.9q). The rainbands in experiments with radar data assimilated are still 

more tightly wrapped. Like the observations, the hurricane eyes in ExpZ and ExpAll are 

filled with precipitation, and precipitation patterns in these two experiments are the 

closest to the observations (Fig. 4.9s and t). 
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Fig. 4.9. Composite reflectivity (color shaded) and wind vectors at 3 km height analyzed 
and predicted by experiments (b, g, l and q) NoDA, (c, h, m and r) ExpVr, (d, i, n and s) 
ExpZ, and (e, j, o, t) ExpAll, as compared with (a, f, k and p) corresponding observations. 
The times shown are 0600, 1200, 1800 UTC, September 13 and 0000 UTC September 14, 
2008. 

 

a b c d e
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4.5.2     Intensity and track forecasting 

The minimum sea level pressure every 3 hours during the 18 hours of forecast 

from all experiments are plotted in Fig. 4.10, along with the best track minimum sea level 

pressure from the National Hurricane Center. All experiments with radar data exhibit 

solid improvement to NoDA during the first 12 hours in intensity forecasts. The analyzed 

intensities of 955 hPa in ExpVr and ExpAll at 0600 UTC are significantly lower than the 

975 hPa of NoDA,  although still somewhat higher than the best track value of 951 hPa. 

Assimilation of Z alone leads to a mild improvement of 9 hPa over NoDA at 0600 UTC, 

resulting in a weaker vortex than assimilating Vr or Vr plus Z. The relative improvement 

in intensity is defined as  

(intensity_errorNoDA  -  intensity_errorEnKF)/ intensity_errorNoDA.                       (4.7)  

The relative improvements over NoDA are 80% for ExpVr, ExpAll and 55% for ExpZ in 

intensity at 0600 UTC.     

  The intensity of NoDA is too low and does not change dramatically during the 

first 12 hours of forecast while Ike in the best track data keeps weakening until 2100 

UTC. ExpVr and ExpAll both capture the pressure rise at similar rates as the best track 

data before 1500 UTC. Between 1500 to 2100 UTC, the best track data show faster 

weakening than earlier, which is not reflected in any of the radar data assimilation 

experiments. The prediction model error may contribute to this discrepancy, in addition 

to possible initial condition error. At 1800 UTC, the fast weakening best track catches up 

with ExpVr and ExpAll in intensity, leading to an almost zero intensity error for these 

two experiments. After 1800 UTC, ExpVr and ExpAll both forecast stronger vortices 

than the best track due to the slower weakening in these two experiments. When both 

reflectivity and radial velocity are assimilated (ExpAll), the intensity forecasts are very 
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close to the case assimilating radial wind alone (ExpVr), with a less than 0.5 hPa 

improvement in ExpAll over ExpVr at 0600 and 0900 UTC.  

 

Fig. 4.10. The predicted minimum sea level pressure for Hurricane Ike, plotted every 
three hours from 0600 UTC September 13 to 0000 UTC September 14. 

 

Fig. 4.11. The predicted track for Hurricane Ike, plotted every three hours from 0600 
UTC September 13 to 0000 UTC September 14. 

hPa 
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Fig. 4.12. The predicted track error for Hurricane Ike, plotted every three hours from 
0600 UTC September 13 to 0000 UTC September 14. 

 

The predicted tracks from all experiments are plotted in Fig. 4.11, along with the 

best track. Even with a quite accurate initial position of only 7 km track error from the 

GFS analysis at 0600 UTC 13 September, NoDA takes a west-most path in the 18-hour 

forecast. In the first 3-hour forecast from 0600 to 0900 UTC during and after the landfall, 

NoDA moves slower than all data assimilation experiments. Starting from 0600 UTC, 

NoDA takes a more west path than the best track and all the data assimilation 

experiments. The track error of NoDA increases with the forecast time and reaches 80 km 

at 0000 UTC 14 September (Fig. 4.12). With radar data assimilation, the track errors at 

0600 UTC are all larger than NoDA. One problem related to the larger track error at the 

initial time is identified. The initial track of the deterministic forecast is determined by 

finding the minimum sea level pressure center in the mean field of the 32 member 

ensemble. After averaging the members, the mean field exhibits an elongated vortex 

Mean Track Error (km) 
NoDA: 41 
ExpVr: 12 
ExpZ:  18 
ExpAll: 14 
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owing to the hurricane position spread in the ensemble members. This creates some 

uncertainty with the vortex center estimation. An average of the tracks among all 

individual members provides a better result with an initial track error reduction of 10 km 

for ExpAll (Fig. 4.17 and Fig. 4.18). At 0900 UTC after the hurricane landfall, all 

predicted tracks in the data assimilation experiments are closer to the best track than in 

NoDA, with the track errors all being less than 20 km. The track errors in ExpVr and 

ExpAll are both less than 10 km. From 1200 to 2100 UTC, the best track took a north 

path toward Tyler, Texas.  ExpZ captures the moving direction very well during the 9 

hours but with a west shift of 15 to 18 km. ExpVr and ExpAll both have a minimum track 

error of less than 5 km at 1200 UTC but take a more curved path than ExpZ from 1200 to 

2100 UTC. All of the three assimilation experiments are in the south of the best track at 

0000 UTC Sept. 14 with a track error of 27 km. Although ExpZ has a larger mean track 

error of 18 km compared to ExpVr and ExpAll, it is encouraging to see that assimilating 

Z alone still results in 56% improvement in track forecasting on average over NoDA. 

Pu et al. (2009) observed a marginal improvement in Hurricane Dennis (2005) 

intensity forecast when assimilating reflectivity data alone with 3DVAR. The impact 

from reflectivity alone on intensity forecast is smaller than assimilating radial wind alone 

or both radial wind and reflectivity. They attributed part of the reason to the small impact 

of reflectivity data alone on the track forecast. In our study, the track of ExpZ at 0600 

UTC is too north to the coast, and has a larger track error than in ExpVr and ExpAll (Fig. 

4.11), suggesting a similar reason at work. This track error of ExpZ at 0600 UTC can 

lead to a moderate impact on intensity forecast from assimilating reflectivity alone. The 

better vortex wind structure from assimilating radial wind is another possible reason for 
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more accurate intensity forecasts from ExpVr and ExpAll. Radial velocity observes wind 

structure directly and wind field of the vortex appears to be dominant for intensity 

analysis and forecasts in this case. The microphysics fields observed by reflectivity have 

a direct impact on rainband structure analysis but mild influence on intensity analysis.       

              

4.5.3    Precipitation forecasting 

Flooding caused by Ike was one of the major culprits of deaths and economy loss, 

highlighting the importance of precipitation forecast. Fig. 4.13 shows the 18-hour 

accumulated precipitation for all experiments along with the Stage IV precipitation data. 

The observations show that the maximum accumulated rainfall is positioned around 

Huntsville and Conroe, Texas, north of Houston (Fig. 4.13a). NoDA fails to predict this 

strong rainfall region completely (Fig. 4.13b). Assimilation of radar data helps to capture 

this intense precipitation area in the three data assimilation experiments although the 

strength and area coverage are under-predicted (Fig. 4.13c-e). For lighter or stratiform 

precipitation, it is not easy to tell which experiment has a better prediction. 

 

Fig. 4.13. 18-hour accumulated precipitation forecast from 0600 UTC September 13 to 
0000 UTC September 14 for (a) observations, (b) NoDA, (c) ExpVr, (d) ExpZ and (e) 
ExpAll. 

 

a b c d e 
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To quantify the precipitation forecast skills, equitable threat scores (ETS hereafter) 

against the Stage IV data for 3-hourly accumulated precipitation are calculated and 

plotted for all the experiments in Fig. 4.14. A threshold of 30 mm is chosen to present 

convective rainfall. In the first 6 hours of forecast, all the experiments with radar data 

assimilated have higher ETSs than NoDA. From 1200 UTC to 1800 UTC, the score is 

still higher in ExpZ while those of ExpAll and ExpVr are close to that of NoDA. There 

are increases in ETS scores for ExpAll and ExpVr from 1800 to 2100 UTC, which needs 

further examination. At the end of forecast, all the experiments have their scores below 

0.1, partly due to the shrinking area of convective precipitation at this time; in this 

situation, small position errors can lead to very low scores. 

 

Fig. 4.14. ETS of 3-hour accumulated precipitation at the 30 mm threshold for NoDA, 
ExpVr, ExpZ and ExpAll. 

 

The ETS of 18-hour accumulated precipitation is also calculated (Fig. 4.15) for 

four thresholds ranging from 30 mm to 120 mm. Lower thresholds represent more 

stratiform precipitations while higher thresholds more convective precipitations. It is 

noted that for all the thresholds, radar data assimilation helps to improve the quantitative 
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precipitation forecast. The larger the threshold is, the stronger the relative improvement is, 

implying more importance in improving convective precipitation forecast than stratiform 

precipitation forecast. For the 120 mm threshold, the relative improvements of three radar 

data assimilation experiments over NoDA are all around 300%.         

 

Fig. 4.15. ETS of 18-hour accumulated precipitation 0600 UTC September 13 to 0000 
UTC September 14 at the threshold of 30 mm, 60 mm, 90 mm and 120 mm for NoDA, 
ExpVr, ExpZ and ExpAll. 

 

4.6     Ensemble forecasts 

4.6.1    Ensemble forecasts of intensity and track 

The EnKF provides an ensemble of analyses which can be used to initialize an 

ensemble of forecasts. Ensemble forecasts of 32 members are therefore carried out from 

the 0600 UTC analyses of ExpAll. In this section 4.6, all the ensemble forecasts are 
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started from ExpAll. The intensities, tracks and track errors of the ensemble forecasts are 

plotted in Fig. 4.16 to Fig. 4.18. The results of the deterministic forecast starting from the 

ensemble mean analysis and the mean of ensemble forecasts are also shown for 

comparison. The intensity spread of 0.7 hPa (indicated by minimum sea level pressure) at 

the end of the analysis is relatively small compared with the intensity error of 4 hPa. One 

of the reasons is that there is no enough synoptic scale variance in the environment. The 

addition of synoptic scale perturbation from global ensemble forecast error statistics in 

the hurricane environment may help to alleviate this underestimation problem. Because 

Ike is in a weakening stage during this forecast period, the spread of the ensemble 

forecasts in intensity did not increase noticeably with time (Fig. 4.16). It is also found in 

other studies that the intensity error growth of a decaying hurricane system is not as 

strong as an intensifying stage and the ensemble spread tends to decrease with time (see 

Fig. 12. of Zhang et al. 2009). The mean of ensemble minimum sea level pressures is 

similar with that of the deterministic forecast.  

 

Fig. 4.16. The predicted ensemble minimum SLP of ExpAll (red), compared with the best 
track (black), NoDA (brown), ensemble average (green) and the deterministic forecast 
(blue).  

hPa 
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An increase in uncertainty is observed in the ensemble track forecasts (Fig. 4.17). 

The vortex centers are more separated at the end of forecast than at the start. The spread 

of the ensemble track is defines as  

2

1

1
1

n

i
i

d
N =− ∑                                                                                                        (4.8) 

where N is the ensemble size and di is the distance between the track of the i th member 

and the mean track. The track spread increases during most of the forecast time except for 

a temporary reduction in the first 3-hour forecast (Fig. 4.19). The track spread at the end 

of 18-hour forecast increases by 75% over the spread at the start. This trend is also 

reflected in the predicted track error. It should be noted that the calculation of track error 

spread may conceal the actual large track spread among the members where two widely 

separated vortex center can have similar track errors. As mentioned before, the average 

position of ensemble members is closer to the best track than the single ensemble mean at 

0600 UTC. The predicted track of the ensemble average also has certain improvement 

over the deterministic forecast at 1500 and 1800 UTC (Fig. 4.18), suggesting the 

potential benefit of using ensemble mean rather than the deterministic forecast for 

hurricane track prediction. 
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Fig. 4.17. The predicted ensemble track of ExpAll (red), compared with the best track 
(black), NoDA (brown), ensemble average (green) and the deterministic forecast (blue).  

 

Fig. 4.18. The predicted ensemble track error of ExpAll (red), compared with the best 
track (black), NoDA (brown), ensemble average (green) and the deterministic forecast 
(blue).  
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Fig. 4.19. The spread of ensemble tracks for ExpAll. 

 

4.6.2    Correlation of intensity and track forecast 

The ensemble forecasts provide an approach for the uncertainty and sensitivity 

study. The correlation coefficients between the initial intensity error and the intensity 

error of different forecast times are plotted in Fig. 4.20. There is a moderate correlation 

greater than 0.5 at the first 3-hour forecast. The correlation decreases gradually to 0.2 

after 12 hour forecast, indicating the nonlinearity in intensity forecasts after hurricane 

landfall. The negative correlation appears at 2100 UTC 13 September and 0000 UTC 14 

September when the best track has a weaker vortex than the forecast. The stronger 

vortices have smaller errors at early times but have larger errors at the end since the best 

track is weaker than the forecasts, resulting in the negative correlation. 

The similar figure is also plotted for the track forecasts (Fig. 4.21). The 

correlations with the initial track error during most of the forecast time are around zero, 

reflecting a very small sensitivity in the track forecast. Also, the correlations between the 

intensity error and the track error with time are shown in Fig. 4.22. The small correlations 
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during the 18 hours of forecast suggest that the improvement in intensity forecast does 

not guarantee an improvement in track forecast. 

 

 

Fig. 4.20. The correlation coefficients between the initial intensity error and the intensity 
error of different forecast times for ExpAll. 
 

 
 

Fig. 4.21. The correlation coefficients between the initial track error and the track error of 
different forecast times for ExpAll. 
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Fig. 4.22. The correlation coefficients between the track error and the intensity error of 
different forecast times for ExpAll. 
 
            

4.6.3    Ensemble Forecasts of precipitation 

ETSs are also calculated for the ensemble forecasts (Fig. 4.23). At most forecast 

times, most of the ensemble members have higher scores than NoDA. Similar to using 

ensemble track errors, we should be very cautious when using ETSs to estimate the 

precipitation forecast uncertainty as two highly different precipitation forecasts can have 

very similar ETSs. The mean of the ensemble ETSs is also shown in Fig. 4.23 (black). 

The mean ETS trend follows most of the ensemble members with no surprise. The ETS 

of ensemble mean is also calculated and plotted (green) in Fig 4.23. The ETS of mean 

precipitations is close to mean ETS but with lower scores at 1500 UTC and 1800 UTC 

and a higher score at 2100 UTC.  
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Fig. 4.23. The ensemble ETSs of 3-hour accumulated precipitation of ExpAll (red), 
against NoDA (brown) and the deterministic forecast (blue). The mean ETS (black) and 
the ETS of ensemble mean precipitation (green) is also plotted. 

 

In high resolution numerical model simulations, the precipitation field tends to 

have high spatial and temporal variances among ensemble members. One problem related 

with the ensemble mean of precipitation is the excessively broad rainfall areas and weak 

rainfall magnitudes owing to averaging (Kong et al. 2009).  In our study, the 18 hour 

accumulated ETS of the ensemble mean is larger than that of the deterministic forecast 

for 30 mm and 60 mm threshold (Fig. 4.25), indicating a better precipitation forecast for 

lighter rainfalls since the spatial difference among ensemble members leads to a broad 

rainfall region with light precipitations. For 90 mm and 120 mm threshold, however, the 

ETS of the mean is smaller than the deterministic forecast (Fig. 4.25), a result from the 

smaller convective rainfall amount caused by averaging among ensemble members.     

Probability matching (PM, hereafter) provides a useful way to re-organize the 

precipitation fields among ensemble members and improve the quantitative precipitation 

forecast (QPF). Probability matching sets the probability distribution function (PDF) of 
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the less accurate dataset to be the same as that of the more accurate dataset (Ebert 2001). 

The PM method in this study follows Ebert (2001) by assuming the best spatial 

distribution of rainfall field is represented by the ensemble mean while the best frequency 

distribution is given by the ensemble QPFs. PM algorithm first combines the 

accumulated precipitations from all the ensemble members on the selected domain and 

ranks the precipitations from the greatest to the smallest to obtain the PDF of the 

accumulated precipitations. This ensemble of precipitations is saved as array 1. Similarly, 

the precipitations of the ensemble mean over the same domain are also ranked with the 

highest to the lowest order, saved as array 2. Then the grid point with the highest value in 

array 2 is reassigned to the highest precipitation in array 1, and so on. The grid point with 

the n th value in array 2 is reassigned to the n×m th value in array 1, where m is the 

ensemble size.    

With PM, the 3-hour accumulated rainfall ETS at a 30 mm threshold has slight 

but solid improvement consistently over the regular ensemble mean for all of the forecast 

time (Fig. 4.24). For the 18-hour accumulated precipitation ETS (Fig. 4.25), PM has 

higher scores at 60 mm, 90 mm and 120 mm threshold than the regular mean. At 120 mm 

threshold which represents strong rainfalls, the experiment with PM has the largest 

relative improvement of 49% to the experiment without PM. Overall, PM has the best 

ETS result for all four thresholds except for 120 mm, where the deterministic forecast is 

slightly better than PM.     
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Fig. 4.24. ETS of 3-hour accumulated precipitation at the 30 mm threshold for NoDA 
(brown), deterministic forecast (magenta), mean of ensemble forecast (blue) and 
probability matching of ensemble forecast (red). 

  

 

Fig. 4.25. The ETS of 18-hour accumulated precipitation for NoDA (blue), deterministic 
forecast of ExpAll (red), mean of ExpAll ensemble forecast (green) and probability 
matching of ExpAll ensemble forecast (purple) at various thresholds.  
 
4.7      Sensitivity to localization cutoff radius 
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One important issue with EnKF assimilation of radar data for hurricanes is the 

optimal choice of the covariance localization radius. Usually, the localization radius has 

to be large enough to avoid the “bull’s eyes” in the analysis, and should be small enough 

so as to avoid the use of unreliable covariance due to sampling error. The localization 

radius used in the previous experiments is mostly based on experiments assimilating 

radar data for individual thunderstorms at similar resolutions. It is not necessarily optimal 

for hurricanes which include flows of multiple scales. In our current study, the 

experiment assimilating reflectivity alone (ExpZ) has a smaller positive impact on the 

intensity and track forecasts than assimilating radial velocity alone (ExpVr). It is not clear 

if a more optimal localization radius exists that lead to a larger impact of reflectivity data. 

Sensitivity experiments with localization radius are conducted to find this out. 

The localization radius is changed from the 12 km used in the control experiment 

ExpZ to 24 km and 6 km in ExpZR24 and ExpZR6, respectively (Table 4.1). 

Correspondingly, ExpVrR24 and ExpVrR6 are performed which are the same as ExpVr 

but using 24 and 6 km localization radius respectively. The predicted minimum sea-level 

pressures from these experiments are plotted in Fig. 4.26 and Fig. 4.27. 
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Fig. 4.26. The predicted minimum SLP of NoDA (red), ExpVrR24 (green), ExpVr (blue) 
and ExpVrR6 (also Exp10Min; magenta), compared with the best track (black).  

 

Fig. 4.27. The predicted minimum SLP of NoDA (red), ExpZR24 (green), ExpZ (blue) 
and ExpZR6 (also Exp10Min; magenta), compared with the best track (black).  

 

Among the experiments assimilating Vr only, ExpVrR24 and ExpVrR6 predict 

almost the same minimum sea level pressures as ExpVr during the first 6 hours of 

forecast (Fig. 4.26). After 1200 UTC September 13, ExpVrR24 predicts a vortex that is 

nearly 1 hPa weaker than those in ExpVr and ExpVrR6. Among the experiments 

hPa 

hPa 
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assimilating Z only, the analyzed minimum sea level pressure in ExpZR6 is slightly 

higher than in ExpZ and ExpZR24 at 0600 UTC. The forecast intensities in these three 

experiments are similar during the entire 18 hours of forecast.  

The predicted tracks and track errors for Vr-assimilating experiments are plotted 

in Fig. 4.28 and Fig. 4.29. The analyzed vortex center in ExpVrR24 at 0600 UTC is to the 

northeast of the centers of ExpVr and ExpVr6, and is closer to the coast (Fig. 4.28). The 

track error of ExpVrR24 at 0600 UTC is a little larger than ExpVr and ExpVr6 while 

ExpVrR6 has the smallest track error (Fig. 4.29). During the 18 hours of forecast, these 

three experiments have similar tracks and track errors, with the mean track errors being 

12.7 km, 12.1 km and 11.4 km for ExpVrR24, ExpVr and ExpVrR6, respectively.  

  

 

Fig. 4.28. The predicted track of NoDA (red), ExpVrR24 (green), ExpVr (blue) and 
ExpVrR6 (magenta), compared with the best track (black).  



138 
 

 

Fig. 4.29. The predicted track error of NoDA (red), ExpVrR24 (green), ExpVr (blue) and 
ExpVrR6 (magenta).  

 

The tracks and track errors for Z-assimilating experiments are plotted in Fig. 4.30 

and Fig. 4.31. Different from the ExpZ and NoDA cases, the analyzed positions at 0600 

UTC in ExpZR24 and ExpZR6 are on the west side of the best track position (Fig. 4.30). 

ExpZR24 has a smaller track error than ExpZ and ExpZR6 (Fig. 4.31). During the first 3 

hours of forecast, ExpZR24 and ExpZR6 take north-northwest paths, different from the 

northwest paths of the best track, NoDA and ExpZ. At 0900 UTC, it is apparent that the 

vortices in ExpZR24 and ExpZR6 change their moving directions, different from the best 

track, NoDA and ExpZ. After 0900 UTC, the tracks of the three experiments are similar. 

The mean track errors of ExpZR24, ExpZ and ExpZR6 are 16.6 km, 18.5 km and 17.6 

km, respectively. 
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Fig. 4.30. The predicted track of NoDA (red), ExpZR24 (green), ExpZ (blue) and 
ExpZR6 (magenta), compared with the best track (black).  

 

Fig. 4.31. The predicted track error of NoDA (red), ExpZR24 (green), ExpZ (blue) and 
ExpZR6 (magenta).  

 

In summary, the change of the covariance localization radius has relatively small 

impacts on the intensity analysis and forecast among the experiments assimilating Z or 

Vr only. Except for some degradation in the final intensity analysis in ExpZR6, the 

localization radius has negligible effect on the intensity forecasts from up to 1500 UTC. 
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For the track forecast, among the experiments assimilating Vr alone, the impact of the 

localization radius is marginal. Among the experiments assimilating Z alone, although 

the 24 km radius shows the smallest mean track error, the predicted track with the 12 km 

radius is closer to the best track in terms of the general movement direction. In this 

specific hurricane case, a 12 km covariance localization radius appears to be optimal for 

the assimilation of radar data. This radius was used our control and most other 

experiments. 

 

4.8       Sensitivity to assimilation interval 

The data assimilation interval is changed to test the assimilation frequency’s 

impact on intensity, track and precipitation forecasts in Exp30Min and Exp60Min (Fig. 

4.32 to Fig. 4.34). With 10-minute intervals, ExpAll is also referred as Exp10Min in this 

section. The innovations of Vr and Z from KHGX during the assimilation cycles for three 

different intervals are plotted in Fig. 4.35. The difference of error growth between 

Exp10Min and Exp30Min are very close for both Vr and Z. There is a slightly larger 

error growth of Vr in Exp60Min from 60 minutes to 70 minutes. 
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Fig. 4.32. The predicted minimum SLP of NoDA (red), Exp30Min (green), Exp60Min 
(blue) and ExpAll (also Exp10Min; magenta), compared with the best track (black).  

 

 

 

Fig. 4.33. The predicted track of NoDA (red), Exp30Min (green), Exp60Min (blue) and 
ExpAll (also Exp10Min; magenta), compared with the best track (black).  

hPa 
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Fig. 4.34. The predicted track error of NoDA (red), Exp30Min (green), Exp60Min (blue) 
and ExpAll (also Exp10Min; magenta).  

 

Fig. 4.35. The innovation for the radar KHGX (a) Vr and (b) Z during the analysis cycle 
for ExpAll (magenta), Exp30Min (green) and Exp60Min (blue). 
 

 The intensity forecasts indicate the 60-minute interval is not enough to predict a 

vortex as strong as 10-minure and 30-minute intervals in terms of minimum seal level 

pressure (Fig. 4.32). The latter two have similar intensity forecasts while minimum seal 

level pressures in 10-minute intervals is closer to the best track during the first 3 hour 

forecast. All the three intervals show similar track forecasts while Exp30Min has the 
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smallest mean track error (Fig. 4.33 and Fig. 4.34). The ETSs in all of the three intervals 

share the similar accuracy of quantitative precipitation forecast (not shown). 

 

4.9       Sensitivity to single radars 

Instead of assimilating both of the coastal radars, the observations from the single 

radar KHGX and KLCH are also separately assimilated in ExpKHGX and ExpKLCH to 

investigate their individual impacts. Both Vr and Z are assimilated in these two 

experiments. It is interesting to notice that the assimilation of KHGX alone has the best 

intensity analysis with the strongest vortex in terms of minimum sea level pressure at 

0600 UTC (Fig. 4.36) among all the three data assimilation experiments. The intensity 

difference with the best track for ExpKHGX , ExpKLCH and ExpAll is 2 hPa, 11 hPa 

and 4 hPa at 0600 UTC, respectively. During all the forecast times, ExpKHGX has the 

stronger predicted vortex than ExpKLCH and ExpAll. ExpKLCH also has evident 

improvement to NoDA but with a much weaker intensity forecast than the other two data 

assimilation experiments. 

In the track forecast, ExpKLCH is closer to the best track from 1200 UTC to 1800 

UTC with a more east path than ExpKHGX and ExpAll (Fig. 4.37). Assimilating KLCH 

alone always has the smallest or the second smallest track error during the 18 hours of 

forecast (Fig. 4.38). The mean track errors for ExpKHGX , ExpKLCH and ExpAll are 17 

km, 9 km and 14 km, respectively.  

 It appears that KLCH has more contributions to the track forecast than KHGX 

while KHGX has a larger improvement in the intensity forecast than KLCH. Since the 

track and intensity forecasts of a hurricane is closely related to the axis-symmetric and 
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axis-asymmetric circulation, it is possible that KLCH has more impact on the axis-

asymmetric structure while KHGX exerts more influence on the axis-symmetric 

circulation. Generally, assimilating both radars has the better intensity forecast than 

assimilating KLCH alone and the better track forecast than assimilating KHGX alone, 

showing certain advantages of using multiple Doppler radars.  

 

Fig. 4.36. The minimum seal level pressure of NoDA (red), ExpKHGX (green), 
ExpKLCH (blue) and ExpAll (magenta), compared with the best track (black). 
 

 
Fig. 4.37. The forecasted tracks of NoDA (red), ExpKHGX (green), ExpKLCH (blue) 
and ExpAll (magenta), compared with the best track (black). 
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Fig. 4.38. The track error of NoDA (red), ExpKHGX (green), ExpKLCH (blue) and 
ExpAll (magenta). 
 
 
4.10    Assimilation of MSLP 

Besides radar observations, the assimilation of the minimum sea level pressure 

representing vortex intensity with EnKF has shown positive impacts on hurricane 

intensity and track analyses (Hamill et al’s (2010) Fig. 15). Chen and Snyder (2007) 

assimilated the vortex intensity (vorticity magnitude in their study) with EnKF in a 

simple 2-dimensional barotropic model and also found the improvement in intensity and 

track analyses and forecasts. In our current experiments, there is about a 4-hPa error in 

the final intensity analysis in ExpAll, our best case, while ExpZ has a larger final analysis 

error of 16 hPa. The assimilation of best track MSLP is expected to directly impact Ike’s 

intensity analysis and forecast and a larger improvement can be expected in ExpZ than in 

ExpVr and ExpAll experiments. The impact of assimilating MSLP on the track forecast 

will also be examined in this section.  
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4.10.1   Experiment setup 

The MSLP from the best track are assimilated with radar observations together at 

0500 and 0600 UTC September 13 in the control experiments. To test the sensitivity of 

MSLP assimilation intervals, the best track intensity are also interpolated with time with 

10-minute interval between 0500 and 0600 UTC and assimilated with radar data. The 

radar observations are always assimilated with 10-minute intervals. The MSLP 

assimilation schemes for these two intervals of 10- and 60-minute are plotted in Fig. 4.39. 

Two additional experiments are conducted with MSLP assimilated alone with 10-minute 

and 60-minute intervals. The only difference between assimilating radar plus MSLP and 

MSLP alone is the removal of radar data in the latter two experiments. 

      

Fig. 4.39. The assimilations schemes for MSLP assimilation with (a) 60 min. interval and 
(b) 10 min. interval. The red upward arrows denote radar data assimilation. The purple 
downward arrows denote MSLP assimilation.  
 

The positions of the MSLP are also extracted from the best track estimate. Chen 

and Snyder (2007) assimilated the vortex position into a 2D barotropic model and found 

the track forecast is improved. Different from their method, in this study MSLP from the 

best track is treated as a regular sea level pressure observation at the best track position. 

(a) 

(b) 
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The simple reduction equation (eq. (1) of Benjamin and Miller 1990) is applied as the 

observation operator H to obtain the sea level pressure from the pressure and the 

temperature of the model at the first vertical level above the surface: 

/0
0

0

( )g R
SL

T zP P
T

γγ+
=                                                                                             (4.9) 

where SLP  is the sea level pressure, 0P and 0T  are the pressure and temperature of the first 

level above the surface respectively at the model grid, z is the height of the first level, γ  

is the environmental temperature lapse rate, g is the gravity and R is the gas constant. 

This equation is based on the hydrostatic and hypsometric equations. A similar equation 

is derived by Wallace and Hobbs (1977). After the sea level pressure is obtained at the 

horizontal model grid, a bi-linear horizontal interpolation is used to project the sea level 

pressures to the best track position, which is not always on the model grid.  

 Obs. Type MSLP assimilation 
Interval from 0500 to 

0600 UTC 

MSLP obs. Error 

ExpVrMSLP Vr+MSLP 60 min. 1 hPa 
ExpZMSLP Z+MSLP 60 min. 1 hPa 
ExpAllMSLP Vr+Z+MSLP 60 min. 1 hPa 
ExpVrMSLP2MB Vr+MSLP 60 min. 2 hPa 
ExpZMSLP2MB Z+MSLP 60 min. 2 hPa 
ExpAllMSLP2MB Vr+Z+MSLP 60 min. 2 hPa 
ExpVrMSLP10MIN Vr+MSLP 10 min. 1 hPa 
ExpZMSLP10MIN Z+MSLP 10 min. 1 hPa 
ExpAllMSLP10MIN Vr+Z+MSLP 10 min. 1 hPa 
ExpMSLP MSLP 60 min. 1 hPa 
ExpMSLP10MIN MSLP 10 min. 1 hPa 

 
Table 4.2. Experiments of assimilating MSLP observations. 

 

The observation error of MSLP from human synthesized TcVital data set can 

range from 0.75 to 2 hPa (Tong 2010, personal communication). In this study, 1 hPa error 
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is used in the control experiments and 2 hPa error is also tested. The MSLP are 

assimilated with Z or Vr or both Z and Vr. These experiments are summarized in Table 

4.2.  

The horizontal covariance localization radius of MSLP is 300 km, based on the 

size of the background vortex. Since there is only one MSLP observation assimilated at 

the analysis time and MSLP is expected to represent meso- or synoptic scale features, a 

large horizontal localization radius is preferred for this single MSLP observation to cover 

a large area of the vortex. The prior multiplicative covariance inflation of 5% is used to 

inflate the state variables covered by the radar or MSLP observations. The posterior 

additive covariance inflation same as section 4.3.4 is used only for the state variables 

covered by radar data.  

MSLP is assimilated after radar observations during the analysis. The model state 

variables of wind components, potential temperature and pressure are updated by MSLP.   

 

4.10.2  Impact of MSLP on hurricane analysis 

The increment of wind and potential temperature at 1 km height from assimilating 

MSLP are plotted for ExpZMSLP in Fig 4.40. The increment in Fig. 4.40 is defined as 

the difference of the state variables before and after the MSLP analysis.  

With the single MSLP observation analyzed, the increment field of wind shows 

the strong cyclonic circulation around the MSLP observation (Fig. 4.40a), indicating the 

enhancement of the vortex by the MSLP observation. The covariance between the 

pressure observation and the model wind fields allows the MSLP observation to update 

the wind field properly, which reflects the benefit of multivariate analysis. The pressure 
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reduction from this MSLP observation is also evident in Fig. 4.40a. The pressure 

reduction is over 10 hPa at the vortex center and increases outward. The well-shaped 

circles of pressure increments around the MSLP observation is partly from the 

localization scheme which reduces the impact of the observation with distances. 

The increment of potential temperature is plotted in Fig. 4.40b. While the 

increment of potential temperature is not as well-shaped as pressure, there is still 

noticeable positive increments at the center of the vortex with the maximum value of 5 K, 

suggesting the strengthening of the warm core structure by assimilating MSLP.       

 
Fig. 4.40. Increment fields from assimilating MSLP at z=1km for (a) horizontal wind 
component and pressure (every 200 Pa), and (b) potential temperature (every 1 K) at 0500 
UTC 0913 of ExpZMSL. The black dot denotes the position of the MSLP observation. 

 

To investigate the impact of assimilating MSLP on intensity analysis, the 

minimum sea level pressures before and after each analysis cycle are plotted in Fig. 4.41 

and Fig. 4.42. While the best track intensity is only available at 0500 of 952 hPa and 

0600 UTC of 951 hPa, it may be reasonable to assume the intensity of the best track 

between these two times is close to 952 or 951 hPa. 

a b 
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Fig. 4.41. The minimum sea level pressure during the assimilation cycles of ExpVr (blue), 
ExpVrMSLP (red), ExpVrMSLP10MIN (thin green) and the best track (black). Analysis 
time 10 min. corresponds to 0410 UTC September 13 and 120 min corresponds to 0600 
UTC September 13. 

 

 

Fig. 4.42. The minimum sea level pressure during the assimilation cycles of ExpZ (blue), 
ExpZMSLP (red), ExpZMSLP10MIN (thin green) and the best track (black). Analysis 
time 10 min. corresponds to 0410 UTC September 13 and 120 min corresponds to 0600 
UTC September 13. 
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When Vr is assimilated alone in ExpVr, the intensity does not change greatly 

from 0500 UTC to 0600 UTC (analysis time 60 to 120 min., Fig. 4.41) with the minimum 

sea level pressure always around 955 hPa. In ExpVrMSLP, there is about 1 hPa increase 

in intensity due to assimilating MSLP at 0510 UTC. Then this small improvement in 

analysis is lost quickly in the next forecast cycle, leading to the similar intensity level 

with ExpVr in the following assimilation cycles until the next MSLP observation is 

available at 0600 UTC. The improvement to ExpVr is about 2 hPa in the final intensity 

analysis at 0600 UTC. 

When Z is assimilated alone in ExpZ, there is a slight intensification for the first 4 

assimilation cycles starting from 0500 UTC (Fig. 4.42).  Later, the impact from Z on the 

analysis is larger during the last 3 assimilation cycles with 1 to 2 hPa reductions of 

minimum sea level pressure, probably resulting from the better covariance structure 

between the microphysical fields and the pressure fields. In ExpZMSLP, the 

improvement due to assimilating the additional MSLP at 0500 UTC is as large as 14 hPa. 

While the vortex weakens quickly in the next 10 minutes to 964 hPa, the intensity is still 

5 hPa stronger than ExpZ at 0510 UTC. From 0510 UTC to 0550 UTC, without MSLP 

assimilated in ExpZMSLP, there is no noticeable intensification in analysis-forecast 

cycles until the next MSLP observation is available at 0600 UTC. There is a considerable 

intensity increase of 12 hPa due to assimilating MSLP at 0600 UTC. 

The impacts on analysis from more frequent MSLP assimilation cycles of 10 

minutes intervals are also plotted in Fig. 4.41 and Fig. 4.42. They will be discussed later 

in section 4.10.5.        
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4.10.3    The impact on hurricane forecast 

The predicted minimum sea level pressures are plotted in Fig. 4.43 and Fig. 4.44 

to examine the impact of MSLP assimilation on Ike’s forecast. 

 

Fig. 4.43. The minimum sea level pressure of NoDA (red), ExpVr (blue), and 
ExpVrMSLP (magenta), compared with the best track (black). 
 

 

Fig. 4.44. The minimum sea level pressure of NoDA (red), ExpZ (blue), and ExpZMSLP 
(magenta), compared with the best track (black). 
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When Vr and MSLP are assimilated together, the intensity of the final analysis of 

ExpVrMSLP is 953.6 hPa at 0600 UTC, with a 2 hPa improvement to ExpVr (Fig. 4.43). 

The improvement, however, is reduced to less than 1 hPa after 3 hours of forecast at 0900 

UTC. The difference becomes even smaller from 0900 UTC September 13 to 0000 UTC 

September 14.  

When Z and MSLP are assimilated together in ExpZMSLP, the improvement due 

to assimilating the additional MSLP is significant with around a 14 hPa intensity increase 

over ExpZ (Fig. 4.44). The minimum sea level pressure of ExpZMSLP at 0600 UTC is 

953.3 hPa, with only 2 hPa weaker than the best track. During the first 3 hours of forecast, 

the vortex weakens faster than the best track, suggesting some adjustment processes 

among the model state variables. From 0900 to 1500 UTC, the intensity weakening rate is 

similar to the best track estimate. The improvement in intensity to ExpZ is recognizable 

until 1800 UTC. 
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Fig. 4.45. The forecasted tracks of NoDA (red), ExpVr (blue) and ExpVrMSLP 
(magenta), compared with the best track (black). 
 

 

Fig. 4.46. The track error of NoDA (red), ExpVr (blue) and ExpVrMSLP (magenta). 
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Fig. 4.47. The forecasted tracks of NoDA (red), ExpZ (blue) and ExpZMSLP (magenta), 
compared with the best track (black). 
 

 
Fig. 4.48. The track error of NoDA (red), ExpZ (blue) and ExpZMSLP (magenta). 
 

The forecasted tracks and track errors of ExpVr and ExpVrMSLP are plotted in 

Fig. 4.45 and Fig. 4.46. With the additional MSLP assimilated, the vortex center is closer 

to the best track at 0600 UTC with the track error of 6.6 km and the relative improvement 
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of 65% in terms of track error reduction (Fig. 4.45 and Fig. 4.46). The improvement in 

the final analysis does not last long during the following forecast. The vortex movement 

and track errors of ExpVrMSLP are very similar to ExpVr during most of the forecast 

times. 

In ExpZMSLP at 0600 UTC, the improvement in the track forecast due to 

assimilating additional MSLP is even larger than assimilating MSLP with Vr, with the 

track error of only 2.6 km and the relative improvement of 92% over ExpZ (Fig. 4.48). 

The movement of the hurricane in ExpZMSLP follows the best track closely from 0600 

to 1200 UTC (Fig. 4.47). The improvements in track forecast are noticeable until 1500 

UTC with the relative improvements in terms of track error reduction always over 50% 

during the first 6-hour forecast. After 1500 UTC, the track errors of ExpZMSLP are 

similar to ExpZ.   

When MSLP is assimilated with both Vr and Z altogether in ExpAllMSLP, the 

impact due to assimilating additional MSLP on the intensity and track forecasts is very 

similar to the impact of assimilating MSLP in addition to Vr and will not be discussed in 

detail. 

 

4.10.4  Sensitivity to MSLP observation errors 

In this section, the observation error of MSLP is changed from 1 hPa in control 

experiments to 2 hPa to examine the impact on track and intensity forecasts. The intensity 

and track errors during the 18 hours of forecast are plotted in Fig. 4.49 to Fig. 4.52. 

Intensity error is defined as the difference of the minimum sea level pressures between 

the model forecasts and the best track estimates. It should be noticed that it is not a 
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strictly defined “real” error since it is not the difference between the model simulation 

and the truth. This definition is chosen just for convenience. 

  

Fig. 4.49. The intensity errors of ExpVrMSLP, ExpVrMSLP2MB, ExpVr and NoDA 
experiments from 0600 UTC September 13 to 0000 UTC September 14. See text for the 
definition of intensity error. 
 

 

Fig. 4.50. The track errors of ExpVrMSLP, ExpVrMSLP2MB, ExpVr and NoDA 
experiments from 0600 UTC September 13 to 0000 UTC September 14. 
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Fig. 4.51. The intensity errors of ExpZMSLP, ExpZMSLP2MB, ExpZ and NoDA 
experiments from 0600 UTC September 13 to 0000 UTC September 14. 

 

 

Fig. 4.52. The track errors of ExpZMSLP, ExpZMSLP2MB, ExpZ and NoDA 
experiments from 0600 UTC September 13 to 0000 UTC September 14. 

 

When MSLP is assimilated with Vr, ExpVrMSLP has a better intensity analysis at 

0600UTC than ExpVrMSLP2MB with a 1.5 hPa improvement (Fig. 4.49). The 1.5 hPa 

hPa 
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difference between ExpVrMSLP and ExpVrMSLP2MB on the final analysis of minimum 

sea level pressure is close to the 1 hPa difference between the MSLP observation errors 

in these two experiments. This difference decreases gradually in the following forecast. 

The time evolution of the difference in track errors between ExpVrMSLP and 

ExpVrMSLP2MB is similar to those in the intensity forecast (Fig. 4.50). The largest 

difference of track errors between these two experiments during 18 hours of forecast is 8 

km at 0600 UTC with the smaller track error in ExpVrMSLP. The track errors of these 

two experiments are close to each other from 0900 UTC to 1800 UTC. 

When MSLP is assimilated with Z, the difference of intensity between 

ExpZMSLP and ExpZMSLP2MB in the final analysis is as large as 5 hPa (Fig. 4.51) 

with a smaller intensity error in ExpZMSLP. The difference between ExpZMSLP and 

ExpZMSLP2MB decreases during the forecast, with 2 hPa at 0900 UTC and less than 1 

hPa after 1500 UTC. In the track forecast, the difference between ExpZMSLP and 

ExpZMSLP2MB is small during most of the forecast hours (Fig. 4.52), except for 1800 

UTC when the track error of ExpZMSLP is 8 km larger than ExpZMSLP2MB. 

 In this specific hurricane case, a smaller observation error of MSLP leads to 

better intensity and track forecast generally.  In practice, a realistic observations error 

needs to be carefully chosen and should reflect the observation properties, such as the 

representative and instrument errors. 

   

4.10.5    Sensitivity to MSLP assimilation intervals 

In this section, the MSLPs is linearly interpolated with time from 0500 to 0600 

UTC with 10-minute interval and assimilated with radar observations together. In 
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operational applications, there are no such frequent MSLP estimates with 10-minute 

interval updates. In this study, the MSLP estimates at 0500 (952 hPa) and 0600 UTC 

(951 hPa) are so close that it is reasonable to assume the time interpolation does not 

introduce large errors. If there are abrupt changes with time in MSLP datasets, it may not 

be appropriate to use linear time interpolations.  

The predicted intensities for ExpVrMSLP10MIN and ExpZMSLP10MIN are 

plotted in Fig. 4.53 and Fig. 4.54. 

 

Fig. 4.53. The minimum sea level pressure of NoDA (red), ExpVr (blue), ExpVrMSLP 
(green), and ExpVrMSLP10MIN (magenta) compared with the best track (black). 
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Fig. 4.54. The minimum sea level pressure of NoDA (red), ExpZ (blue), ExpZMSLP 
(green), and ExpZMSLP10MIN (magenta) compared with the best track (black). 
 

With 10-minute intervals, the improvement from the frequent assimilation of 

MSLP to ExpVrMSLP during the assimilation cycles is distinguishable (Fig. 4.41 and Fig. 

4.42). The forecasted minimum sea level pressures of ExpVrMSLP10MIN from 0530 to 

0600 UTC are always smaller than ExpVrMSLP (Fig. 4.41). At the final analysis time, 

the intensity in ExpVrMSLP10MIN is 1 hPa stronger than ExpVrMSLP (Fig. 4.53). The 

difference decreases to less than 1 hPa in the first 3 hours of forecast at 0900 UTC and 

then almost disappears in the last 12 hours of forecast.  

When MSLP is assimilated with Z, the more frequent assimilation of MSLP leads 

to larger additional impact than assimilating MSLP with Vr. The forecasted minimum sea 

level pressure in ExpZMSLP10MIN is evidently smaller than ExpZMSLP from 0520 

UTC to the end of all assimilation cycles (Fig. 4.54). The intensity of the forecasted 

vortex increases gradually in each assimilation cycle with 10-minute intervals. In the first 

2-3 cycles of forecast, the forecasted minimum sea level pressure increases very quickly 

after each analysis but increases slower during the last 2-3 cycles, suggesting a slower 

hPa 
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error growth in the later cycles. At the end of all the assimilation cycles, the intensity in 

ExpZMSLP10MIN is 1 hPa stronger than ExpZMSLP (Fig. 4.54). Different from the 

experiments assimilating Vr and MSLP together, the difference between ExpZMSLP and 

ExpZMSLP10MIN at the initial forecast time amplifies in the first 3 hours of forecast, 

reaching to 3.4 hPa at 0900 UTC. This noticeable improvement of using 10-minute 

intervals to 60-minute intervals lasts until 1800 UTC with a 0.8 hPa difference between 

ExpZMSLP and ExpZMSLP10MIN at 1800 UTC.      

    

Fig. 4.55. The forecasted tracks of NoDA (red), ExpVr (blue), ExpVrMSLP (green) and 
ExpVrMSLP10MIN (magenta), compared with the best track (black). 
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Fig. 4.56. The track error of NoDA (red), ExpVr (blue), ExpVrMSLP (green) and 
ExpVrMSLP10MIN (magenta). 
 

The forecasted track and track error of ExpVrMSLP10MIN are plotted in Fig. 

4.55 and Fig. 4.56, respectively. During most of the forecast hours, the track errors in 

ExpVrMSLP10MIN are smaller than ExpVrMSLP. The mean track error of 

ExpVrMSLP10MIN averaged in 18 hours of forecast is 8.0 km with a relative 19% 

improvement to ExpVrMSLP. 

 

Fig. 4.57 The forecasted tracks of NoDA (red), ExpZ (blue), ExpZMSLP (green) and 
ExpZMSLP10MIN (magenta), compared with the best track (black). 
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Fig. 4.58. The track error forecast of NoDA (red), ExpZ (blue), ExpZMSLP (green) and 
ExpZMSLP10MIN (magenta). 
 

When MSLP and Z are assimilated together with 10-minute intervals, the track 

forecast is improved at 1200, 1400 and 2100 UTC due to using more frequent 

assimilation cycles (Fig. 4.57 and Fig. 4.58). The mean track error of ExpZMSLP10MIN 

is 10.8 km, with a relative improvement of 11% to ExpZMSLP. 

 
4.10.6   Assimilation of MSLP alone 

In the previous sections, MSLP is always assimilated with radar observations. It is 

of our interest to examine the individual impact of assimilating MSLP and radar 

observations separately. To investigate the impact of assimilating MSLP alone, 

ExpMSLP and ExpMSLP10MIN are conducted without radar data assimilation. In 

ExpMSLP, MSLP is assimilated at 0500 and 0600 UTC with the assimilation interval of 

60 minutes as in ExpVrMSLP or ExpZMSLP. In ExpMSLP10MIN, MSLP is assimilated 

with the assimilation interval of 10 minutes between 0500 and 0600 UTC as in 
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ExpVrMSLP10MIN or ExpZMSLP10MIN. Covariance inflation of 5% is applied only 

for the state variables covered by the single MSLP observation and no additive error is 

used. The experiment setup for ExpMSLP is similar to ExpVrMSLP or ExpZMSLP 

except for the difference mentioned above. The experiment setup for ExpMSLP10MIN is 

similar to ExpVrMSLP10MIN or ExpZMSLP10MIN. 

 

Fig. 4.59. The minimum sea level pressure of NoDA (red), ExpVr (blue), ExpZ (green), 
ExpMSLP (magenta) and ExpAllMSLP (brown) compared with the best track (black). 
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Fig. 4.60. The forecasted tracks of NoDA (red), ExpVr (blue), ExpZ (green), ExpMSLP 
(magenta) and ExpAllMSLP (brown) compared with the best track (black). 
 

The forecasted minimum sea level pressures of ExpMSLP are plotted in Fig. 4.59 

together with ExpVr, ExpZ and ExpAllMSLP. At 0600 UTC, ExpMSLP has an intensity 

of 955.3 hPa which is very close to the intensity of ExpVr and much stronger than ExpZ. 

When the forecast starts, the vortex in ExpMSLP weakens faster than ExpVr in the first 3 

hours. The intensity at 0900 UTC is 964.4 hPa, 6.4 hPa weaker than ExpVr. Since there 

are much fewer observation numbers (only one MSLP observation assimilated) and less 

frequent assimilations cycles of MSLP assimilation than Vr data, it is not surprising to 

observe this fast weakening behavior in the first 3 hours of forecast. While the MSLP 

helps to improve the mesoscale intensity analysis, the storm or convective scale features 

in the hurricane system may not be improved as much as in ExpVr with radar data 

assimilation. When the forecast starts, the numerical model spends some time for the 

adjustment among various scales and a faster error growth than ExpVr is inevitable in the 
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first several hours. From 0900 UTC, the vortex of ExpMSLP weakens more slowly than 

ExpVr, with the difference between ExpMSLP and ExpVr after 0900 UTC always 

smaller than that at 0900 UTC. It is also noticed that the intensity forecast of ExpMSLP 

is always better than ExpZ until 1800 UTC, indicating a larger impact from MSLP than Z 

on the intensity forecast.  

When Vr, Z and MSLP are assimilated altogether in ExpAllMSLP, there is a 2 

hPa improvement in intensity to ExpVr at the start of the forecast. This difference, 

however, becomes insignificant at and after 0900 UTC. 

 

Fig. 4.61. The minimum sea level pressure of NoDA (red), ExpVr (blue), ExpZ (green), 
ExpMSLP10MIN (magenta) and ExpAllMSLP10MIN (brown) compared with the best 
track (black). 
 

When MSLP is assimilated alone with 10-minute intervals in ExpMSLP10MIN, 

the intensity at 0600 UTC is closer to the best track than ExpVr and ExpZ (Fig. 4.61). 

The minimum sea level pressure of ExpMSLP10MIN is 2.6 hPa stronger than ExpVr and 

13.9 hPa stronger than ExpZ at 0600 UTC. With a faster weakening rate than ExpVr in 

the first 3-hour forecast, the vortex in ExpMSLP10MIN is weaker than ExpVr from 0900 
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UTC but still much stronger than ExpZ during the 18 hours of forecast. With Vr, Z and 

MSLP at 10-minute intervals are assimilated together in ExpAllMSLP10MIN, the better 

intensity forecast is obtained than assimilating each observation individually.    
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Fig. 4.62. Mean track error in 18-hour forecast of NoDA, ExpVr, ExpZ, ExpMSLP and 
ExpAllMSLP.  
 

The predicted track of ExpMSLP is plotted in Fig. 4.60. The position of the 

vortex center in ExpMSLP is closer to the best track than ExpVr and ExpZ at 0600 UTC. 

From 0900 to 1800 UTC, the track of ExpMSLP is overlapped with ExpVr. At 2100 

UTC, the vortex center position of ExpMSLP is on the east side of the best track, 

opposite to ExpVr and ExpZ, which are both on the west side of the best track. The track 

error of ExpMSLP at the end of the forecast is smaller than ExpVr and ExpZ (not shown). 

The mean track error of ExpMSLP during the 18 hours of forecast is similar to ExpVr 

and ExpAllMSLP, all showing relative improvements of 33% over ExpZ.  
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Fig. 4.63. The minimum sea level pressure of NoDA (red), ExpVrMSLP (blue), 
ExpZMSLP (green), and ExpMSLP (magenta), compared with the best track (black). 

 

The MSLPs of ExpMSLP are also compared with ExpVrMSLP and ExpZMSLP 

(Fig. 4.62). It is interesting to notice that there are further improvements from both 

ExpVrMSLP and ExpZMSLP to ExpMSLP, therefore combining the radar data with 

MSLP information gives the best results. 

 

4.11 Uncertainty growth from initial conditions and microphysical 
schemes 
 

EnKF can help predictability studies by providing initial conditions that properly 

sample initial condition uncertainties. Sippel and Zhang (2010) used EnKF and short-

range ensemble forecasts to examine factors affecting the predictability of Hurricane 

Humberto (2007). With the “hot-start” EnKF analysis, the artificial over-reaction of 

initial convection to the environment convective instability during the spin-up stage can 

be removed (Sippel and Zhang 2010). Given limited time available, we will focus on a 

different aspect of predictability. The development of hurricane track and intensity 

hPa 
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uncertainty results partly from the uncertainty in the initial conditions and partly from the 

uncertainty in the prediction model. The forecast uncertainty growth owing to initial 

condition uncertainties will be compared with the uncertainty growth due to model 

physics uncertainties, especially in microphysics. We will include the effect of physics 

uncertainty by using different microphysics parameterization schemes in the ensemble 

forecasts and examine its relative impact on uncertainty growth. 

 
4.11.1    Motivation and past work 

Different from the deterministic forecast predicting the single atmospheric state, 

ensemble forecasts aim to predict the weather system’s probability as completely as 

possible. Due to the fact that errors in initial conditions and forecast models are 

unavoidable, ensemble forecasts can provide useful uncertainty informations on the 

future PDF of weather systems and help forecasters to better understand the predictability 

issues.    

There are several studies on comparing uncertainty growth from initial conditions 

and model errors. Stensrud et al. (2000) investigated the uncertainty growth from the 

initial conditions and the microphysical schemes for two mesoscale convective systems 

(MCS). They found a faster uncertainty growth from microphysical schemes than from 

initial conditions for MCS cases during the first 12-hour forecasts. Kong et al. (2007) 

compared the spread development from the initial conditions and microphysical schemes 

for convective thunderstorm predictions. They found different contributions from the two 

uncertainty sources to the spreads of different model fields. 

While it is known that the forecast of the hurricane system is both sensitive to the 

microphysical process (Wang 2009; Fovell et al. 2009; Fovell et al. 2010) and initial 
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conditions, there has been no research to investigate the contributions of these two factors 

on the uncertainty growth of cloud-resolving hurricane forecasts. The intent of this study 

is to examine the role of microphysical parameterization schemes on the uncertainty 

growth of Hurricane Ike’s intensity and track forecasts. The individual contributions of 

initial conditions and microphysical schemes will also be compared and discussed. This 

study can provide helpful perspectives for the probabilistic cloud-resolving hurricane 

forecasts and the predictability research of hurricane systems. 

  

4.11.2    Methodology 

The first sets of experiments are to examine the additional contribution of 

microphysical schemes on the uncertainty growth. The 32-member ensemble forecasts 

similar to ExpAll in section 4.6.1 are conducted except that the multiple microphysical 

schemes are applied in the ensemble to add forecast model uncertainty in ExpAllMulti. 

Among these 32 members, ExpAllMulti uses Lin, LFO04, Schultz and WSM6 in every 8 

members. In the ensemble forecasts in ExpAll, the only uncertainty source is from the 

initial conditions at 0600 UTC 0913 while ExpAllMulti includes both initial conditions 

and microphysical schemes uncertainty. The intensity and track forecasts from ExpAll 

and ExpAllMulti will be compared. 

The second sets of experiments are to investigate the individual and combined 

contributions of the initial conditions and microphysical schemes on the uncertainty 

growth. Three 4-member ensembles are designed for this purpose and listed in Table 4.3 

to 4.5. In these three ensembles, Exp4PERT includes only initial conditions uncertainty, 

Exp4PHYS includes only microphysical schemes uncertainty and Exp4FULL includes 
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both initial conditions and microphysical schemes uncertainty. There are 24 possible 

combinations to include both initial conditions and microphysical schemes perturbations 

in the 4-member ensemble. In this study, only one combination is used for simplification.   

 Initial condition Microphysical Schemes 
MEM1 Ensemble mean LFO83 
MEM2 IC1 LFO83 
MEM3 IC2 LFO83 
MEM4 IC3 LFO83 

 
Table 4.3: The members in the ensemble forecasts of Exp4PERT. The initial condition of 
ensemble mean is from the ensemble mean analysis of ExpAll at 0600 UTC 0913. Initial 
conditions of IC1-IC3 are from 3 members of ExpAll final ensemble analysis at 0600 
UTC. The acronyms of microphysical schemes can be found in Chapter 3 section 3.2.1.   
     

 Initial condition Microphysical Schemes 
MEM1 Ensemble mean LFO83 
MEM2 Ensemble mean LFO04 
MEM3 Ensemble mean Schultz 
MEM4 Ensemble mean WSM6 

 
Table 4.4: The members in the ensemble forecasts of Exp4PHYS. The initial condition of 
ensemble mean is from the ensemble mean analysis of ExpAll at 0600 UTC 0913. The 
acronyms of microphysical schemes can be found in Chapter 3 section 3.2.1.    
 
 

 Initial condition Microphysical Schemes 
MEM1 Ensemble mean LFO83 
MEM2 IC1 LFO04 
MEM3 IC2 Schultz 
MEM4 IC3 WSM6 

 
Table 4.5: The members in the ensemble forecasts of Exp4FULL. The acronyms have the 
same meanings as in Table 4.3 and Table 4.4.  
 

 
4.11.3    Single microphysical scheme vs. multiple microphysical schemes 
 

The ensemble intensities of ExpAllMulti are plotted in Fig 4.63. The intensity 

spreads of ExpAll and ExpAllMulti are plotted in Fig 4.64.  
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Fig. 4.64. The predicted ensemble minimum SLP of ExpAllMulti (red), compared with 
the best track (black) and NoDA (brown).  

 

Fig. 4.65. The spread of intensity forecasts of ExpAll (red) and ExpAllMulti (blue). 

 

 The ensemble intensities in ExpAllMulti are similar to ExpAll during the first 3 

hours of forecast starting from 0600 UTC (Fig. 4.16 and Fig. 4.63). After 0900 UTC, the 

spread of ExpAllMulti starts to increase monotonically with time while the spread of 

hPa 
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ExpAll does not change greatly until the end of forecast (Fig. 4.64). The growth rate of 

the spread of ExpAllMulti also increases with time, showing a faster spread growth in the 

last 2-3 cycles than earlier. The final intensity spread of ExpAllMulti is about three times 

of the initial spread and much larger than the final spread of ExpAll. 

It is interesting to notice that there is a bifurcation point at 1800 UTC in the 

ensemble intensity forecasts of ExpAllMulti (Fig. 4.63). 8 members using the Schultz 

scheme diverge from the other members with stronger vortex forecasts and contribute to 

the spread increase in the last 6 hours of forecast.  

The ensemble mean intensity of ExpAllMulti is very close to the mean of ExpAll 

(not shown), indicating there is no forecast skill improvement in the intensity forecast 

from the multiple microphysical schemes. On the other hand, the model microphysical 

parameterizations uncertainty increases the intensity spread of ensemble forecasts in this 

specific case.   

 

Fig. 4.66. The track spread of ensemble forecasts of ExpAll (red) and ExpAllMulti (blue). 
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The track spreads of ensemble forecasts ExpAll and ExpAllMulti are plotted in 

Fig. 4.65. The track spread of ExpAllMulti is similar to ExpAll generally. At 1500, 1800 

UTC 13 September and 0000 UTC 14 September, there are 1-1.5 km increases of track 

spread from ExpAllMulti. Since the mean track error of ExpAll is as large as 14 km, the 

difference of track spreads between ExpAll and ExpAllMulti are generally negligible 

during most of the forecast times.  

 

4.11.4  Comparison of contributions on uncertainty growth from IC and 
microphysical scheme perturbations 
 

 

Fig. 4.67. The spread of intensity forecasts of Exp4PHYS (blue), Exp4PERT (green) and 
Exp4FULL (red). 

hPa 
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Fig. 4.68. The track spreads of Exp4PHYS (blue), Exp4PERT (blue) and Exp4FULL 
(red). 
 

The intensity and track spread of Exp4PHYS, Exp4PERT and Exp4FULL are 

plotted in Fig. 4.66 and Fig. 4.67. Starting from a zero spread with the same IC in each 

ensemble member at 0600 UTC, the intensity spread of Exp4PHYS increases with 

forecast time, reaching to 1.6 hPa at the end of the 18-hour forecasts (Fig. 4.66). The 

intensity spread of Exp4PERT, on the other hand, does not change dramatically during 

the 18 hours of forecasts. When the initial condition perturbations and the microphysical 

schemes perturbations are combined together in Exp4FULL, the spread is larger than 

Exp4PERT and Exp4PHYS after 1200 UTC. The growth rate of intensity spread in 

Exp4FULL is close to Exp4PHYS, demonstrating the dominate role of microphysical 

schemes perturbations in intensity uncertainty growth in this case. For most of the 

forecast times, the spread of Exp4FULL is always smaller than the linear combination of 

the spreads of Exp4PERT and Exp4PHYS due to the nonlinear effect. 
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For the track forecasts, the track spreads in all of the three ensembles are 

comparable except for Exp4FULL at 1800 UTC with a higher track spread than other two 

ensembles (Fig. 4.67).  

 

4.12      Summary 

The impact of radar data assimilation on the analysis and forecast of Hurricane 

Ike’s (2008) intensity, track and precipitation is investigated with the cloud-resolving 

ARPS model and the ARPS EnKF data assimilation system in this study. Radial velocity 

(Vr) and reflectivity (Z) observations from two coastal Doppler radars are assimilated 

within 2 hours. With prior multiplicative and posterior additive covariance inflations, the 

ensemble spread is well maintained and large impacts from the observations are obtained 

on the analyzed wind and microphysical fields. The assimilation of data in the first one to 

two cycles clearly strengthens the hurricane vortex. 

The assimilation of radar observations is also found to evidently improve the 

structure, intensity, track and precipitation forecasts of Ike. Assimilating Vr alone leads 

to a much greater improvement in the intensity forecast than assimilating Z alone. For the 

track forecast, Vr alone produces a slightly better forecast than Z alone. Z alone results in 

a precipitation forecast improvement that lasted longer than using Vr alone. Assimilating 

both Vr and Z has similar results as assimilating Vr alone, indicating a dominant role of 

Vr data when analyzed using EnKF.  

The similarity in the track and intensity forecasts between the cases assimilating 

radial wind alone and assimilating both radial wind and reflectivity is also observed by 

Pu et al. (2009) in their air-borne radar data assimilation with WRF 3DVAR. They also 
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observed small impacts on hurricane intensity and track forecasting from reflectivity data 

and attributed the smaller improvement to the simple warm rain microphysics scheme 

used in their study. Zhao and Jin (2008) observed a marginal or negligible impact on the 

intensity analysis and forecast from assimilating reflectivity alone with 3DVAR. Zhao 

and Xue (2009) noticed significant improvements from reflectivity assimilation in Ike 

intensity forecast when using the ARPS 3DVAR combined with a complex cloud 

analysis package employing an ice-microphysics scheme. In our experiments with EnKF, 

which use the same ice microphysics scheme as Zhao and Xue (2009), there is evident 

improvements from reflectivity data in the track forecast but only a mild impact on the 

intensity forecast. Existing studies on the impact from radar reflectivity observations on 

the hurricane intensity and track forecast are few and more future studies are needed to 

investigate this topic in depth.         

Ensemble forecasts starting from our EnKF analyses exhibit some uncertainty 

growth in track, but not much growth in intensity spread. The latter is most likely due to 

the weakening of the hurricane itself during the forecast period. The ensemble mean 

precipitation forecast has better performance than the deterministic forecast in stratiform 

precipitation regions, giving higher ETSs owing to the averaging effect among ensemble 

members. The probability matching technique improves the ETS of the ensemble 

precipitation forecast for heavy rainfall thresholds. Overall, the ETS with probability 

matching appears to be the highest or nearly the highest for all the thresholds evaluated.   

The correlation between the initial intensity error and the forecast intensity error 

decreases with forecast time. There is no strong correlation between the track error and 
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intensity error, suggesting different mechanisms controlling the track and intensity 

forecasts in this case.  

The experiment with 30-minute assimilation cycles shows similar results to the 

10-minute cycles, while assimilating radar data at 60-minute intervals fails to obtain a 

strong enough vortex in either analysis or forecast. 

The experiment with both coastal radars has better track forecasts than using 

KHGX radar alone and a better intensity forecast than using KLCH alone, indicating, not 

surprisingly, advantages of using data from multiple Doppler radars.  

When MSLP from the best track data is assimilated with radial velocity together, 

there is a 2-3 hPa improvement in intensity at the end of the analysis cycles when 

assimilated at 60-minute or 10-minute intervals. The impacts from MSLP last for only 3-

6 hours during the forecast, however. When only reflectivity is assimilated from radar, 

the improvement due to MSLP is as large as 14-15 hPa in the final analysis. The 

improvement decreases with time but is still noticeable 12 hours into the forecast. The 

assimilation of MSLP in addition to radar data also improves the track analysis. The 

relative improvements in the track error due to assimilating additional MSLPs are always 

over 50% in the first 9 hours of forecast when reflectivity and MSLP is assimilated. 

It appears to us that for Z assimilation experiments, the analyses on both intensity 

and track are not good enough, leaving more space for the improvement from additional 

MSLP assimilation, while for the Vr assimilation experiments with better analyses, the 

additional improvement from MSLP is much smaller.   
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With frequent assimilations of MSLP with 10-minute intervals, there is noticeable 

further improvement in the intensity forecast to 60-minute intervals for 12 hours when 

MSLP is assimilated with reflectivity. 

The assimilation of MSLP alone at both 60-minute and 10-minute intervals shows 

better intensity forecast than assimilating Z alone but not as good as assimilating Vr alone. 

The assimilation of Z, Vr and MSLP together has a larger improvement in the intensity 

forecast than assimilating each observation type individually. 

The addition of multiple microphysical schemes in the ensemble forecasts 

increases the intensity spread but not much the track spread. The uncertainty created by 

the microphysical scheme perturbations, if added, contributes more to the intensity spread 

than the initial condition perturbations.  

Radar data assimilated in this study are mostly at the convective and sub-vortex 

scales; their impact on the forecast may therefore be limited to a relatively short period of 

time. Other observational sources such as surface observations, soundings, profilers and 

satellite observations can help improve the larger scale environment and improve the 

forecast at longer ranges. There are many other issues associated with the predictability 

of hurricanes, the EnKF data assimilation and the subsequent ensemble forecasting can 

be helpful when investigating these issues (Sippel and Zhang 2010).  
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Chapter 5 

Summary and Future Plans 

 

5.1     Summary  

Atmospheric data assimilation combines observations and model states to produce 

the best estimate of the atmosphere that can serve as the initial condition for numerical 

weather prediction models. The accuracy of the initial condition depends greatly on the 

data assimilation algorithm. Traditional 3DVAR method uses static background error 

covariance which is not appropriate for the highly flow-dependent background error 

statistics of thunderstorm or hurricane systems. Ensemble Kalman filter (EnKF) uses 

ensemble forecasts to estimate and evolve flow-dependent error covariance statistics and 

is one of the most popular assimilation methods among the research community today. 

Compared with the 4DVAR method, the implementation of EnKF does not require the 

development of an adjoint model and its code can be easily linked with different 

prediction models.  

Amid the applications of EnKF, cloud-resolving numerical analysis and 

prediction of thunderstorms and hurricanes have received much attention in recent 

studies, since both thunderstorms and hurricanes have significant societal impacts. This 

research focuses on the EnKF applications to the analysis and prediction of these two 

weather phenomena.       

Radar is one of the most important observation platforms for thunderstorm 

analysis and forecast. However, when the radar is far away from a convective storm, it 

cannot observe the low levels due to the earth curvature effect. Surface observations can 
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provide the low-level coverage for thunderstorm analysis, especially those from dense 

networks. Chapter 3 investigates, systematically, the impact of surface observations on 

thunderstorm analysis and forecast with a series of Observing System Simulation 

Experiments (OSSEs) for the first time. When the radar is located at a significant distance 

(e.g., the 115 and 185 km distances considered) from the main convective storm, clear 

positive impacts on the storm analysis and forecast are achieved by assimilating surface 

observations with a spacing of about 20 km. When the radar is located just 45 km from 

the storm center, a network spacing of 6 km is needed to achieve any noticeable positive 

impact. The impact of surface data in terms of relative error reduction increases linearly 

with decreased surface network spacing until the spacing is close to the grid interval of 

truth simulation. Assimilating observations from a coarser network over a longer period 

of time helps to achieve a similar level of impact as would be seen from a network of 

higher density. Given the typical observation errors, surface wind observations produce 

the largest positive impact, followed by temperature measurements. Pressure 

measurements produce the least impact. Assimilating all surface observation variables 

together yields the largest impact. The impact of surface data is sustained or even 

amplified during subsequent forecasts when their impact on the analysis is significant.  

Chapter 4 of this study investigates the impact of assimilating coastal WSR-88D 

radar radial velocity and reflectivity data on Hurricane Ike (2008), on the analysis and 

forecast of its intensity, track and precipitation. The analysis and prediction were carried 

out on a large uniform resolution grid with a 4 km grid spacing and the ARPS was used 

as the prediction model. Radial wind and reflectivity data from two coastal radars were 

assimilated with the EnSRF algorithm at 10-minute, 30-minute and 60-minute intervals 
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for a duration of two hours. This study represents the first time that assimilates 

reflectivity and/or MSLP together with radial velocity for hurricane forecast using an 

EnKF method.  

With radar data assimilation, forecasts of hurricane’s structure, track, intensity 

and precipitation are generally improved. The assimilation of radial velocity alone has a 

much greater improvement on the intensity forecast and a slightly larger impact on the 

track forecast than assimilating reflectivity alone. The quantitative precipitation forecast 

(QPF) initialized by assimilating reflectivity alone shows an improvement that lasts 

longer than assimilating radial wind alone, suggesting better analyzed microphysical 

fields from reflectivity observations. Assimilating both radial wind and reflectivity 

produces similar results as assimilating radial wind alone, suggesting the dominant role 

of radial velocity observations for hurricanes. 

The ensemble forecasts starting from the ensemble analyses show some 

uncertainty growth in track forecasts. Probability matching processing for the ensemble 

improves the QPF scores over the simple ensemble mean for most precipitation 

thresholds. 

The assimilation of additional MSLP from the best track data with 10-minute and 

60-minute assimilation intervals both show solid improvement in both intensity and track 

forecasting when radial velocity data are not assimilated. When radial velocity data are 

also assimilated, the intensity forecast improvement is small but still recognizable. When 

time-interpolated MSLP values are assimilated without radar data at all at 60-minute or 

10-minute interval, the improvement in the intensity forecast is smaller than radial 

velocity assimilation but larger than reflectivity assimilation. Assimilating all of Vr, Z 
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and MSLP altogether shows better intensity forecast than assimilating them individually, 

suggesting the potential benefit of assimilating observations of multiple platforms. 

Using multiple microphysical parameterization schemes increases the uncertainty 

growth of intensity. In a 4-member ensemble, the contribution to the uncertainty growth 

of intensity from the microphysical scheme perturbations is found to be larger than that 

from initial condition perturbations.    

 

5.2     Future plans 

As mentioned in Chapter 3, one of the limitations of the OSSEs for surface 

observation impact is that calibration and validation of the OSSE results were not 

performed therefore the data impact seen may not be reliable. Before the additional 

impact of surface observations is investigated, the results of the “existing” radar 

observations impact from OSSEs can be compared with the results from the Observing 

System Experiments (OSEs) using real radar observations. The calibration includes 

comparison of error statistics between simulated and real radar observations, comparison 

of data impacts on the analysis and forecast between OSEs and OSSEs. Through the 

calibration steps, the OSSE system can be validated. This calibration and validation 

provide the guidelines to interpret the impact of the “future” additional simulated surface 

observations in OSSE.  

However, to practice the calibration effectively, a full set of observations needs to 

be included. Also, the impact of the radar observations can vary greatly for different 

convective thunderstorm cases, posing an additional challenge for the calibration. These 

issues need to be considered carefully in the future. 
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For EnKF analysis of hurricanes, more cases need to be examined in the future, 

beyond this Ph.D. program, to establish robust results on the radar data impact on tropical 

storm forecasting. Before working with the Ike case, we performed EnKF radar data 

assimilation experiments using data from multiple ground-based radars for Tropical 

Storm Erin (2007), which made landfall along Texas coast, re-intensified in Oklahoma 

and caused heavy flooding. Despite its re-intensification, the vortex structure of Erin was 

not as well defined in the radar observations as Ike was, and there was significant axis-

asymmetry in the radar data coverage in the vortex region of Erin. The track forecast 

from the control simulation without radar data assimilation was poor. Assimilating radar 

data did not result in much improvement to the track forecasting in this case in our earlier 

experiments. The forecast was found to be sensitive to the initial background analysis, 

which was either from the operational NAM model or from the RUC. This suggests that 

there was significant uncertainty or error in the large scale environment that may have to 

be reduced before the track forecast can be improved. In such a case, assimilating 

additional observations together with the radar data may be most beneficial.  

Hamill et al. (2010) assimilated conventional and non-conventional observations, 

including surface observations and rawinsondes, cloud track winds, aircraft observations, 

human-synthesized MSLP, satellite-based Global Positioning System (GPS) radio 

occultation and satellite radiance with EnKF for global models at 45 km and 30 km 

resolutions. During the 2009 Northern Hemisphere summer Tropical Cyclones (TCs) 

forecasts, they found generally better or competitive track forecasts from EnKF compared 

to operational global forecasts. They suggested that their increased resolutions over the 

National Centers for Environmental Predictions’ (NCEP) operational global model with 
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137 km resolution and the improvement in the environmental steering wind in the EnKF 

analyses may have contributed to the better track forecast. However, the intensity 

forecasts in their study are problematic. They suspected that the possible reason is that 

their resolutions of around 40 km are not fine enough to produce realistic vortex 

structures. 

A parallel MPI version of the ARPS EnKF that can handle both radar and 

conventional observations at the same time has been recently developed at CAPS, which 

would enable experiments including a full set of observations. These observations may 

include, but not limited to, the surface observations, the rawinsondes, the profilers, MSLP 

from the best track estimate dataset, the radar observations and the satellite radiance. 

Also, realistic synoptic environmental perturbations based on, e.g., global ensemble 

forecasts, should be introduced to properly sample uncertainties in the storm 

environment. Will the assimilation of data covering a variety of scales improve the 

hurricane analysis and forecast of different cases? This is our question for the future 

work. We plan to pursue such research for the Erin and other cases in the future. 
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