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Abstract 
 
 

The effects of spin-orbit interactions (SOIs) on transport properties of 

InSb/AlInSb heterostructures have been studied experimentally. At low 

temperatures, the quantum interference gives rise to a quantum correction to the 

classical Drude conductance. For 2D systems, the dominant quantum corrections 

are due to weak anti-localization (WAL) and electron-electron interaction effects. 

This thesis is concerned with these contributions.  

The first part of this dissertation describes the development of device fabrication 

processes for InSb material, including electron beam lithography (EBL) and dry 

etching (RIE). The second part describes two separate magneto-transport 

measurements performed in 2D electron and hole systems as well as in 1D wire 

arrays fabricated from 2D electron gases. Both experiments employ low field 

magneto-transport measurements to explore the SOI.  

Spin-orbit effects in III-V semiconductor heterostructures arise from two distinct 

inversion asymmetries: bulk inversion asymmetry (Dresselhaus) and structural 

inversion asymmetry (Rasha), due to crystalline anisotropy in III-V zincblende 

crystal and heterointerface, respectively. In the first set of experiments, we studied 

symmetrically doped InSb/AlInSb heterostructures with comparable magnitude 

spin orbit contributions from both linear and cubic Dresselhaus. In this limit the 

spin-split Fermi surface are four-fold symmetric and present minimal and 

maximal spin-orbit (SO) fields along the [100] and [110] direction, respectively. 
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For this experiment, Hall bars (HB) and arrays of quasi-1D wires were patterned 

along these crystallographic directions for a (100) growth plane to reveal the 

anisotropic spin-split Fermi surface. The arrays of 1D wires were fabricated using 

EBL and reactive ion etching. Using weak localization (WL) analysis, we 

calculated a Dresselhaus constant γ = 520≤20 eVÅ3 for our particular InSb QW, 

in very good agreement with the theoretically predicted value. Suppression of spin 

relaxation was observed as the channel was narrowed and wires aligned along the 

[100] direction displayed spin relaxation lengths ~30% longer than for wires 

aligned along [110] due to the additional influence of the cubic Dresselhaus which 

is predicted to be unaffected by dimensional confinement. Additionally in the 

diffusive regime, electron–electron scattering responsible for dephasing was 

investigated as a function of temperature. 

The second set of experiments focused on the geometry dependence of Rashba 

spin splitting of the valence band (VB) in the 2D hole system. In a 2D hole 

system, the Rashba coupling can be modified by varying the carrier concentration 

and by changing the confinement. Compared to the 2DE system, we observed a 

huge spin splitting, ~2-5meV. While the observed spins splitting were in 

qualitative agreement with theoretical expectation, there was substantial 

quantitative disagreement.  
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Dissertation Outline 
 
 

Over the last two decades, interest has grown in studying spin dynamics and 

transport due to the potential for spintronics based devices. Spin injection, 

transport, manipulation and detection are the four main elements required for a 

spintronic device. In this dissertation, we are concerned with spin transport and 

relaxation in InSb. Electrons and holes in InSb have strong spin-orbit coupling 

(SOC) compared to the other III-V materials. Since InSb is relatively uncommon 

material, its spin transport has not been explored to the extent of other III-V 

materials. Thus, determination of spin relaxation in InSb based quantum wells 

(QW) is critical because it provides fundamental information relevant to spin 

transport. Using transport techniques, it is common to study the spin relaxation 

mechanisms via measurements of the interference in low field magneto-resistance 

at low temperature. Ignoring the carrier spin, this quantum interference effect 

which results in constructive interference (weak localization) was first predicted 

by Anderson in 1958 for metallic systems [1, 2]. Later a qualitative explanation 

for quantum interference was given by Bergmann for thin metallic films [3]. 

In 1980, Hikami et al evaluated the effect of spin on the WL, which resulted in a 

change from destructive to constructive interference (weak anti-localization) [4]. 

Later more complex modifications were incorporated [3-8] and have since been 

applied to various III-V systems via transport experiments [9-19]. The first 

demonstration of the suppression of spin relaxation due to geometrical 

confinement was performed by Th.Schapers et al. using WAL analysis of InGaAs 
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(2006)  [20].  At the same time, Holleitner et al. demonstrated the anisotropic spin 

relaxation in 1D InGaAs wires via an optical experiment [21]. However, 

anisotropic spin relaxation in 1D wires has not been demonstrated via transport, 

hence, the justification for these experiments to study anisotropic spin relaxation 

in 1D InSb channels along [100] and [110] directions by WAL.  

Additionally, little work has been performed on hole systems. Theoretical work 

has shown that Rashba coefficients can be modified by changing the QW width 

[22]. In the second part of the thesis, we investigated the WAL in p-type 

InSb/AlInSb QWs, studying the impact of well width on WAL. These are the first 

WAL studies in p-type InSb.  

This dissertation is divided into six chapters organized in the following way: 

Chapter I consists of fundamental background on the SOI in solid systems, in 

which a theoretical overview of the Rashba and Dresselauus SOI is described.  

Chapter II contains the basic concepts and theoretical overview necessary to 

understand the quantum interference of the low dimensional system studied in this 

work. In subsequent sections, I will discuss the conductance, the quantum 

interference effects, the relevant theoretical models and the suppression of spin 

relaxation in the 1D electron system. 

The third chapter reviews the fabrication techniques employed in this work. This 

includes a detailed account of the optical and EBL and dry and wet etching 
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techniques that were used to fabricate InSb/AlInSb devices. In chapter IV, the 

details of InSb QW structures are given.  

Chapters V and VI are experimental chapters. In chapter V, I will present the 

results of magneto-transport in two dimensional electron systems (2DESs). The 

first part of the chapter focuses on understanding the SOI and electron transport 

through InSb 2DESs at low-temperature. The second part of the chapter focuses 

on changes of the spin relaxation length and anisotropy in spin relaxation related 

to narrowed conducting channel fabricated from the 2DES. These measurements 

are analyzed in terms of the theoretical predictions presented in chapter II in the 

temperature range 1.5K to 10K. In the last part of the chapter, the results of 

electron-electron interaction in both 2D and 1D limits are discussed.  

The experiment described in chapter VI focuses on investigating the Rashba SOI 

of the 2D hole gas in Be-doped InAlAs/InSb QWs, as a function of carrier 

concentration and well width. These measurements are analyzed in terms of the 

theoretical predictions for the 2D hole gas system presented in chapter II. 

Furthermore, experimental results are compared with the theory developed by the 

means of the Extended Kane Model for the heavy hole (HH) in the VB. Chapter 

VII provides conclusions and suggestions for future work. The dissertation 

concludes with a list of references. 
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Chapter 1: Fundamentals of the Spin-Orbit Interaction in Solid Systems 
 

1.1 Introduction 
 
This chapter presents a brief introduction to the origins of the SOI in a solid state 

system. In a solid system, the correlation between the orbital motion and the 

particle spin is an important relativistic effect which can lift the spin degeneracy 

even in zero applied magnetic field. The SOI coupling can be derived from the    

non-relativistic limit of the Dirac-equation [23] and is expressed as: 

 V
c4m

H
22

o

2

so  kσ
e

                1.1 

Here, mo is the free electron mass, c is the speed of the light, σ is the Pauli spin 

matrices, h2πpk   is the wave vector and V is the potential, where the gradient 

of the potential is minus the electric field (E).  

The SOI has different physical origins as will be discussed in the subsections 

below. In the laboratory frame a particle can move in a region with a non-zero 

electric field; in the rest frame of the particle, however, the particle feels an 

effective magnetic field due to the Lorentz transformation of the electric field (see 

Figure 1.1). The magnitude of this effective magnetic field is given by the 

standard Lorentz transformation [24], 

   
22eff

mcc

EpEv
B








        1.2(a) 



2 

where,  2cv11γ  is the Lorentz factor and v is the velocity of the particle. 

For a slow particle,   1cv 2  , one can neglect the higher order terms in  2cv . 

Then the effective magnetic field reduces to, 

 
2eff mc

Ep
B


 .                     1.2(b) 

It is this momentum dependent effective magnetic field that causes the coupling 

between the spin and the orbital motion.
 
 

 

 
 
 
 
 
 
 
  
 
 
 
Figure 1.1  The motion of the electron in a region with a non-zero electric field: (a) lab frame 

(b) rest frame [25]. 
 

1.2 Spin-Orbit Interaction in a Two-Dimensional System 

In general the effect of the SOI is to lift the spin degeneracy of the carrier 

(electron or hole) states in a semiconductor. The spin degeneracy arises from the 

combined effects of inversion symmetry in space and time [22].  

 

),E(),E( symmetry,inversion  Time

),E(),E( symmetry,inversion  Spatial





kk

kk

            ),E(),E(  kk         1.3 

E


 

Laboratory frame 

E


 
vxE

c

1
B

2


  

Electron rest frame 
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If the spatial inversion symmetry is broken, ),E(),E(  kk , then there are 

two branches for the single particle energy dispersion even in the absence of an 

external magnetic field (see Figure 1.2), (i.e. spin splitting). 

 

 

 

Figure 1.2   Energy dispersion relations for spin spilt bands [25]. 

 

In quasi-two dimensional (2D) semiconductor structures without a center of 

inversion symmetry, it is well known that two distinct electric fields are involved 

in spin   splitting; they are however different in physical nature. The first is a 

crystal field associated with bulk inversion asymmetry (BIA) of the bulk host 

material also known as the Dresselhaus SOI [25, 27]. The second is caused by the 

structural inversion asymmetry (SIA) of the heterostructure itself also known as 

the Rashba SOI. This SOI was first introduced by Rashba in the 1960’s for 

semiconductor materials [28] and was later developed with more details by 

Spin degeneracy 

),E(),E(  kk  

Spin splitting 

),E(-),E(  kk  
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Bychkov and Rashba to describe and analyze experimental data in the term of 

SOI for the 2DEG [29,30].  

As mentioned earlier, in the rest frame of the carrier, these fields are transformed 

into k dependent effective magnetic fields, which result in an energy difference 

between the spin-up (↑) and the spin-down (↓) bands in both the conduction and 

valence bands. The spin of the carrier precesses around this superposition of 

effective magnetic fields. The corresponding Hamiltonian for conduction 

electrons in a III-V semiconductor structure grown along the [001] direction can 

be then written as [7, 8, 31-35]:  

))(.(
2m

H
*

22

kΩσ
k




              1.4 

Here, the first term is kinetic energy and the second term is the SO energy which 

describes the lifting of the two fold spin degeneracy at 0k . In a 2D system, Ω 

is an odd function of the in-plane wave vector, k. This spin precession frequency 

is related to the spin splitting energy (ΔE ) and is given by [8, 36, 37]: 

2

ΔE
)( kΩ                 1.5 

If both Rashba and Dresselhaus SOIs are present in the 2D system, the vector 

Ω(k)  is the combination and can be written as [7, 8]:  

)()()( DR kΩkΩkΩ                           1.6 
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Where, the vectors (k)ΩR  and (k)ΩD  are the Rashba and the Dresselhaus spin 

precession frequencies respectively.  

 

1.2.1 Dresselhaus Spin-Orbit Interaction in the 2D Electron Gas 

In a bulk crystal, the spin splitting is accounted for by a pure Dresselhaus SOI. 

Ordinary A3B5 bulk crystals such as InSb and GaAs have a zinc-blende structure 

[8] and the spin splitting of the conduction band (CB) is then described by the 

following Hamiltonian [8, 26]: 

 )k(kkσ)k(kkσ)k(kkσγ      

(k)σ.ΩH

2
y

2
xzz

2
x

2
zyy

2
z

2
yxx

DD




                     1.7 

Where, γ is the Dresselhaus coefficient which depends on the material and cannot 

be tuned. Compared to the other III-V semiconductors, the theoretically predicted 

value of γ for InSb is very large (ranging from 560 <γ<760 eVÅ3 [22, 33, 38]. For 

InAs and GaAs materials γ is about ~27 eVÅ3. According to Equation 1.7, the 

Dresselhaus spin splitting is proportional to the cube of the electron wave vector    

k )k,k,k( zyx . When the Dresselhaus SOI is applied to a 2D system grown 

along the [001] direction, the expectation value of zk is zero, while 2
zk  is 

quantized as a result of quantum confinement; thus, in addition to terms cubic in 

the momentum, the Hamiltonian of the 2D system also has k-linear Dresselhaus 
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terms [8, 22, 31, 39, 40] as can be seen after substituting, 0k z   and 0k 2
z   

into equation 1.7, yielding the following form:  

 )kσkkσ(k)kσk(σkγ

(k).Ωσ(k).Ωσ(k)σ.ΩH

yy
2
xxx

2
yyyxx

2
z

Dy,yDx,xDD





           1.8 

Here )(D kΩ is the total Dresselhaus spin precession frequency vector of the 

conduction electron in a zinc-blende QW grown along the [001] crystallographic 

direction. ψ
dz

d
dzψk

2

2
*2

z  







  is the mean square of the electron momentum 

in the direction of the quantum confinement.  

The linear term, )kσk(σ yyxx  is isotropic in the plane of the QW (see Figure 1.3 

(a)). The cubic term, )kkσkk(σ y
2
xyx

2
yx  is anisotropic in the plane of the QW 

(see Figure 1.3(b)), with maximum amplitude along the [110] and [1-10] 

directions. In the case of a narrow QW, the confinement is large, 2
F

2
z kk  and 

the linear term dominates the spin splitting, and the cubic Dresselhaus 

contribution is usually neglected in the SO analysis. However, in the case of a 

wide QW with heavy doping, the relation 2
F

2
z kk   holds and then both linear 

and cubic terms contribute to the spin splitting of the CB.  

In chapter 5, the InSb CB spin splitting is interpreted in the framework of the 

Dresselhaus SOI taking into account both linear and cubic contributions.  
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Figure 1.3  The  spin  orientation  of  the (a): linear )kσk(σ yyxx   and (b): cubic 

)kkσkk(σ y
2
xyx

2
yx  , Dresselhaus terms as a function of the in-plane wave 

vector for the zinc-blende type QWs. Arrows indicate the directions of the spin 
orientation.  

 
 

1.2.2 Rashba Spin-Orbit Interaction in the 2D Hole Gas 

The Rashba SOI is important only in 2D systems where the confining potential is 

asymmetric. When considering electrons, an asymmetry in the potential and band 

offsets of the barrier materials leads to a non-zero electric field in the VB across 

the heterostructures perpendicular to the plane of electron motion [22]. Figure 1.4 

shows the confining potential of the CB for an asymmetric QW. A moving 

electron feels the electric field as an effective magnetic field in the plane of the 

QW perpendicular to the electron motion and electric field.  

In order to get a simpler picture of the Rashba field which controls the spin 

splitting, we assumed the 2DE system was confined along z-axis. If only the 
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lowest conduction subband is occupied, the Hamiltonian describing the QW can 

be written as:  

U(z)
2m

U(z)
2m

H
*

2
z

*

2
z

2

c 
pk

                        1.9 

where, the potential energy (z)qVU(z) c  in which (z)Vc  is the electric 

potential and q is the charge. Here, we have assumed a position-independent 

effective mass. The expectation value of the time evolution of the momentum 

operator in a bound state of Hc is given by, 

  cczc
c

z H,p
i

1

dt

dp



                                                        1.10 

(Ehrenfest theorem) 

0(z)F(z)qE
dt

dp
cEcc

c

z                                      1.11 

Where c describes a bound state and the force on an electron in the CB 

0(z)F
cE  . So that 0(z)qEc  . Hence, the potential dependent band energies 

result in a non-zero (z)E v  valence band E where contributes to the Rashba spin 

splitting.   
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In a 2D electron system, the Rashba spin splitting has a linear k dependence and is 

proportional to the degree of asymmetry of the heteropotential. More details of 

the Rashba spin splitting for the electron system are described in Ref. [22]. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.4  Schematic conduction band diagrams for an asymmetric QW. If the electric field 

(Ez) is along the growth direction, an effective magnetic field (Beff(k)) is induced in 
the plane of the QW, perpendicular to the momentum of the electron. 

 

Unlike the 2D electronic system, the Rashba spin splitting of the two-dimensional 

hole system (2DHS) is more complicated due to the mixing of the heavy hole 

(HH) and light hole (LH) bands. However, the confinement is usually large 

enough to separate the HH (MJ =3/2) and LH (MJ=1/2) bands, so that they can be 

treated independently. To lowest order, the Rashba spin splitting of LH and HH 

are first and third order in the wave vector respectively. If the QW is confined in 

2DEG

Beff

Vë 

Energy 

 Z -direction 

AlInSb InSb AlInSb 

Ez 
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the direction of z-axis such that only the lowest HH band is occupied, the 

resulting Rashba Hamiltonian for the HH in the v
8   VB is given by [22]: 

JE*βkH z
R
HH               1.12 

In this equation, J is the angular momentum matrices for j=3/2 along the x, y and 

z directions and  is the Rashba coefficient which depends on the structure itself. 

Starting from the 8x8 extended Kane Model, the above Hamiltonian has been 

expanded in Ref [22] as:  

 

       z
337H,7H

54z
227H,7H

53
R
HH

R
HH54,

R
HH53,

R
HH

R
HH

Eσ,kσ,kiγEσk,kσk,kiγH

      

(k)Ω(k)Ωσ.(k)σ.ΩH

 



      1.13 

Notation:    BAAB
2

1
BA,   

In this equation,
 

)iσ(σ21σ yx  and yx ikkk   and H7,H7
53  and H7,H7

54  are 

the Rashba coefficients to be discussed below. By substituting plane polar, 

coordinates, cosθkk Fy  , sinθkk Fy   and the Fermi wave vector, )kkk 2
y

2
xF  , 

equation 1.13 can be rewritten as: 
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    

    





















θ3cosγEkσθ3sinγEkσ

θcosγEkσθsinγEkσ

Ω
7H,7H
54z

3
Fy

7H,7H
54z

3
Fx

7H,7H
53z

3
Fy

7H,7H
53z

3
Fx

R
HH  1.14 

Here, we can see from this expression that spin precession frequencies related to 

H7,H7
53 and H7,H7

54  can be separated according to angle   and 3 yielding the 

following form: 

)θ3cos,θ3sin(γEk(k)Ω

)θcos,θ(sinγEk(k)Ω

7H,7H
54z

3
F

R
HH54,

7H,7H
53z

3
F

R
HH53,





                     1.15 

Treating the off-diagonal HH-LH coupling by using third order perturbation 

theory, both H7,H7
53  and H7,H7

54  are given by Ref. [22, 41] as:  











2
HS

2
HL

3232
o

4
7H,7H
53 Δ

1

Δ

1
)γ(γγ

m

e

4

3
γ

                 1.16(a) 











2
HS

2
HL

3232
o

4
7H,7H
54 Δ

1

Δ

1
)γ(γγ

m

e

4

3
γ

                    1.16(b) 

In these equations, HL and HS  are the energy gaps between HH and LH bands 

and HH and split-off bands ( 0 ) respectively and 2  and 3  are the Luttinger 

parameters for the InSb material [22] are: 
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eV8.0
50.16
70.17

0

2

3





 

As seen in equations 1.16 (a) and (b), both H7,H7
53 and H7,H7

54  are not fixed and can 

be modified by changing the QW width, i.e. changing the HH and LH band 

separation. When the QW is narrowed, the HL  value increases, resulting in a 

smaller Rashba parameter. Comparison the two expression in 1.16, the leading 

Rashba coefficient is H7,H7
54  as the prefactor )( 323  , for InSb H7,H7

54  is 28x 

larger than H7,H7
53 . The product of  H7,H7

54  and Ez is the Rashba coupling constant. 

In general, Ez increases when the density of the system is increased and since the 

well potential can also be modified by application of an external electric field, the 

Rashba coupling can be varied by means of an external gate as has been 

experimentally demonstrated by G. M. Minkov et al. in a InGaAs 2DHG system 

[42]. According to equation 1.13, the Rashba spin split HH sub band dispersion is 

given as [22]: 

3
z

7H,7H
54*

yx,HH,

2
F

2

F
R
HH kEγ

2m

k
)(kE F


                      1.17 

Here, the first term is the kinetic energy corresponding to the HH where mHH,x,y is 

the in-plane HH effective mass and the second term is the HH Rashba spin 

splitting energy. In chapter 6, the Rashba spin splitting of the 2D InSb hole 

system was evaluated by taking into account expressions 1.16(b). 



13 

1.3   D’yakonov-Perel Mechanism and Spin Relaxation 

The D’yakonov-Perel mechanism (DP) dominates, for systems which lack 

inversion symmetry (zincblende crystal structure) resulting in lifting the spin 

degeneracy of the CB and VB in all directions [26]. This spin splitting of the 

CB/VB is analogous to an internal k-dependent effective magnetic field, B(k), 

acting on the electron spin as described in section 1.1. The spin of the 

electron/hole precesses about this effective magnetic field with Larmor frequency, 

(k)=(e/m)B(k). When an electron is scattered from one momentum state, k, to 

another momentum state, k, the direction and the magnitude of the effective 

magnetic field is randomized with scattering, changing with every carrier 

scattering event, (B(k)ØB(k') (Figure 1.5). The precession frequency also 

changes (W(k)ØW(k'). After a number of scattering events, the spin of the 

electron/hole completely loses its spin memory undergoing spin relaxation.  

 

Figure 1.5 Schematic view of the D’yakonov-Perel mechanism. Spin precesses in a different 
direction after momentum scattering. τe is the momentum scattering. 
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In the case of strong disorder, =(k)e<<1, then the spin phase follows a 

random walk.  After certain a time, t: 

eτ

t
δincrementphaseTotal 

                                                                 1.18
 

When, the total phase increment ~1, the time t goes to spin relaxation time, τso, 

and equation 1.18 implies, 

eτΩ(k)
τ

1 2

so

                                                                                                      1.19
 

i.e. the spin relaxation  time is inversely proportional to the momentum scattering 

time. Then the distance related to the spin relaxation time for spin polarization go 

to   zero is the spin relaxation length, soso DτL   where D is diffusion constant   

(
2

v e
2
F  in 2D). 
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Chapter 2: Quantum Interference in Low Dimensional Systems 
 

 

2.1 Introduction 

Magneto-transport at low magnetic fields is a powerful tool for measuring the 

strength of the SOC in low-dimensional (1D) systems. There are several ways to 

do this. The most common are studies of the characteristic beat patterns in   

Shubnikov–de Haas oscillations (SdH) [43, 44] and the quantum interference 

correction to the conductance [9-19]. This chapter starts with a brief discussion of 

the magneto-conductivity, followed by a brief description of the quantum 

correction to the conductivity for low dimensional systems. The chapter will end 

with a short review of the suppression of the spin relaxation in 1D system. 

 

2.2 Conductance 

Electrical conductivity is the one of the characteristic properties of a conductor. In 

classical theory, the Drude expression describes the conductivity of an ordinary 

conductor [45]. In the presence of external electric field (E), the carriers (electron 

or hole) move in the direction of the force qE, where q is the charge of the carrier. 

The system has impurities, defects and grain boundaries making it disordered, so 

that, the carrier undergoes scattering events, both elastic (eg. electron-impurity) 

and inelastic (eg. electron -phonon). At steady state, the rate at which carriers gain 

momentum from the external electric field must be equal to the rate of the 

momentum loss due to scattering. 



16 

fieldscattering dt

d

dt

d








 pp

                         2.1 

qE
τ

mvd                             2.2 

Here, m is the mass of the carrier, time τe is the average scattering time between 

collisions and vd is the drift velocity. 

By rearranging Eq. (2.2), the average vd of the carrier can be written as: 

Ev 







*d
m

qτ
                2.3 

Where the proportionality factor is called the carrier mobility (µ),  

*m

qτ
μ                  2.4 

which depends on the scattering time. The current density (J) is related to the 

carrier density (n) and vd by, 

dvJ nq                            2.5 

Using equation 2.3 gives,  

EJ 









*
m

2

m

τnq                                       2.6 
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Here, the proportionality factor between the J and the E is called the Drude 

conductivity (σD), which is inverse of the Drude resistivity (ߩD), 

*

2

D
D

m

τnq

ρ

1
σ                               2.7 

If n is constant, σD is only changed with τe. As one lowers the temperature, σD 

rises due to the suppression of phonon scattering. The Drude model assumes that 

the electrons do not interfere with each other. When the temperature falls further, 

σD approaches a constant value; the residual resistivity is then entirely determined 

by the average impurity concentration in the sample. However in the quantum 

limit, even after the system reaches low temperature, the resistivity of 2D or 1D 

weakly disordered system can change. This effect is more significant in narrow 

channels than wide ones [46]. The change of the residual resistance at low 

temperatures is described by a quantum interference effect, described in greater 

detail below. 

In the simultaneous presence of an electric and a weak magnetic field (B), the 

equation of motion in steady state can be written as: 

 BvE  d
d q

τ

mv
                          2.8 

If we assume that the magnetic field is in z-direction, equation (2.8) in matrix 

form is, 
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














 










y

x

y

x

v

v

qτmB

Bqτm

E

E
                                     2.9 

where vx and vy are the x and y component of the drift velocity and Ex and Ey are 

the x and y components of the electric field. Substituting dnqvJ   and m/q , 

the tensor equation 2.9 can be re-written as follows, 
















 











y

x

Dy

x

J

J

1μB

μB1

0)(Bσ

1
E

E
                                 2.10 

with the resistivity tensor given by,  








 



1μB

μB1

0)(Bσ

1
ρ

D

                                                        2.11 

Here, off-diagonal and diagonal terms are the Hall resistivity (ρxy, ρyx) and 

longitudinal resistivity (ρxx, ρyy), respectively. 

 

0)(Bσ

1
ρρ

qn

B
ρρ

D
xxxx

yxxy





                       2.12 

The Hall resistivity increases linearly with magnetic field, thus, n can be 

determined by measuring the Hall resistivity as a function of the field. The 

absolute value of the corresponding proportionality factor is the Hall constant, 

RH=1/qn and the sign of the Hall constant determines the carrier type, i.e., 
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electron or hole. The longitudinal resistivity however does not depend on the 

magnetic field.  

By inverting equation (2.10), one can re-write the tensor equation as: 






























y

x

22

D

y

x

E

E

1μB

μB1

Bμ1

0)(Bσ
J

J
                      2.13 

Then, the conductivity tensor is given by,   












1μB

μB1

Bμ1

0)(Bσ
22

D                        2.14 

Here, off-diagonal and diagonal terms are the transverse (Hall) and longitudinal 

classical Drude magneto-conductivities, respectively. 

2
xy

2
xx

xx

22

D
yyxx

2
xx

2
xy

xy

22

D
yxxy

ρρ

ρ

Bμ1

0)(Bσ
σσ

ρρ

ρ

Bμ1

0)μ)(Bσ
σσ

















                     2.15 

In general, the total electrical conductivity of a low dimensional weakly 

disordered system at low temperatures is this classical Drude conductivity plus 

the quantum corrections to the conductivity. For the devices studied in chapter 5 

and chapter 6, the key quantum corrections are due to WAL and electron-electron 

(hole-hole) interaction effects. Thus, the total electrical conductivity of the low 

dimensional system (σxx) can be expressed as: 
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 QI
xx

D
xxxx Δσσσ                          2.16 

In this equation, ∆σQI refers to the conductivity correction corresponding to the 

quantum interference.  

 

2.3 Quantum Interference Effect 

2.3.1 Quantum Interference Trajectories in Disordered Low Dimensional 

Systems 

The quantum effect is associated with the interference of the carrier wave 

functions as they diffuse through a disordered system at low temperatures. 

Quantum mechanically, the carrier is wavelike and can be describe by a wave 

function. 

χiφe
o

ψ )ψ( r                        2.17(a) 

where c is the spin contribution to the wave function and j is the phase, which is 

given by: 

)Et/(k.r                     2.17(b) 

where, k is the wave vector and E and t are the energy and time, respectively.  

Interference trajectories in a disordered low dimensional system at low 

temperatures can be divided into two groups [47]. One group consists of non-time 

reversed trajectories. In non-time-reversed trajectories, the carrier trajectories start 

at the same starting point, r=0, but end at different and randomized points as 
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shown in Figure 2.1(a). The interference of the wave functions thus occurs 

somewhere at a distance r≠0 away from the starting point (as long as they are in 

phase) leading to universal conductance fluctuations (UCF), which were first 

described by Lee and Stone in 1985 for metallic systems [48].  

 
 

 
 
 
 
Figure 2.1  Schematic diagrams for the electron trajectories in a disordered system at low 

temperatures. (a) UCF: Interference of non-time reversed trajectories: Ai and Aj 
are the probability amplitudes for two trajectories. (b) WL/WAL: Interference of 
time-reversed trajectories: Acw and Accw are the probability amplitudes for 
clockwise and counterclockwise trajectories. 

 

The second set of interference trajectories is time-reversed. For time-reversed 

trajectories, the trajectories are the same, but are traveled in opposite directions 

(clockwise and counterclockwise) as seen in Figure 2.1(b). Since these trajectories 

start and end at the same point, they interfere with each other at the origin, leading 

to a change in the total probability density, P(r=0,t) for the carrier to return to the 

origin, as compared to the classical case. There are two possible types of 

Scattering 
point 

Interference point 
(not at origin) 

Interference point 
(at origin) 
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interference, constructive or destructive. Thus these two types determine which 

localization effect, either WL or WAL occurs. 

 

2.3.2 Weak Localization  

WL was predicted by Anderson in 1958 for metallic systems, ignoring the carrier 

spin. In 1983, a qualitative explanation for quantum interference was given by 

Bergmann for thin metallic films [49]. When the carrier spin is ignored, the 

clockwise and counterclockwise carriers return to the starting point in phase; thus 

the phase-coherent waves constructively interfere (WL). This effect can be simply 

understood, if one considers the clockwise path probability amplitude by Acw and 

counter-clockwise one by Accw. Then, the total probability of the carriers returning 

to the starting point after time t, P(r=0, t), is [49]:  

2

i
iA)t,0r(P   

            2
ccw

2
cw AA       Classical case       2.18 





ji

*
ji

2

i
i

2

i
i AAReAA)t,0r(P  

            *
cwccw

*
ccwcw

2
ccw

2
cw AAAAAA   Quantum case      2.19 

where, Ai
* is the complex conjugate of Ai. In the classical case, the phase factor 

has no effect on the transport; thus, P(r=0, t) is the sum of the squares of the 

probability amplitudes of both trajectories separately. In the quantum case, the 
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first term is the classical contribution to the total probability and the second cross 

term reflects the interference, relevant only as long as the carriers are phase 

coherent. The interference causes an increase in the probability of the finding the 

carriers at the starting point relative to the classical case. Since the clockwise and 

counter-clockwise trajectories are the same, Acw=Accw=A  and thus in the quantum 

case, the probability of return is twice that obtained classically resulting in a 

suppressed conductance (see Figure 2.2(a)). 

2
21

2

2

2

1

2

i
i 4AAA2AAAt)0,P(r           2.20 

 

 

 

 

 
 
Figure 2.2  Time reversed trajectories: (a) Decreased conductivity at B=0 (WL).(b) Increased 

conductivity at B=0 (WAL). 

 

Experimentally, this is observed as an increase (decrease) in the resistance 

(conductance) over the Drude resistance (conductance).   
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2.3.3 The Effect of Spin on Weak Localization Corrections  

In the preceding discussion, we have ignored the carrier spin, but it is interesting 

to note the influence of the SOC on the phase. In 1980, Hikami et al. pointed out 

that SOC rotates the spin of the carrier which leads to destructive interference 

between time reversed trajectories [4]. Later, this was demonstrated by Bergmann 

et al. using the spin rotation matrix, R defined by an Euler angles. The matrix, R 

written in Ref. 50 has following form (see Figure 1 in Ref. 50), 

     

      


























βφiexp
2

θ
cosβφiexp

2

θ
sini

βφiexp
2

θ
sini

βφiexp
2

θ
cos

R                     2.21 

The angles, θ and  describe rotation about the z axis and the angle,  is the 

rotation of the x-y plane around the z axis [see Feynman lecture III, page 6-12]. 

Bergmann’s explanation can be simply understood, if one considers an initial spin 

state by |sÚ  and final spin states |s/Ú and |s//Ú  of two time reversed trajectories. 

 

 

 
 
 
 
 
 
 
 
 
Figure 2.3 Interference of time-reversed trajectories. Ri is the spin rotation between two 

collisions.  R=R1R2…. . R5. 
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Since the spin is rotated during each scattering process, |s/Ú and |s//Ú  can be 

expressed in terms of the spin rotation operator. 

For the clockwise trajectory, 

sRsRR.........RRRs 1231NN                        2.22 

The counter clockwise trajectory experiences the same rotations but in the 

opposite order,  

sRsRR..........RRRs 11
N

1
1N

1
3

1
2

1
1




                       2.23 

Due to the property of R,  

  RR1RR 1                        2.24 

then, the interfering wave functions become,  

sRsss 2
        

2.25(a) 

Averaging R2 over the entire sphere, the interference term becomes,  

2

1
sRs 2                                                           2.25(b) 

22

i
i

2

i
i AAAt)0,P(r                                    2.26 
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Thus, the phase induced by SOC decreases the return probability below its 

classical value (see Figure 2.2(b), resulting in destructive interference, this is 

known as WAL. In the next section, the effect of the magnetic field on the WL 

and WAL correction is discussed.  

 

2.3.4 The Effect of the Magnetic Field on Localization Corrections  

When an external magnetic field is applied perpendicular to the plane of the 

carrier motion, the trajectories will pick up an additional phase factor due to the 

magnetic vector potential, A. The additional phase factor is proportional to the 

magnetic flux through the area enclosed by the trajectory and is given by the line 

integral [49] for the clockwise trajectory as:  

  .dSA
c

e
A.dl

c

e
 


                                  2.27 

where B is given by: AB   

 
2
mo L

S

Φ

BS2π
.dSA

c

e


                      2.28 

where, S is the area enclosed by the trajectory and o =h/e is the flux quantum.  

Then the total phase of the clockwise path is: 
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oΦ   

BS2π
φ          

A.dl
c

e
φEt/k.rφ



 


                      2.29 

where, Lm  eB is the magnetic length. 

Since, the time reversed trajectories have the same path, but one traveled in 

opposite directions, the phases introduced by the perpendicular field are opposite 

in sign and the clockwise and counter-clockwise trajectories become: 

oΦSB2π
ccwcw eAA                          2.30 

oΦSB-2π
ccwccw eAA                         2.31 

Then, the total probability to return to the starting point in the presence of an 

external magnetic field is: 
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Φ
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                                2.32 

For Hall bar (HB) and wire devices, there are a large number of closed loop pairs. 

Their enclosed areas are different and random, consequently, each of the closed 



28 

loop pairs encloses different amount of magnetic flux (=SB) which cause a cutoff 

of the oscillatory cosine function. As long as the phase difference, δj=4πSB/o, 

is small, there is no significant effect on P(r=0,t) and as a consequence, the 

conductivity of the system is not altered. However, when B >Фo/4πS, δj is large, 

the probability of returning to the origin is diminished, hence, a magnetic field 

reduces the quantum correction. When B=Фo/4πS, the phase increment between 

two collisions becomes of order of unity and the magnetic field has a significant 

effect on the quantum correction. The time to accumulate a unit phase shift is 

called the magnetic relaxation time, tB. In the next section, theoretical models for 

WAL are discussed. 

 

2.4 Theoretical Modeling of the Quantum Correction to the Conductivity 

in Low Dimensional Systems 

WAL has different forms depending on whether the system is in the diffusive 

(Le<Lm) or ballistic ((Le>Lm) regimes. In the diffusive regime, the quantum 

correction due to WAL for a low dimensional system in a perpendicular B has 

following form [5, 6]: 






















 









0m1,0,1m

so0

B

H
F

B

H
,

B

H
F

2

G
Δσ                            2.33 

Where, 22
o 2πeG   and H and Hso are the phase breaking and spin relaxation 

fields, respectively. The effective fields are scaled representations of SO and 
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phase coherence times (   soΦ,s0Φ, τ14eDH  ), so that they can be compared to 

the applied external field (B). The function F(Hi,/B)s defined in expression 2.33 

are Cooperon channels, describing the interference contribution of scattered 

waves. The first term is the triplet (S=1), and the second term is the singlet (S=0). 

The terms have opposite signs. The triplet with S=1 enhances the conductivity 

(WAL) whereas the singlet S=0 contributes localization (WL) as expected for the 

spin-less limit. The phase breaking and spin relaxation fields determine the 

amplitude and the width of the WAL peak respectively. In the following sub-

sections, theoretical models for the WAL are discussed.  

 

2.4.1 Theoretical Model for the 2D Electron System 

Over the last two decades, several theories of WAL which take into account both 

cubic and linear SOCs and which extend the model beyond the diffusive 

approximation have been developed. The first analytical model for WAL analysis 

was the Hikami-Larkin-Nagaoka model (HLN) [4], which considered the Elliot-

Yaffet mechanism for electron spin relaxation. After the HLN model, more 

complex modifications were made, e.g., the Iordanskii-Lyanda-Pikus model (ILP) 

[5], the Pikus-Pikus model [8], the Lyanda-Geller ballistic model [6] and the 

Golub model covering both diffusive and ballistic transport [7]. These more 

involved models take into account both Rashba and Dresselhaus SOIs. Typically 

these modes can only address one linear mechanism at a time hence only one of 

the linear mechanisms (the Rashba or linear Dresselhaus) can be included in the 
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analysis. In symmetric QWs, the only SOI is Dresselhaus, thus, the ILP (S. V. 

Iordanskii, Yu. B. Lyanda-Geller, and G. E. Pikus) model is sufficient to extract 

the SO and spin dephasing parameters of the 2D symmetric InSb/AlInSb QW 

described in chapter 5.  

In the ILP model, the conductivity correction is expressed in terms of the 

Cooperon expression as: 

ξ),(ηβ)ψ,(αψ
E

1

τ4π

m
C

c

4eBD
δ

in which

(n)C
4π

δτme
Δσ(B)

nr,nr,
r nr,o

2ςη,β,α,

αβης
αβης2

2
o

2
















                2.34(a)
 

The Cooperon represents a series of perturbation terms when spin up electrons 

with momentum k interact with spin down electrons with momentum – k. The 

amplitude of the cooperon, Cߙߟ, depends on spin indices (ߙ,,,). Where, Er,n 

and r,n are the eigen values and eigen functions of the SO Hamiltonian for the 

2D electron system, respectively. The Cooperon amplitude has been solved by 

perturbation theory for the singlet and triplet terms. In this model, the simplified 

conductance correction (∆s (B)) is: 
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2.34(b)

 

where Y is the digamma function, e is the electron charge, B  is the applied 

magnetic field perpendicular to the 2D layer, and 

 3
2
D,3θ1

2
θD,so τ2Ωτ2Ω

4eD
H 


                      2.35 

 1
2
θD,

'
so τ2Ω

4eD
H


                         2.36 


 

so,e,
so,tr, τ

1

4eD
H


                        2.37 

Htr, H
′
so Hso and Hf are parameterized magnetic fields.  Htr and HФ are related to 

the momentum and the inelastic relaxation times, HФ is known as the phase 

breaking field, because inelastic scattering events result in the loss of phase 
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memory. H′
so and Hso are related to the spin relaxation times. H′

so, Hso and HФ are 

the three fitting parameters. The phase coherence and spin relaxation time are 

related to their corresponding lengths by the diffusion constant D 22Fv ,(

21
soφ,soφ, )(DτL  ). C is the Euler constant, n is the Landau level of the wave 

function and WD,q   4kkγk F
2
zF   and WD,3q   )4(kγ 3

F are the 

Dresselhaus spin precession frequencies related with first and third Fourier 

harmonic of q. The times τ1 and τ3 associated with probability of scattering by an 

angle q in the 2D plane [5, 51]. 

  θ)dθncos(W(θ(θ)
τ

1

n

       2.38 

where, q is the angle between k and the [100] axis, and W(q) is the probability 

distribution function of the scattering by an angle q. For n=1, τ1 is the momentum 

scattering time (τe). Generally, the ratio between τ3 and τ1 evaluated the relative 

contribution of large and small angle scattering events. For isotropic scattering, 

(τ1/τ3)=1 and for small angle scattering (τ1/τ3) = 9. The 2D WAL data in chapter 5 

were analyzed using this conductivity correction. The ILP model is valid in the 

diffusive regime only, i.e., for Le<<Lm. Lm eBh is the magnetic length and Le 

is mean free path. This model can be applied to either the linear Rashba or 

Dresselhaus dominated 2D electron system. 
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2.4.2 Theoretical Model for the 2D Hole System  

For 2D electron systems, it is assumed that the spin relaxation time is comparable 

to the phase breaking time, and that both are much longer than the momentum 

relaxation time. For hole systems, this is not the case. The mixing of the HH and 

LH bands depend on the carrier concentration and width of the QW, and as a 

consequence, the momentum and spin relaxation times can be comparable. To 

deal with this Averkiev et al. developed a new expression for the conductance 

correction for hole systems when one subband is occupied. In the AGP (N. S. 

Averkiev, L. E. Golub, and G. E. Pikus) model, the conductivity correction is 

expressed in terms of the Cooperon expression as [52]: 

 qA
4π

qd

π

e
Δσ

2

22


         

2.39(a) 

Where A(q) describes the intensity of the interference of waves travelling through 

the closed loop in the opposite directions (Cooperon) and q is the momentum of    

both scattering waves. SOI of the p type 2D system are very strong, thus the 

Cooperon expression in this model has been solved perturbatively (non-

perturbation). In this model, the Cooperon expression depends on the spin state 

and the quantized levels or subbands. For the case of a symmetric QW when only 

one subband is occupied, the expression A(q) is [52], 

 


2

o1

NDτ2π
(q)p(q)2ps(q)A(q)                                                            2.39(b)  
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The quantities s(q) and p1,0 (q) describe the energy gaps between the HH and LH 

bands,  and Fermi energy, EF.  

In the limit EF <<, then p1=po and both quantities s(q) and p(q)  are given by Ref. 

[52] as:  
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Here, D and N are the diffusion constant and density of states at the Fermi energy 

calculated without considering the mixing of the HH and LH bands. τí and τ^ are 

the spin relaxation times directed along and perpendicular to the QW  axis and τФ 

is the phase relation time. In this model, the simplified conductance correction 

(∆s(B)) for hole systems with one occupied subband has the following form:  















































































 








 












H

H
n

HH

H
n

2

1

HH

H
n

H

H

2

1
ψ

H

HH

2

1
ψ

2

1

B

HH

2

1
ψ

πh

e
0)σ(Bσ(B)

II

II

2



   2.39(d) 

in which, 
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Once again there are three characteristic magnetic fields, Hí, H^ and Hj. Hí and 

H^  are the spin relaxation fields directed along and perpendicular to the QW axis 

respectively. The ratio of tr,II H/H   indicates the degree of mixing between the 

HH and LH bands.  
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                         2.41 

Where, DHL is the minimum separation between HH and LH energy bands. At low 

densities, where 1/E HLF   the band mixing is weak and both Hí and H^ are 

smaller than Htr (H׀׀ and H^ << Htr). At high densities, where, 1/E HLF  , the 

band mixing is strong and then, H׀׀ and H^ are comparable to Htr, (H׀׀ an H^ º 

Htr). The WAL data in chapter 6 were analyzed using this conductivity correction.  
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2.4.3 Suppression of Spin Relaxation in the 1D Electron System 

Several theoretical investigations for the 1D system have shown that the spin 

relaxation length can be significantly enhanced by controlling the geometric width 

when it is smaller than the 2D bulk spin precession length (Lso) [53-55]. In the 2D 

case, the channel width is greater than the bulk spin precession length, and the 

relevant area for a time-reversed path to result in a  spin rotation is proportional 

to the spin relaxation time. 

s
2
so DτL       (for 2D case)                     2.42 

As the channel is narrowed, Lso will eventually exceed the channel width, and the 

relevant area, )W(L2
so  becomes proportional to )W(WLso  instead. Like the 2D 

case, )W(L2
so  is proportional to a spin relaxation time,  

W

L
(W)L

L(W)WL(W)Dτ

2
so

so

2
sosos


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   (for 1D case)                    2.43 

Where Lso is the width independent 2D limit and Lso(W) is the quasi-1D analog.  

This implies the Lso(W) grows with decreasing wire width in the 1D case. 

Subsequent to  theoretical prediction of this dimensional confinement effect, the 

idea was experimentally investigated and confirmed by several groups for various 

material systems, e.g., InGaAs/InP, InAs, InSb and AlGaN/GaN via transport and 

optical experiments [20, 21, 56-60] (see Figure 2.4).  
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By considering this dimensional confinement effect, the expression for the SO 

field in the 1D limit was derived by Ketterman [53]: 

(2D)H
L
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π
(W)H s
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so 
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
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
                                             2.44 

As a consequence, in a narrow channel the spin relaxation length can be enhanced 

without changing the SOC (see Figure 2.4). The suppression only applies for 

linear SOC terms; higher order terms are unaffected. For systems in which both 

the linear and cubic Dresselhaus interaction are relevant, the spin relaxation can 

be anisotropic, see Figure 1.3b. Typically the cubic Dresselhaus is weak along the 

[100] direction and strong along [110] (see Figure 1.3b). 
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Figure 2.4 (a) The magneto-conductivity corrections for the various wire widths at 0.6K This 
figure is taken from Ref. [20]. (b) The width dependence of spin relaxation times for 
the [100] and [110] directions. Spin life time along the [110] direction is shorter than 
the spin life time along the [100] direction. This figure is taken from Ref. [21].  

 

This anisotropic effect is not observable in 2D heterostructures, however for 1D 

wires fabricated along different crystalline directions, the anisotropy spin 

relaxation was been observed by Holleitner et al. for InGaAs QWs via an optical 
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technique [21]  (see Figure 2.4(b)). Chapter V details a transport measurement of 

this anisotropy. 

 

2.4.4 Theoretical Model for 1D Electron System  

Chapter V of this thesis deals with quantum wires, where it is important to modify 

the 2D ILP model for the quasi-1D limit where the channel width W<<Lso. In 

addition to changes in the spin relaxation length for 1D wires described in section 

2.4.3, the magnetic length in a 1D system also behaves differently than in 2D. In 

2D, the area to enclose a flux quantum is S~LB
2~DtB. When the magnetic length 

exceeds the channel width in the diffusive regime (Le<<W), Beenakker et al. have 

shown that the relevant area is S ~ W (DtB)1/2
 [61,62]. In both cases, Le<<W, thus 

transport is diffusive.  

Then in quasi-1D, there is a width dependent magnetic length. 

W
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Al'tshuler and Aronov calculate a similar time scale, τB (W), for thin films isgiven 

by: 
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By considering the effects of channel width, Beenakker and Van Houten have 

developed a WAL expression for a quasi-1D system in the diffusive limit, i.e., 

Le<W. with the quantum conductance correction given by expression [49]: 
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where, L is the length of the wire and LB is the dimensional crossover magnetic 

length between 2D case (Lm<W) and 1D case (Lm>W).  

At the crossover,  
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Then, 
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           2.49 

Using this quasi-1D model, width dependent spin relaxation lengths (Lso(W)) for 

1D InSb wires were extracted for the experiment described in chapter 5. Fitting 

programmers for all these WAL expressions (2D and 1D) were written in 

Mathematica 6.0 using non-linear regression.  
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Chapter 3: Device Fabrication Technology 
 

 

3.1 Introduction 

Two transport experiments are described in this thesis. Both were performed on a 

2DEG/2DHG, hosted in an InSb/AlInSb heterostructure. Before describing the 

experimental results, a brief description of device processing techniques involved 

in the InSb sample fabrication will be given in this chapter. There are several 

techniques for this device fabrication which are: lithography; etching; contact 

processing and annealing; and wire bonding. This chapter begins with lithography 

followed by the other techniques.  

 

3.2 Lithography 

Optical lithography and electron beam lithography (EBL) are the two standard 

lithography techniques to transfer a geometric pattern onto the surface of the 

sample. Both techniques involve the use of the resists (photon or EB sensitive 

resists), which are usually organic polymers whose chemical bonds can be 

changed by exposure to radiation. For this thesis work, both lithography 

techniques were used for device fabrication.  

 

3.2.1 Photolithography 

Photolithography is a process used in micron-size and larger fabrication. It uses 

light sensitive resists to transfer a photo mask pattern onto the surface of the 

sample. There are several steps involved for the photolithographic process. All the 
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photolithographic steps must be done in the cleanroom to avoid dust and small 

particle contamination. The first step of the sample processing is scribing a 

typically 8x8 mm square piece of the semiconductor wafer by using a scriber. 

Then the surface of the sample is rinsed with appropriate solvents, a sequence of 

acetone, methanol, and isopropanol to remove the dust from scribing, cleaving, 

and photo resist residue from any previous photolithography processing and 

blown dry after each solvent using filtered nitrogen gas. After pre-cleaning, the 

sample was baked in a conventional oven at 150 Co and 15 min in order to 

evaporate any residual  solvent, and then coated with AZ5124A resist spun on at 

4000 RPM and 40 seconds for a final resist thickness of 1.4m -1.5micron thick 

(see Figure 3.1). 

 

Figure 3.1  A scanning electron microscope (SEM) cross-sectional image of the AZ512E resist 
profile after development in MIF 319 developer solution for 60s. This was imaged 
with a JOEL 880 SEM after sputtering on a thin  2nm Ir layer. 
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After spin coating, the sample was soft-baked at 95oC and 60 seconds on a hot 

plate to get rid of excess resist solvent and to promote a solid resist layer. The 

sample was then exposed using a Karl Suss MJB3 mask aligner and developed 

with MIF 319. Figure 3.2 shows the basic lithography fabrication sequences for 

positive and negative steps.  

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.2   Basic lithography fabrication sequences (not to scale): (a) Positive step. (b) Negative 

step. 
 

AZ512E is a reversing resist allowing both positive and negative patterning. 

Positive patterning was used for the mesa etch, while negative patterning was 

used for the contacts. For the positive step, there was a single light exposure of 60 

seconds, whereas the pattern can be reversed by removing the mask and doing a 

UV light 

Metal mask 
Thin resist layer 
Substrate 

UV light 

After exposure 

Positive step Negative step 

After development 
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second blanketing exposure to the UV radiation for 60 seconds. After exposure, 

the undeveloped resist layer was hard-baked on a hot plate at 120oC for 60 

seconds. MIF 319 is the common developer for either positive or negative 

processes. Images of the photo mask of the mesas are displayed in Figure 3.3. 

Additional details of the photo lithography recipe for InSb can be found in 

Appendix A. For the negative contact step, a thin layer of pure Indium (for n-type 

heterostructures) or InZn (95% In and 5% Zn) alloy (for p-type heterostructures) 

was thermally evaporated followed by a lift-off of the unexposed resist using 

1165 resist remover solution. Contacts were then annealed at 230 oC for five 

minutes in forming gas to establish ohmic contacts. The etching process which 

followed positive exposure is described below. 

 

 

 
Figure 3.3  Photo mask used for photo lithography exposure (a) HB mesa for 1D wire 

fabrication   project. The total structure size is 2x2 mm2. (b) HB mesa for 2DHG 
project. The single structure size is 2x1.2 mm2. Large crosses that separated the 
HB arrays were used as photo-lithography alignment marks and small crosses 
either sides of the channel width were used as EBL alignment marks. 

 

(b) (a) 
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3.2.2 Electron Beam Lithography (EBL) 

The Suss MBJ-3 mask aligner resolution (º 2 micron resolution) is insufficient 

for 1D wire fabrication for the quantum interference experiment, thus EBL was 

also employed which is widely used for creating patterns in the sub-micron size 

range. The EBL procedure is very similar to photolithography with the principal 

differences being the source and exposure. In EBL, the source is an energetic EB 

instead of UV light, and the patterning is achieved through direct writing instead a 

single UV light dose through a mask.  

Our EB pattern design was done using Design CAD. The important part of the 

microscope is an EB column, containing an electron gun, magnetic lenses, and a 

specimen chamber. The electron gun provides free electrons which are 

accelerated towards the sample by an electrostatic field. 

The EB work in this thesis was performed using a JOEL 840 SEM, with an 

electrostatic beam-blanker. The beam source was either a tungsten (W) or LB6 

filament The EBL patterns followed the annealing of the in contacts. The HB 

mesa was coated with ZEP520 resist spun on at 5000 RPM for 45 seconds to 

obtain a ~500nm thick uniform resist layer, then pre-baked at 170oC for 3 minutes 

on a hot plate to evaporate away excess EB resist solvents. After the sample was 

loaded into the microscope stage, the beam current was measured by focusing the 

EB into a Faraday cup and was adjusted to 10pA. Next the beam was focused 

onto the resist using the general JOEL 840 SEM procedure for a 40keV EB. After 
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achieving good focus at 300kx magnification, the resist was exposed scanned 

using the deflection coils in the SEM and the Nabitty control system.  

Exposure and development times had already been optimized by means of dose 

tests. Our dose test pattern was an array of boxes with a write field usually set as 

500 mm x 500 mm. Each array element consisted of 10 identical boxes (box: 500 

nm x 10,000 nm, 5 boxes separated by 500nm and 5 boxes separated by 1000nm). 

Each element was exposed using a slightly different dose by point exposure time. 

Separate samples were developed in xylenes for different times, thus we could 

optimize both dose and development in a single experiment. Results of these dose 

and development time tests are summarized in Figures 3.4 and 3.5. The optimal 

area dose was ~90 mC/cm2. 

 

 
 
 
 
 

 
 
 
Figure 3.4   Area dose test for ZEP520 EB resist developed for 45 seconds. Images were taken by 

a JOEL 840 SEM. The minimum dose 40C/cm2, while the maximum dose 160 
C/cm2 with a step size 10 C/cm2. The array exposed at the optimal dose is shown 
in the inset. 

Box dose test: 4 x 3 arrays of 
filled boxes 500 nm x 10,000 
nm, 500nm and 1000nm box 
gaps. 

over dose under dose 
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As can be seen in the SEM images for the 30 second development time, the 

pattern was transferred but left undeveloped resist at the sidewalls. Increasing to 

50 seconds, the resist was over developed and a huge undercut can be seen. At 45 

seconds, patterns were well transferred and sidewall undercutting was minimal. 

 
 
 
Figure 3.5  Cross section SEM images from the JOEL 880 of the 500 nm wires after development 

for 30 seconds (b) 45seconds and (c) 50 seconds. 
 
 
After exposure and development (see Appendix B for details), the sample was 

post-baked on a hot plate  at 130oC for 60 seconds to evaporate excess DI water 

and solidify undeveloped resist and then etched in a BCl3/SF6 based plasma  (see 

details below). For wire fabrication, the write field was set at 300 mm x 300 mm to 

fabricate 200 mm long wires as described in chapter 4. Figure 3.6 shows the SEM 

images of the array of 500nm wide wires array. As can be seen in the images, the 

wires were uniform across a relatively wide region and throughout their length. 
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Figure 3.6 Top down view of the wire arrays. Images were taken from JOEL 840 SEM. The 
width of the wire is uniform throughout the length of the wire. 

 
 

3.3 Etching 

3.3.1 Wet Etching 

Wet etching is the simplest etching technology as it is quick, easy and cheap, 

utilizing liquid chemicals to remove material. In general, the majority of wet 

etching solutions for semiconductors are mixtures of one or two acids with an 

oxidizer. The basic mechanism is the formation of an oxidized layer and 

subsequent dissolution by acids. Wet etching is generally isotropic, proceeding in 

all directions at the same rate and resulting in undercutting of the pattern to an 

extent equivalent to the etch depth. Thus, it is a good choice for micron sized 

features with shallow etches depth, such as Hall bar (HB) geometries on shallow 

QWs such as those studied in this thesis where the wells are buried 50nm below 

the surface. 

Beam current -10pA 

Area Dose - 95mC/cm2 

The lines are 200 mm long and 500 nm wide 



49 

For InSb/InAlSb, the wet etching solution was 3% H2O2 + 2.5% HF + 85% Lactic 

acid mixed at volume ratio of 6:3:1 respectively. The above solution gave an etch 

rate of º 1020 nm/min. Etching was stopped by rinsing the sample in DI water for 

approximately three minutes. The photoresist was then dissolved in 1160 remover 

and the sample was rinsed in DI water and finally blown with dry N2 gas before 

wire bonding (hole sample) or coating a second lithography step via EB to 

fabricate the 1D wires. Etch depths were taken from SEM studies of the depth 

wall profiles (see Figure 3.7).  

 

 
 
 
Figure 3.7 Wet etching depth profiles of the InSb/AlInSb heterostructure. These images were 

taken from JOEL 880 SEM after the resist was removed and on SiO2 layer was 
deposited. (a) Shallow etching: wet etched for 25s. (b) Deep etching: wet etched for 
45s. Shallow depth profile is more anisotropic than the isotropic expected from wet 
etching. 

 

3.3.2 Dry Etching 

Dry etching is widely used for sub-micron features, because unlike wet etching, it 

can provide nearly anisotropic etching with minimal mask undercutting. Several 

different dry etching processing systems are in use today. The dry etching 
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technique performed in this work used high density Inductively Coupled Plasma 

(ICP) with a parallel plate Reactive Ion Etching (RIE) system. This system 

generates the plasma between the electrodes at the standard frequency of 13.56 

MHz in a system in which the gas flow rates, chamber pressure, RIE and ICP 

powers are separately controllable variables. Ion energy and current (plasma 

density) depend on RIE and ICP powers respectively. 

This dissertation used an RIE process for InSb/AlInSb developed using BCl
3
/SF

6 

gas mixtures. According to the literature, BCl
3
/SF

6
 yields complex plasma 

chemistry, forming many possible species and resulting in many possible 

reactions. The BCl
3
/SF

6 
recipes were tested a function of ICP, and RIE, source 

powers at fixed flow rates of the gas species and chamber pressure, 12 to 9 sccm 

respectively for BCl3 and SF6 and 2mTorr overall pressure. Etch depths were 

measured by a profilometer after removing the resist. Figure 3.8 summarizes the 

etch rates of InSb/AlInSb as a function of the ratio RIE power to ICP power. 

As the power ratio is increased, the etch rate of InSb/AlInSb first increases then 

decreases. This may be due to the competition between ion energy and plasma 

density. Sidewall profiles are studied by taking cross-sectional SEM images. 

Figure 3.9 shows the SEM micrographs for all the tested recipes. As can be seen, 

the etched surface was very smooth for all the tests of BCl3/SF6 and similar 

undercut control and anisotropic etching can be seen for the various power ratios. 
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With the exception RIE/ICP º 2.75 the sidewall angles were approximately 

constant, and were measured as º 40-45°.  

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

100

200

300

400

500

600

12 BCl
3
/ 9 SF

6

Pressure-2 mTorr

 

 

In
Sb

 E
tc

h 
R

at
e 

(n
m

/m
in

)

RIE/ICP power

 InSb material

 

Figure 3.8 Etch rate of InSb/AlInSb as a function of the ratio of RIE power to ICP power. The 
operating chamber pressure and total gas flow (BCl3+SF6) were held constant at 
2mTorr and 21sccm, respectively. 

 

 

Figure 3.9  Sidewall profiles for dry etching recipes. The operating chamber pressure and total 
gas flow (BCl3+SF6) were held constant at 2mTorr and 21 sccm, respectively. 
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1D wire arrays fabricated on the top of the HB mesa for the transport experiment 

were finally etched using the following dry etching recipe: 

ICP power- 200 W 

RIE power- 550W 

Chamber pressure- 2mTorr 

BCl6 : SF6 gas mixture ratio- 12 sccm : 9 sccm 

Following dry etching, the EB resist was removed in acetone and the sample 

rinsed in DI water and blown dry with N2 before wire bonding was performed. 

Figure 3.10  shows the final 1D wire devices mounted on 28 pin PLCC wire 

bonded using K&S 4500 digital serial manual wedge bonder with high purity 25 

mm thick gold wire. After wire bonding low field four-terminal magneto-transport 

measurements were performed in a 3He cryostat system in perpendicular magnetic 

field at temperatures ranging from 10 to 1.5K.  

 

Figure 3.10  1D wire device mounted on 28 pin PLCC. 
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Chapter 4: InSb and Quantum Well Structures 
 
 

4.1 Introduction  

InSb is an III-V compound semiconductor which crystallizes in the zincblende 

structure. The zincblende structure consists of two interpenetrating face centered 

cubic (FCC) sub lattices. One sub lattice is made of the group III atoms (Ga, In 

and Al) and the other sub lattice is made of group V atoms (As, P and Sb). These 

two sub-lattices are displaced from each other by a distance (a/4, a/4, a/4) along 

the body diagonal. Thus, the zincblende structure does not have a center of 

inversion symmetry and this gives rise to spin splitting of the electron and hole 

states at non-zero wave vector even in the absence of external magnetic field.   

Among the III-V semiconductors, InSb offers interesting material assets. It has 

the smallest electron effective mass, the highest g-factor, spin-orbit split off 

energy, and the strongest non-parabolic dispersion of the electrons and holes. 

Hence, these material assets are making InSb suitable for some spintronic 

applications and fundamental experiments to understand the spin properties of the 

narrow gap semiconductors. Room temperature values of some parameters for 

InSb, GaAs and InAs materials are listed in Table 4.1 for comparison.  

The typical band structure of a bulk III-V semiconductor is shown in Figure 

4.1(a). Generally, by sandwiching a thin layer of lower band gap material between 

two layers of higher band gap material, a type I QW channel is formed. The type I 

QW is the most widely studied heterostructures. It exhibits straddled band 
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alignment, i.e. the steps in the VB and CB go in the opposite direction as shown 

in Figure 4.2. At the interface, energies of the CB and VB edges (barrier height) 

change and their magnitudes depend on the barrier alloy composition.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.1  Band structure diagram of (a) bulk III-V and (b) III-V QW. EHH, ELH are the HH and 

LH band energies in the QW. 
 

In QWs, the carriers can be trapped in a very narrow potential well confining the 

carriers in the z direction (growth direction), so that, the carriers are only free to 

move in the xy-plane. In the example, a type I QW is formed in an InSb layer 

between two AlInSb layers. Because it is a type I, the thin InSb layer acts as a 

well for both the CB and VB and the well is compressively strained because of 

the lattice mismatch between the InSb and AlInSb materials. The lattice constant 

of the AlxIn1-xSb can be calculated by [63], 

E E

k k

Conduction band (s) 

Valence band (p) 

J=3/2

HH ±3/2

LH ±3/2

  SO J=1/2

Eg

o

Eg(strain)

ELH 

EHH 

(a) (b) 



55 

(x)ax)(1aa AlSbInSbSbInAl x1x



            4.1 

where, aInSb and aAlSb are the lattice constant parameters for bulk InSb and AlSb, 

6.479 Å and 6.14 Å respectively. This strain has a significant effect on the 

effective mass of the hole. According to the VB dispersion relation in the 

Luttinger model, the effective masses of the HHs and LHs for the III-V materials 

are given by [14], 
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(b) direction of quantization (z direction) are, 
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Where mo is the free electron mass and g1 and g2 are the Luttinger parameters for 

the material. These mass expressions yield the HH-LH band mixing at non-zero 

wave vector by neglecting all off-diagonal terms. According to the above 

effective mass expressions, in the xy-plane, the HH states have a lighter mass 

whereas the LH states have a heavier mass, however in the perpendicular 
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direction, this is reversed. As a result of the different effective hole masses, the 

HHs and LHs bands have different ground state energies, and the bands are 

separated at near k=0 as shown in Figure 4.1(b). The splitting of HH and LH 

states in the z direction (growth direction) is called the HH-LH splitting.  

 
Table 4.1.  Room temperature parameters of InSb, InAs, GaAs and AlAs [22]. 

Parameter InSb InAs GaAs AlAs 

Energy gap (eV) 

spin-orbit split off energy (eV) 

Electron effective mass (m*/mo) 

In-plane HH effective mass (mHH
*/mo) 

In-plane LH effective mass (mLH
*/mo) 

Out off-plane HH effective mass (mHH
*/mo) 

Out off-plane LH effective mass (mLH
*/mo) 

Electron g factor  

Dielectric constant (e/eo) 

Intrinsic mobility (cm2/v.s) 

Lattice constant (Å) 

Dresselhaus coefficient (eV Å3) 

g1 

g2 

0.17 

0.81 

0.014 

0.019 

0.049 

0.244 

0.014 

-51.56 

16.8 

77000 

6.479 

760 

37.10 

16.50 

0.35 

0.38 

0.023 

0.27 

0.028 

0.035 

0.083 

-14.9 

15.1 

39000 

6.058 

27.18 

20.40 

8.30 

1.42 

0.34 

0.065 

0.12 

0.21 

0.38 

0.09 

-0.44 

12.9 

9000 

5.653 

27.58 

6.85 

2.10 

3.13 

0.30 

0.15 

0.26 

0.38 

0.51 

0.22 

1.52 

10.0 

- 

5.66 

18.3 

3.25 

0.65 
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In addition, compressive strain also causes an increase in the energy gap. For 

InSb/AlxIn1-xSb heterostructures, the effect of the strain on the energy gap has 

been experimentally shown in Refs. [63, 64] as:  

layer)AlInSbunstrainedforE((eV)2.06xERelaxed)(StrainE

point)ΓatInSbstrainedforE((eV)0.157xE(Strain)E

gbarriergg

gbarriergg





         4.3 

here, xbarrier is the Al composition in the barriers on either side of the QW and Eg 

is the energy band gap of the unstrained InSb material. InSb is a direct band gap 

semiconductor, with a gap of about 0.24 eV at low temperature (º 4K).  

 

 

 

 

 

 

 

 

 

Figure 4.2 Type I QW channel. 

 

The bands of narrow gap semiconductors like InSb are highly non-parabolic, thus, 

the effective mass is energy dependent. Kane has developed a six model that 

Semiconductor A Semiconductor A Semiconductor B

Width of the well 

Eg(Strained Relaxed) Eg(Strained) 

∆Ec 

∆Ev 
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includes the non-parabolic nature of the band. In his model, the energy dispersion 

for the CB and the VB is given as: 
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where E is the energy of the electron and k is the wave vector. Then, the energy 

dependent effective mass, m(E) obtained as of the first deviation of the energy 

with respect of the wave vector is, 
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When E=EF, the Fermi energy for non-parabolic semiconductor is, 
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Here, kF is the Fermi wave vector. In the following section, the details of our InSb 

QW structures are given and their band parameters were calculated using above 

equations. 

 

4.2 InSb Quantum Well Structures 

Five AlxInySb/InSb heterostructures were used in this thesis work to investigate 

the SOI through transport. These five heterostructures were labeled as t340, t196, 

t198, t200 and t250. They were grown by molecular beam epitaxy (MBE) on a 
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semi-insulating (001) GaAs substrate. Figure 4.3 shows the examples of the layer 

sequences for t340 and t196 QW structures grown by MBE. The quantum 

confinement in the wells was obtained using Al0.20In0.80Sb spacer layers. Carriers 

are provided to the well by the remotely d-doped layers which can be either on 

both sides or on one side of the QW, resulting in symmetric and asymmetric wells 

respectively. For all structures, the QW was only 60 nm below the surface 

forming a shallow QW. In each structure, an additional d-doping layer was placed 

a distance y nm below the Al0.10In0.90Sb cap layer to prevent depletion of the QW 

by the surface states.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.3 Cross sectional layout of the AlxInySb/InSb heterostructures (not to scale) (a): t340, 
Si -doped heterostructures. (b): t196, Be -doped heterostructures. 
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Doping of symmetric heterostructure (t340) was performed by introducing Si d-

doping layers on both sides of the well at a distance of 15 nm from the QW, 

resulting in zero electric field acting on the electrons along the growth direction (z 

direction). Samples, t196, t198, t200 and t250 are Be-doped wells. For all Be-

doped wells, doping was introduced on one side of the well a distance of 20 nm 

above the QW. The hole then feels a non-zero electric field along the growth 

direction. This electric field then contributes to spin splitting at zero magnetic 

field. Other important details of the layers, and measured values for carrier 

densities and mobilities, are listed in Table 4.2. The carrier densities of the 

samples were obtained from standard Hall measurements performed in the HB 

geometry. The first and second subband energies of the above heterostructures 

were obtained from finite square well model solutions of the Schrödinger 

equation [65]. 

 

Table 4.2. Sample parameters: Well width, barrier width and Al concentration in barrier, buffer 
width and Al concentration in buffer, carrier density at 4.2K and mobility at 40K. 
 
 

Samples 

labels 

WQW 

(nm) 

Barrier width 

(nm), Al% 

Buffer width 

(µm), Al% 

Density 

(m-2) 

Mobility (m-2/Vs) 

[100] [110] 

t340 

t196 

t249 

t198 

t250 

20 

15 

12 

15 

7 

15,20 

30,20 

20,20 

30, 20 

20,20 

1.8,20 

2,15 

3,15 

2,15 

3,20 

4.0 

2.2 

4.0 

4.9 

5.0 

4.8 

- 

- 

- 

- 

4.2 

1.8 

3.6 

1.8 

1.9 
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Both the non-parabolic effect of the conduction and the valence bands, and the 

effect of the strain were included to calculate the sub-band and Fermi energies. 

These values are summarized in Table 4.3 for each sample. For InSb/AlxIn1-xSb 

heterostructures, Dai et al. determined that the CB offsets were approximately 

62% of the difference in the band gap energies [63, 64]. Consequently, barrier 

heights of InSb QW structure can be expressed as: 

 

 eV0.157x2.06x0.38ΔE

eV0.157x2.06x0.62ΔE

barrierbarrierv

barrierbarrierc




            4.7 

Where ∆Ec and ∆Ev are the conduction and valence barrier heights, respectively. 

 
Table 4.3.  Sample parameters: Subband energies were calculated using a non-parabolic 
expression. The sub band energies were obtained from finite square well model solutions. Ee,0 
and Ee,1 are the first and second sub band energies for the electron. EHH,0 and ELH,0 are the first 
sub band energies for heavy and light holes 
 
 

 

 

 

 

 

 

 

 

Samples Subband energy (mev) 

 Ee,0 Ee,1 

t340 32 96 

  EHH,0 ELH,0 

t196 

t249 

t198 

t250 

10 

18 

23 

23 

5 

7 

5 

17 

38 

49 

38 

78 
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The experiments described in chapter 5 and 6 by means of low field transport 

measurements were performed using these five samples. The samples were 

measured at cryogenic temperatures using a four point bridge technique in a 

perpendicular magnetic field. 
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Chapter 5:   Weak Anti-Localization in 2D and 1D n-Type InSb/AlInSb 
Systems 

 

5.1 Introduction 

Over the last two decades, it has been of interest to study both theoretically and 

experimentally the spin properties of 2DESs in addition to electronic properties 

[9-21, 43, 44, 53-69, 66-69]. The spin relaxation in 2DESs is governed by the 

D’yakonov-Perel (DP) mechanism through the Dresselhaus SOC [18]. In 

addition, asymmetric structures may also have a significant Rashba contribution 

[22, 28-30].  

In 2000, it was suggested that the spin relaxation length of an electronic system 

can be significantly longer in quasi-1D channels than in 2D. This has been 

experimentally verified by several groups [20, 21, 56-60] in systems for which the 

anisotropic cubic term for Dresselhaus SOI was negligible relative to the isotropic 

linear term. Interestingly the cubic term is not suppressed by geometric 

confinement in quasi-1D systems, hence when both terms are relevant the 

remnant cubic coupling should lead to anisotropic spin relaxation in 1D channels. 

The experiment detailed in this chapter was focused on looking for this anisotropy 

via transport experiments using WAL analysis. The chapter is organized as 

follows. It begins with a discussion of experimental work on the SOI in the CB 

for InSb/Al0.2In0.8Sb heterostructures. Next, experimental results on the 

suppression of spin relaxation as a function of reduced channel width is covered, 

followed by our observations on phase coherence in the InSb system. 
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5.2 Experiment 

A symmetric InSb/Al0.2In0.8Sb heterostructure (t340) was used for this series of 

experiments. The layer structure and characteristics of the heterostructure have 

been discussed previously in chapter 4. The sample was first processed into a Hall 

Bar (HB) mesa (see Figure 5.1(a)) in which HB channels were oriented along the 

two main crystallographic directions, [100] and [110], for a (100) growth plane. 

The width of the HB mesa and distance between the potential probes were 100 

mm and 230 mm, respectively. After the optical lithography and etching of the 

mesa, arrays of quasi-1D wires were fabricated via EBL. Each wire array 

consisted of 30 identical wires of fixed wire width. The individual wires were 

210μm long and were connected in parallel to reduce the effect of UCFs. Twelve 

sets of wire devices (of varying width) and two reference HBs were fabricated on 

the same chip within a 3.5mm2 area. Wire array widths (WEB) varied from 700nm 

to 2000nm (as designed). Optical and SEM images of the wire arrays are shown 

in Figure 5.19(b). Standard Hall measurements at 4.2K gave the electron 

concentration which was the same (ne=4x1015 m-2) along both the [100] and the 

[110] directions. The Fermi energy (EF) calculated from ne including non-

parabolicity [Eq. 4.6] is 58 meV. The mobilities along the [100] and [110] 

directions at were 4.8 m2/Vs and 4.2 m2/Vs for [100] and [110] directions, 

respectively. This mobility anisotropy is consistent with the previous 

measurements of mobility anisotropy in our InSb/AlInSb heterostructures, which 

were attributed to preferential orientation of defects [70]. 
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Figure 5.1 (a) Optical image of the device showing both unpatterned HBs and wire arrays. (b) 

SEM images of the narrow wires (SEM images are rotated by 90o). 
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5.3 Results and Discussion 

5.3.1 2D Spin Relaxation Length 

In order to carry WAL analysis of the unpatterned HB data to determine the 2D 

behavior of the spin relaxation length, the quantum correction first needs out to be 

separated from the measured low-field magneto-resistivity.  

The resistivity, 
ChanneltheofLength

ChanneltheofWidth
Rρ xxxx   was obtained and the non-

oscillatory parabolic background contribution,    o
2

eB1  (see Figure 5.2) 

was subtracted where eeo en   is the zero field conductance.  

o

2
exx

xx σ

B)(μ1

L

WR
(B)Δρ


                         5.1 

Using the relation, ∆σxx(B)=-∆ρxx(B)σo
2,  the resistivity was converted to 

conductance and the quantum correction was defined as:  

2
oxx (B)σΔρ0)Δσ(BΔσ(B)Δσ                        5.2 

Figure 5.3 shows the low-field magneto-conductance correction for the 100 

micron wide reference HBs in units of e2/h after subtraction of the zero-field 

background, ∆σ(B)=σ(B)-σ(B=0): (a) shows the quantum correction for the two 

different orientations of the HBs  at fixed temperature while (b) shows the 

quantum correction along the [100] direction at different temperatures. All 

conductivity traces show clear WAL peaks at zero magnetic field. The figure 

shows that the minima (Bmin) in ∆σ(B), which is proportional to the strength of the 
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SOI, always at fixed field. For both directions, Bmin was found at 1.2mT, thus, 

demonstrating the direction and temperature independence of the spin relaxation 

in 2D for this sample. The amplitude of the WAL peak is strongly temperature 

dependent, increasing with decreasing temperature from 10K to 1.5K. The 

amplitude of the correction will be used to determine the phase coherence length 

(Lf) as a function of temperature at the conclusion of this chapter.  
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329
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T= 4.2K
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)

Magnetic Field (mT)
 

Figure 5.2 (a) Change of low field resistivity at T=3K. Open symbols are the measured 
magnetoresistance.  Solid symbols are the parabolic background resistivity. 

 

To evaluate the SO parameters for our 2DES, the electron momentum along the z 

direction was evaluated using the relation 2
o

2
z E)E(m2k  yielding 1.2x1016m-1. 

Here, Eo is the first sub-band energy obtained from a finite square well model 
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with a non-parabolic mass. The average Fermi wave vector  eF n2k   was 

determined from the 2DEG carrier concentration ne. These values lead to 

  0.83/4k/4kk 2
F

2
F

2
z   for sample t340; thus the cubic Dresselhaus is expected 

to provide a significant contribution to ∆σ(B), and cannot be excluded from WAL 

analysis. Therefore both linear and cubic terms in the ILP model (Eq. 2.34(b)) 

were included. Since the elastic mean-free path (Le=0.47mm) of the 2DEG is 

small compared to the magnetic length (Lm=0.74 mm), transport in the sample is 

mostly diffusive (Le<Lm) rather than ballistic and ILP model is appropriate The 

solid lines in Figure 5.3 are the best fits of equation 2.34(b) (ILP model) to the 

data ∆σ(B), with four adjustable parameters Ds(B=0), H , Hso and H′
so. The 

extracted values for Hso and H′
so are constant over the temperature range studied, 

while HФ increases with increasing temperature (as expected for the phase 

breaking length). The fitting results obtained at 4.2K are presented below in Table 

5.1.   

 

Table 5.1. The magnetic field parameters of the best fit for the experimental data presented in 
Figure 5.3 (a). 

 
 

Directions Hso (mT) H′
so (mT) 

[100] 0.56 0.544 

[110] 0.64 0.572 
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Since our heterostructure is nominally symmetric, we assumed that the leading 

linear spin splitting term is due to the Dresselhaus spin interaction. Using the 

experimentally obtained values of 2׀Ω Ω׀2τ1= 4.34x1011 s-1 ([100]) and 2 ׀  =2τ1 ׀

4.41x1011s-1 ([110]); the Dresselhaus coefficient is the same for both 

crystallographic directions with a value of 520≤20 eVÅ3, in excellent agreement 

with the theoretical value (530 eV Å3) estimated by Gilberston et al. for 20nm 

wide InSb QW with ne=4 x1015 m-2 (i.e very similar to t340) [53].  

Although the sample structure was designed to be symmetrically doped, a small 

Rashba contribution may be expected due to the preferential diffusion of the Si 

dopants along the growth direction. While for both linear contributions (Rashba 

and Dresselhaus), the spin splitting is isotropic in k-space, because of their 

different physical nature, they cannot be easily separated in models for the 

quantum conductivity correction.  

Using the extracted values for Hso and H′
so, the zero-field spin splitting energies of 

the CB, 2
soe

2
so LτD4E  , were calculated. The elastic scattering time, te

 em*
ee  was determined from the 2DEG carrier mobility me and where D 

 22*22
eeF mk   is the diffusion constant. Using the above Dso expression, 

calculated zero-field spin splitting energies are º1.6 meV and 1.7 meV for [100] 

and [110] directions, respectively. As a consequence, the strength of the 

Dresselhaus SOI relative to the Fermi energy, ∆so/EF, is 30% for t340 and is 
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comparable to the value of ∆so=1.8meV (ne~5.0x1015m-2) estimated for a 

InSb/In0.85Al0.15Sb symmetric 2D electron system by Kallaher et al. [56].  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.3 (a) Low-field magneto-conductance correction as a function of magnetic field: (a) at 

fixed temperature. The arrow indicates the WAL minima, (Bmin) (b) at different 
temperatures. Solid symbols are the experiment data and black solid lines are the 
best fits to the ILP theory for WAL analysis when both linear and cubic terms are 
taken into account. The fitting SO field parameters, Hso and H′so, at 4.2K are given in 
Table 5.1. 
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From the experimental value of )(4eD 3
2
3  , the ratio of τ1/τ3 was calculated. 

As mentioned in section 2.4.1, the ratio (τ1/τ3) depends on the dominant carrier 

scattering mechanism. τ1(=τe), is the momentum scattering time derived from 

measured transport parameters, mobility and density, while τ3 reflects a different 

weighting of the angular scattering (see section 2.4.1). For isotropic scattering, 

ratio approaches unity (τ1/τ3) = 1, while in the limit of  small angle scattering as is 

the case for scattering from remote ionized impurities the ratio is larger, (τ1/τ3) = 

9. Mishima et al. has reported that the dominant scattering in our InSb 

heterostructures are threading dislocations and micro-twins [71] resulting from 

the 15% lattice mismatch with the GaAs substrates. These defects intersect the 

QWs and result in large angle scattering. Our experimentally determined ratio was 

found to be (τ1/τ3) º1 to 2, consistent with the conclusions of Mishima et al.  

 

5.3.2 Transport Properties of 1D InSb Wire Structures 

We now turn to the transport properties for quasi 1D wires fabricated from the 2D 

system whose characteristics were reported above. The designed widths, WEBs of 

the wires within the arrays ranged from 2000 to 700 nm; however, the effective 

widths Weff, are narrower due to the effects of lithography and etch processing. In 

order to obtain the Weff of the each wire array, zero-field resistances, R(0), of each 

array were measured at T=40K, where quantum interference effects can be safely 

ignored. In Figure 5.4, the zero-field conductance (1/R) of the wire at T=40K are 

displayed as a function of the designed WEB for both crystalline directions.  
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As shown in  the figure, the conductivity is   linear as a function of wire width for 

both crystalline directions, thus, resistance, R, of the wires follows the simple 

relation, R=Resistivity x Length / (Width x Number of wires). The constant linear 

behavior also suggests that the product of mobility and carrier density is not 

dependent on the wire width.   

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
Figure 5.4   Zero field conductance at 40K as a function of design width (WEB). Solid lines 

represent the corresponding linear fits. 
 

As can be seen in the figure 5.4, the slopes are slightly different for both 

directions which we attribute to the different mobilities along the two directions 

as seen previously in the un-patterned HBs. Assuming that carrier concentration 
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was unchanged as a function of wire width and the same as the un-patterned HB, 

the mobilities calculated from slopes were 5.6 m2/Vs and 4.4 m2/Vs, yielding 

mean free paths of 0.58 and 0.46mm along the [100] and [110] directions, 

respectively.  

The additional confinement resulting from processing effects and the depletion of 

carriers at the wire edges Wpe, was deduced from the x-intercept ; it can be seen 

that processing and depletion effects narrowed the wires a total of another 750 nm 

and 885nm along [100] and [110] directions, respectively. The effective depletion 

is half of this as each wire has two edges. By subtracting Wpe from WEB, the 

effective wire width Weff, for each array was determined. 

 

5.3.3 1D Spin Relaxation Length  

Figure 5.5 shows the low-field magneto-conductance corrections in units of e2/h 

after subtraction of the zero-field background for 1D wire structures fabricated 

along the [100] and [110] directions at fixed temperature as a function of effective 

wire width. As can be seen, we always observed large signatures of the WAL 

effect. As the effective wire width is reduced, an anti-localization conductivity 

minimum (Bmin) gradually moves to higher magnetic field. For the widest (1280 

nm for [100] and 1115nm for [110]) wires, minima were always located at higher 

magnetic field than the minima for un-patterned HBs (± Bmin=1.2 mT) (see Figure 

5.6). Comparing the arrays along different directions, Bmins occurred at 

consistently lower field values for the [100] wires relative to the [110] wires. The 
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rate at which Bmin changes with decreasing width, however, is the same for both 

directions and it has been found to vary as Weff
 -0.43. 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.5  Low field magneto-conductivity correction vs. magnetic field for wire arrays 

orientated along the (a) [100] and (b) [110] directions at 4.2K. Solid symbols are the 
experiment data and the black solid lines are the best fits by equation 2.47 in section 
2.4.4. The fitting length scales, Lso(W) and LФ(W), are presented in Figure 5.7. 
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Since the mean free path of the wires was comparable to the effective width, it 

was assumed that the electron transport was principally diffusive; thus the spin 

relaxation length of our wire structures was explored by fitting the experimental 

data to the 1D diffusion model described in section 2.4.4. Data fitting was done 

by adjusting Lso(W) (spin-orbit)  and Lf(W) (the spin-orbit and phase breaking 

lengths, respectively.)  It can be seen in Figure 5.5 that our experimental data can 

be fitted very well by the 1D diffusion model even if the electronic transport of 

some wire structures was in a cross-over regime between diffusive and ballistic 

transport. The values of Lso(W) extracted from the fitting are plotted in Figure 5.7 

as a function of 1/Weff.  
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Figure 5.6  A log-log plot of the magnetic field location of the conductivity minimum as a 
function of effective wire width for arrays oriented along the [100] and [110] 
directions. Solid lines are provided as a guide for the eye. 
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As is seen in Figure 5.7, Lso(W) is inversely proportional to channel width and 

was always found to be larger than the calculated bulk spin precession length Lso( 

~0.43 mm) for the 2DEG. The increase in Lso(W) with decreasing channel width is 

attributed  to dimensional confinement effects that have been previously predicted 

[53-55] and observed experimentally for narrow wires [20, 21, 56-60].  

 

Additionally it is noted that the values of Lso(W) extracted for the [110] direction 

are 30% shorter than those for the [100] direction, indicating  an additional spin 

relaxation contribution for the [110] with an anisotropic cubic Dresselhaus term 

predicted to be maximal along  [110]. 
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Figure 5.7  (a) Spin relaxation length of the wire as a function of the wire width along two 

crystalline directions. Solid symbols are extracted Lso(W) from the fit of the 
experimental data by equation 2.47. (b) Spin relaxation length of the wire as a 
function of the (Lso

2/wire width) along two crystalline directions. The black and 
red dashed show linear fits. The blue dashed line is 2D spin precession length, Lso 
value obtained from the ILP fitting on the unpatterned HB. 
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which the spin lifetime along the [110] direction was observed to be shorter than 

along the [100] direction [21].  Our data are repotted in Figure 5.7(b) as a function 

of (Lso
2/Weff) together with the Lso value obtained from the ILP model for the 

unpatterned HB. Lso(w) is linear in Lso
2/ Weff with  slope of  0.30 and 0.28 along 

the [100] and [110] directions, respectively. According to Ketteman’s the 

expected, slope is 0.55 for any crystallographic direction (see equation 2.44). 

Thus, experimental results are in good agreement with theoretical predictions.  

 

5.3.4 Electron-Electron Interaction 

Our data can also provide information on phase coherence in 1D and 2D. Theories 

of 2DES have shown that the inelastic scattering events leading to phase breaking 

are dominated by electron-phonon and electron-electron scattering with the total 

phase breaking rate; 

eepe τ

1

τ

1

τ

1



         …5.3 

where, pe and ee  are the electron-phonon and electron-electron scattering 

times, respectively. At low temperature, the electron-phonon interaction becomes 

negligible and the electron-electron interaction is the dominant inelastic scattering 

process.  
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5.3.4.1 Phase Breaking Length of the 2D Systems 

The contribution of electron-electron scattering to the phase breaking has two 

limits depending on the degree of disorder and are described by the following 

expressions [72,73]:  

eB

F

F

2
B

2 τk
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E
ln(

E
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π
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where, 2*
e0 /mN   is the 2D density of states and D is the diffusion coefficient 

and the time τe is the momentum scattering time. When disorder is weak the 

momentum scattering time is long and eBτ/kT   over a large range of 

temperature leading to T2 dependence for 1/L
2

. When disorder is strong, the 

opposite limit is relevant eBτ/kT   and 1/L
2

, is proportional to T.  

For our sample, the factor, eBτ/k , is º14K, larger than the highest experimental 

temperature (10K) accessed. To explore the temperature dependence of the 

observed phase breaking length   (L), [where H ( 2
Φ/4eL ), resulting from our 

WAL fits] was plotted against temperature in Figure 5.8 and 5.9. It was observed 

that the phase breaking length grew as the temperature decreased with a T-1/2 

dependence specifically  (see figure 5.8). 
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Figure 5.8   The phase breaking length (LФ) obtained from the fit of the experimental data by the 
ILP equation 2.34(b) in section 2.4.1 as a function of temperature. 

 

For comparison, theoretically predicted L(T) using the pre-factor of the linear 

term of expression 5.5. yields 

21216 )T(mK10*6.0(T)L 
               5.8 

and is shown as the dashed line in Fig. 5.9  The comparison shows that the 

experimentally determined L(T) is º 1.6 times smaller than the predicted values. 

While our measured L(T) are smaller than predicted, our results are in 
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reasonably good agreement with theory for electron-electron scattering in the 

strong disorder limit.   
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Figure 5.9   The phase breaking length (LФ) obtained from the fit of the experimental data by the 
ILP equation 2.34(b) in section 2.4.1 as a function of temperature. Dashed line is the 
theoretical fit to equation 5.5. 

 
 

5.4.3.2   Phase Breaking Length in 1D Systems 

We can do a similar study on our 1D wire arrays. In 1D channel, electron-electron 

scattering in the weak disorder limit is unchanged by dimensional reduction and 

equation 5.4 remains. The strong disorder limit however, experiences dimensional 

crossover as was first predicted by Thouless for wires at finite temperature and      

is given by [73]: 
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where, )TD/kL BT   is the thermal diffusion length. Temperature dependent 

∆σ(B) were measured for all the arrays, are displayed in Figure 5.10 and 5.11 for 

both directions. Solid curves represent the fits using equation 2.47. 

Extracted L from the fitting are summarized in Figure 5.12 as a function of 

temperature. When temperature is decreased, the L grows as seen previously in 

the 2D system [ eBτ/k  for [100] direction is ~11 and for [110] it is ~ 15] while 

our experiment was carried out over the temperature range from 10K to 1.5K. For 

our samples, LT valid between  1m (1.5K) and 0.4m  (10K) and thus W~ LT 

implying that our data is in an intermediate regime between 1D and 2D, it is 

therefore not surprising that  L~ Tn  2/3<n<2.  
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Figure 5.10  Temperature dependent magneto-conductance for 1D InSb channels for [110] 

direction: (a) 1115 nm wires, (b) 515 nm wires. The solid lines represent the fit by a 
1D model from equation 2.47. 
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Figure 5.11  Temperature dependent e magneto-conductance for 1D InSb channels for [100] 

direction: (a) 1280 nm wires, (b) 560 nm wires. The solid lines represent the fit by a 
1D model from equation 2.47. 
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Figure 5.12 Temperature dependent phase breaking length extracted from the WAL analysis. 

Dashed lines are the theoretical slopes corresponding electron-electron scattering 
at low temperature, (strong disorder limit for 1D system ~T2/3 and strong disorder 
limit for 2D system ~T). 
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5.4 Conclusion 

In conclusion, we have studied spin-orbit coupling in a single symmetrically 

doped InSb/Al0.2In0.8Sb heterostructure using weak anti--localization (WAL) 

analysis in both the quasi-1D and 2D geometries. Both linear and cubic 

Dresselhaus contributions were included in the analysis of the 2D data. Our low 

temperature magneto-conductivity data yielded values of the Dresselhaus SO 

parameter and of τ1/τ3 in good agreement with theoretical predictions. 

Additionally over the temperature range studied a linear temperature dependence 

of the phase breaking rate indicated that the principal inelastic scattering 

mechanism was due to electron-electron interactions in the disordered limit. 

When quasi-1D confinement was imposed, suppression of spin relaxation was 

observed as the channel was narrowed. Channels aligned along the [100] direction 

displayed spin relaxation lengths ~30% longer than for wires aligned along [110] 

consistent with the additional influence of the cubic Dresselhaus. Additionally in 

the quasi-1D case, phase relaxation corresponds to a combination of both 1D and 

2D behavior. 
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Chapter 6:  Structural Induced Spin Splitting in 2D p-Type InSb/AlInSb 
System 

 

6.1 Introduction 

The study of the Rashba spin splitting in 2D systems has gained momentum over 

the last decade with the goal of controlling the spin precession in spin-based 

electronic devices. The Rashba spin splitting is proportional to the electric field 

that characterizes the inversion asymmetry for non-symmetric potentials [22, 28-

30]. Until recently, this growing interest was focused almost exclusively on 

electronic systems, with rather limited theoretical and experimental work related 

to 2D hole systems [22, 42, 74-78]. Thus, the understanding of the Rashba spin 

orbit physics in 2D hole systems is still in the early stages.  

The physics of the valence band is more complicated than that of the conduction 

band. The uppermost VBs have a total angular momentum J=3/2, with the HH 

and LH states defined by j = ±3/2 and j = ±1/2 respectively. Confinement in a QW 

lifts the VB degeneracy at k=0 and provides a preferential axis (the growth 

direction) for spin orientation. This competes with the in-plane orientation of the 

SO field and hence the physics is more involved, and confinement as well 

asymmetry influence the Rashba splitting.  The two bands have different 

momentum dependence on the spin splitting, (k3 for the HHs and k for the LHs) 

as described in theoretical work by Winkler et al.. Additionally the parameters 

can be tuned by geometry. The latter point has motivated our experiments to 
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investigate the spin properties of 2D hole systems by means of geometry, 

principally well width using WAL analysis.  

6.2 Experiment 

Four Be-doped Al0.2In0.8Sb/InSb heterostructures (t196, t198, t200 and t250) were 

investigated in this study. All four samples were asymmetrically doped and grown 

on GaAs substrates as described in section 4.2. The primary difference between 

the samples was the width of the QW and hole density. Sample parameters 

including well width, density and mobility were summarized in Table 4.2. All 

samples were processed into HB geometries (see Figure 3.3(b)) of width 50 μm or 

100 μm with voltage probe separation of 230 μm between adjacent probes (L).  

 

6.2.1 Results and Discussion 

Figure 6.1 displays the magneto-conductance correction for our p-type 

AlInSb/InSb heterostructures at 3K. As seen previously in our 2DEG systems 

(Figure 5.3), clear WAL peaks can be seen. Anti-localization minima (Bmin) for 

each sample are plotted in Figure 6.2. Compared to the 2DES, the observed Bmin 

for the hole systems are very large, ranging from 4 to 16 mT, depending on the 

sample density and the width of the QW. There are two noteworthy features in 

this empirical data figure the first is the increase of Bmin with increasing hole 

density; and the second is the increase of Bmin with decreasing well width for 

comparable hole density. 
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Figure 6.1   A semi-log plot of low-field magneto-conductance corrections as a function of a 
magnetic field at 3K. Solid symbols are the experiment data. Lines represent best fits 
using equation 2.34(b). The fitting field parameters, H||, H and HΦ are given in     
Table 6.1. 

 

Before analyzing the data it is important to characterize the hole system.  Our 

calculated values of HH
0E  and LH

0E are summarized in Table 4.3. Fermi energies of 

these p-type systems are quite small relative to comparable electronic system due 

to the large effective hole mass. Our calculated values show that 

LH
0F

HH
0 EEE  , indicating that only the lowest sub band in the QW is 

occupied. In general, in structures studied here, both Rashba and Dresselhaus SO 

effects are expected, however, in the lowest sub band (HH), the Dresselhaus 

contribution is linear in the wave vector and thus is less significant at large hole 
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densities than the k3 dependent Rashba term; hence, we presume that the Rashba 

contribution dominates.  

 

Figure 6.2   The positions of the minima in the magneto-conductivity (Bmin) and transport fields 
(Btr) as function of the hole density. A solid line is provided as a guide for the eye. 

 

According to work by Winkler, the Rasbha coefficients for the VB can be written 

as shown in equations 1.16 a) and 1.16 b) of this thesis. Term 1.16 b) exceeds 

term 1.16 a) by a factor of ~30, hence we have only considered the former which 

contributes to the spin splitting as: 

3
Fz

HH
54so kEγEΔ                             6.1 
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where kF is the average Fermi wave vector, which was determined from the 

measured 2D hole density: pF n2k   and Ez is the electric filed which 

characterizes the inversion asymmetry of the sample,  

o

p
z εε

ne

2

1
E                  6.2 

where ε is the dielectric constant of the InSb (ε ~18), and  εo  is the vacuum 

permittivity. 

To extract parameters related to the heavy hole Rashba spin splitting, the low field 

experimental data was analyzed using a model originally developed by Averkiev 

et al. (AGP) (see section 2.4.2). This model allows us to perform a fit to data by 

taking the spin relaxation fields, Hí, H^, and phase breaking field, HΦ, as 

adjustable parameters. As mentioned in section 2.4.2 the AGP model is 

appropriate in the diffusive regime where the mean free path length is smaller 

than the magnetic length Le < Lm. This sets a lower bound for the magnetic field 

range over which the theory is valid, B < Btr where 2
etr 2eLB  . Both Btr and 

Bmin are plotted in Figure 6.2. The values of Btr for the samples t200, t198 and 

t250, were small compared to Bmin thus, their transport is more ballistic. Clearly it 

is preferable to fit the data over a field range that includes the conductivity 

minimum, however there is as of yet no model describing the crossover between 

the diffusive and ballistic regimes for WAL in the valence band; hence, all the 

data for p-type QWs in this chapter were analyzed by using the AGP model.  
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This approach was also taken by Pederesen et al. in their analysis of p-type GaAs 

QW, justified by their observation that the AGP model qualitatively describes the 

correct magneto-conductance even for Le¥Lm [75]. The solid lines in Figure 6.1 

are the best fits using the AGP model as described in section 2.39(d) and it can be 

seen that good agreement can be found. The values of the spin relaxation fields 

determined by this model are presented in Table 6.1. It is observed that H^ grows 

with increasing doping asymmetry (as indicated by the increasing hole density) 

and decreasing confinement. Sample t198 has the largest H^ as expected due to 

the highest doping level whereas sample t250 has the smallest H^  and highest Hí 

of the four samples studied, as a result of the largest confinement along the 

growth axis. Extracted values of DEso are presented in Figure 6.3 vs. hole density.  

Table 6.1.  Optimal fitting parameters for magneto-conductivity data at 3K using the AGP model. 
Hí and H^ are the spin-relaxation fields directed along and perpendicular to the growth direction.  
H is the phase breaking field. 
 

Sample ID # Hf (mT) Hí (mT) H^ (mT) 

T196 

T249 

T198 

T250 

0.17 

0.36 

0.87 

0.41 

1.7 

2.3 

4.1 

9.5 

1.8 

2.3 

4.1 

1.1 

 

Experimental determination of the Rashba spin splitting for these samples was 

calculated using  
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




HHxy,1

3
2
F

3

R
s0

mτ

τkh4eH

(k)2hΩΔE
7H 7H

                         6.3  

where Field H^ is the spin relaxation field perpendicular to the QW axis; 

0210
*
HH m019.0)/(mm   and the time τ3 is associated with probability of 

scattering by an angle 3q in the 2D plane. t1 is the elastic scattering time from 

mobility measurements and using t1/t3 =1, the experimental results and theoretical 

values are plotted in figure 6.3.  Good qualitative agreement is observed between 

theory and experiment. Samples (t196 and t198) with comparable well width 

display that Dso values increase with increasing hole density; while Dso for the 

narrow well (t250) is dramatically reduced over that of a comparable density but 

less confined well (t198) due to the increased HH-LH separation in the former. 

However quantitative agreement was not found, the magnitude of the Dso values, 

calculated using leading Rashba coefficient γ54
hh for all four samples, were 

significantly larger than those from the experiment. Both experimental and 

theoretical issues may contribute to this quantitative disagreement. On the 

theoretical side, the model for Dso includes only the electric field term of Rashba, 

neglecting any possible interface contributions. These interface contribution 

terms, however, are estimated to be small (< 0.1meV) and opposite in sign to that 

of the electric field term, and thus can probably be ruled out as the principal 

source of discrepancy.  

 



94 

On the experimental side, the fitting has been deliberately extended beyond the 

diffusive limit due to the lack of a valence band model for WAL in the crossover 

regime, however for sample t196 as can be seen in figure 6.2 the sample was 

comfortably in the diffusive regime and the disagreement was still significant.  

Another possibility may lie in our assumption that we could neglect the 

Dresselhaus contribution, however the Dresselhaus SO term is linear in k for HH 

and should become even less important at the large hole densities explored in this 

experiment.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.3  The DEso values as function of the hole density for the four samples at a temperature 

of 3K. The theoretical values (open square: ∆Eso=γ54
HH Ezk׀׀

3 and solid triangles: 
experimental values) using the in-plane effective mass for the HH band, 

o210
HH
xy 0.019m)γ/(γmm  .  
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In addition, the experiment neglects the non-parabolicity of in-plane mass, rather 

a fixed in-plane mass was used for the determination of Dso from the WAL results; 

however, it is known that the  in-plane HH mass increases with increasing strain, 

confinement and momentum for the valence band in a confined system due to an 

anti-crossing between the HH and LH. This however makes disagreement even 

larger. Thus only measuring the quantitative discrepancy, additional work is 

necessary both theoretically and experimentally to resolve the disagreement.  

 

6.2.2 Conclusion 

In conclusion, we have studied the Rashba spin orbit interaction in Be-doped 

InSb/AlInSb heterstructures by using a WAL analysis. Experimental curves were 

fitted to a model proposed by Averkiev for hole systems. Satisfactory qualitative 

agreement was achieved over a wide range of the QW geometry and densities of 

the 2D hole system.  We observed that Dso values increase as the densities is 

increased and as confinement is reduced. The reason for the lack of quantitative 

agreement with theoretical expectations is not well understood; however, SO 

interface contributions, and in-plane hole mass dependence on strain, confinement 

and hole density may play a role. More theoretical and experimental work is 

required to fully understand this behavior.  
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Chapter 7: Conclusions and Suggestions or Future Work 
 
 

7.1 Conclusions  

In this dissertation, fabrication techniques and experimental studies performed in 

2D InSb system are reported. Photo and electron beam lithographies, along with 

wet and dry etch techniques have been employed to fabricate the devices for 

electron and hole transport studies. Two separate transport experiments are 

described. Both experiments employ low temperature, low field magneto-

transport measurements to explore the spin dynamics of low dimensional systems. 

In the electron case, directional independent spin relaxation is observed for the 

[100] and [110] directions. The 2DES data was fit using a four-parameter ILP 

model, addressing both linear and cubic contributions. Resulting values of 

Dresselhaus constant 520≤20 eVÅ3 and the ratio of t3/t1 (1-2 range) are in good 

agreement with theoretical prediction (Gilbertson et al., 2008; Mishima et al., 

2005). Additionally, using temperature dependent data for the [100] direction, the 

phase breaking length was found to vary inversely with temperature, as expected 

for electron-electron scattering in the strongly disordered limit. 

 To study the suppression of spin relaxation by geometrical confinement, quasi-

1D wires were fabricated from the 2DES patterned along the [100] and [110] 

directions. Low field magneto-transport data were fit to a 1D model for the 

diffusive regime using the phase breaking (LФ(W) ) and 1D spin relaxation 

lengths as fitting parameters (Lso (W)). An enhancement of the spin relaxation 



97 

length was observed as the channel was narrowed, and the spin relaxation lengths 

along the [100] direction were found to be approximately 30% longer than along 

the [110] direction. These observations are consistent with the dimensional 

confinement effect and the additional influence of the cubic Dresselhaus 

interaction along the [110] direction, respectively. Additionally, the dimensional 

dependence of the electron-electron scattering mechanism was investigated. 

Results showed that phase relaxation for narrower wires approaches the 1D limit, 

while that for wider wires is more 2D-like. 

A second experiment investigated 2D holes.  The Rashba spin orbit interaction in 

the valence band was studied by changing the hole density and QW width, i.e. 

changing the HH and LH band separation. The structures employed were 

asymmetric Be-doped QWs with varying hole density and confinement. The 

magnitude of the Rashba spin orbit coupling was determined using a model 

developed by Averkiev for p-type WAL analysis. Good qualitative agreement was 

observed as the DEso values increased as the density was increased and as the 

confinement was reduced. The experiment, however, neglected effects of mass 

non-parabolicity and extended diffusive-WAL analysis into ballistic regime, 

while the model neglected the Dresselhaus component and interface terms.  

Perhaps due to these factors, the theoretical values for the spin-splitting 

overestimated the experimental values by ~five. 
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7.2 Suggestions for Future Work  

Based on the experiments on geometrically confined electron systems reported in 

this dissertation, future work could continue the investigation of spin relaxation 

lengths and anisotropic spin relaxation. Narrower wires should display even 

longer spin relaxation lengths. It would be worthwhile to search for saturation of 

the spin relaxation length when relaxation is dominated by mechanisms other than 

the Dresselhaus terms, i.e. Elliot-Yafet mechanisms, etc.  Additional work could 

also be performed on 2D hole systems. Spin-orbit effects are more complicated in 

the valence band separation and analysis is complicated due to the lack of 

sufficient theoretical work. Nevertheless, gated samples allowing a separate 

investigation of the HH and LH band separation and carrier density would be 

worthwhile.  
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Appendix A: Photo Lithography Recipe 
 

1. Cleave the sample into an 8x8mm2 piece from the wafer.  

2. Rinse the sample surface with acetone, methanol, and iospropanol, (IPA). 

3. After cleaning the surfaces of the sample, blow dry with nitrogen gas.  

4. Dehydration-bake at 150oC for 15 minutes in a conventional oven.   

5. Place the sample on the Al block and allow the sample to come to room 

temperature. 

6. Spin coat AZ5124E photoresist at 4000 RPM for 40 seconds. 

7. Soft-bake the sample at 95oC for 60 seconds on a hot plate. 

8. Expose sample under photo mask for 6 seconds with a 350W UV source * 

 

(a) Positive step  

i Develop in MIF 319 developer for 60 seconds.  

ii Rinse the sample with DI water for between 1-2 minutes. 

iii Hard-bake at 120oC for 60 seconds on a hot plate. 

iv Etch the sample before contact pads fabrication. 

v Remove the resist with 1165 remover. 

vi Rinse in flowing DI water. 

 

 (b) Negative step 

 i Post-bake the sample at 120oC for 120 seconds on a hot plate*. 

Ii Flood expose for 60 seconds with a 350W UV source. 

iii Develop in MIF 319 developer for 60 seconds. 

iv Hard-bake at 120oC for 60 seconds on a hot plate. 

v Evaporate contact material 

vi Remove the resist with 1165 remover. 

vii Rinse in flowing DI water. 

Now  * Time are 6.5 and 2.5 seconds in new recipe 
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Appendix B: Electron Beam Lithography Recipe 
 

1. Rinse the sample surface with acetone, methanol, and isopropanol, (IPA). 

2. After cleaning the surfaces of the sample, blow dry with nitrogen gas.  

3. Dehydration-bake at 150oC for 15 minutes in a conventional oven.   

4. Place the sample on the Al block and allow the sample to come to room 

temperature. 

5. Spin coat ZEP520 Electron beam resist at 5000 RPM for 45 seconds. 

6.  Pre-bake the sample at 170oC for two minutes on a hot plate. 

7. Expose sample using an area dose with 40keV electron beam  

8. Develop in Xylenes for 45 seconds  

9. Rinse the sample with IPA for 30 seconds. 

10. Bake at 130oC for 60 seconds on a hot plate. 

11. Etch the sample. 

12. Remove the resist with 1165 remover. 

13. Rinse in flowing DI water. 

  

 


