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Abstract

The observation of a new, polar class of homonuclear diatomic molecules, called

trilobite molecules, is presented. The molecules have permanent electric dipole

moments of ∼ 20− 100 Debye. The observations are in agreement with calcu-

lations carried out by our collaborators at the Institute of Theoretical Atomic,

Molecular, and Optical Physics (ITAMP), at Harvard University. The unique

mechanism that binds the molecules will be described. The molecules are not

observable inside of a Magneto-Optical Trap (MOT) due to the low density of

trapped atoms, ∼ 1× 1010 cm−3. This thesis also describes the improvements

to the apparatus in an effort to increase the density of trapped atoms. The

improvements are two-fold. First, a system to slow an atomic beam using the

Zeeman effect is described. The slowed atomic beam is used to load the MOT

instead of from a background vapor, enhancing both the loading rate and the

number of trapped atoms. A Monte Carlo simulation of the slowing process is

presented. Second, an optical dipole trapping system has been developed and

successfully implemented which captures atoms at a temperature of ∼ 40 µK

and at a density of ∼ 2× 1013 cm−3. The increase in density augments two-body

event rates by a factor of ∼ 4× 106, and allows experiments to probe smaller

interaction distances. This is demonstrated by the photoassociation of these

exotic trilobite molecules.
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Chapter 1

Introduction

1.1 Rydberg Atoms and Exotic Molecules

This thesis describes the observation of an exotic class of diatomic molecules called

trilobite molecules. These homonuclear diatomic molecules uncharacteristically

have giant permanent electric dipole moments and are bound by a unique

mechanism. For this binding mechanism to function, the diatomic molecule

needs to consist of a ground state atom and a highly excited atom called a

Rydberg atom. The low-energy scattering of the excited Rydberg atom electron

off of the ground state atom leads to a molecular bond. These molecular bonds are

extremely weak, ∼ 100 MHz (∼ 500 neV). Accordingly, ultracold environments,

∼ µK, are required to observe the molecules. The trilobite molecules observed in

this thesis are created from an optically trapped sample of ground state cesium

atoms at relatively high density (∼ 2× 1013 cm−3) and low temperatures, ∼ 40

µK. This work is an extension of our group’s previous studies on ultracold atomic

and molecular systems containing cesium Rydberg atoms.

Rydberg atoms are atoms whose valence electron is in a highly excited state,

or has a large principal quantum number, n. The general interest in Rydberg

atoms stems from the fact that the highly excited electron gives the atom

exaggerated properties [1]. Because the electron is far away from the remaining
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core, important atomic properties of Rydberg states, such as lifetimes and

polarizabilities, scale with n. Also, the large separation between the electron and

the core make the electron very sensitive to external perturbations. This makes

Rydberg atoms ideal candidates for manipulation with external fields. Coupled

with more recent advances in ultracold technology, Rydberg atoms have opened

up major areas of research such as quantum information processing [2, 3, 4, 5],

and quantum electrodynamics with resonant cavities [6, 7]. Entanglement of

mesoscopic quantum systems was finally achieved using Rydberg states [8].

Rydberg atoms can be also used as sensitive experimental tests of theoretical

predictions to high accuracy. These range from experimental verification of

radiative and blackbody lifetimes [9, 10, 11] to an experimental verification of

the existence of a quantized vacuum field [12].

Earlier theoretical work from this group addressed the physics of Rydberg

atoms and, in particular, how pairs of ultracold Rydberg atoms interact [13].

We used the theory to accurately predict a kinetic energy gain of a photoini-

tiated Rydberg atom collision within a magneto-optical trap (MOT), which

was measured by our group [14]. The theory also suggested that application of

small electric fields could give rise to potential wells at very large, ∼ µm size,

distances and that the wells support hundreds of bound states [15]. These exotic

“macrodimer” molecular states were then observed by our group in 2009 [16]. The

observed macrodimers were bound at extremely large distances, 3 µm - 9 µm,

due to interatomic multipolar forces and a background electric field. Because
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these molecules are bound at such large distances, they can be created from

samples with a relatively small density, ρ ∼ 1010 cm−3.

The average interatomic spacing, d, of particles with a uniform density can

be estimated by d ∼ ρ−1/3. With typical MOT densities near 1 × 1010 cm−3,

the average atomic spacing inside the MOT is d ∼ 5 µm [17]. This means the

probability for a pair of atoms to be within the bonding distance for macrodimer

formation is almost unity. The constituents of the trilobite molecules observed

in this thesis interact at much smaller distances, ∼ 50 nm. This distance is

two orders of magnitude larger than the average interatomic spacing in the

MOT, so there are almost no pairs of atoms available at this range. The obvious

solution to access smaller interaction distances is to increase the initial available

density. While it may be straightforward to say, achieving a higher density poses

a significant experimental challenge and a large portion of this thesis focuses on

the improvements to the apparatus required to do so.

Trilobite molecules have a very unique binding mechanism. This binding

mechanism results from the scattering of the Rydberg atom electron off of the

ground state atom, see Fig. 1.1. Because the Rydberg atom is so much larger

than the ground state atom, the force between the two is largely dominated by

interaction of the Rydberg atom electron and the ground state atom and can be

described in the context of electron-neutral atom scattering. Low-energy electron

scattering off of neutral atoms is an old problem. Its theoretical description

first appeared in 1934 by E. Fermi [18]. Fermi described the observed shift of
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Figure 1.1: A ground state 6S1/2 cesium atom in the orbit of a cesium

Rydberg atom. The remaining core is isoelectronic with xenon.

spectral lines of excited alkali gases due to the presence of other gases at high

pressures. He introduced the concept of a scattering length to explain why the

sign of the shift depended on the species of foreign gas. Furthermore, due to the

frequent scattering of the electron off of the foreign gas particle, the interaction

could be described as a mean-field potential whose sign depended on the sign of

the scattering length: negative scattering lengths lead to attractive interactions.

Using these ideas, Omont further worked out the details of the interaction of

Rydberg states with neutral particles in 1977 [19]. By this time, it was already

realized that ground state atoms could be bound to Rydberg atoms by this

electron scattering mechanism, but the bonds are so weak, it was hard to imagine

an experiment that could observe them. After the birth of laser cooling led to
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Bose-Einstein condensation in 1995 [20, 21], Omont’s work was re-examined by

Greene et al. in 2000. The authors realized that the newly accessible regimes of

density and temperature provided a unique opportunity to exploit this bonding

mechanism. They predicted that two classes of these exotic molecules could

be formed by this mechanism, polar and non-polar molecules. The non-polar

variety contain Rydberg atoms of low angular momentum character, l < 3, and

the polar class involves Rydberg states of high angular momentum character,

l ≥ 3, so-called trilobite molecules. The polar class of molecules were predicted

to have huge permanent dipole moments in the 1 kD range (1 D∼ 3.34× 10−30

C·m), which make them amenable to electric field manipulation.

In 2009, molecules belonging to the non-polar class were observed in the

rubidium system with l = 0 [22]. Two years later it was demonstrated experi-

mentally and theoretically that these molecules actually had a small permanent

dipole moment of ∼ 1 D [23]. The key ingredient in formation of the permanent

dipole moment is the accidental degeneracy of the rubidium nS Rydberg states

with (n− 3)l hydrogenic states. The near-degeneracy leads to a mixing of the

high angular momentum states with the parent nS Rydberg state. The mixing of

these hydrogenic states leads to the development of a permanent dipole moment

[24].

The cesium trilobite states observed in this thesis are different from the

rubidium trilobite states for several reasons. First, the e− + Cs(6s) system has a

5



resonance belonging to the 6s6p state which is only 8.0 meV above 6S1/2 [25].

This resonance affects the positions of the potential wells so the observed trilobite

states provide indirect evidence of its location. Second, the hydrogenic manifold

of high-l states is closer to the nS threshold in cesium compared to rubidium.

This causes more of the states to interact with each other and produces avoided

crossings between them, producing wells above the nS thresholds. Finally, these

trilobite states asymptotically correspond to states with high angular momentum,

l > 3. This leads to the formation of giant permanent dipole moments ∼ 2 orders

of magnitude higher than the rubidium case. Homonuclear diatomic molecules

have symmetry that normally precludes the existence of a permanent dipole

moment. These exotic homonuclear diatomic molecules have permanent electric

dipole moments ∼ 20− 100 D, which should be contrasted to that of sodium

chloride, with a permanent dipole moment of 9 D. Understanding how to create

these molecules serves as a benchmark for future experiments which exploit their

giant dipole moments. Furthermore, understanding how these molecules decay

can give insight into other exotic states of matter such as ion pair states.

1.2 Thesis Organization

This thesis is organized as follows. In Chapter 2, the theoretical principles of

major laser cooling and trapping experimental techniques used in this thesis are

explained. Magneto-optical traps (MOTs) and far-off resonance traps (FORTs)
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are theoretically described as well as Zeeman slowing of an atomic beam. A

Monte Carlo simulation of the Zeeman slowing process is also presented. Chapter

3 discusses the experimental apparatus. The cesium ovens and vacuum systems

for the main chamber and the Zeeman slower are described. The time-of-flight

spectrometer used for generation and detection of ions is described as well as

the quadrupole-field switching circuit used to control the current in the MOT

coils. The home-built diode laser systems and tapered amplifier design are also

presented in Chapter 3. Chapter 3 ends with a description of the construction

details for the Zeeman slower and FORT, including the alignment procedure

used to overlap the FORT and MOT. Rydberg atoms are explained theoretically

in Chapter 4 including an experiment that uses Rydberg atoms to determine

the velocity resolution of our time-of-flight spectrometer. Photoionization of

Rydberg atoms is discussed in Chapter 5. The theoretical principles leading

to the decrease in lifetime of the Rydberg state due to photoionization are

presented. Chapter 5 also describes an experiment that systematically measures

Rydberg atom lifetimes with and without the presence of the photoionizing

FORT beam. The observation of cesium trilobite states is the main result of this

thesis and is described in Chapter 6. The unique binding mechanism is described

theoretically and the experiment carried out to observe the molecules is explained.

The experimental observations are compared to theoretical calculations from

collaborators at the Institute for Theoretical Atomic, Molecular, and Optical

Physics (ITAMP), at Harvard University. Following Chapter 6, the main body
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of the thesis is concluded with a look toward future directions in Chapter 7. The

details of a two-level atom in the presence of an electromagnetic radiation field are

presented in Appendix A. The Mathematica code used to run the Monte Carlo

simulation of the Zeeman slowing process is reproduced in Appendix B. Finally,

a list of peer-reviewed journal publications as well as a list of presentations to

which I contributed is given in Appendix C.
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Chapter 2

The Experimentalist’s Toolbox: A Theoretical

Introduction

2.1 The Magneto-Optical Trap

2.1.1 Introduction

The magneto-optical trap (MOT) has often been called the workhorse of atomic

physics. The MOT is a hybrid trap for neutral atoms which relies on optical

forces and an inhomogeneous magnetic field to trap the atoms. The MOT is

of practical use in the laboratory for a variety of reasons. The trapping ability

afforded by the MOT is robust, allowing capture of billions of neutral atoms even

from a room temperature vapor [17]. The MOT can therefore also serve as a

reservoir of cold atoms with which to load traps having lower trapping potentials.

While construction of a MOT is challenging, the technology is well-known and

many resources exist to research construction details (see, for example, [17] and

references therein). The demands on laser power are small and the required

magnetic field gradients are easily achievable. The lasers used for most alkalis (Rb

and Cs being amongst the most popular) are inexpensive and can function quite

well with relatively simple designs and circuitry. A functioning magneto-optical

trap relies on relatively simple theoretical mechanisms, which are described in

the next section.
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2.1.2 Radiation Pressure and Optical Molasses

Upon absorption of a photon with wavevector k, particles receive a momentum

kick of magnitude ~k in the direction the photon was traveling. Spontaneous

emission of the photon, however, is in a random direction. If a directed beam of

photons is used and the process of absorption and emission is repeated several

times, the net effect is to put a force on the particles in the direction of the beam.

The force is distributed over the surface area of the beam of photons, so this

effect is often called radiation pressure. The quantitative features of this force

may be illuminated by examining a two-level atom in the presence of a laser field

(see Appendix A). As shown in Appendix A, the steady-state solutions of the

optical Bloch equations yield equilibrium populations in the ground and excited

states (see Eq. A.25). The excited state population, ρee, may be rewritten by

defining the on-resonance saturation parameter, s0 = 2Ω2/Γ2, where Ω is the

Rabi frequency and Γ is the natural linewidth of the excited state. The excited

state population is now given by

ρee =
s0/2

1 + s0 + (2δ/Γ)2
, (2.1)

where δ is the detuning of the laser frequency from the atomic transition frequency.

An atom absorbs photons at the rate Γρee, each with momentum of ~k so that

the force from the laser beam is simply F = ~kΓρee. If the atom has a velocity,

v, the doppler shift must be taken into account by making the replacement

δ → δ − k · v. The force from a single beam on the two level atom is then given
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by

F = ~kΓ
s0/2

1 + s0 + (2(δ − k · v)/Γ)2
. (2.2)

Opposing forces on the atom may be arranged by using a mirror to retroreflect

the laser beam. In this case, the forces add and expanding the total force in

(kv/Γ) gives

Ftot '
8~k2δs0v

Γ(1 + s0 + (2δ/Γ)2)2
+O(kv/Γ)4. (2.3)

For small velocities, this force is proportional to the velocity and the sign of

the force is determined by the sign of the detuning. If the laser detuning is

negative (red detuning), the force opposes atomic motion much like friction.

This effect of viscous damping led to the term optical molasses. If the atom is

exposed to near-resonant light from a laser with a linewidth smaller than Γ, the

atomic motion is rapidly damped to very small velocities. This notion of using

near-resonant laser light to cool atoms is now nearly 40 years old [26, 27].

An optical molasses obviously cannot be used to cool atoms to zero velocity.

In addition to cooling the atoms down, the photons also cause heating. The

heating is caused by recoil of the atom from the momentum changes associated

with absorption and emission. To find the equilibrium temperature of atoms in

an optical molasses we can equate the heating and the cooling rates caused by

the laser beams. The cooling rate is given by Ftot · v. Heating occurs at the

rate 2Γ due to the two opposing beams. When the atom absorbs a photon, it

experiences a momentum change ~k and a corresponding kinetic energy change
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of (~k)2/2M = ~ωr. The energy removed from the field is then increased by ~ωr.

The opposite is true for the emitted photon, with average energy returned to the

field decreased by ~ωr. The average loss of energy from the light field is thus

2~ωr. The heating rate is then 4~ωrΓ. The equilibrium kinetic energy has a

minimum at δ = −Γ/2 and its temperature equivalent is given by TD = ~Γ/2kB,

where kB is Boltzmann’s constant. TD is called the Doppler temperature and

TD = 125 µK for Cs [17]. The Doppler temperature limit is easily overcome with

polarization-gradient cooling methods [28, 29, 30]. Temperatures of tens of µK

are readily achieved in the laboratory using polarization-gradient cooling. While

the atoms are viscously confined within the optical molasses region, they are not

localized in space at high density. To trap the atoms, a restoring force around

some center is required. This is provided by an inhomogeneous magnetic field,

whose field strength is linearly dependent on the displacement from the center.

The details of how this provides a restoring force is given in the next section.

2.1.3 Magnetic Field and Laser Polarization Dependence

The magnetic field for the MOT is produced by two coils arranged in anti-

Helmholtz configuration. At the geometric center of this configuration the

magnetic field is zero. As indicated in Fig. 2.1, the magnetic field increases

linearly away from the center with the field lines always pointing toward the

center. In the presence of the magnetic field, B, the atomic levels experience
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Figure 2.1: (a) Coils arranged in anti-Helmholtz configuration. (b)

Arrangement needed for a MOT. The polarizations for each axis are

shown. The arrows represent the magnetic field strength.

state-dependent Zeeman shifts. The energies are shifted by an amount

E = gFµBmFB, (2.4)

where F is the total angular momentum (including nuclear spin), mF is the

magnetic sublevel, and µB is the Bohr magneton. To understand the effect of the

magnetic field, we consider an atom with zero angular momentum in the ground

state and one unit of angular momentum in the excited state. The magnetic

field shifts the energy of the excited states according to Eq. 2.4, so the shift

is linear with distance from the center. For an atom placed at z < 0 (see Fig.

2.2), the excited mF = 1 state is closer to resonance with the red detuned laser

than the mF = −1 state. Since the atom is in the ground (mF = 0) state, a
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Figure 2.2: An energy diagram of the magneto-optic trap. The atom

(located at z < 0) is assumed make F = 0→ F ′ = 1 transitions. The

detuning, δ′, is the total laser detuning experienced by the atom. It

includes the Zeeman and Doppler shifts; δ′ = δ ∓ k · v ± µ′B/~. µ′

is the effective magnetic moment for the transition.

beam with σ+ polarization (∆m = 1 transitions) is absorbed more readily and

a beam with σ− polarization. If the beam coming from z < 0 has σ+ and the

counterpropagating beam has σ− polarization, a difference in radiation pressure

is generated that always pushes the atom towards z = 0. The cloud of atoms is

then compressed into a dense region around the magnetic field zero, creating a

magneto-optical trap, or MOT. We can find the restoring force of the MOT by

examining Eq. 2.3 for stationary atoms. The magnetic field causes an effective

detuning of δ′ = δ ± µ′B/~, where µ′ is the effective magnetic moment of the

transition. If we consider the magnetic field along the z axis of Fig. 2.1 to be
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B(z) = B0z, the detuning along the ±z axis is given by δ ± µ′B0z/~. The force

may be expanded about z = 0 to obtain

Fz =
µ′B0

~k
8~kδs0

Γ
(
1 + s0 + (2δ/Γ)2)2 z. (2.5)

This force also depends on the sign of the detuning and is a restoring force

for red detunings. The MOT can therefore be attributed a harmonic potential

energy.

U(z) =
1

2
κz2, (2.6)

where Fz = −κz in Eq. 2.5. It should be noted that the magnetic field gradient

along the other two axes are half as large as the z gradient, so that the restoring

force along those directions is also half as large. This leads to an elongated

trapping potential energy surface that is compressed along the z axis. The

trap depth of the MOT, or trap potential in temperature units, can be several

hundred mK allowing capture of many atoms from the background vapor.

2.2 Zeeman Slowing of an Atomic Beam

2.2.1 Introduction

For a MOT to function, the 3D region of optical molasses must be able to cool the

atoms. Because most thermal atoms have high velocities, their Doppler shifts are

hundreds of MHz, which is large enough to shift the molasses beams completely

out of resonance. This means that the molasses only functions for those atoms
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whose velocity is small enough. The natural linewidth of the transition selects

an approximate maximum velocity with which the atoms may be captured and

cooled by the molasses beams, kv ∼ Γ, v ∼ 4.5 m s−1 for Cs. The number of

atoms this represents is described by a Maxwell-Boltzmann distribution. The

probability distribution function for a Maxwell-Boltzmann distribution of speeds

as a function of temperature is given by

f(v, T ) = 4π

(
m

2πkBT

)3/2

v2e

(
−mv2

2kBT

)
, (2.7)

where m is the atomic mass (133 a.u. for cesium), and kB is Boltzmann’s constant.

All of the atoms are contained in the distribution so
∫∞

0
f(v)dv = 1, but only

9.5× 10−4% of the atoms are moving 4.5 m s−1 or slower at room temperature.

This means the overwhelming majority of the atoms in the molasses region

cannot be captured by the beams and, therefore, lead to collisions with atoms

that can. This can be overcome by loading the MOT from an atomic beam

rather than background vapor. This has two advantages. First, the background

pressure is lowered so trapped atom lifetimes are increased. Second, the loading

rate of atoms into the MOT can be greatly increased. Both effects lead to higher

steady-state atom numbers. In the following sections, generation of the atomic

beam will be discussed followed by our selected method of slowing the beam:

Zeeman slowing.
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2.2.2 Atomic Beam Generation

A significant vapor pressure of the alkali metals may be developed by heating

the solid metal near its melting point. The low melting point of cesium (28.5 oC

[31]), affords significant vapor pressure even at room temperature. The vapor

pressure, Pv, as a function of temperature may be calculated in the solid and

liquid phases as [31]

log10Pv = 2.881 + 4.711− 3999

T
(solid)

log10Pv = 2.881 + 4.165− 3830

T
(liquid).

(2.8)

The vapor pressure is in Torr. The number density of cesium atoms in a container

may then simply be calculated from the ideal gas law.

n0 =
P

kBT
(2.9)

If a hole is introduced into the container of cesium, the atoms will leak out of

the hole into a region of lower pressure. The mean-free-path of the atoms is

related to the density and collision cross section through the relationship

λmf =
1√

2σn0

. (2.10)

The cesium atoms have a mean-free path of several meters for the temperatures

and pressures used in this thesis [32], which is much larger than the size of the

oven. The oven is therefore operating in the effusive limit, where the cesium

atoms are much more likely to collide with a piece of apparatus before another

cesium atom.
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The flux of atoms out of the aperture, Φ, may be calculated once the density

and the average velocity of the atoms are known. The average velocity of the

atoms is related to their temperature by

vave =

√
8kBT

πm
. (2.11)

Note this is also just
∫∞

0
vf(v)dv, using the speed distribution function in Eq.

2.7. The flux out of the aperture is then calculated by [33]

Φ =
1

4
n0vave. (2.12)

The rate at which the number of atoms, N , leave the oven aperture is given by

Ṅ = ΦAa, (2.13)

where Aa is the area of the aperture. Atoms exiting the aperture in this way will

have directions θ, and φ, and speed v, such that their rate can be determined by

[33]

dṄv,θ,φ =
n0Aa
π3/2α3

v e−v
2/α2

cos θ v2 sin θdvdθdφ, (2.14)

where α =
√

2kBT/m. The directions are generally distributed over the hemi-

sphere opposite the oven. When loading the MOT from a vapor cell, this is

certainly true and atoms are far more likely to hit the walls before drifting into

the trapping (molasses) region. If a second aperture is placed further downstream

from an oven, the ranges of θ and φ can be severely restricted. The atoms exiting

the second aperture form an atomic beam, which is highly directional. The
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atomic beam has natural cylindrical symmetry. Transforming Eq. 2.14 into

cylindrical coordinates yields

dṄvr,vz =
2n0Aa
π1/2α3

vr e
−v2r/α2

vz e
−v2z/α2

dvrdvz, (2.15)

where vr and vz are the speeds in the radial and axial directions of the beam,

respectively. Integration of Eq. 2.15 yields a loading rate, R, of the atoms due

to the atomic beam.

R = Ṅ
(

1− e−v2z,max/α
2
)(

1− e−v2r,max/α
2
)

(2.16)

The steady-state number of atoms may be computed by the ratio of the loading

and the loss rates. In the vapor cell, the loss rate is relatively high because of

the necessary high background pressure required to create many low-velocity

atoms capable of capture by the molasses. This loss rate is significantly reduced

by using an atomic beam because a significant fraction of all of the atoms in the

beam can be slowed. This combined with the high directionality of the atomic

beam greatly reduces the background pressure. This means if the loading rate

from the atomic beam is even within an order of magnitude of the loading rate

from the background vapor, MOTs with substantially higher atom numbers may

be generated. The effect of slowing the atoms can be seen in the first exponential

term of Eq. 2.16. If vz,max is made large, the loading rate also gets large. The

size of the apertures and the distance between them define a maximum vr, but

the ranges of vz are completely determined by the slowing process, which is

considered in the next section.
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2.2.3 Zeeman Slowing

The main focus of cooling an atomic beam relies on radiation pressure from

a counterpropagating laser beam. The idea is to keep the atomic transition

frequency in resonance with the counterpropagating beam at all points along

the beam. This is complicated by the fact that the atoms see a varying Doppler

shift as they scatter resonant photons. There are several methods of overcoming

this difficulty. The frequency of the counterpropagating laser may be changed

(chirping) to compensate for the change in the Doppler shift. This “chirped

slowing” can efficiently be done by use of RF electronics [34], but pulses of

slowed atoms are produced rather than a continuous beam. This chirped slowing

method was extended by Ketterle et al. [35], where the angle between the

atomic beam and laser beam was varied instead of the laser frequency. Since this

was done with isotropic light, a continuous beam was generated. Continuous

atomic beams can also be generated if external fields are used to tune the atomic

transition frequency instead of tuning the compensation for the Doppler shift.

This has been done in the context of electric fields (Stark slowing) [36] and with

magnetic fields (Zeeman slowing) [37]. Because the demands on electrical power

can be very high for Stark slowers, we chose to design a Zeeman slower.

The basic idea of Zeeman slowing is to use a spatially varying magnetic field

such that the atomic resonance frequency is changed to match the changing

Doppler shift as the atoms travel along the atomic beam. According to Eq. 2.4, a
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change in mF is required to change the energy. This means circular polarizations

must be used to drive transitions. Two complimentary methods of slowing

are used involving orthogonal circular polarizations of laser light [37, 38]. The

Zeeman shifts of the stretched states of the D2 transition in cesium are shown in

Fig. 2.3, showing the states connected by the polarizations of light. The states

Figure 2.3: Zeeman shifts of the stretched states of the D2 transition in cesium.

connected by σ+ polarization have a separation that increases with magnetic

field as ∆Eσ+ = µBB, whereas the states connected by σ− polarization similarly

decrease with magnetic field. The fundamental difference in the two choices of

polarizations is that σ+ light must use a decreasing magnetic field to compensate

for a decreasing Doppler shift and σ− must use an increasing magnetic field. The

Zeeman slower construction outlined in this thesis is designed for σ− polarization,

so I will focus on the theoretical aspects concerning this polarization, but the

results are extendable to σ+ Zeeman slowers.

In a σ− Zeeman slower, the resonance condition leading to maximum decel-
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eration is δ + k · v + µBB(z)/~ = 0. Solving for the magnetic field, we arrive

at

B(z) =
~
µB

(δ − kv(z)) . (2.17)

This magnetic field assumes constant resonance with the field, which therefore

assumes constant (maximum) acceleration provided by the scattering force of

Eq. 2.3.

a =
~kΓ

2m

s0

1 + s0 + 4 (δ + kv + µBB(z)/~)2 /Γ2
(2.18)

The maximum acceleration on resonance is then given as

amax =
~kΓ

2m

s0

1 + s0

. (2.19)

Simple kinematic equations may then be used to solve for v(z) in terms of the

initial velocity of the atoms, v0.

v2(z) = v2
0 + 2amaxz

v(z) = v0

√
1− z/z0

(2.20)

where z0 = v2
0/2amax is the distance required to stop the atoms at this acceleration

and is called the slower length. For atoms to exit the slower, the acceleration

must be some fraction of the maximum, amax = cas, where now as is the designed

acceleration of the slower and c < 1. This means the previous resonance condition

is shifted by an amount ∆ placing the new resonance velocity at ∆/k, see Fig.

2.4. Including the extra detuning, ∆, to the magnetic field expression Eq. 2.17,

and using the velocity in Eq. 2.20, we arrive at the following expression for the
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Figure 2.4: Atomic deceleration as a function of velocity. The atom

maintains a constant deceleration as as the atom is slowed to lower

and lower velocities.

ideal magnetic field profile for the Zeeman slower.

B(z) = Bb −Bt

√
1− z/z0 (2.21)

The bias-field is given by Bb = −~/µB(δ + ∆) and the taper-field is given by

Bt = ~kv0/µB. To simulate the slowing process, the ideal field of Eq. 2.21 is

used in the acceleration given by Eq. 2.18, and the classical equations of motion

can be solved. To fully simulate the slowing, a Monte Carlo simulation was

created that allows determination of the optimum slowing profile parameters.

2.2.4 Slowing Efficiency Simulation

Determining the relevant slowing parameters was an iterative process. Three

important calculations were required to simulate the successful slowing of atoms.

First, a simplified 1D calculation was used to hone in on the correct values of
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the bias and taper fields. Second, a program was generated that determines

the winding pattern based on the desired magnetic field. The magnetic field

from the winding pattern is put back into the 1D calculation to re-optimize

other parameters, such as the intensity and detuning of the counterpropagating

“slower” laser. The final program does a full 3D Monte Carlo simulation of the

slowing process.

The 1D calculation does not take gravity into account, or the effect of

a transverse velocity on the slowing process, but it can be used to find the

correct parameter space for effective slowing. The program solves Newton’s

second law along the z-axis, where the acceleration is given in Eq. 2.18 and

the magnetic field is replaced by Eq. 2.21. The resulting differential equation

is numerically solved with the initial conditions z(0) = 0 and z′(0) = v0. The

program allows for dynamic manipulation of the relevant parameters for slowing,

namely Bb, Bt, s, δ, v0, and z0. A screen shot of the output is shown in Fig. 2.5.

The position and velocity as a function of time will determine the possibility of

capture by the optical molasses. The position as a function of time (top graph

in Fig. 2.5) needs to be monotonically increasing, showing that the atoms do not

turn around in the slower. Both graphs should also show deceleration followed

by a constant final velocity out of the slower toward the molasses region. The

desired final velocity needs to be . 30 m s−1, allowing for capture from the

power-broadening molasses beams. The stability of the slowing process can also

be tested by making small changes in the control settings and observing the
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Figure 2.5: Screen shot of the 1D calculation output. The manipu-

lation controls may be used to optimize the final velocity. The top

graph shows z(t) and the bottom graph shows vz(t).

change in final velocity.

In order to physically construct the winding pattern required for the tapered

magnetic field, we first chose a slower magnet length. The results from the

1D calculation suggested the slowing process was rather immune to the slower

length, provided it was long enough. Available space for the slower system

limited the length of the slower to < 90 cm. An eventual slower length of 855

mm was settled on. In order to calculate the winding pattern, the sizes of the
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wire and the radius of the slower tube must be defined. By noting that the

magnetic field is proportional to the turns per unit length, the number of turns

of wire needed to produce the desired field may be estimated. Once a design

operating current is chosen, the winding pattern is determined. The magnetic

field of each turn is determined by the Biot-Savart law and summed along the

length of the slower. The ideal field and the wire-wrapped field are shown in

Fig. 2.6. The wire-wrapped magnetic field is a very good approximation to the

Figure 2.6: Magnetic field profiles for the Zeeman slower. The red

curve is the ideal magnetic field. The blue curve is the magnetic field

generated from the solenoid winding pattern.

ideal field. The maximum value of the wrapped field is ∼ 60 Gauss below the

ideal field, however, so the effect on the slowing process must be accounted for.

This is done by importing the magnetic field profile back into the program that

solves the 1D equation of motion. The result with the winding pattern included

is shown in Fig. 2.7. The smaller maximum magnetic field requires a much

different detuning to achieve effective slowing. The effect of the wire wrapping
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Figure 2.7: Screen shot of the 1D calculation output. The top graph

again shows z(t) and the bottom graph shows vz(t). The structure

of the winding pattern is evident in the velocity.

can easily be seen in the velocity of the atom as it travels down the slower. The

parameters from this program may be used as input for the full Monte Carlo

simulation, which is reproduced in Appendix C.

The Monte Carlo simulation calculates the trajectories of atoms in 3D,

including the effects of gravity and a transverse velocity. The initial conditions

used for the differential equations are defined from the initial distributions of

positions and velocities. The positions are random numbers chosen from a

uniform disk with the size of the last aperture. The diameter of the apertures

and the distance between them defines a maximum transverse velocity, vtrans,
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that the atoms can have and still exit the oven. The velocities in the x and

y directions are random numbers that lie between ±vtrans. The velocity in

the z direction is a random number that comes from the Maxwell-Boltzmann

distribution of speeds for a given temperature (see Eq. 2.7). An example of

the initial distributions is shown in Fig. 2.8. The positions are determined

from an aperture of 1 mm in diameter and the speeds down the slower are

chosen from a Maxwell-Boltzmann distribution at 350 K. We then have all of

Figure 2.8: (a) The distribution of positions from which x(0) and

y(0) are determined. (b) Dots represent random speeds down the

slower for T = 350K. The curve is a plot of Eq. 2.7 for T = 350K.

the initial conditions necessary to solve the 3D equations of motion, F = ma,

where F = 〈0,−mg, Fz〉. The force down the slower, Fz, may be chosen to come

from the ideal field or any imported field. The trajectories are then calculated

for a given saturation parameter, s, and laser detuning, δ. Any number of

atom trajectories may be simulated, but Nenter = 1000 is enough to accurately

estimate the slowing efficiency. The number of atoms captured by the molasses,
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Nc, is determined by a capture radius and the final velocity. If the final velocity

is below the capture velocity (∼ 30 m s−1 for our power-broadening beams), and

lands in a disk (with the capture radius) at the appropriate distance from the

beginning of the slower, the atom is considered captured. The slowing efficiency

is then the ratio Nc/Nenter.

The slowing process cannot slow all atoms. If the atoms are moving too fast,

they will always see the light as too blue and not be slowed. On the other hand,

if they are moving too slow, the transverse velocity of the atoms will carry them

out of the capture radius. This effect can be seen in the Monte Carlo simulation.

Fig. 2.9 shows the position of the atoms in the xy-plane at z = z0 + L = 1134.4

mm, where L is the distance from the end of the slower to the center of the

trapping region. The number of atoms falling in the capture radius (yellow dots

in Fig. 2.9) is then Nc, and the slowing efficiency may be calculated.

The data in Fig. 2.9 correspond to a simulation with the ideal magnetic field,

Eq. 2.21, where Bb = 250 Gauss and Bt = 220 Gauss. The laser parameters

are s = 16 and δ = −2π · 365 MHz. These parameters were determined from

Fig. 2.5. The slowing efficiency in this simulation is 55%. From run to run, the

efficiency varies by about 3%.

To simulate real slowing, the wire-wrapped magnetic field profile in Fig. 2.6

is imported and the laser parameters are taken from Fig. 2.7. The results of

the Monte Carlo simulation are shown in Fig. 2.10. For these parameters, the

simulation predicts a slowing efficiency of 41%. The number is reduced from
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Figure 2.9: Screen shot of the Monte Carlo output for the ideal case.

The dots represent the atoms arriving in the plane z = 1134.4 mm

from the slower entrance. The blue dots are atoms that were moving

too fast initially to be caught in the slowing process. The yellow

dots are atoms that have been effectively slowed and captured. The

magenta dots are atoms that have been slowed, but their transverse

velocity has taken them out of the capture radius. Note each atom

arrives in this plane at different times.

the ideal case because the slowing laser is closer to resonance, decreasing the

maximum velocity of atom that can be slowed.

The final-velocity distribution may recovered by binning the number of

atoms according to their velocity as they reach the trapping region. The velocity

distribution for 5 m s−1 bins is shown in Fig. 2.11. The velocity distribution

spikes at vz = 24.28 m s−1, indicating that a large fraction of atoms have been
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Figure 2.10: Screen shot of the Monte Carlo output for realistic input parameters.

Figure 2.11: Velocity distribution of atoms at the center of the

trapping region. A significant fraction of the atoms have been slowed.

slowed to the same final velocity.

The slowing efficiency may be used to estimate the flux of atoms that can be
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loaded into the MOT. All we need is the flux of atoms coming out of the last

aperture and then the loading rate of atoms into the MOT may be determined

and compared with the loading rate into a MOT from the background vapor.

Eq. 2.16 may be used to estimate the loading rate of atoms into the MOT. For

background vapor loading, the capture velocity of the molasses beams is used

to determine vr,max and vz,max. Assuming the vapor cell is T = 25◦C and the

atoms are effusing from a 1/2” hole, the MOT can load atoms at ∼ 20 MHz.

Note that this number may also be obtained by scaling the number of atoms

exiting the oven per second (Eq. 2.13) by the probability the atoms will have a

velocity below the capture velocity.

Using Fig. 2.11 one can see that atoms below vz = 180 m s−1 have been

effectively slowed, setting the value of vz,max. The maximum radial velocity,

vr,max, is reduced from the value determined by the apertures because as the

atoms slow down, they spend more time drifting off of the axis of the beam.

Taking these times into account, a conservative estimate for vr,max is 0.3 m s−1.

For an oven temperature of T = 50◦C and aperture diameters of 1 mm, the

number of atoms exiting the first aperture is given by Eq. 2.13 as 2 x 1013 s−1.

The loading rate calculated by Eq. 2.16 is then 25 MHz. To compare this value

with the simulation, the number of atoms making it through both apertures

must be estimated. This is done simply by scaling the number of atoms exiting

the first aperture by the relative solid angle available from the second aperture.

This represents a factor ∼ 1 x 10−6, so atoms are entering the slower at a rate of
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∼ 20 MHz. They are roughly slowed with an efficiency of 50%, so the simulation

predicts a loading rate of ∼ 10 MHz of atoms, which is in good agreement with

the rate determined from Eq. 2.16.

As previously described, even if the loading rate into the MOT from the

atomic beam is close to that from the background vapor, larger steady-state

number MOTs may still be achieved. This is because loading the MOT from

an atomic beam can lead to much lower pressures in the MOT region, reducing

trap loss due to collisions with background atoms. Loading MOTs with very

large steady-state atom numbers opens up the possibility to load atom traps

with lower trapping potentials from the MOT. Further, traps which do not rely

on the scattering of photons can lead to much higher densities. One such trap

which has a low trapping potential and high maximum density is an optical

dipole trap, which is described in the next section.

2.3 Far Off-Resonance Traps

2.3.1 Introduction

The force of atoms interacting with an off-resonant laser field is called the

optical dipole force. The radiation pressure force relies on the scattering of

photons whereas the dipole force originates from the interaction of the induced

atomic electric dipole moment with a detuned laser field where the absorption

probability is small or negligible. Both forces are present for an atom in a laser
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field, but near resonance, the radiation pressure force dominates. When the

detuning from resonance is large and the dipole force dominates, optical dipole

traps can be realized in which the photon scattering rate from the atoms is

very small. Because scattering of photons in these traps can be eliminated,

light-induced mechanisms that limit the density are eliminated as well. These

traps then open an entire experimental regime not accessible with the MOT (see

the comprehensive review of [39]).

The salient features of optical dipole traps may be obtained by considering

an atom subject to a classical laser field. The laser field drives the oscillation

of the dipole moment in a manner similar to a forced harmonic oscillator. If

the driving field is at a frequency higher than an atomic resonance, the atom

oscillates out of phase with the field and the atom is repelled from the field.

Conversely, if the driving field is below the resonance (red detuned), the induced

dipole moment will oscillate in phase with the field and the atom will have its

energy reduced. The latter case of red detuning is the only type of optical dipole

trap considered here and will be assumed throughout the rest of this Section.

For a driving frequency of ω, the laser field is written in complex notation as

E(r, t) = ε̂Ẽ(r)e−iωt + c.c. (2.22)

The atomic dipole moment is similarly given in complex notation as

p(r, t) = ε̂p̃(r)e−iωt + c.c. (2.23)

The complex amplitudes Ẽ and p̃ are simply related by the complex polarizability,
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α(ω).

p̃ = α(ω)Ẽ (2.24)

The real part of the polarizability (dispersion) gives rise to the interaction

energy and the imaginary part of the polarizability (absorption) is responsible

for dissipation of energy through the scattering of photons.

The atomic polarizability may be obtained by modeling the atom as a Lorentz

classical harmonic oscillator. In this model, the electron (mass me, charge −e),

is harmonically bound to the infinitely massive nucleus with oscillation frequency

equal to the atomic resonance frequency. As a semi-classical extension, we may

consider the quantum mechanical decay rate for a two-level atom, Γ (Eq. A.20).

The equation of motion then becomes

ẍ+ Γẋ+ ω2
0x = − e

me

E(t). (2.25)

The complex polarizability may then be obtained and is given by

α(ω) =
e2

me

Γ/ω2
0

ω2
0 − ω2 − i (ω3/ω2

0) Γ
. (2.26)

The dipole potential, Ud = −1/2〈pE〉, may be written as

Ud(r) = −3πc2

2ω3
0

(
Γ

ω0 − ω
+

Γ

ω0 + ω

)
I(r), (2.27)

where I(r) = 2ε0c|Ẽ|2 is the intensity of the laser field. The dipole force is

obtained by taking the gradient of the potential energy Fd(r) = −∇Ud(r). The

gradient acts on the laser intensity I(r) so a focusing laser beam can create a
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restoring force at the focus if the laser tuned to the red of any atomic transition.

The potential energy for this case is shown in Fig. 2.12.

Figure 2.12: A focusing laser beam (top) creates a potential well with

which to trap atoms (bottom).

The absorbed power (due to the imaginary part of the polarizability), P =

〈ṗE〉, produces a scattering rate of photons, Γsc~ω = P . Using the previous

relation for the intensity of the laser field, the rate of scattering photons from

an optical dipole trap is given by [39]

Γsc(r) =
3πc2

2~ω3
0

(
ω

ω0

)3(
Γ

ω0 − ω
+

Γ

ω0 + ω

)2

I(r). (2.28)

Optical dipole traps function in three different detuning regimes. The first

type operates close to resonance but with δ � Γ so that the rotating wave
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approximation is valid (see Appendix A). The proximity to resonance means

terms oscillating with 1/(ω0 + ω) can be neglected. This near-resonance type of

dipole trap was actually the first type of neutral atom trap realized by experiment

[40]. A second type of dipole trap is operated when the detuning is so large

Figure 2.13: Different regimes of the optical dipole force traps. (a)

Relevant states and splittings of the D lines of cesium. (b) Simplified

levels seen by the optical dipole trapping laser used in this thesis.

that the rotating wave approximation ceases to be valid. This generally occurs

when the detuning is larger than the fine structure splitting of the atom (see Fig.

2.13). This far-off resonance trap (FORT) is the main subject of this thesis and

will be compared with the third type of dipole trap to further illuminate the

properties of optical dipole traps. The third type of optical dipole trap operates
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in an extreme detuning regime such that ω � ω0 and the radiation field appears

nearly constant. This quasi-electrostatic trap (QUEST) is compared to a FORT

in the next Section.

2.3.2 QUEST vs. FORT

The FORT described in this thesis uses 1064 nm light. This light is sufficiently

detuned that the fine structure is not resolved (see Fig. 2.13). We can again

approximate this as a two-level atom that has the weighted average of both D

lines by defining an effective transition frequency, ωeff , where

ωeff =
1

3
ωD1 +

2

3
ωD2, (2.29)

and a corresponding effective linewidth

Γeff =
1

3
ΓD1 +

2

3
ΓD2. (2.30)

The appropriate dipole potential and scattering rate may be obtained by using

these new effective parameters in Eq. 2.27 and Eq. 2.28.

UFORT (r) = − 3πc2

2ω3
eff

(
Γeff

ωeff − ω
+

Γeff
ωeff + ω

)
I(r)

ΓFORT (r) =
3πc2

2~ω3
eff

(
ω

ωeff

)3(
Γeff

ωeff − ω
+

Γeff
ωeff + ω

)2

I(r)

(2.31)

The same equations hold for the QUEST, but because we now have ω � ω0,

the trapping potential may be obtained through Eq. 2.24, using the static value

of the polarizability, αstatic ≡ α(0).

UQUEST (r) = −αstatic
2ε0c

I(r) (2.32)
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The scattering rate of photons in the QUEST simplifies to

ΓQUEST (r) =
6πc2

~ω5
eff

(
ω

ωeff

)3

Γ2
effI(r) (2.33)

.

The main difference in the two types of traps is in their scattering rates. For

trap depths that are on the order of 1 mK, the scattering rate of photons in the

FORT is counted in minutes whereas scattering in the QUEST is counted in

days. In both cases, scattering is eliminated enough to provide a large increase

in density. Because few-body events occur at rates proportional to powers of

the density, the increased density afforded by far-off resonance traps allows for

more sensitive detection of these events as well as the ability to probe to smaller

interaction distances.
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Chapter 3

Experimental Apparatus

Experimental physicists must become very familiar with the various pieces of

apparatus required to perform an experiment. The experimental needs can be

vast, spanning many different areas of knowledge. This chapter focuses on those

aspects of the apparatus which are most important in generation of ultracold

samples of atoms.

3.1 Ultrahigh Vacuum System and Cs Ovens

The lifetime of a trap is characterized by the time it takes for a trapped atom

to be lost. Collisions with background atoms in the chamber are the major

source of trapped atom loss when the density is not too high. If the background

pressure becomes too large, collisions become so frequent that a trap cannot

be maintained. For this reason traps for neutral atoms must be located in

regions of ultrahigh vacuum (UHV). In our experiment the atoms are provided

by an oven which heats cesium to a background vapor pressure. The UHV and

oven environments for the main experimental chamber and Zeeman slower are

different and will be explained separately.
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3.1.1 Main Chamber System

Trapped atoms are captured at the center of a stainless steel spherical chamber.

The main chamber is evacuated with a series of pumps separated by a system

of valves. The valves are controlled by a programmable logic controller that

prevents chamber contamination in the event of a power failure. There are

two pumps with high pumping speeds attached to the main chamber. A non-

evaporable getter (NEG) pump (SAES CapaciTorr 400-2) is attached so that

the complete surface area of the getter material is exposed to the interior of the

spherical chamber, see Fig. 3.1 A turbo-molecular pump (Leybold TMP340MC)

Figure 3.1: (a) Backing system for main chamber turbo-molecular

pump (TMP). The TMP can be backed by the mechanical pump or

diffusion pump, or both valves can be closed for chamber isolation.

(b) Main chamber pumps: Non-Evaporable Getter (NEG) pump and

TMP.

is connected to the chamber through an 8” tee. The turbo pump is backed by a
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diffusion pump (Varian M2), which is backed by a rotary-vane mechanical pump

(Leybold D65B).

Cesium atoms may be introduced into the main chamber through an oven.

The oven consists of an ampule of cesium contained in a flexible bellows which is

connected to the chamber by a right-angle mechanical valve. When the ampule is

replaced, the valve is opened and the oven is baked out with the cesium ampule

in tact. When UHV pressures are reattained, the cesium can be exposed to the

vacuum by breaking the ampule (a small glass container) and opening the valve.

Gently heating the oven (T ∼ 30◦C) produces enough background vapor to form

a MOT. If background pressure is not an issue for the experiment, the oven may

be exposed to higher temperatures for MOTs with very high atom numbers.

3.1.2 Zeeman Slower System

The frame of the Zeeman slower is a 2.75” stainless steel nipple that is 3 feet long.

The slower frame is attached to the main chamber at one end and a mechanical

gate valve (VAT 0132-UE08) at the other (see Fig. 3.2). The VAT valve can

withstand differential pressures of 2 atm and allows for complete isolation of

the slower from the main chamber. A six-way mini (1.33”) cross is attached to

the VAT valve. Attached to the cross is a 20 L s−1 ion pump (Varian VacIon).

The cross is fitted with a glass viewport to allow for atomic beam diagnostics.

A larger cross (2.75”) is attached to the mini cross. This cross contains two

more pumps, an ion pump (Gamma Vacuum 40S) and a turbo-molecular pump
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Figure 3.2: Diagram of the Zeeman slower. The pumps and magnetic

field taper are shown.

(Leybold TMP50), and also holds the apertures (1 mm diameter) that define

the initial size of the atomic beam. The pumping speeds are shown in Fig. 3.2.

The oven that supplies the atomic beam is a similar construction to the main

chamber oven. The oven is attached to a cross that has a glass viewport to

look down the axis of the atomic beam. This viewport is crucial for the initial

alignment of the atomic beam to the trapping region located in the center of

the time-of-flight spectrometer.

3.2 Time-Of-Flight Spectrometer

The entire chamber system is centered on a time-of-flight spectrometer. The

primary function of the spectrometer is to detect positive ions. When a positive

ion is created (primarily through field-ionization or photoionization), it can be

projected towards a micro-channel plate (MCP) detector. The arrival time-of-

flight distributions and positions the ions strike the detector provide information
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about the dynamics in the trap. This information can be used in conjunction with

high-resolution spectroscopy to learn a great deal about atomic and molecular

systems.

3.2.1 Spectrometer and Trap Geometry

The spectrometer hangs from all-thread and extends the length of the spherical

chamber. The spectrometer is fixed around the chamber center with aluminum

shims. The spectrometer consists of mounts for the magnetic field coils used for

the MOT, electric field shaping plates, and a grounded flight tube all situated

above a z-stacked MCP detector. The spectrometer is rendered to scale inside the

chamber in Fig. 3.3. The magnetic field coils are wound from hollow copper wire

that allow water flow for cooling. Three shaping plates surround the trapping

region to provide a uniform electric field when a voltage is applied to the top

plate. The voltage is delivered to the plates by a high-voltage pulser (DEI

PVX-4140) powered from a high voltage power supply (Glassman EK3R200).

Resistors are placed between the plates such that the resistance between the

top plate and ground (bottom plate) is 3.1 kΩ. Positive ions are accelerated by

the applied voltage down a grounded flight tube where they strike a position

sensitive z-stacked MCP detector. The detector (Sensor Sciences 40 mm triple

z-stack) can spatially resolve ions hitting 8 µm apart and produces fast timing

signals < 4 ns wide. The detector allows for very fast acquisition rates and

can be used in conjunction with a fast analyzer to reproduce information in
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Figure 3.3: Rendering of the main chamber. The spectrometer is

shown as a cross-section. The bright sphere at the center represents

the MOT.

3D. Signals from the detector are processed with a fast multi-channel analyzer

(MCA) card (FastComTec P7886) with 500 ps time resolution.

3.2.2 Quadrupole Field Switching

The presence of magnetic fields are not desirable in many experiments. Because

the magnetic fields in these experiments are generated by electromagnets, the

time required to switch the field off can be very large due to the large inductance.

The quadrupole field required for the MOT can interfere with the loading of
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the dipole trap, so we need to turn it off during the dipole trap loading period.

This loading period lasts ∼ 50 ms, so we want the field to shut off much faster

than that time. This required the construction of a fast magnetic field switching

circuit.

A relatively simple circuit was constructed based on an insulated-gate bipolar

transistor (IGBT). The idea of the circuit is to quickly dissipate the large voltage

(back emf) generated by suddenly switching off the magnetic field. Dissipating

large voltage spikes is a common practice and can be easily accomplished with

transient-voltage suppressors (TVSs). These TVSs are just Zener diodes with

high reverse breakdown voltages. This allowed the construction of the simple

circuit shown in Fig. 3.4. The IGBT (Semikron SKM200GB) is a voltage (Vgate)

controlled device that can change its state of conductivity. Once the IGBT stops

conducting electricity, a back emf is generated on the coil. Protection diodes

(Vishay 40EPS12) are placed in front of the power supply that have a breakdown

voltage equivalent to the IGBT. If TVS diodes (Littelfuse 15KP60A) are placed

in series as in Fig. 3.4, their reverse breakdown voltages add. When the back

emf appears on the coil, the TVS diodes begin conducting and act as a drain

for the current in the MOT coil. Several TVS diodes may be added in series to

provide a very large breakdown voltage. The back emf is clamped at the summed

reverse breakdown voltage, so the time required to drain the current is simply

calculated by Vemf = −LdI
dt

. Switching times of 10 µs are easily achievable.

The magnetic field switching circuit was simulated in a free circuit analysis
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Figure 3.4: Magnetic Field switching circuit. The transient voltage

suppressors (TVSs) provide a fast drain for current in the MOT coil

when the insulated-gate bipolar transistor (IGBT) gate closes. The

switching time is controlled by the series breakdown voltage of the

TVSs.

program 5Spice. In order to test if the circuit was draining the current as

planned, a resistive network (R = 0.02Ω, 25W) was inserted into the circuit

as shown in Fig. 3.4. This allowed a fraction of the current to move through

the resistive network developing a voltage. The time required for the voltage

(proportional to the current) to go to zero can easily be measured in this way on

an oscilloscope. The oscilloscope reading and associated simulation are shown in

Fig. 3.5. The TVS diodes used in Fig. 3.5 sum to 560 V of breakdown voltage.

The simulation predicts a smooth decrease of the current to zero in ∼ 20 µs,
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Figure 3.5: (a) Theoretically predicted time response of the switching

circuit. Red trace is the current through resistive network and the

blue trace is the potential drop across the network. (b) Experimental

trace of the voltage drop across the resistive network.

and the experimental value is very close (∼ 25 µs). The total breakdown voltage

of the TVS diodes can be adjusted so that the magnetic field current may be

drained away on any timescale larger than ∼ 10 µs.

3.3 Diode Lasers and Tapered-Amplifier

3.3.1 Diode Lasers

Two diode lasers and a tapered-amplifier (TA) are responsible for cooling and

trapping cesium and a third diode laser is used as a general purpose laser that

can be used for experiments or diagnostics. Because real atoms have more
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than two levels, the situation is more complicated than described in Section

2.1. Creating an effective two-level atom that can repeatedly scatter photons

requires two different laser frequencies for the alkali metals. Because the laser

responsible for cooling the atoms (the “trapping” laser) must be detuned, off-

resonant excitation optically pumps the atoms into a state that is no longer

resonant with the laser, see Fig. 3.6. The atoms may be pumped back into the

Figure 3.6: Energy levels of the D2 transition in cesium. The indicated

laser frequencies are required for our MOT.

cycling transition by the use of a separate resonant laser. This “repumping” laser

and the general purpose laser are both external cavity diode lasers (ECDLs)

in Littrow configuration. The laser diodes (JDS Uniphase SDL-5401-G1) can

provide a maximum of 150 mW of power. The laser diodes are housed in an

aluminum mount which was machined in the department. The housing is shown
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in Fig. 3.7 and is identical for both lasers. The housing is designed to allow

Figure 3.7: Rendering of the external-cavity diode laser (ECDL).

Light emitted from the laser diode through collimating aspheres is

indicated by the red arrow. Not shown is the holographic grating or

the lid.

electrical and thermal control of the laser diode. The external cavity is formed

by placing a holographic diffraction grating (Thorlabs GH-180) on the piece

opposite to laser emission. Piezoelectric control of the position of the grating

allows tunability of the laser. The laser diode and grating all sit on an aluminum

piece that is electrically isolated from the base (and table) by thermoelectric

coolers (Thorlabs TEC3-2.5). The entire housing may also be evacuated if laser

diode temperatures cold enough to condense water are required (sealing lid not

shown in Fig. 3.7).

Both lasers are frequency stabilized with a dichroic atomic vapor laser lock

(DAVLL) [41]. Briefly, a dispersive signal can be obtained by measuring the
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difference in the amount of light with orthogonal circular polarizations that

is absorbed passing through cesium vapor in a constant magnetic field. The

dispersive signal provides a slope which is approximately linear across the Doppler

broadened absorption profile. A proportional and integral gain circuit is used

to provide feedback on the laser. High frequency output from the circuit is fed

back into the laser diode current and low frequency output is used to control

the cavity length with a piezoelectric transducer pressing on the grating. These

signals may be used to lock the laser to any desired point on the dispersive

signal.

The main trapping laser is a 150 mW commercial distributed-feedback (DFB)

laser diode from Toptica (DL100DFB). The DFB laser is a special type of diode

laser which has a grating structure etched into the diode facet. This monolithic

design is very stable against mechanical vibrations and is continuously tunable

(mode-hop free) over several gigahertz using only the current to the laser diode.

The frequency is stabilized with commercial circuitry (Toptica Digilock) using

a signal generated from a saturated absorption setup. To achieve MOTs with

large atom numbers, a large intersection volume of the laser beams is desired.

Increasing the size of the beam decreases the intensity of the beam, so large

diameter beams require larger powers to scatter the same number of photons per

unit area. Larger powers are accomplished with the use of a tapered amplifier

(TA).
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3.3.2 Tapered Amplifier

The TA is placed in a master-oscillator-power-amplifier (MOPA) configuration

where the DFB laser is the master oscillator (also called the seed laser). The

TA is a semiconductor chip which has a large tapered gain section. If properly

aligned, the output power can be greatly amplified while maintaining the spectral

characteristics of the seed laser. Our TA is a 500 mW chip (Eagleyard Photonics

EYP-0850-00500-3006-CMT03) which accepts a maximum of 50 mW of seed

power input and a maximum of 1.5 amps of drive current. The housing for the

TA system was also machined by our department and is shown in Fig. 3.8. The

Figure 3.8: Rendering of the tapered amplifier (TA). Seed light is

focused onto the TA chip and amplified light is collimated by a set

of aspheres.

TA has a very small input aperture of 3 µm diameter. The input tapers over a

2.75 mm distance to a 190 µm by 3 µm output. The input and output therefore

require lenses of high numerical aperture (NA) to focus the incoming light and
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to capture as much exiting light as possible. This is done with input ashpere

(Thorlabs C330TME-B NA=0.68) and output asphere (Thorlabs C230TME-B

NA=0.55). The housing in Fig. 3.8 allows for sensitive adjustment of the

aspheric lenses with respect to the stationary TA chip.

Precise alignment of the seed laser to the input of the TA is required for

sufficient amplification. As an initial alignment procedure, the TA was not

powered by a current, but instead used as a photodetector so the output current

from the TA chip could be monitored. This initial alignment is usually good

enough to see immediate amplification of seed light. The small input of the

TA requires the input seed light to be in TEM00 mode (Gaussian), ensuring a

tight focus. The TA only accepts a linear polarization as well, so polarization-

preserving single-mode fibers were used to deliver the seed light to the TA (see

Fig. 3.9). With 25 mW of seed light, a full 500 mW of output power was

obtained at 1.4 A of drive current. Experiments are usually operated with 15

mW of seed power and 1.25 A of drive current, which decrease the output power

but increase the lifetime of the TA chip. The low demand on seed power also

increases the lifetime of the DFB laser. In day-to-day operation, the total power

available for the MOT trapping light is ∼ 100 mW.
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Figure 3.9: Setup for amplification of light. Seed light from the

distributed feedback laser (DFB) is delivered to the TA and finally

to a single-mode polarization-preserving fiber through the shown

system of optics. HWP - Half-wave plate. QWP - Quarter-wave

plate. PBS - Polarizing beam-splitter cube. L - Lens. OI - Optical

isolator. CL - Cylindrical lens. AOM - Acousto-optic Modulator.

SMPP - Single-mode polarization preserving fiber. A small amount

of light from the DFB is used to stabilize its frequency.

3.4 Zeeman Slower

3.4.1 Magnet Assembly

The Zeeman slower design parameters were determined by simulating the atomic

trajectories in the atomic beam. The designed ideal magnetic field was given

in Eq. 2.21 with Bb = 250 Gauss and Bt = 220 Gauss. The main task of

installing the Zeeman slower is the construction of the more realistic wrapping

pattern shown in Fig. 2.6. The wire used for the slower magnet (AlphaCore
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GP200 AWG 12) has a rectangular cross-section, which allows for smaller gaps

between adjacent turns. The winding pattern that was numerically generated

was modeled with computer aided design (CAD) and shown in Fig. 3.10. The

slower magnet was wound on a lathe. The winding pattern and relevant distances

to achieve the correct pattern are shown in Fig. 3.10. After the slower magnet

had the desired winding pattern, the magnetic field along the slower had to be

tested for accuracy. To measure the magnetic field, a Gauss meter was held in

the center of a cylindrical die that was machined to exactly fit in the slower tube.

Results are shown in Fig. 3.11. A string was tied to the die which could move the

Gauss meter precisely down the slower tube. The experimental winding pattern

reproduced the calculated magnetic field almost exactly. Once the field profile

was verified, the coil was potted with epoxy and wrapped with kapton tape. The

vacuum system (Fig. 3.2) was then attached and the oven was equipped with a

cesium ampule. After baking, the Zeeman slower was ready to be tested.

3.4.2 Slower Performance

One important feature the Monte Carlo simulation does not account for is the

presence of multiple atomic energy levels. Much like in the MOT, the presence of

the extra levels leads to optical pumping into levels that no longer cycle photons.

Atoms pumped into these levels must be re-pumped back into the resonant

transition. This is accomplished by a second laser frequency that is near the

repumping transition for the MOT. A good guess at the appropriate repumping
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Figure 3.10: Winding of the electromagnet used for Zeeman slowing.

(a) Pattern used to wind the electromagnet. Distances depicting the

beginnings and the ends of the individual sections.
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Figure 3.11: Magnetic field profile down the axis of the electromagnet

for 6 Amps of current. The black squares represent the calculated

profile used in the simulations. The red circles are the experimentally

measured magnetic field.

frequency is to match the Doppler shift of atoms with the average speed, vz,

determined by the oven temperature. For T = 323 K, vz = 226 m s−1, and

the appropriate frequency is 265 MHz red of the 6S1/2(F = 3)→ 6P3/2(F = 4)

transition. Because this transition is not the main transition used in slowing,

repumping can occur for any laser polarization.

The two lasers required for slowing are copropagated and focused onto the

last aperture with a 2 m focal length lens, see Fig. 3.12. The polarizing beam-

splitter cube (PBS) ensures the polarization hitting the quarter-wave plate
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Figure 3.12: Simplified optical setup used for Zeeman slowing. The

two lasers are combined on a polarizing beam-splitter cube (PBS).

The beams are focused down the slower by a lens, L. The two beams

are made circular by the quarter-wave plate (QWP).

(QWP) is linear. The wave plate must be properly adjusted to produce a circular

polarization required for slowing. Furthermore, the slowing laser (see Fig. 3.12)

must have σ− polarization (that circular polarization which drives ∆m = −1

transitions).

The Monte Carlo simulation provided the initial parameters to use for slowing.

Three main pieces of the slower must be functioning as expected to achieve

slowing. First, the magnetic field gradient must be what is expected. This

was verified in Fig. 3.11, and now adjustable solely by the current, I, through

the slower magnet. Second, the laser beams required for slowing must have

known frequencies and polarizations as well as appropriate intensities. Finally,

the atomic beam must be providing sufficient flux of atoms and be directed

appropriately through the slower. The initial parameters that were determined

in the simulation are shown in Table 3.1. Using these initial parameters, no

slowing was achieved. It turned out that the malfunctioning piece of the slowing
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Table 3.1: Initial Slowing Parameters

T 323 K oven temperature

I 6 A current in slower magnet

s 15 saturation parameter

δs - 325 MHz slowing laser detuning

δr - 265 MHz repumping laser detuning

Table 3.2: Optimized Slowing Parameters

T 373 K oven temperature

I 6.9 A current in slower magnet

s 7.6 saturation parameter

δs - 325 MHz slowing laser detuning

δr - 285 MHz repumping laser detuning

system was the atomic beam itself. There was simply not enough flux of atoms

in the beam. Increasing the oven temperature to T = 373 K alleviated the

problem and slowing was achieved shortly thereafter. The increased temperature

of the oven required an increased magnetic field gradient and a larger repumping

detuning for optimized slowing, which was to be expected. The optimized slowing

parameters are given in Table 3.2.

To observe slowing of the atomic beam, the MOT was monitored with a

charge-coupled device (CCD) camera that is sensitive to near-infrared light. A
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small background pressure of cesium was introduced from the main chamber

oven to verify the trapping fields for the MOT were functioning properly. The

signature of slowing is an increase in the size (or atom number) of the MOT

present from the background vapor. A comparison of the MOT loaded from the

background vapor versus the atomic beam is shown if Fig. 3.13. The slower

Figure 3.13: MOTs loaded from (a) the Zeeman slower or (b) the

background vapor. Images were taken with the same settings.

loaded MOT is much larger and loads much more quickly than the background

vapor loaded MOT. I would like to point out that slowing can also be observed,

albeit not optimized, with the wave plate at 90◦ from the optimized setting.

This corresponds to σ+ slowing and uses the fringing fields from the MOT coils

as the field gradient.
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3.5 Far Off-Resonance Trap

The trapping potential of a far off-resonance trap (FORT) is far below that of

a MOT. This means that atoms must be captured and cooled by some other

trapping mechanism in order to have a low enough energy to be captured by

the (much weaker) FORT. In order to load the most atoms into the FORT, it

is advantageous to have a MOT with large atom numbers. A MOT with large

atom numbers can be accomplished in our current system by either loading from

the background vapor or from a slowed atomic beam. Since loading the MOT

is technically easier from the background vapor (requires less equipment), the

MOT was loaded in this way for all experiments in this thesis, including any

situation requiring the use of the FORT.

A simplified schematic of the optics layout for the FORT is shown in Fig.

3.14. The FORT beam is combined with the z-axis of the MOT beams with a

dichroic mirror (DM). The FORT beam is focused onto the MOT with a positive

lens (f = +400 mm). The optics are arranged so that the FORT beam can

be recycled and focused back onto itself creating a crossed FORT. The MOT

light gets reflected off of the second dichroic mirror and the FORT light passes

through it. The FORT beam is re-collimated and focused onto the first focus

with an intersection angle of 22.5◦. A beam dump can be inserted after the

second dichroic mirror to realize a single FORT.
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Figure 3.14: Geometry used for creation of the optical dipole traps.

The fiber laser beam used for the FORT is combined with the z-axis

of MOT lasers. The fiber laser beam is recycled and focused onto

the first focus at an angle of 22.5◦. The exiting FORT light may be

blocked to realize a single FORT. The FORT light is coupled into

and out of the MOT laser beams with dichroic mirrors (DM). The

same lens (L) is used in focusing and recollimating the FORT light.

3.5.1 Alignment Procedure

Implementing a FORT requires very sensitive alignment of the focusing trapping

laser with respect to the MOT. Alignment of the FORT beam focus can be

accomplished in a variety of ways, most of which rely on the aid of a laser which

is resonant with a cycling transition of the parent trap. The resonant laser is

used to visually perturb the atom number in the MOT. If the resonant laser is

copropagated with the FORT beam, a spatial location of the axis of the beam

is easily identified, see Fig 3.15. In our particular case of a 1064 nm FORT

beam and MOT laser fields at 852 nm, a PBS with the same near-infrared (NIR)
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Figure 3.15: Schematic of the procedure used to align the focus of the

FORT beam to the MOT. The resonant alignment beam is combined

with the FORT beam with a polarizing beam-splitter cube (PBS).

The resonant light is focused onto the MOT with a lens (L). The

MOT is larger than the difference in focal lengths due to chromatic

abberation (df).

coating may be used to combine the beams. If the two beams are carefully

overlapped, visual perturbation of the MOT with the resonant laser ensures that

focal position of the FORT beam is close enough to the correct position that an

ac Stark shift measurement can be used for further improvement. The difference

in the focal points of the two beams (df in Fig. 3.15) is smaller than the MOT,

so chromatic aberration does not need to be accounted for in order to measure

an ac Stark shift of the atoms due to the presence of the intense FORT beam.

The presence of the FORT beam modifies the internal states of the atom.

The energy shift of the new internal states from the unperturbed states is called

the ac Stark shift. Since the energy of the states is changed by the FORT beam,

the beam can be used to modulate the resonance condition of atoms in its path.

63



The change in the resonance condition can be detected by a separate laser as

shown in Fig. 3.16. To detect the ac Stark shift, a laser is scanned in the vicinity

Figure 3.16: Detection of ac Stark shifted MOT atoms. A laser beam

is used to scan over the transition shown in (a). The Stark shift is

modulated with a chopper and the signal from a photodiode (PD) is

processed with a lock-in amplifier.

of the 6S1/2(F = 4) → 6P3/2(F = 5) transition and passed across the MOT.

A very small amount of light is used so that the MOT is not perturbed. The

light is detected by a photodiode (PD). As the laser is slowly scanned across

the 6S1/2(F = 4) → 6P3/2(F = 5) transition, light will be absorbed from the

beam. This means the voltage signal from the PD mimics the Lorentzian shape

of the absorption profile. When the FORT beam is present, the position of the

absorption profile changes, which is detected by the PD. Lock-in detection of the

change in resonance position is accomplished by quickly modulating the intensity

of the FORT beam by passing it through a chopper wheel. The lock-in amplifier
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subtracts the PD signals with the FORT beam off and on. This means one

should expect to see a dispersive signal if an ac Stark shift is being detected (see

Fig. 3.17). The amplitude of the dispersive signal gives information about the

Figure 3.17: Generation of a dispersive signal due to the ac Stark shift.

(a) The unshifted level (red) is shifted to a new energy (blue) by the

ac Stark shift. (b) The signal with the FORT beam on is subtracted

from the signal with the FORT beam off to give a dispersive signal

whose peaks are separated by the ac Stark shift.

number of atoms experiencing an ac Stark shift and the separation of the peaks

indicates the value of the shift experienced. Once an ac Stark shift is detected,

the optics controlling the pointing of the FORT beam can be manipulated to

optimize the signal. The signal is optimized when the ac Stark shift is greatest

and the peak separation is maximized. An example of an optimized ac Stark

shift measurement is shown in Fig. 3.18. Once a good signal-to-noise ratio is

obtained, the position of the FORT focus is in an adequate position to try to
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Figure 3.18: Measurement of ac Stark shifted atoms. The blue trace

is the expected dispersive signal and the black trace is a voltage

proportional to the laser frequency.

load the trap.

3.5.2 FORT Loading

The FORT is loaded best if a cooling stage is applied to the MOT immediately

before FORT loading. The cooling stage has two advantages. Lower temperatures

are obtained and the atoms are optically pumped into the absolute ground state,

6S1/2(F = 3). Lower temperatures allow more efficient filling of the dipole trap

and optical pumping suppresses inelastic two-body processes, which leads to

a longer lifetime. These effects were extensively studied in the comprehensive
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paper [42].

The timing sequence used to observe atoms trapped in the FORT is shown

in Fig. 3.19. The MOT is first loaded to maximum atom number for 4 s. The

Figure 3.19: (a) Timing sequence for FORT loading and subsequent

probing. (b) Laser frequencies used in MOT loading. (c) Laser

frequencies used in FORT loading.

cooling stage or FORT loading stage then occurs for 40 ms. During the FORT

loading stage, the MOT trapping laser is tuned further to the red by 15 MHz

while simultaneously decreasing its intensity by a factor of ∼ 3. The repumping
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laser stays on resonance, but its intensity is reduced by a factor of ∼ 100. After

that time all trapping fields required for the MOT are extinguished and atoms

remain trapped inside the FORT.

A fluorescence image of the atoms trapped in the FORT may then be obtained

by turning on the MOT lasers (at the MOT loading parameters), but not the

magnetic field. This causes resonant scattering of photons inside an optical

molasses and subsequently destroys the FORT. A CCD camera can be triggered

to only have exposure over this time frame acquiring a fluorescence image of

the atoms as they are being expelled from the FORT. A 20 ms exposure of the

Figure 3.20: False color image of a single FORT atom fluorescence.

The exposure time was 20 ms.

trapped atom fluorescence is shown (in false color) in Fig. 3.20. Because the

fluorescing atoms are being pushed out of the FORT, the size of the FORT in

Fig. 3.20 is somewhat inflated.
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3.5.3 Trap Characterization

The geometry of the focus and power at its location determine the maximum

temperature an atom can have and still be trapped. This is characterized by

a parameter called the trap depth and can be calculated using the potential

energy in Eq. 2.31. If an atom has exactly this much energy, it will take up the

entire volume of the FORT as it is barely trapped back into oscillation about the

center. Atoms with lower energies (i.e. from lower temperature distributions)

than this will occupy a smaller spatial distribution. The size of the distribution

generally decreases as
√
T [39]. This means a FORT loaded with colder atoms

or larger trap depths will generally be more dense.

The density of the single focused-beam FORT can be increased by overlapping

two FORTs at an angle, creating a crossed FORT. This not only confines the

atoms more tightly, but the trap depth also increases from the additional laser

power. Both effects lead to an increase in density. In our system, a crossed

FORT is easily realized by recycling the first FORT beam, as depicted in Fig.

3.14. Important parameters which characterize a FORT include the trap depth,

trapping frequencies, lifetime, and maximum densities. These parameters are

compared for a single beam FORT and a crossed beam FORT.

The trap depth of the crossed FORT is augmented only by the fact that

twice the power is available. Since the trap depth of the FORT is linear in the

intensity (see Eq. 2.31), the crossed FORT only has twice the maximum trap
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depth of a single beam FORT. For a focused spot size of ω0 = 86 µm and 10

W of power, the single FORT trap depth is Tsing = 686 µK and Tcross = 1.37

mK. The trap depths for both configurations are shown in Fig. 3.21. The

Figure 3.21: Trap depths for a single FORT (a) and the crossed

FORT (b). The coordinate system shown is used to calculate the

trap frequencies.

trap frequencies of the single-beam FORT are readily calculated [39] with the

trap depth and the spot size. The radial trap frequency is ωr = 2π · 1511 Hz

and the longitudinal trap frequency is ωz = 2π · 8.4 Hz. To obtain the trap

frequencies for the crossed-beam FORT, the trap depth (potential) minimum

was fit to a harmonic oscillator. Using the coordinate system of Fig. 3.21, the

trap frequencies are shown with the fits to the potential energy in Fig. 3.22.

The lowest trap frequency increased from 8.4 Hz for a single beam to 481 Hz
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Figure 3.22: Potential energies along the three orthogonal directions

shown in Fig. 3.21. Corresponding trap frequencies are shown on the

right.

for the crossed configuration. The increase in trap frequencies in the crossed

configuration is advantageous in applications such as evaporative cooling due to

faster re-thermalization.

The lifetime of the FORT is determined by measuring the amount of fluo-

rescence the trapped atoms produce for various holding times in the trap. The

fluorescence is measured with a photo-multiplier tube (PMT). The peak voltage

produced by the PMT is used as the indication of the number of atoms in the

trap [43]. The lifetimes for a single FORT and a crossed FORT are compared in

Fig. 3.23. Because both trapping configurations were loaded in the same way

with equivalent background pressures, the difference in lifetime is attributed

to density dependent effects such as three-body recombination. The maximum

density can be estimated from the measured number of atoms and the size of

the trapping region. The maximum density in a single FORT is ∼ 2.5 × 1012
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Figure 3.23: Measurement of the lifetime of atoms trapped in the

FORT. The black circles are for a single FORT and the red circles

are for the crossed FORT. The curves are exponentially decaying

fits to the data. The single FORT (1/e) lifetime is 800 ms and the

crossed FORT lifetime is 190 ms.

cm−3 and the maximum density available in the crossed FORT is ∼ 2 × 1013

cm−3. An absorption image of the crossed FORT is shown in Fig. 3.24.
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Figure 3.24: Absorption image of the crossed FORT. top Both arms

of the crossed FORT and the absorption imaging beam are in the

same plane. bottom False color absorption image of the crossed FORT.

From this angle the plane containing all of the lasers is a line in the

center of the image.
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Chapter 4

Rydberg Atoms and Rydberg Tagging

4.1 Introduction

Rydberg atoms are atoms with large principal quantum number n. In highly

exited states, an electron will be very far away from the nucleus. For this reason

Rydberg atoms have exaggerated properties. These include large atomic radii,

long lifetimes, and large transition dipole moments to nearby states. Rydberg

atom interactions with external fields and with each other have opened up

new and exciting avenues of research including quantum computation schemes

[2, 3, 5, 44] and ultra-sensitive electric and magnetic field sensors [45]. Because

Rydberg atoms can be perturbed at large distances, exotic diatomic molecules

involving Rydberg atoms can be created. Macrodimers are Rydberg atom -

Rydberg atom molecules with bonding lengths on the order of microns [16]. So

called trilobite states have recently received much attention as well [24, 23, 22].

These strange molecules contain a ground state atom bound to a Rydberg atom

through the scattering of the Rydberg atom electron off of the ground state

atom. These trilobite states are homonuclear diatomic molecules with permanent

electric dipole moments. The qualitative features of most of these systems can

be ascertained by relatively simple approaches.

74



4.2 Physics of Rydberg Atoms

4.2.1 Quantum Defects

The Rydberg atoms described in this thesis are cesium Rydberg atoms and

therefore only have one valence electron. This similarity to hydrogen lead to

the description of the alkali Rydberg atoms in terms of quantum defects [1].

When comparing hydrogen and cesium Rydberg states (see Fig. 4.1), the main

difference is the presence of an ionic core in cesium containing 55 protons and 54

electrons. If the excited electron is very far away from the core, it is only sensitive

Figure 4.1: (a) A hydrogen Rydberg atom. At the center of the atom,

only the nucleus is found. (b) A cesium Rydberg atom. At the center

of the atom is a core of 54 tightly bound electrons around a nucleus

with 55 protons.

to the net charge of the core so we would expect hydrogen and cesium Rydberg
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states to behave similarly. On the other hand, if the electronic wavefunction

has significant probability to approach or even penetrate the core, we would

expect the exact distribution of charge in the core to have an effect. This is

indeed the case for the lower angular momentum Rydberg states (l ≤ 3), whose

wavefunctions have maxima very close to r = 0 (or at r = 0 in the case of nS

Rydberg states). The excited electron in these low l states can polarize and

penetrate the ionic core, leading to lower energies of the alkali Rydberg states

compared to the hydrogen counterparts. The Rydberg atom energies, Enlj, are

given by

Enlj = − Ry

(n− δnlj)2
, (4.1)

where Ry is the atomic Rydberg constant (RyCs = 3.29× 109 MHz) and δnlj are

the quantum defects. The quantum defects not only depend on l and j, but are

also weakly dependent on n.

δnlj = δ
(lj)
0 +

δ
(lj)
2

(n− δ(lj)
0 )2

+
δ

(lj)
4

(n− δ(lj)
0 )4

+ . . . (4.2)

The quantum defects are determined empirically to high accuracy with high

resolution spectroscopy. The values of the quantum defects for cesium were

determined in [46, 47] and are summarized in Table 4.1.

4.2.2 General Properties

More generalized properties of Rydberg atoms can be calculated with the wave-

function of the excited electron. In order to compute the wavefunction, a model
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Table 4.1: Cesium Quantum Defects

S1/2 P1/2 P3/2 D3/2 D5/2 F5/2 F7/2

δ0 4.049 3.592 3.559 2.475 2.466 0.033 0.033

δ2 0.237 0.360 0.374 0.555 0.014 -0.199 -0.191

potential for the core must be used that accurately reproduces the empirically

measured energies. We adopt the l-dependent parametric model potential given

by Marinescu et al. [48], which is shown below.

Vl(r) =
Zl(r)

r
− αc

2r4

[
1− e−(r/rc)6

]
Zl(r) = 1 + (Z − 1)e−a1r − r(a3 + a4r)e

−a2r

(4.3)

The core has a static polarizability, αc, and contains Z protons. The ai are

fitting parameters used to match the empirically measured energies. The non-

physical effects of the model potential at r = 0 are removed by a cutoff radius,

rc. Parameters for all of the alkali metals at all values of l are given in [48].

This model potential is put into the existing RADIAL [49] program. The

modified program is used to solve the 1D Schrödinger equation and obtain

radial wavefunctions of any Rydberg state of interest. Using the Rydberg atom

wavefunctions and energies, useful n scaling laws may be generated. Important

parameters characterizing Rydberg states and how these parameters scale with n

are shown in Table 4.2. It should be noted that when considering Rydberg states

with quantum defects, n in the Table 4.2 should be replaced with n∗ = n− δnlj.

Because Rydberg atoms have large transition dipole moments to neighboring
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Table 4.2: Scaling laws of alkali Rydberg atoms.

Quantity Symbol Scaling

Radius 〈r〉 n2

Transition Dipole 〈nl|er|nl′〉 n2

Polarizability α n7

Van der Waals Interaction C6 n11

Radiative Lifetime τr n3

states, their lifetime can be greatly shortened due to the interaction of the Ryd-

berg state with thermal background radiation. Objects (like pieces of apparatus)

emit blackbody radiation that is characteristic of its temperature. At room

temperature, significant power density lies in the millimeter and radio-frequency

ranges and can easily couple to nearby Rydberg states. This depopulation leads

to a shorter lifetime and can be expressed as

τ =

(
1

τr
+

1

τbb

)−1

. (4.4)

The lifetimes, including blackbody radiation, are calculated in this thesis as re-

cently described in Beterov et al. [50]. The radiative and blackbody contributions

have empirically based expressions given by

τr = τs (n∗)δ

τbb =
A

(n∗)D
2.14× 1010

exp(315780B/ (n∗)C × T/K)− 1
,

(4.5)

where, τs, δ, A, D, and C are optimized parameters that depend on the atomic

species as well as the angular momentum of the electron l, and j. Note the
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exponent in the radiative lifetime is remains within 1% of 3 for all l and j, as

indicated in Table 4.2. As will be shown in Chapter 5, the beam used for the

far off-resonant trap causes significant photoionization of the Rydberg atoms,

shortening their lifetime even further.

4.3 Rydberg Tagging Time-of-Flight Imaging

Rydberg atoms were used to establish the velocity resolution of our system.

Creating Rydberg states for the purpose of ionizing in a weak electric field is

sometimes called Rydberg tagging and the ability to measure product yield

and velocities is well established [51, 52, 53, 54]. Rydberg tagging is used

in the present experiment to measure the temperature of atoms in the MOT.

We demonstrate that sub-Doppler temperatures are easily measured with this

experimental technique and that the temperature of the MOT may be determined

non-destructively, in contrast to standard imaging techniques.

The temperature of trapped atoms inside of a MOT varies linearly with

light-shift when the light-shift is small and does not contribute to multiple

scattering of photons [28]. The temperature may be written

T (Λ) = T0 + 2CσTDΛ,

Λ =
Ω2

|δ|Γ

(4.6)

where the light-shift parameter, Λ, is the ac Stark shift of the atoms due to the

trapping light (in units of ~Γ). T0 is the minimum temperature attainable, TD
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is the Doppler temperature (125 µK for Cs [31]), and Cσ is a constant to be

determined and compared with previous values. The Rabi frequency for the

transition, Ω, is computed from the intensity of the trapping beams, I, as

Ω = Γ

√
I

2Is
, (4.7)

where Is = 1.1 mW cm−2 is the saturation intensity for the transition and

Γ = 2π · 5.22 MHz is the natural linewidth.

The general method to measure the temperature is to excite Rydberg atoms

within the MOT and let them expand for a variable time before acquiring arrival

time-of-flight distributions. The expansion of the time-of-flight distribution with

variable expansion time indicates the temperature.

4.3.1 Experimental Setup

Because the temperature depends on the light-shift parameter, the detuning

and intensity of the trapping laser must be accurately known. The intensity

of the trapping laser is measured with a power meter and the beam size was

measured with an iris. The detuning of the trapping laser is monitored with a 2

MHz scanning Fabry-Pérot interferometer (FPI). Atoms are excited to 89D5/2

Rydberg states with linearly polarized green light from a narrow linewidth (∼ 1.4

MHz) Coherent 699-21 ring dye laser operating at 508.66 nm. The green light is

sent through an acousto-optical modulator (AOM) for switching and coupled into

a single-mode polarization-preserving fiber. The output of the fiber is focused
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through the MOT with a focal spot of ∆z0 = 104 µm ± 7µm, verified by a CCD

camera, see Fig. 4.2. The intensity of the green light is adjusted so that � 1

Rydberg atom is detected per pulse.

Figure 4.2: Cartoon of the excitation region. The green laser excites

Rydberg atoms (one at a time) and the Rydberg atom begins drifting

away at its thermal velocity. The expansion takes place for variable

amounts of time before pulsed-field ionization (PFI) is used to project

the positive ion downward to get detected. The size of the cloud

hitting the detector is indicative of the atomic temperature.

Once a Rydberg atom is created, it is decoupled from the MOT trapping

potential and begins expanding at its thermal velocity. After a variable time,

∆τ , the Rydberg atom is projected onto the micro-channel plates (MCPs) by

pulsed-field ionization (PFI). This is repeated several times to accumulate a
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time-of-flight (TOF) distribution. Because the atom is in a high-lying Rydberg

state, a small electric field pulse is used (53 V cm−1) for ionization of the Rydberg

state which has negligible effects on the trapped atoms. The weakly bound

Rydberg electron also gives a negligible recoil to the atom as it is ripped away,

which does not alter the time-of-flight. The ionizing electric field pulse delivers

a momentum kick to the (positive) ion. Because the ions are only accelerated

for a small time, there is a linear mapping of the velocity onto the width of the

TOF distribution.

Extreme care must be taken to ensure that only one Rydberg atom is created

with each laser pulse. If two Rydberg atoms are present, PFI will create two

ions and they will repel each other during their time-of-flight and lead to wider

TOF distributions. For this reason, the detection rate of the ions (. 25 Hz) is

made much less than the repetition rate of the experiment (1 kHz), by adjusting

the green laser intensity. Multiple ion counts are also filtered out electronically,

see Fig. 4.3. The MCP detector generates fast timing signals and a signal

proportional to the amount of charge striking it. When two ions hit the detector,

the height of the charge signal is twice as high as a single ion count. The charge

signal is analyzed with a single-channel analyzer (SCA) which can differentiate

single ion counts from multiple ion counts with voltage thresholds. Single ion

counts are accepted by the SCA and subsequently trigger a gate from a waveform

generator. The gate and processed fast timing pulses arrive at a delay generator.
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Figure 4.3: Experimental signal processing. Ions hit the detector

and two signals are generated: a fast timing signal (right side) and

a charge signal (left side). The Amp/SCA filters out charge signals

corresponding to too much charge. Charge signals passing through

the filter create a gate that is sent to a delay generator. Here,

the gate picks out the fast timing signals with the correct charge

signal amplitude. A stop is generated for the MCA if the charge

corresponds to a single ion hitting the detector. The critical timing

interval is between the starts and stops for the MCA because this

interval is the ion TOF and determines the velocity distribution.

CFD is the constant fraction discriminator, AOM is the acouso-optic

modulator, CPU is the central processing unit, and Computer, PD is

the photodiode.
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A digital AND circuit is used to accept only those fast timing pulses that

correspond to single ion detections. The MCA starts recording the time-of-flight

at the beginning of the PFI pulse and stops recording when a single ion fast

timing pulse is received. Several TOF distributions are recorded on the computer

for each value of expansion time, ∆τ . An example of an experimental TOF

distribution is shown in Fig. 4.4. The distribution in Fig. 4.4 corresponds to an

Figure 4.4: A TOF distribution taken at ∆τ = 220 µs with 3019

total ion counts. The smooth solid curve is a Gaussian fit to the

experimental data. These data are taken from a curve with T = 40

µK.

expansion time of ∆τ = 220 µs from a T = 40 µK measurement. The spatial

extent of the time-of-flight distribution may be obtained by multiplying with

width of the distribution in time by the velocity of the ions as they travel down

the flight tube. The velocity of the ions is found by dividing the distance they

travel to the detector (∼ 265 mm) by the average time-of-flight (26.958 µs). The

full-width at half-maximum (FWHM) in time of the distribution shown in Fig.
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4.4 is 11.01 ns ± 0.04 ns, as determined by a Gaussian fit. The spatial extent of

the cloud is then 109.0 µm ± 0.5 µm, indicating an expansion of 5 µm in 220

µs. Several TOF Distributions acquired at different expansion times are used to

obtain the temperature.

In order to deduce the temperature, the change in the cloud size, ∆z, must

be related to the expansion time, ∆τ . The relation may be found by examining

the theoretical distribution in phase space. A cylindrical excitation region is

formed by the overlap of a focused Gaussian beam and the MOT, see Fig. 4.2.

The thermal distribution for the atoms inside the excitation volume is modeled

as

f(r; v,∆τ) ∝
∏

i=x,y,z

e−(i−vi∆τ)24 ln(2)/∆i2e−mv
2
i /2kBT . (4.8)

∆i is the FWHM of the focal spot size in the i direction, ∆τ is the delay time

of the extraction pulse, kB is Boltzmann’s constant and T is the temperature

of the atoms in the trap. If we choose the pulsed-field to be in the z direction,

then the spatial distribution is obtained by integrating Eq. 4.8 over all velocities

and x and y. The resulting spatial distribution is

f(z, t) ∝ e−mz
24 ln(2)/∆z2 . (4.9)

This distribution is Gaussian with a FWHM of [55]

∆z =

√
∆z2

0 +
8 ln(2) kBT

m
∆τ 2. (4.10)

Here ∆z0 is identified as the Rydberg cloud FWHM at zero expansion time, or
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the focal spot size of the excitation laser. Eq. 4.10 is the non-linear fit function

used to determine the free parameters ∆z0 and T .

Many TOF distributions are acquired for different expansion times for a

given value of Λ. An example of the expansion of the Rydberg atom cloud for

Λ = 0.56 is shown in Fig. 4.5. At each value of ∆τ several TOF distributions

Figure 4.5: An experimental measurement of the temperature for

Λ = 0.56. The error bars represent the standard deviation of at least

three identical measurements. The data are fit to Eq. 4.10 with T=

84 µK ± 7 µK and ∆z0 = 104 µm ± 1.4 µm .

are acquired. The error bars in Fig. 4.5 represent the standard deviation of

the measured widths. The data are fit to Eq. 4.10 with T=84 µK ± 7 µK and

∆z0 = 104 µm ± 1.4 µm. This measurement demonstrates that sub-Doppler
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temperatures may be measured with the Rydberg tagging technique presented

here, but its accuracy and limits must be tested. In order to test both of these

aspects, temperature measurements were carried out at many vales of Λ in order

to compare results with the literature. It is also interesting to note that this

measurement of the spot size of the laser is more accurate than the CCD camera

measurement.

The detuning and intensity of the trapping laser are used to change the

light-shift parameter. For each value of Λ, the temperature is measured several

times to acquire a standard deviation. Many values of the light-shift parameter

are studied to produce a graph of T vs. Λ. The results are shown in Fig.

4.6. The data are fit to Eq. 4.6 to extract the free parameters T0 and Cσ.

These parameters have been measured before for Cs [56, 43] and are compared

with results from the fit in Table. 4.3. The values of the slopes (Cσ) for all

Table 4.3: Sub-Doppler Cooling Parameters

Cσ T0 Ref.

0.24±0.07 2.6±0.4 µK [56]

0.28±0.05 1.2±0.4 µK [43]

0.25±0.05 3.8±3.3 µK This Work

measurements agree. Our experimental setup (at the time) did not allow trapping

laser detunings larger than −5Γ, so the minimum light-shift parameter accessible

was ∼ 0.15. Previous experiments [56, 43], were able to access much lower values
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Figure 4.6: Temperature vs light-shift parameter. Several values of

detuning are included. The solid line represents a fit of the data

to Eq. 4.6. Data taken in the multiple scattering regime where

the sub-Doppler mechanisms are not as effective are labeled by blue

triangles. The error bars reflect the estimated experimental error at

each different laser detuning.

of Λ and could locate the intercept, T0, with much higher accuracy. Our value

of T0 agrees, but encompasses both previously measured values.

The Rydberg tagging method demonstrates the capability to measure very

low temperatures with high accuracy. The lowest temperatures measured are

T =7 µK ± 3 µK, corresponding to a velocity of < 3 cm s−1. This is the highest
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velocity resolution achieved by Rydberg tagging to date [51, 52, 53] and sets a

benchmark for our velocity resolution for further experiments.
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Chapter 5

Photoionization of Rydberg Atoms

5.1 Introduction

As shown in the previous chapter, most properties of Rydberg atoms can be

calculated using the atomic wavefunctions and energies. The energies are

calculated from the quantum defects and the wavefunctions are calculated using

a parameterized potential energy function. Both the quantum defects and the

potential energy have empirical input so experimental tests of their accuracy

are very important. One such experimental test is measurement of the Rydberg

atom lifetimes. This was done using ultracold rubidium atoms by three groups

[9, 10, 11, 57]. The study of the Rydberg lifetimes in ultracold cesium was

limited to the principal quantum numbers 30 ≤ n ≤ 40 [58].

Rydberg atoms have recently received much attention for their roles in exotic

molecules [16, 22, 59, 23]. High densities are a requirement for investigating

these molecules, and far off-resonance traps (FORTs) provide high density and

do not require the ground state (trapped) atoms to be spin-polarized. However,

the intense trapping field from the FORT beam can photoionize the Rydberg

atoms, so it is important to measure this effect.

Rydberg atoms are also being used in the development of neutral atom

quantum gates [2, 60, 4, 61]. For quantum gate schemes such as [4, 61], single
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qubit operations are performed in a 1064 nm FORT or lattice using high-lying

Rydberg states. The performance of multiqubit gates depends strongly on the

lifetime of the Rydberg atoms, which is substantially modified by photoionization.

In fact, photoionization of Rydberg states serves as a method of detection in

these experiments [2, 60, 4, 61].

This chapter describes the measurement of cesium Rydberg atom lifetimes

inside of a MOT and inside a FORT, where photoionization plays an important

role. A systematic study of the Rydberg atom lifetimes of cesium nD5/2 states

where 50 ≤ n ≤ 75 is performed with and without the presence of the FORT

beam to extract the Rydberg atom depopulation rates just to photoionization.

The results are compared with theoretical values [50, 60].

5.2 Modification of the Rydberg Atom Lifetime

Inside of the MOT (with no FORT beam), the total decay rate out of the

Rydberg state is the sum of the radiative decay rate, γr, and the blackbody

decay rate, γbb. The lifetime of Rydberg atoms in the MOT, τMOT , is the inverse

of this decay rate and is given in Eq. 5.1.

τMOT = (γr + γbb)
−1 (5.1)

Inside of the FORT, the intense field of the trapping laser causes significant

photoionization of Rydberg atoms, which leads to a decreased Rydberg atom

lifetime. To calculate the effect of photoionization on the Rydberg atom lifetime,
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the photoionization cross section, σPI , is calculated according to [1],

σPI =
2π2

c

~e2

m

df

dE

∣∣∣∣
E=Er+~ω

. (5.2)

Er is the energy of the Rydberg state, ~ω is the photon energy of the FORT

laser and the electron mass and charge are given respectively by m and e. This

form of the photoionization cross section sums over the magnetic sublevels. The

oscillator strength distribution, df/dE, can be expressed as [1, 62]

df

dE
=

L=Lr+1∑
L=Lr−1

2mωLmax
3~(2Lr + 1)

∣∣∣∣∫ ψn,l(r) r φL,E(r)dr

∣∣∣∣2 . (5.3)

Lr is the orbital angular momentum of the Rydberg state, L is the orbital

angular momentum of the continuum state, and Lmax is the greater of L and Lr.

The wavefunction of the Rydberg state is ψn,l(r), and φL,E(r) is the continuum

wavefunction at energy, E.

The bound and continuum wavefunctions are calculated numerically with

RADIAL [49], modified with the l-dependent potential [48]. The continuum

wavefunctions are normalized per unit energy according to,

φL,E =

√
2m

π~2k
ΦL,E(r), (5.4)

where ΦL,E(r) is the continuum wavefunction from RADIAL and k = ~−1
√

2mE.

Using the photoionization cross section from Eq. 5.2, the average photoionization

rate, γPI , is given by

γPI =
I

~ω
σPI . (5.5)
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The average intensity of the trapping laser over the excitation region is I. Since

the intensity of the laser is a function of space, atoms at different locations in the

trap will have different photoionization rates. A Gaussian intensity distribution

for the FORT laser is used to compute the average intensity.

Inside the FORT, the photoionization rate adds to the existing radiative and

blackbody decay rates so that the reduced Rydberg atom lifetime in the FORT

is simply expressed by

τFORT = (γr + γbb + γPI)
−1 . (5.6)

Since the MOT and the FORT are in the same locations, the radiative and

blackbody decay rates for a given Rydberg state can be determined by measuring

the lifetime in the MOT from Eq. 5.1. By measuring the lifetime of the same

Rydberg state in the FORT, the photoionization rate may be determined and

compared to theory. In the next Section, I will describe the experimental details

of the FORT preparation and the method used to extract the photoionization

rate.

5.3 Experimental Details

5.3.1 FORT Preparation

To prepare the FORT, a MOT is prepared with cesium atoms loaded from

a background vapor. The trapping light is provided by the tapered-amplifier

system described in Sec.3.3.2. The repumping light is provided by the external-
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cavity diode laser system shown in Sec.3.3.1. The frequency and intensity of

all MOT lasers are controlled with acousto-optic modulators (AOMs). The

magnetic field at the MOT location is minimized by three sets of orthogonal

coils. Canceling the magnetic field maximizes the viscous damping provided by

the MOT lasers when the quadrupole field is off (optical molasses).

A FORT is prepared at the focus of a 10 W fiber laser operating at 1064

nm. The focused (1/e2) spot size is 86 µm ± 1.1 µm, which was measured

with a CCD camera. For 7.5 W of power at the MOT location, the FORT

depth is 670 µK. The radial trap frequency is ωr = 2π · 1.5 kHz and the axial

trap frequency is ωz = 2π · 8.4 Hz. To load the FORT, the MOT is loaded to

maximum atom number in 1.36 s. The FORT is loaded with the additional

cooling phase described in detail in Sec. 3.5.2. At the end of the cooling phase,

the quadrupole field is shut off in 220 µs by the insulated-gate bipolar transistor

(IGBT) circuit described in Sec. 3.2.2. The FORT is loaded to a maximum

number density of 2.5× 1012 cm−3. This is the density of a single beam FORT,

as opposed to the crossed FORT used later.

5.3.2 Experimental Method

To measure the depopulation rate of nD5/2 Rydberg atoms due to photoionization,

γPI , the Rydberg atom lifetime is measured twice for each state; once in the MOT

and once in the FORT. The lifetime in the MOT measures the depopulation

due to radiative decay to the ground state, γr, as well as blackbody decay to
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other Rydberg states and serves as a control experiment for the FORT lifetime

measurement. The lifetime in the FORT is decreased only by the additional

photoionization depopulation rate so a lifetime measurement in the FORT yields

γPI .

Atoms prepared either in the MOT or in the FORT are excited to high-lying

nD5/2 Rydberg states, 50 ≤ n ≤ 75, by a two-photon process. The first step of

excitation is an infrared (IR) photon and final Rydberg excitation is achieved by

absorption of a ∼ 509 nm, green photon. The excitation frequencies required for

the MOT and FORT lifetime measurements vary slightly, see Fig. 5.1. The IR

light in the MOT experiment is provided by the trapping laser. An independent

external-cavity diode laser (exactly the same as the repumper design) is used

for the IR light in the FORT experiment. The green light has a linewidth of

∼ 1.5 MHz and is linearly polarized. The laser beam passes through an AOM

before being coupled into a single-mode polarization preserving fiber. The fiber

output is focused through the trapped atoms with a spot size of 58 µm ± 1.0

µm. The two-photon intensity is adjusted so that, on average, one Rydberg

atom is excited per laser shot.

After Rydberg excitation, the atoms are ionized by an electric field ramp

that is nearly linear in time. This is done with two series capacitors (0.1

µF 3000V) used to integrate a square electric field pulse. The linear ramp

temporally separates different principal quantum states in the time-of-flight

(TOF) distribution. The amplitude of the electric field ramp is set just above
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Figure 5.1: (a) Excitation scheme used in the MOT Rydberg atom

lifetime measurements. The MOT trapping laser is used as the IR

photon. (b) Rydberg atom excitation scheme used in the FORT. A

separate laser is used as the IR photon which is tuned to compensate

for the local ac Stark shift of the atoms.

the ionization threshold for the target Rydberg state. Much like the previous

Rydberg tagging experiment (see Sec. 4.3), resulting ions are projected onto a

microchannel plate detector and the signals are processed through a constant-

fraction discriminator and their arrival-time distribution is recorded with a multi-

channel analyzer on a computer. In the previous Rydberg tagging experiment, a

delay between Rydberg excitation and ionization was introduced in order to map

out the velocity of the Rydberg atoms using the width of the TOF distributions.

In the present experiment a delay between excitation and ionization is also
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introduced, but here we are interested in counting the number of Rydberg atoms

detected in the TOF distribution and not its shape. The number of Rydberg

atoms detected as a function of the delay time maps out how the Rydberg atoms

decay in time and is a measurement of the lifetime.

An ideal measurement of the Rydberg atom lifetime inside of the MOT would

proceed as indicated in Fig. 5.2. After excitation of the Rydberg atoms, the

atoms are ionized by the electric field some time, ∆t, later and detected. The

total number of counts per second hitting the detector is proportional to the

number of Rydberg atoms left ∆t seconds after excitation. The lifetime is then

mapped out by measuring the number of ions per second as a function of the

delay time, ∆t.

This ideal experiment is complicated by a number of issues. While the

intention is always to carry out the experiment in exactly the same way every

time, imperfections exist in the experiment which make this impossible. First,

the number and density of the atoms in the excitation volume is nearly constant,

but always fluctuating around some average. The intensities of the Rydberg

excitation lasers also slightly fluctuate around some average. A more serious

experimental issue (in the context of measuring lifetimes) lies in the switching of

the green excitation laser. The laser is passed through an AOM to control the

timing of the light pulses. The main issue here is that the AOM never turns the

laser completely off and a small amount of light constantly leaks through the

AOM. If this effect is not accounted for in some way, the lifetime data become
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Figure 5.2: (a) Ideal Rydberg atom lifetime measurement inside the

MOT. (b) Magnified view of Rydberg atom excitation and subsequent

detection. An electric field ramp is used to ionize the Rydberg atoms

after ∆t seconds from excitation.

polluted with Rydberg atoms that were unintentionally created at unknown

times.

These effects are compensated for by using an additional excitation and

ionization pulse immediately preceding the excitation pulse used for lifetime
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analysis, see Fig. 5.3. The additional excitation produces an additional TOF

Figure 5.3: (a) Modified Rydberg atom lifetime experiment in the

MOT. (b) Magnified view of the excitation and detection, which is

valid in both lifetime experiments. Distributions from the red pulses

are used to normalize the distributions acquired from the blue pulses

(see text).

distribution which contains information about the instantaneous trap density

and excitation intensities. The number of counts appearing in this additional
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TOF distribution is used to normalize the number of counts appearing in the

(original) TOF distribution of interest. Furthermore, this “normalizing” pulse

clears out all of the Rydberg atoms which could have been created by leakage

light since the previous ionizing electric field ramp. The amount of time for

leakage light to have an effect is then limited by ∆t and not the repetition rate

of the experiment.

To measure the Rydberg atom lifetime inside the MOT, the timing sequence

above was used at a repetition rate of 500 Hz. The time between the normalizing

pulse and the subsequent green laser pulse is held constant. The excitation pulses

are 1 µs wide. The green laser is held on resonance with the nD5/2 Rydberg state

and TOF distributions are acquired for 100 s at various values of the delay, ∆t.

Two TOF distributions result; an earlier one corresponding to the normalizing

pulse and a later one that corresponds to the distribution used for lifetime

analysis. The with of each of the distributions is ∼ 30 µs. The total number of

ions falling in a narrow window (1 µs− 5 µs) centered on the later TOF peak

is divided by the total number of counts appearing in the earlier normalizing

distribution. The resulting value represents the normalized number of Rydberg

atoms detected per second. Three of these measurements are performed at each

value of ∆t. The resulting data for the 50D5/2 Rydberg state are shown in Fig.

5.4. The error bars are the standard deviation of the measurements at each value

of ∆t. The data are fit to a decaying exponential function, Ae−∆t/τ , shown in

blue. The amplitude of the decay is A, ∆t is the delay time between excitation
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Figure 5.4: Experimental lifetime data for the 50D5/2 Rydberg state

in the MOT. The solid blue line is an exponentially decaying fit

function which yields τMOT = 46 µs ± 3 µs.

and ionization, and τ is the 1/e lifetime of the Rydberg state. The amplitude

and the Rydberg lifetime are the only free parameters. The result from the fit

is a Rydberg atom lifetime in the MOT of τMOT = 46 µs ± 3 µs. Theoretical

calculation of the 50D5/2 lifetime predicts a value of ∼ 47 µs [50].

The lifetime measurement in the MOT serves as a control measurement for

the FORT experiment. The MOT lifetime determines the sum of the radiative

and blackbody decay rates, as indicated by Eq. 5.1, which remain constant in the
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corresponding FORT experiment. Repeating the experiment in the FORT then

determines the depopulation due to photoionization, which can be compared

against theory. In order to conduct a similar experiment in the FORT, the

experimental timing shown in Fig. 5.3 had to be modified. The modified

experimental timing sequence is shown in Fig. 5.5. After the FORT is loaded,

Figure 5.5: Timing for FORT loading and Rydberg atom excita-

tion. Subsequent ionization and detection is identical to the MOT

experiment.

the untrapped MOT atoms are allowed to fall away for 100 ms. After that

time, the excitation and ionization pulses begin. Excitation and ionization are

identical to the MOT experiment, Fig 5.3. As mentioned earlier, this experiment

requires an extra laser that is nearly resonant with the repumping transition to

excite Rydberg states, see Fig. 5.1. The IR laser is tuned to compensate for the
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local blue ac Stark shift of the D2 transition. The IR laser is sent through an

AOM for switching and coupled into a single-mode polarization-preserving fiber.

The output is copropagated with the green excitation light and focused onto the

FORT with a size of 86 µm ± 0.8 µm. The Rydberg excitation lasers intersect

the FORT at an angle of ∼ 112.5◦. The normalized data for the 50D5/2 Rydberg

atom lifetime measurement in the FORT are shown in Fig. 5.6. Rydberg atom

Figure 5.6: Experimental lifetime data for the 50D5/2 Rydberg state

in the FORT. The solid blue line is an exponentially decaying fit

function which yields τFORT = 37 µs ± 3 µs.

lifetime analysis is carried out in the same way for the MOT experiment and the
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FORT experiment. The fit to the data gives the shortened lifetime of τFORT = 37

µs ± 3 µs, which is in theoretical agreement with predictions from [60]. Rydberg

atom lifetimes are measured inside the MOT and inside the FORT for 11 different

values of n in the range 50 ≤ n ≤ 75. The lifetimes are used to extract the

depopulation rates. The lifetimes and depopulation rates are compared to theory

in the next Section.

5.4 Discussion of Results

There is a subtle issue involved in this experiment. The nD5/2 Rydberg states

addressed in this experiment are low-field seekers. This means that the trapping

potential experienced by the ground state atoms becomes a repulsive potential

once the Rydberg atom is excited. To estimate the magnitude of the repulsive

effect, we assume the polarizability of the Rydberg states correspond to the

polarizability of the free electron [60], −e2/mω2, where ω is the angular frequency

of the FORT beam. This assumption overestimates the repulsive effect by . 5%.

Using this estimate, the nD states would be expelled from the FORT in ∼ 1 ms

if they traveled directly along the radial dimension of the FORT. This has the

largest effect for the 75D5/2 state, which has both the largest polarizability and

the longest lifetime. Because the atoms must accelerate along the gradient of

intensity out of the trapping volume, the force of Rydberg atoms in the center of

the FORT is initially very small. The repulsive force moves the Rydberg atoms
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< 1 µm in 500 µs. A cesium Rydberg atom at ∼ 40 µK moves ∼ 25 µm in 500

µs. Thus, for times . 1 ms, the Rydberg atom motion is dominated by the

initial temperature.

Lifetimes were measured for 11 nD5/2 Rydberg states inside of the MOT and

compared with identical measurements and inside the FORT. The experimental

lifetimes are compared to the theoretical lifetimes in Fig. 5.7. The theoretical

error bars include the quoted ±5% accuracy [50]. The experimental error bars

come from a convolution of the lifetime error from the fit and the 1 µs excitation

time. Agreement between experiment and theory is excellent.

The depopulation rates may be obtained with the lifetimes and Eq. 5.6.

The theoretical and experimental depopulation rates are shown in Fig. 5.8.

The sum of the radiative and blackbody decay rates is determined from the

lifetime measurement in the MOT and Eq. 5.1. The total decay rate in the

MOT is subtracted from the total decay rate in the FORT to yield the measured

photoionization rate, γPI . The error in the photoionization rate is generated

from an estimated uncertainty in the trapping beam intensity of 14 kW cm−2.

The uncertainty corresponds to the measured uncertainty in the waist radius

of 43 µm ± 0.6 µm, and an estimated power at the trap location of 7.5 W ±

0.2 W. Again, there is very good agreement between experiment and theoretical

predictions.

Equation 5.5 indicates that the photoionization rate is linear in the trapping

laser intensity. To verify this, the photoionization rate of the 50D5/2 state was
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Figure 5.7: Experimental and theoretical Rydberg atom lifetimes as

a function of principal quantum number. Green inverted triangles are

the experimental lifetimes in the MOT. Red circles are the theoretical

lifetimes in the MOT. Blue triangles are the experimental lifetimes

in the FORT. The black squares are the theoretical lifetimes in the

FORT for 258 kW cm−2 of FORT light.

measured as a function of the FORT laser power. The electric field amplitude

of the ionizing pulse is lowered far below the ionizing threshold of the Rydberg

state, so ions are only produced through photoionization due to the FORT beam

and counted. The data are shown in Fig. 5.9. The data shown are the average

of three measurements and the error bars represent the standard deviation. The
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Figure 5.8: Experimental and theoretical depopulation rates as a

function of principal quantum number. Green inverted triangles are

the experimental sum of the radiative and blackbody decay rates

in the MOT. The red circles are the theoretical depopulation rates.

Blue triangles are the experimental photoionization rates. The black

squares are the theoretical photoionization rate for 258 kW cm−2 of

FORT light. The error bars include a 14 kW cm−2 uncertainty in

intensity at the trap location.

data were fit to a line. The intercept of the fit corresponds to the observed

background ion count rate of 8 Hz ± 1 Hz. The data were also fit to a quadratic

function, but the value of the quadratic term from the fit is zero within the
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Figure 5.9: Photoionized 50D5/2 Rydberg atom counts as a function

of FORT laser power. The error bars represent the standard deviation

from three measurements. The solid blue line is a linear fit to the data.

The intercept corresponds to the experimentally observed number of

background ion counts within the error from the fit.

fitting error, indicating the data are best described by a line. This leads to the

conclusion that ionization of the Rydberg state occurs through the absorption

of a single 1064 nm photon.

The experimental lifetimes in the MOT experiments agree very well with

the theoretical predictions from [50], which suggests the experiments are also

in agreement with the earlier experimental work in rubidium [9, 10, 57, 11],
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and the lower-lying states of cesium [58]. The consistency with theoretical

predictions and experimental work of other groups provides confidence that

the depopulation rates measured in the MOT experiments can be used to

determine photoionization rates in the FORT experiments. The experimental

photoionization rates also agree well with our calculations following [60]. Over

most of the range of validity of the model by Beterov et al. [50], our experimental

results show that photoionization rates from a FORT can be generated from

principles following references [60, 62].

109



Chapter 6

Trilobite Molecules

6.1 Introduction

When Rydberg atoms are the constituents of molecular systems, interesting

and exotic molecules can result. The interest in these types of molecules stems

mostly from the fact that the Rydberg atoms provide these molecules with very

high sensitivity to external perturbations. One class of these exotic molecules,

“macrodimers”, are homonuclear diatomic molecules that contain two Rydberg

atoms [63, 16]. These exotic molecules are very fragile, with binding energies

in the tens of MHz, and have extremely long bond lengths, 3 µm - 9 µm.

Calculations including the dominant multipole-multipole interactions between

pairs of Rydberg atoms revealed that wells can appear in the potential energy

curves at very large distances [13] and that these wells can support many

bound states [15]. The calculations suggested that the molecular bond could

be stabilized by an electric field and macrodimers were finally experimentally

observed in the presence of a background electric field in 2009 [16].

A second class of exotic diatomic molecule has recently been observed which

contains one Rydberg atom and one ground state atom [22]. These so-called

trilobite molecules (nomenclature soon to become clear) have a unique binding

mechanism that relies on the scattering of the Rydberg atom electron off of the
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ground state atom. The fascination with these trilobite molecules originates in

the prediction that they can posses massive permanent dipole moments, ∼ 1

kD (1 Debye ∼ 3.34 × 10−30 C·m), which makes them amenable to electric

field manipulation [24]. The molecules observed in Ref.[22] were bound by this

scattering mechanism, but the 3Σ(5S + nS) molecules were only expected to

have an induced dipole moment [22]. It was later demonstrated theoretically

and experimentally that the molecules possessed an observable permanent dipole

moment of ∼ 1 D [23].

The main result of this thesis is the observation of trilobite molecules in

cesium with permanent electric dipole moments of ∼ 20−100 D. The observations

are compared to theoretical results. The theoretical principles dictating the

binding mechanisms are sufficiently simple to describe here, however, due to

the interaction of many different potential energy curves, full multichannel

calculations had to be carried out for an accurate description of the molecules.

These theoretical calculations were carried out by our collaborators at the

Institute of Theoretical Atomic, Molecular and Optical Physics (ITAMP) at

Harvard University, the details of which will not be described in this thesis. With

the theoretical description that follows, the salient features of the theoretical

calculation may be ascertained.
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6.2 Theoretical Description

The size of the Rydberg atom is much greater than the size of the ground state

atom in the molecule. Accordingly, the interaction of the Rydberg atom and

the ground state atom is dominated by the interaction of the ground state

atom with the highly excited Rydberg electron. The electron-ground state atom

interaction is short range and highly localized in space. Since the spatial extent

of the Rydberg atom electron wavefunction is very large, the perturbation to the

wavefunction due to the presence of the ground state atom is weak. Furthermore,

the Rydberg atom electron has very low kinetic energy so the interaction may be

written in terms of a Fermi pseudopotential interaction of a low energy electron

with the ground state atom [18, 19]. In atomic units, the interaction potential is

written

Vea(r,R) = 2πAs(k)δ(r−R) + 6πAp(k)3δ(r−R)
←−
∇ ·
−→
∇ , (6.1)

where the s and p-wave (momentum dependent) scattering lengths are As(k)

and Ap(k), respectively. The nl Rydberg atom electron is a distance r from the

remaining core and the ground state atom is a distance R away, see Fig. 6.1.

The interaction potential is then attractive for negative electron-ground state

atom scattering lengths. The momentum of the electron, k, is R dependent

through a semiclassical analysis of the energy given below.

k(R)2

2
= − 1

2n2
+

1

R
(6.2)
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Figure 6.1: Coordinate system used for the pseudopotential. The

Rydberg atom electron is at a distance r and the ground state atom

is at a distance R away from the Rydberg atom core.

The kinetic energy of the Rydberg atom electron is simply equal to the binding

energy of the nl-Rydberg state and the Coulomb potential at the position of the

ground state atom.

The energy dependent s-wave scattering length, As(k), is calculated from the

scattering phase shift found in [64] and the electron momentum is determined

from Eq. 6.2. The cube of the p-wave scattering length, Ap, is related to the

p-wave scattering phase shift, ηp, by Ap(k)3 = −tan ηp/k
3. The p-wave scattering

length splits into three pieces (J = 0, 1 and 2). To account for this, the p-wave
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scattering length is taken to be

A3
p =

2∑
J=0

[
cJMJ

10,1MJ

]2
A3
p,J , (6.3)

where cJMJ
L1M1,L2M2

is a Clebsch-Gordan coefficient and MJ = ±1, 0 is the projection

of the total electron angular momentum. The Clebsch-Gordan coefficient is

describing the p-wave scattering between the electron and the ground sate atom

so L1, L2 = 1. The important consequence here is that the Clebsch-Gordan

coefficients for the MJ = ±1 and the MJ = 0 cases are different, and therefore

lead to slightly different potential energies. The empirical position of the 3P1

resonance in e−+ Cs(6s) [25] is used with the splittings of the 3P0 and 3P2

states given in [65]. In order to obtain potential energy curves, a Hamiltonian

containing the interaction, Eq. 6.1, is diagonalized with Rydberg atom basis

states [23].

To qualitatively understand Eq. 6.1 more clearly, it should be noted that

the excited nature of the Rydberg atom electron leaves it with very little kinetic

energy. As such, the s-wave scattering of the electron is much more important

due to the presence of the potential barrier for l 6= 0 partial waves. The first

term in Eq. 6.1 describes the s-wave contribution to the potential. The delta

function picks out the point in space where the ground state atom and the

electron overlap. The question to ask then becomes where is the electron with

respect to the Rydberg atom core? The probability of finding the electron is

just given by the square of the Rydberg atom wavefunction |Ψnl|2. The s-wave
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portion of the interaction is just selecting the atomic states that maximize the

wavefunction at the position of the ground state atom. The p-wave contribution

acts to select the states which maximize the derivative of the wavefunction.

Because the p-wave contribution is a small correction to Eq. 6.1, the resulting

potential curves strongly mimic the oscillations present in the Rydberg atom

wavefunction.

An example of the resulting potential energy curves for n∗ = 27 is shown in

Fig. 6.2. The potentials corresponding to MJ = ±1 are solid curves and the

MJ = 0 projections are dashed curves. The oscillations seen in the potential

energy mimic those of the parent 31S Rydberg state. The near-integer quantum

defect of the nS cesium Rydberg states places several potential energy curves

associated with the degenerate hydrogenic manifold energetically nearby. The

proximity of these hydrogenic states produces non-adiabatic couplings between

them and the parent nS state which provide potential wells supporting bound

states. Because these bound states exist near R = 1000 atomic units (a.u.), they

are considered ultralong-range molecular states.

The potentials shown in Fig. 6.2 show the asymptotic states to which the

potentials correspond, but the wells of interest lie ∼ 100 MHz to the blue of

the nS1/2 thresholds and are barely visible in Fig. 6.2. The potentials are

reproduced on a finer scale with the lowest vibrational bound states in Fig. 6.3.

The potential wells in blue correspond asymptotically to the 27G+ 6S1/2 pair

state, but due to the mixing with the 31S1/2 state it has ∼ 99% s-character and
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Figure 6.2: The Born-Oppenheimer potential energy curves for the

states near n = 31S (n∗ = 27). Potentials for the MJ = ±1 projec-

tions are solid curves and the MJ = 0 potential curves are dashed.

The appropriate asymptotically correlating states are labeled on the

right. The circled region contains the potential wells of interest,

∼ 150 MHz above the nS thresholds.

is accessible from the ground state via two-photon association. The MJ = ±1

potential energy curves are solid lines and the MJ = 0 potential energy curves

are the dashed curves. The goal of the present experiment is to observe these

ultralong-range, “trilobite”, molecules.

The initial prediction of these molecules appeared in 2000 from Greene et

al. [24]. The paper described that the interaction of the degenerate manifold
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Figure 6.3: Expanded view of the circled region in Fig. 6.2. The

lowest supported bound states of the 27G+ 6S1/2 pair potentials are

shown. The MJ = ±1 projections are solid curves and the MJ = 0

projection is dashed.

of states causes the states to possess massive permanent dipole moments, D,

with magnitude D ' R − 1
2
n2 (a.u.), which are in the kDebye range. If the

molecular state can be mostly characterized by s character, the magnitude of the

dipole moment can drop by an order of magnitude or so, but the state becomes

easily accessible through two-photon association from the ground state. This is

case for the cesium ultralong-range molecules studied here. The accidental near

degeneracy of the states caused by the near-integer quantum defect gives rise to
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mixing of the states, distributing s character and degenerate character among

them. This leads to hydrogenic character at the 1% level and gives rise to large

permanent dipole moments and easy experimental accessibility. The following

Section describes the experiment carried out to observe these ultralong-range,

“trilobite”, molecules.

6.3 Experiment

6.3.1 Experimental Method

For the ultralong-range states to be created, the Rydberg atom needs to be

∼ 1000 a.u. from the ground state perturbing atom. This means the density

needs to be sufficiently high that several pairs of atoms separated by this

distance are available. The average density available inside of a magneto-optical

trap (MOT) is ∼ 1 × 1010 cm−3, producing an average atomic separation of

∼ 1× 105 a.u., which is orders of magnitude larger than the required distance.

In the crossed far off-resonance trap (FORT), the number density is increased

to ∼ 2× 1013 cm−3 and the average separation is decreased to ∼ 7000 a.u., or

7 times the required photoassociation distance. This means high densities are

needed to observe these molecular states. Furthermore, motion between the

Rydberg atom core and the ground state atom is not desirable, so ultracold

temperatures are also a requirement. Both of these conditions are satisfied in

a crossed FORT, which is employed here. To identify the molecular states, an
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absorption spectrum near the parent Rydberg state is acquired by monitoring

the number of ions produced as a function of frequency of one of the two photons

required for their photoassociation. The details of the crossed FORT preparation

and timing sequence follow.

6.3.2 Experimental Details

In order to photoassociate the molecular states, a high density sample of ultracold

cesium atoms are prepared in a crossed FORT. The crossing geometry for the two

FORT beams was previously described in Section 3.5 and the loading sequence of

the crossed FORT was described in Section 3.5.2, but are briefly reproduced here.

The two FORT beams intersect at an angle of 22.5◦, which create a trapping

volume that is cigar shaped with a 2:1 aspect ratio, see Fig. 3.24.

To load the FORT, a sequence identical to Fig. 3.19 is used. Briefly, the MOT

is loaded to maximum atom number for 1.36 s and then the laser parameters are

changed to provide an additional cooling phase. After this 40 ms cooling phase

the atoms are 40 µK and all of the trapping fields for the MOT are extinguished

leaving atoms trapped inside of the crossed FORT. The maximum available

number density in the crossed region is ∼ 2× 1013 cm−3.

The molecular states are excited inside the crossed FORT using a two-photon

process. The first step is an infrared (IR) photon tuned near the 6P3/2 hyperfine

manifold. The second photon is a green photon near 512 nm. The geometry of

the excitation beams with respect to the trapping beams is shown in Fig. 6.4.
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The IR beam is generated from an external cavity diode laser. The beam is

Figure 6.4: Geometry used for excitation of molecular states. The

green laser beam is combined with the recycled FORT beam with

a dichroic mirror (DM) and focused onto the crossed FORT with a

lens (L). The IR beam is collimated and illuminates the entire trap.

sent through an acousto-optic modulator (AOM) and a single-mode polarization-

preserving fiber. The output is collimated to a size of 1 mm2 and intersects

the crossed FORT at an angle of 79◦ with respect to the long axis of the cross.

During excitation, the IR beam has 5 mW of power. The green beam is generated

from a Coherent 699-21 ring dye laser. This beam is also sent through an AOM

and single-mode polarization-preserving fiber. The output is copropagated with

the second FORT beam and is focused to a spot size of 44 µm. The power used

for excitation is 70 mW.

To locate the positions of the molecular states, the green laser is scanned on

the blue side of the nS Rydberg states while the IR laser remains locked 182
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MHz below the cesium 6S1/2(F = 3) → 6P3/2(F = 2) transition, see Fig. 6.5.

The two-photon linewidth of the excitation pulses was measured inside of the

Figure 6.5: (a) Two-photon excitation scheme used for photoassocia-

tion of the molecular states. The IR laser frequency is locked and the

green laser frequency is scanned to acquire an absorption spectrum.

(b) Experimental timing used to acquire the absorption spectrum.

Detected ions are counted as a function of green laser frequency.

MOT to be < 3 MHz. Because the molecular states contain Rydberg atoms, the

FORT beam can be used to photoionize the Rydberg atom, as described in detail

in Chapter 5. An absorption spectrum is acquired by monitoring the number of

ions produced as a function of green laser frequency. The excitation pulses begin

20 ms after the crossed FORT has been loaded to let the uncaptured MOT atoms

fall away. Each excitation pulse is 10 µs long and is immediately followed by an

electric field pulse to project any positive ions onto a microchannel plate detector

where they are counted. The excitation step repeats at 1.0 kHz and lasts 500

121



ms, at which time the green laser frequency is incremented by 1 MHz and the

crossed FORT is reloaded. The electric field used to extract the ions, 67 V cm−1,

is far below the ionization threshold of any Rydberg states in the experiment [1].

Ion signals corresponding to the Cs+
2 molecular time-of-flight are simultaneously

acquired with the Cs+ signal. As many as six absorption spectra are averaged

together to obtain a single experimental spectrum. Precise knowledge of the

absolute frequencies of both excitation lasers is required to correctly describe

the energies of the observed molecular transitions. The experimental methods

employed to calibrate the laser frequencies appear in the following Section.

6.3.3 Frequency Calibration

Using atomic transitions, the frequencies of both excitation lasers can be cal-

ibrated. The IR laser frequency is calibrated with a saturated absorption

spectrometer. In the saturated absorption setup, two counterpropagating laser

beams (derived from a single beam) are passed through a cesium vapor cell.

Their intensities are made very different. The strong beam is used to saturate an

atomic transition, while the weak beam is detected on a photodiode. Without

the presence of the saturating beam, scanning the weak beam across the D2

transition produces a broad absorption feature due to the room-temperature

atoms having Doppler shifts larger than the total hyperfine splitting of the entire

D2 manifold, see Fig. 6.6. Atoms moving perpendicular to the laser beam

experience no Doppler shift. This means if the strong counterpropagating beam
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Figure 6.6: (a) Saturated absorption setup used for IR laser frequency

monitoring. (b) Hyperfine structure of the cesium D2 transition. The

IR laser probes the individual hyperfine levels which have Doppler

broadening, kv, that is larger than the 6P3/2 hyperfine manifold.

(c) Resulting saturated absorption spectrum when scanning the IR

laser. During the experiment the IR laser frequency is shifted in

the saturated absorption setup so that the F = 3 transition is on

resonance.

is added, those atoms which have no Doppler shift will be resonant with both

laser beams. Atoms with Doppler shifts will not be simultaneously resonant with

both beams. When the atom is in resonance with both beams, the transition

becomes saturated due to the strong beam and fewer atoms are available to

absorb the weaker beam. This is detected as an increase in transmission of the
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weak beam at the exact resonance position of the individual hyperfine state

within the Doppler background. Transmission peaks appear in the Doppler

background that map out the hyperfine structure of the manifold, the positions

of which are accurately known. Furthermore, since there are multiple levels in the

6P3/2 manifold that connect to a common ground state, cross-over peaks appear

in the spectrum. These peaks are due to Doppler shifted atoms energetically

exactly between two hyperfine states. An experimental saturated absorption

spectrum with the Doppler background subtracted is shown in Fig. 6.6 (c).

A fraction of the beam used for excitation of the molecular states is sent

to the saturated absorption setup. The setup incorporates two AOMs that are

used to shift the observed frequency of the peaks in the saturated absorption

spectrum with respect to the lock point of the laser. The AOMs shift the light

such that the Cs 6S1/2(F = 3)→ 6P3/2(F = 3) transition is on resonance during

the experiment. The saturated absorption spectrum determines the IR frequency

within ∼ 3 MHz.

To monitor the frequency of the green laser, a fraction of the laser output is

combined with light from the IR laser to generate an electromagnetically induced

transparency (EIT) signal in a room-temperature vapor cell. For a detailed

and comprehensive discussion of EIT, the reader is referred to the review by

Fleischhauer et al. [66]. EIT is a quantum mechanical interference process

that involves at least three atomic levels. In Rydberg atom EIT, the three

levels involved are the ground state, 6S1/2, the first excited state, 6P3/2, and the
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target nS1/2 Rydberg state, see Fig. 6.7. A quantum mechanical interference

can occur because there are multiple pathways present to arrive at the 6P3/2

state. This can be done two ways. This simplest way to arrive at the first

excited state is through the absorption of a single IR photon. Another way to

arrive in the same state is through the absorption of an IR photon, followed by

subsequent absorption and stimulated emission of a green photon. If the Rabi

frequency of the upper transition is made very high compared to that of the

lower transition, the two processes have similar probabilities and can interfere

with each other. When both of the lasers are in two-photon resonance with

the Rydberg state, interference occurs. Absorption of the IR photon brings the

atom to the 6P3/2 state. The two-photon process of absorption and emission of

green photons can be thought of as a 2π pulse from the 6P3/2 state. Because the

2π pulse causes a π phase-shift in the wavefunction, the probability amplitudes

cancel and destructive interference occurs. This causes the gaseous medium,

which normally absorbs the IR light on resonance, to become transparent on

resonance. The signal is detected as an increase in the amount of IR light falling

on the photodiode and a peak appears. EIT resonances are expected for all

of the accessible hyperfine states in the 6P3/2 manifold. The green light in the

EIT setup is arranged in both co- and counterpropagating configurations with

respect to the IR beam. This arrangement produces up to six EIT resonances

corresponding to different hyperfine states whose absolute frequency relations

are known. The positions of the EIT resonances can be shifted to any desired
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Figure 6.7: (a) Excitation scheme for generation of an electromagneti-

cally induced transparency (EIT) signal. The signal is generated from

a quantum mechanical interference process between the absorption of

a single IR photon and a three photon process involving the indicated

green photons. The Doppler width of the atoms in the vapor cell

is indicated. (b) Optical arrangement for generation of EIT. The

dichroic mirror (DM) produces co- and counterpropagating beams

with respect to the detected IR beam.
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location with AOMs to provide spectroscopic markers.

6.4 Results

During the experiment, the EIT spectrum is acquired simultaneously with the

absorption spectrum as the green laser is scanned. Because the green laser is

frequency stabilized with a Fabry-Pérot cavity, the frequency can unintentionally

move with the temperature or pressure in the room. To counteract this effect,

the observed separation of the EIT resonances is scaled so that the peaks have

the correct spacing. Using the EIT resonances to scale the frequency step of

the green laser, many spectra can be averaged together with a minimal amount

of blurring due to frequency drift. An example of a single scaled experimental

spectrum near 31S1/2 showing EIT resonances is shown in Fig. 6.8. The two

EIT resonances shown in blue are due to the counterpropagating green beam.

The red curve is a Lorentzian fit to the EIT spectrum. The large peak is due

to the 6S1/2(F = 3) → 6P3/2(F = 2) transition and the smaller peak is due

to the 6S1/2(F = 3) → 6P3/2(F = 3) transition. The observed splitting of

the peaks is scaled so that the two peaks are separated by ∆hfs(λIR/λg − 1)

MHz, where ∆hfs is the hyperfine splitting between the F = 2 and the F = 3

states and the λ’s are the IR and green wavelengths. The hyperfine splitting

of the F = 2 and F = 3 states is ∆hfs = 151.2 MHz [31], giving a predicted

splitting of 100.4 MHz for these two EIT resonances. The Lorentzian fits provide
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Figure 6.8: A single experimental spectrum near 31S1/2 is shown in

black. The simultaneously acquired EIT spectrum is shown in blue.

Lorentzian fits to the EIT peaks are shown in red. The line centers

of the fits are used to scale the frequency axis to match the expected

splitting of the EIT peaks.
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the line centers so that their separation may be scaled to 100.4 MHz. The

experimental absorption spectrum is shown in black with a scaled frequency

axis. The peaks appearing in the spectrum are due to photoassociation of

ultralong-range molecular states. The EIT resonances are shifted with AOMs so

that the target molecular resonances lie between them. This allows for accurate

location of the molecular resonances with respect to the EIT resonances.

In addition to knowing the separation of the EIT resonances, their location

with respect to the bare Rydberg atom transition is also known. Because the

experiment takes place inside of a FORT, the Rydberg atoms and ultralong-range

molecules experience an ac Stark shift. Because the molecular states consist of a

single Rydberg atom and the ac Stark shift of the Rydberg state is only weakly

state dependent [1, 67], it is expected that the molecular states exhibit a similar

shift and broadening to the bare atomic Rydberg transition. The ac Stark shift

of the 31S1/2 state was measured by taking an absorption spectrum inside the

MOT and comparing it to one in the FORT. The average ac Stark shift of the

bare atomic transition was measured to be 19 MHz. The minimum linewidth in

the FORT is ∼ 11 MHz compared to < 3 inside the MOT.

Using the known positions of the EIT resonances and the average value

of the ac Stark shift, the frequency axis can be aligned to the nearby nS1/2

threshold. As many as six individual absorption spectra are averaged together

in this way to produce one single experimental spectrum of the region. An

example of an averaged spectrum near 31S1/2 is shown with the EIT spectrum
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in Fig. 6.9. Scaling the frequency axis places the zero directly under the main

Figure 6.9: Averaged experimental data near 31S1/2. Clear peaks

are seen in the absorption spectrum ∼ 50 ion counts high. The inset

shows a single spectrum of the same region, but plotted on a scale up

to 120,000 ion counts to make the Rydberg atom peak visible. The

arrow points to the molecular resonances.

Rydberg atom peak. Peaks appearing at higher energies are visible which are

∼ 10 − 60 ion counts high. The peaks in the absorption spectrum are due to

the photoassociation of ultralong-range molecular states. The height of these

peaks are to be contrasted with the height of the main Rydberg atomic line of

> 100, 000 ion counts. The low signal yield for the molecular states is to be
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expected due to the requirements of laser intensity and pairs of atoms ∼ 50

nm apart. Ion signals corresponding to the molecular time-of-flight were not

observed in contrast to the earlier Rb experiment [22].

Once the experimental data are processed, the zero of energy is aligned with

ac Stark shifted atomic Rydberg transition. This compensates for the ac Stark

shift of the states so that the spectrum may be compared to the theoretical

calculations which do not take the FORT beam into account. The main result of

this thesis is the comparison between theoretical predictions and experimentally

observed locations of the ultralong-range molecular states. Regions with principal

quantum numbers 31 ≤ n ≤ 34 are compared in Fig. 6.10. The theoretical

calculations are shown in Figs. 6.10 (a-d) and the experimental spectra are

shown in Fig. 6.10 (e-h). The potential energies corresponding to the MJ = ±1

potential are solid curves and the MJ = 0 are dashed curves. The vibrational

wavefunctions are plotted with the appropriate excitation energies shown as lines

under the experimental spectrum.

The interactions leading to the observed trilobite states are complex. The

potential wells supporting the states are formed by avoided-crossings of nearly

degenerate states and appear above the nS thresholds. The potential energy in

this region is also sensitive to the empirically entered value of the 3P1 resonance

[25]. Furthermore, the experiment takes place inside of a very intense trapping

field, which the calculation does not account for. Despite the complexity of

the interactions involved, agreement between the theoretical predictions and
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Figure 6.10: Comparison of the theoretical predictions (a-d) and

the experimental spectra (e-h). Panels show the potential curves

supporting the ultralong-range molecular states and the wavefunc-

tions of the vibrational states that are supported. The zero of energy

is set to the value of the field-free nS1/2 Rydberg state. The blue

potentials asymptotically corresponds to the (n− 4)G+ 6S1/2 pair

energy. The red potential curves asymptotically correspond to the

(n−4)H+6S1/2 pair energy. The frequency position of the vibrational

states are indicated with lines under the experimental spectra.
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experimental results is excellent for each value of n. The ability to predict

the correct resonance positions of the molecular states supports the hypothesis

that the molecular states experience the same ac Stark shift as the Rydberg

atom. The behavior of the potentials near the nS thresholds is also sensitive

to the position of the 3P1 e
−+ Cs resonance. As such, the agreement between

theory and experiment reported is an indirect confirmation of the accuracy of

the resonance position [25].

The observed molecular states are predicted to have giant permanent dipole

moments. This is a very peculiar characteristic for a homonuclear diatomic

molecule. In a traditional homonuclear diatomic molecule, the binding electron is

shared equally among the two atoms. The molecular states here have a binding

mechanism which is based on asymmetric electronic excitation between the

atoms. The asymmetry in the electronic excitation gives rise to giant permanent

dipole moments. To further illustrate this idea, the square of the full electronic

wavefunction of the 3Σ(6S + 27G)MJ = ±1 molecular state near R = 1050 a.u.

is shown in Fig. 6.11. The probability distributions are plotted in cylindrical

coordinates, (r, z), where the z-axis is the internuclear axis and r is the radial

distance from the z-axis at the position of the Rydberg atom core. The Rydberg

atom core sits at (0, 0). The top plot shows the probability distribution from

above and the bottom plot show the same distribution at an angle to highlight

the structure in the distribution.

The majority of the electronic wavefunction mimics that of the parent 31S
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Figure 6.11: Full electronic probability distribution of the 3Σ(6S +

27G)MJ = ±1 molecular state near R = 1050 a.u. in cylindrical

coordinates, (r, z). The lower plot shows the distribution from an

angle.
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wavefunction. It can be clearly seen that the normally symmetric probability

distribution of the 31S state has been perturbed on one side. To highlight

the effect of this perturbation, the wavefunction of the 31S Rydberg state

has been subtracted from the full electronic wavefunction before computing

the square. The resulting distribution is shown in Fig. 6.12. Removing the

contribution from the symmetric 31S state reveals a highly localized structure in

the electron probability distribution. The structure resembles ancient trilobite

fossils and is the reason for the name given to these molecular states. The

sphere at the center of the figure represents the Rydberg atom core. The ground

state atom is positioned under the two regions of highest electron probability.

The electron probability distribution is reproduced in Fig. 6.13 with lighting

effects to illustrate the magnitude of the probability distribution in space. The

asymmetry in the electron probability distribution is an indication that there is

separation of charge and that these trilobite states possess giant dipole moments.

Using the wavefunctions of the trilobite states, their dipole moments can be

accurately calculated. This was demonstrated to reproduce the experimental

dipole moments found in [23]. The dipole moments of two prominent MJ = ±1

states are 33.5 Debye and 37.4 Debye and generally, the molecular states will

have higher dipole moments the further they are from the nS asymptote. The

values of these dipole moments are to be compared with a more standard polar

molecule, NaCl, with a dipole moment of 9 Debye and the previously observed

Rb trilobite states with dipole moments of ∼ 1 D [23].
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Figure 6.12: top Full electronic probability distribution. bottom

Remaining probability distribution after subtracting off the parent

Rydberg state contribution. The Rydberg atom core is at the origin

of the cylindrical coordinate system.
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Figure 6.13: Close-up view of the 3Σ(6S + 27G)MJ = ±1 trilobite

state near R = 1050 a.u. The Rydberg atom core is represented by

the sphere. The peaks of the electron probability coincide with the

position of the ground state atom.
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A molecule with a dipole moment of ∼ 35 D should exhibit a dramatic linear

Stark effect. A modest electric field of 240 mV cm−1 should cause a measurable

shift of a few MHz. To investigate this, small background electric fields were

applied during excitation of the two MJ = ±1 molecular states near n = 31.

Surprisingly, even electric fields below 100 mV cm−1 cause changes in the observed

spectrum, see Fig. 6.14. A shift that is described by the linear Stark effect is not

observed. The sign of the permanent dipole moments means that they should

move to lower energies with higher electric fields. The observed peaks broaden

and shift to higher energies. Both peaks broaden with increasing field, which is

to be expected due to the large dipole moments and vanishingly small rotational

constant (B ' 10−11 a.u.). The small rotational constant causes broadening due

to the orientation of the molecular dipole moment with respect to the applied

electric field. The blue-shift of the peaks, however, is unexpected. The largest

peak shifts only very slightly ∼ 2 MHz, but the bluest peak shifts ∼ 10 MHz to

the blue before it disappears completely. The effect of the background electric

field needs to be included in the theory to accurately describe the experiment.

The experimental observations cannot be simply described as a linear Stark shift

because the potential supporting the bound states are changing appreciably with

the applied field. The experimental data suggest that a structural change to the

potential wells is the dominating effect in the presence of a background electric

field. This is expected to be different than the rubidium case [22] because the

molecular states here have significant mixing with the degenerate hydrogenic
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Figure 6.14: Electric field dependence of the molecular states near

n = 31. The applied field causes significant changes in the spectra.
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manifold and are the result of avoided crossings, which are sensitive to the

applied electric field. As a consequence, the electric field dependence of the

cesium ultralong-range molecules studied is sufficiently complicated that the

details are left to a future work.

6.5 Conclusions

To summarize, cesium ultralong-range “trilobite” states were observed in an

optical dipole trap and their positions with respect to the nS thresholds were

accurately described with theory. The agreement with theory provides experi-

mental evidence for the position of the p-wave e−+ Cs resonance described in [25].

Both MJ = ±1 and MJ = 0 angular momentum projections were observed, in

contrast to the earlier Rb trilobite like molecules observed in a magnetic trap [22].

These molecules also have different properties than those found in the earlier Rb

work. The cesium states described here have significantly larger mixing of the

nearby hydrogenic manifold of states due to the near-integer quantum defect

of the cesium nS Rydberg states. The states are supported by potential wells

appearing above the nS thresholds due to the interaction of the hydrogenic

states and the nS Rydberg state, which gives rise to giant dipole moments and

experimental accessibility via two-photon association. Large changes in the

spectrum were observed by applying small electric fields suggesting both large

dipole moments and significant structural changes to the potential wells. Also
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in contrast to the Rb experiment, molecular ions were not observed suggesting a

different decay mechanism.

Future questions to be addressed are to sort out the details of the behavior

of these states in electric fields and understand their decay mechanisms. The

discovery of spectroscopically accessible cesium trilobite states opens up a new

window into these exotic molecules and will help lead to our understanding

of them. Perhaps these states can be used to create ion pair states, involving

the remaining Rydberg atom core and negatively charged ground state atom.

Applications that exploit the giant permanent dipole moments are sure to follow.
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Chapter 7

Conclusions and Future Directions

To conclude, exotic cesium trilobite states with giant permanent electric dipole

moments, ∼ 20−100 D, were observed. The positions of the molecular resonances

were in agreement with calculations carried out by our collaborators at ITAMP,

Harvard University. This experiment represents only the second observation

of molecules bound by this unique mechanism, and the first observation in the

cesium system. These exotic molecules also have the largest permanent dipole

moments of any homonuclear system to date [23] and, to our knowledge, the

largest permanent dipole moments of any diatomic molecule. The experiment

serves as a benchmark for creating homonuclear diatomic molecules with giant

permanent dipole moments and opens a window into how these strange molecules

behave. Understanding how trilobite molecules are created and how they interact

with background fields allows for future experiments which exploit their giant

dipole moments. Furthermore, study of trilobite molecules may lead to a path

for the formation of ion pair states.

The design, construction, and implementation of Zeeman slowed atomic

beam was described. The design parameters were carefully considered and a

Monte Carlo simulation was carried out for their optimization. The Zeeman

slower, while not implemented in any experiment in this thesis, enhances the

loading rate and steady-state atom number available in the MOT by ∼ 1 order
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of magnitude, compared to MOTs loaded from background vapor. This will

become important for experiments with lower detection rates because the overall

repetition rate of the experiment may be increased bye faster loading rates, longer

trapping lifetimes and larger traps. An important advantage of the addition of

the slowed atomic beam is the differential pumping between the MOT location

and the atomic beam oven. This allows for pressures lower by nearly 2 orders of

magnitude in the trapping region that will extend the lifetime of trapped atom

samples. This again aids in the overall data acquisition rate, but the decrease in

pressure is an absolute necessity to achieve temperatures approaching quantum

degeneracy.

Perhaps the most significant technical contribution of this thesis is the

addition of an optical dipole trapping system to the experiment. The dipole trap

has been successfully implemented and characterized. An alignment procedure

was developed to properly overlap the dipole trap and MOT to allow for proper

loading. The details of the necessary additional cooling phase in the MOT were

determined. Loading weaker neutral atom traps from larger traps is generally

useful so the cooling techniques used here are applicable to other systems as

well. The effect of the trapping field on the lifetimes of Rydberg atoms was

systematically studied. In the crossed optical dipole trap configuration, a ground

state density of ∼ 2 × 1013 cm−3 was achieved, an increase in ∼ 3 orders of

magnitude from the MOT which was used in all experiments before this thesis.

The increase in density is an invaluable tool for future experiments. Not only is
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the experimental apparatus now sensitive to interactions on the 50 nm scale, few-

body events scale as powers of the density, so the signal sensitivity to ultracold

two-body events has been increased by 106 and that of three-body events has

been increased by 109 ! Indeed, without this critical addition to the apparatus,

trilobite molecules would not have been observable.

The future bodes well for this experiment. The experimental apparatus will

most certainly be further improved. The flux of slowed atoms from the Zeeman

slower can be improved with larger apertures and the addition of a dedicated

slowing laser. The density and atom number of the optical dipole trap can

be improved by adding lasers with higher powers and optimizing the trapping

volume. A high power CO2 laser is also available for schemes such as dimple

traps, which are used in the condensation of cesium [68]. Future experiments

include a closer look at cesium trilobite molecules. The decay of these molecules

is a topic of recent interest because they can possibly lead to the formation of

ion pair states and the cesium trilobite states were observed to decay differently

than those in rubidium [22]. The study of cesium trilobite molecules may be

extended by going to Rydberg states with higher principal quantum numbers.

The larger orbit of the Rydberg electron guarantees that many ground state

atoms lie within its orbit. The interactions are then described by electron

scattering off of many ground state atoms. This system has similarities to

electron scattering off of defects in semiconductors, leading to magnetic phase

transitions. The dependence of the phase transitions on electron spin will be
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studied with unpolarized and spin-polarized atoms.

Another exciting cesium experiment soon to be underway is the study of

anisotropic interactions of high-lying Rydberg states in the presence of a back-

ground electric field. Two Rydberg atoms in high-l 6= 0 angular momentum

states will show an observable alignment effect in the presence of a background

electric field. The angular distributions can be measured by imaging the process

in 3D. The detection system, at present, already has position sensitivity in

the xy-plane and the third dimension may be obtained by using the time-of-

flight. The capability to image processes in 3D will provide this experiment with

tools necessary to study more complex processes, such as three-body recombina-

tion. Three-body recombination in this context describes the approach of three

ultracold cesium atoms recombining to a diatomic molecule and excited atom.

Cs + Cs + Cs→ Cs∗ + Cs2 (7.1)

This process is of interest because it is the dominating loss process when the

density is high, and historically inhibited Bose-Einstein condensation [68, 20, 21].

The molecules that are formed are in very high-lying vibrational states, and

the experiment will determine the state-to-state differential cross-sections for

the levels involved. Since most BEC experiments require the use of magnetic

Feshbach resonances, the cross sections as a function of magnetic field are also of

interest. The method of detection is resonant-enhanced multiphoton ionization of

the molecules and significant steps have already been made to optimize detection
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of photoassociated molecules. With additional improvements to the existing

apparatus, the experiment will be able to exploit its full potential in studying

systems of ultracold interactions and ultracold chemistry.
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[8] E. Hagley, X. Mâıtre, G. Nogues, C. Wunderlich, M. Brune, J. M. Raimond,
and S. Haroche, Phys. Rev. Lett. 79, 1 (1997).

[9] A. L. d. Oliveira, M. W. Mancini, V. S. Bagnato, and L. G. Marcassa, Phys.
Rev. A 65, 031401 (2002).

[10] V. A. Nascimento, L. L. Caliri, A. L. de Oliveira, V. S. Bagnato, and L. G.
Marcassa, Phys. Rev. A 74, 054501 (2006).

[11] D. B. Branden, T. Juhasz, T. Mahlokozera, C. Vesa, R. O. Wilson, M. Zheng,
A. Kortyna, and D. A. Tate, Journal of Physics B: Atomic, Molecular and
Optical Physics 43, 015002 (2010).

[12] M. Brune, F. Schmidt-Kaler, A. Maali, J. Dreyer, E. Hagley, J. M. Raimond,
and S. Haroche, Phys. Rev. Lett. 76, 1800 (1996).

[13] A. Schwettmann, J. Crawford, K. R. Overstreet, and J. P. Shaffer, Phys.
Rev. A 74, 020701 (2006).

[14] K. R. Overstreet, A. Schwettmann, J. Tallant, and J. P. Shaffer, Phys. Rev.
A 76, 011403 (2007).

[15] A. Schwettmann, K. R. Overstreet, J. Tallant, and J. P. Shaffer, Journal of
Modern Optics 54, 2551 (2007).

[16] K. R. Overstreet, A. Schwettmann, J. Tallant, D. Booth, and J. P. Shaffer,
Nat. Phys. 5, 581 (2009).

147



[17] H. J. Metcalf and P. van der Straten, Laser Cooling and Trapping, 1st ed.
(Springer-Verlag New York, 1999).

[18] E. Fermi, Nouvo Cimento 11, 157 (1934).

[19] A. Omont, J. Phys. France 38, 1343 (1977).

[20] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A.
Cornell, Science 269, 198 (1995).

[21] K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee,
D. M. Kurn, and W. Ketterle, Phys. Rev. Lett. 75, 3969 (1995).

[22] V. Bendkowsky, B. Butscher, J. Nipper, J. P. Shaffer, R. Löw, and T. Pfau,
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Appendix A

Appendix A

A.1 Analysis of the Two-Level Atom in a Laser Field

A.1.1 Construction of the Hamiltonian

The two level system consists of a ground state |g〉, and an excited state |e〉.

The energy is chosen so that the ground state is at zero energy and the states

are separated by an energy ~ω0, see Fig. A.1. The atomic Hamiltonian may be

Figure A.1: The Two-level atom.

expressed as H0 =
∑
n

En|n〉 〈n|, where n = {g, e}. This Hamiltonian in matrix

form is simply

H0 =

0 0

0 ~ω0

 . (A.1)
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Because the two eigenstates form a complete set, any wavefunction may be

expressed as a linear combination of them, shown in Eq. A.2.

|ψ(t)〉 = cg(t)|g〉+ ce(t)|e〉 (A.2)

We now introduce a weak perturbation, H′(t), which depends on time. The

Schrödinger equation may be recast in terms of the coefficients appearing in

Eq. A.2 as

i~
d

dt
cn(t) =

∑
m

cm(t)eiωnmtH′nm(t) (A.3)

where ωnm ≡ ωn − ωm, and H′nm(t) = 〈n|H′(t)|m〉. We consider a perturbation

that is due to the interaction with an electromagnetic wave coming from a laser

that can be considered monochromatic. The electric field is given by

E(t) = E0 ε̂ cos(ωLt). (A.4)

The photons from the laser have energy ~ωL, polarization ε̂, and are detuned

from resonance by an amount δ = ωL − ω0, see Fig. A.1.

In the dipole approximation, the form of the perturbing Hamiltonian is

given by H′(t) = −eE0ε̂ · r cos(ωLt). The matrix elements, H′nm, are computed

according to 〈n|H′ |m〉. We see that the element H′eg = −eE0 〈e| ε̂ · r|g〉 cos(ωLt)

can be recast in a simpler form with the Rabi frequency, Ω.

Ω =
−eE0

~
〈e| ε̂ · r|g〉 (A.5)

The coupling elements now have the form

H′eg = H′∗ge =
~Ω

2
(eiωLt + e−iωLt), (A.6)
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where cos(ωLt) has been expanded with exponentials, and Ω is taken as real.

The total Hamiltonian is now H = H0 +H′(t) and is expressed in matrix form

as

H = ~

 0 Ω
2
(eiωLt + e−iωLt)

Ω
2
(eiωLt + e−iωLt) ~ω0

 . (A.7)

A.1.2 Transformation of the Hamiltonian: The Interaction Picture

The total Hamiltonian expressed in Eq. A.7 now depends on time, where the

time dependence has entered in through the perturbing Hamiltonian, H′(t). The

initial wavefunction, |ψ(t)〉, is represented in the Schrödinger picture, where

the operators are time-independent. The interaction picture moves to a frame

that rotates with frequencies associated with the bare atomic eigenstates so that

the motion of the new states is slow compared to the old states. These new

eigenstates evolve solely due the perturbation, or interaction Hamiltonian, and

so this picture is aptly named the interaction picture.

The interaction wavefunction, |ψI(t)〉, is obtained through a unitary trans-

formation of the original wavefunction, |ψ(t)〉. The unitary operator is given

by

U(t) = e−
i
~H0t (A.8)

Expanding the exponential gives the unitary operator in matrix form.

U(t) =

1 0

0 e−iω0t

 (A.9)
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It is easy to verify that U †U = 1. The interaction wavefunction may now be

obtained by the following transformation.

|ψI(t)〉 = U †(t)|ψ(t)〉 (A.10)

We may obtain the transformation of a general Hamiltonian in the Schrödinger

picture, HS, into the corresponding interaction Hamiltonian, HI , by beginning

with the Schrödinger equation and using the transformation in Eq. A.10 (time

dependence suppressed).

i~
d

dt
U |ψI〉 = HSU |ψI〉 (A.11)

By using the chain rule and operating on the left with U †, we arrive at the

following equation.

i~U †
d

dt
U |ψI〉+ U †Ui~

d

dt
|ψI〉 = U †HSU |ψI〉 (A.12)

We now exploit unitarity and note i~ d
dt
|ψI〉 = HI |ψI〉 to arrive at the transfor-

mation from HS to HI .

HI = U †HSU − i~U †
d

dt
U (A.13)

When we apply the transformation A.13 to the total Hamiltonian matrix, H,

we obtain time-dependent terms that depend on the detuning of the laser,

δ = ωL − ω0. These terms in the interaction Hamiltonian may be removed by

another transformation using the unitary operator of the form

U2(t) =

1 0

0 e−iδt

 . (A.14)
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The transformed Hamiltonian, Htr, is shown below. The only approximation

made to this point is the dipole approximation.

Htr =
~
2

 0 (1 + e−2iωLt)Ω

(1 + e2iωLt)Ω −2δ

 (A.15)

One can further make the rotating-wave approximation (RWA) to eliminate

oscillations at 2ωLt if the laser detuning is not too large (i.e. ωL sufficiently high).

The RWA is well satisfied in most laboratory situations. This approximation

leads to a ∼ 10% error for 1064 nm photons from a FORT. The RWA is not

valid, however, when taking into account effects from a CO2 laser, with photon

wavelength of 10.6 µm.

In the RWA, the terms e±2iωLt are set to zero due to the rapid oscillation. In

situations where the RWA is satisfied, the new Hamiltonian, HRWA, is given by

HRWA =
~
2

0 Ω

Ω −2δ

 . (A.16)

A.1.3 Dynamics

In the two-level atom, the state |ψ(t)〉 is completely described by the form shown

in Eq. A.2. To find the expectation value of an observable, Â, one computes

〈ψ(t)| Â|ψ(t)〉 and arrives at the following expression

〈Â〉(t) =
∑
n,m

c∗n(t)cm(t)Anm. (A.17)

The expectation value depends on quadratic expressions of the coefficients, c∗c.

Expressions of this form occur naturally when working with the density operator,
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ρ̂ = |ψ(t)〉 〈ψ(t)|, with matrix elements in the {|g〉, |e〉} basis given byρgg ρge

ρeg ρee

 =

|cg|2 cgc
∗
e

cec
∗
g |ce|2

 . (A.18)

We see that ρgg and ρee represent the probability to be in state |g〉 or |e〉, respec-

tively . These elements are called the populations, and their time dependence can

be calculated using Eq. A.3. The dynamics of the density matrix elements may

also be computed by noting that ˙̂ρ = ˙|ψ〉 〈ψ|+ |ψ〉 ˙〈ψ|, and using the Schrödinger

equation to arrive at the following expression.

d

dt
ρ̂ = − i

~
[H, ρ̂] (A.19)

There is a subtle issue in calculating the populations. In the limit of zero

coupling field (i.e. H′eg = 0), the populations are constant. This means if the

atom finds itself in the excited state, it would remain there forever. This is clearly

not the case because atoms in an excited state will spontaneously decay. The

spontaneous decay is due to an interaction between the atom and the quantized

vacuum field [69], and the rate of spontaneous decay, Γ, is inversely related to

the lifetime of the state, τ = 1/Γ [70].

Γ =
µ2
egω

3
0

3πε0~c3
(A.20)

The effect of the vacuum field is to act as a reservoir for the spontaneously

emitted photon. This leads to a modification of the dynamics given in Eq. A.19

and we arrive at the so-called master equation [71].

d

dt
ρ̂ = − i

~
[H, ρ̂] + L̂d (A.21)
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L̂d is an operator that describes decay and is given by [66],

L̂d =
∑
i,j

Γij
2

(2σ̂ji ρ̂ σ̂ij − [σ̂ii, ρ̂]) . (A.22)

The σ̂ij are projection operators of the form σ̂ij = |i〉 〈j|, where {i, j} are state

labels. For a two-level atom {i, j} ∈ {g, e} and Γeg = Γ with all other Γij = 0.

In the {|g〉, |e〉} basis, the decay operator becomes

L̂d =

 Γρee −Γ

2
ρge

−Γ

2
ρeg −Γρee

 . (A.23)

Using Eq. A.21 to calculate the dynamics with the Hamiltonian HRWA, we

arrive at the optical Bloch equations.

dρgg
dt

= Γρee +
i

2
Ω(ρeg − ρge)

dρee
dt

= −Γρee +
i

2
Ω(ρge − ρeg)

dρge
dt

= −
(

Γ

2
+ iδ

)
ρge +

i

2
Ω(ρee − ρgg)

dρeg
dt

= −
(

Γ

2
− iδ

)
ρeg +

i

2
Ω(ρgg − ρee)

(A.24)

Equations A.24 are, in general, difficult to solve. However, the steady-state

quantities are of interest because they provide the equilibrium scattering rates

for atoms that can be approximated with two-levels. The steady-state values

of the density matrix elements may be computed by setting the equations A.24
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equal to zero. The steady-state density matrix elements are

ρgg = 1− Ω2

Γ2 + 4δ2 + 2Ω2

ρee =
Ω2

Γ2 + 4δ2 + 2Ω2

ρge =
(iΓ + 2δ)Ω

Γ2 + 4δ2 + 2Ω2

ρeg =
(iΓ + 2δ)Ω

Γ2 + 4δ2 + 2Ω2

(A.25)

The total photon scattering rate, Γp, of radiation from the atom or ensemble of

atoms is then simply given by

Γp = Γρee = Γ
Ω2

Γ2 + 4δ2 + 2Ω2
. (A.26)
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Appendix B

Appendix B

B.1 Monte Carlo Simulation Code

The Zeeman slowing process in the atomic beam is simulated by a Monte Carlo

simulation. The following pages reproduce the code, which should be easily

manipulatable.
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Zeeman Slower Simulation
In[120]:=

Initialization
In[4]:=  PhysicalConstants`

 Units`

Enter atomic parameters in SI units.  These are already set for Cs.

In[6]:=
atomicparameters 

kB  BoltzmannConstant1, —  PlanckConstantReduced1,

B  ConvertBohrMagneton, Joule  Tesla1,

m  133 ConvertAMU, Kilogram1,

k 
2 

852.34727582  109
,   2  5.22  106;

Oven Speed Distribution

Enter the temperature in Kelvin.  The current design is based on a ~50 °C source.

In[7]:=
T  323;

ü Speed PDF

The speeds are described by the Maxwell-Boltzmann distribution.

ü Definition

In[8]:= speedPDFv_  4 
m

2  kB T

32

v2 
m v2

2 kB T . atomicparameters;

Test normalization

ü Distribution Checks

In[9]:= IntegratespeedPDFv, v, 0, , Assumptions  Re m

k
  0

IntegratespeedPDFv, v, 0, 4.5, Assumptions  Re m

k
  0

IntegratespeedPDFv, v, 0, 110, Assumptions  Re m

k
  0

Out[9]= 1.

Out[10]= 8.44399  106

Out[11]= 0.103393
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In[12]:= vave  Integratev speedPDFv, v, 0, 
Out[12]= 226.758

To find the cumulative distribution function, the effective zeroes on the sides of the distribution
must be defined.

In[13]:= vmin  v . FindInstance107  speedPDFv  106  speedPDF'v  0, v1;

vmax 

v . FindInstance107  speedPDFv  106  speedPDF'v  0  v  0, v1;

In[15]:= vtop  v . FindInstancespeedPDF'v  0  v  0, v1  N

Out[15]= 200.959

In[16]:= speedPDFvtop
Out[16]= 0.00413126

In[17]:= PlotspeedPDF'v, v, 0, vmax

Out[17]=
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ü Speed CDF

Create a table of cdf points.

Enter the number of points

In[18]:=
Npoints  10 000;

In[19]:= cdfpoints 

TableNIntegratespeedPDFv, v, 0,
i

Npoints
vmax,

i

Npoints
vmax,

i, 1, Npoints;

Interpolate the results.

In[20]:= cdf  Interpolationcdfpoints, InterpolationOrder  3;

Random velocities may now be chosen within a Maxwell-Boltzmann distribution.

Atomic Beam Collimation
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This section determines the limits on the transverse velocity, given the geometry of the collimation
system.
Enter the distance between the collimating holes in meters.

In[21]:=
dc  0.1452372;

On average, the atoms will travel through the collimating region at the thermal velocity determined
by the oven temperature.  This dictates the average amount of time in the region.

In[22]:= tc 
dc

vave

Out[22]= 0.000640494

Choose the atomic beam diameter, just before entering the slower.  The design is currently based on
a 1 mm diameter.

In[23]:=
d  1.  103;

The maximum transverse velocity allowed by this geometry is given by vtmax in m/s.

In[24]:= vtmax 
d

2 tc

Out[24]= 0.780647

Random Number Generation

ü Positions

Since the axis of the Zeeman slower is the z axis, random numbers are chosen to represent the x and
y coordinates.  These coordinates must be within the beam diameter, d.  So a uniform disk distribu-
tion of atoms is chosen for the intial spatial distribution.  The initial z coordinate for the simulation
will be set to zero.

This defines the uniform disk spatial distribution.

In[25]:= randr : RandomReald

2


randang : RandomReal2 
In[27]:= randxy : rad Cosa, rad Sina . rad  randr, a  randang

ü Distribution Check

In[28]:= circ  Tablerandxy, i, 1, 1000;
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In[29]:= ListPlotcirc, PlotRange  .001, .001, .001, .001,

Frame  True, FrameLabel  "x m", "y m", ImageSize  400

Out[29]=
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ü Velocities

The transverse  speed is  set  by  the  collimation geometry (coaxial  with  the  slower).   This  speed
should be the maximum random speed in either the x or y direction.  The z velocity component is set
by the oven speed distribution.

In[30]:= randvx : RandomRealvtmax, vtmax
randvy : RandomRealvtmax, vtmax
randvz : cdfRandomReal

ü Distribution Check

In[33]:= speeds  Tablerandvz, i, 1, 10 000;

In[34]:= ListPlotspeeds

Out[34]=
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ü Binning

To make sure the distribution is Maxwell-Boltzmann, the results are binned.
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In[35]:=
binsize  10;

numbins  Quotientvmax, binsize;

Create a table with 0's to be filled in by the binning results.

In[37]:= binlist  Table0, 0, i, 1, numbins;

In[38]:= Dobin  Quotientspeedsi, binsize;

binlistbin, 2;

binlistbin, 1  bin binsize 
binsize

2
, i, 1, Lengthspeeds  Quiet

ü Plot

In[39]:= ShowListPlotbinlist, Frame  True, FrameLabel  "vz ms", "Number",

PlotMax Maxbinlist1 ;;, 2
speedPDFvtop speedPDFv, v, 0, vmax,

Axes  True, False, Frame  True, ImageSize  400

Out[39]=
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Slower Length

Set the slower length in meters.  The experimental value of the slower length is ~85.5 cm.

In[40]:=
Clearz0
z0  0.855;
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Magnetic Field

ü Initial Guess

Define the bias and the taper magnetic fields (in SI) to be used in the slower region.  A good guess
at the taper field is

In[42]:= BtguessSIv0_ 
— k v0

B
. atomicparameters;

In[43]:= BtguessGaussv0_  ConvertBtguessSIv0 Tesla, Gauss;

In[44]:= BtguessGaussvave
Out[44]= 190.079 Gauss

For T=350K, a good guess at the taper field is 200 Gauss.

ü Parameters

Enter the ideal magnetic field parameters.  The current values have been determined by a dynamic
simulation of the atomic motion that maximizes the capture rate.  The values are 250 Gauss for the
bias and 220 Gauss for the taper.

In[45]:=
ClearBb, Bt
Bb  250 ConvertGauss, Tesla1;

Bt  220 ConvertGauss, Tesla1;

ü Function

ü Ideal

Define the ideal magentic field.

In[48]:= Bslowz_  Bb  Bt 1 
z

z0
;

Define a piecewise function to represent the magnetic field between slower and MOT.

In[49]:= Btotz_  ¶ Bslowz z  z0
0 z  z0

;

Make an interpolating function that avoids discontinuities.

In[50]:= Bpoints  Tablei, Btoti, i, 0, 10 z0, .001;

In[51]:= B  InterpolationBpoints, InterpolationOrder  5;
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In[52]:= PlotBz, z, 0, 1.01 z0, PlotStyle  AbsoluteThickness2

Out[52]=
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ü Wire Wrapped Calculation

Input list with the number of turns used for wrapping the slower tube.  The units of length should be
one wire width.  (total number of entries should be z0/w, where w is the width of the wire.  The
modified newturn list may be calculated with Optimize.nb. Just copy and paste.

In[53]:=
newturn  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,

3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,

3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,

4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,

4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5,

5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,

5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,

6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7,

7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8;

These are the parameters for the wire that will be used.  These values are quoted from Alpha-Core,
but the wire will likely change shape during wrapping.

This next piece of code is generates the magnetic field due to the wire wrapping configuration above.
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In[54]:= w  1.0  2.67  103;

t  1.35  103;

r  19  103;

sollength  .85974;

passesmodnumber_ : RoundCountnewturn, x_ ; x  number;

sollengthmodnumber_ : passesmodnumber w;

Bturnsmodz_, n_ : 2  107
6.0

w

sollength  z

sollength  z2  r  2 n  1 t  22



z  sollength  sollengthmodn 

sollength  sollengthmodn  z2  r  2 n  1 t  22 ;

Btotmodz_  TableBturnsmodz, n, n, 1, Maxnewturn;

Bfinalmodz_  
i1

Maxnewturn
Btotmodzi;

Removet
ü Plots

This is the wrapped field  vs. the ideal field.

In[64]:= PlotBz, Bfinalmodz,

z, .001 z0, 1.01 z0, PlotStyle  AbsoluteThickness4

Out[64]=
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Forces

ü Radiation Pressure 

ü Laser Parameters

The radiation pressure force is due to a single beam, whose intensity distribution is uniform across
the atomic beam.  Enter the laser parameters below.
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In[65]:=
laserparameters  s  16,   2  325  106;

ü Function

The force should be directed in the -z direction.  Fz[z,vz] is the radiation pressure force from the
IDEAL field.

In[66]:= Fzz_, vz_ : 
— k 

2

s

1  s  4  2   k vz  B Bz
—

2
.

Flattenlaserparameters, atomicparameters;

In[67]:= vrz_, _ 


k

B Bz
— k

. Flattenlaserparameters, atomicparameters;

In[68]:= Plot3D s

1  s  4  2   k vz  B Bz
—

2
.

Flattenlaserparameters, atomicparameters, z, 0, 2,

vz, 20, 300, PlotRange  Full, AxesLabel  Automatic

Out[68]=

Fzmod[z,vz] is the radiation pressure force from the WIRE WRAPPED field.

In[69]:= Fzmodz_, vz_ : 
— k 

2

s

1  s  4  2   k vz  B Bfinalmodz
—

2
.

Flattenlaserparameters, atomicparameters;

ü Gravity

The coordinate system is such that gravity acts in the -y direction.

In[70]:= Fy  m  9.8 . atomicparameters;

ü Net Force

Define the net force as a vector.  Force[z,vz] is the force from the IDEAL field.
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In[71]:= Forcez_, vz_ 
0

Fy
Fzz, vz

 Flatten;

Forcemod[z,vz] is the force from the WIRE WRAPPED field.

In[72]:= Forcemodz_, vz_ 
0

Fy
Fzmodz, vz

 Flatten;

Dynamics

ü Single Atom Evolution

ü Equations

Define the equations of motion for a single atom.  eqns is for the IDEAL field.

In[73]:= eqns  Moduler, v, a,

r 

xt
yt
zt

 Flatten;

v 
x't
y't
z't

 Flatten;

a 
x''t
y''t
z''t

 Flatten;

Table
133 ConvertAMU, Kilogram1 ai  Forcezt, z'ti, i, 1, 3;

eqnsmod is for theWIRE WRAPPED field.

In[74]:= eqnsmod  Moduler, v, a,

r 

xt
yt
zt

 Flatten;

v 
x't
y't
z't

 Flatten;

a 
x''t
y''t
z''t

 Flatten;

Table133 ConvertAMU, Kilogram1 ai 

Forcemodzt, z'ti, i, 1, 3;

Define the initial conditions from the random numbers defined earlier.
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In[75]:= vave

Out[75]= 226.758

In[76]:= initialconditions : 
x0  randxy1,

y0  randxy2,

z0  0,

x'0  randvx,

y'0  randvy,

z'0  vave;

Here is where the equations of motion for  a single atom are calculated.  The single atom trajectory
uses the average velocity defined by the oven temperature for the initial velocity, so it is representa-
tive of the majority of atoms.  If these results do not look promising, don't go on to the system
evolution.   To solve  for  the  ideal  vs.  wire  wrapped  field  trajectories,  just  change  eqns  to
eqnsmod or vice versa.

In[77]:= sols  NDSolveJoineqnsmod, initialconditions, x, y, z, x', y', z',

t, 0, 0.02, InterpolationOrder  10, MaxSteps  100 000;

Define the length from the MOT to the flange where the slower will be connected.

In[78]:= Lchamber  Convert11 Inch, Meter1  N;

Now, the total distance that the atoms must move from the beginning of the slower to the trapping
region is defined by ztot.

In[79]:= ztot  z0  Lchamber;

texit is the time it takes for an atom to exit the slower and tMOT is the time it takes to reach the
MOT.  

In[80]:= texit  t . FindRootEvaluatezt . sols1  z0, t, .0051;

tMOT  t . FindRootEvaluatezt . sols1  ztot, t, .021;

Here is the velocity of the atoms as they exit the slower.  If this value is between 5 and 30 m/s, the
atom will likely be trapped.  (If it's below 5 m/s, it tends to miss the trap).

ü Results

Here are the component trajectories of one atom in time.  The x coordinate (blue) should be con-
stant, the y coordinate  (magenta) should fall a bit with time (due to gravity), and the z coordinate
(yellow/brown) should decelerate until it reaches the end of the slower, then move with a constant
velocity to the trapping region.

171



In[82]:= Plotxt . sols, yt . sols, zt . sols,

t, 0, .02, PlotRange  Full, PlotStyle  AbsoluteThickness3

Out[82]=
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This is the final velocity.

In[83]:= z'texit . sols1
Out[83]= 27.9047

Here is the plot of the axial velocity as a function of time.  There should be a constant(ish) decelera-
tion until it becomes constant after exiting the slower.  

In[84]:= Plotz't . sols, t, 0, tMOT,

PlotRange  Full, PlotStyle  AbsoluteThickness3

Out[84]=
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In[85]:= Plotzt . sols, t, 0, tMOT,

PlotRange  Full, PlotStyle  AbsoluteThickness3

Out[85]=
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In[86]:= time  Tablezt . sols1, t, t, 0, tMOT, .0001;

In[87]:= timez  Interpolationtime
Out[87]= InterpolatingFunction0., 1.13264, 
In[88]:= z'0 . sols

Out[88]= 226.758
In[89]:= Plotz'timezx . sols1, x, 0, 1.2

Out[89]=
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Here's the percentage of velocity lost.

In[90]:=
z'0  z'texit

z'0 . sols

Out[90]= 0.876941
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ü Shifts

In[91]:= Dopplerl_ 
2 

852.35  109
z'timezl . sols1

Out[91]= 7.3716  106 InterpolatingFunction0., 0.02, 
InterpolatingFunction0., 1.13264, l

In[92]:= s1  PlotDopplerx
2  106

, x, 0, 1.2, AxesLabel  "z", "Doppler Shift MHz"

Out[92]=
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In[93]:= Zeemanl_ 
B

—
Bfinalmodl .atomicparameters;

In[94]:= s2  PlotZeemanx
2  106

, x, 0, 1.2, AxesLabel  "z", "Zeeman Shift MHz"

Out[94]=
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In[95]:= Shows1, s2

Out[95]=
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The next graph is the total detuning from resonance the atom feels as it moves down the slower.

In[96]:= s3  PlotZeemanx
2  106


Dopplerx

2  106




2  106
. laserparameters,

x, 0, 1.2, AxesLabel  "z", "Total Detuning MHz"

Out[96]=
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ü System Evolution

ü Equations

Choose the number of atoms entering the slower and enter the capture range (in meters) for the
MOT.  If you want to run the ideal theoretical data,set eq=eqs.  If you want to run the calcu-
lated field from the wrapping, set eq=eqsmod.
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In[97]:= eqeqns;
eq  eqnsmod;

numatoms  1000;

rcapture  .015;

In[100]:= evolve : Modulepositions, velocities, initialconditions, result,

result  Table0, i, 1, numatoms;

positions  TableFlattenrandxy, 0, i, 1, numatoms;

velocities  Tablerandvx, randvy, randvz, i, 1, numatoms;

initialconditions  Table
x0  positionsi, 1,

y0  positionsi, 2,

z0  positionsi, 3,

x'0  velocitiesi, 1,

y'0  velocitiesi, 2,

z'0  velocitiesi, 3, i, 1, numatoms;

Do
sols  NDSolveJoineq, initialconditionsi, x, y, z, x', y', z',

t, 0, .1, InterpolationOrder  3, MaxSteps  100 000;

tmot  t . FindRootzt  ztot . sols1, t, .02;

resulti  xtmot, ytmot, ztmot, z'tmot . sols1,

i, 1, numatoms
;

result


This is where the system dynamics get calculated.  For 1000 atoms, this typically takes ~ 2 min. to
calculate.   There  are  normally some pesky   errors  here,  but  all  errors  should  get  automatically
suppressed (eventually).

In[101]:= Clearresults
results  evolve  Quiet;

These four lists separate the results into different groups of atoms.  Collisionresults are atoms that
experience little slowing if any and will lead to the loss-rate in the trap.  Slowedresults are atoms
that have been slowed down, but may not be in the trapping region when they arrive at the MOT
plane.  

In[103]:= collisionresults  Casesresults, x_, y_, z_, vz_ ; vz  100;

slowedresults  DeleteCasesresults, x_, y_, z_, vz_ ; vz  35;

lostresults  Casesresults,

x_, y_, z_, vz_ ; z  ztot  0  vz  35  x2  y2  rcapture;

trappedresult  Casesresults, x_, y_, z_, vz_ ;

z  ztot  0  vz  35  x2  y2  rcapture;

In[107]:= Lengthtrappedresult  Lengthlostresults  Lengthcollisionresults
Out[107]= 986

ü Results
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Here is a plot of the spatial distribution of the atoms in the plane of the MOT.  The blue dots will
lead to losses, the magenta dots have been effectively slowed by the slower, but their transverse
speed has taken them out  of the trapping region.   The yellow/brown dots  will  be caught  in the
molasses and loaded into the MOT.

In[108]:= Lengthslowedresults
Out[108]= 575

In[109]:= ListPlotcollisionresults1 ;;, ;; 2,

slowedresults1 ;;, ;; 2, trappedresult1 ;;, ;; 2,

PlotStyle  PointSize.015, PlotRange  .02, .02, .02, .02

Out[109]=
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Just the slowed results here.

In[110]:= ListPlottrappedresult1 ;;, ;; 2, lostresults1 ;;, ;; 2,

PlotRange  5 rcapture, 5 rcapture, 5 rcapture, 5 rcapture,

PlotStyle  PointSize.01

Out[110]=
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This is the percentage of atoms that get caught in the trap.  It is taken relative to the number
of atoms that enter the slower.
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In[111]:=
Lengthtrappedresult

Lengthresults  N

Out[111]=
0.422

In[112]:=
Lengthcollisionresults

Lengthresults  N

Out[112]=
0.425

Heres an idea of the distribution.  The ordered pairs are (ztot, vzfinal).

In[113]:= results10 ;; 40, 3 ;;
Out[113]= 1.1344, 329.231, 1.1344, 26.4912, 1.1344, 336.396, 1.1344, 27.0005,

1.1344, 26.8014, 1.1344, 27.0005, 1.1344, 27.0005, 1.1344, 27.0005,
1.1344, 308.497, 1.1344, 336.174, 1.1344, 26.9488, 1.1344, 27.0005,
1.1344, 27.0005, 1.1344, 393.491, 1.1344, 220 470.,
1.1344, 457.427, 1.1344, 26.9995, 1.1344, 27.0005, 1.1344, 303.487,
1.1344, 243.612, 1.1344, 27.0005, 1.1344, 26.9993, 1.1344, 346.06,
1.1344, 249.951, 1.1344, 239.525, 1.1344, 24.7138, 1.1344, 337.094,
1.1344, 26.969, 1.1344, 498.881, 1.1344, 27.0005, 1.1344, 26.9993

In[114]:= ListPlotlostresults1 ;;, ;; 2,

PlotRange  10 rcapture, 10 rcapture, 10 rcapture, 10 rcapture,

PlotStyle  PointSize.01

Out[114]=
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ü Binning

This section recovers the final velocity distribution of the atoms that entered the slower.

In[115]:=
binsizefinal  1;

numbinsfinal  Quotientvmax, binsizefinal;

In[117]:= binlistfinal 

Tablei binsizefinal 
binsizefinal

2
, 0, i, 1, numbinsfinal  1;
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In[118]:= Dobin  Quotientresultsi, 4, binsizefinal;

binlistfinalbin, 2  1;

, i, 1, Lengthresults  Quiet

In[119]:= ListPlotbinlistfinal, PlotRange  All, Joined  True,

Frame  True, FrameLabel  "vz ms", "Number",

PlotStyle  AbsoluteThickness2, PointSize.015

Out[119]=
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Appendix C

Appendix C

C.1 List of Publications

Below is a list of peer-reviewed publications in which I was either author or

co-author. The list is in reverse chronological order.

9. J. Tallant, S. T. Rittenhouse, D. Booth, H. R. Sadeghpour and J. P. Shaf-
fer, “Observation of blue-shifted ultralong-range Cs2 Rydberg Molecules,”
Submitted to Phys. Rev. Lett., preprint available at arXiv:1205.4974.

8. J. S. Cabral, J. M. Kondo, L. F. Gonçalves, V. A. Nascimento, L. G.
Marcassa, D. Booth, J. Tallant, A. Schwettmann, K. R. Overstreet, J.
Sedlacek and J. P. Shaffer, “Effects of electric fields on ultracold Rydberg
atom interactions,” J. Phys. B: At. Mol. Opt. Phys. 44, 184007 (2011).

7. J. Tallant, D. Booth, and J. P. Shaffer, “Photoionization rates of Cs Rydberg
atoms in a 1064-nm far off- resonance trap,” Phys. Rev. A 82, 063406
(2010).

6. J. S. Cabral, J. M. Kondo, L. F. Gonalves, L. G. Marcassa, D. Booth, J.
Tallant, and J.P. Shaffer, “Manipulation of quantum state transfer in cold
Rydberg atom collisions ,” New J. Phys. 12, 093023 (2010).

5. K. R. Overstreet, A. Schwettmann, J. Tallant, D. Booth and J. P. Shaffer,
“Observation of electric-field-induced Cs Rydberg atom macrodimers,” Nature
Physics 5, 581 - 585 (2009).

4. A. Schwettmann, K. R. Overstreet, J. Tallant, and J. P. Shaffer, “Analysis
of long-range Cs Rydberg potential wells,” J. Mod. Opt. 54, 2551-2562
(2007).

3. K. R. Overstreet, A. Schwettmann, J. Tallant, and J. P. Shaffer, “Pho-
toinitiated collisions between cold Cs Rydberg atoms,” Phys. Rev. A 76,
011403(R) (2007).

2. J. Tallant, K. R. Overstreet, A. Schwettmann, and J. P. Shaffer, “Sub-
Doppler magneto-optical trap temperatures measured using Rydberg tag-
ging,” Phys. Rev. A 74, 023410 (2006).
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1. K. Overstreet, P. Zabawa, J. Tallant, A. Schwettmann, and J. P. Shaffer,
“Multiple scattering and the density distribution of a Cs MOT,” Optics
Express 13, 9672 (2005).

C.2 Presentations

Below is a list of the presentations that I have either presented or been co-author

of the presentation.

27. D. Booth, J. Tallant, A. Schwettmann, and J. P. Shaffer, “Anisotropic
Rydberg Interactions,” DAMOP, Anaheim, CA (2012). (Talk)

26. J. Tallant, D. Booth, and J. P. Shaffer, “Ultralong-range Cs Trilobite
Molecules in a Crossed 1064 nm Dipole Trap,” DAMOP, Anaheim, CA
(2012). (Talk)

25. J. Tallant, D. Booth, and J. P. Shaffer, “Theoretical and Experimental
evidence for the observation of trilobite states in Cs,” DAMOP, Anaheim,
CA (2012). (Poster)

24. J. Tallant, D. Booth, Bruno Marangoni, Luis Marcassa, and J. P. Shaffer,
“Long-Range Trilobite-like Cs Molecules in a Crossed 1064 nm Dipole Trap,”
DAMOP, Atlanta, GA (2011). (Talk)

23. D. Booth, J. Tallant, Bruno Marangoni, Luis Marcassa, and J. P. Shaf-
fer, “Few-body Cs Rydberg Atom Interactions in a 1064nm Dipole Trap,”
DAMOP, Atlanta, GA (2011). (Poster)

22. A. Schwettman, J. Sedlacek, C. Gentry, J. Tallant, and J. P. Shaffer, “Probing
RF electric fields with Rydberg atoms,” DAMOP, Atlanta, GA (2011). (Talk)

21. D. Booth, J. Tallant, and J. P. Shaffer, “Few-body Cs Rydberg Atom
Interactions in a 1064nm Dipole Trap,” International Workshop on Ultracold
Rydberg Physics, Recife, Brazil (2010). (Poster)

20. J. Tallant, D. Booth, and J. P. Shaffer, “Rydberg Atom-Rydberg Atom
Molecules in Background Electric Fields,” International Workshop on Ultra-
cold Rydberg Physics, Recife, Brazil (2010). (Talk)

19. J. S. Cabral, J. M. Kondo, L. F Gonçalves, L. G. Marcassa, D. Booth, J.
Tallant, and J. P. Shaffer, “Manipulation of quantum state transfer in cold
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Rydberg atom collisions,” International Workshop on Ultracold Rydberg
Physics, Recife, Brazil (2010). (Talk)

18. J. Tallant, D. Booth, A. Schwettmann, and J. P. Shaffer, “Rydberg tagging
time-of-flight imaging: An improved apparatus for studying many-body
processes,” DAMOP, Houston, TX (2010). (Poster)

17. D. Booth, J. Tallant, A. Schwettmann, J. P. Shaffer, J. Cabral, J. Kondo, L.
Gonçalves, and L. Marcassa, “Electric field effects on decay of Rb Rydberg
atom pairs,” DAMOP, Houston, TX (2010). (Talk)

16. A. Schwettmann, J. Tallant, D. Booth, C. E. Savell and J. P. Shaffer,
“Decoherence of a Rb BEC caused by stray magnetic fields and surface
effects,” DAMOP, Charlottesville, VA (2009). (Poster)

15. D. Booth, A. Schwettman, J. P. Shaffer, J. S. Cabral, L. F. Gonçalvez, L. G.
Marcassa, ”Electric field effects on cold Rydberg atom nD-nD pair collisions,”
DAMOP, Charlottesville, VA (2009). (Poster)

14. A. Schwettmann, K. R. Overstreet, J. Tallant, D. Booth and J. P. Shaffer,
“Observation of Cs Rydberg atom macrodimers,” DAMOP, Charlottesville,
VA (2009). (Talk)

13. J. Tallant, A. Schwettmann, D. W. Booth, and J. P. Shaffer, “Rydberg
tagging time-of-flight imaging to study 3-body recombination,” DAMOP,
Charlottesville, VA (2009). (Poster)

12. A. Schwettmann, V. A. Nascimento, L. L. Caliri, J. P. Shaffer, and L. G.
Marcassa, “Electric field effects on cold Rydberg atom pair excitation,”
DAMOP, State College, PA (2008). (Talk)

11. K. R. Overstreet, A. Schwettmann, J. Tallant, and J. P. Shaffer, “Long
Range, Cold Cs Rydberg Atom-Rydberg Atom Molecules,” DAMOP, State
College, PA (2008). (Talk)

10. J. Tallant, K. R. Overstreet, A. Schwettmann, and J. P. Shaffer, “Dipole-
Dipole Interactions in a Cold Cs Rydberg Gas,” DAMOP, State College, PA
(2008). (Talk)

9. A. Schwettmann, K. R. Overstreet, J. Tallant, and J. P. Shaffer, “Long-range
Cs Rydberg molecules,” DAMOP, Calgary, CA (2007). (Talk)

8. K. R. Overstreet, A. Schwettmann, J. Tallant, and J. P. Shaffer, “Resonant
collision processes in a Cs Rydberg gas,” DAMOP Calgary, CA, (2007).
(Talk)
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7. J. Tallant, K. R. Overstreet, A. Schwettmann, and J. P. Shaffer, “Ryd-
berg tagging time-of-flight imaging to study ultracold collisions,” DAMOP,
Calgary, CA (2007). (Poster)
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