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AABBSSTTRRAACCTT  
Thermal transpiration (also referred to as thermal creep, thermal diffusion and 

thermomolecular flux) is the process by which a gas under the influence of a 

temperature gradient will flow through a channel from a cold region to a hotter 

one.   This dissertation presents molecular simulations of thermally induced flow 

in the transition and free molecular regime using the probabilistic modeling 

technique referred to as Direct Simulation Monte Carlo (DSMC).  We show how 

the thermomolecular flux can create a pressure increase which can be used as a 

pumping mechanism as well as present results of the net flux as a function of 

temperature, gas density, channel length, and accommodation coefficient. 

 

This disseration begins with a presentation of the historical background which 

led up to kinetic gas theory and inspired Martin Knudsen and his pump idea.  

We describe the Knudsen pump idea in depth and outline the experimental 

progress and various Knudsen pump designs in the last 100 yeas.  We then take 

a comprehensive look at the various types of micropumps and their pumping 

mechanisms.  The last section of the review focuses specifically on gas phase 

pumps and the performance of existing Knudsen pumps.   

 

Afterwards, we provide the basic kinetic theory of thermal transpiration and 

describe the work in that area in the previous century.  We then present the 

modern methods for solving the thermal transpiration method including an 

analysis of the strengths and weaknesses of each method.  We discuss at length 
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the DSMC method, the errors involved in the method and the simulation 

parameters for my set of simulations. 

 

Our DSMC simulations give the most complete DSMC results for both open and 

closed systems with the focus being on the thermomolecular flow through short 

channels throughout the transition and free molecular regimes.  To our 

knowledge, our results are the first DSMC results to include both multiple 

pressure differences and temperature gradients and use those plots to derive 

maximum values for the flux, flowrate and pressure drop.  We provide the first 

flowfield velocity profiles for both transition regime and free molecular regime 

flows as well as flux values for a variety of pressures differences at all Knudsen 

numbers.  We also provide the pressure differences and pressure ratios when 

there is zero molecular flux along with flux data for pore arrays. 

 

The results shown here are the first DSMC simulations looking at thermal 

transpiration for different aspect ratios and different tangential momentum 

accommodation coefficients for Knudsen numbers in the transition (0.1<Kn<10) 

and free molecular (Kn>10) regimes.  We have run over 300 simulations where 

a single run takes anywhere from 12 hours to 7 days of computational time.  For 

each flux or pressure difference data point, we ran several simulations at varying 

pressures using a single number density (Knudsen number) and temperature 

gradient.  
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Finally we provide four design scenarios which utilize the simulations results in 

various ways.  We show how this phenomenon applies both to rarefied gases 

flowing through meso-sized channels as well as dense gases through 

micro/nano-channels.  These designs show how the simulation results predict 

that a 1cm2 array of pores could achieve a maximum pressure difference of 7kPa 

and a maximum flowrate of over 1×108 sccm.  The designs also emphasize the 

validity and usefulness of the DSMC simulations as well as provide the reader 

with a clearer understanding of the physics behind thermal transpiration and the 

potential performance of a Knudsen pump. 
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In recent years, microfluidic applications have continued to grow at an 

astounding rate.  Much of the effort has been focused on biological and chemical 

sensors, ink-jet heads, fluidic manifolds, chemical power generators, flow 

sensors, filters, and many other applications [124].  One of the key components 

in microfluidic applications is the micropump (Chapter 2).  In many of the above 

applications, while the fluidics channels and other active components are located 

on the chip, an external macroscopic pump is needed because existing 

micropumps aren’t able to deliver fluid at the desired pressures and flowrates. 

 

For those micropumps that provide the needed performance to the above 

applications, the majority are practical only as liquid phase pumps due to the 

high leak rates and low pressures and low flow.  This is a result of the low 

viscosity of gas and the unique phenomena that occurs in the micro- and nano-

scale regimes.  This is a key obstacle since applications such as vacuum 

equipment, gas-phase microfluidics, mass spectrometry, metrology of gas flow, 

spacecraft design, gas sensing, and on-chip cooling all require robust gas-phase 

pumps. 

 

In 1909 Martin Knudsen [131] determined that gas would flow continuously 

through the wall of a porcelain bulb under the influence of a temperature 

gradient from the cold side to the hot side.  From this experiment he devised a 

gas phase pump with no-moving parts using a series of nano-scale channels 

CCHHAAPPTTEERR  11  IINNTTRROODDUUCCTTIIOONN       
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interconnected to larger capillaries.  By applying a temperature gradient across 

the channels and capillaries, he envisioned that a continuous flow of gas would 

pass through the channels.  What separates the Knudsen pump from other pump 

options is its lack of moving parts and the potential to use it passively where a 

known heat source is already available.  There are others who have developed 

methods of studying Knudsen’s phenomena using approximate numerical 

methods (section 4.5) and some experiments (section 1.3.3) have been 

performed.  However, a rigorous study has yet to be made comparing thermal 

creep experiments in known channels with numerical simulations.   

 

This report describes the results from an advanced modeling and simulation of 

gas flow and pressure/temperature differentials through the short channels using 

the molecular based simulation software developed by Dr. Graeme Bird: DSMC 

(Direct Simulation Monte Carlo) simulation.  We will begin with a review of the 

work that led to Knudsen’s pump concept followed by a comprehensive outline 

of current micropumps.  Included in this section is a comprehensive look at the 

Knudsen pump and why it works.  We then show the theory behind collisionless 

flow ( ) and its role in thermomolecular pumping.   adds the 

collision model to the equation with a derivation of the Boltzmann distribution 

along with an analysis of how it is used to calculate flux.  The difficulty 

involved in solving this equation is presented which gives rise to the reason for 

using DSMC ( ) to solve the Knudsen flow problems.  Our results in 

 show how the flux and pressure differential change with Knudsen 

Chapter 3 Chapter 4

Chapter 5

Chapter 6
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number followed by some examples ( ) where we apply our simulation 

results to design. 

Chapter 7

 

1.1 Historical Background 

Today’s work in Knudsen flow and rarefied gas flow can be traced back to the 

early philosophers [159] who speculated that substances in the world were made 

from smaller particles in constant motion.  Lucretius, in his poem ‘On the 

Nature of Things’ described matter as being a “packed phalanx…tightly packed 

and closely joined cohere by virtue of their minim particles…”  1800 years later, 

Bernoulli published a paper which included a picture showing his ideas of a gas 

as a series of small particles, however, it wasn’t until approximately 150 years 

ago that much of this theory was verified and the origins of modern gas theory 

began to take shape. 

 

Figure 1-1: Bernoulli's Piston [23]

 

The year 1857 included a number of findings that truly jump-started the modern 

theory of gases.  Using Boyle’s law [32] and Graham’s [94] experimental results 
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on the transpiration of gases, Dr. James Joule was able to derive an expression 

for the pressure in terms of the velocity of the molecules.  Two contemporaries 

of Joule [119], Kronig and Clausius [49], reported experimental results that 

showed 

 

Figure 1-2: James Prescott Joule (1818-1889) 

 

that the motion of small gas particles wasn’t centered on definite positions of 

equilibrium, but were continuous until they collided with other molecules or the 

container wall. 

 

This presented a problem since, if this theory were true, it would seem the 

molecules would diffuse in a container much faster than was observed due to the 

molecules’ high rate of speed.  Clausius (Figure 1-3) answered this question 

with a description of the interaction between the molecules.  He theorized gas 

molecules were large enough to collide with one another but were small enough 

so that, at any point in time, they would be separated by an average distance he 

termed the ‘mean free path’ of the gas.   
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Figure 1-3: Rudolph Clausius (1822-1888) 

 

His equation for the mean free path of the gas was: 

2

1
4
3

πσn
l =  (1-1) 

  

V
Nn =  (1-2) 

  

where n is the number density of the gas molecules, s is the diameter of the 

particles, N is the total number of molecules and V is the volume.  His equation 

was in error, however, by approximately 10% since he assumed the mean free 

path was based upon the motion of several particles around a single stationary 

particle. 

 

Clausius also introduced the idea of entropy (the randomness of a gas) and was 

the first to make the statement “entropy always increases” [160].  Boltzmann 

(Figure 1-4) used Clausius’ idea and made the first connection between entropy 

and probability which led to the derivation of the Maxwell-Boltzmann 

distribution which is one of the fundamental principles in gas flows. 
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Figure 1-4: Ludwig Boltzmann (1844-1906) 

 

In 1863, Thomas Graham (Figure 1-5) [93, 169, 126] began an investigation into 

the study of gaseous flow through a porous plate.  Chiefly, he showed that 

gaseous flow through these smaller pores was not necessarily a mechanism of 

the flow of the “gas in mass” but rather a summation of the individual motion 

and mobility of molecules in what he termed capillary transpiration.  He was one 

of the first to study gaseous flow in small regimes where continuum theory 

breaks down. 

 

Figure 1-5: Thomas Graham (1805-1869) 

 

Osborne Reynolds (Figure 1-6) [213] continued this work by addressing areas 

that Graham and other observers of his work had not pursued.  Graham focused 

on the pressure driven flow through a porous plate of both single and binary 
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gases and endeavored to maintain uniform temperature and low humidity.  

Reynolds, however, noticed that “a difference of temperature on the two sides of 

the (porous) plate might cause gas, without any difference of pressure or any 

difference in chemical constitution, to pass through the plate.”  He termed this 

temperature driven flow: “thermal transpiration” (also later to be known as  

 

 

Figure 1-6: Osbourne Reynolds (1842-1912) 

  

‘thermal creep’ or ‘thermomolecular pumping’).  He found experimentally that 

the relation between the temperature and pressure in a closed system was: 

2

1

2

1

T
T

P
P

=  (1-3) 

 

Although Reynold’s work was mainly a continuation of Graham’s experiments, 

it was also influenced by a fascination he had with Sir Williams Crookes’ 

(Figure 1-7) radiometer [207, 141].  This device measures light radiation using 

the rotary motion of black/white colored vanes suspended within a vacuum.  In 

‘near’ vacuum conditions, temperature variations at the edges of the vanes create 

pressure gradients which in turn put the device in motion. 

7 



 

Figure 1-7: Sir William Crookes (1832-1919) 

 

It took another scientist in 1879 to provide the mathematical conclusion to many 

of the theories addressed in the previous three decades.  James Clerk Maxwell 

(Figure 1-8), who is best known for Maxwell’s equations and his 1867 work 

“On the Dynamical Theory of Gases” [173],  

 

Figure 1-8: James Clerk Maxwell (1831-1879) 

 

further developed Kronig’s and Clausius’ theory of the motion of gases by 

introducing the concept of a statistical distribution of velocities.  He determined 

that the velocity distribution of a molecule could be found using the equation: 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛=

kT
vm

kT
mnvfo 2

exp
2

22
3 r

r

π
 (1-4) 
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where m is the mass, k is Boltzmann’s constant, T is the temperature in Kelvin, 

and v is the velocity.  This equation is explained in greater detail in section 0.  

From the velocity distribution Maxwell found the mean free path (the distance a 

molecule moves before it impacts another molecule) to be: 

2

1
2

1
πσ

λ
n

=  (1-5) 

where  

V
Nn =  (1-6) 

  

and n is the number density, N is the number of molecules and V is the volume.  

He went on to demonstrate that a variety of macroscopic variables of state can 

be derived from a statistical distribution of the velocities of the molecules.  After 

reading Reynold’s paper on thermal transpiration, Maxwell began to apply his 

ideas of interior gaseous behavior to the surface phenomena.  Here he extended 

Reynold’s work by developing some of the first mathematical models of thermal 

transpiration at the solid-gas interface. 

1.2 Knudsen 

 

It wasn’t for another 30 years that thermal transpiration was to be used as a 

pumping mechanism.  Martin Knudsen’s initial endeavors went to prove 

experimentally that Maxwell’s kinetic theory of the relation between 

temperature and pressure was accurate.  He developed theories describing basic 
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kinetic theory, molecular effusion (the flow of gas into a vacuum), molecular 

reflection of surfaces, evaporation and condensation, gas flow in tubes at low 

pressures, and gas resistance to the motion of a body.  He was having difficulty, 

however,  

 

Figure 1-9: Martin Knudsen (1871-1949) 

 

understanding why the direction of molecules reflecting from the surface of a 

solid were independent of the direction of approach .  He agreed with 

Smoluchowski  that energy was being transferred to the molecules so he 

developed the accommodation coefficient as a way to characterize the 

temperature difference of the impinging and reflecting molecules.  Through his 

experimentation he began to see how the gas flow through small channels could 

be controlled and in 1910 published a pump design based on this phenomena.  

Today the pump carries his name. 

1.3 The Knudsen Pump 

The Knudsen pump (Figure 1-10) features an alternating set of small and large 

channels with a heater placed at every other channel junction.  The small 

channel’s diameter must be on the order of (or smaller than) the mean free path 
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of the gas molecules and the larger channels sized much greater than the mean 

free path so as to assure pressure driven flow.  Because thermal flow is 

dominant in the small channels and Poisueille flow in the large channels, a 

continuous flow in one direction can be achieved.  The pump has the advantage 

of having no moving parts and could also be passive if used with an existing 

heat source. 

 

Figure 1-10: The Knudsen Pump [127] 

 

1.3.1 Flow Regimes 

Before we can understand how the Knudsen pump operates we must first take a 

look at the various flows regimes.  Consider the flowfields in Figure 1-11.  

During hydrodynamic conditions the flow is dense enough that molecule-to-

molecule interactions are happening continuously.  In this flow, two things are 

occurring simultaneously.  First, the pressure difference along the channel is 

being continually transmitted between molecules which “pushes” the flow 

through channel.  Second, the influence of the wall is limited to a narrow area 

along the wall whose width is about the size of the mean free path of the gas.  

After the molecules impact the walls they are instantaneously impacting other 

molecules and transmitting/receiving energy. Thus, while the walls have 

influence on the flow, that influence can be overcome by the bulk state 

conditions. 
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Figure 1-11: The Influence of Rarefaction 

 

Now consider the situation where the ratio of the mean free path of the gas 

increases compared to the width of the channel.  This can occur either by 

decreasing the width of the channel (i.e. microchannels) or by decreasing the 

pressure (and therefore the mean free path, as was shown in equation (1-6)).  
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This ratio is termed the Knudsen number (Kn) and is used to describe the 

“rarefaction” of the gas flow. 

 

As the Knudsen number increases, the width of the boundary layer also 

increases in relation to the channel width.  The intermolecular collisions begin to 

decrease in relation to the walls impacts.  This in turn impacts the flowfield 

because there are not enough intermolecular impacts to transmit the pressure 

through the channel especially along the walls.  The result is a “slip” condition 

where the velocity profile elongates and the slip length increases.  This region is 

called the slip-flow and is defined where:  

1.001.0 ≤≤ Kn  (1-7) 

 

If we continue to increase the rarefaction, the flow will eventually reach a point 

where the mean free path is greater than the channel width.  In this case the wall 

impacts occur more frequently than intermolecular impacts which demands 

greater attention be paid to the surface properties of the channel; namely the 

energy and momentum accommodation coefficients.  By increasing the 

rarefaction even more, it is entirely possible that a molecule could enter on one 

side of the channel and pass through the channel without hitting the wall or 

another molecule.  There is not a clear line where this occurs but common 

practice sets this “free molecular” line where the Knudsen number is greater 

than 10.  The area in between the free molecular and slip flow regimes is termed 

the transition regime. 
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1.3.2 The Knudsen Pump – Why It Works 

Now consider flow through an ideal aperture (Figure 1-12) where the two sides 

of the wall are kept at different temperatures and pressures.  We assume the size 

of  the hole is smaller than the mean free path of the gas and there are no 

collisions in the aperture.  Based on the ideal gas law we know the following 

relations are true: 

 

Figure 1-12: Flow Through an Aperture 

T
Pn ∝  (1-8) 

Tc ∝  (1-9) 

which means the number flux is proportional to P and inversely proportional to 

the square root of T: 

T
PcnN ∝∝&  (1-10) 

The net flux through the orifice is related by: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−∝

C

C

H

H

T
P

T
PN net

&  (1-11) 
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If the number flux is zero then we get the Reynolds’ relation between the hot 

and cold sides from equation (1-3) which he termed “thermal transpiration”.  If 

we initially set PH=PC then the net flow will begin to move from the colder side 

to the hotter side as long as the pressure is not allowed to build up beyond the 

ratio: 

cold

hot

T
T

 (1-12) 

If PH is kept continually at the same pressure as PC (an open system with no 

walls) then there will be a continuous net flux based on the temperature 

difference (from lower temperature to higher temperature). 

 

Figure 1-13: Channel Flow 

 

Now let’s extend this model to include a channel that separates the two 

reservoirs.  In the free molecular case where there are very few intermolecular 

collisions, wall interactions now occur where energy and momentum are 

transferred.  In a closed system the pressure ratio at steady state reaches the 

same value as before and the net flow is zero through the channel.  Figure 1-14 

shows the gas flow angles relative to the centerline (x) axis in a system with a 
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thermal gradient.  In this flow the direction throughout the flow is random at 

steady state because molecules are streaming from both sides of the channel 

with very few collisions.  The diffuse reflection of the walls has a random 

direction even though energy is transferred to the molecules.   

 

Figure 1-14: Free Molecular Flow Direction (Closed System) 

 

If we look at the same system near the slip regime we see a slightly different 

response.  The pressure ratio is much less than the square root of the temperature 

ratio since the pressure induces a Poiseuille flow in a direction opposite to the 

thermal creep.  The velocity profile in Figure 1-15 shows a positive flow 

velocity along the walls and a negative velocity down the center of the channel 

showing how “thermal creep” occurs at the surface and pressure driven flow 

along the centerline of the channel.  Figure 1-16 shows the flow angle for this 

case which confirms the direction of the flow.   In an open system, both Sone 

[243] and Alexeenko [8] showed the thermal creep velocity profile was 

parabolic in the direction of the thermal gradient.   
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Figure 1-15: Near Slip-Flow Velocity (Closed System) [170] 

 

 

 

Figure 1-16: Near Slip-Flow Velocity (Closed System) 

17 



 

Now the width of the Knudsen layer (thermally driven flow) is on the order of 

the mean free path of the gas.  Thus, the higher the Knudsen number, the greater 

the thermal effect in the channel.  This can be accomplished either by shrinking 

the size of the channel or by reducing the gas density.  Near the free molecular 

regime the width of the channel is on the order of the mean free path of the gas 

so thermal creep is at its maximum value.  This effect is reduced to zero as the 

Knudsen number goes to infinity as well as when Kn approaches zero. 

 

Knudsen’s pump utilizes this thermomolecular pressure ratio by alternating 

narrow (high Knudsen number) channels and wide (low Knudsen number) 

channels.  Thermally induced flow dominated the narrow channels and 

Poiseuille flow is dominant in the wide channels which creates a continual flow.  

If the channels are short (aspect ratio < 10) there is a contribution of flux due to 

the thermal creep at the walls as well as a contribution from molecules entering 

the channel.  In long channels (aspect ratio > 10) the entrance effects are 

negligible.  The effect is the same in either as the only requirement for 

Knudsen’s pump to work is to have the alternating set of channels and thermal 

gradients.  Sone [243] showed that the flux would stop if there were only the 

narrow channels without the larger ones. 
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1.3.3 Post-Knudsen (Continuing His Work) 

A half century after Knudsen developed his pump concept the first significant 

effort was made with regard to the development and analysis of this type of 

pump.  First, Liang [144, 145] ran experiments to study the thermal transpiration 

effects for various gases at different temperatures.  Annis [9, 10] ran similar 

experiments with an emphasis on the temperature dependence.  Turner [264] 

later developed a mathematical analysis of a macro-knudsen pump designed by 

Baum and Schumacher [223].  His conclusion was the limit of the pressures 

achieved would be 10-1 to 10-3 torr with a maximum flowrate of 66 liters/sec.  

Hobson [108-110] developed an accommodation pump based on a similar 

principal only instead of using a difference in channel size to control the 

direction of flow of the molecules, he changed the surface roughness between 

adjacent channels.  His pump alternates two volumes at room temperature, the 

first being atomically rough and the second, atomically smooth.  As the 

temperature of the alternate channel junctions are changed, flow is produced in 

the channels.  A kinetic model of this method was presented by Branton [33] 

nearly a decade later. 

 

Tracy [263] developed the first thermomolecular pump which used a heated 

‘director’ placed directly above a small slit situated between two reservoirs .  As 

the temperature of the director increased, the flow increased since the molecules 

striking the director were more likely to be directed normally toward the slit 

than not.  Furuyama [82] and Yasumoto [288] took measurements of thermal 

19 



transpiration effects at various temperatures to study how the pressure and 

temperatures were related. 

 

Young [289] was the first to mention the creation of a thermal/knudsen pump in 

the micro-regime and holds a patent for the same.  Vargo, et. al. [269, 270], 

however, were the first to fabricate an actual microdevice.  Their pump was 

comprised of an aerogel sandwiched between two silicon wafers with a pyrex 

cap on each side.  The silicon had an array of 20um diameter holes and the 

aerogel a pore size of approximately 20nm.  Muntz, et. al. [187] extended 

Vargo’s analysis by developing models for the energy efficiency of the system. 

 

In the last ten years, three different pump designs have been reported.  Young 

[290, 291] replaced the aerogel in Vargo’s design with a microsphere bed and 

performed an experimental comparison of the two .  His conclusion was the 

microsphere bed’s performance was equivalent to that of the aerogel, however, 

it would operate more efficiently at pressures under 100 mTorr.  The benefit of 

the microsphere bed exists in its ability to be fabricated with varying pore sizes 

and thermal conductivities.  Sone, et. al. [245, 246] developed a meso-scale 

vacuum pump (Figure 1-17) using two plane walls embedded in a circular pipe 

(15mm diameter/ 30 mm. length).   The plates were etched with channels 

perpendicular to the direction of flow and a heater was placed in the middle of 

the pipe.  He performed DSMC simulations on the pump for a 3:1 temperature 

20 



ratio and a high temperature of 150K.  His experiments produced a maximum 

pressure drop of 12 Pa and a maximum volumetric flowrate of 28 cm3/s.   

 

McNamara, et. al. [174, 175] developed the smallest pump to date using a six 

mask silicon process.  His device uses large channels fabricated 10um deep x 

30um wide and small channels 100nm deep x 10um wide.  It is a single stage 

device horizontally fabricated and is able to achieve .46 atm of pressure with 

less than 1W of input power.  Han [99] continued the experimental work of 

Young and Vargo to study flows through the aerogel membrane.  He outlined 

the “reverse” thermal creep that occurs in that system. In 2008, Copic [52] 

published a paper outlining the theoretical efficiency of a Knudsen pump. 

 

Figure 1-17: Sone's Pump Configuration [246] 
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It is now important to show how the Knudsen pump fits in context with other 

micropumps.  In the mid-1980s, a surge in the development of  lab-on-a-chip, 

micro-analysis, dosing, and thermal management systems created an entirely 

new field of Micro-Electro-Mechanical System (MEMS).  Microfluidics sprang 

into being and thus spawned the need for pumps, valves, fluid channels, sensors, 

and a variety of other types of microfluidic components.  Possibly the single 

most diverse area of component design was the micropump, which used a 

variety of actuation devices, integration schemes, and theoretical methods of 

providing fluid delivery at a wide range of pressures and flowrates.   

 

When looking at the variety of gas phase micropumps, the Knudsen pump stood 

out because it utilized a phenomena unique to the micro-regime.  This could also 

be said of other pumps (i.e. electrostatic), however the Knudsen pump had two 

characteristics no other gas pump could boast: 

1. It has no moving parts. 

2. It has the potential to be totally passive by using existing heat sources to 

drive the flow. 

 

The review below outlines the taxonomy of mechanical and non-mechanical 

pumps followed by a description of the various actuation mechanisms.  The 

section ends with comparison of gas phase pumps with special consideration to 

the Knudsen pump.  It will be shown (Section 2.5) that the flux and pressure 
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difference data we present in Chapter 6 is needed to show the potential 

performance of the Knudsen pump.  

 

2.1 Introduction (Taxonomy of pumps) 

Micropumps can be divided into two main areas: mechanical and non-

mechanical.  Mechanical pumps convert electrical energy into mechanical 

energy through a variety of actuation mechanisms and generally use some sort 

of a moving boundary to create discrete fluid motion with each cycle.  The most 

common of these is the membrane pump which has been fabricated in a variety 

of configurations some of which employ more than one membrane.  Non-

mechanical pumps, on the other hand, convert a variety of other (magnetic, 

entropy, electric field, optical, etc.) energy types into kinetic energy within the 

fluid.  This is the more diverse of the two methods and employs a wide range of 

scientific phenomenon to actuate the pump. 
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2.2 Mechanical Pumps 

 

Figure 2-1: Classification of Mechanical Pumps 

 

Mechanical pumps can be sub-categorized according to the type of valve system 

and whether the actuation device is integrated into the pump or is an external 

actuator.  The first type of integrated valve system is a peristaltic valve.  Figure 

2-2 shows the  
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Figure 2-2: Peristaltic Pump [239, 240] 

 

three individual actuators and the order of actuation to create controlled flow 

through the pump.  Olsson [197-201] was the first to create (a gas version) of the 

second type of pump known as a valveless rectification or diffusion pump.  

Figure 2-3 shows how flow is directed 

 

Figure 2-3: Valveless Rectification (Diffusion) Pump 

through the pump using geometric design.  Stemme [253] outlines a simple 

method of determining the flow through this type of valve.  The pressure loss at 

one end of the diffuser is: 
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where ρ is the density, v is the average velocity, and ξ is the pressure loss 

coefficient.  If we define ηF as the ratio between the pressure increase 

coefficients of the output and input diffusers, then the resulting flowrate is 

defined as: 
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where Vx is the volume change each cycle.  The third type of pump uses a 

check-valve analogous to the one designed by Makino [163-165] in Figure 2-4.   

 

Figure 2-4: Integrated Checkvalve Pump

 

The check-valve material is generally a thin layer of silicon designed to deflect 

with small pressures.  While check-valve designs tend to reduce the amount of 

backflow compared to diffusers, diffuser designs are more efficient.  Neither, 

however, can match the ability to control delivery of small amounts of fluid like 

the peristaltic valve. 
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2.3 Mechanical Actuators 

2.3.1 Piezoelectric (PZT) 

Piezoelectric actuators are by far the most common external actuation method in 

mechanical micropump designs.  It is most likely due to the ability to create high 

forces and high frequencies with just a small displacement.  Typical piezo 

designs typically use one of three types of motors (Figure 2-5) that convert 

electrical energy into a variety of strains.  The first 

d31 Transverse 

Bimorp

Bimorph Bender 

Figure 2-5: Piezoelectric Motor Configurations [209] 

method of actuation is one of the most common and utilizes a transverse strain 

given by: 

31Vdx =Δ  (2-3) 

where Δx is the linear displacement, V is the applied voltage, and d31 is the 

piezoelectric coefficient.    These devices are typically bonded to the pump 

diaphragm which converts the transverse motion into the bending motion of the 
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diaphragm.  Transverse PZT devices are widely used because of their larger 

strain (microns to tens of microns) compared to the d33 (longitudinal) type of 

PZT.   Accoto [1] bonded this type of piezo actuator to a metallic sheet and used 

ball valves for his design, where as Hayamizu [105] bonded his to a silicon 

diaphragm and used variable signals to control the direction of flow.  Shinohara 

[236] actually used two different piezo disks, one for the diaphragm and one for 

the valve.  Stemme [253] developed one of the first d31 diffusion pumps and 

Williams [279] provided an analysis which optimized the pump based on the 

piezo size, valve size, and diaphragm thickness.  Other devices using this type of 

actuation were developed by Bohm [30], Gass [88], Li [142],  Linneman [147], 

Olsson [197-201], Van Der Wijngaart [268], and Van Lintel [267]. 

 

The bimorph (or bender) actuators are fabricated with two layers of pzt material, 

four electrode layers (two on each side of the actuator and two in the middle), 

and a center shim between the devices.  Bonding the two devices adds stiffness, 

strength, and in general decreases the motion but can be operated with half the 

voltage if arranged in parallel.  For the bending configuration, one device 

expands while the other contracts.  It is possible with this type of design to 

produce up to tens of microns of displacement.  The equation to determine the 

deflection of the bimorph is: 

2
31

2

T
VdL

x =Δ  (2-4) 

where L is the length and T is the thickness of the bimorph.  One design using 

this type of piezo actuator is presented by Smits [239, 240] which uses a 
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peristaltic configuration.  Gerlach [89, 90] used a bimorph to actuate a diffusion 

pump. 

 

Three other piezo actuated pumps are worth mentioning.  The first was 

developed by Miyazaki [181] and uses composition changes under several piezo 

elements to create a flexural progressive wave.  Matsumoto and Koch each used 

a different valve scheme in their pumps.  Matsumoto [171] uses a viscous based 

valve system where he heats either the input or output valve to create local 

viscosity changes in the fluid where as Koch [133-135] uses simple ‘flap’ check-

valves to control flow direction. 

 

2.3.2 Electromagnetic (EM) 

Another type of external mechanical pump which has some great benefits is the 

electromagnetic actuated device.  EM actuators have a high stroke as well as a 

large force but are still driven by a low voltage.  While they require simple drive 

electronics, their drawbacks lie, however, in the high power consumption, their 

size and the difficulty in mass producing integrated devices.  The force model of  

EM actuator is shown in Figure 2-6 where the resulting sum of forces equation 

is: 

es Fmgxk
dt
dxD

dt
xdm +=++2

2

 (2-5) 
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2
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where: 

m = Mass of the actuator piston 
x = Displacement 

D = Coefficient of damping of the piston on the cylinder wall 

k = Spring constant 

g = Gravitational constant 

Fe = Electromagnetic force 

i = Current 

L = Inductance of the electromagnetic coil 

Figure 2-6: Model of Electromagnetic Actuator [296] 

 

Bohm [30] was the first to develop an electromagnetic actuated micropump. His 

design used a surface micromachined diaphragm powered by either a piezo or a 

EM actuator.  He showed the performance of the two devices were similar 

although the PZT device was much easier to fabricate and integrate with the 

system, not to mention the power requirements.  Khoo [125] developed a device 

using a silicone membrane that was able to achieve fairly high flowrates due to 
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the volume displacement of the actuator.  Meng [177] developed an EM pump 

as well but instead of having an external plunger, he embedded ferromagnetic 

pieces into a PDMS diaphragm.  An external magnet was used to displace the 

membrane which provided similar performance while reducing the fabrication 

and packaging complexity. 

 

2.3.3 Shape Memory Alloy (SMA) 

The shape memory alloy (SMA) is a TiNi alloy sputtered onto a glass substrate.  

The use of these thin films takes advantage of a phase transformation between 

the two solid phases: austenite and martensite.  The austenite phase is a high-

temperature, high strength state whereas the martensite phase is a low-

temperature, high ductile phase.  Due to the migration of variant boundaries in 

the grain structure, as the film goes from one state to the next, it can undergo a 

deformation or apply a stress.   
 

 
Figure 2-7: Hysteresis of Shape Memory Alloys 

Figure 2-7 shows the hysteresis that occurs when the film undergoes a joule 

heating and conductive/convective cooling cycle.  From this it becomes clear 

that SMA films are highly sensitive to heat and must have adequate heat transfer 
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to work efficiently.  This requirement constrains the performance to low 

frequencies.  Their popularity comes from the high force and displacement as 

well as the ability to fabricate a variety of shapes. 

 

Figure 2-7: Hysteresis of Shape Memory Alloys 

 

Benard [20] developed a pump using two different SMA films alternately heated 

and cooled attached on either side of a spacer.  That portion of the design acts as 

a single diaphragm with the added benefit of increasing the actuation force.  

Kahn [123] used a similar configuration only the top SMA film was replaced by 

a silicon spring designed to increase the frequency of his device.  Makino 

developed the most simple device in the form of a check-valved diaphragm 

pump using a single SMA film.  Two designs that utilized the ability to 

configure the TiNi shape were Ikuta [117] and Xu [62].  Ikuta fabricated an 

SMA pump that used a cantilevered TiNi film similar to a piezo bending bi-

morph and Xu created a serpentine film deposited on the top of a diaphragm.  

All reported devices achieved high pressures, however, the flowrate were low 

due to the low frequency. 
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2.3.4 Pneumatic 

One of the interesting ideas in pump design is to use one actuation method to 

power another.  One way to do this is through pneumatic pumps.  Pneumatic 

pumps use an external pressure source (pressurized tank, air flow from a wing, 

etc.) to force air through channels on a chip into a cavity.  As the pressure in that 

cavity increases, the membrane (one wall of the cavity) expands and creates a 

volume change in the adjacent channel.  

 

Figure 2-8: Pneumatic Pump [21] 

 

Two designs have been realized in this area of external “actuation” devices other 

than the one mentioned above [177].  First, Schomberg [221, 37] created a 

single stage device that combines silicon membranes with LIGA structures 

galvanized on titanium membranes.  Berg (Figure 2-8) used a PDMS structure 

and arranged several pneumatic actuators in series to create a perisaltic pump.  

While these devices have a wide range of uses due to the ability to achieve high 

pressures and displacements, the packaging difficulties and size make them not 

as desirable as other integrated devices. 
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2.3.5 Electrostatic 

Electrostatic actuators show a lot of promise in the micropump field.  They have 

the ability to achieve high frequencies with very low power (in comparison to 

other methods) which allows them to move large amounts of fluid, however, 

they can also control small amounts of fluid as well.  They have a common 

characteristic of SMAs in the ability to control the deflection through the input 

signal and can generate high forces if the two plates are close enough.  The 

trade-off is due to the force output being proportional to the displacement not to 

mention the instability that occurs at small gap spacing. 

 

The electrostatic actuation force for a parallel plate capacitor array is calculated 

using [224, 225]: 
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where: 

V = Voltage 

A = Surface Area of plates 

d = Gap space 

εo = Dielectric permittivity 
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Figure 2-9: Parallel Plate Electrostatic Force 

 

This equation shows how the force is directly proportional to the voltage and 

surface area and inversely proportional to the gap space.  This makes the device 

a good candidate for surface micromachining as compared to other fabrication 

methods.  It is important to note that in order to achieve the force required, the 

voltage might have to be quite high.  In this instance it is important to stay 

below the dielectric breakdown voltage so as not to short out the device.  One 

device that allows a larger displacement but can have some stability issues is an 

electrostatic comb device.  It’s motion is a result of the capacitive fringe fields 

rather than the direct “parallel-plate” forces.  Theoretically, this type of comb 

device could have as long a displacement as the designer desired. 

 

Zengerle [294] was the first to create an electrostatic actuated micropump.  This 

first pump used a parallel plate actuator as the pumping membrane.  A spacer 

layer in between the top electrode and the membrane provided electrical 

isolation to the membrane.  He later improved upon the idea and created a bi-

directional version [293] which used passive checkvalves designed with a 

specific resonant frequency.  At higher frequencies the fluid moved in the 
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forward direction, at lower frequencies, the flow was reversed due to the phase 

shift between the response time of the valve and the pressure cycle.   Bourouina 

[31] developed a device (Figure 2-10) similar to Zengerle only it used a single 

valve and functioning silicon channels and membrane sandwiched between two 

glass caps.  

 

Figure 2-10: Electrostatic Pump (Bourouina, 1997) 

 

Two different type of electrostatic actuators could both be called peristaltic 

pumps only they use two completely different configurations.  The first 

presented by Judy [120] is a typical peristaltic valve like those shown in 

previous sections.  Cabuz [38, 39] (Figure 2-11), however, uses two electrostatic 

membranes within a single cavity.  Each membrane has holes offset from those 

in the other membrane.  The membranes are actuated sequentially in a “zipping” 

like effect, which causes the holes to be covered by the adjacent membrane 

during inflow but uncovered during outflow. 
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Figure 2-11: Dual Membrane Pump 

 

2.3.6 Thermopneumatic 

Thermopneumatic actuation is created by heating a fluid in a sealed chamber in 

order to create a volume change.  The volume change equation for this type of 

system is given by: 

( )120 TTVV f −=Δ γ  (2-8) 

where V0 is the initial volume, γf is the thermal expansion coefficient, and T is 

the temperature.  Similar to this, the pressure change is: 
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where P0 is the initial pressure, L0 is the molar latent heat of evaporation, and R 

is the universal gas constant.  One of the advantages of thermopneumatic 

actuators is high displacement, low voltage, however, the cycle time is the 

limiting factor.  As was shown by Elwenspoek [66], it is not only limited by the 

cooling temperature, it is also a function of the hydrodynamics and the thermal 
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conductance of the device material.  Since the power consumption increases 

with size, the smaller the device, the better.  This makes it especially suitable in 

the delivery of small, accurate amounts of fluid. 

 

Figure 2-12: Thermopneumatic Actuator 

 

Van De Pol [266] designed one of the first thermopneumatic pumps using 

silicon.  Jeong [196] made a similar device using aluminum flap valves whereas 

Bustgens [37] (Figure 2-12) used a thermoplastic for his device.  Mizoguchi 

[182] developed a light driven pump that uses light to heat small expandable 

cavities.  This design could be used in applications avoiding the use of electrical 

devices.  The other two thermopneumatic actuators designed by Folta [73] and 

Glosjean [95] utilize the peristaltic arrangement to produce highly accurate 

flows for possible use in medical devices. 

 

2.3.7 Flexural Plate Wave (FPW) 

Flexural Plate Wave pumps are also known as Flexural Planar Wave (Figure 

2-13) and Ultrasonic pumps.  FPWs have a membrane of silicon nitride over a 

large cavity etched out of silicon.  Thin layers of piezo material are deposited on 

the silicon nitride in an interdigitated finger configuration.  The piezo 
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transducers create acoustic planar waves along the membrane that can be used to 

move fluid.  They also have the ability to be actuated magnetically, thus 

avoiding the requirement for a piezo material.  These devices are excellent for 

creating flows in the nanoliter regime.  The devices can be either uni-directional 

or bi-directional (Figure 2-14) depending on the arrangement of their fingers. 

 

Figure 2-13: Flexural Planar Wave Device (Nguyen, 2000) 

 

Moroney [184, 185] developed an FPW capable of moving fluids as well as 

granular solids.  Kurusawa [136] developed an atomizer using the same 

principle.  His desire was to use the device for hand-held nebulizers.  Other 

devices were developed by Meng [176] and Nguyen [191, 192]. 

 

Figure 2-14: Flexural Plate Wave Finger Configuration 

 

2.3.8 Rotary 

The final type of mechanical pump that needs mentioning is the rotary design.  

This design in general takes macro scale or mini scale designs and shrinks them 
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down to the micro scale domain.  A main problem associated with this is the gap 

spacing in the hub of the design that is required for fabrication.  Critical spacing 

forces problems with backlash and the inherent wear of “friction” devices 

reduces reliability.  The primary designs that has been fabricated was presented 

by Ahn [3] and is a rotary magnetic actuator with fully integrated coils and 

stator.  His device was intended for conductive fluids and was successful in 

pumping insulin for potential drug-delivery applications. 

2.4 Non-Mechanical Pumps 

 

Figure 2-15: Electrical Pumping Methods [191] 

 

Non-mechanical pumps use various methods to create fluid motion such as 

electrical and magnetic fields, surface tension, heat transfer, and phase changes.  

Since they do not usually require valves or any other moving parts they have a 

distinct advantage over mechanical pumps.  The two most common types of 

non-mechanical pumps are the Electrokinetic (EK) and Electrohydrodynamic 
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(EHD) pumps.  Although EHD pumps are typically called ion-drag pumps, the 

name could be applied to either.  The primary difference between the two is EK 

pumps introduce ions into the fluid through a surface charge on the channel 

walls.  This limits the effect of the electric field to a more localized area whereas 

the electric field of EHD pumps is applied to the entire pumping volume.  Figure 

2-15 shows a comparison between these two types of electrical pumps. 

 

2.4.1 Electrohydrodynamic (EHD) 

Electrohydrodynamic pumps (also known as ion-drag pumps) require either a 

free space charge in the fluid, a gradient in the electrical 

conductivity/permittivity gradient within a dynamic field (or traveling wave).  

This can be created by four different methods [79, 81].  First, for slightly 

conducting fluids, electro-convection can be induced at a fluid-gas or fluid-fluid 

interface.  At this interface, there exists a charged double-layer, upon which a 

traveling wave can induce flow.  Second, using the dielectrophoretic force on 

suspended particles within the fluid, it is possible to induce a flow in the fluid 

due to the viscous effects of the particle motion.  With sufficient particle 

density, this “traveling wave dielectrophoresis” has the ability to move the entire 

fluid. 

The third method of inducing motion is to create a thermal gradient (externally 

induced anisotropy) across a slightly conductive or electrolytic solution.  This 

thermal gradient has the effect of changing the electrical conductivity and 

permittivity of the fluid which can be moved under a dynamic field by this 
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“electro-thermal” force.  Finally, through localized heating around the 

electrodes, a similar gradient to the above can be generated.  The effect of this 

method is highly dependant on the convection in the fluid which is a function of 

the configuration of the electrodes and the shape of the fluid channel.  It can be 

seen that this technique becomes more useful as EHD devices become smaller. 

 

All of these methods produce highly desired characteristics that makes the EHD 

pump popular for bio-transport, thermal cooling, and mixing applications.  They 

require little power but produce large flow at low pressures.  Even though they 

require a high voltage which can cause impurity collection at the electrodes and 

convection problems (depending on the size of the system…for small channels, 

the Peclet number is very small, since heat diffusion dominates heat 

convection), much of this can be eliminated using AC fields.  Their main 

advantage lies in their simplicity and low cost. 

 

Now, the governing equation [215] of force for an EHD pump is: 
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where qf is the free space charge density, E is the electric field, P is the 

polarization vector, ε is the permittivity, and ρ is the mass density of the fluid.  

The four components on the right hand side of the equation are: 

1. Coulomb force on the free space charge 

2. Kelvin polarization (dielectrophoretic) force 

3. Dielectric (Korteweg-Helmholtz) force 

4. Electrostrictive force 
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While the second term is generally small and doesn’t have constant fluid motion 

in DC fields, dielectrophoresis is used frequently as a method to separate 

particle suspensions within the fluid.  When an electrically neutral particle is 

placed in a spatially inhomogeneous electric field, charge polarization is induced 

at the interface between the particle and the surrounding medium.  As seen in 

Figure 2-16, the field density is much larger on one side than the other which 

will draw the particle in that direction.  If the field is reversed then the polarity 

of the charges will be reversed but the dielectrophoretic force will still be in the 

same direction.  Particles with different material properties (permittivity and 

conductivity) can be separated using dielectrophoresis due to differences in the 

polarization induced in the particles by the inhomogeneous field [61].  

 

Figure 2-16: Dielectrophoretic Force Schematic [61] 

 

Bart [17] was the first to design an EHD induction pump where he used a 

thermal gradient to pump highly insulating silicone oil (Figure 2-17).   
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Figure 2-17: Heat Induced pump [17]

 

Both Darabi [54] and Seong [226] used similar methods the exception being 

localized heating in Seong’s work.  Fuhr [77, 78] also developed an induction 

pump which expanded the pumping materials to conductive liquids as well 

(Figure 2-18).  Richter [214] and Ahn [3] both developed an EHD injection 

pump that used a dc field to induce coulomb forces on the particles. 

 

Figure 2-18: Traveling Wave Pump [76]

 

2.4.2 Electrokinetic (EK) and Electroosmotic (EO) 

Electrokinetic pumps [45] are very useful for biological and chemical 

applications.  They have the ability to transport aqueous solutions and not only 

have relatively high flows but can achieve high pressures as well.  A couple of 
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unique attributes for EK pumps are the planar flow profile as well as the pulse-

less pumping. 

 

Figure 2-19: Electroosmotic flow [42] 

 

EK pumps work through the use of electrolytic solutions which are comprised of 

both a buffer solution (which has nearly equal amounts of oppositely charged 

ions) and individual charged particles.  The first of two types of actions that can 

occur under an induced electric field is called electro-osmosis.  Oppositely 

charged fluid ions are drawn to the charged wall and create a electric double 

layer.  This double layer is composed of immobile ions oppositely charged to 

that of the wall and another set of dispersed mobile ions of with the same 

charge.  In an electric field the overall bulk concentration of dispersed ions is 

propelled through the tube and with it the rest of the fluid due to viscous forces.  

The flow builds until the velocity gradient reaches almost zero creating a flat or 

plug velocity profile. 
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The second type of pumping method is known as electrophoresis which moves 

the suspended charged particles separately from the surrounding fluid.  Just as 

the wall developed a charged double layer, so do the individual particle (which 

are much larger than the double layer).  The electric force caused by this 

charged layer create an electric force but that force is counteracted by a viscous 

drag force.  In order to separate the particles, then, requires a determination of 

the desired electrophoretic and electroosmotic forces based on the buffer 

solution (pH), particle properties and wall coatings. 

 

The type of EK pump mentioned above has been developed by Manz [168] and 

Harrison [103] who used an open channel.  Zeng [237] used a pressure driven 

slurry packing method to fill the fluid column with silica particles.  These 

particles increased the double layer surface area which created a much larger 

effect on the fluid.  Mutlu [189] used a porous plug between the two electrodes 

which increased the surface area and minimized the corrosion and bubble 

creation at the electrodes.  Another way to eliminate the reaction at the 

electrodes is to pulse the signal or keep voltages low.  Two other issues common 

to EK pumps are the susceptibility to counter flows driven by hydrostatic 

pressure and the streaming/seditation potential that is created from the cross 

flow in the channel.  
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2.4.3 Magnetohydrodynamic (MHD) 

 

Figure 2-20: Magnetohydrodynamic pump (Lemoff) 

 

Magnetohydrodynamic pumps exerts a force on either electrolytic solutions or 

ferro-fluids using a magnetic field.  Lemoff [140] introduced a MHD pump that 

used Lorentz forces to direct an electrolytic flow within a silicon channel.   As is 

seen in Figure 2-20, the force is equal to the cross product of electric current 

across the pump channel (I) times the magnetic flux density (B) and the width of 

the channel. 

 

Two pumps designed for use with magnetic fluids (for instance, mercury) were 

Ozaki and Hatch.  Ozaki [203] developed a linear pump the drives fluid through 

magnetized body forces as well as the particle vorticity created by the rotating 

magnetic field.  Hatch [104] on the other hand used a ferro-fluidic plug within a 

circular channel.  In this instance the ferro-fluid was only used as a means to 

“push” another fluid through the channel. 
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While the MHD pumps can create large forces as a function of the magnetic 

power, it requires specific fluids to work.  If an aqueous solution is used then the 

current needs to be alternating to eliminate electrolysis, flow reducing bubbles, 

and electrode degradation.  Ferro-fluids also require special handling and the 

overall magnetic actuator is generally bulky and difficult to integrate. 

 

2.4.4 Phase-Transfer/Bubble-Based pumps 

While somewhat different, phase-transfer and bubble-based pumps use very 

similar methods of pumping.  Phase-Transfer pumps cyclically create vapor and 

liquid phases throughout sections of a capillary (Figure 2-21).  Applying heat to 

the fluid produces, not only liquid to vapor  

 

Figure 2-21: Phase Transfer Pump 

 

transformation, but an increase in kinematic viscosity (and decrease in viscous 

resistance) as well.  The pressure drop between one phase and the next can be 

found using: 

4

8

i
n r

LmP
π

ν&
−=Δ  (2-11)
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Where m is the mass flowrate, L is the length of each area, ν is the kinematic 

viscosity, and ri is the inner diameter of the channel.  The continuity equation for 

the flow is: 

( ) LAUAUmm ρρρ ≅−=− 1212 &&  (2-12)

A is the cross sectional area, ρL is the density of the liquid phase, and U is the 

fluid velocity.  Three different versions of this type of pump were designed by 

Jun [121], Ozaki [203], and Takagi [257]. 

 

Bubble pumps [58, 292] use one of two methods to create fluid flow.  The first 

method is through the use of the Marangoni effect.  The Marangoni (or 

thermocapillary) effect is caused when the surface tension of a fluid is changed 

due to a change in the temperature.  If a bubble is located in a channel where one 

end of the capillary is hotter than the other then there will be a temperature 

gradient across the bubble.  On the hot side of the bubble the surface tension will 

be lower which causes a pressure gradient that moves the bubble to the hotter 

end of the capillary.  Two thermocapillary designs were designed by Takahashi 

[258] and Liepmann [146]. 

 

The other type of pump was developed by Geng [284] who created a device that 

uses a variance in channel curvature to move an electrically conductive liquid 

(although he suggests another method of pumping other fluids as well).  As is 

shown in Figure 2-22, 
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Figure 2-22: Geng’s Bubble Pump 

 

the pumping effect is caused by a variance in the curvature between different 

parts of bubble interface.  After joule heating creates a vapor bubble at the 

channel joint, the surface tension generates a pressure differential between the 

inner part of the bubble and the surrounding liquid.  Since this pressure will 

drive the bubble to conform to the shape of the channel, it will naturally flow 

from the smaller channel to larger channel.  If operated continuously, flow will 

be created according to the relation: 

T
t

RR
pp Δ+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=−

τσ
21

21
112  (2-13)

where σ is the surface tension coefficient, p is the pressure, R is the radius, τ is 

the duration of applied voltage, Δt is the difference between the bubble lifetime 

and τ, and T is the repetition time. 

 

2.4.5 Continuous Electrowetting 

Another type of pump mechanism that is similar to a thermocapillary pump is 

the Continuous Electrowetting (CEW) pump.  The difference is instead of the 

surface tension being changed by a temperature gradient, it is changed using an 

electric field.  The reason this works is because of its use of mercury as a fluid.  

The surface tension creates a  

50 



SLγ SGγ

LGγ

GAS

LIQUID

SOLID

θ

Figure 2-23: Surface Tension Diagram 

 

pressure change between liquid, solid, and gas characterized by the equation: 

( )
a
cosθ

a
P LSLSG γγγ 22

=
−

=Δ  (2-14)

and 

SGLGSL cos γθγγ =+  (2-15)

where γ is the interface surface tension, a is the capillary radius, and θ is the 

liquid-solid contact angle.  Colgate [51] showed that if an electric field is 

applied across the channel the surface tension would become: 

( )2max

2
zcor

SLSL VV −−=
δ
εε

γγ  (2-16)

Lee [122] developed a CEW pump that performed with low voltage and current, 

high speed, and could be designed in variety of configurations.  Yun [137, 138] 

used the CEW process to actuate diaphragms in a hybrid non-mechanical 

actuated mechanical displacement pump. 
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2.5 Gas Phase Pumping and the Knudsen pump 

Figure 2-24 shows the gas phase pump performance of existing pump designs.  

The maximum pressure drop achieved by the pump is shown on the x-axis and  

 

Figure 2-24: Gas Phase Pump Performance 

 

the maximum flowrate reported is shown on the y-axis.  Lines representing 

constant Qmax*Pmax are shown as dashed lines.  Markers lying on the x or y axes 

represent pumps where only flowrate or pressure was listed in their literature.  

Some of these pumps have already been discussed above like the dual 

membrane pump of Cabuz or the electrostatic pump of Gerlach.  Of those not 

mentioned, the pumps by Yang and Schabmueller are piezoelectric pumps.  

Schabmueller’s design is typical of most piezoelectric diffusion pumps, however 

Yang uses a bi-morph to create the highest reported flowrates among the gas 
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pumps.  Huang’s design is a peristaltic pneumatic pump utilizes a PDMS layer 

between the actuation cavities and the working cavity.  Wright obtains the 

largest pressure drop among non-Knudsen pumps using a titanium ion getter.  

The flowrate is unclear and is based upon the reaction of the titanium with the 

nitrogen and oxygen.  Astle uses a bi-directional electrostatic pump that moves a 

membrane vertically between two electrodes.  His performance as a function of 

both flowrate and pressure is the best among electrostatic devices.   

 

The pumps featured using red text identify the Knudsen pumps which are of key 

importance to this dissertation .  Since Vargo and Young did not report flowrate 

performance along with pressure it is important for this dissertation to give 

performance data in the context of gas phase pumps.  Sone’s pump was 

referenced in 1.3.3 where he provided both maximum pressure and flowrate 

data.  In Chapter 7 we show how the performance of a Knudsen pump based on 

our simulation results fits in this plot which should allow the designer sufficient 

information to utilize the Knudsen pump mechanism. 
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CCHHAAPPTTEERR  33  CCOOLLLLIISSIIOONNLLEESSSS  FFLLOOWWSS  AANNDD  
MMAAXXWWEELLLL’’SS  DDIISSTTRRIIBBUUTTIIOONN  

3.1 Introduction 

As we determined in section 1.3.2, the first problem we need to solve relates to 

the collisionless flow of molecules through tubes.  This chapter begins with a 

look at how the number density affects molecular impacts on a particular area 

(namely the entrance to a channel).  This method is then extended to a two way 

flow through an ideal orifice in what is termed effusion.  Next, Knudsen’s 

equation for long tube flow is derived followed by modifications of von 

Smoluchowski, Clausing, and others. 

3.2 Fundamental Assumptions 

It is of key importance to begin with some fundamental assumptions regarding 

kinetic gas theory and its relation to collisionless flows.  First, it is assumed any 

gas is comprised of a set of molecules and, if the gas is pure, these molecules are 

all alike.  Second, it is assumed that the molecules move about in all directions.  

Since they are not considered infinitely small, they are capable of colliding with 

one another.   Finally, it is assumed that the only pressure occurring in the gas is 

the one created by the motion of the molecules when in an ideal state. 

 

The density of a gas is defined as:

mN ⋅=ρ  (3-1) 
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where N is the number of molecules in each cm3 (number density) and m is the mass 

of each molecule which in pure gas is the same for every molecule. 

 

Figure 3-1: a) Diagram of Solid Angle b) Solid Angle in Spherical 

Coordinates 

 

If a gas is in thermal and mechanical equilibrium, then the velocities of the 

molecules are varied, however, the direction of all the molecules having a particular 

velocity must be distributed equally in all directions.  Now Nc is defined as the 

number of molecules having a particular velocity in the range c through c + dc.  

Within a solid angle, dω, the number of molecules within a certain velocity range is 

given by:   

cN
π
ω

4
d  (3-2) 

where  

∫∫ ⋅⋅=
S

φϑφω ddsind  (3-3) 
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Figure 3-2: Pressure Induced by Molecular Impacts 

 

Within a particular time, dt, the number of molecules in that solid angle hitting an 

area, dS, is equal to: 

tScNn cxc ddd))(sin(cos
2
1

, ⋅⋅= φφφ  (3-4) 

If c is the arithmetical mean of the velocity, then after integrating f between 0 and 

p/2, the number of impacts occurring each second on each cm2 of the surface of a 

gas is equal to: 

cNn ⋅=
4
1  (3-5) 

The pressure is derived by multiplying the number of molecules by their momentum 

to yield: 

φφφφ d))(sin(cos
2
1 22

, mcNn cc =  (3-6) 

Since it is assumed all the molecules reflect off the surface, then integration gives 

the pressure on the surface as: 
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2

3
1 cNmP =  (3-7) 

 

Combining (3-7) and (3-1) produces: 

1

2 3
ρ

=c  (3-8) 

where, at constant temperature and P=1 dyne/cm2: 

P
ρρ =1  (3-9) 

Using the universal gas constant, equation (3-8) is rewritten as: 

M
TR

c o32 =  (3-10) 

According to Maxwell’s law of the distribution of velocities [164], equation (3-10) 

can be rewritten as: 

( )22

83
1 cc π

=  (3-11) 

Which from (3-7) would also make the pressure equal to: 

2

8
cNmp π

=  (3-12) 

Therefore, if 

cNmnmG
4
1

==  (3-13) 

then substituting (3-10) and (3-11) into (3-13) yields the equation for the mass flow 

hitting a unit surface during a unit time. 

T
M

R
PPG
π

ρ
π 22

1
1 =⋅=  (3-14) 

57 



3.3 Molecular Effusion 

Now this equation is applied to the problem of molecular effusion.  Assume two 

chambers at different pressures are separated by an ideally thin membrane (Figure 

3-3).   A single aperture is located in the center of the membrane with area A. 

Figure 3-3: Molecular Effusion 

 

From equation (3-14), the mass flow [132] through the aperture is: 

( ) ( )
T
M

R
APPAPPAG

π
ρ

π 22
1 12

121
−

=−=⋅  (3-15) 

where T=T1=T2.  If Q is equal to the volume of gas flowing through the aperture at 1 

dyne/cm2, then: 

1ρ
AGQ ⋅

=  (3-16) 

since GA is the product of the volume and pressure.  Now we define the 

conductance  

12 PP
QU
−

=  (3-17) 

and combine this with equations (3-15) and (3-16) to get: 
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AU
ρπ
1

2
1

=  (3-18) 

It was shown experimentally by Knudsen that the conductance “decreased with 

decreasing pressures to a specific asymptotic value” as would be expected from 

Poiseuille’s law.  In regimes where the diameter of the aperture was much smaller 

than the mean free path of the gas, he found the conductance to be proportional to 

the mass of the gas, inversely proportional to the square root of the temperature, and 

completely independent of the pressure.  This phenomenon he termed molecular 

effusion. 

 

This equation can be used to determine the gas flow between the two reservoirs with 

the following assumption.  If ρ1 is replaced in equation (3-15) by: 

TR
M

T o

=
⋅

=
1

0
1

273ρ
ρ  (3-19) 

where ρ0 is the specific gravity at 273˚ and 1 dyne/cm2, then the mass of gas 

flowing from a reservoir to a vacuum per unit time is: 

1
1

1 2
1 PA

TR
MG
o

⋅=
π

 (3-20) 

To determine the mass flow of a two reservoir system at different temperatures and 

pressures yields: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=−

2

2

1

1
21 2 T

P
T
P

R
MAGG

oπ
 (3-21) 

Even if the pressures in the system are equal there would still be a change of mass 

due to the temperature difference.  In a closed system, the system would eventually 
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reach an equilibrium where G1=G2.  The relation between the temperature and 

pressure would then become: 

2

1

2

1

2

2

1

1 or           0
T
T

P
P

T
P

T
P

==−  (3-22) 

 

3.4 Cosine Law 

 

 

Figure 3-4: Knudsen's Cosine Law Experiment 

 

Before the flow theory mentioned above can be extended to flow through tubes, an 

important law must be described called the cosine law.  Martin Knudsen [128] was 

the first to introduce the cosine law of diffuse scattering which describes the 

impingement and scattering of molecules off tube walls or surfaces.  The cosine law 
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states, under free molecular conditions, the direction of an individual molecular 

reflection off of a surface is independent of the impinging direction and is thus 

diffusely scattered.  In other words, the incidence angle and reflection angle are 

independent of each other.  This is in contrast with specularly reflected molecules 

whose impingement and reflected angle with the surface are the same.  This theory 

is equivalent to Lambert’s law on optical and thermal radiation. 

 

To prove his theory, Knudsen devised an ingenious experiment (Figure 3-4), where 

he took a glass sphere attached to two tubes (one inside the other) whose separation 

was filled with mercury.  The top of the sphere was kept at room temperature while 

the rest of the sphere was cooled.  As molecules evaporated some of them would 

enter the sphere and impinge on the room temperature portion of the sphere.  They 

would then reflect in all directions equally creating a uniformly condensed layer of  

 

Figure 3-5: The Cosine Law 
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mercury through out the sphere. 

 

To understand why this works consider the sphere with radius R and an area at its 

top, dS1 (Figure 3-5).  The number of molecules, dn, that leave dS1 in a solid angle, 

dω is given by: 

ω
π

d)cos(1d xnn ⋅=  (3-23) 

Where x is the angle between a bisection of the sphere and the solid angle.  If the 

area on the surface of the sphere cutout by the solid angle is dS2 then using: 

∫∫
⋅

S r
An

2
d  (3-24) 

yields: 

2
2 )cos(dd

a
xS ⋅

=ω  (3-25) 

Inserting (3-25) into (3-23): 

2
2

2 )(cosd
a

dSxnn
⋅

⋅⋅
=

π
 (3-26) 

where 

)cos(2 xRa ⋅=  (3-27) 

Thus 

2
2

4
d

R
dSnn
π
⋅

=  (3-28) 

Thus the total number of molecules hitting a unit area of the sphere is: 

2
2 4d

d
R
n

S
n

π
=  (3-29) 
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Which is independent of which section of the sphere dS2 comprises. 

 

By applying this formula to gas scattering in a molecular flow, the following 

assumptions must be considered: 

1. There is no absorption of the gas onto the walls. 

2. There aren’t any delayed effects of molecules “residing” at a surface for a 

period of time as described by Clausing. 

3. There is no surface species diffusion 

4. There aren’t any chemical reactions at the walls, disassociation of polymers, 

etc. 

5. Other Knudsen geometric effects on the molecular level are negligible. 

6. The pressures of the gas are low enough so there is no velocity gradient 

normal to the walls.  This is also true when the dimensions of the channels 

are small compared to the mean free path of the gas. 

It is also important to mention that Knudsen’s cosine law is different than the 

‘equilibrium cosine scattering law’ which is a consequence of the 2nd law of 

thermodynamics.  Knudsen’s cosine law is only describing the diffuse reflection of 

individual molecules and does not incorporate the specularly reflected molecules 

nor the effects temperature and accommodation have on the molecules.  Rather the 

diffuse reflection specifically deals with the post-collision direction and velocity, 

the latter which will have a distribution according to Maxwell’s law.  This does not 

invalidate it for use in free molecular gas flow in tubes since the molecules are not 

necessarily at temperature equilibrium with the surface.  For those cases where the 
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reflection of molecules is specular, Berman and Maegley [22] proposed a 

modification to the law saying the molecules that are diffusely reflected comprise a 

portion α while the number of specularly reflected molecules are 1-α.  The constant 

is a function of the gas type, wall material, and surface conditions of the tube. 

 

Several authors have since studied the molecule wall interaction [113].  Shin [234], 

Wachman [272], Goodman [92] and Demirel [59] all described the thermal 

accommodation and the accommodation along with the effect of surface roughness 

on the energy transfer.  Frederking [74], Malek [166, 167] and Murphy [188] both 

developed models for the effect of surface/pore roughness on the flow through 

tubes.  It has been shown that the rougher the surface, the more the energy transfer 

since the molecules tend to strike the surface more than one time.  Other literature 

[71, 112, 143, 161, 217] has described the momentum accommodation and the 

effect specular reflections [60] has on the flow.  Albo outlined  studied the effect of 

residence times to the surface Recent experiments [111] have shown that for very 

smooth walls, the flow of a gas through a channel can increase greatly even in very 

small pores. 

 

3.5 Flow of Gas Through Tubes 

From equation (3-5), Knudsen [127, 130] showed the number of molecules striking 

a cm2 of surface per second is known.  From Maxwell’s distribution (3-11), as was 

discussed before (3.2), the number of molecules with velocities between c and c+dc 

is: 
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 (3-30) 

where α is the most probable speed.  The number of molecules with each velocity 

which strike a unit area per second is: 

cNcn d
4
1

=  (3-31) 

As these molecules pass through a tube they strike the wall with a longitudinal 

velocity, ω, which imparts a momentum to the wall.  It is assumed the molecules 

reflect diffusely (i.e. they reside long enough on the surface to lose their history and 

transfer all their momentum to the wall).  Thus the momentum applied to the wall 

by the Nc molecules is equal to: 

cNcmnm ωω
4
1

=  (3-32) 

c and ω can be related by a proportionality constant, k, to yield: 

cmNkc 2

4
1  (3-33) 

By combining equations (3-30) and (3-33), the momentum sum applied to the wall 

for all velocities is: 
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 (3-34) 

Simplifying

2

8
3 αNkmB =  (3-35) 

The value α is now be replaced by: 
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2
πα c

=  (3-36) 

to give: 

2

32
3 cNkmB π

=  (3-37) 

If the flow is in the molecular regime (with no collisions between molecules) the 

velocity gradient normal to the tube walls is assumed to be zero.  Therefore the bulk 

velocity, v, of the gas flow is defined as: 

ck
N

w
N

kc
N

v ==== ∑∑∑ω
 (3-38) 

Substituting (3-38) into (3-37) gives the bulk momentum as: 

vcNmB
32
3π

=  (3-39) 

Substituting (3-1). in for Nm gives: 

vcB ⋅= ρπ
32
3  (3-40) 

Knudsen applied this momentum to a differential length of a cylindrical tube 

defined, dl, with a cross-section, A and circumference, O: 

tlvOcNmB dd
32
3π

=  (3-41) 

Combining this with (41) results in: 

tlvOpB dd
28

3
ρ

ρπ
=  (3-42) 

which when combined with (3-9) is: 
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tlvOB dd1
28

3

1ρ
ρπ

=  (3-43) 

 

For molecular flow with the following conditions 

1. There is no temperature jump 

2. dl is sufficiently small 

3. The tube is long enough so that end effects are negligible 

it can be assumed the entire momentum is caused by the pressure difference 

between the two ends of dl.  Thus for dt=1 sec.: 

l
pAvO

d
d1

28
3

1

−=
ρ

ρπ  (3-44) 

To find the mass flow through dl, we use the equation: 

l
p

O
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d
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3
8 2

1

π
ρρ −==  (3-45) 

Integrating (3-45) the whole length of the tube gives: 

pdl
A
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L
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3
8 1

0
2 π

ρ
−=∫  (3-46) 

so that: 
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3
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Substituting for ρ1 gives the mass flux for a long cylindrical tube: 
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In the case where the tube is short enough so that end effects must be considered 

then (3-44) becomes: 

l
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l
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d
d

d
d1

28
3

1

ρ
ρ

ρπ
−−=  (3-49) 

where the last term is from the kinetic energy of the gas leaving the tube.  Once 

again, using the first expression in (3-45) with (3-49): 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=

plA
G

l
pG

A
O 1

d
d

d
d1

28
3

1
2

2

2
1 ρρ

π  (3-50) 

and integrating over the length of the tube: 
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For simplification, let 

∫=
L

l
A
OZ

0
2 d

28
3 π  (3-52) 

so that (3-51) becomes
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(3-53) 

For cases where the end effects are negligible, the term on the right hand side of the 

denominator is much less than one, which after integrating W, reduces to (3-47).  

Looking at just this term: 

( )
21

2
21

22

1
pp
pp

ZA
U −

=  (3-54) 

Integrating this yields 
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 (3-55) 

It is of note that this term is dependant on R/L so that the longer the tube with 

respect to the radius, the less the end effects have on the mass flow even when the 

pressure difference is great.  To determine the volumetric flow rate of a long tube, 

divide (3-47) by ρ1 to give: 

( )21

3

1

2
3
4 pp

L
RQ −=

ρ
π  (3-56) 

Finally, substitute (3-19) into (3-56) and assume a temperature difference across the 

tube length to give Knudsen’s thermal transpiration equation for tubes: 

( )21

3

2
3
4 pp

M
TR

L
RQ o −= π  (3-57) 

Note that this equation is an approximate solution that assumes the temperature in 

the tube is uniform throughout the tube.   

 

3.6 V. Smoluchowski 

Figure 3-6: Coordinate System of Free Molecular Tube Flow 
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Although Knudsen thought his equation was valid for all flows and channel cross-

section shapes, von Smoluchowski (from here identified as VS) [129, 250-252] 

revealed some errors in Knudsen’s derivation.  In reality, Knudsen’s solution was 

only valid for circular cross-sections and long channels.  VS derived an expression 

for molecular flow that was valid for flows through tubes with any cross-section.  

The following paragraphs summarize this work in order to show the highlights of 

the derivation. 

 

Knowing that the flow is calculated from the net molecular transport through  the 

tube, an expression is derived for flow through an element of cross-section, dS, and 

then integrated over the entire tube length (Figure 3-6).  The flow through dS is 

found by determining the number of molecules that reflect off the sidewall and pass 

in a straight line through the elemental area.  Combining equations (22) and (5) give 

the number of molecules that reflect off a unit surface area, dS’, in 1 second at a 

particular angle, θ: 

π
ωθ

4
d)cos(vN  (3-58) 

where Nd is the number density.  The number of molecules that pass from dS’ to dS 

per unit time is: 

π
ωθ

4
d)'cos('dd2 SvNG =  (3-59) 

If a line of length r connects the centers of dS and dS’, the angles to the two normals 

are θ and θ’.  The solid angle, dω, is found in the same way as (3-25) so that: 
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=  (3-60) 

Equation (3-59) then becomes: 

φθθθ
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SvN
r

SvNG
 (3-61) 

Since the number density is an unknown function of z, it is assumed a small 

variation of density along the tube and used a Taylor series expansion around dS’: 
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NzNzN  (3-62) 

Now the net flow of molecules that pass through dS is found by adding the 

molecules that pass through it from both sides of the tube.  Integrating (3-61) 

throughout the entire range of solid angles the net flow is found to be: 

∫∫ ⋅⋅⋅−=−= −+

ππ

θθθφ
π
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dsincos)(d
4

ddd zNdSvGGG  (3-63) 

Substituting (3-62) into (3-63) and knowing that: 

θθ cotcos ⋅=⋅ sr  (3-64) 

the net flow equation is reduced to: 

( ) φφρ
π

dsin'1
d
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22∫ −⎟
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z
NSavG  (3-65) 

where: 

R/' ρρ =  (3-66) 
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The integral in equation (3-65) is an elliptic integral, E(ρ’), which can be rearranged 

into the net molecular flux per unit area: 

( )
z
NERv

S
G

d
d'

2d
d ρ−=  (3-67) 

It is important to note that when ρ’=0 (along the center axis of the tube), the integral 

reduces to π/2 and when ρ’=R (along the outer circumference of the tube), the 

integral reduces to 1.  Therefore the net flow rate changes radially through the tube 

which is contrary to Knudsen’s assumption [equation (3-38)].  The net flow is now 

obtained by integrating (3-65) through the entire cross section: 

z
NRvRG

d
d

3
22π−=  (3-68) 

Now the velocity must be determined from the Maxwellian distribution of 

velocities.  Combining (3-10) and (3-11) gives an equation for the velocity: 

M
TR

v o

π
8

=  (3-69) 

so that the net flow becomes: 
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From Boyle’s law: 

TR
PMN

o

⋅
=  (3-71) 

At steady state, the mass flux will be uniform longitudinally so the last term in 

(3-70) can be expressed as: 

( )
TLR

PPM
z
N

o

21

d
d −

=  (3-72) 
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Substituting this into (3-70) gives the total net flow equation found by Knudsen: 
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−=
π  (3-73) 

If the temperature is not constant through the tube then the temperature will be 

evaluated in the Taylor expansion as a function of z and will carry through with the 

density gradient term.  The result will be a mass flow which matches Knudsen’s 

equation: 
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3.7 Flow resistance 

Knudsen’s equations (3-52) through (3-54) use the variable Z which he termed the 

flow resistance in a tube.  Carrying out the integration of (3-51) for a cylindrical 

tube with length L and radius R: 

3

2
8
3

R
LZ

π
=  (3-75) 

This resistance has a parallel in electrical resistance calculations and can even 

follow Kirchoff’s laws of branched circuits to find a flow resistance in a 

complicated set of tubes.  VS later determined a flow resistance based on the 

derivation above equal to: 

I
LZ

π
8

=  (3-76) 

where I is equal to: 
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π

π

θθρ  (3-77) 

Carrying out the integrals for a circular tube gives the same result as that of 

Knudsen [equation (3-75)]. 

 

Dushman [63, 64] was the first to propose a solution to the problem of flow through 

short tubes, however, his derivation used the idea of entrance and exit resistances 

which Clausing [48] proved was not a good conclusion for all cases (especially 

when discussing flow into a vacuum).  While his derivation was good where L<R 

and when L/R approached infinity, it was not good in the intermediate regions.  The 

Dushman resistance: 

oo RR
LZ ρ

π
ρ

π 23

12
24
3

+=  (3-78) 

thus comes to the same conclusion as the Knudsen resistance and is only regarded as 

an approximation to the flow in short tubes. 

 

3.8 Conductance And Transmission Probabilities 

To study the relationship between flowrates and the pressure gradient across the 

tube, Knudsen created the following relation: 

( )21 PPUQP −=  (3-79) 

where QP is a measure of pressure*volumetric flowrate and U is the conductance of 

the flow.  The conductance is defined as: 
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1
ρZ

U =  (3-80) 

Thus for Knudsen’s solution for flow through long tubes, the conductance is: 

L
R

M
TR

U o
3

23
8 π

=  (3-81) 

 

While the conductance equation has value in understanding the problem of flow 

through tubes, Clausing and his successors chose to use a method based on a 

slightly different derivation than their predecessors.  Rather than using flow 

resistance, he assumed the net flow could be calculated using a transmission 

probability.  In essence, the net flow is determined from the difference of the two 

directional probabilities: 

( )WAnAnG 2211 −=  (3-82) 

where nA is the incident rate of molecules entering the tube (from each direction) 

and W is the probability that the molecules will pass through from one side to the 

other.  As an example, if the opening between the two chambers were an ideal 

orifice, all the molecules would pass from one side to the next, thus W=1.  The 

transmission probability for Knudsen’s formulation can be found by assuming P2=0 

(which is the situation for effusion).  Equation (3-82) then becomes: 

WAnG 11=  (3-83) 

The molecules entering from the chamber are: 

4
1

10
AvNAnG ==  (3-84) 

Combining (3-18) and (3-82) results in: 
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where U0 is the entrance conductance.  Now using (3-81), (3-84) and (3-85) the 

transmission probability for Knudsen’s derivation is: 

L
RWKnudsen 3

8
=  (3-86) 

It is easily seen that the formula breaks down when L<<R thus the equation only 

holds for long tubes.  Dushman’s solution: 

R
L

WDushman

8
31

1

+
=  

(3-87) 

results in a more accurate result for long tube flows because he adds an entrance 

conductance to the long tube conductance, i.e.: 

oDushman WW
111

+=  (3-88) 

where Wo is WKnudsen.  While this formula gives reasonable results for long tubes, as 

mentioned above, it only provides a general approximation of conductance through 

short tubes.  Thus, Clausing [48, 106] uses the following derivation to determine the 

flow conductance through tubes of any ratio of r/L. 
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Figure 3-7: Clausing’s Derivation 

 

Clausing divides a tube into three sections using two planes perpendicular to the 

tube axis.  He assumes the resulting rings cut out by the planes have a width dv and 

are separated by a distance v.  Following the cosine law, he defines the following 

probabilities: 

1. Wrr(v)dv: Probability that a molecule will leave the first ring and strike the 

second. 

2. Wrs(v)dv: Probability that a molecule will leave the first ring and pass 

through the area cut out by the second ring. 

3. Wsr(v)dv: Probability that a molecule will leave the area cutout by the first 

ring and strike the second ring. 

4. Wss(v)dv: Probability that a molecule will leave the area cut out by the first 

ring and pass through the area cut out by the second ring. 
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It can be shown through the cosine law that the number of molecules that pass 

through surface B is related to those that pass through C in proportion to their two 

surface areas (Figure 3-7).  Using this along with other geometric relations yields 

analytic solutions for the probabilities mentioned above: 
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He combined these into a single equation for the transmission probability: 

( ) ( ) ( )∫ +⋅=
L

sssrgClau LWdxxwxWW
0sin  (3-93) 

where 

( ) ( ) ( ) ( )xLWwdxWxw rs

L

rr −+⋅−= ∫0 ξξξ  (3-94) 

is the “escape probability”.  Clausing determined approximate solutions for the 

transmission probability by substituting escape probabilities averaged over the 

length of the tube to yield: 
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If r<<L then this equation gives the Knudsen result above and for r>L gives an 

approximate solution satisfying flow through short tubes.  An addendum to this 

work stipulates that for very short or infinitely long tubes, a simpler transmission 

probability is: 

rL
W gClau 83

8
sin +

=  (3-96) 

Since Clausing did not provide any error assessment of his equations, many of his 

contemporaries criticized the validity of his equations.  DeMarcus and Hopper [57] 

re-examined his work and determined his results had an error of 0.1 percent.  Their 

work was numerical and bounded the solution in what they termed a “squeezing” 

method.  Since their results did not contain analytic solutions, Berman [22] later 

derived asymptotic expansions (for long tubes) and series expansions (for short 

tubes) to Clausing’s integral (3-93): 
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Others developed solutions and bounds to Clausing’s integral [183, 178, 70], 

however, some the best results were achieved by Cole and Pack [50] who were able 

to achieve results with errors no greater than 8.6x10-2 %.  Tao [261, 262] introduced 

the “dusty gas model” as a method to solve the thermomolecular pressure 

difference.  Santeler [219, 220] later derived transmission probabilities for 

rectangular tubes whereas Bassanini [18] and Steckelmacher [247, 249] looked at 

rectangular and elliptical cross-sections. 
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CCHHAAPPTTEERR  44  TTHHEE  BBOOLLTTZZMMAANNNN  DDIISSTTRRIIBBUUTTIIOONN  
While many papers are devoted to the well known problem of free molecular flow 

through a tube, a true analytic solution is still not available when intermolecular 

collisions are present.  It is clear that the transmission probability method is not 

suited for a complete analysis in the transition regime and a new approach is needed 

which adds a collision model.  The Boltzmann equation includes such a model and 

makes it possible to look at the macroscopic quantities derived from the individual 

motion of the each molecule.  This section outlines this method and builds a 

foundation for the numerical/statistical technique called Direct Simulation Monte 

Carlo. 

 

4.1 The Boltzmann Equation 

To this point, this dissertation has used an average value to describe the velocities of 

molecules.    This assumes the mean is representative enough of the gas to be able to 

determine the state of the gas which is not totally accurate.  A fundamental idea 

behind kinetic theory is the molecular distribution law which says a gas is 

comprised of a set of molecules at a distribution of velocities and locations.  In 

equilibrium, the number of molecules having certain velocity should remain the 

same.  Rather than trying to calculate the state variables for each molecule, the 

derivation of the Boltzmann distribution [102] below follows Bird’s [29] method to 

show how the macroscopic quantities of the distribution is determined as a 

representation of the entire gas. 
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Consider the phase space shown in Figure 4-1.  The volume shown represents a 

molecule with velocity components between u and u+du, v and v+dv, and w and 

w+dw where u, v, and w represent the velocities along the x, y, and z axes.  The 

velocity vector, c, is drawn from point O to the volume element and represents all 

molecules with velocities in that geometric volume.  Assuming the molecules follow 

the distribution law, the number of molecules, dN, lying in the volume is 

( ) wvuNfN dddd c=  (4-1) 

where N is the total number of molecules and f(c) is the velocity distribution 

function which gives the fraction of molecules with a particular velocity.  This 

equation can also be written as: 

( ) cc dd NfN =  (4-2) 

 

 

Figure 4-1: Velocity Space 
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since dc is the same volume element as dudvdw.  f(c) can now be simplified to f and 

calculated for all velocities 

  1dddd ==∫∫ ∫ ∫
∞

∞−

∞

∞−

∞

∞−

∞

∞−
cfwvuf (4-3) 

 

It should be noted that the distribution function cannot be negative and it has finite 

bounds.  For most problems it is important to have the distribution determined by 

position which would make the overall state of the molecule be described by a 6N 

phase space.  Within the velocity space described above a position vector and 

volume element can also be introduced using the variables r and dr.  Equation (4-2) 

would then become 

( ) rcddd tr,c,F=N  (4-4) 

where F  represents a single particle distribution in phase space.  Knowing that the 

number density n=N/dr the following identity can be rewritten as 

( ) ( )tr,c,tr,c, F== nfnf  (4-5) 

This function can be applied to multiple particles, gas mixtures, and gases of various 

densities.  For the context of this dissertation the focus is on dilute gases of a single 

species.  While monatomic gases like Argon fit into these parameters, any diatomic 

or polyatomic molecules must include internal degrees of freedom. 

 

Now assuming the volume element above doesn’t change with time, the rate of 

change of the number of molecules in that volume space is 
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( ) rcddnf
t∂
∂  (4-6) 

In the absence of outside forces, the only other processes that contribute to the 

number of molecules within dcdr are: 

1) The motion of molecules across the surface surrounding dr with a single 

molecular velocity, c.   In this case the physical and velocity spaces are kept 

separate which allows the two variables to be treated independently. 

2) The change of velocity of molecules caused from binary intermolecular 

collisions.  In this case the collisions affect only the velocity of the particles 

while the position vector remains the same.   

 

The conservation of molecules through surface dr with velocity c is given by the 

equation 

( ) cdd r
S

r Snf∫ ⋅
r

c e  (4-7) 

where er is the normal unit vector across the surface, Sr.  Gauss’ theorem converts 

this from a surface to a volume integral 

( ) ( ) cc dddd rnfrnf
d

cc ⋅−∇=⋅∇− ∫
r

 (4-8) 

 

which can be simplified to 

( ) rcddnf
r∂
∂

⋅c  (4-9) 

If we assume there are no molecular collisions (item 2) then the description of 

molecules in drdc becomes: 
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( ) ( ) 0dddd =
∂
∂

⋅+
∂
∂ rcrc nfnf
t r

c  (4-10) 

Finally, solving this for the entire position and velocity space gives the Collisionless 

Boltzmann Equation: 

( ) ( ) 0=
∂
∂

⋅+
∂
∂ nfnf
t r

c  (4-11) 

Including collisions, Boltzmann’s equation would be 

( ) ( ) ( )*dddd ffQnfnf
t

=
∂
∂

⋅+
∂
∂ rcrc

r
c  (4-12) 

where Q(ff*) is he collision integral.  In order to determine this integral we only 

consider binary collisions and the velocities of these molecules both before (c, c1) 

and after (c*, c1
*) the collision.  The collision cross sectional area is defined as 

2dπσ =  (4-13) 

 

where d is the diameter of molecule.  It can be assumed that one molecule is 

stationary and another is moving at a velocity, cr, which in reality is the relative 

velocity of c1 to c.  In three  

 

Figure 4-2: Collision area 
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dimensional space, the cross-sectional collision area is σdω.  For molecules with 

velocity, cr, the number of molecules that a single molecule collides with per unit 

time is: 

11 dd ccnf r ωσ  (4-14) 

For the unit element, there are nfdcdr molecules with velocity c, so the total number 

of c-c1 collisions is: 

( ) rcc dddd 11
2

,,
*

*
1

*
1

ωσrcccc cffnffQ =→  (4-15) 

This equation gives the number of molecules that scatter out of the phase space 

element dcdr due to pre-collision  To calculate the molecular collisions that move 

molecules into the element due to collisions, inverse collisions are used.  This 

produces the following: 

( ) ( ) rcc ddd **
1

***
1

*2
,,

*
*

1
*

1
ωσdcffnffQ rcccc =←  (4-16) 

The rate of increase of molecules with velocity, c, is found by subtracting the 

number of molecules leaving the element from the number of molecules entering the 

element. 

( ) ( )[ ] rcccc dddddd 11
**

1
***

1
*2* ωσωσ rrdcdr cffdcffnffQ −=  (4-17) 

If momentum is conserved in the collision, the collision term becomes the 

following: 

( ) ( ) rcdddd 11
*

1
*2* ccffffnffQ rdcdr ωσ−=  (4-18) 

Since this integral only comprises a single phase element, it must be integrated over 

the entire velocity and positions space: 
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*
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*2* dddd rcccffffnffQ r  (4-19) 

Substituting this back into equation (4-12) and dividing by dcdr gives the 

Boltzmann Equation (BE) for a dilute gas. 
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4.2 Moment Equations 

Now that the BE is defined, it can now be used to determine the macroscopic 

properties of interest.  Let’s take a molecular quantity Q whose mean is 

NQ
N

Q
N

d1
∫=  (4-21) 

This quantity can be related to the distribution function using equation (4-2). 

( ) ( ) cc dd1 cfQNcfQ
N

Q ∫∫
∞

∞−

∞

∞−

==  (4-22) 

Macroscopic properties are referred to as moments of the distribution function since, 

as shown above, they quantity is set as a moment to the function.  The same can be 

performed on the BE (equation (4-20) which will allow us to determine the property 

change within the system: 
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c  (4-23) 

The first term on the left can be rewritten as 
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since Q and f are functions of the molecular velocity.  This can then be simplified 

using (4-22) to 

( ) ( )nQ
t

nf
t

Q
∂
∂

=
∂
∂  (4-25) 

The second term uses a similar process to bring Q into the equation knowing that 

both Q and c are independent of position and time in this portion of the equation. 
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This can be simplified to 

( ) ( )nQnfQ c⋅∇=
∂
∂

⋅
r

c  (4-27) 

The right hand side of the equation is changed by bringing Q inside the equation: 

( ) ( ) ( )∫ ∫ ∫∫ ∫
∞

∞−

∞

∞−

∞

∞−

−=−=Δ
ππ

ωσωσ
4

0
11

*
1

*2
4

0
11

*
1

*2* ddddd ccc rr cffffQncffffnQffQ  (4-28)

Substituting (4-25), (4-27) and (4-28) into (4-23) gives the Boltzmann Transfer 

Equation. 

( ) ( ) ( )∫ ∫ ∫
∞

∞−

∞

∞−

−=⋅∇+
∂
∂ π

ωσ
4

0
11

*
1

*2 ddd ccc rcffffQnnQnQ
t

 (4-29) 

This equation describes the change of a macroscopic property Q as it changes with 

position, time and in the presence of intermolecular collisions.  The right hand side 

of the equation can be rewritten to show the change in quantity Q from inverse 

collisions is the same as the change in Q from direct collisions (Bird). 
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( ) ( ) ( )( )∫ ∫ ∫
∞

∞−

∞

∞−

−−−+=⋅∇+
∂
∂ π

ωσ
4

0
1

*
1

*
1

*
1

*
1

2 ddd
4
1 ccc rcffffQQQQnnQnQ

t
 (4-30)

Assuming there is a conservation of the property Q (i.e. Q is mass, momentum or 

energy), then  

*
1

*
1 QQQQ −=+  (4-31) 

which is the definition of a summational invariant [102].  Q could then be written in 

its most general form: 

CmmcAQ +⋅+= cB2

2
1  (4-32) 

 

4.3 Equilibrium 

The significance of the H theorem lies not only in its application to the distribution 

law, but more importantly, H describes an irreversible change in entropy despite 

underlying reversible gas dynamics.  To understand this, let’s simplify equation 

(4-20).  Assuming spatial uniformity of the gas, the 2nd term in the equation can be 

eliminated which then becomes: 

( )∫ ∫
∞

∞−

−=
∂
∂ π

ωσ
4

0
11

*
1

* dd crcffffn
t
f  (4-33) 

Now H is defined as 

( )nfH ln=  (4-34) 

which can also be written as 

( ) cdln∫
∞

∞−

= nffH  (4-35) 
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Substituting ln(nf) into (4-33) and using the form of the collision term from (4-30) 

we get 

( )( )∫ ∫ ∫
∞

∞−

∞

∞−

−−−+=
∂
∂ π

ωσ
4

0
1

*
1

*
1

*
1

*
1 dddlnlnlnln

4
ccrcffffffffn

t
H  (4-36) 

This can be simplified to 

( )∫ ∫ ∫
∞

∞−

∞

∞−

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
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∂
∂ π

ωσ
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1
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1*

1
*

1 dddln
4

ccrcffff
ff

ffn
t

H  (4-37) 

This equation can only have a negative or zero result which means H will always 

decrease in value: 

0≤
∂
∂

t
H  (4-38) 

Now let’s assume ∂H/∂t=0.  This would mean 

( ) ( ) ( ) ( )*
1

*
1

*
1

*
1 lnlnlnln0 fffforffff +=+=−  (4-39) 

which is equivalent to the summational invariant shown in (4-31).  Equation (4-39) 

is the definition of equilibrium which states the velocity distribution does not vary 

with time.  Now, using (4-32) we can write ln(f) as 

( ) CmmcAf +⋅+= cB2

2
1ln  (4-40) 

Let’s now introduce a new parameter called the peculiar velocity: 

occc −=′  (4-41) 

where c is the total velocity and co is the stream or bulk velocity.  Equation (4-40) 

can then be written in terms of its peculiar velocity 

( ) ( ) ( ) CmccmAf o ++′⋅++′= occB2

2
1ln  (4-42) 
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Carrying out the multiplication 

( ) ( ) CmmcAccAmcmAf oo ++′⋅++′+′= occB22

2
1

2
1ln  (4-43) 

Rearranging this into velocity components gives 

( ) ( ) CmmcAAmcmAf o +⋅++′⋅++′= oo ccc BB 22

2
1

2
1ln  (4-44) 

If the gas is in equilibrium then the coefficient to c’ must be zero, thus 

B=− ocA  (4-45) 

Therefore, 

( ) CmcAcmAf o +−′= 22

2
1

2
1ln  (4-46) 

Thus 

⎟
⎠
⎞

⎜
⎝
⎛ +−′= CmcAcmAf o

22

2
1

2
1exp  (4-47) 

Now we define a new constant 

mA
2
12 −=β  (4-48) 

Substituting (4-48) into (4-47)

( )Cccf o ++′−= 2222exp ββ  (4-49) 

Using the relation in (4-3), equation (4-49) can be rewritten as 

( ) ( ) 1dexpexp 2222 =′′−+= ∫∫
∞

∞

∞

∞ -

cc cCcfd o ββ
-

 (4-50) 

After evaluating the integral on the right side of the equation,  
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3
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exp1exp
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βββ
β
π

=+=+⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
CcorCc oo  (4-51) 

Substituting this back into (4-49) gives the Maxwellian Distribution for equilibrium 

which is the same equation as given in (1-4). 

( )22

2
3

3

exp cfo ′−= β
π

β  (4-52) 

The average velocity can be found using the distribution equation and (4-21) where 

Q=c 

cfcc d∫
∞

∞−

=  (4-53) 

From (3-10) we know  

(4-54) RTc 32 =′  

Thus, to get the maxwellian into its more common form we must use (4-53) and 

(4-54) and the relation k=mR 

( ) cdexp3 222

2
3

3
2 cc

m
kTc ′−′==′ ∫ β

π

β  (4-55) 

This yields 

kT
m

2
2 =β  (4-56) 

Finally 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ′
−⎟

⎠
⎞

⎜
⎝
⎛=

kT
cm

kT
mfo 2

exp
2

22
3

π
 (4-57) 

Equation (4-53) showed how the macroscopic velocity of the gas could be 

calculated from the distribution.  Here are some other properties: 
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Number 

Flux 
∫
∞

∞−

= cdfN  (4-58)

cc d
3

2 f
k

mT ∫
∞

∞−

=  Temperature (4-59)

cc d
3

2 fnmP ∫
∞

∞−

=  (4-60)Pressure 

cc d
2

2 fcnmq ∫
∞

∞−

=  (4-61)Heat Flow 

 

4.4 Flux 

If we assume a gas flows in a particular direction with the velocity co then each 

molecule has a velocity component 

( )
( )

ww
cvv
cuu

o

o

′=
+′=
+′=

θ
θ

sin
cos

 (4-62) 

where θ is the angle between the normal of a surface element and the velocity vector 

co.  If the x-axis is defined as directed toward –eo.  Using (4-53), the (positive) flux 

across the surface element per unit time is given by 

∫ ∫ ∫
∞

∞−

∞

∞−

∞

=
0

ddd wvuQufnQdA
&  (4-63) 

We know from (4-52) that in equilibrium (4-63) can be written as 

( )∫ ∫ ∫
∞

∞−

∞

∞−

∞

′−=
0

22

2
3

3

dddexp wvucQunQdA β
π

β&  (4-64) 

Dividing c’ into its components gives 
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2222
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dddexp wvuwvuQunQdA β
π

β&  (4-65) 

Now substitute (4-62) in for the velocities to get the flux in terms of the peculiar 

velocities. 

( )[ ] ( )[ ]
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odA wvuwvucuQnQ&  (4-66)

If we want the number flux across the surface element, use (4-58) where Q=1. 

( )[ ] ( )[ ]
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We can now separate the integral into individual independent variables 
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 (4-68) 

The integrals can then be solved to give 

( )( ) ( ) ( )( )[ ]
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ ++−
=

2
1

2
1222

2

cos1coscosexp

π

θβθβπθβ
β

ooo
dA

cerfccnN&  (4-69) 

The relation coβ is an important relation in this equation.  It shows the relationship 

between the most probable molecular velocity, cm’ and the bulk velocity, co.  It can 

be shown that 

β
1

=′mc  (4-70) 

Therefore substitution gives us the molecular speed ratio. 
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o
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cc
′

=β  (4-71) 

Replacing β with (4-56) we can also find its relation to the temperature 

kT
mc

c
c

o
m

o

2
=

′
 (4-72) 

For a stationary gas, co is equal to zero which means (4-69) reduces to 

βπ 2
1

2

nNdA =&  (4-73) 

If we substitute β once again we get 

π2
RTnNdA =&  (4-74) 

which is the same result Knudsen found for his effusion calculation in (3-5). 

4.5 Solution Methods 

It can be seen that in the free molecular regime the Boltzmann equation is much 

easier to solve since the collision integral is zero.  For flow in the transition regime, 

there are effects of both continuum (hydrodynamic) flow as well as molecular flow, 

so in these instances it is difficult to solve the BE through analytical techniques so 

other methods [25, 255, 282] must be used.  Below are some of most common 

solutions being used to analyze microflows today. 
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4.5.1 Moment Method (Grad’s method) 

In near hydrodynamic regimes, there are two analytical solutions which are 

generally used.  The first is the Moment Method which assumes the distribution 

function is a series function: 

⎟
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where: 
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and Hα1
(N) are the Hermite polynomials defined as: 
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The coefficients (αN) can then be expressed using the moments of the distribution 

function which in turn are used to describe the macrocharacteristics of the gas.  

Since the distribution function assumes a condition of being continuous for all 

velocities, it has the limitation of being used only in lower number transition 

regimes. 

 

4.5.2 Chapman-Enskog 

The second set of analytical solutions is the Chapman-Enskog method.  This 

solution is expanded into a power series where: 

...)2(2)1()0( +⋅+⋅+= fKnfKnff  (4-78) 
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Assuming the distribution function is only dependant on the number density n(t,r), 

the spatial velocity u(t,r), and temperature T(t,r), then after substituting f into the 

BE: 

M
locff =)0(  (4-79) 

The second solution f(N) is found using the previous one f(N-1).  As with the Moment 

Method this solution is limited to near hydrodynamic regimes since the perturbation 

assumption is for small Knudsen numbers. 

 

4.5.3 BGK – Isothermal Gas Flows 

Two solutions called the Model Kinetic equations are used to determine flow 

characteristics for arbitrary Knudsen numbers.  The main concept for this type of 

technique is to modify the collision integral in the BE in order to simplify it enough 

to derive an exact solution.  The first type of method is one of the most widely used 

and is called the Bhatnagar, Gross, and Krook (BGK) method. 

 

The BGK method assumes: 

[ ]ffvffQ M
locBGK −=∗ )(  (4-80) 

Where v is the collision frequency and is assumed to be independent of the 

molecular velocity.  There are three different methods for choosing v.  The first is to 

use the Chapman-Enskog method which says: 

)(
),(4

T
trPvv T

μπλ
==  (4-81) 
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where vT is the average thermal velocity, μ is the viscosity, and λ is the mean free 

path.  This value doesn’t give an accurate result according to the Chapman-Enskog 

model, so a solution considered more accurate is: 

)(
),(

T
trPv

μ
=  (4-82) 

The third equation for the collision frequency is: 

)(
),(

3
2

),(
),(

2
5

T
trP

trk
trP

m
k

v b

μ
==  (4-83) 

where k is the thermal conductivity coefficient, and kb is Boltzmann’s constant. 

 

Loyalka [149-158] has used the BGK method to describe thermal transpiration in 

cylindrical tubes, parallel plates, and rectangular channels as well as the slip and 

velocity profiles.  His most expansive work was developing the kinetic theory for 

thermal transpiration and the mechanocaloric effect.  In addition, both he and Sone 

[242-245] described temperature jump flows and temperature gradient profiles 

within channels.  Sharipov [230] expanded this work by removing lateral wall 

effects in his analysis of rarefied gas flows in rectangular channels.  A limitation to 

the BGK method, however, is it produces the wrong Prandtl number and without 

modification should only be used for isothermal flows with small perturbations.  

Alexeenko [8] produced a comparison of DSMC and BGK in thermal creep 

problems which yielded a good comparison, however there is disagreement over 

whether or not the BGK method is best suited for this sort of problem. 
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4.5.4 Sharipov’s S-model 

The second model equation which does provide the correct Prandtl number is the S-

Model.  This method is used for any linear, non-isothermal gas flows.  The collision 

integral is assumed to be: 
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Sharipov [227-229, 231] used this method to describe gas flows at any temperatures 

and flows through a slit and circular channels.  His most comprehensive work which 

reported results for channel flows in all dilutes regimes is presented in [232].  It is 

generally used in conjunction with a linearized Boltzmann equation which is 

described next. 

 

4.5.5 Linearized BE – Weakly non-equilibrium 

Linearization of the Boltzmann Equation is performed by one of two modifications 

of the distribution function.  The first modification is to write the function in terms 

of the absolute Maxwellian, fo: 

[ ]),,(1),(),,( thTnftf ooo vrvr +=  (4-85) 

which uses the equilibrium number density no and the equilibrium temperature To.  

The absolute Maxwellian is defined as: 
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The linearized BE then becomes: 
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where: 

( ) ( ) vdvddvhhhhvvvvwfQh M
o ′′−−′+′×′′= ∗∗∗∗∗∗∫ ,;,  (4-88) 

From this the macroscopic characteristics can be determined as: 
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The other modification to linearize the BE is to use the local Maxwellian instead of 

the absolute Maxwellian.  This equation is: 

[ ]),,(1)0,,(),,( thTnftf M
loc vrvr +=  (4-92) 

This yields the linearized version of the BE: 
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 (4-93) 

 

Several authors have reported on the use of the BE to solve the thermal transpiration 

problem.  Siu [238] used a modified form to determine the pressure limits of 

thermal transpiration.  In 1978, Storvick [254] used the BGK solution method to 

compare his experimental results for the thermomolecular pressure difference for a 

variety of gases.  Recently Takata [259] derived a method to separated gases using 

the BGK solution, however, he reports the model gives erroneous results.  The gas 

separation idea was originally submitted 40 years earlier by Gilliland [91] who 
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performed Reynold’s experiments through porous solids.  Ohwada [195] and Chen 

[42] derived a solution to thermal transpiration using the linearized BE for highly 

rarefied gases.  Bahukudumbi [15] also used the linearized BE to predict lubrication 

in air resistance slider bearings. 
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CCHHAAPPTTEERR  55  DDIIRREECCTT  SSIIMMUULLAATTIIOONN  MMOONNTTEE  
CCAARRLLOO  

5.1 Introduction 

Direct Simulation Monte Carlo (DSMC) [7] is emerging as the favored analysis tool 

for the study of rarefied gases.  When compared to other numerical solutions of 

mathematical models, DSMC has an advantage in that numerical instabilities are 

absent because the model simulates the physics of the real gas.  The drawback to 

using DSMC is the exaggerated scatter caused from the model using simulated 

molecules to represent a large number of real molecules.  In order to achieve 

accurate results in the continuum regime, a large number of particles would be 

needed which would drive the computational cost to levels which might not justify 

the method.  However, when the critical dimension is small and/or the Knudsen 

number is large, the number of simulated molecules approaches the actual number 

of real molecules in the system.  This leads to higher accuracy and can even 

simulate fluctuations present in the real flow. 

 

Thermal transpiration (or thermal creep) demonstrates this situation because the 

phenomenon occurs when the channel size is on the order of the mean free path of 

the gas.  Thermal transpiration is the unique phenomenon of gas molecules flowing 

through a channel from a cold region to hot region and creating a thermomolecular 

pressure difference (pressure difference caused only by the thermal gradient along a 

channel).  The only requirement is the gas must be rarefied enough so that wall 

collisions are more dominant than inter-molecular collisions. 
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Bird’s DS2V program uses the DSMC method and can be applied to a variety of gas 

flow situations.  It has the added advantage that it can be run on a single computer 

which makes it available to all groups of users.  DS2V employs the use of separate 

sampling and collision cells to evaluate the flow and has an adaption method to 

adjust the collision elements based on the density of particles.  Presented below are 

the results of the DS2V simulations showing the pressure distributions along the 

channels at various levels of rarefaction in the slip-flow, transition, and free 

molecular regimes.  Mass flux data under no pressure gradient is also given as a 

function of Kn. 

5.2 DSMC – A Review 

Monte Carlo is one of many computational simulation techniques used to study 

physical systems.  It derives its name from the Italian city where the ‘games of 

chance’ have a similar characteristic of random behavior.  It is this unique 

characteristic that separates Monte Carlo from other methods.  The simulation 

process is stochastic meaning each successive step is randomly determined by 

taking a sample from a probability distribution.  Other methods are typically 

deterministic whereas Monte Carlo is probabilistic.   

 

The first use of a Monte Carlo technique in small tube flows was done by Davis [56, 

40] to calculate rarefied molecular flow rates through pipes of various shapes and 

sizes.  He described a method of calculating flow rates in complicated connectors in 
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vacuum systems, which were not complicated by the difficulties of evaluating 

complicated integrals introduced by Clausing and Lorentz. 

 

Seven years later, Ward [276] developed a Knudsen cell and studied the vapor 

emission distribution from it.  The results from both experiments and the Monte 

Carlo calculations were in agreement with the cosine law/distribution.  Beijerinck 

et. al. [19] used the same method to study the random walks of molecules under free 

molecular flow in tubes.  Their work compared favorably with the cubic 

approximations of DeMarcus and gave approximations of the wall collision rates, 

transmission probabilities and angular distributions.  Adamson [2] used the test-

particle method to look at thermal molecular beams.  Bird [27, 28] was the first to 

introduce what would eventually be called Direct Simulation Monte Carlo (DSMC) 

in 1963 as a method to study the velocity changes of gas approaching a state of 

equilibrium.  His values agreed favorably with the work of Alder and Wainwright. 

 

DSMC solves the Boltzmann equation [190, 273] for fluids by using individual 

simulated particles (or molecules) to model the behavior of thousands of real 

molecules.  These simulations are very useful due to their simplicity and great 

speed.  One of the key components for this method to work involves de-coupling the 

motion and collisions of the molecules.  This procedure is outlined in greater detail 

below. 
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DSMC began to emerge as a prominent component of gas simulation in the late 

1980s and early 1990s.  While, the initial demand was primarily for rarefied gas 

dynamics as it relates to hypersonic flows [44] and shock waves [186, 67], two 

concurrent factors began to draw the attention to other areas.  The first was the 

growing interest and development of microfluidic systems and nanotechnology.  

Within a short time the scale lengths of fluidic channels were on the order of the 

mean free path of the gas which introduced new phenomenon as well as new 

problems to solve.  In 1992, Piekos [208] outlined the viability of using DSMC for 

MEMS analysis by simulating microchannel flows in the slip-flow and transition 

regimes as well as through a micro-nozzle.  His work was based on the work of 

Arkilic [12-14] who studied slip-flow problems through silicon microchannels.  The 

second factor spurring the growth of DSMC was the improved speed of personal 

computers which opened the door for simulations of continuum flow (and the 

associated large number of molecules).  Oran [202] presented a good summary of 

many other applications of DSMC in the early and late 1990s.  In the decade since 

that time, DSMC has been used to study all types of gas flows including gas mixing, 

chemical reactions, flow through nozzles, aerosols, filters, vapor depositions, shock, 

hypersonic flows, air bearings [80], etc.   

 

In the arena of micro-flows, Gallis, Rader, and Torczynski [83-84] reported on 

thermophoresis in rarefied gas flows.  Their work studied both monatomic and 

diatomic gases and the forces applied to the particles by the thermal gradient created 

between two plates at different temperatures.  They later extended this work by 
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determining the velocity distribution of molecules in near continuum conditions 

under Fourier and Couette flow conditions.  Park [206] also studied Couette flow 

under time-periodic oscillatory conditions.  In 2001, Wu and Tseng [282] ran 

simulations on low Knudsen number flow through tubes, t-channels, and along 

surfaces such as those on a hard drive.  Sun [256] also performed similar work with 

a focus on the effects of compressibility, rarefaction, and surface roughness.  He 

presented axial pressure distributions, velocity profiles, and friction coefficients as a 

comparison to experimental data.  His DSMC simulations confirmed that rarefaction 

didn’t affect the pressure distribution but changed the slip at the wall in slip-flow 

and transition regime flows.  Aoki [11] presented an analysis of the flow induced 

between two coaxial elliptic cylinders.  Wang [275] also studied micro-geometries 

of low-Kn flow with the addition of Poiseuille flow through orifices and around 

corners as did Shinigawa [235].  A similar work was performed by Alexeenko [7] 

who studied how flow rates and pressure losses were impacted by constrictions in 

the micro-channels.  She validated her results to Arkilic’s analytical expression for 

mass flow rate in slip-flow.  It is her conclusion that Navier–Stokes equations may 

be used with reasonable accuracy if the surface velocity-slip conditions are 

appropriately modified.  In Prasanth’s review [212], however, he argues that as the 

rarefaction increases and flow go into the transition regime, the Navier-Stokes 

equations yield poor approximations to the physics of gas dynamics as they relate to 

transport terms for mass, diffusion, viscosity, and thermal conductivity. 
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It is this area (transition and free molecular regimes) which is of primary interest 

and more specifically the simulations of micro-channel flows under a thermal 

gradient.  In 1997, Mavriplis [172] conducted a study of heat transfer in short 

microchannels.  Using pressure boundaries at each end of the channels, he 

determined the temperature gradient and heat flux in the channel for various wall 

temperatures.  In one simulation, he divided the wall into alternating segments of 

temperature jumps.  This was possibly the first DSMC study of a non-isothermal 

flow through a microchannel and was performed on a personal computer.  In 1998, 

Wong [280, 281] performed a preliminary study of thermal transpiration.  While not 

a complete discourse on the subject, it showed that DSMC was a feasible option for 

studies of this type of flow.  Nishizawa [193] performed a DSMC analysis of 

thermal transpiration of a capacitive diaphragm gauge.  For his system the cosine 

law distribution was insufficient to describe the real effects as it produced a high 

pressure area along the central axis of the channel.  Alexeenko [8] studied thermal 

transpiration in microchannels using the SMILE DSMC code.  She chose 5 Knudsen 

numbers between 0.05 and 50 to study the effect of a single pressure ratio and 

multiple  temperature ratios on the flow.  For the solely temperature driven case, she 

used both step-wise, linear, and non-monatonic temperature gradients on the walls.  

While the difference between the step-wise and linear was negligible in terms of 

overall pressure difference, there was an expected temperature jump on the step-

wise interface.  Her work presented another preliminary study of thermal 

transpiration, however, the mass flux results presented were for a single Knudsen 

value of 0.2.  Her equivalent 2D number flux was 6.8E19 molecules/s.  
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Papadoupoulos [205] and Masters [170] both looked at thermal driven flows, 

however, their results are for enclosures and couette systems only and do not deal 

with flow through channels.  This current work presents a DSMC analysis of the 

mass flux and pressure ratios resulting from thermal transpiration in short 

microchannels at a wide range of Knudsen numbers. 

5.3 DSMC Procedure 

There have been several new modifications [202, 162] and techniques developed 

recently in the DSMC method, however the basic principle remains the same.  Our 

simulations used Bird’s technique and it was his expertise and advice that enabled 

us to obtain the results shown below.  Now, Direct Simulation Monte Carlo 

(DSMC) Technique involves four main steps: 

1. Motion of the particles 

2. Indexing and cross-referencing particles 

3. Simulating collisions 

4. Sampling macroscopic characteristics of the flow 

The flow field is divided into small cells similar to a finite-volume method of 

analysis.  The cell size should be on the order of 1/3 the mean free path and the time 

step is about half that of the mean collision time.  The analysis involves a simulation 

of particle motion rather than mimicking the real motion. 

 

The first step is to move the particles.  During this step there will be interactions 

with the boundary so boundary conditions must be known which include 

accommodation coefficients.  At this time it is necessary to include any outside 
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forces and other physical phenomena included the analysis.  The second step is the 

key step in the DSMC method.  Molecules have moved since the last position so 

these individual positions must be indexed.  Since the number of particles is 

extremely high, it is important to efficiently record the motion of particles into and 

out of each individual cell in the flow field. 

 

The third step is to simulate the particle collisions using a probabilistic method.  

This is typically a collision model called the no-time-counter technique which 

calculates collision rates within the cells and collision pairs within subcells.  This 

method improves accuracy by ensuring the collisions occur between cell neighbors.  

The fourth step is to calculate the macroscopic properties of the flow at each cell 

center.  Steady flow conditions can be time and space averaged and unsteady flow 

characteristics can be obtained by ensemble averaging independent calculations. 

 

There are a few limitations and errors associated with the DSMC method: 

1. Finite Cell Size:  The size of the cell should be around 1/3 that of the mean 

free path.  If the cell is larger then there develops unusually high viscosity in 

the analysis due to undeveloped diffusion parameters.  If the cell size is too 

small then many of the cells will not have particles in them and the statistical 

results will be skewed. 

2. Finite Time Step: The time step must be sufficiently small to assure particles 

do not go through more than one cell at each step, otherwise, collisions 

could be missed. 
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3. Ratio of simulated particles to the Real Molecules:  Typically each particle 

represents 1014 to 1018 molecules.  This can be too high if there are any sort 

of complicated dynamics.  If the ratio of simulated particles becomes too 

high, then the statistical scatter of the solution is increased. 

4. Boundary Condition Treatment:  The inflow and outflow boundary 

conditions are especially important.  Typically the number density, 

temperature and average velocity should be provided at both the inlet and the 

outlet.  This will significantly reduce the undesired numerical boundary 

layers at these regions.  Also, for high Knudsen numbers, it is important to 

determine the influence a body in the flow has with relation to particles in 

the inlet or outlet. 

5.4 A comparison of Methods 

There has been much discussion over the best method to analyze gas flows in 

microchannels especially gases that are dilute.  Proponents of Navier-Stokes (NS) 

[5, 34, 68, 218, 271, 278], Molecular Dynamics (MD), the Boltzmann Equation 

(BE) solutions (i.e. BGK, S-Model, etc.) and Direct Simulation Monte Carlo 

(DSMC) tend to champion their method while outlining in detail the short-comings 

of opponent methods.  It has become apparent to the author that there is not a single 

method for all gas dynamic solutions.  There is therefore not a need to rigorously 

align oneself to a single method but to understand each method and apply it to the 

application which suits it best.  Since the focus of this work concerns DSMC, we 

will begin with an analysis of this method and explain why it is probably the best 

method to characterize thermal transpiration in microchannels. 
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As mentioned above, DSMC traces and calculates the motion of hundreds of 

thousands of particles to determine the macroscopic quantities of the gas.  While 

similar to MD, it is different in that a single particle represents many molecules 

instead of the one-to-one relationship in MD [46, 47, 26, 6].  Since MD is based on 

classical mechanics and Newtonian physics it is valid for all flow regimes, however 

it can become impractical for many flows due to the number of simulated 

molecules.  DSMC, on the other hand, brings a reduction in the total number of 

particles and reduces the computational time, however, it can still be 

computationally intensive compared to some methods and the particle-to-molecule 

ratio introduces a statistical scatter.   

 

For dilute flows, the Boltzmann equation is often a good options since it is based on 

a physical interpretation of a real gas and can be solved with great speed.  The 

problem lies in the nonlinear collision integral which is difficult to solve for all but 

the simplest problems.  The way to solve the Boltzmann equation then is to linearize 

or modify the collision integral.  The most common approach is to apply the 

Bhatnagar-Gross-Krook modification, which is based on an expansion of  1/Kn.  

The BGK equation is thus most accurate for problems in which perturbations are 

small and boundary conditions are prescribed in terms of equilibrium distributions.  

One drawback with the BGK method is it doesn’t represent highly non-linear 

problems and it doesn’t accurately represent flows with both viscous and thermal 

forces.  This results in a predicted Prandtl number of 1, rather than a value close to 
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2/3 appropriate for a monoatomic gas.  It is thus important to take great care when 

calculating flows involving heat transfer as in the case of thermal transpiration.   

The S-model modification to the BE collision integral seems to have fixed the 

thermal/viscous problem however it is still too rigorous of a calculation to solve the 

integral for anything other than simple geometries.  

 

The linearized Boltzmann equation is often used when the flow is somewhere 

between the free molecular and slip regime.  In the slip regime the Knudsen layer is 

limited to the region of the wall typically within the distance of a mean free path.  

While the Navier-Stokes equation models the bulk flow away from the walls the 

model breaks down in the “slip” layer [97, 295].  Thus, the solution is often derived 

using a dual-solution method where a Navier-Stokes technique is used in 

conjunction with a kinetic boundary layer “correction”.  In this case the solution can 

be obtained using asymptotic approaches for the linearized BE.  It is important to 

note that the solution leads to an “effective” boundary condition [24, 241] that 

opponents to the NS method for this regime call a “correction factor” [4]. 

 

Now, several sources have determined the criterion for failure of the continuum 

regime to be Kn>0.05.  Thus, as the gas becomes more dilute and moves from the 

slip regime to the transition/free molecular regimes, the Navier–Stokes equations 

break down even more since there are more manifestations of temperature jump and 

velocity-slip.  The reason for this is that the constitutive equations that relate the 

shear stress and heat transfer to other variables break down.  More specifically, the 
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linear transport terms for mass, diffusion, viscosity, and thermal conductivity in the 

partial differential equations are no longer valid.  Thus, the flow of a dilute gas 

require a kinetic-theory description/method which points to DSMC as one of the 

most likely candidates.  

 

DSMC is widely used when macroscopic gradients can no longer be considered 

small in comparison to the mean free path.  The first advantage of DSMC is it 

brings a physical model of the gas itself which lacks any numerical instabilities that 

occur in other numerical solutions of a mathematical models.  Second, it also has a 

simple enough algorithm which allows for straightforward incorporation of higher-

order physical models and for application to complex geometries.  While it avoids 

the difficulties involved with the collision integral in the BE, it has been proven to 

be equivalent to solving the Boltzmann equation for a monatomic gas undergoing 

binary collisions (since this is the limit of the BE) [190].  Opponents of DSMC 

identify some concerns with statistical scatter, random walks, and other types of 

errors unique to this method so these are now discussed in greater detail.   

 

5.5 Errors in DSMC 

Because of the stochastic nature of DSMC, there are statistical errors that make the 

method less attractive. These errors depend on the selection of numerical parameters 

such as the time step, cell size, number of samples and the total number of simulated 

particles.   Both the cell size and time step [87] should be suitably chosen so 

individual particles do not pass completely through a cell in a time step so as to miss 
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a possible collision with another particle.  Care should also be taken to avoid 

repeated collisions within a cell since studies have shown that the fraction (>20%) 

of repeated collisions is a reliable indicator of deviation of simulation [212].  Bird 

introduced the ratio between the mean collision separation (mcs) and the mean free 

path (mfp) as the key parameter to determine the quality of a simulation which in 

turn stipulates the time step and cell size.  As long as mcs/mfp << 1 the calculation 

should be accurate.  This ratio can be reduced by adding more simulated molecules 

assuming cells are small enough to maintain the “nearest-neighbor” collision.  

Another consideration to the cell size is with regard to sampling.  If macroscopic 

properties are sampled for every cell the database becomes cumbersome.  For most 

applications the sampling resolution doesn’t need to be this fine so separate 

“Sampling” and “Collision” cells are used conjunctively and are completely 

independent of each other. 

 

While this is an advantage of DSMC, care must be taken because a particle is often 

sampled several times with the same property in one cell before it collides with 

another and changes its properties.  The collision rate thus can be one measure of 

the statistical error in the simulation.  However, the collision rate can vary greatly in 

a flow field, so it is more difficult to analyze the statistical error.  This is also 

complicated by the fact that statistical errors also depend on the models employed 

for intermolecular interaction. Chen [43] reported that the errors are the smallest for 

hard sphere interaction, since this model produces the highest collision rate.  This 
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error is altogether eliminated in collisionless flows where the only error is due to the 

number of molecules used for averaging. 

 

To find a solution for the DSMC method, the macroparameters of a flow are 

obtained by averaging particle properties over a certain number of time steps.  The 

source of the statistical errors is the process of taking a sample average in a finite 

volume.  Since they represent different moments of the distribution function, it is 

expected that the density (the zeroth moment), Temperature and Pressure (second-

order moments), and other parameters will show different forms of fluctuation and 

errors.  Still, the errors have an asymptotic behavior so that as the contribution of 

each cell is accumulated and averaged over time the correct solution should be 

achieved as the sample size goes to infinity (which some have termed 

“convergence”).   

 

One example of this error has been well documented in analysis of low-speed flows 

[86, 98, 265, 69].  From above, we know the velocity can be divided into two 

components, the peculiar velocity and the bulk velocity.  It is entirely possible that 

the error in the peculiar velocity of a flow could be greater than the velocity of the 

bulk flow even to many orders of magnitude.  This signal-to-noise ratio would be 

much less than 1 which is unacceptable.  This error is inversely proportional to the 

sample size, and can be reduced by increasing the sample size by either increasing 

the number of particles in the computational domain or increasing the number of 

time steps used in the sample.  If we look at a low-velocity flow with a high number 
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density it would take an enormous number of timesteps for a particle to make one 

complete pass through the entire computational domain so the only course of action 

would be to increase the total number of particles. 

 

This leads to a discussion of the number of particles used in a simulation or more 

specifically, the particle-to-molecule (ptm) ratio.  The statistical scatter from the 

ptm ratio is assumed to follow the Poisson distribution with a  standard deviation on 

the order of the inverse square root of the sample.  The advantage of using DSMC 

with microflows is that even with dense flows, the size scales of the channels are 

typically such that the ptm ratio approaches 1.  In this setting, the scatter and errors 

in other simulation techniques are numerical, however with particle based methods 

(like DSMC) ,Garcia [85] proved it is a physical phenomenon.  Fluctuations in the 

simulation proved to be an accurate model of real fluctuations in the actual gas.  

Because of this, we see that in regard to thermal transpiration in microchannels, 

DSMC goes beyond the capability of the NS and the BE. 
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Figure 6-1: Channel Layout 

 

Figure 6-1 shows the geometry used for all of the DSMC simulation studies.  We 

use a modified form of Bird’s DS2V program which is for use on a personal 

computer.  All simulations were run using a processor ranging from a 3.1GHz dual 

core to a 4.0GHz quad core where each simulation took between 24 hours to 

approximately 7 days to achieve sufficient samples.  The channel size is 500nm long 

and 100nm wide.  The channel is divided into sampling and collision cells so there 

are approximately 8 particles per collision cell and 8-15 particles per sampling cell. 

 

Symmetry was used to reduce the computational time of the model so the centerline 

of the channel is used as the axis of symmetry.  At the cold (left) end of the channel 

is a reservoir of molecules at temperature T1 and another reservoir at the hot end at 

temperature T2 .  Diffuse reflection on the wall is used for the surface interaction 

calculations and the wall has a continuous gradient along the channel wall from T1 

to T2.   
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The molecular velocity distributions are based on Argon using the VHS collision 

model.  The values for reference diameter (4.17E-10m) and molecular mass (6.65E-

26kg) were taken from Bird (Bird 1994).   

 

The first set of simulations performed concerned closed system cases.  The walls in 

each reservoir were kept at constant temperature and the temperature gradient 

boundary condition along the channel walls is incremented in 1% steps.  The 

Knudsen number is entered as an initial condition for the entire flow by iterating on 

the number density. 

 

A closer look shows that the Knudsen number is a ratio of the channel width to the 

mean free path of the gas. 

d
Kn λ

=  (6-1) 

 

Thus, only one of these parameters needs to be changed in order to vary the flow 

conditions.  For simulation purposes, the former value is more difficult to iterate 

because it requires a new geometry and mesh for each simulation.  It is important to 

use a sufficient number of divisions within the geometry since the collision and 

samplings cells are derived from the divisions.  By varying the mean free path, only 

the initial number density needs to be changed which is a much simpler process 

upon which to iterate. 
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The second set of simulations involve an open system with constant pressure 

boundaries at both ends.  An imaginary boundary line of constant x is placed at the 

middle of the channel.  This line divides the flowfield into two distinct sections each 

with their own initial conditions.  The molecular flux in the channel is determined 

by calculating the net molecular flux across this boundary.  The reservoir walls at 

the extreme ends of the x-axis are kept at a constant pressure which maintains the 

initial pressure value.  At these walls new molecules are introduced/removed at the 

same rate as those crossing the middle discontinuity.  The remaining reservoir walls 

are kept at constant temperature so neither a temperature nor pressure gradient in the 

reservoir can effect the flow in the channel. 

 

As with the closed system, the Knudsen number is varied using the number density 

initial condition.  In the open system, however, the average number density of the 

two sides of the channel is kept constant.  This allows the number density on each 

side of the boundary to be varied creating a set of pressure ratios and pressure 

differences for a single Knudsen number. 

 

The output from the DSMC simulation is in the form ASCII delimited text files.  

The text files consist of either macroscopic state data for every sampling cell in the 

flowfield or the surface properties of each surface cell.  Surface plots of the 

flowfield data and linear property profiles (i.e. pressure, number density, x-velocity, 

etc.) taken from two points in the flow can also be created and exported.  With the 

exception of the flowfield plots, the data was taken from the surface and flowfield 
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output files.  Scripts were used to compile the data from multiple simulations and 

plot the results. 

6.1 Results 

6.1.1 Closed System 

The results from the closed system show a nice flowfield translation temperature 

distribution (Figure 6-2).  The temperature divisions are uniform across the width of 

the channel.  If we look at how the pressure ratios vary with Knudsen number 

(Figure 6-3) the  

 

Figure 6-2: Closed Flowfield Temperature Distribution (T=300K thru 
400K) 

 

lower data points represent a temperature gradient from 300K to 400K and the 

upper ones 300K to 600K.  As the Knudsen number approaches a continuum 

(denser) flow the  

pressure ratio approaches unity where there is no change in pressure across the 

channel.  It is this area where molecules are sufficient in number to transfer energy  

through the channel via inter-molecular interactions.  As the rarefaction increases 
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(Kn approaches infinity) the pressure ratio approaches an asymptote equal to the 

square root of the 

 

Figure 6-3: DSMC Simulation: Closed System Pressure Ratio for 
Various Knudsen Numbers 

temperature ratio (represented by the horizontal lines). 

2
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T
T

P
P

=  (6-2) 

This equation is commonly used to quantitatively describe the pressure increase 

when referring to thermal creep and was first derived by Knudsen.  This maximum 

value has some inherent conditions.  First, the rarefaction must be such that the 

mean free path is greater than 10 times the characteristic width of the channel and 

second the flowfield must be closed.  As was mentioned above, the greater the 

rarefaction, the greater the thermomolecular pressure.  Regarding the latter criteria, 
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any outside influence causing a change in an intrinsic property changes the pressure 

ratio.  Should the flowfield be opened, the pressure ratio would decrease due to the 

transmission of molecules through the channel. 

 

While the pressure ratio is the most common way describe the thermomolecular 

pressure change, a more useful view is to look at the pressure difference (Figure 

6-4).  The log-log plot shows a plateau in the denser regions and a continual drop as 

the rarefaction increases.  In this view, both temperature profiles run in parallel with 

the same slope in the regions of higher Knudsen number. 

Figure 6-4: DSMC Simulation: Closed System Pressure Difference for 
Various Knudsen Numbers 
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6.1.2 Open System 

The second set of results deals with this open system of channels.  As mentioned 

above the reservoir boundaries were set as constant pressure boundaries which 

allows a transmission of the molecules.  For each Knudsen number 6-10 different 

pressure ratios were set as initial boundary conditions.  The temperature gradient 

was kept as a boundary condition along the length of the channel walls.  Each series 

of simulations produced a set  

  

Figure 6-5: DSMC Simulation: Pressure Distributions Along Channel 
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of pressure curves along the length of the channel (Figure 6-5).  While a larger 

number of simulations were run, only Kn=0.1, 1, 10, 100 are shown.  A closer look 

at the plot shows  

how each curve intersects at Pavg.  There is a little bit of translation of this intercept 

in the lower Knudsen number plot that corresponds to a slight shift due to the 

motion of the flow through the channel.  This does not result in a change in average 

Knudsen number, just a minor change in the location of the average pressure.  The 

stream pressures also contribute to the slight curve at the channels ends where the 

stream returns to the steady state of the reservoir.  We believe these are the first 

DSMC simulation results with both pressure and temperature differences between 

the two channels. 

 

Figure 6-6 and Figure 6-7 show the velocity profiles for the channels at a variety of 

pressure ratios between the two reservoirs.  The first shows the profile for a 

Knudsen number equal to 0.1 which is at the edge of the slip-flow and transition 

regimes.  The velocity profiles are well characterized although there is a greater 

scatter at the lower speed flows.  This is caused by the error described in section 5.5 

where the lower speed flows have a greater scatter due to the signal-to-noise ratio of 

the peculiar velocity compared to the bulk velocity.   There is also contribution of 

the scatter due to the high ratio of simulated particles to real molecules.  Compared 

to the free molecular regime, the number of molecules is increased by at least 2 

orders of magnitude. 
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Figure 6-6: DSMC Simulation Results: Velocity Profile for Kn=0.1 

 

Figure 6-6 shows the velocity profile for a Knudsen number of 10 where the gas is 

more dilute.  Notice the increased scatter compared to the previous profile.  The 

rarefaction of the gas contributed to this scatter since there are fewer molecular 

interactions but there is also the contribution of the peculiar velocity.  The way to 

increase the accuracy of this result is to 1) increase the number of molecules to 

reduce the particle-to-molecule ratio and 2) run the simulation longer to collect 

more samples. 
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Data for the net flux of molecules crossing the middle boundary was also collected 

for each of these simulations.  These data points were plotted versus the pressure 

difference 

 

Figure 6-7: DSMC Simulation Results: Velocity Profile for Kn=10 

 

across the channel (Figure 6-8).  The pressure difference was chosen rather than the 

pressure ratio because the response of the molecular flux to the pressure difference 

could be determined using a simple linear regression. 

 

It is important to note that the line going through these plots is linear and does not 

go through the origin.  The origin denotes a zero pressure differential and zero flux.  

The offset in these plots signifies the contribution of the temperature gradient to the 
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flow.  It should also be noted that the offset increases with Knudsen number which 

supports the conclusions made with regard to the closed system. 

 

 

The two key points on this plot are the intersections with each axis (x and y).  The 

y-axis  

  

Figure 6-8: DSMC Simulation Results: Number Flux vs. Pressure 

Differential 
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is the molecular flux and the x-axis is the pressure differential.  The y-intercept is 

the thermal molecular flux contribution when there is no pressure difference.  This 

is the  

maximum flux contribution from the thermal gradient that can be achieved.  Any 

flux greater than this value has a pressure contribution.  The intersection with the x-

axis is the pressure differential for zero flux.  This value would correspond to the 

pressure difference in a closed system.  Now, the y-intercepts from the plots in 

Figure 6-8 are plotted for all Knudsen numbers in Figure 6-9. 

 

Figure 6-9 shows the thermomolecular flux contributions when there is no pressure 

difference across the channel where each data point is representative of several 

simulation runs.  All curves have the same channel width, however, they each have 

a different aspect ratio (2.5, 5.0 and 10.0).  The maximum flux occurs around the 

transition between slip flow and the transition regime.  As the rarefaction increases 

the number flux decreases which is expected since the number of total molecules in 

the system also decreases.  Note the difference between the aspect ratios.  The 

shorter channel (aspect ratio = 2.5) has a marked increase in flux.  This can be 

attributed to a lower chance of  molecular interactions and lower occurrence of 

molecules reflecting off the channel walls and back from the direction they came.  

While an aspect ratio of 5:1 is considered a short channel, as the channel length 

decreases the flux value approaches the effusion case where the pore has a zero 

length (assuming the flow is in the free molecular regime).  The 10:1 aspect ratio is 

considered the transition from short channels to long channels.  Under this aspect 
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ratio, end effects become more pronounced as the channel shortens.  DSMC 

provides a great tool to include these effects to the flow without having to provide a 

special case for the inlet and outlet. 

 

The thermal creep phenomenon has been described as the result of a “shear force” 

of molecules acting on the surface due to a change in temperature.  Loyalka[157] 

reported that the tangential momentum accommodation coefficient (αp) had no 

effect on the flow and the energy accommodation coefficient (αE)had a slight effect 

on the flow.  Our results show a slight increase in flow with a change in αp while 

keeping αE=1.  Figure 6-10 shows the effect of slight (α=0.8) specular 

accommodation in a channel.  In terms of momentum, full specular reflection should 

acts more like the effusion model since the walls will  
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Figure 6-9: DSMC Simulation: Number Flux with Zero Pressure Gradient 

 

create a change in tangential velocity to the molecule.  Under the conditions below 

the majority of walls impacts result in diffuse reflection; the rest are specularly 

reflected which are the collisions contributing to the increase in flux.  These results 

show the effect of the walls declines in the denser regimes. 

 

Another plot of interest is the pressure difference when there is no number flux as 

shown in Figure 6-11.  This would occur in a closed system where molecules could 

not enter or exit.  Once again the maximum is near the boundary between the 
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transition and slip-flow regimes although it is slightly more rarefied.  This graph is 

important because it shows the region where the highest pressure would occur.   

 

Figure 6-10: DSMC Simulation: Number Flux with Zero Pressure Gradient 
and Different Accommodation Coefficients 

 

To put our results into a context with existing results in literature we have plotted 

(Figure 6-13) the reduced mass flux values with BGK and S-model results from 

Loyalka [150] and Sharipov [232] and Sone [187].  In order to compare the results, 

the number flux results from the DSMC simulations were multiplied times the mass 

of a molecule to get the mass flux.  The average values for pressure were 

determined by using the Knudsen  
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number to find the mean free path.  The mean free path relates to the number 

density   

Figure 6-11: Pressure Difference with Zero Number Flux 

which has a direct correlation to the pressure using Boyle’s law.  We took values for 

average pressure and temperature, width, molecular mass and length and substituted 

them into the following dimensionless equation [232, 187]: 
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For a purely temperature induced flow the differential pressure component of the 

equation is equal to zero so only the terms on the right side of the brackets remain.  

Now, Solving for QT gives: 
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This gives the reduced thermomolecular mass flux, QT, which is independent of 

channel dimensions, pressure difference and temperature difference.  In (6-4), P0 is 

the average pressure, w is the width of the channel, A is the cross sectional area of 

the channel, k is Boltzmann’s constant, m is the reference mass of the gas molecule, 

T0 is the average temperature in the channel, QP is the pressure induced 

dimensionless mass flux and QT is the thermally induced dimensionless mass flux.  

The area value we use for our conversion is the channel width since the in-plane 

channel depth is unity.   My values are shown in Table 6-1. 
 

Kn 0.1 0.5 1 5 10 50 100 

QT .087 .236 .312 .456 .504 .546 .547 

Table 6-1: Dimensionless 2D DSMC QT Values 

The Both authors presented their results in the form of tabulated dimensionless mass 

flux values (Table 6-2 and Table 6-3).  Loyalka’s values were calculated using the 

BGK (Bhatnagar, Gross and Krook) solution to the Boltzmann equation and diffuse 

scattering along the walls (i.e. α=1).  Sharipov used an improvement on the BGK 

model called the S-model solution.  The S-model corrects the problems of the BGK 

133 



solution which cannot correctly calculate the viscosity and heat conductivity 

simultaneously.   

 

The results shown in Figure 6-12 show a closer correlation to Sharipov than Sone 

and Loyalka.  The discrepancy with Sharipov could be due to the decrease in 

particle-to-molecule ratio or the lack of sufficient samples.   

 

Figure 6-12: DSMC Simulation results: Reduced Thermo-molecular Flux 
Contribution (QT)  

Loyalka’s and Sone’s results were for long tubes where end effects are negligible 

compared to the channel.  These two curves were added because other authors have 

used them to validate simulation data through short channels.  Based on my results, 

the other models do not predict the short channel flow sufficiently and only 
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correlate well to the intended model.  Sharipov’s results, however, are for short 

channels with fully diffuse reflection.  Both the S-model and DSMC show a 

comparable response, the difference  

Kn QT Kn QT Kn QT

0.0564 0.0363 1.128 0.3217 28.209 0.663 

0.0846 0.053 2.257 0.4171 33.851 0.6729 

0.1125 0.0686 5.642 0.5294 45.135 0.6867 

0.2257 0.1222 11.284 0.5975 56.419 0.696 

0.5642 0.2272 22.568 0.6495 112.84 0.7179 

 
Table 6-2: Dimensionless QT values from Loyalka’s BGK solution 

possibly being due to end effects of the channel flow.  In some cases the differences 

arise based on the location where the Knudsen number is derived. 
 

Kn QT Kn QT

.44 .217 8.86 .452

.886 .285 22.12 .48 

2.22 .367 44.3 .491

4.43 .416   

Table 6-3: Dimensionless QT values from Sharipov’s S-Model
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At this point it is important to note one area which initially gave erroneous results.  

The curves from the initial set of DSMC results presented Figure 6-12 represent two 

sets of simulation runs.  The first set doesn’t compare well at all with the results 

shown above. 

 

One obvious discrepancy is the disparity in the slopes of the curves which suggests 

a problem with the DSMC flowfield.   Figure 6-14 shows the flowfield for the 

simulation at two different Knudsen numbers and explains the reason for the 

disparity.   In both cases the temperature gradient along the channel walls goes from 

300K to 400K. 

Figure 6-13: DSMC Simulation results: Error in Reduced Thermo-
molecular Flux Contribution (QT)  
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Figure 6-14a shows the flow field for a Knudsen number of 0.2 with flow moving 

from left to right.  The temperature gradient in the fluid is nearly a full 100K 

through  the channel for this case.  This is in contrast to Figure 6-14b which shows a 

lower gas temperature gradient for a Knudsen number equal to 50.  The gradient in 

this case is closer to 50K which would explain the lower flux and pressure ratio 

values for the more rarefied flows.   

Figure 6-14: Flowfield Temperature a) Kn=50; b) Kn=0.2  

 

The difference between the two is caused by an insufficient supply of molecules 

from the reservoir at the correct temperature.  In Bird’s DSMC program, the number 

of new molecules entering the stream is equal to the number of molecules crossing 

the imaginary boundary line in the channel.  The temperature of the molecules 

entering the flowfield is equal to the initial flowfield temperature which is the 

average temperature.  Where the pressure is higher (and thus more molecules), there 

is sufficient inter-molecular interaction to carry the surface temperature through the 

entire reservoir.  In the more rarefied cases, the molecules don’t interact enough to 

maintain the reservoir temperature.  
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While the dense case maintains a temperature gradient close to what is desired, it is 

unclear what affect this will have on the flux. 

 

To prove this explanation, QT values of the DSMC data were calculated using 

equation (6-3) along with the geometric and state data.  The flux values came from 

the DSMC results shown in Figure 6-9, however, rather than using the temperature 

gradient from the wall (100K), the flowfield gradient was uses.  These values were 

extracted from the channel centerline for each simulation and listed in Table 6-4.  

When these results 

Kn ∆T Kn ∆T 

0.09 90 1 70 

0.1 90 5 50 

0.2 90 10 45 

0.5 80 50 38 

0.9 70 100 36 

Table 6-4: Actual Temperature Values for Flux Experiments 

 

 are plotted with Loyalka’s and Sharipov’s dimensionless fluxes, the results (Figure 

6-13) are comparable and show the validity of the DSMC solution. 

 

Since we desire consistent flux values for a 100K temperature gradient we need to 

ensure the correct gas temperature at the channel inlet and outlet.  The solution to 
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this problem was to increase the size of the reservoir and the distance between the 

inlet boundary and entrance to the channel.  A flowfield image demonstrating this 

change for Kn= 50 is shown in Figure 6-15.  The flow has reached a fully developed 

state and the gas maintains the full temperature gradient.  For this case, the reservoir 

size was increased and the top surface was brought closer to the symmetry line so 

the walls would have greater influence on the flow temperature.  Finally, a boundary 

was added to the top of the reservoir with a specified temperature so the only 

molecules entering the stream are from the sides boundaries.  The results of this 

modification gave the correct values shown in the plots above and are the basis of 

all the design calculations. 

 

Figure 6-15: DSMC Simulation: Increased reservoir simulation for Kn=50. 
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CCHHAAPPTTEERR  77  DDEESSIIGGNN  AAPPPPLLIICCAATTIIOONN  
Knudsen pump designers can maximize the pressure difference by changing the 

characteristic width of their channels (pores) to achieve a transition regime Knudsen 

number based on the operating pressure for the pump.  Designers more interested in 

maximizing the flux should use Figure 6-9.  These results, however, could be 

somewhat deceiving since those results are for a single channel whereas most 

designs use an array of channels where the density of channels per unit area 

becomes important.  Below are some design examples where the simulation results 

are applied to design. 

7.1 Design #1 

Find: Maximum number flux for a 1cm2 array of pores with a 5:1 aspect ratio 

 

Figure 7-1: Pore packing arrangement

 

A unit section  of the pore array in the arrangement shown in Figure 7-1 would 

contain 2 pores and comprises an area: 

2
pore 18A r=  (7-1) 

Where r is the radius of the pore and each unit section contains two pores.  The total 

number of pores in a 1cm2 area is found using: 
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The number flux for all Knudsen numbers is found in Figure 6-9.  These are 

simulation results for a 2-D model with a unit width.  To determine the 3-D flux 

consider the following.  The reduced mass flux values from my simulations were 

determined using (6-4).  Muntz used that equation to calculate values for flow 

through a circular tube whereas Sharipov used the same equation to calculate the 

reduced flowrate in a 2D channel.  We know the QT values carry the cross-sectional 

shape in them, however, for the following the examples we won’t specifying the 

particular form for the capillary cross sections when calculating the flowrates [187].  

Now, our area value was the channel width times unity.  If we want to convert our 

dimensionless data to 3 dimensions, we use the three dimensional pore area instead 

of our 2-D value.  The ratio between the 2D cross-sectional “area” and the 3D area 

is: 

4
2

2

2

3 w
w

w

A
A

D

D π
π

=
⎟
⎠
⎞

⎜
⎝
⎛

=  (7-3) 

Therefore, the number flux for a single pore is: 

⎟
⎠
⎞

⎜
⎝
⎛= − 42pore

wNN D
π&&  (7-4) 

This result is shown in Figure 7-2. 

 

Next, the total array flux is found by multiplying the flux results times the total 

number of pores. 
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poresporeNNN && =TOTAL  (7-5) 

This plot is shown in Figure 7-4.  The maximum flux occurs in the region of higher  

Knudsen number.   Eventhough the maximum flux through a single pore occurs 

when the gas is in the transition regime, the higher density of pores in the free 

molecular regime dominates and allows for more total flow.  It becomes more 

apparent that as the ability to fabricate smaller and smaller pores increases that the 

total volume of flow can grow with it.  As with most pumping mechanisms there is 

an inherent inverse relationship between pressure drop and flowrate.  Whether the 

desired goal is to achieve maximum flow or  

Figure 7-2: Single Pore Number Flux 
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maximum pressure drop, it is important to develop very thin membranes with low 

conductivity to maximize the thermomolecular performance. 

 

7.2 Design #2 

Find: The pressure ratio for closed system with channel width = 100nm and 

atmospheric pressure.  The temperature gradient is 300K (300K to 400K). 

 

The mean free path is found using:  

22Pd
Tkb

π
λ =  (7-6) 

Figure 7-3 shows the relationship between mean free path and pressure.  From this 

plot 

we can determine the mean free path at atmospheric pressure (and an average 

temperature of 350K) is approximately 82nm.  Using (6-1) we know the Knudsen 

number is then equal to 0.82.  To determine the pressure ratio across the channel we 

use Figure 6-11 which gives a 600 Pa (~0.006atm) drop in pressure from the hot 

side to the cold side.  While these results are from an open system, the data shown is 

for zero number flux which is the same condition as if the system were closed.  The 

pressure ratio is then determined using Figure 6-3 which gives P2/P1≈1.14. 
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Figure 7-3: Mean Free Path vs. Pressure 

7.3 Design #3 

Find: The size of pore needed to achieve an arrayed flux = 1.5x1019 molecules/s at 

10-3 atm and a 100K temperature difference for a 5.0 aspect ratio.  The array size is 

1mm2. 

 

First, the mean free path of an argon molecule at 10-3 atmospheres is found using 

Figure 7-3: λ=8.2μm.  Next, the Knudsen number for the given flux are determined 

using Figure 7-4: Kn = 0.63.  These values are now divided into the mean free path 

to give the pore sizes: d = 13.02μm 
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7.4 Design #4 

Find: The pressure where a 100K temperature gradient will create a volumetric 

flowrate of 0.12sccm through a 1mm^2 array of 100nm pores. 

Figure 7-4: Total Molecular Flux for an Array of Holes 

 

The volumetric flowrate can be found by multiplying the arrayed number flux 

(Figure 7-4) times the mass of an argon molecule and dividing this result by the 

density.  The density values we will use will be the average density values in the 

channel (as a function of Knudsen number).  A plot showing the volumetric flowrate 

is shown in Figure 7-5. 
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Figure 7-5: Volumetric Flowrate for an Array of Pores 

 The desired flowrate corresponds to a Knudsen number of 0.5 so the mean free path 

must be 50nm.  Once again we use Figure 7-3 to determine our needed pressure: 

2atm. 

 

We now compare the performance results from our DSMC simulations to the gas 

pumps listed in section 2.5.  Figure 7-6 shows the maximum volumetric flowrate 

and pressure difference results from our simulations as functions of Knudsen 

number.  Data for both a 1cm2 area and a 1mm2 area are shown to highlight the 

potential performance of a  
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Knudsen pump.  It should be emphasized here that the performance is based on the 

pore density described in section 7.1.  The increased flowrate performance is highly 

dependant on the density of pores, length of the channels, accommodation 

coefficient and temperature gradient.  We understand there are numerous issues 

regarding pore fabrication and power consumption, however these problems are out 

of the scope of this work.  Our goal was simulate the thermal transpiration effect for 

a subset of channel and flowfield characteristics and present them in a meaningful 

structure for the designer. 

Figure 7-6: Performance of DSMC Simulated Pump 
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CCHHAAPPTTEERR  88  CCOONNCCLLUUSSIIOONN  
In this dissertation, we have presented the thermal transpiration results of over 300 

Direct Simulation Monte Carlo simulations which represents over 10000 hours of 

computational time.  For each flux data point, 6-10 simulations were run under 

various pressure ratios.  We have introduced the first set of DSMC results for gas 

flow with both thermal and multiple pressure differences along the channel at many 

Knudsen numbers within the transition (0.1 < Kn < 10) and free molecular regime 

(Kn > 10).  From these results we were able to derive the velocity profiles for a wide 

range of flows as well as derive the maximum flux, pressure difference, and 

pressure ratio values throughout that same range of Knudsen numbers.  We also 

presented similar data for varying channel lengths and accommodation coefficients. 

 

We have also included simulation data of closed system thermal transpiration with 

only temperature gradients.  From these simulations we were able to characterize 

the maximum pressure drop achievable using the thermomolecular pumping effect 

at linear temperature gradients of 100K and 400K.  We presented the data in terms 

of both pressure differences and pressure ratios and show how the pressure ratios 

approach Knudsen’s P-T ratio as the gas becomes more rarefied.  Through design 

examples we have shown the performance of an 1cm2 array of holes at a 100K 

temperature difference could produce a maximum pressure difference of 7 kPa and a 

maximum flowrate of over 1×108 sccm.  Based on both the open and closed data 

included in this dissertation, we believe we have compiled the most comprehensive 

set of DSMC simulations of thermal transpiration found in literature to date. 
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Of key importance to this problem is the underlying kinetic theory and DSMC 

method.  First, we outlined some of the basic concepts of kinetic theory and used 

them to derive the effusion equation.  The complexity of surface impacts was then 

added to the problem which clarified the difficulty in modeling thermal transpiration 

in anything outside of the Knudsen regime.  Second we presented various methods 

used to model thermal transpiration including analytical, numerical, and simulated 

solutions.  We included a derivation of the Boltmann equation in this section and 

outlined how to extract macroscopic properties from the velocity distribution.  

Third, we illustrated the DSMC procedure and highlighted the features that made 

the technique the most advantageous tool for this type of problem. 

 

To provide a clearer understanding of the problem, we have also included an 

historical review describing the works that led to Knudsen’s discovery of 

thermomolecular pressure.  This includes an in depth examination of the Knudsen 

pump and the attempts to utilize this unique phenomenon over the last century.  As 

part of the assessment we also present an overview of current micropump design 

and performance and highlight what role the Knudsen pump can fill in this context. 

 

The potential applications of the Knudsen pump are numerous, however, the author 

suggests that the most reasonable situation would be where a thermal gradient 

already exists (i.e. electronic cooling).  The most likely candidate would seem to be 

in a space application since the temperature extremes are great.  In this situation, the 
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pump would not only have zero moving parts but the heat is supplied by the 

environment (i.e. passive pump). 

150 



BBIIBBLLIIOOGGRRAAPPHHYY  
1. Accoto, D.; Carrozza, M.C.; Dario, P. “Modelling of Micropumps Using 

Unimorph Piezoelectric Actuator and Ball Valves.” J. Micromech. 
Microeng. 10 (2000): 277-281. 

2. Adamson, S.; O'Carroll, C.; McGilp, J.F. “The Angular Distribution of 
Thermal Molecular Beams Formed by Single Capillaries in the Molecular 
Flow Regime.” Vacuum, 38 (6) (1988): 463-467. 

3. Ahn, S. H., and Kim, Y. K. “Fabrication and Experiment of a Planar Micro 
Ion Drag Pump.” Sens. Actuators A, 70, (1998): 1–5. 

4. Aktas, O.; Aluru, N.R. “Application of a Parallel DSMC Technique to 
Predict Flow Characteristics in Microfluidic Filters.” J. of MEMS 10 (4) 
(2001): 538-549. 

5. Al-Ghoul, M.; Eu, B.C. “Generalized Hydrodynamics and Microflows.” 
Physical Review E 70, 016301 (2004): 1-16. 

6. Albo, S.E.; Broadbelt, L.J.; Snurr, R.Q. “Multiscale Modeling of Transport 
and Residence Times in Nanostructured Membranes.” AIChE Journal  52 
(11) (2006): 3679-3687. 

7. Alexander, F.J.; Garcia, A.L. “Direct Simulation Mote Carlo Method, The.” 
Computers in Physics 11 (6) (1997): 588-593. 

8. Alexeenko, A.A.; Gimelshein, S.F.; Muntz, E.P.; Ketsdever, A.D. “Kinetic 
Modeling of Temperature Driven Flows in Short Microchannels.” Proc. Intl. 
Conf. Microchannels and Minichannels, June 2005, Toronto, Canada : 483-
491. 

9. Annis, B.K. “Thermal Creep in Gases.” J. of Chemical Physics, Vol. 57, 
No. 7 (1972): 2898-2905. 

10. Annis, B.K.; Malinauskas, A.P. “Temperature Dependance of Rotational 
Collision Numbers from Thermal Transpiration.” J. of Chemical Physics, 
Vol. 54, No. 11 (1971): 4763-4768. 

11. Aoki, K.; Sone, Y.; Waniguchi, Y. “A Rarefied Gas Flow Induced by a 
Temperature Field: Numerical Analysis of the Flow Between Two Coaxial 
Elliptic Cylinders with Different Uniform Temperature.” Computers Math. 
Applic. Vol. 35, No. 1/2, (1998): 15-28. 

12. Arkilic, E.B.; Breuer, K.S.; Schmidt, M.A. “Mass Flow and Tangential 
Momentum Accomodation in Silicon Micromachined Channels.” J. Fluid 
Mech. 437 (2001): 29-43. 

151 



13. Arkilic, E.B.; Schmidt, M.A.; Breuer, K.S. “Gaseous Slip Flow in Long 
Microchannels.” J. MEMS. 6 (2) (1997):167-178. 

14. Arkilic. E.B. “Measurement of the Mass Flow and Tangential Momentum 
Accomodation Coefficient in Silicon Micromachined Channels.” Doctoral 
Dissertation, Massachusetts Institute of Technology (MIT), FDRL TR 97-1. 

15. Astle, AA ; Kim, HS ; Bernal, LP ; Najafi, K ; Washabaugh, PD.  
"Theoretical and Experimental Performance of a High Frequency Gas 
Micropump"  Sensors and Actuators A - Physical 134 (1) (2007): 245-256. 

16. Bahukudumbi, P.; Beskok, A. “A Phenomenological Lubrication Model for 
the Entire Knudsen Regime.” J. Micromech. Microeng. 13 (2003): 873-884. 

17. Bart, S. F., Tavrow, L. S., Mehregany, M., and Lang, J. H. “Microfabricated 
Electrohydrodynamic Pumps.” Sens. Actuators A, 21–23, :  193–197, 1990. 

18. Bassanini, P.; Cercignani, C.; Sernagiotto, F. “Flow of a Rarefied Gas in a 
Tube of Annular Section.” Physics of Fluids, 9 (6) (1966): 1174-1178. 

19. Beijerinck, H.C.W.; Stevens, M.P.J.M; Verster, N.F. “Monte-Carlo 
Calculation of Molecular Flow Through a Cylindrical Channel.” Physica 
83C (1976): 209-219. 

20. Benard, W.L.; Kahn, H.; Heuer, A.H.; Huff, M.A. “Thin-Film Shape-
Memory Alloy Actuated Micropumps.” J. of MEMS, Vol. 7, No. 2, June 
1998. 

21. Berg, J.M.; Anderson, R.; Anaya, M.; Lahlouh, B.; Holtz, M.; Dallas, T. “A 
Two-Stage Discrete Peristaltic Micropump.” Sensors and Actuators A 104 
(2003): 6-10. 

22. Berman, A.S. “Free Molecule Transmission Probabilities.” J. Appl. Phys. 
10 (1965) p.3356. 

23. Bernoulli, D. “Hydrodynamics (in Latin).” Section 10, p.200. 

24. Beskok, A.; Karniadakis, G.E. “A Model for Flows in Channels, Pipes, and 
Ducts at Micro and Nano Scales.” Microscale ThermoPhysical Engineering 
3 (1999): 43-77. 

25. Beylich, A.E. “Solving the Kinetic Equation for All Knusden Numbers.” 
Phys. of Fluids 12 (2) (2000): 444-465. 

26. Bhattacharya, D.K.; Lie, G.C. “Nonequilibrium Gas Flow in the Transition 
Regime: A Molecular-Dynamics Study.” Physical Review A, 43 (2) (1991): 
761-767. 

152 



27. Bird, G.A. “Forty Years of DSMC, and Now?.” AIP Conference 
Proceedings - Rarefied Gas Dynamics: 22nd International Symposium - 585 
(2001): 372-380. 

28. Bird, G.A. “Approach to Translational Equilibrium in a Rigid Sphere Gas.” 
Phys. of Fluids 6 (1963): 1518-1519. 

29. Bird, G.A.  Molecular Gas Dynamics and the Direct Simulation of Gas 
Flows, Oxford Engineering Science Series, vol. 42, The Clarendon Press 
Oxford University Press, New York, (1995). 

30. Bohm, S.; Olthuis, W.; Bergveld, P. “A Plastic Micropump Constructed 
with Conventional Techniques and Materials.” Sensors and Actuators 77 
(1999): 223-228. 

31. Bourouina, T.; Bosseboeuf, A.;  Grandchamp, Jean-Paul “Design and 
Simulation of an Electrostatic Micropump for Drug-Delivery Applications.” 
J. Micromech. Microeng. 7 (1997): 186-188. 

32. Boyle, R. “Robert Boyle and His Data.” J. College Sci. Teaching (May 
1992): 363-365. 

33. Branton, G.R.; Ryce, S.A. “A Kinetic Model of the Accomodation Pumping 
Phenomenon.” Can. J. Chem. 52 (1974): 2073-2076. 

34. Brenner, H. “Navier-Stokes Revisited.” Physica A 349 (2005): 60-132. 

35. Brown, G.P.; DiNardo, A.; Cheng, G.K.; Sherwood, T.K. “Flow of Gases in 
Pipes at Low Pressures.” J. Applied Phys. 17 (1946): 802-813. 

36. Bureau, A.J.; Laslett, J.; Keller, J.M. “Pumping Speed of a Circular 
Aperture in a Diaphragm Across a Circular Tube.” Rev. Scientific Instrum. 
23 (12) (1952): 683-686. 

37. Bustgens, B.; Bacher, W.; Menz, W.; Schomburg, W.K. “Micropump 
Manufactured By Thermoplastic Molding.” Conference: IEEE Micro 
Electro Mechanical Systems An Investigation of Micro Structures, Sensors, 
Actuators, Machines and Robotic Systems, 25-28 Jan. 1994, Oiso, Japan. 

38. Cabuz, C.; Cabuz, E.I.; Ohnstein, T.R.; Neus, J.; Maboudian, R. “Factors 
Enhancing the Reliability of Touch-Mode electrostatic Actuators.” Sensors 
and Actuators A-Physical. 79 (3) (2000): 245-250. 

39. Cabuz, C.; Herb, W.R.; Cabuz, E.I.; Son Thai Lu “The Dual Diaphragm 
Pump.” Proceedings: IEEE MEMS Workshop (2001): 519-522. 

153 



40. Carette, J.D.; Pandolfo, L.; Dube, D. “New Developments in the 
Calculation of the Molecular Flow Conductance of a Straight Cylinder.” J. 
Vac. Sci. Technol. A 1 (2) (1983): 143-146. 

41. Cercignani, C.; Sernagiotto, F. “Cylindrical Poiseuille Flow of a Rarefied 
Gas.” Physics of Fluids 9 (1) (1966): 40-44. 

42. Chen, C.C.; Chen, I.K.; Liu, T.P.; Sone, Y. “Thermal Transpiration for the 
Linearized Boltzmann Equation.” Communications on Pure and Applied 
Mathematics, Vol. LX, (2007): 0147–0163. 

43. Chen, G.; Boyd, I.D. “Statistical Error Analysis for the Direct Simulation 
Monte Carlo Technique.” J. of Comp. Phys. 126 (1996): 434-448. 

44. Cheng, H.K.; Emanuel, G. “Perspective on Hypersonic Equilibrium Flow.” 
AIAA Journal 33 (3) (1995): 385-400. 

45. Chuan-Hua Chen; Shulin Zeng; Mikkelsen, J.C., Jr.; Santiago, J.G. 
“Development of a Planar Elektrokinetic Micropump.” Stanford 
Microfluidics Laboratory, 2000. 

46. Cieplak, M.; Koplik, J.; Bavanar, J. “Applications of Statistical Mechanics 
in Subcontinuum Fluid Dynamics.” Physica A 274 (1999): 281-293. 

47. Cieplak, M.; Koplik, J.; Bavanar, J. “Molecular Dynamics of Flows in the 
Knudsen Regime.” Physica A 287 (2000): 153-160. 

48. Clausing, P. “Flow of Highly Rarefied Gases Through Tubes of Arbitrary 
Length.” J. Vac. Sci. Technol. 8 (5) (1971): 636-646. 

49. Clausius, R. “Ueber die Art der Bewegung welche wir Wärme nennen.” 
Annalen der Physik 100, 353-380 (1857);  translation published in 
Philosophical Magazine 14, 108-127 (1857). 

50. Cole, R.J. “Transmission Probability of Free Molecular Flow Through a 
Tube.” Paper 11 at the 10th Intl. Symp. On Rarefied Gas Dyn., Aspen, Colo., 
July 19-23, 1976, : 261-272. 

51. Colgate, E.; Matsumoto, H. “An investigation of electrowetting-based 
microactuation.” J. of Vac. Sci. Tech. A (Vacuum, Surfaces, and Films); 
July-Aug. 1990; vol.8, no.4, p.3625-33. 

52. Copic, D.; Brehob, E.; McNamara, S. “Theoretical Efficiency of a 
Microfabricated Knudsen Pump.” IEEE (2008): 107-110. 

53. Creutz, E.S.; Zumwalt, L.R. “A New Semiempirical Equation for Gas Flow 
Through Capillaries.” J. Applied Phys. 33 (9) (1962): 2883-2888. 

154 



54. Darabi, J.; Ohadi, M.M.; DeVoe, D. “An Electrohydrodynamic Polarization 
Micropump for Electronic Cooling.” J. of MEMS, Vol. 10, No. 1, March 
2001. 

55. Davies, C.M.; Lucas, C.B. “The Failure of Theory to Predict the Density 
Distribution of Gas Flowing Through a Tube Under Free Molecular 
Conditions.” J. Phys. D: Appl. Phys., 16 (1983): 1-16. 

56. Davis, D.H. “Monte Carlo Calculation of Molecular Flow Rates Through A 
Cylindrical Elbow and Pipes of Other Shapes.” J. of Applied Phys. 31 (7) 
(1960): 1169-1176. 

57. DeMarcus, W.C.; Hopper, E.H. “Knudsen Flow Through a Circular 
Capillary.” J. Chem. Phys. 23 (7) (1955): 1344-1345. 

58. Debar, M.; Liepmann, D. “Steady-state microscale pumping using the 
Marangoni effect: A model problem.” Bull. Am. Phys. Soc. 45 (2000) p.126. 

59. Demirel, Y.; Saxena, S. “Heat Transfer in Rarefied Gas at a Gas-Solid 
Interface.” Energy Vol. 21, No. 2, (1996): 99-103. 

60. Deryagin, B.V.; Fedyakin, N.N. “Complete Specular Reflection of 
Molecules at Low Angles of Incedence and Its Effect on the Molecular Flow 
of Gases Through Very Narrow Capillaries.” Progress in Surface Science 43 
(1-4) (1993): 290-301. 

61. Dielectrophoresis, University of Texas - MD Anderson Cancer Center, Feb. 
2, 2004, http://www.dielectrophoresis.org. 

62. Dong Xu, Li Wang, Guifu Ding, Yong Zhou, Aibing Yu, Bingchu Cai 
“Characteristics and Fabrication of NiTi/Si Diaphragm Micropump.” 
Sensors and Actuators A 93 (2001): 87-92. 

63. Dushman, S. “Recent Advances in the Production and Measurement of 
High Vacuum.” J. Franklin Inst. 211 (6) (1931): 689-750. 

64. Dushman, S. “Development of High Vacuum Technique.” Industrial and 
Engineering Chemistry 40 (5) (1948): 778-780. 

65. Edmonds, T.; Hobson, J.P. “Study of Thermal Transpiration Using 
Ultrahigh-Vacuum Techniques.” J. Vac. Sci. Technol. 2 (4) (1965): 182-197. 

66. Elwenspoek, M.; Lammerink, T.S.J.; Miyake, R.; Fluitman, J.H.J. 
“Towards Integrated Microliquid handling Systems.” J. Micromech. 
Microeng. 4 (1994): 227-245. 

155 

http://www.dielectrophoresis.org/


67. Erwin, D.; Pham-Van-Diep, G.; Muntz E.P. “Nonequilibrium Gas Flows.1. 
A Detailed Validation of Monte Carlo Direct Simulation for Monatomic 
Gases.” Phys. of Fluids A - Fluid Dynamics 3 (4) (1991): 697-705. 

68. Eu, B.C. “Generalized Hydrodynamics Appraoch to the Knudsen Problem.” 
Physical Review A, 40 (11): 6395-6402. 

69. Ewart, T.; Firpo, J.L.; Graur, I.A.; Perrier, P.; Meolans, J.G. “DSMC 
Simulation: Validation and Application to Low Speed Gas Flows in 
Microchannels.” J. of Fluids Engineering (2009) Vol. 131/014501 : 1-6. 

70. Feng, Yu-Guo “Problem, of the Approximate Calculation for Molecular 
Conductance, The.” Vacuum 31 (7) (1981): 319-324. 

71. Feres, R.; Yablonsky, G. “Knudsen's Cosine Law and random Billiards.” 
Chemical Engineering Science 59 (2004): 1541-1556. 

72. Ferziger, J.H. “Flow of a Rarefied Gas Through a Cylindrical Tube.” 
Physics of Fluids 10 (7) (1967): 1448-1453. 

73. Folta, J.A.; Raley, N.F.; Hee, E.W. “Design, fabrication and testing of a 
miniature peristaltic membrane pump.” Technical Digest. IEEE Solid-State 
Sensor and Actuator Workshop, 22-25 June 1992, Hilton Head Island, SC, 
USA. 

74. Frederking, T.H.K.; Hepler, W.A.; Khandhar, P.K. “Slip Effects Associated 
with Knudsen Transport Phenomena in Porous Media.” Cryogenics 28 
(1988): 110-114. 

75. Fryer, G.M. “A Theory of Gas Flow Through Capillary Tubes.” Proc. 
Royal Soc. London Series A - Math. Phys. Sci. 293 (1434) (1966): 329-341. 

76. Fuhr, G. “From Micro Field Cages for Living Cells to Brownian Pumps for 
Submicron Particles.” Proc. of IEEE Micro Mechatronics and Human 
Science 97, :  1–4. 1997. 

77. Fuhr, G., Hagedom, R., Mueller, T., Benecke, W., and Wagner, B. 
“Pumping of Water Solutions in Microfabricated Electrohydrodynamic 
Systems.” IEEE 5th Int. Workshop on MEMS (MEMS’92), (1992): 25–30. 

78. Fuhr, G., Hagedorn, R., Mueller, T., Benecke, W., and Wagner, B. 
“Microfabricated Electrohydrodynamic (EHD) Pumps for Liquids of Higher 
Conductivity.” J. of MEMS, 1, No. 3, (1992): 141–145. 

79. Fuhr, G., Schnelle, T., and Wagner, B. “Travelling Wave-Driven 
Microfabricated Electrohydrodynamic Pumps for Liquids.” J. MEMS 4, :  
217–226. 1994. 

156 



80. Fukui, S.; Yamane, K. “DSMC/MGL Comparisons of Stresses on Slider Air 
Bearing with Nanometer Spacings.” IEEE Transactions on Magnetics 38 (5) 
(2002): 2153-2155. 

81. Furuya, A., Shimokawa, F., Matsuura, T., and Sawada, R., “Fabrication of 
Fluorinated Polyimide Microgrids Using Magnetically Controlled Reactive 
Ion Etching (DRIE) and Their Applications to an Ion Drag Integrated 
Micropump.” J. Micromech. Microeng., 6, :  310–319. 1996. 

82. Furuyama, S. “Measurement's of the Thermal Transpiration Effects of NO 
at 90K and of CO, N2, O2, CH4, and He at 77K.” Bulletin Che. Soc. Japan 
50 (10) (1977): 2797-2798. 

83. Gallis, M.A.; Rader, D.J.; Torczynski, J.R. “Calculations of the Near-Wall 
Thermophoretic Force in Rarefied Gas Flow.” Physics of Fluids, Vol. 14, 
No. 12, December 2002, : 4290-4301. 

84. Gallis, M.A.; Rader, D.J.; Torczynski, J.R. “Thermophoresis in Rarefied 
Gas Flows.” Aerosol Science and Technology 36 (2002): 1099-1117. 

85. Garcia, A.L. “Estimating Hydrodynamic Quantities in the Presence of 
microscopic Fluctuations.” Comm. A:  Math. and Comp. Sci. 1 (1) (2006): 
53-78. 

86. Garcia, A.L.; Alder, B.J. “Generation of Chapman-Enskog Distribution.” J. 
of Comput. Phys. 140 (1998): 66-70. 

87. Garcia, A.L.; Wagner, W. “Time step truncation error in direct simulation 
Monte Carlo.” Physics of Fluids 12 (10) (2000): 2621-2633. 

88. Gass, V.; van der Schoot, B.H.; Jeanneret, S.; de Rooij, N.F. “Integrated 
flow-regulated silicon micropump.” Sensors and Actuators A (Physical); 
May 1994; vol.A43, no.1-3, p.335-8. 

89. Gerlach, T. “Pumping gases by a silicon micro pump with dynamic passive 
valves.” International Solid State Sensors and Actuators Conference 
(Transducers '97), 16-19 June1997, Chicago, IL, USA. 

90. Gerlach, T.; Wurmus, H. “Working principle and performance of the 
dynamic micropump.” IEEE Micro Electro Mechanical Systems. 1995, 29 
Jan.-2 Feb. 1995, Amsterdam,Netherlands. 

91. Gilliland, E.R.; Baddour, R.F.; Engel, H.H. “Flow of Gases Through Porous 
Solids Under the Influence of Temperature Gradients.” A.I.Ch.E. J. 8 (4) 
(1962): 530-536. 

92. Goodman, F.O. “Thermal Accommodation Coefficients.” J. Phys. Chem. 84 
(1980): 1431-1445. 

157 



93. Graham, T. “On the Molecular Mobility of Gases.” Philis. Trans. R. Soc. 
London, XVII, (1863), : 385-405. 

94. Graham, T. “On the Motion of Gases.” Philis. Trans. R. Soc. London, 
XXVIII, (1846), : 573-631. 

95. Grosjean, C.; Xing Yang; Yu-Chong Tai “A thermopneumatic microfluidic 
system.” Technical Digest. MEMS 2002 IEEE International Conference. 
Fifteenth IEEE International Conference on Micro Electro Mechanical 
Systems, 20-24 Jan. 2002, Las Vegas, NV, USA. 

96. Gruener, S.; Huber, P. “Knudsen Diffusion in Silicon Nanochannels.” PRL 
100, 064502 (2008): 1-4. 

97. Hadjiconstantinou, N.G. “Limits, of Navier-Stokes Theory and Kinetic 
Extensions for Describing Small-Scale Gaseous Hydrodynamics, The.” Phys 
of Fluids 18 (111301) (2006): 111301-1 - 111301-19. 

98. Hadjiconstantinou, N.G.; Garcia, A.L. “Statistical Error in Particle 
Simulations for Low Mach Number Flows.” Proc. of First MIT Conf. on 
Comput. Fluid and Solid Mech., Elsevier, June 2001 (2001): 1-8. 

99. Han, Y.L.; Muntz, E.P. “Experimental Investigation of Micro-Mesoscale 
Knudsen Compressor Performance at Low Pressures.” J. Vac. Sci. Technol. 
B 25 (3) (2007):703-714. 

100. Hanks, R.W.; Weissberg, H.L. “Slow Viscous Flow of Rarefied Gases 
Through Short Tubes.” J. Appl. Phys. 35 (1) (1964): 142-144. 

101. Hanley, H.J.M.; Steele, W.A. “Low Pressure Flow of Gases.” J. Phys. 
Chemistry 68 (10) (1964): 3087-3088. 

102. Harris, S. An Introduction to the Theory of the Boltzmann Equation. Dover 
Publications.  (2004). 

103. Harrison, D.J.; Manz, A.; Glavina, P.G. “Electroosmotic pumping within a 
chemical sensor system integrated on silicon.” TRANSDUCERS '91. 1991 
International Conference on Solid-State Sensors and Actuators. Digest of 
Technical Papers, 24-27 June 1991, San Francisco, CA, USA. 

104. Hatch, A.; Kamholz, A.E.; Holman, G.; Yager, P.; Böhringer, K.F. “A 
Ferrofluidic Magnetic Micropump.” J. MEMS, 10 (2), JUNE 2001. 

105. Hayamizu, S.; Higashino, K.; Fujii, Y.; Sando, Y.; Yamamoto, K. 
“Development of a Bi-Directional Valve-less Silicon Micro Pump 
Controlled by Driving Waveform.” Sensors and Actuators A 103 (2003): 83-
87. 

158 



106. Helmer, J.C. “Solution of Clausing's Integral Equation for Molecular Flow.” 
J. Vac. Sci. Tech. 4 (6) (1967): 360-363. 

107. Hiby, J.W.; Pahl, M. “Influence of Binary Gas Collisions on Molecular Gas 
Flow.” Physical Review 88 (2) (1952) p.414. 

108. Hobson, J.P. “Concerning an Analytic Expression for the Thermal 
Transpiration Ratio.” Vacuum 15 (11) (1965): 543-544. 

109. Hobson, J.P. “Accomodation Pumping - A New Principle for Low 
Pressures.” J. Vac. Sci. Technol. 7(2) 1969, : 351-357. 

110. Hobson, J.P., Salzman, D.B. “Review of Pumping By Thermal Molecular 
Pressure.” J. Vac. Sci. Technol. 18(4), Jul/Aug 2000, : 1758-1765. 

111. Holt, J.K.; Park, H.G.;Wang, Y.; Stadermann, M.; Artyukhin, A.B.; 
Grigoropoulos, C.P.; Noy, A.; Bakajin, O. “Fast Mass Transport Through 
Sub–2-Nanometer Carbon Nanotubes.” Science 312, 1034 (2006):1-6. 

112. Holt, T.E.; Smith, D.M. “Surface Roughness Effects on Knudsen 
Diffusion.” Chem. Eng. Sci. 44 (3) (1989): 779-781. 

113. Horton, W.S. “Molecule-Wall Collisions in Porous Media at Low Gas 
Pressures.” J. Phys. Chem. 68 (8) (1964): 2278-2281. 

114. Huang, A.B.; Stoy Jr., R.L. “Rarefied Gas Channel Flows for Three 
Molecular Models.” Physics of Fluids 9 (12) (1966): 2327-2336. 

115. Huang, CW ; Huang, SB ; Lee, GB.  "Pneumatic Micropumps with Serially 
Connected Actuation Chambers"  J. MEMS 16 (11) (2006): 2265-2272. 

116. Huggill, J.A.W. “Flow of Gases Through Capillaries, The.” Proc. Royal 
Soc. London Series A - Math. Phys. Sci. 212 (1108) (1952): 123-136. 

117. Ikuta, K.; Hasegawa, T.; Adachi, T. “SMA Micro Pumps and Switching 
Valves for BioChemical IC Family.” 2000 Inernational Symposium on 
Micromechatronics and Human Science, IEEE 2000, : 169-174. 

118. Jitschin, W.; Reich, G. “Molecular Velocity Distributions at Large Knudsen 
Numbers.” J. Vac. Sci. Technol. A 9 (5) (1991): 2752-2756. 

119. Joule, J.P. “Some Remarks on Heat and the Constitution of elastic Fluids.” 
Memoirs of the Manchester Literary and Philosophical Society November 
1851 and Philosophical Magazine 14, 211 (1857) reprinted in William 
Francis Magie, ed., A Source Book in Physics (New York: McGraw-Hill, 
1935). 

159 



120. Judy, J.W.; Tamagawa, T.; Polla, D.L. “Surface-machined micromechanical 
membrane pump.” IEEE Micro Electro Mechanical Systems. An 
Investigation of Micro Structures, Sensors, Actuators, Machines and Robots, 
30 Jan.-2 Feb. 1991, Nara, Japan. 

121. Jun, T. K., and Kim, C.-J., “Valveless Pumping Using Traversing Vapor 
Bubbles in Microchannels.” J. Appl. Phys., 83, No. 11, :  5658–5664. 1998. 

122. Junghoon Lee; Chang-Jin Kim “Surface-Tension-Driven Microactuation 
Based on Continuous Electrowetting.” J. MEMS; June 2000; vol.9, no.2, 
p.171-80. 

123. Kahn, H.; Benard, W.L.; Huff, M.A.; Heuer, A.H. “The TiNi Shape-
Memory Alloy and Its Applications For MEMS.” J. Micromech. Microeng. 
8 (1998): 213-221. 

124. Kataoka, T.; Tsutahara, M.; Ogawa, K.; Yamamoto, Y.; Shoji, M.; Sakai, Y. 
“Knudsen Pump and its Possibility of Application to Satellite Control.” 
Theoretical and Applied Mechanics Japan 53 (2004): 155-161. 

125. Khoo, M., Liu, C. “A Novel Micromachined Magnetic Membrane 
Microfluid Pump.” Proc.  Of the 22nd Annual EMBS Intl. Conf., July 23-28, 
2000, Chicago, Ill, :  2394-2397. 

126. Knaff, G.; Schlunder, E.U. “Experimental Confirmation of Graham's Law 
of Diffusion up to Pore Diameters of 2 um.” Chem. Eng. Process. 19 (1985): 
167-173. 

127. Knudsen, M. “Laws of Molecular Flow and of Inner Friction Flow of Gases 
Through Tubes, The.” J. Membrane Science 100 (1995): 23-25. 

128. Knudsen, M. “Das Cosinusgesetz in der kinetischen Gastheorie.” Ann. 
Phys., Lpz. 48 (1916): 1113-1121. 

129. Knudsen, M. “Erwiderung an Hrn. M. v. Smoluchowski.” Ann. Phys., Lpz. 
34 (1911b): 823-824. 

130. Knudsen, M. “Thermischer Molekulardruck der Gase in Rohren.” Ann. 
Phys., Lpz. 33 (1910d): 1435-1448. 

131. Knudsen, M. “Die Molekularstromung der Gase durch Offnungen und die 
Effusion.” Ann. Phys., Lpz. 28 (1909b): 999-1016. 

132. Knudsen, M. “Eine Revision der Gleichgewichtsbedingung der Gase.  
Thermische Molekularstromung.” Ann. Phys., Lpz. 31(1910a), : 205-229. 

160 



133. Koch, M.; Harris, N.; Evans, A.G.R.; White, N.M.; Brunnschweiler, A. “A 
Novel Micromachined Pump Based On Thick-Film Piezoelectric Actuation.” 
Sensors and Actuators A 70 (1998): 98-103. 

134. Koch, M.; Harris, N.; Maas, R.; Evans, A.G.R.; White, N.M.; 
Brunnschweiler, A. “A Novel Micropump Design With Thick-Film 
Piezoelectric Actuation.” Meas. Sci. Technol. 8 (1997): 49-57. 

135. Koch, M.; Schabmueller, C.G.S.; Evans, A.G.R.; Brunnschweiler, A. 
“Micromachined Chemical Reaction System.” Sensors and Actuators 74 
(1999): 207-210. 

136. Kurosawa, M.; Watanabe, T.; Higuchi, T. “Surface acoustic wave atomizer 
with pumping effect.” IEEE Micro Electro Mechanical Systems. 1995, 29 
Jan.-2 Feb. 1995, Amsterdam, Netherlands. 

137. Kwang-Seok Yun; Il-Joo Cho; Jong-Uk Bu; Chang-Jin Kim; Euisik Yoon 
“A surface-tension driven micropump for low-voltage and low-power 
operations.” J. MEMS; Oct. 2002; vol.11, no.5, p.454-61. 

138. Kwang-Seok Yun; Il-Joo Cho; Jong-Uk Bu; Geun-Ho Kim; Young-Sam 
Jeon; Chang-Jin Kim; Euisik Yoon “A Micropump Driven by Continuous 
Electrowetting Actuation for Low Voltage and Low Power Operations.” 
MEMS 2001. 14th IEEE International Conference on Micro Electro 
Mechanical Systems, 21-25 Jan. 2001, Interlaken, Switzerland : 487-490. 

139. Lebowitz, J.L.; Frisch, H.L. “Model of Nonequilibrium Ensemble: Knudsen 
Gas.” Physical Review 107 (4) (1957): 917-923. 

140. Lemoff, A.V.; Lee, A.P. “An AC Magnetohydrodynamic Micropump.” 
Sensors and Actuators B 63 (2000): 178-185. 

141. Lereu, A.L.; Passian, A.; Warmacks, R.J.; Ferrell, T.L.; Thundat, T. “Effect 
of Thermal Variations on the Knudsen Forces in the Transitional Regime.” 
Applied Physics Letters Vol. 84, No. 6 (2004): 1013-1015. 

142. Li, H.Q.; Roberts, D.C.; Steyn, J.L.; Turner, K.T.; Carretero, J.A. “A High 
Frequency High Flow Rate Piezoelectrically Driven MEMS Micropump.” 
Tech. Dig. Solid-State Sensor and Actuator Workshop,Hilton Head,2000. 

143. Li, Z.; Wang, H. “Gas-Nanoparticle Scattering: A Molecular View of 
Momentum Accommodation Function.” PRL 95, 014502 (2005):1-4. 

144. Liang. S.C. “On The Calculation of Thermal Transpiration.” J. Chem. Phys. 
57 (1953): 910-911. 

145. Liang. S.C. “Some Measurements of Thermal Transpiration.” J. Applied 
Phys. 22 (2) (1951): 148-153. 

161 



146. Liepmann, D; Debar, M “Development of a microfabricated single-bubble 
pump.” Bull. Am. Phys. Soc. 45 (2000): 137. 

147. Linderman, R.J. ; Nilsen, O. ; Bright, V.M..  "Electromechanical and 
Fluidic Evaluation of the Resonant Microfan Gas Pump and Aerosol 
Collector"  Sensors and Actuators A - Physical 118 (1) (2005): 162-70. 

148. Linnemann, R.; Richter, M.; Leistner, A.; Woias, P. “A full-wafer mounted 
self-priming and bubble-tolerant piezoelectric silicon micropump.” Actuator 
98 6th International Conference on New Actuators, 17-19 June 1998, 
Bremen, Germany. 

149. Loyalka, S.K. “Temperature Jump and Thermal Creep Slip: Rigid Sphere 
Gas.” Phys. of Fluids A 1 (2) (1989), : 403-408. 

150. Loyalka, S.K. “Thermal Transpiration in a Cylindrical Tube.” Phys. of 
Fluids 12 (11) (1969), : 2301-2305. 

151. Loyalka, S.K. “Slip in the Thermal Creep Flow.” Physics of Fluids, 14 (1) 
(1971): 21-24. 

152. Loyalka, S.K. “Kinetic Theory of Thermal Transpiration and 
Mechanocaloric Effect. I.” J. of Chem. Phys., 55 (9) (1971), : 4497-4503. 

153. Loyalka, S.K. “Comments on "Thermal Creep of Rarefied Gas in a Circular 
Tube".” Phys. of Fluids 17 (6) (1974), p.1348. 

154. Loyalka, S.K. “Comments on "Pouseuille Flow and Thermal Creep of a 
Rarefied Gas Between Parallel Plates".” Phys. of Fluids 17 (5) (1974), : 
1053-1055. 

155. Loyalka, S.K. “Kinetic Theory of Thermal Transpiration and 
Mechanocaloric Effect. II.” J. of Chem. Phys., 63 (9) (1975), : 4054-4060. 

156. Loyalka, S.K. “Velocity Profile in the Thermal Creep Slip Problem.” Phys. 
of Fluids 19 (10) (1976), : 1641-1642. 

157. Loyalka, S.K.; Cipolla Jr., J.W. “Thermal Creep Slip with Arbitrary 
Accomodation at the Surface.” Phys. of Fluids 14 (8) (1971), : 1656-1661. 

158. Loyalka, S.K.; Storvick, T.S.; Park, H.S. “Poiseuille Flow and Thermal 
Creep Flow in Long, Rectangular Channels in the Molecular and Transition 
Flow Regimes.” J. Vac. Sci. Technol. 13 (6) (1976), : 1188-1192. 

159. Lucretius (50b.c.), translated by Williams Ellery Leonard “On the Nature of 
Things.” http://classics.mit.edu/Carus/nature_things.1.i.html#2. 

162 

http://classics.mit.edu/Carus/nature_things.1.i.html#2


160. Ludwig Boltzmann. Wikipedia. 
http://en.wikipedia.org/wiki/Boltzmann#cite_ref-4. 

161. Lundstrom, I.; Norberg, P.; Petersson, L.G. “Wall-Induced Effects in Gas 
Transport Through Micromachined Channels in Silicon.” J. Appl. Phys. 76 
(1) (1994): 142-147. 

162. Macrossan, M.N. “nu-DSMC: A Fast Simulation Method for Rarefied 
Flow.” J. Comp. Phys 173 (2001): 600-619. 

163. Makino, E.; Kato, K.; Shibata, T. “Thermo-Mechanical Properties of TiNi 
Shape Memory Thin Films Formed By Flash Evaporation.” Sensors and 
Actuators 75 (1999): 156-161. 

164. Makino, E.; Mitsuya, T.; Shibata, T. “Micromachining of TiNi Shape 
Memory Thin Films For Fabrication of Micropump.” Sensors and Actuators 
79 (2000): 251-259. 

165. Makino, E.; Mitsuya, T.; Shibata, T. “Dynamic Actuation Properties of 
TiNi Shape Memory Diaphragm.” Sensors and Actuators 79 (2000): 128-
135. 

166. Malek, K.; Coppens, M.O. “Knudsen Self-and Fickian Diffusion in Rough 
Nanoporous Media.” J. Chem. Phys. 119 (5) (2003): 2801-2811. 

167. Malek, K.; Coppens, M.O. “Pore Roughness Effects on Self- and Transport 
Diffusion in Nanoporous Materials.” Colloids and Surfaces A: 
Physiochemical and Engineering Aspects 206 (2002): 335-348. 

168. Manz, A.; Harrison, D.J.; Fettinger, J.C.; Verpoorte, E.; Ludi, H.; Widmer, 
H.M. “Integrated Electroosmotic Pumps and Flow Manifolds for Total 
Chemical Analysis Systems.” IEEE (1991): 939-941. 

169. Mason, E.A.; Evans III, R.B. “Graham's Laws: Simple Demonstrations of 
Gases in Motion, Part I, Theory.” J. Chemical Education 46 (6) (1969): 358-
364. 

170. Masters, N.D.; Ye, W. “Octant flux splitting information preservation 
DSMC method for thermally driven flows.” Journal of Computational 
Physics 226 (2007):2044–2062. 

171. Matsumoto, S.; Klein, A.; Maeda, R. “Development of bi-directional valve-
less micropump for liquid.” 12th International Workshop on Micro Electro 
Mechanical Systems - MEMS, 17-21 Jan. 1999, Orlando, FL, USA. 

172. Mavriplis, C.; Ahn, J.C.; Goulard, R. “Heat Transfer and Flowfields in 
Short Microchannels Using Direct Simulation Monte Carlo.” J. of 
Thermophysics and Heat Transfer 11 (4) (1997): 489-496. 

163 



173. Maxwell, J.C. “On Stresses in Rarefied Gases Arising from Inequalities of 
Temperature.” Philos. Trans. R. Soc. Part 1, 170, (1979): 231-256. 

174. McNamara, S., Gianchandani, Y. “A Fabrication Process with High 
Thermal Isolation and Vacuum Sealed Lead Transfer for Gas Reactors and 
Sampling Microsystems.” IEEE Sixteenth Annual International Conference 
on Micro Electro Mechanical Systems, 19-23 Jan. 2003, Kyoto, Japan. 

175. McNamara, S., Gianchandani, Y. “A Micromachines Knudsen Pump For 
On-Chip Vacuum.” Transducers '03, The 12th Intl. Conf. On Solid State 
Sensors, Actuators, and Microsystems, Boston, June 8-12, 2003.: 1919-1922. 

176. Meng, A.H.; Nam-Trung Nguyen; Black, J.; White, R.M. “Focused Flow 
Micropump Using Ultrasonic Flexural Plate Waves.” Biomedical 
Microdevices 2:3, : 169-174, 2000. 

177. Meng, E.; Xuan-Qi Wang; Mak, H.; Yu -Chong Tai “A check-valved 
silicone diaphragm pump.” IEEE Thirteenth Annual International 
Conference on Micro Electro Mechanical Systems, 23-27 Jan. 2000, 
Miyazaki, Japan. 

178. Miller, G.A.; Buice Jr., R.L. “On the Knudsen Limiting Law of Thermal 
Transpiration.” J. Phys. Chem. 70 (12) (1966): 3874-3880. 

179. Milligan, M.W. “Low-Density Gas Flow in Long Tubes.” AIAA 4 (4) 1966): 
745-746. 

180. Milligan, M.W.; Patterson, K.E. “Rarefied Gas Flow Through Long Square 
Tubes.” Transactions of the ASME, J. of Eng. For Industry 93 (2) (1971): 
751-753. 

181. Miyazaki, S.; Kawai, T.; Araragi, M. “A piezo-electric pump driven by a 
flexural progressive wave.” IEEE Micro Electro Mechanical Systems. An 
Investigation of Micro Structures, Sensors, Actuators, Machines and Robots, 
30 Jan.-2 Feb. 1991, Nara, Japan. 

182. Mizoguchi, H.; Ando, M.; Mizuno, T.; Takagi, T.; Nakajima, N. “Design 
and fabrication of light driven micropump.” IEEE Micro Electro Mechanical 
Systems. An Investigation of Micro Structures, Sensors, Actuators, Machines 
and Robots, 4-7 Feb. 1992, Travemunde, Germany. 

183. Mohan, A; Tompson, R.V.; Loyalka, S.K. “Efficient Numerical Solution of 
the Clausing Problem.” J. Vac. Sci. Technol. A 25 (4) (2007):758-761. 

184. Moroney, R.M.; White, R.M.; Howe, R.T. “Microtransport Induced By 
Ultrasonic Lamb Waves.” Appl. Phys. Lett. 59 (7), 12 August 1991, : 774-
776. 

164 



185. Moroney, R.M.; White, R.M.; Howe, R.T. “Ultrasonically Induced 
Microtransport.” IEEE 1991 : 277-282. 

186. Muntz, E.P. “Rarefied Gas Dynamics.” Ann. Rev. Fluid Mech. (1989) 
21:387-417. 

187. Muntz, E.P.; Sone, Y.; Aoki, K.; Vargo, S.; Young, M. “Performance 
Analysis and Optimization Considerations For A Knudsen Compressor in 
Transitional Flow.” J. Vac. Sci. Technol. A 20 (1) , Jan/Feb 2002, : 214-224. 

188. Murphy, D.M. “Wall Collisions, Angular Flux, and Pumping Requirements 
in Molecular Flow Through Tubes and MicroChannel Arrays.” J. Vac. Sci. 
Technol. A 7 (5) (1989): 3075-3091. 

189. Mutlu, S.; Cong Yu; Selvaganapathy, P.; Svec, F.; Mastrangelo, C.H.; 
Frechet, J.M.J., “Micromahcines Porous Polymer for Bubble Free Electro-
Osmotic Pump”, Technical Digest. MEMS 2002 IEEE International 
Conference. Fifteenth IEEE International Conference on Micro Electro 
Mechanical Systems, 20-24 Jan. 2002, Las Vegas, NV, USA; p.19-23. 

190. Nanbu, K. “Direct Simulation Scheme Derived From the Boltzmann 
Equation. I. Monocomponent Gases.” J. of Physical Society of Japan 49 (5) 
(1980): 2042-2049. 

191. Nguyen, N.T.; Doering, R.W.; Lal, A.; White, R.M. “Computational Fluid 
Dynamics Modeling of Flexural Plate Wave Pumps.” 1998 IEEE 
Ultrasonics Symposium (1998): 431-434. 

192. Nguyen, N.T.; Meng, A.H.; Black, J.; White, R.M. “Integrated Flow Sensor 
For In Situ Measurement and Control of Acoustic Streaming in Flexural 
Plate Wave Micropumps.” Sensors and Actuators 79 (2000): 115-121. 

193. Nishizawa, S.I.; Hirata, M. “DSMC Analysis of Thermal Transpiration of 
Capacitance Diaphragm Gauge.” Vacuum 67 (2002): 301-306. 

194. Norberg, P.; Petersson, L-G; Lundstrom, I “Characterization of Gas 
Transport Through Micromachined Submicron Channels in Silicon.” 
Vacuum 45 (1) (1994): 139-144. 

195. Ohwada, T.; Sone, Y.; Aoki, K. “Numerical Analysis of the Poiseuille and 
Thermal Transpiration Flows Between Two Parallel Plates on the Basis of 
the Boltzmann Equation For Hard-Sphere Molecules.” Phys. of Fluids A 1 
(12) (1989), : 2042-2049. 

196. Ok Chan Jeong; Sang Sik Yang “Fabrication of a thermopneumatic 
micropump with aluminum flap valves.” Journal of the Korean Physical 
Society; Dec. 2000; vol.37, no.6, p.873-7. 

165 



197. Olsson, A.; Enoksson, P.; Stemme, G.; Stemme, E. “A Valve-Less Planar 
Pump Isotropically Etched In Silicon.” J. Micromech. Microeng. 6 (1996): 
87-91. 

198. Olsson, A.; Enoksson, P.; Stemme, G.; Stemme, E. “A Valve-Less Planar 
Pump In Silicon.” 8th Intl. Conf. On Solid-State Sensors and Actuators, and 
Eurosensors IX (1995): 291-294. 

199. Olsson, A.; Larsson, O.; Holm, J.; Lundbladh, L.; Ohman, O. “Valve-Less 
Diffuser Micropumps Fabricated Using Thermoplastic Replication.” Sensors 
and Actuators A 64 (1998): 63-68. 

200. Olsson, A.; Stemme, G.; Stemme, E. “The first valve-less diffuser gas 
pump.” The 10th Annual Intl Workshop on MEMS. An Investigation of 
Micro Structures, Sensors, Actuators, Machines and Robots, 26-30 Jan. 
1997, Nagoya, Japan. 

201. Olsson, A.;Stemme, G.; Stemme, E. “A valve-less planar fluid pump with 
two pump chambers.” Sensors and Actuators A 46-47 (1995): 549-556. 

202. Oran, E.S.; Oh, C.K.; Cybyk, B.Z. “Direct Simulation Monte Carlo: Recent 
Advances and Applications.” Annu. Rev. Fluid Mech. 30 (1998): 403-441. 

203. Ozaki, K. “Pumping mechanism using periodic phase changes of a fluid.” 
IEEE Micro Electro Mechanical Systems. 1995, 29 Jan.-2 Feb. 1995, 
Amsterdam, Netherlands. 

204. Pao, Y-P; Tchao, J. “Knudsen Flow Through a Long Circular Tube.” Phys. 
of Fluids 13 (2) (1970): 527-528. 

205. Papadopoulos, D.H.; Rosner, D.E. “Enclosure Gas Flows Driven By Non-
Isothermal Walls.” Phys. of Fluids 7 (11) (1995): 2535-2537. 

206. Park, J.H.; Bahukudumbi, P.; Beskok, A. “Rarefaction Effects on Shear 
Driven Oscillatory Gas Flows: A Direct Simulation Monte Carlo Study in 
the Entire Knudsen Regime.” Physics of Fluids, Vol. 16, No. 2 (2004): 317-
330. 

207. Passian, A.; Warmack, R.J.; Ferrell, T.L.; Thundat, T. “Thermal 
Transpiration at the Microscale: A Crookes Cantilever.” Physical Review 
Letters, Vol. 90, No. 12 (2003), : 124503-1 to 124503-4. 

208. Piekos, E.S.; Bruer, K.S. “Numercal Modeling of Micromechanical Devices 
Using the Direct Simulation Monte Carlo Method.” J. of Fluids Eng. 118 
(1996): 464-469. 

209. Piezo Technical Information, Piezo Systems Inc., Feb. 9, 2004, 
http://www.piezo.com/. 

166 

http://www.piezo.com/


210. Pollard, W.G.; Present, R.D. “On Gaseous Self-Diffusion in Long Capillary 
Tubes.” Physical Review 73 (7) (1948): 762-774. 

211. Poulis, J.A.; Pelupessy, B.; Massen, C.H.; Thomas, J.M. “Longitudinal 
Knudsen Forces.” J. Sci. Instrum. 41 (1961): 295-301. 

212. Prasanth, P.S.; Kakkassery, J.K. “Direct Simulation Monte Carlo (DSMC): 
A Numerical Method for transition-Regime Flows - A Review.” J. Indian 
Inst. Sci. 86 (2006): 169-192. 

213. Reynolds, O. “On Certain Dimensional Properties of Matter in the Gaseous 
State.” Philos. Trans. R. Soc. London 170, 727 (1879), : 727-845. 

214. Richter, A., Plettner, A., Hofmann, K. A., and Sandmaier, H. “A 
Micromachined Electrohydrodynamic (EHD) Pump.” Sens. Actuators A, 29, 
: 159–168. 1991. 

215. Richter, A., and Sandmaier, H. “An Electrohydrodynamic Micropump.” 
IEEE 3rd Int. Workshop on MEMS (MEMS’90), :  99–104. 

216. Robertson, J.K.; Wise, K.D. “Modeling a Microfluidic System Using 
Knudsen's Empirical Equation for Flow in the Transition Regime.” J. Vac. 
Sci. Technol. A 19 (1) (2001): 358-364. 

217. Rosner, D.E.; Papadopoulos, D.H. “Jump, Slip, and Creep Boundary 
Conditions at Nonequilibrium Gas/Solid Interfaces.” Ind. Eng. Chem. Res. 
35 (1996): 3210-3222. 

218. Roy, S; Raju, R.; Chuang, H.F.; Cruden, B.A.; Meyyappan, M. “Modeling 
Gas Flow Through Microchannels and Nanopores.” J. Appl. Phys. 93 (8) 
(2003): 4870-4879. 

219. Santeler, D.J. “New Concepts in Molecular Gas Flow.” J. Vac. Sci. Technol. 
A 4 (3) (1986): 338-343. 

220. Santeler, D.J.; Boeckmann, M.D. “Molecular Flow Transmission 
Probabilities of Rectangular Tubes.” J. Vac. Sci. Technol. A 9 (4) (1991): 
2376-2381. 

221. Schabmueller, CGJ ; Koch, M ; Mokhtari, ME ; Evans, AGR ; 
Brunnschweiler, A.  "Self-Aligning Gas/Liquid Micropump."  J. MEMS 12 
(4) (2004): 420-424. 

222. Schomburg, W.K.; Fahrenberg, J.; Maas, D.; Rapp, R. “Active Valves and 
Pumps for Microfluidics.” J. Micromech. Microeng. 3 (1993): 216-218. 

167 



223. Schumacher, B.W.; Falckenberg, H.R.; Thiede, U. “Measurements On An 
Experimental Model of a New "Thermal Gradient" Vacuum Pump.” Can. J. 
Phys. 42 (1964): 259-272. 

224. Seeger, J.I.; Boser, B.E. “Dynamics and Control of Parallel-Plate Actuators 
Beyond the Electrostatic Instability.” Transducers '99, The 10th Intl. Conf. 
On Solid-State Sensors and Actuators, Sendai, Japan (1999): 474-477. 

225. Selvakumar, A.; Najafi, K “Vertical Comb Array Microactuators.” J. 
MEMS, Vol. 12, No. 4 (2003): 440-449. 

226. Seong-Il Jeong; Seyed-Yagoobi, J. “An innovative pumping technology - 
electrohydrodynamic pumping through conduction phenomenon.” AIP 
Conference Proceedings; 2001; no.552, p.343-8. 

227. Sharipov, F. “Rarefied Gas Flow Through a Long Tube at Any Temperature 
Ratio.” J. Vac. Sci. Technol. A 14(4), Jul/Aug 1996, : 2627-2635. 

228. Sharipov, F. “Non-Isothermal Rarefied Gas Flow Through a Slit.” Phys. of 
Fluids 9 (6), June 1997, : 1804-1810. 

229. Sharipov, F. “Application of the Cercignani-Lampis Scattering Kernel to 
calculations of rarefied gas flows.  III. Poiseuille Flow and Thermal Creep 
through a long tube.” Eur. J. Mech. B/Fluids 22 (2003): 145-154. 

230. Sharipov, F. “Rarefied Gas Flow Through a Long Rectangular Channel.” J. 
Vac. Sci. Technol. A 17 (5) , Sep/Oct 1999, :  3062-3066. 

231. Sharipov, F. “Rarefied Gas Flow Through a Long Tube at Arbitrary 
Pressure and Temperature Drops.” J. Vac. Sci. Technol. A 15(4) (1997): 
2434-2436. 

232. Sharipov, F.; Seleznev, V. “Data on Internal Rarefied Gas Flows.” J. Phys. 
Chem. Ref. Data, Vol. 27, No. 3 (1998): 657-706. 

233. Sherwood, T.K.; Cooke, N.E. “Mass Transfer at Low Pressures.” A.I.Ch.E. 
J. 3 (1) (1957): 37-42. 

234. Shin, H. “On the Transfer of Energy Between a Gas and a Solid.” J. Phys. 
Chemistry 70 (4) (1966): 962-972. 

235. Shinagawa, H.; Setyawan, H.; Asai, T.; Sugiyama, Y.; Okuyama, K. “An 
Experiment and Theoretical Investigation of Rarefied Gas Flow Through 
Circular Tube of Finite Length.” Chem. Eng. Sci. 57 (2002): 4027-4036. 

236. Shinohara, J., Suda, M., Furuta, K., and Sakuhara, T., “A High Pressure 
Resistance Micropump Using Active and Normally Closed Valves.” IEEE 
13th Int. Workshop on MEMS (MEMS’00), :  86–91. 

168 



237. Shulin Zeng; Chuan-Hua Chen; Mikkelsen, J.C., Jr.; Santiago, J.G. 
“Fabrication and Characterization of Electrokinetic MicroPumps.” IEEE 
2000 Inter Society Conference on Thermal Phenomena, (2000): 31-36. 

238. Siu, M.C.I. “Equations for Thermal Transpiration.” J. Vac. Sci. Technol. 10 
(2) (1973): 368-372. 

239. Smits, J.G. “Piezoelectric micropump with three valves working 
peristaltically (for insulin delivery).” Sensors and Actuators A (Physical); 
Feb. 1990; vol.A21, no.1-3, (1990): 203-206. 

240. Smits, J.G. “Piezoelectric micropump with microvalves.” Eighth 
University/Government/Industry Microelectronics Symposium, 12-14 June 
1989,Westborough, MA, USA. 

241. Sokhan, V. P. ; Nicholson, D.; Quirke,N. “Fluid Flow in Nanopores: An 
Examination of Hydrodynamic Boundary Conditions.” J. Chem. Physics. 
115 (8) (2001): 3878-3887. 

242. Sone, Y. “A Note on Thermal Creep in Rarefied Gas.” J. Phys. Soc. Japan, 
29 (1970), p.1655. 

243. Sone, Y. “A Flow Induced by Thermal Stress in Rarefied Gas.” Phys. of 
Fluids 15 (8) (1974), : 1418-1423. 

244. Sone, Y. “Thermal Creep in Rarefied Gas.” J. Phys. Soc. Japan, 21 (1966), 
: 1836-1837. 

245. Sone, Y.; Fukuda, T.; Hokazono, T.; Sugimoto, H. “Experiment on a One-
Way Flow of a Rarefied Gas Through a Straight Circular Pipe Without 
Average Temperature and Pressure Gradients.” CP585 Rarefied Gas 
Dynamics: 22nd International Symposium, edited by T.J.Bartel, M.A. Gallis, 
2001 American Institute of Physics. 

246. Sone, Y.; Sugimoto, H. “Vacuum Pump Without a Moving Part and Its 
Performance.” Rarefied Gas Dynamics: 23rd Intl. Sympos., (2003): 1041-
1048. 

247. Sone, Y.; Waniguchi, Y.; Aoki, K. “One-way Flow of a Rarefied Gas 
Induced in a Channel with a Periodic Temperature Distribution.”  Phys. 
Fluids 8 (8) (1996):2227-2235. 

248. Steckelmacher, W. “Molecular Flow Conductances of Long Tubes with 
Uniform Elliptical Cross-Section and the Effect of Different Cross-Sectional 
Shapes.” J. Phys. D: Appl. Phys. 11 (1978): 473-478. 

249. Steckelmacher, W. “The Effect of Cross-Sectional Shape on the Molecular 
Flow in Long Tubes.” Vacuum 28 (6/7) (1978): 269-275. 

169 



250. Steckelmacher, W. “Knudsen Flow 75 Years On: The Current State of the 
Art for Flow of Rarefied gases in Tubes and Systems.” Rep. Prog. Phys. 49 
(1986): 1083-1107. 

251. Steckelmacher, W. “A Review of the Molecular Flow Conductance for 
Systems of Tubes and Components and the Measurement of Pumping 
Speed.” Vacuum 16 (1) (1966): 561-584. 

252. Steckelmacher, W., Lucas, M.W. “Gas Flow Through a Cylindrical Tube 
Under Free Molecular Conditions.” J. of Phys. D: Appl. Phys. 16 (1983): 
1453-1460. 

253. Stemme, E.; Stemme, G. “A valveless diffuser/nozzle-based fluid pump.” 
Sensors and Actuators A (Physical); Nov. 1993; vol.A39, no.2, p.159-67. 

254. Storvick, T.S.; Park, H.S.; Loyalka, S.K. “Thermal Transpiration: A 
Comparison of Experiment and Theory.” J. Vac. Sci. Technol. 15 (6) (1978), 
: 1844-1852. 

255. Su, C.H. “Kinetic Equation of Classical Boltzmann Gases.” Physics of 
Fluids 7 (8) (1964): 1248-1255. 

256. Sun, H.; Faghri, M “Effect of Surface Roughness on Nitrogen Flow in a 
Microchannel Using the Direct Simulation Monte Carlo Method.” 
Numerical Heat Transfer, Part A, 43 (2003): 1-8. 

257. Takagi, H.; Maeda, R.; Ozaki, K.; Parameswaran, M.; Mehta, M. “Phase 
Transformation Type Micro Pump.” 5th International Symposium on Micro 
Machine and Human Science Proceedings, 2-4 Oct. 1994, Nagoya, Japan. 

258. Takahashi K, Weng J G and Tien C L “Marangoni Effect in Microbubble 
Systems.” Microscale Thermophys. Eng. 3, 1999, :  169–82. 

259. Takata, S.; Sugimoto, H.; Kosuge, S. “Gas Separation By Means of a 
Knudsen Compressor.” European Journal of Mechanics A 26 (2007): 155-
181. 

260. Tamada, K.; Sone, Y. “Some Studies on Rarefied Gas Flows.” J. Phys. Soc. 
Japan, 21 (17) (1966), : 1439-1445. 

261. Tao, J.C.; Ganzi, G.C.; Sandler, S.I. “Determination of Thermal Transport 
Properties from Thermal Transpiration Measurements. II.” J. Chem. Phys. 
56 (8) (1972): 3789-3793. 

262. Tao, J.C.; Revelt, W.; sandler, S.I. “Determination of Thermal Transport 
Properties from Thermal Transpiration Measurements. III. Polar Gases.” J. 
Chem. Phys. 60 (11) (1974): 4475-4462. 

170 



263. Tracy, D.H. “Thermomolecular Pumping Effect.” Journal of Physics E 
(Scientific Instruments); July 1974; vol.7, no.7, p.533-6. 

264. Turner, D.J. “A Mathematical Analysis of a Thermal Transpiration Vacuum 
Pump.” Vacuum 16 (8) (1966): 413-419. 

265. Tysanner, M.W.; Garcia, A.L. “Measurement Bias of Fluid Velocity in 
Molecular Simulations.” J. of Comput. Phys. 196 (2004): 173-183. 

266. Van De Pol, F.C.M.; Van Lintel, H.T.G.; Elwenspoek, M.; Bouwstra, S. “A 
Thermopneumatic Micropump based on Micro-Engineering Techniques.” 
Sensors and Actuators, A21-A23 (1990): 198-202. 

267. Van Lintel, H.T.G.; Van De Pol, F.C.M.; Bouwstra, S. “A Piezoelectric 
Micropump Based on Micromachining Of Silicon.” Sensors and Actuators, 
15 (1998): 153-167. 

268. Van der Wijngaart, W.; Andersson, H.; Enoksson, P.; Noren, K.; Stemme, 
G. “The First Self-Priming and Bi-Directional Valve-less Diffuser 
Micropump For Both Liquid and Gas.” IEEE (2000): 674-679. 

269. Vargo, S.E., Muntz, E. “Initial Results From the First MEMS Fabricated 
Thermal Transpiration-Driven Vacuum Pump.” Rarefied Gas Dynamics: 
22nd International Symposium, 2001 American Institute of Physics 0-7354-
0025-3/01. 

270. Vargo, S.E., Muntz, E., Shiflett, G. “Knudsen Compressor As A Micro- 
And Macroscale Vacuum Pump Without Moving Parts or Fluids.” J. Vac. 
Sci. Technol. 17(4), Jul/Aug 1999, : 2308-2313. 

271. Vestner, H.; Waldmann, L. “Generalized Hydrodynamics of Thermal 
Transpiration, Thermal Force and Friction Force.” Physica 86A (1977): 303-
336. 

272. Wachman, H.Y. “Thermal Accomodation Coefficient: A Critical Survey, 
The.” ARS Journal (1962): 2-12. 

273. Wagner, W. “Convergence Proof for Bird's Direct Simulation Monte Carlo 
Method for the Boltzmann Equation.” J. of Stat. Phys. 66 (3/4) (1991): 1011-
1044. 

274. Wahlbeck, P.G. “Simulated Speed Distributions for Effusing Gases in the 
Transition Region.” J. Phys. Chem. A (2005) 109:8944-8949. 

275. Wang, M.; Li, Z. “Simulations for Gas Flows in Microgeometries Using 
Direct Simulation Monte Carlo Method.”  Intl. J. Heat and Fluid Flow. 25 
(2004): 975-985. 

171 



276. Ward, J.W.; Mulford, R.N.R.; Bivins, R.L. “Study of Some Parameters 
Affecting Knudsen Effusion. II. A Monte Carlo Computer Analysis of 
Parameters Deduced from Experiments.” J. of Chem. Phys. 47 (5) (1967): 
1718-1723. 

277. Weng, C.I.; Li, W.L.; Hwang, C.C. “Gaseous Flow in Microtubes at 
Arbitrary Knudsen Numbers.” Nanotechnology 10 (1999): 373-379. 

278. Williams III, J.C. “Thermal Transpiration - A Continuum gas Dynamics 
View.” J. Vac. Sci. Tech. 8 (2) (1970): 446-450. 

279. Williams, B.E.; Forster, F.K. “Micropump design for optimum 
pressure/flow characteristics.” Micro-Electro-Mechanical Systems (MEMS). 
2000 ASME International Mechanical Engineering Congress and 
Exposition, 11-16 Nov. 2001, New York, NY, USA. 

280. Wong, C., Hudson, M., Potter, D., Bartel, T. “Gas Transport By Thermal 
Transpiration In Micro-Channels - A Numerical Study.” ASME Intl. DSC - 
Vol. 66, Micro-Electro-Mechanical (MEMS), Book No. G01091. 1998, : 
223-230. 

281. Wong, C.C.; Potter, D.L.; Bartel, T.J. “Investigation of Thermal 
Transpiration in Micro-Channel with DSMC.” 1998 International 
Mechanical Engineering Congress & Exposition - Application of 
Microfabrication to Fluid Mechanics (SAND98-1441A). 

282. Wright, SA ; Gianchandani, YB. "A Micromachined Titanium Sputter Ion 
Pump for Cavity Pressure Control".  Proceedings: IEEE MEMS 
WORKSHOP (2006): 754-757. 

283. Wu, Y. “Theory of Thermal Transpiration in a Knudsen Gas.” J. Chem. 
Phys. 48 (2) (1968): 889-894. 

284. Wu, J.S.; Tseng, K.C. “Analysis of Internal Micro-Scale Gas Flows with 
Pressure Boundaries Using the DSMC Method. CP585 Rarefied Gas 
Dynamics: Intl Symp. (2001): 486-492 

285. X Geng; H Yuan; Oguz, H.N.; Prosperetti, A. “Bubble-based micropump 
for electrically conducting liquids.” J. Micromech. Microeng. 11 (2001) 
270–276. 

286. Xie, C.; Fan, J.; Shen, C. “Rarefied Gas Flows in Micro-Channels.” CP663, 
Rarefied Gas Dynamics: 23rd Intl. Symp. (2003): 800-807. 

287. Xing Yang; Zhaoying Zhou; Xiongying Ye; Mingfei Xiao.  "Simulation and 
Experimental Studies on a Piezoelectrically Actuated Microdiaphragm Air 
Pump".  Journal of Microlith., Microfab., and Microsystems 5 (2) (2006): 
21106-1-7. 

172 



288. Yasumoto, I. “Thermal Transpiration Effets for Gases at Pressures Above 
0.1 torr.” J. Phys. Chem. 84 (6) (1980): 589-593. 

289. Young, R. M.; Han, Y.L.; Muntz, E.P.; Shiflett, G. “Thermal Transpiration 
in Microsphere Membranes.” Rarefied Gas Dynamics: 23rd Intl. Sympos., 
(2003): 743-751. 

290. Young, R. M.; Han, Y.L.; Muntz, E.P.; Shiflett, G. “Characterization of a 
Radiantly Driven Multistage Knudsen Compressor.” Proc. IMECE'03 
(2003): 393-400. 

291. Young, R. M. “Analysis of a Micromachine Based Vacuum Pump On A 
Chip Actuated By The Thermal Transpiration Effect.” J. Vac. Sci. Technol. 
17(2), Mar/Apr 1999, : 280-287. 

292. Zahn, J.D.; Deshmukh, A.A.; Pisano, A.P.; Liepmann, D “Continuous on-
chip micropumping through a microneedle.” Technical Digest. MEMS 2001. 
14th IEEE International Conference on Micro Electro Mechanical Systems, 
21-25 Jan. 2001, Interlaken, Switzerland. 

293. Zengerle, R.; Kluge, S.; Richter, M.; Richter, A. “A Bidirectional Silicon 
Micropump.” IEEE (1995): 18-24. 

294. Zengerle, R.; Richter, A.; Sandmaier, H. “A Micro Membrane Pump With 
Electrostatic Actuation.” Microelectromechanical Systems '92 (1992):  19-
24. 

295. Zheng, Y.; Garcia, A.L.; Alder, B.J. “Comparison of Kinetic Theory and 
Hydrodynamics for Poisseuille Flow.” J. of Statistical Physics 109 (3-4) 
(2002): 495-505. 

296. Zieba, J. “Simulation of a Solenoid Actuator for a Device for Investigating 
Dynamic Air Permeability Through Flat Textile Products.” Fibres and 
Textiles in Eastern Europe Vol. 11, No. 2 (41) (2003): 85-87. 

173 



AAPPPPEENNDDIIXX  
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A Area 
c  Velocity 

Average Velocity c  
Average of the Square of the Velocity 2c  

d Channel Diameter 
Local Maxwellian M

locf  
Absolute Maxwellian Mf 0  

( tr,c,f )
)

Phase Space Velocity Distribution Function  
( tr,c,F Phase Space Single Particle Velocity Distribution Function  
G Mass Flux 
h Channel Height 

( )KJ 101.3806504 -23×k  Boltzmann Constant 
Kn Knudsen Number 
l Linear Direction Along Channel Axis 
L Channel Length 
m Molecular Mass 

Mass Flux M&  
n Number density 
N Number of molecules 

Number of Molecules with Velocities Between c  and  dcc +cN  
Number Flux N&  

P Pressure 
Pressure Po

O Channel Circumference 
Q Volumetric Flowrate 

Reduced Pressure Induced Flow Rate PQ  
Reduced Thermal Induced Flow Rate TQ  
Flux of Some Quantity Q (dtdA) 

dAQ&  
r Channel Radius 
r Position Vector 

( )molKJ 8.314472 ⋅R Universal Gas Constant  o

t Time 
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T Temperature 
T Average Temperature o

U Flow Conductance 
v Molecular Velocity Vector 
V Volume 
w Channel Width 
W Transmission Probability 
z Linear Direction Along Channel Axis 
Z Flow Resistance 
α  Accommodation Coefficient 
λ Mean Free Path  
μ  Viscosity 
ϕ  Angle from z-axis 
ρ  Density 
σ  Molecular Diameter 

Molecule Cross Section  oσ
ϑ Angle from x-axis  
ωd Solid Angle in Spherical Coordinate System  
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