
UNIVERSITY OF OKLAHOMA 

GRADUATE COLLEGE 

 

FORMATION AND CHARACTERIZATION OF VEGETABLE OIL 

MICROEMULSIONS AND THEIR APPLICATION IN OILSEED EXTRACTION 

AND BIOFUEL  

 

 

 

A DISSERTATION 

SUBMITTED TO THE GRADUATE FACULTY 

in partial fulfillment of the requirements for the 

Degree of 

DOCTOR OF PHILOSOPHY 

 

 

By 

LINH DIEU DO 
Norman, Oklahoma 

2010



 

FORMATION AND CHARACTERIZATION OF VEGETABLE OIL 
MICROEMULSIONS AND THEIR APPLICATION IN OILSEED EXTRACTION 

AND BIOFUEL 

 
 
 
 
 

A DISSERTATION APPROVED FOR THE                                                                  
SCHOOL OF CHEMICAL, BIOLOGICAL AND MATERIALS ENGINEERING 

 
 
 
 
 
 

BY 
 
 
 

______________________________ 
Dr. Jeffrey H. Harwell, Chair 

 
 
 

______________________________ 
Dr. David A. Sabatini 

 
 
 

______________________________ 
Dr. Tohren C. G. Kibbey 

 
 
 

______________________________ 
Dr. Lance L. Lobban 

 
 
 

______________________________ 
Dr. John F. Scamehorn 



 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by LINH DIEU DO 2010 
All Rights Reserved.



DEDICATION 

This dissertation is dedicated to my grandfather Phan Tử Quang, my mother Phan Xuân 

Minh, my father ðỗ Ngọc Chính, my brother ðỗ Tuấn Linh, my husband Mai Thế Ánh 

and my daughter Mai Bảo Hân  

 

  



iv 

 

ACKNOWLEDGMENTS 

I would like to express my sincere appreciation to those who have made the 

publication of this dissertation possible and have made my graduate student life so 

enjoyable that I will cherish forever. 

I owe my deepest gratitude to my advisor Dr. Sabatini for his eternal 

encouragement, guidance, wisdom and supervision; without whom this dissertation 

would not have been possible. He has become my mentor both in academic and personal 

life. I am grateful for his faith in my ability which has lifted up my confidence and 

become who I am today. I thank him for giving me the opportunities to present this work 

in a number of conferences. I would like to express my appreciation to his wife Frances 

Sabatini for her support and hospitality. Their kindness has given me a feel of a second 

family in the foreign country. 

I am very grateful to Dr. Scamehorn for his valuable advice and support. He was 

the first who introduced me to the world of surfactant science. I am thankful to Dr. 

Harwell for his encouragement and valuable discussion. His vision on vital issues and 

industrial applications of surfactants has inspired me in critical thinking.  

I would like to thank Dr. Kibbey for serving as my committee member and his 

kindness in letting me use his lab equipment. I would like to thank Dr. Lobban for his 

time and energy in reviewing my dissertation and serving as my committee member. I am 

indebted to Dr. Gollahalli for his guidance and kindness in permitting me to use his 

equipment in the combustion lab.  I am thankful to Dr. Edgar Acosta for his valuable 



v 

 

information and advice. I am grateful to know Dr. Lowell Busenitz for his guidance in 

the economic feasibility study. 

This dissertation would not have been possible without the love and 

encouragement from my grandfather, my parents, my in-laws, my brother, my husband 

and daughter. My deepest appreciation goes to my husband Anh Mai who has 

continuously encouraged and helped me in many ways. The love and patience from my 

husband and daughter Han have given me the strength to overcome any obstacles in life.  

I am indebted to my past and present colleagues for their friendship and technical 

discussion. These include: Thu, Komesvarakoul (Cheng), Anuradee (Oat), Tri, Attaphong 

(Mink), Khwan, Prapas, Laura, Chris, Damon, Sezin, Emma and Vinay. I am thankful to 

my undergraduate research assistants: Odi, Nicole, Brittany, Megan, Ashley and Bridgett.  

I am thankful to my host family, late Uncle Larry and Ha Flanagan, my cousin 

Lan, my friends, Huong, Ha, Tu, Phuong, Dzung, Son and friends at the Society of 

Vietnamese Students for their hospitality and friendship. 

I would like to acknowledge the assistance of the staff from Civil Engineering and 

Environmental Science Department and Chemical, Biological and Materials Engineering 

Department for the administrative work.   

Finally, I would like to acknowledge the financial supports for this work from 

Environmental Protection Agency (EPA), Oklahoma Center for Advanced Science and 

Technology (OCAST), Oklahoma Department of Energy (DOE), Oklahoma Bioenergy 

Center and the sponsors of the Institute for Applied Surfactant Research (IASR). 



vi 

 

TABLE OF CONTENTS 

ACKNOWLEDGMENTS ............................................................................................. iv 

ABSTRACT ................................................................................................................ xvi 

Chapter 1 Introduction ......................................................................................... 1 

REFERENCES .......................................................................................................... 5 

Chapter 2 Formation and Characterization of Vegetable Oil 

Microemulsions Using Extended-Surfactants and Linkers ............................... 9 

ABSTRACT ............................................................................................................... 9 

2.1 INTRODUCTION ......................................................................................... 10 

2.2 EXPERIMENTAL PROCEDURES ............................................................. 14 

2.2.1 Materials ................................................................................................. 14 

2.2.2 Methods .................................................................................................. 17 

2.3 RESULTS AND DISCUSSIONS ................................................................ 18 

2.3.1 Ultralow interfacial tension values (IFTs) with triglyceride oils ............ 18 

2.3.2 Determination of equivalent alkane carbon number of vegetable 

oils  ........................................................................................................... 22 

2.3.3 Microemulsification of Triolein 65% practical grade ............................. 25 

2.3.4 Microemulsification of vegetable oils ................................................... 27 

2.4 CONCLUSIONS .......................................................................................... 32 

2.5 ACKNOWLEDGEMENTS ........................................................................... 33 



vii 

 

REFERENCES ........................................................................................................ 34 

Chapter 3 Aqueous Extended-Surfactant Based Method for 

Vegetable Oil Extraction: Proof of Concept ........................................................ 39 

ABSTRACT ............................................................................................................. 39 

3.1 INTRODUCTION ......................................................................................... 40 

3.2 MATERIALS AND METHODS ................................................................... 45 

3.2.1 Materials ................................................................................................. 45 

3.2.2 Methods .................................................................................................. 47 

3.3 RESULTS AND DISCUSSIONS ................................................................ 50 

3.3.1 Surfactant selection ............................................................................... 50 

3.3.2 Vegetable oil extraction ......................................................................... 53 

3.4 CONCLUSION ............................................................................................. 65 

3.5 ACKNOWLEDGEMENTS ........................................................................... 66 

REFERENCES ........................................................................................................ 67 

Chapter 4 Pilot Scale Study of Vegetable Oil Extraction by 

Surfactant-Assisted Aqueous Extraction Process ............................................ 73 

ABSTRACT ............................................................................................................. 73 

4.1 INTRODUCTION ......................................................................................... 74 

4.2 MATERIALS AND METHODS ................................................................... 78 

4.2.1 Materials ................................................................................................. 78 

4.2.2 Methods .................................................................................................. 78 



viii 

 

4.3 RESULTS AND DISCUSSION ................................................................... 84 

4.4 CONCLUSION ............................................................................................. 95 

4.5 ACKNOWLEDGEMENTS ........................................................................... 96 

REFERENCES ........................................................................................................ 97 

Chapter 5 Algae, Canola or Palm Oils – Diesel Microemulsion 

Fuels: Phase Behaviors, Viscosity and Combustion Properties .................. 101 

ABSTRACT ........................................................................................................... 101 

5.1 INTRODUCTION ....................................................................................... 102 

5.2 MATERIALS AND METHODS ................................................................. 106 

5.2.1 Materials ............................................................................................... 106 

5.2.2 Methods ................................................................................................ 109 

5.3 RESULTS AND DISCUSSIONS .............................................................. 115 

5.3.1 Vegetable oil properties ...................................................................... 115 

5.3.2 Microemulsion phase behavior study ................................................ 116 

5.3.3 Microemulsion fuel viscosity study ..................................................... 124 

5.3.4 Combusion properties of microemulsion fuels .................................. 128 

5.4 CONCLUSION ........................................................................................... 133 

5.5 ACKNOWLEDGEMENTS ......................................................................... 134 

REFERENCES ...................................................................................................... 134 

Chapter 6 CONCLUSION ................................................................................. 139 



ix 

 

APPENDIX A ............................................................................................................ 143 

APPENDIX B............................................................................................................. 146 

APPENDIX C ............................................................................................................ 149 

 

  



x 

 

LIST OF TABLES 

Table 2.1 Properties of extended-surfactants ................................................................. 15 

Table 2.2: Main fatty acid compositions (%) of some oils ............................................. 17 

Table 2.3:  Measured EACN values of oils: .................................................................. 25 

Table 2.4: Some common triglycerides in vegetable oils and their 

abbreviations ................................................................................................................. 27 

Table 3.1: List of propoxylate and propoxylate ethoxylate surfactants studied 

in this work and their optimum salinity (S*) and optimum interfacial tension 

(IFT*) with triolein oil at 25oC. ..................................................................................... 46 

Table 3.2: Effect of surfactant types on peanut oil extraction efficiency at 

25oC. Seed to surfactant solution liquid (S : L) ratio at 2 to 10 (g to g), 30 

minute extraction time, and horizontal shaking speed at 150 shakes/min. ....................... 53 

Table 3.3: Analysis of extracted peanut oil .................................................................... 63 

Table 3.4: Analysis of extracted canola oil .................................................................... 64 

Table 4.1: Effect of process parameters on peanut oil extraction efficiency – 

solid/liquid (S/L) separation........................................................................................... 84 

Table 4.2: Total oil extracted at optimum conditions at 25oC ........................................ 85 

Table 4.3: IFT prewash and postwash extraction solution with refined peanut 

and canola oil measured at 20 minutes ........................................................................... 88 

Table 4.4: Free crude oil recovery at optimum conditions ............................................. 93 

Table 4.5: Effect of particle size on fraction of oil extracted and free crude oil 

recovery for peanut at 25oC ........................................................................................... 94 

Table 5.1: Properties of studied surfactant and co-surfactants ..................................... 106 

Table 5.2: Fatty acid methyl ester (FAME) composition of studied oils ...................... 109 

Table 5.3: Cloud point and pour point of selected microemulsions .............................. 123 



xi 

 

LIST OF FIGURES 

Figure 2.1: Microemulsion phase behaviors presented by a “fish” diagram showing 

change in curvature with surfactant concentrations and tuning parameters. .................... 11 

Figure 2.2: Dynamic IFT versus time of C12-14PO-2EOsulfate and Aerosol-OT 

with various vegetable oils at optimum sodium chloride concentrations. 

Temperature at 27oC. ..................................................................................................... 19 

Figure 2.3: Triolein dynamic IFT values using three groups of studied extended-

surfactants (temperature at 27oC). Surfactant solutions were at 0.1wt%. LAPS: 

linear alkyl-propoxylated-sulfate; LAPES C10 and C12: linear-alkyl-propoxylated-

ethoxylated-sulfate with alkyl groups of 10 and of 12, respectively. ............................... 20 

Figure 2.4: lnS* versus EACN of studied oils. Temperature at 25oC. ............................ 21 

Figure 2.5: Microemulsion “fish” phase diagram of C10-18PO-2EO-NaSO4, a 

hydrophilic linker sodium mono- and dimethyl naphthalene sulfonate (SMNDS). 

C10-18PO-2EO-NaSO4/ SMDNS ratio at 3:1.2 by wt% and sodium chloride with 

triolein 65% practical grade. Temperature at 27oC. ........................................................ 26 

Figure 2.6: Microemulsion “fish” phase diagram of C10-18PO-2EO-NaSO4/Oleyl 

alcohol/Glucopon/NaCl at ratio of 3/2.5/1.2 by weight and sodium chloride with 

olive, peanut and canola oils. Temperature at 27oC. ....................................................... 29 

Figure 2.7: Microemulsion phase behavior of C16-10.7PO-Sulfate (LAPS)/ Oleyl  

alcohol/ Glucopon/ NaCl and C10-18PO-2EO-Sulfate (LAPES)/ Oleyl alcohol/ 

Glucopon/ NaCl with peanut oil. Temperature at 27oC. .................................................. 31 



xii 

 

Figure 3.1: Dynamic IFT versus time of C10-18PO-2EOsulfate with peanut and 

canola oils and AOT with canola oil at optimum salinity concentrations at 25oC. 

Surfactant solutions were prepared at 0.1 wt%. .............................................................. 51 

Figure 3.2: Determining the critical microemulsion concentration (CµC) using the 

plot of dynamic interfacial tension versus surfactant concentration at optimum 

electrolyte concentration for the systems C10-18PO-2EOsulfate/6wt% NaCl 

brine/peanut oil and C10-18PO-2EOsulfate/5 wt% NaCl brine/canola oil. IFT data 

were recorded at 20 minutes and 25oC. .......................................................................... 55 

Figure 3.3: Canola and peanut oil extraction efficiency versus C10-18PO-

2EOsulfate concentrations. Salinity was 6 wt% NaCl with peanut oil and 5 wt% 

NaCl with canola oil at 25oC corresponding to S* for each. Seed to liquid ratio at 2 : 

10 (g : g) for both oils, 30 minutes contact time and shaking speed at 150 

shakes/min. .................................................................................................................... 56 

Figure 3.4: Effect of shaking speed on peanut oil extraction using 0.15 wt% of C10-

18PO-2EOsulfate and 6 wt% NaCl at 25oC. 30 minutes contact time. Seed to 

surfactant solution liquid ratio at 2 : 10 (g : g). ............................................................... 57 

Figure 3.5: Effect of shaking time on peanut oil extraction of 0.15 wt% C10-18PO-

2EOsulfate and 6 wt% NaCl at 25oC. Shaking speed at 150 shakes/min. Seed to 

surfactant solution liquid ratio at 2 : 10 (g : g). ............................................................... 58 

Figure 3.6: Effect of salt concentration on peanut oil extraction and dynamic IFT 

(data recorded at 20 minutes) using 0.15 wt% of C10-18PO-2EOsulfate at 25oC. 

Shaking speed at 150 shakes/min for oil extraction experiments. Seed to surfactant 

solution liquid ratio at 2 : 10 (g : g). ............................................................................... 60 



xiii 

 

Figure 3.7: Effect of seed to liquid ratio on extractability using 0.15 wt% of C10-

18PO-2EOsulfate and 6 wt% NaCl at 25oC. 30 minutes contact time and shaking 

speed at 150 shakes/min. ............................................................................................... 61 

Figure 4.1: Schematic diagram of laboratory–based pilot scale processing of peanut 

and canola oil extraction. ............................................................................................... 79 

Figure 4.2: Selected products at different stages of SAEP and DI washing at 

optimum conditions for peanut and canola from left to right, respectively. (a) peanut 

and canola flours (b) liquid fraction from L/L centrifuge of surfactant wash step (c) 

liquid fraction from L/L centrifuge of DI washing step (d) free oil crude oil 

recovered from L/L centrifuge ....................................................................................... 80 

Figure 4.3: Oil extraction efficiency for different consecutive extraction trials at 

25oC. Extraction condition: 30 minute wash, S/L centrifuge at 4116xg and 8 

mL/min inlet flowrate. Amount of oil extracted via Soxhlet extraction was used as 

total oil .......................................................................................................................... 86 

Figure 4.4: Effect of feed flowrate on peanut oil recovery from liquid fraction at 

constant liquid/liquid centrifuge speed at 25oC. Extraction condition: 30 minute 

wash, S/L centrifuge at 4116xg and 8 mL/min inlet flowrate, L/L centrifuge at 

680xg ............................................................................................................................ 89 

Figure 4.5: Effect of centrifuge speed on peanut oil recovery from liquid fraction at 

a constant feed flowrate of 1 mL/min at 25oC. Extraction condition: 30 minute 

wash, S/L centrifuge at 4116xg and 8 mL/min inlet flowrate ......................................... 90 

Figure 5.1: Schematic diagram of the combustion experiment set-up. ......................... 113 



xiv 

 

Figure 5.2: Triglyceride profile of studied oils. The y-axis is the %molar 

composition and x-axis is the triglyceride structure (Cx:y means #carbon : degree of 

unsaturation) ................................................................................................................ 116 

Figure 5.3: Effect of OA(S): EHL(C1): EGBE(C2) mole ratio on the phase 

behaviors of canola/diesel/ethanol microemulsions at different temperature. 

Canola/diesel blends at equal volumetric ratio. Oil phase was 5 mL and ethanol was 

2 mL. See Table 5.1 for abbreviations. For system S:C1:C2 at 4:0.5:0.5 and 

1:0.5:0.5, gel formation was observed at temperature below Co5−  ............................. 118 

Figure 5.4: Effect of vegetable oil type on microemulsion phase behaviors of 

OA(S): EHL(C1): EGBE(C2) (mole ratio at 1:2:2)Vegetable oil/diesel blends at 

equal volumetric ratio. Oil phase was 5 mL and ethanol was 2 mL. Gel formation 

was observed for palm/diesel blend microemulsions at temperature below 6.5oC.. ....... 121 

Figure 5.5: Effect of ethanol on microemulsion viscosities of studied vegetable 

oil/diesel blends at 40oC. Surfactant and co-surfactant system is OA/EHL/EGBE at 

1:2:2 mole ratio.. ......................................................................................................... 125 

Figure 5.6: Effect of temperature on dynamic viscosity of microemulsion fuels. 

The oil phase in all formulations consists of 50 vol% vegetable oil and 50 vol% of 

diesel fuel; Fig 5.6a: Effect of vegetable oil type in the blends. Fig 5.6b: Effect of 

algae oil fraction in the blends. 50% algae means the oil phase consists of 50 vol% 

algae and 50 vol% diesel.............................................................................................. 127 

Figure 5.7: Flame images at frequency ratio of 7 for selected microemulsion fuels, 

diesel fuel and B100 canola biodiesel. Surfactant and co-surfactants system is 



xv 

 

OA(S) : EHL(C1) : EGBE(C2) (mole ratio at 1:2:2 and total concentration at 0.83 

M). CBD is 100% canola biodiesel. ............................................................................. 128 

Figure 5.8: Lower heating values of selected microemulsion fuels, B100 canola 

biodiesel (CBD) and diesel fuel. .................................................................................. 129 

Figure 5.9: Radiative heat fraction of selected microemulsion fuels, B100 canola 

biodiesel (CBD) and diesel fuel ................................................................................... 131 

Figure 5.10: Global pollutant emissions of selected microemulsion fuels, B100 

canola biodiesel and diesel fuel: (a) Emission index of CO; (b) Emission index of 

NOx.. ........................................................................................................................... 132 

 

  



xvi 

 

 ABSTRACT 

Microemulsions are thermodynamically stable dispersions of oil and water stabilized by 

a film of surfactants and/or co-surfactants. They have numerous applications in food, 

oilseed extraction, drug and cosmetic delivery, enhanced oil recovery, biofuels, etc. 

Microemulsion formation of vegetable oils at ambient conditions (temperature and 

pressure) and without the addition of co-oil and/or alcohols is challenging at best. 

Undesirable phases, such as macroemulsions, liquid crystals and sponge phases, are 

often encountered when formulating these microemulsions. The goal of this dissertation 

is to formulate vegetable oil microemulsions using a novel class of surfactants, called 

extended-surfactants combining with hydrophilic/hydrophobic linker system, and to 

explore their uses in oilseed extraction and bio-renewable fuel applications. Extended-

surfactants are a relatively new type of surfactant with propoxylate (PO) and/or 

ethoxylate (EO) groups inserted between the hydrophilic head and the hydrophobic alkyl 

chain of the surfactant molecule. This unique structure of extended-surfactants enables 

them to produce ultralow interfacial tension with vegetable oils at ambient condition. 

Environmentally friendly vegetable oil microemulsions were successfully formed 

without the addition of co-oil/alcohol at ambient temperature. These microemulsions are 

particularly useful in food, drug and cosmetic applications. Owing to the ultralow 

interfacial tension reduction between the vegetable oil and aqueous extended-surfactant 

solution at relatively low surfactant concentration, we have demonstrated that the 

aqueous extended-surfactant-based method is a viable alternative for vegetable oil 

extraction as in batch study. The oil quality produced from the aqueous extended-

surfactant based method was found to be comparable or even superior to that obtained 
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from hexane-based extraction. Next, we have designed and investigated a semi-

continuous pilot-scale study of the aqueous extended-surfactant-based method for 

vegetable oil extraction.  The total oil recovery after two extraction stages was 

approaching the result obtained from the batch study; however, the free oil recovery was 

lower. We have shown that the aqueous surfactant based method for oilseed extraction is 

superior to that of aqueous extraction method and enzyme-assisted extraction method. 

The last part of the dissertation demonstrated the use of reverse micellar microemulsions 

of vegetable oil/diesel blend as an alternative to diesel fuel. With appropriate surfactant 

and co-surfactant systems, we were able to formulate canola and algae/diesel blend 

microemulsion fuels with fuel properties such as viscosities, cloud points and pour 

points that satisfy the ASTM standards. The global CO pollutant and radiation emissions 

of all formulated microemulsion fuels were superior to DF and biodiesel. NOx 

emissions were lower in the blend containing no nitrate additives, but were higher than 

DF in the presence of nitrate additives. Thus, these results show that microemulsification 

is a viable technology for producing biofuels without chemical reactions and that fuel 

properties can be adjusted via formulation variables. 
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Chapter 1 Introduction 

 

The oilseed industry is rapidly growing with a 900% increase in trading of oilseed 

products and 1, 800% increase in global market for vegetable oil from 1964 to 2004 [1]. 

Owing to their bio-renewable and non-toxic properties, research interest in vegetable oil 

based microemulsions has increased significantly over the past twenty years [2,3,4]. 

Vegetable oil based microemulsions have numerous applications in food, oilseed 

extraction, pharmaceuticals, cosmetics, enhanced oil recovery, cleaning technology and 

biofuels, etc [5,6]. They can be used as an alternative to petroleum oil based or mineral 

oil based microemulsions. 

 By definition, microemulsions are thermodynamically stable, isotropic 

dispersions of oil and water, stabilized by a film of surfactant and/or co-additives [7]. At 

low to moderate surfactant concentration, three microemulsion types can be produced. As 

denoted by Winsor, Winsor Type I microemulsions are normal micelles in equilibrium 

with the excess oil phase, Winsor Type II microemulsions are reverse micelles in 

equilibrium with the excess water phase, and Winsor Type III microemulsions are a 

bicontinuous phase containing oil, water and surfactant in equilibrium with the excess 

water and excess oil phases [7]. The microemulsion Type I-III-II transition can be 

achieved by increasing the electrolyte concentration for ionic surfactants or increasing 

temperature for non-ionic surfactant. Increasing electrolyte concentration (for ionic 

surfactants) or temperature (for non-ionic surfactant) causes the surfactant solution to 

become more hydrophobic and thus segregate more towards the oil-water interface, 

thereby reducing the surfactant film curvature and interfacial tension. At net zero 
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curvature, a Winsor Type III system is formed [7]. A Winsor type IV microemulsion is 

an extension of a Type III system at higher surfactant concentrations, where the middle 

phase extends and becomes a single phase.  

Microemulsion formation of vegetable oils at ambient conditions (temperature 

and pressure) and without the addition of co-oil and/or alcohols is challenging at best. 

Undesirable phases, such as macroemulsions, liquid crystals and sponge phases, are often 

encountered when formulating these microemulsions [8,9,10]. These are due to the 

distinctive structure of the triglyceride which is the most abundant composition (> 95%) 

in vegetable oil [11]. Triglycerides are esters of glycerol with fatty acids which 

contributes to its complicated behavior [11]. The long and bulky alkyl chain lengths make 

triglycerides highly hydrophobic, while the ester region in the molecule causes high 

polarity; combined these lead to poor solubilization by conventional surfactants.  

The discovery of extended-surfactants by Minana-Perez et al. has significantly advanced 

our ability to form triglyceride microemulsions [12]. Extended-surfactants are a new type 

of surfactant with propoxylate (PO) and/or ethoxylate (EO) groups inserted between the 

hydrophilic head and the hydrophobic alkyl chain of the surfactant molecule. This unique 

structure of extended-surfactants enables them to produce ultralow interfacial tension 

(IFT < 0.01 mN/m) with vegetable oils at ambient condition [13,14]. These properties of 

extended-surfactants with vegetable oils have opened a new research area in vegetable oil 

based microemulsions and their applications. The goal of this dissertation is to formulate 

vegetable oil microemulsions without alcohol or co-oil addition, to apply this ultra low 

interfacial tension technology to extract oil from oilseeds and to formulate temperature 

insensitive microemulsion fuels. This dissertation also investigates the laboratory pilot 
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scale study of oilseed extraction using aqueous-surfactant-based method and the 

combustion properties of some microemulsion fuels.  

Chapter 2 explores the use of extended-surfactants and combined 

hydrophilic/hydrophobic linkers in forming alcohol/co-oil free vegetable oil 

microemulsions at ambient conditions. Linkers are amphiphiles that can enhance the 

interactions of surfactant-oil and surfactant-water at the oil-water interface. Linker 

concepts have been extensively studied in the literature [15,16,17,18]. The lipophilic 

linkers partition into the surfactant tail region whereas the hydrophilic linkers segregate 

within the surfactant head group region [16,17]. Linkers are used to enhance 

solubilization since they improve the interaction of the surfactant membrane in either the 

oil or water side, and to form microemulsions more economically, as they can replace a 

certain proportion of the main surfactant [16]. These non-toxic vegetable oil based 

microemulsions are particular attractive in pharmaceuticals, cosmetics, cleaning 

technology and food applications. 

Chapter 3 investigates the ability of the aqueous extended-surfactant solution to 

extract vegetable oil from oilseeds as an alternative to hexane method. A series of 

extended-surfactants were evaluated in this study. We are particularly interested in the 

lowest surfactant concentration capable of producing ultralow interfacial tension (IFT), 

which is known as the critical microemulsion concentration (CµC). Removal of oil at the 

CµC point due to IFT reduction is well known as the mobilization mechanism [19].  This 

work was motivated by increasing environmental and safety concerns related to hexane 

extraction method for oilseed extraction. The vegetable oil extraction industry has 

contributed the primary VOC emissions in the food industry [20]. The annual hexane loss 
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in the soybean oil extraction process alone in the US could be as high as 210 – 430 

million liters [20]. Worker exposure to hexane at 15 ppm/day for three months has been 

shown to cause peripheral nerve damage, and hexane is also a potential hazardous 

explosive material [21]. Research has shown that vegetable oil and protein qualities 

produced by aqueous based extraction method using hot water and/or in combination 

with enzymes are consistently superior to those produced by hexane based method [22]. 

The use of aqueous surfactant for vegetable oil extraction was hindered in the past due to 

the high interfacial tension value between the vegetable oil and conventional surfactants. 

Thanks to the ultralow interfacial tension of extended-surfactants with vegetable oils at 

ambient conditions, this approach is utilized for vegetable oils in Chapter 3.     

Having successfully demonstrated the effectiveness of aqueous extended-

surfactant solution in extracting vegetable oil from oilseeds with vegetable oil quality 

comparable or even superior to that obtained from hexane based method, the goal of 

Chapter 4 is to evaluate semi-continuous laboratory-based surfactant-assisted aqueous 

extraction process (SAEP) using laboratory-scale processing equipment similar to that 

used in industrial processes. The objectives of this work are (1) to study the effect of 

processing parameters on extraction efficiency and (2) to identify potential problems 

related to the scale-up system of the SAEP. The comparison of SAEP pilot scale results 

to other AEP and enzyme AEP are also discussed. 

Chapter 5 attempted to formulate reverse micelle microemulsions containing a 

vegetable oil/diesel blend with ethanol which can be used as an alternative fuel to diesel 

fuels. Due to increasing energy demands and a desire to reduce our dependence on 

petroleum fuels, research for viable alternative fuels has received significant attention. 
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The proposed U.S. renewable fuels initiative targets increasing domestic supply of 

alternative fuels to 36 billion gallons by 2022 [23]. Algae oil was studied among other 

vegetable oils in this work. Algae oil is favored over vegetable oils since it does not 

require landfill, grows much faster than oilseed crops, and does not have to compete with 

the agricultural industry [24, 25]. To date, there is no paper reported on the phase 

behavior study or combustion properties of algal-based microemulsion fuels. 

Microemulsions fuel phase behaviors, viscosities and combustion properties are 

presented in this chapter.  

Finally Chapter 6 summarizes the concluding remarks of this dissertation and 

discussions on potential impact of the findings from this work.  
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Chapter 2 Formation and Characterization of Vegetable Oil 

Microemulsions Using Extended-Surfactants and 

Linkers1 

  

ABSTRACT 

Microemulsion formation of triglyceride oils at ambient conditions (temperature and 

pressure) and without the addition of co-oil and/or alcohols is challenging at best. 

Undesirable phases, such as macroemulsions, liquid crystals and sponge phases, are often 

encountered when formulating triglyceride microemulsions. The purpose of this study is 

to investigate the use of extended-surfactants, lipophilic linkers, and hydrophilic linkers 

in enhancing triglyceride solubilization and interfacial tension reduction. We have 

studied two classes of extended-surfactants, linear alkyl-polypropoxylated-sulfates 

(LAPS) surfactants and linear alkly-polypropoxylated-ethoxylated-sulfates (LAPES) 

surfactants. Linkers evaluated were oleyl alcohol (lipophilic linker), sodium mono- and 

dimethyl naphthalene sulfonate (SMDNS), and polyglucoside (hydrophilic linkers). Oils 

studied include olive, peanut, soybean, canola and sunflower oils. The effect of 

electrolyte concentration on microemulsion phase behavior was studied. The 

microemulsion “fish” diagram was presented by plotting the total surfactant and linker 

                                                

1 This chapter or portions thereof has been published previously in Journal of Surfactants and Detergents 

under the title “Environmentally Friendly Vegetable Oil Microemulsions Using Extended-Surfactants and 

Linkers”, Journal of Surfactants and Detergents, 2009, 12, 91 – 99. This current version has been 

reformatted for this dissertation. 
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concentrations versus the electrolyte concentration. We were able to form Winsor Type I, 

II, III and IV microemulsions at ambient conditions and without co-oil or short and 

medium chain length alcohol addition. The Winsor Type III and Type IV triglyceride 

microemulsions are particularly useful in numerous applications such as cosmetics, 

vegetable oil extraction and soil remediation. 

Key words: microemulsions, triglyceride oil, extended-surfactant, hydrophilic linker, 

hydrophobic linker, vegetable oil, and ultralow interfacial tension 

 

2.1  INTRODUCTION 

Microemulsions are thermodynamically stable, isotropic solutions of water and oil 

stabilized by appropriate surfactant and/or linker molecules. Microemulsions exhibit 

many unique properties, such as being transparent and producing ultralow interfacial 

tension and ultra high solubilization. These properties make microemulsions desirable in 

numerous applications including cosmetics, drug delivery systems, cleaning technologies 

and soil remediation [1,2]. Figure 2.1 shows the microemulsion phase behavior in a “fish” 

diagram and the changes in curvature with surfactant concentration and the  tuning 

parameter. At low to moderate surfactant concentration, three microemulsion types can 

be produced. As denoted by Winsor, Winsor Type I microemulsions are normal micelles 

in equilibrium with the excess oil phase, Winsor Type II microemulsions are reverse 

micelles in equilibrium with the excess water phase, and Winsor Type III microemulsions 

are a bicontinuous phase containing oil, water and surfactant in equilibrium with the 

excess water and excess oil phases [3]. The microemulsion Type I-III-II transition can be 
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achieved by increasing the electrolyte concentration for ionic surfactants or increasing 

temperature for non-ionic surfactants (Figure 2.1). Increasing electrolyte concentration 

(for ionic surfactants) or temperature (for non-ionic surfactant) causes the surfactant 

solution to become more hydrophobic and thus segregate more towards the oil-water 

interface, thereby reducing the surfactant film curvature and interfacial tension. At net 

zero curvature, a Winsor Type III system is formed [3] A Winsor type IV microemulsion 

occurs when the surfactant concentration is increased in a Type III system, thereby 

increasing the volume of the middle phase until it becomes a single phase (Figure 2.1).  

 

Figure 2.1: Microemulsion phase behaviors presented by a “fish” diagram showing 

change in curvature with surfactant concentrations and tuning parameters.  
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Often triglyceride oils do not solubilize well into the middle phase 

microemulsion, and a “sponge” phase occurs instead, as demonstrated by several 

researchers over the past twenty years [4,5,6]. Formation of triglyceride/vegetable oil 

microemulsions at ambient conditions and without the addition of co-oils/alcohols is 

challenging at best. Vegetable oils are used not only for cooking purposes but are also 

receiving broader interest because of the toxicological concerns of using petroleum oils; 

however, they are considerably more difficult to solubilize in microemulsions [7]. Many 

attempts have been made at forming vegetable oil microemulsions at ambient condition 

and without addition of co-oil or alcohols but without success [8,9,10]. Co-oils such as 

isopropyl myristate can easily form microemulsions with conventional surfactants; 

therefore, they are often mixed with triglyceride oils to enhance the microemulsion 

formation [11]. The reason that vegetable oil microemulsions are elusive appears to be 

due to the unique structure of triglyceride molecules. Triglycerides are esters of fatty acid 

with glycerol which contributes to its complicated behavior. The long and bulky alkyl 

chain lengths make triglycerides highly hydrophobic, while the ester region in the 

molecule causes high polarity; combined these lead to poor solubilization by surfactant. 

Therefore, conventional surfactants are not able to produce low interfacial tension (<0.1 

mN/m) with vegetable oils at ambient conditions without alcohol or co-oil addition. In 

general, microemulsion formation with such systems results in liquid crystal, gel 

formation or sponge phase formation at ambient conditions. The discovery of extended-

surfactants by Minana-Perez et al. has significantly advanced our ability to form 

triglyceride microemulsions [12]. Minana-Perez et al. group reported Winsor Type III 

microemulsions with soya oil/soybean oil at 35 Celsius degrees with optimum 
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solubilization parameter (SP*) in the range of 7-15 ml g-1 using LAPES surfactants (see 

below) [12]. However, phase diagrams of Winsor I-III-II-IV systems were not presented 

[10,11] and the triglyceride microemulsion was reported  at 35o Celsius degrees rather 

than  ambient temperature [12]. 

In the present study, we will explore the use of extended-surfactants to form Type 

I-IV triglyceride microemulsions at ambient conditions without short/medium chain 

alcohol or co-oil addition. We will investigate the performance of two classes of extended 

surfactants (linear alkyl-polypropoxylated-ethoxylated sulfate, LAPES, and linear alkyl-

polypropoxylated sulfate, LAPS). Combined linker and extended-surfactant systems are 

proposed in this study to form microemulsions with vegetable oils. We have also 

investigated the detailed phase behavior of microemulsions consisting of extended-

surfactants, linkers, vegetable oils (triolein, canola, olive, peanut, and soybean), water 

and electrolytes. Different from conventional surfactants, the extended-surfactant 

molecule has an intermediate polar group (i.e.  propoxylated group) inserted between the 

head and the tail of the surfactant molecule. Detailed discussion of the structure, 

properties and discussion of extended-surfactants can be found in the literature [13 - 16]. 

Since extended-surfactants studied in this work can not form microemulsions with 

vegetable oils alone at ambient conditions, we introduce the use of both lipophilic and 

hydrophilic linkers. 

 Linkers are amphiphiles that can enhance the interactions of surfactant-oil and 

surfactant-water at the oil-water interface. Linker concepts have been extensively studied 

in the literature [17 - 20]. The lipophilic linkers partition into the surfactant tail region 

whereas the hydrophilic linkers segregate within the surfactant head group region. 
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Linkers are used to enhance solubilization since they improve the interaction of the 

surfactant membrane in either the oil or water side, and to form microemulsions more 

economically, as they can replace a certain proportion of the main surfactant [17]. 

Linkers also significantly impact coalescence rate of macroemulsions as they equilibrate 

to microemulsions [21]. 

Our goal is to form alcohol/co-oil free triglyceride microemulsions at ambient 

conditions. When we say alcohol free, we mean the absence of short or medium chain 

length alcohols since these are volatile and thus are of environmental/human exposure 

concern. By better understanding the triglyceride microemulsion system and finding 

appropriate surfactant/linker structures that are compatible with triglyceride molecules, 

we can produce more environmentally friendly triglyceride formulations (i.e., no 

short/medium chain length alcohol or addition of a second oil to help form 

microemulsions at ambient temperature).  

2.2 EXPERIMENTAL PROCEDURES 

2.2.1 Materials 

Two classes of anionic extended-surfactants were studied in this work, including 

linear alkyl-propoxylated-ethoxylated-sulfate (LAPES) surfactants and linear alkyl-

propoxylated-sulfate (LAPS) surfactants. The number of PO groups were varied among 

each class of surfactant. There is no EO group for LAPS surfactants and the number of 

EO groups was fixed at 2 for LAPES surfactants. The extended-surfactants were kindly 

provided by Huntsman Chemical Co. (Houston, TX) and used as received. The extended-

surfactants studied and their properties are summarized in Table 2.1.  
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Table 2.1 Properties of extended-surfactants  

Surfactant Series Name Active% Approx. 

HLB
a
 

LAPS 

C16-xPO-SO4Na 

C16-2.9PO 

C16-4.5PO 

C16-5.5PO 

C16-8.2PO 

C16-10.7PO 

22.2 

23.2 

24.7 

24.1 

24.2 

37.7 

37.4 

37.3 

36.9 

36.5 

LAPES 

C10 or 12-xPO-2EO-SO4Na 

C10-10PO-2EO 

C10-14PO-2EO 

C10-18PO-2EO 

C12-10PO-2EO 

C12-12PO-2EO 

C12-14PO-2EO 

17.4 

22.4 

22.5 

24.1 

24.2 

24.1 

40.1 

39.5 

38.9 

39.2 

38.7 

38.6 

      aEstimated from Equation(2.1) 

      aGroup contribution number: Sulfate = 38.7; -CH3, -CH2- = 0.475; EO = 0.33; PO =   

0.15 

 

The hydrophilic-lipophilic balance (HLB) of the surfactants were estimated using 

Equation (2.1) [22, 23]:  

   
( ) ( )

[ ] [ ])(#)(#)(#)(7

##7

3 POCHEOSulfateHLB

cgroupshydrophobicgroupshydrophiliHLB

+−++=

−+= ∑∑
          (Equation 2.1)                 

It is important to note that the HLB equation is not the best approach to the 

hydrophobic-lipophilic nature of the surfactants. A better approach is to use the 

hydrophilic-lipophilic deviation (HLD) [24, 25]. However, due to the simplicity of the 
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HLB equation it is widely used by practitioners and is thus used for comparison purposes 

(and to illustrate shortcomings of the HLB approach). This is further illustrated in recent 

work by our group [25]. 

Sodium dioctyl sulfosuccinate (Aerosol-OT, +99% anhydrous) was purchased 

from Fisher Scientific and used as received. Triolein 65% practical grade, peanut, 

soybean and olive oils were purchased from Sigma Chemical Co. (St Louis, MO). 

Canola, corn and sunflower oils were purchased from the local market. Typical 

triglyceride compositions of several of these oils are summarized in Table 2.2. Sodium 

chloride +99% purity was purchased from Fluka Chemical Corp. (Milwaukee, WI). 

Polyglucoside (Glucopon N425 50 active%) was kindly provided by Cognis – Care 

Chemicals, sodium mono- and dimethyl naphthalene sulfonate (SMDNS) was received 

from CKWitco (Houston, TX). Oleyl-alchohol or fatty alcohol at 85% active was 

purchased from Aldrich (St Louis, MO).  Pentane, hexane, n-heptane, n-decane, n-

dodecane, n-hexadecane (+99% purity) were purchased from Sigma-Aldrich (St Louis, 

MO).   
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Table 2.2: Main fatty acid compositions (%) of some oils 

Component C16:0 

(P, Palmitic) 

C18:0  

(S, Stearic) 

C18:1  

(O, Oleic) 

C18:2  

(L, Linoleic) 

C18:3  

(Ln, Linolenic) 

Triolein
a
 

Peanut
b
 

Olive
b
 

Canola
b
 

3.66 

13 

10 

4 

N/A 

3 

2 

2 

65 

41 

78 

56 

N/A 

38 

7 

26 

7.36 

N/A 

1 

10 
aTriolein, 65% practical grade, data from manufacturer 

bData from reference [31] 

 

2.2.2 Methods 

Dynamic interfacial tension experiments were performed to evaluate the 

interaction of extended-surfactant systems with triolein and vegetable oils. These 

experiments were carried out using a spinning drop tensiometer purchased from the 

University of Texas (Model 500). All surfactant solutions were diluted to 0.1 wt% for 

salinity scans. Each sample run was conducted in triplicate and recorded every five 

minutes for a twenty minute time frame.   

Phase behavior experiments were carried out by scanning a single parameter of 

the formulation (for example, by varying salinity, surfactant concentration, etc) [3]. Five 

ml of surfactant solution and five ml of oil were added into a 15 ml glass vial tube. The 

solutions were gently shaken three times a day for three days and left for two weeks to 

ensure equilibrium. At a constant surfactant and linker concentration, the optimum 

formulation is obtained at the optimum salinity concentration, as denoted by S* 

(expressed in wt%). Recalling from the Winsor R ratio definition, the optimum 
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formulations is obtained when R = 1, or surfactant interactions on both the water side and 

the oil side are equal to each other [22].  

 

2.3 RESULTS AND DISCUSSIONS 

2.3.1 Ultralow interfacial tension values (IFTs) with triglyceride oils 

Figure 2.2 shows dynamic IFT values of Aerosol-OT(AOT) and C12-14PO-2EO at 

optimum salinity (S*) with canola oil, and C12-14PO-2EO at  S* with triolein, corn, and 

peanut oils. The optimum salinity (S*) produces the minimum IFT for a given surfactant 

system. From Figure 2.2, it can be seen that C12-14PO-2EO sulfate produced IFT values 

two to three orders of magnitude lower than AOT within 10-15 minutes. It is important to 

note that these results were obtained at ambient condition and with no addition of co-oil 

or alcohol. To our knowledge, this is the first time such ultralow IFT values have been 

reported for these vegetable oils at ambient conditions without addition of alcohol or co-

oil. Ultralow IFT is defined as the IFT values << 0.1 mN/m. It is very encouraging to see 

that the extended-surfactant was able to reach equilibrium within a fifteen minute time 

frame. This result is very important for industrial application as IFT reduction occurs in a 

reasonable time frame for system scale up.  
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Figure 2.2: Dynamic IFT versus time of C12-14PO-2EOsulfate and Aerosol-OT with 

various vegetable oils at optimum sodium chloride concentrations. Temperature at 27oC. 

 

Figure 2.3 shows triolein dynamic IFT values using the two classes of extended-

surfactants listed in Table 2.1 (LAPS and LAPES). As can be seen from Figure 2.3, all 

three extended-surfactants produced ultralow IFT values (<0.1 mN/m); recall that the 

conventional surfactant AOT was unable to do so (>1 mN/m as seen in Figure 2.2). The 

LAPES surfactants produced IFT values as low as 10-3 mN/m. Comparing the two classes 

of surfactants, both LAPES surfactants (C10 and C12) show lower IFT values than LAPS 

surfactants.  It is important to note that, although ultra low IFT values were observed, 

middle phase microemulsion systems (or Winsor Type III) were not formed using 

extended-surfactants alone with triolein and vegetable oils; rather, sponge phases were 

observed as has been observed by other researchers [9, 26].  
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Figure 2.3: Triolein dynamic IFT values using three groups of studied extended-

surfactants (temperature at 27oC). Surfactant solutions were at 0.1wt%. LAPS: linear 

alkyl-propoxylated-sulfate; LAPES C10 and C12: linear-alkyl-propoxylated-ethoxylated-

sulfate with alkyl groups of 10 and of 12, respectively. 

 

For comparison purposes, select studies were conducted with hexadecane. 

Extended-surfactants were able to form a middle phase microemulsion (Winsor Type III) 

with hexadecane (EACN = 16), while extended-surfactants were unable to form a middle 

phase microemulsion with vegetable oils with similar EACN values (EACN 16-19 shown 

in Figure 2.4). 
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Figure 2.4: lnS* versus EACN of studied oils. Temperature at 25oC. 

 

 EACN is defined as the equivalent alkane carbon number, a measurement of the 

hydrophobicity of the oil [27]. Higher EACN values indicate more hydrophobic oils. 

Winsor Type I and Type II microemulsions were formed with  triolein and vegetable oils 

with white milky excess oil or water phases, respectively, with negligible solubilization at 

even high surfactant concentration (i.e. 8 wt%). Even at higher temperature, such as 

35oC, no middle phase microemulsion was observed. The low interfacial tension yet 

failure to form middle phase microemulsions using extended-surfactant alone in this 

work is likely due to the poor incorporation of the triglyceride oil into the microemulsion 
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phase (poor solubilization). Poor solubilization is desirable in certain applications such as 

vegetable oil extraction, where high solubilization would require difficult oil-surfactant 

separation and surfactant recovery processes. Nonetheless, Minana et al. [12] achieved 

Type III microemulsion formation of soya oil with extended-surfactants, indicating that 

Type III systems are possible under the right conditions (right surfactant/oil 

combination).  

 

2.3.2 Determination of equivalent alkane carbon number of vegetable oils 

The equivalent alkane carbon number (EACN), which represents the oil’s 

hydrophobicity, is an important parameter in producing an optimal formulation. EACN 

values of the oils can be found by using the semi-empirical equation proposed by Salager 

et al.[28]: 

     TaAfEACNkS T ∆+−+= σ)()(*)ln(             (Equation 2.2)             

where S* is the optimum electrolyte concentration; k is a constant reflective of the head 

group, normally between 0.1 to 0.17; EACN is the equivalent alkane carbon number for 

unsaturated hydrocarbons (for saturated alkanes, by definition the value equals the 

number of carbons); σ is a function of the surfactant type; aΤ is a constant at the reference 

temperature; f(A) is a function of short/medium chain alcohol; and ∆T is the temperature 

difference between the studied temperature and a reference temperature [28]. Since in our 

study, we did not use alcohol and we kept the temperature constant, Equation (2.2) can be 

simplified to: 
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    σ−= )(*)ln( EACNkS               (Equation 2.3) 

  

It is important to note that the oleyl alcohol is considered to be a lipophilic linker 

and does not partition into the interface. Long chain alcohols partition into the oil phase 

and change the EACN of the oil. In our system, we did not use alcohol; therefore the f(A) 

term in Equation (2.2) can be neglected. Experimental procedures for determining the 

EACN values for oils have been described in Acosta et al. where they determined the 

EACN values of isopropyl myristate and squalene [18]. In our research, we conducted a 

sodium chloride scan at a fixed 0.1 wt% C12-12PO-2EO-sulfate surfactant concentration 

for different oils. The IFT values were recorded after equilibrium was reached, i.e. until 

no change in IFT value was observed (up to 30 minutes). Alkane oils with known EACN 

values, including pentane (5), hexane (6), n-heptane (7), n-decane (10), n-dodecane (12) 

and n-hexadecane (16), were used as reference oils. The natural logarithm of S* values 

were plotted against EACN values of the reference oils to establish the correlation; from 

Equation (3), the correlation should produce a linear relationship. EACN values of 

triolein and vegetable oils can be easily found by measuring their S* and establishing 

their EACN values using the correlation curve established for oils with known EACN 

values.  

Figure 2.4 shows the resulting lnS* versus EACN values of reference oils and 

interpreted EACN values of triolein (65% practical grade) and vegetable oils on the same 

plot. A good correlation was obtained for the fit to the alkane data (R2 value at 0.99). 

Using C12-12PO-2EO extended-surfactant, the fitting equation for reference oils is: 
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031.0)(104.0*)ln( += EACNS                       (Equation 2.4) 

 The k value of 0.104 is within the range reported in the literature (as mentioned 

above, 0.1 to 0.17). This k value is also similar to that reported by Minana et al.’s [16] 

group for 12PO extended-surfactants. From Equation (4) the surfactant constant (σ) for 

C12-12PO-2EO extended-surfactant was found to be at -0.031. Based on their S* with 

C12-12PO-2EO surfactant and using the correlation in Figure 2.4 and Equation (2.4), the 

EACN values of triolein 65% practical grade and vegetable oils are shown in Table 2.3; 

given that these are more than 40 to 50 carbons in these molecules, these EACN values 

demonstrate that the ester groups in the triglyceride oils greatly increase their 

hydrophilicity (reduce EACN). 

As can be seen from Table 2.3, vegetable oils studied in this work are generally 

very hydrophobic with EACN values ranging from 17 to 19. Surprisingly, the triolein 

(65%) shows a negative EACN value of -0.3. From Table 2.2, we observe that triolein 

(C18:1) is the major triglyceride in the other oils studied, and we thus expected triolein to 

have a similar EACN to these other oils. However, since we did not use pure triolein, we 

suspect that impurities in the studied triolein (such as free fatty acid compositions) might 

contribute to its hydrophilicity due to the segregation of components in the oil [30].  
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Table 2.3:  Measured EACN values of oils: 

Oil S*, wt% EACN 

Triolein (65% grade) 

Canola 

Olive 

Peanut 

Corn 

Soybean 

1 

6 

6.5 

7.5 

7.5 

6.5 

-0.3 

16.9 

17.7 

19.0 

19.0 

17.7 

 

2.3.3 Microemulsification of Triolein 65% practical grade 

 Since the studied triolein (65% practical grade) has a very low EACN, a 

hydrophilic linker was used to improve interaction of the surfactant system with the water 

side of the interface. A hydrophilic linker sodium mono- and dimethyl naphthalene 

sulfonate (SMDNS) scan and salinity scan was performed by fixing the surfactant 

concentration at 3 wt%; this higher surfactant concentration made it easier to visually 

observe middle phase formation. The optimum surfactant for a given oil should have the 

lowest salt and hydrophilic linker concentration. When adding the hydrophilic linker up 

to 1.2 wt%, a normal microemulsion transition behavior from Type I-III-II was observed. 

At lower linker concentrations, a microemulsion phase was not observed.  

Figure 2.5 represents the microemulsion phase diagram of triolein using C10-

18PO-2EO, SMDNS as a hydrophilic linker at ratio (3 : 1.2) and sodium chloride. In 

addition, all the LAPES extended-surfactants studied in this work were able to form 

middle phase microemulsions at the ratio of surfactant to linker of 3 : 1.2 by weight. 
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Among LAPES extended-surfactants, the lowest triolein S* value was observed with C10-

18PO-2EO surfactant. The “fish” diagram in Figure 2.5 slants to the right with increasing 

total surfactant and linker concentrations, suggesting a stronger interaction with the water 

at higher concentration and thus a higher S* required to balance the surfactant at the 

interface [31]. 

 

Figure 2.5: Microemulsion “fish” phase diagram of C10-18PO-2EO-NaSO4, a 

hydrophilic linker sodium mono- and dimethyl naphthalene sulfonate (SMNDS). C10-

18PO-2EO-NaSO4/ SMDNS ratio at 3:1.2 by wt% and sodium chloride with triolein 65% 

practical grade. Temperature at 27oC. 
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2.3.4 Microemulsification of vegetable oils 

As discussed above, vegetable oils are mixture of triglycerides, free fatty acids 

and other components, with triglycerides making up the greatest fraction. Since 

triglycerides are esters of fatty acids and a triglycol, many combinations are possible (i.e 

OOO, LnLnO and POO; see Table 2.4 below for abbreviations) resulting in a mixture of 

very complicated and different fractions of individual triglycerides.  

Table 2.4: Some common triglycerides in vegetable oils and their abbreviations  

Triglyceride Abbreviation 

PLL 

POL 

POO 

POS 

LnLnLn 

LnLnL 

LLO 

LLL 

OOO 

SOO 

Palmitoyl-dilinoleoyl-glycerol 

Palmitoyl-oleoyl-linoleoyl-glycerol 

Palmitoyl-dioleoyl-glycerol 

Palmitoyl-oleoyl-stearoyl-glycerol 

Trilinolenin 

Dilinolenonyl-linoleoyl-glycerol 

Dilinoleoyl-oleoyl-glycerol 

Trilinolein 

Triolein 

Stearoyl-dioleoyl-glyecerol 

 

An ideal surfactant formulation would be one that can form microemulsions with 

a range of vegetable oils regardless of the different fraction of triglycerides in vegetable 

oils.  As expected, when applying the C10-18PO-2EO/SMDNS system that formed a 
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middle phase with the low EACN triolein (-0.3) to the vegetable oils with much higher 

EACN values, no microemulsion phase was formed with the vegetable oils. The EACN 

values of vegetable oils range from 16 – 19 (see Table 2.3) and are much higher than the 

triolein studied here; therefore, the formulation optimized for triolein is not compatible 

with vegetable oils. In addition, when mixing this formulation with vegetable oils, a 

milky viscous white phase was formed in the oil phase which indicates weak interactions 

and poor solubilization in the oil phase [31].  

To balance the system for the higher EACN vegetable oils, a long chain alcohol 

was added as a lipophilic linker [19, 20]. In this study, we used oleyl alcohol as the 

lipophilic linker. A phase study of vegetable oils with extended-surfactants and lipophilic 

linker was performed, using procedures similar to that used with the hydrophilic linker 

mentioned above. The phase study using surfactant and lipophilic linker alone showed no 

microemulsion formation. Instead, white, milky and multiple-phases were observed at 

any sodium chloride concentration. This is likely due to the fact that the surfactant film at 

the water-vegetable oil interface had difficulty in penetrating the large triglyceride 

molecules. This suggests that both lipophilic and hydrophilic linkers may be needed to 

overcome the poor solubilization [31]. Systems of C10-18PO-2EO and SMDNS at ratio 3 

: 1.2 was fixed at 4.2 wt% total concentration and oleyl alcohol and sodium chloride were 

scanned for peanut oil. A normal microemulsion Type I-III-II transition was observed 

when the oleyl alcohol (lipophilic linker) concentration reached 2.5 wt%.  However, the 

sodium chloride concentration to obtain the middle phase microemulsion for this system 

was very high at 15 wt%, which would be impractical in many applications. 
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In order to reduce the salinity level, we selected a hydrophilic linker which is 

more hydrophobic than SMDNS. Glucopon, which is a mixture of polyglucosides, was 

used as a replacement for SMDNS. By using glucopon, S* reduced from 15 wt% to 7.5 

wt% at 6.7 wt% total surfactant and linker concentration. 

 

 

Figure 2.6: Microemulsion “fish” phase diagram of C10-18PO-2EO-NaSO4/Oleyl 

alcohol/Glucopon/NaCl at ratio of 3/2.5/1.2 by weight and sodium chloride with olive, 

peanut and canola oils. Temperature at 27oC. 

 



30 

 

In order to reduce the salinity level, we selected a hydrophilic linker which is 

more hydrophobic than SMDNS. Glucopon, which is a mixture of polyglucosides, was 

used as a replacement for SMDNS. By using glucopon, S* reduced from 15 wt% to 7.5 

wt% at 6.7 wt% total surfactant and linker concentration. Figure 2.6 illustrates the “fish” 

diagrams of olive oil, peanut oil and canola oils with this surfactant system. Similar 

results were observed with other vegetable oils including corn, sunflower, soybean and 

cottonseed oils (data not shown). At high total surfactant and linker concentration (more 

than 3 wt%) the formulation reached equilibrium within four hours. At lower 

concentration (less than 1 wt%), the system required two weeks to reach equilibrium.  A 

Winsor type IV microemulsion was also observed with all studied vegetable oils at total 

surfactant and linker concentrations of 16.7 wt% at low sodium chloride concentration (4 

– 5 wt%) and with solubilization parameters ranging from 6 – 10 ml/g. The 

microemulsion with canola oil exhibits the lowest solubilization parameter at 6 ml/g, 

while peanut oil showed the highest solubilization capacity at 10 ml/g. From the fatty 

acid compositions in Table 2.2, canola oil has the highest fraction of the unsaturated fatty 

acid, up to 92%, whereas peanut oil has the lowest of 86%. Higher fraction of triglyceride 

in the oils might contribute to the lower solubilization capacity.  This also might be the 

explanation for the larger fish “body” of peanut oil microemulsion. These results are very 

interesting as, to our knowledge, this is the first report of Winsor Type I – IV 

microemulsion formation with vegetable oils at ambient conditions and without the 

addition of co-oils and/ or low molecular weight alcohols.  
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Figure 2.7: Microemulsion phase behavior of C16-10.7PO-Sulfate (LAPS)/ Oleyl  

alcohol/ Glucopon/ NaCl and C10-18PO-2EO-Sulfate (LAPES)/ Oleyl alcohol/ Glucopon/ 

NaCl with peanut oil. Temperature at 27oC. 

 

Figure 2.7 shows the fish diagram with peanut oil, using the same linker systems 

at the same ratio, but using two classes of extended-surfactants, C10-18PO-2EO (LAPES) 

(as in Figure 2.6) and C16-10.7PO (LAPS). In Figure 2.7, the fish “body” of C10-18PO-

2EO sulfate system slants to the left with increasing total surfactant and linker 

concentrations. In contrast, the fish body of C16-10.7PO sulfate slants to the right with 

increasing total concentrations. Recall that in Figure 2.3, the LAPS extended-surfactant 
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shows higher IFT values than the LAPES surfactants. Similarly, the formulation using 

C16-10.7PO sulfate (LAPS) shows much poorer solubilization capacity (4ml/g) than C10-

18PO-2EO sulfate (LAPES) (10ml/g) with peanut oil. This is interesting given the longer 

alkyl chain of the C16-10.7PO sulfate, and suggests that the 18PO-2EO sulfate 

combination more than offsets the shorter C10 alkyl group of the LAPES surfactant. 

HLB values of C10-18PO-2EO sulfate and C16-10.7PO sulfate are 38.5 and 36.5, 

respectively (see Table 2.1). Such small HLB difference does not predict  the difference 

in the phase behavior reported above. This demonstrates the inadequacy of the HLB 

method to describe the behavior of extended-surfactants. Rather, the difference might be 

due to the behavior of the extended-surfactants at the oil – water interface in a way that is 

not understood.  A detailed investigation on the interaction of triglyceride molecules with 

extended-surfactants and the use of the HLD approach rather than HLB is the subject of 

ongoing research by our group [25]. From this work, it can be concluded that for different 

applications, appropriate extended-surfactants should be used. For formulations requiring 

formation of a Winsor Type IV microemulsion, like many cleaning products, the C10-

18PO-2EO sulfate system should be used since it exhibits low optimal salinity, S*, at 

high concentration, and vice versa. 

 

2.4 CONCLUSIONS 

We have demonstrated the use of modified linker and extended-surfactant systems 

that can form microemulsions with vegetable oils. We were able to form both Winsor 

Type III and Type IV microemulsions at ambient condition without the addition of co-oil 



33 

 

and/or alcohols and at relatively low electrolyte concentrations. Our proposed 

formulations can form environmentally benign microemulsions with a wide range of oils, 

regardless of the triglyceride compositions, and can obtain high solubilization parameters, 

up to 10 ml/g.  
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Chapter 3 Aqueous Extended-Surfactant Based Method for 

Vegetable Oil Extraction: Proof of Concept1 

 

ABSTRACT 

The use of hexane to extract vegetable oil from oilseeds is of growing concern due to 

hexane’s environmental impact and because of worker exposure concerns. The goal of 

our work is to demonstrate that the aqueous extended-surfactant-based method is a viable 

alternative for vegetable oil extraction. In our method, ground oilseeds were dispersed in 

the aqueous surfactant solution, allowing the oil to be liberated from the seeds as a 

separate phase from the aqueous phase. The impact of pH, shaking intensity, shaking 

time and seed to liquid ratio on oil yield are presented. Extended-surfactants are a new 

type of surfactant with propoxylate(PO) and/or ethoxylate(EO) groups inserted between 

the hydrophilic head and the hydrophobic alkyl chain of the surfactant molecule. This 

unique structure of extended-surfactants enables them to produce ultralow interfacial 

tension with vegetable oils. We have found that at low aqueous concentrations (less than 

0.3 wt%), extended-surfactant solutions are able to produce ultralow interfacial tension 

between aqueous extraction  and vegetable oil phases. At optimum condition (seed to 

liquid ratio of 1 to 5, 30 minute extraction at 150 shakes/min and 30 minute 

                                                

1 This chapter or portions thereof has been published previously in Journal of American Oils and Chemists’ 

Society under the title “Aqueous Extended-Surfactant Based Method for Vegetable Oil Extraction: Proof of 

Concept”, Journal of American Oils and Chemists’ Society, 2010, 87, 1211 – 1220. This current version 

has been reformatted for this dissertation. 
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centrifugation at 2170×g) we achieved 93 – 95% extraction efficiency for peanut and 

canola oils at 25oC. The oil quality produced from the aqueous extended-surfactant based 

method was found to be comparable or even superior to that obtained from hexane-based 

extraction, further demonstrating the viability of aqueous extended-surfactant based 

extraction.  

Key words: vegetable oil, oilseed extraction, ultralow interfacial tensions, extended-

surfactants 

 

3.1 INTRODUCTION 

Vegetable oils are typically produced from oilseeds by either hexane extraction or 

a combination of mechanical processing and hexane extraction. However, worker 

exposure to hexane at 15 ppm/day for three months has been shown to cause peripheral 

nerve damage, and hexane is also a potential hazardous explosive material [1]. Therefore, 

hexane-based extraction requires airtight, leak-proof equipment and highly-skilled labor 

in hexane extraction plants.  In 2001, the U.S. Environmental Protection Agency (EPA) 

established regulations on hexane emission due to growing environmental concerns. In 

addition, oils produced by hexane extraction are high in free fatty acid, wax and 

unsaponifiable matter, and might also suffer from dark greenish-brown color [2]. Further 

there is a growing demand for vegetable oil to be used in biodiesel production. 

In view of the disadvantages of existing extraction processes, a number of 

alternative technologies have been evaluated for oilseed extraction, including water-based 

(aqueous) extraction or use of other volatile organic solvents [3,4,5,6,7]. The aqueous 
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extraction process (AEP) was studied in the 1950s because it was believed that this 

process was cheaper and safer than hexane. AEP for oilseed extraction eliminates the 

potential of explosion and emissions of volatile organic solvents when using hexane.  

Simultaneous recovery of oil and protein by AEP is possible with lower equipment costs 

and energy consumption than hexane extraction [8,9,10].  AEP is based on the water 

soluble components of oilseeds dissolving in the water, thereby releasing the oil which 

was previously bound to the cell structure [11]. AEP has consistently been reported to 

produce vegetable oil superior in quality to that produced by hexane-based processes 

[11].  However, AEP with water alone has low oil extraction efficiency (less than 70%) 

because water cannot effectively release the oil which is trapped in the plant cell structure 

by high capillary force. In addition, AEP is operated at relatively high temperatures (50-

60oC) and high water to solid ratio (20:1 to 30:1), both of which are undesirable in 

application [12].  

Enzyme-assisted aqueous extraction has been introduced in an attempt to improve 

the oil yield with the AEP process. The enzyme-assisted aqueous extraction process uses 

an enzyme system to disrupt the cell walls, thereby improving the oil release by 

mechanical means alone [12]. Greater than 90% oil extraction efficiency has been 

achieved for various vegetable oils (e.g. canola, peanut and coconut oils) using this 

approach [6]. The structure of the plant cell wall, made of various strata, is very complex. 

The strata are composed of many compounds such as cellulose, hemicelluloses and lipids. 

Since each type of enzyme can only degrade a certain type of compound, an effective 

extraction system requires a combination of at least three types of enzymes [13]. The oil 

extraction efficiency of different oilseed types is greatly dependent on the combination of 
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enzymes [13,15]. In addition, since enzyme activity is pH and/or temperature dependent, 

optimization of reaction conditions for multiple enzymes can be challenging when 

evaluating an effective enzyme system [15]. These disadvantages make the enzyme-

assisted aqueous extraction complicated and thus to date there is no versatile enzyme 

system that can be applied for all types of oilseeds as is true with hexane [10,12,14]. 

Another drawback of this method is the enzyme cost [15,16]. Similar to AEP process, 

enzyme-assisted aqueous extraction process produce vegetable oil with superior quality 

to hexane. However, this method also requires long incubation time (up to 18 hours) and 

high temperatures (30-55oC), both of which are undesirable in application [6,10,17].  

 In this research study, we investigated the use of surfactant-microemulsion-based 

extraction of vegetable oil extraction from oilseeds. The goal of this work is to develop 

surfactant-based formulations with simplicity of operation, acceptable energy 

consumption and desirable extraction performance. Our group is unique in investigating 

the use of aqueous-surfactant-based method for oil extraction from oilseeds [18]. Past 

research has evaluated the efficiency of water-in-oil (W/O) microemulsions (surfactant 

solubilized in an oil phase, in this case) in extracting vegetable oils [19,20,21]. 

Microemulsions are thermodynamically stable dispersion of water and oil, stabilized by a 

film of surfactant where the microemulsion droplet size is generally smaller than 100 nm 

[22]. In W/O microemulsions (also referred to as Winsor II microemulsion systems), the 

reverse micelles (head groups in the core and the hydrophobic tails outward) solubilize 

water while they are dispersed in the continuous oil phase [22]. In the studies of W/O 

microemulsion-based extraction of sodium dioctyl sulfosuccinate (AOT) /isooctane/water 

or cetyltrimethylammonium bromide (CTAB)/isooctane/n-butanol/water, the W/O 
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microemulsions have the same role as hexane solvent where the vegetable oil in the 

oilseed is solubilized. This method requires high surfactant concentrations (2 - 4 wt%), an 

organic solvent (isooctane) and relatively complicated separation processes to isolate the 

oil from the W/O microemulsions, both of which are undesirable and not necessary for 

our system [19,20]. An aqueous-surfactant-based method is a different approach. 

 In the past, the use of aqueous surfactant-based processes for vegetable oil 

extraction was impractical since conventional surfactants proved unable to produce 

ultralow interfacial tension with vegetable oils, a critical factor in efficient vegetable oil 

extraction by this method. By definition, interfacial tension (IFT) is the surface tension 

caused by intermolecular interactions at the surface separating two immiscible fluids 

[22]. We define ultralow IFT as IFT values <<0.1 mN/m (preferably < 0.01 mN/m). In 

the microscopic study of aqueous oil extraction mechanisms, it was found that when 

employing water alone, the unextracted oil was trapped in an insoluble matrix of 

denatured proteins. The coalesced oil size was too large to diffuse through the disrupted 

cellular matrix [23]. The oil release mechanisms when using surfactant is to disrupt the 

oil/water interface by lowering the interfacial tension between the surfactant solution and 

the oil, thereby facilitating the oil droplet breakup and making it possible for the oil to 

diffuse through and be librated from the disrupted cell [23]. Thus, a system that produces 

ultralow IFT between the extracting solution, an aqueous-based surfactant system in our 

case, and the vegetable oil in the seeds will release the oil trapped in the disrupted cells. 

The high IFT that conventional surfactants produce between water and vegetable oils is 

due to the hydrophobicity of triglycerides, which are the main component in vegetable 

oils. Vegetable oils are hydrophobic oils with the equivalent alkane carbon number 



44 

 

(EACN) ranging from 16 – 20 [24]. In order to achieve ultralow IFT, the hydropobicity-

hydrophilicity between surfactant solution and the oil must be balanced [25]. The 

surfactant solution can be made more hydrophobic by increasing the alkyl chain of the 

surfactant molecule [25]. However, increasing the alkyl chain too much will decrease the 

water solubility of the surfactant. Eventually, the surfactant phase will separate from 

water. Therefore, aqueous conventional surfactant solution could not achieve ultralow 

IFT with vegetable oils because the hydrophobic-hydrophilic balance was not achieved 

within the limiting solubility of the surfactants. A recently developed new class of 

surfactants known as extended-surfactants is able to achieve ultralow IFT. Distinct from 

conventional surfactants, the extended-surfactant molecule has an intermediate polar 

group (e.g.  propoxylate group) inserted between the head and the tail of the surfactant 

molecule. The propoxylate groups in the surfactant molecule make the surfactant become 

more hydrophobic and also extend the surfactant tail [25]. Therefore, the surfactant tail 

segregates further into the oil phase without sacrificing the water solubility as often 

observed when increasing the alkyl chain [25]. Detailed studies on extended-surfactants, 

the dynamic interfacial tension properties of extended-surfactants with vegetable oils and 

the role of extended-surfactants in forming microemulsions and ultralow IFT with 

vegetable oils is reported in the literature [25,26,27,28]. 

For vegetable oil extraction, we are particularly interested in the lowest surfactant 

concentration capable of producing ultralow interfacial tension (IFT), which is known as 

the critical microemulsion concentration (CµC). Removal of oil at the CµC point due to 

IFT reduction is well known as the mobilization mechanism in enhanced-oil recovery 

(EOR). In this case, the oil is liberated as a separate phase rather than solubilized into the 
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aqueous surfactant phase [29]. This property is desirable since vegetable oil can be 

effectively extracted without requiring an additional process to separate the solubilized 

oil from the surfactant micelles. Use of surfactant systems near the CµC was first tested 

by our group for extraction of oil from drill cuttings using about 0.1 wt% surfactant [29]. 

 In this work, we evaluated the use of several extended-surfactant based systems 

for vegetable oil extraction. We also studied the effect of process parameters such as pH, 

shaking intensity and time, and seed to liquid ratio on the extraction efficiency. 

Assessment of the oil quality using our method is also discussed in this paper.  

 

3.2 MATERIALS AND METHODS 

3.2.1 Materials 

 Two classes of anionic extended-surfactants were studied in this work: alkyl-

propoxylate-ethoxylate-sulfate (APES) surfactants and alkyl-propoxylate-sulfate (APS) 

surfactants. The number of PO groups varied within each class of surfactant. While there 

is no EO group in the APS surfactants, the number of EO groups is fixed at two for APES 

surfactants. These surfactants are all predominantly linear in configuration. The 

extended-surfactants were kindly provided by Huntsman Chemical Co. (Houston, TX) 

and used as received. The surfactants studied, the optimum salinity and optimum 

interfacial tension between the aqueous surfactant solution and triolein oil are 

summarized in Table 3.1. Sodium dioctyl sulfosuccinate (Aerosol-OT or AOT), +99% 

anhydrous was purchased from Fisher Scientific (Fair Lawn, NJ) and used as received. 
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Triolein 65% practical grade and peanut oil were purchased from Sigma Aldrich (St 

Louis, MO). Triolein was used as a model oil in the surfactant selection study as it is a 

major component in most vegetable oils. Crisco® pure canola oil (The J.M Smucker 

Company, Orrville, OH) was used without modification. Sodium chloride +99% purity 

was purchased from Fluka Chemical Corp. (Milwaukee, WI).  Deshelled peanut seeds 

were purchased from Wal-Mart (Norman, OK). Canola seeds were kindly provided by 

Prairie Gold Oil Seeds (Okeene, OK).  

Table 3.1: List of propoxylate and propoxylate ethoxylate surfactants studied in this 

work and their optimum salinity (S*) and optimum interfacial tension (IFT*) with triolein 

oil at 25oCa.  

Surfactant Series S* (wt%) IFT*(mN/m) 

1. APS
b
 

                      C16-xPOsulfate 
C16-2.9PO 
C16-4.5 PO 
C16-5.5 PO 
C16-8.2PO 
C16-10.7PO 

 

 
 

2.0 
3.0 
2.0 
1.3 
0.60 

 

 
 

0.052 ±  0.0021 
0.039 ±  0.0013 
0.033 ±  0.0033 
0.13 ±  0.0026 

0.043 ±  0.0009 
 

2. APES
c
 

                   C10-xPO-2EOsulfate 
C10-10PO-2EO 
C10-14PO-2EO 
C10-18PO-2EO 

                  C12-xPO-2EOsulfate 
C12-10PO-2EO 
C12-12PO-2EO 
C12-14PO-2EO 

 
 

2.5 
2.0 
0.50 

 
3.5 
2.5 
0.50 

 
 

0.0090 ±  0.0004 
0.0037 ±  0.0011 
0.0014 ±  0.0015 

 
0.0031 ±  0.0014 
0.0023 ±  0.0018 
0.0017 ±  0.0006 

a All surfactant concentrations were at 0.1 wt%. Electrolyte used was NaCl. 
b  Alkyl propoxylate surfactant 

 c Alkyl propoxylate ethoxylate surfactant  
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3.2.2 Methods 

Interfacial tension experiments 

Dynamic interfacial tension experiments were performed to evaluate the 

interaction of extended-surfactant systems with triolein and vegetable oils. These 

experiments were carried out using a spinning drop tensiometer purchased from the 

University of Texas (Model 500). Salinity scans were conducted by varying the NaCl 

concentration in surfactant solutions of 0.1 wt%. Each sample was conducted in triplicate 

and the IFT data were recorded every five minutes during a twenty minute time frame.  

We define the dynamic IFT as the IFT between the freshly prepared surfactant solution 

with the studied oils recorded at different time interval; in contrast, the equilibrium IFT 

refers to the IFT between the aqueous surfactant phase and oil phase from a phase 

behavior study that was equilibrated for two weeks.  

Oilseed pretreatment 

 Deshelled peanut seeds were dehulled, whereas canola seeds were not since it is 

not economically feasible to dehull canola seeds [30]. Peanut and canola seeds were 

ground using a food processor. The particle size used in this study is in the range of 0.21 

to 0.42 mm size by using US Sieve size No. 40 and No.70, which is in the recommended 

range for oilseed extraction [31] The oilseeds were then oven-dried at 104oC for 35 

minutes to inactivate myrosinase enzymes, gossypols and other unfavorable compounds 

[31,32].  Moisture level in the oilseeds were determined by AOAC standard procedure 

(Method 925.40) [33]. Moisture level in both peanut and canola seeds were in the range 

of 4 - 6 wt% which is well in the recommended range [31]. 
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Oil content  

 For oil content analysis, crude peanut and canola oils were extracted from seeds 

using hexane and a Soxhlet extraction method following AOAC standard procedure 

(Method 948.22) [33]. The amount of oil extracted by the Soxhlet extraction method was 

evaluated as the total oil present in peanut/canola seeds. In this method, the Soxhlet 

extractor was heated to 60oC on a mantle and 50 mL of hexane was used. The thimble 

was filled with 5 grams of peanut/canola seeds and extracted for 4 hours. Hexane 

containing extracted peanut and canola oils was evaporated in a hot air oven at 70oC until 

no change in mass of the oils was observed to eliminate residual hexane. In the second 

Soxhlet extraction step, no more oil was collected. The total oil analysis gave 42% peanut 

and 40% canola oil based on dry weight basis, consistent with values reported in the 

literature [34]. Oil extraction efficiency was calculated as weight percentage of oil 

extracted divided by the total oil present in the seeds as determined by this method. It is 

important to note that, in order to avoid the variation in oil content and removal 

efficiency in different batches, the total oil content was analyzed in each batch and the oil 

removal efficiency was calculated based on the corresponding oil content of the same 

batch.  

Oil extraction 

 Pretreated oilseeds were put into the surfactant solution in a 25 mL glass tube. 

Then, the tubes were put in the shaker (Ping-PongTM, model 51504-00) at varying 

shaking speeds in the horizontal position. The slurry was centrifuged at 2170 g× (IEC 

centrifuge, model HN) for 30 minutes to gravity separate into three different parts: free 
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oil phase, meal and aqueous surfactant phase. The top oil phase was transparent and 

clear. The meal was dried in an oven at 104oC overnight for oil residual analysis by 

Soxhlet extraction method, allowing for a complete mass balance for oil. The amount of 

oil extracted by aqueous extended-surfactant based method and the oil residual were 

summed and compared to the total oil content analyzed by Soxhlet extraction. Mass 

balance confirmed that the oil was not solubilized in the aqueous extended-surfactant 

solution but rather present as the liberated oil phase or remaining as residual oil in the 

seeds.  

Triglyceride composition profile  

The triglyceride composition (TGC) profile was obtained by reversed-phase high-

performance liquid chromatography (RP-HPLC) with an evaporative light scattering 

detector (ELSD) SEDEX Model 75. The mobile phases were dichloromethane(A) and 

acetonitrile(B). The column used was Alltima HP C18 Hi-Load, 5 µm, 250 x 4.6 mm. 

Elution was performed at a solvent flowrate of 1.2 mL/min for 30 minutes. The mobile 

phase gradient condition followed the method described in Alltech application book [35] 

For solvent composition program, the fraction of acetonitrile was set as follows: 0 min 

70%B, 10 min 55%B, 18 min 70%B and 30 min 70%B.  TGC peaks were determined 

based on the retention time of standards and the results in Alltech application book [35]. 

Triglyceride profile was detected by an ELSD with the following settings: evaporation 

temperature at 35oC, air pressure at 3.2 bars and photomultiplier sensitivity at 6.  Peak 

areas were used to quantify the components based on relative percentages. Internal 

normalization method was used to quantify the triglyceride compounds, assuming that the 

detector response is the same for all compounds. Validation of this quantification method 
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for olive oil was reported by Cunha et al. [36]. The interpretation of the triglyceride 

composition profile from retention data was based on the method described in Peter et al. 

[37]. 

 Oil quality analysis  

 Free fatty acid content was determined according to AOAC standard procedures 

[38]. The oil stability was tested by the AOCS cold test method (Method Cc 11-53) [39].   

 

3.3 RESULTS AND DISCUSSIONS 

3.3.1 Surfactant selection 

 The most important criterion for the surfactant used in vegetable oil extraction is 

the ability to produce ultralow interfacial tension between the surfactant solution and 

vegetable oils in order to liberate the oil from the seed. A number of aqueous 

conventional surfactant systems were evaluated in the absence of co-oils and/or alcohols, 

but failed to achieve low IFT at ambient temperature (see AOT in Figure 3.1).  

However, aqueous extended-surfactant solutions were able to achieve ultralow 

interfacial tension with vegetable oils at ambient temperature and without the addition of 

co-oils and/or alcohols (see Figure 3.1 for C10-18PO-2EOsulfate with canola oil and 

peanut oil as well as previous work with other oils [24]). All the surfactant solutions 

contained 0.1 wt% surfactants and 6.0 wt% NaCl. As seen from Figure 3.1, while the IFT 

of AOT and canola oil is always above 1 mN/m (peanut oil was likewise, data not 

shown), the IFT of extended-surfactant solution with canola and peanut oil are as low as 
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0.01 mN/m; i.e., two orders of magnitude lower than AOT. Another important criterion 

for surfactant selection is the time frame for the surfactant solution to reach equilibrium 

interfacial tension with vegetable oils. It can be seen that the equilibrium IFT values in 

Figure 3.1 was achieved within 20 minutes, highly desirable for the scale-up of the 

extraction process [6,10] (Recall that the enzyme process is reported in the literature to 

require up to 18 hours). 

 

Figure 3.1: Dynamic IFT versus time of C10-18PO-2EOsulfate with peanut and canola 

oils and AOT with canola oil at optimum salinity concentrations at 25oC. Surfactant 

solutions were prepared at 0.1 wt%.  
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In this study, we are interested in evaluating extended-surfactants for their 

potential use in vegetable oil extraction. Two classes of extended-surfactants were 

studied, namely alkyl-propoxylate-surfactant (APS) (C16H33 with varying number of 

POs), or, and alkyl-propoxylate-ethoxylate-surfactant (APES) (C10H21 and C12H25 with 2 

EOs and varying number of POs). The APS and APES extended-surfactants studied in 

this work are summarized in Table 3.1. Given the uncertainty of biodegradation and 

human/animal consumption of these surfactants, vegetable oil extracted by this method is 

recommended for non-edible applications, such as biodiesel and lubrication, at this time. 

The aqueous surfactant-triolein IFT was measured for these extended-surfactants and 

recorded at 20 minutes to choose the surfactant that produced the lowest IFT, with this 

surfactant to be used subsequently in vegetable oil extraction experiments. Triolein 65% 

practical grade has often been used in the literature as the model oil for triglycerides 

given that it is the most abundant triglyceride species in most vegetable oils [40].  

The IFT results of these extended-surfactants with triolein are summarized in 

Table 3.1. The results suggest that APES surfactants were able to achieve IFT values with 

triolein an order of magnitude lower than APS surfactants The optimum salinity (S*) 

varied for different surfactants. Three extended-surfactants, namely C16-10.7POsulfate, 

C12-14PO-2EOsulfate and C10-18PO-2EOsulfate were chosen for the subsequent 

vegetable oil extraction studies since they required lowest S* which is desirable in 

industrial application. Between C16-10.7POsulfate and C12-14PO-2EOsulfate, C10-

18POsulfate, we could compare the extraction performance of APS surfactant versus 

APES surfactant.  C12-14PO-2EOsulfate and C10-18PO-2EOsulfate were produced from 
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alcohols of different alkyl chain lengths; therefore, we would like to investigate if the 

alcohol sources could impact the fraction of oil extracted.  

 

3.3.2 Vegetable oil extraction 

Effect of surfactant types 

All surfactant concentrations were prepared at 0.15wt% and at optimum salt 

concentrations (refer to Table 3.1). The fraction of oil extracted using water alone was 

also evaluated.  As seen in Table 3.2, the fraction of oil extracted for all cases is superior 

to water alone, consistent with the low IFT provided by surfactant-based systems. 

 

Table 3.2: Effect of surfactant types on peanut oil extraction efficiency at 25oC. Seed to 

surfactant solution liquid (S : L) ratio at 2 to 10 (g to g), 30 minute extraction time, and 

horizontal shaking speed at 150 shakes/min. 

Extraction medium S*(wt%) IFT* 

(mN/m) 

Fraction of 

oil extracted
a
 

(wt%) 

State of 

liberated 

oil 

Water None 21 40 Emulsion 

0.15 wt% C16-10.7POsulfate 6.2 0.033 65 Emulsion 

0.15 wt% C12-14PO-2EOsulfate 6.1 0.0095 92 Emulsion 

0.15 wt% C10-18PO-2EOsulfate 6.0 0.0088 95 Free oil 

a Amount of oil extracted via Soxhlet extraction was used as the basis 
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 Water alone exhibited the lowest fraction of oil extracted of 40%. C16-

10.7POsulfate produced a somewhat higher efficiency of 65%. However, both water and 

C16-10.7POsulfate produced stable emulsion-like phases which are not desirable in the 

extraction process. C12-14PO-2EOsulfate and C10-18PO-2EOsulfate both produced very 

high peanut oil extraction efficiencies of 92-95%. However, only the C10-18PO-

2EOsulfate produced a neat free oil phase, whereas C12-14PO-2EOsulfate produced an 

undesirable emulsion-like phase; thus, C10-18PO-2EOsulfate was chosen for study in 

future sections.  

 

Effect of surfactant concentration 

 Figure 3.2 shows IFT values versus surfactant concentrations for C10-18PO-

2EOsulfate surfactant and both peanut oil and canola oil. From Figure 3.2, the CµC value 

of C10-18PO-2EOsulfate with peanut oil is 0.15 wt% and with canola oil is 0.35wt%.  

Based on this, in seed extractions studies we varied the surfactant concentration below 

and above the CµC values to study the effect of surfactant concentration on oilseed 

extraction as illustrated in Figure 3.3.  
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Figure 3.2: Determining the critical microemulsion concentration (CµC) using the plot 

of dynamic interfacial tension versus surfactant concentration at optimum electrolyte 

concentration for the systems C10-18PO-2EOsulfate/6wt% NaCl brine/peanut oil and C10-

18PO-2EOsulfate/5 wt% NaCl brine/canola oil. IFT data were recorded at 20 minutes 

and 25oC. 

 

From Figure 3.3 we see good agreement between the trends of the fraction of oil 

extracted and the CµC values reported above. With increasing surfactant concentration 

below the CµC, dramatic increases in both canola and peanut oil extraction efficiencies 

were observed. However, at surfactant concentrations higher than the CµC, the fraction 
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of oil extracted did not change with increasing surfactant concentration. Thus, the 

preferred formulation for peanut oil extraction is 0.15 wt% of C10-18PO-2EOsulfate and 

6 wt% NaCl, and the preferred formulation for canola oil extraction is 0.35 wt% of C10-

18PO-2EOsulfate and 5 wt% NaCl.  

 

Figure 3.3: Canola and peanut oil extraction efficiency versus C10-18PO-2EOsulfate 

concentrations. Salinity was 6 wt% NaCl with peanut oil and 5 wt% NaCl with canola oil 

at 25oC corresponding to S* for each. Seed to liquid ratio at 2 : 10 (g : g) for both oils, 30 

minutes contact time and shaking speed at 150 shakes/min. Refer to Figure 1 for the 

optimum salinity (S*) of C10-18PO-2EOsulfate solution with canola and peanut oils. 
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Effect of shaking speed 

 

Figure 3.4: Effect of shaking speed on peanut oil extraction using 0.15 wt% of C10-

18PO-2EOsulfate and 6 wt% NaCl at 25oC. 30 minutes contact time. Seed to surfactant 

solution liquid ratio at 2 : 10 (g : g). 

 

The impact of mixing intensity (shaking speed) was evaluated as shown in Figure 

3.4. The mass of the oilseed, surfactant concentration and salt concentration were fixed at 

2 grams, 0.15 wt% and 6 wt%, respectively. It can be seen from the graph that at the low 

agitation speed (50 shakes/min) lower fraction of extracted oil was observed. However, at 

shaking speeds higher than 150 shakes/min, increased shaking speed no longer had a 

significant effect on vegetable oil extraction. It was observed that at the highest shaking 

speed of 300 shakes/min, stable fine solids were formed and settled slowly which led to 
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the problem in the separation of the fine solid from the oil phase. Based on these results, 

a shaking speed of 100-150 shakes/min was used in subsequent experiments. 

 

Effect of shaking time 

 

Figure 3.5: Effect of shaking time on peanut oil extraction of 0.15 wt% C10-18PO-

2EOsulfate and 6 wt% NaCl at 25oC. Shaking speed at 150 shakes/min. Seed to 

surfactant solution liquid ratio at 2 : 10 (g : g). 
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From the dynamic IFT results shown in Figure 3.1, equilibrium IFT was obtained 

between surfactant solutions and with peanut or canola oil within 20 minutes. Therefore, 

it is expected that the amount of oil extracted will not change after 20 minutes at 150 

shakes/min.  This is in good agreement with results in Figure 3.5, which shows that no 

further amount of oil was extracted after 25 minutes.  In addition, the dynamic IFT of the 

post wash surfactant solution taken from the aqueous phase after centrifugation still 

exhibits ultralow interfacial tension with fresh vegetable oil (< 0.02 mN/m at 20 

minutes); suggesting that the surfactant solution can be easily recycled as proposed in the 

overall process. 

 

Effect of salt concentrations 

Salinity scans were performed at a fixed C10-18PO-2EOsulfate concentration of 

0.15 wt%, as seen in Figure 3.6. Dynamic IFT results suggested that the lowest IFT 

occurred at the salt concentration of 6 wt%, in excellent agreement with S* reported in 

Table 3.2 and the maximum oilseed extraction results in Figure 3.6, respectively. 

However, from Figure 3.6 we see that 5 wt% and 8 wt% NaCl also show excellent oil 

extraction, demonstrating a degree of robustness relative to the NaCl concentrations.  
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Figure 3.6: Effect of salt concentration on peanut oil extraction and dynamic IFT (data 

recorded at 20 minutes) using 0.15 wt% of C10-18PO-2EOsulfate at 25oC. Shaking speed 

at 150 shakes/min for oil extraction experiments. Seed to surfactant solution liquid ratio 

at 2 : 10 (g : g). 
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Effect of solid-liquid ratio on the fraction of oil extracted 

We next investigated different solid-liquid ratios of 1 to 10 to 5 to 10 (g to g), as 

shown in Figure 3.7. It can be seen that at low or high solid to liquid ratio, the fraction of 

oil extracted decreases, with the best extraction efficiency obtained at 2 : 10 (g to g) for 

peanut oil (Figure 3.7).  

 

Figure 3.7: Effect of seed to liquid ratio on extractability using 0.15 wt% of C10-18PO-

2EOsulfate and 6 wt% NaCl at 25oC. 30 minutes contact time and shaking speed at 150 

shakes/min. 
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The same trend was observed with canola oil (data not shown). The amount of oil 

extracted decreased at the highest solid - liquid ratios likely because the viscosity 

increase made it difficult to maintain effective mixing and to achieve surfactant-oilseed 

contact. Conversely, we speculate that too high of a liquid to solid ratio causes less 

particle collision, leading to poor extraction efficiency. It is important to note that 

compared to other aqueous extraction processes studied in the literature, we are able to 

employ a higher solid-liquid ratio; a solid to liquid ratio of 1 : 20 (g to mL) is normally 

observed in other studies [6,10,15]. 

 

Effect of pH on fraction of oil extracted 

Peanut and canola oil extraction efficiencies were evaluated at four different pH 

values; 4, 7, 9 and 11 (data not shown). In contrast to aqueous extraction methods using 

enzymes, pH values ranging from 4 to 9 had no significant effect on the fraction of oil 

extracted, which is consistent with the IFT results (data now shown). At pH 11, the 

solution suddenly changes into green-brownish color and the extraction drops sharply 

since a green-brownish emulsion was observed instead of a clear oil phase. This can be 

explained by the solubilization of protein in the aqueous phase at pH 11. 
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Oil quality 

            The crude oil quality resulting from the aqueous surfactant-based extraction 

method was analyzed and compared to oil recovered using hexane as extractant. 

Parameters that were compared include free fatty acid concentration, triglyceride 

composition profile and oil clarity. The results are summarized in Table 3.3 and 3.4 for 

peanut oil and canola oil, respectively.  

Table 3.3: Analysis of extracted peanut oil  

TGC Profile
a
 Surfactant-based 

process
c
 

Hexane-based process 

LLOb 14.3 11.0 

LOO 14.0 14.8 

LOP 11.8 10.1 

OOO 14.1 10.0 

%FFAd 0.050 0.70 

12 hr cold test Pass Not pass 

a Reported values are in weight percentages based on total triglycerides   

b XYZ – hydrocarbon tail for each of three triglyceride tails; the group in each tail is 

shown in the abbreviation (for example, LLO has two C18:2 tails and one C18:1 tail); 

abbreviations: Ln: Linolenic (C18:3), L: Linoleic (C18:2), O: Oleic (C18:1), S: Stearic 

(C18:0), P: Palmitic (C16:0) 

c Extraction conditions: 0.15 wt% C10-18PO-2EOsulfate, 6 wt% NaCl, 25ºC, seed to 

liquid ratio at 1: 5 (g to g), 150 shakes/min 

d Weight percentage of free fatty acids 
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           The hexane-extracted peanut oil has a significantly higher content of free fatty 

acid (0.7 wt% FFA) than aqueous surfactant-based extracted peanut oil (0.05 wt% FFA). 

It is important to note that, the hexane extraction was performed on the same oilseed 

batches used in aqueous extended-surfactant extraction. It would be interesting to 

investigate how the triglyceride profile might change when the oil was extracted using 

aqueous extended-surfactant-based versus hexane. The triglyceride composition profiles 

for peanut and canola oils obtained by our method are also illustrated in Table 3.3 and 

3.4, respectively. 

Table 3.4: Analysis of extracted canola oil  

TGC Profile
a
 Surfactant-based process

c
 Hexane-based process 

LnOO
b
 8.45 7.70 

LOO 23.9 25.7 

OOO 44.4 47.8 

%FFA
d
 0.040 0.60 

12 hr cold test Pass Not pass 

a Reported values are in weight percentages based on total triglycerides 

b See Table 3 for abbreviations 

c Extraction conditions: 0.35 wt% C10-18PO-2EOsulfate, 5 wt% NaCl, 25ºC, seed to 

liquid ratio at 1: 5 (g to g), 150 shakes/min 

d Weight percentage of free fatty acids 
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         Due to the aqueous extraction medium, polyunsaturated fatty acids (PUFAs) can be 

subject to oxidation because of the chemical active of the double bonds [41]. An analysis 

of triglyceride profile would provide an insight to this degradation [42]. Table 3.3 and 3.4 

show the most abundant triglyceride content in peanut and canola oils. Other minor 

triglycerides were detected but not reported. It can be seen that the aqueous extended-

surfactant-based method produced vegetable oil with triglyceride profiles similar to those 

obtained from conventional hexane method, indicating no significant PUFAs degradation 

had occurred [42]. It is worth mentioning that while the oil quality tests performed in this 

paper gave some information on the oil quality, more detail on oil qualities (such as 

information on oxidative stability, saponification value and etc.) extracted by aqueous 

extended-surfactant solution will be reported in a subsequent paper focusing on scaleup 

of this work.  

 

3.4 CONCLUSION  

In conclusion, we have shown that, among the extended-surfactants studied in this 

research, the alkyl-propoxylate-ethoxylate-sulfate class of surfactants is most suitable for 

the vegetable oilseeds evaluated in this research since it produces the lowest interfacial 

tension (IFT). Additionally, the C10-18PO-2EO-sulfate exhibits the best performance for 

vegetable oil extraction in terms of low IFT, salinity values and absence of stable 

macroemulsions. The aqueous extended-surfactant based method proved to be effective 

for extracting peanut and canola oils, being able to achieve 95% and 93% oil extraction, 

respectively. Although the fraction of oil extracted is not as high as that of the hexane 

method, which achieved 98-99% efficiency, our method offers significantly better crude 
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oil quality in terms of free fatty acid. The amount of oil extracted by aqueous extended-

surfactant-based and the amount of residual oil were summed and compared to the total 

oil content analyzed by Soxhlet extraction. There was no statistical difference between 

these two values, indicating that insignificant amount of oil was lost through 

solubilization in the aqueous surfactant solution.   

We also looked at the effects of different processing parameters on vegetable oil 

extraction efficiency, including pH, surfactant concentration, extraction time, shaking 

speed, solid-to-liquid ratio, and salinity levels. We found that surfactant concentrations at 

the CµC and optimum salt concentrations are the most important parameters for 

vegetable oil extraction efficiency.  From the evaluation of crude oil quality, it was 

shown that our method offers better crude oil quality in terms of free fatty acid content 

compared to the hexane extraction method. The peanut and canola oils are clear and 

exhibit fresh smell. Hexane extracted oils have a burnt-like smell because the oils were 

heated to evaporate the hexane.  Thus, we have successfully demonstrated the viability of 

the aqueous surfactant based extraction method for seed extraction of vegetable oils; 

future work will explore the scale-up of this process. 
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Chapter 4 Pilot Scale Study of Vegetable Oil Extraction by 

Surfactant-Assisted Aqueous Extraction Process1 

 

ABSTRACT 

A number of aqueous extraction processes (AEP) have been studied as substitutes for 

hexane in oilseed extraction. In our previous batch-scale work, we have shown that the 

aqueous surfactant-based method could effectively extract up to 95% peanut and canola 

oils at 25oC. The goal of this work is to perform a semi-continuous pilot-scale study of 

the aqueous surfactant-based method for peanut and canola oil extraction.  Two 

extraction strategies were evaluated including (1) a single extraction stage by aqueous 

surfactant solution and (2) two extraction stages, consisting of one aqueous surfactant 

wash and one de-ionized water wash. At optimum conditions, 90.6% and 88.1% oil 

extraction efficiencies of peanut and canola oil, respectively, were achieved in a single 

stage extraction, while 94.5% and 92.6% were achieved in the two-stage extraction. At 

the highest solid/liquid centrifuge speed, the moisture level in the extracted meal was 

48%. At the optimum liquid/liquid centrifuge condition, more than 90% of the oil was 

recovered as free oil from the extracted-oil and surfactant-wash mixture and 39-44% of 

                                                

1 This chapter or portions thereof has been accepted for publication in Journal of Separation Science and 

Technology under the title “Pilot scale study of vegetable oil extraction by surfactant-assisted aqueous 

extraction process”. This current version has been reformatted for this dissertation. 
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oil was recovered from the extracted oil and DI wash mixture. Total free oil recovered 

after two stage extraction was 87.1% and 85.6% for peanut and canola, respectively.  

Keywords: pilot scale study, vegetable oil extraction, microemulsions, extended 

surfactants 

 

4.1 INTRODUCTION 

Vegetable oils are typically produced from oilseeds by either hexane extraction or 

a combination of mechanical processing and hexane extraction. However, there are 

growing health concerns and increased environmental regulations regarding the 

use of hexane in vegetable oil extraction. Exposure to hexane at 15 ppm/day for 

three months has been shown to cause peripheral nerve damage, and hexane is also a 

potential hazardous explosive material [1]. In 2001, the U.S. Environmental Protection 

Agency (EPA) established regulations on hexane emission due to growing environmental 

concerns. In addition, oils produced by hexane extraction are high in free fatty acid, wax 

and unsaponifiable matter, and can also exhibit a dark greenish-brown color [2].  

The use of aqueous extraction processes (AEP) for vegetable oil has been studied 

widely [3,4,5,6]. AEP for oilseed extraction eliminate the potential for explosion and 

emissions of the volatile organic solvent hexane.  Simultaneous recovery of oil and 

protein by AEP is possible with lower equipment costs and energy consumption than by 

hexane extraction [7 ,8].  Because of the immiscibility of water and vegetable oil, AEP 

consistently been reported to produce vegetable oil superior in quality (lower phosphatide 

levels and peroxide values) to that produced by hexane-based processes [9,10]. In 
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general, when employing AEP, the extracted oil and protein in the liquid phase distribute 

among three portions which are the free oil, cream (oil in water emulsions) and skim 

(protein and sugar-rich aqueous phase)[11]. Limiting the utility of AEP is the fact that 

vegetable oil recovery is typically low (33-68%) [12].The vegetable oil is trapped inside 

the porous matrix of the meal due to high capillary forces. Low oil extraction efficiency 

can be attributed to the high interfacial tension between the water phase and the vegetable 

oil (8 - 10 mN/m for canola and peanut oil) making the oil unable to diffuse through the 

porous matrix of the meal [13,14]. By definition, interfacial tension is the surface tension 

caused by intermolecular interactions at the surface separating two immiscible fluids [15] 

– in this case vegetable oil and the extracting aqueous solution. 

Several approaches have been tested in an effort to improve the oil extraction 

efficiency of AEP including mechanical treatment (flaking and extruding to obtain 

smaller grain size) [12], enzyme assisted treatment (EAEP) [16,17] and surfactant 

enhanced extraction [14,18]. Mechanical treatment by grinding has improved the oil 

recovery from 33% to 66% when flour particles were reduced from 0.4 mm to 0.1 mm 

[5]. Similar oil recovery (68%) was achieved when employing flaking and extruding 

treatment to soybean flours [12]. However, mechanical treatment alone still results in 

insufficient oil extraction efficiency. Consistently high oil extraction efficiency (> 90%) 

has been reported in the literature when using enzyme assisted [8] or surfactant enhanced 

AEP [14,18]. In the study of AEP extraction mechanisms of soybean oil, Campbell et al. 

reported that both Protease enzyme and sodium dodecyl sulfate (SDS) surfactant 

enhanced AEP were able to achieve similar and higher oil extraction efficiency than AEP 

alone [13]. In the microscopic study [13], it was found that when employing AEP alone, 
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the unextracted oil was trapped in an insoluble matrix of denatured proteins. The 

coalesced oil size was too large to diffuse through the disrupted cellular matrix [13]. 

Further, it was found that the mechanism of oil release using Protease enzyme is by 

proteolytic digestion of insoluble cellular matrix [13]. Alternatively, the oil release 

mechanism when aqueous using surfactant is to disrupt the oil/water interface by 

lowering the interfacial tension between the surfactant solution and the oil, thereby 

facilitating the oil droplet breakup and making it possible for the oil to diffuse through 

the disrupted cell [13].  

The use of surfactant enhanced AEP extraction has been investigated by our 

group in batch scale studies using alkyl propoxylate-ethoxylate-sulfate surfactants 

[14,18]. In batch studies, we have achieved up to 94% oil extraction efficiency for 

peanut, canola and palm oils when the interfacial tension between the surfactant solution 

and the oil phase was less than 0.05 mN/m [14,18]. Alkyl propoxylate-ethoxylate-sulfate 

surfactants are extended-surfactants, a new class of surfactant that has intermediate polar 

groups (i.e. propoxylate or ethoxylate) inserted between the head and tail of the surfactant 

molecule [19]. Due to this unique structure, extended surfactants have consistently 

produced ultralow interfacial tension (IFT) with a wide range of vegetable oils, which is 

critical in oilseed extraction [14, 19]. We define ultralow IFT as IFT << 0.1 mN/m [14].  

The surfactant enhanced AEP (SAEP) for vegetable oil is particularly attractive due to 

the short contact time between the surfactant medium and the oilseeds (about 30 

minutes), ambient temperature extraction and high solid to liquid ratios (SLR of 1 to 5 g 

solids/g liquid), which are desirable in industrial application [14,18]. Another advantage 

is that the surfactant concentrations are at the critical microemulsion concentration (cµc) 
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which are relatively low (less than 0.5 wt%) [14]. Cµc is defined as the lowest surfactant 

concentration capable of producing ultralow IFT. At this concentration, the vegetable oil 

is removed mainly due to the mobilization mechanism in which the oil is liberated as a 

separate phase rather than solubilized into the aqueous surfactant phase [14,20] It is 

important to note that, when employing EAEP, the incubation time is more than one hour 

and the slurry temperature is in the range of 50 - 60oC [8,11]. It is important to note that 

only a limited number of scaleup studies on AEP and EAEP oil extraction in the literature 

[11,21]. Rhee et al. studied the AEP pilot plant scale production of peanut protein 

concentrate, with little emphasis on oil extraction efficiency [21]. The peanut protein and 

oil recovery processes were carried out at 60oC and pH of 4 for one hour incubation time. 

Up to 88.8% oil was recovered as free oil after four consecutive washes with a SLR of 1 

to 10 for the first wash and SLR of 1 to 5 for other three consecutive washes [21]. It was 

shown that dry grinding the peanuts gave free oil while wet grinding the peanuts gave 

lower oil extraction efficiency and most emulsion phases [21]. Moura et al. studied the 

scale-up of EAEP extraction of soybeans in a two stage counter-current process using 

extruded soybean flakes [11]. One pilot scale run was carried out over a two day period 

[11]. In the two stage counter-current processes with a SLR of 1 to 6, at 50oC and 1 hr 

incubation time, up to 99% soybean oil extraction efficiency was achieved; however, 

most oil was distributed among cream and skim fractions after centrifugation, requiring 

an additional step to obtain free oil [11]. Although the oil extraction efficiency is very 

promising, this study did not use a continuous process (i.e. use of funnel separation to 

recover free oil from cream [11]). The objectives of the current research are (1) to study 

the effect of processing parameters on extraction efficiency and (2) to identify potential 
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problems related to the scale-up system of SAEP. We thus seek to extend our prior 

research work in the present study, we decided to evaluate semi-continuous laboratory-

based SAEP using laboratory-scale processing equipment similar to that used in 

industrial processes.  The SAEP was scaled up from 2 grams to 150 grams of peanut and 

canola flours. 

 

4.2 MATERIALS AND METHODS 

4.2.1 Materials 

 C10H21-18PO-2EOsulfate surfactant (19.9 active%) was kindly provided by 

Huntsman Chemical Co. (Houston, TX) and used as received. Blanched peanut seeds 

were purchased from the local market. Canola seeds were kindly provided by Producers 

Cooperative Oil Mill, Plains Oilseed Products Cooperative (Oklahoma City, OK) and 

Prairie Gold Oil Seeds (Okeene, OK). Sodium chloride (99%+ purity) was purchased 

from Sigma Aldrich and used as received.  

4.2.2 Methods 

Oilseed pretreatment 

 Blanched peanut seeds were dehulled, whereas canola seeds were not since it is 

not economically feasible to dehull canola seeds [22]. Peanut and canola seeds were 

ground using a food processor. The particle size used in this study was in the range of 

0.21 to 0.42 mm size by using US Sieve size No. 40 and No.70, which is in the 

recommended range for oilseed extraction [23]. 
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Oilseed extraction by SAEP 

 Figure 4.1 illustrates the schematic diagram of the pilot scale process utilized in 

this research and Figure 4.2 shows selected products at different SAEP stages using 

optimized extraction conditions. 

 

Figure 4.1: Schematic diagram of laboratory–based pilot scale processing of peanut and 

canola oil extraction. Solid line (    ): surfactant wash step; Dash line (     ): DI washing 

step 
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Figure 4.2: Selected products at different stages of SAEP and DI washing at optimum 

conditions for peanut and canola from left to right, respectively. (a) peanut and canola 

flours (b) liquid fraction from L/L centrifuge of surfactant wash step (c) liquid fraction 

from L/L centrifuge of DI washing step (d) free oil crude oil recovered from L/L 

centrifuge  

 First, 750 grams of solution containing surfactant (C10H21-18PO-2EO-sulfate) 

and sodium chloride (NaCl) at concentrations specified below were placed in a two liter 

stainless steel extractor vessel. Next, 150 grams of seed flours were dispensed into the 

solution to produce a SLR of 1 to 5 (g to g). For peanut oil extraction, C10H21-18PO-2EO-

sulfate was fixed at 0.15 wt% and NaCl at 6 wt%, while for canola oil extraction, the 

surfactant concentration was 0.35 wt% with NaCl at 5 wt%. These are optimum 

conditions found from our previous study [14]. Dispersion of the flours in the extraction 

solution was performed by a four-blade 1 inch mixer attached to the Talboys light duty 

mixer overhead (model 101). Oilseed flours were directly fed into the surfactant solution 
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in the extraction vessel. The slurry was agitated at 500 rpm to ensure gentle mixing and 

sufficient dispersion of the flour in the solution. Preliminary studies were conducted at 

three agitation speeds - 500, 750 and 1000 rpm. There was no statistically significant 

difference in the oil extraction efficiency when varying the agitation speeds (data not 

shown); therefore, an agitation speed of 500 rpm was used throughout the study. After 30 

minutes of extraction, the slurry was pumped by a chemical metering pump (Precision 

Control Products, AMF CUNO metering pump, model 8311-11) at varying flowrates into 

a semi-continuous solid/liquid centrifuge (Lavin centrifuge, model L2, see reference [24] 

for details including picture of equipment) equipped with a 4” stainless steel bowl. The 

bowl was custom perforated and used in conjunction with a 200 mesh filter cloth and a 

200 mesh filter plastic to keep the filter cloth in place.  They were placed inside the bowl 

to improve the solid/liquid (S/L) separation. The S/L centrifuge speed was varied at 1029, 

2100 and 4116 g× .  

The liquid portion (oil/surfactant/electrolyte/water mixture) from the S/L 

centrifuge was collected in a two-liter glass beaker. After collecting the liquid fraction 

(i.e. no more liquid was collected from the S/L outlet), the solution was then pumped by a 

Masterflex L/S peristaltic pump (Easyload, model 7518-00) into a continuous 

liquid/liquid (L/L) centrifuge (CINC model V02, see reference [25] for details/picture of 

the equipment) at flowrates varying from 1 – 5 mL/min. The L/L centrifuge was pre-

filled with 150 mL of heavy phase solution (de-ionized water) in order to obtain the best 

separation performance (recommended by the manufacturer). It is important to note that 

in the continuous large scale operation, this step will not be necessary. The L/L centrifuge 

speed was varied to study the efficiency in oil/surfactant solution separation. The oil from 
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the light phase outlet was collected in a 500 mL glass beaker and the skim fraction (most 

often oil in water emulsions [11]) from the heavy phase outlet was collected in a one-liter 

glass beaker. The solids obtained from S/L centrifuge process were carefully scooped out. 

The oil residual content in the solid fraction was further analyzed. The water content in 

the oil or cream fraction obtained from the light phase outlet of the L/L centrifuge was 

also analyzed. These test methods are discussed below.  For the de-ionized water washing 

step, the SAEP extracted meal (solid fraction) obtained from S/L separation process was 

carefully scooped out and re-suspended in 450 mL of de-ionized water held in a two liter 

stainless steel extractor vessel. The slurry was resent to the S/L and L/L centrifuges. All 

data reported are average values from triplicates. 

Oil content  

 Total oil content in crude oilseeds and in residual meal obtained from S/L 

separation were analyzed using hexane solvent in a Soxhlet extraction apparatus 

following the Association of Official Analytical Chemists (AOAC) standard procedure 

(Method 948.22) [26]. The residual meal was dried overnight in a forced oven at 104oC 

and re-ground for solvent extraction. In the second Soxhlet extraction step, no more oil 

was collected. Total oil analysis gave 46.7% ± 0.86% peanut oil and 42.5 ± 0.92% canola 

oil content based on dry weight basis, consistent with values reported in the literature 

[27]. Oil extraction efficiency was calculated as weight percentage of oil extracted 

divided by the total oil present in the seeds as determined by this method. It is important 

to note that in order to avoid variation in oil content and removal efficiency in different 

runs, the total oil content was analyzed in each run and the oil removal efficiency was 

calculated based on the corresponding oil content of the same run. Oil content in the light 
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phase obtained from the liquid/liquid centrifuge was analyzed by the temperature 

modified Babcock method adapted from reference [28]. 

Moisture content 

 The moisture level in the oilseeds was determined by AOAC standard procedure 

(Method 925.40) [33]. Moisture levels in both peanut and canola seeds were in the range 

of 4 - 6 wt% which is well within the recommended range [31]. The moisture content in 

the residual meal after S/L separation was determined by the weight difference after 

placing the meal in the forced oven overnight at 104oC. Water content in the extracted oil 

obtained from the L/L separation was determined by Karl Fischer volumetric titration 

method using TitroLine KF (Schott instruments). 

Interfacial tension experiments 

Interfacial tension (IFT) experiments were carried out using a spinning drop 

tensiometer (University of Texas, model 500). To measure the IFT value between the 

post wash solution and peanut and canola oils, 15 mL of the slurry obtained from S/L 

centrifuge were transferred into a glass tube and centrifuged at 2170 g× (IEC centrifuge, 

model HN). The aqueous portion obtained after the centrifuge was used for IFT 

measurements. IFT values were recorded at 20 minutes [14].  

Statistical analysis 

 One way ANOVA was used for data statistical analysis and compared with p-

value at 0.05.  
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4.3 RESULTS AND DISCUSSION 

 Table 4.1 shows the effect of the S/L centrifuge speeds and inlet flowrate on the 

moisture of the meal and the total oil extraction efficiency by SAEP. The S/L centrifuge 

speeds were varied at 1029, 2100 and 4116×g (the maximum allowable speed of the 

equipment), and at each centrifuge speed, the inlet flowrate was evaluated at 8, 10 and 12 

mL/min. It is important to note that, due to the bowl design of the S/L centrifuge, a slurry 

flowrate higher than 12 mL/min resulted in a significant amount of solids loss.  

Table 4.1: Effect of process parameters on peanut oil extraction efficiency – solid/liquid 

(S/L) separation 

Speed 

(rpm) 
speed (x g) 

Inlet 

flowrate 

(mL/min) 

Meal 

moisture 

content 

(wt%) 

Oil 

residual
a
 

(wt%) 

Total oil 

recovery
a
 

(wt%) 

3500 1029 8 78.6±0.66 19.8±0.87 80.1 
10 80.6±1.64 20.8±0.96 79.2 
12 78.5±0.69 19.6±1.10 80.4 

5000 2100 8 64.8±0.81 14.3±1.20 85.6 
10 63.5±2.31 15.9±0.63 84.1 
12 65.9±1.32 15.0±1.34 85.6 

7000 4116 8 44.8±2.50 9.44±0.90 90.6 
10 46.9±3.73 9.22±1.33 90.1 

    12 48.3±1.81 9.65±1.50 90.2 
aAmount of oil extracted via Soxhlet extraction was used as the basis.  

Sample calculation: 
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From Table 4.1, it can be seen that, while the inlet flowrate had little effect on the 

recovery of extracted oil, the S/L centrifuge speed had a more pronounced effect. As the 

centrifugation speed increased, the moisture level in the meal was reduced and total 

extracted oil in the liquid fraction increased. At 4116×g (7000 rpm), the moisture level of 

the meals shows the lowest value at 44.8 wt% and the total oil extracted in the liquid 

shows the maximum value to be 90.6 wt% for peanut and 88.1 wt% for canola oil (Table 

4.2). 

Table 4.2: Total oil extracted at optimum conditions at 25oCa 

Fraction of oil 

extracted from 

surfactant wash
b
 

(wt%) 

Fraction of oil 

extracted from
b
 

DI wash (wt%) 

Total oil 

extracted
b
 

(wt%) 

peanut 90.6 3.98 94.5 

Canola 88.1 4.54 92.7 

a30 minute surfactant solution extraction, 5 minute DI wash, S/L centrifuge at 4116xg 

and 8 mL/min inlet flowrate 
bAmount of oil extracted via Soxhlet extraction was used as the basis 

 

 These values are somewhat lower than those obtained in the batch scale, which 

were 95 wt% and 93 wt% for peanut and canola oil, respectively. This difference might 

be due to the fact that in the batch scale we used a three phase centrifuge, while in the 

pilot scale we separated this process into two different steps using the S/L separator and 

L/L centrifuge, suggesting that the separation of the liquid in S/L separator was not as 

effective in the three phase batch centrifuge. However, it is important to note that the use 
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of a three phase decanter for a slurry of high solid content (up to 20 wt%) is impractical 

[21].  

 

 

Figure 4.3: Oil extraction efficiency for different consecutive extraction trials at 25oC. 

Extraction condition: 30 minute wash, S/L centrifuge at 4116xg and 8 mL/min inlet 

flowrate. Amount of oil extracted via Soxhlet extraction was used as total oil 

The washing step using de-ionized water was introduced to recover more oil from 

the SAEP extracted meal. Figure 4.3 shows the effect of the surfactant washing, and the 

first and second DI washing on the total oil extraction efficiency. It can be seen that an 

additional 4 to 5 wt% of total oil was recovered by the first washing step and no more 

appreciable amount of oil was recovered in the second washing step. The oil obtained 
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from the washing step brought the total oil extraction efficiency to 94.5 wt% and 92.6 

wt% for peanut and canola oil, respectively, approaching the results obtained in the batch 

scale. These results confirm that the oil was extracted effectively in the surfactant wash 

step but was not fully separated in the S/L separation step. 

 The DI water in the wash step recovered the oil that was already released and 

stayed outside the cell structure. Table 4.3 shows the IFT between the peanut and canola 

oil with the extraction media at different washing stages by SAEP and AEP. The IFT 

value of the extracted oils with the first DI washing solution was about 2 mN/m for both 

peanut and canola oils, indicating that there was some surfactant remaining in the meal 

from the surfactant wash. The IFT values of the extracted oils with the second DI 

washing solution was 5 – 6 mN/m; similar to the IFT values of peanut and canola oils 

with DI washing only solution, which indirectly indicated that there was no appreciable 

amount of surfactant left in the meals. The basket centrifuge was used here because it was 

the only option available at the scale we needed for our system but is not the best option 

when operating the oilseed extraction in large scale processes because it has limited solid 

holding capacity and will prevent the system from operating continuously. In large scale 

operating facility, we envision the use of the solid bowl scrolling centrifuge or continuous 

pusher centrifuge which has been used widely in solid-liquid separation processes [29]. 

However, this equipment was not available at our operational scale. 
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Table 4.3: IFT prewash and postwash extraction solution with refined peanut and canola 

oil measured at 20 minutes  

  

prewash 

IFT (mN/m) 

postwash IFT 

(mN/m) 

1
st
 DI 

postwash 

IFT (mN/m) 

2
nd

 DI 

postwash IFT 

(mN/m) 

canola
a
 0.015 0.018 2.1 6.1 

peanut
a
 0.011 0.011 2.2 5.0 

peanut
b
 10.0 5.0 NA NA 

a SAEP  

b AEP  

 

Figure 4.4 shows the effect of the inlet flowrate on the oil recovery and the water 

content in the oil phase at a constant centrifugation speed of 680×g of the L/L centrifuge. 

The extracted-oil and surfactant-washed solution had 7 - 10 wt% of canola and peanut 

oil. It can be seen that the oil recovery decreased and the water content in the oil 

increased as the feed rate increased. The maximum moisture standard for crude peanut oil 

is 0.25 wt% [30] and for canola oil is 0.3 wt% [31]. The highest oil recovery was 

achieved at the lowest inlet flowrate of 1 mL/min, corresponding to the longest residence 

time of 150 minutes. At this condition, the water content in the crude peanut and canola 

oils were 0.15 wt% and 0.22 wt%, respectively, and met the standard requirement (0.25 

wt% for peanut oil and 0.30 wt% for canola oil). The longer residence time allowed the 

oil droplet to more efficiently separate from the emulsions [32]. 
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Figure 4.4: Effect of feed flowrate on peanut oil recovery from liquid fraction at constant 

liquid/liquid centrifuge speed at 25oC. Extraction condition: 30 minute wash, S/L 

centrifuge at 4116xg and 8 mL/min inlet flowrate, L/L centrifuge at 680xg 

 Free crude peanut and canola oils obtained from the L/L centrifuge at 1 mL/min 

and 680xg are shown in Figure 4.2(d). The extracted oils have excellent clarity with 

canola oil being more yellowish than peanut oil due to the color pigment of the oilseeds 

(Figure 4.2a). In addition, the SAEP peanut and canola had fresh smell, whereas the 

hexane-extracted oil had a burnt smell. At a feed rate of 5 mL/min, there was a dramatic 

decrease in the free oil recovery to 51 wt% and an increase in water content of the oil 

phase to 5.2 wt% as the residence time decreased to 30 minutes. Although the long 

retention time for demulsification process is a drawback in the aqueous-based extraction 

process, it might be offset by the high energy consumption and relatively long retention 
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time to evaporate the hexane solvent and to obtain free crude oil in the hexane extracted 

process. In addition, the oil obtained from aqueous-based process has been consistently 

reported to have superior qualities and required less refining step than the oil from the 

hexane extraction process [3,8,14,18]. 

 

Figure 4.5: Effect of centrifuge speed on peanut oil recovery from liquid fraction at a 

constant feed flowrate of 1 mL/min at 25oC. Extraction condition: 30 minute wash, S/L 

centrifuge at 4116xg and 8 mL/min inlet flowrate 
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Figure 4.5 shows the effect of centrifugation speed (410, 500, 680 and 920×g) on 

the oil recovery and moisture level in the oil at a constant feed rate of 1 mL/min. The 

effect of the centrifugation speed on the oil in water emulsion demulsification can be 

understood by the following equation [32]: 

                                                  (Equation 4.1) 

where vo is the settling velocity of oil, ρw is the density of water, ρo is the density of oil, r 

is the radius of rotation, ω is the angular velocity of centrifugation, D is the diameter of 

the droplets and µw is the viscosity of continuous phase, which is the aqueous surfactant 

solution in our case. From the equation, it is expected that the emulsion separation will be 

more efficient at higher centrifugation speed.  

The mechanism of oil in water emulsions separation by centrifugation was 

explained by Nour et al. [32].  Higher centrifuge rotation (ω) generates heat, increasing 

the temperature of the fluid. The ratio of   increases as the temperature 

increases because the water viscosity decreases much faster than the density difference 

[32], thereby increasing the settling velocity of the oil. When increasing temperature from 

20oC to 40oC, we measured the viscosity of the aqueous phase, µw, 

(surfactant/NaCl/water mixture) to be reduced by 60% whereas the change of (ρw – ρo) 

was reduced by only 4% (data not shown).  In addition, during the gravimetrical 

separation process, oil droplets collide with each other and coalesce to form larger oil 

droplets, which also enhanced the oil/water separation process. From Figure 4.5, it can be 
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seen that when the centrifugation speed was increased from 410 to 680×g, higher oil 

recovery and lower water content in the oil phase were obtained. However, at 920×g, 

while there was no difference in the oil recovery (p > 0.05), the water content at 920×g 

was higher than that at 680×g. This was due to the rotor design of the CINC centrifuge, 

which was initially designed to operate as a contactor [25, 33]. In this case, the fluid was 

premixed and accelerated in a circumferential direction between the housing and the 

spinning rotor before entering the separation zone. Increasing the rotation speed ω too 

high caused the fluid premixing to become too vigorous, resulting in smaller oil droplets 

which are more stable, causing poorer separation efficiency [33].  

Table 4.4 shows the free crude oil recovery obtained from the surfactant wash and 

DI wash step from the best runs. At similar L/L centrifuge condition, only 44.9% peanut 

oil and 38.5% canola oil was recovered as free oil phase from the extracted oil - DI 

washing mixture versus more than 90% of free oil recovery from the extracted oil – 

surfactant washing mixture. This result was expected because in the oil extracted – DI 

washing mixture, there was much lower oil content (1 – 2 wt%), therefore, the oil in 

water emulsion was much more stable and harder to separate [11]. The total crude oil 

recovery was at 87.1 wt% for peanut oil and 85.6 wt% for canola oil, which were lower 

than those obtained from the batch scale [14]. 
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Table 4.4: Free crude oil recovery at optimum conditionsa 

  

Fraction of free oil 

recovered from 

SAEP
b
 (wt%) 

Fraction of free oil 

recovery from DI
b
 

washing (wt%) 

Total free oil 

recovery
b
 (wt%) 

peanut 85.3 1.79 87.1 

canola 83.9 1.75 85.7 
a 30 minute surfactant solution extraction, 5 minute DI wash at 25oC, S/L centrifuge at 

4116xg and 8 mL/min inlet flowrate, and L/L centrifuge at 680xg and 1 mL/min inlet 

flowrate 

b Amount of oil extracted via Soxhlet extraction was used as the basis. Free crude oil has 

moisture level less than 0.25 wt% for peanut oil and 0.30 wt% for canola oil 

 

It is worth mentioning that mechanical treatment of the oilseeds for cell wall 

rupture is also a critical parameter in improving the oil extraction efficiency. An 

approximately 50% increase in oil extraction efficiency was achieved for soybean oil 

when the flour size was reduced from 0.40 mm to 0.10 mm [34]. Therefore, we decided 

to grind the peanut to a finer size of less than 0.15 mm (mesh 120) versus the 0.21 – 0.42 

mm (mesh 35 – 70) studied above to test the extraction efficiency. Table 4.5 shows the 

effect of particle size on total oil extracted and total free oil recovery. 
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Table 4.5: Effect of particle size on fraction of oil extracted and free crude oil recovery 

for peanut at 25oCa 

Mesh size 
Flour size 

(mm) 

Fraction of oil extracted 

from surfactant wash
 b

 

(wt%) 

Fraction of free oil 

crude recovery 

efficiency
c
 (wt%) 

40 – 70 0.21 - 0.42 90.6 94.2 

larger than 100 < 0.15 93.2 71.2 
a Extraction condition: 30 minute surfactant wash, S/L centrifuge at 4116xg and 8 

mL/min inlet flowrate 

b Amount of oil extracted via Soxhlet extraction was used as the basis 

c Total amount of oil in liquid fraction was used the basis; moisture level is less than 

0.25wt% 

 

 It can be seen that while grinding improved the extraction efficiency to 93.2 wt% 

of oil from SAEP, the free oil recovery dramatically decreased to 71 wt%. We attributed 

this result to the effect that excessively fine grinding will produce smaller oil globules, 

causing more stable emulsions which are harder to break [12]. Recently, Lamsal et al. 

studied a mechanical treatment of oilseeds, where by flaking the oilseeds first and then 

extruding the flakes, they could enhance the oil extraction efficiency without causing 

stable emulsions. While this could avoid the formation of stable emulsions, it also 

denatured the proteins due to the high temperature of the extruding process. This method 

can be employed in the case where protein recovery is not an important parameter.  
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4.4 CONCLUSION  

In conclusion, we have demonstrated that a semi-continuous pilot scale system of 

aqueous surfactant enhanced vegetable oil extraction was able to achieve a total oil 

extraction efficiency similar to that obtained from batch scale [14] after aqueous 

surfactant and DI washing steps (25oC). However, the total crude oil recovery was at 87.1 

wt% for peanut oil and 85.6 wt% for canola oil, which were lower than those obtained 

from batch scale. The S/L and L/L separation steps are critical parameters in oil 

extraction by SAEP, EAEP and AEP. Further free oil recovery from the skim of the L/L 

centrifuge outlet is very challenging. It will be worth studying the effect of SAEP on 

vegetable oil extraction of extruded flakes, in which the proteins were denatured, 

resulting in less stable emulsion problems. It is also worth studying the de-emulsification 

efficiency of extracted oil – surfactant solution mixture at higher temperatures, which 

was not within the scope of this study. Compared to other AEP processes, the SAEP 

process is very competitive because it achieves oil extraction efficiency at 25oC similar to 

other AEP methods at 50–70 oC in a reasonable time frame (30 minutes).  

The scope of this study is to evaluate the pilot scale process of vegetable oil 

extraction by aqueous-surfactant based process. Protein recovery from this process 

should be investigated in the future research to evaluate the economic feasibility of this 

technology. Protein recovery from aqueous-based method has been reported to have 

superior quality to that recovered from hexane-based process [23] and can be used in 

human consumption which has a higher market value compared to the protein produced 

from hexane extraction process which can only be used for cattle consumption. Similar to 

other aqueous-based process, the adaption of this technology was motivated by 
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environmental issues. The vegetable oil extraction industry has contributed the primary 

VOC emissions in the food industry [3]. The annual hexane loss in the soybean oil 

extraction process alone in the US could be as high as 210 – 430 million liters [3]. 

Although the capitol cost of the aqueous-based extraction process is relatively higher than 

hexane extraction process [3], the low surfactant concentrations (less than 0.5 wt%) and 

ambient operating condition might be advantageous compared to the hexane 

concentration at higher than 95 wt%. This should be further evaluated in the future 

research. 
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Chapter 5 Algae, Canola or Palm Oils – Diesel Microemulsion 

Fuels: Phase Behaviors, Viscosity and Combustion 

Properties1  

 

ABSTRACT 

Vegetable oils (VG) are being considered as a renewable energy alternative for 

diesel. The high viscosity of VG causes injector operation and durability problems in 

compression-ignition engines. To alleviate this microemulsification can be considered as 

a simple method for reducing vegetable oil viscosity without the complex chemical 

transformation processes such as transesterification, which also produce undesirable 

byproducts such as glycerol. The goal of our work is to formulate reverse micellar 

microemulsions (ME) of vegetable oils and No 2 diesel (DF) blend with ethanol using 

different combinations of surfactant and co-surfactants. Ethanol, also a renewable fuel, 

was used as a viscosity modifier. We studied three VGs to blend with DF: canola, palm 

and algae oils. The ME fuels were tested for temperature stability, viscosity, water 

tolerance and their combustion performance in terms of flame radiation and pollutant 

(CO, NOx) emissions. With appropriate surfactant and co-surfactant systems, we were 

able to formulate canola and algae/diesel blend ME fuels with cloud points and pour 

points that satisfy the ASTM standards. Among all formulations, palm/diesel ME fuels 

                                                

1 This work or portions of thereof is the collaboration work with Mechanical Engineering Department and 

will be submitted to International Journal of Green Energy 
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solidified at 6 – 6.5oC due to high saturated triglyceride content. While the formulated 

ME fuels had approximately 10% lower heating value than DF, their CO emission and 

flame radiation were superior to those of DF. NOx emissions also were lower with the 

blends containing no nitrate additives, but were higher than with DF in the presence of 

nitrate additives. Thus, these results show that microemulsification is a viable technology 

for producing biofuels with desirable viscosity and that fuel properties can be adjusted 

via formulation variables without chemical processes. 

Keyword: Algae, palm, canola, biofuels, microemulsions, combustion test, phase 

behaviors, emissions, viscosity 

 

5.1 INTRODUCTION 

Due to increasing energy demands and a desire to reduce our dependence on 

petroleum fuels, research on alternative fuels has received increased attention. The 

proposed US renewable fuels initiative targets increasing the domestic supply of 

alternative fuels to 36 billion gallons by 2022 [1].Trucks and agricultural vehicles are 

typically operated with diesel fuel. In 1909, Rudolf Diesel ran a diesel-powered car using 

peanut oil for the first time [2]. Since then many research studies have focused on the use 

of vegetable oils as an alternative fuel. Research has shown that vegetable oils can be 

used as an alternative to diesel fuel. Vegetable oil contains primarily triglycerides, the 

triacylglyceryl esters of various fatty acids with glycerol. Vegetable oils are becoming 

more attractive as alternative fuels since they have similar energy content to diesel fuel 

and they are renewable, non-toxic and environmentally carbon neutral [3]. However, 

vegetable oils have high viscosities, low volatilities and often freeze at low temperature. 
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Due to their high viscosities, long-term use of pure vegetable oils causes engine problems 

such as coking of injector nozzles, sticking of piston rings, and lubricating oil 

contamination [4]. These disadvantages inhibit the use of vegetable oil as a direct 

substitute for diesel. In order to overcome the problem of high viscosity, four possible 

solutions have been proposed, including: dilution (or blending) of vegetable oils with 

diesel fuel, transesterification of vegetable oils to fatty methyl esters (FAMES) or 

biodiesels, microemulsification of vegetable oils and pyrolysis [4].  

 The simplest method to reduce viscosity is the dilution method which involves the 

direct blending of vegetable oils with diesel fuel. Although dilution decreases the 

viscosity, these fuels have similar problems to that of neat vegetable oils such as coking 

of injector nozzles, sticking piston rings and lubricating oil contamination [4]. Dilution of 

vegetable oils with diesel also shows no appreciable decrease in the pour point compared 

to neat vegetable oils [5]. Pour point, defined as the lowest temperature at which the fuel 

will flow, is a very important property of fuel, particularly in cold climate conditions. The 

use of vegetable oil blended with diesel fuel is limited because of this problem. Another 

way to reduce vegetable oil viscosity is by pyrolysis [6,7]. The pyrolysis method is the 

thermal degradation of vegetable oils to deoxygenate them and obtain an enriched diesel-

like hydrocarbon product [6]. The drawback of this method is that it is very hard to 

control the product quality. The reaction might not be complete, resulting in undesirable 

products such as tri-, di-, and mono-glycerides.  The products can also have a wide range 

of hydrocarbons that might require additional reactions [7]. Further, the viscosity of 

pyrolyzed soybean oil was found to be 10.2 cSt at 38oC, which exceeds the specified 

value of 4.1 cSt for diesel fuel [8].  
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 Transesterification of vegetable oils to biodiesel is by far the most widely studied 

approach to reduce viscosity [9].  Biodiesel is formed by the transesterification of 

triglycerides with alkyl alcohols in the presence of a basic or acidic catalyst to produce 

alkyl esters and glycerol. Biodiesel has many fuel properties comparable to No. 2 diesel 

fuel such as kinematic viscosity, specific gravity, cetane number and gross heat of 

combustion. However, biodiesel also has many drawbacks; it has a higher cloud point 

and pour point than those of the parent oils [10], limiting the use of biodiesel in cold 

environments. Cloud point is defined as the temperature at which the fuel becomes 

cloudy due to the formation of crystals which can clog fuel filters and supply lines.  As 

mentioned above, pour point is the lowest temperature at which the fuel can flow by 

itself. For example, the cloud point of methyl soyate is 15-20oC which is higher than that 

of No. 2 diesel fuels; therefore, only a blend of less than 10% of methyl soyate with No. 2 

diesel can tolerate low temperature conditions [3]. In addition, there is evidence showing 

that combustion of methyl esters increases the nitrogen oxides (NOx) in the exhaust 

emissions [11]. Another major drawback of biodiesel is the production cost. It is reported 

that it costs up to 5 times more (before taxes) to produce methyl soyate than petroleum-

based fuels [3]. 

Microemulsification, the method of interest in our research work, is another way 

to reduce vegetable oil viscosity. While this method offers many advantages, it has 

received only limited research attention. The microemulsification method involves 

mixing two immiscible fluids, which are a low molecular weight alcohol with a vegetable 

oil-diesel mixture, to reduce the vegetable oil viscosities using surfactants to stabilize the 

mixture [4]. By definition, microemulsions are thermodynamically stable dispersions of 
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oil and water stabilized by a film of surfactant [12].  These fuels appear isotropic [12] 

because of the small size of the equilibrium reverse micelles (10 to 100 nanometers). The 

advantages of the microemulsification method include low production costs, simple and 

easy implementation, no engine modification requirement, and no chemical reactions. 

Although there is a slight loss in heating value for microemulsion fuels, microemulsion 

fuels incorporating ethanol have shown lower combustion temperature, resulting in a 

drastic reduction in the emissions of thermal NOx, CO, as well as black smoke and 

particulate matter [13].  

There are very limited number of studies on vegetable oil/diesel-based 

microemulsion fuels in the literature. Only some systems containing water-

monoglycerides (or triglycerides) have been studied [12,14]. Dantas et al. [14] 

demonstrated the feasibility of forming reverse micelle microemulsions of alcohols and 

water with different ratios of vegetable oil/diesel mixtures using coconut fatty acids 

diethanol-amide (Comperlan SCD) and sodium lauryl sulfate (Texapon HBN) at 25oC. 

However, no further microemulsion fuel properties, such as viscosity or temperature 

stability, have been studied.  

The overall goal of our work is to formulate reverse micelle microemulsions 

containing a vegetable oil/diesel blend with ethanol which can be used as an alternative 

fuel to neat diesel fuels. To achieve this goal, three specific objectives were pursued: (1) 

to formulate reverse micellar microemulsion fuels with a good temperature stability, (2) 

to study the viscosity of the formulated microemulsion fuels, and (3) to evaluate 

combustion properties of selected stable microemulsion fuels. In this research work, we 

studied three different types of triglyceride oils, including canola oil, palm kernel oil and 
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algae oil (Liminaria Digita species). To date, the authors have not found a publication 

reporting  the phase behavior or combustion properties of algal-based microemulsion 

fuels. In this work, oleyl alcohol and oleyl amine were chosen as the main surfactants. 

Fatty surfactants are hydrophobic; therefore, they can be used to formulate reverse 

micellar microemulsions according to Winsor premises [12]. In addition, fatty surfactants 

can be produced from renewable sources and have 90% energy content of diesel fuels, 

making them attractive to use [15]. In this work, we combined the fatty surfactant(s) with 

fuel improving co-surfactants. These include 2-ethylhexylnitrate and 2-ethylhexanol, 1-

octanol, and ethylene glycol butyl ether as cetane enhancers and/or anti-freezing 

additives.   

 

5.2 MATERIALS AND METHODS 

5.2.1 Materials 

 Oleyl alcohol (OA, 85% active), oleyl amine (OAM, 70% active), 2-

ethylhexylnitrate (EHN, 99%), 2-ethylhexanol (EHL, 99.6%) and ethylene glycol butyl 

ether (EGBE) were purchased from Sigma Aldrich (City and State). 1-Octanol (OCT, 

99%) was purchased from Fischer Scientific (Fair Lawn, NJ). Ethyl alcohol (200 proof, 

absolute anhydrous) was purchased from PHARM-AAPER (Brookfield, CT). All 

materials were used as received. Properties of surfactant and co-surfactants are shown in 

Table 5.1. 
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Table 5.1: Properties of studied surfactant and co-surfactantsa 

Materials 

Assigned 

symbol 

Molecular 

formula 

Molecular 

weight 

(g/mole) 

Density 

(g/mL) 

Melting 

point 

(oC) 

oleyl alcohol OA C18H36O 268.5 0.849 0 - 5 

oleyl amine OAM C18H37N 267.5 0.813 18 - 26 

2ethylhexanol, isooctanol EHL C8H18O 130.2 0.833 -76 

2ethylhexylnitrate EHN C8H17NO3 175.2 0.963 < -45 

n-octanol OCT C8H18O 130.2 0.827 -15 

ethylene glycol butyl ether EGBE C6H14O2 118.2 0.902 -75 

aData provided by the manufacture 

 

Crisco® pure canola oil (The J.M Smucker Company, Orrville, OH) was 

purchased from Walmart (Norman, OK). Refined palm kernel oil was purchased from 

Mountain Rose Herbs (Eugene, OR) and algae oil (>99%) of Liminaria Digita species 

was purchased from Pure Spa Direct (Hicksville, NY). Fatty acid (FA) analysis of these 

oils is provided in Table 5.2. No. 2 Diesel fuel was purchased from a local gas station 

(Norman, OK).    
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Table 5.2: Fatty acid methyl ester (FAME) composition of studied oilsa 

Fatty acid MW  Palm Kernel Canola Algae 

(g/mole) % molar % molar % molar 

  Caprylic C8:0b 144.21 1.89 - - 

Capric C10:0 172.27 7.15 - 0.12 

Lauric C12:0 200.32 48.04 - 0.25 

Myristic C14:0 228.37 16.23 0.05 5.25 

Pentadecanoic C15:0 242.40 - - 1.47 

Palmitic C16:0 256.43 7.46 4.00 16.25 

Palmitoleic C16:1 254.41 - 0.18 3.55 

Margaric C17:0 270.45 - - - 

Heptadecenoic C17:1 268.44 - - - 

Stearic C18:0      284.48 2.20 2.65 0.59 

Oleic C18:1 282.46 16.05 56.00 7.90 

Linoleic C18:2 280.45 - 26.00 5.35 

Linolenic C18:3       278.43 0.98 10.00 6.62 

Stearidonic C18:4       276.42 - - 14.48 

Arachidic C20:0       312.53 - 0.46 0.16 

Gadeleic C20:1       310.52 - 0.02 - 

Eicosedienoic C20:2       308.50 - - 3.44 

Eicosatrienoic C20:3       306.49 - - 0.60 

Arachidonic C20:4       304.47 - - 14.60 

Eicosapentaenoic C20:5       302.46 - - 19.37 

Behenic C22:0       340.59 - 0.32 - 

Erucic C22:1       338.57 - 0.33 - 

Lignoceric C24:0       368.64 - - - 
aData provided by the manufacture 

bCx:y: x is the  number of carbons; y is the degree of saturation. For example, C18:1 

means that the fatty acid has 18 carbons and 1 double bond (unsaturation)  
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5.2.2 Methods 

Vegetable oil properties 

 Triglyceride profiles of studied vegetable oils were predicted based on the 

Antoniosi Filho et al.’s method [16]. When using this method, two rules are applied. 

First, within the isomers, only the principal triglyceride with the highest composition is 

shown, and the presented percentage value is the sum of all the individual isomers [16]. 

For example, palmitoyl-dioleoyl-glycerol (POO) and palmitoyl-linoleoyl-stearoyl-

glycerol (PLS) are isomers with the same number of carbons and double bonds (52:2). If 

the composition of POO is higher, the computer program will only show POO, but the 

percentage value shown is the sum of POO and PLS percentage composition.  Second, 

individual triglycerides with a composition of less than 0.5% of the total were ignored 

from the computer program [16].  

 

  Reverse microemulsion phase behavior study 

In order to formulate reverse microemulsions, the fraction of vegetable oil/diesel 

blend to ethanol was always kept higher than one. In order to study the effect of 

surfactant/co-surfactant (S/C) molar ratios and concentrations on the stability of the fuels 

at different temperatures, a titration method was applied in which the 

surfactant/cosurfactant at fixed mole ratios (4:1, 1:1, 1:4, 1:8 and 1:16) was gradually 

added into a 15 mL glass vial containing 5 mL of vegetable/diesel blend (50 vol%) and 2 

mL of ethanol (200 proof) and then gently shaken. The choice of vegetable oil/diesel fuel 

blend to ethanol volumetric ratio of 5:2 was based on the viscosity of the final 

microemulsion fuels as discussed later in the text. Several combinations of the surfactant 
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(OA or OAM) with co-surfactants (EHN, EHL, EGBE and OCT) were  chosen to 

determine the best combination. The microemulsion fuel samples were placed inside the 

waterbath at different temperatures (-10oC, -5oC, 0oC, 5oC, 10oC, 25oC, 30oC, 40oC, 

50oC) and observed for two weeks. The microemulsion fuel samples were also placed in 

a freezer at -23oC for two weeks to study the phase behaviors. At each temperature, the 

minimum total concentration of surfactant and co-surfactant required to completely 

solubilize ethanol into the vegetable/diesel fuel reverse microemulsion blend was 

recorded. Microemulsion fuels that had the best temperature stability properties were 

chosen for further study. 

 

Cloud point determination 

 The stable microemulsion fuels chosen from phase behavior study were tested for 

their cloud points (CP). The standard CP for No.2 winter diesel fuels (November, 

December, January and February) is -10oC max and -4oC max for No 2 summer diesel 

fuel (March – October) [17]. CP was determined by cooling the microemulsion fuels at 

1oC intervals [18]. The temperature at which cloudiness was observed was reported as CP 

(ASTM method D 2500) [18]. 

 

Pour point determination 

 Pour point (PP) is defined as the lowest temperature at which fluid movement is 

still detected. It is important to note that the standard PP for No.2 winter diesel fuels 

(November, December, January and February) is -17.8oC max, and -9.4oC max for No 2 

summer diesel fuels (March – October) [17]. PP was determined by cooling the 
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microemulsion fuels at 3 oC intervals; the temperature at which no movement was 

detected when tilting the sample was reported as PP (ASTM method D 97) [18].    

 

Effect of water on phase behavior 

 Since the maximum allowable water content in the No 2 diesel fuel is 0.05 vol% 

[17], the stable microemulsion fuels selected from above were tested for the water 

tolerance within this standard range. De-ionized water was added into the fuels so that the 

final water content in the fuels was at 0.05 vol%. The samples were placed in a freezer at 

-23oC and observed for phase separation.  

 

Viscosity study 

 The dynamic viscosity of microemulsion fuels was measured using a Brookfield 

LV III+ viscometer adapted with a Brookfield small sample adapter (SSA). The SSA 

consisted of a chamber-spindle set (Brookfield, SC4-18/13R) with a water-jacket 

connecting to a circulating temperature bath (MGW LAUDIA, model S – 1). 6.7 mL of 

microemulsion fuel sample (recommended by the manufacture) was transferred into a 

viscometer chamber and the spindle rate was set at 30 rpm. The dynamic viscosity was 

recorded when the temperature stabilized at the desired value . The kinematic viscosity 

was calculated by dividing the dynamic viscosity by the microemulsion fuel density. The 

impact of the fraction of vegetable oil to diesel, ethanol, surfactant and co-surfactant, and 

water in the blend on the viscosity of the microemulsion fuels was studied. The 

temperatures were varied from -4oC to 40oC. For No 2 diesel fuels, the standard viscosity 

at 40oC is 1.9 – 4.1 cSt [17]. Microemulsion fuels that have the best temperature stability 
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and viscosities within the range of required standard values were chosen for 

combustion/emission study. 

 

Combustion Test Setup 

  The aforementioned microemulsion fuels were tested in laminar flame 

configuration for their global emissions (NOx, CO) and global radiation. This technique 

developed by Love et al. [19,20] yields combustion properties that are attributable to only 

to the fuel chemical structure on a relative basis. The parameters studied include the 

effect of different additive formulations, vegetable oil type, vegetable oil to diesel 

fraction in the blend, and total surfactant and co-surfactant concentrations.  

Figure 5.1 shows the schematic diagram of the combustion experimental setup, 

which is identical to that of Love et al. [19,20]. Air (a mixture of oxygen and nitrogen at 

molar ratio of 1 to 3.76) was introduced into a preheated pipe through a calibrated 

flowmeter. The air was heated to 410oC using high-temperature heating tapes wrapped 

around the pipe. At this temperature, the microemulsions fuels were completely 

vaporized. 

The liquid fuel was injected at 1.6 mL/min into the preheated gas mixture using a 

compact infusion pump (Havard Apparatus, Model 975). The air temperature in the pipe 

and fuel vapor-gas mixture temperature at the burner exit were monitored and maintained 

using K-Type thermocouples connected to proportionate controllers.. The vaporized fuel 

was ignited using a propane pilot flame, which was removed after ignition. For this study, 

the equivalence ratio, the ratio of the fuel-to-oxidizer ratio ( )
actualA

F to the stoichiometric 

fuel-to-oxidizer ratio ( )
STA

F , was fixed at 7. This value for the equivalence ratio was 
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chosen so that the flame would be laminar, attached to the burner, and simulate the gas-

phase combustion regions in diesel engines.  [20]. 

 

Figure 5.1: Schematic diagram of the combustion experiment set-up. Adapted from 

reference [19] 

 

Flame imaging 

Visible flame images were taken using a digital camera (EOS Digital Rebel 

XT/EOS 350D). The images were captured under room lighting with a dark background.  
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Global flame radiation 

 The method for measuring the flame radiation was previously described in detail 

elsewhere [19,20]. Although the radiation emitted from a flame may be attributed to the 

gases CO2, and H2O, and solid soot particles, at the conditions of the present experiments 

the main contributor would be the latter [21]. Thus, flame radiation can also be 

considered as a good indicator of soot concentration in the flame. A quick method to 

compare the soot emission of microemulsion fuels relatively to No. 2 diesel fuels  can be 

through radiative heat fraction (F) which is defined in Equation (5.1) [19,22,23]: 

 

fuelfuel
LHVm

Lq
F

×

×
=

2
mod 4'' π

     (Equation 5.1) 

 

where F is ratio of the radiative heat transfer to the total energy content of the fuel 

consumed in the flame, mod''q  is the time integrated heat flux due to radiation from the 

burning fuel incident on the radiometer, L is the distance from the radiometer to the 

flame, mfuel is the mass of fuel that is injected into the setup, and LHVfuel is the lower 

heating value of the fuel injected. The lower heating value of individual components in 

the microemulsion fuels was calculated using the Mendeleyev’s formula [24], and the 

lower heating value of the blend was calculated using the method adapted from reference 

[25]. 
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Global pollutant emissions 

 The global emissions of NOx and CO of microemulsion fuels were investigated. 

The setup and method for this study were previously reported [19,20]. The emission 

index, which is the mass of pollutant released per unit mass of the fuel burnt, is calculated 

using Equation (5.2): 













 ×
×

+
=

f

i

COCO

i

i
MW

MWN

XX

X
EI

)(
2

    (Equation 5.2) 

where EIi (grams of pollutant/kilogram of fuel burnt) is the emission index of species i; 

MWi and MWf are the molecular weight of species i and the microemulsion fuels, 

respectively; Xi, XCO2 and XCO are the mole fraction of species i, CO2 and CO, in the 

combustion products respectively; and N is number of carbon atoms of the 

microemulsion fuels. It was assumed that when burning the microemulsion fuels, all 

carbon appeared as CO and CO2 in the flame exhaust. Given that tested flames were not 

liberating black smoke, there was no solid carbon deposit on the sample collector, and the 

amount of carbon radical concentration level was in parts per million, this assumption is 

justified [19]. 

 

5.3 RESULTS AND DISCUSSIONS 

5.3.1 Vegetable oil properties 

  Figure 5.2 shows the estimated triglyceride composition profile of canola, palm 

and algae oils with the x-axis representing the number of carbons in the triglyceride, 

followed by the degree of unsaturation (Cx:y).  
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Figure 5.2: Triglyceride profile of studied oils. The y-axis is the %molar composition 

and x-axis is the triglyceride structure (Cx:y means #carbon : degree of unsaturation) 

 

The triglyceride profile of the vegetable oils shows a very interesting distribution. 

Palm oil has higher saturated triglyceride and relatively lower alkyl chain length, with the 

dominant triglycerides having carbon numbers ranging from 32 to 48. Canola oil has 

relatively higher unsaturated triglycerides and relatively higher alkyl chain length, with 

the dominant triglycerides having carbon numbers ranging from 50 to 54.  Algae oil has 
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mostly unsaturated triglycerides with the triglyceride profile being spread over carbon 

numbers range from 44 to 58.  The triglyceride profile is in agreement with the physical 

state of the studied oils. At 25oC palm oil is in solid phase due to its high content of 

saturated triglycerides, whereas canola and algae oils are in liquid phase due to their high 

content of unsaturated triglycerides. The viscosities at 40oC of canola, palm and algae 

oils were 37, 30.4 and 12.6 cSt, respectively, which is consistent with their corresponding 

triglyceride profile, since the viscosities of vegetable oils generally decrease with the 

increasing degree of unsaturation and decreasing alkyl chain length [26]. Based on their 

triglyceride profiles, the molecular weights were estimated to be 880 g/mole for canola, 

756 g/mole for palm, and 848 g/mole for algae oil with the corresponding molecular 

structures: C56.8H101.3O6 for canola, C43.5H81.8O6 for palm, and C54.8H91.4O6 for algae oils. 

The predicted molecular weights and molecular structures are in agreement with data 

published in the literature [27,28]. These values were subsequently used for the 

calculation of microemulsion fuel properties. 
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5.3.2 Microemulsion phase behavior study 

Effect of surfactant to co-surfactants mole ratio on the microemulsion phase behaviors  

 

Figure 5.3: Effect of OA(S): EHL(C1): EGBE(C2) mole ratio on the phase behaviors of 

canola/diesel/ethanol microemulsions at different temperature. Canola/diesel blends at 

equal volumetric ratio. Oil phase was 5 mL and ethanol was 2 mL. See Table 5.1 for 

abbreviations. For system S:C1:C2 at 4:0.5:0.5 and 1:0.5:0.5, gel formation was observed 

at temperature below Co5−  
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 Figure 5.3 shows the effect of surfactant (S) to co-surfactant (C1, C2) mole ratio 

on the phase behavior of canola oil/diesel/ethanol microemulsions at temperatures 

ranging from -23oC to 50oC. System at S:C1:C2 = 4:0.5:05 means that the mole ratio of S 

to C1 and C2 are both 4:0.5. Formulations shown in this figure are comprised of OA as 

the surfactant, EHL and EGBE as co-surfactants. The x-axis shows  the minimum total 

molar concentrations of surfactant and co-surfactants required to completely solublize 2 

mL of ethanol in 5 mL of vegetable diesel blend at 50 vol% at each studied temperature. 

This means that to the right of the boundary, the microemulsion phase is homogenous, 

and to the left of the phase boundary two separate phases exist. From the figure, it can be 

seen that as the surfactant fraction in the mixture decreases at a fixed temperature (e.g., 

4:0.5:0.5 to 1:8:8), higher total surfactant and co-surfactant concentration is required to 

obtain a homogenous phase. This trend is expected since decreasing surfactant to co-

surfactant mole ratios decreases the amount of surfactant to make reverse micelles, 

thereby reducing the solublizing power.  

Regarding the effect of temperature on phase behaviors, a general trend was 

observed for all systems; when decreasing the temperature, higher amount of surfactant 

and co-surfactants were needed to solublize the ethanol into the oil blend. An explanation 

for this phase behavior is that when the temperature decreases, the ethanol becomes more 

hydrophilic and tends to separate from the oil phase, which was also observed for 

ethanol/diesel blend systems [29]. Higher amounts of surfactant in reverse micelles are 

required to solublize the same amount of ethanol into the reverse micellar core at lower 

temperature. For systems having S:C1:C2 ratio at 4:0.5:0.5 and 1:0.5:0.5, the phase 

boundaries stopped at temperature at -5oC because below this temperature, gel phases 
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were experienced due to crystallization of the surfactant; this type of separation is also 

known as Type I separation [29]. Type II separation occurs when the microemulsion 

phase is separated into two phases upon decreasing temperature [29]. Systems of 

S:C1:C2 mole ratio at 1:2:2, 1:4:4 and 1:8:8, show great temperature stability over the 

studied temperature range. The surfactant effect of phase behaviors becomes less 

pronounced when the number of co-surfactant moles exceed those of the surfactant. 

Decreasing the oleyl alcohol content to that of the co-surfactants reduces the heating 

value of the resulting microemulsion fuels. Therefore, among the last three systems, 

formulation with S:C1:C2 mole ratio at 1:2:2 was chosen for further study.  

 

Effect of vegetable oil type on microemulsion phase behavior 

 Figure 5.4 shows the effect of vegetable oil type (canola, palm, and algae) on the 

microemulsion phase behavior at different temperatures. The surfactant/co-surfactant 

system is OA/EHL/EGBE at mole ratio of 1:2:2. The vegetable/diesel blend was 5 mL 

and mixed at equal volumetric ratio; the ethanol volume was fixed at 2 mL. The effect of 

temperature on all of the microemulsion phase behaviors on all systems were similar to 

the trend observed above, in which higher total surfactant and co-surfactant 

concentrations were required at lower temperature to completely solubilize the same 

amount of ethanol into the vegetable/diesel oil phase. 
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Figure 5.4: Effect of vegetable oil type on microemulsion phase behaviors of OA(S): 

EHL(C1): EGBE(C2) (mole ratio at 1:2:2)Vegetable oil/diesel blends at equal volumetric 

ratio. Oil phase was 5 mL and ethanol was 2 mL. Gel formation was observed for 

palm/diesel blend microemulsions at temperature below 6.5oC. See Table 5.1 for 

abbreviations. 
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affinity towards the oil phase at higher temperature as discussed above. In comparison, 

among the three types of studied oil blends, the palm/diesel blend microemulsions 

required the lowest total surfactant and co-surfactants to solubilize the same amount of 

ethanol . The palm oil has the lowest average alkyl chainlength which makes the oil blend 

relatively more hydrophilic. However, gel formation was observed for the palm/diesel 

blend microemulsions at relatively high temperature (6.5oC) due to the high saturation 

content in the palm oil. Palm oils are generally produced in tropical countries (i.e. 

Malaysia, Thailand, Vietnam, etc), where the temperature is rarely less than 10oC for 

most of the time in the year; therefore, the formulated diesel/palm microemulsion fuels 

can be implemented in these countries. From Figure 5.4, it can be seen that canola and 

algae/diesel blend microemulsions have superior temperature stability (no gel phases 

observed).  

 

Cloud point and pour point of selected microemulsion fuels 

 Table 5.3 represents the cloud point and pour point of selected microemulsion 

fuels. In all formulations, the S:C1:C2 mole ratio was fixed at 1:2:2, and the total 

surfactant and co-surfactant concentration was 0.82 - 0.84 M or 13.94 - 15.49 wt%. 
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Table 5.3: Cloud point and pour point of selected microemulsions: 

MF
a
 S/C1/C2

b
 

Total 

conc. (M) 

Total 

conc. 

(wt%) 

Vegetable 

oil type in 

the blend
c
 

CP
 e
 

(
o
C) 

PP
 f
 

(
o
C) 

1 OA/EHL/EGBEd 0.83 14.9 canola -11 <-23 

2 OAM/EHL/EGBE 0.83 14.0 canola -5 -16 

3 OA/OCT/EGBE 0.83 14.9 canola -10 <-23 

4 OAM/OCT/EGBE 0.83 13.9 canola -6 -13 

5 OA/EHN/EGBE 0.84 15.0 canola -10 <-23 

6 OAM/EHN/EHL 0.82 15.5 canola -8 -17 

7 OA/EHL/EGBE 0.83 14.9 algae -11 <-23 

8 OA/OCT/EGBE 0.83 14.9 algae -10 <-23 

9 OA/EHL/EGBE 0.83 14.9 palm 6.5 6.0 
aAssigned microemulsion fuel# 

b S:C1:C2 mole ratio at 1:2:2 

cFraction in the vegetable/diesel blends at 50 vol% 

dSee Table 5.1 for abbreviations 

eCP standard for No 2 diesel fuel is -10oC max (November - February) and -4oC max 
(March – October) 

fPP standard for No 2 diesel fuel is-17.8oC ma (November – February) and -9.4oC max 
(March – October) 

 

Two general trends were observed. In all microemulsion fuels, the cloud point 

(CP) is lower than the pour point (PP) and the CP and PP are higher in microemulsion 

fuels comprised of OAM. Because OAM has higher melting point than OA (see Table 

5.1), this trend is expected. Microemulsion fuels (MF)1,3,5,7,8 have superior quality that 
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meet the standard CP and PP requirement of winter No. 2 diesel fuels (see Table 5.3 for 

requirements), and all microemulsion fuels in Table 5.2 but MF9 meet the standard CP 

and PP requirement for summer No. 2 diesel fuels [17].  

 

Effect of water on phase behavior 

 Up to 0.05 vol% of water was added into the microemulsion fuels at 25oC. No 

separation was observed for any of the microemulsion fuels in Table 5.3, indicating great 

water tolerance of the formulated microemulsion fuels. The water tolerance of these 

microemulsion fuels are superior to those of EB-diesel microemulsions [29], in which 

phase separation occurred instantly upon the addition of water. 

 

5.3.3 Microemulsion fuel viscosity study 

 Effect of ethanol on microemulsion fuel viscosity 

 Figure 5.5 illustrates the effect of ethanol content on the viscosity of the 

formulated microemulsion fuels for canola/diesel, algae/diesel, and palm/diesel oil blend 

at equal volume ratio and S:C1:C2 at 1:2:2 mole ratio and constant number of moles. The 

vegetable oil/diesel blend was 50 vol%. For all systems, increasing the ethanol content in 

the blend decreased the viscosity of the microemulsion fuels. However, others have 

shown that increasing ethanol fraction decreases the heating value of the fuels [30] and 

the cetane number of the fuels since ethanol has such a low cetane number of 8 [31]. 

Therefore, the desirable microemulsion fuels should have the lowest ethanol fraction that 

still meets the ASTM standard. The ASTM viscosity for No 2 diesel fuel (shown in 

horizontal dashline) is 4.1 cSt [17]. For canola and palm oil/diesel blend MF, the 
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minimum ethanol requirement to be 4.1 cSt is 24 vol%, whereas that for algae/diesel 

blend MF at the lowest ethanol amount was 14 vol%. This is expected because the 

viscosities of algae oil (15.2 cSt at 40oC) is much lower than those of palm (32.3 cSt at 

40oC) and canola oils (37 cSt at 40oC). For the later combustion test, the ethanol fraction 

in the MF was kept at 24 vol% for ease of comparison between vegetable oil types.   

 

Figure 5.5: Effect of ethanol on microemulsion viscosities of studied vegetable oil/diesel 

blends at 40oC. Surfactant and co-surfactant system is OA/EHL/EGBE at 1:2:2 mole 

ratio. See Table 5.1 for abbreviations.   
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Effect of temperature on microemulsion fuel viscosity 

 Figure 5.6a shows the effect of temperature (0 – 40oC) on the MF dynamic 

viscosities (cP) for three vegetable oil/diesel blends. Figure 5.6b shows the effect of 

fraction of algae oil in algae/diesel blend on viscosities over the same range of 

temperature. A general trend in which the viscosity increases as the temperature 

decreases was observed for all microemulsion fuels. This trend is as expected because as 

the temperature decreases in liquids, the cohesive forces of the molecules increase 

causing the molecules in the liquids to become more packed, thereby increasing the 

viscosity of the fuels [32]. In liquids, temperature effect on dynamic viscosities generally 

follows the following empirical equation: 

 

� �
��

�����	�

                                           (Equation 5.3) 

 

where � is the dynamic viscosity (cP) of the liquids at T degree Celsius; �� is the 

dynamic viscosity (cP) of the liquid at 0oC; and � and 
 are constants. The fitting plot, 

which was plot against the data in 5.6a and 5.6b, shows a well fit with R2 from 0.95 – 

0.99. It is also important to note that the viscosity of No. 2 diesel fuel was 9.76cP at 0oC. 

At this temperature the canola/diesel blend MF had a viscosity slightly higher than diesel 

fuels, while the viscosity of algae/diesel at 50 vol% blend was similar to that of No. 2 

diesel fuel.  
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Figure 5.6: Effect of temperature on dynamic viscosity of microemulsion fuels. The oil 

phase in all formulations consists of 50 vol% vegetable oil and 50 vol% of diesel fuel; 

Fig 5.6a: Effect of vegetable oil type in the blends. Fig 5.6b: Effect of algae oil fraction in 

the blends. 50% algae means the oil phase consists of 50 vol% algae and 50 vol% diesel. 
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5.3.4 Combustion properties of microemulsion fuels 

Flame imaging of microemulsion fuels 

 

 

Figure 5.7: Flame images at frequency ratio of 7 for selected microemulsion fuels, diesel 

fuel and B100 canola biodiesel. Surfactant and co-surfactants system is OA(S) : EHL(C1) 

: EGBE(C2) (mole ratio at 1:2:2 and total concentration at 0.83 M). CBD is 100% canola 

biodiesel. See Table 5.3 for microemulsion fuel abbreviations.    

 

 Figure 5.7 shows the flame images of the canola, palm and algae microemulsion 

fuels in comparison to No 2 diesel and B100 canola biodiesel (CBD). As mentioned 

above, the combustion was in a laminar flame at equivalence ratio of 7, in which the 

flame characteristics depend only on the fuel chemistry [19]. From Figure 5.7, it can be 

                Canola MF              Palm MF                    Algae MF                 Diesel        Canola CME 

                (MF1)                  (MF9)                       (MF7) 
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seen that No. 2 diesel fuel flame is completely yellow; whereas all microemulsion flames 

(for abbreviation, see Table 5.3) and the CBD flame have a small blue region near the 

burner exit followed by yellow region downstream. The blue region is an indication of -

gas phase combustion of the fuels with higher degree of oxidation, and was expected for 

the microemulsion fuels due to the presence of oxygen in the fuel molecule [19].  These 

results thus demonstrate the desirable combustion properties of the microemulsion fuels. 

 

Heating value of microemulsion fuels 

 

Figure 5.8: Lower heating values of selected microemulsion fuels, B100 canola biodiesel 

(CBD) and diesel fuel. See Table 5.3 for microemulsion fuel abbreviations. 
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 Figure 5.8 shows the lower heating value (LHV) of microemulsion fuels 

estimated using Mendeleyev’s formula for MF1 to MF9 (for abbreviations, see Table 

5.3). LHV of No 2 diesel fuel is 42.6 MJ/kg. The formulated microemulsion fuels have 

LHV ranging from 36 – 37 MJ/kg, which is slightly less than LHV of No 2 diesel fuel 

(about 10% less); this is similar to the LHV of canola biodiesel (CBD, 37.4 MJ/kg) 

[33,34]. 

 

Global radiation emissions of microemulsion fuels 

 Figure 5.9 shows the radiative fraction F of microemulsion fuel flames compared 

to canola biodiesel (CBD) flame and No. 2 diesel fuel flame Since with the tested 

microemulsion fuels, no smoke was released , F can be used as an indication of the soot 

concentration in the flame, where a higher F means higher soot concentration  [19, 20]. 

From Fig. 5.9, it can be seen that microemulsion fuels produce much lower F than No 2 

diesel and slightly lower F than CBD. This trend is expected because diesel has a high 

fraction of aromatic compounds, causing a large amount of soot, whereas the oxygen 

atoms present in the microemulsion fuels promote soot oxidation and suppress the soot 

concentration, resulting in a more complete combustion [35]. The low radiation and soot 

production of microemulasion fuels make them ideal candidates for gas turbine engines. 
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Figure 5.9: Radiative heat fraction of selected microemulsion fuels, B100 canola 

biodiesel (CBD) and diesel fuel. See Table 5.3 for microemulsion fuel abbreviations. 

 

Global pollutant emissions of microemulsion fuels 

 The global emissions of CO and NOx from the combustion of microemulsion 

fuels as well as No 2 diesel fuel and CBD are shown in Figure 5.10 and 5.10b, 

respectively.   
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Figure 5.10: Global pollutant emissions of selected microemulsion fuels, B100 canola 

biodiesel and diesel fuel: (a) Emission index of CO; (b) Emission index of NOx. See 

Table 5.3 for microemulsion fuel abbreviations. 

From Fig. 10a, it can be concluded that the microemulsion fuels burn much cleaner 

than both No 2 diesel fuel and CBD, with the CO emission, only 20%, of the 

corresponding values for diesel fuel. However, in Fig.10b, the NOx emissions of 

microemulsion fuels MF2 and MF5 are greater than the values for diesel and CBD. In 

contrast, MF1, 3, 7 and 8 have the lowest NOx emissions among the studied 

microemulsion fuels, and they are also similar to or lower than for diesel fuel or CBD. 

0

10

20

30

40

50

MF1 MF2 MF5 MF7 MF9 Diesel CBDE
IC

O
(g

/k
g
 f

u
el

 b
u

rn
t)

0

1

2

3

4

5

MF1 MF2 MF5 MF7 MF9 Diesel CBDE
IN

O
x
 (

g
/k

g
 f

u
el

 b
u

rn
t)

(5.10a) 

(5.10b) 



133 

 

MF2 and MF5 produce higher NOx emissions because of the nitrogen containing OAM 

and EHN in them. MF1, 3, 7 and 8 do not use nitrogen containing compounds, thereby 

accounting for their lower NOx emissions. 

 

5.4 CONCLUSION 

 We have demonstrated the use of surfactants and cosurfactants in formulating 

reverse micellar microemulsions of vegetable oil/diesel blends with ethanol. The 

palm/diesel ME fuels at 50 vol% palm oil in palm/diesel blend solidified at 6oC 

regardless of the surfactants or co-surfactants used. Algae and canola/diesel-based ME 

fuels formulated with oleyl alcohol showed better temperature stability than those 

formulated with oleyl amine. With appropriate surfactant and co-surfactant systems, we 

were able to formulate canola and algae/diesel-based ME fuels that meet the ASTM 

cloud point and pour point specifications for No 2 diesel fuel. At 50 vol% blend of 

vegetable oils in diesel fuel, 24 vol% of ethanol is needed to decrease the canola/diesel 

and palm/diesel-based ME fuel viscosity to meet the ASTM standard for No 2 diesel (4.1 

cSt); whereas, only 15 vol% of ethanol is needed in algae/diesel-based ME fuel. The ME 

fuels have heating values similar to that of biodiesel and 10% less than that of No. 2 

diesel fuel due to the presence of the ethanol. Global radiation and global CO emission of 

ME fuel flames are lower   than those of both diesel fuel and canola biodiesel flames. 

NOx emissions greatly depend on the surfactant/co-surfactant used. NOx emissions are 

much higher in MFs contain oleyl amine and ethyl hexyl nitrate; whereas, NOx emissions 

are similar to diesel fuels in ME fuels absence of nitrate compounds.  
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Chapter 6 CONCLUSION 

This chapter summarizes the concluding remarks of this work and the knowledge 

gained from the previous chapters. Future recommendations and potential applications 

are also discussed. The overall goal of this research work was to formulate vegetable oil 

microemulsions without alcohol or co-oil addition using a series of extended-surfactants, 

to apply the ultra low interfacial tension property of aqueous based extended-surfactants 

solution with vegetable oils to extract oil from oilseeds and to formulate temperature 

insensitive reverse micellar microemulsion fuels. This dissertation also investigated the 

laboratory pilot scale study of oilseed extraction using aqueous-surfactant-based method 

and the combustion properties of microemulsion fuels. 

In Chapter 2, we have demonstrated the ultralow interfacial tension properties of a 

series of extended-surfactants with a wide range of vegetable oils. Equilibrium IFT 

values were reached within 15 minutes, which is relatively fast. We have also shown that 

hydrophobic/hydrophilic linkers can be used in combination with extended-surfactants to 

form microemulsions with a wide range of vegetable oils. Both Winsor Type III and 

Type IV microemulsions were formed at ambient condition without the addition of co-oil 

and/or alcohols and at relatively low electrolyte concentrations. Our proposed 

formulations can form environmentally benign microemulsions with a wide range of oils, 

regardless of the triglyceride compositions, and can obtain high solubilization parameters, 

up to 10 ml/g. These microemulsion formulations are particularly attractive in 

pharmaceuticals, cosmetics and cleaning technology applications.  
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In Chapter 3, we have shown that among the extended-surfactants studied in this 

chapter, the alkyl-propoxylate-ethoxylate-sulfate class of surfactants is most suitable for 

the vegetable oilseeds evaluated in this research since it produces the lowest interfacial 

tension (IFT). Additionally, the C10-18PO-2EO-sulfate exhibits the best performance for 

vegetable oil extraction in terms of low IFT, salinity values and absence of stable 

macroemulsions. The aqueous extended-surfactant based method proved to be effective 

for extracting peanut and canola oils, being able to achieve 95% and 93% oil extraction, 

respectively. Although the fraction of oil extracted is not as high as that of the hexane 

method, which achieved 98-99% efficiency, our method offers significantly better crude 

oil quality in terms of free fatty acid. The amount of oil extracted by aqueous extended-

surfactant-based and the amount of residual oil were summed and compared to the total 

oil content analyzed by Soxhlet extraction. There was no statistical difference between 

these two values, indicating that insignificant amount of oil was lost through 

solubilization in the aqueous surfactant solution.   

We also looked at the effects of different processing parameters on vegetable oil 

extraction efficiency, including pH, surfactant concentration, extraction time, shaking 

speed, solid-to-liquid ratio, and salinity levels. We found that surfactant concentrations at 

the CµC and optimum salt concentrations are the most important parameters for 

vegetable oil extraction efficiency.  From the evaluation of crude oil quality, it was 

shown that our method offers better crude oil quality in terms of free fatty acid content 

compared to the hexane extraction method. The peanut and canola oils are clear and 

exhibit fresh smell. Hexane extracted oils have a burnt-like smell because the oils were 

heated to evaporate the hexane.  Thus, we have successfully demonstrated the viability of 
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the aqueous surfactant based extraction method for seed extraction of vegetable oils; 

future work will explore the scale-up of this process. 

In Chapter 4, we have demonstrated that a semi-continuous pilot scale system of 

aqueous surfactant enhanced vegetable oil extraction was able to achieve a total oil 

extraction efficiency similar to that obtained from batch scale after aqueous surfactant 

and DI washing steps (25oC). However, the total crude oil recovery was at 87.1 wt% for 

peanut oil and 85.6 wt% for canola oil, which were lower than those obtained from batch 

scale. The S/L and L/L separation steps are critical parameters in oil extraction by SAEP, 

EAEP and AEP. Further free oil recovery from the skim of the L/L centrifuge outlet is 

very challenging. It will be worth studying the effect of SAEP on vegetable oil extraction 

of extruded flakes, in which the proteins were denatured, resulting in less stable emulsion 

problems. It is also worth studying the de-emulsification efficiency of extracted oil – 

surfactant solution mixture at higher temperatures, which was not within the scope of this 

study. Protein recovery from this process should be investigated in the future research to 

evaluate the economic feasibility of this technology. 

Finally, in Chapter 5, we have demonstrated the use of surfactants and 

cosurfactants in formulating reverse micellar microemulsions of vegetable oil/diesel 

blends with ethanol. The palm/diesel microemulsion fuels at 50 vol% palm oil in 

palm/diesel blend solidified at 6oC regardless of the surfactants or co-surfactants used. 

Algae and canola/diesel-based ME fuels formulated with oleyl alcohol showed better 

temperature stability property than those formulated with oleyl amine. With appropriate 

surfactant and co-surfactant systems, we were able to formulate canola and algae/diesel-

based ME fuels that meet the ASTM cloud point and pour point for No 2 diesel fuel. At 
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50 vol% blend vegetable oils in diesel fuel, 24 vol% of ethanol is needed to decrease the 

canola/diesel and palm/diesel-based microemulsion fuel viscosity to meet the ASTM 

standard for No 2 diesel (4.1 cSt); whereas, only 15 vol% of ethanol is needed in 

algae/diesel-based ME fuel. The ME fuels have heating value similar to that of biodiesel 

and 10% less than that of diesel fuel due to the presence of the ethanol. Global radiation 

and global CO and CO2 emissions of ME fuels are superior to both diesel fuel and canola 

biodiesel. NOx emissions greatly depend on the surfactant/co-surfactant used. NOx 

emissions are much higher in MFs contain oleyl amine and ethyl hexyl nitrate; whereas, 

NOx emissions are similar to diesel fuels in ME fuels absence of nitrate compounds. 
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APPENDIX A Supplement materials for Chapter 1 

 

 

Figure A.1: Effect of NaCl on dynamic IFT at 20 minutes of C10-xPO-2EO-NaSO4 series 

on triolein oil (65% grade) at 27oC. 
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Figure A.2: Effect of NaCl on dynamic IFT at 20 minutes of C12-xPO-2EO-NaSO4 series 

on triolein oil (65% grade) at 27oC.

 

Figure A.3: Effect of NaCl on dynamic IFT at 20 minutes of C16-xPO-NaSO4 series on 

triolein oil (65% grade) at 27oC. 
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Figure A.4: Partial “fish” phase diagram of soybean, corn, sunflower and cottonseed oils 

at 27oC. Surfactant and linker system is C10-18PO-2EONaSO4/Oleyl alcohol/Glucopon 

at weight ratio of 3/2.5/1.2 
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APPENDIX B Supplement materials for Chapter 3 

 

Figure B.1: Effect of shaking speed on canola oil extraction using 0.35 wt% of C10-

18PO-2EOsulfate and 5 wt% NaCl at 25oC. 30 minutes contact time. Seed to surfactant 

solution ratio at 2 : 10 (g : g) 
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Figure B.2: Effect of shaking time on canola oil extraction of canola oil extraction using 

0.35 wt% of C10-18PO-2EOsulfate and 5 wt% NaCl at 25oC. Shaking speed at 150 

shakes/min. Seed to surfactant solution ratio at 2 : 10 (g : g) 

 

Figure B.3: Effect of salt concentration on canola oil extraction and dynamic IFT (data 

recorded at 20 minutes) using 0.35 wt% of C10-18PO-2EOsulfate and 5 wt% NaCl at 

25oC. Shaking speed at 150 shakes/min for oil extraction experiments. Seed to surfactant 

solution ratio at 2 : 10 (g : g) 
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Figure B.4: Effect of seed to liquid ratio on extractability using 0.35 wt% of C10-18PO-

2EOsulfate and 5 wt% NaCl at 25oC. 30 minutes contact time and shaking speed at 150 

shakes/min. 
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APPENDIX C Supplement materials for Chapter 5 

C.1 Computer program (MATLAB) for vegetable oil triglyceride profile prediction 

(chapter 5) 

 

C.1.1 Code of the graphic user interface 

 

Figure C.1.1: Illustration of the User Interface 

function varargout = veg_tri_gui(varargin) 

% VEG_TRI_GUI M-file for veg_tri_gui.fig 

%      VEG_TRI_GUI, by itself, creates a new VEG_TRI_GUI or raises the existing 

%      singleton*. 

% 

%      H = VEG_TRI_GUI returns the handle to a new VEG_TRI_GUI or the handle to 

%      the existing singleton*. 

% 

%      VEG_TRI_GUI('CALLBACK',hObject,eventData,handles,...) calls the local 

%      function named CALLBACK in VEG_TRI_GUI.M with the given input 
arguments. 
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% 

%      VEG_TRI_GUI('Property','Value',...) creates a new VEG_TRI_GUI or raises the 

%      existing singleton*.  Starting from the left, property value pairs are 

%      applied to the GUI before veg_tri_gui_OpeningFunction gets called.  An 

%      unrecognized property name or invalid value makes property application 

%      stop.  All inputs are passed to veg_tri_gui_OpeningFcn via varargin. 

% 

%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one 

%      instance to run (singleton)". 

% 

% See also: GUIDE, GUIDATA, GUIHANDLES 

  

% Edit the above text to modify the response to help veg_tri_gui 

  

% Last Modified by GUIDE v2.5 02-Aug-2010 12:13:48 

  

% Begin initialization code - DO NOT EDIT 

gui_Singleton = 1; 

gui_State = struct('gui_Name',       mfilename, ... 

                   'gui_Singleton',  gui_Singleton, ... 

                   'gui_OpeningFcn', @veg_tri_gui_OpeningFcn, ... 

                   'gui_OutputFcn',  @veg_tri_gui_OutputFcn, ... 

                   'gui_LayoutFcn',  [] , ... 

                   'gui_Callback',   []); 

if nargin && ischar(varargin{1}) 

    gui_State.gui_Callback = str2func(varargin{1}); 

end 
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if nargout 

    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 

else 

    gui_mainfcn(gui_State, varargin{:}); 

end 

% End initialization code - DO NOT EDIT 

  

  

% --- Executes just before veg_tri_gui is made visible. 

function veg_tri_gui_OpeningFcn(hObject, eventdata, handles, varargin) 

% This function has no output args, see OutputFcn. 

% hObject    handle to figure 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

% varargin   command line arguments to veg_tri_gui (see VARARGIN) 

  

% Choose default command line output for veg_tri_gui 

handles.output = hObject; 

  

% Update handles structure 

guidata(hObject, handles); 

  

% UIWAIT makes veg_tri_gui wait for user response (see UIRESUME) 

% uiwait(handles.figure1); 
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% --- Outputs from this function are returned to the command line. 

function varargout = veg_tri_gui_OutputFcn(hObject, eventdata, handles)  

% varargout  cell array for returning output args (see VARARGOUT); 

% hObject    handle to figure 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

% Get default command line output from handles structure 

varargout{1} = handles.output; 

  

  

% --- Executes on button press in pb. 

function pb_Callback(hObject, eventdata, handles) 

% hObject    handle to pb (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

[inFileName,inPathName] = uigetfile({'*.xlsx'},'Select the excel file'); 

[outFileName,outPathName] = uiputfile({'*.xls'},'Save to...'); 

inFile = inFileName; 

outFile1 = outFileName; 

outFile2 = [outFile1(1:length(outFile1)-4),'sum.xls']; 

threshold = str2num(get(handles.edThresh,'String')); 

% perform the calculation 

tri_veg_pre(inFile,outFile1,outFile2,threshold); 

  

msgbox('The calculation is finished!'); 
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% --- Executes on button press in pbQuit. 

function pbQuit_Callback(hObject, eventdata, handles) 

% hObject    handle to pbQuit (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

delete(handles.figure1) 

  

 function edThresh_Callback(hObject, eventdata, handles) 

% hObject    handle to edThresh (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

% Hints: get(hObject,'String') returns contents of edThresh as text 

%        str2double(get(hObject,'String')) returns contents of edThresh as a double 

   

% --- Executes during object creation, after setting all properties. 

function edThresh_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to edThresh (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

  

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 
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% --- Executes on button press in pbPlot. 

function pbPlot_Callback(hObject, eventdata, handles) 

% hObject    handle to pbPlot (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

[inFileName,inPathName] = uigetfile({'*.xls'},'Select the excel file','MultiSelect','on'); 

if(ischar(inFileName)) 

    temp = inFileName; 

    clear inFileName 

    inFileName{1} = temp; 

end 

for i = 1:length(inFileName) 

    lengthFile = length(inFileName{i}); 

    if(lengthFile<=6) 

        errordlg('Please choose a file ending with word "sum"','Wrong file!') 

        return; 

    else 

        fileSelType = inFileName{i}(lengthFile-6:lengthFile-4); 

        if(fileSelType~='sum') 

            errordlg('Please choose a file ending with word "sum"','Wrong file!') 

            return; 

        end 

    end 

end 
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[outFileName,outPathName] = uiputfile({'*.xls'},'Save to...'); 

% plot the result 

tri_veg_plot(inFileName,outFileName); 

 

C1.1.2  Code of the triglyceride prediction program 

function [] = tri_veg_pre(inFile,outFile1,outFile2,threshold) 

  

% size of inputs is vector of 17 elements 

[num,txt,a] = xlsread(inFile); 

  

numX = 0; 

for i = 1:length(a) 

    if(a{i,2}~=0) 

        numX = numX + 1; 

        x{numX,1} = a{i,1}; 

        x{numX,2} = a{i,2}; 

        x{numX,3} = a{i,3}; 

        x{numX,4} = a{i,4}; 

        x{numX,5} = a{i,5}; 

    end 

end 

  

totalNumCom = factorial(numX)/factorial(numX-3)+numX*numX; 

id = cell(totalNumCom,1); 

com = cell(totalNumCom,1); 

sum1 = cell(totalNumCom,1); 

sum2 = cell(totalNumCom,1); 
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numCom = 0; 

for i = 1:numX 

    numCom = numCom + 1; 

    com{numCom,1} = [x{i,1},x{i,1},x{i,1}]; 

    id{numCom,1} = sort([i i i]); 

    sum1{numCom,1} = sum([x{i,3},x{i,3},x{i,3}]); 

    sum2{numCom,1} = sum([x{i,4},x{i,4},x{i,4}]); 

end 

for i = 1:numX 

    for j = 1:numX 

        if(j~=i) 

            numCom = numCom + 1; 

            com{numCom,1} = [x{i,1},x{i,1},x{j,1}]; 

            id{numCom,1} = sort([i i j]); 

            sum1{numCom,1} = sum([x{i,3},x{i,3},x{j,3}]); 

            sum2{numCom,1} = sum([x{i,4},x{i,4},x{j,4}]); 

        end 

    end 

end 

  

for i = 1:numX 

    for j = 1:numX 

        for k = 1:numX 

            if((i~=j)&&(j~=k)&&(k~=i)) 

                numCom = numCom + 1; 

                com{numCom,1} = [x{i,1},x{j,1},x{k,1}]; 
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                id{numCom,1} = sort([i j k]); 

                sum1{numCom,1} = sum([x{i,3},x{j,3},x{k,3}]); 

                sum2{numCom,1} = sum([x{i,4},x{j,4},x{k,4}]); 

            end 

        end 

    end 

end 

  

totalNumComUse = factorial(numX)/factorial(numX-3)/factorial(3)+numX*numX; 

idUse = cell(totalNumComUse,1); 

comUse = cell(totalNumComUse,1); 

  

numComUse = 1; 

comUse{numComUse,1} = com{1,1}; 

idUse{numComUse,1} = id{1,1}; 

sum1Use{numComUse,1} = sum1{1,1}; 

sum2Use{numComUse,1} = sum2{1,1}; 

  

for i = 1:numCom 

    disp(['please wait: ',num2str(i),'/',num2str(numCom)]); 

    length_idUse = numComUse; 

    comInl = 0; % have not included yet 

    for j = 1:length_idUse 

        errorVec = id{i,1} - idUse{j,1}; 

        if((max(errorVec)==0)&&(min(errorVec)==0)) 

            comInl = 1; 

        else 
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            comInl = min(comInl,1); 

        end        

    end 

    if(comInl==0) 

        numComUse = numComUse + 1; 

        comUse{numComUse,1} = com{i,1}; 

        idUse{numComUse,1} = id{i,1}; 

        sum1Use{numComUse,1} = sum1{i,1}; 

        sum2Use{numComUse,1} = sum2{i,1}; 

    end 

end 

  

% now start the calculation using comUse and idUse 

sumCom = 0; 

for i = 1:length(idUse) 

    disp(['calculating the combination ',num2str(i),' of ',num2str(length(idUse)),' 
combinations']); 

    temp = idUse{i,1}; 

    if(max(temp)==min(temp)) % first case 

        comUse{i,3} = x{temp(1),2}*x{temp(1),2}*x{temp(1),2}/10000; 

    else 

        if(temp(1)==temp(2)) 

            comUse{i,3} = 3*x{temp(1),2}*x{temp(1),2}*x{temp(3),2}/10000; 

        elseif(temp(1)==temp(3)) 

            comUse{i,3} = 3*x{temp(1),2}*x{temp(1),2}*x{temp(2),2}/10000; 

        elseif(temp(2)==temp(3)) 

            comUse{i,3} = 3*x{temp(2),2}*x{temp(2),2}*x{temp(1),2}/10000; 

        else 
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            comUse{i,3} = 6*x{temp(1),2}*x{temp(2),2}*x{temp(3),2}/10000; 

        end 

    end 

    sumCom = sumCom + comUse{i,3}; 

end 

for i = 1:length(idUse) 

    comUse{i,2} = comUse{i,3}*100/sumCom; 

end 

  

% display only when > 0.01 

sumLimit = 0; 

numComUseLimit = 0; 

for i = 1:length(idUse) 

    if(comUse{i,3}>=threshold) 

        numComUseLimit = numComUseLimit + 1; 

        comUseLimit{numComUseLimit,1} = comUse{i,1}; 

        comUseLimit{numComUseLimit,3} = comUse{i,3}; 

        idUseLimit{numComUseLimit,1} = idUse{i,1}; 

        sum1UseLimit{numComUseLimit,1} = sum1Use{i,1}; 

        sum2UseLimit{numComUseLimit,1} = sum2Use{i,1}; 

        sumLimit = sumLimit + comUseLimit{numComUseLimit,3}; 

    end 

end 

for i = 1:length(comUseLimit) 

    comUseLimit{i,2} = comUseLimit{i,3}*100/sumLimit; 

end 

% write to file 1         
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xlswrite(outFile1, comUseLimit);             

  

use = zeros(length(sum1UseLimit),1); 

numGroup = 0; 

for i = 1:length(sum1UseLimit) 

    if(use(i)==0) 

        numGroup = numGroup + 1; 

        sameSum = 0; 

        for j = 1:length(sum1UseLimit) 

            if(use(j)==0) 

                
if((sum1UseLimit{i}==sum1UseLimit{j})&&(sum2UseLimit{i}==sum2UseLimit{j})) 

                    sameSum = sameSum + 1; 

                    group{numGroup}(sameSum,1) = j; 

                    groupSum1{numGroup,1} = sum1UseLimit{j}; 

                    groupSum2{numGroup,1} = sum2UseLimit{j}; 

                    use(j) = 1; 

                end 

            end 

        end 

        if(sameSum==0) 

            group{numGroup}(1,1) = i; 

            groupSum1{numGroup,1} = sum1UseLimit{i}; 

            groupSum2{numGroup,1} = sum2UseLimit{i}; 

            use(i) = 1; 

        end 

        idGroupRep{numGroup} = idUseLimit{i}; 

    end 
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end  

  

for i = 1:numGroup 

    for j = 1:length(group{i}) 

        groupPer{i}(j) = comUseLimit{group{i}(j),2}; 

    end 

    [maxValue,index]= max(groupPer{i}); 

    sumGroup{i,1} = comUseLimit{group{i}(index),1}; 

    sumGroup{i,2} = sum(groupPer{i}); 

    sumGroup{i,3} = groupSum1{i}; 

    sumGroup{i,4} = groupSum2{i}; 

    sumPTK = 0; 

    for k = 1:length(idGroupRep{i}) 

        sumPTK = sumPTK + x{idGroupRep{i}(k),5}; 

    end 

    sumPTK = sumPTK + 38.0488; 

    sumGroup{i,5} = sumPTK; 

end 

% write to file 2         

xlswrite(outFile2, sumGroup);    
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C1.1.3 Code of the plotting program 

function [] = tri_veg_plot(inFileName,outFileName) 

  

% load file from inFileName 

for i = 1:length(inFileName) 

    [num{i},txt{i},a{i}] = xlsread(inFileName{i}); 

    c{i} = [cell2mat(a{i}(:,3)) cell2mat(a{i}(:,4)) cell2mat(a{i}(:,2))]; 

    [sort_c{i},index_c{i}] = sortrows(c{i},[1,2]); 

end 

  

% create the final list 

numC = 1; 

allC(1,1) = sort_c{1}(1,1); 

allC(1,2) = sort_c{1}(1,2); 

for i = 1:length(inFileName) 

    for j = 1:length(index_c{i}) 

        include = 0; 

        for k = 1:numC 

            if((sort_c{i}(j,1)==allC(k,1))&&(sort_c{i}(j,2)==allC(k,2))) 

                include = 1; 

            else 

                include = min(include,1); 

            end 

        end 

        if(include==0) 

            numC = numC + 1; 

            allC(numC,1) = sort_c{i}(j,1); 
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            allC(numC,2) = sort_c{i}(j,2); 

        end 

    end 

end 

allC = sortrows(allC,[1,2]); 

% add data from each inFile to the final list 

c_table{1,1} = 'combination'; 

for i = 1:length(inFileName) 

    c_table{1,i+1} = inFileName{i};  

end 

for i = 1:numC 

    c_table{i+1,1} = ['C',num2str(allC(i,1)),':',num2str(allC(i,2))]; 

    for j = 1:length(inFileName) 

        for k = 1:length(index_c{j}) 

            if((allC(i,1)==sort_c{j}(k,1))&&(allC(i,2)==sort_c{j}(k,2))) 

                c_table{i+1,j+1} = sort_c{j}(k,3); 

            end 

        end 

    end  

end 

for i = 1:numC+1 

    for j = 1:length(inFileName)+1 

        if(isempty(c_table{i,j})) 

            c_table{i,j} = 0; 

        end 

    end 

end 



 

164 

  

figureName = outFileName(1:length(outFileName)-4); 

figure('Name',figureName) 

for i = 1:length(inFileName) 

    for j = 1:numC 

        data(j,i) = c_table{j+1,i+1}; 

    end 

end 

for j = 1:numC 

    xtick_loc(j,1) = j; 

    xtick_label{j,1} = c_table{j+1,1}; 

end 

bar(data,'group'); 

legend(inFileName); 

set(gca,'XTickLabelMode','manual','XTick',xtick_loc,'XTickLabel',xtick_label); 

xlswrite(outFileName, c_table);    
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C.2  Lower heating value (LHV) calculation for microemulsion fuels (Chapter 5) 

 

This section represents the sample calculation for microemulsion fuel MF1. Table C.2.1 

shows the properties of MF1: 

Table C.2.1: MF1 fuel properties 

 Molecular 

formula 

Molecular 

weight, MWi 

(g/mole) 

Density, ρρρρi 

(g/mL) 

Mole 

fraction, 

Xi  

Canola C56.8H101O6 879.99 0.94 0.050 

OA
a
 C18H36O 268.48 0.81 0.029 

EHL
a
 C8H18O 139.23 0.83 0.053 

EGBE
a
 C6H14O2 118.17 0.90 0.053 

Ethanol C2H6O 46.05 0.79 0.640 

No 2 Diesel C16H34 226.27 0.85 0.175 
a For abbreviations, see Table 6.3 

 

The LHVi of  each component in the fuel was calculated using Mendeleyev’s formula as 

shown in Equation B.1: 

���� � 34.013��� �  125.6��� � �10.9!�� � 2.512"9��� � #��$         Equation C.2.1 

where c i’, h i ’, o i’, w i’ are the amounts of separate elements in unit mass of the fuel 

component and can be calculated as below: 

��
% �

�&.'�(#*+

,-+
                                          Equation C.2.2 

��
% �

�.'�(#.+

,-+
                                            Equation C.2.3 
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!�
% �

�/(#0+

,-+
                                             Equation C.2.4 

where MWi is the molecular weight of the component i and #Ci, #Oi, #Hi are the number 

of carbon, oxygen and hydrogen atoms in the component i, respectively. Water content in 

all components in the fuel has no water; therefore, it is assumed that wi’ = 0 

 

Amounts of separate elements in unit mass of canola can be calculated as below: 

�123�42
% �

12.01 ( 56.8

879.99
� 0.7752 

�123�42
% �

1.02 ( 101.3

879.99
� 0.1157 

!123�42
% �

16 ( 6

879.99
� 0.1091 

Therefore, the lower heating value of canola (LHVcanola) is: 

���123�42 � 34.013 ( 0.7552 �  125.6 ( 0.1157 �  �10.9 ( 0.091 � 2.512"9

( 0.1157 � 0$ 

���123�42 � 37.09 (MJ/kg) 
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Table C.2.2 shows the c i’, h i ’, o i’ and LHVi of the individual component in the 

microemulsion fuel MF1 

Table C.2.2 Calculated values of c i’, h i ’, o i’ and LHVi of the microemulsion fuel MF1 

 c i’ h i ’ o i’ LHVi (MJ/kg) 

Canola 0.7752 0.1157 0.1091 37.09 

OA
a
 0.8052 0.1352 0.0596 40.66 

EHL
a
 0.7378 0.1393 0.1229 38.10 

EGBE
a
 0.6098 0.1194 0.2708 30.09 

Ethanol 0.5216 0.1313 0.3476 27.48 

No 2 Diesel 0.8492 0.1515 0 44.48 
a See Table 6.3 for abbreviations 

 

The lower heating value of the microemulsion fuel blend (LHVMF) was calculated based 

on equation C.2.5: 

���,7 �
∑ 9+:+;.<+

∑ 9+:+
     Equation C.2.5 

Therefore, the lower heating value of MF1 (LHVMF1) is: 

���,7�    

�  "0.050 ( 0.94 ( 37.09 � 0.029 ( 0.81 ( 40.66 � 0.053 ( 0.83 ( 38.10 � 0.053 ( 0.90 ( 30.09

� 0.640 ( 0.789 ( 27.48 � 0.175 ( 0.85 ( 44.48$

(
1

0.050 ( 0.94 � 0.029 ( 0.81 � 0.053 ( 0.83 � 0.053 ( 0.90 � 0.640 ( 0.789 � 0.175 ( 0.85
 

 

 

���,7� � 37.10 MJ/kg 
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C. 3 Cost estimation of microemulsion fuels  

 Raw material cost for formulated microemulsion fuels was estimated based on the 

current price as of December 2010 and shown in Table C.3.1. 

Table C.3.1: Raw material cost  

Materials USD/ton USD/kg USD/gal 

Canola
a
 884 0.884 3.045 

No 2 Diesel
b
 1102 1.102 3.197 

OA
c
 890 0.890 2.860 

EGBE
c
 900 0.900 3.073 

EHL
c
 1090 1.090 7.630 

Ethanol
c
 701 0.701 2.202 

 aCanola Council of Canada (http://www.canolacouncil.org/canolaprices.aspx); 

bOklahoma local price; cAlibaba global trade market (http://www.alibaba.com).  

 

Based on Table C.3.1, raw material cost for MF1 (see Table 5.3 for abbreviations) 

at 15.7 wt% of total surfactant and additives (OA/EHL/EGBE, mole ratio at 1:2:2; 5 mL 

of 50 vol% diesel and canola blend; 2 mL ethanol) would be $2.875/gal. At equivalent 

energy content to No 2 diesel fuel, raw materials for MF1 would cost $3.162/gal; whereas 

the current selling price of No 2 diesel fuel in Oklahoma is $3.196/gal. Table C.3.2 shows 

the breakdown cost of MF1. 
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Table C.3.2: Cost estimation of MF1 

 Composition in 1 kg  

(wt%) 

Breakdown cost in 1 

kg of MF (USD) 

Canola 31.8 0.351 

No 2 Diesel 29.4 0.259 

Ethanol 22.0 0.155 

OA 5.1 0.045 

EGBE 5.6 0.056 

EHL 5.1 0.050 

 MF1 cost per kg (USD) 

MF1 cost per gallon (USD) 

0.916 
2.875 

 

Production cost of microemulsion fuels is negligible compared to that of biodiesel 

because it only requires simple stirring. Therefore, total cost of raw materials and 

production of microemulsion fuels is less than that of soybean and canola biodiesel at 

equivalent energy content, which was approximately $4.360/gal without incentive and 

$3.015/gal with incentive (http://www.eia.doe.gov/oiaf/analysispaper/biodiesel/). The 

cost of B20 biodiesel (20 vol% canola and 80 vol% No 2 diesel fuel) is $3.430 without 

incentives.  

C.4 Confirmation of aggregate formation using dynamic light scattering equipment 

 Confirmation of aggregate formation for studied fuel blends was performed using 

particle sizer (PSS-NICOMPTM  ZLS 380, Santa Barbara, CA). Formulated fuel blends 

had particle size in the range of 1 – 20 nm, with 75% particle size distribution in the 

range of 5 – 6 nm. This result confirmed the presence of aggregates in the blends or 

possible reverse micellar  microemulsion formation.     


