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Abstract

DISTRIBUTED COMPUTATION AND OPTIMIZATION OVER

NETWORKS

Jie Lu, Ph.D.
The University of Oklahoma, 2011

Supervisor: Choon Yik Tang

This dissertation is devoted to the development of efficient, robust, and scal-

able distributed algorithms, which enable agents in a large-scale, multi-hop

network to cooperatively compute a global quantity, or solve an optimization

problem, with only local interactions and without any centralized coordination.

Algorithms of this nature are attracting growing interest from a number of sci-

entific communities due to their broad application, for example, to autonomous

agent coordination and control in mobile ad hoc networks, distributed signal

processing and data fusion in wireless sensor networks, and studies of opinion

dynamics in social networks.

In this dissertation, we address three fundamental problems in the area,

namely: averaging, solving of positive definite linear equations, and uncon-

strained separable convex optimization. Based on a blend of tools and ideas

from system, optimization, and graph theories, we construct a novel set of

distributed algorithms—including continuous- and discrete-time, gossip and

asynchronous—which solve these problems over undirected networks with ar-

bitrary (and, in some cases, time-varying) topologies and agent memberships.

We also analyze the properties of these algorithms, including their convergence

xi



rates and complexity characteristics, and compare them with existing schemes,

showing analytically and numerically that our algorithms possess several ap-

pealing features.

The major contributions of this dissertation are as follows: first, we

show that Lyapunov stability theory may be used to shape the behavior of

asynchronous distributed algorithms. This finding allows us to introduce the

notion of greedy, decentralized, feedback iteration control, leading to a class

of Controlled Hopwise algorithms, which are highly bandwidth/energy efficient

in wireless networks. The finding also creates a new paradigm in the design

of asynchronous distributed algorithms, where iterations are opportunistically

controlled, as opposed to being randomized.

Second, we show that the Bregman divergence of the Lagrangian of a

separable convex optimization problem may be used to form a common Lya-

punov function. This result enables us to derive a family of Zero-Gradient-Sum

algorithms, which yield nonlinear networked dynamical systems on an invariant

manifold, and which differ fundamentally from, and have pros and cons over,

the existing subgradient algorithms. The derivation also shows that a gossip

variant within the family generalizes the classic Pairwise Averaging, and the

family itself is a natural generalization of several well-known algorithms for

distributed consensus, to distributed convex optimization.

Finally, we provide a series of analysis of the properties of our algorithms

(e.g., boundedness, asymptotic and exponential convergence, lower and upper

bounds on convergence rates, scalability) on various networks (e.g., path, cycle,

regular, complete, and general graphs), describing explicitly the dependency of

such properties on network topologies, problem characteristics, and algorithm

xii



parameters, including the algebraic connectivity, Laplacian spectral radius, and

function curvatures.
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Chapter 1 Introduction

1.1 Motivation

Emerging technologies on intelligent devices have triggered the vision of

many applications of large-scale networks, including target tracking by a mobile

ad hoc network [15, 71], estimation of a physical phenomenon by a wireless

sensor network [1,18], demonstration of flocking/swarming by a team of mobile

robots [7, 49], resource allocation in a computer network [14, 29], and study of

social interactions and opinion dynamics in a social network [12,33]. To realize

these applications, nodes in such networks may have to operate autonomously

in dynamic and infrastructure-less environments with severe bandwidth and

energy constraints, communicate in multi-hop fashion over unreliable links,

and accomplish tasks that require extensive processing of information, rapid

decentralized decision making, and precise coordination of actions. Therefore,

it is highly desirable that such networks possess the ability to perform in-

network computation and optimization: efficiently compute a quantity or solve

an optimization problem, where the data that determine the quantity or the

problem are distributed across network and observed by nodes.

In principle, in-network computation and optimization may be accom-

plished via flooding, whereby every node floods the network with its observa-

tion, as well as a centralized scheme, whereby a central node uses an overlay tree

to collect all the node observations, calculate the solution, and send it back to

1



every node. These two methods, unfortunately, have serious limitations: flood-

ing is extremely bandwidth and energy inefficient because it propagates redun-

dant information across the network, ignoring the fact that the ultimate goal

is to simply determine the desirable quantity or an optimizer. The centralized

scheme, on the other hand, is vulnerable to node mobility, node membership

changes, and single-point failures, making it necessary to frequently maintain

the overlay tree and occasionally start over with a new central node, both of

which are rather costly to implement.

The limitations of flooding as well as the centralized scheme have mo-

tivated the search for distributed algorithms where each node in a network

communicates and shares information with its neighbors only. Clearly, such

algorithms require neither flooding of node observations, nor construction of

overlay trees and routing tables, to execute. Moreover, the decentralized nature

of distributed algorithms makes them more robust to dynamic environments

and unreliable links. Thus, the goal of this research is to develop robust, scal-

able, and efficient distributed algorithms for computation and optimization

over networks.

1.2 Literature Review

The current literature provides a growing collection of distributed al-

gorithms for in-network computation and optimization, which may be simply

referred to as distributed computation and distributed optimization.

For distributed computation, one line of research is distributed aver-

aging, i.e., computing the network-wide average of node observations. This

problem arises in many applications. For example, by averaging their indi-

2



vidual throughputs, an ad hoc network of computers can assess how well the

network, as a whole, is performing, and by averaging their humidity mea-

surements, a wireless network of sensing agents can cooperatively detect the

occurrence of local, deviation-from-average anomalies. To date, a collection of

distributed averaging schemes with continuous-time [16, 52, 69], discrete-time

synchronous [20, 30, 31, 52, 53, 55, 56, 64, 69, 74, 75, 78], and discrete-time asyn-

chronous [8, 11, 13, 20,26,36,38,39,72] settings have been developed.

Another distributed computation problem is to determine the solution

for a system of linear equations where each parameter is the sum of a set

of node observations. Examples of its applications include finding the least-

squares solution of a distributed sensor fusion problem [76, 77] and solving

unconstrained quadratic programming problems over networks. The current

literature offers several distributed algorithms for solving this problem, includ-

ing the continuous-time algorithm in [66], as well as the discrete-time algorithms

in [76,77] which find the solution by computing the average of each parameter

of the linear equations.

In addition, distributed algorithms for finding the maximum of node

observations have been introduced in [13, 17, 39, 41, 68]. In [26, 30, 39, 41], the

problem of decentralizedly computing the sum of node observations has been

explored. Distributed algorithms for computing the power mean of node ob-

servations have also been reported in [2, 17, 39]. Furthermore, distributed con-

sensus, a topic closely related to distributed computation, where nodes seek to

achieve an arbitrary network-wide consensus on their individual opinions, has

also been extensively studied; see [4,34] for early treatments, [20,21,24,25,40,

52,54,63,67,70] for more recent work, and [50] for a survey.
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Distributed optimization problems are generally more complicated com-

pared to distributed computation, among which the most common problem may

be distributed convex optimization, where the objective and constraint functions

are all convex. A special case of distributed convex optimization is that the

objective function is the sum of the convex functions observed by nodes, which

has found diverse applications. For example, least-squares estimation [65], ro-

bust estimation [65], energy-based source localization [57], and clustering and

density estimation [57] are all in the form of this special case. As another

example, consider a social network, where each individual’s level of dissatisfac-

tion if the network takes a decision may be represented by a convex function,

so that finding an optimal decision means minimizing the total dissatisfac-

tion across the network, where everyone’s voice is heard. To date, a family of

discrete-time subgradient algorithms [27,28,32,42–47,57–62,65] for solving this

problem have been reported in the literature. These algorithms may be clas-

sified into two groups. The first group is incremental [28, 42–44, 57–59, 61, 65],

relying on the passing of an estimate on an optimizer of the convex optimiza-

tion problem. Incremental subgradient algorithms can be further categorized

into cyclic ones [42–44, 57–59, 61, 65], which require the estimate to be passed

along a Hamiltonian cycle that visits every node exactly once, and non-cyclic

ones [28,42–44], which allow the estimate to be passed around the network ran-

domly. The second group is non-incremental [27,32,45–47,60,62], which relies

instead on combining subgradient updates with linear consensus iterations. All

these subgradient algorithms need appropriate choices of stepsizes to let the

estimate(s) move along the gradient of the observed functions and approach an

optimizer of the problem.
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1.3 Original Contributions

In this dissertation, a collection of distributed algorithms that solve

three fundamental in-network computation and optimization problems, namely,

averaging, solving of positive definite linear equations, and unconstrained sep-

arable convex optimization, are designed and analyzed.

The dissertation starts with addressing the problem of averaging num-

bers across a wireless network from an important, but largely neglected, view-

point: bandwidth/energy efficiency. We show that existing distributed averag-

ing schemes have several drawbacks and are inefficient, producing networked

dynamical systems that evolve with wasteful communications. Motivated by

this, we develop Controlled Hopwise Averaging (CHA), a distributed asyn-

chronous algorithm that attempts to “make the most” out of each iteration by

fully exploiting the broadcast nature of wireless medium and enabling control of

when to initiate an iteration. We show that CHA admits a common quadratic

Lyapunov function for analysis, derive bounds on its exponential convergence

rate, and show that they outperform the convergence rate of Pairwise Averag-

ing for some common graphs. We also introduce a new way to apply Lyapunov

stability theory, using the Lyapunov function to perform greedy, decentralized,

feedback iteration control. Through extensive simulation on random geometric

graphs, we show that CHA is substantially more efficient than several existing

schemes, requiring far fewer transmissions to complete an averaging task.

Next, a family of distributed asynchronous algorithms for solving sym-

metric positive definite systems of linear equations over agent and wireless

networks are constructed. In particular, we develop Subset Equalizing (SE), a

Lyapunov-based algorithm for solving the problem over agent networks with

5



arbitrary asynchronous interactions and spontaneous membership dynamics,

both of which may be exogenously driven and completely unpredictable. To

analyze the behavior of SE, we introduce several notions of network connec-

tivity, capable of handling such interactions and membership dynamics, and a

time-varying quadratic Lyapunov-like function, defined on a state space with

changing dimension. Based on them, we derive sufficient conditions for ensur-

ing the boundedness, asymptotic convergence, and exponential convergence of

SE, and show that these conditions are mild. Moreover, we study the inter-

play among wireless communications, distributed algorithms, and control in

solving such quadratic optimization problems over multi-hop wireless networks

with fixed topologies. Building on the results from SE, we develop and analyze

Pairwise, Groupwise, Random Hopwise, and Controlled Hopwise Equalizing

(PE, GE, RHE, and CHE), showing along the way how the broadcast nature

of wireless transmissions may be fully utilized, how undesirable overlapping

iterations may be avoided, and how iterations may be feedback controlled in a

greedy, decentralized, Lyapunov-based fashion, leading to CHE, which yields

provable exponential convergence and a quantifiable bound on the convergence

rate. Through extensive simulation, we show that GE, RHE, and CHE are

dramatically more efficient and scalable than two existing, average-consensus-

based schemes, with CHE having the best performance.

Finally, we address the problem of distributed convex optimization from

both discrete- and continuous-time standpoints. More specifically, with a few

additional mild assumptions, we develop two gossip-style, non-gradient-based

algorithms, referred to as Pairwise Equalizing (PE) and Pairwise Bisectioning

(PB), for achieving unconstrained, separable, convex optimization over undi-

rected networks with time-varying topologies, which are fundamentally differ-

6



ent from the existing subgradient algorithms. We show that PE and PB are

easy to implement, bypass limitations of the subgradient algorithms, and pro-

duce switched, nonlinear, networked dynamical systems that admit a common

Lyapunov function based on the Bregman divergence [10] and asymptotically

converge. Moreover, PE generalizes the well-known Pairwise Averaging and

Randomized Gossip Algorithm and extends naturally to networks with both

time-varying topologies and node memberships, while PB relaxes a require-

ment of PE, allowing nodes to never share their local functions. Furthermore,

we introduce a new approach to the problem: control of distributed convex op-

timization, which extends the ideas of PE and the notion of greedy, decentral-

ized, feedback iteration control for CHA using the Bregman-divergence-based

Lyapunov function for PE and PB. The resulting distributed asynchronous al-

gorithm, referred to as Controlled Hopwise Equalizing (CHE), is shown via ex-

tensive simulation to be significantly more bandwidth/energy efficient than sev-

eral existing subgradient algorithms over wireless networks with fixed topolo-

gies, requiring far less communications to solve a convex optimization problem.

In addition to the above discrete-time distributed algorithms, we derive a set

of continuous-time distributed algorithms that solve the problem over undi-

rected networks with fixed topologies. The algorithms are developed using

a Lyapunov function candidate that exploits convexity, and are called Zero-

Gradient-Sum (ZGS) algorithms as they yield nonlinear networked dynamical

systems that evolve invariantly on a zero-gradient-sum manifold and converge

asymptotically to the unknown optimizer. We also describe a systematic way

to construct ZGS algorithms, show that a subset of them actually converge

exponentially, and obtain lower and upper bounds on their convergence rates

in terms of the network topologies, problem characteristics, and algorithm pa-
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rameters, including the algebraic connectivity, Laplacian spectral radius, and

function curvatures. The findings may be regarded as a natural generaliza-

tion of several well-known algorithms and results for distributed consensus, to

distributed convex optimization.

1.4 Dissertation Outline

The outline of this dissertation is as follows: Chapter 2 studies dis-

tributed averaging over networks, in which CHA is developed. Chapters 3–4

present distributed algorithms for solving positive definite linear equations over

networks. In particular, Chapter 3 proposes SE for agent networks and Chap-

ter 4 constructs a few distributed algorithms for wireless networks. Chapters 5–

7 address the problem of distributed convex optimization over networks, where

PE and PB are developed in Chapter 5, CHE is introduced in Chapter 6, and

ZGS algorithms are constructed in Chapter 7. Finally, Chapter 8 concludes

the dissertation and provides several possible future research directions. The

proofs for Chapters 2–6 are included in Appendices A–E, respectively.
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Chapter 2 Controlled Hopwise Averaging

2.1 Introduction

Distributed averaging is a fundamental problem in distributed compu-

tation that finds many applications in multi-agent systems, ad hoc networks,

sensor networks and the likes. Due to its significance, the problem has been

widely studied (see, e.g., [8,11,13,16,20,26,30,31,36,38,39,52,53,55,56,64,69,

72, 74, 75, 78]) for different network models (e.g., wired or wireless; undirected

or directed links; fixed or time-varying topologies), with different communica-

tion assumptions (e.g., without delays, errors, and quantization or with), and

in different time domains (e.g., continuous- or discrete-time; synchronous or

asynchronous). The research efforts have led to a growing list of algorithms,

including Pairwise Averaging [72], Randomized Gossip Algorithm [8], Accel-

erated Gossip Algorithm [11], Distributed Random Grouping [13], and Linear

Prediction-Based Accelerated Averaging [56], to name just a few.

Although the current literature offers a rich collection of distributed av-

eraging schemes along with in-depth analysis of their behaviors, their efficacy

from a bandwidth/energy efficiency standpoint has not been examined. This

chapter is devoted to studying the distributed averaging problem from this

standpoint. Its contributions are as follows: we first show that the existing

schemes—regardless of whether they are developed in continuous- or discrete-

time, for synchronous or asynchronous models—have a few deficiencies and are
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inefficient, producing networked dynamical systems that evolve with wasteful

communications. To address these issues, we develop Random Hopwise Av-

eraging (RHA), an asynchronous distributed averaging algorithm with several

positive features, including a novel one among the asynchronous schemes: an

ability to fully exploit the broadcast nature of wireless medium, so that no

overheard information is ever wastefully discarded. We show that RHA ad-

mits a common quadratic Lyapunov function, is almost surely asymptotically

convergent, and eliminates all but one of the deficiencies facing the existing

schemes.

To tackle the remaining deficiency, on lack of control, we introduce the

concept of feedback iteration control, whereby individual nodes use feedback

to control when to initiate an iteration. Although simple and intuitive, this

concept, somewhat surprisingly, has not been explored in the literature on dis-

tributed averaging [8, 11, 13, 16, 20, 26, 30, 31, 36, 38, 39, 52, 53, 55, 56, 64, 69, 72,

74,75,78] and distributed consensus [4,20,21,24,25,34,40,50,52,54,63,67,70].

We show that RHA, along with the common quadratic Lyapunov function,

exhibits features that enable a greedy, decentralized approach to feedback iter-

ation control, which leads to bandwidth/energy-efficient iterations at zero feed-

back cost. Based on this approach, we present two modified versions of RHA:

an ideal version referred to as Ideal Controlled Hopwise Averaging (ICHA), and

a practical one referred to simply as Controlled Hopwise Averaging (CHA). We

show that ICHA yields a networked dynamical system with state-dependent

switching, derive deterministic bounds on its exponential convergence rate for

general and specific graphs, and show that the bounds are better than the

stochastic convergence rate of Pairwise Averaging [20, 72] for path, cycle, and

complete graphs. We also show that CHA is able to closely mimic the be-
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havior of ICHA, achieving the same bounds on its convergence rate. Finally,

via extensive simulation on random geometric graphs, we demonstrate that

CHA is substantially more bandwidth/energy efficient than Pairwise Averag-

ing [72], Consensus Propagation [38], Algorithm A2 of [36], and Distributed

Random Grouping [13], requiring far fewer transmissions to complete an aver-

aging task. In particular, CHA is twice more efficient than the most efficient

existing scheme when the network is sparsely connected.

The outline of this chapter is as follows: Section 2.2 formulates the

distributed averaging problem. Section 2.3 describes the deficiencies of the

existing schemes. Sections 2.4 and 2.5 develop RHA and CHA and characterize

their convergence properties. In Section 2.6, their comparison with several

existing schemes is carried out. Finally, Section 2.7 concludes the chapter. The

proofs of the main results are included in Appendix A.

2.2 Problem Formulation

Consider a multi-hop wireless network consisting of N ≥ 2 nodes, con-

nected by L bidirectional links in a fixed topology. The network is modeled as

a connected, undirected graph G = (V , E), where V = {1, 2, . . . , N} represents

the set of N nodes (vertices) and E ⊂ {{i, j} : i, j ∈ V , i 6= j} represents the

set of L links (edges). Any two nodes i, j ∈ V are one-hop neighbors and can

communicate if and only if {i, j} ∈ E . The set of one-hop neighbors of each

node i ∈ V is denoted as Ni = {j ∈ V : {i, j} ∈ E}, and the communica-

tions are assumed to be delay- and error-free, with no quantization. Each node

i ∈ V observes a scalar yi ∈ R, and all the N nodes wish to determine the
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network-wide average x∗ ∈ R of their individual observations, given by

x∗ =
1

N

∑

i∈V
yi. (2.1)

Given the above model, the problem addressed in this chapter is how

to construct a distributed averaging algorithm—continuous- or discrete-time,

synchronous or otherwise—with which each node i ∈ V repeatedly communi-

cates with its one-hop neighbors, iteratively updates its estimate x̂i ∈ R of

the unknown average x∗ in (2.1), and asymptotically drives x̂i to x
∗—all while

consuming bandwidth and energy efficiently.

The bandwidth/energy efficiency of an algorithm is measured by the

number of real-number transmissions it needs to drive all the x̂i’s to a suf-

ficiently small neighborhood of x∗, essentially completing the averaging task.

This quantity is a natural measure of efficiency because the smaller it is, the

lesser bandwidth is occupied, the lesser energy is expended for communica-

tions, and the faster an averaging task may be completed. These, in turn,

imply more bandwidth and time for other tasks, smaller probability of colli-

sion, longer lifetime for battery-powered nodes, and possible earlier return to

sleep mode, all of which are desirable. The quantity also allows algorithms with

different numbers of real-number transmissions per iteration to be fairly com-

pared. Although, in networking, every message inevitably contains overhead

(e.g., transmitter/receiver IDs and message type), we exclude such overhead

when measuring efficiency since it is not inherent to an algorithm, may be re-

duced by piggybacking messages, and becomes negligible when averaging long

vectors.
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2.3 Deficiencies of Existing Schemes

As was pointed out in Section 2.1, the current literature offers a va-

riety of distributed averaging schemes for solving the problem formulated in

Section 2.2. Unfortunately, as is explained below, they suffer from a number

of deficiencies, especially a lack of bandwidth/energy efficiency, by producing

networked dynamical systems that evolve with wasteful real-number transmis-

sions.

The continuous-time algorithms in [16, 52, 69] have the following defi-

ciency:

D1. Costly discretization: As immensely inefficient as flooding is, the continuous-

time algorithms in [16,52,69] may be more so: flooding only requires N2

real-number transmissions for all the N nodes to exactly determine the

average x∗ (since it takes N real-number transmissions for each node

i ∈ V to flood the network with its yi), whereas these algorithms may

need far more than that to essentially complete an averaging task. For

instance, the algorithm in [52] updates the estimates x̂i’s of x
∗ according

to the differential equation

dx̂i(t)

dt
=

∑

j∈Ni

(x̂j(t)− x̂i(t)), ∀i ∈ V . (2.2)

To realize (2.2), each node i ∈ V has to continuously monitor the x̂j(t)

of every one-hop neighbor j ∈ Ni. If this can be done without wireless

communications (e.g., by direct sensing), then the bandwidth/energy effi-

ciency issue is moot. If wireless communications must be employed, then

(2.2) has to be discretized, either exactly via a zero-order hold, i.e.,

x̂i((k + 1)T ) =
∑

j∈V
hijx̂j(kT ), ∀i ∈ V , (2.3)
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or approximately via numerical techniques such as the Euler forward

difference method, i.e.,

x̂i((k + 1)T )− x̂i(kT )
T

=
∑

j∈Ni

(x̂j(kT )− x̂i(kT )), ∀i ∈ V , (2.4)

where each hij ∈ R is the ij-entry of e−LT , L ∈ RN×N is the Laplacian

matrix of the graph G that governs the dynamics (2.2), and T > 0 is

the sampling period. Regardless of (2.3) or (2.4), they may be far more

costly to realize than flooding: with (2.3), N2 real-number transmissions

are already needed per iteration (since, in general, hij 6= 0 ∀i, j ∈ V , so

that each node i ∈ V has to flood the network with its x̂i(kT ), for every

k). In contrast, with (2.4), only N real-number transmissions are needed

per iteration (since each node i ∈ V only has to wirelessly transmit its

x̂i(kT ) once, to every one-hop neighbor j ∈ Ni, for every k). However,

the number of iterations, needed for all the x̂i(kT )’s to converge to an

acceptable neighborhood of x∗, may be very large, since the sampling

period T must be sufficiently small for (2.4) to be stable. If the number

of iterations needed exceeds N—which is possible and likely so with a

conservatively small T—then (2.4) would be worse than flooding1.

The discrete-time synchronous algorithms in [20,30,31,52,53,55,56,64,

69,74,75,78] have the following deficiencies:

D2. Clock synchronization: The discrete-time synchronous algorithms in [20,

30,31,52,53,55,56,64,69,74,75,78] require all the N nodes to always have

the same clock to operate. Although techniques for reducing clock syn-

1Flooding is, of course, more storage and bookkeeping intensive.
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chronization errors are available, it is still desirable that this requirement

can be removed.

D3. Forced transmissions: The algorithms in [20,31,52,53,55,56,64,69,74,75]

update the estimates x̂i’s of x
∗ according to the difference equation

x̂i(k + 1) = wii(k)x̂i(k) +
∑

j∈Ni

wij(k)x̂j(k), ∀i ∈ V , (2.5)

where each wij(k) ∈ R is a weighting factor that is typically constant.

The wij(k)’s may be specified in several ways, including choosing them

to maximize the convergence rate [74] or minimize the mean-square de-

viation [75]. However, no matter how the wij(k)’s are chosen, these algo-

rithms are bandwidth/energy inefficient because the underlying update

rule (2.5) simply forces every node i ∈ V at each iteration k to transmit

its x̂i(k) to its one-hop neighbors, irrespective of whether such transmis-

sions are worthy. It is possible, for example, that the x̂i(k)’s of a cluster

of nearby nodes are almost equal, so that their x̂i(k + 1)’s, being convex

combinations of their x̂i(k)’s, are also almost equal, causing their trans-

missions to be unworthy. The fact that N real-number transmissions are

needed per iteration also implies that (2.5) must drive all the x̂i(k)’s to

an acceptable neighborhood of x∗ within at most N iterations, in order

to just outperform flooding.

D4. Computing intermediate quantities: The scheme in [53] uses two parallel

runs of a consensus algorithm to obtain two consensus values and defines

each x̂i(k) as the ratio of these two values. While possible, this scheme is

likely inefficient because it attempts to compute two intermediate quan-

tities, as opposed to computing x∗ directly.

The discrete-time asynchronous algorithms in [8,11,13,20,26,36,38,39,
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72] have the following deficiencies:

D5. Wasted receptions: Each iteration of Pairwise Averaging [72], Anti-Entropy

Aggregation [26,39], Randomized Gossip Algorithm [8], and Accelerated

Gossip Algorithm [11] involves a pair of nodes transmitting to each other

their state variables. Due to the broadcast nature of wireless medium,

their transmissions are overheard by unintended nearby nodes, who would

immediately discard this “free” information, instead of using it to possi-

bly speed up convergence, enhancing bandwidth/energy efficiency. Hence,

these algorithms result in wasted receptions. The same can be said about

Consensus Propagation [38] and Algorithm A2 of [36], although they do

not assume pairwise exchanges. It can also be said about Distributed

Random Grouping [13], which only slightly exploits such broadcast na-

ture: the leader of a group does, but the members, who contribute the

majority of the transmissions, do not.

D6. Overlapping iterations: Pairwise Averaging [72], Anti-Entropy Aggrega-

tion [26, 39], Randomized Gossip Algorithm [8], Accelerated Gossip Al-

gorithm [11], and Distributed Random Grouping [13] require sequential

transmissions from multiple nodes to execute an iteration. This suggests

that before an iteration completes, the nodes involved may be asked to

participate in other iterations initiated by those unaware of the ongo-

ing iteration. Thus, these algorithms are prone to overlapping iterations

and, therefore, to deadlock situations [36]. It is noted that this practical

issue is naturally avoided by Consensus Propagation [38] and explicitly

handled by Algorithms A1 and A2 of [36].

D7. Uncontrolled iterations: The discrete-time asynchronous algorithms in

[8, 11, 13, 26, 36, 38, 39, 72] do not let individual nodes use information
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available to them during runtime (e.g., history of the state variables they

locally maintain) to control when to initiate an iteration and who to

include in the iteration. Indeed, Pairwise Averaging [72], Anti-Entropy

Aggregation [26,39], Accelerated Gossip Algorithm [11], Consensus Prop-

agation [38], and Algorithm A2 of [36] focus mostly on how nodes would

update their state variables during an iteration, saying little about how

they could use such information to control the iterations. Randomized

Gossip Algorithm [8] and Distributed Random Grouping [13], on the

other hand, let nodes randomly initiate an iteration according to some

probabilities. Although these probabilities may be optimized [8, 13], the

optimization is carried out a priori, dependent only on the graph G and

independent of the nodes’ state variables during runtime. Consequently,

wasteful iterations may occur, despite the optimality. For instance, sup-

pose Randomized Gossip Algorithm [8] is utilized, and a pair of adjacent

nodes i, j ∈ V have just finished gossiping with each other, so that x̂i and

x̂j are equal. Since the optimal probabilities are generally nonzero, nodes

i and j may gossip with each other again before any of them gossips with

someone else, causing x̂i and x̂j to remain unchanged, wasting that par-

ticular gossip. Similarly, suppose Distributed Random Grouping [13] is

employed, and a node i ∈ V has just finished leading an iteration, so that

x̂i and x̂j ∀j ∈ Ni are equal. Due again to nonzero probabilities, node

i may lead another iteration before any of its one- or two-hop neighbors

leads an iteration, causing x̂i and x̂j ∀j ∈ Ni to stay the same, wasting

that particular iteration. These examples suggest that not letting nodes

control the iterations is detrimental to bandwidth/energy efficiency and,

conceivably, letting them do so may cut down on wasteful iterations,
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improving efficiency.

D8. Steady-state errors: Consensus Propagation [38] ensures that all the x̂i’s

asymptotically converge to the same steady-state value. However, this

value is, in general, not equal to x∗ (see Figure 2.3 of Section 2.6 for an

illustration). Although the error can be made arbitrarily small, it comes

at the expense of increasingly slow convergence [38], which is undesirable.

D9. Lack of convergence guarantees: Accelerated Gossip Algorithm [11], de-

veloped based on the power method in numerical analysis, is shown by

simulation to have the potential of speeding up the convergence of Ran-

domized Gossip Algorithm [8] by a factor of 10. Furthermore, whenever

all the x̂i’s converge, they must converge to x∗. However, it was not

established in [11] that they would always converge.

2.4 Random Hopwise Averaging

Deficiencies D1–D9 facing the existing distributed averaging schemes

raise a question: is it possible to develop an algorithm, which does not at all

suffer from these deficiencies? In this section, we construct an algorithm that

simultaneously eliminates all but issue D7 with uncontrolled iterations. In the

next section, we will modify the algorithm to address this issue.

To circumvent the costly discretization issue D1 facing the existing

continuous-time algorithms and the clock synchronization and forced trans-

missions issues D2 and D3 facing the existing discrete-time synchronous algo-

rithms, the algorithm we construct must be asynchronous, regardless of whether

the nodes have access to the same global clock. To avoid issue D6 with over-

lapping iterations, each iteration of this algorithm must involve only a single

18



node sending a single message to its one-hop neighbors, without needing them

to reply. To tackle issue D5 with wasted receptions, all the neighbors, upon

hearing the same message, have to “meaningfully” incorporate it into updating

their state variables, rather than simply discarding it. To overcome issues D8

and D9 with steady-state errors and convergence guarantees, the algorithm

must be asymptotically convergent to the correct average. Finally, to elimi-

nate D4, it has to avoid computing intermediate quantities.

To develop an algorithm having the aforementioned properties, consider

a networked dynamical system, defined on the graph G = (V , E) as follows:

associated with each link {i, j} ∈ E are a parameter c{i,j} > 0 and a state

variable x{i,j} ∈ R of the system. In addition, associated with each node i ∈ V

is an output variable x̂i ∈ R, which represents its estimate of the unknown

average x∗ in (2.1). Since the graph G has L links and N nodes, the system

has L parameters c{i,j}’s, L state variables x{i,j}’s, and N output variables x̂i’s.

To describe the system dynamics, let x{i,j}(0) and x̂i(0) represent the initial

values of x{i,j} and x̂i, and x{i,j}(k) and x̂i(k) their values upon completing

each iteration k ∈ P, where P denotes the set of positive integers. With these

notations, the state and output equations governing the system dynamics may

be stated as

x{i,j}(k) =







∑

ℓ∈Nu(k)
c{u(k),ℓ}x{u(k),ℓ}(k − 1)

∑

ℓ∈Nu(k)
c{u(k),ℓ}

, if u(k) ∈ {i, j},

x{i,j}(k − 1), otherwise,

∀k ∈ P, ∀{i, j} ∈ E , (2.6)

x̂i(k) =

∑

j∈Ni
c{i,j}x{i,j}(k)

∑

j∈Ni
c{i,j}

, ∀k ∈ N, ∀i ∈ V , (2.7)

where u(k) ∈ V is a variable to be interpreted shortly and N denotes the set of

nonnegative integers. Equation (2.7) says that the output variable associated
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with each node is a convex combination of the state variables associated with

links incident to the node. Equation (2.6) says that at each iteration k ∈ P, the

state variables associated with links incident to node u(k) are set equal to the

same convex combination of their previous values. Equation (2.6) also implies

that the system is a linear switched system, since (2.6) may be written as

x(k) = Au(k)x(k − 1), ∀k ∈ P, (2.8)

where x(k) ∈ RL is the state vector obtained by stacking the L x{i,j}(k)’s,

Au(k) ∈ RL×L is a time-varying matrix taking one of N possible values

A1,A2, . . . ,AN depending on u(k), and each Ai ∈ RL×L is a row stochastic

matrix whose entries depend on the c{i,j}’s. Hence, the sequence (u(k))∞k=1 fully

dictates how the asynchronous iteration (2.6) takes place, or equivalently, how

the system (2.8) switches. Throughout this section, we assume that (u(k))∞k=1

is an independent and identically distributed random sequence with a uniform

distribution, i.e.,

P{u(k) = i} = 1

N
, ∀k ∈ P, ∀i ∈ V . (2.9)

Remark 2.1. Clearly, alternatives to letting (u(k))∞k=1 be random and equiprob-

able are possible, and perhaps beneficial. We will explore such alternatives in

Section 2.5, when we discuss control. �

For the system (2.6), (2.7), (2.9) to solve the distributed averaging prob-

lem, the x̂i(k)’s must asymptotically approach x∗ of (2.1), i.e.,

lim
k→∞

x̂i(k) = x∗, ∀i ∈ V . (2.10)

Due to (2.7), condition (2.10) is met if the x{i,j}(k)’s satisfy

lim
k→∞

x{i,j}(k) = x∗, ∀{i, j} ∈ E . (2.11)
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To ensure (2.11), the parameters c{i,j}’s and initial states x{i,j}(0)’s must satisfy

a condition. To derive the condition, observe from (2.6) that no matter what

u(k) is, the expression
∑

{i,j}∈E c{i,j}x{i,j}(k) is conserved after every iteration

k ∈ P, i.e.,

∑

{i,j}∈E
c{i,j}x{i,j}(k) =

∑

{i,j}∈E
c{i,j}x{i,j}(k − 1), ∀k ∈ P. (2.12)

Therefore, as it follows from (2.12) and (2.1), (2.11) holds only if the c{i,j}’s

and x{i,j}(0)’s satisfy
∑

{i,j}∈E c{i,j}x{i,j}(0)
∑

{i,j}∈E c{i,j}
=

∑

i∈V yi
N

. (2.13)

To achieve (2.13), notice that the expressions
∑

{i,j}∈E c{i,j} and
∑

{i,j}∈E c{i,j}x{i,j}(0) each has L terms, of which |Ni| terms are associated with

links incident to node i, for every i ∈ V , where | · | denotes the cardinality of a

set. Hence, by letting each node i ∈ V evenly distribute the number 1 to the

|Ni| terms in
∑

{i,j}∈E c{i,j}, i.e.,

c{i,j} =
1

|Ni|
+

1

|Nj|
, ∀{i, j} ∈ E , (2.14)

we get
∑

{i,j}∈E c{i,j} = N . Similarly, by letting each node i ∈ V evenly dis-

tribute its observation yi to the |Ni| terms in
∑

{i,j}∈E c{i,j}x{i,j}(0), i.e.,

x{i,j}(0) =

yi
|Ni| +

yj
|Nj |

c{i,j}
, ∀{i, j} ∈ E , (2.15)

we get
∑

{i,j}∈E c{i,j}x{i,j}(0) =
∑

i∈V yi. Thus, (2.14) and (2.15) together ensure

(2.13), which is necessary for achieving (2.11).

Remark 2.2. Obviously, (2.14) and (2.15) are not the only way to select the

c{i,j}’s and x{i,j}(0)’s. In fact, their selection may be posed as an optimization

problem, analogous to the synchronous algorithms in [74, 75]. Nevertheless,
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(2.14) and (2.15) have the virtue of being simple and inexpensive to imple-

ment: for every link {i, j} ∈ E , both c{i,j} and x{i,j}(0) depend only on local

information |Ni|, |Nj|, yi, and yj that nodes i and j know, as opposed to on

global information derived from the graph G, which is typically difficult and

costly to gather, but often the outcome of optimization. �

The system (2.6), (2.7), (2.9) with parameters (2.14) and initial states

(2.15) can be realized over the wireless network by having the nodes take the

following actions: for every link {i, j} ∈ E , nodes i and j each maintains a

local copy of x{i,j}(k), denoted as xij(k) and xji(k), respectively, where they

are meant to be always equal, so that the order of the subscripts is only used

to indicate where they physically reside. Each node i ∈ V , in addition to

xij(k) ∀j ∈ Ni, also maintains c{i,j} ∀j ∈ Ni and x̂i(k). To initialize the

system, every node i ∈ V transmits |Ni| and yi each once, to every one-hop

neighbor j ∈ Ni, so that upon completion, each node i ∈ V can calculate c{i,j}

∀j ∈ Ni from (2.14), xij(0) ∀j ∈ Ni from (2.15), and x̂i(0) from (2.7). To evolve

the system, at each iteration k ∈ P, a node u(k) ∈ V is selected randomly

and equiprobably based on (2.9) to initiate the iteration. To describe the

subsequent actions, note that (2.6) and (2.7) imply: (i) x̂u(k)(k) = x̂u(k)(k− 1);

(ii) xu(k)j(k) = x̂u(k)(k) ∀j ∈ Nu(k); (iii) xju(k)(k) = x̂u(k)(k) ∀j ∈ Nu(k); (iv)

xjℓ(k) = xjℓ(k − 1) ∀ℓ ∈ Nj − {u(k)} ∀j ∈ Nu(k); (v) x̂j(k) =

∑
ℓ∈Nj

c{j,ℓ}xjℓ(k)
∑

ℓ∈Nj
c{j,ℓ}

∀j ∈ Nu(k); (vi) xℓm(k) = xℓm(k − 1) ∀m ∈ Nℓ ∀ℓ ∈ V − ({u(k)} ∪ Nu(k));

and (vii) x̂ℓ(k) = x̂ℓ(k − 1) ∀ℓ ∈ V − ({u(k)} ∪ Nu(k)). To execute (i) and (ii),

node u(k), upon being selected to initiate iteration k, sets x̂u(k)(k) and xu(k)j(k)

∀j ∈ Nu(k) all to x̂u(k)(k−1). To execute (iii), node u(k) then transmits x̂u(k)(k)

once, to every one-hop neighbor j ∈ Nu(k), so that upon reception, each of them

can set xju(k)(k) to x̂u(k)(k). Equations (iv) and (v) say that every neighbor
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j ∈ Nu(k) experiences no change in the rest of its local copies and, hence, can

compute x̂j(k) from (v) upon finishing (iii). Finally, (vi) and (vii) say that

the rest of the N nodes, i.e., excluding node u(k) and its one-hop neighbors,

experience no change in the variables they maintain.

The above node actions define a distributed averaging algorithm that

runs iteratively and asynchronously on the wireless network. We refer to this

algorithm as Random Hopwise Averaging (RHA), since every iteration is ran-

domly initiated and involves state variables associated with links within one

hop of each other. RHA may be expressed in a compact algorithmic form as

follows:

Algorithm 2.1 (Random Hopwise Averaging).

Initialization:

1. Each node i ∈ V transmits |Ni| and yi to every node j ∈ Ni.

2. Each node i ∈ V creates variables xij ∈ R ∀j ∈ Ni and x̂i ∈ R and

initializes them sequentially:

xij ←
yi

|Ni|
+

yj
|Nj |

c{i,j}
, ∀j ∈ Ni,

x̂i ←
∑

j∈Ni
c{i,j}xij

∑
j∈Ni

c{i,j}
.

Operation: At each iteration:

3. A node, say, node i, is selected randomly and equiprobably out of the set

V of N nodes.

4. Node i updates xij ∀j ∈ Ni:

xij ← x̂i, ∀j ∈ Ni.

5. Node i transmits x̂i to every node j ∈ Ni.

6. Each node j ∈ Ni updates xji and x̂j sequentially:

xji ← x̂i,
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x̂j ←
∑

ℓ∈Nj
c{j,ℓ}xjℓ

∑
ℓ∈Nj

c{j,ℓ}
. �

Observe from Algorithm 2.1 that RHA requires an initialization over-

head of 2N real-number transmissions to perform Step 1 (the |Ni|’s are counted

as real numbers, for simplicity). However, each iteration of RHA requires only

transmission of a single message, consisting of exactly one real number, by the

initiating node, in Step 5. Also notice that RHA fully exploits the broadcast

nature of wireless medium, allowing everyone that hears the message to use it

for revising their local variables, in Step 6. Therefore, RHA avoids issues D6

and D5 with overlapping iterations and wasted receptions. Furthermore, as

RHA operates asynchronously and calculates the average directly, it circum-

vents issues D1–D4 with costly discretization, clock synchronization, forced

transmissions, and computing intermediate quantities. To show that it over-

comes issues D8 and D9 with steady-state errors and convergence guarantees,

consider a quadratic Lyapunov function candidate V : RL → R, defined as

V (x(k)) =
∑

{i,j}∈E
c{i,j}(x{i,j}(k)− x∗)2. (2.16)

Clearly, V in (2.16) is positive definite with respect to (x∗, x∗, . . . , x∗) ∈ RL,

and the condition

lim
k→∞

V (x(k)) = 0 (2.17)

implies (2.11) and thus (2.10). The following lemma shows that V (x(k)) is

always non-increasing and quantifies its changes:

Lemma 2.1. Consider the wireless network modeled in Section 2.2 and the

use of RHA described in Algorithm 2.1. Then, for any sequence (u(k))∞k=1, the
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sequence (V (x(k)))∞k=0 is non-increasing and satisfies

V (x(k))− V (x(k − 1)) = −
∑

j∈Nu(k)

c{u(k),j}(x{u(k),j}(k − 1)− x̂u(k)(k − 1))2,

∀k ∈ P. (2.18)

Proof. From (2.16) and the bottom of (2.6),

V (x(k))− V (x(k − 1)) = −
∑

j∈Nu(k)

c{u(k),j}(−x2{u(k),j}(k) + 2x{u(k),j}(k)x
∗

+ x2{u(k),j}(k − 1)− 2x{u(k),j}(k − 1)x∗), ∀k ∈ P.

Due to the top of (2.6), the second term −∑

j∈Nu(k)
2c{u(k),j}x{u(k),j}(k)x∗ can-

cels the fourth term
∑

j∈Nu(k)
2c{u(k),j}x{u(k),j}(k − 1)x∗. Moreover, note from

(2.6) and (2.7) that x{u(k),j}(k) = x̂u(k)(k − 1) ∀j ∈ Nu(k). Hence, V (x(k)) −

V (x(k − 1)) = −∑

j∈Nu(k)
c{u(k),j}(x̂2u(k)(k − 1) − 2x̂u(k)(k − 1)x{u(k),j}(k) +

x2{u(k),j}(k − 1)) ∀k ∈ P. Due again to the top of (2.6), the second term

∑

j∈Nu(k)

2c{u(k),j}x̂u(k)(k − 1)x{u(k),j}(k) =
∑

j∈Nu(k)

2c{u(k),j}x̂u(k)(k − 1)x{u(k),j}(k − 1).

Thus, (2.18) holds. Since the right-hand side of (2.18) is nonpositive,

(V (x(k)))∞k=0 is non-increasing.

Lemma 2.1 says that V (x(k)) ≤ V (x(k−1)) ∀k ∈ P. Since V (x(k)) ≥ 0

∀x(k) ∈ RL, this implies that limk→∞ V (x(k)) exists and is nonnegative. The

following theorem asserts that this limit is almost surely zero, so that RHA is

almost surely asymptotically convergent to x∗:

Theorem 2.1. Consider the wireless network modeled in Section 2.2 and the

use of RHA described in Algorithm 2.1. Then, with probability 1, (2.17), (2.11),

and (2.10) hold.
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Proof. By associating the line graph of G with the graph in [20], RHA may

be viewed as a special case of the algorithm (1) in [20]. Note from (2.6) and

(2.14) that the diagonal entries of Ai ∀i ∈ V are positive, from (2.9) that

P{Au(k) = Ai} = 1
N
∀k ∈ P ∀i ∈ V , and from the connectedness of G that

its line graph is connected. Thus, by Corollary 3.2 of [20], with probability 1,

∃x̃ ∈ R such that limk→∞ x{i,j}(k) = x̃ ∀{i, j} ∈ E . Due to (2.1), (2.12), and

(2.13), x̃ = x∗, i.e., (2.11) holds almost surely. Because of (2.16) and (2.7), so

do (2.17) and (2.10).

As it follows from Theorem 2.1 and the above, RHA solves the dis-

tributed averaging problem, while eliminating deficiencies D1–D9 facing the

existing schemes except for D7, on lack of control. Lemma 2.1 above also

says that V in (2.16) is a common quadratic Lyapunov function for the lin-

ear switched system (2.8). This V will be used next to introduce control and

remove D7.

2.5 Controlled Hopwise Averaging

2.5.1 Motivation for Feedback Iteration Control

RHA operates by executing (2.6) or (2.8) according to (u(k))∞k=1. Al-

though, by Theorem 2.1, almost any (u(k))∞k=1 can drive all the x̂i(k)’s in (2.7)

to any neighborhood of x∗, certain sequences require fewer iterations (and,

hence, fewer real-number transmissions) to do so than others, yielding better

bandwidth/energy efficiency. To see this, consider the following proposition:

Proposition 2.1. The matrices A1,A2, . . . ,AN in (2.8) are idempotent, i.e.,

A2
i = Ai ∀i ∈ V. Moreover, Ai and Aj are commutative whenever {i, j} /∈ E ,

i.e., AiAj = AjAi ∀i, j ∈ V, {i, j} /∈ E .
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Proof. Notice from (2.6) and (2.8) that for any i ∈ V , if x(k) = Aix(k−1), then

x{i,j}(k) ∀j ∈ Ni are set equal to the same convex combination of x{i,j}(k − 1)

∀j ∈ Ni, and x{p,q}(k) = x{p,q}(k − 1) ∀{p, q} ∈ E − ∪j∈Ni
{{i, j}}. Thus,

Aix(k) = x(k), so that A2
i = Ai. Moreover, for any i, j ∈ V with {i, j} /∈ E ,

because {{i, ℓ} : ℓ ∈ Ni} ∩ {{j, ℓ} : ℓ ∈ Nj} = ∅, AiAj = AjAi.

The idempotence and partial commutativity of A1,A2, . . . ,AN from

Proposition 2.1, together with the fact that the switched system (2.8) may

be stated as x(k) = Au(k)Au(k−1) · · ·Au(1)x(0) ∀k ∈ P, imply that for a given

(u(k))∞k=1, the event x(k) = x(k−1) can occur for quite a few k’s, each of which

signifies a wasted iteration. Furthermore, if the event x(k) = x(k−1) does occur

for at least one k, then by deleting from (u(k))∞k=1 some of its elements that

correspond to the wasted iterations, we obtain a new sequence (u′(k))∞k=1 that

is more efficient. To illustrate these two points, consider, for instance, a 5-node

cycle graph with V = {1, 2, 3, 4, 5} and E = {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 1}}.

Notice that if (u(k))∞k=1 = (1, 1, 3, 4, 1, 2, 4, 5, 2, 5, . . .), then as many as 5 out

of the first 10 iterations—namely, those underlined elements—are wasted. By

deleting these underlined elements and keeping the rest intact, we obtain a

new sequence (u′(k))∞k=1 = (1, 3, 4, 2, 5, . . .) that is 5 real-number transmissions

more efficient than (u(k))∞k=1.

The preceding analysis shows that RHA is prone to wasteful iterations,

which is a primary reason why certain sequences are more efficient than others.

RHA, however, makes no attempt to distinguish the sequences, as it lets every

possible (u(k))∞k=1 be equiprobable, via (2.9). In other words, it does not try

to control how the asynchronous iterations occur and, thus, suffers from D7.

Remark 2.3. Wasteful iterations incurred by idempotent and partially commu-
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tative operations are not an attribute unique to RHA, but one that is shared

by Pairwise Averaging [72], Anti-Entropy Aggregation [26, 39], Randomized

Gossip Algorithm [8], and Distributed Random Grouping [13] (indeed, the ex-

amples provided in D7 against the latter two algorithms were created from

this attribute). What is different is that in this chapter, we view the attribute

as a limitation and find ways to overcome it, whereas in [8, 13, 26, 39, 72], the

attribute was not viewed as such. �

One way to control the iterations, alluded to in Remark 2.1, is to replace

(2.9) with a general distribution P{u(k) = i} = pi ∀k ∈ P ∀i ∈ V and then

choose the pi’s to maximize efficiency, before any averaging task begins. This

approach, however, has an inherent shortcoming: because the pi’s are optimized

once-and-for-all, they are constant and do not adapt to x(k) during runtime.

Hence, optimal or not, the pi’s almost surely would produce inefficient, wasteful

(u(k))∞k=1. The fact that the nodes do not adjust the pi’s based on information

they pick up during runtime also suggests that this way of controlling the

iterations may be considered open loop.

The aforementioned shortcoming of open-loop iteration control raises

the question of whether it is possible to introduce some form of closed-loop

iteration control as a means to generate efficient, non-wasteful (u(k))∞k=1. Ob-

viously, to carry out closed-loop iteration control, feedback is needed. Due to

the distributed nature of the network, however, feedback may be expensive to

acquire: if an algorithm demands that the feedback used by a node be a function

of state variables maintained by other nodes, then additional communications

are necessary to implement the feedback. Such communications can produce

plenty of real-number transmissions, which must all count toward the total

real-number transmissions, when evaluating the algorithm’s bandwidth/energy
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efficiency. Thus, in the design of feedback algorithms, the cost of “closing the

loop” cannot be overlooked.

In this section, we first describe an approach to closed-loop iteration

control, which leads to highly efficient and surely non-wasteful (u(k))∞k=1 at

zero feedback cost. Based on this approach, we then present and analyze two

modified versions of RHA: an ideal version and a practical one.

2.5.2 Approach to Feedback Iteration Control

Note that with RHA, (u(k))∞k=1 is undefined at the moment an averaging

task begins and is gradually defined, one element per iteration, as time elapses,

i.e., when a node i ∈ V initiates an iteration k ∈ P, the element u(k) becomes

defined and is given by u(k) = i. Thus, by controlling when to initiate an

iteration, the nodes may jointly shape the value of (u(k))∞k=1. With RHA, this

opportunity to shape (u(k))∞k=1 is not utilized, as the nodes simply randomly

and equiprobably decide when to initiate an iteration. To exploit the oppor-

tunity, suppose henceforth that the nodes wish to control when to initiate an

iteration using some form of feedback. The questions are:

Q1. What feedback to use, so that the corresponding feedback cost is minimal?

Q2. How to control, so that the resulting (u(k))∞k=1 is highly efficient?

Q3. How to control, so that the resulting (u(k))∞k=1 is surely non-wasteful?

To answer questions Q1–Q3, we first show that RHA, along with the

common quadratic Lyapunov function V of (2.16), exhibits the following fea-

tures:

F1. Although the nodes never know the value of V , every one of them at any
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time knows by how much the value would drop if it suddenly initiates an

iteration.

F2. The faster (u(k))∞k=1 makes the value of V drop to zero, the more efficient

it is.

F3. If the value of V does not drop after an iteration, then the iteration is

wasted, causing (u(k))∞k=1 to be wasteful. The converse is also true.

The first part of feature F1 can be seen by noting that V (x(k)) in (2.16)

depends on c{i,j} ∀{i, j} ∈ E , x{i,j}(k) ∀{i, j} ∈ E , and x∗, whereas each node

i ∈ V only knows c{i,j} ∀j ∈ Ni and x{i,j}(k) ∀j ∈ Ni. To see the second part,

suppose a node i ∈ V initiates an iteration k ∈ P at some time instant t, so

that u(k) = i by definition. Observe from Lemma 2.1 that whoever node u(k)

is, upon completing this iteration, the value of V would drop from V (x(k− 1))

to V (x(k)) by an amount equal to the right-hand side of (2.18). To compactly

represent this drop, for each i ∈ V let ∆Vi : R
L → R be a positive semidefinite

quadratic function, defined as

∆Vi(x(k)) =
∑

j∈Ni

c{i,j}(x{i,j}(k)− x̂i(k))2, ∀k ∈ N, (2.19)

where x̂i(k) is as in (2.7). Then, with (2.19), (2.18) may be written as

V (x(k))− V (x(k − 1)) = −∆Vu(k)(x(k − 1)), ∀k ∈ P, (2.20)

where ∆Vu(k)(x(k − 1)) in (2.20) represents the amount of drop, i.e.,

∆Vu(k)(x(k − 1)) =
∑

j∈Nu(k)

c{u(k),j}(x{u(k),j}(k − 1)− x̂u(k)(k − 1))2, ∀k ∈ P.

(2.21)

Notice that ∆Vu(k)(x(k − 1)) in (2.21) depends on parameters and variables

maintained by node u(k), whose values are known to node u(k) prior to iteration
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k at time t. Therefore, before initiating this iteration at time t, node u(k)

already knows that the value of V would drop by ∆Vu(k)(x(k − 1)). Since

t, k, and u(k) are arbitrary, this means that every node i ∈ V at any time

knows by how much the value of V would drop if it suddenly initiates an

iteration (i.e., by ∆Vi(x(·))). This establishes feature F1. To show feature F2,

recall that: (i) V (x(k)) in (2.16) is a measure of the deviation of the x{i,j}(k)’s

from x∗; (ii) the x̂i(k)’s in (2.7) are convex combinations of the x{i,j}(k)’s;

(iii) bandwidth/energy efficiency is measured by the number of real-number

transmissions needed for all the x̂i(k)’s to converge to a given neighborhood of

x∗; and (iv) RHA in Algorithm 2.1 has a fixed, one real-number transmission

per iteration. Hence, the faster (u(k))∞k=1 drives V (x(k)) to zero, the faster

it drives the x{i,j}(k)’s and x̂i(k)’s to x∗ (due to (i) and (ii)), and the more

efficient it is (due to (iii) and (iv)). Finally, to show feature F3, suppose

V (x(k)) = V (x(k − 1)) after an iteration k ∈ P. Then, it follows from (2.20)

that ∆Vu(k)(x(k−1)) = 0, from (2.21) that x{u(k),j}(k−1) ∀j ∈ Nu(k) are equal,

and from (2.6) that x(k) = x(k−1). Thus, iteration k is wasted. The converse

is also true, as x(k) = x(k − 1) implies V (x(k)) = V (x(k − 1)).

Having demonstrated features F1–F3, we now use them to answer ques-

tions Q1–Q3. Feature F1 suggests that every node i ∈ V may use ∆Vi(x(·)),

which it always knows, as feedback to control, on its own, when to initiate

an iteration. As the feedbacks ∆Vi(x(·))’s are locally available and the con-

trol decisions are made locally, the resulting feedback control architecture is

fully decentralized, requiring zero communication cost to realize. Therefore, an

answer to question Q1 is:

A1. Each node i ∈ V uses ∆Vi(x(·)) as feedback to control when to initiate
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an iteration.

Feature F2 suggests that, to produce highly efficient (u(k))∞k=1, the nodes may

focus on making the value of V drop significantly after each iteration, especially

initially. In other words, they may focus on letting every iteration be initiated

by a node i with a relatively large ∆Vi(x(·)). With architecture A1, this may be

accomplished if nodes with larger ∆Vi(x(·))’s would rush to initiate, while nodes

with smaller ∆Vi(x(·))’s would wait longer. Hence, an answer to question Q2

is:

A2. The larger ∆Vi(x(·)) is, the sooner node i initiates an iteration (i.e., the

smaller ∆Vi(x(·)) is, the longer node i waits).

Finally, feature F3 suggests that, to generate surely non-wasteful (u(k))∞k=1, the

value of V must strictly decrease after each iteration. With architecture A1,

this can be achieved if nodes with zero ∆Vi(x(·))’s would refrain from initiating

an iteration. Thus, an answer to question Q3 is:

A3. Whenever ∆Vi(x(·)) = 0, node i refrains from initiating an iteration.

Answers A1–A3 describe a greedy, decentralized approach to feedback

iteration control, where potential drops ∆Vi(x(·))’s in the value of V are used to

drive the asynchronous iterations. This approach may be viewed as a greedy

approach because the nodes seek to make the value of V drop as much as

possible at each iteration, without considering the future. Because the nodes

also seek to fully exploit the broadcast nature of every wireless transmission (a

feature inherited from Steps 5 and 6 of RHA), this approach strives to “make

the most” out of each iteration. Note that although Lyapunov functions have
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been used to analyze distributed averaging and consensus algorithms (e.g.,

in the form of a disagreement function [52] or a set-valued convex hull [40]),

their use for controlling such algorithms has not been reported. Therefore, this

approach represents a new way to apply Lyapunov stability theory.

2.5.3 Ideal Version

In this subsection, we use the aforementioned approach to create an

ideal, modified version of RHA, which possesses strong convergence properties

that motivate a practical version.

The above approach wants the nodes to try to be greedy. Thus, it is

of interest to analyze an ideal scenario where, instead of just trying, the nodes

actually succeed at being greedy, ensuring that every iteration k ∈ P is initiated

by a node i ∈ V with the maximum ∆Vi(x(k − 1)), i.e.,

u(k) ∈ argmax
i∈V

∆Vi(x(k − 1)), ∀k ∈ P, (2.22)

so that V (x(k − 1)) drops maximally to V (x(k)) for every k ∈ P. Notice that

(2.22) does not always uniquely determine u(k): when multiple nodes have the

same maximum, u(k) may be any of these nodes. Although u(k) can be made

unique (e.g., by letting u(k) be the minimum of argmaxi∈V ∆Vi(x(k − 1))), in

the analysis below we will allow for arbitrary u(k) satisfying (2.22). Also note

that in the rare case where ∆Vi(x(k
∗ − 1)) = 0 ∀i ∈ V for some k∗ ∈ P, due

to (2.1), (2.12), (2.13), (2.19), and the connectedness of the graph G, we have

x{i,j}(k∗ − 1) = x∗ ∀{i, j} ∈ E and x̂i(k
∗ − 1) = x∗ ∀i ∈ V , thereby solving the

problem in finite time. Furthermore, due to A3, all the nodes would refrain

from initiating iteration k∗ (and beyond), thereby terminating the algorithm

in finite time and causing x{i,j}(k) ∀{i, j} ∈ E , x̂i(k) ∀i ∈ V , u(k), and V (x(k))
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to be undefined ∀k ≥ k∗. In the analysis below, however, we will allow the

algorithm to keep executing according to (2.22), so that x{i,j}(k) ∀{i, j} ∈ E ,

x̂i(k) ∀i ∈ V , u(k), and V (x(k)) are defined ∀k.

Equation (2.22), together with (2.6), (2.7), (2.14), (2.15), and (2.19),

defines a networked dynamical system that switches among N different dy-

namics, depending on where the state is in the state space, i.e., if x(k − 1) is

such that ∆Vi(x(k−1)) > ∆Vj(x(k−1)) ∀j ∈ V−{i}, then x(k) = Aix(k−1).

This system may be expressed in the form of an algorithm—which we refer to

as Ideal Controlled Hopwise Averaging (ICHA)—as follows:

Algorithm 2.2 (Ideal Controlled Hopwise Averaging).

Initialization:

1. Each node i ∈ V transmits |Ni| and yi to every node j ∈ Ni.

2. Each node i ∈ V creates variables xij ∈ R ∀j ∈ Ni, x̂i ∈ R, and ∆Vi ∈

[0,∞) and initializes them sequentially:

xij ←
yi

|Ni|
+

yj
|Nj |

c{i,j}
, ∀j ∈ Ni,

x̂i ←
∑

j∈Ni
c{i,j}xij

∑
j∈Ni

c{i,j}
,

∆Vi ←
∑

j∈Ni
c{i,j}(xij − x̂i)2.

Operation: At each iteration:

3. Let i ∈ argmaxj∈V ∆Vj.

4. Node i updates xij ∀j ∈ Ni and ∆Vi sequentially:

xij ← x̂i, ∀j ∈ Ni,

∆Vi ← 0.

5. Node i transmits x̂i to every node j ∈ Ni.

6. Each node j ∈ Ni updates xji, x̂j, and ∆Vj sequentially:

xji ← x̂i,
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x̂j ←
∑

ℓ∈Nj
c{j,ℓ}xjℓ

∑
ℓ∈Nj

c{j,ℓ}
,

∆Vj ←
∑

ℓ∈Nj
c{j,ℓ}(xjℓ − x̂j)2. �

Algorithm 2.2, or ICHA, is identical to RHA in Algorithm 2.1 except

that each node i also maintains ∆Vi, in Steps 2, 4, and 6, and that each iteration

is initiated by a node i experiencing the maximum ∆Vi, in Step 3. Note that

“∆Vi ← 0” in Step 4 is equivalent to “∆Vi ←
∑

j∈Ni
c{i,j}(xij − x̂i)2” since xij

∀j ∈ Ni and x̂i are equal at that point. The fact that ∆Vi goes from being

the maximum to zero whenever node i initiates an iteration also suggests that

it may be a while before ∆Vi becomes the maximum again, causing node i to

initiate another iteration.

The convergence properties of ICHA on general networks are charac-

terized in the following theorem, in which 1n ∈ Rn and x̂(k) ∈ RN denote,

respectively, the vectors obtained by stacking n 1’s and the N x̂i(k)’s:

Theorem 2.2. Consider the wireless network modeled in Section 2.2 and the

use of ICHA described in Algorithm 2.2. Then,

V (x(k)) ≤ (1− 1
γ
)V (x(k − 1)), ∀k ∈ P, (2.23)

‖x(k)− x∗1L‖ ≤
√

V (x(0))maxi∈V |Ni|
2

(1− 1
γ
)k/2, ∀k ∈ N, (2.24)

‖x̂(k)− x∗1N‖ ≤
√

2V (x(0))maxi∈V |Ni|
mini∈V |Ni|+maxi∈V |Ni|(1−

1
γ
)k/2, ∀k ∈ N, (2.25)

where γ ∈ [N
2
+ 1, N3 − 2N2 + N

2
+ 1] is given by

γ =
N

2
+ α +

(N2 − β)(3(N − 1)−D)(D + 1)

2N
, (2.26)

and where α = max{i,j}∈E
bi+bj
c{i,j}

∈ [1, N
2−2N+2

2
], β =

∑

i∈V
∑

j∈Ni∪{i} bibj ∈

[N + L
2
(1 + 1

N−1
)2, N2], bi = 1

2

∑

j∈Ni
c{i,j} ∀i ∈ V, and D is the network

diameter.
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Proof. See Appendix A.1.

Theorem 2.2 says that ICHA is exponentially convergent on any net-

work, ensuring that V (x(k)), ‖x(k)− x∗1L‖, and ‖x̂(k)− x∗1N‖ all go to zero

exponentially fast, at a rate that is no worse than 1− 1
γ
or (1− 1

γ
)1/2, so that

γ in (2.26) represents a bound on the convergence rate. It also says that the

bound γ is between Ω(N) and O(N3) and depends only on N , D, and the

|Ni|’s, making it easy to compute. The following corollary lists the bound γ

for a number of common graphs:

Corollary 2.1. The constant γ in (2.26) becomes:

G1. γ = N3 − 4N2 + 9
2
N + 5

4
for a path graph with N ≥ 5,

G2. γ = 5
8
N3 − 15

8
N2 − 1

8
N + 31

8
if N is odd and γ = 5

8
N3 − 11

8
N2 − 5

2
N + 13

2

if N is even for a cycle graph,

G3. γ = N
2
+K + (N−K−1)(3(N−1)−D)(D+1)

2
for a K-regular graph with K ≥ 2,

G4. γ = 3
2
N − 1 for a complete graph.

Proof. For a path graph with N ≥ 5, α = 9
4
, β = 3N − 1, and D = N − 1. For

a cycle graph, α = 2, β = 3N , D = N−1
2

if N is odd, and D = N
2
if N is even.

For a K-regular graph with K ≥ 2, α = K and β = N(K +1). For a complete

graph, α = N − 1 and β = N2. Hence, G1–G4 hold.

Each bound γ in Corollary 2.1 is obtained by specializing (2.26) for

arbitrary graphs to a specific one. Conceivably, tighter bounds may be obtained

by working with each of these graphs individually, exploiting their particular

structure. Theorem 2.3 below shows that this is indeed the case with path and

cycle graphs (6 and 15 times tighter, respectively), besides providing additional

bounds for regular and strongly regular graphs:
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Figure 2.1: Comparison between the stochastic convergence rate 1− 1
γPA

of PA

and the deterministic bound 1 − 1
γICHA

on convergence rate of ICHA for path,
cycle, and complete graphs.

Theorem 2.3. Consider the wireless network modeled in Section 2.2 and the

use of ICHA described in Algorithm 2.2. Then, (2.23)–(2.25) hold with:

S1. γ = N3

6
− 13

6
N + 3 for a path graph with N ≥ 4,

S2. γ = N3

24
+ 7

12
N − 2 + 11

8N
if N is odd and γ = N3

24
+ 5

6
N − 3 + 4

N
if N is

even for a cycle graph,

S3. γ = N
2
+K + KD(D+1)(N−K−1)

2
for a K-regular graph with K ≥ 2,

S4. γ = N
2
+K+ K(µ+2)(N−K−1)

µ
for a (N,K, λ, µ)-strongly regular graph with

µ ≥ 1.

Proof. See Appendix A.2.

Recently, [20] studied, among other things, the convergence rate of Pair-

wise Averaging (PA) [72]. The results in [20] are different from those above in

three notable ways: first, the convergence rate of PA is defined in [20] as the

decay rate of the expected value of a Lyapunov-like function d(k). Although this

stochastic measure captures the average behavior of PA, it offers little guar-

antee on the decay rate of each realization (d(k))∞k=0. In contrast, the bounds
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γ on convergence rate of ICHA above are deterministic, providing guarantees

on the decay rate of (V (x(k)))∞k=0. Second, even if the first difference is disre-

garded, the bounds of ICHA are still roughly 20% better than the convergence

rate of PA for a few common graphs. To justify this claim, let 1− 1
γPA

denote

the convergence rate of PA. Since PA requires two real-number transmissions

per iteration while ICHA requires only one, to enable a fair comparison we

introduce a two-iteration bound γICHA for ICHA, defined as γICHA = γ2

2γ−1
so

that 1 − 1
γICHA

= (1 − 1
γ
)2. Figure 2.1 plots the ratio γICHA

γPA
versus N for path,

cycle, and complete graphs, where γPA is computed according to [20], while

γICHA is computed using γ in S1, S2, and G4. Observe that for N > 50, γICHA

is 18% smaller than γPA for path and cycle graphs, and 25% so for complete

graphs. The latter can also be shown analytically: since γPA = N − 1 and

γICHA =
( 3
2
N−1)2

2( 3
2
N−1)−1

, limN→∞
γICHA

γPA
= 3

4
. This justifies the claim. Finally, unlike

γ and γICHA, γPA in general cannot be expressed in a form that explicitly re-

veals its dependence on the graph invariants. Indeed, it generally can only be

computed by numerically finding the spectral radius of an invariant subspace

of an N2-by-N2 matrix, which may be prohibitive for large N .

2.5.4 Practical Version

The strong convergence properties of ICHA suggest that its greedy be-

havior may be worthy of emulating. In this subsection, we derive a practical

algorithm that closely mimics such behavior.

Reconsider the system (2.6), (2.7), (2.14), (2.15) and suppose this sys-

tem evolves in a discrete event fashion, according to the following description:

associated with the system is time, which is real-valued, nonnegative, and de-

noted as t ∈ [0,∞), where t = 0 represents the time instant at which the
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nodes have observed the yi’s but have yet to execute an iteration. In addi-

tion, associated with each node i ∈ V is an event, which is scheduled to occur

at time τi ∈ (0,∞] and is marked by node i initiating an iteration, where

τi = ∞ means the event will not occur. Each event time τi is a variable,

which is initialized at time t = 0 to τi(0), is updated only at each iteration

k ∈ P from τi(k − 1) to τi(k), and is no less than t at any time t, so that no

event is scheduled to occur in the past. Starting from t = 0, time advances to

t = mini∈V τi(0), at which an event, marked by node u(1) ∈ argmini∈V τi(0)

initiating iteration 1, occurs, during which τi(1) ∀i ∈ V are determined. Time

then advances to t = mini∈V τi(1), at which a subsequent event, marked by

node u(2) ∈ argmini∈V τi(1) initiating iteration 2, occurs, during which τi(2)

∀i ∈ V are determined. In the same way, time continues to advance toward

infinity, while events continue to occur one after another, except if τi(k) = ∞

∀i ∈ V for some k ∈ N, for which the system terminates.

Having described how the system evolves, we now specify how τi(k)

∀k ∈ N ∀i ∈ V are recursively determined. First, consider the time instant

t = 0, at which τi(0) ∀i ∈ V need to be determined. To behave greedily, nodes

with the maximum ∆Vi(x(0))’s should have the minimum τi(0)’s. This may be

accomplished by letting

τi(0) = Φ(∆Vi(x(0))), ∀i ∈ V , (2.27)

where Φ : [0,∞) → (0,∞] is a continuous and strictly decreasing function

satisfying limv→0Φ(v) = ∞ and Φ(0) = ∞. Although, mathematically, (2.27)

ensures that V (x(0)) drops maximally to V (x(1)), in reality it is possible that

multiple nodes have the same minimum τi(0)’s, leading to wireless collisions.
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To address this issue, we insert a little randomness into (2.27), rewriting it as

τi(0) = Φ(∆Vi(x(0))) + ε(∆Vi(x(0))) · rand(), ∀i ∈ V , (2.28)

where ε : [0,∞) → (0,∞) is a continuous function meant to take on small

positive values and each call to rand() returns a uniformly distributed random

number in (0, 1). With (2.28), with high probability iteration 1 is initiated by

a node i with the maximum, or a near-maximum, ∆Vi(x(0)).

Next, pick any k ∈ P and consider the time instant t = mini∈V τi(k−1),

at which node u(k) ∈ argmini∈V τi(k − 1) initiates iteration k, during which

τi(k) ∀i ∈ V need to be determined. Again, to be greedy, nodes with the

maximum ∆Vi(x(k))’s should have the minimum τi(k)’s. At first glance, this

may be approximately accomplished following ideas from (2.28), i.e., by letting

τi(k) = Φ(∆Vi(x(k))) + ε(∆Vi(x(k))) · rand(), ∀i ∈ V . (2.29)

However, with (2.29), it is possible that τi(k) turns out to be smaller than t,

causing an event to be scheduled in the past. Moreover, nodes who are two

or more hops away from node u(k) are unaware of the ongoing iteration k

and, thus, are unable to perform an update. Fortunately, these issues may be

overcome by slightly modifying (2.29) as follows:

τi(k)=

{

max{Φ(∆Vi(x(k))), t}+ ε(∆Vi(x(k))) · rand(), if i ∈ Nu(k) ∪ {u(k)},
τi(k − 1), otherwise,

∀i ∈ V . (2.30)

Using (2.28) and (2.30) and by induction on k′ ∈ P, it can be shown that τi(k
′)

satisfies

max{Φ(∆Vi(x(k′))), t′} ≤ τi(k
′) ≤ max{Φ(∆Vi(x(k′))), t′}+ ε(∆Vi(x(k

′))),

∀k′ ∈ P, ∀i ∈ V ,
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where t′ = minj∈V τj(k′ − 1). Hence, with (2.30), it is highly probable that

iteration k + 1 is initiated by a node i with the maximum or a near-maximum

∆Vi(x(k)). It follows that with (2.28) and (2.30), the nodes closely mimic

the greedy behavior of ICHA. Note that (2.28) and (2.30) represent a feedback

iteration controller, which uses architecture A1 and follows the spirit of A2

(since Φ is strictly decreasing and ε is small) and A3 (since Φ(0) =∞). Also,

Φ and ε represent the controller parameters, which may be selected based on

practical wireless networking considerations (e.g., all else being equal, Φ(v) = 1
v

and ε(v) = 0.001 yield faster convergence time than Φ(v) = 10
v
and ε(v) = 0.01

but higher collision probability).

The above description defines a discrete event system, which can be

realized via a distributed asynchronous algorithm, referred to as Controlled

Hopwise Averaging (CHA) and stated as follows:

Algorithm 2.3 (Controlled Hopwise Averaging).

Initialization:

1. Let time t = 0.

2. Each node i ∈ V transmits |Ni| and yi to every node j ∈ Ni.

3. Each node i ∈ V creates variables xij ∈ R ∀j ∈ Ni, x̂i ∈ R, ∆Vi ∈ [0,∞),

and τi ∈ (0,∞] and initializes them sequentially:

xij ←
yi

|Ni|
+

yj
|Nj |

c{i,j}
, ∀j ∈ Ni,

x̂i ←
∑

j∈Ni
c{i,j}xij

∑
j∈Ni

c{i,j}
,

∆Vi ←
∑

j∈Ni
c{i,j}(xij − x̂i)2,

τi ← Φ(∆Vi) + ε(∆Vi) · rand().

Operation: At each iteration:

4. Let t = minj∈V τj and i ∈ argminj∈V τj.
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5. Node i updates xij ∀j ∈ Ni, ∆Vi, and τi sequentially:

xij ← x̂i, ∀j ∈ Ni,

∆Vi ← 0,

τi ←∞.

6. Node i transmits x̂i to every node j ∈ Ni.

7. Each node j ∈ Ni updates xji, x̂j, ∆Vj, and τj sequentially:

xji ← x̂i,

x̂j ←
∑

ℓ∈Nj
c{j,ℓ}xjℓ

∑
ℓ∈Nj

c{j,ℓ}
,

∆Vj ←
∑

ℓ∈Nj
c{j,ℓ}(xjℓ − x̂j)2,

τj ← max{Φ(∆Vj), t}+ ε(∆Vj) · rand(). �

Algorithm 2.3, or CHA, is similar to ICHA in Algorithm 2.2 except that

each node i maintains an additional variable τi, in Steps 3, 5, and 7, and that

each iteration is initiated, in a discrete event fashion, by a node i having the

minimum τi, in Step 4. Note that “τi ← ∞” in Step 5 is due to “∆Vi ← 0”

and to Φ(0) = ∞. Moreover, every step of CHA is implementable in a fully

decentralized manner, making it a practical algorithm.

To analyze the behavior of CHA, recall that ε is meant to take on small

positive values, creating just a little randomness so that the probability of

wireless collisions is zero. For the purpose of analysis, we turn this feature off

(i.e., set ε(v) = 0 ∀v ∈ [0,∞)) and let the symbol “∈” in Step 4 take care

of the randomness (i.e., randomly pick an element i from the set argminj∈V τj

whenever it has multiple elements). We also allow Φ to be arbitrary (but satisfy

the conditions stated when it was introduced). With this setup, the following

convergence properties of CHA can be established:
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Theorem 2.4. Theorems 2.2 and 2.3, intended for ICHA described in Algo-

rithm 2.2, hold verbatim for CHA described in Algorithm 2.3 with any Φ and

with ε satisfying ε(v) = 0 ∀v ∈ [0,∞). In addition, limk→∞ t(k) = ∞ and

V (x(k)) ≤ (γ − 1)Φ−1(t(k)) ∀k ∈ P, where t(0) = 0 and t(k) is the time

instant at which iteration k occurs.

Proof. See Appendix A.3.

Theorem 2.4 characterizes the convergence of CHA in two senses: iter-

ation and time. Iteration-wise, it says that CHA converges exponentially and

shares the same bounds γ on convergence rate as ICHA, regardless of Φ. This

result suggests that CHA does closely emulate ICHA. Time-wise, the theorem

says that CHA converges asymptotically and perhaps exponentially, depending

on Φ. For example, Φ(v) = 1
v
does not guarantee exponential convergence in

time (since Φ−1(v) = 1
v
), but Φ(v) = W ( 1

v
), where W is the Lambert W func-

tion, does (since Φ−1(v) = 1
v
e−v). Therefore, the controller parameter Φ may

be used to shape the temporal convergence of CHA.

Remark 2.4. CHA has a limitation: it assumes no clock offsets among the

nodes. Note, however, that although such offsets would cause CHA to deviate

from its designed behavior, they would not render it “inoperable,” i.e., V (x(k))

would still strictly decrease after every iteration k, and the conservation (2.12)

would still hold, so that the x{i,j}(k)’s and x̂i(k)’s would still approach x∗.

2.6 Performance Comparison

In this section, we compare the performance of RHA and CHA with

that of Pairwise Averaging (PA) [72], Consensus Propagation (CP) [38], Al-
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gorithm A2 (A2) of [36], and Distributed Random Grouping (DRG) [13] via

extensive simulation on multi-hop wireless networks modeled by random geo-

metric graphs. For completeness, PA, CP, A2, and DRG are stated below, in

which E ′ = {(i, j) ∈ V × V : {i, j} ∈ E} denotes the set of 2L directed links:

Algorithm 2.4 (Pairwise Averaging [72]).

Initialization:

1. Each node i ∈ V creates a variable x̂i ∈ R and initializes it: x̂i ← yi.

Operation: At each iteration:

2. A link, say, link {i, j}, is selected randomly and equiprobably out of the

set E of L links. Node i transmits x̂i to node j. Node j updates x̂j:

x̂j ← x̂i+x̂j

2
. Node j transmits x̂j to node i. Node i updates x̂i: x̂i ← x̂j.

�

Algorithm 2.5 (Consensus Propagation [38]).

Initialization:

1. Each node i ∈ V creates variables Kji ≥ 0 ∀j ∈ Ni, µji ∈ R ∀j ∈ Ni,

and x̂i ∈ R and initializes them sequentially: Kji ← 0 ∀j ∈ Ni, µji ← 0

∀j ∈ Ni, x̂i ← yi.

Operation: At each iteration:

2. A directed link, say, link (i, j), is selected randomly and equiproba-

bly out of the set E ′ of 2L directed links. Node i transmits Fij ,

1+
∑

ℓ∈Ni,ℓ6=j Kℓi

1+ 1
β
(1+

∑
ℓ∈Ni,ℓ6=j Kℓi)

and Gij ,
yi+

∑
ℓ∈Ni,ℓ6=j Kℓiµℓi

1+
∑

ℓ∈Ni,ℓ6=j Kℓi
to node j. Node j updates

Kij, µij, and x̂j sequentially: Kij ← Fij, µij ← Gij, x̂j ←
yj+

∑
ℓ∈Nj

Kℓjµℓj

1+
∑

ℓ∈Nj
Kℓj

.

�
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Algorithm 2.6 (Algorithm A2 [36]).

Initialization:

1. Each node i ∈ V creates variables δij ∈ R ∀j ∈ Ni and x̂i ∈ R and

initializes them sequentially: δij ← 0 ∀j ∈ Ni, x̂i ← yi.

Operation: At each iteration:

2. A directed link, say, link (i, j), is selected randomly and equiprobably out

of the set E ′ of 2L directed links. Node i transmits x̂i to node j. Node j

updates δji: δji ← δji + φ(x̂i − x̂j). Node j transmits φ(x̂i − x̂j) to node

i. Node i updates δij: δij ← δij − φ(x̂i − x̂j). Each node ℓ ∈ V updates

x̂ℓ: x̂ℓ ← x̂ℓ +
γ

|Nℓ|+1
((
∑

m∈Nℓ
δℓm) + yℓ − x̂ℓ). �

Algorithm 2.7 (Distributed Random Grouping [13]).

Initialization:

1. Each node i ∈ V creates a variable x̂i ∈ R and initializes it: x̂i ← yi.

Operation: At each iteration:

2. A node, say, node i, is selected randomly and equiprobably out of the

set V of N nodes. Node i transmits a message to every node j ∈ Ni,

requesting their x̂j’s. Each node j ∈ Ni transmits x̂j to node i. Node i

updates x̂i: x̂i ←
∑

j∈{i}∪Ni
x̂j

|Ni|+1
. Node i transmits x̂i to every node j ∈ Ni.

Each node j ∈ Ni updates x̂j: x̂j ← x̂i. �

Note that RHA and CHA require 2N real-number transmissions as ini-

tialization overhead, whereas PA, CP, A2, and DRG require none. However,

PA, CP, and A2 require two real-number transmissions per iteration and DRG

requires |Ni| + 1 (where i is the node that leads an iteration), whereas RHA

and CHA require only one. Also note that CP has a parameter β ∈ (0,∞] and
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Figure 2.2: A 100-node, 1000-link multi-hop wireless network.

A2 has two parameters γ ∈ (0, 1) and φ ∈ (0, 1
2
). Moreover, PA and DRG are

assumed to be free of overlapping iterations, i.e., deficiency D6.

To compare the performance of these algorithms, two sets of simulation

are carried out. The first set corresponds to a single scenario of a multi-hop

wireless network withN = 100 nodes, where each node i observes yi ∈ (0, 1) and

has, on average, 2L
N

= 20 one-hop neighbors, as shown in Figure 2.2. The second

set corresponds to multi-hop wireless networks modeled by random geometric

graphs, with the number of nodes varying from N = 100 to N = 500, and the

average number of neighbors varying from 2L
N

= 10 to 2L
N

= 60. For each N and

2L
N
, we generate 50 scenarios. For each scenario, we randomly and uniformly

place N nodes in the unit square (0, 1) × (0, 1), gradually increase the one-

hop radius until there are L links (or 2L
N

neighbors on average), randomly and

uniformly generate the yi’s in (0, 1), and repeat this process if the resulting

network is not connected. We then simulate PA, CP, A2, DRG, RHA, and
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Figure 2.3: Convergence of the estimates x̂i(k)’s to the unknown average x∗

under PA, CP, A2, DRG, RHA, and CHA for the network in Figure 2.2.

CHA until 3N2 real-number transmissions have occurred (i.e., three times of

what flooding needs), record the number of real-number transmissions needed

to converge (including initialization overhead, if any), and assume that this

number is 3N2 if an algorithm fails to converge after 3N2. For both sets of

simulation, we let the convergence criterion be |x̂i − x∗| ≤ 0.005 ∀i ∈ V and

the parameters be β = 106 for CP (obtained after some tuning), γ = 0.3 and

φ = 0.49 for A2 (ditto), and Φ(v) = 1
v
and ε(v) = 0.001 for CHA.

Results from the first set of simulation are shown in Figure 2.3. Observe

that PA and A2 have roughly the same performance, requiring approximately

7, 000 real-number transmissions to converge. In contrast, CP fails to converge
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after 10, 000 transmissions, although it does achieve a consensus. On the other

hand, DRG is found to be quite efficient, needing only approximately 2, 100

transmissions for convergence. Note that RHA outperforms PA, CP, and A2,

but not DRG, while CHA is the most efficient, requiring only roughly 1, 300

transmissions to converge.

Results from the second set of simulation are shown in Figure 2.4, where

the number of real-number transmissions needed to converge, averaged over 50

scenarios, is plotted as a function of the number of nodes N and the average

number of neighbors 2L
N
. Also included in the figure, as a baseline for com-

parison, is the performance of flooding (i.e., N2). Observe that regardless of

N and 2L
N
, CP has the worst bandwidth/energy efficiency, followed by PA and

A2. In addition, DRG, RHA, and CHA are all fairly efficient, with CHA again

having the best efficiency. In particular, CHA is at least 20% more efficient

than DRG, and around 50% more so when the network is sparsely connected,

at 2L
N

= 10. Notice that the performance of DRG is achieved under the as-

sumption that overlapping iterations cannot occur, a condition that CHA does

not require. Finally, the significant difference in efficiency between RHA and

CHA demonstrates the benefit of incorporating greedy, decentralized, feedback

iteration control.

2.7 Conclusion

In this chapter, we have shown that the existing distributed averaging

schemes have a few drawbacks, which hurt their bandwidth/energy efficiency.

Motivated by this, we have devised RHA, an asynchronous algorithm that ex-

ploits the broadcast nature of wireless medium, achieves almost sure asymptotic
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convergence, and overcomes all but one of the drawbacks. To deal with the re-

maining drawback, on lack of control, we have introduced a new way to apply

Lyapunov stability theory, namely, the concept of greedy, decentralized, feed-

back iteration control. Based on this concept, we have developed ICHA and

CHA, established bounds on their exponential convergence rates, and shown

that CHA is practical and capable of closely mimicking the behavior of ICHA.

Finally, we have shown via extensive simulation that CHA is substantially more

bandwidth/energy efficient than several existing schemes.
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Figure 2.4: Bandwidth/energy efficiency of flooding, PA, CP, A2, DRG, RHA,
and CHA on random geometric networks with varying number of nodes N and
average number of neighbors 2L

N
.
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Chapter 3 Subset Equalizing for Solving Positive

Definite Linear Equations over Agent

Networks

3.1 Introduction

Solving a system of linear equations Ax = b is a fundamental problem

with numerous applications spanning various areas of science and engineering.

In this and the next chapters, we address the problem of solving an important

special case of such equations over networks, whereby each agent/node i ob-

serves a symmetric positive definite matrix Ai ∈ Rn×n and a vector bi ∈ Rn,

and all of them wish to find the solution x ∈ Rn to

( N∑

i=1

Ai

)

x =
N∑

i=1

bi. (3.1)

Since each agent/node i knows only its own Ai and bi, none of them has suffi-

cient information to individually solve (3.1). As a result, they must collaborate,

and how to make them collaborate—robustly, scalably, and efficiently—is the

focus of this chapter.

The need to solve (3.1) arises in many applications of multi-agent sys-

tems, mobile ad hoc networks, and wireless sensor networks. For instance, the

least-squares solution of a distributed sensor fusion problem may be cast into

the form of (3.1) [76,77]. As another example, suppose each agent i in a multi-

agent system uses a quadratic function fi(x) = (x− ci)TAi(x− ci) to represent
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the penalty it perceives if all the agents reach a consensus on taking action x.

Then, finding the optimal action x⋆, which minimizes the network-wide sum

of the penalties, is equivalent to solving (3.1). Finally, the widely studied dis-

tributed averaging problem [8,11,13,16,26,30,31,36,38,39,52,53,64,69,72,74,

75,78] is a special case of (3.1) with n = 1 and Ai = 1 ∀i = 1, 2, . . . , N .

The current literature offers a number of distributed algorithms for

solving (3.1), including the continuous-time algorithm in [66], as well as the

discrete-time, average-consensus-based algorithms in [76,77]. These algorithms,

however, have several limitations:

L1. Clock synchronization: The existing algorithms [66, 76, 77] require

all the agents/nodes to always have the same clock to operate. Although tech-

niques for reducing clock synchronization errors are available, it is often desir-

able that this requirement can be removed.

L2. Static network memberships: The existing algorithms [66, 76, 77]

were developed under the assumption that agents/nodes do not join or leave

the network during runtime, even though dynamic network memberships are

very common, due, for example, to agent redeployment, agent mobility, sensor

battery depletion/recharge, and other kinds of failures/repairs. In fact, the

same can be said about the existing distributed averaging algorithms [8,11,13,

16,26,30,31,36,38,39,52,53,64,69,72,74,75,78].

L3. Bandwidth/energy inefficient: To implement the continuous-time

algorithm in [66] with wireless communications, agents/nodes likely have to

transmit many more messages than are needed. The discrete-time synchronous

algorithms in [76, 77] are also inefficient, since they are based on applying an

existing distributed averaging scheme to every scalar entry of
∑N

i=1Ai and
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∑N
i=1 bi, so that each agent/node, after running the scheme for some time,

has access to (the average of) these entries and, hence, may individually solve

(3.1) for x. While possible, this averaging-based approach is highly inefficient

because all the agents/nodes want to know is x, but are consuming band-

width/energy to determine the intermediate quantities
∑N

i=1Ai and
∑N

i=1 bi,

which they really do not need to know.

This chapter, along with the next one, is devoted to the development of

a family of distributed asynchronous algorithms for solving symmetric positive

definite systems of linear equations over networks, that circumvent limitations

L1–L3. The contributions of this chapter are as follows:

1. We present, in Section 3.2, a general agent network model, where agents

are allowed to: (i) arbitrarily and asynchronously interact with one an-

other, (ii) spontaneously join and leave the network infinitely many times,

(iii) have their actions exgoneously driven and be completely unpre-

dictable in advance, (iv) have no knowledge about the network beyond

their own existence, (v) lose all their memories upon leaving the network,

and (vi) not have globally unique identifiers.

2. We develop, in Section 3.3, Subset Equalizing (SE), an algorithm that

attempts to solve (3.1) over the general agent network. SE is constructed

based on decentralized, asynchronous, incremental minimization of a time-

varying, quadratic Lyapunov-like function, defined on a state space with

changing dimension.

3. We introduce, in Section 3.4, several notions of network connectivity,

including instantaneous connectivity, connectivity, and uniform connec-

tivity. These notions are capable of handling the general agent network
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model, allowing the behavior of SE to be analyzed.

4. We derive, in Section 3.5, sufficient conditions for ensuring the bound-

edness, asymptotic convergence, and exponential convergence of SE, and

show that these conditions are mild.

5. We illustrate, in Section 3.6, the effectiveness of SE through an example,

using it to perform unconstrained quadratic optimization over a volatile

multi-agent system.

The outline of this chapter is as follows: Section 3.2 describes the agent

network model and formulates the problem. Section 3.3 details the development

of SE. Section 3.4 introduces the notions of network connectivity. Section 3.5

characterizes the boundedness and convergence of SE. In Section 3.6, the ef-

fectiveness of SE is illustrated through an example. Finally, the conclusion of

this chapter is given in Section 3.7. All proofs are included in the Appendix.

Throughout the chapter, let N, P, Sn
+, and | · | denote, respectively, the sets

of nonnegative integers, positive integers, n × n symmetric positive definite

matrices over R, and the cardinality of a set.

3.2 Problem Formulation

Consider a nonempty, finite set ofM agents, taking actions at each time

k ∈ N, according to the following model:

A1. At time k = 0, a nonempty subset F of the M agents form a network

and become members of the network.

A2. Upon forming, each member i ∈ F observes a matrix Pi ∈ Sn
+ and a

vector qi ∈ Rn.
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A3. The rest of the M agents become non-members of the network and make

no observations.

A4. At each time k ∈ P, three disjoint subsets of the M agents, namely—

a possibly empty subset J (k) of the non-members, a nonempty subset

I(k) of the members, and a possibly empty, proper subset L(k) of the

members—take actions A5–A7 below.

A5. The set J (k) of non-members join the network and become members.

A6. Upon joining, the set J (k) ∪ I(k) ∪ L(k) of members interact, sharing

information with each other and acknowledging their joining (i.e., J (k)),

staying (i.e., I(k)), and leaving (i.e., L(k)).

A7. Upon interacting, the set L(k) of members leave the network and become

non-members.

A8. The rest of the M agents (i.e., complement of J (k) ∪ I(k) ∪ L(k)) take

no actions.

Assumptions A1–A8 above define a general agent network model, where:

(i) initially, an arbitrary subset of the agents form the network (A1) and make

one-time observations (A2), but the rest of them do not (A3); (ii) at each

subsequent time, arbitrary subsets of the agents (A4) spontaneously join the

network (A5), interact with one another (A6), and leave the network (A7);

and (iii) agents take actions asynchronously (A8). With this model, M is the

maximum number of members the network may have, and each agent at any

given time is either a member or non-member, but may change membership

infinitely often. Labeling the M agents as 1, 2, . . . ,M and letting M(k) ⊂

{1, 2, . . . ,M} denote the set of members upon completing the actions at time
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k ∈ N, the membership dynamics may be expressed as

M(0) = F ,

M(k) = (M(k − 1) ∪ J (k))− L(k), ∀k ∈ P,
(3.2)

where, since F 6= ∅ and L(k) (M(k − 1) ∀k ∈ P, the network always has at

least one member, i.e.,M(k) 6= ∅ ∀k ∈ N. Moreover, since J (k) and L(k) may

be empty for some k ∈ P but I(k) 6= ∅ ∀k ∈ P, while there may not always be

membership changes, there are always member interactions, among the agents

in

J (k) ∪ I(k) ∪ L(k), ∀k ∈ P. (3.3)

Since the membership dynamics (3.2) and the member interactions (3.3) are

completely characterized by F , J (k), I(k), and L(k) ∀k ∈ P, the network may

be viewed as being driven by a sequence A of agent actions, where

A = (F ,J (1), I(1),L(1),J (2), I(2),L(2), . . .). (3.4)

The problem addressed in this chapter may be stated as follows: Given

the agent network modeled by A1–A8, construct a distributed asynchronous

algorithm of iterative nature, which allows the ever-changing members of the

network to asymptotically compute the solution z ∈ Rn of the following sym-

metric positive definite system of linear equations, defined by the one-time

observations Pi and qi ∀i ∈M(0) of the initial members:

( ∑

i∈M(0)

Pi

)

z =
∑

i∈M(0)

qi. (3.5)

For versatility reasons, the algorithm should exhibit the following properties:

P1. It should allow the sequence A of agent actions to be dictated by an

exogenous source, for which the agents have no control over, since, for
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example, in a sensor network, J (k), I(k), and L(k) may be governed

by sensor reseeding, mobility, and failures, all of which may be forced

exogenously.

P2. It should allow the agents to not know the values ofM , k, F , J (k), I(k),

L(k), andM(k) ∀k ∈ P, since in many practical situations they are not

available, or at least not known ahead of time.

P3. It should allow the agents to lose all their memories upon leaving the

network, since the departure may be due to, for instance, agent failures.

P4. It should allow the agents to not have globally unique identifiers, since in

some applications they are not assigned one.

Due to property P1 and the fact that A dictates all but how members

share information whenever they interact in A6, construction of an algorithm

that solves this problem amounts to specifying how information is shared and

processed whenever members interact. Moreover, due to property P4, sharing

of information via flooding is prohibited.

3.3 Subset Equalizing

In this section, we develop an algorithm having properties P1–P4 by de-

signing a networked dynamical system, which evolves asynchronously whenever

subsets of the members interact and share information. We show that ideas

from Lyapunov stability theory and tools from optimization may be utilized to

shape the evolution of the networked dynamical system.

Suppose each agent i ∈ {1, 2, . . . ,M} maintains state variables zi(k) ∈

Rn ∪ {#} and Qi(k) ∈ Sn
+ ∪ {#}, where zi(k) represents agent i’s estimate of

the unknown solution z of (3.5) upon completing the actions at time k ∈ N,
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and Qi(k) represents an additional state variable which will be used shortly to

define a Lyapunov-like function. The symbol # denotes “undefined” and is the

value both zi(k) and Qi(k) assume whenever agent i is a non-member of the

network, i.e.,

zi(k) = #, ∀k ∈ N, ∀i ∈ {1, 2, . . . ,M} −M(k), (3.6)

Qi(k) = #, ∀k ∈ N, ∀i ∈ {1, 2, . . . ,M} −M(k). (3.7)

This symbol is introduced to ensure that the algorithm exhibits property P3.

The initial conditions zi(0) and Qi(0) will be specified shortly.

To define the evolution of zi(k) and Qi(k), consider the following time-

varying quadratic Lyapunov-like function:

V (z1(k), z2(k), . . . , zM(k), Q1(k), Q2(k), . . . , QM(k))

=
∑

i∈M(k)

(zi(k)− z)TQi(k)(zi(k)− z). (3.8)

For convenience, we will write this function as V (k), omitting its arguments.

Note that whenever agent i is a non-member, i.e., i ∈ {1, 2, . . . ,M} −M(k),

during which zi(k) = # and Qi(k) = #, its state variables do not appear

in (3.8), so that V (k) is always well-defined. Also note that V (k) has an

ever-changing number of terms, akin to a function defined on a state space

with ever-changing dimension. We refer to V (k) as a Lyapunov-like function

because strictly speaking it does not satisfy the definition of a true Lyapunov

function candidate, although we intend it to mimic such a role.

The Lyapunov-like function V (k) satisfies V (k) ≥ 0 ∀k ∈ N, since

Qi(k) ∈ Sn
+ ∪ {#}. Moreover, V (k) = 0 if and only if zi(k) = z ∀i ∈ M(k).

However, limk→∞ V (k) = 0 does not imply limk→∞ zi(k) = z ∀i ∈ M(k) be-

cause Qi(k) may be “losing” its positive definiteness as k → ∞. In fact,
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“limk→∞ zi(k) = z” may not even be well-defined because zi(k) may be al-

ternating between zi(k) ∈ Rn and zi(k) = # as k → ∞. Nevertheless, if

there exists α > 0 such that Qi(k) − αI ∈ Sn
+ ∀k ∈ N ∀i ∈ M(k), then

limk→∞ V (k) = 0 does imply that zi(k), whenever not equal to #, goes to z as

k →∞.

As it follows from the above, V (k) does not carry the same implica-

tion as a true Lyapunov function candidate. However, it is still valuable to

the M agents, who otherwise have little idea on how they should evolve their

zi(k)’s and Qi(k)’s. Indeed, this V (k) offers a structure that enables decentral-

ized, asynchronous, incremental minimization of V (k) without any agent ever

knowing its value, as is shown below.

Suppose the agent network is executing A6 at some given time k ∈ P,

i.e., the set J (k) ∪ I(k) ∪ L(k) of members are interacting, sharing with each

other information on

zi(k − 1) and Qi(k − 1), ∀i ∈ I(k) ∪ L(k) (3.9)

and hoping to use this information to jointly determine

zi(k) and Qi(k), ∀i ∈ J (k) ∪ I(k), (3.10)

so that V (k) defined in (3.8) would be less than V (k − 1) or, better yet, be

minimized, while the rest of the members stay idle, i.e.,

zi(k) = zi(k − 1), ∀i ∈M(k)− (J (k) ∪ I(k)), (3.11)

Qi(k) = Qi(k − 1), ∀i ∈M(k)− (J (k) ∪ I(k)). (3.12)

Since all that the agents in J (k)∪I(k)∪L(k) know is (3.9) and since they do

not know z but z appears in V (k), they do not have sufficient information to
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minimize V (k). To circumvent this issue, notice that V (k)− V (k − 1) may be

expressed as

V (k)− V (k − 1) =
∑

i∈J (k)
∪I(k)

zi(k)
TQi(k)zi(k)−

∑

i∈I(k)
∪L(k)

zi(k − 1)TQi(k − 1)zi(k − 1)

− 2zT
[ ∑

i∈J (k)
∪I(k)

Qi(k)zi(k)−
∑

i∈I(k)
∪L(k)

Qi(k − 1)zi(k − 1)
]

+ zT
[ ∑

i∈J (k)
∪I(k)

Qi(k)−
∑

i∈I(k)
∪L(k)

Qi(k − 1)
]

z. (3.13)

Note that every variable appearing inside the two pairs of brackets in (3.13)

appears also in either (3.9) or (3.10). Also note that the unknown z appears

only right by the brackets. Thus, if the members determine (3.10) in terms of

(3.9) so that the terms inside the brackets in (3.13) vanish, i.e.,

∑

i∈I(k)∪L(k)
Qi(k − 1)zi(k − 1) =

∑

i∈J (k)∪I(k)
Qi(k)zi(k), ∀k ∈ P, (3.14)

∑

i∈I(k)∪L(k)
Qi(k − 1) =

∑

i∈J (k)∪I(k)
Qi(k), ∀k ∈ P, (3.15)

then the effect of z would be eliminated. Since the second summation in (3.13)

is a constant and since V (k − 1) is also a constant, now minimizing V (k)

is equivalent to minimizing the first summation in (3.13) subject to (3.14)

and (3.15). Also, if we freeze the value of Qi(k) ∀i ∈ J (k) ∪ I(k), then

the problem becomes an equality-constrained, convex optimization over zi(k)

∀i ∈ J (k) ∪ I(k). By forming the Lagrangian of this convex optimization

problem, setting its gradient to zero, and solving for zi(k) ∀i ∈ J (k) ∪ I(k)

and the Lagrange multipliers, we know that zi(k) ∀i ∈ J (k) ∪ I(k) must be

identical. This, along with (3.14) and (3.15), analytically solves the problem,
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resulting in the unique optimizer

zi(k) =
( ∑

j∈I(k)∪L(k)
Qj(k − 1)

)−1( ∑

j∈I(k)∪L(k)
Qj(k − 1)zj(k − 1)

)

,

∀i ∈ J (k) ∪ I(k). (3.16)

Thus, the optimal action, which minimizes V (k) under conditions (3.14) and

(3.15), is an equalizing action, whereby the state variables zi(k)’s of the set

J (k)∪I(k) of members are equalized. Furthermore, to guarantee (3.15), Qi(k)

∀i ∈ J (k) ∪ I(k) may be updated according to

Qi(k) = Qi(k − 1), (3.17)

when there are no membership changes, i.e., J (k) = ∅ and L(k) = ∅, and

according to

Qi(k) =
1

|J (k) ∪ I(k)|
∑

j∈I(k)∪L(k)
Qi(k − 1) (3.18)

when there are membership changes. Note that (3.20) and (3.21) are not the

only way Qi(k) may be updated, but perhaps the simplest.

The following lemma shows that with the above, at each time k ∈ P,

the minimized V (k) cannot exceed V (k − 1):

Lemma 3.1. Consider the agent network modeled by A1–A8 and suppose

(3.11), (3.12), (3.16), (3.17), and (3.18) hold. Then, for any A, the sequence

(V (k))k = 0∞ is non-increasing.

Proof. See Appendix B.1.

Expressions (3.6), (3.7), (3.11), (3.12), (3.16), (3.17), and (3.18) collec-

tively define a distributed asynchronous iterative algorithm, leading to a linear
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networked dynamical system that evolves as follows: for each k ∈ P,

zi(k) =







( ∑

j∈I(k)∪L(k)
Qj(k − 1)

)−1(∑

j∈I(k)∪L(k)
Qj(k − 1)zj(k − 1)

)
, if i∈J (k)∪I(k),

#, if i∈L(k),
zi(k − 1), otherwise.

(3.19)

IfM(k) =M(k − 1), then

Qi(k) = Qi(k − 1), ∀i ∈ {1, 2, . . . ,M}. (3.20)

Otherwise,

Qi(k) =







1
|J (k)∪I(k)|

∑

j∈I(k)∪L(k)Qi(k − 1), if i ∈ J (k) ∪ I(k),
#, if i ∈ L(k),
Qi(k − 1), otherwise.

(3.21)

In addition, let the initial conditions be

zi(0) =

{

P−1
i qi, if i ∈M(0),

#, otherwise,
(3.22)

Qi(0) =

{

Pi, if i ∈M(0),

#, otherwise.
(3.23)

Notice that the initial conditions (3.22) and (3.23), along with (3.19), (3.20),

and (3.21), ensure

∑

i∈M(k)

Qi(k)zi(k) =
∑

i∈M(0)

qi, ∀k ∈ N, (3.24)

∑

i∈M(k)

Qi(k) =
∑

i∈M(0)

Pi, ∀k ∈ N. (3.25)

Hence, once zi(k) ∀i ∈ M(k) achieve consensus, the consensus must be z due

to (3.5).

Since at each time k ∈ P, the algorithm involves an equalizing action

taken by a subset J (k) ∪ I(k) ∪ L(k) of the agents, we refer to this algorithm

as Subset Equalizing (SE). A complete description of SE is as follows:

62



Algorithm 3.1 (Subset Equalizing).

Initialization: At time k = 0:

1. Each agent i ∈ {1, 2, . . . ,M} creates variables zi(k) ∈ Rn ∪ {#} and

Qi(k) ∈ Sn
+ ∪ {#} and initializes them according to (3.22) and (3.23).

Operation: At each time k ∈ P:

2. Each agent i ∈ {1, 2, . . . ,M} updates zi(k) according to (3.19).

3. If J (k) = ∅ and L(k) = ∅, then each agent i ∈ {1, 2, . . . ,M} updates

Qi(k) according to (3.20). Otherwise, each agent i ∈ {1, 2, . . . ,M} up-

dates Qi(k) according to (3.21). �

3.4 Network Connectivity

With SE, every time a subset of the M agents interact, they update

their state variables zi(k)’s and Qi(k)’s in such a manner that the value of the

Lyapunov-like function V (k) is non-increasing. However, the agents themselves,

however, cannot guarantee that V (k) would go to zero. In fact, it is not difficult

to imagine a sequenceA of agent actions where V (k) is bounded away from zero

(e.g., a network where two groups of agents never interact with one another).

Hence, in order to characterize the convergence behavior of SE, it is necessary

to introduce notions of network connectivity, which can handle the general

agent network modeled by A1–A8.

To define such notions, suppose a sequence A of agent actions and a

time k ∈ N are given. For each time ℓ ≥ k, let us associate with each agent

i ∈ {1, 2, . . . ,M} a set Ci(k, ℓ) ⊂M(ℓ). The set Ci(k, ℓ) is initialized to

Ci(k, k) =
{

{i}, if i ∈M(k),

∅, otherwise,
(3.26)
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Time k

1 2

3 4

5 6

Time k+1

1 2

3 4

5 6

Time k+2

1 2

3 4

5 6

Time k+3

1 2

3 4

5 6

Time k+4

1 2

3 4

5 6

L(k+1)=∅
I(k+1)={3,5}
J (k+1)=∅

L(k+2)=∅
I(k+2)={4,5}
J (k+2)={6}

L(k+3)={1}
I(k+3)={2}
J (k+3)=∅

L(k+4)={5,6}
I(k+4)={2}
J (k+4)={1}

Figure 3.1: An example showing that an agent network is connected at time k.

and defined recursively for each ℓ ≥ k + 1 as

Ci(k, ℓ) =







(

∪j∈I(ℓ)
∪L(ℓ)
Cj(k, ℓ− 1) ∪ J (ℓ)

)

− L(ℓ),

if i ∈
(

∪j∈I(ℓ)
∪L(ℓ)
Cj(k, ℓ− 1) ∪ J (ℓ)

)

− L(ℓ),

∅, if i ∈ L(ℓ),
Ci(k, ℓ− 1), otherwise.

(3.27)

Equation (3.26) suggests that at time ℓ = k, each member i’s Ci(k, ℓ) contains

only itself, whereas each non-member i’s Ci(k, ℓ) is empty. Equation (3.27)

suggests that at each subsequent time ℓ ≥ k + 1, the Ci(k, ℓ) of every agent

i that remains a member either stays the same or adds those members it has

directly or indirectly interacted with at time ℓ and deduct those members that

leaves the network at time ℓ. In addition, if a member i leaves the network, its

Ci(k, ℓ) would be reset to empty. Figure 3.1 illustrates how the set Ci(k, ℓ) of

each agent i changes over time in response to the sequence A of agent actions.

The dark dashed line in this figure separates members from non-members of

the network. For example, agent 6 is not a member at time k + 1. The gray

solid line represents Ci(k, ℓ) of each agent i in the following sense: If two agents

i and j are enclosed by the same gray solid line, then Ci(k, ℓ) = Cj(k, ℓ). For

example, at time k + 2, C1(k, k + 2) = {1}, C2(k, k + 2) = {2}, C3(k, k + 2) =

C4(k, k + 2) = C5(k, k + 2) = C6(k, k + 2) = {3, 4, 5, 6}.

Having defined and illustrated the set Ci(k, ℓ), we now state the following

definitions. Suppose A is given. For each k ∈ N, let Dk = {ℓ ≥ k : Ci(k, ℓ) =
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M(ℓ), ∀i ∈ M(ℓ)}, so that each element in Dk represents the time at which

the number of distinct, nonempty Ci(k, ℓ)’s is 1. Also let h : N→ N ∪ {∞} be

defined as h(k) = infDk − k and let h∗ = supk∈N h(k). For example, we have

h(k) = 4 in Figure 3.1, which intuitively means that the network needs four

time instants to become “connected”. Based on this function h, the notion of

network connectivity in this chapter may be defined as follows:

Definition 3.1. The agent network modeled by A1–A8 is said to be connected

under A at time k ∈ N if h(k) < ∞. It is said to be connected under A if

h(k) <∞ ∀k ∈ N, and uniformly connected under A if h∗ <∞.

Based on the above definitions, the agent network illustrated in Fig-

ure 3.1 is connected under A at time k because h(k) = 4 < ∞. To further

illustrate the notions of network connectivity, consider the following examples.

Example 3.1. Consider the agent network modeled by A1–A8 and the use

of SE described in Algorithm 3.1. Let M = 3. Suppose A is such that:

F = {1, 2} and for any ℓ ∈ N, (J (k), I(k),L(k)) = ({3}, {1}, ∅) if k =

1 + 6ℓ, (J (k), I(k),L(k)) = (∅, {3}, {1}) if k = 2 + 6ℓ, (J (k), I(k),L(k)) =

({1}, {2}, ∅) if k = 3 + 6ℓ, (J (k), I(k),L(k)) = (∅, {1}, {2}) if k = 4 +

6ℓ, (J (k), I(k),L(k)) = ({2}, {3}, ∅) if k = 5 + 6ℓ, (J (k), I(k),L(k)) =

(∅, {2}, {3}) if k = 6 + 6ℓ. Then, for any k ∈ N, h(k) = ∞. Therefore,

the agent network is not connected under A at any time k ∈ N. �

Example 3.1 illustrates a scenario where two pieces of information,

(P1, q1) and (P2, q2), are passed around the agents as they join and leave the

network, but never get a change to “mix”. Indeed, applying Definition 3.1

shows that the network is not connected under A at any time k ∈ N. Exam-

ple 3.2 below illustrates a very similar scenario, but the pieces of information,
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(P1, q1) and (P2, q2), are allowed to be “mixed”. Indeed, applying Definition 3.1

shows that the network is uniformly connected under A.

Example 3.2. Consider the agent network modeled by A1–A8 and the use

of SE described in Algorithm 3.1. Let M = 3. Suppose A is such that:

F = {1, 2} and for any ℓ ∈ N, (J (k), I(k),L(k)) = ({3}, {1}, ∅) if k =

1 + 6ℓ, (J (k), I(k),L(k)) = (∅, {2}, {1}) if k = 2 + 6ℓ, (J (k), I(k),L(k)) =

({1}, {2}, ∅) if k = 3 + 6ℓ, (J (k), I(k),L(k)) = (∅, {3}, {2}) if k = 4 +

6ℓ, (J (k), I(k),L(k)) = ({2}, {3}, ∅) if k = 5 + 6ℓ, (J (k), I(k),L(k)) =

(∅, {1}, {3}) if k = 6 + 6ℓ. Then, for any k ∈ N, h(k) = 2 if k is even and

h(k) = 3 if k is odd, implying that h∗ = 3 <∞. Therefore, the agent network

is uniformly connected under A. �

Example 3.3 illustrates a scenario where the network is connected, but

not uniformly so, under A, because the interactions between agents 1 and 2

become less and less frequent, as if the network is “losing” its connectivity.

Example 3.3. Consider the agent network modeled by A1–A8 and the use of

SE described in Algorithm 3.1. Let M = 3. Suppose A is such that: F =

{1, 2, 3} and for any ℓ ∈ P, (J (k), I(k),L(k)) = (∅, {1, 2}, ∅) if k = ℓ(ℓ +

1)/2, (J (k), I(k),L(k)) = (∅, {2, 3}, ∅) otherwise. Then, ∀ℓ ∈ P, ∀k ∈ [ℓ(ℓ +

1)/2, (ℓ+ 1)(ℓ+ 2)/2), h(k) ≤ ℓ+ 1 <∞. In particular, h(ℓ(ℓ+ 1)/2) = ℓ+ 1,

implying that h∗ =∞. Therefore, the agent network is connected under A but

not uniformly connected under A. �

3.5 Boundedness and Convergence

In this section, we present mild sufficient conditions for the boundedness,

asymptotic convergence, and exponential convergence of SE. To present the
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results, let β > 0 denote the spectral radius of
∑

i∈M(0) Pi. In addition, consider

the following definition and proposition:

Definition 3.2. Consider the agent network modeled by A1–A8 and the use

of SE described in Algorithm 3.1. The sequence {Qi(k)}k∈N,i∈M(k) is said to be

uniformly positive definite under A if ∃α > 0 such that ∀k ∈ N, ∀i ∈ M(k),

Qi(k)− αI ∈ Sn
+.

Proposition 3.1. Whether or not the sequence {Qi(k)}k∈N,i∈M(k) is uniformly

positive definite under A is independent of the observations Pi ∈ Sn
+, qi ∈ Rn,

∀i ∈ F .

Proof. See Appendix B.2.

Based on Definition 3.2, we state below our first main result on the

boundedness of SE:

Theorem 3.1. Consider the agent network modeled by A1–A8 and the use of

SE described in Algorithm 3.1. Let A be given. Then, Qi(k) is bounded as

follows:

Qi(k) ≤ βI, ∀k ∈ N, ∀i ∈M(k). (3.28)

If, in addition, the sequence {Qi(k)}k∈N,i∈M(k) is uniformly positive definite

under A, then zi(k) is bounded as follows:

‖zi(k)− z‖2 ≤
V (0)

α
, ∀k ∈ N, ∀i ∈M(k), (3.29)

where α is any positive number satisfying Qi(k)−αI ∈ Sn
+ ∀k ∈ N ∀i ∈M(k).

Proof. See Appendix B.3.
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Theorem 3.1 asserts that all the Qi(k)’s, whenever not equal to #,

are always bounded from above, regardless of the sequence A of agent ac-

tions. In addition, if they turn out to be bounded from below, i.e., the se-

quence {Qi(k)}k∈N,i∈M(k) is uniformly positive definite under A, then all the

zi(k)’s, whenever not equal to #, are guaranteed to stay within a ball of radius
√

V (0)/α centered at the solution z. However, such an α may not exist, as the

following example shows:

Example 3.4. Consider the agent network modeled by A1–A8 and the use of

SE described in Algorithm 3.1. Let M = 3, F = {1, 2}, (J (k), I(k),L(k)) =

({3}, {1}, ∅) if k is odd, and (J (k), I(k),L(k)) = (∅, {2}, {3}) if k is even,

thereby defining A via (3.4). With this A, agent 3 repeatedly joins the net-

work, interacts with agent 1 upon joining, leaves the network subsequently, and

interacts with agent 2 prior to leaving, so that the agent network is connected

under A, by Definition 3.1. Suppose P1 = P2 = 1, q1 = 1, and q2 = 2, so

that z = 1.5 from (3.5). Then, it is straightforward to show that ∀k ∈ N,

Q1(k) = (1
2
)⌈

k
2
⌉, Q2(k) = 2− (1

2
)⌊

k
2
⌋, Q3(k) = (1

2
)⌈

k
2
⌉ if k is odd, Q3(k) = # if k

is even, z1(k) = 1, z2(k) = (3− (1
2
)⌊

k
2
⌋)/(2− (1

2
)⌊

k
2
⌋), z3(k) = 1 if k is odd, and

z3(k) = # if k is even. It follows that limk→∞Q1(k) = 0, limk→∞Q2(k) = 2,

limk→∞ z1(k) = 1, and limk→∞ z2(k) = 1.5. �

In the above example, the α > 0 can not be found with which ∀k ∈ N,

Q1(k)−αI ∈ Sn
+, implying that the sequence {Qi(k)}k∈N,i∈M(k) is not uniformly

positive definite under A. However, Qi(k) and zi(k) are bounded. Therefore,

the condition that {Qi(k)}k∈N,i∈M(k) is uniformly positive definite under A in

Theorem 3.1 is sufficient, but not necessary, for the boundedness of SE.

In general, givenA, it is not easy to check whether the resulting sequence
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{Qi(k)}k∈N,i∈M(k) is uniformly positive definite underA. However, ifA happens

to be such that every agent joins and leaves the network only finitely many

times—a rather mild condition—then the uniform positive definiteness of the

{Qi(k)}k∈N,i∈M(k) can be immediately verified. The following definition and

corollary formalize this observation:

Definition 3.3. Consider the agent network modeled by A1–A8. The mem-

bership dynamics (3.2) are said to be ultimately static under A if ∃k ∈ N such

that ∀ℓ > k,M(ℓ) =M(k), i.e., J (ℓ) = ∅ and L(ℓ) = ∅.

Corollary 3.1. Let A be given. If the membership dynamics (3.2) are ul-

timately static under A, then Qi(k) and zi(k) are bounded as in (3.28) and

(3.29) for some α > 0.

Proof. See Appendix B.4.

In Theorem 3.1 and Corollary 3.1, the network is not assumed to be

connected since such an assumption is not needed for boundedness of SE. For

convergence, however, this assumption is crucial. The following lemma, which

makes use of this assumption, is an important step towards establishing both

the asymptotic and exponential convergence of SE:

Lemma 3.2. Consider the agent network modeled by A1–A8 and the use of

SE described in Algorithm 3.1. Let A be given. Suppose the agent network is

connected under A at some time k ∈ N. Then,

V (k + h(k)) ≤ (4β
α
)M−1 ·M ·M !

(4β
α
)M−1 ·M ·M ! + 1

V (k), (3.30)

where α is any positive number satisfying Qi(ℓ) − αI ∈ Sn
+ ∀ℓ ∈ [k, k + h(k)]

∀i ∈M(ℓ).
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Proof. See Appendix B.5.

Note that in Lemma 3.2, the integer k + h(k) is guaranteed to be finite

due to Definition 3.1. In addition, it says that V (k+ h(k)) is guaranteed to be

strictly less than V (k). However, even if V (k) decreases asymptotically to zero,

it does not imply that SE would converge. Indeed, with network connectivity

alone, SE may not converge: In Example 3.4, we have h(k) = 2 if k is even

and h(k) = 3 if k is odd. Hence, the agent network is connected under A,

while z1(k) fails to converge to z, due to the fact that Q1(k) keeps “losing” its

positive definiteness.

Example 3.4 suggests that network connectivity and uniform positive

definiteness of {Qi(k)}k∈N,i∈M(k) may be all that are required to establish the

asymptotic convergence of SE. The following theorem shows that these two

conditions are indeed sufficient:

Theorem 3.2. Consider the agent network modeled by A1–A8 and the use of

SE described in Algorithm 3.1. Let A be given. Suppose the agent network

is connected under A and the sequence {Qi(k)}k∈N,i∈M(k) is uniformly positive

definite under A. Then, zi(k) asymptotically converges to z, i.e.,

∀ε > 0, ∃k ∈ N s.t. ∀ℓ ≥ k, ∀j ∈M(ℓ), ‖zj(ℓ)− z‖ < ε. (3.31)

Proof. See Appendix B.6.

Note that in Theorem 3.2, we write (3.31) instead of limk→∞ zi(k) = z

because the former excludes cases where zi(k) = #, while the latter does not.

The following corollary is an immediate consequence of Theorem 3.2,

just like Corollary 3.1 is for Theorem 3.1:
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Corollary 3.2. Let A be given. If the agent network is connected under A

and the membership dynamics (3.2) are ultimately static under A, then (3.31)

holds.

Proof. See Appendix B.7.

Our final result provides sufficient conditions on the exponential con-

vergence of SE, in terms of h∗:

Theorem 3.3. Consider the agent network modeled by A1–A8 and the use of

SE described in Algorithm 3.1. Let A be given. Suppose the agent network is

uniformly connected under A and the sequence {Qi(k)}k∈N,i∈M(k) is uniformly

positive definite under A. Then, zi(k) exponentially converges to z in the fol-

lowing sense:

‖zj(ℓh∗)− z‖2 ≤
V (0)

α

( (4β
α
)M−1 ·M ·M !

(4β
α
)M−1 ·M ·M ! + 1

)ℓ

, ∀ℓ ∈ N, ∀j ∈M(ℓh∗),

(3.32)

where α is any positive number satisfying Qi(k)−αI ∈ Sn
+ ∀k ∈ N ∀i ∈M(k).

Proof. See Appendix B.8.

Similar to the derivation of Corollaries 3.1 and 3.2, we derive the fol-

lowing corollary from Theorem 3.3:

Corollary 3.3. Let A be given. Suppose the agent network is uniformly con-

nected under A and the membership dynamics (3.2) are ultimately static under

A. Then, (3.32) holds for some α > 0.

Proof. See Appendix B.9.
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3.6 Illustrative Example

In this section, we illustrate the use of SE via an example. Consider

an agent network consisting of M = 100 agents. Initially at time k = 0, a

subset F = {1, 2, . . . , 50} of 50 agents form a network and become its members,

with each member i observing a randomly generated matrix Pi ∈ S4
+ and a

vector qi ∈ R4. The 50 agents wish to collaboratively solve an unconstrained

quadratic program defined by the Pi’s and qi’s. However, at each subsequent

time k = 1, 2, . . . , 1000, some of the members leave the network, while some of

the non-members begin to join.

Figure 3.2 shows the simulation results for the agent network. The top

portion of Figure 3.2 shows that the number of members fluctuates significantly

between 35 to 55. The middle portion shows the actions taken over time by two

selected agents, agent 1 and agent 51. Observe that both the agents join and

leave the network as well as participate in interactions several times over the

course of the simulation. Finally, the bottom portion represents, as a function

of time, the norm of the difference between the unknown solution z and the

solution estimate zi(k). Observe that, despite the volatility of the network

membership dynamics, the differences between z between zi(k)’s go to zero.

3.7 Conclusion

In this chapter, we have developed SE, a distributed asynchronous algo-

rithm for solving symmetric positive definite systems of linear equations over

networks of agents with arbitrary asynchronous interactions and spontaneous

membership changes. To construct SE and analyze its behavior, we have in-

troduced a time-varying quadratic Lyapunov-like function and several notions
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Figure 3.2: Simulation result illustrating the use of SE to perform uncon-
strained quadratic optimization over a volatile multi-agent system.

of network connectivity. Based on them, we have established necessary and/or

sufficient conditions for its boundedness and convergence. Finally, the effec-

tiveness of SE has been illustrated through a volatile multi-agent system.
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Chapter 4 Distributed Algorithms for Solving Positive

Definite Linear Equations over Wireless

Networks

4.1 Introduction

In Chapter 3, we address the problem of solving symmetric positive

definite systems of linear equations over networks, focusing on networks of

agents with arbitrary asynchronous interactions and spontaneous membership

dynamics. We develop Subset Equalizing (SE), a Lyapunov-based algorithm

that overcomes some of the limitations facing the existing algorithms [66,76,77],

and analyze its behavior, deriving conditions for establishing its boundedness

and convergence.

In this chapter, we address the problem of solving such equations over

multi-hop wireless networks with fixed topologies, focusing on the interplay

among wireless communications, distributed algorithms, and control. Specifi-

cally, we address the following questions:

Q1. SE is developed without imposing any communication constraints

among the agents (i.e., the agents have infinite bandwidth to exchange as much

information as they choose to during each interaction), nor assuming that they

are wirelessly connected. Thus, how does knowing that they are subject to such

communication constraints and are wirelessly connected help the algorithm

design, and how does ignoring these issues hurt the algorithm performance?
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Q2. SE assumes that a new action involving a set of agents does not

begin until the current one ends. For instance, it assumes that overlapping in-

teractions cannot occur. However, wireless networks are inherently distributed

systems, for which such issues may arise, especially when they are not ac-

counted for. Hence, how could such issues be minimized through algorithm

design?

Q3. Feedback control has been successfully utilized to control networks,

including, but not limited to, power control for cellular systems [22, 37] and

congestion control for networks [3, 35]. Therefore, is it possible to introduce

some form of control in the algorithm design to improve its performance?

Although the current literature offers a large collection of distributed

consensus [4, 21, 25, 50, 52, 63] and distributed averaging [8, 11, 13, 16, 26, 36, 38,

39,53,72,74,75] algorithms, few publications have considered questions Q1–Q3.

Indeed, to the best of our knowledge, only question Q2 was addressed in [13,36].

In this chapter, we show that there are significant benefits for respecting

wireless communications, and that it is possible to introduce feedback itera-

tion control, in the design of distributed algorithms. Building on the results

from Chapter 3, we develop and analyze Pairwise, Groupwise, Random Hop-

wise, and Controlled Hopwise Equalizing (PE, GE, RHE, and CHE), providing

along the way constructive answers to questions Q1–Q3. Specifically, we show

how the broadcast nature of wireless transmissions may be fully utilized to

enhance bandwidth/energy efficiency, how randomized gossip algorithms leave

significant room for performance improvement, how undesirable overlapping

iterations may be avoided, and how iterations may be feedback controlled in a

greedy, decentralized, Lyapunov-based fashion. In addition, we show that CHE
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yields a networked dynamical system with state-dependent switching, establish

its exponential convergence, characterize its bound on convergence rate, and

derive a guaranteed bound on finite termination accuracy. Finally, through

extensive simulation on random geometric graphs, we show that GE, RHE,

and CHE are dramatically (six to ten times) more bandwidth/energy efficient

and scalable than two existing, average-consensus-based schemes in [76, 77],

with CHE having the best performance. This result suggests that there are

tremendous benefits in exploiting the positive definite structure of the problem,

compared to viewing the problem simply as an average-consensus problem.

The outline of this chapter is as follows: Section 4.2 describes the wire-

less network model and formulates the problem. Sections 4.3–4.5 introduce

and analyze PE, GE, and RHE, respectively. Building upon RHE, Section 4.6

presents CHE, for which iterations are not randomized, but feedback controlled.

In Section 4.7, PE, GE, RHE, and CHE are compared with MDW, MW, and

flooding via simulation. Finally, the conclusion of this chapter is given in Sec-

tion 4.8. All proofs are included in the Appendix. Throughout the chapter, let

N, P, Sn
+, and | · | denote, respectively, the sets of nonnegative integers, positive

integers, n×n symmetric positive definite matrices over R, and the cardinality

of a set.

4.2 Problem Formulation

Consider a multi-hop wireless network consisting of N ≥ 2 nodes, con-

nected by L bidirectional links in a fixed topology. The network is modeled as

a connected, undirected graph G = (V , E), where V = {1, 2, . . . , N} represents

the set of N nodes (vertices) and E ⊂ {{i, j} : i, j ∈ V , i 6= j} represents the
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set of L links (edges). Any two nodes i, j ∈ V are one-hop neighbors and can

communicate if and only if {i, j} ∈ E , and the set of one-hop neighbors of each

node i ∈ V is denoted as Ni = {j ∈ V : {i, j} ∈ E}. Each node i ∈ V observes

a matrix Ai ∈ Sn
+ and a vector bi ∈ Rn, and all the N nodes wish to determine

the solution x ∈ Rn of the following symmetric positive definite system of linear

equations:

(∑

i∈V
Ai

)

x =
∑

i∈V
bi. (4.1)

Given the above model, the problem addressed in this chapter is how to

construct a discrete-time asynchronous algorithm, with which each node i ∈ V

repeatedly communicates with its one-hop neighbors, iteratively updates its

estimate x̂i ∈ R of the unknown solution x in (4.1), and asymptotically drives

x̂i to x, while consuming bandwidth and energy efficiently.

The bandwidth/energy efficiency of an algorithm is measured by the

number of real-number transmissions it needs to drive all the x̂i’s to a suffi-

ciently small neighborhood of x, essentially solving (4.1). This quantity is a

natural measure of efficiency because the smaller it is, the lesser bandwidth is

occupied, the lesser energy is expended for communications, and the faster (4.1)

may be solved. These, in turn, imply more bandwidth and time for other tasks,

smaller probability of collision, longer lifetime for battery-powered nodes, and

possible earlier return to sleep mode, all of which are desirable. The quantity

also allows algorithms with different numbers of real-number transmissions per

iteration to be fairly compared. Although, in networking, every message in-

evitably contains overhead (e.g., transmitter/receiver IDs and message type),

we exclude such overhead when measuring efficiency since it is not inherent to
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an algorithm, may be reduced by piggybacking messages, and becomes negli-

gible when the problem size n is large.

Similar to most existing work on distributed averaging [8, 11, 13, 16, 26,

30,31,36,38,39,52,53,64,69,72,74,75,78] and distributed consensus [4,21,24,25,

34, 40, 50, 52, 63, 67], we assume ideal internode communications, so that every

message from each node i ∈ V is not subject to quantization, takes negligible

time to transmit and propagate, and is received with negligible error. Moreover,

since the nodes are wirelessly connected, the same message is received by every

one-hop neighbor j ∈ Ni, irrespective of the intended recipient(s).

4.3 Pairwise Equalizing

In this section, we present a simple algorithm for solving the problem

formulated in Section 4.2. The algorithm is developed by first establishing the

correspondence between the wireless network model of Section 4.2 and the agent

network model from Chapter 3, followed by specializing the Subset Equalizing

(SE) algorithm from Chapter 3 to this problem.

Recall that the agent network model from Chapter 3 operates as fol-

lows: At time k = 0, a subset F of the M agents form a network and make

observations Pi and qi ∀i ∈ F . In addition, at each subsequent time k ∈ P, a

set J (k) of non-members join the network and interact with two sets I(k) and

L(k) of existing members, after which the set L(k) of existing members leave

the network. Thus, a simple way to associate this agent network model with

the wireless network model described in Section 4.2 is to think of the set V of

N nodes as the set of M agents, and the set E of L links as a set of physical

means, through which the agents interact. Since V does not change over time,
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this association leads to the following correspondence between the two models:

M = N , F = V , J (k) = ∅, L(k) = ∅ ∀k ∈ P, Pi = Ai, qi = bi, and z = x.

With this correspondence, SE becomes

zi(k) =







(
∑

j∈I(k)
Aj

)−1( ∑

j∈I(k)
Ajzj(k − 1)

)

, if i ∈ I(k),

zi(k − 1), otherwise.

(4.2)

Qi(k) = Ai, ∀i ∈ V , (4.3)

with initialization given by

zi(0) = A−1
i bi, (4.4)

Qi(0) = Ai. (4.5)

To specialize SE to the problem formulated in Section 4.2, the set I(k)

in (4.2), characterizing the set of nodes that interact, must be specified at each

time k ∈ P. Given that nodes can only communicate directly with their one-

hop neighbors, a natural choice is to let I(k) ∈ E ∀k ∈ P. That is, at each

time k ∈ P, let a pair of one-hop neighbors i and j “gossip” with each other,

performing a pairwise equalizing action according to (4.2). Since the set E

consists of L links, there are L possibilities for I(k). The algorithm SE with

I(k) defined as such leads to our first algorithm of this chapter, referred to as

Pairwise Equalizing (PE) and stated as follows:

Algorithm 4.1 (Pairwise Equalizing).

Initialization:

1. Each node i ∈ V transmits Ai to every node j ∈ Ni.

2. Each node i ∈ V creates a variable x̂i ∈ Rn and initializes it: x̂i ← A−1
i bi.

Operation: At each iteration:
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3. A link, say, link {i, j}, is selected randomly and equiprobably out of the

set E of L links.

4. Node i transmits x̂i to node j.

5. Node j updates x̂j : x̂j ← (Ai + Aj)
−1(Aix̂i + Ajx̂j).

6. Node j transmits x̂j to node i.

7. Node i updates x̂i: x̂i ← x̂j. �

Algorithm 4.1 consists of two stages: initialization, which is executed

once, and operation, which is executed iteratively. Step 1 of the algorithm

is needed to enable each node i to learn, once and for all, about the Aj of

every one-hop neighbor j ∈ Ni, so that it may carry out Step 5 later without

having to query its one-hop neighbors for the same Aj’s. Since the Aj’s are

symmetric and since the nodes are wirelessly connected, the number of real-

number transmissions needed to realize Step 1 is N n(n+1)
2

. In Step 2, each

node i creates and maintains, in its local memory, a variable x̂i representing its

individual estimate of the unknown solution x. At each iteration k, Steps 3–7

are executed. In Step 3, a pair I(k) of one-hop neighbors is randomly and

equiprobably selected to “gossip” with each other. Notice that other ways of

selecting this pair are possible. For instance, the Randomized Gossip Algorithm

[8] for distributed averaging first selects a node i and subsequently selects a one-

hop neighbor j of node i to form the required pair, where both the selections

are random but not necessarily equiprobable. Finally, Steps 4–7 define the

pairwise equalizing action, through which x̂i and x̂j are equalized. Note that

the number of real-number transmissions needed for these steps is 2n.

PE defined in Algorithm 4.1 represents a generalization of three existing

distributed averaging algorithms, namely, Pairwise Averaging [72], Randomized
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Gossip Algorithm [8], and Anti-Entropy Aggregation [26, 39], in the sense that

if n = 1 and Ai = 1 ∀i ∈ V , PE reduces to them.

Since PE is a specialization of SE with interactions limited to only ran-

domly chosen pairs of adjacent nodes, one may expect its convergence behavior

to be somewhat similar to that of SE. Indeed, the following theorem asserts

that PE is almost surely asymptotically convergent:

Theorem 4.1. Consider the wireless network modeled in Section 4.2 and the

use of PE described in Algorithm 4.1. Then, with probability 1, limk→∞ x̂i(k) =

x, ∀i ∈ V.

Proof. See Appendix C.1.

4.4 Groupwise Equalizing

Although PE provides a provably convergent means to solve (4.1) over

a multi-hop wireless network, it may have slow convergence and poor band-

width/energy efficiency because it admits only two nodes at each iteration.

Conceivably, admitting more nodes at a time can potentially speed up con-

vergence and improve efficiency, since this allows more node estimates to be

equalized at once. Hence, an alternative way of specializing SE, worthy of

exploring, is to let each I(k) be a set consisting of more than two elements,

whenever possible.

A simple way of ensuring that, at each iteration k, the set I(k) is larger

with more elements is the following: At each iteration k ∈ P, a node, say, node

i, spontaneously forms a group with itself serving as the group leader. Upon

forming, node i invites every one-hop neighbor j ∈ Ni to be group members and
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collaboratively perform a groupwise equalizing action, so that I(k) = {i}∪Ni.

Upon equalizing, the group is immediately disbanded. This alternative way

of specializing SE leads to our second algorithm of this chapter, referred to as

Groupwise Equalizing (GE):

Algorithm 4.2 (Groupwise Equalizing).

Initialization:

1. Each node i ∈ V transmits Ai to every node j ∈ Ni.

2. Each node i ∈ V creates a variable x̂i ∈ Rn and initializes it: x̂i ← A−1
i bi.

Operation: At each iteration:

3. A node, say, node i, is selected randomly and equiprobably out of the set

V of N nodes.

4. Node i transmits a message to every node j ∈ Ni, requesting their x̂j’s.

5. Each node j ∈ Ni transmits x̂j to node i.

6. Node i updates x̂i:

x̂i ← (
∑

j∈{i}∪Ni
Aj)

−1
∑

j∈{i}∪Ni
Ajx̂j.

7. Node i transmits x̂i to every node j ∈ Ni.

8. Each node j ∈ Ni updates x̂j: x̂j ← x̂i. �

In Algorithm 4.2, Steps 1 and 2 are identical to those of PE, with Step 1

being needed to enable the nodes to carry out Step 6 later. Step 3 corresponds

to the randomized selection of a group leader at each iteration. Steps 4–8

represent the groupwise equalizing action initiated by the group leader at each

iteration, through which x̂i and x̂j ∀j ∈ Ni are equalized. Note that each

iteration of GE requires (|Ni| + 1)n transmissions to realize, since |Ni|n are

needed for Step 5 and n are needed for Step 7. Also note that the message
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broadcast by the group leader in Step 4 requires no real-number transmission

since the message requires only a few bits to represent.

Similar to PE, GE defined in Algorithm 4.2 is a generalization of an

existing distributed averaging algorithm, Distributed Random Grouping [13],

reducing to the latter when n = 1 and Ai = 1 ∀i ∈ V . In addition, like PE,

GE is also a specialization of SE with interactions limited to randomly chosen

groups of nearby nodes. The following theorem characterizes the almost sure

convergence of GE:

Theorem 4.2. Consider the wireless network modeled in Section 4.2 and the

use of GE described in Algorithm 4.2. Then, with probability 1, limk→∞ x̂i(k) =

x, ∀i ∈ V.

Proof. See Appendix C.2.

4.5 Random Hopwise Equalizing

Although PE and GE both solve the problem formulated in Section 4.2,

they suffer from two drawbacks. First, both PE and GE do not fully exploit the

broadcast nature of wireless medium. Specifically, when nodes i and j perform

Steps 4 and 6 of PE, one-hop neighbors that overhear the two transmissions

would simply discard the messages, leading to wasted receptions. The same

can be said about GE: when each node j ∈ Ni sends its x̂j to the group leader

node i in Step 5, unintended one-hop neighbors of node j would also discard the

overheard transmissions. Thus, it is of interest to investigate how the overheard

information may be exploited and to what extent may such exploitation speed

up convergence. Second, both PE and GE require multiple transmissions to
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complete an iteration. Specifically, PE requires two transmissions, in Steps 4

and 6, while GE requires |Ni| + 2 transmissions, in Steps 4, 5, and 7, per

iteration. Due to the distributed nature of the network, it is possible that

before an iteration is completed, another iteration is initiated by a nearby

node who is unaware of the ongoing iteration, thereby creating undesirable

situations of overlapping iterations. Although this practical issue has been

explicitly handled in [13, 36] in the context of distributed averaging, it is of

interest to examine whether one can avoid this issue altogether, by limiting the

number of transmissions to exactly one per iteration.

In this section, we present an algorithm that is capable of overcoming the

two aforementioned drawbacks of PE and GE. The key idea here is to associate

the agent network model of Chapter 3 with the wireless network model of this

chapter in perhaps a little counterintuitive manner: think of the set ofM agents

not as the set V of N nodes, but instead as the set E of L fictitious, wireless

links, and think of the set V of N nodes as physical means through which the

agents interact. Since, physically, a link does not exist, an agent ℓ associated

with a link {i, j} ∈ E is shared by both nodes i and j. With this agent-link

association, the Pi’s and qi’s in Chapter 3 may no longer be treated as the Ai’s

and bi’s, but rather as follows: if agent ℓ is associated with link {i, j}, then Pℓ

and qℓ are associated with A{i,j} and b{i,j}, respectively, where they are defined

as

A{i,j} =
1

|Ni|
Ai +

1

|Nj|
Aj, (4.6)

b{i,j} =
1

|Ni|
bi +

1

|Nj|
bj, ∀{i, j} ∈ E . (4.7)

Moreover, agent ℓ’s estimate, zℓ, is associated with x{i,j}, a new state variable

that is conceptually shared by nodes i and j and locally maintained as xij
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and xji, respectively, where both xij and xji are meant to be always equal

upon completion of an iteration. Each node i, in addition to maintaining xij ,

∀j ∈ Ni, also maintains an estimate x̂i of x, defined as

x̂i(k) =
(∑

j∈Ni

A{i,j}
)−1(∑

j∈Ni

A{i,j}xij(k)
)

, ∀k ∈ N. (4.8)

Finally, the sequence {I(k)}∞k=1 of interactions among subsets of agents is as-

sociated with the sequence of interactions among sets of links emanating from

the same node. That is, each I(k) takes one of the following N possible values:

{{1, j} ∈ E}, {{2, j} ∈ E}, . . . , {{N, j} ∈ E}. This agent-link association leads

to Random Hopwise Equalizing (RHE), defined as follows:

Algorithm 4.3 (Random Hopwise Equalizing).

Initialization:

1. Each node i ∈ V transmits 1
|Ni|Ai and

1
|Ni|bi to every node j ∈ Ni.

2. Each node i ∈ V creates variables xij ∈ Rn ∀j ∈ Ni and x̂i ∈ Rn and

initializes them sequentially:

xij ← A−1
{i,j}(

1
|Ni|bi +

1
|Nj |bj), ∀j ∈ Ni,

x̂i ← (
∑

j∈Ni
A{i,j})−1

∑

j∈Ni
A{i,j}xij.

Operation: At each iteration:

3. A node, say, node i, is selected randomly and equiprobably out of the set

V of N nodes.

4. Node i updates xij ∀j ∈ Ni: xij ← x̂i, ∀j ∈ Ni.

5. Node i transmits x̂i to every node j ∈ Ni.

6. Each node j ∈ Ni updates xji and x̂j sequentially:

xji ← x̂i,

x̂j ← (
∑

ℓ∈Nj
A{j,ℓ})−1

∑

ℓ∈Nj
A{j,ℓ}xjℓ. �
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In Algorithm 4.3, Step 1, which requires N n(n+1)
2

+n) real-number trans-

missions to realize, is needed to enable the nodes to carry out Steps 2 and 6

later. In Step 2, each pair of one-hop neighbors i and j creates their local copies

of xij and xji, along with their individual estimates x̂i and x̂j of the unknown

solution x. Step 4 represents the hopwise equalizing action, where xij ∀j ∈ Ni

are equalized to x̂i at each iteration. With RHE, note that all the overheard

information in Step 5 is fully utilized in Step 6. Also note that each iteration

requires only a single transmission of n real-numbers, in Step 5, to complete.

Hence, RHE circumvents the drawbacks of PE and GE by eliminating wasted

receptions and avoiding overlapping iterations altogether.

Similar to both PE and GE, the almost sure convergence of RHE may

be established as follows:

Theorem 4.3. Consider the wireless network modeled in Section 4.2 and the

use of RHE described in Algorithm 4.3. Then, with probability 1, lim
k→∞

x{i,j}(k)=

x, ∀{i, j} ∈ E and lim
k→∞

x̂i(k) = x, ∀i ∈ V.

Proof. See Appendix C.3.

4.6 Controlled Hopwise Equalizing

The algorithms presented thus far, PE, GE, and RHE, all rely on ran-

domized selection of links or nodes to initiate iterations, leading to stochastic

networked dynamical systems. While this is simple, it offers significant rooms

for improvement: the rate of convergence of an algorithm may be substantially

increased if individual nodes are allowed to utilize locally maintained state vari-

ables as feedback to opportunistically control when to initiate iterations. In
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this subsection, using a control-theoretic approach, we show that the iterations

can be feedback controlled with a suitable modification of RHE. We will begin

with the assumption that a “genie” exists for controlling which node should

initiate the next iteration, and will later relax this assumption.

4.6.1 Ideal Version

In Chapter 3, a time-varying quadratic, Lyapunov-like function is used

to construct and analyze SE. In this chapter, this function reduces to

V (x(k)) =
∑

{i,j}∈E

(

x{i,j}(k)− x
)T

A{i,j}
(

x{i,j}(k)− x
)

. (4.9)

where x(k) ∈ RLn is the state vector obtained by stacking the state variables

x{i,j}(k), ∀{i, j} ∈ E .

With RHE, whenever a node i initiates an iteration k, the value of the

Lyapunov function V (x(k)) would drop by an amount equal to

∆Vi(x(k − 1)) = V (x(k − 1))− V (x(k))

=
∑

j∈Ni

(

x{i,j}(k − 1)− x̂i(k − 1)
)T

A{i,j}
(

x{i,j}(k − 1)− x̂i(k − 1)
)

. (4.10)

Note that the state variables appearing on the right-hand side of (4.10), i.e.,

quantifying the drop, are locally maintained by node i. Therefore, node i knows

that if it spontaneously decides to initiate iteration k, the value of V (x(k)),

whatever it may be, would drop by an amount which it knows. This implies that

every node i in the network at any given time knows by how much the value

of V (x(k)) would drop if it elects to become the node that initiates the next

iteration. Hence, if there is a genie in the network that knows all the potential

drops ∆Vi(x(k − 1)), ∀i ∈ V , the genie may choose to behave greedily and

always let the node that causes the largest drop in the value of V (x(k)) initiate

87



the next iteration. The resulting algorithm, referred to as Ideal Controlled

Hopwise Equalizing (ICHE), is defined below:

Algorithm 4.4 (Ideal Controlled Hopwise Equalizing).

Initialization:

1. Each node i ∈ V transmits 1
|Ni|Ai and

1
|Ni|bi to every node j ∈ Ni.

2. Each node i ∈ V creates variables xij ∈ Rn ∀j ∈ Ni, x̂i ∈ Rn, and

∆Vi ∈ [0,∞) and initializes them sequentially:

xij ← A−1
{i,j}(

1
|Ni|bi +

1
|Nj |bj), ∀j ∈ Ni,

x̂i ← (
∑

j∈Ni
A{i,j})−1

∑

j∈Ni
A{i,j}xij,

∆Vi ←
∑

j∈Ni
(xij − x̂i)TA{i,j}(xij − x̂i).

Operation: At each iteration:

3. Let i ∈ argmaxj∈V ∆Vj.

4. Node i updates xij ∀j ∈ Ni and ∆Vi sequentially:

xij ← x̂i, ∀j ∈ Ni,

∆Vi ← 0.

5. Node i transmits x̂i to every node j ∈ Ni.

6. Each node j ∈ Ni updates xji, x̂j, and ∆Vj sequentially:

xji ← x̂i,

x̂j ← (
∑

ℓ∈Nj
A{j,ℓ})−1

∑

ℓ∈Nj
A{j,ℓ}xjℓ,

∆Vj ←
∑

ℓ∈Nj
(xjℓ − x̂j)TA{j,ℓ}(xjℓ − x̂j). �

Note that ICHE is very similar to RHE, except that each node i main-

tains an additional ∆Vi, which it passes to the genie for deciding which node

should initiate the next iteration. The genie’s decision then manifests itself in

Step 3, where the node with the largest ∆Vi will be selected to initiate the next

iteration.
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Because the selection of nodes to initiate iterations is not randomized

but depends on the state variables, ICHE produces a state-dependent, switched

dynamical system.

x{i,j}(k) =







(
∑

ℓ∈Nu(k)

A{u(k),ℓ})−1
∑

ℓ∈Nu(k)

A{u(k),ℓ}x{u(k),ℓ}(k − 1), if u(k) ∈ {i, j},

x{i,j}(k − 1), otherwise,

(4.11)

u(k) = argmax
j∈V

∆Vj(x(k − 1)), (4.12)

where u(k) represents the node with the largest ∆Vj(x(k − 1)). The following

theorem shows that ICHE achieves asymptotic convergence:

Theorem 4.4. Consider the wireless network modeled in Section 4.2 and the

use of ICHE described in Algorithm 4.4. Then, limk→∞ x{i,j}(k) = x, ∀{i, j} ∈

E and limk→∞ x̂i(k) = x, ∀i ∈ V.

Proof. See Appendix C.4.

A bound on the exponential convergence rate of ICHE can be calculated

using the following theorem:

Theorem 4.5. Consider the wireless network modeled in Section 4.2 and the

use of ICHE described in Algorithm 4.4. Suppose L ≥ 2. Then,

V (x(k)) ≤ ρV (x(k − 1)), ∀k ∈ P, (4.13)

and ∃x(k − 1) ∈ RLn such that

V (x(k)) = ρV (x(k − 1)),

89



where ρ ∈ [0, 1) is such that 1
1−ρ

is the optimal value of the following convex

maximization problem:

maximizez∈RLn V (z)
subject to ∆Vi(z) ≤ 1, ∀i ∈ V

∑

{i,j}∈E A{i,j}z{i,j} = 0.
(4.14)

Proof. See Appendix C.5.

4.6.2 Practical Version

Obviously, ICHE is not implementable since it assumes the presence

of a genie. Fortunately, it is possible to closely mimic the greedy behavior of

ICHE with a practical, decentralized controller. To describe this controller, the

notion of time t ≥ 0 is needed. Suppose each node i maintains a variable τi > 0

representing the time-to-initiate for node i, so that when time t = τi, node i

initiates the next iteration. Suppose also that τi is the following function of

∆Vi:

τi(k − 1) = max{Φ(∆Vi(x(k − 1))), t}+ ε(∆Vi(x(k − 1))) · rand(), (4.15)

where Φ : [0,∞) → (0,∞] is a continuous, strictly decreasing function satis-

fying limv→0 Φ(v) = ∞ and Φ(0) = ∞, ε : [0,∞) → (0,∞) is a continuous

function meant to take on a small positive value, and rand() is a number re-

turned by a call to a uniformly distributed pseudo-random number generator

on [0, 1]. Since Φ is strictly decreasing, ∆Vi(x(k− 1)) is inversely proportional

to τi(k−1). Hence, with (4.15), the node with the largest ∆Vi(x(k−1))’s would

have the smallest τi’s and, thus, would likely become the node that initiates

iteration k. The resulting algorithm, referred to simply as Controlled Hopwise

Equalizing (CHE), is defined below:
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Algorithm 4.5 (Controlled Hopwise Equalizing).

Initialization:

1. Let time t = 0.

2. Each node i ∈ V transmits 1
|Ni|Ai and

1
|Ni|bi to every node j ∈ Ni.

3. Each node i ∈ V creates variables xij ∈ Rn ∀j ∈ Ni, x̂i ∈ Rn, ∆Vi ∈

[0,∞), and τi ∈ (0,∞] and initializes them sequentially:

xij ← A−1
{i,j}(

1
|Ni|bi +

1
|Nj |bj), ∀j ∈ Ni,

x̂i ← (
∑

j∈Ni
A{i,j})−1

∑

j∈Ni
A{i,j}xij,

∆Vi ←
∑

j∈Ni
(xij − x̂i)TA{i,j}(xij − x̂i),

τi ← max{Φ(∆Vi), t}+ ε(∆Vi) · rand().

Operation: At each iteration:

4. Let i ∈ argminj∈V τj and t = τi.

5. Node i updates xij ∀j ∈ Ni, ∆Vi, and τi sequentially:

xij ← x̂i, ∀j ∈ Ni,

∆Vi ← 0,

τi ←∞.

6. Node i transmits x̂i to every node j ∈ Ni.

7. Each node j ∈ Ni updates xji, x̂j, ∆Vj, and τj sequentially:

xji ← x̂i,

x̂j ← (
∑

ℓ∈Nj
A{j,ℓ})−1

∑

ℓ∈Nj
A{j,ℓ}xjℓ,

∆Vj ←
∑

ℓ∈Nj
(xjℓ − x̂j)TA{j,ℓ}(xjℓ − x̂j),

τj ← max{Φ(∆Vj), t}+ ε(∆Vj) · rand(). �

In some applications, nodes may want to terminate the algorithm exe-

cution as soon as a desired level of accuracy is achieved. The following theorem

provides a guaranteed bound on the termination accuracy, assuming that the
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termination criterion is ∆Vi(K) ≤ γ, ∀i ∈ V , for some γ > 0. To describe the

result, for each {i, j} ∈ E , let αij , βij be, respectively, the smallest and largest

eigenvalue of A{i,j}. For each i ∈ V , let α′
i, β

′
i be, respectively, the smallest and

largest eigenvalue of
∑

j∈Ni
A{i,j}. Then, let

α = min
{i,j}∈E

{αij}, β = max
{i,j}∈E

{βij}, (4.16)

α′ = min
i∈V
{α′

i}, β′ = max
i∈V
{β′

i}. (4.17)

Theorem 4.6. Consider the wireless network modeled in Section 4.2 and the

use of CHE described in Algorithm 4.5. Let K be such that ∆Vi(K) ≤ γ,

∀i ∈ V. Then,

∑

i∈V
‖x̂i(K)− x‖2 ≤ 4β′

αα′ (N − 2)2(N − 1)γ. (4.18)

Proof. See Appendix C.6.

4.7 Performance Comparison

In this section, we compare PE, GE, RHE, and CHE with the two

schemes proposed in [76, 77], namely, Maximum-Degree Weights (MDW) and

Metropolis Weights (MW) as well as with flooding.

4.7.1 Method of Comparison

To compare the aforementioned algorithms, we simulate them on wire-

less networks modeled by random geometric graphs, with nodes trying to solve

randomly generated, symmetric positive definite systems of linear equations

(4.1). To generate a network with N nodes and an average of 2L
N

one-hop

neighbors per node, we randomly and equiprobably place each of the N nodes
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on the unit square [0, 1] × [0, 1] and gradually increase the one-hop transmis-

sion radius from zero, until the average number of neighbors becomes 2L
N
. If

the resulting network is not connected, it is discarded and the above process is

repeated. To generate a positive definite system of linear equations of size n,

we factor each Ai ∈ Rn×n as Ai = XT
i Xi and let both Xi ∈ Rn×n and bi ∈ Rn

have normally distributed random entries with zero mean and unit variance.

Therefore, each simulation is defined by three parameters: the number of nodes

N , the average number of neighbors 2L
N
, and the problem size n. To under-

stand how each of these parameters affects performance, we carry out three sets

of simulations, each corresponds to varying one of the three parameters and

keeping the other two constant. For each algorithm and each simulation run,

we record the number of real-number transmissions needed for the algorithm

to converge, where the convergence criterion is maxi∈V ‖x̂i − x‖ < 0.005. For

CHE, we let Φ(∆Vi) =
1

∆Vi
and ε(∆Vi) = 0.001.

4.7.2 Results of Comparison

Figure 4.1(a) shows the first set of simulation results, where we let the

number of nodes N vary from 50 to 500, while fixing the average number

of neighbors at 2L
N

= 20 and problem size at n = 4. From this figure, we

observe that regardless of the number of nodes N , MDW has the worst band-

width/energy efficiency, requiring a very large number of real-number trans-

missions to converge—even more so than the worst possible scheme that is

flooding. In addition, we see that GE, RHE, and CHE are dramatically more

efficient than PE and MW, with CHE being uniformly the most efficient. GE,

RHE, and CHE also exhibit much better scaling with respect to N compared

with PE and MW. Finally, we observe that CHE is about twice more efficient
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than RHE. This represents the amount of improvement that can be achieved by

letting nodes greedily control, as opposed to randomly decide, when to initiate

an iteration.

Figure 4.1(b) shows the second set of results, where we let the average

number of neighbors 2L
N

vary from 10 to 100, while fixing the number of nodes at

N = 200 and problem size at n = 4. Observe from the figure that, generally, the

sparser the network is, the worse the algorithms perform, except for flooding,

the performance of which is independent of network density. Also observe

that the trend seen in the Figure 4.1(a) holds here: MDW is the least efficient,

followed by PE and MW. As before, GE, RHE, and CHE are quite efficient, with

CHE again having the best efficiency. In particular, when the network is sparse

with, say, 2L
N

= 10, CHE is twice more efficient than GE. However, when the

network is dense, say, with 2L
N
≥ 70, RE, GE, and CHE have indistinguishable

performances.

Figure 4.1(c) shows the third set of results, where we let the problem size

n vary from 2 to 20, while fixing the number of nodes at N = 200 and average

number of neighbors at 2L
N

= 20. Observe from the figure that the trend seen in

the previous two figures also holds here. Also observe that GE, RHE, and CHE

again exhibit significantly better scaling with respect to n compared with PE

and MW since their real-number transmissions seem to be proportional with

n.

To summarize, Figure 4.1 suggests that GE, RHE, and CHE are highly

bandwidth/energy efficient, compared with MDW and MW. The figure also

suggests that it is advantageous to be able to fully exploit the broadcast na-

ture of wireless communications and decide when to initiate an iteration via
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Figure 4.1: Performance comparison on multi-hop wireless networks with vary-
ing number of nodes N , varying average number of neighbors 2L

N
, and varying

problem size n.

decentralized feedback control.

4.8 Conclusion

In this chapter, we have introduced and analyzed a collection of algo-

rithms for solving symmetric positive definite systems of linear equations over

multi-hop wireless networks with fixed topologies. We have demonstrated that

it is possible, and highly beneficial, to bring together wireless communications,

distributed algorithms, and control. We have also established various conver-

gence properties of the proposed algorithms. Finally, we have shown through

extensive simulation on random geometric graphs that GE, RHE, and CHE are

dramatically more efficient and scalable than MDW, MW, and flooding.
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Chapter 5 Gossip Algorithms for Distributed Convex

Optimization

5.1 Introduction

Consider an N -node multi-hop network, where each node i observes a

convex function fi, and all the N nodes wish to determine an optimal consensus

x∗, which minimizes the sum of the fi’s:

x∗ ∈ argmin
x

N∑

i=1

fi(x). (5.1)

Since each node i knows only its own fi, the nodes cannot individually compute

the optimal consensus x∗ and, thus, must collaborate to do so. This problem of

achieving unconstrained, separable, convex consensus optimization has many

applications in multi-agent systems and wired/wireless/social networks [57,65].

The current literature offers a large body of work on distributed consen-

sus (see [50] for a survey), including a line of research that focuses on solving

problem (5.1) for an optimal consensus x∗ [27,28,32,42–47,57–62,65]. This line

of work has resulted in a family of discrete-time subgradient algorithms, includ-

ing the incremental subgradient algorithms [28, 42–44, 57–59, 61, 65], whereby

an estimate of x∗ is passed around the network, and the non-incremental

ones [27,32,45–47,60,62], whereby each node maintains an estimate of x∗ and

updates it iteratively by exchanging information with neighbors.
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Although the aforementioned subgradient algorithms are capable of

solving problem (5.1) under fairly weak assumptions, they suffer from one or

more of the following limitations:

L1. Stepsizes: The algorithms require selection of stepsizes, which may be

constant, diminishing, or dynamic. In general, constant stepsizes ensure

only convergence to neighborhoods of x∗, rather than to x∗ itself. More-

over, they present an inevitable trade-off: larger stepsizes tend to yield

larger convergence neighborhoods, while smaller ones tend to yield slower

convergence. In contrast, diminishing stepsizes typically ensure asymp-

totic convergence. However, the convergence may be very slow, since

the stepsizes may diminish too quickly. Finally, dynamic stepsizes allow

shaping of the convergence behavior [42,43]. Unfortunately, their dynam-

ics depend on global information that is often costly to obtain. Hence,

selecting appropriate stepsizes is not a trivial task, and inappropriate

choices can cause poor performance.

L2. Hamiltonian cycle: Many incremental subgradient algorithms [42–44,57–

59, 61, 65] require the nodes to construct and maintain a Hamiltonian

cycle (i.e., a closed path that visits every node exactly once) or a pseudo

one (i.e., that allows multiple visits), which may be very difficult to carry

out, especially in a decentralized, leaderless fashion.

L3. Multi-hop transmissions: Some incremental subgradient algorithms [42–

44] require the node that has the latest estimate of x∗ to pass it on to

a randomly and equiprobably chosen node in the network. This implies

that every node must be aware of all the nodes in the network, and

the algorithms must run alongside a routing protocol that enables such

passing, which may not always be the case. The fact that the chosen
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node is typically multiple hops away also implies that these algorithms

are communication inefficient, requiring plenty of transmissions (up to

the network diameter) just to complete a single iteration.

L4. Lack of asymptotic convergence: A variety of convergence properties have

been established for the subgradient algorithms in [27,28,32,42–47,57–62,

65], including error bounds, convergence in expectations, convergence in

limit inferiors, convergence rates, etc. In contrast, relatively few asymp-

totic convergence results have been reported, except for the subgradient

algorithms with diminishing or dynamic stepsizes in [42–44,59–62].

Limitations L1–L4 facing the subgradient algorithms raise the question

of whether it is possible to devise algorithms, which require neither the notion

of a stepsize, the construction of a (pseudo-)Hamiltonian cycle, nor the use

of a routing protocol for multi-hop transmissions, and yet guarantee asymp-

totic convergence, bypassing L1–L4. In this chapter, we show that, for the

one-dimensional case and with a few mild assumptions, such algorithms can be

constructed. Specifically, instead of letting the network be directed, we assume

that it is undirected, with possibly a time-varying topology unknown to any

of the nodes. In addition, instead of letting each fi in (5.1) be convex but

not necessarily differentiable, we assume that it is strictly convex, continuously

differentiable, and has a minimizer. Based on these assumptions, we develop

two gossip-style, distributed asynchronous iterative algorithms, referred to as

Pairwise Equalizing (PE) and Pairwise Bisectioning (PB), which not only solve

problem (5.1) and circumvent limitations L1–L4, but also are rather easy to

implement—although computationally they are more demanding than the sub-

gradient algorithms.
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As will be shown in the chapter, PE and PB exhibit a number of no-

table features. First, they produce switched, nonlinear, networked dynamical

systems whose state evolves along an invariant manifold whenever nodes gossip

with each other. The switched systems are proved, using Lyapunov stability

theory, to be asymptotically convergent, as long as the gossiping pattern is

sufficiently rich. In particular, we show that the first-order convexity condition

1 can be used to form a common Lyapunov function, as well as to characterize

drops in its value after every gossip. Second, PE and PB do not belong to the

family of subgradient algorithms as they utilize fundamentally different, non-

gradient-based update rules that involve no stepsize. These update rules are

synthesized from two simple ideas—conservation and dissipation—which are

somewhat similar to how Pairwise Averaging [72] was conceived back in the

1980s. Indeed, we show that PE reduces to Pairwise Averaging [72] and Ran-

domized Gossip Algorithm [8] when problem (5.1) specializes to an averaging

problem. In addition, we show that PE can be extended to handle networks

with both time-varying topologies and time-varying node memberships, where

nodes may freely join and leave. Finally, PE requires one-time sharing of the

fi’s between gossiping nodes, which may be costly or impermissible in some

applications. This requirement is eliminated by PB at the expense of more

communications per iteration.

The outline of this chapter is as follows: Section 5.2 formulates the

distributed convex optimization problem. Section 5.3 describes the proposed

algorithm PE, while Section 5.4 illustrates the effectiveness of PE through

an example. Section 5.5 presents an extension of PE. Section 5.6 introduces

1Also known as Bregman divergence [10].
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another proposed algorithm PB. Finally, Section 5.7 concludes the chapter.

The proofs of the main results are included in Appendix D. Throughout this

chapter, let N and P denote, respectively, the sets of nonnegative and positive

integers.

5.2 Problem Formulation

Consider a multi-hop network consisting of N ≥ 2 nodes, connected

by bidirectional links in a time-varying topology. The network is modeled

as an undirected graph G(k) = (V , E(k)), where k ∈ N denotes time, V =

{1, 2, . . . , N} represents the set of N nodes (vertices), and E(k) ⊂ {{i, j} :

i, j ∈ V , i 6= j} represents the nonempty set of links (edges) at time k. The

graph G(k) is allowed to vary in order to reflect node mobility and changing

channel conditions, and the variations are assumed to be exogenous, beyond

control of the nodes. Any two nodes i, j ∈ V are one-hop neighbors and can

communicate at time k ∈ N if and only if {i, j} ∈ E(k), and the communications

are assumed to be delay- and error-free, with no quantization.

Suppose, at time k = 0, each node i ∈ V observes a function fi : X → R,

which maps a nonempty open interval X ⊂ R to R, and which satisfies the

following assumption:

Assumption 5.1. For each i ∈ V , the function fi is strictly convex, continu-

ously differentiable, and has a minimizer x∗i ∈ X .

Note that the conditions in Assumption 5.1 are not redundant, as strict

convexity alone does not imply continuous differentiability (e.g., with X = R,

fi(x) = e|x| is strictly convex but not differentiable at x = 0), and strict

convexity and continuous differentiability together do not imply the existence
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of a minimizer in X (e.g., with X = (0, 1), fi(x) = e−x is strictly convex and

continuously differentiable but has no minimizer in X ). On the other hand,

strict convexity and the existence of a minimizer x∗i ∈ X do ensure that the

minimizer x∗i is unique.

Suppose, upon observing the fi’s, all the N nodes wish to solve the

following unconstrained, separable, convex optimization problem:

min
x∈X

F (x), (5.2)

where the function F : X → R is defined as F (x) =
∑

i∈V fi(x). Clearly,

F is strictly convex and continuously differentiable. To show that F has a

unique minimizer in X so that problem (5.2) is well-posed, let f ′
i : X → R and

F ′ : X → R denote the derivatives of fi and F , respectively, and consider the

following lemma and proposition:

Lemma 5.1. Let gi : X → R be a strictly increasing and continuous function

and zi ∈ X for i = 1, 2, . . . , n. Then, there exists a unique z ∈ X such that
∑n

i=1 gi(z) =
∑n

i=1 gi(zi). Moreover, z ∈ [mini∈{1,2,...,n} zi,maxi∈{1,2,...,n} zi].

Proof. Since gi is strictly increasing and continuous ∀i ∈ {1, 2, . . . , n}, so is
∑n

i=1 gi : X → R. Thus,

n∑

i=1

gi( min
j∈{1,2,...,n}

zj) ≤
n∑

i=1

gi(zi) ≤
n∑

i=1

gi( max
j∈{1,2,...,n}

zj).

It follows from the Intermediate Value Theorem that there exists a unique z ∈

X such that
∑n

i=1 gi(z) =
∑n

i=1 gi(zi), and that z ∈ [ min
i∈{1,2,...,n}

zi, max
i∈{1,2,...,n}

zi].

Proposition 5.1. With Assumption 5.1, there exists a unique x∗ ∈ X , which

satisfies F ′(x∗) = 0, minimizes F over X , and solves problem (5.2), i.e., x∗ =

argminx∈X F (x).
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Proof. By Assumption 5.1, for every i ∈ V , f ′
i is strictly increasing and contin-

uous. By Lemma 5.1, there exists a unique x∗ ∈ X such that
∑

i∈V f
′
i(x

∗) =
∑

i∈V f
′
i(x

∗
i ). Since F ′ =

∑

i∈V f
′
i and f

′
i(x

∗
i ) = 0 ∀i ∈ V , F ′(x∗) = 0. Since F

is strictly convex, x∗ minimizes F over X , solving (5.2).

Given the above network and problem, the goal of this chapter is to

construct a distributed asynchronous algorithm, with which each node i ∈

V repeatedly communicates with its one-hop neighbors, iteratively updates

its estimate x̂i of the unknown optimizer x∗, and asymptotically drives x̂i to

x∗. The algorithm should be easy to implement and free of limitations L1–L4

discussed in Section 5.1.

5.3 Pairwise Equalizing

In this section, we develop a gossip algorithm having the aforementioned

features.

Suppose, at time k = 0, each node i ∈ V creates a state variable x̂i ∈ X

in its local memory, which represents its estimate of the unknown optimizer x∗.

Also suppose, at each subsequent time k ∈ P, an iteration involving a subset

of the N nodes, referred to as iteration k, takes place. Let x̂i(0) represent the

initial value of x̂i, and x̂i(k) its value upon completing each iteration k ∈ P.

With this setup, the goal of asymptotically driving all the x̂i(k)’s to x
∗ may be

stated as

lim
k→∞

x̂i(k) = x∗, ∀i ∈ V . (5.3)

To design an algorithm that guarantees (5.3), consider a conservation
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condition

∑

i∈V
f ′
i(x̂i(k)) = 0, ∀k ∈ N, (5.4)

which says that the state variables x̂i(k)’s evolve in such a manner that the sum

of the derivatives f ′
i ’s, evaluated respectively at the x̂i(k)’s, is always conserved

at zero. Moreover, consider a dissipation condition

lim
k→∞

x̂i(k) = x̃, ∀i ∈ V , for some x̃ ∈ X , (5.5)

which says that the x̂i(k)’s gradually dissipate their differences and asymptot-

ically achieve some arbitrary consensus x̃ ∈ X . Note that if the conservation

condition (5.4) is met, then

lim
k→∞

∑

i∈V
f ′
i(x̂i(k)) = lim

k→∞
0 = 0. (5.6)

If, in addition, the dissipation condition (5.5) is met, then due to the continuity

of every f ′
i ,

∑

i∈V
lim
k→∞

f ′
i(x̂i(k)) =

∑

i∈V
f ′
i( lim

k→∞
x̂i(k)) =

∑

i∈V
f ′
i(x̃) = F ′(x̃). (5.7)

Because limk→∞ f ′
i(x̂i(k)) exists for every i ∈ V , we can write

lim
k→∞

∑

i∈V
f ′
i(x̂i(k)) =

∑

i∈V
lim
k→∞

f ′
i(x̂i(k)). (5.8)

Combining (5.6), (5.7), and (5.8), we obtain F ′(x̃) = 0. From Proposition 5.1,

we see that the arbitrary consensus x̃ must be the unknown optimizer x∗, i.e.,

x̃ = x∗, so that (5.3) holds. Therefore, to design an algorithm that ensures

(5.3)—where x∗ explicitly appears, it suffices to make the algorithm satisfy

both the conservation and dissipation conditions (5.4) and (5.5)—where x∗ is

implicitly encoded.
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To come up with such an algorithm, observe that the conservation con-

dition (5.4) holds if and only if the initial values x̂i(0)’s are such that

∑

i∈V
f ′
i(x̂i(0)) = 0, (5.9)

and the values x̂i(k)’s upon completing each iteration k ∈ P are related to the

values x̂i(k − 1)’s prior to the iteration through

∑

i∈V
f ′
i(x̂i(k)) =

∑

i∈V
f ′
i(x̂i(k − 1)), ∀k ∈ P. (5.10)

To satisfy (5.9), recall from Section 5.2 that every node i ∈ V knows the

function fi and knows that fi has a unique minimizer x∗i ∈ X , which yields

f ′
i(x

∗
i ) = 0. Thus, (5.9) can be met by having every node i ∈ V compute x∗i on

its own and then initialize x̂i(0) to x
∗
i , i.e.,

x̂i(0) = x∗i , ∀i ∈ V . (5.11)

On the other hand, to satisfy (5.10), consider a gossip algorithm, whereby at

each iteration k ∈ P, a pair u(k) = {u1(k), u2(k)} ∈ E(k) of one-hop neighbors

u1(k) and u2(k) communicate with each other and update their x̂u1(k)(k) and

x̂u2(k)(k), while the rest of the N nodes stay idle and experience no change in

their x̂i(k)’s, i.e.,

x̂i(k) = x̂i(k − 1), ∀k ∈ P, ∀i ∈ V − u(k). (5.12)

Notice that with (5.12), equation (5.10) simplifies to

f ′
u1(k)

(x̂u1(k)(k)) + f ′
u2(k)

(x̂u2(k)(k))

= f ′
u1(k)

(x̂u1(k)(k − 1)) + f ′
u2(k)

(x̂u2(k)(k − 1)), ∀k ∈ P. (5.13)

Also note that the entire expression (5.13) is known to nodes u1(k) and u2(k):

f ′
u1(k)

and f ′
u2(k)

are derivatives of fu1(k) and fu2(k) they observe, x̂u1(k)(k−1) and
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x̂u2(k)(k−1) are “old” values of the state variables they maintain, and x̂u1(k)(k)

and x̂u2(k)(k) are “new” values they seek to jointly determine, respectively.

Hence, all that is needed for (5.10) to hold is a gossip between nodes u1(k) and

u2(k) to share their fu1(k), fu2(k), x̂u1(k)(k− 1), and x̂u2(k)(k− 1), followed by a

joint update of their x̂u1(k)(k) and x̂u2(k)(k), which ensures (5.13).

Obviously, (5.13) alone does not uniquely determine x̂u1(k)(k) and

x̂u2(k)(k), since there are two variables but only one equation. This suggests

that the available degree of freedom may be used to account for the dissipa-

tion condition (5.5), which has yet to be addressed. Unlike the conservation

condition (5.4), however, the dissipation condition (5.5) is not about how the

state variables x̂i(k)’s should evolve for every finite k. Instead, it is about

where the x̂i(k)’s should approach as k goes to infinity, which nodes u1(k) and

u2(k) cannot guarantee themselves since they are only responsible for two of

the N x̂i(k)’s. Nevertheless, given that all the N x̂i(k)’s should approach the

same limit, nodes u1(k) and u2(k) can help make this happen by imposing an

equalizing condition, forcing x̂u1(k)(k) and x̂u2(k)(k) to be equal, i.e.,

x̂u1(k)(k) = x̂u2(k)(k), ∀k ∈ P. (5.14)

With the equalizing condition (5.14) added, there are now two equations with

two variables, providing nodes u1(k) and u2(k) a chance to uniquely determine

x̂u1(k)(k) and x̂u2(k)(k) from (5.13) and (5.14).

The following proposition asserts that (5.13) and (5.14) always have a

unique solution, so that the evolution of the x̂i(k)’s is well-defined:

Proposition 5.2. With Assumption 5.1 and (5.11)–(5.14), x̂i(k) ∀k ∈ N ∀i ∈
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V are well-defined, i.e., unambiguous and in X . Moreover,

[min
i∈V

x̂i(k),max
i∈V

x̂i(k)] ⊂ [min
i∈V

x̂i(k − 1),max
i∈V

x̂i(k − 1)], ∀k ∈ P.

Proof. By induction on k ∈ N. By Assumption 5.1 and (5.11), x̂i(0) ∀i ∈ V

are unambiguous and in X . Next, let k ∈ P and suppose x̂i(k − 1) ∀i ∈

V are unambiguous and in X . We show that so are x̂i(k) ∀i ∈ V . From

(5.12), x̂i(k) ∀i ∈ V − u(k) are unambiguous and in X . To show that so are

x̂u1(k)(k) and x̂u2(k)(k), we show that (5.13) and (5.14) have a unique solution

(x̂u1(k)(k), x̂u2(k)(k)) ∈ X 2. By Lemma 5.1, there is a unique z ∈ X such that

f ′
u1(k)

(z) + f ′
u2(k)

(z) = f ′
u1(k)

(x̂u1(k)(k − 1)) + f ′
u2(k)

(x̂u2(k)(k − 1)), (5.15)

which satisfies z ∈ [mini∈u(k) x̂i(k − 1),maxi∈u(k) x̂i(k − 1)]. Setting x̂u1(k)(k) =

x̂u2(k)(k) = z, we see that (x̂u1(k)(k), x̂u2(k)(k)) is a solution to (5.13) and (5.14),

confirming the existence. Now let (a1, a2) ∈ X 2 and (b1, b2) ∈ X 2 be two

solutions of (5.13) and (5.14). Then, due to (5.14), (5.13), and Lemma 5.1, we

have a1 = a2 = b1 = b2, confirming the uniqueness. Therefore, x̂i(k) ∀i ∈ V

are well-defined as desired. Finally, the second statement follows from (5.12)

and the fact that x̂u1(k)(k) = x̂u2(k)(k) ∈ [mini∈u(k) x̂i(k−1),maxi∈u(k) x̂i(k−1)]

∀k ∈ P.

Proposition 5.2 calls for a few remarks. First, the interval

[mini∈V x̂i(k),maxi∈V x̂i(k)] can only shrink or remain unchanged over time k.

While this does not guarantee the dissipation condition (5.5), it shows that

the x̂i(k)’s are “trying” to converge and are, at the very least, bounded even

if X is not. Second, the proofs of Proposition 5.2 and Lemma 5.1 suggest a

simple, practical procedure for nodes u1(k) and u2(k) to solve (5.13) and (5.14)

for (x̂u1(k)(k), x̂u2(k)(k)): apply a numerical root-finding method, such as the
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bisection method with initial bracket [mini∈u(k) x̂i(k − 1),maxi∈u(k) x̂i(k − 1)],

to solve (5.15) for the unique z and then set x̂u1(k)(k) = x̂u2(k)(k) = z. Finally,

since (5.15) always has a unique solution z, we can eliminate z and write

x̂u1(k)(k) = x̂u2(k)(k)

= (f ′
u1(k)

+ f ′
u2(k)

)−1(f ′
u1(k)

(x̂u1(k)(k − 1)) + f ′
u2(k)

(x̂u2(k)(k − 1))), ∀k ∈ P,

(5.16)

where (f ′
i+f

′
j)

−1 : (f ′
i+f

′
j)(X )→ X denotes the inverse of the injective function

f ′
i + f ′

j with its codomain restricted to its range.

Expressions (5.11), (5.12), and (5.16) collectively define a gossip-style,

distributed asynchronous iterative algorithm that yields a switched, nonlinear,

networked dynamical system

x̂i(k)=

{

(
∑

j∈u(k) f
′
j)

−1(
∑

j∈u(k) f
′
j(x̂j(k − 1))), if i ∈ u(k),

x̂i(k − 1), otherwise,
∀k ∈ P, ∀i ∈ V ,

(5.17)

with initial condition (5.11), and with (u(k))∞k=1 representing the sequence of

gossiping nodes that trigger the switchings. As this algorithm ensures the

conservation condition (5.4), the state trajectory (x̂1(k), x̂2(k), . . . , x̂N(k)) must

remain on an (N − 1)-dimensional manifold M = {(x1, x2, . . . , xN) ∈ XN :
∑

i∈V f
′
i(xi) = 0} ⊂ XN ⊂ RN , making M an invariant set. Given that the

algorithm involves repeated, pairwise equalizing of the x̂i(k)’s, we refer to it as

Pairwise Equalizing (PE). PE may be expressed in a compact algorithmic form

as follows:

Algorithm 5.1 (Pairwise Equalizing).

Initialization:

1. Each node i ∈ V computes x∗i ∈ X .

107



2. Each node i ∈ V creates a variable x̂i ∈ X and initializes it:

x̂i ← x∗i .

Operation: At each iteration:

3. A node with one or more one-hop neighbors, say, node i, initiates the

iteration and selects a one-hop neighbor, say, node j, to gossip.

4. Nodes i and j select one of two ways to gossip by labeling themselves as

either nodes a and b, or nodes b and a, respectively, where {a, b} = {i, j}.

5. If node b does not know fa, then node a transmits fa to node b.

6. Node a transmits x̂a to node b.

7. Node b updates x̂b:

x̂b ← (f ′
a + f ′

b)
−1(f ′

a(x̂a) + f ′
b(x̂b)).

8. Node b transmits x̂b to node a.

9. Node a updates x̂a:

x̂a ← x̂b. �

Algorithm 5.1, or PE, consists of an initialization part that is executed

once, and an operation part that is executed iteratively. Several remarks con-

cerning their execution are as follows: Step 1 may be accomplished by letting

every node i ∈ V calculate the root x∗i of f ′
i(x

∗
i ) = 0 analytically whenever

possible (e.g., when fi(x) = x2 + 2x + 3), and numerically via a root-finding

method whenever not (e.g., when fi(x) = x2+2e−x+3ex). In the latter case, as

was alluded to earlier, a suitable choice is the bisection method, which can also

be used to carry out Step 7. Step 2 is intended to create the node estimates, or

state variables, and initialize them using the result of Step 1. Step 3 may be re-

alized either deterministically (e.g., each node periodically initiates an iteration

and cyclically picks a neighbor) or stochastically (e.g., each node initiates an it-
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eration according to some Poisson process and equiprobably picks a neighbor),

depending on which is more appropriate for the particular application.

Step 4 is intended to let nodes i and j pick one of two ways to gossip

that are equivalent mathematically, but different communicatively and compu-

tationally: notice from Steps 5–9 that the node that labels itself as node a has

little to compute but has to communicate the function fa once in Step 5, which

consumes bandwidth and transmission power. In contrast, the node that labels

itself as node b has not much to communicate but has to compute the update

in Step 7, which demands processor time and effort. Thus, Step 4 offers nodes

i and j an opportunity to take advantage of the asymmetry in their actions, to

better utilize their communication and computational resources. This feature

may be useful, especially in a resource-constrained network. For instance, if

fi requires fewer data symbols to represent—and, hence, less bandwidth and

power to transmit—than fj, or if node i’s processor is slower or busier than

node j’s, then nodes i and j might want to label themselves as nodes a and b,

as opposed to nodes b and a, respectively.

Steps 5 and 6 are introduced so that node b can perform Step 7, whereas

Step 8 is introduced so that node a can perform Step 9. Note that Step 5 is

a conditional step that is carried out if and only if the condition “node b does

not know fa” is true. For a wired network, this condition is true if and only

if nodes i and j are gossiping or alternating their a-b labels for the first time,

since the function fa, upon reception by node b, could be stored in its local

memory for later use. However, for a wireless network, this condition may be

false even if nodes i and j are gossiping or alternating their a-b labels for the

first time, since node b may have quietly learned about fa by overhearing the

wireless transmission of fa from node a to another neighbor during a previous
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iteration. Observe that whenever the condition is false (which it almost always

is), only two real-number transmissions are needed per iteration, in Steps 6

and 8.

Notice that PE does not rely on a stepsize parameter to execute, nor

does it require the construction of a (pseudo-)Hamiltonian cycle, as well as

the concurrent use of a routing protocol for multi-hop transmissions. Indeed,

all it essentially needs is that every node is capable of applying a root-finding

method, maintaining a list of its one-hop neighbors, and remembering the func-

tions it learns along the way. Therefore, PE overcomes limitations L1–L3, while

being rather easy to implement—although computationally it is more demand-

ing than the subgradient algorithms.

To show that PE asymptotically converges and, thus, circumvents L4,

let x∗ = (x∗, x∗, . . . , x∗) and x(k) = (x̂1(k), x̂2(k), . . . , x̂N(k)). Then, from

Propositions 5.1 and 5.2, x∗ ∈ XN and x(k) ∈ XN ∀k ∈ N. In addition, due

to (5.17), if x(k) = x∗ for some k ∈ N, then x(ℓ) = x∗ ∀ℓ > k. Hence, x∗ is an

equilibrium point of the system (5.17). To show that limk→∞ x(k) = x∗, i.e.,

(5.3) holds, we seek to construct a Lyapunov function. To this end, recall that

for any strictly convex and differentiable function f : X → R, the first-order

convexity condition says that

f(y) ≥ f(x) + f ′(x)(y − x), ∀x, y ∈ X , (5.18)

where the equality holds if and only if x = y. This suggests the following

Lyapunov function candidate V : XN ⊂ RN → R, which exploits the convexity

of the fi’s:

V (x(k)) =
∑

i∈V
fi(x

∗)− fi(x̂i(k))− f ′
i(x̂i(k))(x

∗ − x̂i(k)). (5.19)
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Notice that V in (5.19) is well-defined. Moreover, due to Assumption 5.1 and

(5.18), V is continuous and positive definite with respect to x∗, i.e., V (x(k)) ≥ 0

∀x(k) ∈ XN , where the equality holds if and only if x(k) = x∗. Therefore, to

prove (5.3), it suffices to show that

lim
k→∞

V (x(k)) = 0. (5.20)

The following lemma represents the first step toward establishing (5.20):

Lemma 5.2. Consider the use of PE described in Algorithm 5.1. Suppose

Assumption 5.1 holds. Then, for any given (u(k))∞k=1, (V (x(k)))∞k=0 is non-

increasing and satisfies

V (x(k))− V (x(k − 1))

= −
∑

i∈u(k)
fi(x̂i(k))− fi(x̂i(k − 1))− f ′

i(x̂i(k − 1))(x̂i(k)− x̂i(k − 1)),

∀k ∈ P. (5.21)

Proof. Let (u(k))∞k=1 be given. Then, from (5.19) and (5.17), we have V (x(k))−

V (x(k−1)) = −∑

i∈u(k) fi(x̂i(k))−fi(x̂i(k−1))+f ′
i(x̂i(k))x

∗−f ′
i(x̂i(k−1))x∗−

f ′
i(x̂i(k))x̂i(k)+f

′
i(x̂i(k−1))x̂i(k−1) ∀k ∈ P. Due to (5.17), −∑

i∈u(k) f
′
i(x̂i(k))x

∗

cancels
∑

i∈u(k) f
′
i(x̂i(k − 1))x∗, while

∑

i∈u(k) f
′
i(x̂i(k))x̂i(k) becomes

∑

i∈u(k) f
′
i(x̂i(k− 1))x̂i(k). This proves (5.21). Note that the right-hand side of

(5.21) is nonpositive due to (5.18). Hence, (V (x(k)))∞k=0 is non-increasing.

Lemma 5.2 has several implications. First, upon completing each iter-

ation k ∈ P by any two nodes u1(k) and u2(k), the value of V must either

decrease or, at worst, stay the same, where the latter occurs if and only if

x̂u1(k)(k − 1) = x̂u2(k)(k − 1). Second, since (V (x(k)))∞k=0 is non-increasing ir-

respective of (u(k))∞k=1, V in (5.19) may be regarded as a common Lyapunov
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function for the nonlinear switched system (5.17), which has as many as N(N−1)
2

different dynamics, corresponding to the N(N−1)
2

possible gossiping pairs. Fi-

nally, the first-order convexity condition (5.18) can be used not only to form

the common Lyapunov function V , but also to characterize drops in its value in

(5.21) after every gossip. This is akin to how quadratic functions may be used

to form a common Lyapunov function V (k) = xT (k)Px(k) for a linear switched

system x(k+1) = A(k)x(k), A(k) ∈ {A1, A2, . . . , AM}, as well as to characterize

drops in V (k) via V (k+1)−V (k) = xT (k)(AT
i PAi−P )x(k) = −xT (k)Qix(k).

Indeed, as we will show later, when problem (5.2) specializes to an averaging

problem, where the nonlinear switched system (5.17) becomes linear, both V

and its drop become quadratic functions.

As (V (x(k)))∞k=0 is nonnegative and non-increasing, limk→∞ V (x(k))

exists and is nonnegative. This, however, is insufficient for us to conclude

that limk→∞ V (x(k)) = 0, since, for some pathological gossiping patterns,

limk→∞ V (x(k)) can be positive. To see this, suppose the set V of nodes can

be partitioned into two nonempty subsets, such that the nodes in one subset

never gossip with those in the other—either by force (e.g., V = {1, 2, 3, 4} and

E(k) ≡ {{1, 2}, {3, 4}}, so that u(k) is forced to be {1, 2} or {3, 4}) or by choice

(e.g., V = {1, 2, 3, 4} and E(k) ≡ {{1, 2}, {2, 3}, {3, 4}}, but u(k) is chosen to

be {1, 2} or {3, 4}). Then, V (x(k)) in general would be bounded away from

zero by a positive constant, since x∗ depends on all the fi’s, but information

never flows between the subsets. Thus, some restrictions must be imposed on

the gossiping pattern, in order to establish (5.20).

Given that PE—or, specifically, its Step 3—may be realized either de-

terministically or stochastically, we will introduce restrictions on the gossiping

pattern in both of these frameworks. Moreover, since the sequence (E(k))∞k=0
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was assumed in Section 5.2 to be exogenous, below we will treat (E(k))∞k=0

simply as given, regardless of the frameworks.

In the deterministic framework, suppose each node initiates an iteration

and picks a neighbor to gossip according to some deterministic policy, resulting

in a deterministic sequence (u(k))∞k=1, which must satisfy u(k) ∈ E(k) ∀k ∈ P.

For any given (u(k))∞k=1, define the set E∞ ⊂ {{i, j} : i, j ∈ V , i 6= j} as

E∞ = {{i, j} : u(k) = {i, j} for infinitely many k ∈ P}. (5.22)

Equation (5.22) says that a link {i, j} is in E∞ if and only if nodes i and j gossip

with each other infinitely often. With E∞ defined as such, we may state the

following restriction on the gossiping pattern, which was first adopted in [72]:

Assumption 5.2. The sequence (u(k))∞k=1 is such that the graph (V , E∞) is

connected.

Assumption 5.2 is not difficult to satisfy in practice, provided that the

network is “connected in the long run.” To justify this claim, consider the

exogenous sequence (E(k))∞k=0 and let E1, E2, . . . , EM represent the sets of links

that occur infinitely often in (E(k))∞k=0, i.e., for each ℓ ∈ {1, 2, . . . ,M}, E(k) =

Eℓ for infinitely many k’s. Note that if the graph (V ,∪M
ℓ=1Eℓ) is not connected,

it means that the set V of nodes can be partitioned into two nonempty subsets

V1 and V2, such that after some finite time, the nodes in V1 can no longer

gossip with those in V2, even if they want to. Thus, we may say that the

network is connected in the long run if and only if the graph (V ,∪M
ℓ=1Eℓ) is

connected. Now suppose the graph (V ,∪M
ℓ=1Eℓ) is connected. Also suppose

E(k) is slowly varying, in the sense that it is constant for many consecutive

k’s. This assumption is reasonable because the topology of a network typically
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changes at a rate that is much slower compared to the rate at which iterations

can occur (e.g., in a wireless network, although path losses and shadowing

may cause a link to fail or recover, such a change occurs at a much slower

time scale compared to the propagation of electromagnetic waves). Since the

graph (V ,∪M
ℓ=1Eℓ) is connected and E(k) is slowly varying, if we simply let every

possible pair of one-hop neighbors gossip frequently enough—at least once per

change in E(k)—then E∞ = ∪M
ℓ=1Eℓ, so that Assumption 5.2 holds. Therefore,

as long as the network is connected in the long run, Assumption 5.2 can be

easily met.

Notice that in the previous paragraph, if the graph (V ,∪M
ℓ=1Eℓ) is not

connected, then for every i ∈ V1 and j ∈ V2, we have {i, j} /∈ E∞. This implies

that the graph (V , E∞) is also not connected, so that Assumption 5.2 fails. In

this case, PE generally would fail to asymptotically converge, but so would most

distributed iterative algorithms, including the consensus algorithms in [5,19,21,

24,25,50,52,63,73], as well as the averaging algorithms in [8,13,26,36,39,72,74].

Based on Assumption 5.2, the following theorem can be established:

Theorem 5.1. Consider the use of PE described in Algorithm 5.1. Suppose

Assumptions 5.1 and 5.2 hold. Then, (5.20) and (5.3) hold.

Proof. See Appendix D.1.

Theorem 5.1 says that, under Assumption 5.2 on the gossiping pattern,

PE ensures asymptotic convergence of all the x̂i(k)’s to x
∗, circumventing lim-

itation L4 facing many of the existing subgradient algorithms.

Next, in the stochastic framework, suppose each node initiates an it-

eration and picks a neighbor to gossip according to some random strategy,
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resulting in a random sequence (u(k))∞k=1, which satisfies u(k) ∈ E(k) ∀k ∈ P,

and which is independent, but not necessarily identically distributed, over time

k. For each k ∈ P and each {i, j} ∈ E(k), let p{i,j}(k) ∈ [0, 1] denote the prob-

ability of u(k) being {i, j}. In addition, for each {i, j} /∈ E(k), let p{i,j}(k) be

undefined since the event u(k) = {i, j} cannot happen. For any given p{i,j}(k)

∀k ∈ P ∀{i, j} ∈ E(k), define the set Ẽ∞ ⊂ {{i, j} : i, j ∈ V , i 6= j} as

Ẽ∞ = {{i, j} : ∃ε > 0 such that ∀k ∈ P, p{i,j}(ℓ) ≥ ε for some ℓ > k}. (5.23)

Expression (5.23) says that a link {i, j} is in Ẽ∞ if and only if the probability

with which nodes i and j gossip with each other is no less than a positive

constant ε for infinitely many iterations. In other words, {i, j} ∈ Ẽ∞ if and

only if the sequence (p{i,j}(k))∞k=1 has a subsequence whose elements are no less

than ε. For instance, if p{i,j}(k) =
1
k
∀k ∈ P, then {i, j} /∈ Ẽ∞. In contrast, if

(p{i,j}(k))
∞
k=1 = (0.1,#, . . . ,#

︸ ︷︷ ︸

10 times

, 0.1,#, . . . ,#
︸ ︷︷ ︸

100 times

, 0.1,#, . . . ,#
︸ ︷︷ ︸

1000 times

, . . .),

where # represents either zero or “undefined,” then {i, j} ∈ Ẽ∞. Based on

this definition of Ẽ∞, we may introduce the following restriction on the random

gossiping pattern:

Assumption 5.3. The random sequence (u(k))∞k=1 is such that the graph

(V , Ẽ∞) is connected.

Similar to Assumption 5.2, it is not difficult to satisfy Assumption 5.3,

so long that the network is connected in the long run. To explain this, suppose

the graph (V ,∪M
ℓ=1Eℓ) is connected. Note that at each time k ∈ P and for each

node i ∈ V who has one or more one-hop neighbors at time k, if we simply

let the probabilities P{node i initiates iteration k} be no less than some ε1 >
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0 and P{node i picks node j to gossip | node i initiates iteration k} be no less

than some ε2 > 0, then p{i,j}(k) ≥ 2ε1ε2 ∀k ∈ P ∀{i, j} ∈ E(k). This implies

that Ẽ∞ = ∪M
ℓ=1Eℓ, so that Assumption 5.3 is met, explaining the argument.

With Assumption 5.3, the following stochastic version of Theorem 5.1

can be stated:

Theorem 5.2. Consider the network modeled in Section 5.2 and the use of

PE described in Algorithm 5.1. Suppose Assumptions 5.1 and 5.3 hold. Then,

with probability 1, (5.20) and (5.3) hold.

Proof. See Appendix D.2.

Theorem 5.2 shows that, under Assumption 5.3 on the random gossip-

ing pattern, PE is almost surely asymptotically convergent, again overcoming

limitation L4.

Finally, we point out that the above results may be viewed as a natu-

ral generalization of some known results in distributed averaging. Consider a

special case where each node i ∈ V observes not an arbitrary function fi, but

a quadratic one of the form fi(x) =
1
2
(x − yi)2 + ci with domain X = R and

parameters yi, ci ∈ R. In this case, finding the unknown optimizer x∗ amounts

to calculating the network-wide average 1
N

∑

i∈V yi of the node “observations”

yi’s, so that the convex optimization problem (5.2) becomes an averaging prob-

lem. In addition, initializing the node estimates x̂i(0)’s simply means setting

them to the yi’s, and equalizing x̂u1(k)(k) and x̂u2(k)(k) simply means averaging

them, so that PE reduces to Pairwise Averaging [72] and Randomized Gos-

sip Algorithm [8]. Moreover, the invariant manifoldM becomes the invariant

hyperplane M = {(x1, x2, . . . , xN ) ∈ RN :
∑

i∈V xi =
∑

i∈V yi} in distributed
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averaging. Furthermore, both the common Lyapunov function V in (5.19) and

its drop in (5.21) take a quadratic form: V (x(k)) = 1
2
(x(k)−x∗)T (x(k)−x∗) and

V (x(k))−V (x(k−1)) = −1
2
xT (k−1)Qu(k)x(k−1) ∀k ∈ P, where Q{i,j} ∈ RN×N

is a symmetric positive semidefinite matrix whose ii and jj entries are 1
2
, ij

and ji entries are −1
2
, and all other entries are zero. Therefore, the first-order-

convexity-condition-based Lyapunov function (5.19) generalizes the quadratic

Lyapunov function in distributed averaging.

5.4 Illustrative Example of Pairwise Equalizing

In this section, we illustrate the effectiveness of PE via a simple example.

Consider a network of 20 nodes, connected by 30 links in a fixed topol-

ogy, as shown in Figure 5.1. Suppose each node i observes a function fi : R→

R, given by

fi(x) = aix+ bi(x− ci)2 + di(x− ei)4, (5.24)

where ai, bi, ci, di, ei are parameters of fi, whose values are randomly chosen

from the intervals (−1, 1), (0, 1), (−1, 1), (0, 2), (−1, 1) and tabulated in Ta-

ble 5.1. The fi’s in (5.24) fulfill Assumption 5.1 because the bi’s and di’s

are positive. To visualize these fi’s, their graphs are displayed as thumbnails

in Figure 5.1 and superimposed on the same plot in Figure 5.2. Also depicted

in Figure 5.2 are the graph of the function F , scaled by 1
N

so that it fits into

the figure, and the unknown optimizer x∗ of F , that all the nodes wish to

determine.

Suppose the nodes apply PE and carry out its Step 3 stochastically,

such that every pair of one-hop neighbors has equal probability (i.e., 1
30
) of
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f1 f2
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f4

f5

f6

f7

f8
f9 f10

f11

f12
f13

f14

f15

f16 f17 f18
f19 f20

Figure 5.1: A 20-node, 30-link network with each node i observing a function
fi.

i ai bi ci di ei

1 −0.2810 0.4370 0.3953 0.1205 0.3335

2 0.3413 0.2104 −0.7421 0.6309 −0.2726
3 0.1404 0.4386 0.9767 0.2041 −0.5822
4 −0.6774 0.6531 −0.4934 0.9326 −0.5111
5 −0.6821 0.1104 0.3127 0.2764 −0.6068
6 −0.2625 0.8210 −0.8058 1.6759 −0.8078
7 0.9529 0.4687 0.9535 1.2097 0.4785

8 −0.9216 0.2828 −0.7596 0.5923 −0.7625
9 −0.3640 0.4143 −0.8717 1.3849 0.1332

10 −0.4692 0.5232 −0.8121 1.1519 0.8586

11 −0.3629 0.6674 −0.7364 1.4327 −0.4212
12 −0.6336 0.5865 −0.9598 1.6579 −0.9906
13 0.3556 0.2700 0.4704 1.9244 −0.5025
14 0.1523 0.5920 0.1445 0.4462 0.9055

15 −0.1057 0.8464 0.3990 0.5949 0.6276

16 −0.2070 0.8811 0.1625 1.7635 0.3851

17 0.4505 0.5013 0.9122 1.2880 −0.1523
18 0.2128 0.0192 −0.3969 1.3203 −0.4198
19 0.2360 0.4288 −0.7291 0.5966 0.1399

20 0.1817 0.5743 0.3064 1.3042 −0.1372

Table 5.1: Parameters of the functions fi’s.
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Figure 5.2: Graphs of the functions fi’s and 1
N
F , along with the unknown

optimizer x∗.

being the pair u(k) that gossips at iteration k, for every k. Figure 5.3 shows

a realization of the random sequence (u(k))1200k=1 of gossiping pairs, obtained by

simulating PE for 1200 iterations. Figure 5.4 shows, on a logarithmic scale,

the value V (x(k)) of the common Lyapunov function along the state trajectory

x(k) of the system. Note that V (x(k)) is indeed non-increasing, agreeing with

Lemma 5.2. Moreover, it is converging to zero, at a rate that is roughly ex-

ponential. Figure 5.5 shows the individual components x̂i(k)’s of x(k), which

represent the estimates of the unknown optimizer x∗. Observe that the x̂i(k)’s

gradually approach x∗, converging to x∗ ± 0.005 after 1008 iterations. Fur-

thermore, the closed interval [mini x̂i(k),maxi x̂i(k)] indeed can only shrink or

remain unchanged, concurring with Proposition 5.2.

Notice that the network in Figure 5.1 contains no Hamiltonian cycle.

Hence, it may be difficult to apply the subgradient algorithms mentioned in L2.

Also, if the nodes are not fully aware of one another, or if they do not have a

routing protocol, then the same can be said about the subgradient algorithms
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Figure 5.3: A realization of the random sequence (u(k))1200k=1 of gossiping pairs.

mentioned in L3, since it may be difficult to randomly and equiprobably pass

the latest estimate of x∗ among the nodes. In fact, even if such passing can

be realized, each pass requires, on average, 2.98 real-number transmissions (or

hops) to complete if shortest-path routing is used, and a higher number if it

is not, or if the network diameter were larger. In comparison, although PE

requires, in its Step 5, one-time transmissions of the fi’s as communication

overhead, it requires only 2 real-number transmissions per iteration, regardless

of the network size and topology.

5.5 Extended Pairwise Equalizing

In this section, we present an extension of PE to networks with not

only time-varying topologies, but also time-varying node memberships, where

nodes may freely join and leave, possibly due to node redeployment, failures/

recoveries, and battery depletion/recharge, which are quite common.

Consider a network whose topology and node memberships are time-
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varying, where time is real-valued and nonnegative. Let t ∈ [0,∞) denote

time, V denote the set of nodes in the network at time t = 0, and F denote

the set of strictly convex, continuously differentiable functions mapping X to

R and having minimizers in X . Suppose, at time t = 0, each node i ∈ V

observes a function f̃i ∈ F with a minimizer x∗i ∈ X . Moreover, at any time

t ≥ 0, all the nodes in the network at that time wish to compute the unique

minimizer x∗ ∈ X of
∑

i∈V f̃i. To enable such computation, suppose at each

time t ∈ P, an iteration involving at least two nodes takes place. In addition,

at each of the time instants t1, t2, . . . , tp ∈ (0,∞)− P, where t1 < t2 < · · · < tp

and p ∈ N, one of the following two events occurs: node joining, whereby a

node joins the network and has one or more one-hop neighbors upon joining,

and node leaving, whereby a node leaves the network and has one or more one-

hop neighbors before leaving. Notice that each node may freely join and leave

the network, at essentially any time, for arbitrary but finite number of times.

Also note that iterations and events cannot simultaneously occur, as the former

occur at positive integer time instants, while the latter do not. Furthermore, if

p = 0, i.e., there are no events, then the network becomes identical to the one

modeled in Section 5.2.

To solve the problem formulated above, we have developed, again using

the idea of conservation, an extension of PE, referred to as Extended Pairwise

Equalizing (EPE) and described as follows:

Algorithm 5.2 (Extended Pairwise Equalizing).

Initialization:

1. Same as the initialization part of Algorithm 5.1.

2. Each node i ∈ V creates a variable fi ∈ F and initializes it:
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fi ← f̃i.

Operation: At each iteration:

3. Same as the operation part of Algorithm 5.1.

Node joining:

4. A node, say, node i, joins the network and selects a one-hop neighbor,

say, node j, to gossip.

5. Node j transmits x̂j and fj to node i.

6. Node j updates fj :

fj ← 1
2
fj.

7. Node i creates variables x̂i ∈ X and fi ∈ F and initializes them sequen-

tially:

x̂i ← x̂j,

fi ← 1
2
fj.

Node leaving:

8. A node, say, node i, wants to leave the network and selects a one-hop

neighbor, say, node j, to gossip.

9. Node i transmits x̂i and fi to node j.

10. Node j updates x̂j and fj sequentially:

x̂j ← (f ′
i + f ′

j)
−1(f ′

i(x̂i) + f ′
j(x̂j)),

fj ← fi + fj.

11. Node i leaves the network. �

Algorithm 5.2, or EPE, consists of four parts: initialization, operation,

node joining, and node leaving. The first and second parts are identical to those

of PE in Algorithm 5.1, with an exception: each node i ∈ V , in addition to
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x̂i, must create a variable fi that is a function in F and initialize fi to the

observed f̃i, in Step 2. The third and fourth parts are executed only when the

node joining and node leaving events take place, respectively. Notice that the

variables fi’s are constant throughout the iterative operation and are updated

only if they are involved in an event, in Steps 6, 7, and 10. Moreover, these

variables fi’s are always in F , which can be seen by induction and from the

fact that F is a convex cone. Furthermore, by induction and Lemma 5.1, the

variables x̂i’s are always in X . Finally, note that EPE allows a node to join

the network with empty memory, and lose all its memory upon leaving.

Similar to PE, as long as the gossiping pattern is rich enough, EPE is

deterministically and stochastically asymptotically convergent. To see this, we

first introduce a few notations: for each t ∈ [0,∞), let V(t) represent the set

of nodes in the network at time t, with V(0) denoted simply as V . Moreover,

for each i ∈ V(t), let x̂i(t) and fi,t represent, respectively, the values of x̂i and

fi maintained by node i at time t. Furthermore, let t− and t+ represent the

times immediately before and after time t. Next, we show that EPE satisfies

an extended conservation condition, defined as

∑

i∈V(t)
f ′
i,t(x̂i(t)) = 0, ∀t ∈ [0,∞), (5.25)

and

∑

i∈V(t)
fi,t =

∑

i∈V
f̃i, ∀t ∈ [0,∞), (5.26)

where (5.25) parallels the conservation condition (5.4), while (5.26) says that

the sum of the fi,t’s is always conserved. According to Steps 1 and 2, at

time t = 0, f ′
i,0(x̂i(0)) = 0 and fi,0 = f̃i ∀i ∈ V . According to Step 3, at

each time t ∈ P, f ′
i,t−(x̂i(t

−)) + f ′
j,t−(x̂j(t

−)) = f ′
i,t+(x̂i(t

+)) + f ′
j,t+(x̂j(t

+)) and
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fi,t− + fj,t− = fi,t+ + fj,t+ . Due to Steps 4–7, at each time t ∈ {t1, t2, . . . , tp}, if

the node joining event occurs, then f ′
j,t−(x̂j(t

−)) = f ′
i,t+(x̂i(t

+)) + f ′
j,t+(x̂j(t

+))

and fj,t− = fi,t+ + fj,t+ . Because of Steps 8–11, if the node leaving event occurs

instead, then f ′
i,t−(x̂i(t

−)) + f ′
j,t−(x̂j(t

−)) = f ′
j,t+(x̂j(t

+)) and fi,t− + fj,t− =

fj,t+ . Combining the above, we get
∑

i∈V f
′
i,0(x̂i(0)) = 0,

∑

i∈V fi,0 =
∑

i∈V f̃i,
∑

i∈V(t−) f
′
i,t−(x̂i(t

−)) =
∑

i∈V(t+) f
′
i,t+(x̂i(t

+)) ∀t ∈ (0,∞), and
∑

i∈V(t−) fi,t− =
∑

i∈V(t+) fi,t+ ∀t ∈ (0,∞). Therefore, with EPE, the extended conservation

condition (5.25) and (5.26) hold. Finally, notice that after time tp (which may

be very large but finite), although the network topology can still vary, the

node memberships can no longer change. Thus, after time tp, EPE behaves

just like PE, executing nothing but iterations at times ⌈tp⌉, ⌈tp⌉+1, and so on.

Because of this and because EPE ensures the extended conservation condition

(5.25) and (5.26), by treating time ⌈tp⌉ as time 0, the convergence analysis of

EPE may be carried out in the same way as that of PE reported in Section 5.3.

Hence, if EPE is realized deterministically and satisfies Assumption 5.2 (with

time ⌈tp⌉ treated as time 0), then it is asymptotically convergent, i.e.,

lim
t→∞

x̂i(t) = x∗, ∀i ∈ V(⌈tp⌉). (5.27)

Analogously, if EPE is implemented stochastically and satisfies Assumption 5.3,

then (5.27) holds almost surely.

5.6 Pairwise Bisectioning

Although PE solves problem (5.2) and bypasses L1–L4, it requires one-

time, one-way sharing of the fi’s between gossiping nodes, which may be costly

for certain fi’s, or impermissible for security and privacy reasons. In this

section, we develop another gossip algorithm that eliminates this requirement
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at the expense of more real-number transmissions per iteration.

Note that PE can be traced back to four defining equations (5.11)–

(5.14), and that its drawback of having to share the fi’s stems from having to

solve (5.13) and (5.14). To overcome this drawback, consider a gossip algorithm

satisfying (5.11)–(5.13) and a new condition but not (5.14). Assuming, without

loss of generality, that x̂u1(k)(k − 1) ≤ x̂u2(k)(k − 1) ∀k ∈ P, this new condition

can be stated as

x̂u1(k)(k − 1) ≤ x̂u1(k)(k) ≤ x̂u2(k)(k) ≤ x̂u2(k)(k − 1), ∀k ∈ P. (5.28)

Termed as the approaching condition, (5.28) says that at each iteration k ∈ P,

nodes u1(k) and u2(k) force x̂u1(k)(k) and x̂u2(k)(k) to approach each other

while preserving their order. Observe that the approaching condition (5.28)

includes the equalizing condition (5.14) as a special case. Furthermore, unlike

(5.13) and (5.14), (5.13) and (5.28) do not uniquely determine x̂u1(k)(k) and

x̂u2(k)(k). Rather, they allow x̂u1(k)(k) and x̂u2(k)(k) to increase gradually from

x̂u1(k)(k−1) and decrease accordingly from x̂u2(k)(k−1), respectively, until the

two become equal.

The following lemma characterizes the impact of the non-uniqueness on

the value of V :

Lemma 5.3. Consider (5.11)–(5.13) and (5.28). Suppose Assumption 5.1

holds. Then, for any given (u(k))∞k=1, (V (x(k)))∞k=0 is non-increasing. More-

over, for any given k ∈ P and x(k − 1) ∈ XN , V (x(k)) strictly increases with

x̂u2(k)(k)− x̂u1(k)(k) over [0, x̂u2(k)(k − 1)− x̂u1(k)(k − 1)].

Proof. Let (u(k))∞k=1 be given. Then, from (5.19), (5.12), and (5.13), we

have V (x(k)) − V (x(k − 1)) = −∑

i∈u(k) fi(x̂i(k)) − fi(x̂i(k − 1)) − f ′
i(x̂i(k −
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1))(x̂i(k)− x̂i(k − 1)) + (f ′
i(x̂i(k − 1))− f ′

i(x̂i(k)))x̂i(k) ∀k ∈ P. Due to (5.13)

and (5.28),
∑

i∈u(k)(f
′
i(x̂i(k − 1)) − f ′

i(x̂i(k)))x̂i(k) = (f ′
u1(k)

(x̂u1(k)(k − 1)) −

f ′
u1(k)

(x̂u1(k)(k)))(x̂u1(k)(k) − x̂u2(k)(k)) ≥ 0. This, along with (5.18), implies

V (x(k)) − V (x(k − 1)) ≤ 0 ∀k ∈ P. Now let k ∈ P and x(k − 1) ∈ XN be

given. By Lemma 5.1, there exists a unique xeq ∈ X such that
∑

i∈u(k) f
′
i(xeq) =

∑

i∈u(k) f
′
i(x̂i(k)). Also, xeq ∈ [x̂u1(k)(k), x̂u2(k)(k)]. Let xeq ∈ XN be such that

its ith entry is xeq if i ∈ u(k) and x̂i(k − 1) otherwise. Then, it follows from

(5.19), (5.12), and (5.18) that V (x(k))−V (xeq) =
∑

i∈u(k) fi(xeq)− fi(x̂i(k))−

f ′
i(x̂i(k))(xeq− x̂i(k)) ≥ 0. Because fi(y)−fi(x)−f ′

i(x)(y−x) strictly increases

with |y − x| for each fixed y ∈ X ∀i ∈ V and because of (5.13) and (5.28), the

second claim is true.

Lemma 5.3 says that the value of V can never increase. In addition, the

closer x̂u1(k)(k) and x̂u2(k)(k) get, the larger the value of V drops, and the drop

is maximized when x̂u1(k)(k) and x̂u2(k)(k) are equalized. These observations

suggest that perhaps it is possible to design an algorithm that only forces

x̂u1(k)(k) and x̂u2(k)(k) to approach each other (as opposed to becoming equal)

to the detriment of a smaller drop in the value of V , but at the benefit of

not having to share the fi’s. The following algorithm, referred to as Pairwise

Bisectioning (PB), shows that this is indeed the case and utilizes a bisection

step that allows x̂u1(k)(k) and x̂u2(k)(k) to get arbitrarily close:

Algorithm 5.3 (Pairwise Bisectioning).

Initialization:

1. Each node i ∈ V computes x∗i ∈ X , creates variables x̂i, ai, bi ∈ X , and

sets x̂i ← x∗i .

Operation: At each iteration:
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2. A node with one or more one-hop neighbors, say, node i, initiates the iter-

ation and selects a one-hop neighbor, say, node j, to gossip. Node i trans-

mits x̂i to node j. Node j sets aj ← min{x̂i, x̂j} and bj ← max{x̂i, x̂j}

and transmits x̂j to node i. Node i sets ai ← min{x̂i, x̂j} and bi ←

max{x̂i, x̂j}. Nodes i and j select the number of bisection rounds R ∈ P.

3. Repeat the following R times: Node j transmits f ′
j(

aj+bj
2

) − f ′
j(x̂j) to

node i. Node i tests if f ′
j(

aj+bj
2

) − f ′
j(x̂j) + f ′

i(
ai+bi

2
) − f ′

i(x̂i) ≥ 0. If so,

node i sets bi ← ai+bi
2

and transmits LEFT to node j, and node j sets

bj ← aj+bj
2

. Otherwise, node i sets ai ← ai+bi
2

and transmits RIGHT to

node j, and node j sets aj ← aj+bj
2

. End repeat.

4. Node j transmits f ′
j(cj)−f ′

j(x̂j) to node i, where cj =
{ aj if x̂j ≤ aj

bj if x̂j ≥ bj
. Node

i tests if
(

f ′
j(cj) − f ′

j(x̂j) + f ′
i(ci) − f ′

i(x̂i)
)

(x̂i − ai+bi
2

) ≥ 0, where ci =
{

ai if x̂i ≤ ai
bi if x̂i ≥ bi

. If so, node i sets x̂i ← (f ′
i)

−1(f ′
i(x̂i) − f ′

j(cj) + f ′
j(x̂j)) and

node j sets x̂j ← cj. Otherwise, node i transmits f ′
i(ci)− f ′

i(x̂i) to node

j and sets x̂i ← ci, and node j sets x̂j ← (f ′
j)

−1(f ′
j(x̂j)− f ′

i(ci) + f ′
i(x̂i)).

�

Notice that Step 1 of PB is identical to that of PE except that each

node i ∈ V creates two additional variables, ai and bi, which are used in Step 2

to represent the initial bracket [ai, bi] = [aj, bj] = [min{x̂i, x̂j},max{x̂i, x̂j}]

for bisection purposes. Step 3 describes execution of the bisection method,

where R ∈ P denotes the number of bisection rounds, which may be different

for each iteration (e.g., a large R may be advisable when x̂i and x̂j are very

different). Observe that upon completing Step 3, xeq ∈ [ai, bi] = [aj, bj] ⊂

[min{x̂i, x̂j},max{x̂i, x̂j}] and bi−ai = bj−aj = 1
2R
|x̂j− x̂i|, where xeq denotes

the equalized value of x̂i and x̂j if PE were used. Moreover, upon completing

Step 4, xeq ∈ [min{x̂i, x̂j},max{x̂i, x̂j}] ⊂ [ai, bi] = [aj, bj], where x̂i and x̂j
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here represent new values. Therefore, upon completing each iteration k ∈ P,

|x̂u1(k)(k)− x̂u2(k)(k)| ≤
1

2R
|x̂u1(k)(k − 1)− x̂u2(k)(k − 1)|, ∀k ∈ P. (5.29)

Finally, note that unlike PE which requires two real-number transmissions per

iteration, PB requires as many as 3+R or 4+R. However, it allows the nodes

to never share their fi’s.

The following theorem establishes the asymptotic convergence of PB

under Assumption 5.2:

Theorem 5.3. Consider the use of PB described in Algorithm 5.3. Suppose

Assumptions 5.1 and 5.2 hold. Then, (5.20) and (5.3) hold.

Proof. See Appendix D.3.

As it follows from the above, PB represents an alternative to PE, which

is useful when nodes are either unable, or unwilling, to share their fi’s. Al-

though not pursued here, it is straightforward to see that PE and PB may be

combined, so that equalizing is used when one of the gossiping nodes can send

the other its fi, and approaching is used when none of them can.

5.7 Conclusion

In this chapter, based on the ideas of conservation and dissipation, we

have developed PE and PB, two non-gradient-based gossip algorithms that

enable nodes to cooperatively solve a class of convex optimization problems

over networks. Using Lyapunov stability theory and the convexity structure,

we have shown that PE and PB are asymptotically convergent, provided that

the gossiping pattern is sufficiently rich. We have also discussed several salient
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features of PE and PB, including their comparison with the subgradient algo-

rithms and their connection with distributed averaging.
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Chapter 6 Control of Distributed Convex Optimization

6.1 Introduction

In many emerging and future applications of multi-agent systems and

wired/wireless networks, agents or nodes are required to jointly accomplish so-

phisticated tasks in distributed fashions. In many instances [57,65], such tasks

require the nodes to collaboratively solve, over the network, an unconstrained,

separable, convex optimization problem of the form

x∗ ∈ argmin
x

N∑

i=1

fi(x), (6.1)

where N is the number of nodes in the network, each fi is a convex function

observed by node i, and x∗ is an optimizer every node wants to know.

This chapter is devoted to the design and analysis of distributed algo-

rithms that solve problem (6.1) efficiently. The motivation of the chapter comes

from two directions: first, the current literature offers a family of subgradient

algorithms for solving problem (6.1), including the incremental subgradient al-

gorithms [28, 42–44, 57–59, 61, 65], whereby an estimate of x∗ is passed around

the network, and the non-incremental ones [27, 32, 45–47], whereby each node

maintains an estimate of x∗ and updates it iteratively by exchanging infor-

mation with neighbors. Although these algorithms are capable of solving the

problem, as was pointed out in Chapter 5, they have one or more of the follow-

ing limitations: (i) the need to select stepsizes, which may not be easy without
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a priori information on the network topology and the fi’s; (ii) the need to con-

struct a Hamiltonian cycle (i.e., a closed path that visits every node exactly

once), which may not exist in many networks; and (iii) the need to perform

multi-hop passing of the estimate of x∗, which may be costly. To overcome

these limitations, in Chapter 5 we develop Pairwise Equalizing (PE), a non-

gradient-based, gossip-style, distributed asynchronous algorithm that solves

problem (6.1) under additional assumptions, bypasses the limitations, and is

relatively easy to implement. We also show in Chapter 5 that PE admits a

common Lyapunov function for convergence analysis, which is inspired by the

first-order convexity condition [9].

Second, the current literature also offers numerous algorithms for solv-

ing the closely related problem of distributed averaging, including [8, 11,13,16,

36, 38, 53, 72, 74, 75, 78]. In Chapter 2, we show that these existing algorithms

are bandwidth/energy inefficient, producing networked dynamical systems that

evolve with wasteful communications. To improve efficiency in Chapter 2, we

develop Controlled Hopwise Averaging (CHA), a distributed asynchronous al-

gorithm that enables the nodes to use potential drops in the value of a common

quadratic Lyapunov function as feedback to greedily and distributively control

when to initiate an iteration. Through extensive simulation on wireless net-

works modeled by random geometric graphs, we show that CHA is substantially

more efficient than several existing schemes, including Pairwise Averaging [72],

Consensus Propagation [38], Algorithm A2 of [36], and Distributed Random

Grouping [13], requiring far fewer transmissions to complete an averaging task.

In this chapter, we show that ideas from Chapters 2 and 5 may be

combined to produce an algorithm that controls the order by which the asyn-

chronous iterations in solving a distributed optimization problem occur. More
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specifically, we show that it is possible to extend the main idea of CHA in

Chapter 2—of using potential drops in the value of a common quadratic Lya-

punov function to perform greedy, decentralized feedback iteration control—

from solving a distributed averaging problem to solving a distributed opti-

mization problem of the form (6.1). We show that the first-order-convexity-

condition-based common Lyapunov function, used to analyze the convergence

of PE in Chapter 5, may be used in place of the common quadratic Lyapunov

function in Chapter 2 to arrive at a new algorithm, referred to as Controlled

Hopwise Equalizing (CHE). The chapter begins by developing Hopwise Equal-

izing (HE), an algorithm capable of solving problem (6.2) but perhaps not

efficiently so due to not attempting to control how the asynchronous iterations

should occur. We show that HE is asymptotically convergent as long as every

node participates in the iterations. In addition, we show that HE provides a

suitable framework for incorporating the notion of bandwidth/energy-efficient,

feedback iteration control, leading to CHE. Finally, via extensive simulation

on wirelessly connected, random geometric graphs, we show that CHE is sub-

stantially more bandwidth/energy efficient than several existing subgradient

algorithms, requiring far fewer transmissions to solve the optimization problem

(6.1).

The outline of this chapter is as follows: Section 6.2 formulates the prob-

lem. Section 6.3 introduces and analyzes HE, while Section 6.4 transforms it

into ICHE and CHE. Section 6.5 compares CHE with PE and several existing

subgradient algorithms via simulation. Finally, Section 6.6 concludes the chap-

ter. The proofs of the main results are included in Appendix D. Throughout

the chapter, let N, P, | · |, f ′, and f−1 denote, respectively, the sets of non-

negative and positive integers, the cardinality of a set, and the derivative and
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inverse of a function f .

6.2 Problem Formulation

Consider a multi-hop network consisting of N ≥ 2 nodes, connected

by L bidirectional links in a fixed topology. The network is modeled as a

connected, undirected graph G = (V , E), where V = {1, 2, . . . , N} represents

the set of N nodes and E ⊂ {{i, j} : i, j ∈ V , i 6= j} represents the set of L

links. Any two nodes i, j ∈ V are one-hop neighbors and can communicate if

and only if {i, j} ∈ E . The set of one-hop neighbors of each node i ∈ V is

denoted as Ni = {j ∈ V : {i, j} ∈ E}, and the communications are assumed to

be delay- and error-free, with no quantization.

Let C denote the set of strictly convex, continuously differentiable func-

tions mapping a nonempty open interval X ⊂ R to R and having a minimizer

in X , which must be unique. Suppose each node i ∈ V observes a function

fi ∈ C with a unique minimizer x∗i ∈ X , and all the N nodes wish to solve the

following unconstrained, separable, convex optimization problem:

min
x∈X

F (x), (6.2)

where the objective function F : X → R is defined as

F (x) =
∑

i∈V
fi(x). (6.3)

As was shown in Chapter 5, F has a unique minimizer x∗ ∈ X satisfying

F ′(x∗) = 0, so that F ∈ C and problem (6.2) is well-posed.

Given the above network, the goal of this chapter is to construct a

distributed asynchronous iterative algorithm, which enables all the N nodes to
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cooperatively solve problem (6.2). The algorithm should be easy to implement

and, particularly, be bandwidth/energy efficient, driving the estimate x̂i at each

node i ∈ V to a sufficiently small neighborhood of the unknown optimizer x∗

with relatively few real-number transmissions.

6.3 Hopwise Equalizing

In this section, we develop an algorithm, which enables the nodes to

collaboratively solve problem (6.2), and which provides a suitable framework

for incorporating the notion of bandwidth/energy-efficient, feedback iteration

control in Section 6.4.

Consider a networked dynamical system, defined on the graph G =

(V , E) as follows: associated with each link {i, j} ∈ E are a function f{i,j} ∈ C

and a state variable x{i,j} ∈ X of the system. Moreover, associated with each

node i ∈ V is an output variable x̂i ∈ X , which represents its estimate of

the unknown optimizer x∗. In addition, associated with the system is a control

variable u ∈ V , which dictates its dynamics and represents, physically, the node

that initiates an iteration (this physical interpretation will be clear shortly).

Let x{i,j}(0) and x̂i(0) represent the initial values of x{i,j} and x̂i, x{i,j}(k) and

x̂i(k) their values upon completing each iteration k ∈ P, and u(k) the node

that initiates the iteration. Suppose the functions f{i,j}’s are defined as

f{i,j} =
1

|Ni|
fi +

1

|Nj|
fj, ∀{i, j} ∈ E , (6.4)

where, because fi ∈ C ∀i ∈ V , we have f{i,j} ∈ C ∀{i, j} ∈ E . Also suppose the

initial states x{i,j}(0)’s are defined as

x{i,j}(0) = x∗{i,j}, ∀{i, j} ∈ E , (6.5)
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where x∗{i,j} ∈ X is the unique minimizer of f{i,j}, which yields f ′
{i,j}(x

∗
{i,j}) = 0.

To describe the system dynamics, consider an iteration k ∈ P, initiated

by node u(k). Suppose, at this iteration k, the state variables associated with

links incident to node u(k) are set equal to some z ∈ X , which satisfies

∑

ℓ∈Nu(k)

f ′
{u(k),ℓ}(z) =

∑

ℓ∈Nu(k)

f ′
{u(k),ℓ}(x{u(k),ℓ}(k − 1)), (6.6)

while the rest of the state variables experience no change in their values, i.e.,

x{u(k),j}(k) = z, ∀j ∈ Nu(k), (6.7)

x{i,j}(k) = x{i,j}(k − 1), ∀{i, j} ∈ E − ∪ℓ∈Nu(k){u(k), ℓ}. (6.8)

The following lemma shows that there always exists a unique z ∈ X satisfying

(6.6), so that the evolution of the x{i,j}(k)’s, governed by (6.4)–(6.8), is well-

defined:

Lemma 6.1. For any n ∈ P, any g1, g2, . . . , gn ∈ C, and any z1, z2, . . . , zn ∈ X ,

there exists a unique z ∈ X such that
∑n

i=1 g
′
i(z) =

∑n
i=1 g

′
i(zi). Moreover,

z ∈ [mini∈{1,2,...,n} zi,maxi∈{1,2,...,n} zi].

Proof. Let n ∈ P, gi ∈ C, and zi ∈ X ∀i ∈ {1, 2, . . . , n}. Since gi ∈ C ∀i,

g′i : X → R is continuous and strictly increasing ∀i, and so is the function
∑n

i=1 g
′
i : X → R. It follows that

∑n
i=1 g

′
i(minj∈{1,2,...,n} zj) ≤

∑n
i=1 g

′
i(zi) ≤

∑n
i=1 g

′
i(maxj∈{1,2,...,n} zj). In addition, by the Intermediate Value Theorem,

there exists a unique z ∈ X such that
∑n

i=1 g
′
i(z) =

∑n
i=1 g

′
i(zi), and that

z ∈ [mini∈{1,2,...,n} zi,maxi∈{1,2,...,n} zi].

Lemma 6.1 has a few implications. First, by induction over k and using

the lemma along with (6.4)–(6.8), we see that x{i,j}(k) ∀k ∈ N ∀{i, j} ∈ E are
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well-defined, i.e., are unambiguous and in X . Second, for every iteration k ∈ P,

Lemma 6.1 says that the unique z ∈ X satisfying (6.6) also satisfies

z ∈ [ min
ℓ∈Nu(k)

x{u(k),ℓ}(k − 1), max
ℓ∈Nu(k)

x{u(k),ℓ}(k − 1)]. (6.9)

This suggests that one may solve (6.6) and (6.7) for x{u(k),j}(k) ∀j ∈ Nu(k) by

first applying a numerical root-finding method, such as the bisection method

with initial bracket given in (6.9), to solve (6.6) for z and then set x{u(k),j}(k)

∀j ∈ Nu(k) to z, via (6.7). Third, from (6.7)–(6.9), we obtain

[ min
{i,j}∈E

x{i,j}(k), max
{i,j}∈E

x{i,j}(k)] ⊂ [ min
{i,j}∈E

x{i,j}(k − 1), max
{i,j}∈E

x{i,j}(k − 1)],

∀k ∈ P, (6.10)

implying that the closed interval containing the x{i,j}(k)’s can never grow nor

drift over time k. Finally, because there exists a unique z ∈ X such that
∑n

i=1 g
′
i(z) =

∑n
i=1 g

′
i(zi) in Lemma 6.1, we may express this unique z as

z = (
∑n

i=1 g
′
i)
−1(

∑n
i=1 g

′
i(zi)), where (

∑n
i=1 g

′
i)
−1 : (

∑n
i=1 g

′
i)(X ) → X is the

inverse of the injective function
∑n

i=1 g
′
i with its codomain restricted to its

range. With this notation, we may similarly express x{u(k),j}(k) ∀j ∈ Nu(k) in

(6.7) as x{u(k),j}(k) = z = (
∑

ℓ∈Nu(k)
f ′
{u(k),ℓ})

−1
∑

ℓ∈Nu(k)
f ′
{u(k),ℓ}(x{u(k),ℓ}(k−1))

∀k ∈ P ∀j ∈ Nu(k).

As it follows from the above, the state equation describing the networked

dynamical system is given by

x{i,j}(k) =







(
∑

ℓ∈Nu(k)

f ′
{u(k),ℓ})

−1(
∑

ℓ∈Nu(k)

f ′
{u(k),ℓ}(x{u(k),ℓ}(k − 1))), if u(k) ∈ {i, j},

x{i,j}(k − 1), otherwise,

∀k ∈ P, ∀{i, j} ∈ E . (6.11)

To complete description of the system, let its output equation be given by

x̂i(k) = (
∑

j∈Ni

f ′
{i,j})

−1(
∑

j∈Ni

f ′
{i,j}(x{i,j}(k))), ∀k ∈ N, ∀i ∈ V . (6.12)
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Observe from (6.11) and (6.12) that the networked dynamical system is a

switched, nonlinear system with L state variables x{i,j}(k)’s, N output vari-

ables x̂i(k)’s, and a control variable u(k) that dictates how the system switches.

Also notice from Lemma 6.1 that the x̂i(k)’s must satisfy

x̂i(k) ∈ [min
j∈Ni

x{i,j}(k),max
j∈Ni

x{i,j}(k)], ∀k ∈ N, ∀i ∈ V , (6.13)

and that they may be calculated using a root-finding method.

Having described the networked dynamical system (6.11) and (6.12)

with initial state (6.5), we now show that it may be realized over the network

via a distributed asynchronous algorithm. Suppose each node i ∈ V , besides

maintaining x̂i, maintains a local copy of f{i,j} and x{i,j}(k) ∀j ∈ Ni, denoted as

fij and xij(k), respectively. For each link {i, j} ∈ E , the local copies are meant

to be equal, i.e., fij = fji and xij(k) = xji(k) ∀k ∈ N, so that the order of

the subscripts is only used to indicate where they physically reside. To evolve

the system, at each iteration k ∈ P, a node u(k) would spontaneously initiate

the iteration and, along with its one-hop neighbors, would perform a sequence

of communication and computing actions. The precise sequence of actions is

stated in the following algorithm, which we refer to as Hopwise Equalizing

(HE), since every iteration involves equalizing of state variables within one hop

of one another:

Algorithm 6.1 (Hopwise Equalizing).

Initialization:

1. Each node i ∈ V transmits |Ni| and fi to every node j ∈ Ni.

2. Each node i ∈ V creates a function fij : X → R, creates variables xij ∈ X

∀j ∈ Ni and x̂i ∈ X , and initializes them sequentially:
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fij ← 1
|Ni|fi +

1
|Nj |fj, ∀j ∈ Ni,

xij ← x∗{i,j}, ∀j ∈ Ni,

x̂i ← (
∑

j∈Ni
f ′
ij)

−1(
∑

j∈Ni
f ′
ij(xij)).

Operation: At each iteration:

3. A node, say, node i, initiates the iteration.

4. Node i updates xij ∀j ∈ Ni:

xij ← x̂i, ∀j ∈ Ni.

5. Node i transmits x̂i to every node j ∈ Ni.

6. Each node j ∈ Ni updates xji and x̂j sequentially:

xji ← x̂i,

x̂j ← (
∑

ℓ∈Nj
f ′
jℓ)

−1(
∑

ℓ∈Nj
f ′
jℓ(xjℓ)). �

Algorithm 6.1, or HE, consists of an initialization part that is executed

once, and an operation part that is executed iteratively. Note that in Step 1,

each node i ∈ V transmits fi |Ni| times if the network is wired, and only once

if it is wireless. Moreover, the node, say, node i, that initiates an iteration, say,

iteration k, in Step 3 is, by definition, node u(k) (this explains the physical

interpretation made earlier). Furthermore, although (6.11) and (6.12) appear

to be somewhat complex, its realization is quite simple, involving only three

successive steps (Steps 4–6), and only one of which requires communication

(Step 5). Notice that this Step 5 requires transmission of |Ni| real numbers if

the network is wired, and only one real number if it is wireless. Thus, HE is an

algorithm capable of fully exploiting the broadcast nature of wireless medium.

Having presented HE, we next show that this algorithm indeed does

allow the nodes to collaboratively solve problem (6.2), i.e., ensuring that

lim
k→∞

x̂i(k) = x∗, ∀i ∈ V . (6.14)
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To establish (6.14), let x∗ ∈ X L and x(k) ∈ X L ∀k ∈ N denote, respectively,

the vectors obtained by stacking L copies of x∗ and all the x{i,j}(k)’s. Notice

from Lemma 6.1 that x∗ is an equilibrium point of the system (6.11) and (6.12).

To show that x(k) would asymptotically converge to the equilibrium point x∗,

recall that for any strictly convex and differentiable function f : X → R, the

first-order convexity condition says that

f(y) ≥ f(x) + f ′(x)(y − x), ∀x, y ∈ X , (6.15)

where the equality holds if and only if x = y. This property suggests the

following Lyapunov function candidate V : X L ⊂ RL → R, which uses the

convexity of the f{i,j}’s:

V (x(k)) =
∑

{i,j}∈E f{i,j}(x
∗)− f{i,j}(x{i,j}(k))− f ′

{i,j}(x{i,j}(k))(x
∗ − x{i,j}(k)).

(6.16)

Because f{i,j} ∈ C ∀{i, j} ∈ C and because of the first-order convexity condition

(6.15), V in (6.16) is continuous and positive definite with respect to x∗, i.e.,

V (x(k)) ≥ 0 ∀x(k) ∈ X L, and V (x(k)) = 0 if and only if x(k) = x∗. Hence, if

lim
k→∞

V (x(k)) = 0, (6.17)

then

lim
k→∞

x{i,j}(k) = x∗, ∀{i, j} ∈ E , (6.18)

which, along with (6.12) and Lemma 6.1, implies (6.14).

To establish (6.17), consider the following lemma:

Lemma 6.2. Consider the network modeled in Section 6.2 and the use of

HE described in Algorithm 6.1. Then, for any given sequence (u(k))∞k=1, the
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sequence (V (x(k)))∞k=0 is non-increasing and satisfies

V (x(k))−V (x(k − 1))=−
∑

j∈Nu(k)

f{u(k),j}(x̂u(k)(k − 1))−f{u(k),j}(x{u(k),j}(k − 1))

− f ′
{u(k),j}(x{u(k),j}(k − 1))(x̂u(k)(k − 1)− x{u(k),j}(k − 1)), ∀k ∈ P.

(6.19)

Proof. Let (u(k))∞k=1 be given. Then, it follows from (6.16) and (6.11) that

V (x(k))− V (x(k − 1))

=−
∑

j∈Nu(k)

f{u(k),j}(x{u(k),j}(k))−f{u(k),j}(x{u(k),j}(k − 1))+f ′
{u(k),j}(x{u(k),j}(k))x

∗

− f ′
{u(k),j}(x{u(k),j}(k − 1))x∗ − f ′

{u(k),j}(x{u(k),j}(k))x{u(k),j}(k)

+ f ′
{u(k),j}(x{u(k),j}(k − 1))x{u(k),j}(k − 1), ∀k ∈ P.

Due to (6.11), −∑

j∈Nu(k)
f ′
{u(k),j}(x{u(k),j}(k))x

∗ in the right-hand side of the

above equation cancels
∑

j∈Nu(k)
f ′
{u(k),j}(x{u(k),j}(k − 1))x∗, while

∑

j∈Nu(k)

f ′
{u(k),j}(x{u(k),j}(k))x{u(k),j}(k) =

∑

j∈Nu(k)

f ′
{u(k),j}(x{u(k),j}(k−1))x{u(k),j}(k).

Moreover, notice from (6.11) and (6.12) that x{u(k),j}(k) = x̂u(k)(k − 1). Thus,

(6.19) holds. Moreover, since the right-hand side of (6.19) is nonpositive,

(V (x(k)))∞k=0 is non-increasing.

Lemma 6.2, together with (6.15), says that upon completing each iter-

ation k ∈ P, the value of V must either decrease or, at worst, stay the same,

no matter which nodes initiates the iteration, i.e., no matter what u(k) is. In

addition, V (x(k)) = V (x(k − 1)) if and only if x{u(k),j}(k − 1) ∀j ∈ Nu(k) are

equal. Second, since (V (x(k)))∞k=0 is non-increasing regardless of (u(k))∞k=1, V

in (6.16) may be viewed as a common Lyapunov function for the nonlinear

switched system (6.11). Finally, observe that the first-order convexity condi-

tion (6.15) can be used not only to form the common Lyapunov function V ,

but also to characterize drops in its value, as shown in (6.19).
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Since V (x(k)) ≤ V (x(k − 1)) ∀k ∈ P and V (x(k)) ≥ 0, the limit

limk→∞ V (x(k)) exists and is nonnegative. Obviously, this property does not

mean limk→∞ V (x(k)) = 0. In fact, in general, limk→∞ V (x(k)) may be positive

if some nodes in the network never initiate an iteration. Therefore, to establish

(6.17), some restrictions must be imposed on the “initiation” pattern. The

following theorem provides a mild, sufficient condition on the initiation pattern,

with which limk→∞ V (x(k)) = 0 is guaranteed:

Theorem 6.1. Consider the network modeled in Section 6.2 and the use of HE

described in Algorithm 6.1. Suppose each node i ∈ V appears infinitely often in

the sequence (u(k))∞k=1. Then, (6.17), (6.18), and (6.14) hold.

Proof. See Appendix E.1.

Theorem 6.1 says that, as long as every node initiates an iteration in-

finitely many times, HE is asymptotically convergent, allowing the nodes to

cooperatively solve problem (6.2). With the development of HE, we have also

provided a suitable framework, to be utilized next for incorporating the notion

of feedback iteration control.

6.4 Controlled Hopwise Equalizing

HE operates by executing (6.11) according to the sequence (u(k))∞k=1 of

nodes that initiate the iterations. Although Theorem 6.1 says that essentially

every sequence (u(k))∞k=1 can drive all the x̂i(k)’s in (6.12) to an arbitrarily

small neighborhood of x∗, certain (u(k))∞k=1 may be better at doing so than

others, requiring fewer iterations and, thus, fewer real-number transmissions,

making them more bandwidth/energy efficient. This raises the question of how
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to generate those efficient (u(k))∞k=1’s distributively in real-time. To address

this question, note that with HE, the sequence (u(k))∞k=1 is undefined initially

and is gradually defined, one element per iteration, as time elapses, i.e., when

a node i ∈ V initiates an iteration k ∈ P, the element u(k) becomes defined

and is given by u(k) = i. Thus, if we let the nodes control when to initiate an

iteration, presumably using some form of locally available feedback, they may

jointly shape the value of (u(k))∞k=1, making it bandwidth/energy efficient.

As it turns out, HE offers a suitable setup which, together with the

common Lyapunov function V in (6.16), enables the nodes to perform greedy,

decentralized, feedback iteration control similar to that in Chapter 2. To see

this, for each i ∈ V , define ∆Vi : X L → R as

∆Vi(x(k)) =
∑

j∈Ni

f{i,j}(x̂i(k))− f{i,j}(x{i,j}(k))

− f ′
{i,j}(x{i,j}(k))(x̂i(k)− x{i,j}(k)). (6.20)

Observe that each ∆Vi(x(k)) in (6.20) is in the form of the first-order convexity

condition (6.15) and, thus, is nonnegative, taking the value of zero if and only

if x{i,j}(k) = x̂i(k) ∀j ∈ Ni. Also note from Lemma 6.2 that for any u(k) ∈ V ,

upon completing iteration k, the value of V would drop from V (x(k − 1)) to

V (x(k)) by an amount equal to ∆Vu(k)(x(k)), i.e.,

V (x(k))− V (x(k − 1)) = −∆Vu(k)(x(k − 1)), ∀k ∈ P. (6.21)

An immediate consequence of (6.21) is that the nodes may collaboratively

produce efficient (u(k))∞k=1 by letting every iteration k ∈ P be initiated by

a node u(k) having a relatively large ∆Vu(k)(x(k − 1)), because the larger

∆Vu(k)(x(k − 1)), the faster V (x(k)) decreases to zero and, thus, the faster

the x{i,j}(k)’s and x̂i(k)’s converge to x∗. In other words, nodes with larger
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∆Vi(x(·))’s would rush to initiate the next iterations, while nodes with smaller

∆Vi(x(·))’s would wait longer. Of course, this approach to feedback iteration

control is possible only if each node i ∈ V knows its own ∆Vi(x(·)). According

to (6.20), this is indeed the case, since f{i,j}, x{i,j}(k), and x̂i(k) ∀j ∈ Ni are

all known to each node i ∈ V .

The preceding paragraph describes a Lyapunov-based, greedy, decen-

tralized approach to feedback iteration control, whereby each node i ∈ V uses

its own potential drop ∆Vi(x(·)) as feedback to control when to initiate an

iteration, focusing on making the value of V drop as much as possible every

time without worrying about the future (hence the term greedy). We point out

that the idea of trying to control a distributed convex optimization process has

not been explored in the literature [27, 28, 32, 42–47, 57–59, 61, 65]. Thus, the

proposed approach represents a main contribution of this chapter.

Given that the nodes strive to behave greedily, a case of interest is how

would the resulting algorithm perform if every iteration k ∈ P turns out to be

initiated by a node i having the largest ∆Vi(x(k − 1)), i.e.,

u(k) ∈ argmax
i∈V

∆Vi(x(k − 1)), ∀k ∈ P. (6.22)

The following algorithm, referred to as Ideal Controlled Hopwise Equalizing

(ICHE), realizes this ideal operation:

Algorithm 6.2 (Ideal Controlled Hopwise Equalizing).

Initialization:

1. Each node i ∈ V transmits |Ni| and fi to every node j ∈ Ni.

2. Each node i ∈ V creates a function fij : X → R, creates variables xij ∈ X

∀j ∈ Ni, x̂i ∈ X , and ∆Vi ∈ [0,∞), and initializes them sequentially:
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fij ← 1
|Ni|fi +

1
|Nj |fj, ∀j ∈ Ni,

xij ← x∗{i,j}, ∀j ∈ Ni,

x̂i ← (
∑

j∈Ni
f ′
ij)

−1(
∑

j∈Ni
f ′
ij(xij)),

∆Vi ←
∑

j∈Ni
fij(x̂i)− fij(xij)− f ′

ij(xij)(x̂i − xij).

Operation: At each iteration:

3. Let i ∈ argmaxj∈V ∆Vj.

4. Node i updates xij ∀j ∈ Ni and ∆Vi sequentially:

xij ← x̂i, ∀j ∈ Ni,

∆Vi ← 0.

5. Node i transmits x̂i to every node j ∈ Ni.

6. Each node j ∈ Ni updates xji, x̂j, and ∆Vj sequentially:

xji ← x̂i,

x̂j ← (
∑

ℓ∈Nj
f ′
jℓ)

−1(
∑

ℓ∈Nj
f ′
jℓ(xjℓ)),

∆Vj ←
∑

ℓ∈Nj
fjℓ(x̂j)− fjℓ(xjℓ)− f ′

jℓ(xjℓ)(x̂j − xjℓ). �

Note that Algorithm 6.2, or ICHE, is similar to HE except for their

Step 3 and except that with ICHE, each node i ∈ V also maintains its own

∆Vi(x(·)). The following theorem asserts that ICHE is always asymptotically

convergent:

Theorem 6.2. Consider the network modeled in Section 6.2 and the use of

ICHE described in Algorithm 6.2. Then, (6.17), (6.18), and (6.14) hold.

Proof. See Appendix E.2.

ICHE described above is not implementable because without a cen-

tralized node, it is difficult to realize (6.22), since it is necessary to collect
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all the ∆Vi(x(k − 1))’s, compare them, and inform the node with the largest

∆Vi(x(k−1)) to initiate the next iteration. Fortunately, it is possible to closely

mimic this greedy behavior of ICHE in a decentralized fashion. To see this,

suppose each node i ∈ V maintains a time-to-initiate variable τi > 0, so that

when time t advances to t = τi, node i initiates the next iteration. Suppose

also that τi is a function of ∆Vi,

τi(k − 1) = Φ(∆Vi(x(k − 1))), (6.23)

where Φ : [0,∞) → (0,∞] is a continuous, strictly decreasing function satis-

fying limv→0Φ(v) = ∞ and Φ(0) = ∞. Because Φ is strictly decreasing, the

larger ∆Vi(x(k−1)), the smaller τi(k−1). Thus, with (6.23), the node with the

largest ∆Vi(x(k− 1))’s would become the node that initiates iteration k. Note

that although (6.23) tries to foster a greedy behavior, it has two limitations.

First, τi may become smaller than t upon completion of an iteration, which is

undesirable because every node’s time to initiate the next iteration should be

in the future, not the past. Second, it is theoretically possible that τi = τj for

some i, j ∈ V , so that if nodes i and j are one-hop neighbors, then a collision

would occur. To overcome these two limitations, consider the following slight

modification of (6.23):

τi(k − 1) = max{Φ(∆Vi(x(k − 1))), t}+ ε(∆Vi(x(k − 1))) · rand(), (6.24)

where ε : [0,∞)→ (0,∞) is a continuous function meant to be small and pos-

itive, and each call to rand() returns a uniformly distributed random variable

on the unit interval. Note from (6.24) that the max{·, ·} function is intended

to ensure that τi is never less than t. Moreover, inserting a little randomness

into (6.24) reduces the probability of collision.
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Observe that with each node i ∈ V utilizing the above decentralized

strategy for controlling when to initiate an iteration, the resulting system be-

comes a simple discrete-event system, in which there are always N events sched-

uled, one from each node. The node u(k) that initiates iteration k can therefore

be determined from

u(k) = argmin
i∈V

τi(k − 1), ∀k ∈ P. (6.25)

The following practical algorithm, referred to as Controlled Hopwise Equalizing

(CHE), realizes this strategy:

Algorithm 6.3 (Controlled Hopwise Equalizing).

Initialization:

1. Let time t = 0.

2. Each node i ∈ V transmits |Ni| and fi to every node j ∈ Ni.

3. Each node i ∈ V creates a function fij : X → R, creates variables xij ∈ X

∀j ∈ Ni, x̂i ∈ X , ∆Vi ∈ [0,∞), and τi ∈ (0,∞], and initializes them

sequentially:

fij ← 1
|Ni|fi +

1
|Nj |fj, ∀j ∈ Ni,

xij ← x∗{i,j}, ∀j ∈ Ni,

x̂i ← (
∑

j∈Ni
f ′
ij)

−1(
∑

j∈Ni
f ′
ij(xij)),

∆Vi ←
∑

j∈Ni
fij(x̂i)− fij(xij)− f ′

ij(xij)(x̂i − xij),

τi ← max{Φ(∆Vi), t}+ ε(∆Vi) · rand().

Operation: At each iteration:

4. Let i ∈ argminj∈V τj and t = τi.

5. Node i updates xij ∀j ∈ Ni, ∆Vi, and τi sequentially:

xij ← x̂i, ∀j ∈ Ni,
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∆Vi ← 0,

τi ←∞.

6. Node i transmits x̂i to every node j ∈ Ni.

7. Each node j ∈ Ni updates xji, x̂j, ∆Vj, and τj sequentially:

xji ← x̂i,

x̂j ← (
∑

ℓ∈Nj
f ′
jℓ)

−1(
∑

ℓ∈Nj
f ′
jℓ(xjℓ)),

∆Vj ←
∑

ℓ∈Nj
fjℓ(x̂j)− fjℓ(xjℓ)− f ′

jℓ(xjℓ)(x̂j − xjℓ),

τj ← max{Φ(∆Vj), t}+ ε(∆Vj) · rand(). �

6.5 Performance Comparison

In this section, we compare CHE with Pairwise Equalizing (PE), de-

veloped in Chapter 5, as well as with five existing subgradient algorithms,

namely, incremental with cyclic passing of the latest estimate [43] (referred

to here as NedBer’01-C), incremental with random equiprobable passing [42]

(NedBer’01-R), incremental with random Markov chain-based one-hop pass-

ing [61] (RamNedVee’09), synchronous with one consensus iteration per up-

date [46] (NedOzd’09), and synchronous with ϕ = 5 consensus iterations per

update [27] (JKJJ’08). Due to space limitations, we omit detailed description

of the implementation of these algorithms.

Suppose each node i observes a function fi : R→ R of the form fi(x) =

aix + bi(x − ci)2 + di(x − ei)4, where bi, di ∈ (0, 1), ci, ei ∈ (−1, 1), and ai ∈

(−2bi(1 − ci) − 4(di − ei)
3, 2bi(1 + ci) + 4di(1 + ei)

3), so that x∗i ∈ (−1, 1).

For each of the subgradient algorithms, we choose a diminishing stepsize of

the form α(k) = a
k
, where a ∈ (0,∞). After some fine-tuning of the value

of a, we arrive at a = 0.05 for NedBer’01-C, a = 0.02 for NedBer’01-R and
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RamNedVee’09, a = 0.018 for NedOzd’09, and a = 0.024 for JKJJ’08. To

ensure a fair comparison, overhead transmissions are included for the following

cases: for RamNedVee’09, NedOzd’09, and JKJJ’08, where a weight scheme is

used, N overhead transmission are counted for each node i ∈ V to obtain |Nj|

∀j ∈ Nj; and for PE and CHE, 5N overhead transmissions are counted for the

transmission of ai, bi, ci, di, and ei. Note that for each subgradient algorithm,

any overhead required to determine the value of a is excluded. Moreover,

for NedBer’01-C, we use a pseudo-Hamiltonian cycle, or the shortest tour that

visits each node of the network, to realize the cyclic passing, since a Hamiltonian

cycle is not guaranteed to exist. The overhead required to construct such a tour

is also excluded.

To compare these algorithms, we generate random geometric wirelessly

connected graphs ofN ∈ {100, 200, 300, 400, 500} nodes and choose the one-hop

radius such that the average number of neighbors 2L
N
∈ {10, 20, 30, 40, 50, 60}.

For each N and 2L
N
, 240 different networks were generated, and for every net-

work, each algorithm was simulated for sufficiently many iterations to find the

smallest K ∈ P such that |x̂i(k)−x∗| ≤ 0.005 ∀i ∈ V , ∀k ≥ K. Then we record

convergence as the number of real-number transmissions needed to carry out

the K iterations.

Figure 6.1 shows the number of real-number transmissions needed to

converge, averaged over the 240 scenarios, as a function of the number of nodes

N and the average number of neighbors 2L
N
. Observe that, in general, the non-

incremental subgradient algorithms are the least efficient, with JKJJ’08 achiev-

ing better performance than NedOzd’09, particularly in networks of larger 2L
N
.

The next in line in terms of efficiency is PE, which also achieves better relative

performance for larger 2L
N
. Thirdly, the random incremental subgradient al-
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gorithms (NedBer’01-R and RamNedVee’09) perform even better, especially

in large networks. Finally, NedBer01-C and CHE have the best efficiency

with NedBer’01-C performing slightly better than CHE for larger networks.

However, NetBer’01-C requires the construction of pseudo-Hamiltonian cycles,

which may be difficult to do in a distributive fashion and which is not penal-

ized in this comparison. In contrast, CHE achieves comparable performance

without needing such cycles.

6.6 Conclusion

In this chapter, we have addressed the problem of solving unconstrained,

separable, convex optimization problems over networks. We have introduced

a new concept in solving such problems: control of distributed convex opti-

mization. We have developed and analyzed three algorithms—namely, HE,

ICHE, and CHE—showing along the way that a common Lyapunov function,

constructed based on the first-order convexity condition, can be used to incor-

porate the notion of greedy, decentralized, feedback iteration control, whereby

individual nodes use potential drops in the value of the Lyapunov function

to control when to initiate an iteration. Finally, via extensive simulation on

wirelessly connected random geometric graphs, we have shown that CHE is

significantly more bandwidth/energy efficient than several existing subgradient

algorithms, requiring far fewer transmissions to solve a convex optimization

problem.
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Chapter 7 Zero-Gradient-Sum Algorithms for

Distributed Convex Optimization: The

Continuous-Time Case

7.1 Introduction

This chapter addresses the problem of solving an unconstrained, sepa-

rable, convex optimization problem over an N -node multi-hop network, where

each node i observes a convex function fi, and all the N nodes wish to deter-

mine an optimizer x∗ that minimizes the sum of the fi’s, i.e.,

x∗ ∈ argmin
x

N∑

i=1

fi(x). (7.1)

The problem (7.1) arises in many emerging and future applications of multi-

agent systems and wired/wireless/social networks, where agents or nodes often

need to collaborate in order to jointly accomplish sophisticated tasks in decen-

tralized and optimal fashions [57].

To date, a family of discrete-time subgradient algorithms, aimed at solv-

ing problem (7.1) under general convexity assumptions, have been reported in

the literature. These subgradient algorithms may be roughly classified into two

groups. The first group of algorithms [6, 28, 57, 61] are incremental in nature,

relying on the passing of an estimate of x∗ around the network to operate. The

second group of algorithms [27, 47, 62] are non-incremental, relying instead on

a combination of subgradient updates and linear consensus iterations to oper-
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ate, although gossip-based updates have also been considered [60]. For each of

these algorithms, a number of convergence properties have been established,

including the resulting error bounds, asymptotic convergence, and convergence

rates.

In Chapter 5, we introduced a gossip-style, distributed asynchronous

algorithm, referred to as Pairwise Equalizing (PE), which solves the scalar

version of problem (7.1), in a manner that is fundamentally different from the

aforementioned subgradient algorithms (e.g., PE does not try to move along the

gradient, nor does it require the notion of a stepsize). In Chapter 6, we showed

that the two basic ideas behind PE—namely, the conservation of a certain

gradient sum at zero and the use of a convexity-inspired Lyapunov function—

can be extended, leading to Controlled Hopwise Equalizing (CHE), a distributed

asynchronous algorithm that allows individual nodes to use potential drops in

the value of the Lyapunov function to control, on their own, when to initiate an

iteration, so that problem (7.1) may be solved efficiently. In both the chapters,

problem (7.1) was studied in a discrete-time, asynchronous setting, and only

the scalar version of it was considered.

In this chapter, we address problem (7.1) from a continuous-time and

multi-dimensional standpoint, building upon the two basic ideas behind PE.

Specifically, using the same Lyapunov function candidate as the one for PE and

CHE, we first derive a family of continuous-time distributed algorithms called

Zero-Gradient-Sum (ZGS) algorithms, with which the states of the resulting

nonlinear networked dynamical systems slide along an invariant, zero-gradient-

sum manifold and converge asymptotically to the unknown minimizer x∗ in

(7.1). We then describe a systematic way to construct ZGS algorithms and

prove that a subset of them are exponentially convergent. For this subset of
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algorithms, we also obtain lower and upper bounds on their convergence rates

as functions of the network topologies, problem characteristics, and algorithm

parameters, including the algebraic connectivity, Laplacian spectral radius, and

curvatures of the fi’s. As another contribution of this chapter, we show that

some of the existing continuous-time distributed consensus algorithms (e.g.,

[24,51,52,63,66,69]) are special cases of ZGS algorithms and are, interestingly,

just a slight modification away from solving any problem of the form (7.1). In

addition, the well-known result from [52], which says that the convergence rate

of a linear consensus algorithm is characterized by the algebraic connectivity

of the underlying graph, is a special case of Theorem 7.2 here.

The outline of this chapter is as follows: Section 7.2 provides some

preliminaries. Section 7.3 formulates the problem. Sections 7.4 characterizes

and constructs ZGS algorithms, and Section 7.5 analyzes their convergence

rates. Finally, Section 7.6 concludes the chapter.

7.2 Preliminaries

A twice continuously differentiable function f : Rn → R is locally

strongly convex if for any convex and compact set D ⊂ Rn, there exists a

constant θ > 0 such that the following equivalent conditions hold [23,48]:

f(y)− f(x)−∇f(x)T (y − x) ≥ θ

2
‖y − x‖2, ∀x, y ∈ D, (7.2)

(∇f(y)−∇f(x))T (y − x) ≥ θ‖y − x‖2, ∀x, y ∈ D, (7.3)

∇2f(x) ≥ θIn, ∀x ∈ D, (7.4)

where ‖ · ‖ denotes the Euclidean norm, ∇f : Rn → Rn is the gradient of f ,

∇2f : Rn → Rn×n is the Hessian of f , and In ∈ Rn×n is the identity matrix.
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The function f is strongly convex if there exists a constant θ > 0 such that the

equivalent conditions (7.2)–(7.4) hold for D = Rn, in which case θ is called the

convexity parameter of f [48]. Finally, for any twice continuously differentiable

function f : Rn → R, any convex set D ⊂ Rn, and any constant Θ > 0, the

following conditions are equivalent [9, 48]:

f(y)− f(x)−∇f(x)T (y − x) ≤ Θ

2
‖y − x‖2, ∀x, y ∈ D, (7.5)

(∇f(y)−∇f(x))T (y − x) ≤ Θ‖y − x‖2, ∀x, y ∈ D, (7.6)

∇2f(x) ≤ ΘIn, ∀x ∈ D. (7.7)

7.3 Problem Formulation

Consider a multi-hop network consisting of N ≥ 2 nodes, connected by

bidirectional links in a fixed topology. The network is modeled as a connected,

undirected graph G = (V , E), where V = {1, 2, . . . , N} represents the set of

N nodes and E ⊂ {{i, j} : i, j ∈ V , i 6= j} represents the set of links. Any

two nodes i, j ∈ V are one-hop neighbors and can communicate if and only

if {i, j} ∈ E . The set of one-hop neighbors of each node i ∈ V is denoted as

Ni = {j ∈ V : {i, j} ∈ E}, and the communications are assumed to be delay-

and error-free, with no quantization.

Suppose each node i ∈ V observes a function fi : R
n → R satisfying the

following assumption:

Assumption 7.1. For each i ∈ V , the function fi is twice continuously differ-

entiable, strongly convex with convexity parameter θi > 0, and has a locally

Lipschitz Hessian ∇2fi.

Suppose, upon observing the fi’s, all the N nodes wish to solve the
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following unconstrained, separable, convex optimization problem:

min
x∈Rn

F (x), (7.8)

where the objective function F : Rn → R is defined as F (x) =
∑

i∈V fi(x).

The proposition below shows that F has a unique minimizer x∗ ∈ Rn, so that

problem (7.8) is well-posed:

Proposition 7.1. With Assumption 7.1, there exists a unique x∗ ∈ Rn such

that F (x∗) ≤ F (x) ∀x ∈ Rn and ∇F (x∗) = 0.

Proof. By Assumption 7.1, F is twice continuously differentiable and strongly

convex with convexity parameter
∑

j∈V θj > 0. Pick any xo ∈ Rn and define

the set D = {x ∈ Rn : F (x) ≤ F (xo)}. Since xo ∈ D and F is continuous, D is

nonempty and closed. Pick any y ∈ Rn with ‖y‖ = 1 and consider the ray {xo+

ηy ∈ Rn : η ≥ 0}. From (7.2), F (xo+ηy) ≥ F (xo)+η∇F (xo)Ty+η2
∑

j∈V θj

2
‖y‖2.

Since ‖y‖ = 1 and η ≥ 0, F (xo + ηy) ≥ F (xo) − η‖∇F (xo)‖ + η2
∑

j∈V θj

2
.

Therefore, ∀η > 2‖∇F (xo)‖∑
j∈V θj

, F (xo + ηy) > F (xo), so that xo + ηy /∈ D. Hence, D

is bounded and, thus, compact. Since F is continuous, there exists an x∗ ∈ D

such that F (x∗) ≤ F (x) ∀x ∈ D. By definition of D, F (x∗) ≤ F (x) ∀x ∈ Rn.

Because F is strongly convex, x∗ is unique and satisfies ∇F (x∗) = 0.

Given the above network and problem, the aim of this chapter is to

devise a continuous-time distributed algorithm of the form

ẋi(t) = ϕi(xi(t),xNi
(t); fi, fNi

), ∀t ≥ 0, ∀i ∈ V , (7.9)

xi(0) = χi(fi, fNi
), ∀i ∈ V , (7.10)

where t ≥ 0 denotes time; xi(t) ∈ Rn is a state representing node i’s estimate

of the unknown minimizer x∗ at time t; xNi
(t) = (xj(t))j∈Ni

∈ Rn|Ni| is a vector
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obtained by stacking xj(t) ∀j ∈ Ni; fNi
= (fj)j∈Ni

: Rn → R|Ni| is a function

obtained by stacking fj ∀j ∈ Ni; ϕi : R
n × Rn|Ni| → Rn is a locally Lipschitz

function of xi(t) and xNi
(t) governing the dynamics of xi(t), whose definition

may depend on fi and fNi
; χi ∈ Rn is a constant determining the initial state

xi(0), whose value may depend on fi and fNi
; |·| denotes the cardinality of a set;

and xi(t), fi, ϕi, and χi are maintained in node i’s local memory. The goal of

the algorithm (7.9) and (7.10) is to steer all the estimates xi(t)’s asymptotically

(or, better yet, exponentially) to the unknown x∗, i.e.,

lim
t→∞

xi(t) = x∗, ∀i ∈ V , (7.11)

enabling all the nodes to cooperatively solve problem (7.8). Note that to realize

(7.9) and (7.10), for each i ∈ V , every node j ∈ Ni must send node i its xj(t)

at each time t if ϕi does depend on xj(t), and its fj at time t = 0 if ϕi or χi

does depend on fj.

7.4 Zero-Gradient-Sum Algorithms

In this section, we develop a family of algorithms that achieve the stated

goal. To facilitate the development, we let x∗ = (x∗, x∗, . . . , x∗) ∈ RnN denote

the vector of minimizers and x(t) = (x1(t), x2(t), . . . , xN(t)) ∈ RnN , or simply

x = (x1, x2, . . . , xN ), denote the entire state vector.

Consider a Lyapunov function candidate V : RnN → R, defined in terms

of the observed fi’s as

V (x) =
∑

i∈V
fi(x

∗)− fi(xi)−∇fi(xi)T (x∗ − xi). (7.12)

Notice that V in (7.12) is continuously differentiable because of Assumption 7.1,

and that it satisfies V (x∗) = 0. Moreover, V is positive definite with respect to
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x∗ and is radially unbounded, which can be seen by noting that Assumption 7.1

and the first-order strong convexity condition (7.2) imply

V (x) ≥
∑

i∈V

θi
2
‖x∗ − xi‖2, ∀x ∈ RnN , (7.13)

and (7.13) in turn implies V (x) > 0 ∀x 6= x∗ and V (x) → ∞ as ‖x‖ → ∞.

Therefore, V in (7.12) is a legitimate Lyapunov function candidate, which may

be used to derive algorithms that ensure (7.11).

Taking the time derivative of V along the state trajectory x(t) of the

system (7.9) and calling it V̇ : RnN → R, we obtain

V̇ (x(t)) =
∑

i∈V
(xi(t)− x∗)T∇2fi(xi(t))ϕi(xi(t),xNi

(t); fi, fNi
), ∀t ≥ 0.

(7.14)

Due to Assumption 7.1 and to each ϕi being locally Lipschitz, V̇ in (7.14) is

continuous. In addition, it yields V̇ (x∗) = 0. Hence, if the functions ϕi ∀i ∈ V

are such that V̇ is negative definite with respect to x∗, i.e.,

∑

i∈V
(xi − x∗)T∇2fi(xi)ϕi(xi,xNi

; fi, fNi
) < 0, ∀x 6= x∗, (7.15)

the system (7.9) would have a unique equilibrium point at x∗, which by the

Barbashin-Krasovskii theorem would be globally asymptotically stable. Con-

sequently, regardless of how the constants χi ∀i ∈ V in (7.10) are chosen, the

goal (7.11) would be accomplished.

As it follows from the above, the challenge lies in finding ϕi ∀i ∈ V ,

which collectively satisfy (7.15). Such ϕi’s, however, may be difficult to con-

struct because x∗ in (7.15) is unknown to any of the nodes, i.e., x∗ depends on

every fi via (7.8), but ϕi maintained by each node i ∈ V can only depend on

fi and fNi
. As a result, one cannot let the ϕi’s depend on x∗, such as letting
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ϕi(xi,xNi
; fi, fNi

) = x∗ − xi ∀i ∈ V , even though this particular choice guaran-

tees (7.15) (since each ∇2fi(xi) is positive definite, by (7.4)). Given that the

required ϕi’s are not readily apparent, instead of searching for them, below we

present an alternative approach toward the goal (7.11), which uses the same V

and V̇ as in (7.12) and (7.14), but demands neither local nor global asymptotic

stability.

To state the approach, we first introduce two definitions: let A ⊂ RnN

represent the agreement set and M ⊂ RnN represent the zero-gradient-sum

manifold, defined respectively as

A = {(y1, y2, . . . , yN ) ∈ RnN : y1 = y2 = · · · = yN}, (7.16)

M = {(y1, y2, . . . , yN ) ∈ RnN :
∑

i∈V
∇fi(yi) = 0}, (7.17)

so that x ∈ A if and only if all the xi’s agree, and x ∈ M if and only if the

sum of all the gradients ∇fi’s, evaluated respectively at the xi’s, is zero. Notice

from (7.16) that x∗ ∈ A, from (7.17) and Proposition 7.1 that x∗ ∈ M, and

from all of them that x ∈ A ∩M ⇒ x = x∗. Thus, A ∩M = {x∗}. Also

note from the continuity of each ∇fi that M is closed and from the Implicit

Function Theorem and the nonsingularity of each ∇2fi(x) ∀x ∈ Rn thatM is

indeed a manifold of dimension n(N − 1).

Having introduced A and M, we now describe the approach, which

is based on the following recognition: to attain the goal (7.11), condition

(7.15)—which ensures that every trajectory x(t) goes to x∗—is sufficient but

not necessary. Rather, all that is needed is a single trajectory x(t), along which

V̇ (x(t)) ≤ 0 ∀t ≥ 0 and limt→∞ V (x(t)) = 0, since the latter implies (7.11).

Recognizing this, we next derive three conditions on the ϕi’s and χi’s in (7.9)

and (7.10) that produce such a trajectory. Assume, for a moment, that the
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χi’s dictating the initial state x(0) have been decided, so that we may focus on

the ϕi’s that shape the trajectory x(t) leaving x(0). Observe that V̇ in (7.14)

takes the form V̇ (x(t)) = Φ1(x(t))− x∗TΦ2(x(t)) ∀t ≥ 0, where Φ1 : R
nN → R

and Φ2 : RnN → Rn. Thus, the unknown x∗—which may undesirably affect

the sign of V̇ (x(t))—can be eliminated by setting Φ2(x) = 0 ∀x ∈ RnN , i.e., by

forcing the ϕi’s to satisfy

∑

i∈V
∇2fi(xi)ϕi(xi,xNi

; fi, fNi
) = 0, ∀x ∈ RnN . (7.18)

With this first condition (7.18), V̇ becomes free of x∗, reducing to

V̇ (x(t)) =
∑

i∈V
xi(t)

T∇2fi(xi(t))ϕi(xi(t),xNi
(t); fi, fNi

), ∀t ≥ 0. (7.19)

Next, notice that whenever x(t) is in the agreement set A, due to (7.16) and

(7.18), V̇ (x(t)) in (7.19) must vanish. However, whenever x(t) /∈ A, there is

no such restriction. Hence, any time x(t) /∈ A, V̇ (x(t)) can be made negative

by forcing the ϕi’s to also satisfy

∑

i∈V
xTi ∇2fi(xi)ϕi(xi,xNi

; fi, fNi
) < 0, ∀x ∈ RnN −A. (7.20)

With this additional, second condition (7.20), no matter what x∗ is, V̇ (x(t)) ≤ 0

along x(t), with equality if and only if x(t) ∈ A. Finally, note that (7.18) and

(7.9) imply

d

dt

∑

i∈V
∇fi(xi(t)) =

∑

i∈V
∇2fi(xi(t))ẋi(t) = 0, ∀t ≥ 0,

while (7.11), the continuity of each ∇fi, and Proposition 7.1 imply

lim
t→∞

∑

i∈V
∇fi(xi(t)) =

∑

i∈V
∇fi( lim

t→∞
xi(t)) =

∑

i∈V
∇fi(x∗) = ∇F (x∗) = 0.
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The former says that by making the ϕi’s satisfy (7.18), the gradient sum
∑

i∈V ∇fi(xi(t)) along x(t) would remain constant over time, while the latter

says that to achieve limt→∞ V (x(t)) = 0 or equivalently (7.11), this constant

sum must be zero, i.e.,
∑

i∈V ∇fi(xi(t)) = 0 ∀t ≥ 0. Therefore, in view of

(7.10), the χi’s must be such that

∑

i∈V
∇fi(χi(fi, fNi

)) = 0, (7.21)

yielding the third and final condition.

By imposing algebraic constraints on the ϕi’s and χi’s, conditions (7.18),

(7.20), and (7.21) characterize a family of algorithms. This family of algorithms

share a number of properties, including one that has a nice geometric inter-

pretation: observe from (7.21), (7.10), and (7.17) that x(0) ∈ M and further

from (7.18) and (7.9) that x(t) ∈M ∀t > 0. Thus, every algorithm in the fam-

ily produces a nonlinear networked dynamical system, whose trajectory x(t)

begins on, and slides along, the zero-gradient-sum manifoldM, makingM a

positively invariant set. Due to this geometric interpretation, these algorithms

are referred to as follows:

Definition 7.1. A continuous-time distributed algorithm of the form (7.9)

and (7.10) is said to be a Zero-Gradient-Sum (ZGS) algorithm if ϕi ∀i ∈ V are

locally Lipschitz and satisfy (7.18) and (7.20), and χi ∀i ∈ V satisfy (7.21).

The following theorem lists the properties shared by ZGS algorithms,

showing that every one of them is capable of asymptotically driving x(t) to x∗,

solving problem (7.8):

Theorem 7.1. Consider the network modeled in Section 7.3 and the use of

a ZGS algorithm described in Definition 7.1. Suppose Assumption 7.1 holds.

161



Then: (i) there exists a unique solution x(t) ∀t ≥ 0 to (7.9) and (7.10); (ii)

x(t) ∈ M ∀t ≥ 0; (iii) V̇ (x(t)) ≤ 0 ∀t ≥ 0, with equality if and only if

x(t) = x∗; (iv) limt→∞ V (x(t)) = 0; and (v) limt→∞ x(t) = x∗, i.e., (7.11)

holds.

Proof. Since ϕi ∀i ∈ V are locally Lipschitz, to prove (i) it suffices to show that

every solution x(t) of (7.9) and (7.10) lies entirely in a compact subset of RnN .

To this end, let B(x∗, r) ⊂ RnN denote the closed-ball of radius r ∈ [0,∞)

centered at x∗, i.e., B(x∗, r) = {y ∈ RnN : ‖y − x∗‖ ≤ r}. Note from (7.14),

(7.18), and (7.20) that V̇ (x(t)) ≤ 0 along x(t). This, together with (7.13),

implies that V (x(0)) ≥ V (x(t)) ≥ mini∈V θi
2
‖x(t) − x∗‖2 along x(t). Hence,

x(t) ∈ B(x∗,
√

2V (x(0))
mini∈V θi

) ∀t ≥ 0, ensuring (i). Statement (ii) has been proven in

the paragraph before Definition 7.1. To verify (iii), notice again from (7.14),

(7.18), and (7.20) that V̇ (x(t)) = 0 if and only if x(t) ∈ A. Due to (ii) and to

A ∩M = {x∗} shown earlier, (iii) holds. To prove (iv), observe from (7.13)

and (iii) that V (x(t)) ∀t ≥ 0 is nonnegative and non-increasing. Thus, there

exists a c ≥ 0 such that limt→∞ V (x(t)) = c and V (x(t)) ≥ c ∀t ≥ 0. To show

that c = 0, assume to the contrary that c > 0. Then, because V in (7.12) is

continuous and positive definite with respect to x∗, there exists an ǫ > 0 such

that B(x∗, ǫ) ⊂ {y ∈ RnN : V (y) < c}. With this ǫ, define a set K ⊂ RnN as

K =M∩{y ∈ RnN : ǫ ≤ ‖y− x∗‖ ≤
√

2V (x(0))
mini∈V θi

}. Notice that x(t) ∈ K ∀t ≥ 0

because x(t) ∈ M, V (x(t)) ≥ c, and x(t) ∈ B(x∗,
√

2V (x(0))
mini∈V θi

) ∀t ≥ 0. Also

note that K ⊂M but K 6∋ x∗. This, along with the properties A∩M = {x∗}

and V̇ (y) < 0 ∀y /∈ A, implies that V̇ (y) < 0 ∀y ∈ K. Since V̇ in (7.14) is

continuous and K is nonempty and compact (due to M being a closed set),

there exists an η > 0 such that maxy∈K V̇ (y) = −η. Since x(t) ∈ K ∀t ≥ 0,
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V (x(t)) = V (x(0)) +
∫ t

0
V̇ (x(τ)) dτ ≤ V (x(0)) − ηt. This implies V (x(t)) < c

∀t > V (x(0))−c
η

, which is a contradiction. Therefore, c = 0, establishing (iv).

Finally, (v) is an immediate consequence of (7.13) and (iv).

Having established Theorem 7.1, we now present a systematic way to

construct ZGS algorithms. First, to find χi’s that meet condition (7.21), con-

sider the following proposition, which shows that each fi has a unique minimizer

x∗i ∈ Rn:

Proposition 7.2. With Assumption 7.1, for each i ∈ V, there exists a unique

x∗i ∈ Rn such that fi(x
∗
i ) ≤ fi(x) ∀x ∈ Rn and ∇fi(x∗i ) = 0.

Proof. For each i ∈ V , the proof is identical to that of Proposition 7.1 with x∗,

F , and
∑

j∈V θj replaced by x∗i , fi, and θi, respectively.

Proposition 7.2 implies that
∑

i∈V ∇fi(x∗i ) = 0. Hence, (7.21) can be

met by simply letting

χi(fi, fNi
) = x∗i , ∀i ∈ V , (7.22)

which is permissible since every x∗i in (7.22) depends just on fi. It follows that

each node i ∈ V must solve a “local” convex optimization problem minx∈Rn fi(x)

for x∗i before time t = 0, in order to execute (7.10) and (7.22).

Next, to generate locally Lipschitz ϕi’s that ensure conditions (7.18) and

(7.20), notice that each ϕi is premultiplied by ∇2fi(xi), which is nonsingular

∀xi ∈ Rn. Therefore, the impact of each ∇2fi(xi) can be absorbed by setting

ϕi(xi,xNi
; fi, fNi

) = (∇2fi(xi))
−1φi(xi,xNi

; fi, fNi
), ∀i ∈ V , (7.23)
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where φi : Rn × Rn|Ni| → Rn is a locally Lipschitz function of xi and xNi

maintained by node i. For each i ∈ V , because ∇2fi is locally Lipschitz (due to

Assumption 7.1) and the determinant of ∇2fi(xi) for every xi ∈ Rn is no less

than a positive constant θni (due further to (7.4)), the mapping (∇2fi(·))−1 :

Rn → Rn×n in (7.23) is locally Lipschitz. Thus, as long as the φi’s are locally

Lipschitz, so would the resulting ϕi’s, fulfilling the requirement. With (7.23),

the dynamics (7.9) become

ẋi(t) = (∇2fi(xi(t)))
−1φi(xi(t),xNi

(t); fi, fNi
), ∀t ≥ 0, ∀i ∈ V , (7.24)

and conditions (7.18) and (7.20) simplify to

∑

i∈V
φi(xi,xNi

; fi, fNi
) = 0, ∀x ∈ RnN , (7.25)

∑

i∈V
xTi φi(xi,xNi

; fi, fNi
) < 0, ∀x ∈ RnN −A. (7.26)

Finally, to come up with locally Lipschitz φi’s that assure conditions

(7.25) and (7.26), suppose each φi is decomposed as

φi(xi,xNi
; fi, fNi

) =
∑

j∈Ni

φij(xi, xj; fi, fj), ∀i ∈ V , (7.27)

so that the dynamics (7.24) become

ẋi(t) = (∇2fi(xi(t)))
−1

∑

j∈Ni

φij(xi(t), xj(t); fi, fj), ∀t ≥ 0, ∀i ∈ V , (7.28)

where φij : R
n×Rn → Rn is a locally Lipschitz function of xi and xj maintained

by node i. Then, (7.25) can be ensured by requiring that every φij and φji pair

be negative of each other, i.e.,

φij(y, z; fi, fj) = −φji(z, y; fj , fi), ∀i ∈ V , ∀j ∈ Ni, ∀y, z ∈ Rn, (7.29)
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since
∑

i∈V φi =
∑

i∈V
∑

j∈Ni
φij =

∑

{i,j}∈E φij + φji = 0. With (7.27) and

(7.29), the left-hand side of (7.26) turns into

∑

i∈V
xTi φi(xi,xNi

; fi, fNi
) =

1

2

∑

i∈V

∑

j∈Ni

(xi − xj)Tφij(xi, xj ; fi, fj), ∀x ∈ RnN .

(7.30)

Because the graph G is connected, for any x ∈ RnN −A, there exist i ∈ V and

j ∈ Ni such that xi − xj in (7.30) is nonzero. Hence, (7.26) can be guaranteed

by requiring the φij’s to also satisfy

(y − z)Tφij(y, z; fi, fj) < 0, ∀i ∈ V , ∀j ∈ Ni, ∀y, z ∈ Rn, y 6= z. (7.31)

Note that if (7.29) holds, then φij satisfies the inequality in (7.31) if and only if

φji does. Therefore, every pair of neighboring nodes i, j ∈ V need only minimal

coordination before time t = 0 to realize the dynamics (7.28): only one of them,

say, node i, needs to construct a φij that satisfies the inequality in (7.31), and

the other, i.e., node j, only needs to make sure that φji = −φij.

Examples 7.1 and 7.2 below illustrate two concrete ways to construct

φij’s that obey (7.29) and (7.31):

Example 7.1. Let φij(y, z; fi, fj) = (ψij1(y1, z1), ψij2(y2, z2), . . . , ψijn(yn, zn)) ∀i ∈

V ∀j ∈ Ni ∀y = (y1, y2, . . . , yn) ∈ Rn ∀z = (z1, z2, . . . , zn) ∈ Rn, where each

ψijℓ : R2 → R can be any locally Lipschitz function satisfying ψijℓ(yℓ, zℓ) =

−ψjiℓ(zℓ, yℓ) and (yℓ−zℓ)ψijℓ(yℓ, zℓ) < 0 ∀yℓ 6= zℓ (e.g., ψijℓ(yℓ, zℓ) = tanh(zℓ−yℓ)

or ψijℓ(yℓ, zℓ) = −ψjiℓ(zℓ, yℓ) =
zℓ−yℓ
1+y2

ℓ

). Then, (7.29) and (7.31) hold. �

Example 7.2. Let φij(y, z; fi, fj) = ∇g{i,j}(z)−∇g{i,j}(y) ∀i ∈ V ∀j ∈ Ni ∀y, z ∈

Rn, where each g{i,j} : Rn → R can be any twice continuously differentiable and

locally strongly convex function associated with link {i, j} ∈ E (e.g., g{i,j}(y) =

1
2
yTA{i,j}y, where A{i,j} ∈ Rn×n is any symmetric positive definite matrix, or

g{i,j}(y) = fi(y) + fj(y)). Then, (7.29) and (7.31) hold. �
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Examples 7.3 and 7.4 below show that some of the continuous-time

distributed consensus algorithms in the literature are special cases of ZGS al-

gorithms. In addition, they are just a slight modification away from solving

general unconstrained, separable, convex optimization problems:

Example 7.3. Consider the scalar (i.e., n = 1) linear consensus algorithm

ẋi(t) =
∑

j∈Ni
aij(xj(t) − xi(t)) ∀t ≥ 0 ∀i ∈ V with symmetric parameters

aij = aji > 0 ∀{i, j} ∈ E and arbitrary initial states xi(0) = yi ∀i ∈ V , stud-

ied in [24, 52, 63, 69]. By Definition 7.1 and Theorem 7.1, this algorithm is a

ZGS algorithm that solves problem (7.8) for fi(x) =
1
2
(x− yi)2 ∀i ∈ V . More-

over, the algorithm is only a Hessian inverse and an initial condition away (i.e.,

ẋi(t) = (∇2fi(xi(t)))
−1

∑

j∈Ni
aij(xj(t) − xi(t)) with xi(0) = x∗i ) from solving

any convex optimization problem of the form (7.8) for any n ≥ 1. Note that

the same can be said about the scalar nonlinear consensus protocol in [51]. �

Example 7.4. Consider the multivariable (i.e., n ≥ 1) weighted-average con-

sensus algorithm ẋi(t) = W−1
i

∑

j∈Ni
(xj(t) − xi(t)) ∀t ≥ 0 ∀i ∈ V with

Wi = W T
i > 0 and xi(0) = yi, proposed in [66] as a step toward a distributed

Kalman filter. This algorithm is a ZGS algorithm that solves problem (7.8)

for fi(x) =
1
2
(x − yi)TWi(x − yi) ∀i ∈ V . Indeed, it came close to solving for

general fi’s. �

7.5 Convergence Rate Analysis

In this section, we derive lower and upper bounds on the exponential

convergence rates of the ZGS algorithms described in (7.28) and Example 7.2,
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i.e.,

ẋi(t) = (∇2fi(xi(t)))
−1

∑

j∈Ni

∇g{i,j}(xj(t))−∇g{i,j}(xi(t)), ∀t ≥ 0, ∀i ∈ V ,

(7.32)

which form a subset of those in Definition 7.1, but include the ones in Exam-

ples 7.3 and 7.4 as a subset. To enable the derivation, suppose an initial state

x(0) ∈M is given (e.g., x(0) = (x∗1, x
∗
2, . . . , x

∗
N ) as in (7.10) and (7.22)). With

this x(0), let Ci = {x ∈ Rn : fi(x
∗) − fi(x) − ∇fi(x)T (x∗ − x) ≤ V (x(0))}

∀i ∈ V and let C = conv∪i∈VCi, where conv denotes the convex hull. It follows

from Assumption 7.1, (7.2), (7.12), and (iii) in Theorem 7.1 that Ci ∀i ∈ V are

compact, C is convex and compact, and

xi(t), x
∗ ∈ Ci ⊂ C, ∀t ≥ 0, ∀i ∈ V . (7.33)

For each i ∈ V , due to Assumption 7.1, (7.4), and C being compact, there exists

a Θi ≥ θi such that

∇2fi(x) ≤ ΘiIn, ∀x ∈ C. (7.34)

Moreover, for each {i, j} ∈ E , due to (7.3), g{i,j} being locally strongly convex,

and C being convex and compact, there exists a γ{i,j} > 0 such that

(∇g{i,j}(y)−∇g{i,j}(x))T (y − x) ≥ γ{i,j}‖y − x‖2, ∀x, y ∈ C. (7.35)

Furthermore, for each {i, j} ∈ E , due to (7.3), (7.4), (7.35), ∇2g{i,j} being

continuous, and C being convex and compact, there exists a Γ{i,j} ≥ γ{i,j} such

that

∇2g{i,j}(x) ≤ Γ{i,j}In, ∀x ∈ C. (7.36)

Observe that the constants Θi’s, γ{i,j}’s, and Γ{i,j}’s—unlike the convexity pa-

rameters θi’s—depend on the initial state x(0) via the sets C and Ci’s. Thus,
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the convergence rate results obtained below are dependent on x(0) in general.

One exception is the case where the fi’s and g{i,j}’s are quadratic functions,

for which the θi’s, Θi’s, γ{i,j}’s, and Γ{i,j}’s may be taken as the smallest and

largest eigenvalues of the Hessians of the fi’s and g{i,j}’s, respectively, inde-

pendent of x(0). Finally, for convenience, let θ = mini∈V θi, Θ = maxi∈V Θi,

γ = min{i,j}∈E γ{i,j}, and Γ = max{i,j}∈E Γ{i,j}.

The following theorem establishes the exponential convergence of the

ZGS algorithms (7.32) and provides a lower bound ρ on their convergence

rates, that they can do no worse than:

Theorem 7.2. Consider the network modeled in Section 7.3 and the use of a

ZGS algorithm described in (7.32). Suppose Assumption 7.1 holds. Then,

V (x(t)) ≤ V (x(0))e−ρt, ∀t ≥ 0, (7.37)

∑

i∈V
θi‖xi(t)− x∗‖2 ≤

∑

i∈V
Θi‖xi(0)− x∗‖2e−ρt, ∀t ≥ 0, (7.38)

where ρ = sup{ε ∈ R : εP ≤ Q} > 0, P = [Pij ] ∈ RN×N is a positive

semidefinite matrix given by

Pij =

{

(1
2
− 1

N
)Θi +

1
2N2

∑

ℓ∈V Θℓ, if i = j,

−Θi+Θj

2N
+ 1

2N2

∑

ℓ∈V Θℓ, otherwise,
(7.39)

and Q = [Qij] ∈ RN×N is a positive semidefinite matrix given by

Qij =







∑

ℓ∈Ni
γ{i,ℓ}, if i = j,

−γ{i,j}, if {i, j} ∈ E ,
0, otherwise.

(7.40)

Proof. Let η(t) = 1
N

∑

j∈V xj(t) ∀t ≥ 0. Due to (7.33) and the convex-

ity of C, η(t) ∈ C. Moreover, by Proposition 7.1,
∑

i∈V fi(x
∗) = F (x∗) ≤

F (η(t)) =
∑

i∈V fi(η(t)). Observe from (7.17) and (ii) in Theorem 7.1 that
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∑

i∈V ∇fi(xi(t)) = 0. Thus, from (7.12), V (x(t)) ≤∑

i∈V fi(η(t))− fi(xi(t))−

∇fi(xi(t))T (η(t)− xi(t)). It follows from (7.5), (7.7), (7.34), (7.33), and (7.39)

that

V (x(t)) ≤
∑

i∈V

Θi

2
‖xi(t)−

1

N

∑

j∈V
xj(t)‖2 = x(t)T (P ⊗ In)x(t), ∀t ≥ 0,

(7.41)

where ⊗ denotes the Kronecker product. Next, using (7.32), (7.9), and (7.19),

we can write

V̇ (x(t)) = −1

2

∑

i∈V

∑

j∈Ni

(xj(t)− xi(t))T (∇g{i,j}(xj(t))−∇g{i,j}(xi(t))), ∀t ≥ 0.

(7.42)

Therefore, from (7.35), (7.33), and (7.40),

−V̇ (x(t)) ≥ 1

2

∑

i∈V

∑

j∈Ni

γ{i,j}‖xj(t)− xi(t)‖2 = x(t)T (Q⊗ In)x(t), ∀t ≥ 0.

(7.43)

To relate (7.41) and (7.43), notice from (7.39) and (7.40) that both P and Q

are symmetric with zero row sums. Also, ∀y = (y1, y2, . . . , yN) ∈ RN , yTPy =
∑

i∈V
Θi

2
(yi − 1

N

∑

j∈V yj)
2 ≥ 0 and yTQy = 1

2

∑

i∈V
∑

j∈Ni
γ{i,j}(yj − yi)2 ≥ 0,

where the equalities hold if and only if y1 = y2 = · · · = yN . Hence, both

P and Q are positive semidefinite with N − 1 positive eigenvalues, one eigen-

value at 0, and ( 1√
N
, 1√

N
, . . . , 1√

N
) being its corresponding eigenvector. It fol-

lows that there exists an orthogonal W ∈ RN×N with the first column being

( 1√
N
, 1√

N
, . . . , 1√

N
), such that W TPW = diag(0, P̄ ) and W TQW = diag(0, Q̄),

where P̄ , Q̄ ∈ R(N−1)×(N−1), P̄ = P̄ T > 0, and Q̄ = Q̄T > 0. Note that ∀ε ∈ R,

εP ≤ Q ⇔ εP̄ ≤ Q̄ ⇔ εIN−1 ≤ P̄−1/2Q̄P̄−1/2, where P̄ 1/2 = (P̄ 1/2)T > 0 is

the square root of P̄ via the spectral decomposition, i.e., P̄ = P̄ 1/2P̄ 1/2. Since

ρ = sup{ε ∈ R : εP ≤ Q} and P̄−1/2Q̄P̄−1/2 = (P̄−1/2Q̄P̄−1/2)T > 0, ρ is
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the smallest eigenvalue of P̄−1/2Q̄P̄−1/2 which is positive and satisfies ρP ≤ Q.

Therefore, ρ(P ⊗ In) ≤ Q ⊗ In. This, along with (7.41) and (7.43), implies

ρV (x(t)) ≤ −V̇ (x(t)), i.e., (7.37). Finally, due to (7.2), (7.12), (7.37), (7.34),

(7.7), (7.5), and (7.33),
∑

i∈V
θi
2
‖xi(t) − x∗‖2 ≤ V (x(t)) ≤ V (x(0))e−ρt ≤

∑

i∈V
Θi

2
‖xi(0)− x∗‖2e−ρt, i.e., (7.38) holds.

The lower bound ρ in Theorem 7.2 can be calculated according to its

proof: ρ is the smallest eigenvalue of P̄−1/2Q̄P̄−1/2. The corollary below gives

another lower bound, which is not as tight as ρ but is explicit in the algebraic

connectivity λ2 > 0 of the graph G:

Corollary 7.1. With the setup of Theorem 7.2,

V (x(t)) ≤ V (x(0))e−
2γ
Θ
λ2t, ∀t ≥ 0, (7.44)

‖x(t)− x∗‖ ≤
√

Θ

θ
‖x(0)− x∗‖e− γ

Θ
λ2t, ∀t ≥ 0. (7.45)

Proof. From (7.41) and (7.43),

V (x(t)) ≤ Θ

2

∑

i∈V
‖xi(t)−

1

N

∑

j∈V
xj(t)‖2 =

Θ

2N
x(t)T (LḠ ⊗ In)x(t), ∀t ≥ 0,

(7.46)

−V̇ (x(t)) ≥ γ

2

∑

i∈V

∑

j∈Ni

‖xj(t)− xi(t)‖2 = γx(t)T (LG ⊗ In)x(t), ∀t ≥ 0,

(7.47)

where LḠ ∈ RN×N is the Laplacian of the complete graph Ḡ with vertex set V ,

and LG ∈ RN×N is the Laplacian of G. Obviously, LḠ has N − 1 eigenvalues

at N , LG has N − 1 positive eigenvalues among which λ2 is the smallest, and

both LḠ and LG have one eigenvalue at 0 with ( 1√
N
, 1√

N
, . . . , 1√

N
) being its

eigenvector. Let W ∈ RN×N contain N orthonormal eigenvectors of LG in its

columns. Then,W TLḠW andW TLGW are diagonal matrices similar to LḠ and
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LG, and both contain the eigenvalue 0 in the same diagonal position. Hence,

λ2W
TLḠW ≤ NW TLGW , so that λ2LḠ ≤ NLG. Applying this inequality to

(7.46) and (7.47), we get 2γ
Θ
λ2V (x(t)) ≤ −V̇ (x(t)), i.e., (7.44). Finally, (7.45)

follows from (7.44) the same way (7.38) does from (7.37).

Notice that in the special case where n = 1, fi(x) =
1
2
(x− x∗i )2 ∀i ∈ V ,

and g{i,j}(x) = 1
2
x2 ∀{i, j} ∈ E , we may let the θi’s, Θi’s, and γ{i,j}’s all

be 1. In this case, Theorem 7.2 and Corollary 7.1 both yield ‖x(t) − x∗‖ ≤

‖x(0) − x∗‖e−λ2t ∀t ≥ 0, which coincides with the well-known convergence

rate result for the linear consensus algorithm ẋi(t) =
∑

j∈Ni
xj(t)−xi(t) ∀t ≥ 0

∀i ∈ V , reported in [52]. Hence, Theorem 7.2 and Corollary 7.1 may be regarded

as a generalization of such a result for distributed consensus, to distributed

convex optimization.

The next theorem looks at the performance of the ZGS algorithms (7.32)

from the other end, providing an upper bound ρ̃ on their exponential conver-

gence rates that mirrors Theorem 7.2:

Theorem 7.3. Consider the network modeled in Section 7.3 and the use of a

ZGS algorithm described in (7.32). Suppose Assumption 7.1 holds. Then,

V (x(t)) ≥ V (x(0))e−ρ̃t, ∀t ≥ 0, (7.48)
∑

i∈V
Θi‖xi(t)− x∗‖2 ≥

∑

i∈V
θi‖xi(0)− x∗‖2e−ρ̃t, ∀t ≥ 0, (7.49)

where ρ̃ = inf{ε ∈ R : εP̃ ≥ Q̃} > 0, P̃ ∈ RN×N is a positive definite

matrix given by P̃ = diag( θ1
2
, θ2

2
, . . . , θN

2
), and Q̃ = [Q̃ij] ∈ RN×N is a positive

semidefinite matrix given by

Q̃ij =







∑

ℓ∈Ni
Γ{i,ℓ}, if i = j,

−Γ{i,j}, if {i, j} ∈ E ,
0, otherwise.

(7.50)

171



Proof. From (7.2) and (7.12), V (x(t)) ≥ ∑

i∈V
θi
2
‖xi(t) − x∗‖2 = (x(t) −

x∗)T (P̃ ⊗ In)(x(t) − x∗) ∀t ≥ 0. From (7.42), (7.36), (7.7), (7.6), (7.33), and

(7.50),

−V̇ (x(t)) ≤ 1

2

∑

i∈V

∑

j∈Ni

Γ{i,j}‖xj(t)− xi(t)‖2

=
1

2

∑

i∈V

∑

j∈Ni

Γ{i,j}‖(xj(t)− x∗)− (xi(t)− x∗)‖2

= (x(t)− x∗)T (Q̃⊗ In)(x(t)− x∗), ∀t ≥ 0.

Like Q in (7.40), Q̃ in (7.50) is symmetric positive semidefinite with exactly

one eigenvalue at 0. Thus, so is P̃−1/2Q̃P̃−1/2, where P̃ 1/2 = diag(
√

θ1
2
,
√

θ2
2
,

. . . ,
√

θN
2
) is the square root of P̃ . Since ρ̃ = inf{ε ∈ R : εP̃ ≥ Q̃} and ∀ε ∈ R,

εP̃ ≥ Q̃ ⇔ εIN ≥ P̃−1/2Q̃P̃−1/2, ρ̃ is the largest eigenvalue of P̃−1/2Q̃P̃−1/2

which is positive and such that ρ̃P̃ ≥ Q̃. Therefore, ρ̃V (x(t)) ≥ −V̇ (x(t)),

proving (7.48). Finally, from (7.12), (7.34), (7.7), (7.5), (7.33), (7.48), and

(7.2), we get (7.49).

In contrast to ρ, the upper bound ρ̃ in Theorem 7.3 is the largest eigen-

value of P̃−1/2Q̃P̃−1/2. The next corollary is to Theorem 7.3 as Corollary 7.1

is to Theorem 7.2, giving another upper bound that is not as tight as ρ̃ but is

explicit in the spectral radius λN > 0 of the graph Laplacian LG :

Corollary 7.2. With the setup of Theorem 7.3,

V (x(t)) ≥ V (x(0))e−
2Γ
θ
λN t, ∀t ≥ 0, (7.51)

‖x(t)− x∗‖ ≥
√

θ

Θ
‖x(0)− x∗‖e−Γ

θ
λN t, ∀t ≥ 0. (7.52)

Proof. From the proof of Theorem 7.3, ∀t ≥ 0, we have V (x(t)) ≥∑

i∈V
θ
2
‖xi(t)−

x∗‖2 = θ
2
‖x(t)− x∗‖2 and −V̇ (x(t)) ≤ 1

2

∑

i∈V
∑

j∈Ni
Γ‖(xj(t)− x∗)− (xi(t)−
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x∗)‖2 = Γ(x(t)− x∗)T (LG ⊗ In)(x(t)− x∗) ≤ ΓλN‖x(t)− x∗‖2. Consequently,
2Γ
θ
λNV (x(t)) ≥ −V̇ (x(t)), implying that (7.51) and (7.52) hold.

Note that for the special case below Corollary 7.1, we may let the Γ{i,j}’s

be 1, so that Theorem 7.3 and Corollary 7.2 both lead to ‖x(t) − x∗‖ ≥

‖x(0) − x∗‖e−λN t ∀t ≥ 0, which is again known. Finally, note that the above

analysis provides a framework for studying the interplay among network topolo-

gies (i.e., V and E), problem characteristics (i.e., the fi’s, θi’s, and Θi’s), and

ZGS algorithm parameters (i.e., the g{i,j}’s, γ{i,j}’s, and Γ{i,j}’s), which may be

worthy of further research.

7.6 Conclusion

In this chapter, using a convexity-based Lyapunov function candidate,

we have developed a set of continuous-time ZGS algorithms, which solve a

class of distributed convex optimization problems over networks. We have

established the asymptotic and exponential convergence of these algorithms

and derived lower and upper bounds on their convergence rates. We have also

shown that the ZGS algorithms for distributed convex optimization are closely

related to the basic algorithms for distributed consensus, suggesting that the

former may be extended in a number of directions just like the latter were, in

ways that possibly parallel the latter.
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Chapter 8 Conclusions

8.1 Summary

This dissertation is devoted to studying distributed computation and

optimization over networks, which has become an active research area in recent

years. The dissertation provides a collection of distributed algorithms that

address three fundamental in-network computation and optimization problems:

averaging, solving of positive definite linear equations, and convex optimization.

More specifically, a distributed asynchronous algorithm for averaging

numbers across a network, referred to as CHA, is developed, which enables

greedy, decentralized, feedback control of when to initiate an iteration. It is

shown both analytically and numerically that the algorithm yields faster expo-

nential convergence rates, i.e., is more efficient, than several existing averaging

schemes over wireless networks.

To solve positive definite linear equations over networks, a distributed

asynchronous algorithm called SE is constructed. It is capable of computing

the solution over networks with time-varying node memberships, and mild suf-

ficient conditions for its convergence are derived. In addition, the algorithm is

specialized to wireless networks, leading to several distributed algorithms that

are dramatically more efficient and scalable than two existing schemes.

Moreover, two gossip algorithms, PE and PB, for unconstrained, sep-
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arable, convex optimization over networks with time-varying topologies are

proposed. The former generalizes a well-known algorithm, while the latter re-

laxes a requirement of former, and both achieve asymptotic convergence to the

unknown optimizer. Furthermore, the ideas of the former and the notion of

feedback iteration control for CHA are tailored so as to develop another dis-

tributed asynchronous algorithm for the same problem, which uses a Bregman-

divergence-based Lyapunov function to realize greedy, decentralized feedback

iteration control. It is shown that this algorithm, referred to as CHE, is sig-

nificantly more efficient than several existing subgradient algorithms. Finally,

a family of continuous-time distributed algorithms called ZGS algorithms are

constructed. Both lower and upper bounds on the exponential convergence

rates of a subset of these algorithms are derived. Also, the findings on these

algorithms may be regarded as a natural generalization of several classic algo-

rithms and results for distributed consensus to distributed convex optimization.

8.2 Future Research

Several possible directions of future research on distributed computation

and optimization over networks are as follows:

• More general distributed optimization. The distributed optimization prob-

lems addressed in this dissertation are limited to unconstrained, sepa-

rable, convex optimization. Although many practical problems can be

cast in this form, problems in the form of constrained, non-separable,

or even non-convex optimization are also very common. Therefore, we

intend to investigate how to design distributed algorithms for solving the

aforementioned, more general optimization problems over networks with
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time-varying topologies and node memberships.

• Decentralized feedback control. The idea of greedy, decentralized feed-

back iteration control has been introduced in this dissertation, which

significantly improves the bandwidth/energy efficiency of the proposed

algorithms. We plan to explore the possibilities of other types of decen-

tralized feedback control, in which every node in the network uses certain

local information as feedback to control its behaviors besides when to

initiate an iteration, so that algorithm performances could be enhanced.

• Communications with delay, error, and quantization. This dissertation

assumes that all the communications are ideal, i.e., without delay, error,

and quantization. We would like to study the effects caused by delay,

error, and quantization on the algorithms proposed in this dissertation in

future.
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Appendix A Proofs for Chapter 2

A.1 Proof of Theorem 2.2

To prove Theorem 2.2, we first prove the following lemma:

Lemma A.1. V (x(k)) ≤ γmaxi∈V ∆Vi(x(k)) ∀k ∈ N, where γ is as in (2.26).

Proof. Let k ∈ N. Notice from (2.14) that
∑

i∈V bi = N and from (2.1), (2.7),

(2.12), and (2.13) that
∑

i∈V bix̂i(k) =
∑

i∈V bix
∗. Thus,

∑

i∈V

∑

j∈V
bibj(x̂i(k)− x̂j(k))2=

∑

j∈V
bj
∑

i∈V
bi(x̂i(k)− x∗)2+

∑

i∈V
bi
∑

j∈V
bj(x̂j(k)− x∗)2

− 2
∑

i∈V
bi(x̂i(k)− x∗)

∑

j∈V
bj(x̂j(k)− x∗) = 2N

∑

i∈V
bi(x̂i(k)− x∗)2.

It follows from (2.16), (2.19), and (2.7) that

V (x(k)) =
1

2

∑

i∈V

∑

j∈Ni

c{i,j}(x{i,j}(k)− x̂i(k))2 +
1

2

∑

i∈V

∑

j∈Ni

c{i,j}(x̂i(k)− x∗)2

+
∑

i∈V
(x̂i(k)− x∗)

∑

j∈Ni

c{i,j}(x{i,j}(k)− x̂i(k))

=
1

2

∑

i∈V
∆Vi(x(k)) +

∑

i∈V
bi(x̂i(k)− x∗)2 (A.1)

≤ N
2
max
i∈V

∆Vi(x(k)) +
1

2N

∑

i∈V

∑

j∈V
bibj(x̂i(k)− x̂j(k))2

=
N

2
max
i∈V

∆Vi(x(k)) +
1

2N

∑

i∈V

∑

j∈Ni

bibj(x̂i(k)− x̂j(k))2

+
1

2N

∑

i∈V

∑

j∈V−Ni−{i}
bibj(x̂i(k)− x̂j(k))2. (A.2)
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Note from (2.19) that

N max
i∈V

∆Vi(x(k)) ≥
∑

i∈V
bi∆Vi(x(k))

=
∑

{i,j}∈E
bic{i,j}(x̂i(k)− x{i,j}(k))2 + bjc{i,j}(x̂j(k)− x{i,j}(k))2

≥
∑

{i,j}∈E

bibjc{i,j}
bi + bj

(x̂i(k)− x̂j(k))2.

Hence,

∑

i∈V

∑

j∈Ni

bibj(x̂i(k)− x̂j(k))2 ≤ 2αN max
i∈V

∆Vi(x(k)). (A.3)

Next, it can be shown via (2.19) that ∀i ∈ V with |Ni| ≥ 2, ∀j, ℓ ∈ Ni

with j 6= ℓ, c{i,j}c{i,ℓ}(x{i,j}(k) − x{i,ℓ}(k))2 ≤ (c{i,j} + c{i,ℓ})(c{i,j}(x{i,j}(k) −

x̂i(k))
2 + c{i,ℓ}(x{i,ℓ}(k) − x̂i(k))

2) ≤ (c{i,j} + c{i,ℓ})∆Vi(x(k)), implying that

|x{i,j}(k)−x{i,ℓ}(k)| ≤
(
maxp∈V ∆Vp(x(k))(

1
c{i,j}

+ 1
c{i,ℓ}

)
) 1

2 . In addition, ∀i ∈ V ,

∀j ∈ Ni, |x̂i(k)−x{i,j}(k)| ≤
(maxp∈V ∆Vp(x(k))

c{i,j}

) 1
2 because of (2.19). For any i, j ∈

V with i 6= j, let the sequence (a1, a2, . . . , amij
) represent a shortest path from

node i to node j, where a1 = i, amij
= j, {aℓ, aℓ+1} ∈ E ∀ℓ ∈ {1, 2, . . . ,mij−1},

and 2 ≤ mij ≤ D+1. Then, it follows from (2.14), the triangle inequality, and

the root-mean square-arithmetic mean-geometric mean inequality that

|x̂i(k)− x̂j(k)| ≤
(
max
p∈V

∆Vp(x(k))
) 1

2

(( |Na1| · |Na2|
|Na1|+ |Na2|

) 1
2 +

mij−1
∑

ℓ=2

( |Naℓ−1
| · |Naℓ|

|Naℓ−1
|+ |Naℓ |

+
|Naℓ | · |Naℓ+1

|
|Naℓ |+ |Naℓ+1

|
) 1

2 +
( |Namij−1| · |Namij

|
|Namij−1 |+ |Namij

|
) 1

2

)

≤
(
mij max

p∈V
∆Vp(x(k))

) 1
2

( |Na1|+|Na2|
4

+

mij−1
∑

ℓ=2

( |Naℓ−1
|+|Naℓ|
4

+
|Naℓ|+|Naℓ+1

|
4

)

+
|Namij−1|+ |Namij

|
4

) 1
2 ≤

(
mij max

p∈V
∆Vp(x(k))

mij∑

ℓ=1

|Naℓ |
) 1

2 .
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Next, we show that ∀i, j ∈ V with i 6= j, each node ℓ ∈ V−{a1, a2, . . . , amij
} has

at most 3 one-hop neighbors in {a1, a2, . . . , amij
}. Clearly, this statement is true

formij ≤ 3. Formij ≥ 4, assume to the contrary that ∃ℓ ∈ V−{a1, a2, . . . , amij
}

such that Nℓ ∩ {a1, a2, . . . , amij
} = {ai1 , ai2 , . . . , ain} for some 1 ≤ i1 < i2 <

· · · < in ≤ mij and n ≥ 4. Then, (a1, . . . , ai1 , ℓ, ain , . . . , amij
) is a path shorter

than the shortest path (a1, a2, . . . , amij
), which is a contradiction. Therefore,

the statement is true. Consequently,
∑mij

ℓ=1 |Naℓ| ≤ 3(N −mij) + 2(mij − 1) =

3N −mij− 2. It follows that ∀i, j ∈ V with i 6= j, (x̂i(k)− x̂j(k))2 ≤ mij(3N −

mij−2)maxp∈V ∆Vp(x(k)). Since mij ≤ D+1 ≤ N , (x̂i(k)− x̂j(k))2 ≤
(
3(N−

1)−D
)
(D+1)maxp∈V ∆Vp(x(k)). Due to this and to

∑

i∈V
∑

j∈V−Ni−{i} bibj =
∑

i∈V
∑

j∈V bibj−β = N2−β, we have ∑i∈V
∑

j∈V−Ni−{i} bibj(x̂i(k)− x̂j(k))2 ≤

(N2 − β)
(
3(N − 1) − D

)
(D + 1)maxp∈V ∆Vp(x(k)). This, along with (A.3),

(A.2), and (2.26), implies V (x(k)) ≤ γmaxi∈V ∆Vi(x(k)).

Because of (2.20), (2.22), and Lemma A.1, we have V (x(k − 1)) −

V (x(k)) ≥ V (x(k−1))
γ

∀k ∈ P, which is exactly (2.23). To prove (2.24) and

(2.25), note that (2.23) implies V (x(k)) ≤ (1− 1
γ
)kV (x(0)) ∀k ∈ N. Moreover,

note from (2.16) and (2.14) that V (x(k)) ≥ (min{i,j}∈E c{i,j})‖x(k) − x∗1L‖2

∀k ∈ N where min{i,j}∈E c{i,j} ≥ 2
maxi∈V |Ni| . Furthermore, note from (A.1) and

(2.14) that V (x(k)) ≥ (mini∈V bi)‖x̂(k) − x∗1N‖2 ∀k ∈ N where mini∈V bi ≥
1
2
(1 + mini∈V |Ni|

maxi∈V |Ni|). Thus, (2.24) and (2.25) hold. To derive the bounds on α,

notice from (2.14) that
bi+bj
c{i,j}

= 1
2
+(1+1

2

∑

ℓ∈Ni−{j}
1

|Nℓ|+
1
2

∑

ℓ∈Nj−{i}
1

|Nℓ|)/(
1

|Ni|+

1
|Nj |) ≤

1
2
+ (1 + maxℓ∈V |Nℓ|−1

minℓ∈V |Nℓ| )/( 2
maxℓ∈V |Nℓ|) ≤

N2−2N+2
2

∀{i, j} ∈ E . Similarly, it

can be shown that
bi+bj
c{i,j}

≥ 1 ∀{i, j} ∈ E . Hence, α ∈ [1, N
2−2N+2

2
]. To derive the

bounds on β, observe that β ≤∑

i∈V
∑

j∈V bibj = N2. Also,
∑

i∈V
∑

j∈Ni
bibj ≥

2L ·
(
1
2
(1 + minℓ∈V |Nℓ|

maxℓ∈V |Nℓ|)
)2 ≥ L

2
(1 + 1

N−1
)2 and

∑

i∈V b
2
i ≥ 1

N
(
∑

i∈V bi)
2 = N .
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Therefore, β ∈ [N + L
2
(1 + 1

N−1
)2, N2]. Finally, using (2.26), the bounds on α

and β, and the properties L ≥ N −1 and
(
3(N −1)−D

)
(D+1) ≤ 2N(N −1),

we obtain γ ∈ [N
2
+ 1, N3 − 2N2 + N

2
+ 1].

A.2 Proof of Theorem 2.3

Lemma A.2. V (x(k)) ≤ γmaxi∈V ∆Vi(x(k)) ∀k ∈ N, where γ is as in S1 for

a path graph with N ≥ 4, S2 for a cycle graph, S3 for a K-regular graph with

K ≥ 2, and S4 for a (N,K, λ, µ)-strongly regular graph with µ ≥ 1.

Proof. Let k ∈ N. First, suppose G is a path graph with N ≥ 4 and E =

{{1, 2}, {2, 3}, . . . , {N−1, N}}. Note from (2.1), (2.12), (2.13), and (2.14) that
∑

{i,j}∈E
∑

{p,q}∈E c{i,j}c{p,q}(x{i,j}(k)−x{p,q}(k))2 = 2N
∑

{i,j}∈E c{i,j}(x{i,j}(k)−

x∗)2. This, along with (2.16) and (2.14), implies that

V (x(k)) =
1

2N

∑

{i,j}∈E

∑

{p,q}∈E
c{i,j}c{p,q}(x{i,j}(k)− x{p,q}(k))2 (A.4)

=
1

2N

( ∑

{i,j}∈E ′

∑

{p,q}∈E ′

(x{i,j}(k)− x{p,q}(k))2 + 3
∑

{i,j}∈E ′

(x{1,2}(k)− x{i,j}(k))2

+ 3
∑

{i,j}∈E ′

(x{N−1,N}(k)− x{i,j}(k))2 +
9

2
(x{1,2}(k)− x{N−1,N}(k))

2
)

, (A.5)

where E ′ = E − {{1, 2}, {N − 1, N}}. Observe from (2.7), (2.14), and (2.19)

that (x{i−1,i}(k)−x{i,i+1}(k))2 =
5
3
∆Vi(x(k)) ∀i ∈ {2, N − 1} and (x{i−1,i}(k)−

x{i,i+1}(k))2 = 2∆Vi(x(k)) ∀i ∈ {3, 4, . . . , N − 2}. By the root-mean square-

arithmetic mean inequality,

∑

{i,j}∈E ′

∑

{p,q}∈E ′

(x{i,j}(k)− x{p,q}(k))2 = 2
N−3∑

i=2

N−2∑

j=i+1

(x{i,i+1}(k)− x{j,j+1}(k))
2

≤ 2
N−3∑

i=2

N−2∑

j=i+1

(j − i)
j

∑

ℓ=i+1

(x{ℓ−1,ℓ}(k)− x{ℓ,ℓ+1}(k))
2
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= 2(N − 3)
N−2∑

i=3

(N − i− 1)(i− 2)∆Vi(x(k)).

Moreover, 3
∑

{i,j}∈E ′(x{1,2}(k)−x{i,j}(k))2 ≤ 3
∑N−2

i=2 (i−1)
∑i

j=2(x{j−1,j}(k)−

x{j,j+1}(k))2 = 5
2
(N − 2)(N − 3)∆V2(x(k)) + 3

∑N−2
i=3 (N + i − 4)(N − i −

1)∆Vi(x(k)). Similarly, 3
∑

{i,j}∈E ′(x{N−1,N}(k) − x{i,j}(k))2 ≤ 5
2
(N − 2)(N −

3)∆VN−1(x(k)) + 3
∑N−2

i=3 (2N − i − 3)(i − 2)∆Vi(x(k)). Finally, 9
2
(x{1,2}(k) −

x{N−1,N}(k))2 ≤ 9
2
(N−2)∑N−1

i=2 (x{i−1,i}(k)−x{i,i+1}(k))2=3(N−2)
(
5
2
∆V2(x(k))

+ 5
2
∆VN(x(k)) + 3

∑N−2
i=3 ∆Vi(x(k))

)
. Combining the above with (A.5) yields

V (x(k)) ≤ γmaxi∈V ∆Vi(x(k)) where γ is as in S1.

Now suppose G is a cycle graph with E = {{1, 2}, {2, 3}, . . . , {N −

1, N}, {N, 1}}. Also suppose N is odd. Let y ∈ RN be a permutation of

x(k) such that y{N,1} ≤ y{1,2} ≤ y{N,N−1} ≤ y{2,3} ≤ y{N−1,N−2} ≤ · · · ≤

y{N−1
2

,N+1
2

} ≤ y{N+3
2

,N+1
2

}. Then, since (A.4) holds for any graph and due to

(2.14), V (y) = V (x(k)). Also, due to (2.19) and (2.14), maxi∈V ∆Vi(y) ≤

maxi∈V ∆Vi(x(k)). For convenience, let M = 2maxi∈V ∆Vi(y) and relabel

(y{N,1}, y{1,2}, y{N,N−1}, y{2,3}, y{N−1,N−2}, . . . , y{N−1
2

,N+1
2

}, y{N+3
2

,N+1
2

}) as (z1, z2,

. . . , zN). Then, we can write V (y) = 1
2N

∑N
i=1

∑N
j=1(zi − zj)

2 = 1
N
(C1 +

C2), where C1 =
∑N−1

2
i=1 (z1 − z2i)

2 + (z1 − z2i+1)
2 + (z2i − z2i+1)

2 and C2 =
∑N−3

2
i=1

∑N−1
2

j=i+1(z2i−z2j+1)
2+(z2i+1−z2j)2+(z2i−z2j)2+(z2i+1−z2j+1)

2. More-

over, from (2.7), (2.14), and (2.19), we get z2 − z1 ≤
√
M , zN − zN−1 ≤

√
M , and zi+2 − zi ≤

√
M ∀i ∈ {1, 2, . . . , N − 2}. Due to the property

(a − b)2 + (a − c)2 + (b − c)2 ≤ 2(a − c)2 ∀a, b, c ∈ R with a ≤ b ≤ c,

we have C1 ≤
∑N−1

2
i=1 2(z1 − z2i+1)

2 ≤ ∑N−1
2

i=1 2i2M = N(N2−1)
12

M . In addi-

tion, from the property (a − d)2 + (b − c)2 ≤ (a − b)2 + (a − c)2 + (b −

d)2 + (c − d)2 ∀a, b, c, d ∈ R, we have C2 ≤
∑N−3

2
i=1

∑N−1
2

j=i+1 2(z2i − z2j)
2 +

2(z2i+1− z2j+1)
2 + (z2i− z2i+1)

2 + (z2j − z2j+1)
2 ≤∑N−3

2
i=1

∑N−1
2

j=i+1

(
4(i− j)2M +
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2M
)

= (N−1)(N−3)(N2+11)
48

M . Combining the above, we obtain V (x(k)) =

V (y) ≤ γ
2
M ≤ γmaxi∈V ∆Vi(x(k)) where γ is as in S2. Next, suppose N

is even. Similarly, let y ∈ RN be a permutation of x(k) such that y{N,1} ≤

y{1,2} ≤ y{N,N−1} ≤ y{2,3} ≤ y{N−1,N−2} ≤ · · · ≤ y{N
2
−1,N

2
} ≤ y{N

2
+2,N

2
+1} ≤

y{N
2
,N
2
+1}. Observe from (A.4), (2.14), and (2.19) that V (y) = V (x(k)) and

maxi∈V ∆Vi(y) ≤ maxi∈V ∆Vi(x(k)). As before, let M = 2maxi∈V ∆Vi(y)

and relabel (y{N,1}, y{1,2}, y{N,N−1}, y{2,3}, y{N−1,N−2}, . . . , y{N
2
−1,N

2
}, y{N

2
+2,N

2
+1},

y{N
2
,N
2
+1}) as (z1, z2, . . . , zN). Then, V (y) = 1

2N

∑N
i=1

∑N
j=1(zi− zj)2 = 1

N
(C1 +

C2 + C3), where C1 =
∑N

2
−1

i=1 (z1 − z2i)2 + (z1 − z2i+1)
2 + (z2i − z2i+1)

2 + (zN −

z2i)
2 + (zN − z2i+1)

2, C2 =
∑N

2
−2

i=1

∑N
2
−1

j=i+1(z2i − z2j+1)
2 + (z2i+1 − z2j)2 + (z2i −

z2j)
2 + (z2i+1 − z2j+1)

2, and C3 = (z1 − zN)
2. Moreover, z2 − z1 ≤

√
M ,

zN − zN−1 ≤
√
M , and zi+2 − zi ≤

√
M ∀i ∈ {1, 2, . . . , N − 2}. Using the

above properties, it can be shown that C1 ≤ C1 +
∑N

2
−1

i=1 (z2i − z2i+1)
2 ≤

∑N
2
−1

i=1 2(z1−z2i+1)
2+2(zN−z2i)2 ≤

∑N
2
−1

i=1 2i2M+2(N
2
−i)2M = N(N−1)(N−2)

6
M ,

C2 ≤
∑N

2
−2

i=1

∑N
2
−1

j=i+1

(
4(i − j)2M + 2M

)
= (N−2)(N−4)(N2−2N+12)

48
M , and C3 ≤

N2

4
M . It follows that V (x(k)) ≤ γmaxi∈V ∆Vi(x(k)) where γ is as in S2.

Next, suppose G is a K-regular graph with K ≥ 2. Due to (2.14) and

(2.19),
∑

i∈V ∆Vi(x(k)) =
2
K

∑

{i,j}∈E(x̂i(k)−x{i,j}(k))2+(x̂j(k)−x{i,j}(k))2 ≥
1
K

∑

{i,j}∈E(x̂i(k)− x̂j(k))2, implying that

∑

i∈V

∑

j∈Ni

(x̂i(k)− x̂j(k))2 ≤ 2K
∑

i∈V
∆Vi(x(k)). (A.6)

Again, because of (2.14) and (2.19), ∀i ∈ V , ∀j ∈ Ni, (x{i,j}(k) − x̂i(k))
2 ≤

K
2
maxp∈V ∆Vp(x(k)). Moreover, ∀i ∈ V , ∀j, ℓ ∈ Ni with j 6= ℓ, (x{i,j}(k) −

x{i,ℓ}(k))2 ≤ 2
(
(x{i,j}(k)−x̂i(k))2+(x{i,ℓ}(k)−x̂i(k))2

)
≤ Kmaxp∈V ∆Vp(x(k)).

Via the preceding two inequalities and the root-mean square-arithmetic mean

inequality, it can be shown that ∀i ∈ V , ∀j ∈ V −Ni − {i}, (x̂i(k)− x̂j(k))2 ≤
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(D + 1)(K
2
maxp∈V ∆Vp(x(k)) · 2 +Kmaxp∈V ∆Vp(x(k)) · (D − 1)) = KD(D +

1)maxp∈V ∆Vp(x(k)). It then follows from (A.2), (2.14), and (A.6) that

V (x(k)) ≤ γmaxi∈V ∆Vi(x(k)) where γ is as in S3.

Finally, suppose G is a (N,K, λ, µ)-strongly regular graph with µ ≥ 1,

which means that it is a K-regular graph with K ≥ 2 and with every two

non-adjacent nodes having µ common neighbors. For every i ∈ V and j ∈

V −Ni − {i}, let {qij1, qij2, . . . , qijµ} = Ni ∩Nj. Then, from (2.14) and (2.19),

µ
∑

i∈V

∑

j∈V−Ni−{i}
(x̂i(k)− x̂j(k))2 =

∑

i∈V

∑

j∈V−Ni−{i}

µ
∑

ℓ=1

(x̂i(k)− x̂j(k))2

≤ 4
∑

i∈V

∑

j∈V−Ni−{i}

µ
∑

ℓ=1

(
(x̂i(k)− x{i,qijℓ}(k))2 + (x{i,qijℓ}(k)− x̂qijℓ(k))2

+ (x̂qijℓ(k)− x{j,qijℓ}(k))2 + (x{j,qijℓ}(k)− x̂j(k))2
)

≤ 2K
∑

i∈V

∑

j∈V−Ni−{i}

(
∆Vi(x(k)) +

µ
∑

ℓ=1

∆Vqijℓ(x(k)) + ∆Vj(x(k))
)

≤ 2KN(N −K − 1)(2 + µ)max
p∈V

∆Vp(x(k)).

This, along with (A.2), (2.14), and (A.6), implies that

V (x(k)) ≤ γmaxi∈V ∆Vi(x(k)) where γ is as in S4.

Note that in the proof of Theorem 2.2 in Appendix A.1, Lemma A.1

is used to derive (2.23)–(2.25). In the same way, (2.23)–(2.25) can be derived

using Lemma A.2, completing the proof of Theorem 2.3.

A.3 Proof of Theorem 2.4

Let γ be as in (2.26) for a general graph or as in S1–S4 for a specific

graph. Note that Lemmas A.1 and A.2 are independent of (u(k))∞k=1 and, thus,
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hold for CHA as well. Hence,

V (x(k)) ≤ γmax
i∈V

∆Vi(x(k)), ∀k ∈ N. (A.7)

Next, analyzing Algorithm 2.3 with ε(v) = 0 ∀v ∈ [0,∞), we see that

V (x(1)) = V (x(0))−max
i∈V

∆Vi(x(0)), (A.8)

V (x(k + 1)) ≤ V (x(k))−min{max
i∈V

∆Vi(x(k)),Φ
−1(t(k))}, ∀k ∈ P, (A.9)

t(k + 1) = max{Φ(max
i∈V

∆Vi(x(k))), t(k)}, ∀k ∈ N. (A.10)

With (A.7)–(A.10), we now show by induction that ∀k ∈ P, V (x(k)) ≤ (1 −
1
γ
)V (x(k − 1)) and t(k) ≤ Φ(V (x(k−1))

γ
). Let k = 1. Then, because of (A.7),

(A.8), and (A.10) and because Φ is strictly decreasing, we have V (x(1)) ≤

(1 − 1
γ
)V (x(0)) and t(1) = Φ(maxi∈V ∆Vi(x(0))) ≤ Φ(V (x(0))

γ
). Next, let

k ≥ 1 and suppose V (x(k)) ≤ (1 − 1
γ
)V (x(k − 1)) and t(k) ≤ Φ(V (x(k−1))

γ
).

To show that V (x(k + 1)) ≤ (1 − 1
γ
)V (x(k)) and t(k + 1) ≤ Φ(V (x(k))

γ
),

consider the following two cases: (i) maxi∈V ∆Vi(x(k)) < Φ−1(t(k)) and (ii)

maxi∈V ∆Vi(x(k)) ≥ Φ−1(t(k)). For case (i), due to (A.7), (A.9), and (A.10),

we have V (x(k + 1)) ≤ V (x(k)) − maxi∈V ∆Vi(x(k)) ≤ (1 − 1
γ
)V (x(k)) and

t(k + 1) = Φ(maxi∈V ∆Vi(x(k))) ≤ Φ(V (x(k))
γ

). For case (ii), due to (A.9),

(A.10), and the hypothesis, we have V (x(k + 1)) ≤ V (x(k)) − Φ−1(t(k)) ≤

V (x(k)) − V (x(k−1))
γ

≤ V (x(k)) − V (x(k))

γ(1− 1
γ
)
≤ (1 − 1

γ
)V (x(k)) and t(k + 1) =

t(k) ≤ Φ(V (x(k−1))
γ

) ≤ Φ(V (x(k))

γ(1− 1
γ
)
) ≤ Φ(V (x(k))

γ
). This completes the proof by

induction. It follows that (2.23) and therefore (2.24) and (2.25) hold, so that

Theorems 2.2 and 2.3 hold verbatim here. Next, observe from (A.10) that

(t(k))∞k=0 is non-decreasing. To show that limk→∞ t(k) = ∞, assume to the

contrary that ∃t̄ ∈ (0,∞) such that t(k) ≤ t̄ ∀k ∈ N. For each k ∈ P,

reconsider the above two cases. Because of (A.9) and (A.10), for case (i),

193



V (x(k)) − V (x(k + 1)) ≥ maxi∈V ∆Vi(x(k)) = Φ−1(t(k + 1)) ≥ Φ−1(t̄). Simi-

larly, for case (ii), V (x(k)) − V (x(k + 1)) ≥ Φ−1(t(k)) ≥ Φ−1(t̄). Combining

these two cases, we get V (x(k + 1)) ≤ V (x(1)) − kΦ−1(t̄) ∀k ∈ N. Since

Φ−1(t̄) > 0, V (x(k + 1)) < 0 for sufficiently large k, which is a contradic-

tion. Thus, limk→∞ t(k) = ∞. Finally, from the statement shown earlier by

induction, we obtain V (x(k)) ≤ (1− 1
γ
)·γΦ−1(t(k)) = (γ−1)Φ−1(t(k)) ∀k ∈ P.
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Appendix B Proofs for Chapter 3

Throughout the appendix, for any x ∈ Rn and any P ∈ Sn
+, we write

xTx and xTPx as ‖x‖2 and ‖x‖2P , respectively. Moreover, for any k ∈ N and

any nonempty X ⊂M(k), let

zkX = (
∑

i∈X
Qi(k))

−1(
∑

i∈X
Qi(k)zi(k)). (B.1)

Then, from (3.16),

zi(k) = zk−1
I(k)∪L(k), ∀k ∈ P, ∀i ∈ J (k) ∪ I(k). (B.2)

B.1 Proof of Lemma 3.1

Let A be given. Then, due to (3.11), (3.12), (3.13), (3.14), (3.15), and

(B.2),

V (k)− V (k − 1) =
∑

i∈J (k)∪I(k)
zi(k)

TQi(k)zi(k)−
∑

i∈I(k)∪L(k)
zi(k − 1)TQi(k − 1)zi(k − 1)

=−
( ∑

i∈I(k)∪L(k)
zi(k − 1)TQi(k − 1)zi(k − 1) +

∑

i∈J (k)∪I(k)
(zk−1

I(k)∪L(k))
TQi(k)z

k−1
I(k)∪L(k)

− 2
∑

i∈J (k)∪I(k)
zi(k)

TQi(k)z
k−1
I(k)∪L(k)

)

=−
( ∑

i∈I(k)∪L(k)
zi(k − 1)TQi(k − 1)zi(k − 1) +

∑

i∈I(k)∪L(k)
(zk−1

I(k)∪L(k))
TQi(k − 1)zk−1

I(k)∪L(k)

− 2
∑

i∈I(k)∪L(k)
zi(k − 1)TQi(k − 1)zk−1

I(k)∪L(k)

)
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=−
∑

i∈I(k)∪L(k)
(zi(k − 1)− zk−1

I(k)∪L(k))
TQi(k − 1)(zi(k − 1)− zk−1

I(k)∪L(k)), ∀k ∈ P.

(B.3)

Since the right-hand side of (B.3) is nonpositive, (V (k))∞k=0 is non-increasing.

B.2 Proof of Proposition 3.1

Let A be given. Also, let P̂i ∈ Sn
+, q̂i ∈ Rn, ∀i ∈ F and P̃i ∈ Sn

+, q̃i ∈

Rn, ∀i ∈ F be any two sets of observations Pi’s and qi’s, which, respectively,

generate the state variables Q̂i(k)’s and Q̃i(k)’s. To prove the proposition,

we show that if the sequence {Q̂i(k)}k∈N,i∈M(k) is uniformly positive definite

under A, then so is the sequence {Q̃i(k)}k∈N,i∈M(k). Note from (3.23), (3.20),

and (3.21) that ∀k ∈ N, ∀i ∈ M(k), Q̂i(k) =
∑

j∈F aij(k)P̂j and Q̃i(k) =
∑

j∈F aij(k)P̃j, where each aij(k) ≥ 0 is completely determined by A. For each

j ∈ F , let λ̂j > 0 be the largest eigenvalue of P̂j and λ̃j > 0 be the smallest

eigenvalue of P̃j . Then, let λ̂ = maxj∈F{λ̂j} and λ̃ = minj∈F{λ̃j}. Since

{Q̂i(k)}k∈N,i∈M(k) is uniformly positive definite under A, ∃α̂ > 0 such that

∀k ∈ N, ∀i ∈ M(k), Q̂i(k) > α̂I. Thus,
∑

j∈F aij(k) >
α̂

λ̂
∀k ∈ N ∀i ∈ M(k).

This, along with the fact that Q̃i(k) ≥ λ̃
∑

j∈F aij(k)I ∀k ∈ N ∀i ∈ M(k),

implies that Q̃i(k) >
λ̃α̂

λ̂
I ∀k ∈ N ∀i ∈ M(k). Since λ̃α̂

λ̂
> 0, {Q̃i(k)}k∈N,i∈M(k)

is uniformly positive definite under A.

B.3 Proof of Theorem 3.1

Let A be given. From (3.25), Qi(k) ≤
∑

i∈M(0) Pi ∀k ∈ N ∀i ∈ M(k).

Thus, (3.28) holds, i.e., each Qi(k) is bounded. To derive (3.29), suppose

the sequence {Qi(k)}k∈N,i∈M(k) is uniformly positive definite under A and let

α > 0 be such that Qi(k)− αI ∈ Sn
+ ∀k ∈ N ∀i ∈M(k). Then, from (3.8) and
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Lemma 3.1, α
∑

i∈M(k) ‖zi(k)− z‖2 ≤ V (k) ≤ V (0) ∀k ∈ N. Therefore, (3.29)

is satisfied, i.e., each zi(k) is bounded.

B.4 Proof of Corollary 3.1

Suppose the membership dynamics are ultimately static underA. Then,

by Definition 3.3, ∃k ∈ N such that ∀ℓ > k, M(ℓ) = M(k). Due to (3.23),

(3.20), and (3.21), Qi(ℓ) ∈ Sn
+ ∀ℓ ∈ [0, k] ∀i ∈ M(ℓ). Due again to (3.20),

Qi(ℓ) ∈ Sn
+ ∀ℓ ∈ [k + 1,∞) ∀i ∈ M(ℓ). Hence, {Qi(k)}k∈N,i∈M(k) is uniformly

positive definite under A. It follows from Theorem 3.1 that (3.28) and (3.29)

hold for some α > 0.

B.5 Proof of Lemma 3.2

Let A be given. Suppose the agent network is connected under A at

some time k ∈ N, i.e., h(k) < ∞. Clearly, (3.30) holds for h(k) = 0. Now

suppose h(k) ≥ 1 and consider the following:

Lemma B.1. For any ℓ ∈ N, any nonempty subset X of M(ℓ), and any

η ∈ Rn,
∑

i∈X ‖zℓX − η)‖2Qi(ℓ)
≤∑

i∈X ‖zi(ℓ)− η‖2Qi(ℓ)
.

Proof. Let ℓ ∈ N, X ⊂ M(ℓ), X 6= ∅, and η ∈ Rn be given. Due to (B.1),

we have
∑

i∈X Qi(ℓ)z
ℓ
X =

∑

i∈X Qi(ℓ)zi(ℓ), implying that
∑

i∈X (z
ℓ
X)

TQi(ℓ)η =
∑

i∈X zi(ℓ)
TQi(ℓ)η and

∑

i∈X (z
ℓ
X)

TQi(ℓ)z
ℓ
X =

∑

i∈X zi(ℓ)
TQi(ℓ)z

ℓ
X . Because of

these two properties,

∑

i∈X
|zℓX − η‖2Qi(ℓ)

−
∑

i∈X
‖zi(ℓ)− η‖2Qi(ℓ)

= −
∑

i∈X
‖zi(ℓ)− zℓX‖2Qi(ℓ)

≤ 0.
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Lemma B.2. For any ℓ ∈ N, any nonempty subset X of M(ℓ), and any

η ∈ Rn,
∑

i∈X ‖zi(ℓ)− zℓX‖2Qi(ℓ)
≤∑

i∈X ‖zi(ℓ)− η‖2Qi(ℓ)
.

Proof. Let ℓ ∈ N, X ⊂ M(ℓ), X 6= ∅, and η ∈ Rn be given. Using the two

properties in the proof of Lemma B.1, we have

∑

i∈X
‖zi(ℓ)− zℓX‖2Qi(ℓ)

−
∑

i∈X
‖zi(ℓ)− η‖2Qi(ℓ)

= −
∑

i∈X
‖zℓX − η‖2Qi(ℓ)

≤ 0.

Let α > 0 be such that Qi(ℓ) − αI ∈ Sn
+ ∀ℓ ∈ [k, k + h(k)] ∀i ∈ M(ℓ).

This, along with (3.28), implies that

αI < Qi(ℓ) ≤ βI, ∀ℓ ∈ [k, k + h(k)], ∀i ∈M(ℓ). (B.4)

Assume, to the contrary, that (3.30) does not hold, i.e.,

V (k + h(k)) >
(4β
α
)M−1 ·M ·M !

(4β
α
)M−1 ·M ·M ! + 1

V (k).

For convenience, let ǫ > 0 be given by

ǫ =
V (k)

(4β
α
)M−1 ·M ·M ! + 1

. (B.5)

Then, V (k)− V (k + h(k)) ≤ ǫ. It follows from Lemma 3.1 that

V (ℓ− 1)− V (ℓ) ≤ ǫ, ∀ℓ ∈ [k + 1, k + h(k)]. (B.6)

Due to (B.6), (B.3), and (B.4),

‖zi(ℓ− 1)− zℓ−1
I(ℓ)∪L(ℓ)‖2 ≤

ǫ

α
, ∀ℓ ∈ [k + 1, k + h(k)], ∀i ∈ I(ℓ) ∪ L(ℓ). (B.7)

Next, let di(ℓ) =
∑

j∈Ci(k,ℓ) ‖zj(ℓ)− zℓCi(k,ℓ)‖2Qj(ℓ)
∀ℓ ≥ k ∀i ∈M(ℓ). In addition,

let m(ℓ) be the number of distinct sets in the collection {Ci(k, ℓ)}i∈M(ℓ) ∀ℓ ≥ k.

Notice from (3.26) and (3.27) that 1 ≤ m(ℓ) ≤ |M(ℓ)| ≤ M ∀ℓ ≥ k and

m(ℓ) ≤ m(ℓ − 1) ∀ℓ ≥ k + 1. Moreover, let B(ℓ) = {k} ∪ {k′ ∈ [k + 1, ℓ] :

m(k′) < m(k′ − 1)} ∀ℓ ≥ k + 1. Then, consider the following lemma:
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Lemma B.3. For each ℓ ∈ [k, k + h(k)],

di(ℓ) ≤ (
4β

α
)M−m(ℓ)(M + 1−m(ℓ))

( ∏

k′∈B(ℓ)

(M + 1−m(k′))
)

ǫ, ∀i ∈M(ℓ).

(B.8)

Proof. By induction over ℓ ∈ [k, k + h(k)]. Let ℓ = k. For any i ∈ M(ℓ), from

(3.26), Ci(k, ℓ) = {i}, which, together with (B.1), implies that zi(ℓ) = zℓCi(k,ℓ).

Hence, di(ℓ) = 0 ∀i ∈ M(ℓ). Since the right-hand side of (B.8) is positive,

(B.8) holds for ℓ = k. Next, let ℓ ∈ [k + 1, k + h(k)] and suppose

di(ℓ− 1) ≤ (
4β

α
)M−m(ℓ−1)(M + 1−m(ℓ− 1))

( ∏

k′∈B(ℓ−1)

(M + 1−m(k′))
)

ǫ,

∀i ∈M(ℓ− 1). (B.9)

Below, we show that (B.9) implies (B.8). To do so, consider the following two

mutually exclusive and exhaustive cases:

Case (I): I(ℓ) ∪ L(ℓ) ⊂ Ci∗(k, ℓ − 1) for some i∗ ∈ M(ℓ − 1). Due to

(3.27),

m(ℓ) = m(ℓ− 1), (B.10)

implying that

B(ℓ) = B(ℓ− 1). (B.11)

Let i ∈M(ℓ). Suppose i ∈M(ℓ)− (Ci∗(k, ℓ− 1)∪J (ℓ)). Then, due to (3.27),

(3.19), (3.20), and (3.21), Ci(k, ℓ) = Ci(k, ℓ− 1), zj(ℓ) = zj(ℓ− 1) ∀j ∈ Ci(k, ℓ),

and Qj(ℓ) = Qj(ℓ − 1) ∀j ∈ Ci(k, ℓ), implying that di(ℓ) = di(ℓ − 1). Now

suppose i ∈ (Ci∗(k, ℓ − 1) ∪ J (ℓ)) − L(ℓ). From (3.27), Ci(k, ℓ) = (Ci∗(k, ℓ −

1)∪J (ℓ))−L(ℓ). Thus, from (3.15), (3.20), (3.21), (3.14), and (3.19), we have
∑

j∈Ci∗ (k,ℓ−1)Qj(ℓ− 1) =
∑

j∈Ci(k,ℓ)Qj(ℓ) and
∑

j∈Ci∗ (k,ℓ−1)Qj(ℓ− 1)zj(ℓ− 1) =
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∑

j∈Ci(k,ℓ)Qj(ℓ)zj(ℓ). These and (B.1) indicate that zℓCi(k,ℓ) = zℓ−1
Ci∗ (k,ℓ−1). It

follows from (B.2), (3.15), (3.19), (3.20), (3.21), and Lemma B.1 that

di(ℓ) =
∑

j∈J (ℓ)∪I(ℓ)
‖zi(ℓ)− zℓ−1

Ci∗ (k,ℓ−1)‖2Qj(ℓ)
+

∑

j∈Ci∗ (k,ℓ−1)
−(I(ℓ)∪L(ℓ))

‖zi(ℓ)− zℓ−1
Ci∗ (k,ℓ−1)‖2Qj(ℓ)

=
∑

j∈I(ℓ)∪L(ℓ)
‖zℓ−1

I(ℓ)∪L(ℓ) − zℓ−1
Ci∗ (k,ℓ−1)‖2Qj(ℓ−1) +

∑

j∈Ci∗ (k,ℓ−1)
−(I(ℓ)∪L(ℓ))

‖zj(ℓ− 1)− zℓ−1
Ci∗ (k,ℓ−1)‖2Qj(ℓ−1)

≤
∑

j∈I(ℓ)∪L(ℓ)
‖zj(ℓ− 1)− zℓ−1

Ci∗ (k,ℓ−1)‖2Qj(ℓ−1) +
∑

j∈Ci∗ (k,ℓ−1)
−(I(ℓ)∪L(ℓ))

‖zj(ℓ− 1)− zℓ−1
Ci∗ (k,ℓ−1)‖2Qj(ℓ−1)

= di∗(ℓ− 1).

It follows from (B.9), (B.10), and (B.11) that (B.8) holds for Case (I).

Case (II): I(ℓ) ∪ L(ℓ) 6⊂ Ci(k, ℓ − 1) ∀i ∈ M(ℓ − 1). Due to (3.27),

m(ℓ) < m(ℓ− 1), which implies that

m(ℓ− 1)−m(ℓ) ≥ 1, (B.12)

B(ℓ) = B(ℓ− 1) ∪ {ℓ}. (B.13)

Let i ∈ M(ℓ). Suppose i ∈ M(ℓ) − (∪j∈I(ℓ)∪L(ℓ)Cj(k, ℓ − 1) ∪ J (ℓ)). Then,

observe from (3.27), (3.19), (3.20), and (3.21) that Ci(k, ℓ) = Ci(k, ℓ − 1),

zj(ℓ) = zj(ℓ − 1) ∀j ∈ Ci(k, ℓ), and Qj(ℓ) = Qj(ℓ − 1) ∀j ∈ Ci(k, ℓ). Hence,

di(ℓ) = di(ℓ − 1), which, along with (B.9), (B.12), and (B.13), implies that

di(ℓ) ≤ (4β
α
)M−m(ℓ)(M + 1 −m(ℓ))

(
∏

k′∈B(ℓ)(M + 1 −m(k′))
)

ǫ. Now suppose

i ∈ (∪j∈I(ℓ)∪L(ℓ)Cj(k, ℓ−1)∪J (ℓ))−L(ℓ). Also suppose {Cj(k, ℓ−1)}j∈I(ℓ)∪L(ℓ) =

{Cj1(k, ℓ − 1), Cj2(k, ℓ − 1), . . . , Cjp(k, ℓ − 1)}, where, due to (3.27), 2 ≤ p ≤

m(ℓ − 1) and jq ∈ Cjq(k, ℓ − 1) ⊂ ∪j∈I(ℓ)∪L(ℓ)Cj(k, ℓ − 1) ∀q ∈ {1, 2, . . . , p}.

Then, from (3.27),

Ci(k, ℓ) =
(

∪p
q=1Cjq(k, ℓ− 1) ∪ J (ℓ)

)

− L(ℓ). (B.14)
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Let sq ∈ Cjq(k, ℓ− 1)∩ (I(ℓ)∪L(ℓ)) ∀q ∈ {1, 2, . . . , p}. Then, because of (B.4),

(B.14), Lemma B.2, (3.19), (B.2), the triangle inequality, (B.7), (B.9), (B.12),

and (B.13),

di(ℓ) ≤ β
∑

j∈(∪p
q=1Cjq (k,ℓ−1)

∪J (ℓ))−L(ℓ)

‖zj(ℓ)− zℓ−1
I(ℓ)∪L(ℓ)‖2 = β

p
∑

q=1

∑

j∈Cjq (k,ℓ−1)

−(I(ℓ)∪L(ℓ))

‖zj(ℓ− 1)− zℓ−1
I(ℓ)∪L(ℓ)‖2

≤ β

p
∑

q=1

∑

j∈Cjq (k,ℓ−1)

−(I(ℓ)∪L(ℓ))

(‖zj(ℓ− 1)− zsq(ℓ− 1)‖+ ‖zsq(ℓ− 1)− zℓ−1
I(ℓ)∪L(ℓ)‖)2

≤ β

p
∑

q=1

∑

j∈Cjq (k,ℓ−1)

−(I(ℓ)∪L(ℓ))

2
(

(‖zj(ℓ− 1)− zℓ−1
Cjq (k,ℓ−1)‖+ ‖zℓ−1

Cjq (k,ℓ−1) − zsq(ℓ− 1)‖)2

+ ‖zsq(ℓ− 1)− zℓ−1
I(ℓ)∪L(ℓ)‖2

)

≤ β

p
∑

q=1

∑

j∈Cjq (k,ℓ−1)

−(I(ℓ)∪L(ℓ))

2
(

2(‖zj(ℓ− 1)− zℓ−1
Cjq (k,ℓ−1)‖2 + ‖zsq(ℓ− 1)− zℓ−1

Cjq (k,ℓ−1)‖2) +
ǫ

α

)

≤ β

p
∑

q=1

∑

j∈Cjq (k,ℓ−1)

−(I(ℓ)∪L(ℓ))

2(
2

α
djq(ℓ− 1) +

ǫ

α
)

≤ |Ci(k, ℓ)|
(

(
4β

α
)M−m(ℓ−1)+1(M+1−m(ℓ− 1))

(∏

k′∈B(ℓ−1)

(M+1−m(k′))
)

ǫ+
2β

α
ǫ
)

≤ |Ci(k, ℓ)|(
4β

α
)M−m(ℓ)(M + 1−m(ℓ))

(∏

k′∈B(ℓ−1)

(M + 1−m(k′))
)

ǫ

= |Ci(k, ℓ)|(
4β

α
)M−m(ℓ)

( ∏

k′∈B(ℓ)

(M + 1−m(k′))
)

ǫ.

This, along with the fact that |Ci(k, ℓ)| ≤ M + 1 −m(ℓ), implies that di(ℓ) ≤

(4β
α
)M−m(ℓ)(M + 1−m(ℓ))

(
∏

k′∈B(ℓ)(M + 1−m(k′))
)

ǫ. Therefore, (B.8) holds

for Case (II).

Since Ci(k, k+ h(k)) =M(k+ h(k)) ∀i ∈M(k+ h(k)), we have m(k+

h(k)) = 1. Also, note that Πk′∈B(k+h(k))(M + 1 −m(k′)) ≤ M !. Furthermore,
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note from (3.5), (3.24), and (3.25) that z = zℓM(ℓ) ∀ℓ ∈ N, implying that

di(k + h(k)) = V (k + h(k)) ∀i ∈ M(k + h(k)). It follows from Lemma B.3

and (B.5) that V (k+ h(k))≤(4β
α
)M−1 ·M ·M ! · ǫ ≤ ( 4β

α
)M−1·M ·M !

( 4β
α
)M−1·M ·M !+1

V (k), which

contradicts the assumption that (3.30) is violated. Therefore, (3.30) must hold.

B.6 Proof of Theorem 3.2

Let A be given. Suppose the agent network is connected under A, i.e.,

h(k) < ∞ ∀k ∈ N, and suppose the sequence {Qi(k)}k∈N,i∈M(k) is uniformly

positive definite under A. Let α > 0 be such that Qi(k) − αI ∈ Sn
+ ∀k ∈ N

∀i ∈ M(k). Then, (3.31) holds if and only if limk→∞ V (k) = 0. Hence, we

only need to show limk→∞ V (k) = 0. From (3.8) and Lemma 3.1, (V (k))∞k=0

is nonnegative and non-increasing. Thus, ∃c ≥ 0 such that limk→∞ V (k) = c.

To show that c must be zero, assume, to the contrary, that c > 0. Let ǫ =

c

( 4β
α
)M−1·M ·M !

. Then, ∃k ∈ N such that c ≤ V (ℓ) < c + ǫ ∀ℓ ≥ k. However, by

Lemma 3.2, we have V (k+h(k)) <
( 4β

α
)M−1·M ·M !

( 4β
α
)M−1·M ·M !+1

(c+ǫ) = c, which contradicts

the inequality c ≤ V (ℓ). Therefore, c = 0, i.e., limk→∞ V (k) = 0, implying that

(3.31) holds.

B.7 Proof of Corollary 3.2

Suppose the agent network is connected under A and suppose the mem-

bership dynamics are ultimately static under A. As is shown in the proof of

Corollary 3.1 in B.4, {Qi(k)}k∈N,i∈M(k) is uniformly positive definite under A.

Thus, from Theorem 3.2, (3.31) holds.
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B.8 Proof of Theorem 3.3

Let A be given. Suppose the agent network is uniformly connected

under A, i.e., h∗ <∞, and suppose the sequence {Qi(k)}k∈N,i∈M(k) is uniformly

positive definite under A. Let α > 0 be such that Qi(k) − αI ∈ Sn
+ ∀k ∈ N

∀i ∈ M(k). Then, it follows from Lemmas 3.1 and 3.2 that ∀ℓ ∈ N, V ((ℓ +

1)h∗) ≤ V (ℓh∗ + h(ℓh∗)) ≤ ( 4β
α
)M−1·M ·M !

( 4β
α
)M−1·M ·M !+1

V (ℓh∗), which implies that V (ℓh∗) ≤
(

( 4β
α
)M−1·M ·M !

( 4β
α
)M−1·M ·M !+1

)ℓ

V (0). Also, from (3.8), α‖zj(ℓh∗) − z‖2 ≤ V (ℓh∗) ∀ℓ ∈ N

∀j ∈M(ℓh∗). It follows that (3.32) holds.

B.9 Proof of Corollary 3.3

Suppose the agent network is uniformly connected under A and suppose

the membership dynamics are ultimately static under A. As is shown in the

proof of Corollary 3.1 in B.4, {Qi(k)}k∈N,i∈M(k) is uniformly positive definite

under A. Thus, from Theorem 3.3, (3.32) holds for some α > 0.
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Appendix C Proofs for Chapter 4

C.1 Proof of Theorem 4.1

In this section, we use P(A) to represent the probability of event A.

Suppose PE is utilized. Then, for any k ∈ P, I(k) = {i, j} ∈ E with probability

1
L
, and J (k) = L(k) = ∅. Thus, ∀{i, j} ∈ E , ∀k ∈ P,

P(I(ℓ) 6= {i, j}, ∀ℓ ≥ k) = Π∞
ℓ=k(1−

1

L
) = 0. (C.1)

For any given {i, j} ∈ E , consider the following probability:

P({i, j} is selected to be I(k) infinitely many times)

= 1−P({i, j} is selected to be I(k) finite times)

= 1−P(∪∞
k=1{I(ℓ) 6= {i, j}, ∀ℓ ≥ k})

≥ 1−
∞∑

k=1

P(I(ℓ) 6= {i, j}, ∀ℓ ≥ k).

This, along with (C.1), implies that

P({i, j} is selected to be I(k) infinitely many times) ≥ 1.

Since any probability cannot exceed 1,

P({i, j} is selected to be I(k) infinitely many times) = 1.

Then, because the graph G = (V , E) is connected, we know that with probability

1, the network is connected under A, by Definition 1 in Chapter 3. Since
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Ai ∈ Sn
+, ∀i ∈ V , it follows from Theorem 2 in Chapter 3 that with probability

1, limk→∞ x̂i(k) = x, ∀i ∈ V .

C.2 Proof of Theorem 4.2

This proof is similar to that of Theorem 4.1.

C.3 Proof of Theorem 4.3

This proof also is similar to that of Theorem 4.1.

C.4 Proof of Theorem 4.4

From (4.9) and Lemma 1 in Chapter 3, the sequence {V (x(k))}∞k=0 is

nonnegative and non-increasing. Thus, ∃c ≥ 0 such that limk→∞ V (x(k)) = c.

To show that c must be zero, assume, to the contrary, that c > 0. Let

ǫ =
c

4β
α
N2L

, (C.2)

where α and β are defined in (4.16). Then, ∃K ∈ N such that

c ≤ V (x(k)) < c+ ǫ, ∀k ≥ K, (C.3)

implying that

V (x(k))− V (x(k + 1)) < ǫ, ∀k ≥ K. (C.4)

With ICHE, there are N candidates for I(k), ∀k ∈ P, denoted as I1, I2, . . . , IN
and defined as Ii = {{i, j} ∈ E}, so that at iteration k, if node i is selected,

then I(k) = Ii.
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Now suppose that I(K + 1) = Ip. Then from (4.10) and (C.4),

ǫ > V (x(K))− V (x(K + 1)) =
∑

{p,j}∈Ip

‖x{p,j}(K)− x̂p(K)‖2A{p,j}

≥
∑

{q,j}∈Iq

‖x{q,j}(K)− x̂q(K)‖2A{q,j}
, ∀q ∈ V .

Then ∀q ∈ V , ∀i ∈ Nq, we have ‖x{q,i}(K)−x̂q(K)‖2 < ǫ
α
, and from the triangle

inequality, ‖x{q,i}(K)− x{q,j}(K)‖ < 2
√

ǫ
α
, ∀i, j ∈ Nq, implying that

‖x{i,j}(K)− x{p,q}(K)‖ ≤ 2(N − 2)

√
ǫ

α
, ∀{i, j}, {p, q} ∈ E . (C.5)

Let {p, q} ∈ E . From Lemma 4 in Chapter 3,

V (x(K)) ≤
∑

{i,j}∈E
‖x{i,j}(K)− x{p,q}(K)‖2A{i,j}

≤ β
∑

{i,j}∈E\{p,q}
‖x{i,j}(K)− x{p,q}(K)‖2.

Then, from (C.5), we obtain

V (x(K)) ≤ 4β

α
(N − 2)2(L− 1)ǫ. (C.6)

Substituting (C.2) into the right-hand side of (C.6) gives V (K) < c, which is

a contradiction to (C.3). Therefore, we must have limk→∞ V (x(k)) = 0. This,

along with the fact that A{i,j} ∈ Sn
+, ∀{i, j} ∈ E , implies that limk→∞ x{i,j}(k) =

x, ∀{i, j} ∈ E . Finally, due to (4.8), limk→∞ x̂i(k) = x, ∀i ∈ V .

C.5 Proof of Theorem 4.5

With ICHE, for any k ∈ P, we have

V (x(k − 1))− V (x(k)) = max
i∈V

∆Vi(x(k − 1)). (C.7)
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Let V (x(k − 1)) be given and suppose V (x(k − 1)) = d 6= 0. Then, (C.7) can

be rewritten as follows:

V (x(k)) = V (x(k − 1)) ·
(

1− 1

d
max
i∈V

∆Vi(x(k − 1))
)

,

implying that V (x(k)) ≤ ρV (x(k − 1)), where

ρ = 1− 1

d
min
x(k−1)

max
i∈V

∆Vi(x(k − 1)).

Let ω1 = d(1− ρ). Then, ω1 is the optimal value of the following problem:

minimizey∈RLn maxi∈V ∆Vi(y)

subject to
(

∑

{i,j}∈E
A{i,j}

)−1( ∑

{i,j}∈E
A{i,j}y{i,j}

)

= x

V (y) = d,

(C.8)

where x is defined in (4.1).

Next, we prove the following lemma.

Lemma C.1. Problem (C.8) is equivalent to the following problem:

minimizez∈RLn maxi∈V ∆Vi(z)

subject to
(

∑

{i,j}∈E
A{i,j}

)−1( ∑

{i,j}∈E
A{i,j}z{i,j}

)

= 0

V (z) = 1.

(C.9)

Moreover, if ω2 is the optimal value of problem (C.9), then ω1 = dω2.

Proof. For any feasible point y ∈ RLn of problem (C.8), let

z{i,j} =
1√
d
(y{i,j} − x), ∀{i, j} ∈ E .

Then, the first constraint in (C.8) can be rewritten as

0 =
( ∑

{i,j}∈E
A{i,j}

)−1( ∑

{i,j}∈E
A{i,j}

1√
d
(y{i,j} − x)

)

,

=
( ∑

{i,j}∈E
A{i,j}

)−1( ∑

{i,j}∈E
A{i,j}z{i,j}

)

,
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implying that z satisfies the first constraint in problem (C.9). Also, since

1
d
V (y) =

∑

{i,j}∈E ‖ 1√
d
(y{i,j}−x)‖2A{i,j}

= 1, we have V (z) = 1. Thus, z satisfies

the two constraints in problem (C.9), implying that z is feasible for problem

(C.9). On the other hand, observe that the converse is also true. Therefore,

z is feasible for problem (C.9) if and only if y is feasible for problem (C.8).

Furthermore,

max
i∈V

∆Vi(y)

= dmax
i∈V

∑

j∈Ni

∥
∥
∥
y{i,j} − x√

d
− (

∑

j∈Ni

A{i,j})
−1(

∑

j∈Ni

A{i,j}
y{i,j} − x√

d
)
∥
∥
∥

2

A{i,j}

= dmax
i∈V

∆Vi(z). (C.10)

Suppose y∗ is the optimizer of problem (C.8). Then, for any feasible point y

of problem (C.8), we have

max
i∈V

∆Vi(y
∗) ≤ max

i∈V
∆Vi(y). (C.11)

Let z∗{i,j} = 1√
d
(y∗{i,j} − x), ∀{i, j} ∈ E . Then, z∗ is feasible for problem

(C.9). Next, divide both sides of (C.11) by d. Then, from (C.10), we have

maxi∈V ∆Vi(z∗) ≤ maxi∈V ∆Vi(z). Since z can be any feasible point of problem

(C.9), z∗ is the optimizer of problem (C.9), implying that problems (C.8) and

(C.9) are equivalent. From (C.10), we know that ω1 = dω2.

Now we show that problems (C.8) and (4.14) are equivalent. From

Lemma C.1, we know that miny∈RLn maxi∈V ∆Vi(y) is proportional to V (y)

and independent of x. Thus we can let x = 0. If we let maxi∈V ∆Vi(x) = 1,

then problem (C.8) is converted to maximizing V (x), while satisfying

(
∑

{i,j}∈E
A{i,j}

)−1( ∑

{i,j}∈E
A{i,j}x{i,j}

)

= 0,
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which is problem (4.14). Note that the optimal value of problem (4.14) is the

reciprocal of ω2. Moreover, ω2 =
ω1

d
= 1− ρ by Lemma C.1. Hence, 1

1−ρ
is the

optimal value of problem (4.14).

Finally, from problem (C.9), we know that ω2 ≤ 1 because V is always

nonnegative. This implies that ρ ≥ 0. Also, since L ≥ 2, the optimal value of

problem (4.14) is positive, implying that ρ < 1. Therefore, 0 ≤ ρ < 1.

C.6 Proof of Theorem 4.6

Let K be such that ∆Vi(K) ≤ γ, ∀i ∈ V . Due to (4.10), ‖x{i,j}(K) −

x̂i(K)‖ ≤
√

γ
α
, ∀i ∈ V , ∀j ∈ Ni. By the triangle inequality, we have ‖x̂i(K)−

x̂j(K)‖ ≤ 2
√

γ
α
, ∀{i, j} ∈ E . Also, notice that whenever |Ni| = 1, i ∈ V , we

have ‖x{i,j}(K) − x̂i(K)‖ = 0 and thus ‖x̂i(K) − x̂j(K)‖ ≤
√

γ
α
, ∀j ∈ Ni.

Therefore,

‖x̂i(K)− x̂j(K)‖ ≤ 2(N − 2)

√
γ

α
, ∀i, j ∈ V . (C.12)

Note that from (4.8), the solution x in (4.1) can be rewritten as follows:

x = (2
∑

{i,j}∈E
A{i,j})

−1(2
∑

{i,j}∈E
A{i,j}x{i,j}(K))

= (
∑

i∈V

∑

j∈Ni

A{i,j})
−1(

∑

i∈V

∑

j∈Ni

A{i,j}x{i,j}(K))

= (
∑

i∈V

∑

j∈Ni

A{i,j})
−1(

∑

i∈V

∑

j∈Ni

A{i,j}x̂i(K)). (C.13)

Let p ∈ V . From (C.12), (C.13), and Lemma 4 in Chapter 3, we have

α′
∑

i∈V
‖x̂i(K)− x‖2≤

∑

i∈V
‖x̂i(K)− x‖2∑

j∈Ni

A{i,j}
≤
∑

i∈V
‖x̂i(K)− x̂p(K)‖2∑

j∈Ni

A{i,j}

≤ β′
∑

i∈V−{p}
‖x̂i(K)− x̂p(K)‖2 ≤ 4β′

α
(N − 2)2(N − 1)γ,

implying that (4.18) holds.
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Appendix D Proofs for Chapter 5

D.1 Proof of Theorem 5.1

Suppose Assumption 5.1 holds and let (u(k))∞k=1 satisfying Assump-

tion 5.2 be given. Consider the following lemmas:

Lemma D.1. Suppose Assumption 5.1 holds. Then, ∀[a, b] ⊂ X , there exists

a continuous and strictly increasing function γ : [0,∞) → [0,∞) satisfying

γ(0) = 0 and limd→∞ γ(d) = ∞, such that ∀η > 0, ∀i ∈ V, ∀(x, y) ∈ [a, b]2,

fi(y)− fi(x)− f ′
i(x)(y − x) ≤ η implies |y − x| ≤ γ−1(η).

Proof. Let [a, b] ⊂ X . For each i ∈ V , define gi : [a, b]2 → R as gi(x, y) =

fi(y) − fi(x) − f ′
i(x)(y − x). Due to Assumption 5.1 and (5.18), gi(x, y) ≥ 0

∀(x, y) ∈ [a, b]2, where the equality holds if and only if x = y. Moreover, since f ′
i

is strictly increasing and gi(x, y) can be written as gi(x, y) =
∫ y

x
(f ′

i(t)−f ′
i(x))dt,

gi(x, y) is strictly increasing with |y− x| for each fixed x ∈ [a, b]. Furthermore,

because fi and f
′
i are continuous, gi is continuous. Next, for each d ∈ [0, b− a],

let K(d) = {(x, y) ∈ [a, b]2 : |y − x| = d}. Also, for each i ∈ V , define

γi : [0, b − a] → R as γi(d) = min(x,y)∈K(d) gi(x, y). Due to the compactness of

K(d) ∀d ∈ [0, b− a] and the continuity of gi, γi is well-defined and continuous.

In addition, since gi(x, y) = 0 ∀(x, y) ∈ K(0), γi(0) = 0. Now pick any d1

and d2 such that 0 ≤ d1 < d2 ≤ b − a. Let (x2, y2) ∈ K(d2) be such that

γi(d2) = gi(x2, y2). If y2 > x2, then y2 − x2 = d2. In this case, ∃y1 ∈ [x2, y2)
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such that y1 − x2 = d1. Since gi(x2, y) is strictly increasing with y for y ≥ x2,

we have γi(d1) ≤ gi(x2, y1) < gi(x2, y2) = γi(d2). Similarly, if y2 < x2, we

also have γi(d1) < γi(d2). Hence, γi is strictly increasing. Finally, define

γ : [0,∞) → [0,∞) as γ(d) =
{ mini∈V γi(d) if d ∈ [0, b− a]

mini∈V γi(b−a)+d−(b−a) if d ∈ (b− a,∞) . Note that

γ(0) = 0 since γi(0) = 0 ∀i ∈ V , and that limd→∞ γ(d) = ∞. Moreover, since

γi is continuous and strictly increasing ∀i ∈ V , so is γ on [0, b − a]. Also,

observe that γ is continuous and strictly increasing on [b − a,∞). Thus, γ is

continuous and strictly increasing. Now let η > 0, i ∈ V , and (x, y) ∈ [a, b]2.

Suppose gi(x, y) ≤ η. If η ≤ γ(b−a), then |y−x| ≤ γ−1(η) because γ(|y−x|) ≤

γi(|y − x|) ≤ gi(x, y) ≤ η. If η > γ(b− a), then |y − x| ≤ b− a < γ−1(η).

Lemma D.2. Suppose Assumption 5.1 holds. Then, ∀[a, b] ⊂ X , ∃β ∈ (0,∞)

such that ∀i ∈ V, ∀(x, y) ∈ [a, b]2, fi(y)− fi(x)− f ′
i(x)(y − x) ≤ β|y − x|.

Proof. Let [a, b] ⊂ X and β = 1 + 2maxj∈V |f ′
j(b)|. Obviously, β > 0, and by

Assumption 5.1, β <∞. Let i ∈ V and (x, y) ∈ [a, b]2. Since fi is continuously

differentiable, by the Mean Value Theorem, ∃c between x and y such that

fi(y) − fi(x) = f ′
i(c)(y − x). This, along with the triangle inequality and the

fact that f ′
i is strictly increasing, implies that fi(y) − fi(x) − f ′

i(x)(y − x) =

(f ′
i(c) − f ′

i(x))(y − x) ≤ |f ′
i(c) − f ′

i(x)| · |y − x| ≤ (|f ′
i(c)| + |f ′

i(x)|)|y − x| ≤

2|f ′
i(b)| · |y − x| ≤ β|y − x|.

Let a = mini∈V x̂i(0) and b = maxi∈V x̂i(0). Then, it follows from Propo-

sition 5.2 that x̂i(k) ∈ [a, b] ⊂ X ∀k ∈ N ∀i ∈ V and from (5.4) and Lemma 5.1

that x∗ ∈ [a, b]. By Lemma D.1, there exists a continuous and strictly increas-

ing function γ : [0,∞) → [0,∞) satisfying γ(0) = 0 and limd→∞ γ(d) = ∞,

such that ∀η > 0, ∀i ∈ V , ∀(x, y) ∈ [a, b]2, fi(y) − fi(x) − f ′
i(x)(y − x) ≤ η

implies |y − x| ≤ γ−1(η). Also, by Lemma D.2, ∃β ∈ (0,∞) such that ∀i ∈ V ,
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∀(x, y) ∈ [a, b]2, fi(y) − fi(x) − f ′
i(x)(y − x) ≤ β|y − x|. From Lemma 5.2,

(V (x(k)))∞k=0 is nonnegative and non-increasing. Thus, ∃c ≥ 0 such that

limk→∞ V (x(k)) = c. To show that c must be zero, assume, to the contrary,

that c > 0. Let ǫ > 0 be given by ǫ = γ( c
4βN2 ). Then, ∃k1 ∈ N such that

c ≤ V (x(k)) < c+ ǫ, ∀k ≥ k1. (D.1)

Due to (D.1), V (x(k − 1))− V (x(k)) < ǫ ∀k ≥ k1 + 1. Hence, from (5.18) and

(5.21), fi(x̂i(k))−fi(x̂i(k−1))−f ′
i(x̂i(k−1))(x̂i(k)− x̂i(k−1)) < ǫ ∀k ≥ k1+1

∀i ∈ u(k). As a result, |x̂i(k) − x̂i(k − 1)| ≤ γ−1(ǫ) ∀k ≥ k1 + 1 ∀i ∈ u(k).

Because of this and (5.14),

|x̂i(k)− x̂j(k)| ≤ 2γ−1(ǫ), ∀k ≥ k1, ∀i, j ∈ u(k + 1). (D.2)

Now suppose maxi∈V x̂i(k1)−mini∈V x̂i(k1) > 2(N − 1)γ−1(ǫ). Then, ∃p, q ∈ V

such that x̂q(k1) − x̂p(k1) > 2γ−1(ǫ) and C1 ∪ C2 = V , where C1 = {i ∈ V :

x̂i(k1) ≤ x̂p(k1)} and C2 = {i ∈ V : x̂i(k1) ≥ x̂q(k1)}. Next, we show by

induction that ∀k ≥ k1, x̂i(k) ≤ x̂p(k1) ∀i ∈ C1 and x̂i(k) ≥ x̂q(k1) ∀i ∈ C2.

Clearly, the statement is true for k = k1. For k ≥ k1 + 1, suppose x̂i(k − 1) ≤

x̂p(k1) ∀i ∈ C1 and x̂i(k − 1) ≥ x̂q(k1) ∀i ∈ C2. Then, due to (D.2), ∀i ∈ C1,

∀j ∈ C2, {i, j} 6= u(k), i.e., u(k) ⊂ C1 or u(k) ⊂ C2. It follows from (5.17)

and Lemma 5.1 that x̂i(k) ≤ x̂p(k1) ∀i ∈ C1 and x̂i(k) ≥ x̂q(k1) ∀i ∈ C2,

completing the induction. Due again to (D.2), we have ∀i ∈ C1, ∀j ∈ C2,

{i, j} 6= u(k) ∀k ≥ k1 + 1, which violates Assumption 5.2. Consequently,

maxi∈V x̂i(k1) − mini∈V x̂i(k1) ≤ 2(N − 1)γ−1(ǫ). It follows from (5.4) and

Lemma 5.1 that |x∗− x̂i(k1)| ≤ maxj∈V x̂j(k1)−minj∈V x̂j(k1) ≤ 2(N−1)γ−1(ǫ)

∀i ∈ V . Hence, V (x(k1)) ≤ β
∑

i∈V |x∗ − x̂i(k1)| ≤ β ·N · 2(N − 1)γ−1(ǫ) < c,

which contradicts (D.1). Therefore, c = 0, i.e., (5.20) holds, implying that (5.3)

is satisfied.
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D.2 Proof of Theorem 5.2

Suppose Assumption 5.1 holds and let the random sequence (u(k))∞k=1

specified by p{i,j}(k) ∀k ∈ P ∀{i, j} ∈ E(k) satisfy Assumption 5.3. Let {i, j} ∈

Ẽ∞. Then, from the definition of Ẽ∞ in (5.23), ∃ε > 0 such that ∀k ∈ P,

p{i,j}(ℓ) ≥ ε for some ℓ > k. For each k ∈ P, let A{i,j}(k) = {ℓ ≥ k : {i, j} ∈

E(ℓ) and p{i,j}(ℓ) ≥ ε} and B{i,j}(k) = {ℓ ≥ k : {i, j} ∈ E(ℓ) and p{i,j}(ℓ) < ε}.

Then,

P{u(ℓ) 6= {i, j} ∀ℓ ≥ k} =
∞∏

ℓ=k
{i,j}∈E(ℓ)

(1− p{i,j}(ℓ))

=
∏

ℓ∈A{i,j}(k)

(1− p{i,j}(ℓ)) ·
∏

ℓ∈B{i,j}(k)

(1− p{i,j}(ℓ))

≤
∏

ℓ∈A{i,j}(k)

(1− ε) ·
∏

ℓ∈B{i,j}(k)

1 = 0, ∀k ∈ P,

where the last step is due to A{i,j}(k) having infinitely many elements ∀k ∈ P,

as a result of (5.23). Hence,

P{u(ℓ) 6= {i, j} ∀ℓ ≥ k} = 0, ∀k ∈ P. (D.3)

Next, notice that

P{u(k) = {i, j} for infinitely many k ∈ P}

= 1− P{∪∞
k=1{u(ℓ) 6= {i, j} ∀ℓ ≥ k}} ≥ 1−

∞∑

k=1

P{u(ℓ) 6= {i, j} ∀ℓ ≥ k}.

Thus, from (D.3),

P{u(k) = {i, j} for infinitely many k ∈ P} = 1. (D.4)

Now consider the set E∞ defined by (5.22). Since (u(k))∞k=1 appears in (5.22)

and is a random sequence, the set E∞ is a random variable taking values in the
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power set of the set {{i, j} : i, j ∈ V , i 6= j}. From (D.4), we have P{{i, j} ∈

E∞} = 1. Since {i, j} is an arbitrary element in Ẽ∞, P{{i′, j′} ∈ E∞ ∀{i′, j′} ∈

Ẽ∞} = 1. Thus, P{Ẽ∞ ⊂ E∞} = 1. This, along with Assumption 5.3, implies

that P{the graph (V , E∞) is connected} = 1. Therefore, it follows from the

proof of Theorem 5.1 that (5.20) and (5.3) hold with probability 1.

D.3 Proof of Theorem 5.3

The proof is similar to that of Theorem 5.1. Let a, b, γ, and β be as

defined in Appendix D.1. Then, due to (5.12), (5.28), (5.4), and Lemma 5.1,

we have x̂i(k) ∈ [a, b] ∀k ∈ N ∀i ∈ V and x∗ ∈ [a, b]. From Lemma 5.3,

limk→∞ V (x(k)) = c for some c ≥ 0. To show that c = 0, assume to the

contrary that c > 0 and let ǫ be as defined in D.1. Then, (D.1) holds for some

k1 ∈ N. It follows from the proof of Lemma 5.3 that fi(x̂i(k)) − fi(x̂i(k −

1))− f ′
i(x̂i(k− 1))(x̂i(k)− x̂i(k− 1)) ≤ V (x(k− 1))− V (x(k)) < ǫ ∀k ≥ k1 +1

∀i ∈ u(k). Thus, |x̂i(k)− x̂i(k−1)| ≤ γ−1(ǫ) ∀k ≥ k1+1 ∀i ∈ u(k). This, along

with (5.29) and the fact that R ∈ P, implies |x̂i(k)− x̂j(k)| ≤ 2γ−1(ǫ)

1− 1

2R
≤ 4γ−1(ǫ)

∀k ≥ k1 ∀i, j ∈ u(k + 1). Then, using the same idea as in D.1, it can be

shown that maxi∈V x̂i(k1) − mini∈V x̂i(k1) ≤ 4(N − 1)γ−1(ǫ). This leads to

V (x(k1)) < c, which contradicts (D.1). Therefore, (5.20) and (5.3) hold.
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Appendix E Proofs for Chapter 6

E.1 Proof of Theorem 6.1

Let the sequence (u(k))∞k=1 such that each i ∈ V appears infinitely often

in it be given. Consider the following lemmas (see Appendix D.1 for proofs):

Lemma E.1. For any given [a, b] ⊂ X , ∃ a continuous and strictly increasing

function γ : [0,∞) → [0,∞) satisfying γ(0) = 0 and limd→∞ γ(d) = ∞, such

that ∀η > 0, ∀{i, j} ∈ E , ∀(x, y) ∈ [a, b]2, f{i,j}(y)−f{i,j}(x)−f ′
{i,j}(x)(y−x) ≤ η

implies |y − x| ≤ γ−1(η).

Lemma E.2. For any given [a, b] ⊂ X , ∃β ∈ (0,∞) such that ∀{i, j} ∈ E ,

∀(x, y) ∈ [a, b]2, f{i,j}(y)− f{i,j}(x)− f ′
{i,j}(x)(y − x) ≤ β|y − x|.

Let a = min{i,j}∈E x{i,j}(0) and b = max{i,j}∈E x{i,j}(0). Then, it follows

from (6.10) and (6.13) that

x{i,j}(k) ∈ [a, b], ∀k ∈ N, ∀{i, j} ∈ E , (E.1)

x̂i(k) ∈ [a, b], ∀k ∈ N, ∀i ∈ V . (E.2)

In addition, notice from (6.4) and (6.3) that
∑

{i,j}∈E f{i,j} = F . It follows

from (6.5) and (6.11) that 0 =
∑

{i,j}∈E f
′
{i,j}(x

∗) =
∑

{i,j}∈E f
′
{i,j}(x{i,j}(0)) =

∑

{i,j}∈E f
′
{i,j}(x{i,j}(k)). Thus, due to Lemma 6.1,

x∗ ∈ [ min
{i,j}∈E

x{i,j}(k), max
{i,j}∈E

x{i,j}(k)] ⊂ [a, b], ∀k ∈ N. (E.3)
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By Lemma E.1, ∃ a continuous and strictly increasing function γ : [0,∞) →

[0,∞) satisfying γ(0) = 0 and limd→∞ γ(d) =∞, such that

∀η > 0, ∀{i, j} ∈ E , ∀(x, y) ∈ [a, b]2, f{i,j}(y)− f{i,j}(x)− f ′
{i,j}(x)(y − x) ≤ η

⇒ |y − x| ≤ γ−1(η). (E.4)

By Lemma E.2, ∃β ∈ (0,∞) such that

∀{i, j} ∈ E , ∀(x, y) ∈ [a, b]2, f{i,j}(y)− f{i,j}(x)− f ′
{i,j}(x)(y − x) ≤ β|y − x|.

(E.5)

We first show that (6.17) holds. Due to (6.16), (6.15), and Lemma 6.2,

(V (x(k)))∞k=0 is nonnegative and non-increasing. Thus, ∃c ≥ 0 such that

limk→∞ V (x(k)) = c. To show that c must be zero, assume, to the contrary,

that c > 0. Let ǫ > 0 be given by ǫ = γ( c
βNL

). Then, ∃k1 ∈ N such that

c ≤ V (x(k)) < c+ ǫ, ∀k ≥ k1. (E.6)

Due to (E.6), V (x(k − 1)) − V (x(k)) < ǫ ∀k ≥ k1 + 1, which, along with

(6.19) and (6.15), implies that f{u(k),j}(x̂u(k)(k−1))−f{u(k),j}(x{u(k),j}(k−1))−

f ′
{u(k),j}(x{u(k),j}(k − 1))(x̂u(k)(k − 1) − x{u(k),j}(k − 1)) < ǫ ∀j ∈ Nu(k). Thus,

due to (6.11), (6.12), (E.1), (E.2), and (E.4),

|x{u(k),j}(k)− x{u(k),j}(k − 1)| = |x̂u(k)(k − 1)− x{u(k),j}(k − 1)| ≤ γ−1(ǫ),

∀k ≥ k1 + 1, ∀j ∈ Nu(k). (E.7)

Next, consider the following three definitions and a lemma: first, ∀k ≥

k1, ∀i ∈ V , let Ci(k) ⊂ V be defined recursively as follows: for k = k1, let

Ci(k) = ∅ ∀i ∈ V . For each k ≥ k1 + 1, let

Ci(k) =

{

(∪j∈Nu(k)
Cj(k − 1)) ∪ {u(k)}, if i ∈ (∪j∈Nu(k)

Cj(k − 1)) ∪ {u(k)},
Ci(k − 1), otherwise,

∀i ∈ V . (E.8)
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Second, ∀X ⊂ V , let EX = {{i, j} ∈ E : i ∈ X or j ∈ X}. Third, ∀k ≥ k1,

∀ℓ ∈ V , let dℓ(k) = max{i,j}∈ECℓ(k)
x{i,j}(k)−min{i,j}∈ECℓ(k)

x{i,j}(k), where max

and min, when taken over an empty set, are assumed to be 0.

Lemma E.3. For each k ≥ k1,

dℓ(k) ≤ ||Cℓ(k)| − 1|γ−1(ǫ), ∀ℓ ∈ V . (E.9)

Proof. By induction over k. Let k = k1. For each ℓ ∈ V , since Cℓ(k) = ∅, we

have ECℓ(k) = ∅, so that dℓ(k) = 0 ∀ℓ ∈ V . Therefore, (E.9) holds for k = k1.

Next, let k ≥ k1 + 1 and suppose

dℓ(k − 1) ≤ ||Cℓ(k − 1)| − 1|γ−1(ǫ), ∀ℓ ∈ V . (E.10)

We will show that (E.10) implies (E.9). To do so, consider the following two

mutually exclusive and exhaustive cases:

Case (I): Cu(k)(k − 1) 6= ∅. It can be seen from (E.8) that

E{u(k)} ⊂ ECu(k)(k−1), (E.11)

Cℓ(k) = Cℓ(k − 1), ∀ℓ ∈ V . (E.12)

Because of (6.11) and Lemma 6.1, min{i,j}∈E{u(k)} x{i,j}(k − 1) ≤ x{u(k),ℓ}(k) ≤

max{i,j}∈E{u(k)} x{i,j}(k−1) ∀ℓ ∈ Nu(k). Also, due to (6.11), x{i,j}(k) = x{i,j}(k−

1) ∀{i, j} ∈ E − E{u(k)}. It follows from (E.8), (E.11), and (E.12) that ∀ℓ ∈ V ,

min{i,j}∈ECℓ(k−1)
x{i,j}(k−1) ≤ min{i,j}∈ECℓ(k)

x{i,j}(k) ≤ max{i,j}∈ECℓ(k)
x{i,j}(k) ≤

max{i,j}∈ECℓ(k−1)
x{i,j}(k − 1). This implies that dℓ(k) ≤ dℓ(k − 1) ∀ℓ ∈ V .

Therefore, from (E.10) and (E.12), (E.9) holds for this Case (I).

Case (II): Cu(k)(k − 1) = ∅. Consider two subcases:

Subcase (i): ℓ ∈ V − ((∪j∈Nu(k)
Cj(k − 1)) ∪ {u(k)}). From (E.8) and

(6.11), Cℓ(k) = Cℓ(k − 1) and x{i,j}(k) = x{i,j}(k − 1) ∀{i, j} ∈ ECℓ(k). Thus,
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dℓ(k) = dℓ(k− 1), which, together with (E.10), implies that in this Subcase (i),

dℓ(k) ≤ ||Cℓ(k)| − 1|γ−1(ǫ).

Subcase (ii): ℓ ∈ (∪j∈Nu(k)
Cj(k − 1)) ∪ {u(k)}. From (E.8), u(k) /∈

Cj(k − 1) ∀j ∈ Nu(k), implying that

|Cℓ(k)| = | ∪j∈Nu(k)
Cj(k − 1)|+ 1 ≥ 1. (E.13)

Suppose ∪j∈Nu(k)
Cj(k−1) = ∅, i.e., Cj(k−1) = ∅ ∀j ∈ Nu(k). Then, from (E.8),

Cℓ(k) = {u(k)}. This, along with (6.11), implies that min{i,j}∈ECℓ(k)
x{i,j}(k) =

max{i,j}∈ECℓ(k)
x{i,j}(k). Thus,

dℓ(k) = 0 = ||Cℓ(k)| − 1|γ−1(ǫ). (E.14)

Now suppose ∪j∈Nu(k)
Cj(k−1) 6= ∅, and pick any ℓ′ ∈ Nu(k) with Cℓ′(k−1) 6= ∅,

i.e., |Cℓ′(k − 1)| ≥ 1. From (E.8), ECℓ′ (k−1) ∩ E{u(k)} 6= ∅, because it contains

{u(k), ℓ′}. Thus, due to (6.11), |x{i,j}(k)−x{p,q}(k)| ≤ |x{i,j}(k− 1)−x{p,q}(k)|

∀{i, j} ∈ ECℓ′ (k−1) ∀{p, q} ∈ ECℓ′ (k−1) ∩ E{u(k)}, because x{i,j}(k) = x{p,q}(k) if

{i, j} ∈ ECℓ′ (k−1)∩E{u(k)} and x{i,j}(k) = x{i,j}(k−1) if {i, j} ∈ ECℓ′ (k−1)−E{u(k)}.

It follows from the triangle inequality, (E.10), and (E.7) that

|x{i,j}(k)− x{p,q}(k)| ≤ |x{i,j}(k − 1)− x{p,q}(k − 1)|+ |x{p,q}(k − 1)− x{p,q}(k)|

≤ dℓ′(k − 1) + γ−1(ǫ)

≤ |Cℓ′(k − 1)|γ−1(ǫ), ∀{i, j} ∈ ECℓ′ (k−1), ∀{p, q} ∈ ECℓ′ (k−1) ∩ E{u(k)}.
(E.15)

In addition, from (6.11), |x{i,j}(k)− x{p,q}(k)| = |x{i,j}(k− 1)− x{p,q}(k− 1)| ≤

dℓ′(k−1) ∀{i, j}, {p, q} ∈ ECℓ′ (k−1)−E{u(k)}. This, along with (E.15) and (E.10),

implies that

max
{i,j}∈EC

ℓ′ (k−1)

x{i,j}(k)− min
{i,j}∈EC

ℓ′ (k−1)

x{i,j}(k) ≤ |Cℓ′(k − 1)|γ−1(ǫ). (E.16)
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Note from (6.11) and (E.8) that {x{i,j}(k) : {i, j} ∈ ECℓ(k)} = {x{i,j}(k) :

{i, j} ∈ E∪j∈Nu(k)
Cj(k−1)}. Thus, there exist ℓ1, ℓ2 ∈ Nu(k), {i1, j1} ∈ ECℓ1

(k−1),

and {i2, j2} ∈ ECℓ2
(k−1) such that x{i1,j1}(k) = min{i,j}∈ECℓ(k)

x{i,j}(k) and

x{i2,j2}(k) = max{i,j}∈ECℓ(k)
x{i,j}(k). If Cℓ1(k− 1) = Cℓ2(k− 1), then because of

(E.13) and (E.16),

dℓ(k) ≤ |Cℓ1(k − 1)|γ−1(ǫ) ≤ ||Cℓ(k)| − 1|γ−1(ǫ). (E.17)

Otherwise, i.e., Cℓ1(k − 1) and Cℓ2(k − 1) are distinct, pick any {p1, q1} ∈

ECℓ1
(k−1) ∩ E{u(k)} and any {p2, q2} ∈ ECℓ2

(k−1) ∩ E{u(k)}. Note from (E.8) that

{p1, q1} and {p2, q2} exist. Also note from (6.11) that x{p1,q1}(k) = x{p2,q2}(k).

Thus, from (E.13) and (E.15), dℓ(k) = x{i2,j2}(k) − x{p2,q2}(k) + x{p1,q1}(k) −

x{i1,j1}(k) ≤ |Cℓ2(k − 1)|γ−1(ǫ) + |Cℓ1(k − 1)|γ−1(ǫ) ≤ ||Cℓ(k)| − 1|γ−1(ǫ).

Combining this, (E.14), and (E.17), we see that in this Subcase (ii), dℓ(k) ≤

||Cℓ(k)| − 1|γ−1(ǫ).

Therefore, (E.9) holds for Case (II). This completes the proof by induc-

tion.

Since each i ∈ V appears infinitely often in (u(k))∞k=1, ∃k2 ≥ k1 + 1

such that ∀i ∈ V , u(k) = i for some k ∈ [k1 + 1, k2]. Due to (E.8) and the

connectedness of G, Ci(k2) = V ∀i ∈ V . This, along with the property EV = E

and Lemma E.3 that max{i,j}∈E x{i,j}(k2)−min{i,j}∈E x{i,j}(k2) = dℓ(k2) ≤ (N−

1)γ−1(ǫ) ∀ℓ ∈ V . It follows from (6.16), (E.1), (E.3), (E.5), and the value of ǫ

that V (x(k2)) ≤ β
∑

{i,j}∈E |x∗ − x{i,j}(k2)| ≤ β
∑

{i,j}∈E(max{p,q}∈E x{p,q}(k2)−

min{p,q}∈E x{p,q}(k2)) ≤ βL(N − 1)γ−1(ǫ) = N−1
N
c < c, which contradicts (E.6).

Therefore, c = 0, i.e., (6.17) holds, implying that (6.18) holds. Furthermore,

due to (6.12), (6.14) is satisfied.
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E.2 Proof of Theorem 6.2

Similar to the proof of Theorem 6.1, to show that (6.17) holds, we as-

sume to the contrary that limk→∞ V (x(k)) = c > 0. Let ǫ > 0 be given

by ǫ = γ( c
βL(N+1)

). Then, ∃k1 ∈ N such that (E.6) holds, implying that

V (x(k1))− V (x(k1 + 1)) < ǫ. It follows from (6.21), (6.20), (6.22), and (6.15)

that f{i,j}(x̂i(k1)) − f{i,j}(x{i,j}(k1)) − f ′
{i,j}(x{i,j}(k1))(x̂i(k1) − x{i,j}(k1)) < ǫ

∀i ∈ V ∀j ∈ Ni. This, along with (E.1), (E.2), and (E.4), implies that

|x̂i(k1) − x{i,j}(k1)| ≤ γ−1(ǫ) ∀i ∈ V ∀j ∈ Ni. Thus, by the triangle in-

equality, max{i,j}∈E x{i,j}(k1) −min{i,j}∈E x{i,j}(k1) ≤ Nγ−1(ǫ). It follows from

(6.16), (E.1), (E.3), (E.5), and the value of ǫ that V (x(k1)) ≤ β
∑

{i,j}∈E |x∗ −

x{i,j}(k1)| ≤ βLNγ−1(ǫ) = N
N+1

c < c. This is a contradiction to (E.6). There-

fore, (6.17) holds, implying that (6.18) and (6.14) hold.

220


