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SUPERCONDUCTIVITY AND HYSTERESIS IN INDIUM-CADMIUM ALLOYS
CHAPTER 1
INTRODUCTION

The most striking feature of all superconductors (and the first
of their properties to be discovered) is the lack of any electrical
resistance below a well-defined critical temperature Tc' For supercon-
ductors, Tc ranges from a few millidegrees K to about 20 K.

However, in the past half-century many more unusual attributes
of superconductors have been found. Prominent among these characteris-—
tics has been their behavior under an applied magnetic field. In fact,
the differences in this response in bulk superconductors (i.e., those
of greater thickness than thin films) have led to two general classif-
ications: Type I and Type II. Although Type I superconductors were dis-
covered first (by Onnes, in 1911), considerable work has been done on
the latter since the pioneering of Shubnikov et al (1).

As a rule of thumb, Type I superconductors tend to be elements
and alloys whose current-carrying ability (before superconductivity is
extinguished) is low; Type II superconductors tend to be alloys with
higher current-carrying ability. However, there are exceptions and the
distinctions will be put on a more physical basis in the next section.

In this work we shall discuss the magnetization properties of Type

1
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II superconductors. Specifically, we shall deal with Indium-Cadmium al-
loys. The reasons for discussing this system are (a) a large amount of
data has been published on the alloys of indium, and thus it will be
useful to compare these alloys to the others in terms of their supercond-
ucting parameters; (b) comparatively little superconducting work has
been performed on this system because of the low solubility of Cd in In
at room temperature. Noting that Cd has a greater solubility at higher
temperatures, the problem was alleviated by cooling the alloys rapidly
from these temperatures, preserving the lattice structure.

In addition to this work, a discussion of hysteresis in supercon-
ductors will be presented. Hysteresis is that condition in which a one-
to-one correspondence between the applied magnetic field and the res-
ultant magnetization of the sample is not achieved. In superconductors,
we often find that the magnetization for a decreasing field is less
than that of the increasing field. We shall discuss this effect in the
light of present-day theories of superconductivity.

As well as In~Cd alloys, work has been done on other alloys which

show more of a Type I characteristic.



CHAPTER II

TYPE II SUPERCONDUCTIVITY
The theoretical aspects of Type II superconductivity pertinent
to experimental data are now discussed. Consider first typical data and
the quantities derivable from them. In Figs. lla and 1l1b perfect diamag-
netism (i.e., B = 0) exists until the point where flux first penetrates

the sample, at H = Hc . In Type I superconductors, the point of initial

1
flux penetration is that of total flux penetration, so that Hc = Hc =
1 2
Hc. At the applied field Hc , the specimen becomes normal with a second

2
order transition., The order of the transition is determined by specific

heat discontinuities and the fact that the volume change at this trans-
ition is zero ( 30). Using the concept of the critical field Hc’

¢, Ly
Mdl = —Hc/81r (2.1)

0
where M is the magnetization. The critical field Hc is not observed -

experimentally in Type II superconductors, but is still a useful para-
meter,

Hc’ Hcl, ch, and many superconducting variables are deterf
mined thermodynamically and have a temperature variation. The magnet-
ization M is then dependent on temperature. A general idea of this de-

pendence is given in Figs. la and 1b. It should be noted before pro-

3
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5
ceeding that we shall consider only the geometry of a long cylindrical

sample in a uniform magnetic field parallel to its axis, corresponding
to the conditions of this experiment. In Fig. la, Tc is the temperature

at which all traces of superconductivity disappear.

The most successful efforts to describe the macroscopic propert-
ies of superconductors in terms of microscopic behavior have been those
of Ginzburg and Landau (GL) (2) and Bardeen, Cooper and Schrieffer (BCS)
(3). Abrikosov (4) discussed Type II superconductivity by using the GL
differential equations. Both experimental and theoretical aspects of Type
IT superconductivity have been reviewed by Goodman (5) and Saint-James
et al (6). Only results relevant to this work will be presented.

The BCS theory is based on the fact that if there is an attractive
interaction between electrons, those which are in the neighborhood of the
Fermi surface will condense into a state of lower emergy. This interact-
ion produces a state where each electron is paired with one of opposite
momentum and spin. Then the scattering which was allowed in the now energ-
etically unfavorable normal state is forbidden, and the correlated pairs
can now carry lossless current without inelastic scattering, i.e., cur-

rent without resistance. We have, if N(O)V << 1,

1 _ g 1o14 Bup

N() V = (2.2)
(o

where N(0) is the density of states per unit energy and volume at the
Fermi level, Wy is the Debye frequency, k is the Boltzmann constant,
and V is the electron-electron interaction strength.

There are two parameters, having the dimensions of length, which
are useful in the theory of superconductivity. £ is the range of coher-

ence of the superconducting wave functions, and AL is the penetration
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depth at which the field has fallen to l/e of its value at the surf-
ace (7). The ratio of the two lengths can be shown to be

__»AL/E = Hc /HC = /Zc; 2.3)

2
k 1s called the GL parameter. In deriving this, the GL theory, which is
based on the Landau-Lifshitz theory of second order phase transitions,
has been used., Strictly speaking, the former theory is applicable only
at temperatures near Tc; however, it has been used for other temperat- .
ures, Other derivable formulas are

H_ = mkT_{2nN(0)/8.4} %1 = (T/1 )} (2.4)
near T = Tc;

HCEAL = ¢°/4n (2.5)
where ¢ ( =kc/2e) is the flux quantum, Each of Abrikosov's (4) fluxoids
carry flux quantized in units of ¢0. These fluxoids are the entities dis-—
tinguishing Type II from Type I superconductors. They consist of a nor-
mal tube, parallel to the applied field, of radius &.E, surrounded by
a sheath of supercurrent of radius ~ AL. Goodman (5) shows how these
properties may be determined from the original GL equations. It has been
shown theoretically and experimentally (8) that the lowest energy con-
figuration for these fluxoids is triangular. The fluxoids appear only
when the flux penetrates macroscopically (H > Hc ) and the interflux-

1
old distance is

a = (4/3)%3_B (2.6)
Unfortunately, the resultant equations relating applied field,
lattice structure and }‘L are in the form of an infinite series of Bessel

functions of imaginary argument, However, when H = Hc » they can be
2



written in the form

dH 1.16(2|<§- 1)

2.7

We now have two parameters, k and Koo The former was merely def-
ined in the GL theory as the ratio of the two lengths of Eq. (2.3). The

second relation of this equation will define a parameter « in Eq.

1* “2
(2.7) is a new generalized GL parameter; it has been shown theoretical-
ly (9 - 10) that Kl(T) = KZ(T) to within a few percent over the entire
range of T, and that KI(TC) = KZ(TC). Maki (9) also introduced another

GL parameter k, to relate the first penetration field Hc to the critic-

3 1
al field H :
c
He (D = {1 (D251 }og k4D (2.8)
Goodman (11) defined yet another GL parameter, labelled Ko
defined by
- -3k
K4 = %, 4+ 7.53 x 10 ~ v Py 2.9)

where K is the GL parameter of the pure (unalloyed) material which
forms the main component of the alloy, L is the normal state resist-
ivity, in up - com, and v is the electronic coefficient of specific heat,
in erg - cm"3 - K_z. Since almost” all superconduéting elements (as op-
posed to alloys or compounds) are TypeII, Ky ® 0.1.

One reason why we deal with parameters like 29 and not only

1* ¥
with physical quantities like Hcl and ch is that we are concerned with
the shape and slope of the magnetization curve, as evidenced by Hc and
-~ 4w(dM/dH). The GL parameters enable us to characterize these quant-
ities,

In Eq. (2.3), if « < 1/v2, Abrikosov (12) showed that we have
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Type I superconductivity. We thus can use the GL parameters to deter-
mine easlly the type of superconductors under study.
Three separate theories of superconductivity (Ginzburg-Landau,
BCS and Abrikosov) have been dealt with. The derivation of the last from
the first has already been mentioned; Gorkov (13) determined the equi-

valency of the BCS and GL formulations.

We have sald very little as yet about the metallurgical aspects

of superconductivity. Since we have quantities like the Fermi-velocity,i

;
mean free path of electrons (through the normal state resistivity), as |
well as the whole range of defect structure (through the common hyster-
etic behavior of the magnetization curves), the metallurgy of the sam-
ple plays a large part in the final results. Livingston and Schadler
(14) reviewed much of the literature on this subject., However, for the
moment we shall not discuss all these aspects, but later on we shall
develop those parts germane to the present work.

In this spirit, there are other equations which could be devel-
oped on Type II superconductors, both as a combination of the preceding
equations and from the fundamental theory. To conserve space, we shall
produce them only as needed in the subsequent sections, as a generally
adequate overview of Type II superconductivity has been given in the

preceding pages.



CHAPTER III

EXPERIMENTAL PROCEDURES

In this section we shall describe and discuss the experimental

procedures used in this work.

Sample Preparation

The samples were cast in the form of cylinders, in order to simp-
1lify geometrical considerations. The sample holder was constructed from
a Teflon rod; its dimensions are illustrated in Fig. 2a. It was made as
large as possible consistent with the size of the pickup coils which de-
tected the signal., The lower section, where the actual sample rests af-
ter preparation, is a cylindrical mold with a 2.0 x 20 mm. bore. The
larger chamber above serves as a holder for the constituent elements of
the alloy, as well as a mixing chamber.

The In used was supplied by Cominco American Inc. (lot HPM 8908)
and was claimed to be 99.99997 pure. The Cd was supplied by Electronic
Space Products Inc. (lot K960D) and claimed to be of the same purity.
The precut and weighed pieces of the elements were placed inside the
large chamber of the holder. In order to achieve the exact percentage
compositions desired, it was occasionally necessary to have samples
which had a total mass slightly different from sample to sample. (Typ-—

ical sample weight was 0.43 grams.) The difference was no greater than

9
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11
a few percent. However, the experimental procedure employed "normal-
izes" the data with respect to mass and no correction is necessary.

A large problem in preparing any alloy is ensuring that the con-
stituents are properly mixed. A fairly elaborate procedure was devised
in the present work to make certain of this.

After the Teflon plug was screwed into the sample holder, it
was placed in a glass tube suspended in a furnace. The tube was evac-
uvated to 2 microns of pressure or less, flushed with argon, and the pro-
cedure repeated. The constituents of the alloy were then melted to- |
gether. However, a problem which arose was that the upper limit of temp-
erature of the furnace was about 240 C, while the melting point of Cd
is 321 C. The difficulty was obviated by noting that the melted In would
have a high interdiffusion rate with the solid Cd at that temperature
(240 C). It was assumed that after a 24 hour melting period at 240 C
the Cd would have completely diffused into solutlon. Subsequent magnet-
ization measurements, to be discussed, bore out this conclusion,.

The sample holder was agitated to ensure that the molten alloy
had fallen completely into the lower chamber,

After this first stage, the sample was slowly cooled to room
temperature under vacuum, It was then exposed to air, and inspected to
see if all the Cd had melted., This proved almost always to be the
case,

In the second stage, the plug was screwed completely into the
sample holder, and the holder, after a series of evacuations and flush-
ings similar to that of the first stage, was sealed off under a few

mm .of argon in a glass tube about 3" in length.
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The sealed-off tube was then fastzned in a special holder and ro-
tated in a vertical plane after being heated to 240 C again for about
two days. The exact times of rotations and heating are listed in the
chapter on results, It was felt that this long period of rotation and
heating ensured the homogeneity of the sample, After the rotation, the
sample was positioned vertically in the oven, and lightly shaken for 5
more minutes. This forced the material down into the cylindrical section
of the sample holder. If any material accidentally remained outside the
cylinder, the resultant magnetization curves proved aberrant and the
sample was then discarded.

In the third stage, the sample was annealed at the appropriate
temperature for at least 15 days. The temperature used will be discuss-
ed in the section on metallurgy. The temperature was lowered from 240 C
to the annealing temperature at no greater than 20 C/hr., in order to
maintain phase equilibrium,

The time of annealing was chosen on an empirical basis, after shor-
ter annealing times produced inadequate samples. Of course, the sample
was undisturbed during the annealing, When complete, the sample was re-
moved from the furnace, the glass envelope broken, and the sample kept
in liquid nitrogen until the measuring apparatus was sufficiently cold
to make certain that the sample was not inadvertently warmed by being
placed in it. The transfer process from oven to nitrogen bath took less

than 20 seconds, The sample was then ready for use,

Metallurgical Considerations

In Fig. 3 we see the phase diagram of the In—Cd system (15), for
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the In-rich portion. Until the present work, almost all efforts dealing
with superconductive aspects of this alloy have concentrated on the bct
phase, below 6 atomic % Cd. However, the fcc phase may be investigated
if sufficient care is taken.

If we have, for example, a 16 at, %Z Cd alloy at T = 125 C, Cd will
tend to precipitate if the temperature is lowered below 97 C. This
will of course change the metallurgical properties of the sample. How-
ever, if the temperature is lowered rapidly below the solvus line, the
initial lattice structure will be retained. As Rhines (16) points out,
the diffusion velocity (and so the rate of precipitation) is halved for
a decrease in temperature of about 50 C, so that the precipitation rate
is about 60 times less at liquid nitrogen temperature (- 196 C) than at
a typical solvus temperature in this diagram,

In conjunction with this last statement, when annealing the alloy
we wish the diffusion rate ( of non-fcc phases into the fcc phase, and
of lattice imperfections into perfect lattices) to be as large as pos-
sible, so we anneal close to the line AB. For convenience, for most al-
loys this was taken as 125 C.

In a related paper, Heumann and Predel (17) found that the unit
cell volume decreased from 104.9 kX3 to 102.7 kX3 linearly, as the con-
centration was increased from O to 15.3 at, % Cd. If we assume that this
also occurs at low temperatures, we have

D = 7.30 + (A/100) (3.1)
where D is the density of the alloy, and A is the atomic percent Cd.
Densities of In and Cd at 0 C are 7.30 and 8,64, respectively. Their

atomic weights are 114,82 and 112.4, respectively. Thus the average at-
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omic weight is
114,82(1 = A) + A(112.4) = 114,82 - 2,4A, (3.2)
Since In and Cd have 3 and 2 electrons/atom, respectively, the
number of pairs/atom is
N = 1,5 - 0.5A. (3.3)
Combining Eqs. (3.1), (3.2), and (3.3), we have

electron pairs _ 6.02 x 1023(7.3 +'A) (1.5 - 0.5A) (3.4)
cc 114.82 - 2.4A .

This quantity will be used in a later section.

Experimental Cryostat

The cryostat used in the experiments 1s depicted in Fig; 2b. This
inner dewar, filled with liquid helium, is suspended in a liquid nitro-
gen bath (not shown) to pre-cool its interior.

The sample is connected by its end plug to a stainless steel
thrust rod T which extends out of the top plate of the cryostat. In op-
eration, the sample is pushed manually by means of the rod from the
upper search coll to the lower one. The search coils were wound commer-
cially and each consists of 8000 turns of #40 wire, They are connect-
ed in series and wound in opposition, to reduce the effect of extern-
al field changes.

The rest of the cryostat is built around this lower part, A fur-
ther consideration is minimizing the helium loss. Thus, the cryostat's
length is such that the top, at room temperature, is a considerable dis-
tance from the helium level. A series of baffles B is used to reduce
radiation inflow. The support rods are made of stainless steel.

A manometer tube M for measurement of temperature is shown in Fig,

2b, as well as the dc electromagnet. Both will be discussed later.
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Because helium gas will, over a period of time, permeate the glass
of the dewar, the jacket was occasionally re-evacuated,

The general principles of cryostat design are described by White
(18).

dc Electromagnet

The position of the dc electromagnet, used to produce a uniform
magnetic field around the sample, is shown in Fig. 2b. It is positioned
so that the center of the search coils is at its center. It is suspend-
ed in the liquid nitrogen, and has a current capacity of at least 14 A.

The electromagnet is powered by a regulated and very stable Hew~-
lett - Packard 6268A dc power supply (with current regulation of 0, 1%)
connected in series to a switching circuit of high-wattage resistors. The
resistors enable the experimenter to reduce the sensitivity and thus to
maximize the selectivity of the voltage and current controls of the pow-
er supply.The resistance of the electromagnet at 77 K is 1.79.

The electromagnet was wound on the Garrett (19) principles; i.e.4
with appropriate correction coils on the ends to make the center field
extremely uniform. The coils were wound with about 20 longitudinal
strips of nylon wire between each copper wire layer (to allow the lig~
uid nitrogen to circulate) and had a length of 9". Other dimensions are
in Fig. 2b. The computed field variation along the center axis is shown
in Fig. 4a., It is constant to 0,1% for a total distance of 3.2,

Using the coil geometry, we find that at the center of the magmnet,

H = 1694 V, (3.5)
where V is the voltage across a precision resistor of resistance = .1044Q,
carrying the magnet current, and H is the magnetic field in Oe. Dr, S. E.

Babb, Jr, measured the resistance,
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The field in the magnet was measured by L. Sisemore and J. Nich-
olson, using a Hall probe. In Fig. 4b the results of their determina-
tion is shown. The Hall probe was calibrated by means of a standard mag-
net, and their results yield

H= (1704.8 £ 9.9) V (3.6)
which makes the calculated value very close to the experimental value.
The error sign in the last equation refers to two standard deviations.
The average of the coefficients of Eqs. (3.5) and (3.6) (1700) was used

in calculations.

Experimental Method

The standard (20) ballistic throw method was the basis of these
experiments., If a body with magnetization M is moved through a constant
magnetic field, the change in flux linkage can be made to produce an emf
in a coil. This emf is proportional to the magnetization of the body.

The coils used are the search colls of Fig. 2b; The motion is produced
by pushing on the thrust rod T. The search coils and electromagnet were
carefully aligned with respect to each other, The signal was sent through
an L& 2285E ballistic galvanometer, with a circuit arranged to produce
the maximum signal with a large degree of damping. The circuit is shown
in Fig. 5a. It was found theoretically and experimentally that the time
T taken to push the sample through the search coils did not affect the
results, as long as T 5 2 sec.

The deflection of the galvanometer in response to the induced emf
was measured on a wall chart, approximately 12 ft. from the instrument,
The nonlinear scale of the chart had a typical scale of 2.5" ~ 1 degree,

so that increments of 0.01 degree could be read.



19

C
LEGEND .
S - Sample SC - High-wattage switching circuit
C - Search coils E - Electromagnet
P - Potentiometer R -~ Precision resistor
G - Galvanometer (wall) v -

Regulated power supply

Fig. 5a. Experimental circuitry to measure magnetization of supercon-
ductors.,
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Fig. 5b. Circuit to measure normal state' resiativity,
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The voltage across the precision resistor was monitored by a pot-
entiometer (L&N K3) and was converted to magnetic field by the previous
relation., We now have a correspondence between magnetic field and the
wall galvanometer deflection when the sample is thrust from one search
coil to another.

The problem of calibration was handled by noting that the sample
is perfectly diamagnetic for - 4mM < Hcl; i.e., = 41M = H over that
range. The slope of the deflection vs. field graph was found using at
least 6 measurements and a least squares fit for each alloy and temper-
ature, and converted to magnetization using H = 1700V. There were only
slight changes in this slope for changes in sample and composition., As
mentioned above, the volume of the sample plays no part in this calcul-~
ation,

The actual experiment begins by cooling the apparatus down by us-
ing liquid nitrogen in the outer dewar. The sample holder is then
screwed on the thrust rod quickly, to prevent it from warming. The.
sample and search coils are then briefly immersed in liquid nditrogen
before being returned to the inner dewar. The entire transfer process
takes less than 40 sec.

Liquid helium is then added to the inner dewar, and pumped down
to the appropriate temperature. The readings are then taken, with a field
being set by adjustment of the power supply and the wall galvanometer
deflection noted., The liquid helium lasted approximately 2 hr. for most
experiments.

The temperature of the sample may be changed in the course of the
experimentation. Due to convection problems in the helium bath, this

is not done by merely changing the pumping rate. Instead, a small heat-
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er below the sample was used to raise the temperature of the bath above
Tc. The temperature is then lowered the appropriate amount. The proced-
ure ensures the removal of any trapped flux.

A small correction to the magnetization results was made. When
an empty sample holder was used, a small but significant increase in
deflection was noted with increasing magnetic field. This effect was
probably due to the earth's magnetic field, slight magnetization of the
stainless steel thrust rod, and other causes, When the effect was first
noted, the equation of the correction was

D = 0,569V + 0.099 (3.7

where D is the deflection in degrees, and V is the voltage across the
precision resistor. Since the effect was found to increase slightly
with time, periodic re-evaluations of the constants in this equation
were undertaken. D was subtracted from the experimental deflection

values., B, Johnston wrote a computer program in FORTRAN which corrected

data for these regidual deflections, converted deflections into magnet-
ization, and computed the GL parameters (Kl, ) and K3), Hc, Hc and

: 1
H .

)

Resistivity
In Eq. (2.10), it is shown that the normal-state resistivity (or
residual resistivity) will play a part in the theory of Type II super-
conductors. Since the resistivity changes very little at low temperat~
ures, the residual resistivity will be taken to mean the resistivity at
4.2 K (the temperature of liquid helium at atmospheric pressure), if the

material concerned is not superconducting at that temperature.
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However, because of the construction of the sample holder it would
have been difficult to measure the resistivity by the standard 4-—probe
method. Furthermore, because of the danger of Cd precipitation if the
sample is warmed up inadvertently, this technique would have been made
more difficult. Due to the sensitive metallurgy of the samples, it was
also decided to determine the resistivity of the actual samples, rather
than that of similar specimens. The limitations imposed by the above
constraints require the resistivity to be determined by an indirect method.
The technique chosen was that of Chambers and Park (21). The resistivity
can be deduced from the change of mutual inductance between two coils
when the sample is introduced. To eliminate end effects, the two coils
consisted of a long primary and a secondary coil about ! the length of
the sample and centered on it. The circuitry is shown in Fig. 5b. It is
essentially a Hartshorn bridge.

The bridge is balanced by adjusting the mutual inductances and
resistances. The sample is then inserted in M and the bridge again bal-
anced, If §M and 6R/w, where w is the angular frequency of the oscillat-
or, are plotted versus the frequency f£f (= w/2r), we obtain, typically,
Fig. 6. Chambers and Park find where the curves intersect that

£, = 0.0803p/a° (3.8)
where fnxis the frequency of intersection in Khz, a is the sample radius
in cm., and p is the resistivity in uf = cm. Isotropic resistivity has
been assumed. We thus have an equation for the resistivity in terms of
measurable quantities.

In Fig. 5b, the proper grounding of the apparatus was very essent-
ial, and this is done by means of a Wagner ground (designed to put the

detector at ground potential).
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Other authors have found the same problem. Two of the resistances
R were commercial non-inductive resistuance boxes, having divisions of
100 mQ. The third was built in the laboratory using short strips of cop-
per wire, and had divisions of about 5 mQ. By using these boxes in par-
allel, changes in resistance of 1 m® could be detected. All values of
resistance and inductance were measured on a General Radio 1650-A Imp-
edance Bridge. The two sets of coils M and M' were given exactly the
same mutual inductance, and were connected oppositely. One coil of each
set was a commercial radio choke; the other half was a 1.40 mH coil
wound so as to minimize the distributed capacitance, which was 0.013 yF.

The variable inductance was a General Radio 107F Variable Induct-
ance whose stator was tapped at 4 intermediate points. These connect-
ions plus the use of a vernier scale allowed changes of M to be read to
0.01 pyH on an instrument whose largest M = 9Q yH. The other mutual ind-
uctances in the circuit could be used if 90 pyH were insufficient to bal-
ance it, The output of the circuit was fed through a transformer to a
Rohde & Schwartz Type UBM Tunable Amplifier.

In Fig. 6, we have a typical set of curves, We find the exact point
of intersection by fitting each curve to a parabola (which it approxim—
ates near fm) by least squares, on a log-log scale.

The method was checked by measuring the resistivity of pure In at
77 K and 293 K. The results were 1.795 and 7.75 ﬁﬂ-cm., respectively.
The values given in Landolt-Bornstein are 1.72 and 8,19, respectively
(34).

Results of the determination of p will be tabulated later.

Demagnetization Ratio
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Tt was pointed out previously that the geometry of the sample
plays a part in determining the relations between 47M, H and B. If the
sample is in the form of an ellipsoid of revolution,

D= (e2 = 1){(1/2e)log {(1 + e)/(1 = e)} - 1}, (3.9)
where D is the demagnetization coefficient, e2 = {1 - (bz/az)}, and a,
b are the semi-major and semi-minor axes, respectively.

The shape of the sample is then characterized by D. For an infin-
ite cylinder parallel to H, D = 0, For the present geometry (see Fig. 2a),
D = 0.02. While the present geometry is not a perfect ellipsoid, it is
sufficiently close for this approximation to hold.

Zoller and Dillinger (22) have shown that

H'
c

{1 - (/4m) M
1 c

1
(3.10)

HL H
2 %
where the primed quantities refer to the values of Hc and HC corrected
1 2
for the effect of D # 0. The relations will be used in following work.

Temperature Measurement and Control

The temperature of the helium bath was measured by means of a 2-
way manometer. The tube M leading to the manometer is shown in Fig, 2b.
One section of the manometer contained mercury, and the other butyl
phthalate, a liquid which has a vapor pressure of less than 10 microns
of Hg at room temperature., Since its demsity is 0.077 that of Hg, its
use allows us to expand the temperature scale by a factor of 13. A four-
way stopcock was used in the two-way manometer.

One end of the manometer was the above-mentioned tube in the in-

ner dewar; the other end was pumped on by a Cenco vacuum pump, which
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maintained a vacuum of a few microns. Thus the manometer was of the dif-
ferential type. The difference in levels was read by a cathetometer to
an accuracy of 0.05 mm,

The temperature of the helium bath (and thus the sample) was con-
trolled by lowering the pressure above the bath by a large-capacity (110
cfm) Kinney vacuum pump. A means of controlling the pumping speed (and
thus the temperature) was furnished by a Manostat Corp. No. 8 manostat,
using the Cartesian diver principle. Pressure variations can easily be
kept within + 1 mm. oil during a run. This corresponds to a maximum tem-
perature variation of + 0.012 K at T = 1.1 K, In most cases, this range
was held to + 0.004 X or less,

The correspondence between pressure and temperature was made by
means of the 1958 Helium Temperature Scale (23). The radius of the man-
ometer tube was chosen sufficiently large to make the thermomolecular
effect small. The greatest error due to this effect was 7 mK at the low-
est temperature achieved (= 1.1 K) and decreased rapidly to zero as the
temperature was raised,

The critical temperature was measured by applying a small field
to. the sample, decreasing the temperature very slowly, and noting the
changes in galvanometer deflection as the sample is moved between the
two coils, A typical example is shown in Fig. 7. The transition width
was taken to be 80% of the change in deflection, as illustrated, and
the critical temperature was taken as the midpoint of the transition
width,

However, corrections must be made to this value to allow for the

small magnetic field, which depresses Tc. If we assume that dilute al-
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loys of In have the same values of (dH/dT)T - as pure In, we can use

T
the value 141 G/deg. K found by Shaw et al (24)? Using Eq. (3.5) and
this value,we have

1 mV «— 12,0 mK (3.11)
Appropriate corrections (of the order of 18 mK) were made in all deter-
minations of the critical temperature,

To check the absolute accuracy of the temperature measurement sys-
tem, annealed samples of pure In were tested at 0.8 and 1.5 mV. Comp-
ared to Shaw's Tc = 3.4075 K, the temperatures were only 1l K low. In
addition to this check, the levels of the oil and mercury sections were

tested frequently with vacuum on both ends to ensure that the levels

were the same.

Jarring of the Samp]Te

One problem which occurs in the magmetization data is that of hys-
teresis. While a theoretical basis for treating this will be discussed
later, the situation can be somewhat alleviated by jarring the thrust
rod and thus the sample before each measurement. Since the hysteresis
is greatest around H= Hcl, the greatest improvement in data is found in
this region. Dubeck et al (32) noted this effect in the Pb-In system
recently,

In practice, tapping and measurement alternate at a given field
until the deflection has decreased to a constant value., A‘typical
case is shown in Fig. 8. We see that the deflection (and the magnetiz-
ation) can be decreased up to 30% in some cases.

The physical basis for this effect is that the flux lines are pin-

ned at certain extended defects like dislocations, causing ﬁysteresis.
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At a comparatively low magnetic fleld, the magnetic driving force is
not sufficient to free them from their pins. The mechanical force of
the jarring (or the thermal fluctuations caused thereby) is apparently
sufficient to free many of the fluxoids, though not all, It might be
useful in further work to study the correlation between the elimination
of hysteresis and the frequency and amplitude of low-frequency vibrat-
ions applied to superconductors. This would give us more insight into
the physical basis of hysteresis.

It is of interest to note that Goedemoed et al (33) achieved the

same result by "wiggling" the magnetic field and the temperature.



CHAPTER IV
PRELIMINARY EXPERIMENTAL WORK

Prior to discussing the results of In-Cd alloys, we shall discuss
some preliminary work which was done on the Sn-Ga and In-Ga systems.
These systems were chosen for a number of reasons.

Firstly, Sn and In (both of which are superconductors) form solid
solutions with a considerable number of other elements. The elements
and the maximum solubility in atomic % are for Sm: Au, 0.2; Bi, 13.1;
¢cd, 1l.1; Hg, 0.5; Im, 12.5; Pb, 1.45; Sb, 10.3; Te, 0.1; T1, 0.35; Zn,
2, For In: Bi, 12,4; cd, 6; Ga, 18,3; Hg, 12; Li, 93 Pb, 12; Sn, 26.4;
Tl, 23; Zn, 2. This data is taken from Hansen and Anderko (25). Since
the solid solutions which are formed in these cases have a body-cent-
ered tetragonal crystal structure, no effort need be expended in deter-
mining this structure,

Secondly, a number of investigators have found that certain of
these alloys form Type II superconductors, in contrast to the Type I
behavior of pure Sn and In (26)., It should be noted that while consid-
erable work has been done on the variation of Tc with concentration for
these solutions, less has been done on magnetic aspects.

While Hansen and Anderko showed no solubility of Ga in Sn, Pre-~

del (27) indicated a maximum solubility of 7.1 at. %. Their phase diagram

31
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is shown in Fig., 9a. A number of samples were made from Ga and Sn
supplied from Electronic Space Products Inc.; both metals were claimed
to be 99.999% pure.

Because no samples were prepared near the region of possible Ga
precipitation ( > 7 at. %), no annealing was done at first. A further
justification for this was that the samples were relatively non-hyst-
eretic, i.e., the trapped flux ratio was 20% or less. This ratio is
the proportion of magnetization at H = 0 on the return curve to the
maximum magnetization, at H = Hcl. When annealing near the solidus tem—
perature was done, the trapped flux decreased by about half, but the
general shape of the forward magnetization curve remained the same.

These curves were of the Type I form, i.e., approximately triang-
ular. The magnetization had a slope of about 30 near H = Hc’ indicat-
ing almost complete Type I behavior.

The reason‘why some alloys show Type II superconductivity, and
others Type I 1s still not known (14). In general, k will increase
with residual resistivity (see Eq. (2.9)). If « > 0.707, the supercon-
ductor is Type II. However, the residual resistivity has not been
measured for these particular alloys.

In Type I superconductors we have the relation

o =1 - (1)’ (4.1)

If we fit this to the present data, we can find the critical field
at T=0 (Ho) and critical temperature Tc. Since only two sets of data
(at concentrations of 2.1 and 5.7 at. % Ga) were obtained, the results
are not reproduced here. However, in general the variation of Tc agrees

with the data of Knapp and Merriam (28), i.e., a small increase of T
c
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of a few tenths of a degree from that of pure Sn.

Since Type II superconductivity is found in 5 In alloys as com-
pared to 3 Sn alloys, it was then decided to examine it in the In~Ga
system. This system had not been checked experimentally prior to this
work. The phase diagram in Hansen and Anderko (25) is shown in Fig. 9b.
However, subsequently Heubner and Wincierz (29) determined a much smal-
ler solid solubility in the In-rich end (about 1 at. % Ga at elevated
temperatures, and about 2.5 at. % Ga at room temperature) by different-
ial thermoanalysis. Since the samples were chosen on the basis of the
Hansen data, they all have a Ga concentration of greater than 5 at. %.

In spite of this, all samples up to about 30 at. 7 Ga were Type
I superconductors, as in the Ga-Sn system., Using the above procedures,
we can find H0 and Tc. Results are shown in Fig. 10. As before, the
samples were not annealed for long times.

Consider first the temperature data. For almost all solvents,
Tc drops in a very dilute solid solution ( < 1 at. %). This is due to
the removal of energy gap anisotropy by alloying. However, little sys-
tematic analysis has been done for greater concentrations. For example,
Fischer (26) found a slight decrease in Tc in the In-T1 system beyond
the dilute range (in agreement with Merriam et al (35)) but a strong
increase with the addition of Bi, Sn and Pb to In. In the In-Ga system,
we see little variation of '1‘c with concentration of Ga, If the Ga had
not really dissolved in In, this would provide an explanation, as we
would be measuring the TC of In.

Presumably some Ga is partially segregated in the alloys at the

concentrations used.
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Fig. 10. Critical Fields and Temperatures in In-Ga system
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When concentrations of greater than 30 at, % Ga were used, the
magnetization curves developed characteristics similar to those of Type
IT superconductors. However, the curves often had two maxima, indicat-
ing that the samples may have consisted of more than one phase. The
final slopes of the curves were approximately 2, indicating at least
partial Type II behavior. These broadened flux transitions were also
noted by Chiou et al (31) in other In solid solutions. Because of the
high trapped flux ratios found, work on these materials was not con—

tinued.




CHAPTER V
MAGNETIC HYSTERESIS IN TYPE II SUPERCONDUCTORS

The inter-relationships between Hcl, ch, Hc and the GL paramet-—
ers Kk are based on the assumption that the magnetization curve is rever-
sible, i.e., the magnetization curve of a supereonducting specimen is
the same for external field H increasing or decreasing. Experimentally,
what is generally found is illustrated in Fig. 1lla, The region of great-
est hysteresis is near H = Hcl. The difference between the forward and
reverse curves gradually diminishes as H - HCZ, where the magnetization
for either the forward or reverse direction vanishes. However, the same
phenomenon is not generally observed as H -+ 0. A remanent positive mag-
netization, or "trapped flux", is generally noted.

The preceding description of the hysteretic behavior of Type IIL
superconductors has been purposefully general, as the exact shape of the
curves will always be dependent on the composition of the superconductor,
its mechanical and metallurgical history (in terms of degree of cold
working, precipitates, dislocations, etc.), temperature and other variab-
les. The first problem which now confronts us is to determine whether a
reversible curve exists for each pair of irreversible curves —-- a revers—
ible curve which will give values of Hc , H and Hc which will fit the

c
1 2
theory better than these quantities guessed from the irreversible forward

37
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curve alone. The second problem is that of finding this reversible curve.

Dealing with the first problem, no theoretical basis presently ex-
ists to answer this question. However, a number of experimental studies
have been made on this subject, the chief of which is Goedmoed's work on
bundles of impure niobium wires, In this work, the field and/or the tem—
perature was oscillated with an amplitude of about 100 Oe and/or 0.25 K,
with the resultant magnetization falling between the forward and rev-
erse magnetization curves. The authors suppose that this reversible curve
is one of thermodynamic equilibrium (i.e., the true reversible curve)
computed by Abrikosov ( 4). While there is no theoretical proof that
these data are indeed the true reversible curve, there are a number of
experimental considerations which lead to the conclusion that the curve
found by Goedemoed et al (33) is a close approximation to it. We shall
discuss their work in greater detail when a comparison with experiment
of a hysteresis theory formulated in the present work is made.

The second problem, that of actually determining the reversible
curve, is more difficult. Because of the physical nature of the flux-
oid lattice in a Type II superconductor, drastic assumptions must be made
in order to put the resulting equations in a tractable form. Abrikos-
ov's (q.v.) classic paper derived the general form of the reversible
curve for values of the Ginzburg-Landau parameter k>>1. Furthermore,
his work is based on the Ginsburg-Landau equations, which are, strictly
speaking, defined only for temperatures close to Tc. However, in spite
of these limitations we can compare the hysteresis theory in the pre-
sent work with " Abrikosov's theory. For large values of k, the der-

ived curves are similar to those of Abrikosov.
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It is useful to make a critical evaluation of the theories of
hysteresis in Type II superconductors which have been previously published.
This is done in the Appendix. The correlation of these theories and the
present one with Abrikosov's reversible curves will now be discussed.
A model for the reversible curve must be combined with a model for the
fluxoid~defect interaction in order to produce a set of hysteretic curves.

Presenting the Abrikosov reversible curves involves computation-
al difficulties. However, Koppe and Willebrand (KW) (38) devised an ap-
proximation to the Abrikosov theory by using the GL equations and bound-
ary conditions on the unit "cell" of a fluxoid (the derivatives of the
order parameter and magnetic field vanish). Reversible magnetization
curves were calculated using those conditions for different values of «
and are shown in Fig. 12, However, a model of the fluxoid-defect inter-
action was not presented, so that hysteretic magnetiéation curves cannot
be computed.

The KW curves appear to agree with the Abrikosov theory for the
three regions of the latter's reversible magnetization curve for which

exact solutions can be found (36): H = Hc s H << H << Hc ,and H=H .

1 2 2
These regions will now be discussed in detail,
Applied Field H near Hc
2
Here 4mM = (i - H_)/1.16(25 - 1) (5.1)
2
in the Abrikosov theory. The magnetization is thus linear near H = Hc .
2

Due to the linearity of the ad hoc reversible curves chosen in the
Campbell (37) and Silcox (39) models (discussed in the Appendix), both

models fulfill this criterion.
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The Intermediate Region

Here HC << H << Hc . This definition of the intermediate region
1 2
is strictly applicable only to k 3z 10, For this region
4™ = log (comnst./vB) (5.2)

Since in the intermediate region H >> 47M,

4™

1
K, —(K1/2)log H (5.3)

K, log (const.//H + &4mM) = Kllog (const./vH)

where the K's are constants. The magnetization plotted versus the applied
field on semi-logarithmic paper should produce a straight line,

Curves of the intermediate region for the Silcox and Campbell
models are shown in Fig. 13, The parameters of each model were adjusted
to produce k¥ = 10, k¥ was obtained from the equation

ch = V2cH_  (5.4)
and Hc was obtained from the geometry of the reversible magnetization
curves. A was arbitrarily chosen as 0.5 for the Campbell model; any
other value would produce similar curves. The curves are normalized
with respect to Hcl, as shown. The reversible curves of the two models
do not fall on a straight line on semi-logarithmic paper due to their
linearity from Hcl <H < ch. The two models do not fulfill this criter-
ion in the intermediate range, whereas the present theory obeys Eq. (5.3)
over an appreciable range.

Applied Field H near Hc
1

Using Goodman's (40) expression for H in this region (derived

from Abrikosov's exact expression),

H-H, = (3/2 ? H | (0, /273) % 4 V(2 3%
' ) FramE ) P \gmrE (5.5)
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The thermodynamic critical field Hc must still be specified. This
may be done exactly by integrating Abrikosov's equations, which can only
be done numerically. However, if we use the Harden and Arp (109) formula
K = 0.717 (Hc/Hcl)l'GS with the condition k= 10, B, = 0.17 H is ob-
tained. Substituting in Eq. (5.5),

H - 1= 2.46(4M+ H) % exp ~{6.05/ (4 + H)}Z (5.6)
where H and 4mM have been normalized with respect to Hcl. The right
hand side of Goodman's equation 4 (40) lacks a factor w/2, and this
has been supplied in the above Eq. (5.5).

Eq. (5.6) has been plotted in Fig. l4. It possesses a vertical

tangent at H = Hc » and decreases rapidly as H increases. The Silcox mod-
1

el is not at all similar to this curve. It decreases with a slope of
0.005 from its initial point., While the Campbell model bears some sim~
ilarity, if another Qalue of A had been chosen the inconsistencies with
the Abrikosov theory might have been more apparent. Thus the Campbell
model will not fit the Abrikosov curve closely unless the value of A is
known in advance.

The Koppe curve of Fig. 12 is similar to the Abrikosov curve at
H = Hcl, as expected.

In conclusion, we see that while the two models discussed meet
the Abrikosov criterion for H = Hc » they do not meet it in the other

2
two regions of interest.

Present Theory

A theory has been devised which produces better agreement with ex—
perimental and theoretical work than those previously mentioned. In de-

vising this theory, we needed (1) an irreversible magnetization curve
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fitting data of both hard and Type IT superconductors; (2) a revers-
ible magnetization curve which would (a) fit the three criteria mentioned
above, and (b) be derivable from the irreversible curve; (3) a theory
simple enough to be put into closed form.

The Silcox and Rollins approach (39) was used, with a major
modification, illustrated in Fig. 15.

Melville and Taylor (41) calculated the "normalized' force
-(a/F) (dF/da) between two fluxoids as a function of distance a/AL (where
AL is the London penetration depth) for both the Silcox and Rollins
and de Gennes (42) models. The Silcox and Rollins model deduces a force
relationship F « a_3; the de Gennes model is F'« Kl(a), where Kl is a
modified Bessel function of the first kind, The approximate range of
validity of each model is indicated by the solid lines, The distance
between fluxoids is a.

In a real superconductor, a form of the fluxoid-fluxoid inter-
action is needed which is valid over larger distances than the Silcox
and Rollins model, because contributions from next- and more distant
neighbors may be important in certain regions of the magnetization
curve, especially H = ch. The Silcox and Rollins model avoids this
problem by considering only nearest-neighbor interactions.

Given Fig. 15, a simple way of combining the two models would
be to take a rough average by drawing a straight line somewhere above
3 on the ordinate., Since fluxoids are presumably similar in all mater—
ials, the exact distance of this line above ~(a/F) (dF/da) = 3 will be
governed by the type of superconductor under consideration.

Let us take -(a/F)(dF/da) = K, where K > 3. We shall see later

that theoretical considerations prevent the case K < 3. Integrating,
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F=cak (5.7)
where ¢ is a constant. Differentiating Eq. (5.7) to put it into the

form of Eq. (A.49)(of the Appendix),

dF _ K

If K+ 1= 2n', we have n' = 2 in the Silcox model, and n' > 2 in the
present model. The present model is developed along the lines of the Sil-
cox model (outlined in the Appendix), except for the substitution n' -
n. In Eq. (A.50) the number of interacting fluxoids should probably be
modified to > 6 in the present theory (since we are attempting to take
account of larger numbers of interacting fluxoids), but this quantity

in any case will be merged into a variable parameter, Substituting

Eq. (5.8) into Eq. (A.51la),

\ ]
da/dx = cla2n +1
-2n'_
and a = cyX + Cy»

where the c's are constants, and x is the radial distance from the center

of the superconducting cylinder. Using Eqs. (A.48) and (A.47),

n'

B = c X + ¢ (5.8a)

5
A reversible magnetization curve is now chosen. It can be selected so
that it meets the three criteria noted above. Its choice is an ad hoc

assumption, of the same type as those of previous theories, and is in~

dependent of the procedure used to find Eq. (5.8a). The choice is

®
H -pg (Y@ -1
B=H, ©1 (5.9)
2 Hc - Hc
2 1
H-H
The Silcox reversible curve was postulated to be B =Hc . €1 s 1e€ey

the two models are equivalent if n' = 2, ) ¢
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Before proceeding to discuss pinning effects, let us analyze the

theory in light of the three criteria irentioned above.

H near H
)
Using Eqs. (A.1l) and (5.9), dropping primes, and letting Hc =p
2
and Hc = 1 for simplicity,
! 1/(n-1)
4nM = p{(H - 1)/(p - 1)} - H (5.10)
As H » p, write (H- 1)/(p = 1) = 1 - x, where x is small, Then
4mM = p{l - X + 1 (1 _ 2 _
n_l n_l [n_l l}(x /2)+oooo-} H
=(p-W(1l-{p/a-DE-1DH
- - 2
tr2-w@ oW, (5.11)

2(n - 1)2(p - 1)?
For 4mM to be linear in p - H, the quadratic term in p - H (as
well as higher order terms) must be negligible with respect to the lin-

ear term. The ratio of the quadratic to the linear term is

p(2 - n)(p - H)
2 - D@ - D{n-DDE-1) - p} (5.11a)

Let us investigate how close to ch H has to be for the quadratic
term to be negligible. We can define linearity as occurring if the ratio
(Eq. 5.11a)) < 0.1. While it is difficult to formulate a general rule
linking n, p, and H, let us choose p = 3 for example. Then for n = 2.1,
2.2, and 2.3, the values of H at which linearity begins is 1.83, 2.52,
and 2,77, respectively. To use a larger value of p, we may take Goede-
moed's (33) data, for which is found n = 2.08 and p = 7.6. Linearity
takes place at H > 6.5.

In general, there exist well-defined regions of linearity at

H =Hc o The first criterion is then satisfied.
2
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HCI << H << HCZ
While we cannot prove in general that the magnetization obeys
Eq. (5.3), a typical result is shown in Fig. 13. The parameters of the
reversible curve have been adjusted to yield k = 10, The area under the
magnetization curve was found by using Eqs. (A.la) and (5.9), yielding
|Al= =(p2/2) + {(n = 1)/nlp(p - 1), | (5.12)
after taking into account the area of =% for 0 < H < Hcl. The value of
k was then determined from Eq. (5.4). We see that the slope is linear
over 607 of the magnetization curve, which puts the present theory in

agreement with Abrikosov's theory for this region.

Calculations using the present theory for this region are shown
in Fig. 14 with the same parameters as in Fig. 13. We do not have agree-
ment with the vertical tangent at H = Hcl, and the slope is considerab-
ly smaller than that of the Abrikosov theory. However, due to the slope
of the present theory being 12 and 24 times as great as the Silcox and
Campbell theories in this region, respectively, we may say that at least it
is in no greater disagreement with Abrikosov's work than the other two.
We see in Fig. 12 we get reasonably good agreement with Koppe's results
for various values of k, i.e., the comparatively small initial slope of
the present theory tends to "catch up" with the Abrikosov-Koppe curves
as H is increased.

Now let us take account of the pinning effects in the theory.

The force Fp between a fluxoid and a pore pinning center varies as (45)

Ff « (Hc1¢o/4ﬂ)log(a/50) (5.13)
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where is the radius of the core of the fluxoid. The concept of a

%0

pore, a hollow sphere, is used because of the difficulty in discussing
extended imperfections like dislocation networks.
Since the logarithm term in Eq. (5.13) varies slowly and is of

the order of 1, Silcox writes the last equation as Fp = Hc ¢0/4n. We
1
shall do the same, because of the difficulty in integrating da .
azn+1log(a/£o)

Furthermore, other assumptions and approximations which have to be made

about the pinning tend to render negligible the error in setting
log (a/go) =~ 1. We assume, as Silcox does, a density of pinning strength
p of the form np = P', where P' is a constant.

When x = R, the radius of the superconducting cylinder, B is given

by Eq. (5.9). Substituting in Eq. (5.8a), and combining constants into B,

B = (p™M@E- 1/ - DIED g - it/ (5. 14)

Substituting this in Eq. (A.1l) and noting that B = 0 when

Y @-1) _ gpl/n

Q zp{(H - 1)/(p - 1)} R (5.15)

4nM = -H + {20Q°TL/(BR)2(n + 1) }BR - (aQ®/(2n + 1))},

0 <q< /" (5.16)
4= -H + _ 20 (@ Ler2n + 1) Q") + n(@® - R PPV /Ry,
(8R) 2(n+1) (2n+1)
grl/™ <Q=<p (5.17)

In the reverse direction, the pinning force constant BR -+ -8R,

yielding

M= ~H + 2n {n(Qn+BR)(2n+l)/n - " Lgr(2nt]) + nQ®}},

(BR) 2(n+1) (2n+1)

0<Q=<p (5.18)

Graphs of these last equations for typical values of RR and n are
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presented in Fig. 16. We will see that the plots of B and 47M are fairly
similar to those of Campbell and Silcox; B decreases in a roughly para-
bolic manner, and 4nM shows resemblance to experimental data. The prime
difference lies in the shape of the reversible magnetization curve,

We .are now in a position to compare all three models to an inter-
esting set of experimental data compiled by Goedemoed (33). The magnet-—
ization curves, presented in Figs. 17 and 18, were obtained from bund-
les of impure Nb wire. The experimental aspects were discussed above,
The GL parameter Ky (computed from Eq. (5.4)) is 2.37 (1.83) for the
reversible (irreversible) curve; Kz(computed from Eq. (5.1)) is 2.43
(1.99) for the reversible (irreversible) curve.

In order to make the comparisons physically reasonable and not
merely an exercise in curve fitting, we must impose some constraints.
The major constraint imposed was that the slope of the reversible mag—
netization curve for each model be the same as that of the experiment-

al data at H = Hc . To a good approximation, this slope can be found by
2

taking the average of the forward and reverse irreversible slopes,

which are seldom very different. Thus the reversible slope at H = Hc2

is not needed for this determination. Goedemoed's experimental value of
ch = 2500 was taken as fixed in all calculations. Although these are

not the only constraints which might be taken, they are physically reason-
able. In general, we do not know the reversible curve for a given pair of
irreversible curves, Our objective in comparing the theories is to vary
their parameters to produce the best least-squares fit with the experim—
ental irreversible curves. Theoretical reversible curves (a function of

these parameters) will then be calculated and compared to the experimen-

tal reversible curve. As mentioned above, Hc and dM/dH at H ~+ Hc are
2 2
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fixed.

In all models, the interval ch - Hcl was divided into 27 points.
The value of the parameters in each theory was found by minimizing the
squares of the deviations of the theoretical points (both forward and
reverse) from the 54 experimental points. For purposes of this compu-
tation, the quantity Hcl was also treated as a variable parameter.

Results are shown in Fig. 17 and in Table 1, Because of the fixed
quantities, the Silcox model yields Hcl = 180 Oe, considerably differ-
ent from the experimental value of 420 Oe. The deviations from the ir-
reversible curves are also large, as seen in Fig. 18; the theoretical
maximum of magnetization is only about 75% of the experimental value.

In the Campbell model, we can vary Hc1 as well as A and oR to pro-
duce the minimum deviation., However, the results are almost exactly the
same as in the Silcox model. We have Hcl = 210 Oe, which is 507 of the
experimental value. The theoretical irreversible curves follow the Sil-
cox model closely, and produce a least-squares deviation similar to it.

The present theory yields Hcl = 330 Oe, considerably closer to the
experimental value, In addition, the least squares deviation is an or-
der of magnitude smaller than those of the other two theories, indicat—-
ing much greater agreement with experimental data. Also, the values of
Hc in both the reversible and irreversible computation is closer to the
experimental data than the other two theories. Furthermore, the value
of the magnetization in the present theory when H = ch is smallest. All
three theories have a finite magnetization at this point, contrary to
experiment.,

We may reconsider the magnetization curves from a slightly dif-

ferent viewpoint. Suppose the value of Hc is known (420 Oe) and fixed.
1
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TABLE 1
COMPARISON OF HYSTERESIS MODELS WITH EXPERIMENTAL DATA. Hc AND
(daM/dH) AT H-+H FIXED
rev. ¢y
Experimental Campbell Silcox Present
Model Model Theory
Parameters - A=0.14 BR = 12,1 BR = 3.8
aR = 8,7 n=2,08
Sum of Squares of
Deviations (10% G2) - 15.9 15.4 1.43
H, (Reversible) (Oe) 420 210 180 330
1
Hc (Reversible) (Oe) 745 680 675 778
Hc(Irreversible)(Oe) 968 940 935 977
-4 at H=H
(Irreversible) “2 (G) 0 30 28 20
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Then we may add this {ixed point to the previous work and recompute the
irreversible curves by the least squares method. The results are shown
in Fig. 18 and Table 2.

Since the Silcox model will yield Hcl = 180 Oe with the present
data, its curves were not recomputed. However, the Campbell and present
theory had the value Hc] = 420 Oe substituted along with the previous
fixed quantities., In Fig. 18, the reverse curve of the Campbell model
lies entirely below the abscissa and is not shown. For clarity, neither
reversible curve is shown,

As before, the present theory produces irreversible curves close
to the data. We see from Table 2 that the sum of the deviations is about
.15 that of the Campbell model. The value of Hc (irreversible) is closer
to experiment, and the "residual" magnetization at H = ch is fairly
small.,

The results of these computations indicate that the present theory
of hysteresis apparently can be fitted to experimental data to a good
degree.

A question may arise at this point concerning the sensitivity of
the present theory to the value of the pinning parameter BR. Any theory
whose results change drastically with a parameter change tends to be sus~-
pect. As Table 3 bears out, this is not the case in the present theory.

One objection which might be raised against the present theory is
its increased complexity. However, i1f we return to first principles, as
Koppe (38) did, we find even greater complexity in the calculation of
the reversible curve. Thus in order to bring about agreement with experi-

mental data we must make some physical assumptions, which have been done.

Because of this increased complexity, it may appear, at first, more
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TABLE 2
COMPARISON OF HYSTERESIS MODELS WITH EXPERIMENTAL DATA. Hc s Hc AND
1 2

(dM/dH) ATH->H FIXED

' rev. cy

Experimental Campbell Present

Data Model ' Theory
Parameters - A= 0,62 n= 2,13

aR = 2,6 BR = 2.4

Hc(Irreversible) (Oe) 968 1040 1015
Sum of Squares of
Deviations (10% G2) - 34.6 4,8
- 4™ at H=H
(Irreversible) ) (G) 0 80 20

TABLE 3

VARIATION OF SUM OF LEAST SQUARES DEVIATIONS WITH PARAMETER SR IN
PRESENT THEORY

Sum of Least Squares Deviations

(Arbitrary Units) BR
0.1456 3.80
. 1451 3.82
. 1443 3.84
.1431 3.86

. 1437 3.88
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difficult to correlate theory with experiment. However, the addition of
simple physical rules allows = calculation of the relevant parameters
easily.

Let us take the slope s of the reversible magnetization curve near
HC to be approximately midway between those of the two irreversible

2
curves. Differentiating Eq. (5.10),

s= (/- D@ - DHE- D/ - Dy ED/ @D}
(5.19)
As deduced from the discussion following Eq. (5.1la), if H 2 0.9p the
slope of the magnetization will be close to linear. If we set H = 0.9p
in the above equation, we obtain a relationship between s (experiment-

ally derivable), p and n, shown in Fig. 19. We thus have a relationship

between p and n.

To obtain BR, we see from Eq. (5.18) that on the reverse magnet-

ization curve,

4TrMreverse = {2n2/(n + 1)(2n + 1)}(BR)1/n -1

when H = Hcl, due to the fact that Q = 0 at that point., We can use this
equation to find BR, assuming that n has been found. The information is
shown in Fig., 20. The magnetization is not very sensitive to n, and BR
can be easily estimated to within about 10%, sufficient for most pur-
poses.,

While it would be useful to compare proposed internal field dist-
ributions with theory, comparatively little has been published on this
subject to date. de Botton and Merenda (43) showed these distributions
for Nb-Zr alloys; they were fairly similar to those in Figs. A.5, A.6,

and 16, However, only a limited amount of data was shown and no extensive

correlation of theory with experiment is possible. Cline et al (44) also
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Presented some data on Nb samples.

The following problems still address themselves to the present
theory: (1) The region below H = Hcl on the reverse curve must be des-
cribed. This may be done in conjunction with the experimental data.

(2) The parameter n should be characterized in terms of microscopic
quantities. We may obtain n in terms of the GL parameter x and HCZ/Hc1
(=p) simply. We take advantage of the fact that Eqs. (5.1) and (5.19)
are applicable as H - ch. For simplicity, let H=p (i.e., H = ch)
in Eq. (5.19). This will change the value of s, the slope, only slight-

ly. If we differentiate Eq. (5.1) with respect to H and equate the

slopes,
1 - 1 __1
(n=1) (p-1) 171622 - 1)
and 1 _ 2
w7 = {(HCZ/HCI) - 131 - {1/1,16(2«" - 1)1}

The determination of k in terms of microscopic metallurgical
quantities has been achieved only to a limited extent., The problem for

n should prove equally difficult,

Summa;z

We have reviewed the most promising extant theories of hysteret-
ic magnetization curves in the light of experimental data. A new theory

has been presented which agrees closely with the data,



CHAPTER VI
RESULTS AND DISCUSSION: PRIMARY SUPERCONDUCTING PROPERTIES

In order to discuss the results in a meaningful manner, we shall
group the experimental data into sections. Livingston and Schadler (14)
grouped the properties of superconductors into 3 sections: primary, sec~
ondary, and tertiary. Primary properties were supposedly structure-in-
sensitive, like Tc and Ho' These are related to the Debye temperature OD
(through Eq. (2.2) and the relation th/ZW = kBD), Y, and the electron-
electron interaction parameter V. However, as has been noted, the hys-
teretic behavior of the sample will govern the value of Ho, since the
apparent value of Ho must be adjusted for hysteretic effects.

Livingston and Schadler placed hysteretic effects in the tertiary
category, as being sensitive to inhomogeneities. These will also alter
values of Hcl, which along with ch has been placed in the secondary cat-
egory as showing sensitivity to the electron mean free path 2.

To avoid, in this chapter, the problems of this categorization,
we shall discuss first those properties which are non-hysteretic, like
Tc and Py the residual resistivity. We shall then take account of the
hysteresis in finding Ho' In the next chapter, we shall consider what
Livingston and Schadler take to be the secondary superconducting proper-~

ties.

64
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Fermi Surface and Metallurgical Effects

Prior to discussing the actual experimental results, consider some
aspects of the physics of these alloys as determined by other investig-
ators. Although the Fermi surface for In approximates a sphere, it is
close to the Brillouin zone faces in certain directions, When electrons
are added (or subtracted, for Cd alloys), the result is usually changes
in the degree of contact or overlapping with these zone boundaries.

It has been shown (59) that the effects of Fermi surface-Brillouin zone in-

teractions can bring about changes in the lattice parameters and lattice
structure. The effect has been studied exhaustively in the dilute In-Cd
system (67), but only up to the tetragonal-cubic transformation, i.e.,
about 5 at. 7% Cd. The Fermi surface of In has not been explored for high-
er concentrations of Cd, the concentrations in which we are interested.

Higgins and Kaehn (60) state that pure In is intermediate between
the weak~-coupling superconductors, for which the BCS model is used, and
the strong-coupling superconductors (like Pb and Hg), for which the theory
breaks down. The effect of this assertion will be seen in later discus-
sion of data.

While no microscopic examination of the alloys was done, the small
segregation coefficient of In alloys guarantees their uniformity when

they solidify (66) in the single phase regions.

Debye Temperature eD

Because the interaction responsible for superconductivity is el-
ectron—-phonon, the Debye temperature GD enters into calculations through
an interaction cut-off at an average phonon energy hmD/Zw = keD (see

Eq. (2.2)).
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Phillips et al (61) found GD =(110.1 - 2/at. % Cd) K for up to 5
at, Z Cd., Their value for pure In is in agreement with the accepted value
of 111.3 K. However, this work does not cover the present region of
interest (> 5 at. Z Cd). The rate of change of the Debye temperature with
concentration may be estimated by using the Lindemann melting rule (62).

This rule is based on the calculation of the rms displacement of
each atom from its equilibrium site as a function of eD and as a frac~
tion of the radius cell. A solid will melt when this fraction attains a
standard value. The Debye temperature may thus be written as a function
of melting temperature and atomic radius, and is
Y5 W—5/6 D1/3

eD * Tm ’

where Tm is the (solidus) melting temperature, W is the mean atomic

6.1)

weight, and D is the density.

If we use the concentration~solidus temperature gradient from
Fig. 3, and Eqs. (3.1) and (3.2),

o, = 111(1 - 1.24 x 107 4),
where the proportionality constant has been chosen to agree with the
correct value of pure In. This constant will change little with phase
(119). Variable A is the atomic percent Cd. This result indicates that
(deD/dA) = 0,0014, in contrast with the wvalue of 0.02 found by Phillips
et al, Since we do not have data on our region of interest, we shall
compromise the difference by writing
BD = 110 - 1/at. % cd, 0 <Ac<0.16 (6.2)

In any case, since the value of 6_ enters logarithmically into

D
finding N(0)V in Eq. (2.2), a small error in its estimation should be

negligible,
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Residual Resistivity

The residual resistivity P, aS found by the inductance method is
shown in Fig. 21 and tabulated in Table 4. In the former are shown val-
ues found by Fischer (26). Although the latter's data yields resistiv-
ities somewhat higher, this may be due to the fact that apparently a 4-
point resistive technique was used and, as has been pointed out, induct-
ive superconductivity measurements are often more reliable (63). Fur-
thermore the samples in Fischer's work were agitated for only a few min-
utes, with the resultant possibility of inhomogeneities. This might ac-
count for the higher resistivities found. The typical magnetization
curves shown in Fischer's article indicate a higher hysteresis than in
the present work, and thus greater inhomogeneity.

The resistivity at 77 K was also measured. In general, the results
follow le Chatelier's rule: the resistivity varies linearly with con-
centration in a solid solution (64). It may also be noted that the res-
istivity drops sharply in the 15.95 at. % Cd. samples; this is most like-
1y due to more than one component being present in the alloy, as this

composition closely approaches the solvus line (see Fig. 3).

The electronic mean free_path % can be found from the resistivity.
For any material, the term pnz is a constant independent of tempera-
ture, for low temperatures (65). Since this quantity has not been det-
ermined for our alloys, we use that of pure In. pnl can be measured by
the anomalous skin effect, However, the results in the literature differ
with each other by a factor of up to 2., Dheer (65) found that

(18.0 + 1.1) x 1010 ¢ o 2. Thus

10 9_1 cm_2 P, (6.3)

4+

1/pn2

1/2

+

(18,0 # 1.1) x 10
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TABLE 4

SUPERCONDUCTIVITY IN THE IN-CD SYSTEM: PREPARATION OF SAMPLES AND PRIMARY PROPERTIES

sample (ML et mme | @20 s TR LS e ®
* (at. % Cd) (days) (min.) (Angstrom)

99’; 8 7.84 33 80 2,31 4,56 241 3.4839
103, ¢ 7.83 27 80 2,24 4,13 249 3.4964

944 ¢ 9.81 47 60 2,66 4.45 209 3.2216
1024 4 9.81 26 70 2.66 4,37 209 3.1880
911, 5 12,27 17 60 3.75 5.29 148 2.8724
9712.3 12.25 21 60 3.79 6.34 147 2.9184
100,35  13.49 33 90 3.61 5.10 154 2.8988
101 14,5 13.48 32 90 3.58 5.57 155 2.9434
1061, ;  14.74 21 60 4.60 6.49 121 2.9938
107 4.7  14.74 29 60 4,29 6.44 130 2.9926
BI7 6.0  15.95 16 90 2.95 5.59 189 2.907
BI81g. o  15.95 5.5 150 3.22 5.57 173 2.887

% —— Subscripts on this and subsequent tables indicate Cd concentration in atomic percent.
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SUPERCONDUCTIVITY IN THE IN-CD SYSTEM:

TABLE 5

THERMODYNAMIC CRITICAL FIELD

i

O S R S s

(K) (K) McMillan) E;:;eversﬂ)le) (irrev.) :
997 5 0.0207  102.2  0.285 0.796 295.2 + 3.4 +0.0200 + 0.0094 6
103; g .0163  102.2 .285 797 284.8 + 4.7 + ,0477 + .0137 6
949 g  .0333  100.2 .281 L7174 231.2 + 3.2 - .0627' + .0117 4
1025 5 .0060  100.2 .280 745 251.1 + 5.8 - .0347 + .0200 6
9112 3 .0170 97.7 274 .741 251.5 + 8.0 - .0756 + .0274 5
97123 .0605 97.7 .275 . 752 257.5 + 2.5 - .0241 + ..0080 5
100335 .0058 96.5 .276 .752 265.8 + 6.0 - .0184 + .0188 5
101135 .0320 96.5 .276 759 257.7 + 2.4 - .0268 + .0084 5
10414 7 .0305 95.3 .278 .767 229.0 + 5.2 - .0712 + .0204 5
10714, 7 .0140 95.3 .278 . 767 233.4 + 1.7 - .0039 + .0048 3
BJ716.0 .030 94.0 .277 .763 242.6 + 2.1 - .0330 + .0073 5
BJ836. 0 .030 94.0 277 . 760 229.3 + 7.4 - .0559 + .0275 5
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SUPERCONDUCTIVITY IN THE IN-~CD SYSTEM: REVERSIBLE THERMODYNAMIC CRITICAL FIELD

TABLE 6

Sample H D vy (irrev.) y (rev.) N(0) (irrev.)
No. ° ° -3 -2 -3 =2 23
(reversible) (rev.) (exrg-cm ~ -K (erg~cm =K °) (107~ states
(0Oe) -1 -3
ev cm ")
99, 5 255.5 % 2.0 - 0.0130 + 0.0064 1221 + 28 914 + 14 0.156
103, o 250.4 * 6.6 + .0375 + .0221 | 1128 + 37 872 +. 46 144
9%y o 233.7 + 4.6%  + .0026 + .0217 876 + 24 895 + 35 .112
1024 5 230.0 + 3.9 - .0165 + .0146 | 1055 + 49 . 885 + 30 .135
91,,. 3 234.8+ 6.8 - .0810 + .0253 1303 + 83 1136 + 66 . 166
971, 53 242.9 + 3.0 - .0017 + .0102 1323 + 26 1178 + 29 .169
100,, o 233.8 + 8.5 - .0419 + .0306 1429 + 64 1106 + 80 .182
101,55 231.0 + 1.7 - .0406 + ,0067 1303 + 24 1047 + 15 .166
104, , 228.8 + 6.4 - .0271 + .0232 | .995 + 45 993 + 56 .127
107 4, , 221.9 * 3.4 - .0261 + .0164 1034 + 15 935 + 29 .132
" BJ7,4.9 226.1 % 7.6 - .0057 + .0270 1184 + 20 1028 + 69 .151
B38 150 214.0 + 7.1 - .0691 + .0290 1072 + 69 934 + 62 .137

% —~ To determine the reversible value of Ho for sample 94, 6 points were used.
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SUPERCONDUCTIVITY IN THE IN-CD SYSTEM: GORKOV PARAMETER «

TABLE 7

4

Sample N(0) (rev.) V (irrev.) V (rev.) Ks K4 P
No. (1023 states (10723 ov- (10"23 ev- (irrev.) (rev.) (irrev.)

-1 -3 3 3 Eq. (6.8)
ev -cm ) cm™) cm’)

99, o 0.117 1.83 2.44 0.662 + 0.025  0.587 + 0.020 | 10.8 0.5
o 1037.8 .112 1.98 2.54 .629 * ,026 «559 = .028 10.2 £ 0.5
949,8 115 2.50 2,44 .657 £ ,026 .662 + ,030 10.7 + 0.5
1029.8 .113 2.07 2.48 .714 = ,035 .658 + ,028 11.8 = 0.7
9112.3 . 145 1.65 1.89 1.082 = ,063 1,012 + ,057 18,6 + 1.2
9712.3 .151 1.63 1.82 1.101 = ,041 1.024 * ,042 19.0 £ 0.8
10013‘5 . 141 1,52 1.95 1.091 + .054 .995 £ ,060 18.8 + 1.0
10113.5 .134 1.66 206 1.036 * .038 .93 + ,032 17.7 + 0.7
10411;,.7 .127 2.19 2,19 1.154 * ,057  1.154 * ,063 19.9 £ 1.1
10711“7 .119 2,10 2.34 1.098 + .039 1.052 = ,045 18.9 =+ 0.7
BJ716.0 .131 1,83 2.11 .826 £ ,029 .775 £ ,045 -13.9 0.5
BJ%G.O .119 2,02 2,33 .856 * ,048 .802 + ,047 14,5 + 0.9




TABLE 8

SUPERCONDUCTIVITY IN THE IN-CD SYSTEM: COHERENCE LENGTH AND FERMI VELOCITY

Satrqnple : p : go go i Vg ) ( Vr )
o. rev, . irrev. rev.
Eq- (6.8) (Ar(lgffi::;; (Afz;:::’;c)am) (108 cm/sec) (108 cm/sec)
99 5.8 9,3 * 0.4 2600 * 360 2240 * 290 0.75 0.65
103 7.8 8.8 + 0.5 2540 £ 360 2190 % 320 .74 -+63
949.8 10.8 £ 0.6 2230 = 310 2260 * 330 57 .61
1029.8 10.7 £ 0.5 2470 * 370 2240 + 310 .65 .60
91 12.3 17.3 = 1.1 2750 * 430 2560 * 400 .66 .61
97 15,3 17.5 0.8 2790 + 370 2570 + 350 .68 .62
100,55 17.0 * 1.1 | 2900 + 420 2620 * 410 .70 .63
101,45, 5 15.8 £ 0.6 2740 + 360 2450 + 320 .68 .60
104 1, 7 19.9 + 1.2 | 2410 + 350 2410 * 360 .60 .60
107 3,7 18.1 * 0.9 2460 + 310 2350 £ 330 .61 .59
BJ7 16.0 2.9 * 0.9 2630 + 330 2440 * 390 .63 .59
BJ8 5.9 13.4 % 0.9 2510 + 380 2320 = 370 .60 .56
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TABLE 9

SUPERCONDUCTIVITY IN THE IN-CD SYSTEM: EXACT EXPRESSION FOR y'

Sample v' (irrev.) v' (rev.)
No. (Eq. (6.13)) (Eq. (6.13))
(erg—c:m—3 - K_z) (exg - c:m-'3 - K_z)
99 7.8 1319 = 73 877 + 30
103, g 1329 * 111 988 + 130
9% 4 g 733 + 44 975 + 110
1029.8 952 + 94 840 * 66
91,, 4 1052 + 119 905 + 109
97 12.3 1231 £ 53 1171 + 67
100 ,, s 1350 + 136 977 + 153
10113.5 1201 + 50 929 + 31
104 14,7 812 + 79 914 + 113
10714.7 1021 = 31 864 + 68
BJ7 16.0 1071 + 41 871 *+ 121
BJ816.0 1095 % 151 768 + 109

vL
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Values of the mean free path are shown in Table 4. The value of
1/pn2 chosen is about 5% less than the theoretical value,

While this value can certainly vary with alloying, it is close to
the average value of 17.3 x 10_10 9-1 cﬁ-z found by Delvecchio and
Lindenfeld for four dilute In-Bi alloys (76), by specific heat measure-
ments, We may thus assume that the value of 1/pn£ is probably close to
the quoted value for the present alloys.

Furthermore, while the order of magnitude of 2/&0 is an import-

ant quantity, the exact value of % is not needed for computations.

Critical Temperature Tc

The critical temperatures were measured by the previously men-
tioned technique, and results are shown in Fig, 22 and Table 4. The
bars on the results do not indicate the usual limits of experimental
error, but rather the width of the transition ATc defined previously.

The results are also compared to those of Merriam (67) and Fis-
cher (26). We see that the transition widths are narrower in the pre-
sent work than in Merriam's. This indicates that the present samples
were probably more homogeneous. The transition widths of Fischer were
not given.

In general, the agreement with previous data is good. Tc dec~
reases fairly linearly from the fcc-fct phase boundary to about 12 at.Z
Cd, and then remains approximately constant., The present results in
the latter region are somewhat lower than those of Merriam, but this
may be due to the improved homogeneity.,

Before discussing the temperature variation, a note on the tran-

sition width is in order. Goodman (68), noting the statistical fluctu-



LEGEND
?I I Present work
I I After Merriam (67)
3.4 ° o After Fischer (26)
o I
o
g
o
X =
32} = 4 I
® 3
30} = X I
9o o
I L o
= +
= -
2.8 | 1
5 10 Concentration, at. % Cd 15
Fig.

22. Critical Temperatures of In-Cd alloys




77

ations in the energies of the superconducting regions, found that

= 179w 10% & /2 ym P (6.4)
where k is the Boltzmann constant, y is the coefficient of the electronic
specific heat, and c, is the specific heat per unit volume in the normal
state., Goodman's formula has been modified to take account of the present
larger definition of the transition width (i.e., from 10% - 90% of the
total change in magnetization). Eq. (6.4) applies only to zero field,
but the fields used in determining T, are very small.

Since the magnitude of ATc appears to be governed more by sample
preparation than by concentration in our samples, onlv an order-of-
magnitude calculation will be performed. It will be seen later that
y/V = 1.2 mj cm--3 deg—z. The molar volume of pure In is 114,8/7.3 = 16
cm3. The specific heat c, is not known for the present samples. However,
for pure Im, c = 70 mj mole_1 dc—:g_1 (57), and it changes little for dil-
ute alloys of In (22). Substituting these values and the values of Tc
and Py from Table 4, we obtain A'I‘c = 0,01 K, which is in good agreement
with the experimental results.

We may assume that this width is a natural lower boundary, as the
transition widths of Merriam are larger (by a factor of about R
ATc may be larger in the present work due to the small magnetic field
applied.

1f we use Eq. (2.2), we may obtain the interaction strength
N(0)V. Values are shown in Table 5. As mentioned previously, these al-
loys are borderline between a weak-coupling superconductor, for which
N(0)V = 0.25, and a strong-coupling superconductor, for which the BCS

theory may not hold in all respects. The values of N(O)V are close to
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that of pure In (0.30), and vary only slightly over the range of con-
centration. There is an apparent minimum around 12 at.%Z Cd. We see that

even though 6. is not known perfectly, its variation will make only a

D
slight change in the interaction strength.

Let us now consider the variation of Tc with concentration. Mar-
kowitz and Kadanoff (MK) (70) discussed the change in Tc with alloying
in terms of an "anisotropy effect", dominant in very dilute alloys,
and a "valence effect", dominant in higher concentrations. However, as
Merriam has pointed out (67), problems arise as the concentrations be-
come relatively high, as is the case in the present work., This is shown
by making a “Seraphim Plot" (71), in which ATc/c is plotted versus c,
where ¢ is the concentration of the solute, and now ATc is the change
in transition temperature of the alloy as compared to that of the pure
metal., If the MK theory is valid, this plot should produce a straight
line on semi-~logarithmic paper.

However, due to the sharp variations in Tc shown in Fig. 23, we
do not obtain this, indicating that the MK formula is invalid in this
region of concentration.

This may be due to the assumption that the average effective
velocity ;f at the Fermi surface is not changed by alloying. Since
In has been shown to have Brillouin zone-Fermi surface overlapping
at fairly low concentrations of Cd (67), this situation may repeat it-
self at higher concentrations and make invalid the above assumption.

In general, we must conclude that while the variatiom in Tc is

apparently understood for very dilute alloys, this is not the case for

higher concentrations. Merriam et al (63) came to the same conclusions
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about Hg-In systems.

Recently, McMillan (72) formulated a theory of Tc which employs
a Coulomb pseudopotential p* and an electron-phonon coupling parameter
A. In principle, if these two are known, the critical temperature may
be found. While the theory was formulated for strong-coupling super-
conductors, it has been shown (73) that it reduces to the weak-coupling
limit if A is small, We shall use this theory to find values of 2,
which is used in a renormalization of the density of states N(0) by a
factor (1 + ).

We must first obtain u* from the isotope shift. Since this has
not been determined for In, we shall use the formula of Morel and Ander-
son (74), which works well for intermediate-coupling superconductors
like Sn. This yields an isotope exponent of 0.435 for all samples in
Table 5, close to the typical value of 0.50. Then

wk = 0,360 en( 0 /1,45 T) 1! (6.5)

The value of p* is used in the McMillan equation for )\, and this
is shown in Table 5, We see that the values are fairly uniform, al-
though there is a slight decrease towards the middle of the concent-
ration range. The values of A are somewhat higher than A = 0.69 cal-
culated for pure In by McMillan. Kubota et al (79) also showed that

A varies only slowly with composition in Ta-Nb alloys.

Thermodynamic Fleld Hc

The field Hc is found from the area under the magnetization curve,

as mentioned above. In general, Hc varies in a parabolic manner with
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temperature. However, Sheahen (75) showed, in an approximation to a
proposed exact equation, that small corrections to the parabola may be
added as follows for non-transition metal superconductors:

H/H = 1= (/)% - D sin { n(1/1)%} (6.6)
where Ho is the thermodynamic field at T = 0 K, and Do is the maximum
deviation from a parabola for the particular superconductor. Ho was com-
puted by a least-squares methods from experiments in which (T/Tc)2 s 0.5

(i.e., using primarily those values of Hc close to Ho), and results are

presented in Tables 5 and 6. The parameter D° was also computed,

Up to the present, we have been using the (forward) irreve;sible
curves in the computation of Ho' If we use the hysteretic theory of
Chapter V to determine the probable reversible curves, we obtain some-
what different results. Because of the large amount of data, the least-
squares analysis used in Chapter V was not used. Instead, curves similar
to the data were computed and they were adjusted by hand to fit part-
icular cases. It is estimated that the errors in this procedure should
not be more than a few percent in any of the superconducting variables.
To determine the curves, the procedure used in obtaining Fig. 17 was fol-
lowed: Hc s dM were held as fixed, and Hc was variable. This

2 dd 1
Hc
2
generally produced a value of Hcl smaller thqp that Previously found.
A planimeter was used to find the ratio of reversible to irreversible
areas.

The values of Ho found in these two ways are shown in Fig. 23.

Both curves indicate a maximum of Ho near the center of the fcc phase
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(at around 13 at. 7 Cd), but the reversible value of “o tends to be more
constant. This result agrees strongly with the work of Dubeck et al (32)
who found that the scheme they used to find a reversible curve from the
irreversible curves tended to even out the irregularities of Ho versus
concentration in Pb-In alloys.

In the BCS model, the electronic coefficient of specific heat is

v = 0.17 (0 /1)* (6.62)
Computed coefficients are shown in Table 6. The standard deviations were
computed only from those of Ho’ as any error in Tc would be negligible.
The values of y computed for the reversible curves tend to be less er-
ratic than those for the irreversible curves. y for pure In is 1088 erg
cm_3 K-'2 (84)., While there are substantial changes in the value of vy,
it should be recalled that y is proportional to the density of states
N(0) at the Fermi surface. It has been shown (60) that this density may
change significantly for low concentrations of Cd in Inj it may continue
to do so at higher concentrations. Large changes in y have been shown
in other materials with changes in concentration (78) (82).

In the free electron model of solids,

y = (2/31° N©) Kk 6.7
This model has been used for In~Cd alloys (117). N(0) may be found from
Eq. (6.7) and is presentgd in Tables 6 and 7,

Using the values of N(O)V shown in Table 5, V, the net interaction
energy between electrons, may be found. Results are shown in Table 7.
Since 6N(0)/N(0) = 8V/V = 8y/y, where § indicates the standard error,
they are not shown., While the N(0) versus concentration curves are not

linear, Merriam (67) points out that these curves generally have much
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structure, Because of the relative constancy of N(0)V, the same comments
would apply to V. However, the exact physical interpretation of N(0Q)
and V should be approached with caution (118).

3 ev - cm3 (85). Little

The value of V for pure In is 2.1 x 10_2
has been done on the variation of V with alloying, although Gayley et
al (77) deduced that the changes in Tc they observed were due to changes
in V with alloying, and Hulm et al (83) also found that V could vary
with concentration.

The values of N(0) (and thus V) mzy be altered by considering
the enhancement of vy by the electron-phonon interaction, as discussed
by McMillan (noted above). This will add a factor of (1 + 1) to the
right hand side of Eq. (6.7), with the consequent change in N(0). This
decreases N(0) by a factor of about 1.8 and increases V by this factor.
However, due to the slight changes in A with concentration, the relative
vélues of N(0) and V with concentration will change only a small amount.

The value of €y (from Eq. (2.9)) may now be determined. This quant-
ity is independent of temperature due to the independence of y and o
To find Ké, we must have the value of Ky for pure In, which is 0.062
(76). Since the statistical and systematic error of P, are not known
(but are expected to be small, on experimental and theoretical grounds),
a standard deviation of *37 has been arbitrarily assigned to this quant-
ity, to be used in the computation of the standard error of Kpe

The values of Ka are shown in Table 7. In general, they increase
initially with concentration, and level off around 12 at, 7% Cd. The
values for Ky for the reversible curves tend to be lower than those for

the irreversible curves. It will be seen later that the trend indic~

ated by Ky, is repeated in the other GL parameters.
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We can now use the results of Gorkov (80) to determine an impurity

parameter p from the equations

ko/%4 = x()
.8
x(e) = ——7—5‘(%-5( %2 -G+ 9 - v }] @
where £(x) is the Riemann zeta function, and Y(x) is the digamma function.
Eqs. (6.8) are used to find p from the values of Ky and Ky Results are
presented in Tables 7 and 8., The standard error in p is found from the
fact that for the values of p we are dealing with, x(p) = (1/p) almost
exactly. It should be noted (76) that this analysis depends strongly on
the value of Koo
Now p = go/z (6.9)
where Eo is the BCS (or intrinsic) coherence length of the BCS super-
conducting wavefunctions. Using the values of & determined from Eq. (6.3),
Eo was calculated and presented in Table 8.
Using other BCS assumptions,
£ = 0.18 K v/k T_ (6.10)
The electron velocity at the Fermi surface Vg may thus be found using
Eq. (6.10) and the previously computed values of Eo. Results are nre-—
sented in Table 8.
The electronic coefficient of specific heat (see Eq. (6.6a)) may
be calculated in. a thermodynamically exact manner, rather than using
the BCS model. We then have (87)
th

2 [P
(-1/4m) (HO/TC) dt2

1

Y (6.11)

t=20
where h = HC/HO. To evaluate the derivative properly, we use Sheahen's

(75) exact expression for h(t) (from which Eq. (6.6) is derived):
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h + D0 sin 7h = 1 - t2 (6.12)
Making use of Eq. (6.12) and noting that %% = 0, upon substi-
t =0
tution in Eq. (6.11) we find
' = —
Y' = Ygeg/ (1 = ™) (6.13)

where YBCS is the electronic coefficient of specific heat computed with
the BCS assumptions, from Eq. (6.6a). The thermodynamically exact coef-
ficient y' is tabulated in Table 9. The values of y' are smaller than
Ypcs? except for a few samples with low Cd concentration.

Because of the uncertainty in Do’ the standard error in y' will
be greater than that in vy (= YBCS)‘ We shall not discuss the coefficient
y' further in this chapter, except to note that there is still a max-
imum around the region of 13 at. % Cd, and that y' computed from the
reversible curves tends to have little variation with concentration.

Using the BCS formula Eq. (6.6a) produces values of y which tend to

be more erratic than those of Eq. (6.12).

Summary

In this chapter, we have discussed the primary characteristics
of the superconducting samples as a function of concentration. Certain
quantities like the Debye temperature must be estimated. However,
quantities like HO and TC are known to a good degree of accuracy. In
connection with the former quantity, the hysteresis theory described
previously was used to determine a "reversible" Ho'

From the known quantities, plus an estimate of the mean free
path from the measured residual resistivity, other superconducting
parameters may be found. Many of them show a maximum around 10 - 12
at, % Cd., which may be due to BZ-Fermi surface interactions, as

described above,



CHAPTER VII
RESULTS AND DISCUSSION: SECONDARY PROPERTIES

In this chapter we shall discuss the superconducting properties
and parameters which do not depend on Tc and Ho, i.e., Hcl and ch, and
the parameters Kys Ko etc., which can be derived from them,

Let us first consider Hcl, the point of initial field penetra-
tion. There is a dichotomy in the literature with regard to its def-
inition with respect to the magnetization curves. Usui et al (88), Kub-
ota et al (79), and Ogasawara et al (89) defined Hc1 as the field
where the perfect diamagnetic line intersects the descending magnetiz-
ation curve, extrapolated to low fields. Ikushima (78) defined Hc1 as
the point of maximum magnetization.

These authors were all working with hard superconductors with
high « and well-defined magnetization curves. Working with soft super-
conductors, Dubeck et al (32) and Farrell et al (90) defined Hcl as
the point of first departure from perfect diamagnetism., For samples of
finite length (implying some rounding near the maximum of magnetization)
this definition will yield a different value of Hcl from the preceding
definition.

In the present work, rounding of the magnetization curve near
HC was observed, due probably to non-equilibrium behavior, the geo-

1
metry of the sample, possible slight inhomogeneities in the sample,

86
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and the tapping method used. The former definition of Hc was used,
1
which usually meant that Hc was in fact close to the maximum of mag-
1
netization,

When the reversible curves were plotted according to the hyster-

esis theory in Chapter V, it was found that Hc defined by this hyster-
1
esis method coincided with the point of first departure from perfect

diamagnetism, or even fell pefore it. It may be recalled that Goede-

moed's (33) data indicated that the "reversible" Hc fell before the
1
first departure from linearity.

The Abrikosov theory predicts a well-defined Hc with a vertic~
1
al drop from the line of perfect diamagnetism. Obviously, metallurg-

ical and geometrical considerations tend to blur out this region; a study
of these effects would be useful. However, we shall at present only
take note of the definition employed in Abrikosov's work.

A second consideration is the variation of Hc with temperature.
1
Hc follows a roughly parabolic relationship with T/Tc = t. However,
1
as in the discussion of Hc’ deviations from this occur. The authors

mentioned above attempted to take account of this by expanding HC1(t)
in a sum of powers of t:z: €egey Hc = Hc o) (a1 - a, t:z) or
Hcl(O){l - a, t2 - (1 - a3) tz*}, whelere thelz a are constants. However,
it would be consistent with the previously assumed relationship be-

tween Hc and t (Eq. (6.6)) to write

H (/8 (0) =1~ (T/T )% =D sin n(1/T ) (7.1)
c c c ° c
1 1 1
The quantity Do will again be a measure of the deviation of
1
Hc from parabolicity as a function of temperature.

1
The experimental definition of Hc is less open to experimental
2
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question than that of HCI: it is the point where the magnetization wvan-
ishes., Both the theoretical and experimental curves are straight lines
at H = HCZ, so the determination of this point is straightforward. How-
ever, for most of the present samples there was a small but measurable
negative magnetization past this point. This magnetization gradually
diminished with increasing fields, The effect has been seen in the work
of other authors (91), and presumably is related to the finite size of
the samples.

Care was taken to ensure that this effect did not obscure the
determination of the correct ch.

As in the case of Hcl, various writers have constructed poly~
nomials to describe a temperature dependence of ch. For consistency
with the previous definitions, we write

= 2 2
H, (t) /HCZ(O) =1-(T/T)" - D, sin (T/T) (7.2)

2 2
To find the parameters in Eqs. (7.1) and (7.2), we shall use

all the data in the present work. This usually is 8 or more tempera-
tures for each alloy concentration, approximately equally spaced between
Tc and 1.1 K, the lowest achievable temperature.

Results are presented in Tables 10 and 11, and Figs. 24 and 25.
The differences in the number of points for each set of data are due to
the fact that a small number of points were erratic. A number of con-
clusions may be drawn from the data. We see that the value of Hcl(O)
(found by the least squares method from Eq. (7.1)) for both the revers-—
ible and irreversible curves drops sharply with concentration. However,

we do see a slight rise in the two samples with the highest concentra-

tion, indicating that these samples may contain more than one phase,



TABLE 10

LOWER CRITICAL FIELD HC 0)
1

Sample Hc (0) D Number H (0) D Number
No. 1 %1 of ¢ °1 of
(irrev.) (irrev.) points (rev.) (rev.) points
(Ce) (0e)
99, 8 259 + 4 + 0.008 * 0.012 7 199 = 4 - 0.042 = 0.015 7
103, o 267 * 10 + 0.094 + ,027 9 198 + 6 + .046 * ,019 9
949 ¢ 213+ 9 + 0.102 + .,033 9 174 + 7 + 044 = ,028 9
1029 8 205 + 4 - 0.022 + ,014 8 161 = 5 - 042 * ,020 8
9112.3 160 £+ 9 - 0.171 + ,038 8 130 = 7 - .167 £ .066 7
9712.3 162 + 12 - 0.158 + .050 8 135 + 7 - 110 + .037 7
10013.5 168 + 9 - 0,129 = ,031 9 124 £ 4 - 159 = .024 8
10113.5 168 £ 7 - 0.065 + .027 8 136 £ 5 - 064 = ,020 8
10414.7 144 + 12 - 0.027 = ,043 9 106 + 10 - .155 = ,063 9
10714.7 142 + 14 - 0,017 £+ .056 5 106 + 13 - J142 = ,090 5
BI7;6.0 156 £ 5 - 0.088 + ,018 8 120 + 7 - .078+ ,033 8
BJ8yg o 164t 7 - 0.009 * .022 8 119 + 2 - .08 * .012 8

68




TABLE 11

UPPER CRITICAL FIELD Hc (0)
2

] ]
Sample H (0) D Nu$2er Hc(o) Do H;(O)
No. 2 o . (irrev.) (irrev.)

(0e) 2 points (0e) (rev.)

- (0e)
99, ¢ 369 £ 3 0.046 * 0.005 7 295 + 3 + 0.018 * 0.007 257 + 2
103, 4 359 = 3 037 = .006 9 288 + 4 + .059 * .012 249 = 5
949.8 409 * 4 046 + .008 10 257 + 6 - .030 * .016 229 * 3
1029.8 381 + 3 .036 %= .004 8 256 + 5 - L011 = ,012 232 = 3
9112'3 486 * 41 .183 * ,064 7 231 = 14 - .170 = ,045 211 £ 16 .
9712.3 428 * 51 .218 = ,091 8 217 * 21 - 206 * ,071 196 = 22
10013 5 448 = 50 .203 £ ,079 9 237 £ 12 - 139 + ,033 204 + 13
10113 5 460 + 27 127 £ .040 8 242 * 11 - .08 =+ ,029 213 £ 11
10414 2 474 + 25 .169 * ,037 10 212 * 16 - 143 ¢ ,050 196 + 17
1071u 7 486 * 49 .145 = ,073 5 203 * 16 - .130 = .056 190 + 17
BJ716 0 467 + 27 014 = ° ,030 8 238 = 11 - 047 £ .,026 216 £ 11
BJ8,g. g 424 = 37 .098 = .055 8 214 + 15 - .132 &+ .045 | 197 t 14

06




TABLE 12

GINZBURG~LANDAU PARAMETER Kl AT T = Tc
Sample Dy .Kl(Tc) 17| ea EZT (7.8) | Eq, (7.10) y
0. (rev.) (irrev.) (rev.) (rev.) (irrev.) Eq. (7.10)
(uf-cm) (rev.)
99, 0.007 * 0.005 0.82 0.87 2.95 14.7 1.025 1.008
103, o .040 * ,016 0.94 1.03 3.69 17.7 0.949 0.981
9% o .012 £ .009 | 0.89 1.06 4,30 18.2 1.007 1.020
102, .007 + .007 | 0.91 1.02 3.77 17.5 1.003 0.993
91y, 4 .202 + ,057 1.63 1.40 4.69 24,2 0.973 0.918
9715, 3 .230 £ .085 1.58 1.36 4.51 23.5 0.985 0.905
100, ¢ .190 £ ,045 2.08 1.73 5.63 30.4 0.977 0.954
101, ¢ .125 £ ,036 1.61 1.54 5.21 26.9 0.989 0.919
104,, . .181 £ ,060 1.86 1.57 6.10 27.4 0.997 0.950
107,, ., .170 = .067 | 1.84 1.54 | 5.85 26.9 £ 0.982 0.919
BI7.c. 0 .048 + ,028 1.24 1.36 4.79 - 23.5 1.000 1.000
BJS .161 * ,049 1.19 1.09 4,02 18.8 10.990 1,004

16.0

16




TABLE 13

PENETRATION DEPTH AND ENERGY GAP

Sample A(0) 2 (0) £(0) 2A(0)/ch h*(0)
No. Eq. (7.11) Eq. (7.11) Eq. (7.12) (rev.) (rev.)
(irrev.) (rev.) (Angstrom) °
(Angs trom) (Angs trom)
997 8 840 + 10 960 + 10 945 + 4 3.59 £ 0.03 0.68
1037 é 845 + 15 980 * 25 960 + 4 3.31 = .13 57
949 8 1010 £ 25 1130 = 20 900 = 4 3.51 =+ .12 .67
1029 8 980 * 20 1080 = 15 930 =+ 4 3.61 £ .08 .66
9112 3 1225 = 125 1345 £ 155 825 + 35 3.94 + 12 .60
9712 3 1225 + 190 1355 + 230 880 + 52 3.53 + .06 .53
10013 5 1150 * 120 1335 + 160 860 * 48 3.74 = .16 .45
10113’5 1140 + 85 1295 + 105 845 * 25 3.74 & .03 .53
1041[“7 1325 + 135 1425 * 160 835 + 22 3.67 £ .12 .54
10714.7 1400 * 185 1490 = 210 825 * 42 3.66 + .09 .58
BJ7,.., 1170 £ 85 1285 * 100 840 = 24 3.55 + ,15 .62
BJ8 1240 + 140 1345 % 155 880 * 38 3.88 = iS5 74

¢6
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Fig, 25. Critical fields at T = 0 for In-Cd alloys (derived from reversible curves).

The bars indicate standard deviations. The standard deviations for the dotted
points are too small to be indicated.
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as noted above. The difference in Hcl(O) between the reversible and
irreversible cases is greatest at lowest concentrations, and decreases
with increasing concentration.

The pattern described above is repeated in Fig, 25. Since we
shall show later that the results obtained from the irreversible curves
tend to be inconsistent with theory, we shall dwell primarily on the
data obtained from the reversible curves.

Fig, 25 is very similar to Fig., 20 of Livingston and Schadler
(14) , in that the critical fields tend to converge at both a high and
a low concentration end of a metallurgical phase to a Type I behavior:
i.e., H°1(0) > HCZ(O) -+ HC(O) at these concentrations of two mutually
soluble superconductors. The physical basis for this is that at the low
concentration end of a phase, the material starts to display Type I
charactexistics; at the high end, precipitation of the solute tends to
eliminate the Type II characteristics and reversion to primarily Type
I behavior follows.

As mentioned in the previous chapter, the data reach a max-

imum in the region of 10 - 12 at. 7 Cd. This phenomenon will be re-

peated in the parameters which will be discussed below.

Ginzburg-Landau Parameter Ky

In order to consider the temperature and concentration variation
of Kl(t) , we shall need to normalize this parameter. This is done by
finding Kl(Tc), and comparing values of KI(T) /Kl(Tc). From the definit-

ion H =2 «
c

Hc’ we find upon differentiation
2

1
(dH /dt)l
S t =1

k (1) = (7.3)
V2 (dHc/dt)'t -1
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If we use fiq. (6.12) and its analogy for Hc (Eq. (7.2)), we obtain
2
K](l) =1 (0@ + D'n)
¢, 0
- 4 (7.4)
20T+ D )
c o,

The quantities H; (0) and Dé are primed. They refer to the values
of HC(O) and Do obtained by using the thermodynamic critical field data
from the entire range of t, not only t2 s 0.5, as was the case in the
computation of HC(O) and Do' Sheahen (75) pointed out that extrapola-
tion to find HC(O) using high values of t solely have not been reliable,
and it was decided to use all the data to minimize the standard error.
H;(O) and Dé were computed by the least-squares method. It is found that
HE(O) differs little from HC(O), as shown in Table 10,

Kl(Tc) as computed by Eq. (7.4) is presented in Table 12 and
Fig., 26. The values of Kl(Tc) for the reversible and irreversible curves
are similar in their variation with concentration.

By definition (93),

Kl(Tc) = K4 (7.5)
As mentioned above, Ky, is independent of temperature. As shown in Fig,
26, the two parameters (as found by Eqs. (7.4) and (2.9)) are not equal
for any value of concentration. The reason for this discrepancy is not
immediately obvious. The substitution of Fischer's resistivity data (26)
for those of the present work does not eliminate the difference. Using
the alternative definition of y, mentioned in Chapter VI, only increases
(Kl - K4) further.

Dubeck et al (32) have noted (Kl - K4) # 0 for Pb-In alloys.
Farrell et al (90) also note a difference between ky and KA for Pb-

In alloys. These authors treated the residual resistance p, as a para-
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meter by requiring it to fit the two equations

_315
8.85 x 10 ~ vy p;/Kl

p*e [k, = p*x(p¥*)
o' "4 (7.6)
p*

8.85 x 1073 y* ok/i_
where pg is the now adjustable residual resistivity, and p* is the now
adjustable Gorkov impurity parameter. The purpose of the computation is

to set k; =k, (as is explicitly shown in the first of Eqs. (7.6)). pg

is adjusted to make the values of p* of each equation equal. The values
of pg and p* are shown in Table 12 for the reversible case. Yy was ob-
tained from Table 6.

The adjusted values of p and p, are in every case larger than
the measured value. They show approximately the same variation with con-
centration as the measured values, however., Furthermore, the adjusted
values of residual resistance are greater than Fischer's values for
all except the highest concentrations, as shown in Fig. 21 and Table 12.

Thus, while the method described above may have some validity
in reconciling the differences between Ky and Ké, it must be used with
caution. As previously mentioned in Chapter VI, the entire procedure is
highly dependent on the value of K chosen.

In Fig. 27, pg is plotted as a function of Kl(Tc). The least~
squares intercept is at Kl(Tc) = 0.049, close to the expected value of
0.062. The linearity is worth noting, since if we set Kl(Tc)'= Kps
KI(TC) should vary linearly with the residual resistivity (from Eq. (2.9))
if y is constant. The Farrell procedure may then be equivalent to setting
Y constant, which may not be the case experimentally.

While there appear to be differences between'Kl and Ké among;

non-transition metal superconductors, Hechler et al (93) found agree-
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ment between the two to within 10% for Nb alloys.

As previously mentioned, Filenberger (81) has derived the
theoretical basis of Ky and Ky as a function of the impurity para-—
meter p and reduced temperature t. Let us now consider some aspects of
the thecry.

Fig, 28 shows the GL parameter

1
plotted versus the impurity parameter p. Kl(O) has been normalized by

at 0 K {k  (0) = HCZ(O)//Z B (0)}

dividing by Kl(Tc). Line A is the calculation of Helfand and Werthamer
(94), and lines B and C are the calculations by Eilenberger for differ-
ent values of the quantity mtr/z. B corresponds to a value of 1.0, and
C to 2.0. ztr/z is proportional to the anisotropy of the impurity scat-
tering. For example, if ztr/z = 1, isotropic scattering from impurity
atoms takes place. Most of the points derived from the reversible curve
lie close to the Eilenberger curves (although a higher ratio of 2tr/£
would probably fit the points better), and those points derived from
the irreversible curves are more scattered.

To put this on a more quantitative basis, the average values
of Kl(O)/Kl(TC) were calculated for both the reversible and irreversible
cases. These were, respectively, 1,12 * 0.12 and 0.98 * 0.18, This in-
dicates a higher scatter in the irreversible case, as well as a lower
(and unphysical) value of Kl(o)/Kl(Tc> as compared to the reversible
case. The average value for the reversible case falls slightly below
the line labelled C in Fig. 28.

For comparison, we have shown the data of Culbert et'al (95)

for Kl(O.Z)/Kl(Tc) in Pb-In alloys. A calculation using the assump-
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tions used in deriving Eq. (7.3) shows that this quantity equals
K‘l(O)/K'l(TC) to within a few percent, This set of data does not agree
well with the Eilenberger theory. Culbert et al ascribe the difference
to strong-coupling effects in their alloys, noting that the Eilenberger
theory is based on weak coupling. The scatter in the Culbert data is
less than in the present work.

Usui et al (88) also found substantial differences from the
Eilenberger theory in pure vanadium, Again, this may be due to strong
coupling effects in the material,

Now consider the variation of Ky with temperature, The Eilenber~
ger theory discusses Kl(Tc) as a function of p and ztr/z. Fig. 29 shows
the results of the theory for the pure limit (p = 0) and the "dirty"
limit (p + =), The theory depends only to a slight extent on the ratio
ztr/z; in view of the results of Fig., 28, 2“/2 wag arbitrarily chosen
as 2.0,

Since it would take considerable space to present all the ex-
perimental data, only representative samples were chosen., The mogt ob=
vious result is that the points derived from the irreversible curves
tend to be considerably more erratie than those derived from the revers-
ible curves, For example, in sample 9112.3 the former points are not
represented because they fall below ncl(T)/aci(Te) = 1, This pattern will
be repeated in the discussion of Kge

Due to the scatter of esven the reversible data, 1t {e diffiecult
to determine an appropriate value of p from the data, However, the data
are roughly as comparable in correlatien te the Hilenberper theory as

that of Usul et al (88), Trojnar (96); aid Fiseher (26), Ikushima and
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Mizusaki (66) found considerably higher values of Kl(T)/Kl(Tc) than
the predictions of the theory for most of thelr Nb-Ta alloys.

In summary, we find discrepancies between k, and Kys wvhich may

1
be resolved using the Farrell (90) technique. The data for the present

alloys agree only partially with the Eilenberger theory.

Ginzburg-Landau Parameter Koy

It has been shown that (97)

KZ(TC) = Kl(Tc) (7.7
where x, is defined by Eq. (2.7): - 47(dM/dH) = {1.16(2K§ - l)_l}.Since
the experimental values of Ko change comparatively little in the present
alloys, we shall accept Eq. (7.7) as the normalizing factor for Kz(T).

Eilenberger's (81) work also includes the variation of n<2/1<1(‘1‘c)
with temperature and impurity parameter. As noted in Fig. 30, the value
of Kz/Kl(Tc) as T + 0 is considerably larger than |<1/|<1(Tc) (see Fig.
29), for the pure limit (p = 0). However, most experimental data is
taken in the dirty limit, where KZ(T> =Ky (T) fairly closely. This
point will be discussed later.

In discussing Fig. 30, we note first that the scale for the ord-
inate of the penultimate section is twice that of the others. The bulk
of the comments on Fig. 29 are applicable here as well, While the data
points cannot be used to determine p, they generally fall in the region
of high p, as would be expected physically.

In the light of the two preceding graphs, it seems apparent that
obtaining the GL parameters from the fitted reversible curves is more

accurate physically than obtaining them from the raw irreversible curves,
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as has been done in the past.

The relative magnitude of KZ(T) witﬁ.respect to Kl(T) has been
disputed. Recently, Evetts and Wade (98) found that Ky > 0.92 Ky in
Pb-Bi and Pb-In alloys, for all temperatures. However, Zoller and Dil-
linger (22) found that Ky is about 7 - 8% less than 3 in an In-Pb
alloy. The two statements are consistent only if Kz = 0,92 Kl. It has
been also shown theoretically (99) that Kz(t) = Kl(t) to within 2%
for all values of t.

An examination of Figs. 29 and 30 will show that for the present
alloys, Kz(t) = Kl(t). To put the matter on a more quantitative basis,
we define n

y* = (1) I e €/, () |2 (7.8)
where n is the number of data points. This procedure ensures the norm—
alization of y, In Eq. (7.8), the summation is over all temperatures
for a given sample. Results are presented in Table 12 and Fig. 31,

An interesting phenomenon may be observed in the data. The norm~
alized wvalue of Kl(t)/Kz(t) (2 y) is close to 1 at both ends of the fcc
phase we are discussing, for data derived from both the reversible and
irreversible curves. The quantity Yirrev. declines negligibly from 1.0
at the center of the fcc phase., The decline is within the theoretical
2 - 3% mentioned by Saint-James (99). However, we see a large decline

n yrev. at the centér of the phase.

Part of the data of Fig., 31 is presented for representative
samples in Fig, 32, The results are in substantial agreement with those
of the former graph. For low Cd concentrations, the ratio Kl/Kz is with=-

in a few percent of 1,0 for both irreversible and reversible data, for
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all values of t. However, for the middle range of concentrations (illus-
trated by sample 9712.25), the irreversible values of the ratio tend
to remain close to 1.0, whereas the reversible wvalues diminish with t.
The latter case will produce a value of y < 1.0, shown in Fig. 31.

This behavior may be the explanation of the divergent results
noted in the literature. If the irreversible data is used, then (assum-
ing y is a valid measure of the averaged behavior of K1/K2) the data
agrees with the theoretical conclusions of Saint-James (99). However,
the reversible data (at a Cd concentration of about 12 - 14 at. %) agree
with the data of Zoller and Dillinger (22), and, to a lesser extent,
that of Evetts and Wade (98). Thus we see that the use of irreversible
curves can lead to large differences.

The precise reason for the difference in behavior of the norm—
alized ratio y within one phase must await an extended metallurgical
investigation. However, we have previously noted the changes in many
superconducting parameters in the center of the fcc phase as compared
to the extreme limits, and this phenomenon is apparently another.

To summarize, for the reversible curves we have Kz(t) = Kl(t)
for both ends of the fcc phase, and Kz(t) é_Kl(t) at the center. We
have Kz(t) = Kl(t) for all concentrations for the irreversible curves.
The ratio K1/K2 will thus be close to or less than 1.0 depending on
the degree of .irreversibility, accounting for the contradictory results

in the literature.

Penetration Depth A

The penetration depth of the magnetic field in Type II super-
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conductors, A(t), was shown to be (2)
H o (t) = 4n 2%(0) BE(6)/4 (7.9)
Cy c )

The penetration depth at 0 K may be calculated from this and
is presented in Table 13 and Fig. 33. We see that the maximum pene-
tration depth at 0 K is around 13 - 14 at, % Cd.

The penetration depth A(t) can also be calculated for t # O.
The Gorter-Casimir (100) two-fluid model of superconductivity predicts

- b4y=Y

A(e) =2(00(@ - t) (7.10)
This prediction is borme out in Fig. 34, The data from only two samples
are shown for clarity of presentation. However, all samples showed the

.. -l

same general behavior. At low temperatures ({1 - tA} % ¢ 1.1), A(t)
shows a negative deviation from the above relationship. This has been
explained by BCS theocry (101).

The coherence range §, a measure of the distance to which a
perturbation in the order parameter spreads from its center, is given
by (102)

E(t) = {9 /2m H_ (£)}? (7.1D)
€2
The coherence range at 0 K may be calculated and is shown in Table 13

and Fig., 33. The table indicates a change in slope around 12 at. % Cd,

although this is not apparent in the graph due to the scale employed.

Energy Gap A(0)

The energy gap at 0 K, A(0), is given by the BCS expression (115)
2 A()/kT_ = {2n H2(0)/3 T°}% (7.12)
This equation applies, strictly speaking, only to superconductors of

very low coupling strength N(0)V. However, it is derived from the same



(Angstrom)

A(0) or £(0)

Legend: I A(0) derived from reversible curves

A(0) derived from irreversible curves

o
OI £(0)

1500} T - T

I
I =
1000 é 8
S
8 II I I II
00— b % :

Concentration, at. % Cd

Fig. 33. Penetration depth X and coherence range £ at T = 0 K as a function of concentration.




A (Angstrom)

2000

1000¢-

Legend: @ Sample BJ7
© Sample 102

(AN}

Fig.

12 14 16
1
(1-¢tH772

34, Penetration depth A as a function of Gorter-Casimir parameter (1 -

t*)

1
-




113
assumptions used in deriving Eq. (2.2). Since the latter equation has
been used to find the values of N(0)V in alloys (which often have
stronger coupling than pure elements), Eq. (7.12) will be used to find
values of the reduced energy gap (the left hand side of Eq. (7.13)) in
the present alloys.
If the BCS relation y;E = 0,41 Hc(O)/Tc (Eq. 6.6a)) is used in

Eq. (7.12), we obtain

2 8(0)/k T = 3,52 (7.13)
However, if the thermodynamically derived relationship for y as con~
tained in Eq. (6.11) and (6.13) is used,

2 8(0)/k T_ = 3.52(1 = D_m)” (7.14)
Values of the reduced energy gap found by using Do in Table 5 are showm
in Table 13. Most of the points are above the BCS value of 3.52. If this
is a real effect, the explanation is suggested by the work of Swihart
et al (92), who calculated the ratio 2 A(0)/k T, for realistic phonon
spectra of strong-coupling superconductors, and found increases of up
to 35% for Hg, for example, If the discussion following Eq. (6.4) is
recalled, in which it was pointed out that these alloys were midway
between weak- and strong-coupling superconductors, this fact will ex-
plain the increase in the ratio 2 A(0)/k Tc' In fact, if the original
equations of the BCS theory modified for medium-coupling superconductors
are used (116), these superconductors will have a theoretical value
of the reduced energy gap higher than weak-coupling superconductors.

However, this increase cannot as yet be put on a quantitative basis,

Helfand=-Werthamer Parameter h*
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Helfand and Werthamer (H-W)(94) have defined a parameter
h*(t) =-ch(t)/(dHc2(t)/dt) £ =1 (7.15)
If Eq. (7.2) is substituted into Eq. (7.15) and rearranged,

h*(t) = 0.5H_(£)/(L - = D_)H_ (0) (7.16)
2 2 %

This quantity has a slope of -1 at t = 1, Typical results for alloys
with low concentrations of Cd are shown in Fig., 35. The values of D02
from Table 11 were used. The agreement with the H-W curves are only
fair; as in the discussion of the Eilenberger theory, the value of p
cannot be determined from the data. However, the data lie on the high
p side.

As the concentration of Cd rises, the variation of ch(t) with
temperature changes and thus the shape of h*(t) also changes. The value
of h*(t) is close to the H-W curves for t - 1 and is below the curves
for t -+ 0. The situvation may be summarized by the presentation of h#*(0)
in Table 13, The agreement with the calculated curves is poor for the
higher concentrations of Cd, since the H-W theory requires h*(0) = 0,73,
However, other authors (107) also find disagreement with the theory.
The reason for the discrepancy between theory and experiment may be due
to a correlation between h*(0) and the electron-phonon coupling strength
A as discussed by Werthamer and McMillan (108), as h*(0) can be shown
to roughly increase with A (from Table 5).

Upper Critical Field Hc

The problems involved in finding Hc exactly have been discussed
2 ‘
above. In this section oaly typical results are presented, as Hc (t =0)
2
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Legend: @® 7.84 at. % cd
O 9.8l at. % cd
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Fig. 35. Helfand-Werthamer parameter h*(t) as a
function of t.
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and ch(t = 1) may be easily calculated, from Eq. (7.2) and a least-
squares method, Typical results are shown in Fig. 36.

One difference between the behavior of ch(t) for alloys of low
Cd concentration and of ﬁigh Cd concentration may be observed. The for-
mer points go linearly to zero as t + 1, whereas the latter points are
non-linear in this vicinity. However, from limited data collected at
t > 0.9, and of course from theory as well, ch(t) + 0 as t + 1, This
behavior provides a "kink" in the ordinarily fairly straight line of
ch(t) versus tz. The discussion may be put on a more quantitative
basis by considering D02 of Eq. (7.2). This quantity is small and posi-
tive for the four alloys with the lowest Cd concentration, and is large
and negative for the eight alloys with higher Cd concentration (with
one .exception),

The reason for this behavior is unknown, although Ogasawara et
al (89) have displayed graphs of ch(t) versus t2 (for Nb-Ta alloys)
which appeared to be made up of two connecting straight lines. Since
the alloys with higher Cd concentrations are less stable metallurgi-
cally (due to their phase diagram), one possibility might be a non-fcc
phase in these alloys which dominates the superconducting character—
istic near t = 1, There is little chance that the temperature measure-

ment was at fault, as the measured Tc agrees quite closely with those

of Merriam (see Fig. 22).

..... 1

As previously mentioned, the problem of irreversibility enters

into the determination of Hc . In Fig. 37, only the variation of Hc (t)
1 1
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as found by the method described in Chapter V is showm.

As might be expected from Fig, 25, where HC (0) is found to vary
1
little with concentration above 10 at, 7% Cd, similar results are found

in Fig., 37. The values of H, (t) lie fairly close for most concentra-
1
tions above 10 at., % Cd.

As in Fig. 36, non-linearity occurs at higher concentrations
of Cd as t + 1; however, it is considerably smaller in magnitude as
compared to ch(t). Since the measured quantities ch(t) and Hcl(t) are’
related by the GL parameters, presumably the discussion in the previous
section is applicable. Hcl(t) in the light of the GL parameter Kg will
be discussed shortly.

Ginzburg-Landau Parameter Kq

Harden and Arp (109) suggested another Ginzburg-Landau para-
meter K3,relating Hc and Hc' The relationship may be put into the form

1
: 1.68
<3() = 0TI () /K, (©))

(7.17)
The relationship may be derived from the original GL differential
equations as presented by Abrikosov (4), in terms of an isolated normal
filament, and was found by numerical integration of the equations. The
region of temperature over which Eq. (7.17) 1is valid is unknown. Oga-
sawara et al (89) assumed that Kl(t) = Ka(t) for all t, and calculated
values of Hcl(t), using experimental values of Hc(t) and Kl(t). A simi-
lar plot is shown in Fig. 38. The values of'Hc(t) were obtained from
the reversible curves.

The values of Hcl(t) calculated from Eq. (7.17) and its accomp-

~ anying assumptions produce Hc (t) slightly higher than the experimental
1
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Fig. 38. Experimental and theoretical dependence of crit-
ical field Hc (t). Theoretical dependence is calculated

using Harden énd Arp theory and Ky = Kge
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value, Furthermore, this increase tends to disappear as t - 1., This is
in line with the conclusions of Eastham (110), who stated that the
Harden and Arp formulation was valid primarily near T = Tc'

Fig. 38 shows that the difference between the theoretical and
experimental values of Hcl(t) are also probably related to composition
and thus the impurity parameter p. Neumann and Tewordt (11l) constructed
a modification of K3 valid to order (1 - t) for various values of p.
However, the corrections introduced by p are only of the order of a
few percent. The formulation of Ks(t) for all values of t and p remains
to be accomplished,

Evetts and Wade (98) found that their values of Hcl(t) fitted
by the above procedure were lower than the experimental values in Pb-In
alloys. However, their differences were considerably larger than in
the present work, ranging up to 28%,

The apparent coincidence of the experimental value of Hc1(t)
and that calculated by Eq. (7.17) as t + 1 bears out the prediction of
Serin that K3(1) = Kz(l) = Kl(l) (112). Serin subsequently predicted
(p. 936) that for dirty superconductors, which the present samples are,

Kg > Ky % Ky (7.18)

3 1
which is borne out in all the present samples, as deduced from Fig. 38.
Thus the work of Evetts and Wade apparently does not agree with Eq.
(7.18).

The results of Fig., 38 are not borne out with respect to Serin's

first prediction at t -+ 1, noted above, if data from the irreversible

curves are used. This point is illustrated in Fig. 39. For the four
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Fig. 39. Experimental and theoretical dependence of crit-
itical field Hc (t) for irreversible data. Theoretical de-
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pendence calculated using Harden and Arp foriula and Ky = Kge
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samples lowest in Cd concentration, the variation of theoretical and
experimental values of Hcl follows that of Fig. 38, However, for all
samples with higher Cd concentrations, the theoretical (derived from Eq.
(7.17)) and experimental values of Hcl do not converge as t »> 1, This
behavior is illustrated by the sample with 12,25 at %Z Cd. Thus again
the irreversible data provides results inconsistent with theory.

Eq. (7.18) may be illustrated by means of Fig. 40. The relation-
ship of Ky and Ky has already been discussed, so these data are not pre-
sented here, For this representative sample Kq > Ky for both the revers—
ible and irreversible curves. The non-linear phenomenon mentioned in
the discussion of ch(t) can be noticed here as it tends to increase
the value of K3(t)/K1(t) as t »~ 1, This phenomenon is much less pro-
nounced for the reversible data.

It should be noted that the above results show that the pro-
cedure used in finding Hc (t) (i.,e., that outlined in Chapter V) ap-
pears to be wvalid to within a few percent,

An approximation to the variation of K3(t) with t can be made
from the present work, for low values of Kl(Tc). Maki (9) has performed
this work for KI(TC) >> 1 theoretically. Representative results are
shown in Fig. 41,

A least-squares straight line was drawn through each of the
set of data points for simplicity, although as mentioned above K3(t)
has yet to be determined in general theoretically. However, the inter-
cept at t = 1 is very close to 1, in accordance with Serin's predictions.

Furthermore, the value of KB(TC)/KI(TC) at 0.3 < t < 1 is greater than

Kl(t)/Kl(Tc) from Eilenberger's curves (see Fig. 29), confirming, in
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part at least, Eq. (7.18).
To summarize, Hcl(t) computed by using K3(t) approaches the ex-
perimental value as t » 1, and is greater than that value for all t,

as required by theory. K3(t) was plotted as a function of t, and its

general shape also agrees with theory.

‘Flux Trapping

The various imperfections inside a superconductor can trap flux
in a magnetic field by creating regions with anomalously high critical
fields. If the applied field which drives the superconductor normal is
reduced, any multiply-connected inhomogeneous regions will trap the
flux which threaded them at the moment of their transition back into
superconductivity. As the field is then reduced to zero, this trapping
will become apparent in the form of a positive magnetization at zero
applied field.

As mentioned in Chapter III, one of the main methods of deter—
mining the homogeneity of an alloy is considering the magnitude of this
trapped flux, In general, the samples in this study were found to have
low values of trapped flux for Type II superconductors.

Another method of measuring the amount of inhomogeneity by means
of the hysteretic magnetization curves is the ratio of the areas under
the curves in the forward and reverse directions. Since this has not
been discussed theoretically, the matter will not be pursued further.

Livingston and Schadler (14) note that there have been few
systematic studies of the effect of defects on flux trapping. However,

Budnick et al (114) found that regardless of the annealing times, the
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trapped flux ratio (tfr) varied linearly with (1 - ta)-%, where t is
the reduced temperature. In Fig, 42, we present representative data on
the tfr for various Cd concentrations. The ratio tends to follow the
Budnick rule. Budnick defined

tfr = |4m M|/4n M

x’

where |47 M|is the actual tragped flux, and 4"Mﬁax is the maximum value
of magnetization for the entire range of applied field,

As might be expected from the metallurgy, the tfr is higher
for the alloys with higher Cd concentration. However, it is difficult
to draw any quantitative conclusions concerning the correlation of the
slopes or the intercepts of the lines in Fig. 42 with concentration.
The trapped flux will always be sensitive to sample handling and
preparation,

Jurisson and Oakes (113) prepared a simple theory of the varia-
tion of tfr with temperature. We have rough qualitative agreement with
the Jurisson theory on the basis of Fig. 42; quantitative agreement
might be achieved with appropriate adjustment of the parameters in their

theory.
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CHAPTER VIIL

CONCLUSIONS
This chapter will be composed of two parts: one dealing with
the theoretical aspects of this work, and one dealing with the experi-

mental aspects,

Theoretical Conclusions

Theories of superconductivity are based on the reversibility
of the magnetization curve, However, the majority of Type II super-
conductors have at least some hysteresis, thus making comparison of
the Ginzburg-Landau parameters derived from the curves difficult, if
not invalid. A number of theories of hysteresis in superconductors have
been proposed, with "reversible" curves lying between the forward and
reverse curves,

Prime among these have“been the theories of Campbell et al (37)
and Silcox and Rollins (39). These theories give at least a qualitat-
ive fit to experimental data.

The theories can be checked on a quantitative basis by using
the results of Goedemoed et al (33) for which irreversible and revers-
ible experimental curves (for the same superconductor) are available.
The fit to these experiments is inadequate.

In this thesis, a theory has been devised to give a better
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fit to these data. Essentially, the theory consists of two modificat-
ions to the Silcox and Rollins theory. Firstly, the long range effects
of the fluxoid-fluxoid interactions were taken into account, using a
model based on work of Melville and Taylor (41). Secondly, an ad hoc
reversible curve was devised which fits the theoretical reversible
curve of Abrikosov (4) over different regions of applied field better
than the ad hoc curves of Campbell et al and Silcox and Rollins.

The latter point may be seen in Figs. 14 and 15 and the dis-
cussion following Eq. (5.1la)., In general, we have good agreement with
the reversible curves of Abrikosov.

However, we wish as well to have quantitative agreement with
typical experimental data. Excellent agreement was reached with the
previously published data of Goedemoed et al, shown in Figs. 18 and
19. In Table 1, we see that the least-squares fit to this data for
the present theory is an order of magnitude better than the Campbell
or Silcox theories. Furthermore, the present theory fits both the ex-
perimental reversible and irreversible curves well.

Although the present theory is somewhat more complicated than
some previously formulated, it still can be put in closed form and
graphs may be used to find the relevant parameters, as illustrated in
Figs. 20 and 21,

The main object of the hysteretic theory is to determine the
reversible curves from the experimental irreversible curves, as the
former are generally not known. We have found good agreement with the
data of Goedemoed et al in this respect, and we have used the theory

to find the reversible curves from the In~Cd experimental data.
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To summarize, we have formulated a theory of hysteretic be~
havior in superconductors. This theory enables us to derive fhe equiv-
alent reversible magnetization curves from the hysteretic irreversible

curves. Good agreement is reached with experimental data.

Experimental Conclusions

The magnetization curves of the fcc phase of Cd in In have dem
onstrated Type II behavior. The samples ranged in concentration from
7.8 to 16.0 at. Z Cd, and were annealed for periods of 5 - 47 days, be-
fore being quenched in liquid nitrogen.

The critical ténperatures were found to have the same varia-
tion with concentration as the work of Merriam (67), i.e., a sharp
dropoff from TC = 3,4 K at around 8 at. 7 Cd to a fairly constant Tc
= 3.0 K at concentrations 2 12 at, %Z Cd. The transition widths were
smaller than those of Merriam, indicating more metallurgically homo-
geneous samples. The residual resistivity at 4.2 K was found by an in-
direct method for each sample, It rose almost linearly with concentra-
tion, but was consistently lower than the values of Fischer (26). This
may be due to the shorter annealing times in the latter's work.

A number of physical quantities, such as the mean free path
and the electron-electron interaction strength N(O)V may be fouﬁd from
this data and the theory of Chapter II. Most of the calculated quant-
ities have an extremum or change of slope around the concentration 12
at. %Z Cd. Based on the work of Merriam (67) on low concentration In-Cd
alloys, this may indicate a Fermi: surface~Brillouin zone interaction
near that concentration. Since the Fermi surface is known only imperfect-

ly for alloys, more work will have to be done to confirm this. This



132
could be done, for example, by using the method of Higgins and Kaehn
(60) to determine the Fermi surface by the variation of critical temp-
erature with pressure.

So far we have been discussing the superconducting properties
which are non-hysteretic. In order to calculate the Ginzburg-Landau para-
meters, we need to know the various critical fields mentioned in Chap-
ters I and II. If we have hysteresis, we can obtain inaccurate values
for these quantities.,

As mentioned in Chapter VII, we have used the hysteretic theory
developed in Chapter V to find "reversible" values of the quantities
used in finding the GL parameters. We shall show in the rest of this
chapter that the reversible values found by this method agree with the
appropriate theory better than the values from the raw or "irreversible"
data.

In Fig. 24, we see that the reversible value of Ho varies less
with concentration than does the irreversible value, and is considerably
less erratic, The reversible values coincide with the diagram of the
variation of Ho with concentration for two mutually soluble supercond-
uctors as presented by Livingston and Schadler (14), whereas the irrev-
ersible values do not.

The erratic behavior of the irreversible values of Ho produce
erratic values of y, the electronic coefficient of specific heat, as
computed by the BCS Eq. (4.2). Values are tabulated in Table 4, The val-
ues of y calculated from reversible curves are smoother and reach a
maximum around 12 at, % Cd, in line with the previously mentioned Fermi

surface-Brillouin zone interaction.
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As a corollary, the same effects occur in the computation of
N(0), the density of states at the Fermi surface, and V, the net inter—
action energy between electrons, We thus see the superiority of the rev—
ersible curves for this phase of the results.

As previously noted, the data for Tc show a kink around 12 at.
% Cd. These changes of slope in the Tc data have been attributed to the
Fermi surface-Brillouin zone interaction (117),

A number of other superconducting parameters such as the coher-
ence length, velocity of the electrons at the Fermi surface, etc., may
also be computed., However, little previous work has been done to cor-
relate these quantities with impurity effects, so that discussion of
changes is necessarily limited.

Continuing with the discussion of reversible versus irreversible
curves, we note that the value of y', the thermodynamically computed
value of the coefficient of specific heat (computed from Eq. (6.13)),
is considerably less erratic when found from the reversible data. Val-
ues are shown in Table 9.

The trend noted above is continued in the results for Hcl, the
lower critical field, In Fig, 25, we see much less erratic behavior for
the reversible values of Hcl. The standard deviation for each alloy con-
centration also is less for the reversible data,

Now we shall compare the reversible and irreversible data in
the light of the GL parameters and assoclated theories., We again see
the superiority of the reversible data.

In Fig. 29, we have the normalized value of Kl(t) plotted as a

function of the impurity parameter p for the Eilenberger theory (81).
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The data from the reversible curves are closer to the theoretical values
than the irreversiblc data; as well, the scattering is substantially
lower.

In Fig. 30, the reversible data for the normalized value of
Kl(t) versus t is clearly closer to Eilenberger's theory than the irrev-
ersible data. In fact, many of the points of the latter data fall below
Kl(t)/Kl(l) = 1, which is not allowed theoretically.

The same pattemn 1s repeated in Fig. 31, where Kz(t) is present-
ed. The reversible data shows the same superiority over the irreversible
data; as in Fig. 30, many of the latter points lie below the theoretical
limit.

However, the reversible points themselves in Figs. 30 and 31
have some scatter, and it is difficult to predict a value of p from
the data.

In Fig. 32, we see a possible explanation of the discrepancies
of the value of Kl(t)/Kz(t) which have appeared in the literature. As
determined from the graph, this quantity appears to be hysteresis dep-
endent, and since hysteresis varies considerably from one metallurgic-
al system to another, this probably accounts for the contradictory res-
ults reported.

The normalized energy gap, 2A(0)/ch, was found to have values
above the pure theoretical value of 3,52. As mentioned in the text, this
is probably due to a combination of impurity effects and slightly strong-
er coupling in In-Cd alloys than in pure In,

The Helfand-Werthamer parameter h*(t) has been calculated. In

general, we obtain fairly good agreement with theory for the four sam
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ples lowest in Cd concentration, However, at higher concentrations the
experimental value of h*(0) diverges significantly from the theoret-

ical value.

Typical values of the variation of Hc (t) with t are presented
2
in Fig. 37. For the samples with high Cd concentration, Hc (t) is non-
2
linear as t + 1. The effect is not seen for those samples low in Cd

concentration, The reason for the non-linearity is not known. The effect
may be noted in a quantitative manner by the large and negative values
of D in Table 11.
2
The same effect occurs in Hc (t), as seen in Fig. 38.
1
The discussion of Hc may be put on a more quantitative basis

1

by considering the GL parameter x,, defined by Eq. (7.18). We can cal-

3’

culate values of Hc (t) by setting Ky = Kgs and this is done in Fig. 39.
1

The reversible theoretical and experimental values of Hc1 converge as
t - 1, as required by Serin (112)., However, when the irreversible data
are used, as in Fig, 40, we do not obtain this convergence, indicating
that the irreversible data is inadequate.

The amount of flux trapped in the alloys at H = 0 was generally
very small, indicating good homogeneity of the samples. The data were
fitted to the theory of Budnick et al (114) and produced an apparent
fit. However, the result is not conclusive since a number of polynomials
could be fitted with the present data.

To summarize, we have explored the magnetic superconducting
behavior in the fcc phase of the In~Cd system. The theory of hysteretic

magnetization derived in this thesis was used to derive reversible

curves from the irreversible data., In a wide variety of ways, the rever-
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sible data was found to be superior to the raw irreversible data.




APPENDIX A
EVALUATION OF THEORIES OF HYSTERESIS

The magnetization at any point in a material is
47M = B - H (A.1)
The average magnetization of a finite body is found by integrating this
relationship over its volume and normalizing., Thus
4nMav = f(B - H)dV/SfdV
We wish to make this equation as simple as possible, and to eliminate
demagnetization ratio effects. We assume a long superconducting cylinder
whose main axis is parallel to the applied magnetic field. If its length
2>>R, its radius, the demagnetization ratio vanishes, The volume is now
mR2%, and the infinitesimal volume element is 27¢RdR, giving
4m™ = (2/R?)| {B(R) - H}RdR. (A. la)
We have first assumed no end effects. Secondly, we postulate cylin-
drical symmetry with respect to magnetic field in the sample. The first
assumption is made viable by making the sample of suitable dimensions.
The second assumption is valid if the sample is homogeneous. There is
then no physical reason for non-cylindrical symmetry in the sample field
distribution, We can now discuss the extant hysteresis models for both
"hard" (those with extended lattice defects(47)) and Type II supercon-
ductors, although the two concepts are not mutually exclusive.
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The Bean Model

Bean (48) was the first to discuss the problem of hysteresis in
superconductors systematically. The theory assumes a "two-material" sup-
erconductor, in which thin filaments of critical field Hc >>Hc, the crit-
ical field of the rest of the sample, thread it in a multgply conne cted
system. Although this "sponge" structure has been identified with a dis-
location network (49), its relationship with the Abrikosov model is not
known. The filaments can carry lossless currents up to J = Jc'

Below H = Hc, we have a Type I superconductor: B = 0. If the ap-
plied field is increased beyond this point, some of the outer "soft"
material (the mesh) becomes normal, and a supercurrent is induced to flow
in the outer filaments., By Ampere's Law, it flows to a depth

A= c(H~- Hc) /lch (A.2)

The interior of the sample, 0 < r < R - A, is shielded by these
supercurrents: B = 0., The assumption of the "critical state" has been
used also., This implied that the supercurrents are either of magnitude
Jc or vanish, At r =R - A, B = HC. At r = R, B = H. Assuming linearity
in this "penetration depth", we find

B=H-K(1 - r/R), R=- A< r <R, Hc<H (A.3)
where K = 4TchR/c.

If the external field is increased to H = Hc + K, B = Hc at r = 0.
The bulk properties of the superconductor are then destroyed. Then

B=H--K(l - 1r/R), 0< r <R, H> Hc+K(A.4)

If Eqs. (A.2), (A.3), (A.4) and their accompanying conditions are

substituted into Eq. (A.la) we obtain

4™ = -H, 0 <H<H,
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4iM e ~-H + (H2 - H2) + H2(3H - 2H ) - H3, H <H <K+ H
C [+ C c — - C
K

3K?

4mM = -K/3, H > HC' + K (A.5)

The induction B and magnetization for typical values of K are shown
in Figs. A.la and A.lb, Now let us discuss the magnetization when the ap-
plied field is decreased. In a subsequent paper, Bean (50) discussed only
the case when a field is applied and then reduced to zero. In this case,
Bean reasons that the surface currents reverse under the influence of the
now reversed emf., Maxwell's equation for this situation in cylindrical
symmetry is

dB/dr = (4n/c)J, (A.6)

within the superconductor. Since in Bean's model B has a constant slope,
J = const, If, in Fig, A.la, the total current is to be divided into two
sections of equal and opposite magnitude, we merely reverse the slope of
B at the point r = R - A/2, as shown in Fig. A.lb. Then we have, in ana-

logy with the foregoing,

B=H +K(1-x/R), R-4/2<r<R )

} H <H<K+H
B=H-K(1-x/R),R-A<Tr<R=-4/2 | € ¢
B=H-K(1-r/R), 0<r<r/2 )

H>H +K (A.7)
B = H - Kr/R, R/2<r <R ) ¢

and B = 0 otherwise. The values of magnetization which will be obtained
by substituting Eqs. (A.7) into Eq. (A.la) will be those of the remanent
or trapped flux (at H = 0) only. This is because we do not know how B
varies with decreasing values of the applied field. Thus the values of
magnetization for decreasing H which are shown in Fig. A.lc are merely

suggestive of the real curve. Thus
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4 = -H, 0 <H<H

- = ¢
= - 2 _p2 _ 2
4mM H+H B2, Hc) (3Hc+H+2K), H <H<H_ +K
K 4K2
4™ = -3K/4, H > H, +K (A. 8)

The magnetization for the return curve is sketched as a dotted line
in Fig. A.lc.

The value of the parameter K, a linear function of the critical cur-
rent JC, will determine the shape of the curves. When K is low, the point
H = HC corresponds approximately to H = Hcl. As K becomes larger, the max-
imum of 47M becomes smeared out so that it is no longer distinguishable.
Furthermore, when H 3_Hc + K, the magnetization does not decrease any
further, as it does experimentally.

The return curve departs even more from experimental data. Although
the curve shown is really a measure only of the trapped flux, we note
that the trapped flux is always positive or zero experimentally, whereas
in Bean's model it is always negative, and in magnitude greater than the
maximum of the magnetization in the forward direction, which is not seen.

Thus although the Bean model shows a resemblance to experimental
curves over certain ranges of applied fields for some values of the para-
meter K, in general it departs from experiment.

The reasons for this are as follows: (1) While the concept of "crit-
ical state" may be valid, the supercurrent J, may be a function of r or
B. (2) The assumption that B decreases slowly into the superconductor may
be incorrect. It has been shown (44) that‘B decreases rapidly below the

surface for at least some hard superconductors. (3) The reason for the

constancy of -47M at high fields is due to the assumption that B varies
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directly as H; thus B -H becomes constant. Presumably in real supercon-
ductors B does not quite achieve a linear relationship with H. (4) The
reverse magnetic curve is higher than tﬁat for the forward direction be-
cause Bean postulates a 'decrease in the values of B for this direction.
This decreases B -= H and thus 47M becomes more negative (see Eq. (A.la)).
Experimentally, apparently the area under the B curve will increase as

H decreases,

The Kim Model

Kim et al (5) refined Bean's work. Their theoretical conclusions were
based on experimental results on hollow tubes of high field superconduct-
ors (Nb-Zr, Nb-Sn). Kim et al modify Bean's idea of the critical state
to encompass all of the sample, i.e., each region of the sample carries
a critical current demsity J(B) uniquely determined by the value of B in
that region., Now utilizing equation 5-81 of Jackson (52),

J=c(V xm (A.9)

Combining Eq. (A.9) with Eq. (A.la), we have
R
B(r) = H + (41r/c)[ J{B(xr) }dr (A. 10)
s

This cannot be solved in a closed form without simplifying assumptions.
If we differentiate Eq. (A.10) with respect to r, and note that the
external field H has no r dependence, we obtain, using the results of
Fietz et al(53),
dB/dr = *(4nw/c)J(B). Then
dB/J(B) = *(4n/c)dr (A.11)
Let B=Hatr=R; B=H+ 4m(r) at r = r, an arbitrary radial

distance. Integrating Eq. (A.11l) and making use of these boundary cond-
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itions, H + 4mm(r)

dB/J(B) = £(4n/c)(xr - R) (A.12)
r

Based on the experimental data gathered on the hollow tubes, Kim makes
the ad hoc assumption that

a/J =B + Bo’ (A.13)
where o and B  are constants. Substituting Eq. (A.13) into Eq. (A.12),

+(4ma/c)(r = R) = B (4mm) + H(4mm) + (4mm)2/2,
fam = -a, + \/az - agr (A.14)

where a; = B_+H, a, = (Bo + H)2 F 8waR/c, and ag = + 8ra/c. The nega-
tive surd is unphysical. The total magnetization is
R
4mM = (2/R?) J r4mm(r)dr (A. 15)
T

Substituting Eq. (A.14) into Eq. (A.15), after integration we obtain
4nM = —a) +(4/15a2R2)( 2332 - (23, 7 M) (s, £ M2}, (A.16)

where 8moR/c = A. This last equation is in distinction to Eq. 14 of Kim,
valid only for r = 0.Presumably the + sign refers to the directions of
increasing and decreasing H, respectively. Since we also require B(H,r),

we may use Eqs. (A.l4) and (A.1) and write

B=-B + /(Bo +H)2 F (A - Ar/R) |, (A.17)

plotted in Figs A.2a and A.2b for the typical values for the parameters
of Bo = 5 and A = 10. The applied field is in units of Hcl.
The curves for increasing H are similar to those of Bean, except that
the field B never vanishes at r = 0. Although not evident in Fig. A.2a,
using Eq. (A.17) we can see that dB/dr ;s not constant for different val-

ues of H, as it is in Bean's theory.
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The curve for B(r) for decreasing H resembles Fig. A.2a strongly,
except that the maximum of B is at r = 0. In both Figs. A.2a and A.2b,
B=H at r = R, If (H/HC ) < 0.91 for the particular set of parameters

1
B =5, A= 10, then B(r) < 0 for certain values of r/R for H increasing.

o

This situation is eliminated by specifying that B > 0 for all r for inc-
reasing H. This condition is taken into account in the calculation of the
overall magnetization curve, shown in Fig. A.2c. As above, the magnetiz-
ation and applied field are in units of Hcl.

Eq. (A.16) is valid only for H > 0.91 in the forward direction; it
is valid for all values of H in the reverse direction.

Now let us compare Fig. A.2c with Fig. l12a. There are regions of
similarity: the forward curve rises to a maximum and then decreases. How-
ever, the magnetization shows no sign of decreasing to zero except as
H » », which is unphysical. The same phenomenon occurs in the reverse
direction., Furthermore, the reverse magnetization is always positive and
increases monotonically to reach a trapped flux at H = 0 approximately
equal to the maximum negative magnetization in the forward direction.
While certain hard superconductors exhibit these characteristics, they
are by no means universal. Thus, in the light of these departures from
experiment, we may say that the Kim model is not a complete description
of hysteresis in both Type II and hard superconductors.

The reasons for this are as follows: (1) The critical state concept
may not be valid over the entire superconductor. (2) B probably does not
equal H slightly below the surface of the superconductor, as mentioned
in Bean's model. (3) The configuration of B(r) for decreasing H may have

lower values that those shown in Fig. A.2b, This would decrease 47M and

perhaps mzke it negative.
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Eq. (A.16) is of the same form as the equations in Table I of Fietz

ct al,

The de Jong Model

de Jong and Blaiss;(54) presented a model of completely pinned sup-
erconducting filaments., This is a modification of Bean's work, but also
takes into account the nature of the "hard" superconducting filaments.

As in Bean's model, the material surrounding the filaments has a
critical field Hc. The filaments themselves, of diameter much less than
the London penetration depth, have a critical field ch, where HCZ is
defined by Fig. 12a. The reason for this critical field lies in the next
equation. The filaments have a uniform density in the sample, and are con-
centric with its axis.

According to de Jong, the maximum supercurrent in a filament is

I=AH - B(1)}, (A.18)
)

where A is a constant. From 0 < H S H,, the total sample is diamagnetic
due to the shielding currenats.

To determine the internal field distribution and magnetization above
Hc’ we use Eq. (A.18) and its assumption of critical (or maximum) super-
currents. Using Eq. (A.6),

dB/dr = A(4nA/c){ H, - B(x)} (A.19)
2

Using the boundary condition B(R) = H,

B(x) - H = (H, - (- QR - r)) (A.20)
2

where £ = 4mAA/c, and A is the density of the filaments., Finally, B = H

at r = R - A, determined by the magnitude of the critical fieldlié This
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yields

A= (R/E)ln{(ch - Hc)/(HCZ - , (A.21)

for increasing field. When the field decreases, the currents reverse and
the constant A + -A, and £ > -g&.

Graphs of Eq. (A.20) are presented in Figs. A.3a and A.3b. There are
two adjustable parameters, HC/Hc2 and &,

We see on comparing Fig. A.3a with Fig. A.la that the two graphs are
similar in many respects. The exceptions lie in the curved portions of
the upper portions of the internal field. Also, due to the parameters, the
region of zero internal field will not in general be the same.Substitut-
ion of Eq. (A.20) into Eq. (A.la) now yields the magnetization curve. We
have

4mM = -H, 0 <H<H. (A.22)
Since B(r) > 0 for all r,
R

(2/R2)J r(Hc - H){1 - eg(R - r)}dr
R-A 2

&M

-H + {(£ + 1)/g2}(2R_ - 2H) - (1/€?)(8, - H) fn%k

2 1

+ {(4n k1>/52}{sczucz - W+ 20, -E)) (A2))

where k1 = (H -H)/(H - H). It will be noted that this equation is
c, ¢ Cy

somewhat different from de Jong's equation 13, as the latter equation

does not provide a matching solution at H Hg. Hg is the value of the

-£
H, {1-(1 ~ HC/Hc }e }.

external field such that A= R, and so Hg
2 2

Thus Eq. (A.23) is valid only up till H = Hg‘ Above this point, we merely

integrate from 0 to R and obtain
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4= 2(H_ - W)U+ (1/ED (1 + & - e} (A.24)
2

Now let us consider the curve for decreasing H. Above H = Hc, we
change £ + -£ in Eq. (A.24), obtaining

G = 200 - B){ + (1/ED) (L - £ =)} (A.25)
2

When H < Hc, de Jong specifies that the magnetization decreases diamag-
netically. The results of the above equations are presented in Fig. A.3c.
We can see that they approach the experimental data of Fig. 12a more
closely than the previous theories discussed. We now have a definite van-
ishing of 41M at H=Hc2. The shape of the forward curve for low values of
£ resembles that of experimental data. Furthermore, the shapes of the
curves approach those for Type I superconductors for £ + «» or 0, which
would be expected physically.

However, the reverse curve does not agree with data. The shape is
that of strongly hysteretic samples, with the magnetization always pos-
itive. In addition, the trapped flux is always greater than the maximum
of -47M, which is not correct. The portions of the forward curve past
H = Hg are linear, which does not agree with theory. This point is dis~
cussed in the main body of this work.

The reasons for these discrepancies are: (1) There is probably not
a uniform density of fluxoids throughout the sample. (2) The fluxoids are
probably not completely pinned for all values of the applied field. (3)
The bulk of the material in the superconductor may not be Type I as postu-

lated.

The Goedemoed Model

Goedemoed et al (55) published a model based on a reversible mag-
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netization curve and a hypothesis concerning the pinning force relation-
ship. However, this model Is of limited applicability because it makes
use of the linear nature of the reversible magnetization curve near U =
ch and is applicatle only near there.
The driving magnetic force acting per unit length of a fluxoid is
F = (cq;o/lmu)(aB/Br) (A.26)
where ¢o is the flux quantum and p is the slope of the reversible magnet-
ization curve (45). Goedemoed assumes the following relationship between
the maximum pinning force per unit length of fluxoid Fp and induction a-
rising from the interaction between the fluxoid structure and defect

structure:

Fp . (ch - B)

At equilibrium, the two forces are equal:

0B/dr = B(u/u_)(MH_ - B) (A.27)

c c

2 2
where Ho is the reversible constant slope at H = Hc , and B is a con-

2 2
stant. Making use of this slope, the magnetization near Hc is
2
2 %

Near Hc » We can generalize Eq. (A.28):
2

4mM(x) = —11c2(l-1c - H(1)).
2

Using Eq. (A.l), we then have

B(r) = H(r) - M, {Hc - H(x)} (A.29)
2 2
When r = R, H(R) = H. Then
B(R) =H-yu (H =-H) (A. 30)
€ ©2

We deduce that B # H at the surface unless H = H_ . Near 1*1c s Eq. (A.27)
2 2
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be comes

dB/dr = g(H_ - B). (A.31)
]

Using Eqs. (A.30) and (A.31), we obtain

B(R-1)

B(r) = Hc - (1 +uc )(H.c - H)e (A.32)

2 2 2
Substituting Eq. (A.32) into Eq. (A.la),

4nM o= (H - H){1 - 2¢1 + u_ ){®® - 1 - gR)/B2R2}}  (A.33)
] )

Graphs of Eqs. (A.32) and (A.33) are presented in Fig. A.4. The
graph for decreasing fields is constructed by setting 8 -+ -B.

In Figs. A.4a and A.4b, the graph of internal fields B are some-
what similar to those previously described. However, in contrast to pre-
vious models, B # H slightly below the surface of the superconductor.

In Fig. A.4c, we note that the curves resemble those of Fig. 12a near

H = ch. The reversible magnetization curve is dotted. By adjusting the
parameter BR, the reverse magnetization curve is negative for at least
a portion of the range of H, which is often the case experimentally, es-
pecially in samples with few defects.

Since it has been shown theoretically that the reversible magnet-
ization curve (and presumably the irreversible curve as well) is linear
near H = ch, Goedemoed's model agrees well with the theory. The only
drawback to this work is its limited range of applicability. Any attempt
to continue this model to other regions would violate its own assumptions.

A different approach was adopted by Fietz and Webb (FW) (56). Up to
now the theories discussed have formulated a model for the internal
fields and magnetization, and these results were then compared with ex-

periment. FW formulated a model which used the experimental data to det-

ermine a reversible magnetization curve. The shielding currents (assum-
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ed to be critical) are expanded in a Taylor series about the point r =
R:

3.(r) = (R + IR (x - B) + I (R)(r - BZ/2! + ..... (A.34)
where primes indicate derivatives., This equation applies to the forward
curve, Negative subscripts would apply to the reverse curve. Integrat-
ing Eq. (A.34) using Eq. (A.6),

B(r) = B(R) + (c/4m I (R)(x = B + IR (x - B) /2! + ...} (A.35)
where B(R) = H + 4ﬂMe, and 4WME is the reversible magnetization in field

H, to be determined. Integrating Eq. (A.35) using Eq. (A.la),

hnM, = 4nM_ + (c/2m) (I, R/30 - J;R2/4: + vend) (A.%a)
hM_ = 4+ (c/2m)(I_R/3% - J'R2/4Y + ,...) (A. 36b)

The critical state model assumes a one-to-one correspondence be-

tween the magnitude of the critical current and the local field B:

3.8 = [5,®] = [1_®].
Also, from Eq. (A.34) we see that
(373, /o™ = (D)™ _/ar™)
r=R r=R

Using these conditions and adding Eqs. (A.36a) and (A.36b),

hu(M, + M) = 2(4mM) - (21/3e)I,R* + ...l
If the original series converges rapidly, we can write

4n(M+-+ M) = 2(4nMe), (A.37)
which indicates that the reversible magnetization is midway between the
upper and lower irreversible magnetization curves.

Because this model uses the experimental data to compute the rev-

ersible curve, we cannot use it to independently check other data. In
addition, its assumptions generally confine it to regions where B(r) #

0 for any value of r. These regions of H can be substantial, as noted
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in Fig. A.3a. We also have no physical reason why q+(R) should be neg-
ligible with respect to 4nMe, as postulated., Thus we shall need a phys-

ical model of the reversible curve.

The Campbell Model

Campbell et al (37) proposed a hysteresis model similar to that of
de Jong and Goedemoed noted above. The major differences lay in the as-
sumption of a different formula for pinning force and a different rev-
ersible magnetization curve. Campbell defines a reversible magnetization
curve as an approximation to the Abrikosov function: at H;l, B rises

vertically to a value A, after which B varies linearly with H with a

slope m, Since B = H at H = Hc R
2

m=H_-A)/H -H ) (A.38)
€ 2 9
From this description, the pair of straight lines will bear a strong

resemblance to the forward curve of Fig, 12b, Thus

B0 = A+ (ch - A)(H - Hcl)/(Hcz - Hcl), (A.39)

where Bo is the magnetic induction of the reversible curve. To explain
the irreversible curve, Campbell assumes a relationship between pinning
force and B of the form
F « B I, (A.40)
Using Eqs. (A.40) and (A.26), we have

dB/dr = a/2B
where o is a constant. Upon integrating,

BZ = a(r - R) + Bg, (A.41)
assuming B = Bo at r = R, We now haye two adjustable parameters, o and A.

One problem which arises in integrating Eq. (A.4l) is that we have
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a non-zero magnetic induction for H = H :
1
B2 = a(r - R) + A2,

To insure that 4mM = -HC at H = Hc » We subtract the magnetization
1 1
arising from this induction from the overall magnetization. Now B = 0

when r = R - Bg /o. Since we must have B > 0, the curve for increasing
H is divided into 2 regions: A < B < YoR and /ﬁf_ B < Hc . Using

2
Eqs (A.la) and the above conditions, we have

4M = -H + (4/1502R?) {B3(5aR - 2B2) - A3(SaR - 242)}, A < B_ < VoR
(A.42)
47M = - H + (4/1502R%) {B3(SaR ~ 282) + 2(B2 - or) /2
-03(50R - 202)}, VR < B_ < ch. (A, 43)
On the reverse curve, oR -+ -aR, yielding
4mt = - B+ (4/1502R2) {282 + oR)>/% - BI(5aR + 282)
+03(SoR + 242)}, A <B_ < ch. (A.44)

Graphs of the above equations are presented in Fig. A.5 for partic-

ular values of A, oR and Hc /Hc . These equations are slightly different
2 "1

from those of Campbell,

The irreversible curves are not defined for H < Hcl. The curves
for B(r) are somewhat similar to those previously described, but we ob-
serve that the irreversible curves are much more similar in shape to
those of Fig. 12a than previous models. Another point in favor of this
model is that the reversible curve is similar to that calculated by
Koppe (38).

Campbell has compared the results of the model with work done on

Pb-Bi alloys. However, because of the lack of criteria for a reversible
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curve for this data, it was chosen arbitrarily. We shall use some work
of Goedemoed (33) to evaluate this model. Another problem which arises
is that the reversible curve, for large values of «, should decrease
exponentially (36) rather than linearly. This is discussed in the main

text.

The Silcox-Rollins Model

Silcox and Rollins (39) presented a model which determines the
fluxoid-fluxoid interaction semi-empirically. The Gibbs free energy of
the triangular fluxoid lattice is

G = ne + £(n) ~ BH/4m,
where f(n) is the energy associated with the fluxoid-fluxoid interaction,
e is the energy of each fluxoid, and B = n¢0, where n is the number of
fluxoids and ¢o is the flux quantum., Setting dG/dn = 0, we obtain

f/on = (¢o/4ﬂ)(H - Hcl), (A.45)
where we equate HC1 = 4ns/¢o. The authors approximate f(n) by consider-
ing nearest-neighbor interactions only. Thus each fluxoid's potential
energy U(a) will be multiplied by z/2, where a is the equilibrium dist-
ance between fluxoids, and z is the coordination number of the fluxoid
structure. Thus

f(n) = nzU(a)/2 (A.46)

Silcox and Rollins choose a reversible magnetization curve of the form

B=H, (" - H, )/(HC - H_ ) = né (A.47)

2 1 2 1

i.e., linear in H. Using Eqs. (A.45), (A.46), (A.47) and the fact that,
due to geometry, n = 2/V3a2, we have

U(a) = ¢°2//§wzya2,

writing v = HCZ/(Hc2 - Hcl). Thus



158
dF/da = d’U(a)/da® = (2V3¢2)/nzya* (A.49)
where F is the force between fluxoids.
Now we can equate thg pinning forces to the inter-fluxoid forces.
These can be written as I

where p is the density of pinning points along each fluxoid, each with
a force Fp. If we expand the last equation in a Taylor series around
the equilibrium point x = a, we have

6a(dF/dx) = 6a(dF/da) (da/dx) = —pFP, (A.50)
where 6 is the number of nearest neighbors. The quantity x is now taken
to be the radial distance in the sample. Silcox takes np = P, where P
is the density of pinning points through the whole sample, in order to
determine p. The authors use Friedel's (45) estimate of the force Fp‘
(although the latter's involves a logarithmic term in a):

F = (Hclq)o)/lm (A.51)

Combining Eqs. (A.48), (A.49), (A.50) and (A.51),

da/dx = ~PH_ zya®/96¢ (A.51a)
Cl (o]

Integrating and using Eqs. (A.47) and (A.48),

BZ = Bx + const. (A.51b)
where B is a constant. Using the boundary conditions given by Eq. (A.47)
for x = R,

2 - -
B% = {ch(n Hcl)/(ch

-H )} -8R - x (A.52)
c
1
The induction will have a parabolic shape, similar to that of the Camp-
bell model and others., Differences will lie in the boundary conditions

chosen, as exemplified by the reversible magnetization curves.
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Integrating Eq. (A.52),
4nM = -H + {(4Q3)/15(BR)2}{58R - 2Q2}, 0 < Q < /@R (A.53)

where Q = HCZ(H - Hcl)/(HCZ- Hcl).

4ni = -H + {4/15(BR)2HQ3(58R - 2Q2) + 2(Q - 8R)>'%},

VBR < Q < H (A.54)
=i,

For decreasing H, we have

5/2 _

4mM = -H + {4/15(BR)2}{2(Q% + BR) Q3(2Q% + 58R)}, 0 < Q < H,

2
(A.55)

Graphs of the above equations are presented in Fig. A.6. The val-
ues of B and 47M show a strong resemblance to those of Campbell et al
and to experimental data. These two models are compared to experiment-
al data in the main text.

Irie (57) proposed a model for hysteresis which found an internal
induction of the form ABZ-Y = AOBg-Y - (2 - yY)ax/2, where A, Ao’ y and
a are constants., However, due to the assumption that B/H is linear near
the surface of the sample, magnetization curves were obtained which were
very similar to those of Kim(51), and this theory will not be discussed
further.

Yasukochi et al (58) used the Silcox-Rollins formulation, with the
exception that the density of pinning points along the fluxoids was tak-
en to be of the form np? = P', to take account of the region of high
fluxoid density. This yields an induction of the form

3/2 33/ R~ (A.56)

B
Use of Eq. (A.56) and the assumption that B/H is linear near the

surface ylelds a magnetization of the form
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3/2 /3

4vM = -1 + (3/20a?R2){5(}13/2 - uR)8/3 —8H3/2(H - ozR)S + 3u4},

H << (aR)z/3
c. — 1 2
1
This expression # Hc when H = HC , obviating its usefulness.
1 1

This completes the critical evaluation of the theories of hyster-

esis which are presently found in the literature.
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