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ABSTRACT 

Advancements in biomaterials and manufacturing processes have enabled the 

development of 3D cell encapsulated hydrogels as systems to mimic in-vivo like 

function for drug-screening. Accurate prediction of human response to potential 

therapeutic drugs and vaccines are through conventional methods of in-vitro cell culture 

assays and expensive in-vivo animal testing. Traditional in-vitro cell culture assays are 

time consuming, at times unreliable and expensive. Hence, there is a critical need to 

reduce the time and financial investment required to discover new drug cures for major 

illnesses through advanced tissue model systems. In this study, we have evaluated the 

use of 3D culture with HepG2 liver cells for applications in drug testing. The method is 

based on alginate hydrogels encapsulation. Two different ultra-sterile alginates, 

SLM100 (G:M::40:60) and SLG100 (G:M::60:40) have been used for our 3D matrix. In 

addition, we present a disc design and dynamic device for 2D-3D co-culture and 3D 

dynamic culture. The major research accomplishments reported in this thesis include: 

I. Development of the encapsulation method for 3D culture. We have studied the 

cellular viability and metabolic capacity of the encapsulated cells in two 

different alginate structures SLM100 and SLG100. We have also developed 

protocols to characterize the encapsulated cells within the alginate structure 

using Scanning Electron Microscopy (SEM) and Laser Scanning Confocal 

Microscopy (LSCM). Liver-specific enzymes such as CYP1A1 and CYP3A4 

after 14 days in culture indicates the viability and functionality of the 

encapsulated HepG2 cells. Phase II Glutathione activity of the encapsulated cells 

were also maintained in 3D culture conditions. The encapsulated cells within the 
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3D gels were also capable of metabolizing the pro-drug EFC (7-ethoxy-4-

trifluoromethyl coumarin) to HFC (7-hydroxy-4-trifluoromethyl) in a linear 

fashion over a period of time. 

II.  Development of the porous poly-carbonate disc platform for 3D culture. We 

have developed an in vitro platform to enable high density 3D culture of liver 

cells combined with a monolayer growth of target breast cancer cell line (MCF-

7) in a static environment as a representative example of screening drug 

compounds for hepatotoxicity and drug efficacy. Alginate hydrogels 

encapsulated with serial cell densities of HepG2 cells (105-108cells/ml) are 

supported by a porous poly-carbonate disc platform and co-cultured with MCF-7 

cells within standard cell culture plates during a 3 day study period. The 

clearance rates of drug transformation by HepG2 cells are measured using a 

coumarin based pro-drug. The platform was used to test for HepG2 cytotoxicity 

50% (CT50) using commercially available drugs which further correlated well 

with published in vivo LD50 values. 

III.  Development of dynamic device for 3D culture. the design approach is (1) To 

design a liver bioreactor unit that is scalable, interchangeable and compatible 

with other scaffold materials; (2) To establish a long-term 3D culture dynamic 

environment; (3) compared the drugs toxicity result between dynamic and static. 

The 3D encapsulation of cells within hydrogels represents an increasingly 

important and popular technique for culturing cells and towards the development of 

tissue engineering and drugs testing. This environment better mimics what cells live in 

vivo, compared to standard tissue culture, due to the tissue-like properties and 3D 
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environment. The following methods for the 3D encapsulation of HepG2 have been 

optimized in our lab to maximize cell viability and liver specific enzymes activity, 

minimize the of hydrogel processing steps using support disc design and integrated into 

dynamic device. The research will also enable scientists to expand their scope of 

research and study in the field of in vitro drug screening and toxicity study.
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Chapter 1: Introduction and background  

1.1  Introduction  

Cell culture in two dimensions (2D) has been used for more than 20 years and 

still is the most common method for supporting cell growth and proliferation. A major 

criticism of 2D culture is that in vivo three dimensional (3D) physiologies cannot be 

accurately reproduced using a monolayer culture condition. Obviously, the cultivation 

of cells on a two-dimensional glass or plastic substrate is not an accurate representation 

of native tissue; many complex biological responses cannot be represented normally via 

2D culture such as cellular migration characteristics or certain gene expression profiles. 

Led by in vitro toxicity researchers, biologists are increasingly turning to 3D hepatocyte 

cultures for accurately reproducing cell and tissue physiology, where they are 

discovering many liver specific-gene functions that closesly mirrors in vivo conditions. 

Metabolic studies, toxicity testing and pharmacokinetic studies are main activities in 

early drug discovery screening. In vitro systems that could predict the potential 

hepatotoxic effects and unsuitable pharmacokinetic properties of drug candidates would 

facilitate drug development. Reducing number of animal experiments would also 

provide a faster and cheaper way for analysis. In this thesis, we have developed a 3D 

liver cells alginate-based culture system for static 3D hepatotoxicity testing, 2D-3D co-

culture for drug effect testing and dynamic bioreactor for long-term and high cell 

density 3D culture. The final goal is to design a reliable, simple, affordable and fast data 

collecting in vitro prediction device which helps to reproduce the native cellular 

environment for preliminary drug screening, toxicology studies and drug effects study.  
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1.2  Background information 

Ideally, it is desirable to perform long-term and high density cultivation of liver 

cells in an in vitro environment for drug studies, but they are extremely difficult to 

maintain in culture, due to issues such as clogging, cell-cell contact inhibition or loss of 

liver specific functionality after a couple of days. In order to solve these challenges, a 

number of 3D culture methods have been developed for a variety of cell types, 

including liver cells by using different biomaterials (Lee et al. 2008a). A common goal 

for many of these studies is to bridge the gap between the uses of animal testing and 

clinical trials. It is necessary to create 3D cell-based testing sample that mimic to some 

degree the native tissue as close as possible. One possible way is to grow the desired 

cells on a biocompatible porous 3D matrix structure. Many parameters need to be 

considered for the complexity of 3D cultures. These criteria include cell source (liver 

slices or hepatocytes), material of scaffold (naturally derived or synthetic materials), 

culture method of cells (static or dynamic), cell culture medium and scaffold geometry.  

1.2.1 Three-dimensional cell culture  

1.2.1.1 Liver slices 

3D culture models can be divided to several groups such as organotypic explant 

culture, cellular spheroids, microcarrier cultures and tissue-engineered models 

(Pampaloni et al. 2007). Not all three-dimensional culture models require a scaffold. 

For example, liver slice is one of the most important models for drug testing. Recent 

studies have shown that isolated hepatocytes are difficult to mimic native liver functions 

because primary liver cells are unable to function and survive without supporting cells 

such as the endothelial cells and stellate cells (Bhatia et al. 1997). Human liver are 
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composed of various sets of cells arranged in specific architectural patterns which is 

very hard to mimic in vitro. Culturing a liver slice could be a useful tool for metabolism 

and toxicity testing (Moronvalle-Halley et al. 2005). However, maintaining the cellular 

activity for a liver slice is difficult especially since hepatocytes have a very high oxygen 

consumption rate (Allen and Bhatia 2003). Various culture methods have been 

developed to achieve the survival of hepatocytes in tissue slices (Vickers and Fisher 

2004). All of these methods aim to improve the oxygen and nutrients mass transfer from 

the surface to the inner perfusion of the tissue. The cultivation methods employed 

involve static culture or dynamic culture systems to improve the maintenance of liver 

slices (Olinga et al. 1997). The main advantage of liver slices is that preserving 

hepatocytes in their natural environment and architecture albeit for a very short 

incubation time period (<48hr).  

1.2.1.2 Cellular spheroids 

Cellular spheroids are simple 3D models that can be generated from many cell 

types and from cell aggregates. Spheroids do not require scaffold and can be easily 

imaged by fluorescence or confocal microscopy. One of the most famous commercial 

products for making cellular spheroids is AlgiMatrix® (Invitrogen). AlgiMatrix® 

sponge is extracted from brown seaweed and mixed animal collagen. It is suitable for 

cardiomyocyte organogenesis studies, or co-culture studies. The spheroid cell culture 

has several advantages compared to mono-layer cell culture. (1) AlgiMatrix®  

possesses a tissue-like structure and cells can contact each other for communication. (2) 

Adhesion molecules can be mixed in spheroids that are required for cell proliferation 

and the reconstruction of cellular polarity (Tamura et al. 2008). (3) Spheroids can be 
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used in modeling solid tumor growth or metastasis studies for therapeutic studies, e.g. 

for high throughput screening (Ivascu and Kubbies 2006). 

1.2.1.3 Microcarrier cultures 

To meet the principal needs of bio-artificial liver functions, microcarrier 

technique was used to cultivate high density liver cells to improve the cultivation 

efficiency and yield. The productivity of large-scale cell culture can be increased either 

by scaling up to larger volumes with cell densities of 2–3×106/mL, or by intensifying 

the process in smaller volumes but with higher cell densities (up to 2×108 cells/mL) 

(Reiter et al. 1990). When compared with traditional monolayer or suspension 

techniques, stirred microcarrier cultures yield up to 100-fold as many cells for a given 

volume of medium. Superior yields have been reported for a wide variety of systems 

including guinea pig keratinocytes (Griffiths et al. 1983) and HepG2 (Lupberger et al. 

2006). Microcarrier culture method reduced the requirement for culture medium 

particularly when expensive serum supplements such as fetal calf serum are used. The 

growth of liver cells on microcarriers also can be observed and the specific functions of 

liver cells were determined periodically (Gao et al. 1999). Microcarrier technology 

results in a homogeneous culture system that is scalable for large volume of incubation. 

The advantages of microcarrier culture for vaccine production include increased 

productivity, lower costs and reduced contamination when compared with other cell 

culture methods. 

1.2.1.4 Tissue-engineered in vitro models 

Tissue engineering models are made by biological fabrication or semi-synthetic 

living tissue, the main usage is for damaged tissue replacement. This technique has been 
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widely used for many tissues including skin, kidney or liver (Howard et al. 2008). 

Tissue engineering models have the potential to provide new in vitro toxicology models 

or organ transplantation. The most important role for tissue engineering models is its 

potential ability to mimic key morphological, physiological, and biochemical properties 

of the natural tissue as closely as possible (Suuronen et al. 2004).  

1.2.2 Biomaterial scaffolds for cells seeding  

3D scaffold biomaterial has been become more and more important because the 

demand of biotechnology usage and complexity of scaffold design. Cells require 

careful exchange of nutrients and oxygen in addition to geometry control in a 3D 

matrix.  However, cell viability is an issue when scaffold or cell aggregate thickness of 

1-2 mm arise through a lack of mass transfer, especially through a limited exchange of 

nutrients and waste (Griffith and Swartz 2006). Diffusion problems can be overcome by 

making highly porous scaffolds or increasing the flow of oxygen and nutrients. 

Different cell types have varied micro and macro-environment requirements which 

dictate different properties of scaffolds. For example, liver cells must be surrounded 

within a soft environment. In contrast, osteoblasts adhere to a hard surface just like the 

bone tissue. Consequently, the design of the scaffold must reflect the native tissue in 

human environment to represent the cells normal functionality (Lee et al., 2008a). For 

implantation field, a functional implant requires a biodegradable and biocompatible 

scaffold, which, after implantation, is replaced by the regenerating tissue (Walles et al. 

2003). In this situation, the scaffold must support cell proliferation and differentiation; 

furthermore, the scaffold can be degraded and replaced by human body without 

immune-rejection. On the other hand, these scaffold can also be applied in 3D in vitro 



 6 

model for drug screening and cosmetics (Canton et al. 2007). Here, it is necessary to 

reproduce an accurate artificial tissue for cell functions and response evaluation.  

The varieties of materials that can be used for scaffold fabrication, including 

polymers, metals and ceramics. Polymers are used commonly for bio-fabrication 

scaffolds, which are typically grouped into synthetic and natural materials. Synthetic 

polymers such as polyethylene glycol (PEG), polyactic acid (PLA) and 

polycaprolactone (PCL), are included as well as natural polymers such as collagen and 

alginate. However, natural scaffolds tend to exhibit better biocompatibility properties 

than synthetic materials (MacNeil 2007). The general role for these 3D scaffolds is to 

reproduce an extracellular matrix (ECM) for supporting cell growth. In mammalian 

tissues, cells not only connect to each other, but also communicate through extra 

cellular matrix (ECM) molecules. ECM contains proteins, such as collagen, laminin and 

elastin that provide communication between cells and matrix. The receptors, embedded 

within the matrix, called the integrins, play a role in cell singling. These receptors are 

very important the functional profile of cells. For example, in 1997, Bissell’s group 

(Weaver et al. 1997) found that surface receptor, called β-integrin, can influence the 

behavior of cancerous breast cells in 3D culture. Consequently, 3D culture environment 

can alter cell behavior compared with 2D culture. 

As described above, the surface chemical and receptor properties are 

fundamental for cellular adhesion, proliferation and signal transduction. For instance, 

the Vroman effect, is exhibited by protein adsorption to a surface, in particular for 

serum proteins. The highest mobility proteins arrive to surface first and are later 

replaced by less motile proteins that have a higher affinity (Vroman 1962). This effect is 
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known to correlate to cells adhesion on biomaterial surface, where cells interact with the 

protein layer (Allen et al. 2006). A biomaterial surface can be modified to increase or 

decrease cell adhesion. An example is plasma acrylic acid layer that can improve 

Schwann cell adhesion ability (Murray-Dunning et al. 2011). On the other hand, the 

deposition of allyl amine can prevent Schwann cell attachment. Cell adhesion can also 

be controlled by structural motifs into a biomaterial. The most widely used adhesion 

ligand is RGD peptide (Arg-Gly-Asp), discovered in 1991 (Massia and Hubbell 1991), 

was proved to improve fibroblast cells adhesion ability in vitro. RGD peptide covalently 

immobilized surface has proved to be effective for HepG2 biotransformation activity, 

particularly in the presence of diclofenac. Also the biotransformation functions were 

expressed at high levels (De et al. 2005). In contrast, chemical reaction surface 

modification techniques such as plasma-enhanced chemical vapor deposition have 

proved to enhance cells adhesion in 3D scaffolds. 3T3 fibroblast attachment was found 

to be greater for the plasma deposits than the untreated poly (D,L-lactic acid) (PDLLA) 

tissue-engineering scaffolds (Berry et al. 2005). UV and ozone have often been used for 

biomaterial surface modification to improve the surface wet ability for cell adhesion 

performance (Liu et al. 2010); the major advantage of this approach is in the rapidity 

and reproducibility for modifying 3D scaffolds. Treatment of adhesion proteins with 

biomaterials for 3D culture is one of the most important techniques in tissue 

engineering. 

1.2.3 Scaffold scales 

The scaffold design can be characterized for macro-, micro-, and nanoscale. If 

constructs are for implantation, the size, usually macro-scale, can be followed by 
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computer-aided design and fabrication by stereolithography. The micron scale design 

has been widely used for liver tissue engineering in the evaluation of drug metabolism, 

toxicity and other evaluations (Griffith & Swartz, 2006). However, hepatocytes in vivo 

are complex metabolic cells and their functionality is dependant on their 

microenvironment such as cell-cell and cell-matrix interactions, especially sinusoid 

structure. To improve in vitro micro-scale culture conditions, microfluidic devices have 

been developed for studying pharmaceutical and toxicological problems over the last 

years. L.G. Griffith’s group used perfused multi-well plates with an integrated filter to 

accumulate rat liver cells and nonparenchymal cells (Griffith and Naughton 2002). This 

bioreactor supported a viable culture for up to 7 days, allowing for high throughput and 

continuous perfusion of the culture. Another approach to microfluidic hepatocyte 

cultures was recently shown by Chao et al. (Chao et al. 2009). After first seeding cells 

onto a substrate and then assembling the microfluidic components, the group cultured 

the cells for up to 24 h. Subsequently, they measured the hepatic clearance rate of six 

marketed model compounds and compared the performance with in vivo data. The main 

advantages for microfluidic device including (1) Volume reduction can reduce the cost 

of expensive drugs. (2) Sinusoid structure cab is modified as a place of drug reaction 

and also increase the surface area for a faster reaction time. (3) Multi-channels have the 

potential to test many samples at the sample time. (4) In vivo microenvironment can be 

mimicked as real as possible. 

1.2.4 Bioreactors for 3D constructs 

An important consideration of 3D cultures is the maintenance of mass transfer 

(Martin et al. 2004). When 3D cultures are too thick, there are diffusion limitations into 
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the cells at the center of 3D cultures. Major challenges in 3D cultures include the 

oxygen and nutrients penetration and removal of waste products. Traditional 3D 

cultures are based on static culture condition, however, the design and use of bioreactors 

are moving towards utilizing 3D culture systems (Martin et al. 2004). Bioreactors are 

able to control many parameters required for cell culture. These include medium flow 

rate, oxygen and nutrient supply. In additional, some complex bioreactors can mimic the 

oxygen gradient across the tissue that is similar to in vivo liver sinusoids (Allen & 

Bhatia, 2003). 

     Several bioreactors can be grouped into hollow fiber, flat plate and monolayer 

systems, and direct perfusion systems with scaffolds or encapsulated cells (Table 1). 

Hollow fiber systems are applied for cells which have a high metabolic rate (Haycock 

2011). Hepatocytes can be suspended in a collagen solution which is injected into 

hollow fibers systems. Nutrient medium is circulated through the fibers into cells 

(Gordon et al. 2005). Perfusion systems allow the culture medium pass through the 

construct to increase the mass transfer. Cells are usually seeded within a flat plate, 3D 

scaffolds or encapsulated with biomaterials. Some considerations when designing these 

flowing systems are scaffold porosity and mechanical properties of constructs. For 

example, mechanical stimulation of bone induces new bone formation in vivo and 

increases the metabolic activity and gene expression of osteoblasts (Frias et al. 2010). 

Several bioreactors have received FDA approval for clinical studies. For example, the 

BioLogic-DT artificial liver system, appears to be safe in treatment of patients with 

hepatic insufficiency and coma in clinical trails (Ash et al. 1992). 
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Table 1. Liver cells-based bioreactor designs (Allen et al. 2001). 

 

1.2.5 The source of hepatocytes for in vitro studies  

1.2.5.1 Primary hepatocytes 

Hepatocytes can be obtained from human or other animals such as rat. Today 

human hepatocytes are the most widely used for in vitro studies. Freshly isolated 

hepatocytes can exhibit most in vivo functions but they have lost the attached surface 

and they do not survive for a long period of time. In order to improve the surviving time 

of primary hepatocytes, many papers have been published to several methods to 

improve hepatocytes function in vivo.  
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For example, the use of the sophisticated medium for human hepatocytes 

(Ferrini et al. 1997), the use of extracellular matrices that improve cell adhesion such as 

matrigel (Bissell et al. 1987) and co-cultivation with human hepatic stellate cells or 

nonparenchymal cells (Guillouzo et al. 1990; Okamoto et al. 1998). Various other 

models have been established including bioreactors providing primary hepatocytes 

maintained under continuous perfused oxygen (Vinci et al. 2011). Encapsulation of 

primary hepatocytes with alginate or collagen gels has been also developed to allow 

hepatocytes to survive for several days instead of several hours (Guyomard et al. 1996). 

Although most in vitro studies for drug metabolism are performed using microsomes, 

primary cells have several advantages: (1) Intact cell membrane. Xenobiotics in liver 

cells are usually involved in active transport. Level of xenobiotics in hepatocytes is 

higher than in plasma. Some transporter proteins have been demonstrated for drug 

metabolism such as pravastain (Okamoto et al. 1998). (2) Complete drug metabolic 

pathways. Enzymes involved in drug metabolism are included in PhaseI/II enzymes. 

Some cytosolic-conjugating enzymes and co-factors also play a major role in Phase II 

biotransformation process (Li 1984). Microsomes, for instance, lack these enzymes 

during homogenization process. On the other hand, primary hepatocyes still suffer 

several disadvantages that are present in vitro studies. First, the cells source is not easy 

to get and maintain in every lab. Second, cytochrome 450 levels are not stable during 

time. Because of this phenomenon, experiments for primary hepatocytes usually are 

performed within 2 days (Flendrig et al. 1998). However, human primary cell-based 

assays represent the gold standard in cell-based analysis. 
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1.2.5.2 Human liver tissue 

One of the main advantages for human liver tissue is reproducing tissue 

architecture. However, hepatocytes in liver tissue rapidly lose their function within a 1-

2 day of culture, and the cells are not equally preserved and reproduced in each of 

repeated experiments. The stable source of liver slices is still the problem. Although 

liver slices are used for prediction of drug metabolism, clearance rate or drug-drug 

interaction, these limitations explain why liver slices have not been widely used for in 

vitro drug development model (Graaf et al. 2007).   

1.2.5.3 Hepatocytes cell lines and derived hepatocytes 

Hepatocyte cell lines can be derived from normal cell immortalization or from 

cancer cells. Hepatocyte cell lines have been widely used because of several 

advantages: (1) Major liver-specific functions exhibit stability. For instance, HepG2 has 

been widely used for drug metabolism or drug-drug interactions studies (Lan et al. 

2010). A new cell line HepaRG has been established recently for drug screening studies. 

HepaRG can express the major CYP450s and phase II enzymes over two weeks (Cerec 

et al. 2007). (2) Data are reproducible and consistent. Unlike primary cells, hapatocytes 

cell lines are immortal and represent a promising alternative to non-proliferative normal 

hepatocytes. The most commonly used human hepatocyte cell lines (eg., HepG2, 

Hep3B, HBG) are derived from tumors. (3)Hepatocytes are  suitable for high-

throughput screening. For example, HepG2 cells express a variety of proteins in large 

quantities that can be used to a good model for high-throughput screening (Rodriguez-

Melendez et al. 2005). Hepatocytes cell lines genes are also well characterized for 

microarray testing (Solorzano-Vargas et al. 2002). 
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In recent years, human embryonic stem cells (hESCs) have recently provided an 

alternative, unlimited source for human hepatocytes. However, differentiation of hESCs 

to hepatocytes remains a challenge (Hay et al. 2007). Some reports have indicated that 

the bone marrow of adult rodents contains progenitor cells with the potential to give rise 

to cells expressing the hepatocyte markers cell−cell adhesion molecule or albumin 

(Petersen et al. 1999; Theise et al. 2000). Carlos Semino et al (Semino et al. 2003) at 

MIT showed that they could take liver progenitor cells and differentiate them into 

mature hepatocytes in PuraMatrix synthetic nanofiber scaffolds. Induced hepatocytes 

from a patient’s pluripotent stem cells (iPS) has also provided a alternative way without 

immune suppression (Espejel et al. 2010). Although hepatocytes derived from 

embryonic cells have not been widely used for liver cells studies, nevertheless, use of 

hepatocytes-like cells derived from stem cells may be expected for in vitro drug 

screening in the future.  

Overall, it is desirable to perform long-term and high density cultivation of liver 

cells in an in vitro environment for drug and liver cells metabolism studies, but they 

have been difficult to maintain in culture at high cell density and contact inhibition or 

liver specific functionality are lost after couple days. 3D culture has been frequently 

used in tissue engineering, pharmacology and immunology. 3D matrices are superior to 

cell based assays and animal testing because: 1. 2D mono-layer cell based assays do not 

mimic the complex environment undergone by a potential therapeutic drug, especially 

for cancer drugs treatment; 2. Animal testing is often expensive, time consuming and at 

times irrelevant; 3. Some 3D devices are small, relatively cheap and can enable the 

parallel study of multiple candidate drugs for high throughput screening. This thesis 
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proposes an alginate encapsulation method for 3D hepatocytes cell culture under static 

and dynamic environment. Custom designed engineered liver matrices can be designed 

for applications such as high throughput drug screening studies or metabolism-

dependent toxicity study in the future. 

1.3  Research objectives 

The research purpose of this study is to design an alginate-based 3D culture 

system which can be applied for static culture, 2D-3D co-culture and dynamic culture. 

Once this system is established, custom designed engineered liver matrices can be 

designed for applications such as high throughput drug screening studies or 

metabolism-dependent toxicity study. The major research objectives reported in this 

thesis include:  

A. The development of a three dimensional culture system which embeds 

hydrogels encapsulated with high density of HepG2 liver cells. This includes 

the design of an alginate based manufacturing system; verify the encapsulated 

cells viability, phase-I/II metabolism activity and pro-drug EFC-HFC 

conversion rate and phenotype maintenance. 

B. The development of an in vitro porous poly-carbonate disc platform to enable 

high density 3D culture of liver cells for toxicity testing, and also combined 

with a monolayer growth of target breast cancer cell line (MCF-7) in a static 

environment as a representative example of screening drug compounds for 

hepatotoxicity and drug efficacy. 

C. The development of a perfusion bioreactor approach for 3D dynamic culture 

studies. A meso-scale perfusion bioreactor was designed which can be stacked 
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multiply disc with hydrogels. This includes the design of bioreactor, long-term 

dynamic 3D culture, and study of the EFC-HFC metabolism activity and 

compared the drugs toxicity under static and dynamic condition. 

The 3D encapsulation of cells within hydrogels represents an increasingly 

important and popular technique for culturing cells and towards the development of 

tissue engineering and drug testing. This environment better mimics how cells live in 

vivo, compared to standard tissue culture, due to the tissue-like properties and 3D 

environment. The following methods for the 3D encapsulation of HepG2 have been 

optimized in our lab to maximize cell viability and liver specific enzymes activity, 

minimize the hydrogel processing steps using support disc design and integrated into 

dynamic device. This research will also enable scientists to expand their scope of 

research and study in the field of in vitro drug screening and toxicity study. An 

overview of research accomplishments is presented in Figure 1. 
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Figure 1. Summary of research accomplishments. 

 

1.4  Research motivation 

The objective of research is to develop an alginate-based 3D liver cell platform 

for hepatotoxicity, metabolism of hepatocytes and drug effect studies through an in vitro 

encapsulation technique. In this thesis, we will present an alginate-based 3D culture 

with combination of a support disc and perfusion bioreactor for possible applications in 

tissue engineering, characterization of hepatotoxicity and drug effects and analysis. In 

addition, the research conducted here has the following features:   

A. 3D culture can mimic the complex environment and maintain to some degree 

the in vivo morphology in vitro. 

B. Animal testing is often expensive, time consuming and any results derived 
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from animal testing may or may not be useful to humans. Our in vitro 3D 

culture design has the potential to provide a reliable and stable drug testing 

platform for reducing time and money during drug development. 

C. High cell density and stable number of cells can be attained by 3D culture.  2D 

culture cells can only allow the growth of low density culture  on mono-layer 

surface and proliferation activity is out of control. 

D. For dynamic 2D culture through microfluidic devices, the cells tend to lift off 

from the chamber and clog the channels after extended usage. The clogging 

problem can be solved by the use of 3D matrices during dynamic culture. 

E. Liver cell integrity can be maintained by encapsulation method and support 

disc design can be applied in co-culture study. For some high-throughput 

samples, some devices used microsomes or CYP enzymes for drug testing, but 

there may be loss of structural integrity and removal of cell membrane results 

in the loss of transporter proteins.  

F. Current microfluidic devices or 3D culture modification techniques require 

specialized skills and expensive equipments for fabrication and operation, 

which makes it difficult to be used by non-experts. Alginate 3D hydrogel 

formation is relatively cheap and can enable the parallel study of multiple 

candidate drugs for high throughput drug screening.  

1.5  Thesis outline  

The objectives of this work were to develop 3D alginate-based cell culture 

system for application in toxicity testing and drugs metabolism studies. Background 

information on the research has been provided in Chapter 1 for better understanding of 
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this research that include: What is the 3D culture? What are the advantages of 3D 

cultures? What is the source of 3D culture? And how is the application for drug 

metabolism and toxicity studies. Chapter 2 describes the cultivation of HepG2 liver 

cells encapsulated in alginate hydrogels and the results obtained. Chapter 3 described 

the development of alginate based 3D hydrogels as an in vitro co-culture model 

platform for the toxicity screening of new chemical entities. Chapter 4 described the 

development of a perfusion bioreactor for high cell density cultivation. Chapter 5 

summarizes the conclusion of this study and recommendations of future work. 
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Chapter 2: Long-term cultivation of HepG2 liver cells encapsulated in 

alginate hydrogels: a study of cell viability, morphology and drug 

metabolism 

2.1  Introduction 

Methods to improve toxicology screening techniques for potential new chemical 

entities (NCE) are necessary to translate discovery of new drugs from the laboratory to 

actual patient consumption. The recent failure of Vioxx (Merck’s pain killer drug) 

highlights the inadequacies in viable technologies able to successfully predict the safety 

and efficacy of a drug. It is estimated that about a billion dollars and 10- 15 years are 

invested for every successful drug in the market. Unfortunately, even with large 

amounts of investment, success is not guaranteed. Even today, macroscale animal 

testing endures as the prevailing model in the evaluation of toxicological and 

pharmacological profiles of chemicals and therapeutic agents. After successful animal 

studies, further testing progresses towards human clinical trials where about four out of 

five candidate drugs fail. Due to the sequential testing procedure, there could be 

hundreds of compounds that have failed in animal studies but may actually have 

therapeutic effects in humans. For example, penicillin is toxic to guinea pigs but non-

toxic in humans (Green 1974). In addition to high cost, laborious process and ethical 

issues raised by animal right groups, newer technologies must be developed to limit the 

use of animal models during the drug discovery process (Durick and Negulescu 2001). 

In order to reduce the adverse effects of potential drugs, there need to be better, more 

efficient in vitro testing procedures that would be able to predict the ADMET 
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(adsorption, distribution, metabolism, elimination, toxicology) properties of a drug early 

on in the product development process.  

To facilitate the expedited discovery of new viable drugs, current research 

efforts are geared towards developing viable in vitro human tissue models, for example 

liver, which will serve as a tissue model surrogate to predict candidate drug efficacy and 

safety in humans (Khetani and Bhatia 2008). A number of in vitro systems are currently 

under development to understand the biotransformation of potential drugs in the liver 

and in combination with other tissue types. A number of microsomes, cell and tissue-

based in vitro systems have been developed to mimic human metabolism, including 

isolated liver slices (Onderwater et al. 2004), primary hepatocytes (McGinnity et al. 

2004) and transformed cultured human hepatoma cell lines e.g., HepG2 (Hewitt and 

Hewitt 2004). Cell-based assays usually involve culturing cells as a monolayer on a 

two-dimensional (2D) surface. Schuler and coworkers have developed a cell based 

analog chip system to predict the human response to potential therapeutic drugs 

(Viravaidya and Shuler 2004). The device contained interconnected cell-specific 

chambers to simulate dose dynamics and drug metabolite-cell interactions. Flat 

substrates (2D) micro-scale culture has been developed for hepatotoxicity screening 

applications (Khetani and Bhatia 2008). Researchers cultured liver cells within tiny 

wells (100 µm-1 mm diameter) to mimic liver-like tissue for drug screening testing. A 

microfluidic device for primary liver cell culture was also established (Lee et al. 2007), 

wherein an endothelial-like barrier was created to control mass transport. The unit was 

seeded with primary hepatocytes within microfabricated channels. This micro-scale 

culture device mimics cell-cell contact and nutrient transport across the endothelial cell 
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barrier in liver sinusoids (Zhang et al. 2008b). Dynamic culture systems have been 

developed wherein liver cells were perfused within a microbioreactor to ensure 

physiological shear stress levels experienced by in vivo liver tissue (Hwa et al. 2007; 

Powers et al. 2002).  

Developments in microbioreactor and computer aided fabrication technology 

have enabled researchers to expand the development of in vitro tissue model 

development towards a 3D environment (Sun and Lal 2002). Most cells respond to 

mechanical and chemical cues within a 3D microenvironment very differently from 

those on flat substrates (Rowley et al. 1999; Shachar and Cohen 2003). In addition, a 

3D culture environment can enable higher cell density (Vukasinovic et al. 2009), allow 

cell-cell contact and cell-matrix interactions (El-Ali et al. 2006), control of matrix 

stiffness (Sun et al. 2004) and a tunable barrier to shear stresses (Powers et al. 2002) 

induced by fluid flow within the system. Such microenvironments are limited when flat 

substrate cell-based assays are used. A hydrogel based 3D environment integrated 

within a microbioreactor system has been developed wherein cells are encapsulated 

within alginate and deposited within a microfluidic chamber to form the in vitro drug 

screening system (Chang et al. 2008b). Drug detoxification also can be studied under a 

seal-less blood centrifuge (Sofer et al. 1979). 

The hydrogels provide the necessary matrix for the encapsulated liver cells to be 

stationed within the matrix. However the exact mechanism of their behavior within the 

matrix is not understood. An understanding of the cell-matrix interaction at the micro-

scale and the systemic behavior of the encapsulated cells within a 3D environment is 

necessary to further advance the 3D in vitro tissue model system technology. 
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To address this need, this chapter has conducted a series of quantitative and 

qualitative studies to study the viability of HepG2 liver cells within two different 

alginate based hydrogel molecular arrangements. As control, wherever possible, the 

results were directly compared with results obtained from flat substrate culture (2D). 

The results included the CYP enzyme metabolism, enzyme induction/inhibition phase 

of the encapsulated cells and measured the drug metabolic capacities of the 

encapsulated cells. Scanning electron microscope and confocal microscopy protocols 

have been developed as part of the research study to enable us to visualize and 

characterize the encapsulated cells. In addition, the cell encapsulated matrix was 

exposed to the pro-drug EFC (7-ethoxy-4-trifluoromethyl coumarin) and the metabolic 

response rate was measured. 

2.2  Materials and methods 

2.2.1 Culture of HepG2 cells 

HepG2 were obtained from ATCC (American Type Culture Collection ATCC, 

Manassas, VA), passage 77. Hepatocytes were harvested between passage numbers 77 

and 80 for all our experiments. The cells were maintained in standard Dulbecco's 

Modified Eagle's Medium (DMEM) supplemented with 10% fetal bovine serum 

(Invitrogen Co., Carlsbad, Calif., USA) and 1% penicillin G and streptomycin 

(Invitrogen). The cells were grown in 75 cm2 tissue culture flasks at 37 °C in a 5% CO2 

humidified environment. At confluence, cells were washed with phosphate buffered 

saline (PBS), treated with 0.25% Trypsin/EDTA (Invitrogen) for 5 min to release cells 

from the flask, pelleted by centrifugation at 1500 rpm for 5 min and finally resuspended 

with fresh medium to the desired cell density.  
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2.2.2 Alginate preparation and encapsulation of HepG2 cells  

The hydrogel was prepared using Pronova SLM100 and SLG100 (NovaMatrix 

Co., Sandvika, Norway), mixed at a final concentration of 1% (w/v) with DMEM 

medium. The SLM100 variety had a M:G ratio of 60:40, while SLG100 had an inverse 

ratio of 40:60. HepG2 cells were cultured as described above, trypsinized, counted 

using a hemocytometer and resuspended in DMEM. Cells suspension medium was 

mixed with alginate solution (1% w/v) at a concentration of 1:1(v/v). After mixing 

gently, the cells-alginate precursor solution (300µl) was placed in wells of a 24-well 

plate containing CaCl2 solution (60µl, 45 mM, Sigma). The final cell density was 2 x 

106 cells/ml. The ratio of alginate mixture and CaCl2 solution is 5:1(v/v). After 

incubation at 37 °C for 30 min, the alginate hydrogel was washed with PBS to remove 

any uncrosslinked solution. Further, the gel was submerged in DMEM and incubated at 

37 °C in a 5% CO2 humidified environment. The cell medium was refreshed every 2-3 

days. For experiments that involved 3D hydrogels, cell free alginate gels served as the 

control. For all flat substrate (2D) experiments, culture medium at the bottom of the 24-

well plates served as the control. 

2.2.3 De-crosslinking the alginate hydrogel 

To de-crosslink the 3D alginate hydrogel, samples were immersed in DMEM 

(containing 1mM EDTA) and incubated for 5 minutes at 37°C. The gel de-crosslinks 

back to the solution state and then was spun down to retrieve the cells. The cell pellets 

were then resuspended in cell culture medium for further testing such as viability study. 

The 2D samples were also trypsinized by trypsin (0.02%) for 5 minutes at 37°C,  and 

counted with trypan blue by hemocytometer (Figure 1).  
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Figure 1. De-crosslinking and trypsination from 3D and 2D samples for viability test. 

 

2.2.4 Direct cell viability counting 

After detaching or de-crosslinking the cells from monolayer and encapsulated 

samples by trypsinization and EDTA treatment, they were assessed using a 

hemocytometer with trypan blue staining (Invitrogen). Measurements were performed 

on days 0, 5, 9 and 14.  

2.2.5 Live/dead fluorescence viability testing 

The viability of encapsulated HepG2 cells was quantified using the live/dead 

viability assay (Invitrogen) consisting of calcein-AM and ethidium homodimer. 

Hydrogels (SLM100 and SLG100) were formed as described above. At days 1, 4, 11 

and 14, cell medium was aspirated from the wells and hydrogels were washed with PBS 

twice to remove FBS from the hydrogel. Samples were protected from light and 

incubated with 2 µg ethidium homodimer and 0.5 µg calcein-AM in 1 ml PBS solution 

at room temperature for 45 min. After multiple washing with PBS, the viability of 

encapsulated cells was quantified from z-series projections taken every 10 µm and 

counted as the percentage of dead cells compared to the total number of cells in 

encapsulated samples (Figure 2). Sections were taken using an Olympus BX61WI 

confocal microscope and software (Olympus, Center Valley, PA). 
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Figure 2. 3D cultures optical section by confocal microscope.  

2.2.6 HepG2 filamentous actin (F-actin) staining  

HepG2 cells were stained for F-actin and nuclei for observation using a confocal 

microscope. Samples were fixed in 4% paraformaldehyde in Hank's buffered salt 

solution (HBSS, Sigma) for 20 min at 37 °C, after fixation, samples were washed three 

times with PBS (Ca2+ and Mg2+ free) and rinsed in 0.1 M glycerine in PBS for 5 min at 

room temperature. For F-actin staining, the samples were incubated in dark with 5 mg/l 

FITC-phalloidin (Sigma) in PBS for 30 min at room temperature. After washing the 

samples three times for 5 min in PBS, cell nuclei were co-stained with 5 mg/L of 4’,6-

diamidino-2 phenylindole (DAPI, Sigma) in PBS for 30 min at room temperature. 

Samples were scanned with an Olympus Optical CV12 CCD camera and BX61WI 

confocal microscope to generate optically sectioned images. A series of optical sections 

taken successively at different focal levels were reconstructed with the image 

reconstruction program. 

2.2.7 Sample preparation for scanning electron microscopy  

HepG2 cells encapsulated in alginate were fixed with 2.5% glutaraldehyde in 

coagulation buffer (0.1 M) for 2 h at 4 °C. After washing in PBS, samples were 

immersed in 1% OsO4 (aq.) solution for 60 min. Samples were dehydrated in ethanol 

(30%, 50%, 70%, 90%, 100%, 100%, 100%) for 20 min, three times for each respective 

ethanol change and dried using critical point CO2 (Tousimis Autosamdri-814). Dried 



 26 

samples were sputter-coated with gold/palladium for 15 min using a sputter coater 

(Anatech Ltd Hummer VI) and viewed in a JEOL JSM-880 scanning electron 

microscope. 

2.2.8 Cytochrome P-450 and induction/inhibition activity testing 

The Cytochrome P450 (CYP) superfamily of drug metabolizing enzymes is 

responsible for the metabolism of a variety of drugs and endogenous compounds. For 

testing CYP450 activity, cytochrome P-450 enzymes - CYP3A and CYP1A1 activities 

were measured by P-450-Glo™ CYP3A and CYP1A1 assay kit (Promega Co., 

Madison, WI., USA). The media were incubated with cells 24 h, removed from the 

wells and prepared for luciferase analysis at days 0, 5, 9 and 14. For 

induction/inhibition, CYP1A1 inducer omeprazole (Sigma–Aldrich., St. Louis, 

Missouri, USA) and CYP3A4 inducer dexamethasone (Sigma) were dissolved in 

DMSO to prepare stock solutions of 300 and 20mM, respectively. For our experiments, 

these solutions were further diluted in DMEM to a final concentration of 300 and 20µM 

respectively. The luminescent value was measured by FLUOstar OPTIMA microplate 

reader (BMG Labtech Co., Alexandria, VA., USA), 1 s duration time. Control cultures 

were treated with vehicle (DMSO at a final concentration of 0.1% in DMEM) alone for 

calculation of fold induction and inhibition. CYP1A1 activity was detected by the P-

450-Glo™ kit.  

Fold induction was calculated as follows: 

A-B  
Fold induction for 3D(%)= 

B 
(%) 

        A: Luminance for inducers treated samples/1000 cells 
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  B: Luminance for inducers untreated samples/1000 cells 

Inhibitors of CYP1A1 and CYP3A4 were SB203580 (Promega) and 

actinomycin D (Sigma) which were made in DMEM (0.1% DMSO) at a concentration 

of 10 µM and 10 µg/ml respectively. Cultures were treated with SB203580 inhibitor for 

1 day and with actinomycin D for 30 min. Control cultures were treated with vehicle 

(DMSO at a final concentration of 0.1% in DMEM) alone. Fold inhibition was 

calculated as follows: 

 A-B  
Fold inhibition for 3D(%)= 

B 
(%) 

  A: Luminance for inhibitors treated samples/1000 cells 

  B: Luminance for inhibitors untreated samples/1000 cells 

2.2.9 Glutathione assay  

During phase II reactions, some activated xenobiotic metabolites are conjugated 

with charged species such as glutathione and produce more polar metabolites than can 

be eliminated from human body. A change in GSH levels is important in assessment of 

toxicological responses and is an indicator of phase II metabolism ability. In this study, 

glutathione (GSH) level was measured by GSH-Glo™ assay kit (Promega Co., 

Madison, WI., USA). Three-dimensional samples were de-crosslinked with EDTA and 

the encapsulated cells retrieved. For 2D samples, the medium was removed from the 

plate containing samples. After removing the medium, both 2D and 3D samples were 

resuspended with GSH-Glo™ reagent (Luciferin-NT and Glutathione-S-Transferase 

included). After 30 min incubation, the samples were mixed with reconstituted luciferin 
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detection buffer and luminance was measured by FLUOstar OPTIMA microplate reader 

(BMG Labtech Co., Alexandria, VA., USA). 

2.2.10 Pro-drug metabolism by HepG2 liver cells encapsulated within alginate 

In vitro tests for drug metabolism are used widely. 7-Ethoxy-4-trifluoromethyl 

coumarin (EFC) has been described in the literature as an easy and sensitive method 

(DeLuca et al. 1988). EFC is an analog of ethoxycoumarin, a widely employed 

cytochrome P450 test substrate. The reaction studied is given in Figure 3. The 

fluorescence emission spectrum of the product, 7-hydroxy-4-trifiuoromethyl coumarin 

(HFC) is different from EFC and can be monitored by fluorescence reader. CYP1A2, 

CYP2B6 and CYP2E1 have been studied which may involved in metabolism of EFC to 

HFC(Ekins et al. 1997). 

 

Figure 3. The cytochrome P450 mediated 0-deethylation of EFC to HFC. 

 

Drug substrate EFC (Invitrogen) was mixed with DMSO to create a 10 mM 

stock solution of EFC. Pro-drug HFC (Sigma-Aldrich) was also mixed with DMSO to 

create a 10 mM stock solution of HFC. HFC standard curve range was prepared from 1 

– 64 µM. Alginate hydrogel encapsulated with liver cells were incubated with 120 µM 

EFC at day 1, day 7 and day 14. At each time point, the concentration of HFC was 
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monitored during 40 h with a fluorescence reader using an excitation wavelength of 360 

nm and an emission wavelength of 520 nm. 

2.2.11 Statistical analysis 

Analysis of variance (ANOVA) was used to analyze data and significance was 

considered at p < 0.05. 

2.3  Results 

2.3.1 Alginate matrix structure 

SLM100 and SLG100 alginate were sectioned to several pieces, dried in a 

critical point drier (CPD) and coated with gold and examined in a scanning electron 

microscope (SEM). The images showed a varying pore structure for the SLM100 and 

SLG100 alginate molecules (Figure 4). The SLM100 with the lower G-content resulted 

in a more open network structure with larger pores when compared to the SLG100 pore 

network. Due to the denser network, the SLG100 alginate gels were stiffer than the 

SLM100 gels and hence were easier to handle. 

 

Figure 4. Scanning electron micrograph of a cross-section of SLM100 and SLG100 

hydrogels. (A) SLM100 structure image. Scale bar 500nm; (B) The internal pore 

network within SLG100. Scale bar 500nm. 
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2.3.2 Cell proliferation and morphology  

To determine the proliferation and viability of cells encapsulated within the 3D 

matrix, the alginate hydrogel sample sets were de-crosslinked by EDTA and the cells 

released from the gel. The total cell number during each day of culture is shown in 

Figure 5A. On day 0, the total number of cells within each sample set is the same due to 

the constant initial seeding density among all sets. As expected, after day 5, the number 

of cells cultured on the collagen coated well plate (2D culture) increased dramatically. 

After 2 weeks of culture, the cell number in the well plates was 4.5 times higher than 

day 0, while the cell number in the 3D gels increased gently from 2 to 3 × 106 cells/ml.  

The microenvironment influences the morphology of the cells when grown on 

flat substrates as opposed to encapsulation within the hydrogel. In order to investigate 

the morphology difference between 2D and 3D culture, samples were stained with 

DAPI and fluorescently labeled phalloidin. Figure 5B shows F-actin as green and nuclei 

as red in HepG2 which are labeled with phalloidin and DAPI. Cells grown on the flat 

substrate spread out and adhered to the bottom of the well plates. Figure 5C shows 

HepG2 liver cells labeled with phalloidin. Cells encapsulated in the hydrogel display a 

spherical shape configuration with pockets of HepG2 aggregation and cell isolation 

within the gel. The spherical shape of the encapsulated cells in the 3D gel clearly 

suggests that the cells are entrapped within the gel and not adhered to the alginate 

molecular chains. However the cells remained viable during the period of culture.  
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Figure 5. Schematic of cell proliferation between 2D and 3D. (A)The number of 

HepG2 cells grown on 2-D (collagen coated well plate) and 3D (HepG2 cells 

encapsulated with SLM100 and SLG100 alginate gels). Data represent the mean 

±STDEV for three independent repeats. The (*) indicates statistical 2D culture 

significance relative to 3D culture at the respective time points, p < 0.05(t-test). (B) 

Confocal micrographs of HepG2 cells seeded on 2D surface showing F-actin 

distribution and nuclei. HepG2 cells were stained with DAPI and phalloidin. Scale bar 

20µm. (C) Confocal micrographs of HepG2 Cells encapsulated in SLG100, HepG2 cells 

were stained with phalloidin. Scale bar 20µm.  

 

2.3.3 Cell viability and SEM morphology during time    

When measuring the cellular viability using the trypan blue assay after 

trypsinization and de-crosslinking, a 90 ± 1.7% viability was maintained after 2 weeks 

for the flat substrate culture while over 81 ± 2.3% and 74 ± 3.8% viability was 

maintained for cells cultures encapsulated within the SLM100 and SLG100 gel (Figure 

6A). There is no significant difference in the viability between the two different alginate 

gel structures - SLM100 and SLG100 (p > 0.05). These results simply indicate that 
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without any modification to the alginate structure, cells remain entrapped within the gel 

and have limited proliferation activity. The cells do not adhere to the alginate molecular 

chains due to the negatively charged residues of guluronate and mannuronate molecules. 

However, these results suggest that the encapsulated HepG2 remain sufficiently viable 

during 14 days of static culture (>80% at day 9).  

As observed in Figure 6, cell proliferation is limited within the alginate matrix. 

This is primarily attributed to the lack of adhesion between the HepG2 cells and the 

alginate structure. This is confirmed by SEM images which indicate an aggregation of 

cells encapsulated within the alginate. As shown in Figure 6B, the cell surface is 

covered with microvilli which interact with the alginate structure at day 1. Even after 2 

weeks of culture, the cells do not significantly change the composition of the 

surrounding alginate matrix (picture not shown). The cells appear to remain viable 

while being encapsulated within the gel. Figure 6C shows instances of ‘cell blebbing’ 

within the gel matrix at day 14. Blebbing is an indication of cell injury or death, which 

translates to cells cultured within the alginate matrix, continues on with their entire life 

cycle in vitro. 
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Figure 6. Schematic of viability between 2D and 3D. (A)The cell viability of HepG2 

cells grown on 2-D (collagen coated well plate) and 3D (HepG2 cells encapsulated with 

SLM100 and SLG100). Data represent the mean ±STDEV for three independent 

repeats. The (*) indicates statistical 3D culture significance relative to 2D culture at the 

respective time points, p < 0.05(t-test). (B) Morphology of a HepG2 cell at day 1, the 

picture represented a healthy liver cell which is covered with microvillus and entrapped 

by the alginate hydrogel. Scale bar 2µm (C) Morphology of a HepG2 cell at day 14, the 

image shows an unhealthy cell undergoing blebbing. Scale bar 2µm.  

 

2.3.4 Quantification of cell viability in encapsulated 3D HepG2 SLM100 and 

SLG100 hydrogels 

Live/dead assay was also used to qualitatively and quantitatively indicate the 

viability of the cells within the gel. Since diffusion of nutrients into the 3D gel is a 

significant challenge, we have chosen to use confocal microscopy to determine the 

viability through the thickness of the 3D hydrogel. Live/dead assay results mirror the 
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results obtained from the direct counting of the live cells using the hemocytometer. As 

shown in Figure 7, as the days progress, the amount of dead cells within the gel 

increase, dropping the viability down to 78 ± 5% by day 14.  

To determine the distribution of cells within the 3D gel, serial optical cross-

sections of the gels were optically imaged using the confocal microsope. The designed 

3D hydrogels were about 10-12 mm in diameter with an approximate thickness of 0.6-

0.85mm. SLG100 hydrogel was optically sectioned to 100 layers and each slice was 

observed for cell viability and cell distribution. We found that dead cells were observed 

uniformly distributed in the SLG100 hydrogel. It was determined that the diffusion of 

nutrients from the cell culture medium into the alginate gel did not present a problem 

since there wasn’t any apparent loss of cell viability within the central mid-plane of the 

gel. 
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Figure 7. Encapsulated HepG2 cells were encapsulated in SLM100 and SLG100 and 

stained with Calcein AM and EthD-1 at day 0, day 7 and day 14. Live cells are green, 

dead cells are red. At day 0, the viability of HepG2 cells was higher than day 7 and day 

14. After 14 days in culture, the viability dropped to 78±5%. The confocal images show 

staining for both Calcein AM and EthD-1 dyes in the hydrogel with a sample thickness 

of 500µm. Scale bars are 100 µm.  

 

2.3.5 Phase-I Cytochrome P-450(CYP450) metabolism 

Drug metabolism is a necessary function within the human body to transform 

hydrophobic drugs to hydrophilic which are then easily soluble and excreted away 

through the urinary system. Drug metabolism in the liver involves Phase-I/II reactions 

that affect the toxicity of a drug and are primarily facilitated by oxidation and 

conjugation mechanism (Sivaraman et al. 2005). It is understood that within the 

CYP450 enzymes, three families of CYP1, CYP2 and CYP3 account for almost 90% of 



 36 

drug metabolism occurring in the body. In this study we have chosen to examine the 

production of CYP1A1 and CYP3A4 from cells cultured in the two different substrates 

– flat substrate (2D) and the alginate hydrogel.  

To determine the stability of HepG2 CYP450 activity, CYP1A1 and CYP3A4 

activity were measured for cells encapsulated in SLM100 and SLG100 samples. 

CYP450 activity in 2D and 3D culture were tested during 14 days of culture by using a 

specific CYP1A1 substrate – P-450-Glo™ luciferin-6’ chloroethyl ether and a specific 

CYP3A4 substrate – P-450-Glo™ luciferin-6’ pentafluorobenzyl ether and. The results 

are shown in Figure 8A and B where the data from the flat substrate culture is set to 1, 

and CYP450 activity was calculated by CYP activity/1000 cells. We found that 

activities of CYP1A1 and CYP3A4 were retained for 14 days across all sets of samples. 

Compared to CYP1A1 activity for 2D (Figure 8A), the CYP1A1 activity for the 3D gels 

were at similar levels and in some cases higher than the 2D. In contrast, the CYP3A4 

activity for 3D samples (particularly for cells grown in SLM100) was higher than 2D 

samples (Figure 8B). Overall, these results indicate a healthy maintenance of CYP1A1 

and CYP3A4 expression in HepG2 encapsulated in both SLM100 and SLG100 samples 

over a 14 day period. This activity levels are observed in spite of the HepG2 cells being 

encapsulated within the 3D gels. 
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Figure 8. CYP450 activity of HepG2 cells grown on 2-D (collagen coated well plate) 

and 3D (HepG2 cells encapsulated with SLM100 and SLG100). (A) Determination of 

HepG2 CYP1A1 activity by measurement of Luciferin secretion into the medium. (B) 

Initial substrate concentration is Luciferin-PFBE 50µM for CYP3A4 testing and activity 

was calculated by CYP activity/1000 cells. Data represent the mean ±STDEV for three 

independent repeats. 
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2.3.6 Induction and inhibition experiment for CYP450 

Frequently, drug candidates are also used as an inducer or an inhibitor for CYP 

gene expression, which provides a mechanism for amplifying or reducing the 

detoxification rate in the human body. After the drug is eliminated from the body, the 

CYP expression should return to normal levels. We have used known inducers and 

inhibitors to determine the CYP gene expression levels for 2D and 3D hydrogel culture 

environments. In this study, we have used omeprazole and dexamethasone as CYP1A1 

and CYP3A4 inducers, while SB203580 (p38 MAP kinase inhibitor) and actinomycin D 

as inhibitors. The data from the flat substrate culture is set to 1, and CYP450 activity 

was calculated by CYP activity/1000 cells. For CYP1A1, omeprazole could induce 

CYP1A1 activity over 1.5 to 2-fold for all culture environments as shown in Figure 9A. 

For CYP3A4, dexamethasone could induce approximately 3-fold for all culture 

environments (Figure 9B). For inhibition, SB203580 could inhibit 85% of CYP1A1 

expression, while actinomycin D could inhibit 80% of CYP3A4 expression on all sets 

of samples. These results indicate the encapsulated HepG2 cells respond positively 

when exposed to the induction and inhibition agents and also showed induction and 

inhibition fold have a similar phase between 2D and 3D culture. 
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Figure 9. Induction and inhibition of CYP450 isoforms in HepG2 cells. (A) Induction 

and inhibition of CYP1A1 activity in 2D and 3D cultures (SLM100 and SLG100) (B) 

Induction and inhibition of CYP3A4 activity in 2D and 3D cultures. Data represent the 

mean ±STDEV for three independent repeats. The (*) indicates statistical 

induction/inhibition samples significance different to 2D culture, p < 0.05(t-test). 

 

2.3.7 Phase-II Cytochrome P-450 (CYP450) metabolism 

Glutathione (GSH) plays an important role in conjugation reactions and 

reduction reactions catalyzed by glutathione S-transferase enzymes in cytosol and 

enables drugs to be removed from the body. Measuring GSH levels is important for 

determining cells toxicological responses and is also proved to be indicator of cell 

viability and functionality. To determine GST activity, we used GSH-Glo™ assay 

(Promega) to detect and quantify GSH in 2D and 3D samples. The GSH-Glo™ assay is 

a luminescence-based assay and based on the conversion of a luciferin derivative into 

luciferin which is catalyzed by GST. The luminescent signal is proportional to the 

amount of reduced glutathione present in the sample. The data from the flat substrate 
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culture is set to 1, and GSH activity was calculated by GSH activity/1000 cells. Our 

results show the GSH levels were decreased after day 4 of culture compared to 2D 

culture (Figure 10). GSH activity in both 3D hydrogels (SLM100 and SLG100) 

decreased with time but had sufficient levels of activity necessary to perform as a drug 

screening model system. The decreasing levels could be attributed to the lack of cellular 

adhesion for encapsulated cells within the 3D hydrogel.  

 

Figure 10. GSH status in HepG2 cells maintained in 2D and 3D culture conditions. For 

each experiment, cells were seeded at 2x106 cells/ml and activity was calculated by 

GSH activity/1000cells. Data represent the mean ±STDEV for three independent 

repeats. 

 

2.3.8 Drug metabolism by the in vitro models  

Drug elimination experiments can determine the drug residence time using liver 

cells encapsulated in the alginate hydrogels. The CYP450 enzyme plays an important 

role in the metabolism of several pro-drugs such as 7-ethoxy-4-trifluoromethyl 
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coumarin to 7-hydroxy-4-trifluoromethyl coumarin (HFC). The enzymatic product, 

HFC can be detected by fluorescence using an excitation wavelength of 360 nm and an 

emission wavelength of 520 nm. For this experiment, we examined the concentration of 

HFC at 3 different time points during the 14 days of culture. In this experiment, stability 

of HFC emission peak was shown during three rounds of screening at day 1, day 7 and 

day 14 and the results are shown in Figure 11. At day 1, concentration of HFC was 

measured after EFC treatment at 4, 8, 12, 16, 20, 28 and 40h. The cell density for 2D 

and 3D was 2 x 106 cells/ml. For the 2D samples, at day 1, the concentration of HFC 

increased until 28 h and then reached a saturation level where no more of the EFC was 

converted to HFC. After second and third repeated exposure to EFC at day 7 and day 

14, the result shows the conversion amount decreased steadily from days 1 through day 

14. As shown by the results, the drug HFC emission peak in SLG100 was also lower 

than in the 2D samples. However there was a near steady conversion rate for the 3D 

samples across multiple time study period. 
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Figure. 11. Drug response rate in 2D and 3D. The concentration of HFC was measured 

every 4 hours and the cell density was 2 x 106 cells/ml for each sample. 

 

2.4  Discussion 

The liver in the human body contains a variety of enzymes that are involved in 

the drug metabolism process. Consequently, cell-based assays involve the use of 

hepatocytes to predict the toxicity effects and remedial investigation of drug candidate 

compounds. For decades, toxicology studies have used 2D cell based testing as a widely 

accepted initial screening platform to screen drug compounds. However, several 

instances of inadequacies of 2D in vitro screening have led to developments of 

platforms that incorporate 3D environments and dynamic flow to simulate in vivo like 

environments. Failures to obtain FDA approval to potentially new drug compounds are 

traced back to the Phase-I (safety) and Phase-II (efficacy) laboratory and clinical 

investigations. The laboratory failures can be attributed to the loss of in vivo-like 
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behavior, when the same cells are cultured using in vitro conditions (Bhadriraju and 

Chen 2002). 

Our study is focused on the development of new high throughput screening 

(HTS) platform which specifically incorporates the use of cells within 3D hydrogels. 

The research community has described the variety of cellular response differences 

between 2D culture as opposed to 3D culture which include morphology changes, 

biological activity levels, growth factor expression and other specific functions 

(Haramaki 1993 ; Zvibel et al. 1998). In conventional two-dimensional cell culture, 

cells grow until confluency, while encapsulation of cells within 3D gels allow 

prescribed locations for the cells and limited proliferation within the microenvironment. 

Control of cell density is an issue for in vitro drug screening testing as is the clogging of 

microfabricated channels within in vitro 2D based HTS platforms. Three-dimensional 

cultures have the potential to provide in vivo like environments for cell differentiation, 

proliferation and development of specific functions (Heppner and Miller 1998), in 

addition to providing a stable platform for dynamic flow experiments when compared to 

2D culture. This paper investigates the behavior of a human cancerous liver cell line 

(HepG2) when encapsulated in two different alginate molecular structures (SLM100 

and SLG100) for possible applications in HTS platforms. 

2.4.1 Alginate-based cell encapsulation  

Alginates have unique properties which enable their use as a biomaterial base to 

provide a conducive microenvironment for optimal cellular function and behavior. 

Alginates are natural materials, derived from seaweed and have been widely used to 

mimic ECM structure for 3D culture (Smetana 1993). Alginates are formed by cross-



 44 

linking polymer chains of ionic bridges between divalent cations to form a water-

insoluble polymer. Cells may be encapsulated during the cross-linking process to create 

cells-hydrogel constructs for drug delivery and tissue engineering applications. As seen 

in the SEM images, cells encapsulated within the matrix did not adhere to the 

surrounding molecules primarily due to the lack of adhesion molecules available within 

the alginate matrix. This has significantly influenced the behavior of the encapsulated 

cells, especially in terms of cell proliferation. Higher cell density and agglomeration of 

HepG2 cells proves to be beneficial for cell function and viability. These results mirror 

the results obtained by Surapaneni et al. 1997. The same result has been reported by 

others within the research community. The inclusion of adhesion molecules within the 

alginate structure and higher cell density will significantly enhance cell viability and 

function (Glicklis et al. 2000). 

2.4.2 Cellular viability and proliferation  

Our results indicate a very slow growth of encapsulated cells within the SLG100 

and SLM100 matrices during the 2 week period of study. Although the alginate 

structures are highly porous, cells are most likely entrapped within the matrix and do 

not adhere to the alginate molecular chains. As HepG2 cells are anchorage-dependent, 

the initial cell adhesion to the matrix structure is a critical stage because it precedes cell 

spreading and proliferation. The lack of adhesion molecules prevents them from 

proliferating within the matrix. This lack of proliferation is not necessarily detrimental 

in using encapsulated cells for HTS applications since the total number of cells within 

the matrix can be kept relatively constant throughout the period of the drug screening 

study. This characteristic helps to reduce the variability between sample sets. As 
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expected, HepG2 cells grown on the flat substrate (2D culture) have shown a steady 

proliferation growth until confluency within the well plate. The cell numbers available 

at each time point within the study was determined by de-crosslinking the gel using 

EDTA and then counting the cells using a regular hemocytometer. This method proved 

to be a better estimate than standard viability assays such as Alamar blue and MTT 

assays since the dyes would have to penetrate the 3D gel and this may limit the assay 

efficacy. Our Alamar blue assay results were erratic and inconsistent throughout the 

time period, attributed mainly to the diffusion limitations of the Alamar blue dye and 

the incubation time as defined by the protocol (data not published). Even after 14 days 

of culture, we have been able to successfully maintain >70% viability observed for both 

SLM100 and SLG100 alginate gels. These results were further corroborated by our 

live/dead assay. The LSCM investigation allowed us to obtain spatial information on 

the distribution of the cells within the gel. We have observed a fairly uniform 

distribution of the encapsulated cells within the gel matrix. More importantly, cells 

within the interior of the gels did not show any effects due to diffusion limits of 

nutrients into the matrix. The open network structure of the alginate hydrogel aids in the 

diffusion of nutrients within the gel.  

2.4.3 Phase-I/II metabolic capacities 

Most drugs are metabolized in the liver by the Cytochrome P-450 (CYP) 

enzymes and other Phase-II enzymes, particularly glutathione (GSH). It is important to 

establish metabolism related and drug-liver interactions where one drug may affect the 

metabolic capacities of the liver, leading to possible toxic effects. The relatively stable 

amount of encapsulated cells within the 3D matrix during the period of study is 
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beneficial for future pharmacokinetic based time studies. Most papers have described 

the expression levels of CYP450 enzymes in 3D gels and not much have been said of 

the Phase-II enzyme production for the encapsulated cells. Some forms of toxicity are 

directly attributed to the induction of Phase-II enzymes such as UDP-glucuronosyl and 

glutathione S-transferases (Cantelli-Forti et al. 1998).  

Time courses of CYP450 activity over 14 days showed that CYP1A1 and 

CYP3A4 activity varied for both culture environments. In general, the expression level 

of CYP450 in HepG2 is lower than in primary hepatocytes (Wilkening et al. 2003), but 

primary hepatocytes maintain their function for only a few days and therefore are 

functionally unstable (Guillouzo et al. 1993). The expression of CYP1A1 and CYP3A4 

are slightly higher than 2D in SLM100 during 2 weeks and slightly decreased when 

cultured within SLG100 gels. For Phase-II enzyme testing, glutathione S-transferases 

appear to be slightly lower than 2D. Our experiments have employed a protein based 

detection analysis for CYP1A1 and CYP3A4 activity. It is possible that a cross-reaction 

between CYP3A5 and CYP1B1 may have influenced our results (Madan et al. 1999). 

This can be corrected by using a gene-expression based analysis for detecting specific 

families of the CYP450 class of enzymes. Since our experiments are targeted towards 

understanding the response of the encapsulated cells, the fact that the CYP450 activity 

is sufficiently expressed allows us to use such 3D gels for high throughput drug 

screening applications.   

When liver cells are cultured under conditions that represent the normal function 

and morphology, CYP450 can be induced or inhibited in vitro that reflect the in vivo 

induction and inhibition phase (Runge et al. 2000). Understanding the induction and 
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inhibition of CYP450 has been shown to provide important information to predict drug 

interaction (Allen et al. 2001). If 3D gels can represent the normal induction and 

inhibition phase, they can potentially be used to provide in vitro screening at 

pharmacological level. Further we demonstrated CYP1A1 and CYP3A4 induction and 

inhibition profiles were very similar between 2D and 3D sample sets. Compared with 

previous studies which cultured primary liver cells with fibroblasts (Hewitt et al. 2007; 

Khetani and Bhatia 2008), CYP1A1 and CYP3A4 induced fold were lower than those 

obtained when cultured with fibroblasts. The fibroblasts provide the liver cells with 

specific cell interactions which enables them to perform better. Hepatocyte spheroids 

could extent viability and maintain high level of liver-specific functions, including 

albumin and urea content (Bokhari et al. 2007). In our experiments, HepG2 spheroids 

were maintained in a relatively stable cell number with a basic level of CYP450 activity 

levels throughout the 3D culture. Further improvements in our matrix structure can 

include the optimal ratio of fibroblasts to hepatocytes within the 3D gels to enhance 

cellular interaction. Previous reports have shown that GSH synthesis is in direct 

correlation to cell attachment (Morrison et al. 1985). Papers have also reported that 

GSH levels were increased when hepatocytes were cultured on collagen surface due to 

the improved cell attachment (Moghe et al. 1997; Richert et al. 2002). In this 

experiment no proteins were added to the matrix to improve the cell attachment ability. 

This might explain the lower GSH activity in the 3D samples when compared to the 2D 

samples. However future improvements of the matrix structure can include collagen and 

adhesion molecules which may increase the GSH activity levels due to increased 

matrix-cell interactions (Richert et al. 2002). 
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2.4.4 Drug metabolism by encapsulated cells 

To characterize the metabolic clearance rate of a drug candidate through our 

samples, we have used the pro-drug EFC. In our study we measured the fluorescence 

intensity of HFC production after treatment with 120 µM of EFC in the medium. All 

samples were able to convert EFC to HFC over the studied time period. However the 

amount of HFC content within any sample did not peak more than 14 µM. After further 

treatment of EFC during days 7 and day 14, the peak HFC content decreased indicating 

the conversion efficiency dropping as time progresses. It is also noticed that after a peak 

is reached, HFC content goes down, possibly due to the degradation of the HFC content 

within the medium. However as pointed out before, gels can provide a stable 

microenvironment for dynamic culture studies and hence provide advantages for a 3D 

culture assay system. 

In conclusion, our results suggest that pre-screening of drugs using a HepG2 cell 

line encapsulated within 3D alginate systems is possible. This chapter has shown that 

some important drug metabolism functions of hepatocytes such as CYP450 and GSH 

can be maintained at significant levels in vitro for 2 weeks. The ability to transform 

EFC to HFC also provides further proof on the potential application of encapsulated cell 

lines. Detailed investigations have been conducted to study the viability and 

proliferation rate of cells within the gel matrix. The study also used SEM and 

fluorescence microscopy to identify the morphology and structure of cells encapsulated 

within the 3D matrix. For the next chapter, further improvements are included 

development of a polycarbonate disc for hydrogel formation and co-culture with two 

types of cells for drug drugs effect and toxicity studies. 
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Chapter 3: Alginate based 3D hydrogels as an in vitro co-culture model 

platform for the toxicity screening of new chemical entities 

3.1  Introduction 

In order to reduce animal testing in drug development process and toxicity 

studies, in vitro techniques have been described for various applications of pre-clinical 

drug evaluation. Many scientists are involving in developing new models for drug 

screening are not only for ethical concerns but at the same time can be motivated by 

reducing cost. In the human body, primarily the liver, plays an important role in 

biotransformation and the elimination of toxic compounds from human body. 

Therefore, hepatocytes based studies have been used extensively for drug metabolism 

studies in vitro. In broad terms, hepatocyte based methods can be divided into two 

categories. The first of category is composed of cellular system such as liver slices 

(Onderwater et al. 2004), primary hepatocytes (Hewitt et al. 2007; McGinnity et al. 

2004) and tumorigenic human hepatoma cell lines such as HepG2 and HepaRG (Hewitt 

and Hewitt 2004; Josse et al. 2008). The second category is composed of hepatocytes-

metabolism enzymes, such as human liver microsomes and isolated recombinant 

CYP450s (Hariparsad et al. 2006; Lee et al. 2008b). The information obtained from in 

vitro models can be used to apply in identification human drug candidate or drug-drug 

interaction, furthermore the phase I/II enzymes responsible for the drug treatment can 

be determined. 

Many hepatocytes culture techniques have been widely used for mimicking in 

vitro hepatocytes functionality. The various cellular systems include such as 2-
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dimensional, 3-dinmensional cell culture or integrate with a microfluidic network co-

culture system. Cell-based assays usually involve culturing cells as monolayer cells on 

two-dimensional (2D) surfaces. Schuler and coworkers have developed a cell based 

analog chip system to predict the human response to potential therapeutic drugs 

(Viravaidya and Shuler 2004). Briefly, the device contained two multi-chambers in 

which hepatocytes and lung cells to simulate dose dynamics and drug metabolite-cell 

interactions, naphthalene toxicity can be monitored by H2O2 accumulation and 

glutathione depletion when liver cells were cultured in the chamber. One limitation of 

this system is that a 2-D monolayer culture was used which may not represent the 

physiological functions in vivo. Despite of the result, this work was still validation study 

of concept of “cell on chip”. In 2009, they improved the original device to a 3-D culture 

system with multiple cell type for drug testing (Sung and Shuler 2009a). In this study, 

they used Matrigel as an encapsulating matrix for colon tumor and liver cells, and 

encapsulated myeloblasts with alginate. The toxicity of Tegafur and 5-fluoroural can be 

examined using this system. In addition, the viability and toxicity in the 3-D 

microfluidic device can be monitored real-time using a portable fluorescence optical 

detection system (Choi et al. 2010). A serious problem of microfluidic system bubbles 

accumulation, especially for long term cultivation. A bubble trap made of PDMS 

(polydimethyldisiloxane) was designed to trap air bubbles of up to 10 µl volume (Sung 

and Shuler 2009). A microfluidic device for primary liver cell culture was also 

established by (Lee et al. 2007), wherein a endothelial-like barrier was created to 

control mass transport. The unit was cultured with primary hepatocytes within 

microfabricated channels. This microscale culture device mimics cell-cell contact and 
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nutrients transport across the endothelial cell barrier in liver sinusoids (Zhang et al. 

2008). Static flat substrates (2D) microscale culture has been developed for 

hepatotoxicity screening applications (Khetani and Bhatia 2008). Researchers cultured 

primary rat hepatocytes within a miniaturized system with tiny wells (100µm-1mm) and 

2-D multi-well culture to mimic liver-like tissue for drug screening testing; also liver 

cells phenotypic functions can be maintained for several weeks. Some novel 

microfluidic devices have been designed not only for drug toxicity but for other 

functionality testing. Scientists also want to study the relation between the concentration 

of oxygen and cells functionality (Allen et al. 2005). Microfluidic channels are 

integrated into a bioreactor to perfuse rat liver cells with medium and a gradient of 

oxygen concentration. Different locations were examined for cells viability, 

functionality and toxicity. This example demonstrates the power of fluidic system in 

controlling the transport process for more authentic cell function. In recent years, many 

dynamic culture systems have been developed where liver cells were perfused within a 

microbioreactor. A continuous flow was maintained within this system which ensure 

physiological shear stress levels experienced by in vivo liver tissue (Hwa et al. 2007; 

Powers et al. 2002). 

Recently, the advantages of microfluidic device including induced reagent 

consumption and can provide an alternative drug pharmacokinetics platform in vitro 

(Ma et al. 2009), but the size of chamber also limited cell culture area and long-term 

cell culture is hard to reach for 1 or 2 weeks. Due to these problems, new approaches 

have been developed as an improvement for microfluidic device. When considering 

high-density cell cultures, adequate delivery of oxygen to the cells appears a crucial 
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problem especially for hepatocytes (Griffith and Swartz 2006). An oxygen supply 

system has been setup for improving oxygen perfusion in microfluidic device 

(Nishikawa et al. 2008). High cell density can also be reached by stacking many PDMS 

layers (Leclerc et al. 2004). In the present bioreactor, the cell density can be reached 

around 4 x 107cells/cm3 and monitor 12 days. However, the cell density can be achieved 

by stacking method, but the cellular interaction didn’t enhance. Tan et al (Tan and Desai 

2004) immobilize cell-collagen matrixes inside microfluidic devices. By repeating this 

procedure, different types of cells can be stacked on the matrixes. Cytochrome P450 

(CYP) is one of the most important enzymes which involved in biotransformation or 

detoxification of xenobiotics. The transformation process can increase the solubility of 

drugs and in further eliminate easily from human body. However, in some cases, some 

prodrugs (i.e. cyclophosphamide) can be bioactivated by CYPs or procarcinogens (i.e. 

aflatoxin B1 and sterigmatocystin) can become toxic to target cells through Phase I/II 

reaction. The CYP enzymes can be obtained from liver cells and appropriate tissues 

(Wrighton et al. 1993). Some microsomes also separate and purify from complementary 

DNA expression system (Langenbach et al. 1992). A simple testing method was 

developed in 1980 by Spielberg et al., who developed a method for examining 

acetaminophen toxicity by using an in vitro system for examining acetaminophen 

toxicity has been developed by using human lymphocytes and mouse microsomes 

(Spielberg 1980). A similar experiment was also established for testing cytotoxicity of 

antiepileptic drugs. Rabbit microsomes were prepared for lymphocytes viability study. 

Recently, high-throughput screening (HTS) technique has widely used in 

pharmaceutical industry field. The HTS techniques are focused on biotransformation 
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testing of a variety compounds. One distinguished example was reported by using array 

system for drug metabolism testing (Lee et al. 2005). They have developed a 

miniaturized three-dimensional (3D) cell-culture array (datachip) for HTS. CYP450 

were encapsulated with sol-gel and several prodrugs (i.e. cyclophophamide and 

Tegafur) were added onto each spot and cytotoxicity of target cells was tested by 

overlapping with”data chip and metachip”. This system was further improved with 

hydrogel-encapsulated cells, the results were obtained from datachip and metachip 

system which are also comparable to conventional 96-well plate assay. The CYP 

enzymes are easily manipulated for the metabolic clearance of a drug. The disadvantage 

of microsomes system is that all cofactors required for the CYP enzymes must be added 

during incubation, and also the viability of liver cells can not be detected. 

Hepatotoxicity is one of the most common adverse drug reactions during drug induced 

process (Kaplowitz 2005). A variety of drugs may be transformed and bio-activated by 

liver cells, and drug metabolism is thought to be involved in the toxicity of many target 

cells.  

When the cells are placed in the monolayer condition, cells toxicity could be 

more sensitive to a small amount of drugs. Due to human tissue and cell morphology is 

three dimensional and spheroids, monolayer culture condition is not authentic of the 

hepatocyte toxicity test (Dhiman et al. 2005). Some papers have demonstrated that cells 

growing in 3D culture to form spheroids culture are more resistant cytotoxic agents than 

cells in monolayer cell (Hoffman 1991). Two dimensional data might not provide 

enough information about viability and toxicity, which are important for cell LD50 

(lethal dose, 50%) evaluation.  
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Isolated hepatocytes especially primary liver cells start losing their functions and 

viability within 3-4 days (Chia et al. 2000). To maintain viable and functional 

hepatocytes in vitro, several sophisticated culture systems have been used for 

cytotoxicity study and long-term cell toxicity screening. Some results have been shown 

that the function of hepatocytes can be increased when co-culture with nonparenchymal 

cells (Bhatia et al. 1998). A dual-compartment perfusion bioreactor was design in co-

culture with hepatocytes and stellate cells (Wen et al. 2008). Hepatocytes and sellate 

cells were seeded in separate compartments of perfusion bioreactor. The functionality of 

hepatocytes was maintained at higher level such as albumin secretion and glucose 

consumption. In general, long-term metabolism promotion can be induced by co-

culture. Another co-culture system could be carried out in vitro using mixed cultured of 

hepatocytes and nonhepatic target cells. The principle of this device is that metabolites 

formed by liver cells would be toxic for other target cells. These culture systems could 

be tested in static or perfusion conditions (Gebhardt et al. 1996).  

So far, a variety of applications for drug screening, degradation ability and liver 

cells activity has been introduced. According to our chapter 2 results, we proved that 

pre-screening drugs using a HepG2 cell line encapsulated within 3D alginate systems is 

possible. The metabolism activity of CYP450 and GSH can be maintained at significant 

levels in vitro for 2 weeks. In this chapter, we have established an in-vitro 3D culture 

system that enables the culture of cells in relevant tissue-like cell densities (107~108 

cells/cm3), thickness of hydrogel is lower 0.8mm and also able to become a 2D-3D co-

culture system for assessing potential cytotoxic effects of drugs and their metabolites 

toxicity in vitro. A biocompatible polycarbonate disk was designed and applied to a 
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mold and support for 3D culture. The EFC-HFC metabolism was examined by cell 

densities of 105~108 cells/cm3 and cell viability was also monitored for three days. 

Different drugs of CT50 value such as diclofenac and acetaminophen (N-Acetyl-p-

Aminophenol ; APAP) can be provided by encapsulated cells on a 107 cells/cm3 cell 

density. For co-culture design, bio-activated drugs can be applied as a hepatotoxicity 

assay and target cells viability test. High cell density of HepG2 cells were encapsulated 

with alginate and cultured in cell medium with monolayer MCF-7 breast cancer cells in 

order to test drug hepatotoxicity and bioactivated activity simultaneously. A MCF-7 cell 

was cultured as indicator for cytotoxic effects of cyclophosphamide and acetaminophen. 

A range of drug concentrations were tested and the viability of MCF-7 was determined. 

The co-culture system uses liver cells as a drug activated platform and clearly has 

considerable potential for examining the effects of drugs and their metabolites on 

indicator cells derived from a tissue of choice. This co-culture design may be 

particularly useful in the assessment of metabolism and toxicity of new drugs intended 

for human use. This method not only improves our encapsulation process, but also 

offers the possibility of the testing of toxicity of liver cells/target cells and metabolites 

toward specific cell type at a very early stage of drug development. 

3.2  Materials and methods 

3.2.1 Drug compounds 

Acetaminophen, rifampin, quinidine, cyclophosphamide and diclofenac were 

purchased from Sigma Aldrich (St. Louis, MO). Stock concentrations for drugs used 

were as follows: acetaminophen (40mM), cyclophosphamide (40mM), diclofenac 

(20mM), rifampin (100mM) and quinidine (60mM). 
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3.2.2 Culture of HepG2 and MCF-7 cells  

HepG2 were obtained from ATCC (American Type Culture Collection ATCC, 

Manassas, VA), passage 77. Hepatocytes were harvested between passage numbers 77 

to 80 for all experiments. DMEM medium and fetal bovine serum (FBS) was purchased 

from Invitrogen (Carlsbad, CA). The cells were maintained in standard Dulbecco's 

Modified Eagle's Medium (DMEM) supplemented with 10% fetal bovine serum 

(Invitrogen Co., Carlsbad, Calif., USA) and 1% penicillin G and streptomycin 

(Invitrogen). The cells were grown in 75cm2 tissue culture flasks at 37°C in a 5% CO2 

humidified environment. At confluence, cells were washed with phosphate buffered 

saline (PBS), treated with 0.25% Trypsin/EDTA (Invitrogen) for 5 min to release cells 

from the flask, pelleted by centrifugation at 1500 rpm for 5 min and finally re-

suspended with fresh medium to the desired cell density. MCF-7 human breast cancer 

cells (ATCC, Manassas, VA), passage 147 were grown in DMEM supplemented with 

10% fetal bovine serum, 1% penicillin G and streptomycin and 0.01mg/ml bovine 

insulin (Sigma, I-1882). After trypsinization, the cell suspension was then transferred to 

12-well plates (BD Falcon., Bedford, MA, USA) with cell density on each well was 

around 105 cells/ml, the plate was incubated for 1 day in CO2 incubator for further co-

culture study. 

3.2.3 Support disc design and fabrication  

A porous polycarbonate disc was designed to fit within a standard 12 well plate 

(Figure 1). The disc (15 mm diameter disc with circular pores approximately 600 µm 

wide) was fabricated using a Fused Deposition Modeling (FDM) system (Stratasys, Inc, 

Minneapolis, MN). The FDM system extrudes the desired material based on a digital 
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3D model of the disc. Several publications describe the FDM process in detail and will 

not be covered here (Centola et al. 2010). The porosity of the disc is attributed to two 

factors, one being the intended designed circular pores and the inherent porosity (<1µm 

pore dimensions) within the material due to the additive nature of the FDM fabrication 

process. The base is elevated at a height of 1 mm away using support legs, which 

separates the disc from the monolayer culture of cells (MCF-7) at the bottom of the well 

plate. The alginate gel was designed to fit in the disc for 3D culture and 2D-3D co-

culture studies. The support disc is autoclavable and reusable continuously for repeated 

experiments. 

3.2.4 Alginate preparation and encapsulation of HepG2 cells preformed on the 

support disc 

The hydrogel was prepared using Pronova SLG100 (NovaMatrix Co., Sandvika, 

Norway), mixed at a final concentration of 1% (w/v) with DMEM medium. HepG2 

cells were cultured as described above, trypsinized, counted by a hemocytometer and 

resuspended in DMEM. A desired concentration of cells (105-108cells/ml) with the 

alginate solution (1%w/v) at a concentration of 1:1(v/v) is prepared. The procedure for 

the 3D hydrogel fabrication is described in Figure 2A. Initially, the support discs are 

sterilized using an autoclave and placed at the bottom of the 12 well-plate. Then, the 

cells-alginate solution (200µl) was pipetted onto the disc platform which contains a thin 

layer of 2.5% CaCl2 cross-linking solution (Sigma. After incubation at 37°C for 5 min, 

a soft cross-linked alginate gel encapsulated with the desired concentration of HepG2 

cells was formed. Each hydrogel is approximately 15mm diameter and 700±100µm 

thickness. After the crosslinking reaction, the alginate-disc was washed with PBS 
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(Invitrogen) for the removal of any un-crosslinked solution. About 1.5ml of cell culture 

medium was dispensed into the well plate which resulted in the medium to be slightly 

above the hydrogel.  

                         (A) 

 

(B) 

 

Figure. 1. Schematic of disc design and fabrication. (A) The porous support disc. (B) 

A magnified view of the poly-carbonate disc. Scale bar is 600 µm. The porosity of 

the disc is attributed to the designed pores within the base and the inherent porosity 

due to the additive nature of the FDM process. 

 

3.2.5 De-crosslinking the alginate hydrogel  

To de-crosslink the alginate hydrogel, samples were immersed in DMEM 

(containg 10mM EDTA) and incubated for 5 minutes at 37°C. The gel de-crosslinks 

back to the solution state and then spun down to retrieve the encapsulated cells. The cell 

pellets were then re-suspended in cell culture medium for analysis and characterization. 

Cells were counted by a hemocytometer with trypan blue staining (Invitrogen) because 

it is a direct method for measuring cell viability. Indirect methods such as LDH leakage 

and MTT reduction assays are based on metabolic activity and therefore may not 

authentically represent cell necrosis since low metabolic activity can contribute to 

higher toxicity. 

 



 59 

3.2.6 Live/dead fluorescence viability testing  

The viability of encapsulated HepG2 cells was quantified using the Live/Dead 

viability assay (Invitrogen) consisting of calcein-AM and ethidium homodimer. 

Hydrogels (SLG100) were formed as described above. On different time point, cell 

medium was aspirated from the well and the hydrogels were removed from the discs 

and washed with PBS twice for removing FBS in the hydrogel. Samples were protected 

from light and stained with 2µg ethidium homodimer and 0.5µg calcein-AM in 1ml PBS 

solution and incubated at room temperature for 45 min. After multiple washing with 

PBS, the viability of encapsulated cells was quantified from the z-series projections 

taken every 10µm and counted as the percentage of dead cells compared to the total 

number of cells in encapsulated samples, sections were taken using an Olympus 

BX61WI confocal microscope and software. 
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Figure. 2. Schematic of encapsulation method with support disc. (A) Encapsulated 

HepG2 cells within alginate hydrogels pre-formed on a support disc mold. (B) Phase-

contrast micrographs of encapsulated cells. Scale bar 200µm. (C) SEM images of 

encapsulated cells. HepG2 cells were entrapped within the alginate matrix. (D)  TEM 

images showing HepG2 cells encapsulated in SLG100 alginate. Typical cellular 

structure such as nuclei (N), cell membrane (C), encapsulated in alginate material (M) 

are shown. Scale bar 0.8µm. 

 

3.2.7 Sample preparation for scanning and transmission electron microscopy  

HepG2 cells encapsulated in alginate were fixed with 2.5% glutaraldehyde in 

coagulation buffer (0.1M) for 2 hours at 4°C. After washing in PBS, samples were 

immersed in 1% OsO4 (aq.) solution for 60min. Samples were dehydrated in ethanol 

(30%, 50%, 70%, 90%, 100%, 100%, 100%) for 20 min, three times for each respective 
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ethanol change. For SEM preparation, samples were dried using critical point CO2 

(Tousimis Autosamdri-814). Dried samples were sputter-coated with gold/palladium for 

15min using a sputter coater (Anatech Ltd Hummer VI) and viewed in a JEOL JSM-880 

scanning electron microscope. For TEM preparation, the dehydrated samples were then 

transferred to in 25%, 50%, 75%, 100% in Epon-812 resin (Electron Microscopy 

Sciences, PA, USA) anhydrous alcohol for 1 day for each concentration. When 

solidified, ultrathin (70nm) sections of the resin embedded and stained with uranyl 

acetate (UA) for 20min and lead citrate for 5 minutes. Samples were analyzed using a 

Zeiss 10A TEM.   

3.2.8 Pro-drug metabolism by HepG2 liver cells encapsulated within alginate  

Non-fluorescent pro-drug EFC (7-ethoxy-4-trifluoromethyl coumarin, 

Invitrogen) was mixed with DMSO to create a 10mM stock solution of EFC. Drug 

substrate HFC (7-hydroxy-4-trifluoromethyl coumarin, Sigma Aldrich) was also mixed 

with DMSO to create a 10mM stock solution of HFC. HFC standard curve range was 

prepared from 1 – 64µM. Alginate hydrogel encapsulated with liver cells were 

incubated on the top of support discs with 120µM EFC. At each time point, the 

concentration of HFC was monitored with a fluorescence reader (FX800, Biotek) using 

an excitation wavelength of 360nm and an emission wavelength of 520nm. 

3.2.9 Hepatotoxicity testing with 2D and 3D 

Acute exposure (24hr) hepatotoxicity between 3D and 2D was tested using 4 

model drugs: acetaminophen, diclofenac, rifampin and quinidine. For 3D samples, 

encapsulated HepG2 cells were seeded on the support discs as described above. For 2D 

monolayer culture, cells were routinely seeded in 24 well-plates at a density of 105 cells 
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in 0.5 ml medium per well and used 24 h later (75% monolayer confluence). Stock 

solutions of the drugs were diluted in culture medium for various concentrations. 

DMSO vehicle concentration was kept below 1% to prevent cell damage. The controls 

were prepared by diluting corresponding amounts of DMSO in culture medium without 

drugs. After drugs treatment for 24 h, the 2D and 3D samples cells were detached or de-

crosslinked from monolayer and encapsulation samples by trypsinization or EDTA 

treatment, the cytotoxicity 50% values (the concentration at which produces 50% lethal 

effect on cells viability) were assessed using hemocytometer with trypan blue staining 

(Invitrogen). For the cytotoxicity 50% data, a fourth order regression analysis was 

carried out using Sigmaplot 10.0 (Chicago, IL, USA).  

3.2.10 2D-3D hybrid co-culture method and drug effect test 

In the case of hybrid 2D-3D co-culture, the second type of cell (MCF-7) was 

seeded at the bottom of well before the support disc containing the HepG2 alginate gels 

was placed. The 2D-3D co-culture process of the cells is presented on Figure 3A. For 

our study, the target MCF-7 cells were seeded on the bottom of the 12 well-plate as 

target cells (2D cell culture) and incubated for 1 day. Cell culture medium was added 

into each well and incubated at 37°C under a 5% CO2 humidified environment. The co-

culture system was periodically observed using a laboratory microscope to follow 

growth morphology. Both hydrogel and MCF-7 culture can be observed simultaneously 

at different focal planes without having to disturb the hydrogels (Figure 3B and 3C). To 

study the drug concentration effect and the MCF-7 toxicity for different hydrogel cell 

density, we developed two experiments for our study. For the first phase of the 

experiment, the 3D hydrogels were plated onto support discs with MCF-7 cells cultured 
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previously at the bottom of the well plates. Then, 4mM and 12mM acetaminophen were 

mixed into each well, followed by testing for the viability of hepatocytes and MCF-7 

cells. Control samples were designed as 2D-3D co-culture without acetaminophen and 

MCF-7 was cultured alone with acetaminophen for the control tests of metabolized-

acetaminophen effect. The viability of encapsulated HepG2 and MCF-7 was 

quantitatively determined by trypan blue staining method after incubation for 1 day. For 

the second phase, three different cell densities were used in this co-culture design. To 

study the relationship between MCF-7 viability and the cell density of encapsulated 

HepG2, three cell densities 107cells/ml, 106cells/ml and 105cells/ml were encapsulated 

within alginate and co-cultured with a mono-layer of MCF-7 cells. The viability of 

encapsulated HepG2 and MCF-7 was quantitatively determined by trypan blue staining 

method after incubation for 1 day. For cyclophosphamide testing, 4mM and 12mM 

cyclophosphamide were also mixed into each well, followed by testing for the viability 

of hepatocytes and MCF-7 cells. 
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Figure 3. (A) The 3D hydrogels with disc were plated onto culture dishes where MCF-

7 cells have been previously cultured. In this type of co-culture, the hepatocytes and 

MCF-7 have no cell-to-cell contact. (B) The morphology of HepG2 which can be 

observed from phase-contrast microscope. Scale bar 100µm. (C) The morphology of 

MCF-7 cells seeded on the bottom of the well plate. Scale bar 100µm.  

 

3.3  Results 

3.3.1 Cell viability during 3 day incubation study period 

Stable hydrogels were prepared within the support disc with calcium chloride as 

the crosslinking agent. The morphology of the encapsulated cells is shown in Figure 

2B-D. Cells encapsulated in the hydrogel display a spherical shape configuration with 

pockets of HepG2 aggregation and cell isolation within the gel. SEM image (Figure 2C) 
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indicates that cells were entrapped within the highly porous alginate and the 

morphology in the spheroids was similar that seen in in vivo. TEM (Figure 2D) picture 

also shows that cell membrane were totally covered by alginate matrix and still maintain 

the spheroid morphology. 

 

 

Figure. 4. (A) Cell viability of HepG2 cells grown on 3D for 3 days (Initial cell density: 

107cells/ml). Encapsulated HepG2 viability was maintained over 80 ± 4% for three 

days. (B) The total number of live HepG2 cells for 3 days. (C) Encapsulated HepG2 

cells were stained with Calcein AM and EthD-1 at Day 0 to Day 3 in 3D hydrogels with 

an imaged central thickness section of 500µm. Scale bar 100µm.  

 

To determine the cell viability and proliferation activity in hydrogels, the cell 

viability of HepG2 (107cells/ml) encapsulated in the alginate hydrogels was studied 

over a 72hr period using the test platform. Cell culture medium was not refreshed (1.5 
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ml per well) during this period to ensure that enough cellular viability was maintained 

during the drug metabolism and toxicity study. As shown in Figure 4A, around 80% 

cells remained viable indicating that the culture conditions supported the highly dense 

culture of HepG2 cells within the 3D hydrogel. Live/dead assay was also used to 

qualitatively and quantitatively indicate the viability of the cells within the gel. Figure 

4C shows the live/dead confocal projected images within a central section of 500µm 

thickness to test for nutrient diffusion limitations. The 700µm thick hydrogel was 

optically sectioned by 100 layers and each slice was observed for cell viability and 

distribution. The images indicate over 80% viability of cells over the 3day period and 

these results mirror data shown in Figure 4A-B. Dead cells were uniformly distributed 

throughout the sectional slices and were not significantly higher in the mid-section of 

the hydrogel as compared to other areas of the gel. This data indicates that diffusion of 

nutrients did not play a major role in cellular death. Data in Figure 4B also indicates that 

there is limited proliferation of HepG2 cells within the alginate hydrogel matrix. 

3.3.2 Drug metabolism by the in vitro models for different cell densities 

To determine the toxic effects of the drug and its metabolic products on the 

cells, a 72hr study period was selected. In the first set of drug elimination experiments, 

clearance rates of the pro-drug 7-ethoxy-4-trifluoromethyl coumarin (EFC) to 7-

hydroxy-4-trifluoromethyl coumarin (HFC) was studied for three different HepG2 cell 

densities. An initial concentration of 120µM of EFC was mixed with the cell culture 

medium and the concentration of the metabolic byproduct HFC and cell viability was 

recorded over the study period of 3 days (Figure 5A). Regression curve of HFC 

formation rate was calculated from 18 to 72 hours (Figure 5C). Figure 5D shows the 
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HFC formation rate for the 3 alginate gels with different cell densities. As shown, the 

rate of HFC formation (µM/hr/106 cells) was the highest for alginate with the HepG2 

cell density at 106cells/ml, but the final concentration of HFC at Day 3 (Figure. 5A) for 

samples with 107cells/ml cell density was much higher than other two cell densities 

(106cells/ml and 108cells/ml). Figure 5B indicates that the rate of HFC formation at 

108cells/ml cell density drops down due to the corresponding loss of cell viability 

during the 72hr period. This is expected since at such super high density numbers, a 

static system may be inadequate in providing sufficient nutrient diffusion for the current 

hydrogel slice disc. A dynamic culture system with continuous closed recycling of 

medium is necessary for cell densities that mimic in vivo environment. In consideration 

of cell viability, HFC formation rate and the final concentration of HFC formation 

during time, 107cells/ml cell density is better than other two cell densities for in vitro 

testing under static condition due to high cell viability (~80%) and an adequate response 

time during three days.  
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Figure. 5. (A) Drug response rate in 3D samples for three different cell densities (106 

cells/ml, 107 cells/ml and 108 cells /ml). (B) The cell viability of HepG2 cells grown on 

3D for three different cell densities at day 3. (C) HFC concentration curve from 18 to 72 

hours with linear regression analysis. (D) The HFC formation rate for three cell 

densities.   

 

3.3.3 Hepatotoxicity testing with 3D culture design 

The liver plays a major role in transforming and clearing chemicals within the 

body and is therefore susceptible to the toxicity from chemical compounds. We tested 

our in vitro model platform and traditional mono-layer cell culture for hepatotoxicity 

results with four known commercially available drugs. The cell viability was observed 

in 3D platform cell culture system as compared to those grown in the monolayer 

system. Since our previous results have indicated an optimal 107cells/ml density, this 

has been used for all subsequent studies. HepG2 cells were encapsulated and cultured 
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on the porous support disc for 24 hours prior to treatment at different concentration of 

drugs. Serial concentrations of drugs were prepared in culture medium and treated with 

3D hydrogel samples encapsulated with HepG2 cells and monolayer system. Their 

hepatotoxic effect was evaluated by quantifying cell viability (Figure 6). In the in vitro 

toxicity data collected, the CT50 for the four drugs in 2D and 3D system are indicated in 

Table 1 and compared with in vivo LD50 results from rats. The CT50 values in 2D culture 

system were higher than 3D samples when treated with acetaminophen and diclofenac. 

These results indicate that HepG2 cells encapsulated in 3D hydrogel shows increased 

sensitive to the model compound of acetaminophen and diclofenac. Similar dose 

dependent responses and CT50 values were obtained in 2D and 3D using rifampin and 

quinidine. Two linear regression curves between 2D/3D CT50 values and LD50 values 

were obtained (Figure 7). The correlation between CT50 values derived using 3D 

platform system correlated well with the reported in vivo LD50 values (Paillard et al. 

1999; Toh et al. 2009; Wishart et al. 2008), on 3D culture (R2 > 0.97) was better than 

that obtained with 2D mono-layer cell culture (R2 < 0.86). These results indicate the 

encapsulated HepG2 cells toxicity respond appropriately when exposed to the drug 

compounds and also can be correlated to in vivo toxicity. 
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Figure 6. Concentration–response HepG2 cell cytotoxicity curves for the 

acetaminophen, diclofenac, rifampin and quinidine. Blue lines show the cytotoxicity 

regression curve of HepG2 encapsulated 3D alginate hydrogels (HepG2 Cell density: 

107cells/ml). Red lines show the cytotoxicity regression curve of 2D samples. See Table 

1 for CT50 dose values of the regression analysis for each curve. 
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Table 1. Cytotoxicity 50% dose values (CT50 dose) calculated from the 3D culture and 

published LD50 values for 4 model drugs.  

Drugs 3D culture 

CT50 dose 

(mM) 

2D culture  

CT50 dose (mM) 

LD50 (mmol/kg) (Paillard 

et al. 1999; Toh et al. 

2009; Wishart et al. 2008) 

Acetaminophen 17.3 26.1 14.01 

Diclofenac 0.48 1.3 0.33 

Rifampin 0.97 1.01 1.4 

Quinidine 0.21 0.22 0.24 

 

 

Figure 7. Correlation of CT50 values calculated from the 2D mono-layer cell culture 

and 3D encapsulated cells to reported LD50 values in rats. (A) A linear correlation 

between the 2D culture CT50 and LD50 values (R2 = 0.8553). (B) A linear correlation 

between the 3D culture CT50 and LD50 values (R2 = 0.9706).  
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3.3.4 Drug effect study on 2D-3D co-culture  

The previous studies showcase that the encapsulated HepG2 cells within 

alginate at certain cell density responded to the serial concentration of commercial 

drugs. The proposed design of the disc platform enables the simultaneous study of drug 

compounds on target cells within a co-culture setting. In this experiment, we have 

studied the effect of acetaminophen on MCF-7 cellular viability. Specifically, this 

model was used to reveal that liver metabolized drug such as metabolized 

acetaminophen stimulates target cells viability. Acetaminophen is a common analgesic 

drug which is oxidized to the toxic N-acetyl-p-benzoquinone-imine (NAPQI) by 

cytochrome P450, and this compound results in detrimental effects on liver cells and on 

other cell types (Bender et al. 2004; Hazai et al. 2002). In general, MCF-7 has 

resistance to acetaminophen treatment because it does not have caspase-3 protein that 

triggers acetaminophen-induced apoptosis (Boulares and Ren 2004), but MCF-7 can be 

damaged under metabolized-acetaminophen compounds such as NAPQI (Lee et al. 

2005).  

To study the drug concentration effect and the MCF-7 toxicity for different cell 

density, we developed two experiments for the study. From Figure 8A, when MCF-7 

cells were cultured in the absence of encapsulated HepG2 cells with 4mM and 12mM 

concentration of acetaminophen, the viability was over 92% which indicate that MCF-7 

has a resistance to acetaminophen treatment. After 4mM and 12mM drug treatment with 

2D-3D co-culture samples that includes encapsulated HepG2, the viability of MCF-7 

dropped to around 71%. These results indicate that our co-culture platform with 

encapsulated HepG2 cells metabolized acetaminophen leading to MCF-7 loss of cell 
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viability. The viability of MCF-7 was not dependent on the concentration of 

acetaminophen due to a significant loss in HepG2 cell viability (from 87% to 62%) at 

higher acetaminophen concentrations. Both concentrations at 4mM and 12mM led to 

similar loss of MCF-7 viability. This result is similar to the CT50 dose values seen in 

Figure 6.  

For the second phase experiment, three different cell densities were used in this 

co-culture design. To study the relation between MCF-7 viability and the cell density of 

encapsulated HepG2, three cell densities 107cells/ml, 106cells/ml and 105cells/ml were 

encapsulated within alginate and co-cultured with a mono-layer of MCF-7 cells. Figure 

8B revealed that when MCF-7 cells are co-cultured with higher cell density of HepG2, 

this leads to higher toxic effects on MCF-7. Control samples did not show significant 

loss of viability, thus indicating the combined need for higher cell density and presence 

of HepG2 cells to render acetaminophen effective against MCF-7 cells. These results 

also indicate that the drug interaction between two types of cells can be studied using 

the co-culture system. 
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Figure 8. Results from operation of 2D-3D co-culture with monolayer MCF-7 and 

encapsulated HepG2. (A) Comparison of viability response after 4mM and 12mM 

acetaminophen incubation for 1 day. Dashed line (*) shows the comparison of MCF-7 

viability. Solid line (*) showed the comparison of HepG2 viability. (B) Comparison of 

viability response with co-culture with different HepG2 cell density. MCF-7 viability 

decreased when encapsulated HepG2 cell density increased. Solid line (*) showed the 

comparison of MCF-7 viability. Data represent the mean ±STDEV for three 

independent repeats. The (*) indicates p < 0.05.  
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Figure 9. Results from operation of 2D-3D co-culture with monolayer MCF-7 and 

encapsulated HepG2. Comparison of viability response after 4mM and 12mM 

cyclophosphamide incubation for 1 day. 

 

After 4mM and 12mM cyclophosphamide treatment with 2D-3D co-culture 

samples that includes encapsulated HepG2, the viability of MCF-7 was no significant 

drop when compared with the control (Figure. 9). These results indicate that our 

encapsulated HepG2 don’t highly metabolized cyclophosphamide and kill MCF-7 

breast cancer cells. The viability of MCF-7 was also not dependent on the concentration 

of cyclophosphamide due to a minor loss in HepG2 cell viability (from 92% to 81%) at 

higher cyclophosphamide concentrations and low metabolism rate of 

cyclophosphamide.  
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3.4  Discussion 

Compared to traditional 2D cell culture, 3D culture can provides culture 

environment that is more physiologically similar to native tissue (Vukasinovic et al. 

2009). Recent research has demonstrated that 3D culture show different metabolic 

activities and expression profiles compared to mono-layer culture. This expression 

profiles and more authentic culture condition can provide better reflect cells behavior 

such as toxicity in their native environment (Fischbach et al. 2007). Our study is 

focused on the development of new platform for 3D culture which can also specifically 

incorporate the 2D cell culture for drug candidate compounds screening and testing. 

Many novel designs have been published from recently years but unfortunately tedious 

process and expensive equipments still limits the practicality. In this chapter, our design 

greatly simplifies the handling process and also provides a method which is compatible 

with existing well-plate system. This study confirmed the following: (a) 3D culture 

combines a support disk can provide a well correlate hepatotoxicity data with the 

reported in vivo LD50 values and (b) Metabolized drug effect can be studied and 

examined under 2D-3D co-culture.  

3.4.1 Fabrication of 3D hydrogel with support disc 

Co-cultures with cell culture inserts have been widely used to study two types of 

cells interactions such as local proliferation response or tumoral development (Gache et 

al. 1998; Uyama et al. 2002). In this study we have developed a unique porous support 

disc which is similar to cell culture inserts, but has more potential applications. To the 

best of our knowledge, none of the cell culture inserts are reusable and customized (e.g. 

Millipore or BDTM culture insert). Our design can be easily designed and modified by 
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Pro Engineer or other software and manufactured by biocompatible polycarbonate 

material. This final product can be sterile by autoclave and alcohol solution for 

experiment usage. The disc design can be placed into regular well-plate and provide a 

solid support for 3D cell culture. Spin coating apparatus have been widely used for a 

ring-shaped or a thin layer of hydrogel preparation (Jacchetti et al. 2008). For 3D 

hydrogels preparation, spin coating requires a clean room to prevent contamination of 

the samples that might not be available for every lab. For our fabrication process, 

porous support disks were placed in well-plate with calcium chloride solution and 

alginate-cells mixture was added on the top of the disk to form 3D hydrogels. During 

this crosslinking reaction calcium chloride can be evenly placed on the disk and diffuse 

uniformly from the porous surface to hydrogels. A thin and evenly hydrogel was made 

on the top of support disc without using spin coater or custom made cutter.   

3.4.2 Comparison with other cell-based 3D culture  

Methods for 3D hydrogel fabrication often involve specialized equipment and 

not likely to be widely used in the biological community, such as lithography equipment 

for photopatterning (Liu, V et al. 2007) and microarray systems for high-throughput 

testing (Lee et al. 2005). In this paper, we developed an accessible and standardized tool 

for making 3D cultures for drug testing. Photolithography is standard equipment for 

labs but when this technique is used for making 3D cultures, especially with cells, 

access to clean room or compatible bio-hood is necessary and limits the handling. For 

our study we provide an alternative way of standard fabrication process that is capable 

to generate a thin hydrogel for drug testing. The fabrication of 3D cultures on support 

disk is convenient for handing and easy to transfer to other well-plates for co-culture 
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experiment. A wide variety of disc can be customized and scaled down for 24 or 48 

well-plate. The manufacturing process and material prices cost less than $30 for each 

disk. Versatility of cell types and material (e.g. Matrigel TM, PEG) also can be mixed 

and deposited on this disc, depends on the research material. The ability to produce 

large quantities of samples and can be utilized by liquid handing machine for automatic 

screens (Tung et al. 2011) or cell printing for making pattern hydrogel (Varghese et al. 

2005).  

3.4.3 3D culturing  

Large sized hydrogels are not suitable for 3D culture because (a) large size 

hydrogels need more cells and materials for preparation, (b) not easily integrate with 

common biology products, and (c) contribute to oxygen or nutrients diffusion problems. 

Unlike native tissues have vasculature to support nutrients and remove waste, 3D 

hydrogels only allow medium and oxygen diffuse into hydrogels for cells surviving. 

Many papers have calculated that if oxygen is a limiting factor for growing cells in 3D 

culture, then the size of fabricated modules with a thickness lower than 200µm will not 

be limited by nutrient transport, under this condition the cells can be maintained around 

108-109 cells/cm2 (McGuigan et al. 2008b; Nomi et al. 2002). For our 107 cells/ml 3D 

culture samples, not many dead cells were observed in hydrogel with thickness larger 

than 200µm.  

Oxygen and nutrients are important for cell survival in thick tissues, but in most 

cases, cell death within the thick hydrogel is caused by hypoxia rather than lack of 

nutrients(Choi et al. 2007). In order to improve the oxygen supply to our hydrogel, we 

generated a porous and relative thin alginate for our 3D culture. According to our 



 79 

viability results by confocal microscopy, we don’t find any significant dead cells 

distributed in top, bottom or middle hydrogel. Yanagawa et al, have established a 

equation which can evaluated the maximum alginate-based hydrogel thickness for cell 

survival (Yanagawa et al. 2011). For our condition we estimated the diffusion of 

oxygen in the hydrogels based on Fick’s diffusion laws. Confocal results showed that 

encapsulated cells were distributed uniformly within hydrogel, so a spatially uniform 

oxygen concentration gradient was assumed. In addition, we also assumed a constant 

external concentration of oxygen, constant oxygen consumption rate (OCR) and a 

steady-state system with diffusion. Calculation was done based on the assumption that 

cells would die at zero oxygen concentration at the bottom of hydrogel.  

The maximum hydrogel thickness for cell survival (A [cm]) can be given as follows: 

OCRn

CoDo
A

⋅
= ⋅ 22

                (1) 

Nomenclature:  

2Do : Diffusion coefficient of oxygen in the alginate (cm2/s) 

2Co : Concentration of oxygen in the medium (mol/cm3) 

n : Density of cells (cells/cm3). 

OCR: Oxygen consumption rate (mol/cell/sec) 

The thickness of the hydrogels packed with HepG2 cells was estimated to be 

0.6~0.85mm at 2x106 cells/ml cell density (chapter 2 static culture) and 0.7mm at 107 

cells/ml cell density (chapter 3 static culture with support disc). From eq. (1), 

2Do =1.5x10-5 cm2/s (Hulst et al. 1989), 2Co =2.14x10-7 mol/ cm2 (Provin et al. 2009), 

OCR values of encapsulated HepG2 is 2x10-16mol/s/ cell (Mishra and Starly 2009). 
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From previous results, there were no significant differences in the viability of 

encapsulated cells among the top, middle, and bottom layers. For above prediction, 

alginate thickness 2400 µm at the cell density of 2 x106 cells/mL and 1100µm at the cell 

density of 107 cells/mL. This result indicated that our hydrogel can maintain the 

viability of encapsulated cells under high cell density for different thickness. HepG2 

cells is a high oxygen tolerance hepatoma cell line, 50% viability can be maintained 

under anaerobic condition during 3 days (Kim et al. 2007) and even during 6 hr of 

anaerobic incubation without additional substrate,viability of HepG2 cells was not 

significantly affected(Hugo-Wissemann et al. 1991). Although this thickness of the 

hydrogel construct seems to be much less than prediction, thicker hydrogels may still 

cause encapsulated cells under hypoxia condition. Normally, the oxygen uptake rate 

(OCR) of encapsulated cells decreases with increasing cell concentration (Mishra and 

Starly 2009), also the decline of OUR can be attributed to the higher cell density 

because of the reduction in diffusive flux (Provin et al. 2009). The OCR value for 

encapsulated cells was measured under 105 cells/ml cell density, so we can assume that 

the OCR for our higher cell density will be lower than this value, although the thickness 

used here is not very thin (>200µm) to eliminate oxygen diffusion problem, but 

viability of encapsulated cells can be maintained without apoptotic cell death induced 

by hypoxia. 

We also observed that alginate material has limited encapsulated HepG2 

proliferation activity, the total number of cells was almost the same as initial. Some 

possible explanations of is that (1) Encapsulated cells were entrapped in alginate and 

didn’t proliferate, so low oxygen and nutrients still can provide enough support that 
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enables cells to remain viable; (2) 3D cultures were placed on the support disks and 

close to the medium level, so the nutrients and oxygen can diffuse into hydrogels from 

each direction; (3) During 3D cultures cultivation we did not refresh the medium during 

three days, we put 1.5ml volume of medium into each well to substitute refreshing. 

Large amount of medium has more serum for cells extent their viability. (4) The 

concentration of our alginate hydrogel is 0.5% which is relative soft compared to other 

papers material such as PEG or fiber scaffold (Sumaru and kanamori 2004). (5) 

Encapsulated cells density was lower than 108/ml. In order to prove the influence of 

different cell density, we made 108/ml 3D cultures and monitored the viability for three 

days, the viability dropped to 15% compared to initial (data not shown). This 

experiment proved that diffusion is still a problem when you culture over a critical 

number.  

3.4.4. Drug metabolism by different density of encapsulated cells 

To characterize the metabolic clearance rate of a drug candidate through our 

samples, we have used the pro-drug EFC for testing 108/ml, 107/ml and 106/ml cell 

density of 3D cultures. In our study we measured the fluorescence intensity of HFC 

production after treatment with 120µM of EFC in the medium. All samples for each cell 

density were able to convert EFC to HFC over 3 days and also the HFC emission peak 

was quite linear from 18-72 hours time period. Interestingly, the HFC formation rate in 

106/ml samples was larger for the 108/ml and 105/ml samples. When compared with the 

viability of each sample after three days, 108/ml samples dropped to 15% after three 

days but 107/ml and 108/ml samples still remained viable for over 80%. That result can 

provide an explanation as to why HFC formation rate in 107/ml and 106/ml samples was 
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much higher than 108/ml, which was possibly due to the reduction of the viability 

within the 3D cultures. On the other hand, 107/ml samples HFC formation rate was also 

higher than 108/ml possibly due to the higher cell viability. High drug conversion rates 

can be achieve by high encapsulated cell density has been proofed (Chang et al. 2008a). 

However as pointed out before, cell viability, metabolic activity and nutrient diffusion 

problems should be also considered for a 3D cultures assay system. 

3.4.5. Hepatotoxicity study in 3D cultures  

3D cultures are being used in the prediction for hepatotoxicity study (Yamada 

and Cukierman 2007). Several research papers have shown that culturing cells in 3D 

environment may increase the drug resistance ability (David et al. 2008; Horning et al. 

2008) or increase the sensitive of drugs compared in 2D culture (Nakamura et al. 2011). 

In addition, Gurski (Gurski et al. 2009) has also pointed out that culturing cells in 3D 

matrices for anti-cancer drugs testing was superior to traditional 2-D culture due to 

tumor morphology can be represented in 3D culture. 

These sensitivity differences in 3D cultures may be representative of drug 

treatment in in vivo conditions. For our results, cell viabilities of HepG2 cells grown in 

3D culture systems and exposed to different concentrations of acetaminophen and 

diclofenac were significantly lower than those of cells grown in monolayer culture and 

exposed to the same concentrations. Acetaminophen, a commonly used analgesic, is 

known to cause hepatotoxicity when ingested in large quantities in humans. 

Acetaminophen can be biotransformed by cytochrome P450 (P450) enzymes, that are 

known to such as CYP1A, CYP2E and CYP3A, and cause cellular necrosis (Zhang et 

al. 2004). High CYP450 activity results in increased acetaminophen toxicity 
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(Kostrubsky et al. 1997). In Chapter 2, we have demonstrated CYP450 activity of 

HepG2 cells grown on 2-D and 3D. The main CYP450 enzyme, CYP3A4, on 3D was 

almost higher than 2D during 2 weeks (Chaper 2, Figure 8). HepG2 cultured on the 3D 

alginate show more sensitivity towards acetaminophen-treated hepatotoxicity than 

hepatocytes cultured on 2D cell culture. The ‘amplified effect of hepatotoxicity’ of the 

acetaminophen treatment on 3D might be due to the higher enzymatic activity of CYP 

450 enzymes.  

The differences in diclofenac toxicity observed in 2D and 3D culture could 

reflect the different sensitivity of hepatocytes. Diclofenac (0.75mM) for 24 h was 

almost low-toxic to the 2D monolayer (survival ratio of 88%) but highly toxic to the 3D 

spheroids (survival ratio of 11%). Liver spheroid culture has been widely used for 

cytotoxicity evaluation due to maintenance of native morphology. For 3D culture, the 

hepatocyte structural and enzymatic functions are similarity to the in vivo conditions(Xu 

et al. 2003). The trend between CT50 values obtained using the 3D cultures was similar 

to in vivo LD50 values and also correlated better than 2D mono-layer cell culture. A 

larger dataset of drugs for testing by our 3D culture system will be required in the future 

as a fully validated in vitro prediction model. This indicates the applicability of the 3D 

construct as a hepatotoxicity test platform and also showed good predictions in hepatic 

cytotoxicity. The platform can enable the encapsulation of any relevant cell line besides 

HepG2, since each cell type is configured to express certain protein levels. This can 

include primary cell lines and variations of the cancerous cell lines (HepG3A, HepLiu, 

HepRG) for incorporation into the alginate matrix, depending on the specific study.  

 



 84 

3.4.6. 2D-3D co-culture for drug effect testing 

The efficacy of our 2D-3D co-culture system to test the drug effect was 

methodologically evaluated in two steps, dose and cell density dependent interaction 

studies. As designed, the acetaminophen dose dependent interaction experiment was 

determined by MCF-7 viability. N-acetyl-p-benzoquinone imine (NAPQI) has been 

investigated a toxic byproduct produced during the xenobiotic metabolism of the 

acetaminophen (Dahlin et al. 1984). In order to study the acetaminophen toxicity and 

byproduct effect for liver or other type of cells, normally acetaminophen and NAPQI 

were directly added into the cell medium and treated with cells for different 

concentration or time period (Albano et al. 1985; Manov et al. 2004; Roe et al. 1993). 

But using in vivo condition, the half-life of NAPQI in the presence of tissue is just 

seconds, which means it is very hard to predict and mimic the treatment time for liver or 

target cells viability testing (Burcham and Harman 1991). In this paper we announced a 

new design for testing hepatotpxicity and drug effect simultaneously by using our 2D-

3D cultures design. After acetaminophen treatment for 1 day, encapsulated HepG2 

viability dropped from 85% to 55% when acetaminophen concentration increased. 

However MCF-7 viability didn’t significant decrease from low to high concentration of 

acetaminophen due to the HepG2 viability lost. For the second cell density experiment, 

when co-cultured 107/ml density HepG2 with MCF-7 the MCF-7 viability significant 

decreased to 71% and 90% of control. From these results, we utilized or co-culture 

system that models in vivo situation, in which the prepared liver cells were placed in a 

support disk and the target cells were cultivated on the bottom of the well plate. It can 

be imaged that in clinical experiment, the drugs would be pretreated with liver cells and 
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the drugs can be metabolized by liver cells and the drug effect can be determined or 

show from target cells. Normally co-culture systems have been shown for localized 

proliferation activity testing (Wang et al. 2009) and stimulation cells differentiation 

(Heneweer et al. 2005). As we have known, this 2D-3D co-culture designed has not 

been widely used for hepatocytotoxicity and drug effect testing. Lee et al has published 

by using microsomes (Lee et al. 2005) for drug effect testing. Although microsomes can 

provide a relative low experiment error and standardized procedure for high-throughput 

screening, but microsomes still not sufficient to replace hepatocytes-based study (Lam 

and Benet 2004), many compounds still failed to predict by microsomes due hepatic 

transporters lost (Naritomi et al. 2001). Our purpose is that provide a more authentic in 

vitro platform which is truly reflective of these exist in vivo; provide a better model for 

what happens in human body.   

Cyclophosphamide (CPA) is currently used to treat a variety of tumor cells such 

as breast cancer cells and also for its immunosuppressive properties in organ 

transplantation. CPA is a prodrug bioactivated in human liver by several CYP isoforms 

including CYP2B6, 3A4/5 and 2C8/9/18/19 (Chang et al. 1997; Gervot et al. 1999). 

The therapeutic efficacy of this drug is largely dependent on the liver CYP450 enzyme 

function with respect to prodrug activation and on the target cancer cells (Chen et al. 

1996). According to our result (Figure 9), cyclophosphamide didn’t metabolize by 

CYP450 and kill breast cancer cells. This is probably due to low levels of major P450s. 

Previous paper has been showed that the transcript levels of CYP1A1, 1A2, 2A6, 2B6, 

2C8, 2C9, 2C19, 2D6, 2E1, and 3A4 presented in HepG2 was lower than primary 

human hepatocytes (Westerink and Schoonen 2007). In previous papers  have shown 
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that the cyclophosphamide was greatly metabolized by a primary hepatocyte culture 

(Chang et al. 1997; Vanaerts et al. 1995). The toxicity of MCF-7 with CPA treatment 

was low probably due to the low CPA biotransformation activity of HepG2. In order to 

improve this experiment, we can use primary liver cells or stem cells for our cells-based 

testing platform in the future. 

In this chapter, our approach for realizing a high cell density 3D culture model 

which has utility in vitro drug testing, involves 3D that is conducive for the 

maintenance of hepatocyte functions and heaptotoxicity testing, and extending the 

design of the 3D hepatocyte culture system to enable 2D-3D co-culture for drug effect 

testing. A 3D hydrogel is constructed on a porous biocompatible disk, which provides 

the benefits of 3D cell culture while allowing more straightforward 2D plating and 3D 

hydrogel handling. The hydrogel on disk design enables in vitro toxicity testing by 

allowing for the simultaneous, dose-dependent administration of drugs to hepatocytes 

and target cells. We used our design to assess the hepatotoxicity of four model drugs; 

acetaminophen, diclofenac, rifampin and quinidine. CT50 values that are derived from 

the dose-response curves are correlated well to the reported in vivo LD50 values; 2D-3D 

co-culture system was also established to a platform for testing activity of hepatocyte-

activated drugs. These results illustrated the potential predictive value of hydrogel-on-

disk design for acute hepatotoxicity. For the next chapter, we integrated 3D culture, 

support disk and bioreactor to create a dynamic environment for toxicity and drug 

metabolism study. 
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Chapter 4: Development of 3D liver cells bioreactor  

4.1  Introduction 

The overall goal for liver cells bioreactor is to setup an in vitro platform for drug 

metabolism testing and a temporary hepatic support for long term testing applications. 

The first step in the development of construct for liver cells bioreactor is to seed the 

liver cells within some sort of a conducive matrix or co-culture with other types of cells 

inside the chamber. Then the cells have to be provided with adequate amounts of 

oxygen and nutrients to enable them to survive, proliferate and differentiate (Miki et al. 

2011). Several types of bioreactors have been developed for specific usages (Figure 1). 

For example, Spinner-flask bioreactors can be used for increasing the mass transfer to 

the cells by medium stirring; Rotating-wall vessels provide a dynamic culture 

environment to the cells with low shear stress; Hollow-fiber bioreactors also enhance 

mass transfer during the culture. These fibers then create a semi-permeable barrier in 

which the cells are growing and the medium is flowing in side, also hollow fibers 

provide a large surface area for cell cultivation; Direct perfusion bioreactors, medium 

can flow directly through the pores of the scaffold and therefore have the ability to 

enhance mass transfer (Hutmacher and Singh 2008). 
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Figure 1. Representative bioreactors for tissue engineering applications (Hutmacher 

and Singh 2008). 

 

Among several challenges, cell seeding is one of the critical problems for liver 

cells in dynamic culture. Seeding cells at high cell density (5.73 X 106 cells/cm3 ) may 

favor high viability and metabolism activity such as albumin and urea secretion when 

compared to low cell density (Dvir-Ginzberg et al. 2003). Uneven distribution of cells 
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in the scaffold or encapsulating hydrogel might lead to variation in oxygen and nutrient 

concentration gradients that would affect the  viability of cells within the  scaffold (Lan 

et al. 2010). Growing and mimicking liver cells in vitro is challenging because 

hepatocytes have to be cultured at high cell density and also nutrient requirements are 

much higher than other cells (Balis et al. 1999). In vivo, the liver is surrounded by 

capillaries with nutrients by a high blood flow that reaches the inner cells to get enough 

nutrients. These capillaries (sinusoids) system can support sufficient nutrients and 

oxygen for liver cells and they also remove the waste metabolites from liver cells. For 

the liver cells bioreactor design, it has been well known that the supply of oxygen and 

nutrients is important for the in vitro 3D culture system (Martin et al. 2004). Previous 

study has been showed that cellular spheroids larger than 1 mm in diameter usually 

suffer from hypoxia and necrosis if the cells aggregate in the center (Sutherland et al. 

1986). Similar results were reported for other types of cells such as chondrocytes 

(Ishaug et al. 1997). This is a critical problem for most engineered tissue because these 

constructs usually are at least few mm in size and mass-transfer limitations represent 

one of the main challenges to be addressed. 3D tissue culture can inhibit mass transport 

within the tissue construct, resulting in a limited nutrient supply and accumulated 

metabolic waste. Therefore, the authentic cellular response may be camouflaged by the 

limitations of a metabolic environment. However, this problem can be solved via a 

stirred flask (Gooch et al. 2001), reduced the thickness of the gel (McGuigan et al. 

2008a) or increased flow velocity inside the system to get higher oxygen update rates 

(Nyberg et al. 1993). The above methods aim to improve the mass transfer from the 

surface of the construct into the inner volume. For a regular perfusion system, filtration 
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methods are widely used for cell culture, but filtration method requires sustained 

filtering to prevent clogging over the study period. Typically, high flow rate generated 

by the pump is used to overcome this problem but this method can lead to leakage and 

damage to the construct structure (Tokashiki and Takamatsu 1993).  

Under dynamic bioreactor in which the seeded hepatocytes are in direct contact 

with the perfusion medium, this condition can result in abnormal wall shear stress at the 

cellular interface. The mechanical effects of flow-induced shear stress has been reported 

to alter the morphology, functionality and gene expression for different types of cells 

such as vascular endothelial cells(Davies 1995) ,bone cells(Owan et al. 1997) and 

hepatocytes PAI-1 gene(Nakatsuka et al. 2006). When rat hepatocytes were seeded on 

the flat surface with flow medium over 5dyn/cm2 wall shear stress that significantly 

decreased albumin and urea synthesis rates over 3 days(Tilles et al. 2001a). In 

hepatocytes co-cultured with non-parenchymal cells, the ammonia metabolic rate and 

urea synthesis rate were both enhanced on day 1 and progressively decreased over 11 

days of 1.3 dyn/cm2 perfusion medium(Kan et al. 2004). As a means of reducing the 

flow-induced effects of shear stress, some papers have shown that microchannel based 

bioreactor design can protect the seeded hepatocytes from the effects of high shear 

stresses, resulting in their maintaining stable albumin and urea production(Park et al. 

2005). Three-dimensional hydrogels can reduce the shear stress on the cultured cells. In 

these kind of designs, the 3D cultures were placed in the bioreactors and low shear 

stress was achieved with sufficient mass exchange(Miyoshi et al. 2010). Moreover, 

cells can be seeded on the gas permeable membrane to enable direct oxygenation into 

the cell compartment(Schmelzer et al. 2009). Oxygen level could be a factor for 
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functional heterogeneity in the liver. In one study where hepatocytes were chronically 

exposed to increasing oxygen tensions about 5 mm Hg (perivenous) to 85 mm Hg, urea 

synthesis increased about 10-fold but the activity of P450 and albumin production rate 

slightly decreased (Chan et al. 2004b). These results indicate that by creating different 

environmental conditions, it is possible to mimic the hepatocyte metabolism in a way 

that is consistent with in vivo. 

Perfusion bioreactors have been widely used for many applications such as liver 

cell transplantation therapies and pharmacologic models (Schmelzer et al. 2010). 

Schmitmeier et al have designed a small-scale bioreactor with a gas-permeable 

membrane and cultured with primary hepatocytes (Schmitmeier et al. 2006). The cells 

could represent their specific functions such as drug detoxification, and Phase-I 

enzymatic activities when cultured in the bioreactor. Various systems also have been 

examined for their in vitro and traditional culture performance and expect that this 

small-scale bioreactor system will be applied to drug metabolism studies (Bader et al. 

1998; Jasmund et al. 2002; Langsch et al. 2009). Traditional static two-dimensional 

culture model is inadequate for research tools because two major components are 

lacking that are required to provide a native in vivo environment: a dynamic 

environmentand a three - dimensional support architecture. Dynamic bioreactor design 

can provide the information on drug clearance and cytotoxicity that are important for 

the development of new drugs or for NCE screening. However, similar to previous 

considered thus far, these bioreactors should provide adequate viability and liver-like 

metabolism activities as in the native liver (Park and Lee 2005). The metabolism studies 

can be studied in static condition, such as Petri dishes or well-plates, and these designs 
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are easy to use and inexpensive. The main drawback for static studies is that the mass 

transport resistance especially in 3D culture or in culturing in high cell density under a 

thick layer (Catapano 1996).  

Recently some papers have  shown that using 3D dynamic culture; primary 

hepatocytes can be differentiated to liver-specific functional cells (Gerlach 1997; Miki 

et al. 2011). As various authors have mentioned, 3D culture and physical parameters, 

such as flow improve survival and prolong hepatic functions of primary adult 

hepatocytes in vitro (Fiegel et al. 2004; Ring et al. 2010).  

In an effort to design a liver cells based bioreactor, the hepatocytes functionality 

must be maintained in an environment that mimics the native liver cells as closely as 

possible. There are several critical design issues that must be considered when 

developing a hepatocytes bioreactor. (1) To maximize the long-term functional stability 

of hepatocytes; (2) to create a liver bioreactor unit that is scalable; and (3) to eliminate 

transport limitations (Chan et al. 2004a). (4) Easy 3D hydrogels/scaffolds insertion and 

removal processes. (5) Compatible with other scaffold materials and are easily 

interchangeable.  

To our knowledge, the influence of drug toxicity culture with 3D environment 

under perfusion condition has not been investigated a lot. In the present of study, we 

applied a meso-scale perfusion bioreactor with stacked 3D hydrogels to demonstrate the 

application of this device. Encapsulation technique is used to fabricate the cell laden 

hydrogels onto the support disc.  The designed bioreactor contained at least a stack of 3 

discs, provide a capability to test multi-samples at the same time. Metabolic activity of 

the cells inside the bioreactors was quantified on a daily basis by measuring the 
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concentrations of HFC in the culture medium with a fluorescence assay. Cells toxicity 

under static and dynamic condition for 4 model drugs was also tested. This bioreactor 

can be used in other experiments in which the application of flow to maintain cells, 

different types of cells can be cultured inside. 

4.2 Material and methods  

4.2.1 Chamber and disc design 

A perfusion chamber and lid were designed and prototyped using a CNC 

machine with polyetherimide plastic (PEI) as its material with internal slots to support 

multiple discs within the chamber. A porous polycarbonate disc was designed to fit 

within a chamber (Figure 2). The disc (15mm diameter disc with circular pores 

approximately 600µm wide) was fabricated using a Fused Deposition Modeling (FDM) 

system (Stratasys, Inc, Minneapolis, MN). The disc and chamber were autoclaved to 

ensure sterility before usage. The support disc and chamber are reusable continuously 

for repeated experiments. A mesh will allow hydrogels to be placed inside the chamber 

and allow the medium to pass through the hydrogel. HepG2 cells will be encapsulated 

by SLG100 alginate on the support as described previously. The support discs with 

hydrogels were placed carefully inside the chamber. The bottom chamber and the top of 

the lid will be connected with joints and tubes to allow the cell medium to flow pipes 

which will allow cell medium flowing from the top to the bottom. 
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A. Lid 

 

B. Chamber  

 

C. Disc  

 

D. Assemble parts 

 

Figure 2. Perfusion bioreactor design and fabrication. (A) Lid device 50mm x 7mm. 

(B) Chamber device 50mm x 34mm . (C) Mesh device 22.4mm diameter, each hole 

will be around 0.5mm in dimension with spacing at the middle of mesh. (D) The 

assemble parts setup, the hydrogel will be seeded inside the chamber. 

 

4.2.2 Integration of hydrogel within fluidic bioreactor chamber 

When the cell laden hydrogels are placed into the chamber, necessary 

connections are made to connect the chamber to a peristaltic pump to allow for the cell-

encapsulated hydrogels to be perfused within the medium (Figure 3A). A sterile lid is 
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laid on the top of the chamber and lightly pressed by four screws. To create a sealed 

space between the lid and the chamber, one O-ring is used to secure the bond to ensure a 

leakage-free flow system. Four screws are used to seal the lid and the chamber and 

avoid leaking (Figure 3B). The cell medium (Dulbecco's Modified Eagle Medium, 

DMEM) was introduced through a peristaltic pump (SCI-Q 200 SERIES pump, Watson-

Marlow, UK) into a bubble trap (Stovall Life Science, Greensboro, NC) that was placed 

between the peristaltic pump and the chamber. The bubble trap near the inlet of chamber 

will prevent the air bubbles from reaching the chamber.  

The outlet port of the device is connected to a tube (Silicone Double Manifold 

Tubing, 2.79 mm, Watson-Marlow, UK) used to collect the medium back and drains 

itself into the reservoir (Fig. 3A). Cell culture medium was pumped through a peristaltic 

pump and circulated through the device. The reservoir was placed on the stirrer to 

increase oxygen infusion from the environment and also allow infusion of the candidate 

drug compounds (ex pro-drug EFC) into the device system. Adequate amounts of the 

medium were collected from the bottom of chamber for analysis during different time 

point (Fig. 3A). An equal amount of medium was recycled to keep the amount of 

medium constant. The chamber device contains about 7ml of medium and the entire 

system (tubes and reservoir) held a total of approximately 30ml of culture medium. The 

entire system was incubated in the 37˚C, 5% CO2 incubator (Figure 4). The medium 

will flow at an inlet flow rate of about 300µl/min (3rpm) which is sufficient to ensure 

adequate tissue perfusion and nutrient availability. 
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Figure 3. (A) The dynamic culture system used during 3D dynamic culture experiments. 

The hydrogel is held within a bioreactor and cultured under direct perfusion. (B) The 

perfusion bioreactor.  

 

 

Figure 4. Schematic of setup for 3D dynamic culture. 
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4.2.3 Encapsulated cells viability test 

The viability of HepG2 cells in encapsulated was quantified using trypan blue 

after hydrogels de-crosslinking. On different days, the hydrogels were taken out from 

the chamber and de-crosslinked by 0.5% EDTA. De-crosslinking process was described 

on chapter 3. Cells viability was examined using a hemocytometer with trypan blue 

staining (Invitrogen).  

4.2.4 Pro-drug metabolism by encapsulated HepG2 cells within alginate in 

perfusion system 

Non-fluorescent pro-drug EFC (7-ethoxy-4-trifluoromethyl coumarin, 

Invitrogen) was mixed with DMSO to create a 10mM stock solution of EFC as 

described before. To determine the EFC-HFC conversion rate under different cell 

density and flow rate, a period of time was selected for study. In the first set of drug 

elimination experiments, clearance rates of the pro-drug 7-ethoxy-4-trifluoromethyl 

coumarin (EFC) to 7-hydroxy-4-trifluoromethyl coumarin (HFC) was studied for 

107cells/ml, 2.5x107cells/ml and 108cells/ml cell density under different flow rates. At 

each time point, the concentration of HFC was monitored with a fluorescence reader 

(FX800, Biotek) using an excitation wavelength of 360nm and an emission wavelength 

of 520nm. 
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Figure 5. Bioreactor orifice design. Cell medium can be collected from the bottom of 

the chamber without distributing the system. 

 

4.2.5 3D hydrogels hepato-cytotoxicity testing with static and dynamic condition 

Acute exposure (24hr), hepatotoxicity under static and dynamic condition was 

tested using 4 model drugs: acetaminophen (20mM), diclofenac (0.5mM), rifampin 

(0.6mM) and quinidine (0.15mM). For static testing, encapsulated HepG2 cells were 

seeded on the support discs as described above. For dynamic culture, three layers of 

disc with hydrogels were seeded in a bioreactor chamber and treated with flowing 

medium with different concentrations of drugs. The controls were prepared by diluting 

corresponding amounts of DMSO in culture medium without drugs. After drugs 

treatment for 24 h, the static and dynamic samples cells were de-crosslinked from 

encapsulation samples by EDTA treatment, the cell viability values were assessed using 

hemocytometer with trypan blue staining (Invitrogen).  
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4.3  Results 

4.3.1 Effect of cells viability and HFC formation activity under different cell 

densities and flow rate 

Encapsulated cells viability screening of flow medium requires a device that 

permits development of multiple hydrogels with controlled flow rates and determination 

of HFC formation activity during time. We constructed such a device with fluidic 

channels integrated into 3D dynamic culture. The use of a designed support disc format 

allowed compatibility with static culture and dynamic culture. Encapsulated cells 

morphology is generally determined using the LIVE/DEAD Back Light stain combined 

with imaging of green, the morphology of encapsulated cells were no significant 

different compared to our previous static results (Data not shown).  

To test if our dynamic device provides a reliable environment for encapsulated 

cells viability, we first experimented with 108 cells/ml cell density under 3ml/min and 

0.3ml/min flow rate. HepG2 cells were encapsulated in hydrogels on three support disc 

and put into the bioreactor for a period of time. Initial concentration of 120µM EFC was 

treated inside and a small amount of medium was collected from the orifice for HFC 

concentration testing. The concentration of HFC was monitored at different time points 

during 3 days. In this experiment, HFC emission peak under 108 cells/ml cell density, 

3ml/min flow rate was higher than in the 0.3ml/min flow rate. HFC conversion activity 

was higher under high flow rate. The cell viability was also tested after finishing the 

experiment at day 3. The viability of encapsulated cells remained around 25% under 

0.3ml/min flow rate, when we increased the flow rate to 3ml/min, the viability was no 

significant different between 0.3ml/min and 3ml/min. This result indicates that the 
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higher flow rate did not provide a sufficient oxygenated  and nutrition diffusion for 

sustenance of  high cell density culture within the hydrogel 

 

Figure 6. HFC emission peak in 3ml/min and 0.3ml/ml flow rate. The concentration of 

HFC was measured at different time point and the cell density was 108 cells/ml for each 

sample. 

 

According to the first 108 cells/ml experiment, the viability and HFC formation 

activity was not good. In this experiment we decreased the cell density to 2.5 x 107 

cells/ml and tested the HFC concentration during time under 3ml/min, 0.3ml/min and 

0.05ml/min flow rate. Figure 7 shows the HFC formation peak for the 3 different flow 

rates. As shown, the concentration of HFC was the highest for alginate with the flow 

rate at 3ml/min, but the final viability 0.3 ml/min was the highest. Samples with 

0.05min/ml flow rate was much lower than other two flow rates (3ml/ml and 

0.05ml/min). This result indicates higher flow rate can increase the HFC formation 
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activity but also may result in loss of cell viability. This is expected since higher flow 

rate can cause loss of alginate structural integrity due to higher wall shear stresses.  

Figure 7. HFC emission peak in 3ml/min, 0.3ml/min and 0.05ml/ml flow rate. The 

concentration of HFC was measured at different time point and the cell density was 

2.5x107 cells/ml for each sample. 

 

For the 107 cells/ml cell density, we cultured our samples under 0.3ml/min and 

3ml/min different flow rate and the concentration of HFC was monitored during time. 

Figure 8 shows the HFC formation peak for the 3 different flow rates. As shown, the 

concentration of HFC was the highest for alginate with the flow rate at 0.3ml/min. For 

the higher flow rate, the cells viability dropped to 62% compared the viability of 84% 

under 0.3ml/min flow rate. In consideration of cell viability and the final concentration 
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of HFC formation during time, 107cells/ml cell density and 3ml/min flow rate is better 

than other two cell densities and flow rates.  

 

Figure 8. HFC emission peak in 0.3ml/min and 3ml/min. The concentration of HFC 

was measured at different time point and the cell density was 107 cells/ml for each 

sample. 

 

4.3.2 HFC formation activity between static and dynamic for a long period of time 

For this experiment, we examined the HFC concentration on static and 

dynamic(0.3ml/min) culture condition during 14 days. The cell density for static and 

dynamic samples was 107cells/ml. For static samples, the concentration of HFC 

increased until day 3 and then reached a saturation level where no more of the EFC was 

converted to HFC. For the 3D samples, the concentration of HFC increased until day 9 

and then reached a saturation level. The maximum concentration of HFC on dynamic 

culture was higher than static culture. For dynamic culture, the result shows the 

conversion amount increased steadily from days 1 through day 8. On day 7, the viability 
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still remained around 84± 6% compared the viability 62±4% under static culture (data 

not shown). HFC concentration can be produced higher under dynamic culture and 

viability was also better than static culture. This result indicates that our dynamic 

system can provide an environment for 3D long-term cell culture, also enhance the HFC 

formation activity which could be utilized to drug testing platform in vitro culture. In 

consideration of encapsulated cells viability, HFC conversion ability, cell density and 

flow rate, 107 cells/ml cell density, 0.3ml/ml flow rate is better than other parameters for 

in vitro testing under dynamic condition. 

 

Figure 9. HFC emission peak in static and dynamic (0.3ml/min flow rate) condition. 

The concentration of HFC was measured at different time point and the cell density was 

107 cells/ml for each sample. 
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4.3.3 The influence of flow rate on the hepatotoxicity of static and dynamic culture 

Several factors can affect uptake rate, disposition, and pharmacodynamics of 

drugs. It has been known for many years that flow rate can have a major influence on 

the extent of drugs uptake (Horowitz and Powell 1986). For this result, our 3D samples 

were cultured in bioreactor under 0.3ml/min flow rate. 20mM acetaminophen, 0.5mM 

diclofenac, 0.6mM rifampin and 150µM quinidine were treated for 3D samples under 

static culture and dynamic culture. 4 drugs were incubated for 24hr and the cells 

viability was examined after de-crosslinking process. The results demonstrated that 

exposure to 4 drugs for 24h resulted in different cytotoxicity response between static 

and dynamic condition (Figure 10). It was noted that there is a statistically significant 

difference between static and dynamic culture condition under 150µM quinidine 

treatment (P value = 0.001<0.05). There was no significant difference when comparing 

the cytotoxicity effects for acetaminophen and rifampin between static and dynamic 

treatment (Fig. 10). Cells toxicity are dependent on blood flow rates and drug clearance 

(Cutler and . 1986). In our human body, the liver blood flow rate is up to 1500ml/min 

and the major part for the portal vein is around 1000ml/min (Loos et al. 1985). Due to 

the flow rate effect, hepatotoxicity may be different under different flow rate with drug 

treatment.  
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Figure 10. Effect of cytotoxicity on static and dynamic culture condition in 

encapsulated HepG2 liver cells. 3D samples were treated with different concentrations 

of drugs for 24 h. Control samples were only treated with culture medium without 

drugs. (*) indicates a statistically significant difference compared to static and dynamic 

samples (p < 0.05). 

 

4.4  Discussion 

4.4.1 High cell density culture under dynamic condition 

For the result on Figure 6, the effect of changes in flow rate of the medium on 

the viability evaluation of 108 cells/ml cell was investigated. The results show that there 

is a correlation between the HFC synthesis and the flow rate. In high cell density 

condition the increase of the flow rate improve the HFC formation ability, but the cell 

viability was lower than 30% on low and high flow rate. It has been reported that by 
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increasing the flow rate to the perfused rat liver, which increased oxygen delivery and 

drug clearance rate (Cardoso et al. 1994). Overcoming diffusion limits for the delivery 

of essential nutrients and the removal of waste products is a priority issue in the 

development of 3D cell culture. One possible solution is to create a vascular network in 

vitro which enhances the diffusion rate of  nutrients and waste products (Griffith et al. 

2005). At very high cell density, oxygen demand is expected to be high and the rate of 

flow is directly proportional to the oxygen gradient due to increased diffusion 

limitations(Hay et al. 2000). For our 108 cells/ml cell density, the viability was low even 

when we increased the flow rate. Previous papers have shown that the HepG2 oxygen 

consumption rate under 108 cells/ml cell density was around 3.4×10-17 mol/s/cell was 

found, which is much lower than previously reported values for hepatocytes (Provin et 

al. 2009). This is probably because cells surface are diffusion-limited layer, oxygen is 

very hard to pass through inside the hydrogel due to the high cell density. The 

increasing cells content in alginate disc increased the diffusion barrier (Hilge-Rotmann 

and Rehm 1988). For cell densities of approximately 4 x 107 /mL, severe oxygen 

limitation must be expected, whereas for cell densities of 108 /mL (a tissue-like cell 

density) the penetration depth for oxygen is less than 100 µm. As the 1 mm thickness of 

vessels used for experiment, an appropriate cell density with sufficient oxygen supply is 

about 107 /mL of the matrix (Portner and Giese 2007). For the next experiment, we 

decreased the cell density to 107 cells/ml, and the viability was much better when we 

compared the result with 2x107 cells/ml and 108cells/ml. In order to adverse the oxygen 

limitation problem, one way is to increase oxygen supply without raising oxygen 

tension is to enhance the solubility of oxygen in the culture medium by adding an 
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oxygen carrier. By using this method oxygen can be in direct contact with the cell 

membrane and resulting in a reduction of the oxygen diffusion resistance in high cell 

density and 3D material without vascular structure.  

For our dynamic culture, three layers of hydrogel were stacked in the bioreactor. 

According to our results the viability distribution is no significant different between 

each three layers. For our staking disc, the three-layer stack under dynamic condition 

that allowed perfusion of the medium into its center from the sides. Encapsulated cells 

cultured in this”loosely packed layers” didn’t show a gradient of viability. Our ”loosely 

packed layers” also provide an alternative way for nonvascularized hydrogel to enhance 

oxygen diffusion. In further if we want to determine the responses from encapsulated 

cells under oxygen gradient, analyzing oxygen-responsive genes by destacking the 

layers and isolating RNA from cells originally located at different layers. Several 

hypoxic extent and relative genes can be select for testing such as vascular endothelial 

growth factor (VEGF) gene (Sonna et al. 2003). By stacking and destacking the disc 

with hydrogels in bioreactor which make it possible to test oxygen and nutrient 

gradients in 3D and analyzed the genes response from encapsulated cells. This method 

can provide a simple process to use when studying of nutrients and biological responses 

in these gradients without histological sectioning and cell sorting. Different types of 

cells can be allowed to create a heterogeneous 3D culture in vitro. Multiple discs with 

hydrogels also can be incorporated into standard well plates, for high throughput 

screens or simple cells-based assay. 

 

 



 108 

4.4.2 Effects of flow rate on the viability of dynamic culture  

In our work, flow rate is an issue for cells viability. To reduce mass transfer 

limitations, we tested different flow rates under 2.5x107cells/ml and 107cells/ml cell 

density. For 2.5x107cells/ml samples under 0.05ml/min, 0.3ml/min and 3ml/min flow 

rate. The HFC formation ability and cells viability on 0.3ml/min and 3ml/min were 

higher than 0.05ml/min. Flowing medium can enhance oxygen diffusion and 

continuously introduce nutrients and remove wastes, but cells viability and enzyme 

activity may decreased in accordance with the increase of pressure of flow rate 

(Tokunaga et al. 1988). A more gentle approach may prevent shear–stress induced 

injury and thus improve cells viability ('t Hart et al. 2007). Higher perfusion pressure 

potentially causes damaging of alginate structure, resulting in leakage of encapsulated 

cells in the cell medium. A lower perfusion pressure will result in low distribution of the 

oxygen and nutrients. According to our results, 107 cells/ml cell density under 

0.3ml/min flow rate has the best result for HFC formation and viability. This study also 

indicates that tuning of the perfusion rate is crucial to cell viability. 

In order to study the homogenous medium perfusion, we placed three discs with 

three hydrogels inside the bioreactor and three layers of viability were determined 

separately after finishing experiment. Generally, viability was no significant different 

between each layer, but the mechanical property of upper layer became softer after 

incubation compared with middle and lower layer. But 3D culture environment can 

enable higher cell density and reduce shear stress or perfusion pressure effect under 

dynamic culture. 
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4.4.3 Encapsulated HepG2 cells in long term 3D static and dynamic culture  

For the ca-alginate material, the oxygen diffusion coefficient was varied 

between 2.54 x 10-5 cm2/s and 2.58 x 10-5 cm2/s for 1-3% alginate, and the oxygen 

diffusivity in alginate was medium due to the small pore size and 

hydrophilic(Mehmetoglu et al. 1996). In order to supply more oxygen through this 3D 

hydrogel, reduce the number of cells that can be seeded in alginate or increase the 

medium flow rate(Streeter and Cheema 2011). In this study, we designed a perfusion 

bioreactor for dynamic culture and compared the HFC conversion ability between static 

and dynamic during 2 weeks. For static culture (Figure 10), the medium was found to 

be inadequate to maintain 3D samples. HFC formation rate was improved by dynamic 

culture due to maintenance of higher cell viability. In the bioreactor with the 0.3ml/min 

flow rate, most cells were viable at all three locations(upper, middle and lower) within 

the bioreactor. Using hepatocytes entrapped within a biocompatibility material within 

the dynamic device has been widely used for improvement of oxygen utilization of 

hepatocytes and waste removal (Tilles et al. 2001). It was also determined that the 

CYP450 catalytic activity for the metabolism of EFC can be maintained around 9 days 

without stopping the system. In the static 3D culture model, samples have to be 

refreshed the medium frequently and initial drugs concentration will not be the same if 

you test it for a long period of time. For our dynamic device, medium is pumped 

continuously from a medium reservoir through the cultivation unit and back. A very 

small amount of medium can be collected from the bottom of orifice for drug metbolism 

testing during time. Although this experiment we put three layers of encapsulated 

hydrogels inside, with further modifications, the usage of such a 3D co-culture model 
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can be widely applied in studying the interaction and interplay between different types 

of cell on different layer. 

4.4.4 Encapsulated cells hepatotoxicity under static and dynamic culture 

For drug screenings based on cell models, especially for 2D cell-based assays, 

have been widely used for toxicity testing and high-throughput screening, but for 

prediction of toxicity profiles in clinical response is limited. The predictability of 2D 

cell-based assays is attributed to the fact that traditional 2D cultures do not mimic the 

cellular response in 3D environment and flow rate factor is not also considered. In 

particular, the level of activity of key detoxification enzymes in the cytochrome P450 

(CYP450) family has proven inconsistent and may differ from physiological levels such 

as oxygen level (Hewitt and Hewitt 2004; Wilkening and Bader 2003) or hepatic 

extraction ratio of drugs (Yoon et al. 2011). A combination of these factors likely 

resulted in the different toxicity response between static and dynamic culture. To further 

elucidate that why the viability different between static and dynamic condition under 

the same concentration of drugs treatment, it would be necessary to evaluate the 

CYP450 gene expression level and oxygen uptake rate in both static and dynamic 

condition along culture time and correlate it to the livers specific phenotype obtained 

and also compare the results with the more established hollow fiber or encapsulated 

hepatocytes perfusion bioreactor(De et al. 2009; Tostoes et al. 2011). It is clear that the 

absence of mass transfer limitations and combination of 3D culture makes the 3D 

dynamic system described here a better alternative to drug testing and toxicological 

studies than traditional 2D culture. 
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Our results demonstrate the efficient maintenance of liver cells using a perfusion 

bioreactor in 3D alginate hydrogels. Hepatic viability associated pro-drug conversion 

functions were detected with three-dimensional hydrogel under dynamic condition in 

vitro. This design may provide a new approach for 3D liver cells engineering, critical 

for drug toxicity testing and drugs discovery. Our design consists of a reusable, 

inexpensive cultivation units and control temperature and medium supplies. Moreover, 

this device is also capable of operating automatically and continuously without many 

manipulations. For our prototype dynamic device, the bioreactor can be an 

advantageous method in terms of low contamination risk, ease to handling and 

scalability. In conclusion, our multilayer bioreactor design is not very complex and also 

on the early stage of development. In the future, cell printing and other co-culture 

designs can increase fundamental understanding of the complex issues that will impact 

drug screening testing method in bioreactors.  
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Chapter 5: Conclusions and Future Directions 

5.1 Summary  

Developed for a range of tissues where the culture environment takes into 

account, 3D cell culture models serve to bridge the gap between in vivo studies and in 

vitro testing. Encapsulation method is simple three-dimensional models that can be 

generated from a wide range of cell types and form due to the tendency of adherent cells 

to aggregate. Our studies have investigated 3D culture using a three-dimensional 

alginate-based encapsulation method for HepG2 liver cells. Some of the major 

challenges using this technique are mechanical damage, liver specific enzymes 

functionality and long-term incubation. To address this issue, we have developed a 3D 

encapsulation method which has high viability, designed a new support disc for easily 

hepatotoxicity and drug effect study, and established a bioreactor for long-term 3D 

culture and dynamic study.  

5.2 Research contributions 

The contributions of this research are summarized as follows: 

(a) The described protocols represent a simple and useful method to encapsulate 

cells within alginate materials in a cytocompatible manner. Such techniques are 

especially important since 3D culture have been widely used and also can exhibit 

different behavior in 2D versus 3D microenvironments. 

(b) Development of an inexpensive platform to enable long term high density 

liver cell culture in combination with another type of cell in static culture environments. 
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The test platform allowed us to evaluate drug dose concentrations to predict 

hepatotoxicity and its effect by using 2D-3D culture techniques. 

(c) Development of a bioreactor for 3D dynamic culture. The bioreactor has 

been designed to integrate our disc design which allows multi-layered hydrogels 

cultured inside. The bioreactor design ensures endless applications and permits to use 

the same encapsulation method and the same support disc to work with an unlimited 

number of cells or biomaterials. All bioreactor and disc design are biocompatible and 

are built with autoclavable materials, perfusion condition can be easily control from a 

peristaltic pump and the patterned architecture can be made on the disk to achieve 

complexity from traditional cell culture. 

(d) Establish of an easy design process for different users usage. In our case, our 

support disc was designed for 12-well plate also with the size of bioreactor. For 

different researchers or experiment purpose, the devices can be scale up or scale down 

satisfies scientists’ requirements. Furthermore, this 3D culture process that is saleable 

and may be customized for unique needs. 

5.3 Future research recommendations 

The work presented in this thesis can be improved upon to include more features 

and alginate can be modified to include several types of adhesion proteins for cell-

matrix interaction study. Following research tasks have been outlined and can be 

undertaken to for future research and development. 

5.3.1 Conjugation of adhesion proteins into 3D hydrogel alginate  

For our alginate material, cells were entrapped within the gel and have limited 

proliferation activity due to without any modification to the alginate structure. Recent 



 114 

reports have revealed that an adhesion protein such as RGD modification can increases 

cellular proliferation and inhibits chondrogenic differentiation in mesenchymal stem 

cells(Connelly et al. 2007). Scaffold architecture and materials may also modify 

responses of cells (Pruksakorn et al. 2010). 3-D culture using scaffold-based techniques 

offers advantages in providing a structural support for cellular attachment with a 

different orientation. In the future we can encapsulate HepG2 cells or other types of 

cells with modified alginate on the top of our disc design and combine with the dynamic 

bioreactor for cells specific genes study or tissue regeneration study. 

5.3.2 Combination of cell printing technique and support disc to create patterned 

scaffolds 

Our encapsulation technique can provide a quick, simple and fast method for 3D 

culture. Moreover, simple encapsulation provides little or no control over the cellular 

organization of the resulting culture. Recently, a variety of rapid prototyping techniques 

have been developed to make patterned hydrogels by depositing biomaterials, including 

photolithography and syringe-based gel deposition. These techniques are similar in that 

the finished printed cell construct would be fabricated from the bottom up (layer-by-

layer) and can mix heterogeneous cell and biomaterial in three dimensions. Using our 

above porous support disc and cells printing technique, patterned hydrogels are capable 

to be printed on the support disc in a controlled environment. The support disc with the 

patterned 3D hydrogel can be placed into well-plate or bioreactor. Use of the patterned 

3D hydrogel as an in vitro drug testing platform showed many additional benefits, (1) 

scaffold-like structure can be fabricated on the disc to mimic native environment in the 
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liver, (2) multilayered construct can be fabricated by controlled nozzle, biologically 

relevant scale or co-culture environment can be reached on the disc.  

5.3.3 Determination and validation of drugs degradation products by HPLC 

system 

For our co-culture results, we established that the HepG2 cells actually 

metabolize acetaminophen and that the toxic metabolite is released into the media and 

delivered to the MCF7 cells. However, this result is indirect evidence and it is not 100% 

to conclude that the MCF7 toxicity is due to metabolism of acetaminophen by the 

HepG2 cells. The only reliable technique to directly measure the amount of toxic 

metabolite released into the medium is through high-performance liquid chromatograph 

(HPLC) testing. HPLC analysis of chemical drug degradation is generally more 

favorable; testing at various points in time using our bioreactor can reveal the 

appearance of new peaks or significant peak growth for testing drug byproducts. In the 

future we can treat several drugs in our 3D dynamic culture device and integrate with 

HPLC system. HPLC can analyze several active components in the present of bioreactor 

and even degradation products that be present in the system.  

5.3.4 Multi-perfusion chamber for metabolism-dependent toxicity study 

For our design we only used one perfusion chamber for our study. If we want to 

test metabolism-dependent toxicity, we need to connect with at least two components, 

metabolism system and target cells such as kidney or endothelium cells. At first, we will 

incubate drugs in the presence of HepG2 cells dynamic chamber. The metabolizing 

medium will be removed after exposure and target cells will be further incubated before 

cell viability is measured (Figure 1). Alamar blue or MTT assay can be applied for 
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measuring target cells viability (Al-Nasiry et al. 2007). By using this concept, a very 

simple multi-compartment model can be designed. The drug can be metabolized by 

“liver” into reactive metabolites, which then circulate to the “target cells” for dynamic 

drug effect testing. A more complete multi-chamber system can be readily fabricated to 

provide in vitro ADMET studies on new drugs or drug combination. 

 

Figure 1. Perfusion system for metabolism-dependent toxicity study (A’ is the 

converted drug by liver metabolism).  

 

5.4 Concluding remarks  

3D Cells-based assays in vitro require appropriate biomaterial, suitable process 

and bioreactors that simulate physiological environment for cell growth on 3D. In our 

study, our design has been meet the requirements of tissue engineering, in vitro drug 

screening and toxicology studies. This study has showed several advantages for 

researchers such as high versatility, simplicity of use, custom design and affordable 

instruments. Some similar commercial 3D bioreactor products have been selling on the 

market recently (3D bioreactor from 3D biotek company, P3D chambers from Eberis 

company). Although these products have significantly produced better device for 3D 

culture, they have shortcomings such as limited material selection, co-culture testing, 

and lack of versatile static and dynamic experiment. Our design concept can provide a 
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better solution for researchers working on tissue engineering, pharmacology and 

biology field.  
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