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Abstract

This thesis describes experimental studies of Rydberg atom pair interactions. A new

technique is described that combines trapping of ultracold Cesium atoms with Ry-

dberg tagging time-of-flight spectroscopy to attain a velocity resolution of 2.5 cm/s.

Using this technique, observed molecular resonances in Cesium spectra are charac-

terized as either dissociating photo-initiated collision processes or bound long range

Rydberg atom-Rydberg atom molecules called macrodimers.
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Chapter 1

Introduction

The purpose of this work was to experimentally observe a new class of long range

Rydberg atom-Rydberg atom molecules that occur due to avoided crossings between

Rydberg atom pair potentials in an electric field. This class of molecules can remain

bound at long range (∼ µm) or dissociate as a fast collision process. The nature of

the pair process will depend strongly on the magnitude of the applied field due to the

extreme sensitivity of Rydberg atoms to electric fields. These experiments have been

motivated by work with resonant energy transfer in Rydberg gases [1], predictions

of long range bound molecular states [2], proposals for using Rydberg atoms for

quantum information using dipole blockade [3, 4], and experimental observations of

pair resonances in ultracold Rydberg gases [5, 6].

The primary driving force behind studies of Rydberg pair interactions is the phe-

nomenon known as dipole blockade. Dipole blockade was proposed as a method for

generating entangled states in Rydberg gases [3, 4]. The dipole-dipole interaction

is strong enough, that the excitation of a single Rydberg atom creates a local field

that can block the excitation of a second Rydberg atom (see fig. 1.1). The second

atom sees an energy shift ∆ due to the field created by the excited atom that drives

the transition frequency out of resonance with the laser field. The effect of dipole

blockade on optical excitation lineshapes has been observed in several experiments

[7–9]. The strength of the dipole-dipole interaction and the long coherence times
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Figure 1.1: Diagram of a gas of atoms with circles indicating the blockade region due
to an excited Rydberg atom. The energy required to excite another atom within the
blockade radius is shifted by ∆.

make Rydberg states ideal for quantum computation schemes [3, 4]. The magnitude

of ∆ depends critically on the R dependence of the pair interaction potential.

Resonant energy transfer by collisions between atoms or molecules has been stud-

ied extensively due to applications in laser science and recently as applied to Rydberg

atoms [1]. In Rydberg atoms, the effects can be much more dramatic because of the

sensitivity of Rydberg atoms to electric fields.

Resonant energy transfer occurs when two atoms or molecules collide and exchange

energy. In order for energy to be resonantly exchanged, both partners must have an

accessible transition that is equal in energy. This does not occur often in nature and

the existence of such an energy match is rare. In Rydberg states however, the energy

spacings can be easily modified so that such a coincidence can be realized using the

Stark effect (see fig. 1.2). By applying an electric field, the energy levels can be

shifted to enhance the probability of resonant transfer of energy. As an example,

consider the collision,

nS + nS → (n− 1)P + nP. (1.1)

This collision would not be resonant at zero field because the transition nS → nP
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Figure 1.2: Energy level diagram of an atom in the presence of an electric field. The
dashed line indicates the electric field where the transition of an nS state upward to
nP equals that downward to (n− 1)P .

does not equal nS → (n− 1)P in energy. By applying an electric field, the nS state

will have a negative Stark shift while the P states will experience a positive shift. At

some electric field, the upward and downward transition from the nS state will be

equal, allowing for resonant transfer of energy.

The long range nature of the interaction between pairs of Rydberg atoms can have

strong effects on the shape of spectral profiles [10]. The idea of exciting Rydberg atom

pairs that interact by a long range potential is similar to photoassociation, with the

enhanced tunability of the energy states with an applied electric field and the larger

length scale (∼ µm). Fioretti et al. observed resonant energy transfer in ultracold

Cs that could be explained by the interaction of pairs of Rydberg atoms at long

range. The observed spectral profiles displayed asymmetry that was explained in the

context of long range pair interactions [10]. Their observations suggested that the

attractive or repulsive nature of the interaction determined the asymmetry of the

spectral profiles.

The dipole-dipole interaction alone is not sufficient to fully describe the inter-

action between two Rydberg atoms. In order to understand the pair interactions,

detailed calculations of the higher order multipole interactions (dipole-dipole, dipole-

quadrupole and quadrupole-quadrupole) are required [11, 12]. Perturbative calcu-
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lations alone do not account for the resonant, near resonant and off resonant inter-

actions. To accurately describe the interactions, matrix diagonalization is necessary

[12]. Together with accurate calculations, it is possible to explain experimental ob-

servations of interacting pairs of Rydberg atoms.

It has been proposed that the multipolar interactions between pairs of Rydberg

atoms could lead to bound molecular states [2]. Macrodimers are exotic states that

consist of two Rydberg atoms that are bound at extremely long range (R > 1 µm).

Predicting bound states that may be formed by avoided crossings requires accurate

calculations of the pair interaction potentials in the presence of small electric fields.

While the initial prediction of these long range molecular states was predicted using

perturbative calculations [2], calculations using matrix diagonalization with an ap-

plied field showed that the existence of macrodimers was likely [13]. The calculations

in [2] ignored the interactions between the pair states that give rise to avoided cross-

ings. The work described in this thesis depends critically on the existence of avoided

crossings for the formation of bound states.

Further experiments were soon underway to investigate the physics of the long

range interactions [5–8]. An experiment was conducted by Oliveira et al. which

measured the time evolution of the atomic population due to energy transfer for the

Rubidium collision process [5],

33P3/2 + 33P3/2 → 33S1/2 + 34S1/2. (1.2)

Their experimental observations were in qualitative agreement with predictions based

on a semiclassical model of two Rydberg atoms colliding under the influence of a R−5

potential, including effects from radiative decay. Quantitative agreement was not

achieved due to insufficient knowledge of the pair interaction potential.

An important experiment was performed by Farooqi et al. in which the first

direct excitation of pair resonances was observed [6]. In ion yield spectra in Rubid-



CHAPTER 1. INTRODUCTION 5

Figure 1.3: Avoided crossings that lead to the formation of (a) bound states and (b)
photo-initiated collisions. The range of R is ∼ 10 µm in both figures. An excited
macrodimer will remain bound in the well, while a collision will result in atomic
fragments that recoil with a kinetic energy KE determined by the energy of the exit
channel, Ef .

ium, resonance features were observed that did not correspond to atomic Rydberg

states. These molecular resonances were observed at energies that corresponded to

pair excitations of Rydberg atoms. The resonances were verified to be due to pairs

of Rydberg atom by measurements of the excitation rate dependence on the optical

excitation intensity, but did not necessarily correspond to bound molecular states.

The avoided crossings in the long range potentials that give rise to bound molecular

states can also give rise to photo-initiated collisions (see fig. 1.3) [14]. Fig. 1.3 (a)

shows a diagram of a well that could result from an avoided crossing. Excitation

of a vibrational state or states of the well would result in a molecule that oscillates

about its equilibrium position Re. Collision processes can occur by excitation at a

stationary point in the pair interaction potentials, with internal energy that is then

converted to translational motion along R as shown in fig. 1.3 (b). The pair will be

excited with energy Ei and gain kinetic energy KE that is equal to

KE = Ei − Ef (1.3)
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as determined by the energy Ef of the exit channel. It is not possible to determine

if an excited pair remains bound or dissociates with purely spectroscopic methods.

A pair could be bound at the time of creation and then dissociate by coupling to

a repulsive pair state. The probability of predissociation will depend on the energy

spacing of the pair interaction potentials and the coupling between the states.

The primary focus of this thesis work was to observe the signatures of photo-

initiated collision processes and the existence of macrodimer molecules. The mea-

surements were conducted by observing the dynamics of the fragments as they either

receded by dissociation or remained bound. Such a signature was measured by mon-

itoring the expansion of the fragments as a function of time after excitation of the

molecular complex. These methods lay the foundations for future studies that wish

to produce these exotic molecules for sensitive tests of theory [2]. The high fidelity

achieved also paves the way for future studies of ultracold collisions between atoms

and diatoms and further experimental studies of ultracold chemistry. By extending

the time-of-flight methods described in this work to full 3-dimensional measurements

of product spatial distributions, it would be possible to study the potential energy

surface that determines many-body collision dynamics.
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Chapter 2

Physics of Rydberg States

In this chapter I will discuss the relevant characteristics of Rydberg states. The energy

level structure of Rydberg states will be discussed, including the relevant parameters

for Cs (quantum defects, etc.). I will discuss the lifetime of high n Rydberg states,

modified by the effects of blackbody radiation. I will also summarize the basic theory

of the long-range pair interactions that can give rise to avoided crossings that could

support bound or dissociative states.

2.1 Energy of Rydberg States

The energy levels for the Rydberg states of Cs are obtained by replacing the principal

quantum number n for Hydrogen with an effective principal quantum number n∗ =

n− δnl where δnl is the quantum defect. The energy spectrum is

Enl = − RCs

(n∗)2
(2.1)

where RCs = 3.289828299(20) × 109 MHz is the Cs Rydberg constant [15] and the

zero of energy is at ionization (a sample spectrum can be seen in fig. 2.1). At high

n (∼ 100), the energy spacing between Rydberg states is ∼GHz. The quantum defect

arises from a phase shift that occurs in the electronic wavefunction of the valence

electron due to the ionic core. The core electrons shield the valence electron from the
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Figure 2.1: A spectrum of high n Rydberg states of Cs (in black). A simultaneous
Fabry-Perot signal with a free spectral range of 300 MHz is shown in red. A simulta-
neous reference spectrum of molecular Iodine is shown in blue. The zero of frequency
for this spectrum was arbitrarily chosen.

nuclear core which causes a phase shift equal to δnl/π (see fig. 2.2) [16].

As is indicated from the notation, the quantum defect is also slightly n dependent.

The quantum defect is given by the expansion,

δnl = δ0 +
δ2

(n− δ0)2
+

δ4

(n− δ0)4
+ ... (2.2)

where the parameters are taken from [15, 16] and are tabulated in table 2.1.

Series δ0 δ2

nS1/2 4.049325(15) 0.246(5)
nP1/2 3.591556(30) 0.3714(40)
nP3/2 3.559058(30) 0.374(40)
nD3/2 2.475365(20) 0.5554(60)
nD5/2 2.466210(15) 0.0167(5)
nF5/2 0.033392(50) -0.191(30)
nF7/2 0.033537(28) -0.191(20)

Table 2.1: Quantum defect parameters for Cs. The quantum defects for l > 3 are
effectively zero as are the parameters δ≥4 [15, 16].
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Figure 2.2: Diagram of the radial wave functions for hydrogen (solid black) and an
alkali (red dashed). The ionic core of an alkali pulls the phase of the wavefunction
towards the ionic core with radius r0 by an amount δnl/π.

2.2 Model Potential of the Core

In order to solve for the wavefunctions of Cs, it is necessary to model the interaction

of the valence electron with the core. For a review of model potential methods, the

reader is referred to [17]. The model must describe the motion of the valence electron

in the presence of the core electrons in a way that reproduces the energy structure of

the atom of interest, in this case Cs.

The potential that was used in this work was that given by Marinescu et al. [18].

The potential was obtained by a five-parameter parametric fit to the Rydberg energies

of Cs. The model potential is

Vl(r) =
Zl(r)

r
− αc

2r4

[
1− e−(r/rc)6

]
(2.3)

where

Zl(r) = 1 + (z − 1)e−a1r − r(a3 + a4r)e
−a2r. (2.4)
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Parameter l = 0 l = 1 l = 2 l ≥ 3
a1 3.49546309 4.69366096 4.32466196 3.01048361
a2 1.47533800 1.71398344 1.61365288 1.40000001
a3 -9.72143084 -2465624280 -6.70128850 -3.20036138
a4 0.02629242 -0.09543125 -0.74095193 0.00034538
rc 1.92046930 2.13383095 0.93007296 1.99969677

Table 2.2: Model potential parameters for Cs from [18].

z is the nuclear charge and rc truncates the nonphysical effects of the core at short r.

αc = 15.644 is the core polarization of Cs. The parameters for the model potential of

Cs is given in table 2.2.

2.3 Lifetimes of Rydberg States

The length of time that a pair of Rydberg atoms can interact will be limited by their

individual lifetimes. The lifetime of a Rydberg state can be anywhere from ∼ µs

up to several ms. However, blackbody radiation can have a strong influence on the

effective lifetime of a Rydberg state [16]. The spectrum of the blackbody radiation

can cause stimulated emission into nearby Rydberg levels due to the high density of

states.

The effective transition rate (Γeff ) of a Rydberg state will be the sum of the

natural radiative decay rate (Γrad) and the blackbody decay rate (Γbb) or in terms of

the lifetimes

1

τeff

=
1

τrad

+
1

τbb

. (2.5)

The effective lifetime τeff can be predicted from theoretical calculation of τrad and

τbb. He et al [19] expressed the natural radiative decay as a polynomial sum

τrad = a0 + a1(n
∗) + a2(n

∗)2 + a3(n
∗)3 (2.6)

where ai are l dependent parameters (see table 2.3). Farley and Wing derived an



CHAPTER 2. PHYSICS OF RYDBERG STATES 11

Series a0 a1 a2 a3

nS 2.47 1.72 -0.247 1.2
nP -102 21.5 0.831 2.53
nD 4.51 4.20 0.0553 0.661

Table 2.3: ai parameters for calculation of the radiative lifetime of Cs. The ai pa-
rameters have units of ns [19].

approximate expression for τbb for n∗ & 12.8 [20],

1

τbb

=
4

3

(
e2

~c

)3 (
kT

~

)
1

n∗2
. (2.7)

2.4 Stark Effect

It is important to account for the Stark effect in Rydberg gases as most experiments

are conducted with the application of an electric field. Even the most carefully con-

structed apparatus can have a small stray electric field that must be considered for

an accurate description of the system. The Stark effect is given by an extra term in

the Hamiltonian

Hs = d ·E (2.8)

where we will only consider the valence electron with induced dipole moment d to

experience a static electric field E. In order to find the energies of an alkali in

an electric field, perturbation theory is not feasible due to the strong interaction

between neighboring Rydberg states [21]. In Hydrogen, symmetry of the core allows

identical m to cross, but in alkali atoms, this symmetry is broken by the core. Matrix

diagonalization becomes the preferred method of calculating the energies.

The Stark effect for Hydrogen has a well known solution in parabolic coordinates

[22]. The parabolic representation is no longer advantageous for alkalis because the

Stark Hamiltonian is not diagonal in a parabolic basis due to the inclusion of fine

structure. Computationally, it is then easier to use the spherical basis for diagonal-
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ization [21].

The Stark interaction including fine structure with total angular momentum j =

l ± 1/2 for dipole transitions between states |l′, j′,m′
j〉 with energy W ′ and |l, j,mj〉

with energy W has matrix elements

〈W, l, j,mj|zEz|W ′, l′, j′, m′
j〉 = δ(mj, m

′
j)δ(l, l

′ ± 1)〈W, l|r|W ′, l′〉Ez

×
∑

ml=mj±1/2

〈l, 1/2,ml,mj −ml|j,mj〉〈l′, 1/2,ml,mj −ml|j, mj〉〈l, ml| cos θ|l′,ml〉.

(2.9)

The last term in eqn. 2.9 is evaluated

〈l,m| cos θ|l − 1,m〉 =

(
l2 −m2

(2l + 1)(2l − 1)

)1/2

,

〈l, m| cos θ|l + 1,m〉 =

(
(l + 1)2 −m2

(2l + 3)(2l + 1)

)1/2

. (2.10)

Eqn. 2.9 can be diagonalized to obtain the Stark energies and Stark eigenfunctions.

These eigenfunctions can then be used for calculating the pair interactions in the

presence of an electric field.

2.5 Pair Interactions

The object of the experiments described in this thesis is to study the multipolar inter-

actions between Cs Rydberg atom pairs. The theoretical framework for calculating

the pair interactions was developed by Flannery, Vrinceanu, and Ostrovsky [11]. Cal-

culations based on matrix diagonalization are necessary for a complete description of

the interactions [11, 12]. It is also important to include electric field effects, as the

effects can be strong even for small fields.

The multipole expansion for the interaction between two atoms A and B with
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Figure 2.3: Two center coordinate system with nuclei A and B with electrons 1 and
2 respectively.

internuclear separation R = Rẑ is [11]

V (R, r1A, r2B) =
N∑

L1,L2=1

L∑
M=−L

(−1)L2fL1L2M

RL1+L2+1
QL1M(r1A)QL2−M(r2B) (2.11)

where the multipole operator with electronic coordinate r is

QLM(r) = { 4π

2L + 1
}1/2rLYLM(r̂) (2.12)

and

fL1L2M =
(L1 + L2)!

[(L1 + M)!(L1 −M)!(L2 + M)!(L2 −M)!]2
(2.13)

and YLM is the familiar spherical harmonic. Setting N = 2 limits the interactions

to dipole-dipole, dipole-quadrupole, and quadrupole-quadrupole. By diagonalizing

the Hamiltonian with the interaction of eqn. 2.11 in the Stark shifted atomic basis,

potential energy curves of Cs Rydberg atom pairs (the pair potentials), have been

calculated to high precision [12, 13]. The use of eqn. 2.11 is limited to R greater

than the LeRoy radius, where effects such as exchange must be included [11]. The

electric field in these calculations was aligned along the internuclear axis R. This

choice greatly simplifies the calculation of the interaction. Anisotropic effects should

be small for the length scales studied in this experiment considering the weak electric

fields that are used (∼mV/cm) [12, 13].
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Figure 2.4: Calculated pair potentials in the vicinity of the 89D state of Cs (circled
in red). The calculations shown here are for zero applied electric field.
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Figure 2.5: Pair potentials near the 89D + 89D pair energy with an applied electric
field ε along R. The avoided crossings C1 and C2 give rise to wells that may support
hundreds of bound states [13].

The pair potentials near the 89D state of Cs can be seen in fig. 2.4 and are taken

from [12]. At high n, it is apparent that there are strong interactions between the

states at short R that could give rise to avoided crossings. It is the purpose of this

work to experimentally investigate the dynamics of the atom pairs in the vicinity of

avoided crossings.

With the application of an electric field, the pair interactions can be modified. Fig.

2.5 shows the pair interaction potentials near the 89D+89D pair for different electric

fields ε. Avoided crossings at C1 and C2 can be enhanced with a small increase

in applied field along R. These wells have been calculated to support hundreds of

bound states with energy spacings on the order of kHz [13]. The density of the

rovibrational states due to the width of the wells prevents spectroscopic observation

of the bound state structure. The thermal broadening of the atomic sample would
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blur the rovibrational structure even at ultracold temperatures.

Observation of the rovibrational structure would still not be sufficient to demon-

strate that the molecules formed would remain bound. The energy spacing at the

avoided crossing can lead to coupling to the lower dissociative state and prevent

the stable formation of macrodimers. At lower n, the spacing becomes larger which

would decrease the coupling to a nearby, lower energy repulsive state. The experi-

mental search for stable macrodimer molecules would therefore be favorable at lower

principal quantum number.

The pair potentials depend on n in two technically significant ways. As n is

decreased, the pair interactions have a stronger effect at shorter R. This requires

higher atomic densities to excite and will result in lower experimental yield. Also,

the avoided crossings move further to the red of the nearby identical pair states.

The nearby identical pair state is responsible for the enhanced excitation probability

for pair excitation at the avoided crossings [13]. As n is decreased, the avoided

crossings will move further from the nearby identical pair state and suffer a decrease

in excitation probability resulting in lower experimental yield.



CHAPTER 3. EXPERIMENTAL SETUP 17

Chapter 3

Experimental Setup

The apparatus for these experiments was designed to measure small particle velocities.

It consists of a magneto-optic trap (MOT) surrounded by a high resolution photo-

fragment spectrometer. The spectrometer is designed so that the atomic fragments

start from a highly localized region in space and are allowed to expand from the initial

volume for a variable delay as neutrals. The excited fragments are then ionized and

mapped onto the detector to observe the 1D mapping of their spatial distribution. In

this section, I will first describe the basics of the MOT and then the custom diode

laser systems that are used to cool the Cs atoms in the MOT. Second, I will describe

the vacuum system and spectrometer. Last, I will describe density dependent effects

that have been measured as a function of the trapping parameters.

3.1 The Cs Magneto-Optic Trap

The Cs samples for these experiments are prepared in a MOT. The relevant energy

level structure can be seen in fig. 3.1. In short, atoms are cooled in a MOT by

emitting a higher energy photon for each photon absorbed and confined spatially

with the application of a inhomogeneous magnetic field. The advantage of the MOT

is the high density of atoms at ultracold temperatures. The temperature and density

of atoms within the MOT depend on the trapping laser intensity and detuning. The

density will also depend on the magnetic field gradient. In this section I will describe
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Figure 3.1: Relevant optical transitions in Cs for this work.

the cooling mechanisms in the MOT and how confinement is achieved.

The fundamental cooling mechanism that underlies the formation of ultracold

atom samples is Doppler cooling. Doppler cooling occurs from the repeated absorption

of photons from a specified direction, and re-emission into a random direction (see

fig. 3.2). For cooling by laser light, the angular frequency of the cooling laser, ωL, is

seen Doppler shifted by the absorbing atom

ωL = ω0 − k · v (3.1)

where ω0 is the frequency of the cooling transition, k is the wavevector of the laser

light, and v is the velocity of the absorbing atom. The detuning of the laser beam is

δ = ωL−ω0. Dissipation of energy occurs due the emission of a higher energy photon

than the energy of the absorbed photon. The atom will absorb the photon in the

lab frame where the frequency is detuned, but will emit on resonance in its own rest

frame, which dissipates an amount of energy ~δ. Repeated absorptions and emissions

will cool the atoms to the temperature determined by the natural linewidth of the

cooling transition, to the so-called Doppler limit.

Doppler cooling damps the motion of atoms, but does not provide spatial confine-

ment. The addition of a spatially varying restoring force is necessary to contain the
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v

(a) (b)

Figure 3.2: A photon is incident on an atom from a specified direction (a) and is
radiated by spontaneous emission into a random direction (b).

cooled atoms in a localized region. If the atoms are Doppler cooled in the presence of

an inhomogeneous but linearly varying magnetic field and by choosing the appropri-

ate polarizations of the cooling light, the effective detuning, δ(z) will have a spatial

dependence,

δ±(z) = δ ∓ k · v ± µ ·B
~

(3.2)

where µ is the transition magnetic moment and B(z) is the magnetic field (see fig.

3.3).

By circularly polarizing two counter-propagating, red detuned cooling beams, se-

lection rules dictate which magnetic sublevel of the excited state will absorb laser

light from a specified direction. As the atom moves in the magnetic field, its mag-

netic sublevels will become shifted by a spatially varying amount. As the atoms move

away from the center B = 0 region, the force on the atoms toward the center will

be greater as they come into resonance with the appropriately polarized laser beam.

Selection rules on ∆m transitions are such that a ∆m = +1 transition will occur for

absorption of circular right (σ+) polarized light and ∆m = −1 transitions will occur

for circular left (σ−) polarized light. If the polarizations are set to correspond to

the directional dependence of the Zeeman shift, the atoms will feel a confining force

towards the center of the trap.

With this description of the cooling properties of the MOT, the temperature of the

atoms would be limited to the Doppler temperature set by the natural linewidth of the

atomic transition (125 µK for Cs), but polarization gradients within the MOT allow
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Figure 3.3: A diagram of the Zeeman splitting of the magnetic sublevels in an inho-
mogeneous magnetic field. σ+ light drives ∆m = +1 transitions when an atom moves
to the left, and σ− light drives ∆m = −1 transitions when an atom moves to the
right. The farther an atom moves away from the origin, the closer to resonance the
cooling beams become. This induces a position dependent detuning δ±.

for cooling below this limit. The local polarization at the position of an atom shifts

the internal energy allowing for what has been called polarization gradient cooling

[23]. Local polarization gradients allow more energy to be dissipated from the system

as the local light shift of the atoms’ internal energy states are modified by the laser

field. The light shift arises from the Stark effect of the electric field induced on the

magnetic substates on the atom. The energy shift of the ground magnetic sublevels,

the “light shift”, is

∆Eg =
~δ(I/Is)Cge

2

1 + 4(δτ)2
(3.3)

where I is the intensity of the laser field, Is is the saturation intensity of the transition,

τ the lifetime of the excited state, and Cge is the Clebsch-Gordan coefficient for the

coupling of the atom to the light field [24]. The polarization affects the light shift

through Cge and provides additional energy dissipation as the atomic population is

pumped between magnetic sublevels that have opposite signs for the light shift. This

provides a highly efficient method for cooling atoms below the Doppler limit over

many optical pumping cycles. This is the essence of polarization gradient cooling.
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The temperature of the atoms within the MOT depend on the trapping laser

detuning and intensity. The temperature for the MOT can be approximated as lin-

ear for temperatures less than the Doppler temperature, TD. The temperature is

approximated

T = T0 + 2× CσTD

(
Ω2

|δ|Γ
)

(3.4)

where Ω = Γ
√

I/2Is is the Rabi frequency for a single laser beam, and Γ is the natural

linewidth of the transition with saturation intensity Is. For the Cs 6S1/2 → 6P3/2

transition, Γ = 5.22 MHz and Is = 1.1 mW/cm2 for σ± light. The term in parentheses

is called the light shift parameter. T0 is the low temperature limit for an operating

MOT without cooling by alternative means (such as evaporative cooling). Cσ is the

experimentally observed constant of proportionality for cooling with σ± polarized

light.

The number of atoms in the MOT can be measured by observing the fluorescence

emitted by the trapped atoms and can be combined with measurements of the trap

size to find the density of the atoms in the MOT [25]. The density will determine

the distribution of atomic pairs in the MOT that are at the internuclear separation

relevant for a given interaction. Measurements of the fluorescence monitor the photon

scattering rate which depends on δ and I. As the trapping laser is detuned or the

trapping laser intensity decreased, the emitted fluorescence of the atomic sample will

decrease. The scattering rate, R is approximated

R ' ~ωL
Γ

2

C1
2Ω2/2

δ2 + Γ2/4 + C2
2Ω2/2

(3.5)

where C1
2 = C2

2 = .73 are the averaged Clebsch-Gordon coefficients taken from

[25]. As more atoms become trapped, the density increases until the MOT becomes

optically thick. This means a re-emitted photon has a higher probability of being

reabsorbed before leaving the trap [33]. This effect is called “multiple scattering”
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and it limits the maximum achievable density inside the MOT. As more atoms are

cooled, the density cannot increase due to internal pressure from the rescattered

photons, causing the volume of the MOT to increase. As a consequence, the spatial

distribution of the MOT becomes non-Gaussian due to the uniform density region in

its center. The rescattered light also acts to heat the gas, as it is resonant with the

atomic transition, and is directed out of the trap.

3.2 Diode lasers

Two custom diode laser systems were constructed for cooling Cs. Diode laser systems

are ideal in modern atomic physics experiments for their low cost, narrow linewidth,

and low intensity noise. Typical linewidths for stabilized diode lasers are < 1 MHz and

linewidths as low as a few hundred kHz can be achieved. With extreme effort, diode

lasers can even be pushed to ∼Hz stability. Because the stability of the current supply

limits the intensity stability, the intensity noise is typically < 1 %. Diode lasers’

application to telecommunication has spurred their development, greatly benefiting

research into ultracold atomic physics, and spectroscopy as a whole.

The two diode lasers used in these experiments are high power quantum well

index guided laser diodes with powers of 180 mW (JDS Uniphase SDL-5401-G1) for

the cooling laser and 70 mW (SDL-5421-G1) for the repumping laser. The diodes are

mounted in commercial diode mounts (ThorLabs TCLDM9). The diode temperatures

and currents are controlled using commercial controllers (ThorLabs TEC2000 and

LDC500 respectively, see fig. 3.4).

The diode lasers are constructed using an extended cavity arrangement. The setup

of a single laser system is shown in fig. 3.4. A diffraction grating (1200 lines/inch) is

aligned so that the 0th order is injected back into the diode for feedback. 25 % of the

diode laser power is injected back into the diode in this way. The positioning of the

grating can be coarse adjusted using fine-pitch screws attached to the mount. After
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Figure 3.4: Schematic of the DAVLL setup and associated locking circuitry.

coarse adjustment, piezoelectric transducers (PZTs) are used to adjust the position

of the grating for optimal feedback.

The diode laser and external cavity are supported by an aluminum plate. The

temperature of the plate is controlled separately from the diode by a commercial

temperature controller (Wavelength Electronics MPT2500) attached to three thermo-

electric coolers (Thorlabs TEC3-2.5), monitored using a 10 kΩ thermistor (ThorLabs

TH10K). The diode laser assembly is mounted atop a 6× 6× 6 inch aluminum block

that rests on sorbothane pads to isolate the laser from vibrations of the optics table.

The entire mount plus laser is contained in an insulated enclosure. The enclosure

consists of an outer layer of 1/4 inch plexiglass, 3/4 inch styrofoam, aluminum foil

and an inner layer of 1/8 inch plexiglass. The outer layer acts as a acoustic reflector

followed by an absorber. The layer of aluminum foil is attached to the optics table

to electrically shield the laser. The enclosure also serves to isolate the laser from

temperature fluctuations in the lab. The laser light passes through an anti-reflection

coated window at near infrared wavelengths.

The light from the laser passes through an optical isolator and a small fraction (∼
5 %) is sent to a dichroic atomic vapor laser lock (DAVLL) spectrometer to frequency

stabilize the diode laser. A weak beam of linearly polarized light is passed through a

pyrex Cs vapor cell contained in a constant magnetic field (125 Gauss) generated by

permanent ring magnets. The light is then passed through a quarter wave retarder
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Figure 3.5: Dispersive curves for the (a) F = 4 → 5 trapping transition and (b)
F = 3 → 4 repumping transition that acts as an error signal for locking.

and split using a polarizing beam splitting cube. The two beams are then monitored

using two photodiodes.

The DAVLL is used to generate a dispersive curve (see fig. 3.5) that can be

used as a frequency reference to lock the diode laser. The frequency of the transitions

between magnetic sublevels will be shifted by the Zeeman effect. Linear polarized light

is composed of a superposition of left and right circularly polarized light. By placing

the gas in a magnetic field, the center frequency of absorption of the different circular

polarizations will be shifted higher and lower in frequency due to selection rules on

the ∆m transitions of the most Zeeman shifted states. The quarter wave retarder

rotates the circularly polarized components of the absorption signal to orthogonal

linear components so that the two polarizations can be independently monitored on a

photodiode after the polarizing beam splitter. The two signals can then be subtracted

using a differential amplifier and an error signal is obtained.

Sample dispersive signals from a differential amplifier can be seen in fig. 3.6. The

angle of the quarter wave retarder can be used to adjust the shape of the DAVLL

signal. This signal is used to monitor the frequency of the laser and by unbalancing

the light on the photodiodes, the center frequency and slope can be adjusted. The
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Figure 3.6: Experimental DAVLL traces for different quarter wave retarder settings.
This figure illustrates that the DAVLL trace can be adjusted by unbalancing the light
on the photodiodes.
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Figure 3.7: Measurement of the free running drift of the diode lasers by measuring
the frequency difference between one frequency stabilized laser and one that is un-
stabilized.

trace is obtained by rapidly sweeping a voltage that is applied to the PZTs mounted

behind the diffraction grating. This adjusts the cavity length and therefore tunes the

laser. The traces here are scanned over a range > 1 GHz.

The DAVLL signal is input to a custom side-lock circuit obtained from JILA. The

error signal is summed with a DC offset that sets the locking frequency of the laser

on the DAVLL dispersion curve. Feedback is then applied using a proportional and

integral gain controller to lock the frequency of the laser. Feedback is applied to both

the PZTs and the diode current.

The DAVLL signal is split electronically into two components. One component is

high frequency and the other is low frequency. The low frequency component spans

the spectral region from DC to ∼ 1 kHz while the high frequency signal spans the

spectrum from 1 to ∼ 2 kHz. The low frequency error signal is passed through an

adjustable gain amplifier and an integrator to the PZTs that control the grating

position. The high frequency component of the error signal passes through a separate

adjustable gain amplifier and an integrator. The high frequency error signal is fed

back to the laser diode current controller.
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Figure 3.8: Long term relative frequency drift by monitoring the difference frequency
for the two laser systems over an 8 h period.

The instantaneous linewidth was measured to be 200 kHz. The diffracted spot was

shifted from the main beam by 58 MHz. The single laser beat signal was observed on

a fast oscilloscope by Fourier transforming the amplified output from the fast pho-

todiode. The 200 kHz linewidth is the deconvoluted FWHM assuming a Lorentzian

line shape. The stability of the rf that powered the acousto-optic modulator was

¿ .2 MHz. The drift of the free running laser was measured by recording a beat

signal between one actively stabilized system and one system that was free running.

A typical curve is shown in Fig. 3.7. The free running drift for the laser system was

determined to be < 20 MHz/min on a ∼ 10 min time scale.

To measure the long term drift and effective linewidth when the DAVLL lock

was activated, two laser systems were detuned from each other by ∼ 30 MHz and a

beat signal was recorded. The amplified beat signal was fed into a frequency counter

(EG&G 974) and recorded every 1.5 s for ∼ 5 h. The counting time was 1 s. The

results from a typical day are shown in Fig. 3.8. The long-term relative drift between

the two laser systems was 1.4 MHz/h or 700 kHz/h average. The effective linewidth

was 500 kHz over this same time period. The effective linewidth was taken to be

the standard deviation from the laser drift deconvoluted assuming a Lorentzian line
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Figure 3.9: Diagram of the vacuum system.

shape. The values agree well with measurements of the stability of diode laser sys-

tems operating at wavelengths near 780 nm without temperature stabilization of the

DAVLL spectrometer [26, 27]. A similar measurement was done by observing the

Fourier transform of the beat signal on a fast oscilloscope. The signal indicated a

linewidth of 500 kHz, consistent with that obtained from the beat signal record.

3.3 Vacuum System and Spectrometer

The photofragment time-of-flight spectrometer is contained in a 22.9 cm radius stain-

less steel vacuum chamber (see fig. 3.9). It is evacuated to a pressure of 2×10−10 Torr

by a turbo-molecular pump. The turbo-molecular pump is backed by a diffusion pump

which is backed by a mechanical roughing pump.

The vacuum system is designed to prevent contamination of the inside surfaces

in the event of power failure. All systems are connected to a battery backup and are

interlocked by a programmable logic controller (PLC).

The Cs MOT is formed in the center of the chamber. The MOT is formed using

the two diode lasers described in the previous section and a set of anti-Helmholtz

coils. One diode laser acts as the trapping laser and is detuned from the 6S1/2(F =
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Figure 3.10: To scale rendering of the spectrometer located in the vacuum chamber.
The spectrometer is sectioned for viewing. The bright spot in the center represents
the MOT. The spectrometer is formed around the MOT with the flight tube extending
downward towards the MCP detector. The anti-Helmholz coils are also depicted. The
lens systems are used to focus a CO2 laser to form an optical dipole trap.

4) → 6P3/2(F
′ = 5) transition to provide cooling. The second diode laser acts as a

repumping laser and is tuned to the 6S1/2(F = 3) → 6P3/2(F
′ = 4) transition. This

laser prevents population from building up in the 6S1/2(F = 3) due to off-resonant

population of the 6P3/2(F
′ = 4) state. Rydberg atoms are excited by a Coherent

699-21 with a linewidth of ∼ 1 MHz at 508− 509 nm.

The anti-Helmholz coils for the MOT are located inside the chamber (see fig.

3.10). The coils are square with a length of 14.7 cm on a side. The coils contain 24

wrappings each of Kapton coated, copper tubing. Water is circulated through the

coils to dissipate heat. The coils are operated at 34 A for a magnetic field gradient of

12.5 G/cm at the MOT along the direction coaxial with the anti-Helmholz coils.

The spectrometer is centered on the MOT. Three stainless steel, circular field

shaping plates are distributed above and below the MOT. 33 mm above the MOT

is a plate with holes for two of the MOT trapping beams. The holes are filled with
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Figure 3.11: Plot of the equipotential surfaces with an applied voltage of 320 V on
the top plate. The lensing of the field is due to the absence of a grid on the opening
of the bottom plate. The MOT is displayed as a Gaussian distribution at its location
on the surface.

glass and covered with an electro formed Ni wire mesh (4.6 lines/mm) on the side of

the glass closest to the MOT. 19 mm below this plate is a field shaping ring. 28 mm

below the shaping ring is a grounded plate with a 74 mm diameter hole. The MOT is

located halfway between the bottom plate and the shaping ring. All three plates are

separated by ceramic spacers. Connected to the bottom plate is a 25.4 cm grounded

flight tube. The spectrometer is coated with Aerodag to minimize reflections and

smooth out field imperfections. At the end of the flight tube is a 40 mm Z-stack cross

delay-line (XDL) microchannel plate (MCP) detector (Sensor Sciences) with a 19 µm

resolution determined from spot size measurements of a pinhole mask illuminated

with ultraviolet light.

The Rydberg atoms are ionized and projected onto the detector by applying a high

voltage pulse to the top plate. The pulse ionizes the Rydberg atoms and transfers a

momentum kick, p =
∫

qE(t)dt to the ions in the MOT region. q is the charge and E

the electric field pulse as a function of time. The pulse is applied using a HV pulser

(DEI PVX-4140) powered by a high voltage supply (Glassman EK3R200). Resistors

are symmetrically spaced around the edges of the plates. The resistance between the

top plate and shaping ring is 1 kΩ (4 resistors), and 2.1 kΩ between the shaping ring
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and bottom plate (4 resistors) for a combined resistance of 3.1 kΩ. With an applied

voltage of 320 V, there is an electric field of 53 V/cm at the position of the MOT.

The rise time of the pulse is 80 ns limited by the HV pulser. The fastest rise time

achievable is 10 ns, determined using a digital delay generator (SRS DG535). After

the pulse, ions travel through the field free flight tube and are detected on the MCP.

Fig. 3.11 shows the calculated electric equipotential lines in the region around

the MOT, for an applied voltage of 320 V. The potential is calculated by numerically

solving the Laplace-equation in cylindrical symmetric 3D space using the program

SIMION [29]. The symmetry axis coincides with the center of the flight tube. The

cross section of the electrode configuration is specified on a 2D grid of 400 horizontal

points by 200 vertical points with a grid spacing of 1 mm. The modeled electrodes

match the spectrometer plate geometry. The top plate, the shaping ring, and the

bottom plate and flight tube are modeled as ideal conductors at fixed potentials of

320 V, 218 V, and 0 V, respectively. No other parts of the experimental setup are

included in the simulation. Under these conditions, the longitudinal electric field

at the MOT is calculated to be εl = 52.2 V/cm. The field gradient of ∂εl/∂z =

8.87 V/cm2 at the MOT center implies that the field changes by 92 mV/cm over the

100 µm extent of the excitation volume in the time-of-flight direction. The radial

electric field gradient at the MOT is ∂εr/∂r = 4.23 V/cm2. We assume no stray

electric field for the simulation. From the calculated field at the MOT, we obtain a

geometric factor αt = ε/V0 = 1.63 × 10−1 cm−1 relating the applied voltage and the

field at the MOT position.

Time-of-flight velocity distributions can be reconstructed using high speed elec-

tronics (see fig. 3.12). The current monitor of the HV pulser is processed using

a constant fraction discriminator (CFD) and serves as the start input for a 2 GHz

multichannel analyzer (MCA) (Fast ComTec P7886). Fast timing signals (FWHM

∼ 2 ns) from the MCP anode are amplified using a preamplifier (SR240). The am-
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Figure 3.12: Timing diagram and experimental setup for measuring TOF distribu-
tions. The dashed region can be included if charge discrimination is desired. The
fast timing signals from the anode of the detector are amplified by a fast preamp
and discriminated using a CFD. The timing signals pass through a delay generator
that can be gated using an SCA that discrimates based on the charge Q. The charge
released by the MCP can be measured using an analog-to-digital converter (ADC).
The edge of the PFI serves as the start pulse for the multichannel analyzer while the
fast timing signals serve as the stop.
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plified signals are processed using a second CFD and serve as stop inputs for the

MCA. The XDL grid beneath the MCP is designed for 2D imaging of product spatial

distributions. The signals from the XDL grid are integrated by preamplifiers (Sensor

Science) for 3 µs to provide a charge signal proportional to the number of ions incident

on the detector. The fast timing signals can be filtered using the charge signals [28].

The charge signals may be used to gate the fast timing signals by using a single chan-

nel analyzer to threshold the velocity distributions based on the height of the charge

pulse [28]. The charge pulse height distribution (PHD) is also read by an analog to

digital converter (Sensor Science OMNI ADC). The charge PHD is determined by

the binomial distribution and is a measure of the overall detection probability of the

system if the number of products in a collision is known [14].

We measured the lifetime of the 133D state to characterize the blackbody decay

rate of the Rydberg atoms created in our spectrometer. From the expression given

by Farley and Wing [20] we predict τbb = 900 µs (see Chap. 2). We then expect

τeff = 560 µs for the Cs 133D state.

We measured τeff of the 133D state to compare with the predicted value. The

133D state was excited from the MOT 6P3/2(F
′ = 5) state using the dye laser at

λ ∼ 508.45 nm. We stepped the PFI pulse by 50 µs steps using a programmable

digital delay generator (THORLabs DG100N). The experiment was conducted at

500 Hz with a 70 V PFI pulse at low dye laser intensity. The laser intensity was kept

low (< 1 Hz) to avoid spontaneous ionization effects [51].

The measurement of τeff for the 133D state can be seen in fig. 3.13. The data fit

to an exponential decay gives τeff = 580± 60 µs. This is in good agreement with the

predicted value of τeff = 560 µs. The long lifetime of Rydberg atoms is ideal for use

in Rydberg tagging of photofragments. Atoms can be allowed to expand as neutrals

rather than ions for increased energy resolution in ultracold collisions.

A small stray electric field is present in our experimental setup. Fig. 3.14 shows



CHAPTER 3. EXPERIMENTAL SETUP 34

0.0 0.5 1.0 1.5 2.0

Io
n

S
ig

na
l
(a

.u
.)

Delay (ms)

Figure 3.13: Measurement of ion yield as a function of PFI delay. The red line is the
fit to a 1st order exponential decay with an effective lifetime τeff = 580± 60 µs.

the experimental dependence on the the 121P and 120D states of Cs. The excitation

of the P state is due to the mixing induced by a stray electric field. It is impor-

tant to fully characterize this field to properly explain the dynamics of the Rydberg

interactions.

To measure the stray field at the position of the MOT, we measured the spectrum

of the 120D Rydberg level. The 120D state was chosen because of the sensitivity of

high principle quantum number Rydberg states to electric fields. The splitting be-

tween the j = 3/2,mj = 3/2 and j = 5/2,mj = 1/2 was used to probe the background

field by varying the magnitude of an applied electric field during excitation.

The applied field was varied between 1 and −46 mV/cm to measure the stray

electric field by applying a constant voltage to the top plate of the spectrometer.

The DC Stark shift will cause the mj states of the Rydberg levels to be split in the

applied electric field. At zero field, the splitting between the 120D3/2 and 120D5/2

fine structure states is predicted to be 37MHz using the quantum defects and fine

structure splitting from [31, 32]. The experimental results of the measurement of the

stray electric field are given in fig. 3.15. With no applied background field, we find the
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Figure 3.14: Spectra taken for the 121P and 120D states of Cs at different applied
electric fields. At the highest field shown, the l > 2 Stark fans are visible to the left
and right of the P and D states. As can be seen, small changes in field strength
create large frequency shifts at high n.

fine structure levels to be Stark shifted with a splitting between the j = 3/2, mj = 3/2

and j = 5/2,mj = 1/2 states to be 131 MHz. This splitting is consistent with a stray

field of 17 ± 1 mV/cm [21, 30]. By applying a negative voltage to the top plate of

the spectrometer during excitation, we were able to minimize the splitting of the

Rydberg levels with an applied field of 8±1 mV/cm. There is a residual stray electric

field perpendicular to the applied field of 15 ± 1 mV/cm which causes a minimum

splitting of 123 ± 2 MHz. Fitting the Stark shift calculation to the experimental

values is consistent with prior measurements of the 89D and 66D states fit with the

same method. The splitting is checked periodically to ensure that the experimental

conditions have not changed between measurements.

3.4 Density Dependent Effects: Multiple Photon Scattering

The following section describes experiments that were performed to analyze the atom

number and density distribution in the MOT. The density distribution was analyzed

using computed tomography through the inverse Abel transform to reconstruct the
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Figure 3.15: Measurement of the stray electric field present in the chamber at the
position of the MOT. The minimum in the measurement gives the component of the
field that is perpendicular to the time-of-flight axis.

3D density distribution from a 2D projection. Two methods were used, each with

similar results. The Abel inversion was used to study the onset of multiple photon

scattering in the MOT which occurs at high densities.

Many semi-empirical models have been introduced to predict the behavior of the

MOT [25, 33]. One early model was based on the multiple scattering of photons [33].

The model predicted that the MOT density becomes uniform, yielding a flat-topped

intensity projection instead of a Gaussian one at high atom number, ∼105. The effect

is a consequence of the repulsive force that results from the radiation pressure due

to multiple photon scattering. Signatures of multiple scattering were observed in

later studies, but at different atom number [25, 34–37]. In some of these studies, the

intensity projection of the MOT was observed and it did not deviate from Gaussian

[25, 34]. Whether or not the density distribution of the MOT becomes constant in the

multiple scattering regime is an outstanding question that can provide experimental

insight into the light pressure forces that determine the behavior of the MOT.

Measuring the density of laser atom traps is difficult but important to many
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Figure 3.16: Illustration of the mapping of a 3D distribution onto a 2D plane.

experiments, particularly those involving collisions between cold atoms. Techniques

for analyzing MOT properties, such as peak density and volume, rely on digital images

taken of the MOT fluorescence or absorption imaging. The images are 2-D projections

of 3-D distributions (see fig. 3.16).

3-D distributions can be reconstructed from 2-D projections using computed to-

mography. We show that the 3-D density distribution of the MOT can be recovered

using the Abel transformation from CCD images of MOT fluorescence. The Abel

transform is appropriate for this task because the magnetic field used for the MOT

is axially symmetric. Our method is a non-destructive way to measure the density

distribution of the MOT. The technique developed here to study the MOT can be

used in a similar fashion to investigate other axially symmetric traps such as optical

dipole traps.

There are many different approaches to calculating the Abel transform. Each

method varies in complexity, computation time, and sensitivity to noise. We chose to

use two methods, the Fourier-Hankel method [38] and the Gaussian basis-set expan-

sion (BASEX) [39]. We find that both methods are useful and discuss the advantages

and implementation of each one. Computed tomography requires only a CCD camera
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to acquire the images. Most MOT experiments use a CCD to observe the MOT. If

the response of the CCD array is calibrated, there is no need for a photo-multiplier

tube (PMT) to determine the density distribution. The inversion can be done in real

time, as fast as the acquisition rate of the camera.

3.4.1 Atom counting experiments

During the experiments, the MOT fluorescence is imaged onto a CCD array. The

CCD array contains 1004 × 1004 pixels each with dimensions of 7.4 µm × 7.4 µm.

The number of atoms in the trap is measured using a calibrated photomultiplier tube

(PMT). The atom number N is found by measuring the light power P emitted from

the MOT and dividing by the scattering rate

N = P/R (3.6)

The emitted light power from the MOT is collected onto the calibrated PMT. Mea-

surements of atom number using a PMT together with Abel inverted CCD images

provide measurements of MOT density.

One signature of multiple scattering is a linear scaling of volume with atom num-

ber. In this regime, the density becomes constant. Our measurements indicate that

multiple scattering occurs at a density of nMS = 2.15 × 1010 for our Cs MOT. As

can be seen in fig. 3.17, the density increases linearly with atom number until nMS

is achieved. The abrupt change from the temperature limited MOT to the multiple

scattering regime is clearly visible.

A plot of volume versus atom number is shown in fig. 3.17(b). It can be seen that

the volume is constant until the atom number reaches a value NMS = 2.7 × 106. At

this atom number, the volume grows linearly. The linear growth of the volume is the

signature of multiple scattering. The radius of the MOT in the multiple scattering
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Figure 3.17: Measurements of the (a) peak density vs. atom number, (b) volume vs.
atom number, and (c) Cubed root of the atom number vs. MOT radius.

regime is [25]

rMS =
1√
2π

(
N

nMS

)1/3

(3.7)

The density and atom number can be combined to verify the minimum value of the

multiple scattering radius rMS = .2 mm (fig. 3.17(c)).

Other work has predicted that the MOT radius will scale as N1/3 in the multiple

scattering regime [40]. The N1/3 scaling was observed experimentally for Rb [37]. We

also observe a N1/3 dependence on MOT radius in fig. 3.17(c). Multiple scattering

occurs for N1/3 > 125 in our work with a Cs MOT. This value agrees well with other

experiments on Cs [35].

3.4.2 Density Measurements through Abel Inversion

The density distribution of the MOT is recovered from images of fluorescence obtained

with the CCD array. A CCD image is the 2D projection of a 3D density distribution

as depicted in fig. 3.16. In cases with axial symmetry, the 3D distribution can be

reduced to two dimensions by the replacement

r =
√

x2 + y2 (3.8)
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The 3D density distribution is represented by a function I(r, z). I(r, z) is cylindrically

symmetric so the θ coordinate is omitted. The 2D projection of I(r, z) is

P (x, z) = 2

∫ ∞

x

I(r, z)r√
r2 − x2

dr (3.9)

where x is the distance from the symmetry axis in projection space. For the Abel

transform, each value of z in the projection is treated independently. The 3D dis-

tribution I(r, z) can be recovered from the 2D mapping P (x, z) by using the inverse

Abel transform [41],

I(r, z) = − 1

π

∫ ∞

r

dP (x, z)/dx√
x2 − r2

dx (3.10)

To implement the inverse Abel transform to recover I(r, z), a numerical algorithm

is required. The primary difficulties in implementing a numerical algorithm to evalu-

ate eqn. 3.10 are the derivative and the singularity in x. The derivative dP (x, z)/dx

causes numerical difficulties when the image to be inverted has sharp features or con-

tains excessive noise. Sharp features and noise from the experiment can cause the

derivative to diverge, giving inaccurate results. The derivative requires smoothing

and filtering of the data in any practical analysis using the Abel inversion.

Routines for symmetrizing and smoothing experimental data for inversion have

been developed [38, 42, 43]. A common technique is to treat one line of pixels perpen-

dicular to the symmetry axis of the 2D projection. One line of pixels for constant z is

referred to as a “slice” of the image. One slice of the distribution and its projection

are depicted in fig. 3.16.

Fourier analysis can be applied to symmetrize the projection. Axial symmetry in

the 3D distribution implies that the Fourier components of the 2D projection should

be real and even about the symmetry axis. Removal of the imaginary components

leaves a symmetric projection.

Abel inversion requires axial symmetry, but it can be a challenge to properly iden-
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tify the axis of symmetry. The symmetry axis of the projected distribution can be ill

defined due to noise. For a MOT, beam misalignment, beam shape and beam inten-

sity imbalances predominantly contribute to asymmetry. Blurring algorithms have

been developed and implemented for particularly noisy data to help find the symme-

try axis [42, 43]. We did not find a need for blurring techniques in our experiments;

however, great care was taken to ensure a symmetric MOT.

3.4.3 Fourier-Hankel Transform method

The Fourier-Hankel method has been successfully applied to ion imaging [42]. The

Fourier-Hankel method starts by performing a Fast-Fourier Transform(FFT) of each

slice. In Fourier-Space, the image is filtered and re-centered using the algorithm

outlined in [38]. Symmetrization and smoothing are followed by a discrete, inverse

Hankel-Transform to recover the 3D distribution.

We can recover the distribution I(r) from its projection P (x) by considering the

Fourier transform of P (x) in polar coordinates. The Fourier transform of P (x) is

F {P (x)} =

∫ ∞

−∞

∫ ∞

−∞
I

(√
x2 + y2

)
e−2πixkdxdy (3.11)

Transforming to polar coordinates allows 3.11 to be written

F {P (x)} =

∫ ∞

0

∫ 2π

0

I (r) e−2πikr cos θrdθdr (3.12)

The zero-order Bessel function

J0(2πkr) =
1

2π

∫ 2π

0

e−2πikr cos θdθ (3.13)
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can be substituted to yield

F {P (x)} = 2π

∫ ∞

0

rI(r)J0(2πkr)dr (3.14)

Eqn. 3.14 is the zero-order Hankel transform of I(r). Because the zero-order Hankel

transform is identical to its inverse [41], we can recover I(r) using,

I(r) = 2π

∫ ∞

0

kJ0(2πkr)

∫ ∞

−∞
P (x)e−2πixkdxdk (3.15)

The integral over dx is accomplished numerically using a FFT. The real part of the

transformed projection is then symmetrized and smoothed (see ref. [38]). Finally, the

inverse Hankel transform is applied to recover the distribution I(r). This procedure

is repeated for each slice of the image along z (see fig. 3.16).

3.4.4 Gaussian basis-set expansion (BASEX) Abel Trans-

form method

The BASEX method is an alternative to the Fourier-Hankel method [39]. In situations

where the projection is high resolution or has a large dynamic range, the BASEX

method can be more efficient than the Fourier-Hankel method. The essential feature

of the BASEX method is an expansion of the projection in a set of functions that

have analytic Abel inversions.

The BASEX method can be understood if we recognize that the Abel transform

is a linear operation. The projection P (x, z) is the Abel transform of I(r, z)

P (x, z) = Abel {I(r, z)} (3.16)
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If we expand the distribution I(r, z) in terms of N basis functions, fk(r, z),

I(r, z) =
N−1∑

k=0

Ckfk(r, z) (3.17)

where the Ck are expansion coefficients. The projection can be expressed as

P (x, z) =
N−1∑

k=0

CkAbel {fk(r, z)} =
N−1∑

k=0

CkGk(x, z) (3.18)

The functions Gk(x, z) are the Abel transform of the basis functions fk(r, z). It is

advantageous to choose the basis functions to have analytic Abel inversions. This

choice avoids the noise problems (derivative and singularity) that occur when evalu-

ating the Abel inversion numerically. The basis can also be chosen to assume rapid

convergence of the I(r, z) expansion.

The method then reduces to determining the coefficients Ck. Calculation of the

Ck is most easily accomplished using matrix algebra. The method is summarized

as follows. The CCD image is symmetrized and filtered in Fourier space and then

returned to projection space. Next the projection is expanded in a basis of Abel

transformed functions for each slice to determine the Ck. Finally, the expansion

coefficients are used to reconstruct the density distribution.

3.4.5 Calculation of Expansion Coefficients

If we let i = 1 to Nx and j = 1 to Nz where Nx ×Nz is the number of pixels in the

projection, we can cast the projection as a matrix multiplication

Pij =
K−1∑

k=0

CkG
(k)
ij (3.19)

or more compactly

P = CG (3.20)
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The Abel transform of the basis functions is

G
(k)
ij = 2

∫
h(x− xi, z − zj)dxdz

∫ ∞

x

rfk(r, z)√
r2 − x2

dr (3.21)

where (xi, zj) are the pixel coordinates in the projection space [39]. The function

h(x− xi, z − zj) is determined by experiment. It is an instrumental weight that can

be set equal to a delta function if no instrumental weighting or smoothing is needed.

We used

h(x− xi, z − zj) = δ(x− xi)δ(z − zj) (3.22)

where (xi, zj) is the pixel coordinate on the CCD image.

For axial symmetric distributions, fk(r, z) is separable

fk(r, z) = ρm(r)ξn(z) (3.23)

The separability of fk(r, z) makes it convenient to define

Xmi = 2

∫
hx(x− xi)dx

∫ ∞

x

rρm(r)√
r2 − x2

dr (3.24)

and

Znj =

∫
hz(z − zj)ξn(z)dz (3.25)

The definition of Znj allows us to determine Xmi for a fixed z. This is analogous to

treating a slice in z in the Fourier-Hankel method. The 2D projection is

Pij =
Nx−1∑
m=0

Nz−1∑
n=0

CmnX
miZnj (3.26)

or in matrix form

P = XTCZ (3.27)
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Solving for C gives

C = APB (3.28)

where,

A = (XXT + λxI)
−1X (3.29)

and

B = ZT (ZZT + λzI)
−1 (3.30)

λx and λz are the regularization parameters for X and Z respectively. Regularization

is necessary if the basis functions ρm(r) and ξn(z) under or over-determine the matri-

ces X and Z. Regularization keeps A and B from becoming singular in a numerical

calculation. The process used above is known as Tikhonov regularization [44].

The basis function ρm(r) should be analytically integrable and smooth to take

advantage of the BASEX method. For these reasons, we chose

ρm(r) =
( e

m2

)m2 ( r

σ

)2m2

e−(r/σ)2 (3.31)

where σ is equal to the pixel size. If h(x−xi) = δ(x−xi) (no instrumental weighting)

we can integrate Xmi to obtain

Xmi = 2σρm(xi)

×
[
1 +

m2∑

l=1

(xi

σ

)−2l
l∏

q=1

(m2 + 1− q)(q − 1/2)

q

]
(3.32)

Similarly, ξ(zj) = ρn(zj) simplifies the problem.

In our calculations, we selected the number of basis functions to be half the number

of pixels in each dimension of the image so that our matrices were well conditioned.

The images were filtered and symmetrized in Fourier-space as in the Fourier-Hankel

method. The images were returned to real space, and the BASEX method was used
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to obtain I(r, z).

3.4.6 Comparison of Methods

We compared both transform methods. The images were centered and symmetrized

the same way for both transform methods [38]. We applied a Butterworth filter in

Fourier space in each of the transform routines. The Butterworth filter is

B(k) =
1

1 +
(

k
k0

)2n (3.33)

k is the spatial frequency in units of inverse length. k0 sets the cut-off frequency and

n is the order of the filter. The order sets the sharpness of the cutoff. We took great

care not to over filter the data in our experiments. Because the MOT is ∼ 1 mm

in size, k0 determines how many spatial frequencies will be used to reconstruct the

distribution. For the Fourier-Hankel method, we set k0 = 7 mm−1 with order n = 15.

For the BASEX method, we set k0 = 20 mm−1 with order n = 15. k0 is set smaller

for the Fourier-Hankel method to avoid creation of artificial structures that would

distort the data. Distortion can occur because of the derivative in the inverse Abel

transform. Sharp features have divergent derivatives that can corrupt the transformed

distribution. Over-filtering during the Fourier-Hankel method can also be detrimental

as it would smooth the distribution to look more Gaussian. For a detailed treatment

of filtering and symmetrizing routines, the reader is referred to [38]. The BASEX

method is not as sensitive to the noise, allowing more frequencies to be retained.

Keeping more frequencies allows finer structure to be visible. We used the inverted

images from the BASEX method as a benchmark for the Fourier-Hankel method in

some of the noisier images.

The differences between the inversion techniques can be seen in fig. 3.18. Fig. 3.18

shows a typical dataset viewed perpendicular to the symmetry axis. Both inversion
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Figure 3.18: (a) Raw data processed using the (b) Fourier-Hankel method and (c)
BASEX method.

methods show the existence of structure that is masked in the 2D projection. The

density distribution is more clearly defined for the Abel Inversion. The Fourier-

Hankel transform conveys less information about the spatial variations of the MOT

due to the necessity of filtering with smaller bandwidth. For the BASEX method, the

resolution of the CCD influences the size of the basis. Basis set computation can take

considerable time. Once computed, the basis set can be reused to analyze images

taken under the same experimental conditions.

A sample image can be seen in fig. 3.18. CCD images of fluorescence are commonly

interpreted as a measurement of the density distribution. Interpreting the raw image

as a distribution of density can lead to misleading results. A difficulty arises when

deciding the extent of the distribution to be included as the volume. Whether to use

the 1/e or 1/e2 radius of the distribution can lead to differences in reported volumes

and densities. The Abel inversion methods return the density distribution of the raw

image. The Abel inversion avoids the choice of the 1/e or 1/e2 radius when the image

to be inverted contains a region of zero signal surrounding the distribution.

There is a slight difference in volume calculated using the two different inversion

methods. The volumes we report are the peak densities divided by atom number.

It can be seen in fig. 3.17 that the Fourier-Hankel method returns density distribu-
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Figure 3.19: R2 of a Gaussian fit vs. atom number. The decrease in the R2 of the fit
shows the onset of multiple scattering, i.e. where the distribution begins to deviate
from Gaussian.

tions that indicate slightly larger volumes. This is most likely due to the additional

smoothing in the Fourier-Hankel routine. The use of fewer spatial frequencies in the

Fourier-Hankel method results in a broader distribution. The BASEX method in-

cludes higher frequency components that can more easily account for abrupt changes

in the distribution. The lower components of the Fourier-Hankel method tend to

smooth the sharp features and absorb them as additional volume.

It has been suggested in other work using a simple model that the distribution

of the atoms in the MOT will resemble a flat-topped distribution in the multiple

scattering regime [33]. A flat-topped distribution indicates a constant density when

the Abel inversion algorithm is applied. We tested this by fitting a Gaussian to the

raw images and Abel transformed images using the Levenberg-Marquardt non-linear

least squares method. The r2 value of a Gaussian fit is plotted against atom number

in fig. 3.19. The two Abel inversion methods do show some departure from Gaussian

in the multiple scattering regime. The departure is slight and is not evident in the raw

images. This departure is evidence for a redistribution of density but the distribution

was still strongly correlated to a Gaussian.

Correlation shows that the density distribution does not deviate significantly from

a Gaussian in the presence of multiple scattering. We observed no evidence of a flat-
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topped distribution in any of our measurements. All the images obtained were highly

correlated with Gaussian distributions. These observations are consistent with other

measurements where a flat-topped distribution was not observed [25, 34].

From this work it can be seen that the simple interpretation of the 2D projection

as representing the 3D density distribution is insufficient for observing the onset of

multiple scattering. Using the methods described for computing the inverse Abel

transform, it should be possible to recover I(r, z) in real time using high speed data

acquisition with a CCD camera.

3.5 Summary

The prior sections describe the important parameters for the operation of the spec-

trometer. With measurements of atom number and CCD images, the density can be

inferred. With the spectrometer design and diode laser construction, Cs atoms can

be trapped and confined for measurements using time-of-flight velocity distributions.
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Chapter 4

Temperature Measurements

In this chapter I will describe the technique developed in our laboratory for measuring

the velocity of the atoms in the MOT using Rydberg tagging. I will explain how time-

of-flight (TOF) velocity distributions were used to measure sub-doppler temperatures

and measure the dependence of temperature on our experimental parameters. In

these measurements, the expansion of the excited Rydberg atoms from an initial

volume will be monitored as a function of delay between excitation and pulsed-field

ionization. By testing the measurement using atoms from the MOT, the experiment

can be calibrated and the ultimate velocity resolution can be established.

Rydberg tagging is an experimental technique for measuring product yield and

product velocities that has been well established [45–48]. Rydberg tagging is exci-

tation of an atom or molecule to a Rydberg state for the purpose of ionizing in a

relatively weak field for ion detection. It has the advantage that after a collision

process takes place, a product can be excited to a Rydberg state and expand as a

neutral rather than an as an ion. Expansion as a neutral helps reduce the effects

of unwanted, inhomogeneous stray electric fields on the angular distribution of and

velocity of the products. Rydberg tagging has been proven effective at measuring

velocities on the order of ∼cm/s [28].

In order to measure the small recoil velocities that result from Rydberg atom

collisions, it is important to calibrate the velocity resolution of the spectrometer. This
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calibration was performed by measuring the temperature of the MOT as a function

of trapping laser parameters which results in a measurement of Cσ from eqn. 3.4. By

comparing our measured value of Cσ to other published results, we have confidence

that we understand the ion trajectory dynamics.

The temperature measurement is grounded in the assumption that nearly zero

kinetic energy is transferred to trapped atoms upon excitation to an atomic Rydberg

state. An atom in a Rydberg state will not remain trapped because it will not scatter

the trapping photons during its long lifetime. The excited Rydberg will move at its

thermal velocity and drift away from the initial excitation volume. By accumulating

time-of-flight distributions as a function of delay, τ between excitation and pulsed

field ionization (PFI), the temperature of the atoms in the MOT can be deduced.

The recoil of the ion due to the ejected electron is negligible due to the much larger

mass of the Cs+ ion.

The experimental procedure is as follows. The light from the Coherent 699 dye

laser is switched on with an AO for 1 µs. After a time τ = 50 − 400 µs, the PFI is

applied at 53 V/cm for 4 µs. The PFI current monitor is input into a constant fraction

discriminator and is used as the start input timing reference for the MCA. The PFI

transfers a momentum kick ∆p =
∫ 4 µs

0
eE(z(t))dt to the ions which determines the

time of flight to be ∼ 27 µs. The charge released by the detector after an ion impact

is used to discriminate based on charge. The charge is input into a single channel

analyzer and used to gate the fast timing signals. Only ion impacts that correspond

to a single ion hit are processed with a constant fraction discriminator and counted

by the MCA as a stop timing input. Measurements are repeated at a rate of 1 kHz

until TOF distributions are accumulated as a function of τ .

The charge selection improves the resolution of the experiment by eliminating

unwanted Coulomb broadening of the TOF distribution. If two atoms are excited,

after PFI they will experience their mutual Coulomb fields and repel each other during
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Figure 4.1: The laser intersects the MOT forming an excitation volume determined
by the focus of the dye laser. The beam and MOT convolve to form a Gaussian shape
excitation volume. The atoms are allowed to expand and are projected down towards
the MCP detector.

the TOF. This will broaden the TOF distribution and cause the measurement of

temperature to be systematically high. During the experiment, the dye laser intensity

was kept low enough so that at an experimental rate of 1 kHz, the ion count rates

were ∼ 10 Hz. At these low rates, it is improbable that more than one ion was present

during the TOF, with the charge discrimination as backup.

The width of the TOF distribution will depend on the initial width of the excita-

tion volume and the temperature of the atoms in the MOT (see fig. 4.1). The dye

laser that excites Rydberg states is focused through the MOT parallel to the detector

surface. The thermal distribution of the atoms with FWHM ∆i in the i direction is

f(r; v, τ) ∝
∏

i=x,y,z

e−(i−viτ)24ln2/∆i2e−mvi
2/2kBT (4.1)

where kB is Boltzmann’s constant, m is the atomic mass and T is the temperature.

The distribution describes the interaction volume as Gaussian in 3D. If we project

the distribution along the z dimension, the distribution is

f(z, t) ∝ e−mz24ln2/∆z2

(4.2)
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Figure 4.2: Simulated time-of-flight distribution. The major plot is for 3000 counts
where the inset is for 100,000 counts.

where ∆z is the FWHM of the distribution. The z dimension defines the time-of-flight

axis. This is recognized to be a Gaussian distribution of width

∆z =

√
∆z0

2 +
8ln2kBT

m
τ 2 (4.3)

where ∆z0 is the FWHM of the excitation volume at τ = 0 s. This equation was used

to fit the expansion of the cloud as a function of delay to deduce the temperature of

the trapped atoms.

Monte Carlo simulations were generated for comparison to the experimental data.

The simulations use the temperature and initial Rydberg-atom spatial distribution as

input parameters. Figure 4.2 shows a Monte Carlo simulation of a TOF distribution

with the same expansion time and number of counts as Fig. 4.3. The inset is the same

simulation with 100 000 counts. The simulation matches the experimental data to a

high degree of accuracy. The FWHM of the distribution in Fig. 5 is 11.01± 0.04 ns.

The experimental data show a Rydberg cloud size of 109.0 ± 0.5 µm at τ = 220 µs

and the simulation gives a cloud size of 108.2 µm±0.4 µm. Excellent agreement with

the Monte Carlo simulations gives us confidence that all sources of broadening have

been minimized and the remaining error is predominantly statistical.



CHAPTER 4. TEMPERATURE MEASUREMENTS 54

-40 -20 0 20 40

0

20

40

60

80

100

120

 

Io
n 

C
ou

nt
s

Time (ns)

Figure 4.3: Experimental time-of-flight distribution with 3000 counts.
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Figure 4.4: Example of a temperature measurement with trapping laser parameters
I = 4 mW/cm2 in a single trapping beam with δ = 2Γ. The temperature is 79±7 µK.

The inset of Fig. 4.2 shows the Monte Carlo simulation obtained with the same

parameters but with 100,000 counts. The cloud size for this simulation is 107.9 ±
0.1 µm. Accumulating more points gives the predicted

√
n improvement in error, but

the cloud size that was fitted did not change appreciably.

A sample temperature measurement can be seen in fig. 4.4. The dashed line is a

fit with eqn. 4.3. The TOF axis has been calibrated to a spatial dimension for the

PFI parameters used in this experiment. The initial width of the distribution fits to

105 ± 7 µm, which is consistent with our prior measurements of the focal spot size
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Figure 4.5: Linear fit to the temperature as a function of the light shift parameter,
Λ. The inset shows the measured value of Cσ from this work compared to that of
other experiments ((a)-[25],(b)-[34]).

on a calibrated CCD and Monte Carlo simulations of the thermal expansion. The

temperature is measured to be 79±7 µK with trapping parameters of I = 4 mW/cm2

in a single trapping beam with δ = 2Γ.

The real test of the technique is if the dependence of the temperature on trapping

laser parameters follows the dependence of eqn. 3.4 and the measured value of Cσ

agrees with the measurements of other experiments [25, 34]. Subdoppler cooling that

occurs due to polarization gradients in the cooling beams will cause the measured

temperature to be below the Doppler limit of 125 µK for Cs. Fig. 4.5 shows the

dependence of the temperature on the light shift parameter Λ = Ω2/|δ|Γ. For Λ > .5,

the MOT enters the multiple scattering regime and the gas begins to be heated by

its own internal light pressure. Fig. 4.5 shows how the measured value of Cσ and T0

compares to other work and shows that the Rydberg tagging technique is effective for

measuring temperatures in the subdoppler regime. The error in T0 is much larger for

our measurements because we are unable to efficiently study the regime of low Λ. In

this regime, the MOT density is too low to efficiently accumulate TOF distributions

using a steady-state MOT.
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There are two important consequences of the measurement. One consequence is

that the measurement was done without switching off the magnetic field for the MOT.

It was unclear before the experiment was conducted as to whether the magnetic field

produced heating of the gas which would cause us to have slightly higher measure-

ments of temperature. Its presence has no measurable effect within the resolution of

our experiment. The other consequence is that the uncertainty in the temperature

measurements demonstrates the velocity resolution of the spectrometer. The uncer-

tainty for a given temperature measurement was ±7 µK. This translates to a velocity

uncertainty of ±2.5 cm/s. This demonstrates the highest resolution ever achieved

by Rydberg tagging TOF spectroscopy. Typical velocities of collisions in ultracold

collisions are > 1 m/s which would be easily resolvable with our apparatus.

As a result of the temperature measurement, the resolution of the spectrometer

has been established. With such a small velocity uncertainty, velocities > 5 cm/s can

be resolved. This level of precision is more than adequate to observe the signatures

of photo-initiated collision processes or macrodimers with this apparatus.
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Chapter 5

Photo-Initiated Collisions

This chapter is devoted to the study of resonant collision processes that occur in

Rydberg gases. Excitation at stationary points that arise from avoided crossings

between Rydberg atom pair potentials can lead to velocity in excess of the thermal

velocity of the atoms in the trap. By monitoring the expansion of the excitation

volume while exciting a pair process, extra velocity due to the exit channel of a

collision process can be measured.

Fig. 5.1 (a) shows a spectrum taken for the 89D state. The spectral feature that

this experiment explains is shown to the red of the atomic state. Features such as

these do not correspond to an atomic Rydberg state and have been hypothesized to

be molecular resonances due to pairs of Rydberg atoms [6]. It is the purpose of these

experiments to show that resonances such as these are due to either photo-initiated

collision pairs or long range Rydberg atom-Rydberg atom molecules.

The spectrum is overlaid with calculations of dipole interactions of Cs atom pairs

[12]. It can be seen that the spectral feature is at the same energy as an avoided

crossing. The question this experiment sought to answer, was whether the pair in-

teractions resulted in a bound Rydberg atom-Rydberg atom pair, a macrodimer, or

dissociated into a pair of Rydberg atoms with a collision velocity determined by the

energy of the exit channel, vcoll. By observing the expansion of the TOF distributions

with delay τ , the distinction can be made.
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Figure 5.1: Spectra of the 89D state of Cs. The feature to the red of the atomic
resonance is a pair process as determined by measurments of the excitation rate
dependence at low laser intensity.

5 6 7 8 9 10 11 12 13 14

-200

-100

0

100

200

300

400

500

R ( m)86f 87f and higher l

89d90p

3/2,3/2

5/2,3/2

89d89d
5/2,5/2

3/2,3/2

5/2,3/2

88d90d
5/2,5/2

En
er

gy
 (M

H
z)

Signal divided by 50

Collision

a)

5 6 7 8 9 10 11 12 13 14
0
5

10
15

En
er

gy
 (M

H
z)

  0.05%
  0.0002%

 2.18%

 

 

R ( m)

  0.12%

b)
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In order to distinguish a pair process as either a photo-initiated collision or a

macrodimer, it is sufficient to observe the expansion of the time-of-flight distribution

as a function of delay, τ . Fig. 5.3 shows a diagram of the expected width dependence

on τ . The atomic state will have a width that is represented by the black line. The

expansion of atoms in the absence of collision will be determined by expansion at their

thermal velocity. Excitation of a collision process or macrodimer will result in the

excitation of two atoms. If two atoms are created at some initial R, the ion pair will

Coulomb repel one another after PFI during the time-of-flight. The shorter the initial

R, the broader the initial width of the TOF distribution at τ = 0. If the process is a

collision, the atoms will recede along R during τ until PFI, and will then be ionized

at increasingly larger distances. The Coulomb repulsion for a collision will have less

an effect at large τ , until the expansion due to the collision recoil velocity dominates

the expansion. This analysis is true for collision velocities as low as a quarter of the

Doppler velocity where this technique would not resolve the expansion. However,

since the colliding atoms could be prepared at the Doppler velocity to begin with,

the dependence would easily be resolved.

A macrodimer will have a different width dependence with increasing τ . Since the

molecule would be bound, the distribution of R remains fixed about an average value

for narrow linewidth, continuous-wave excitation. As τ increases, the macrodimers

will expand at their center of mass thermal velocity, but the extra width due to

Coulomb repulsion will remain a constant. In order to observe wavepacket motion

in the well, the excitation time would have to be short compared the the classical

vibrational period. For the typical well described here, the vibrational period would

be of order 1 µs. In order to observe oscillations of the wavepacket, this would require

an excitation pulse < 10 ns. To achieve a short pulse with enough energy to have a

significant probability to excite a macrodimer, the frequency bandwidth for excitation

would be broadened and excite over an energy range larger than the depth of the well.
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Figure 5.3: Comparison of the time-of-flight distribution for a 20 cm/s photo-initiated
collision or a macrodimer. The solid blue line is the width due to a macrodimer created
at 3 µm and the solid red line is the width dependence for a collision originating from
the same R. Increasing R from 3 to 7 µm yields the dashed curves. The solid black
line is the expansion due to temperature alone. All assume an initial excitation
volume with a focal spot size of 50 µm. The left gray region is ideal for observing
macrodimers while the right region allows measurement of vcoll.

This would give a non-negligible contribution to the width from nearby states and

obscure the results.

The two delay domains for observing a specific process are shaded in fig. 5.3. The

shaded region to the left is the region where it would be advantageous to observe

molecules. For τ short compared to the atomic lifetime, a Coulomb broadened signal

should be clearly visible that does not decrease with increasing τ . To observe the

velocity due to a photo-initiated collision, long times are desirable (right shaded

region). The asymptotic expansion will be due to the collision recoil velocity and will

not be obscured by Coulomb repulsion. The long lifetimes of Rydberg states permits

the measurement of small collision velocities, because a significant fraction of excited

atoms exist for hundreds of microseconds at large n.

The Rydberg atoms are excited using a two-photon scheme. The light for the first

step is generated by a tunable dye laser (Coherent 599-21), A, which is resonant with

6S1/2(F=4)→6P3/2(F=5) at λA ∼ 852 nm. The laser is collimated to the size of the
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Figure 5.4: Timing diagram for the measurements of the 88D+90D pair resonance.

MOT, (∼ 1 mm), and the intensity was fixed at IA = 4 mW/cm2. The linewidth of

A is ∼ 2 MHz.

A second frequency stabilized dye laser (Coherent 699-21), B, at λB ∼ 508 nm

excites atoms to states in the energy region near n∼ 89 from 6P3/2(F = 5). Laser B

is transported to the MOT through a single mode optical fiber to spatially filter the

light. The peak power at the end of the fiber is ∼ 17 mW. The beam waist of laser B

at the MOT is 104 ± 7 µm, as confirmed by imaging the focal spot on a CCD. The

frequency of laser B is referenced to a wavemeter with 80 MHz resolution and an I2

cell to an absolute accuracy of 2MHz.

The timing diagram can be seen in fig. 5.4. Before Rydberg excitation, the

trapping light is extinguished for 2.5 µs and remains off until after the detection

phase of the experiments. After the trap is shut off, the excitation lasers are pulsed

on using acousto-optic modulators to excite the Rydberg atoms. Laser A is gated on

with a pulse width of 2.5 µs. Laser B is gated on for 1 µs so that both lasers overlap

in time. The laser power is monitored using a photodiode. There are ∼105 atoms in

the laser-MOT interaction region available for excitation.

Pulsed-field ionization is used to measure the production of Rydberg atoms. A

4 µs high voltage pulse with an amplitude of 320 V (field E = 53 V/cm) is applied

across the extraction plates to field ionize the Rydberg atoms and accelerate the

resulting ions to the MCP.
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Figure 5.5: (a) Excitation rate on a log-log plot as a function of IB. Panel (b) shows
the charge distribution on the atomic line and pair resonance at low count rates
(∼ 10 Hz). Panel (c) shows that with IB fixed and varying IA that the excitation rate
is also quadratic.

Identification of the collision process was accomplished by three separate measure-

ments. We measured the rate of collision events as a function of IB to determine the

number of photons involved. We verified that the spectral feature is a binary atomic

process by analyzing the charge distribution of the ions detected during each event.

Finally, we measured the velocity of the fragments leaving the collision to identify the

exit channel.

The signal rate from the 89D3/2 atomic resonance and collision resonance were

measured simultaneously by scanning laser B in 1 MHz steps. IA was fixed during

the experiment to provide a constant initial 6P3/2(F = 5) density. To minimize loss

of signal due to Rydberg decay and avoid cold plasma effects, the delay between

excitation and pulsed field ionization was 1 µs. The atoms move ∼ 70 nm in this time

at our temperature. The spectral lines that were measured were fit to Lorentzian

line profiles. Fig. 5.5 shows the ion yield at the peak of the collision resonance and

atomic resonance as a function of IB.

The ion production rate for a single photon event at low intensity, W1, scales
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linearly with IB. W1 = σ(1)(ν)IB, where σ(ν) is the single photon cross-section for

excitation at frequency ν. The ion production rate for a two-photon event, W2, scales

as I2
B. W2 = σ(2)(ν)I2

B, where σ(2)(ν) is the two photon cross-section for excitation

at frequency ν. Consequently, a single photon event will have a slope of 1 and a two

photon process will have a slope of 2 on a log-log plot of rate vs. intensity, fig. 5.5.

The data shown in fig. 5.5 clearly indicates that the collision resonance is excited via

a two photon process.

To confirm that the spectral feature corresponding to the collision is the result of

a 2 atom process, we analyzed the pulse height distribution of the charge accumulated

during each cycle of the experiment at low laser B intensity. The charge produced

on the MCP after each event is proportional to the number of particles that hit. At

low laser B intensity, where much less than 1 event occurs per laser shot, the pulse

height distribution of the amplified charge indicates the average number of particles

that are produced during each event.

The probability of exciting NRyd Rydberg atoms is determined by the binomial

distribution

P (NRyd) =
Natoms!

NRyd!(Natoms −NRyd)!
pexc

NRyd(1− pexc)
Natoms−NRyd (5.1)

where pexc is the probability of exciting NRyd = 1 atom for a single photon excitation,

or NRyd = 2 for a two-photon excitation of a pair. Natoms is the number of available

atoms in the 6P state. pexc depends on IB so IB must be kept small to avoid multiple

excitations.

The detection efficiency PD of Rydberg atoms is determined by decay, the quantum

efficiency of the MCP, and transmission through the MCP grid. At short PFI delay,

τ = 1 µs, essentially all the Rydberg atoms that are excited survive. The MCP

quantum efficiency is η ∼ 60% for Cs+ at 4.5 keV [49], and the grid transmission is

t ∼ 86%, yielding PD ∼ η × t = 52%
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(in black). Fits for the pair resonance are shown as dashed Gaussian distributions.

We verified PD for the experiment by simultaneous measurements of ion yield

and trap loss. IB was frequency scanned across the 89D3/2 state. The ion yield

was measured while a simultaneous trap loss spectra was taken with a calibrated

photomultiplier tube. The absorption rate was measured for the range 15 mW/cm2 <

IB < 100 mW/cm2 by monitoring the trap loss rate τtrap
−1 when IB = 0. The

absorption rate is given

γ(IB) =
Natoms −Natoms

′(IB)

τtrapNatoms
′(IB)

(5.2)

where Natoms
′ is the number of 6P atoms with the additional loss due to IB. By

measuring the loading rate of the MOT, τ = 6.2 ± 0.1 s. The ion detection rate

Rion for IB < 4 mW/cm2 was compared to the number of atoms that were excited

according to γ(IB), and PD = Rion/γ(IB) = 0.47±0.06 which agrees with the estimate

based on the MCP quantum efficiency and grid transmission.

A sample pulse height distribution can be seen in fig. 5.6. A distribution for the

89D state is in red and for the pair resonance in black. The black dashed curves are

Gaussian fits to the pair resonance distribution. The width of the distribution scales
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as
√

q where q is the charge [49]. An increase in 2 charge detections for the pair

resonance is clear from the pulse height distributions as evidenced by the increase in

signal at higher pulse height.

Fig. 5.5(b) shows the comparison of the fraction of 2 to 1 ion counts when pulse

height distributions were accumulated at the frequency of the 89D state and at the

frequency of the resonance feature. The measurements were taken at a rate of 1 kHz

with an ion rate of ∼ 20 Hz. The resonance feature shows an increase in 2 to 1 ion

counts that identifies it as a pair process, and gives a measurement of PD = 0.46±0.06,

consistent with expectations.

To further confirm this result, IA was varied to change the 6P density while

monitoring Rion. The results are shown in fig. 5.5(c). The quadratic dependence on

IA indicates that two 6P atoms are involved in the excitation of the resonance, also

identifying it as a pair process.

After establishing that the resonance feature was due to pairs of Rydberg atoms,

TOF distributions of the fragments were measured as a function of delay τ to deduce

the recoil velocity. At short delay, a constant Coulomb broadened width was not

observed, so longer delays were used in the measurements to measure the collision

channel recoil velocity, vcoll.

The experiment was repeated at a rate of 1 kHz. The charge from each event is

monitored and typical count rates are ≤ 100 Hz to prevent coulomb broadening. The

range of delays was chosen so that the data could be acquired at the same intensity

of IB (∼ 10 mW/cm2). The initial delay of 200 µs was chosen to have sufficient

expansion at the collision velocity relative to the thermal velocity.

The thermal expansion of the trapped Rydberg atoms was measured as a control

[28]. We measured the temperature of atoms (solid circles) in the 6S1/2(F = 4)

state of the MOT to be 79 ± 7 µK by tuning laser B to the 89D5/2 atomic Rydberg

resonance.
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Figure 5.7: Measurement of the recoil velocity of the pair resonance that identifies
it as a photo-initiated collision. The collision is shown by the hollow circles and
a temperature measurement from the atomic line is shown in the solid circles for
comparison. The squares are points simulated by Monte Carlo with similar numbers
of ion counts compared to the experiment. The gray regions are confidence bands
determined by the simulation.

The data is shown in fig. 5.7. The laser polarization was parallel to the TOF axis

for the data shown in fig. 5.7. The experiment was repeated with the polarization

perpendicular to the TOF axis and no difference from the parallel configuration was

observed. The collision velocity is sufficiently low that the velocity distributions fit

well to a Gaussian. The exit channel velocity, vcoll, of the atoms after the collision

was measured to be 17± 3 cm/s (empty circles in fig. 5.7).

The collision data was simulated by Monte Carlo methods (empty squares in

fig. 5.7) to determine the exit channel velocity [12]. The input parameters for the

simulations were the temperature of the MOT and the energy difference between the

known, two-photon excitation energy and the asymptotes of pair states in the energy

region of 89D. Calculated pair potentials [12] and a ion yield spectrum are shown in

fig. 5.2 (a).

Fig. 5.2 (b) shows the square of the wavefunction as a function of R. The barrier

at short R mixes with the nearby 89D state by a percentage indicated on the figure.
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Figure 5.8: TOF distribution dependence for small delay. Empty circles are the data
for the 88D5/2 + 90D5/2 resonance feature while the solid circles are for the 89D5/2

atomic state. The focus of Laser B was ∼ 25 µm for these measurements to more
clearly observe the Coulomb broadening at short delay, τ .

This, together with the stationary point on top of the barrier, enhances the probability

of exciting the collision process. The measured exit velocity agrees with the products

exiting along the 88D5/2+90D5/2 asymptote from the barrier which predicts a velocity

of 19 ± 4 cm/s. The excellent agreement between the experiment and theory gave

us confidence we could identify a pair resonance as a photo-initiated collision or

macrodimer by comparison to the calculated pair potentials.

It is also informative to observe the TOF distributions at short delay to verify the

dependence of the Coulomb repulsion as the collision fragments recede along R. A

short delay measurement can be seen in fig. 5.8. Laser B was focused to ∼ 25 µm

to more clearly observe the effects due to Coulomb repulsion. The distribution is

clearly larger for τ < 10 µs as the fragments expand. The non-linearity of the FWHM

dependence on τ can be attributed to the acceleration of the particles along the pair

potential. Had the 88D5/2 + 90D5/2 resonance feature resulted in a bound molecule,

the width would be expected to be constant over the range of delays shown.

The existence of photo-initiated collisions illustrates that additional spectral fea-
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tures in Rydberg spectroscopy cannot be attributed to macrodimers outright. It is

necessary to conduct further studies to verify the existence of bound states other than

by purely spectroscopic methods. With the measurement of the recoil velocity due to

a photo-initiated collision, we now have confidence that we can observe the signature

of the Coulomb repulsion on the time-of-flight distribution due to macrodimers.
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Chapter 6

Observation of Cs Macrodimers

This chapter presents the observation of a new type of molecule that is comprised

of two Rydberg atoms bound at long range. Macrodimers are observed by monitor-

ing the Coulomb broadening of the TOF distributions due to the repulsion of the

macrodimer ion fragments after PFI. The delay dependence of the TOF width was

compared to Monte Carlo simulations of a collision that originated at the same inter-

nuclear separation as the observed macrodimer. These measurements show that the

observed pair resonances are bound to within the resolution of the spectrometer.

Long range molecules are excited by a two-photon process

Cs[6P3/2(F = 5)] + Cs[6P3/2(F = 5)] + 2hν (6.1)

→ Cs2[(n− 1)D5/2 + (n + 1)D5/2].

The atoms in the 6P3/2(F = 5) state are excited from the 6S1/2(F = 4) state using a

beam derived from the trapping laser with a FWHM∼ 2 mm. This beam is crossed

with a dye laser used to excite to high principal quantum number (n ∼ 65) Rydberg

states (λ = 508 − 509 nm). The dye laser is focused to FWHM∼ 25 µm and the

polarization is parallel to the time-of-flight (TOF) axis. The crossed geometry helps

reduce background counts.

One of the molecular resonances under study is shown in fig. 6.1. It is plotted in
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Figure 6.1: Integrated atomic ion yield spectra and pair potentials for 65D+67D with
ε = 190 mV/cm. The excitation laser intensity is ∼ 500 W/cm2. All Fine structure
and Ω are plotted. Ω = mj1 + mj2 is the projection of the angular momentum on R.
The feature in the figure studied for this pair of states is circled.

red along the calculations of the pair interaction potentials described in [13]. Promi-

nent wells are shown in the calculations that gave us confidence that the observed

resonance feature should result in a bound macrodimer. The depth of the well and the

strength of the feature were good indications that the characteristic TOF signature

could be observed.

The timing of the experiment is as follows (see fig. 6.2). The 6S1/2(F = 4) →
6P3/2(F = 5) trapping light is switched off with an acousto-optic (AO) for 10 µs.

2.5 µs after this light is off, the Rydberg excitation beams are switched on with AOs

for 5 µs. After a variable delay, τ , PFI is applied for 2 µs at 66 V/cm. A 1 V/µs, 5 µs

duration ramp is applied immediately preceding the PFI pulse to clear any stray ions

from the excitation region. The ionized atoms/molecules have a TOF of 25 µs after

PFI before detection on the MCP. The timing signals from the MCP are processed

by a constant fraction discriminator and accumulated by a multichannel analyzer

(MCA). The falling edge of the PFI is used to trigger acquisition for the MCA. The

6S1/2(F = 3) → 6P3/2(F = 4) repumping light for the MOT is on during the entire

experiment. A constant voltage is applied to the upper field plate during excitation.

The applied electric field is interrupted only during PFI. The experiment was repeated
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Figure 6.2: Timing diagram for the macrodimer TOF measurements. The timing is
similar to the timing for the photo-initiated collision measurement, with the addi-
tion of a short ramp prior to PFI. This ramp helps remove any stray ions from the
excitation volume.

at a rate of 1 kHz.

Molecular resonances are observed for Rydberg atom pairs at different applied

electric field. We measured molecular resonances for the 63D+65D, 64D+66D, 65D+

67D and 66D + 68D states. The excitation rate for each molecular resonance was

measured as a function of intensity (see fig. 6.4(b)). The rates depend quadratically

on the intensity which indicates that the resonances are two-photon transitions from

the initial 6P3/2 state.

The potential wells probed with our experiment depend strongly on the applied

electric field. Sample spectra for molecular resonances in the 65D + 67D manifold

can be seen in fig. 6.3. Panel (a) shows the spectrum with the applied field used to

measure the Coulomb repulsion of the fragments. Panel (b) shows the same spectral

region at slightly higher field where the resonances have disappeared. At zero field,

calculations of the region do not display any of the prominent wells shown in fig. 6.1.

As the field is increased, the Stark fans due to the higher angular momentum states

are pushed to lower energy, forming avoided crossings that support bound states. As

the field is increased further, the higher fan states begin interacting more strongly

and the wells are destabilized.

We compared the shape of the TOF distribution for single thermal atoms to
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Figure 6.3: Spectra near the 66D state taken for an applied field of (a) 190 mV/cm
and (b) 264 mV/cm. The modest increase in electric field is sufficient to destroy the
pair resonance. The mj for the 65D5/2+67D5/2 states are (1)-(1/2,5/2), (2)-(5/2,1/2),
(3)-(3/2,3/2), (4)-(1/2,3/2), (5)-(3/2,1/2), and (6)-(1/2,1/2).

bound pairs including Coulomb repulsion after PFI (see fig. 6.4(a)). The molecular

signal is much broader than the atomic signal, characteristic of the Coulomb repulsion

between the ions. The molecular signal appears to exhibit maxima symmetric about

the peak center, suggestive of an alignment effect between the TOF axis, transition

dipole moment, and dye laser polarization [50]. We measured the TOF distribution

for the molecular resonance with the dye laser polarization perpendicular to the TOF

axis and observed no difference in the observed width or shape. If alignment of the

molecule is present, it could be due to the applied electric field. We currently have

no experimental way of verifying this without major modifications to the experiment

which could adversely affect the resolution of our spectrometer.

TOF distributions were accumulated for τ = 18− 38 µs (see fig. 6.5). The times

were chosen to be short enough to avoid decay of one of the molecular partners,

but long enough to measure the width dependence on τ . The lifetime of a ∼ 60D

state including blackbody decay is ∼ 100 µs so delays < 50 µs should minimize the

probability of decay by one of the partners [19, 20]. For our spectrometer geometry,

applied field, and PFI, 11 ns corresponds to a spatial width of 25 µm. The atomic
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Figure 6.4: Panel (a) shows the time-of-flight distribution for the 65D+67D molecular
state at a delay of 38 µs in red compared to the 66D atomic state in black. The
molecular resonance shows pronounced Coulomb broadening. Panel (b) shows the
excitation rate as a function of dye laser intensity, indicating that the process is
two-photon.

measurement is large by ∼ 50 %, most likely due to alignment difficulties of the dye

laser focal spot, but presents no difficulties for observing the Coulomb repulsion which

is a factor of at least 3 larger in width.

The width was simulated using Monte Carlo. A range in R was chosen for input

based on the calculated potential wells. The simulated width was in good agreement

with the molecular TOF signal. The Monte Carlo included the field due to the PFI

and applied field during the entire TOF. The Monte Carlo simulation was consistent

with the TOF measured by the experiment as well as the distribution width at the

MCP.

We compared the measured molecular TOF distributions to simulations of collision

velocity to determine that the molecules were bound until PFI. We do not expect to

observe oscillations of the TOF width because the entire well will be populated as the

vibrational period (τvib < 2 µs) is less than the excitation time and much less than

τ . The width dependence on delay was compared to the same R at τ = 0 with the

addition of thermal velocity. This gives us confidence that we can distinguish between
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Figure 6.5: Coulomb broadened width for the 63D + 65D, 64D + 66D, 65D + 67D,
and 66D + 68D molecular states shown with solid circles with a constant fit in blue.
The red is a Monte Carlo simulation of the expected behavior if the molecular reso-
nance was due to a photo-initiated collision with recoil velocity equal to the Doppler
velocity. The triangles are a measurement of temperature taken for the 66D state for
comparison fit with a dashed line.

a bound molecule and a low velocity photo-initiated collision as observed previously

[14]. The simulated width decreases rapidly even for thermal velocity.

A linear fit was applied to each molecular pair expansion to determine the min-

imum collision velocity that would give similar results. The velocity allowed by the

error in the molecular TOF signal is 0 ± 1 cm/s for 63D + 65D, −2.7 ± 2.1 cm/s

for 64D + 66D, 2.2 ± 2.7 cm/s for 65D + 67D and 3.4 ± 4 cm/s for 66D + 68D.

The electric fields that were applied during the measurements were ε = 224 mV/cm,

ε = 205 mV/cm, ε = 190 mV/cm, and ε = 158 mV/cm respectively. The width is

constant to within the resolution of our spectrometer for all pairs with the exception

of the 66D +68D pair [14, 28]. The 66D +68D pair is still in agreement with a fit to

a constant value. The highest pair state is the only state that would be in agreement

with a pair of free atoms moving relative to each other with the velocity determined

by an 80 µK gas (7.1 cm/s). The lower three pairs would represent unphysically cold

atoms for the experiment and would be more reasonably interpreted as bound. Even
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for the lowest pair state, if they could be explained as free atoms pairs moving with

thermal velocity, there must still be a mechanism for excitation at an initial R that

contributes Coulomb repulsion.

The range of n used in our experiment is limited by the proximity to the nearest

atomic line. The proximity to the line has two consequences. First, the excitation

rate decreases for lower n. This is because most of the excitation probability is due to

mixing with the nearest atomic state by an off-resonant two-photon transition from

an initial pair of 6P3/2 atoms. The second consequence is that the signal becomes

obscured for higher n as the molecular resonance moves into the wing of the atomic

line. This can be seen in the measurements. As n increases, the TOF distributions

contain more noise and decrease in width. As the range of R for these states does

not vary much with n, the marked decrease in width and increase in noise is at least

partly attributed to additional signal from the atomic line.

These measurements show that macrodimers exist for a range of n consistent with

calculated pair interaction potentials due to multipolar interactions. The dependence

of the wells on the applied electric field has been shown to be important in any

experiment where robust creation of macrodimers is desired.
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Chapter 7

Conclusions and Future Directions

The most significant contribution of this work is the ability to experimentally dis-

tinguish between a photo-initiated collision and the creation of a macrodimer in an

ultracold system with the application of an electric field. This experimental work

suggests the calculations performed in [12, 13] accurately describe the dominant in-

teractions. Together with the ability to calculate the pair interaction potentials to

high precision, macrodimers can be produced in the lab for future studies of weak

interactions [2, 13]. Macrodimers should also be observable in other ultracold alkali

samples. With robust production of macrodimers, experiments could be conducted

that study the electric field dependence of the multipole interactions as well as other

sensitive tests of theory. The techniques described could also be applied to study

ionizing collisions in Rydberg gases that leads to the formation of ultracold plasmas

[51].

The measurement of small recoil velocities due to collisions between Rydberg

atoms and Coulomb repulsion between pairs, opens up a new avenue of ultracold

research. The apparatus described in this work can be extended to more complex

studies of ultracold collisions and ultracold chemistry. The future of this experi-

ment lies in experiments involving ultracold atom-diatom collisions. The 3D angular
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distribution of the products in the collision

Cs + Cs + Cs → Cs2 + Cs (7.1)

will be determined by the 3-body potential. This apparatus could be used for sensitive

tests of 3-body recombination theory. The unprecedented resolution of this apparatus

makes it possible to resolve the velocity signature of virtually all collision processes

that occur at ultracold temperatures.

Of immediate interest would be to investigate the angular dependence on the cre-

ation of the macrodimers. By performing measurements of the angular distribution

of the products in 3D, it should be possible to determine if the applied electric field

in these experiments provides a spatial alignment effect that cannot be observed in

the current experiments. With the addition of a dipole trap for increased atomic

density, measurements of the 3D angular distribution should be feasible by increas-

ing the number of available pairs at the necessary internuclear separation. Studying

the anisotropy of the multipolar interactions could have implications on the future

of using Rydberg atoms for quantum information processing. It may be that there

are preferred orientations of the interacting atomic pairs that would lead to longer

coherence times. Experiments that rely on ordering atoms in microtraps might signif-

icantly benefit from studies of this kind. With this apparatus, it is possible to study

the 3-D interactions of ultracold atoms in an anisotropic potential.

Another avenue of future research could be to study the state distribution of the

macrodimers as a function of delay. From the work done previously with resonant

energy transfer, it might be expected that energy could be exchanged between the

atoms that constitute the macrodimer [1]. By studying the long term dependence

of the time-of-flight width versus delay, together with state selective ionization, the

lifetime of the macrodimers produced in these experiments could be studied further.

It is clear that much can be accomplished using the techniques described in this
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work to study ultracold collision dynamics. The techniques described are not re-

stricted to studies of Rydberg interactions, but are instead widely applicable to other

systems. Such multi-differential techniques can yield a wealth of information about

collision dynamics in ultracold systems.
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