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Abstract

Liquid and polymer electrolytes are interesting and important materials to study

as they are used in Li rechargeable batteries and other electrochemical devices. It

is essential to investigate the fundamental properties of electrolytes such as ionic

conductivity, diffusion, and ionic association to enhance battery performance in

different battery markets. This dissertation mainly focuses on the temperature-

dependent charge and mass transport processes and ionic association of different

electrolyte systems. Impedance spectroscopy and pulsed field gradient nuclear

magnetic resonance spectroscopy were used to measure the ionic conductivity

and diffusion coefficients of ketone and acetate based liquid electrolytes. In this

study, charge and mass transport in non-aqueous liquid electrolytes have been

viewed from an entirely different perspective by introducing the compensated

Arrhenius formalism. Here, the conductivity and diffusion coefficient are written

as an Arrhenius-like expression with a temperature-dependent static dielectric

constant dependence in the exponential prefactor. The compensated Arrhenius

formalism reported in this dissertation very accurately describes temperature-

dependent conductivity data for acetate and ketone-based electrolytes as well as

temperature-dependent diffusion data of pure solvents. We found that calculated

average activation energies of ketone-based electrolytes are close to each other for

both conductivity and diffusion data (in the range 24-26 kJ/mol). Also, this study

shows that average activation energies of acetate-based electrolytes are higher than

those for the ketone systems (in the range 33-37 kJ/mol). Further, we observed
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higher dielectric constants and ionic conductivities for both dilute and concentrated

ketone solutions with temperature.

Vibrational spectroscopy (Infrared and Raman) was used to probe intermolecular

interactions in both polymer and liquid electrolytes, particularly those which

contain lithium trifluoromethanesulfonate, LiCF3SO3, abbreviated here as lithium

triflate(LiTf). The molar absorption coefficients of νs(SO3), δs(CF3), and δs(SO3)

vibrational modes of triflate anion in the LiTf-2-pentanone system were found

to be 6708±89, 5182±62, and 189±2 kg mol−1 cm−1, respectively using Beer-

Lambert law. Our results show that there is strong absorption by νs(SO3) mode

and weak absorption by δs(CF3) mode. Also, the absorptivity of each mode

is independent of the ionic association with Li ions. This work allows for the

direct quantitative comparison of calculated concentrations in different samples

and different experimental conditions. In addition, this dissertation reports the

temperature-dependent vibrational spectroscopic studies of pure poly(ethylene

oxide) and LiTf-poly(ethylene oxide) complexes.

A significant portion of this dissertation focuses on crystallographic studies

of ketone-salt (LiTf:2-pentanone and NaTf:2-hexanone) and amine-acid (diethyle-

neamine: H3PO4, N,N’-dimethylethylenediamine:H3PO4, and piperazine:H3PO4)

systems. Here, sodium trifluoromethanesulfonate, NaCF3SO3 is abbreviated as

NaTf. As model compounds, these systems provide valuable information about

ion-ion interactions, which are helpful for understanding complex polymer systems.

During this study, five crystal structures were solved using single X-ray diffractom-

etry, and their vibrational modes were studied in the mid-infrared region. In the

xv



secondary amine/phosphoric acid systems, the nature of hydrogen-bonding network

was examined.
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Chapter 1

Introduction

Today, we are dependent on fossil fuels more than anytime during human history.

However, unless we are able to find alternatives to oil and gas, the whole civilization

could face an inevitable disaster in the near future as these resources are limited and

not replenished naturally at the rate we consume them. Another adverse effect of

fossil fuel is the air pollution that can also lead to global warming. A considerable

effort has been put into alternative energy research, such as rechargeable battery

technology, hydrogen fuel cell technology, wind energy, and solar energy. Finding

more efficient, convenient, and pollution-free secondary energy sources is a major

goal of future energy research.

Currently, Li-ion rechargeable battery technology has emerged as a viable power

source since it has several advantages over conventional batteries (nickel, cadmium,

and lead based systems). They are largely used in portable electronic devices,

automobile industry, and military and aerospace applications. Li-ion batteries have

a great demand due to their high power density, cell voltages, lack of memory effect,

low environmental impact, and light weight. During the past years, researchers

have studied ways to enhance battery performance and to develop new materials

that can be used as anodes, cathodes and electrolytes [1–4].

In addition to Li-ion batteries, hydrogen-based fuel cells are another form

of power generation. According to the Hydrogen Fuel Initiative (HFI) program

introduced in 2003, research is aimed to producing hydrogen fuel cell vehicles by
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2020 [5]. Fuel cells have uses in a wide range of applications such as transportation

and stationary power generation, with large and small scale.

1.1 Li Battery and Fuel Cell Basics

1.1.1 Li rechargeable battery

There are two types of batteries available commercially: primary and secondary

batteries. A primary battery cannot be used more than once because it cannot

recharge after a complete discharge. On the other hand, a secondary battery is

rechargeable and can be used multiple times. There are various types of secondary

batteries available in the market: lead-acid, nickel cadmium (NiCd), nickel metal

hydride (NiMH), lithium ion (Li-ion), and lithium ion polymer (Li-ion polymer) to

name a few. The Li ion rechargeable battery has highest energy density per unit

volume (Wh/l) and per unit weight (Wh/kg) compared to the conventional nickel

batteries such as NiCd and NiMH [3, 4]. As a clean energy source, the demand

of Li-ion batteries is increasing exponentially in the market. Therefore, it has the

potential to be a promising power source for the future portable electronic devices

such as laptops, cellular phones, digital cameras, MP3 players, iPods, power tools

and hybrid electric vehicles (HEV).

An electrical battery is a combination of one or more electrochemical cells. In

general, a cell consists of a positive (cathode) and a negative (anode) electrode, an

electrolyte, and a separator. Often the electrolyte is the separator. Fig.1.1 shows

the schematic diagram of a Li rechargeable battery. In the anode, the oxidation
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process occurs, donating electrons. The reduction process happens at the cathode

by accepting these electrons. For an example:

The anode reaction: Li(C) 
 Li+ + e−

The cathode reaction: Li+ +e−+ CoO2 
 LiCoO2

Overall reaction: Li+ + CoO2 
 LiCoO2

Figure 1.1: Schematic diagram of Li-ion battery

Several anode, cathode, and electrolyte materials are used in a commercially

available Li ion rechargeable batteries. The major anode-active materials are

graphite and hard carbons. Metal oxides such as LiCoO2, LiMn2O4, LiNiO2,

LiFePO4, and Li2FePO4F are several materials that are used as cathodes.

An electrolyte in an Li-ion battery is a mixture of two or more organic liquids

and an inorganic salt dissolved in the liquid. Ethylene carbonate (EC), dimethyl

carbonate (DMC), and diethyl carbonate (DEC) are favorable organic liquids used
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in electrolytes. Further, LiPF6, LiBF4, LiClO4 are widely used lithium salts in the

battery industry. The separator is a barrier between the anode and cathode, which

prevents contact between electrodes. A good electrolyte should possess several

characteristic features: good ionic conductivity, good chemical stability, low-cost

and environmental compatibility. Therefore, an immense amount of research has

been carried out to develop new materials to use as an electrolyte in Li-ion battery.

1.1.2 Fuel cells

A fuel cell is an electrochemical device that generates an electric current by a

chemical reaction of fuel and oxygen. Major components of a fuel cell are the anode

(negative electrode), the cathode (positive electrode) and the electrolyte. A catalyst

is used to increase the chemical reaction rate at the electrodes. Fuel cells are

categorized into several types depending on the fuel and the electrolyte used, as well

as the composition of the electrodes. The hydrogen fuel cell is the most common

among these. Fig. 1.2 illustrates the block diagram of a fuel cell. Hydrogen gas in

the anode oxidizes and creates positively charged cations and negatively charged

electrons. These positive ions travel through the medium of the electrolyte, while

the electron passes through a wire to the external circuit to produce an electric

current. When the positive ions reach the cathode, they react with the oxygen

supplied from the cathode. In some fuel cells, oxygen reacts with positive ions

and electrons arriving from the electrical circuit and produces water and heat at

the cathode. In hydrocarbon fuel cells, carbon dioxide forms as a waste product

in addition to water. Choosing a material to be used as the electrolyte is a key
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Figure 1.2: Schematic diagram of a PEM fuel cell [6]

step of fuel cell production. A few commonly used liquid electrolytes are alkalines,

molten carbonate salts, phosphoric acid, while proton exchange membranes (PEMs)

and solid oxides are some examples of solid electrolytes. For instance, alkaline

fuel cells (AFC) use a potassium hydroxide/water mixture as their electrolytes

and they are mostly utilized in spacecraft and military applications. Both molten

carbonate and solid oxide fuel cells have applications in distributed generation

and electric utilities. The electrolyte of a molten carbonate fuel cell is sodium

or magnesium carbonate, while the solid oxide fuel cell uses a ceramic oxide; e.g.

calcium or zirconium oxide. Phosphoric acid fuel cells are widely used in power

generation applications and PEM fuel cells that employ polymer electrolytes as

electrolytes have applications in transportation, portable and backup power fields.

However, more efficient techniques to be developed to handle temperature and

waste products.
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1.2 Polymer Electrolytes

A polymer electrolyte (PE) is made by dissolving a salt in a polymer. Alkali metal

salts are favorable in the electrochemical device industry because they provide

large electrochemical potentials. According to Gray [7], a PE is ”A (liquid) solvent-

free system where the ionically conducting phase is formed by dissolving salts

in a high molecular weight polar polymer matrix.” Moreover, other materials

categorized as gel electrolytes, plasticized electrolytes, or ionic rubbers are also

referred to as polymer electrolytes. In the past few decades, polymer electrolytes

have been intensively studied. In 1973, Fenton et al. reported the first poly(ethylene

oxide)/alkali salt complexes [8]. Later, Wright and co-workers discovered the high

conductivities of these materials (1975) [9]. In 1979, Armand et al. introduced the

usage of PEs in electrochemical devices [10]. The most widely used salts in PEs

are lithium trifluoromethanesulfonate (LiCF3SO3), lithium percholorte (LiClO4),

lithium hexafluorophosphate (LiPF6), and lithium trifluoroborate (LiBF4).

Polymer systems are generally biphasic at room temperature, consisting of

crystalline and amorphous regions. Amorphous regions of a polymer are character-

ized by a glass transition temperature (Tg), which is the transition temperature

between the rigid (glass) and viscous states. Basically, ionic conduction occurs in

the amorphous region and, hence, exhibits higher conductivities than the crystalline

phase. Polyethylene oxide (PEO) and polyethylene glycol (PEG) serve as the

favorite host polymers for PEs among researchers. Polymers consist of repeated

units of identical structures [7, 11–13]; Fig. 1.3 shows the chemical structural
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formula of PEO.

Figure 1.3: Chemical formula of poly(ethylene oxide)-PEO

Polymer electrolytes are characterized by a number of material properties.

Among these, ionic conductivity, transport number, and diffusion coefficient are of

most importance due to their practical relevance. Early work shows a vast number

of studies in this field using different techniques [14–17]. Motions of the polymer

segments are part of the ionic transport mechanism. The motion of dissociated ions

in the polymer matrix is correlated with this segmental motion. During the past few

decades, research groups have studied various polymer systems and obtained results

supporting this view [18]. Segmental motion of polymer chains is accompanied by

ionic association or ionic diffusion. When a salt is added, lone electron pairs on

ether oxygens of the polymer interact with the cations forming a coordinative bond.

Cations can form transient cross-links between chain segments. Cations diffuse

through the polymer system by breaking and forming new coordination bonds with

the heteroatoms of the polymer matrix [7]. The nature of ion transport at the

molecular level in polymer electrolytes is poorly understood. It is essential to study

the chemical properties which are correlated with ion transport mechanism.
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1.3 Liquid Electrolytes

Liquid electrolytes are made by dissolving salts in organic solvents. In the Li

ion battery industry, different liquid electrolytes are utilized. Generally two or

more organic liquids are mixed to make the electrolyte, i.e. carbonates, acetates,

etc. Organic solvent molecules that can donate protons (H+) are known as protic

solvents. These solvents show hydrogen bonding; alcohols, formic acid, and water

are examples of protic solvents. Solvents that cannot donate protons are called

aprotic solvents, e.g. acetates, ketones, nitriles, and carbonates. All the data

reported in this thesis were obtained for aprotic solvents. Similar to the polymer

electrolytes, understanding the ion and mass transport of the liquid electrolytes is

an interesting field. Studying ionic conductivities, diffusion coefficients, dielectric

constants, ionic associations, and ion solvation provides important information

about ion transport [19].

The work reported here is based on aprotic solvents that are used to make

liquid electrolytes. N-acetates and 2-ketones were utilized to study the fundamental

properties of liquid electrolytes. N-acetate has a low dielectric constant and 2-

ketone has a high dielectric constant. Solvents with dielectric constants lower than

10 are characterized here as low dielectric electrolytes. For instance, Table 1.1

shows dielectric constants of several solvents. The temperature dependence of ionic

conductivity and diffusion were studied for liquid electrolytes and pure liquids,

respectively. Dilute electrolytes were prepared with 0.0055 mol/L concentration.

Concentrated electrolytes were made at 0.3 and 0.8 mol/kg molal concentrations.
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Table 1.1: Dielectric constants and dipole moments of several aprotic

solvents. D∗ is the gas phase diploe moment

Solvent Dielectric constant Dipole moment (D)∗

Ethyl acetate 6.0 1.78 D

Tetrahydrofuran 7.5 1.75 D

Acetone 21 2.88 D

acetonitrile 37 3.92 D

Studying the concentration-dependent molar conductivities of liquid electrolytes

that are made from low dielectric constant solvents is quite interesting. Fig.

1.4 shows a schematic diagram of the variation of molar conductivities with salt

concentration. In region I, the molar conductivity decreases with the increasing

salt concentration. At the starting point of region II, molar conductivity has a

minimum value and then it increases to a maximum value. In region III, molar

conductivity decreases. Different groups have given explanations based on their

observations. Primarily, they point out that the ionic association gives rise to

region I and II behavior. A low dielectric constant medium is favorable to ion-ion

interactions. As a result, more uncharged ion pairs form from free ions, which

decreases the molar conductivity. The increase of the molar conductivity in region

II has been described using different postulates. Fuoss and Kraus interpreted this

behavior as being due to triple ion formation [20]. These triple ions are formed by

combining ion pairs and free ions in the solution. Cavell and Knight introduced a

different concept about the increasing molar conductivity in region II. According
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to them, ion pairs can dissociate or redissociate to “free” ions [21]. However, molar

conductivity variation in region I and II is seen in many tetrabutylammonium

trifluoromethanesulfonate (TbaTf) systems, where ionic association does not occur.

Therefore, above interpretation is not valid for all liquid electrolyte systems. The

ionic association may play a some role in LiTf systems.

Figure 1.4: Schematic diagram of molar conductivity versus (salt

concentration)1/2 for liquid electrolytes.

1.4 Ion and Mass Transport

Ionic transport is the conduction of charged ion species in solid or liquid electrolytes.

Fundamental understanding of the ion transport mechanism provides insights into

complex system dynamics. Ionic transport can be characterized using several key

factors: conductivity, molar conductivity, mobility, and ionic association. The ionic
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conductivity (σ) of a homogeneous electrolyte can be expressed by the relation

σ =
∑
i

ciqiµi. (1.1)

Here, the summation runs over all charged species in the system. ci is the concen-

tration of charge carriers of type i that have charge qi and ionic mobility µi [11].

The unit of the conductivity is Siemens per cm (S cm−1) where S=Ohm−1 The

molar conductivity (Λ) at a particular concentration (c) is

Λ =
σ

c
. (1.2)

The molar conductivity unit is S cm2 mol−1.

Ionic transport of liquid electrolytes is conventionally described with viscosity-

related models that often predict results that do not agree with experimental

data [12, 13, 22, 23]. Consider an ion or particle moving in a viscous solution.

According to the Stokes law , the ion experiences a frictional or a drag force that

opposes its motion. This drag force (F) is given by F=6πrηv. Here, r is the radius

of the moving ion, η is the solvent viscosity, and v is the velocity of ion. From this

point of view, ionic conductivity is given by the relation:

Λ =
q

6πηr
, (1.3)

where q is the charge on an ion. However, hydrodynamic models do not provide an

explanation for the transport at the microscopic level.

The simple Arrhenius equation shown in Eq. 1.4 describes the temperature

dependence of ionic conductivity below the glass transition temperature, Tg, for
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PEs [24].

σ = σ0e
− Ea

RT (1.4)

Here, σ denotes the ionic conductivity, σ0 is the temperature independent prefactor,

T is the temperature, and Ea is the activation energy. It has been found that liquid

electrolytes and PEs above Tg often show non-Arrhenius temperature-dependent

conductivity, commonly described using the Vogel-Tammann-Fulcher (VTF) or

the Williams-Landel-Ferry (WLF) empirical equations [25–28]. Because these are

all empirical relations, the resulting fitting parameters do not have any physical

significance and do not provide information about the underlying mechanism of ion

transport. The WLF equation is

log
σ(T )

σ(Ts)
=

C1(T − Ts)
C2 + (T − Ts)

(1.5)

where σ(T ) is the temperature-dependent conductivity, σ(Ts) is the conductivity

at reference temperature(Ts), and C1 and C2 are constants that are obtained from

experimental data along with Ts. The VTF empirical equation is used to describe

the properties of supercooled liquids and to study the temperature dependence of

solid and liquid electrolytes.

σ = σ0T
−1/2Exp

[
− B

R(T − T0)

]
(1.6)

Here, σ(T ) is the temperature dependent conductivity, and σ0, B, and T0 are

constants.

Similar to ion transport, mass transport of solid and liquid electrolytes have been

studied. The mass transport is directly related to diffusion phenomena. Diffusion
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describes the transport of materials driven by a gradient of concentration. In a pure

liquid system where there is no concentration gradient, individual molecules (or ions)

exhibit a random translational motion, which is known as self-diffusion. According

to Abu et al., self-diffusion is a measure of the translational mobility of individual

particles driven by an internal kinetic energy [29]. Self-diffusion coefficients are

measured by the pulsed field gradient NMR technique. Temperature-dependent

self-diffusion coefficients also fitted with the VTF and the WLF equations [30].

Further, diffusion coefficients can be expressed using hydrodynamic expressions.

D =
kBT

6πηr
, (1.7)

where kB is the Boltzmann constant.

Recently, a new approach has been proposed to describe charge and mass trans-

port in pure liquids and liquid electrolytes [31–34]. The temperature-dependent

conductivity and diffusion coefficients are formally written as Arrhenius-like ex-

pressions; however, in contrast to Eq. 1.4, there exists a temperature dependence

in the exponential prefactor that is due to the temperature dependence of the

solvent/solution static dielectric constant (εs). Therefore, the ionic conductivity is

written as:

σ(T, εs) = σ0(εs(T ))e−
Ea
RT . (1.8)

This dielectric constant dependence in the prefactor can be removed by using a

scaling procedure. The theory of this new approach will be discussed in chapter 5

and 6. This study allows us to examine fundamental properties of liquid systems.
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1.5 Ionic Association

When a salt is added to a pure solvent, it dissociates into positive and negative ions.

Those ions can interact with solvent molecules or other ions in the solution. As a

result, we can experimentally observe ion-ion interactions, as well as ion-solvent

interactions. These ion-ion interactions are referred to as ionic association. In

a complex system, such as a polymer-salt or an organic solvent-salt compound,

ionic association gives rise to different ionic species. As a consequence, “free”

ions, contact-ion pairs, triple ions, and higher ion aggregates can be observed in

electrolyte solutions. “Free” ions are either positive or negative ions (M+ or X−)

which are well-separated in the sample. A single positive ion and a negative ion,

which are separated by solvent molecules, are referred to a solvent-separated ion

pair. There is no net charge for such an ion-pair. The ionic species formed by the

direct, coordinative interaction of cations and anions is called a contact ion-pair.

Triple ions ([M2X]+,[MX2]
−) and larger clusters, which carry charges described as

higher ion aggregates are also examples of contact ion species [11]. If a system

has a high salt concentration and a low dielectric constant medium, there is a

greater probability of forming contact ion pairs and more highly associated species.

The formation of ion aggregates increases with the temperature. “Free” ions and

solvent separated ion pairs are not spectroscopically distinguishable. Therefore,

when we present spectroscopic data, both ion species are described as free or

spectroscopically “free” ions.

Fig. 1.5 shows the SO3 stretching mode of the triflate ion in 2-pentanone. Here,
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three overlapped bands are attributed to different ionic species. Bands at 1032, 1042

and 1052 cm−1 are assigned to “free” (CF3SO−
3 ), ion pair (Li+CF3SO−

3 ) and higher

aggregates (Li2Tf)+, respectively. These band intensities and frequencies are highly

dependent on the nature of interaction between cations and anions. These ionically

associated species play a major role in ion transport for both polymer and liquid

electrolytes. Therefore, my research is focused primarily on ionic association in these

electrolytes. Vibrational spectroscopy is a powerful tool to probe ionic association

of both polymer and liquid electrolytes [35–37]. Ionic association depends on the

sample temperature, the concentration, and the dielectric constant of the solvent.

Figure 1.5: Ionic association of the νs(SO3) mode for a 0.3 m LiTf:2-

heptanone solution.(squares = experimental data, solid and dotted lines

= fit from deconvolution analysis.)
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1.6 Why Study Model Compounds?

Understanding solid polymer electrolyte systems is not easy because they have

complex structures. Because they have a large number of repeat monomer units and

high molecular weights, polymers have many simultaneous interactions with salt

ions. Therefore, local structures and the associated ion transport mechanisms are

difficult to study. A model compound represents a part of large polymer molecules.

Simply, they are small molecules, which have a structure identical to a polymer

segment. Model compounds provide essential insight into the structure and chemical

environment of polymer complexes. Previously, researchers have studied model

compounds, successfully explaining several polymeric systems. For an example,

glycol dimethyl ethers (glymes) have been used as model compounds for PEO and

other polymer systems with ether oxygen monomers [38]. Among these studies,

a number of glyme-salt crystalline structures were reported. Obtaining a crystal

structure from a model compound is the best way to understand the local structure

and the chemical interaction in polymer systems. Further, model compounds were

found for branched and linear polyethylenimene (PEI) based electrolytes. Most

of these compounds were primary or secondary amines: DPA (dipropylamine),

hexylamine, NN-DMEDA (N,N dimethylethylenediamine), NN’-DMEDA (N,N’

dimethylethylenediamine), TMEDA (tetramethylethylenediamine), and PMDETA

(N,N,N’,N”,N”-pentamethyldiethylenetriamine) [39–42]. These compounds have

ability to conduct protons (H+) and are known as proton conductors. Different

types of polymer electrolytes have been studied to date: PEO/ H3PO4 and LPEI
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or BPEI/ H3PO4 or H2SO4 [43–45]. We examined several model compounds for

different polymer systems. First, we reported crystal structures for some amine-salt

systems [46]. Second, we studied crystal structures for amine-phosphoric acid

systems, which are used as model compounds for LPEI or BPEI/ H3PO4 systems.

Fig. 1.6 shows the chemical structural formulae of PEI and NN’-DMEDA. Further,

acetates and ketone-salt systems were studied to gain a better understanding of

local structures in poly methylmethacrylate (PMMA)-salt systems.

(a) (b)

Figure 1.6: Chemical formulae (a) Linear poly(ethylenimine) (b) N, N’

dimethylethylenediamine (DMEDA)
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1.7 Experimental Methods

1.7.1 Fourier Transform Infrared Spectroscopy (FTIR)

Fourier Transform Infrared Spectroscopy(FTIR) is used to study the interaction of

matter with infrared radiation by measuring the absorption of the radiation. When

a molecule absorbs radiation that excites a vibrational mode, the process is visible

as an absorption line in the spectrum. The absorbance (A) of IR spectrum is given

by

A = log10(
1

T
) (1.9)

where T is the transmittance. Generally, an IR spectrum represents either ab-

sorption or transmission by the functional groups in molecules. Also, because the

intensity of an IR absorption band is directly proportional to the amount of material

present in a sample, one can estimate the relative concentration of molecular species.

Therefore, FTIR is a powerful tool that can be utilized in both qualitative and

quantitative analysis.

The FTIR spectrometer consists of an interferometer, fixed and moving mirrors,

a detector, and a computer. The interferometer has a beamsplitter, which divides

the incoming beam into two optical beams. One beam reflects off the fixed mirror

and the other beam reflects from the moving mirror. The beams are re-combined

at the beamsplitter, creating an interference signal, the interferogram. This signal

contains information about frequencies encoded in it. As the interferogram signal

passes through the sample, some frequencies are absorbed by molecules. The

position of the moving mirror is a function of time and hence the output energy of
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the signal varies with time as well. This signal is then Fourier transformed to the

frequency domain to form the infrared spectrum.

Generally, IR radiation is divided into three sub regions:near-infrared from

770 nm to 2.5 µm (12900 to 4000 cm−1), the mid-infrared from 2.5 µm to 50 µm

(4000 to 200 cm−1), and the far-infrared from 50 µm to 1000 µm (200 to 10 cm−1).

All of the spectral data reported here were measured in mid-IR region and therefore

probe vibrational modes of polyatomic species. An interesting property of these

vibrational modes is that only some are IR active; not all modes are visible in the

IR spectra. A vibration that does not involve a change in the dipole moment of

the molecule will not be IR active.

1.7.2 Raman Spectroscopy

Raman spectroscopy is a powerful tool for studying vibrational modes and therefore

molecular interactions in solid and liquid samples. This technique is based on the

inelastic scattering of a monochromatic excitation source. An inelastic collision

between incident photons and the molecules will result in a shift in the frequency of

the scattered beam, which is known as Raman scattering. Incident electromagnetic

waves excite vibrational modes in the sample which depends on the polarizability

of these molecules. The molecular structure and the nature of bonds define

the polarizability. The most important aspect of Raman scattering is that only

vibrational modes that change the polarizability of the molecule are Raman active.

Vibrational modes are excited by absorbing the energy of photons, giving rise to

Stokes lines in the spectra. These lines always have a frequency lower than the
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incident radiation. The anti-Stokes lines are formed due to collisions of vibrationally

excited molecules and photons. In this case, photons gain energy resulting in higher

frequency spectral lines. Energy differences between the incoming and outgoing

photons give information about molecular vibrational modes. In a molecule with an

inversion center of symmetry, only totally symmetric vibrations are Raman active

as anti-asymmetric vibrations do not cause a polarizability change. On the other

hand, any mode can be Raman active or inactive for a molecule without a center

of symmetry.

A Bruker Equinox 55 FRA 106/S Raman spectrometer was used to collect

Raman spectra. A coherent Nd: YAG laser was used for excitation at a power level

of 300 mW at 1064 nm. Thin NMR tubes and capillary tubes were used to pack

liquid and solid samples, respectively. All Raman spectra were taken at the spectral

resolution 2 cm−1 and 1000 scans for 50-3500 cm−1 range with a CCD detector.

1.7.3 Nuclear Magnetic Resonance Spectroscopy (NMR)

Nuclear Magnetic Resonance spectroscopy(NMR) is a unique tool to probe the

physical and chemical properties of the atoms and molecules. NMR exploits the

fact that spin states of nuclei split into separate energy levels in the presence of a

strong magnetic field. These states are excited with a radio frequency pulse and

the emitted radio signal when these nuclei are deexcited is measured and called the

NMR spectra. The self-diffusion, which is the translational motion of molecules,

can be measured by the pulsed field gradient NMR method. This technique uses

a magnetic pulse with a spatial gradient which changes the amount of shift in
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energy levels depending on the position. Therefore, emitted radiation serves as

an indicator of atomic positions. As described in the Fig. 1.7, a gradient pulse

is applied after every radio frequency (RF) signal which should cancel the effect

of the second field if atoms do not have any translational motion [47]. However,

diffusion of atoms gives rise to a measurable shift in the resulting signal.

Pulsed field gradient (PFG) measurements were performed using a Varian

VNMRS 400 MHz NMR spectrometer that was operated with an Auto-X-Dual

broad band 5 mm probe tuned to 399.870 MHz for protons. Temperature was

controlled using an FTS XR401 air-jet regulator. The standard Stejskal-Tanner

pulsed gradient sequence (See Fig. 1.7) was performed at each temperature by

arraying the gradient field strength from 6 to 62 G/cm [47–50]. The integrated

intensity of each attenuated signal was calculated. The attenuated signal intensity

is given by

S = S0exp[−γ2g2Dδ2(∆−
δ

3
)]. (1.10)

Here γ is the gyromagnetic ratio of the observed nucleus, g is the pulsed-gradient

strength, δ is the duration of the gradient pulses, and ∆ is the separation between

gradients pulses. The self-diffusion coefficient was calculated from the slope of

the plot Ln(intensity) versus square of the gradient strength. The average self-

diffusion coefficients of ions and their associated species are examined as they are

indistinguishable.
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Figure 1.7: The Stejskal-Tanner pulsed field gradient NMR sequence [47]

1.7.4 Impedance Spectroscopy

An impedance analyzer was used to probe the change of capacitance and conduc-

tance of samples with temperature. For the conductivity and dielectric constant

measurements, a liquid sample was contained in a liquid cell (Agilent 16452A with

2 mm spacer), which was immersed in an oil bath [51]. All measurements were

carried out over a temperature range from 0 to 85◦C using a Huber ministat 125

with an accuracy ±0.1◦C. The capacitance and conductance were measured at each

temperature with an impedance analyzer (HP 4192A) scanning the frequency range

from 1 kHz to 13 MHz. The measured conductance, in conjunction with the known

cell geometry, was used to determine the solution conductivity at each temperature.

Conductivity (σ) can be calculated using the measured conductance (G) of the

electrolyte as follows.

σ =
L×G
A

(1.11)

Here L is the electrode gap and A is the electrode area. The solution and pure

solvent static dielectric constants were calculated using the relation εs= α C/C0,
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where C is the sample capacitance and C0 is the atmospheric capacitance. The

parameter α, which is close to unity, accounts for stray capacitance [51]. A parallel

plate capacitor is formed when two conducting plates are separated by a non-

conducting media called the dielectric. The value of the capacitance depends on

the size of the plates, the distance between the plates, and the properties of the

dielectric.

1.8 Research Overview

This thesis consists of six interrelated individual projects. The aim of this series of

projects is to understand the fundamental properties of liquid and polymer elec-

trolytes. Properties, such as conductivity, molar conductivity, diffusion coefficient,

and ionic association provide deep insight into ion and mass transport mechanisms

at the molecular level. Particularly, we are focusing on quantitative studies using

different data analysis methods. Further, conductivity data are correlated with

ionic association as chemical interactions play a key role in ion conduction. With

this objective, temperature-dependent ionic association studies were carried out for

both liquid and polymer electrolytes using vibrational spectroscopy. However, ionic

association studies are not enough to understand the bond network in complex

systems like polymers. Therefore, crystal structures of some model compounds

were examined and those five different crystal structures are reported. In sum, all

projects are focused on the fundamental energy research which is useful for lithium

rechargeable battery and fuel cell technology.
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Chapter 1 provides a brief description of battery and fuel cell basics, polymer

and liquid electrolytes, ion and mass transport, ionic association, and model

compounds. Also it provides a basic description of experimental techniques used in

data collection. Chapter 2 examines the molar absorptivities of three vibrational

modes of LiTf:2-pentanone solution using the Beer-Lambert law. Quantitative

analysis of data is fundamentally based on the Beer-Lambert law. It is a valid

method to determine concentrations of sample constituents if the path length and

molar absorptivity of various vibrational bands are known. These parameters

are necessary to quantitatively compare different samples and extract reliable

concentrations from absorption data. We chose LiTf:2-pentanone solution for the

experiment for several reasons. Pentanone is a simple ketone and LiTf has a high

solubility in this solvent. Also, LiTf:2-pentanone solution does not show complex

ion-solvent interactions. Accordingly, experiments were carried out for a range of

concentrations of LiTf:2-pentanone at room temperature using FTIR spectroscopy.

From this study, the validity of the Beer-Lambert law for liquid electrolytes was

verified and used to evaluate molar absorption coefficients. In addition, ion-ion and

ion-solvent interactions of the systems were studied. This chapter mainly focuses

on three vibrational modes: the SO3 symmetric stretching mode and SO3 and CF3

symmetric bending modes. Our results indicate that molar absorptivity of these

modes does not depend on ionic association of cation even though the relative

concentration of ionically associated species changes significantly.

Chapter 3 discusses the crystalline phase of ketone-salt systems. As a salt-

ketone crystalline phase has not been studied before, we focused on growing crystal
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structures using different ketones and salts. Here we report two crystal structures of

the LiTf:2-pentanone and NaTf:2 hexanone systems. The LiTf:2-pentanone crystal

structure provides strong evidence for ion-solvent interactions reported in chapter 2.

Several absorption bands are analyzed and the bond coordination of the carbonyl

group and the vibrational modes of triflate anion are explained using vibrational

spectroscopy data.

Chapter 4 focuses on the polyethylene oxide LiTf system. The main objective was

to study the temperature and concentration dependence of this system quantitatively.

The complexity steming from a number of simultaneous interactions in polymer

systems creates difficulties when carrying out a quantitative study. Furneaux et al.

reported the validity of extended Beer-Lambert law for the PEO:LiTf system using

temperature-dependent data [52]. This study was extended to (1) evaluate the

amount of materials in different polymer phases (such as crystalline, amorphous

phases) and (2) study phase changes and polymer configurations in the PEO. During

this study, the AsF6
− band located at 700 cm−1 was used as a standard marker. As

the noise in the FTIR spectrum was a major problem in data analysis, smoothing

techniques were used. After the proper baseline correction, the relative intensity of

AsF6
− band remained constant as expected. When the same procedure is applied

to the polymer region, the area was observed to change across the melting point of

PEO. This was explained as a result of the phase change of the PEO. However, a

similar behavior observed in LiTf vibrational modes was unexpected and could not

be explained from this work.

Both Chapter 5 and 6 discuss the temperature-dependent mass and charge
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transport in various electrolyte systems. The ion transport process is convention-

ally explained with viscosity-related models. The temperature dependent ionic

conductivity and self-diffusion coefficients of polymer electrolytes and organic liquid

electrolytes above glass transition temperature do not exhibit simple Arrhenius

behavior. Generally, empirical equations are used to describe this data and the

fitting parameters do not provide any physical insight into the transport process.

Recently, mass and charge transport of liquid electrolytes has been viewed from

an entirely different perspective by postulating that the conductivity and diffusion

coefficients assuming an Arrhenius-like expression with static dielectric constant

dependence in the exponential prefactor. Here the prefactor is temperature depen-

dent due to the inherent temperature dependence of the dielectric constant. The

dielectric constant dependence can be canceled by using a scaling procedure, and

the end result is the compensated Arrhenius equation, CAE. The CAE implies that

ion transport is governed by a single activated process. The activation energies can

be calculated from either the slope or intercept of CAE. In chapter 5, 0.0055 M

TbaTf-acetate, ketone solutions, and pure solvents were studied. The TbaTf salt

does not show a significant ionic association with either solvent because the anion

is a large bulky butyl group. The n-acetates provide an interesting analogy to

2-ketones since they are structurally very similar, with each having a carbonyl

group(C=O). Conductivities and static dielectric constants for 0.0055 M TbaTf in

acetates (butyl acetate, pentyl acetate, hexyl acetate, octyl acetate, decyl acetate)

and ketones (2-pentanone, 2-hexanone, 2-heptanone, 2-octanone, 2-nonanone, and

2-decanone) have been collected over the temperature range 0 to 80◦C and 5 to
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80◦C respectively. All measurements were performed using impedance spectroscopy.

Diffusion measurements were carried out for both pure solvents using the pulsed

field gradient NMR spin-echo technique. Self-diffusion coefficients and static di-

electric constants of pure acetates were obtained over the same temperature range.

Both temperature-dependent diffusion coefficients and ionic conductivities of these

systems can be accurately described by the compensated Arrhenius formalism.

Activation energies were calculated from compensated Arrhenius plots for both

conductivity and diffusion data. Activation energies are higher for the ionic con-

ductivity of 0.0055 M TbaTf-acetates compared to diffusion data of pure acetates.

The plot of exponential prefactor versus dielectric constant yields a single master

curve for conductivity and a similar master curve for diffusion data.

Chapter 6 examines the ionic conductivities and dielectric constants of LiTf

dissolved in a series of acetates and ketones. LiTf salt shows significant ionic

association with acetates and ketones from 5 to 85◦C. The average activation

energy of 0.80 mol kg−1 LiTf-acetate solutions is lower than that of 0.30 mol kg−1

LiTf-acetate solutions. Ketone solutions similarly exhibit higher conductivities than

those of acetates at comparable concentrations. Calculated exponential prefactors

for all three systems produce a single master curve when plotted against the

static dielectric constant. Further, these results verify the validity of fundamental

postulates made during this work. FTIR spectroscopy was used to examine the

nature of the ion-ion and ion-solvent interactions in LiTf acetate/ketone solutions

as a function of temperature and concentration. LiTf-acetate solutions exhibited a

higher degree of ionic association than the LiTf-ketone solutions. Here, we observed
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two types of ion aggregates. These results in both chapters support the argument

that mass and charge transport is a thermally activated process in the acetate and

ketone based systems.

Chapter 7 provides some crystallographic and vibrational spectroscopy studies of

amine-phosphoric acid systems. We studied N,N’-dimethylethylenediamine, diethy-

lene amine, and piparazine complexed with phosphoric acid. Amine-phosphoric acid

systems are used as model compounds for linear and branched poly(ethyleneimine)

(PEI)-acid compounds. The purpose of this work was to study the hydrogen-bonding

network and investigate the local structures of amine-phosphoric systems.
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Chapter 2

Quantitative Analysis of Molar Absorptivity for

LiTf:2-pentanone Solution Using Beer-Lambert

Law

2.1 Introduction

Alkali salts dissolved in aprotic solvents are of interest because they are used

in secondary lithium ion batteries. It is particularly important to understand

the ionic association in these systems both qualitatively and quantitatively since

the degree of association greatly impacts the ionic conductivity. During the

last few decades, research groups have studied ionic association in polymer and

liquid electrolytes using a variety of spectroscopically sensitive salts [1–6]. These

investigations were mainly based on Fourier Transform Infrared (FTIR) and Raman

spectroscopy [1, 2, 7, 8]. Due to the complex environments of polymer systems,

most studies are qualitative in nature.

Quantitative analysis of FTIR data is fundamentally based on the Beer-Lambert

law: the absorbance of a sample is directly proportional to the concentration of the

absorbing molecule. Beer-Lambert law is given by

A(λ) = ε(λ)bc (2.1)

Here, A is the absorbance of ionic species at a particular wavelength(λ), ε is the

molar absorptivity of ion species at a particular wavelength in kg mol−1 cm−1, b

is the path length of the sample in cm, and c is the molal concentration of the
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sample in kg mol−1. For a given spectral region, the integrated absorption is the

area under the spectral band. It is a measure of the intensity of a spectroscopic

transition. In other words, the integrated absorption coefficients are proportional

to the oscillator strength. Beer’s law is a valid method to determine concentration

of sample constituents if the path length and molar absorptivity of the various

vibrational bands are known [9]. These parameters are necessary to quantitatively

compare different samples and extract reliable concentrations from absorption data.

Ionic association and solvation of LiTf in different aprotic solvents have been

studied extensively using vibrational spectroscopy. Several groups have made

assignments for IR and Raman active bands of LiTf-acetone systems [1, 3, 8]. They

reported quantitative analysis for different spectral bands (symmetric, asymmetric

stretching SO3, and asymmetric stretching CF3 modes) using deconvolution and

band fitting. This study shows the presence of ion paring and higher aggregates

in LiTf-acetone solutions [1, 3, 8]. In addition, ionic association and solvation of

different alkali salts (LiClO4, NaClO4, AgClO4, NaI) in acetone have been examined

in the past years [10, 11]. However systematic quantitative studies are rare for

alkali salts in ketone solvents.

The study reported in this chapter quantitatively calculates ionic association

using FTIR data for LiTf in 2-pentanone. The triflate ion is spectroscopically

sensitive to ionic association [2, 4, 12]. Three spectral bands were studied at

different molar concentrations (0.6-1.2 mol kg−1): SO3 symmetric stretch (νs) band,

SO3 and CF3 symmetric bend (δs) bands in the range 600-1100 cm−1. The total

intensity (area under the peak, A) of each band was calculated by integration. The
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path length (l) was evaluated for each concentration by studying interference fringes.

These data were then combined to obtain normalized absorption (A/b) and when

plotted against the salt concentration follows a straight line as predicted by the

Beer-Lambert law. Molar absorptivities were determined for three spectral bands

from the slope of each graph. The experimental uncertainty of molar absorptivity

was 1%. Based on these results, the overall molar absorptivity of the spectral band

does not depend on ionic association.

2.2 Experimental Methods

The compounds (2-pentanone (99%) and LiTf (99.995%)) were obtained from

Aldrich. The samples were prepared in a glove box under a nitrogen atmosphere

(≤ 1 ppm H2O and approximate temperature 25◦C). LiTf was dissolved in the appro-

priate amount of 2-pentanone to make the concentrated solution (0.6-1.2 mol kg−1),

and then stirred for 24 hours before use. The sample filled the semi-permanent

KBr rectangular liquid cell equipped with 0.025 mm teflon spacer.

Nine spectra were recorded using a Bruker IFS66V FTIR spectrometer under

purge air for each salt concentrations at room temperature. All spectra were

collected at a spectral resolution 1 cm−1, 400-4000 cm−1, spectral range for 64

scans. Three different spectral bands were investigated between 600-1100 cm−1.

The Savitzky-Golay algorithm was applied to smooth the spectra for both solution

and neat samples. The neat spectrum of pure 2-pentanone was subtracted from

each sample spectrum, prior to integration. The integrated area under the each
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spectral band is calculated and equated to the absorption. Spectral band areas were

calculated by both direct integration and curve fitting using OriginPro 7.5 software.

For the curve fitting process, each band was deconvoluted into multiple gaussian

components. The total integrated absorption was the sum of areas of all bands.

Both peak integration and curve fitting were performed by defining the best base

line for required spectral region. The multiple components originate in different

ionic species of the sample. The normalized absorption (A/b) was obtained by

dividing total integrated absorption (A) by path length (b) for each concentration.

The uncertainty of each data point was calculated based on the standard deviation

of nine IR measurements.

A sample single spectrum was collected for the empty demountable KBr liquid

cell and is illustrated in Fig. 2.1. The fringing effect in this spectrum is a result of

constructive and destructive interferences of the IR light beam from the parallel

and smooth surfaces of the optical windows. These interference fringes are used to

determine the correct thickness or the path length of the sample liquid cell. The

spectrum in Fig. 2.1 was smoothed using a Fast Fourier Transform (FFT) filter

in Origin software. The path length of the liquid cell can be obtained using the

equation, [13, 14]:

b =
10N

2(ν1 − ν2)
(2.2)

where N is the number of fringes within a given spectral region, b is the path

length of the liquid cell in mm and, ν1, ν2 are the initial and final wave numbers of

extrema in the spectral region in cm−1, respectively. The factor 10 is due to the

conversion from centimeters to millimeters. Before collecting the spectra for each
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concentration, the path length of the liquid cell was calculated using this procedure.

Figure 2.1: “Fringing effect” of the FTIR spectrum of the empty liquid

cell with KBr windows.

2.3 Results and Discussion

FTIR spectra were collected for different concentrations of LiTf:2-pentanone solu-

tions. Three triflate bands were observed between 600 and 1100 cm−1 as illustrated

in Fig. 2.2. These bands are attributed to the symmetric SO3 stretching, symmetric

SO3 bending, and symmetric CF3 bending modes. In this figure, the inset presents

the expanded CF3 vibrational mode.

Figure 2.3 shows the symmetric SO3 stretching band, ν(SO3) of lithium triflate

in 2-pentanone solution in the concentrations range (0.2-1.2 mol kg−1). The

multiple bands were identified in this non-degenerate ν(SO3) spectral region (1020-

1070 cm−1). These bands are attributed to the distinct ion species in the solution:
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Figure 2.2: Infrared spectrum of LiTf:2-pentanone solution in the

range from 600 to 1080 cm−1 . Inset shows the expanded region of the

CF3 bending band.

“free” ions, ion pairs and higher ion aggregates. The band at 1032 cm−1 is assigned

to “free” triflate ions. The band at 1041 cm−1 is assigned to contact ion pairs and

band at 1050 cm−1 represents the higher ion aggregates [4, 12, 15, 16].

In agreement with the literature, three spectral bands were observed in the

same frequencies. Due to base line errors discussed in the experimental section, it is

hard to define the weight of error bars for low concentrations. Hence we restricted

our results to the concentration range (0.6-1.2 mol kg−1) for the symmetric SO3

stretching mode. The absorptivities of all ionic species ( “free” ion, ion pairs and

ion aggregates) contribute to the total molar absorptivity of the spectral band. As

a result of ionic association, the overall molar absorptivity is given by,

ε(λ)c = εfreecfree + εpaircpair + εaggcagg. (2.3)
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Figure 2.3: Infrared spectrum of LiTf:2-pentanone solution in the range

from 1020 to 1070 cm−1. The letters are designated as follows: (a) 0.2

(b) 0.4 (c) 0.6 (d) 0.8 (e) 1.0 (f) 1.2 (g) 1.4. All concentrations in mol

kg−1.

Here, cfree, cpair, and cagg are the concentrations of each species.

Fig. 2.4 shows the non-degenerate δ(CF3) bending mode within the concentra-

tion range 0.6-1.2 mol kg−1. Two bands appear for LiTf:2-pentanone solution in the

range between 750 to 770 cm−1. The band at 758 cm−1 is due to contact ion pairs

and 762 cm−1 band is attributed to the ion aggregates. There is no band clearly

visible for the “free” ions as seen in LiTf-polymer complexes in early studies [17].

Further, the absorbance associated with CF3 bending band is relatively small and

hence it is less likely to be overabsorbed.

Similarly, three bands were observed in the δ(SO3) spectral region from 610 to

670 cm−1 which are assigned to “free” ions, contact ion pairs and ion aggregates.

Absorption intensities of each band, which were calculated from direct integration,
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Figure 2.4: Infrared spectrum of LiTf:2-pentanone solution in the range

from 750 to 770 cm−1. (a) 0.2 (b) 0.4 (c) 0.6 (d) 0.8 (e) 1.0 (f) 1.2 (g)

1.4. All concentrations in mol kg−1.

were used to produce results described in this chapter.

Figure 2.5 is the plot of normalized absorption versus salt concentration for the

symmetric SO3 stretching, symmetric SO3 bending, and the symmetric CF3 bending

modes. Data points for each vibrational mode are represented well by straight

lines with different slopes. The slope of each line gives the molar absorptivity (or

molar extinction coefficient) of the spectral band. The error bars of the graph are

uncertainties of the integrated intensities and are used to estimate the uncertainty

of molar absorptivity.

The ionic association of the three distinct ionic species of symmetric SO3 stretch

band is illustrated in Fig. 2.6. In this figure, the normalized intensity of higher

ion aggregate is gradually increased with salt concentration. However, the overall

normalized intensity grows linearly when the salt concentration increases. These
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Figure 2.5: Normalized integrated intensity versus molar concentration

for symmetric SO3, symmetric SO3 bend, symmetric CF3 bend spectral

modes.

results clearly show there is no significant variation in the oscillator strength due

to ionic association of the spectral band. Table 2.1 summarizes the estimated

molar absorptivities of the symmetric SO3 stretching, symmetric SO3 bending and

symmetric CF3 bending bands.

Table 2.1: Molar absoptivities of three vibrational bands in LiTf:2-

pentanone solutions.

Spectral and Molar Absorptivity standard error

(kg mol−1 cm−1) (kg mol−1 cm−1)

SO3 symmetric stretch 6708 89

SO3 symmetric bend 5182 62

CF3 symmetric bend 189 2
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Figure 2.6: Ionic association of the three ionic species of symmetric

SO3 mode in LiTf:2 pentanone solution

2.4 Conclusions

Three different vibrational modes were studied to obtain molar absorptivities for

each band using the Beer-Lambert law. According to our results, the normalized

absorption plotted as a function of salt concentration follows a straight line as

predicted by the Beer-Lambert law even though the relative concentrations of

ionically associated species change significantly. Calculated molar absorptivities

are within 1 % experimental uncertainty. The integrated absorption coefficients

are proportional to the oscillator strength which is a measure of the intensity of a

spectroscopic transition. Our results indicate that the oscillator strength of each

band does not vary significantly when the absorbing triflate ions are associated

with different numbers of Li ions. Strong absorption is observed for both symmetric

SO3 stretching and symmetric SO3 bending bands. The CF3 bending band shows
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a weak absorption.

This method can be applied to determine accurate sample concentrations

using known molar absorptivity for a spectral band of interest under the same

experimental conditions. In this case, the integrated absorption of IR band needs to

be determined using an integration method. However, errors need to be minimized

to achieve best results. Similarly, sample thickness can be calculated using this

procedure for a known integrated intensity and sample concentration. Due to

the experimental difficulties, Beer’s law can not be used to calculate the molar

absoptivity for distinct species in the spectral band. In the future, it is interesting

to measure the molar absorptivities of other alkali salt such as LiPF6, LiAsF6,

and LiClO4 using this method. Further, it is necessary to understand the ionic

association and ion transport mechanism of polymer electrolytes quantitatively

using these results.
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Chapter 3

Crystal Structures and Vibrational Spectroscopic

Analysis of Ketone-Salt Complexes

3.1 Introduction

It is well known that salts can be dissolved in polar, aprotic organic liquids. Alkali

metal salts, particularly lithium salts, are of great interest because of their use

in electrolytes for lithium ion batteries. In order to optimize electrochemical

performance it is important to understand factors that control ionic conductivity

such as ion-ion interactions and ion-solvent interactions. Lithium salts dissolved in

organic carbonates, e.g., propylene carbonate and ethylene carbonate, are currently

utilized in commercial lithium ion batteries [1–3]. In these systems, the lithium

ion appears to coordinate with the solvent molecules through the carbonyl oxygen

atom. The search for polymer electrolytes as a replacement for organic liquid-based

electrolytes has considered polymer hosts with a carbonyl oxygen atom as the

coordinating heteroatom, e.g., poly(methyl methacrylate)-PMMA [4, 5].

One of the important factors that directly affects the ionic conductivity is the

immediate environment of the mobile cation, specifically the nature of cation-anion

and cation-matrix interactions. Vibrational spectroscopy is an important technique

to study these interactions in a variety of systems. Several of the vibrational

modes of the anion are particularly sensitive to ionic association; consequently

triflate-containing salts have been used to study ionic association and solvation in
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organic liquid and polymer electrolyte systems. Detailed vibrational assignments

for several ionically associated lithium-triflate species have been given by Huang et

al. [6]. Various salts in acetone were studied in the 1950s and 1960s, with particular

attention to molecular complexes formed by addition of salts to acetone [7–13].

Pullin et al. reported infrared studies for lithium and silver perchlorate in acetone,

noting that two complexes were present based on analysis of the absorption bands

[10]. The formations of these complexes were explained by electron donor-acceptor

interactions between the cation and the CO group. To study the intermolecular

bonding of these complexes, it is necessary to clarify the charge transfer forces

involved in these interactions. The authors surmised that the carbonyl stretching

frequency is dependent on the relative weights of the ketone resonance structures.

In 1959, Yamada obtained needle-like crystals for the NaI-acetone system. Her

studies suggested that the formation of those complexes is due to the coordination

of lone pair electrons of oxygen atoms to the metal ion [13]. She argued that there is

no evidence for enolization of acetone proposed by N. A. Slovokhotova [11]. Further,

Yamada estimated the covalent contribution to the intermolecular bond formation

in addition to ion-dipole, dipole-dipole, and London forces [12]. She computed the

n-π∗ transition energies of the acetone-salt complexes and compared the results

with observed data. J. R. Stevens et al. examined ionic association of LiTf in

acetone and poly (propylene glycol, PPG) [7]. The authors concluded that “free”

and triple ions are present in both complexes.

Previous studies of lithium salts complexed with polar organic molecules show

that the lithium ion is generally coordinated with one or more oxygen atoms of the
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triflate ion and the heteroatom of the solvent. It would be desirable to study the

vibrations of a crystalline ketone-lithium salt complex in parallel with a solution of

the corresponding ketone-salt complex in order to assign bands in both systems

with a high degree of confidence. With this objective in mind, we prepared ketone-

salt complexes using LiTf and NaTf salts. We obtained two crystal structures:

LiTf:2-pentanone and NaTf:2-hexanone. Crystalline complexes were solved using

x-ray crystallography. A comparative vibrational study of the crystalline complex

and its solution provides insight into the interaction of the lithium ion with the

host ketone and the accompanying cation-anion interactions.

3.2 Experimental Methods

All chemicals were used as received from Aldrich (99% pure). They were stored

in a glove box (VAC ≤ 1 ppm H2O) in a dry nitrogen atmosphere. Solutions

were prepared by mixing weighed amounts of salt with weighed amounts of 2-

ketones and stirring for 24 hours at room temperature(RT) to ensure complete

dissociation of the salt. All solution samples were reported as a ketone oxygen to

salt (O:Li or Na) molar ratio. Crystals appeared in concentrated solutions after

5-6 weeks in the glove box. A colorless block-shaped LiTf:2-pentanone crystal

of dimensions 0.34×0.28×0.16 mm3 was used for structural analysis. Also, a

white block-shaped crystal of dimensions 0.58×0.36×0.14 mm3 was selected for

NaTf:2-hexanone structural analysis.

X-ray crystallographic intensity data for the crystal compounds were collected
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at 100(2) K using a diffractometer with a Bruker APEX CCD area detector and

graphite-monochromated MoKα radiation (λ = 0.71073 Å) [14, 15]. The structure

was solved by direct methods and refined by full-matrix least-squares methods

on F2 [16–18]. Positions of hydrogen atoms bonded to the carbons were initially

determined by geometry and refined by a riding model. Non-hydrogen atoms were

refined with anisotropic displacement parameters. Hydrogen atom displacement

parameters were set to 1.2 (1.5 for methyl) times the displacement parameters of

the bonded atoms. For the LiTf:2-pentanone crystal, the final R1 was found to

be 0.0664, based on 1302 observed reflections, [I > 2s(I)], and wR2 was 0.1707,

based on 1784 unique reflections. For the NaTf:2-hexanone crystal, the final R1

was found to be 0.1055, based on 5083 observed reflections, [I > 2σ(I)], and wR2

was 0.2979, based on 6883 unique reflections.

Infrared spectra were obtained from neat solvent, liquid, and crystal samples

(LiTf:2-pentanone and NaTf:2-hexanone) using a Bruker IFS66V FT-IR spectrome-

ter. IR spectra for liquids were collected using a liquid cell equipped with potassium

bromide windows and a 0.025 mm spacer. These samples were run under a dry

air purge. IR data of crystal samples were measured using KBr pellets under a

vacuum (12 mbar). Data were collected for both classes of samples from 400 to

4000 cm−1 at a spectral resolution of 1 cm−1, using a Bruker IFS66V equipped

with a KBr beam splitter, and a DTGS detector. A thin sample layer sandwiched

between two ZnSe windows was used to observe the IR spectrum of neat ketones.

Raman spectra of all samples were recorded using a Bruker Equinox 55 FRA 106/S

with a Nd:YAG laser and a CCD detector. Thin NMR tubes and capillary tubes
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were used to pack liquid and solid samples, respectively. Data were taken for 2000

scans at a spectral resolution of 2 cm−1.

3.3 Results and Discussion

3.3.1 LiTf:2-pentanone crystal structure

The asymmetric unit of a LiTf:2-pentanone crystal (C6H10F3LiO4S) is illustrated

in Fig. 3.1. The lithium ions are four-fold coordinated with one carbonyl oxygen

atom and three triflate ion oxygen atoms (one oxygen atom from each of three

triflate ions).

Figure 3.1: Asymmetric unit of LiTf:2-pentanone crystal.
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NaTf:2-hexanone crystal structure

The asymmetric unit of NaTf:2-hexanone is illustrated in Fig. 3.2. The Na ion

is coordinated with the carbonyl oxygen atom, and it interacts with four triflate

ion oxygen atoms. The crystal structure data for both crystals are summarized in

Table 3.1.

Figure 3.2: Asymmetric unit of NaTf:2-hexanone crystal.

3.4 Vibrational Spectroscopy of LiTf:2-pentanone Crystal

Structure

3.4.1 Carbonyl stretching vibrations, ν(CO)

As seen in the packing diagram illustrated in Fig 3.3, each Li ion is coordinated

with one carbonyl oxygen atom of 2-pentanone. The effects of this interaction are
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Table 3.1: Structural data for crystal structures: LiTf:2-pentanone and

NaTf:2-hexanone

Parameters LiTf:2-pentanone NaTf:2-hexanone

Crystal system Monoclinic Triclinic

Space group P21/n P1̄

a 13.145(9) 9.659(8)

b 5.516(4) 11.276(9)

c 14.592(10) 14.031(12)

α 90 73.385(18)

β 99.658(9) 82.841(19)

γ 90 70.095(17)

Volume(A3) 1043.0(13) 1376(2)

Z,Z
′

4,1 2,1

Density(Mg/m3) 1.542 1.902

R1 0.06 0.1055

crystal size(mm3) 0.34×0.28× 0.16 0.58×0.36× 0.14
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Figure 3.3: Packing diagram of the LiTf:2-pentanone crystal projected

down the crystallgraphic b axis.

readily observed in the FTIR and Raman spectra of the LiTf:2-pentanone system.

The CO stretching mode, (CO), of pure 2-pentanone occurs at about 1718 cm−1

in the IR transmission spectrum. There is a barely discernible shift to 1717 cm−1

in a solution of O:Li = 10:1 molar composition, as shown in Fig. 3.4. However,

there is a broad, lower feature under the band envelope, giving a very asymmetric

appearance to the band.

The CO frequencies in the Raman spectra of the pure ketone and the solution
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Figure 3.4: Infrared and Raman spectra of CO stretching region (from

1650 to 1750 cm−1) for LiTf:2-pentanone crystal and pure 2-pentanone

are similar, however the Raman intensity is very weak in the pure liquid and

increases markedly in the 10:1 solution. In the IR spectrum of the crystalline

compound, there is a well-defined, asymmetric band at 1672 cm−1, with a very

weak, broad feature in the vicinity of 1717 cm−1. This large shift to lower frequency

compared with the pure ketone is not surprising, given that the Li-O distance

(carbonyl oxygen) is 1.954(9) Å. There is only a single band at 1687 cm−1 in the

Raman spectrum. This 15 cm−1 difference between the CO band frequencies in

the IR and Raman spectra originates in the structure of the unit cell. The four

asymmetric units in the monoclinic unit cell form two dimers with two asymmetric

units in each dimer related by a crystallographic center of symmetry. Therefore

the CO vibrations of the cell can be written in terms of the C2h
5 symmetry of the

crystal as:
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Γ(ν(CO)) = Ag + Bg + Au + Bu

Here the Ag and Bg components are only Raman active, while the Au and Bu

components are only IR active. The two bands observed in the IR are the Au + Bu

modes, while the single Raman active band is probably the Ag mode; Bg modes often

have a small polarizability derivative and are weakly observed, if at all. Although

there appear to be no reports of lithium salts in 2-pentanone or other simple linear

ketones, there are a number of studies of acetone-salt systems [7, 10, 12, 13, 19–22].

In each of those systems, the pure acetone band, ν(CO), is divided into two

components at high salt concentrations. According to Pullin et al. (1958), The

band at high frequency is close to, but slightly lower than the pure acetone band [10].

Further, they determined that the lower frequency band intensity increases with

the high salt concentration while the higher frequency band decreases by studying

infrared spectra. Table 3.2 presents a comparison of C=O stretching frequency

data reported by several groups for various salts dissolved in acetone.

The 46 cm−1 shift (pure 2-pentanone → crystalline complex) that is observed

in this study is larger than any shift reported in Table 3.2, although that is not

surprising since it is expected that the shift upon formation of a crystalline complex

would be larger compared to a salt solution.
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Table 3.2: Comparison of CO stretching frequencies for pure acetone

and acetone-salt systems [10, 12, 13].

Salt Mole ν(CO)-pure ν(CO)-acetone References

type fraction acetone complex

AgClO4 0.08-0.29 mole fraction 1715 1685
[10]

LiClO4 of ClO4 1715 -

NaI I:acetone = 1:5 1717 1709
[12]

ZnBr2 Br:acetone = 1:5 1717 1697

NaClO4 Na:acetone = 1:4 1717 1710
[13]

LiClO4 Li:acetone = 1:4 1717 1702

3.4.2 Lithium ion-pentanone interactions

Figure 3.5(a) shows IR spectra in the range 750-790 cm−1, which contains the

CF3 symmetric deformation mode, δs(CF3). In the 10:1 solution, there are two

components at 758 and 762 cm−1. These frequencies have been assigned to Li+-Tf−

contact ion pairs and the triple ion (Li2Tf)+, respectively [6, 23–26]. The Raman

spectrum of the solution also shows two bands in this region that are coincident in

frequency with the IR bands. There is no absorption of the neat pentanone (data

not shown). The IR spectrum of the crystal has two bands at 776 and 771 cm−1,

whereas the Raman spectrum in this region has a single band at 771 cm−1. The

relatively high frequencies of the δs(CF3) bands in the crystal are consistent with

a triflate ion in which each oxygen atom is coordinated by a lithium ion, i.e. the
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triflate ion vibrates as if it were an [Li3Tf]2+ entity.

(a) (b)

Figure 3.5: (a) Infrared and Raman spectra of δs(CF3) deformation

region (from 750 to 790 cm−1) for 2-pentanone:LiTf crystal and 10:1

solution.(b) Infrared and Raman spectra of νs(SO3) stretching region

(from 1020 to 1100 cm−1) for LiTf:2-pentanone crystal and 10:1 solution.

The two bands in the IR spectrum of the crystal arise from factor group splitting,

and the vibrations of δs(CF3) in the unit cell are predicted to have the same pattern

as the CO stretching normal modes, i.e. Γ(δs(CF3)) = Ag + Bg + Au + Bu

It is interesting to note that the Raman active δs(CF3) mode at 771 cm−1 is

coincident with one of the IR active modes.

The SO3 symmetric stretching modes, νs(SO3), are illustrated in Fig. 3.5(b).

The spectrum of the solution appears to consist of three overlapping bands, 1032,

1040, and 1048 cm−1, assigned to “free” ions, contact ion pairs, and the triple ion

55



[Li2Tf]+, respectively [7, 24, 25, 27]. The corresponding Raman spectrum also has

three overlapping bands at 1033, 1042, and 1051 cm−1. The IR spectrum of the

crystal consists of a very broad feature from about 1045 to 1075 cm−1 and resembles

an infrared reflectivity spectrum. This is not surprising, given the large dipole

moment of the νs(SO3) normal mode as evidenced by its strong IR intensity. The

Raman spectrum shows a band at 1071 cm−1 with a very weak band at 1042 cm−1.

The relatively high frequency of the Raman band, presumably an Ag mode, is again

consistent with a triflate ion in which each oxygen atom is coordinated by a lithium

ion as demonstrated by the crystal structure.

The concentration dependence of the νs(SO3) symmetric mode in solutions of

LiTf in 2-pentanone is illustrated in Fig 3.6(a). The three bands that are clearly

present in the IR intensity data were curve-fitted to three Gaussian peaks and

a baseline. Fig. 3.6(b) shows integrated intensity of each band as a function

of salt concentration. Here, concentration is the molal concentration (mol/kg of

solvent) of salt. The relative amount of triple ions present (triangles) increases with

increasing salt composition, while the relative amount of contact ion pair increases

to a maximum at a composition of 1.25:1 (O:Li molar ratio) and then decreases

with further increase in salt composition. The amount of “free” triflate ions appear

to increase slowly with salt concentration. Triple ion species are dominant in the

sample and increase with increasing concentration.

The symmetric SO3 bending modes appearing between 620 and 680 cm−1 are

shown in Fig. 3.7(a). There is a narrow band at 642 cm−1 for the 10:1 solution and

a broad band at 654 cm−1 represents the crystal sample. Peaks at 668 cm−1 for
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(a) (b)

Figure 3.6: (a) Concentration dependence of νs(SO3) for LiTf:2-

pentanone solution. The letters are designated as follows: (a) 0.2

(b) 0.4 (c) 0.6 (d) 0.8 (e) 1.0 (f) 1.2 (g) 1.4 mol/kg. (b) The plot of

integrated intensity versus salt molal concentration.

both neat and solution samples have very weak intensity. Additional triflate ion

modes appear in the IR spectral region 1100-1500 cm−1, shown in Fig. 3.7(b). The

bands at 1171 (solution) and 1195 cm−1 (crystal) are due to the triflate ion CF3

antisymmetric stretching mode, νas(CF3), while the bands at 1233 (solution) and

1227 cm−1 (crystal) are the triflate ion CF3 symmetric stretching mode, νs(CF3).

The Raman spectrum (data not shown) has a weak band at 1232 cm−1 (solution)

and a strong, sharp band at 1241 cm−1 (crystal). The IR spectrum of the triflate

ion SO3 asymmetric stretching mode, νas(SO3), has bands at 1256, 1272, and

1303 cm−1 in the solution, whereas the crystal has a very broad, highly asymmetric

feature with a maximum at 1259 cm−1. The two-fold degeneracy of the νas(SO3)
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mode in the isolated triflate ion is broken by any interaction with the potential

energy environment that does not preserve the three-fold axis of symmetry of the

anion. In the 10:1 solution, it is easy to visualize how coordination with one or two

lithium ions would break down the symmetry. Thus, the two components at 1303

and 1256 cm−1 are assigned as symmetry-broken components of νas(SO3), while

the band at 1272 cm−1 can be assigned as a “free” triflate ion in a solution [6, 25].

An examination of the crystal structure shows that the triflate ion is three-fold

coordinated by lithium ions, with one lithium ion to each oxygen atom. This might

suggest an arrangement in which the three-fold axis of the isolated triflate ion is

preserved in the crystal. However, a closer examination of the crystal structure

shows that the lithium-triflate oxygen distances are slightly different: i.e. 1.932,

1.939, and 1.943 Å. Therefore these small differences are apparently sufficient to

break the three-fold degeneracy and lead to the broad, structured feature in the

spectrum of the crystal. The Raman spectrum of νas(SO3) has two features at 1297

and 1274 cm−1 in the solution, with corresponding bands at 1308 and 1284 cm−1

in the crystal. Two peaks at 1368 and 1367 cm−1 for liquid and neat pentanone

(data is not shown) samples, respectively, can be explained as methyl deformation

modes or CH2 wagging.
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(a) (b)

Figure 3.7: (a) Infrared and Raman spectra of δs(SO3) symmetric

bending mode (from 620 to 680 cm−1) (b) Infrared and Raman spectra

in the region of 1000-1500 cm−1.

3.5 Vibrational Spectroscopy of NaTf:2-hexanone Crystal

Structure

The packing diagram for crystalline NaTf:2-hexanone is shown in Fig 3.8. Na

atoms are bonded to both triflate oxygen atoms and solvent oxygen atoms. The

interaction between the solvent CO group and an Na atom was examined using

vibrational spectroscopy.
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Figure 3.8: Packing diagram of the NaTf:2-hexanone crystal structure.

3.5.1 Carbonyl stretching vibrations, ν(CO)

Figure 3.9 illustrates the infrared and Raman spectra of the CO stretching mode

of NaTf:2-hexanone crystal structure. In addition, it shows the IR spectra for the

10:1 solution and neat hexanone in the region of 1550-1750 cm−1. Similar to pure-

pentanone, the CO stretching mode of pure 2-hexanone is located at 1718 cm−1.

Further, this mode is slightly shifted to 1717 cm−1 in the O:Li = 10:1 solution. In

the IR crystal spectrum, two bands are visible. A less intense band at 1721 cm−1

has a small shift (∆ν = 3 cm−1) compared to pure hexanone frequency. These

results show that solid state environment is significantly different than the liquid

state. There is another broad asymmetric band feature at 1618 cm−1. This band

primarily originates from the Na ion coordination with the CO group; the Na-O

distance in crystal is 2.274(11) Å. Therefore, a large frequency shift is expected

compared to the pure ν(CO). It is also noted that there are two shoulders under

this band envelope at 1618 and 1610 cm−1. This may be due to the complexity of
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NaTf:2-hexanone crystal structure.

Figure 3.9: Infrared and Raman spectra of CO stretching region (from

1550 to 1750 cm−1) for NaTf:2-hexanone crystal and pure pentanone

The CF3 symmetric bending mode is shown in the Fig. 3.10(a). There are two

bands at 760 and 772 cm−1 in the 10:1 solution IR spectrum. These two bands

can be assigned to the triple ion and higher ion aggregates [6]. One narrow band

appears at 768 cm−1 in the IR spectrum, whereas the Raman spectrum has a single

band at 776 cm−1. In the crystal structure, four triflate oxygen atoms coordinate

with a Na ion. Therefore, it is not surprising to have relatively high frequency

δs(CF3) bands in the crystal.

The SO3 symmetric stretching mode (1000 and 1080 cm−1) has a strong asym-

metric band at 1041 cm−1 as shown in Fig. 3.10(b). A curve fitting analysis shows

that the asymmetric band is composed of three peaks which are assigned to free

ion, ion pairs and triple ions. The IR spectrum of crystal structure consists of a
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(a) (b)

Figure 3.10: (a) Infrared and Raman spectra of δs(CF3) deformation

region (from 700 to 800 cm−1) for NaTf:2-hexanone crystal and 10:1

solution.(b) Infrared and Raman spectra of νs(SO3) stretching region

(from 1000 to 1080 cm−1) for NaTf:2-hexanone crystal and 10:1 solution.

very broad band at 1051 cm−1 with a weak shoulder at a lower frequency. It is

clearly shown that the Raman band shifts to higher frequencies when the crystal is

formed.

3.6 Conclusions

In this chapter, we reported two crystal structures, LiTf:2-pentanone and NaTf:2-

hexanone. Vibrational study reveals that cation ions (Li and Na) are coordinated

with the carbonyl group of ketone in the both crystal structures. Further, these
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data shows that CO stretching frequency shifts to the lower frequency side of the

original mode due to cation coordination. The observed NaTf:2-hexanone crystal

has a more complex environment than the LiTf:2-pentanone structure. Vibrational

spectroscopic data shows that three ionically-associated species in the ketone-salt

solutions are “free” ions, ion pairs, and ion aggregates. When the crystals form,

broad band features are observed on the higher frequency side. This may be

expected due to the cation coordination with the each oxygen atom of triflate ions,

i.e. the triflate ion vibrates as if it were an [Li3Tf]2+ entity in LiTf:2-pentanone.

These crystal structure data give supporting evidence to the molecular interactions

we discussed in chapter 2.
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Chapter 4

Quantitative Analysis of

Temperature-Dependent Vibrational Modes of

Pure PEO and PEO-Lithium Triflate Complexes

4.1 Introduction

We have previously reported (see Chapter 2) that the intensities of νs(SO3), δs(CF3),

and δs(SO3) vibrational modes are independent of lithium ion association in LiTf:2-

pentanone system using IR spectroscopy. As we explained in Chapter 2, absorption

is proportional to the concentration of the sample species. The intensity of triflate

ion vibrational modes appear to obey Beer’s law, and molar absorptivities were

calculated for νs(SO3), δs(CF3), and δs(SO3) vibrational modes of CF3SO3 anion.

Further, we concluded that those results can be used to find the sample thickness

and the exact concentration of different samples.

In order to carry out quantitative studies of polymer electrolytes, several

difficulties needed to be overcome. One such issue is preparing a sufficiently thin

uniform sample. Another problem is controlling the sample thickness at higher

temperatures. In addition, a number of interactions occur simultaneously due

to the complex environment of the polymers, while varying the temperature and

concentration. Therefore, great care is needed during sample preparation and

vibrational spectroscopic measurements to obtain successful results. Generally, a

polymer consists of crystalline and amorphous phases. The relative amount of the

material in each phase changes with increasing temperature. Fourier transform
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infrared spectroscopy is used to probe ion-polymer and ion-ion interactions of

electrolytes both qualitatively and quantitatively.

A number of groups have studied polymer-salt phase diagrams using different

techniques [1–3]. Fig. 4.1 shows the phase diagram of the PEO:LiTf system [2].

This diagram reveals the two phases for the PEO:LiTf complex below the melting

temperature: crystalline PEO and the crystalline PEO:LiTf (3:1) compound. These

crystalline PEO phases transform into an amorphous PEO:LiTf compound and an

amorphous PEO above the melting temperature. According to the phase diagram,

pure PEO starts to melt at around 60◦C and the PEO:LiTf complex melts around

140◦C [4–8]. Furneaux et al. showed the validity of an extended version of Beer’s

Figure 4.1: Phase diagram of the PEO:LiCF3SO3 system. L represents

the amorphous phase [2].
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law for the δ(CF3) vibrational mode in PEO:LiTf complexes [9]. They showed

that the intensity of δ(CF3) mode is independent of Li+ association. In this work,

the AsF6
− band located at 700 cm−1 has been used as a standard marker to scale

other bands since the absorption of AsF6
− does not change with temperature. To

extend these studies, we measured the FTIR spectra of PEO:LiTf while varying

the temperature and concentration. Our interest is to quantitatively study polymer

electrolyte systems by finding the amount of polymer material in different phases.

The relative areas of individual peaks of the spectrum is related to the relative

amount of material. However, the data should be smoothed to yield satisfactory

results. It is important to avoid unwanted noise in spectra. A number of techniques

have been used to minimize noise in the FTIR spectra during past years. Among

them, smoothing techniques are a powerful tool, e.g., Savitky-Golay (SG) algorithm,

spline filtering, Fourier filtering, wavelet denoising, etc. [10].

Our major goal was to find a suitable method to minimize noise in the spectra

and define a proper baseline for required spectral regions. Another objective was

to study the changes of the vibrational modes of triflate ion, AsF6
− band and the

polymer configuration region with temperature and concentration. To investigate

these, we used IDL programming and Origin Curve fitting software to analyze the

data. The area was calculated by a direct integration method. However, there

are certain problems associated with each method, and we report only successful

results of this project.
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4.2 Experimental Methods

Poly(ethylene oxide), PEO 2000 Da was purchased from Polysciences, Inc. Lithium

hexafluroarsenate (LiAsF6, 99%), LiCF3SO3, acetonitrile (CH3CN) were obtained

from Alrich or Alfa Aesar. PEO was heated for 48 hours in a vacuum oven at

10−2 mbar at 45-50◦C; LiTF was heated in a vacuum oven at 105◦C for several days.

All materials were stored in an argon-filled glove box (≤ 1 ppm H2O). First, a large

batch of PEO:LiAsF6 with 500:1 solution was prepared. To prepare this solution,

weighed amounts of dried PEO and LiAsF6 were dissolved in CH3CN and stirred

at room temperature for at least 24 hours. Then the solution was poured into a

teflon-lined petri dish and left in a dry box for several days for solvent evaporation.

Finally, a white thick film was observed on the petri dish; this film was easily

broken into flakes. This compound is called doped PEO (PEO:LiAsF6=500:1) and

it was the host polymer compound for all other sample preparations.

PEO-salt solutions were prepared with a particular ether oxygen (EO):Li ratios.

This ratio was marked as x:1 hereafter; where x is the amount of doped PEO.

PEO-salt solutions were made by dissolving measured amounts of doped PEO and

LiTf into CH3CN solvent. Five such solutions were made with different x:1 ratios

(x = 10, 15, 20, 30, 40).

All IR spectra were recorded using IFS66V FTIR spectrometer under vacuum

(11 mbar). The sample was mounted on the temperature controlled transmission

cell (Harrick Inc.). All spectra were collected at a spectral resolution 1 cm−1,

64 scans, and 400-4000 cm−1 mid IR spectral range. Before taking the sample
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spectrum, a background spectrum was collected from the optical window without a

sample. Then the optical window was transferred to the glove box. A few PEO-salt

solution drops were cast onto the CdTe window and a thin film was obtained after

24 hours. This solvent-free thin film on the CdTe window was used as the sample

for IR temperature measurements. A single window was used to reduce Fabry-Perot

interference effects. Each sample was heated to 80◦C and sat for 1 hour until

temperature stabilization. The sample was then cooled back to room temperature

and left to stabilize for 1 hour. This method was followed to obtain a moisture and

morphological effect free sample. Furneaux et al. reported that sample thickness

does not change substantially due to this heating and cooling process [9]. The sample

temperature was varied from room temperature (25◦C) to 140◦C with 10 degree

increments for PEO-salt samples and 5 degree increments for pure PEO sample.

At each temperature, the sample was allowed to stabilize for 30 minutes. The

sample temperature was monitored using an Omega temperature controller(model-

CN9000A) and measured with a K-type thermocouple. The exported ASCII data

files using OPUS software were imported into IDL to perform data smoothing and

integration. All data sets were analyzed using IDL programming.

4.2.1 Data collection

Temperature-dependent IR spectra of pure PEO sample

A series of infrared spectra were taken for pure PEO over the temperature range of

25 to 125◦C at 5 degree increments. Fig. 4.2 illustrates the IR spectrum of pure

PEO in the range of 700 to 1500 cm−1. It was noticed that the band frequencies

70



Figure 4.2: Temperature-dependent FTIR spectra of pure PEO in the

region from 700 to 1500 cm−1.

are constant even though their intensities changed with temperature. In a pure

PEO IR spectrum, bands were observed at 827, 843, 857, 933, 947, 965, 947, 1061,

1050, 1235, 1243, 1280, 1344, 1360, 1467 and 1475 cm−1. These bands disappear

above 60 ◦C and hence, are assigned to the crystalline phase of PEO. On the other

hand, broad bands located at 855, 948, 993, 1111, 1143, 1251,1294, 1324, 1350, 1456

and 1486 cm−1 are attributed to the amorphous phase of PEO. The frequencies of

these spectral bands are consistent within ± 1 cm−1 with the band assignments

published by Dissanayake et al. [6]. As the temperature increases, the crystalline

amount decreases while the amount of amorphous compound is increased.
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Figure 4.3: Temperature-dependent FTIR spectra of PEO:LiTf 10:1

in the region from 600 to 1500 cm−1.

Temperature-dependent IR spectra of PEOxLiTf complexes

In PEO:LiTf complexes, Li cations are coordinated by the ether oxygen atoms of

the polymer backbone. It is expected that polymer conformational changes are

due to the complexation with salts. The ion-ion and ion-polymer interactions of

LiTf in polymers have been studied by a number of research groups during the

last decade, and these studies have revealed that there exists different ionic species

of the triflate anion, such as “free” ions, contact-ion pairs, triple ions, and higher

ion aggregates [1, 8, 11–14]. Fig. 4.3 shows the FTIR spectra of a PEO:LiTf 10:1

sample in the range between room temperature (25◦C) and 140◦C. The shape of

the spectral bands significantly changes with the temperature. It is noted that the
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bands are broadened in the region between 60 and 140 ◦C due to the phase changes.

Therefore, data between 25 to 80◦C were used for quantitative analysis since it is

difficult to define a proper baseline at higher temperatures.

The temperature-dependent spectra in the region 680 to 720 cm−1 are shown in

Fig. 4.4. Bands that appear at 760 and 640 cm−1 are assigned to the symmetric

CF3 deformation mode, δ(CF3), and the symmetric SO3 deformation mode, δ(SO3),

of the CF3SO3 anion, respectively. The band at 700 cm−1 is due to the ν3(AsF6)

mode. As mentioned earlier, this band is expected to have the same absorption

intensities for each temperature [9]. Therefore, AsF6
− was used as a standard to

normalize the IR spectra in this work.

Figure 4.4: Temperature-dependent FTIR spectra of PEO:LiTf 10:1

in the region from 600 to 775 cm−1.
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Concentration-dependent IR spectra of PEOxLiTf complexes

The spectral region 800-1000 cm−1 is the fingerprint region for the polymer com-

pound. This region is useful to understand the changes of local conformation due

to the complexation in PEO, and it is expected that PEO exhibits new conformers

with increasing salt concentration. Fig. 4.5 shows the concentration dependent

IR spectra of PEOxLiTf complexes in this range. The bands that appear in 800-

900 cm−1 are due to CH2 rocking vibrations, while the bands at 900-1000 cm−1 are

primarily attributed to CO stretching motion [5, 6]. Modes in the spectral region

800-1000 cm−1 consists of mixed CH2 rocking and CO stretching motions.

Figure 4.5: Concentration dependence FTIR spectra of PEO:LiTf

complexes in the region from 800 to 1000 cm−1.
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4.2.2 Data analysis

Vibrational spectroscopy data were analyzed using several steps. First, the original

data were normalized using an AsF6
− marker. Then a baseline correction was

applied for all required regions of this normalized data. Fourier filtering with low

pass and band pass filtering and cubic spline fitting was initially used with limited

success. Accordingly, third order Savitzky-Golay filtering was chosen to smooth

all spectra used. Since this is a quantitative study, the area under spectral band

is of utmost importance. The integrations were carried out with the five point

Newton-Cotes formula (IDL’s INT TABULATED routine).

The first step was to isolate the AsF6
− peak. We chose an extended region

around this peak and then found an optimum frequency interval by minimizing the

area due to noise in the tail. The derivative of the entire region was obtained using

a Savitzky-Golay filter, then a liner fit to the derivative of the two tail regions alone

was subtracted to remove third order contributions from the tail. Integrating this

gave a smooth peak with a well behaved tail. Finally, we minimized the area of

this tail over different frequency ranges to find the best frequency interval to find

the area of the AsF6
− peak. The total area under a curve at different temperatures

was calculated and the area at the room temperature was treated as the reference

area. All spectra were normalized by multiplying by the ratio between the area of

the AsF6
− peak and the reference area. The normalized spectra of both pure PEO

and PEO:LiTf were used in all further studies.
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Smoothing IR spectra

The most important step in quantitative analysis of a spectrum is the proper

handling of the baseline correction. Various noise elements contribute to small

changes in transmission intensity causing tails of spectral bands to deviate from a

simple Gaussian shape. As mentioned earlier, the amount of species is determined

from the area under a peak, and it is vital to have a proper baseline in order to

accurately determine this. Simple techniques such as moving average, may remove

actual features of spectra and hence, cannot be utilized in baseline correction.

Therefore, we use third order Savitzky-Golay smoothing with ten points before and

after for smoothing the region of interest of the spectrum. This was done by simply

convolving the above mentioned Savitzky-Golay filter with the data. We then

use two different methods for baseline correction: a polynomial-fit based method

and a technique adapted from Liu et al. [15]. The fact that the AsF6
− amount is

constant in every spectrum is used to compare both methods extensively. The range

716-672 cm−1 is chosen around the AsF6
− peak, the baseline is corrected for each

temperature, and the resultant area inside the peak is measured and compared.

The basic idea behind the first method is that the tails can be approximated

by a straight line. We start by finding the local minima of each tail, and then 20

data point ranges were selected from either side. Each side was then fitted with

quadratic polynomials of the form a+ bx+ cx2. A simple least square calculation
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is used to obtain the coefficients as,
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The sum runs over all n = 20 data points (xi, yi) under consideration. This allows

us to calculate the minima of each side by finding the zero point of the second

derivative of the parabola given by xmin = −b/2c. The line joining these two points

is considered the baseline correction in this method and hence, it was subtracted

from the entire data range before integrating the peak to find the enclosed area.

Liu et al. proposed to fit the entire spectrum with a straight line or a quadratic

polynomial and rejected data points that are one standard error or more away [15].

This procedure is repeated until the difference between the fit and the remaining

data points is less than a preset tolerance limit. The tolerance should be sufficiently

small and has no direct influence on the final result if enough data points are used.

We tested this technique with n-tuple polynomials and found a quadratic fit is best

for the AsF6
− peak. The two programs that we used for quantitative studies are

attached in the appendix 1(program 1 and 2).

4.3 Results and Discussion

In this section, we report results obtained using the latter method (Liu method [15]),

since it was the most consistent. Fig. 4.6(a) shows the temperature-dependent IR

spectra for the the AsF6
− peak in pure PEO after baseline correction. Similarly,

the same baseline correction was applied for PEO:LiTf complexes. The relative
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intensity variation of AsF6
− peak in the PEO:LiTf complex is shown in Fig. 4.6(b).

According to this graph, intensities are constant at each temperature as we expected.

This result verifies that an AsF6
− band can be used as a marker to scale other

spectral regions and to verify the validity of the technique. We examined the

relative areas of the δs(CF3) and δs(SO3) vibrational modes and bands in the

polymer fingerprint region using the same method.

(a) (b)

Figure 4.6: Baseline corrected FTIR spectra of AsF6
− in pure PEO

Figure 4.7 illustrates the relative integrated intensities of PEO:LiTf complexes

plotted as functions of temperature in the region 800 to 900 cm−1 (see Fig. 4.5).

This figure clearly demonstrates that the total intensity is unchanged until 40◦C,

and then it starts to decrease during the intermediate temperature at 50◦C. Upon

heating above 60◦C, intensities for all concentrations remained constant. Similar

behavior was observed for the 900-1000 cm−1 spectral region. This change can

78



Figure 4.7: Relative intensity versus temperature for PEOxLiTf com-

plexes in the region 800 to 900 cm−1.

be attributed to the phase change from crystalline to amorphous of the polymer

complex. However, it is interesting to observe this behavior not only in the

polymer region but also in the ionically associated regions. Temperature-dependent

integrated intensities of δs(CF3) and δs(SO3) modes are shown in Fig. 4.8(a) and

(b), respectively.

Previous studies based on Beer’s law suggest that the total intensity of a δ(CF3)

peak is independent of ionic association; hence, we expect constant absorption

intensity across all temperatures [9]. On the contrary, we observed a clear change

of intensity around 60◦C. One possible reason may be the phase change from

crystalline to amorphous of the PEO around the same temperature. Another
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(a) (b)

Figure 4.8: (a) Relative intensity versus temperature for (a) δs(CF3)

mode (740-770 cm−1) (b) δs(SO3) mode (600-675 cm−1) in PEO:LiTf

40:1 complex.

possible explanation is the wiggles on the tail that might affect the region selection

process by the code. With a sharper peak, the intensities of the wiggles are

negligible compared to a lower intensity, broader peak. Also, baseline selection may

be affected by the peak broadening as it becomes curved for higher temperatures.

As a solution, a Gaussian curve fitting procedure was attempted with a similar

result. Therefore, we propose to use a different number of Gaussian lines depending

on the temperature. This was left as future work. Another explanation would be

to assume that areas under peaks interchange due to ionic interactions caused by

phase change. One plausible explanation could be that the area change occurs at
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the phase transition temperature. However, further investigations are necessary to

understand this phenomena.

4.4 Conclusions

We used an algorithm to define proper baselines of FTIR spectral regions and

normalize based on the constant intensity an AsF6
− peak from doping. Resulting

spectra yields a constant area for the AsF6
− peak, although the same is not true for

other peaks. The total intensity is not constant for the polymer region due to the

phase transformation from the crystalline phase to the amorphous phase of PEO.

According to previous studies, the intensity of the δ(CF3) mode is independent of Li+

association, and thus, we expected a constant intensity with temperature. However,

it is not observed in our results. Several possible scenarios have been proposed and

further investigations are necessary to exactly understand this discrepancy.
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Chapter 5

Temperature-Dependent Ion and Mass Transport

of TbaTf-n-acetates and 2-ketones

Portions of this chapter have appeared in:

Bopege, D. N.; Petrowsky, M.; Fleshman, A. M.; Frech R.; Johnson, M. B. J. Phys.

Chem. B 2012, 116, 71-76

Bopege, D. N.; Petrowsky, M.; Frech R.; Johnson, M. B. “ Mass and Ion Transport

in Pure Ketones and Dilute Ketone solutions.” J. Phys. Chem. Lett., to be

submitted(2012)

5.1 Introduction

It is important to understand charge and mass transport in organic liquid elec-

trolytes and polymer electrolytes (PEs) due to their importance in applications

such as lithium rechargeable batteries and other electrochemical devices [1–4]. The

temperature dependence of ionic conductivity and diffusion in these electrolytes can

provide information about complex system dynamics. The simple Arrhenius equa-

tion shown in Eq. 5.1 describes the temperature dependence of ionic conductivity

below the glass transition temperature, Tg, for PEs [5–8].

σ = σ0e
− Ea

RT (5.1)

Here σ denotes the ionic conductivity, σ0 is the temperature independent prefactor,

T is the temperature, and Ea is the activation energy. It has been found that liquid
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electrolytes and PEs above Tg often show non-Arrhenius temperature-dependent

conductivity that is commonly described using the VTF or the WLF empirical

equations [9–12]. Because these are empirical equations, the resulting fitting

parameters do not provide information on the underlying mechanism of ion transport.

Conductivities and diffusion coefficients are conventionally described with viscosity-

related models that often predict results contrary to experiment [3, 4, 13].

Recently, a new approach has been proposed to describe charge and mass

transport in pure liquids and liquid electrolytes [14–17]. The temperature-dependent

conductivity is formally written as an Arrhenius-like expression; however, in contrast

to Eq. 5.1, there exists a temperature dependence in the exponential prefactor

that is due to the temperature dependence of the solvent/solution static dielectric

constant (εs). Therefore, the ionic conductivity can be written as

σ(T, εs) = σ0(εs(T ))e−
Ea
RT (5.2)

The compensated Arrhenius formalism (CAF) has been used to describe self-

diffusion and dielectric relaxation transport phenomena in addition to ionic con-

ductivity [14, 17]. The self-diffusion coefficients(D) and dielectric relaxation rate

constant(k) can be presented in the following form analogous to 5.2.

D(T, εs) = D0(εs(T ))e−
Ea
RT (5.3)

k(T, εs) = k0(εs(T ))e−
Ea
RT (5.4)

Here, D0(εs(T )) and k0(εs(T )) are the exponential prefactors.

This dielectric constant dependence in the prefactor is removed by using a
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scaling procedure that requires a reference curve. A reference conductivity curve is

constructed from the isothermal conductivity and static dielectric constant values

of each member of a solvent family. The temperature at which each reference

conductivity is measured is termed the reference temperature, Tr. The end result

of this scaling procedure is the compensated Arrhenius equation (CAE) [14–20].

Eq. 5.5 and 5.6 are compensated Arrhenius equations for ionic conductivity and

self-diffusion, respectively.

ln
[ σ(T, εs)

σ(Tr, εs)

]
= − Ea

RT
+

Ea

RTr
(5.5)

ln
[ D(T, εs)

D0(Tr, εs)

]
= − Ea

RT
+

Ea

RTr
(5.6)

If CAE behavior is observed, a plot of ln(σ(T, εs)/σ(Tr, εs)) versus 1/T yields a

straight line with slope −Ea/R and intercept Ea/(RTr). The activation energy can

be calculated from either the slope or the intercept of Eq. 5.5 or 5.6. The agreement

between these two activation energies provides one measure of the validity of this

procedure. This activation energy is used to determine the exponential prefactor,

σ0, by dividing σ(T, εs) by the Boltzmann factor (exp[- Ea

RT
]). Previous work has

shown that a master curve results when the prefactors are plotted against the

dielectric constant [14–17]. The formation of a master curve supports the postulates

underlying Eq. 5.2.

Translational diffusion data complement ionic conductivity data in studies of

transport in an electrolyte. Pulsed Field Gradient Nuclear Magnetic Resonance

(PFG-NMR) spectroscopy is a powerful tool for determining diffusion coefficients

and is used in this work and related studies [21–30]. It has been shown that
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temperature-dependent diffusion coefficients exhibit the same compensated Arrhe-

nius behavior as ionic conductivities [14]. The temperature dependence of both

ionic conductivities and self-diffusion coefficients for alcohol-based electrolytes and

pure alcohols, respectively, have been studied using the CAF [14, 15]. Similar

studies must be performed for other solvent systems in order to test the generality

of this approach.

This chapter describes the temperature-dependent conductivities and self-

diffusion coefficients of pure solvents and dilute liquid electrolytes. In this study,

the temperature dependence is examined for 0.0055 M TbaTf-acetate, 0.0055 M

TbaTf-acetate, pure acetate, and pure ketone systems. In the conductivity studies,

TbaTf was chosen as the solute because it minimizes the cation-anion interactions

in solution. The bulky butyl groups prevent contact ionic association and therefore

only “free” ions exist in solution [31, 32]. The main objective of this work is to

examine the validity of the CAF using pure acetates, pure ketones and dilute acetate

and ketone based electrolytes. Ketones and acetates are both aprotic solvents with

structural similarities in that they have carbonyl groups. However, the permittivity

of ketones is much higher than that for acetates. Considering the prominent role

the dielectric constant plays in transport phenomena, it is important to compare

conductivity and diffusion data between ketones and acetates. Here, the dependence

of the activation energy on alkyl chain length is also examined.
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5.2 Experimental Methods

5.2.1 Sample preparation

All acetates, ketones and TbaTf were purchased from either Aldrich or Alfa Aesar

and used as received. All materials were stored and electrolyte solutions were

prepared in a dry box under a nitrogen atmosphere (≤ 1 ppm H2O and approximate

temperature 25◦C). A 0.0055 M (molar concentration, mol/L) sample was made

by dissolving an appropriate amount of TbaTf into a particular acetate or ketone

solvent, followed by stirring for 24 hours.

5.2.2 Conductivity and static dielectric constant measurements

For the conductivity and dielectric constant measurements, the dilute solution

or pure solvent was contained in a liquid cell (HP 16452A with 2 mm spacer)

immersed in an oil bath [33]. The capacitance and conductance were measured at

each temperature with an impedance analyzer (HP 4192A scanning the frequency

range 1 kHz to 13 MHz). The measured conductance, in conjunction with the

known cell geometry, was used to determine the solution conductivity at each

temperature. The conductivity (σ) is calculated using the relation σ= LG/A,

where L is the electrode gap, G is the measured conductance, and A is the electrode

area. Temperature was controlled using using a Huber ministat 125 with an

accuracy ±0.1◦C. All measurements were carried out over a temperature range

from 0 to 80◦C for acetates and 5 to 80◦C for ketones. The solution and pure

solvent static dielectric constants were calculated using the relation εs= αC/C0,
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where C is the sample capacitance and C0 is the atmospheric capacitance. The

parameter α, which is close to unity, accounts for stray capacitance [33].

5.2.3 PFG NMR self-diffusion measurements

An NMR capillary tube (5 mm OD and 20 cm long) was filled to a 0.8 cm

height with pure acetate or ketone solvents for the NMR-PFG measurements.

This tube was sealed with parafilm after filling the sample in a drybox (≤ 1ppm

H2O). PFG measurements were performed using a Varian VNMRS 400 MHz NMR

spectrometer, which was operated with an Auto-X-Dual broad band 5 mm probe

tuned to 399.870 MHz for protons. The standard Stejskal-Tanner pulsed gradient

sequence was performed at each temperature by arraying the gradient field strength

from 6 to 62 G/cm [24, 34–36]. The integrated intensity of each attenuated

signal was calculated. The diffusion coefficient was calculated from the slope of

the plot Ln(intensity) versus square of the gradient strength. Temperature was

controlled using an FTS XR401 air-jet regulator. The duration of the gradient

pulse encompassed the range from 0.27 ms (butyl acetate at 70◦C) to 1.7 ms (decyl

acetate at 0◦C). Similarly, gradient pulse of duration was varied for ketones from

0.225 ms (2-pentanone at 65◦C) to 1 ms (2-decanone at 5◦C).
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5.3 Results and Discussion

5.3.1 Temperature dependence of ion transport in Tbatf-aprotic sol-

vents

The ionic conductivities and dielectric constants of dilute solutions were calculated

from the measured conductance and capacitance data, respectively. Electrode po-

larization produces artificially high capacitance measurements at lower frequencies,

but this effect decreases as the frequency increases. At higher frequencies a plateau

region for the capacitance was observed between 104 and 107 Hz for each acetate

and ketone solutions. The value of the real part of the dielectric constant calculated

from this plateau capacitance is designated as εs and is taken as the static dielectric

constant.

0.0055 M TbaTf-acetate solutions

As mentioned earlier, choosing a reference conductivity curve is very important

for the scaling procedure. In acetate studies, reference curves were constructed

for six different reference temperatures (20, 30, 40, 50, 60, 80◦C). Each reference

curve includes butyl, pentyl, hexyl, octyl and decyl acetate and was fitted using the

empirical function σ = A× exp(εs/t) +B (ExpGro1 in Origin 8.1 software). Here,

A, B and t are the fitting parameters. Fig 5.1 presents a comparison of the simple

Arrhenius plot and compensated Arrhenius plot for 0.0055 M TbaTf in hexyl acetate

from 0 to 80◦C. The left and right y axes denote scaled temperature dependent ionic

conductivities (CAE) and conductivity values for the simple Arrhenius equation,
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respectively. The compensated Arrhenius plot was prepared using a reference

temperature, Tr= 40◦C. Both plots show linear behavior and have correlation

coefficients close to unity. However, very different Ea values result from the CAF

Figure 5.1: Simple Arrhenius and compensated Arrhenius plot for

0.0055 M TbaTf-hexyl acetate

analysis compared to the simple Arrhenius analysis. For example, the activation

energy calculated from the conductivity data for 0.0055 M TbaTf-hexyl acetate

using the simple Arrhenius plot is 15.5±0.1 kJ mol−1, while the compensated

Arrhenius plot yields a value of 36.4±0.9 kJ mol−1 at Tr= 40◦C. This difference

results from the significant disparity in the two slopes, noting the difference in

scale in the two ordinate axes. Table 5.1 shows Ea values from CAE plots that

result from the conductivity data of 0.0055 M TbaTf-acetates and also Ea values

from the simple Arrhenius plots of these data. The CAE Ea values in table 5.1
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are closely grouped when an appropriate reference temperature is chosen for each

acetate member. The reference temperature is chosen such that the temperature

dependent dielectric constant range of the family member is encompassed by the

dielectric constant range of the reference conductivity curve.

Table 5.1: Activation energies from compensated Arrhenius and simple

Arrhenius plots resulting from conductivity data for 0.0055 M TbaTf-

acetates

CAE Ea (kJ/mol) simple Arrhenius Ea (kJ/mol)

0.0055 M TbaTf Tr 0.0055 M TbaTf

Solvent (◦C) Slope Intercept Solvent Slope

pentyl acetate 20 36.3± 0.8 36.3± 0.8 butyl acetate 11.3± 0.1

30 35.7± 0.8 35.8± 0.8 pentyl acetate 13.1± 0.1

40 35.7± 0.8 35.9± 0.8 hexyl acetate 15.5± 0.1

hexyl acetate 20 36.1± 0.9 36.1± 0.8 octyl acetate 19.4± 0.1

30 38± 1.0 38± 1.0 decyl acetate 28± 1.0

40 36.3± 0.9 36.5± 0.9

50 35.9± 0.7 36.0± 0.7

60 36.4± 0.7 36.5± 0.7

octyl acetate 60 39.2± 0.9 39± 1.0

80 35.8± 0.9 35± 1.0

The average activation energy calculated from the CAF is 36.5±0.8 kJ mol−1,

while Ea values resulting from simple Arrhenius plots increase systematically
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with acetate chain length. Simple Arrhenius behavior is observed over the entire

temperature range in each acetate member except decyl acetate, which is the longest

chain member studied and has very low conductivities. The conductivity data

collected at sub-ambient temperatures for decyl acetate are close to the detection

limit of the impedance analyzer and were therefore omitted from the analysis.

Fig 5.2 plots conductivity versus static dielectric constant for 0.0055 M TbaTf-

acetate solutions over the temperature range from 0 to 80◦C. Five distinct curves

are observed, each one consisting of the temperature-dependent data for a particular

acetate member.

Figure 5.2: Conductivity versus static dielectric constant over the

temperature range 0 to 80◦C for 0.0055 M TbaTf-acetate solutions of

(A) butyl acetate (B) pentyl acetate (C) hexyl acetate (D) octyl acetate

(E) decyl acetate over the temperature range 0 to 80◦C.
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(a) (b)

Figure 5.3: Exponential prefactor versus dielectric constant for 0.0055 M

TbaTf-acetate solutions using (a) Ea = 36.5 kJ mol−1 (b) Ea = 11.3

kJ mol−1

The exponential prefactor is obtained by dividing the temperature-dependent

conductivity by exp(- Ea

RT
). Figure 5.3 graphs the exponential prefactor against

the dielectric constant for two different Ea values. All data points lie on a single

curve as shown in Fig 5.3(a) when the CAE average Ea value is used. A master

curve is still observed when arbitrarily choosing an Ea value in the range from

32 to 42 kJ mol−1. It is interesting to note that the median value of this range

(37 kJ mol−1) is close to the average Ea (36.5 kJ mol−1). Fig 5.3(b) was plotted

using Ea = 11.3±0.06 kJ mol−1 obtained from the simple Arrhenius plot of butyl

acetate. It is evident that the data do not form a single master curve. According

to these results, the qualitative shape of the graph varies significantly depending

on the Ea value.
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Figure 5.4: Simple Arrhenius and compensated Arrhenius plots (Tr=

55◦C) for conductivity data of 0.0055 M TbaTf-2-heptanone over the

temperature range 5 to 80◦C.

0.0055 M TbaTf-ketone solutions

Figure 5.4 presents both simple Arrhenius and compensated Arrhenius plots for

conductivity data of 0.0055 M TbaTf-2 heptanone over the temperature range 5

to 80◦C. The CAE plots exhibit linear behavior and the simple Arrhenius plot is

approximately linear but does show slight curvature. The resulting CAE and simple

Arrhenius Ea values from conductivity data are reported in the Table 5.2. Similar

to the acetate data, simple Arrhenius Ea values are lower than those from the CAE.

The average CAE activation energy from the data in table 5.2 is 24.1±0.8 kJ mol−1

and this value was utilized to determine the conductivity exponential prefactors by

dividing the temperature-dependent conductivities by the Boltzmann factor.

Temperature-dependent ionic conductivities are plotted against temperature-
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Table 5.2: Activation energies from compensated and simple Arrhenius

plots resulting from conductivity data for 0.0055 M TbaTf-ketones.

CAE Ea(kJ/mol) simple Arrhenius Ea (kJ/mol)

0.0055 M TbaTf Tr 0.0055 M TbaTf

Solvent (◦C) Slope Intercept Solvent Slope

2-hexanone 25 23.1± 0.6 23.2± 0.6 2-pentanone 5.05± 0.07

35 22.7± 0.5 22.8± 0.5 2-hexanone 5.2± 0.1

2-heptanone 25 24± 1 24± 1 2-heptanone 5.6± 0.2

35 24.1± 0.9 24.3± 0.9 2-octanone 6.3± 0.2

45 23.4± 0.8 23.6± 0.8 2-nonanone 7.2± 0.2

55 23.0± 0.5 23.2± 0.6 2-decanone 8.5± 0.2

2-octanone 45 25± 1 25± 1

55 25.3± 0.9 25.3± 0.9

65 24.8± 0.9 24.7± 0.9

2-nonanone 80 25.4± 0.8 25.1± 0.9

dependent dielectric constants in Fig 5.5(a) for the 0.0055 M TbaTf-ketone data.

Six distinct curves are observed; one each for the temperature-dependent data

of each ketone electrolyte. However, a single master curve is observed when the

exponential prefactors are plotted against the static dielectric constant, as shown

in Fig 5.5(b). A master curve is only observed for Ea values in the narrow range

from 22 to 27 kJ mol−1.
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(a) (b)

Figure 5.5: (a) Conductivity versus static dielectric constant over the

temperature range 5 to 80◦C for 0.0055 M TbaTf-ketone solutions of

(A) 2-pentanone (B) 2-hexanone (C) 2-heptanone (D) 2-octanone (E)

2-nonanone (F) 2-decanone. (b) Exponential prefactor versus dielectric

constant for 0.0055 M TbaTf-ketone solutions using Ea = 24.1 kJ mol−1.

5.3.2 Temperature dependence of self-diffusion coefficients for pure ac-

etate and ketone solvents

In this section, the CAF is used to analyze the self-diffusion coefficients measured

with PFG-NMR. As mentioned in the Introduction, temperature-dependent self-

diffusion coefficients can be described using a simple Arrhenius-like expression (Ref.

Eq. 5.3). Energy of activation values were calculated using a procedure similar to

that for temperature dependent conductivity data. The compensated Arrhenius

equation for temperature-dependent self-diffusion in Eq. 5.6 was utilized to find
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activation energies of pure acetates and pure ketones.

Pure acetate solvents

All measurement were taken for pure acetates (n-butyl, n-pentyl, n-hexyl, n-octyl,

and n-decyl) over the temperature range 0 to 80◦C. Linear behavior is observed for

both simple Arrhenius and compensated Arrhenius plots as shown in Fig 5.6(a)

for pure octyl acetate. The Ea value calculated from a simple Arrhenius plot is

substantially different from that found from a compensated Arrhenius plot, as was

observed with the conductivity data. Based on the compensated Arrhenius plots

for hexyl and octyl acetate at five reference temperatures (20, 30, 40, 50, 60◦C), an

average activation energy of 25.5±0.9 kJ mol−1 is obtained. Table 5.3 summarizes

Ea values calculated from the CAE slope and intercept for two pure acetates. Table

5.3 also reports activation energies obtained from simple Arrhenius plots.

Figure 5.6(b) plots temperature-dependent self-diffusion coefficients versus

dielectric constants for the family of pure acetates. The temperature-dependent

diffusion coefficients for each member lie in well-separated curves, similar to the

conductivity data depicted in Fig 5.2 and Fig 5.5.

The exponential prefactor, D0(εs(T )), can be determined by dividing the dif-

fusion coefficient by the Boltzmann factor according to Eq. 5.3. Fig 5.7(a) plots

the exponential prefactor vs dielectric constant for pure acetates using the average

CAE Ea value, while Fig 5.7(b) presents this data using the Ea value obtained

from the simple Arrhenius plot for hexyl acetate. Similar to the conductivity data,

a master curve is not observed for Ea values obtained from a simple Arrhenius

97



(a) (b)

Figure 5.6: (a) Simple Arrhenius and compensated Arrhenius (at Tr=

60◦C) plots for pure octyl acetate. (b) Self-diffusion coefficients versus

static dielectric constant for (A) butyl acetate (B) pentyl acetate (C)

hexyl acetate (D) octyl acetate (E) decyl acetate.
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Table 5.3: Activation energies from compensated and simple Arrhenius

plots resulting from diffusion data for pure acetates

CAE Ea(kJ/mol) simple Arrhenius Ea (kJ/mol)

Solvent Tr(
◦C) Slope Intercept Solvent Slope

hexyl acetate 20 26± 1 26± 1 butyl acetate 15± 1

30 25± 1 26± 1 pentyl acetate 16.0± 0.8

40 25± 1 25± 1 hexyl acetate 16.4± 0.6

50 26± 1 26± 1 octyl acetate 16.7± 0.1

octyl acetate 50 24.9± 0.5 25.0± 0.5 decyl acetate 18.4± 0.3

60 25.6± 0.4 25.7± 0.4

plot. A master curve does result for Ea values within the narrow range from 24

to 27 kJ mol−1. The average activation energy from the CAF analysis is equal to

the median value of this range. The diffusion master curve exhibits more scatter

in the data than the analogous plot for conductivity. It is likely that at least

some of the scatter is due to convection effects. Pronounced thermal gradients can

exist in the NMR sample when the sample temperature significantly deviates from

room temperature. These thermal gradients produce artificially high values for

the diffusion coefficients. Convection related error was minimized in this study by

focusing on the longer chain acetates that are less susceptible to this phenomenon,

and also by constricting the sample volume in the NMR tube. However, it is

difficult to completely eliminate convection effects and consequently some error is

introduced into the diffusion data at higher temperatures.
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(a) (b)

Figure 5.7: Exponential prefactor versus dielectric constant for the

diffusion data of pure acetates using (a) Ea = 25.5 kJ mol−1 (b) Ea =

16.4 kJ mol−1

Pure ketone solvents

The simple Arrhenius and compensated Arrhenius plots for the diffusion data of

pure 2-hexanone are shown in Fig 5.8. A high degree of linearity is observed for

both graphs, as indicated by the value of the correlation coefficients. The simple

Arrhenius Ea value calculated for the 2-hexanone data is 15.2 kJ mol−1, while those

calculated from the slope and intercept using the CAE are 23.7 and 23.8 kJ mol−1,

respectively. The Ea value obtained from the simple Arrhenius plot is lower than

the corresponding CAE activation energies, which is a trend that has been observed

in other systems [14–17].

Table 5.4 summarizes compensated Arrhenius Ea values at five different reference
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Figure 5.8: Simple Arrhenius and compensated Arrhenius (at Tr=

35◦C) plots for self-diffusion coefficient data of pure 2-hexanone over

the temperature range 5 to 80◦C.

temperatures (25, 35, 45, 55, 65◦C) for pure 2-hexanone, 2-heptanone, and 2-

nonanone. The average CAE activation energy from the data in table 5.4 is

23.9±0.8 kJ mol−1. Table 5.4 also lists the simple Arrhenius Ea values for each

ketone. Fig 5.9(a) plots diffusion coefficients versus static dielectric constant for

pure ketones. Six well-separated curves are observed; one each for the temperature

dependent data of each ketone. The exponential prefactors, D0 are calculated by

dividing the temperature dependent diffusion coefficients by the Boltzmann factor,

exp(- Ea

RT
) (5.3). The plot of exponential prefactor versus dielectric constant yields

a single master curve in Fig 5.9(b). This single master curve can be observed only

for a narrow range of Ea values (22.5-25.5 kJ mol−1).
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Table 5.4: Activation energies from compensated and simple Arrhenius

plots resulting from diffusion data for pure ketones.

CAE Ea(kJ/mol) simple Arrhenius Ea (kJ/mol)

Solvent Tr(
◦C) Slope Intercept Solvent Slope

2-hexanone 25 23.8± 0.5 23.9± 0.5 2-hexanone 15.2± 0.2

35 23.7± 0.5 23.8± 0.5 2-heptanone 15.2± 0.6

2-heptanone 25 23.8± 0.9 24.0± 0.8 2-octanone 16.1± 0.7

35 23.8± 0.9 24.0± 0.9 2-nonanone 15.1± 0.1

45 23.8± 0.9 24.0± 0.9 2-decanone 15.7± 0.2

55 23.9± 0.9 24.0± 0.9

65 23.9± 0.9 23.9± 0.9

2-nonanone 65 24.0± 0.7 23.9± 0.7
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(a) (b)

Figure 5.9: (a) Self-diffusion coefficients versus static dielectric con-

stant over the temperature range 5 to 80◦C for (A) 2-pentanone (B)

2-hexanone (C) 2-heptanone (D) 2-octanone (E) 2-nonanone (F) 2-

decanone. (b) Exponential prefactor versus dielectric constant for the

diffusion data of pure ketones using Ea = 23.9 kJ mol−1.

5.4 Conclusions

In this study, we extend the scope of the CAF by examining the families of n-acetates

and 2-ketones, which are aprotic solvents. Ketones are structurally very similar

to the acetates, but have much higher dielectric constants. A comparison between

acetate and ketone conductivity and diffusion data is necessary to better understand

the role of the static dielectric constant in controlling mass and charge transport

in liquids. Here, temperature-dependent conductivities are reported for 0.0055 M

TbaTf-acetate electrolytes and 0.0055 M TbaTf-ketone electrolytes, respectively.
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Also, self-diffusion coefficients are presented for pure acetates and pure ketone

liquids. Our results indicate that both temperature-dependent ionic conductivity

and diffusion coefficient data for acetates and ketones obey the compensated

Arrhenius formalism. The average activation energy from diffusion data of pure

acetates is 25.5 kJ mol−1, while that obtained from conductivity data for 0.0055 M

TbaTf acetates is 36.5 kJ mol−1 [18]. The difference between these two activation

energies (approximately 11 kJ mol−1) is significant. Similarly, the activation energy

from diffusion data of pure ketones is 23.9 kJ mol−1 and that calculated from

conductivity data of 0.0055 M TbaTf-ketone solutions is 24.1 kJ mol−1 [20]. The

small difference between Ea values of conductivity and diffusion data is negligible

since it is well within the error.

Figure 5.10 compares temperature-dependent conductivities between 0.0055 M

TbaTf-ketone and acetate electrolytes. Both ketone and acetate have conductivities

that increase with increasing with temperature and decreasing alkyl chain length

as expected. However, ketone conductivities are significantly higher than those

for the acetates. This conductivity difference is explained by examining both

contributions to the conductivity: the exponential prefactor σ0 and the Boltzmann

factor exp(- Ea

RT
). Fig 5.11(b) shows that the conductivity prefactors are comparable

between the acetates and ketones. Hence, the acetate conductivity data are orders

of magnitude lower than those for the ketones because the acetates have a much

higher Ea value (36.5 kJ mol−1) compared to the ketones (24.1 kJ mol−1). In

contrast to the conductivity data, diffusion coefficients are comparable between

pure acetates and ketones for similar temperatures and chain lengths.

104



Figure 5.10: Conductivity versus temperature for 0.0055 M TbaTf-2-

ketone and 0.0055 M-TbaTf-n-acetate solutions over the temperature

range 5 to 80◦C.

Figure 5.11(a) shows that this is not unexpected considering that both diffusion

prefactors and Ea values between the acetates and ketones are close in value to

each other. The prefactors are similar in magnitude between acetates and ketones

in both Fig 5.11(a) and Fig 5.11(b), and the primary difference between these two

solvent families is that the acetate master curve is horizontally shifted from that of

the ketones. This shift results from the large difference in permittivity between

acetates and ketones that is due primarily to the substantial difference in dipole

moment for these two solvent families. Additionally, the dielectric constant changes

much less with temperature for the acetates and therefore the prefactors increase

more sharply for the acetates compared to the ketones in Fig 5.11(a) and (b).

An intriguing question arises from the data presented in Fig 5.11. The activa-
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(a) (b)

Figure 5.11: (a) Exponential prefactor versus dielectric constant for the

diffusion data of (left) pure acetates, (right) pure ketones (b) Exponen-

tial prefactor versus dielectric constant for the ionic conductivity data

of (left) 0.0055 M TbaTf-acetates, (right) 0.0055 M TbaTf-ketones. The

letters designate the various compounds as follows: (A) butyl acetate

(B) pentyl acetate (C) hexyl acetate (D) octyl acetate (E) decyl acetate

(F) 2-pentanone (G) 2-hexanone (H) 2-heptanone (I) 2-octanone (J)

2-nonanone (K) 2-decanone. The units of Ea are kJ/mol.
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(a) (b)

Figure 5.12: (a) Conductivity versus static dielectric constant over the

temperature range 0 to 80◦C for 0.0055 M TbaTf-acetate solutions

of (A) methyl acetate (B) ethyl acetate (C) propyl acetate (D) butyl

acetate (E) pentyl acetate (F) hexyl acetate (G) octyl acetate (H)

decyl acetate.(b) Conductivity versus static dielectric constant over

the temperature range 5 to 80◦C for 0.0055 M TbaTf-ketone solutions

of (A) 2-acetone (B) 2-butanone(c) 2-pentanone (D) 2-hexanone (E)

2-heptanone (F) 2-octanone (G) 2-nonanone (H) 2-decanone.
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tion energy for diffusion in pure ketones is approximately equivalent to that for

conductivity in dilute ketone solutions. These results could have been anticipated,

but why then would the addition of a small amount of salt to an acetate result in an

Ea increase of more than 10 kJ mol−1 from the diffusion value to the conductivity

value? Since acetate permittivities are much lower than those for ketones, it is

expected that ion-solvent and ion-ion interactions will be much stronger in the

acetates. It is unclear why change in the intermolecular interactions could result in

a 11 kJ mol−1 increase in Ea value.

The conductivity and diffusion data presented here for both acetates and ketones

are described very well with the CAF. However, acetates and ketones with shorter

alkyl chains were not included in the analysis because their transport behavior is

not entirely consistent with that for the long chain members. Fig 5.12(a) plots

conductivity versus dielectric constant for 0.0055 M TbaTf-acetates. This graph

is similar to Fig 5.2 except that data are included for methyl, ethyl, and propyl

acetate. The conductivities for the three shortest chain members are significantly

higher than those for the longer members. If data for methyl, ethyl, and propyl

acetate are included in the reference curve, the conductivity CAE plots for ethyl

and propyl acetate result in Ea values around 28 kJ mol−1. This activation energy is

well below the average Ea value calculated for the longer members (36.5 kJ mol−1).

Furthermore, CAE plots for each of the longer members give Ea values that are

close to the average value of 36.5 kJ mol−1 (see table 5.1). The CAF can only

completely describe the acetate data if this family is subdivided into two groups that

have different Ea values. The lower activation energy for methyl, ethyl, and propyl
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acetate helps explain the high conductivity values observed for these members in

Fig 5.12(a).

Figure 5.13: Conductivity exponential prefactor versus dielectric con-

stant for 0.0055 M TbaTf-ketone solutions including 2-butanone data

(dashed line).

Similar to acetates, short carbon chain dilute ketones display surprisingly high

ionic conductivities as shown in Fig 5.12(b). These data show that the average Ea

value is lower for the short chain members (19.2 kJ mol−1) than that of long chain

members (24.1 kJ mol−1) similar to acetate data. Petrowsky et al. has reported

the ionic conductivities of 0.0055 M solutions including short carbon ketones like

acetone, 2-butanone, over the temperature range from -15 to 80◦C [15]. They reveal

that average Ea is about 16 kJ mol−1 and this value agrees with there results.

Methyl acetate, ethyl acetate, propyl acetate, acetone, and 2-butanone are
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not the only short chain members of a solvent family to show deviations from

the CAF. Both dielectric relaxation data for acetonitrile [17] and diffusion data

for methanol [14] have been shown to exhibit transport behavior that is different

from their long chain family members. Previous work has shown that the CAF

can be applied to dielectric relaxation data for pure acetates [17]. However, data

for methyl and propyl acetate were included in the previous calculation of the

activation energy. Therefore, it is possible that the reported Ea value is somewhat

different from an activation energy calculated using only long chain acetates.

Figure 5.13 shows the same data as Fig 5.5(b) only with 2-butanone data

included (shifted curve with dashed line). The exponential prefactors for short

chain members show the same qualitative dielectric constant dependence as that

for long chain members, but these data are offset to the right of the master curve.

The master curve demonstrates this unique behavior for both acetate and ketone

systems when short chain members are included. It is quite possible that in order

for the CAF to completely describe a particular solvent family, this family must be

subdivided into two groups: short alkyl chain members with lower Ea values and

long alkyl chain members with higher Ea values.
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Chapter 6

Ion Transport and Infrared Spectroscopic

Studies of Lithium Triflate in Aprotic Solvents

6.1 Introduction

Study of the organic liquid electrolytes containing lithium salts in aprotic solvents is

of great interest due to their utilization in electrochemical devices. Carbonate-based

solvents such as ethyl methyl carbonate and ethylene carbonate have been used in

conventional organic electrolytes. Recently, ester-based, ketone-based and ether-

based solvents have been increasingly used in Li-ion batteries. Battery electrolytes

can be made from these solvents alone or by mixing with other solvents [1, 2].

Understanding ion transport and ionic species present in these electrolytes is a

necessary step in enhancing electrolyte performance. Recently we investigated

the temperature-dependent ion conductivities of 0.0055 M tetrabutylammonium

triflate (TbaTf) acetate and ketone solutions, as well as self-diffusion coefficients

in pure ketones and acetates. Data from both systems were interpreted using the

compensated Arrhenius formalism (CAF) [3, 4]. This formalism was developed to

explain the non-Arrhenius behavior often observed in the temperature dependence

of ionic conductivity. As we mentioned in chapter 5, the CAF postulates that

the non-Arrhenius behavior is due to the temperature dependence of exponential

prefactor, σ0, in the usual Arrhenius expression. Because the conductivity also

depends on the dielectric constant, which also depends on the temperature, the
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compensated Arrhenius expression is re-written as:

σ(T, εs) = σ0(εs(T ))e−
Ea
RT (6.1)

where, σ denotes the ionic conductivity, σ0 is the temperature independent prefactor,

T is the temperature, and Ea is the activation energy. A scaling procedure (described

in detail in chapter 5) is then used to cancel out the exponential prefactor and

allow the calculation of the activation energy Ea.

Ketones have high dielectric constants due to the presence of large permanent

dipole moments(about 3.0 Debye). Acetates are low dielectric constant solvents

and exhibit low dipole moments(about 1.7-1.9 D) compared to ketones [5]. The

electronic charge in the carbonyl group is redistributed due to the extra oxygen

atom between carbonyl group and the CH2 of n-acetate, hence lowering the net

dipole moment of the acetate system. With the addition of salt, it is possible to

have dipole-dipole and dipole-ion interactions in the electrolytic solution.

In this chapter, the CAF is applied to temperature-dependent conductivities of

concentrated LiTf-acetate and ketone solutions; these electrolytes are much more

relevant to battery technology. The LiTf salt is highly associated in acetate and

ketone solutions compared to the TbaTf-solvent systems we studied earlier. To date,

the CAF has not been tested in electrolytes that have strong ion-ion and ion-solvent

interactions as in the concentrated LiTf-acetate and ketone solutions examined

here. Although these results provided valuable information regarding the activation

energies, dielectric constants, ionic conductivities, and the role of heteroatoms, it is

particularly important to understand the ionic association in these systems both
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qualitatively and quantitatively, because the degree of association greatly impacts

the ionic conductivity.

During the last few decades, research groups have studied ionic association

in polymer and liquid electrolytes using a variety of spectroscopically sensitive

salts [6–13]. LiTf was largely used because it has high solubility in most organic

solvents and polymers. Solutions of LiTf in both acetates and ketones show strong

ion-solvent and ion-ion interactions. Ion-ion interactions lead to the observations of

“free” ions, ion pairs, triplets, and higher aggregates in these solutions [6, 9, 14, 15].

If the solvent dielectric constant is sufficiently low, the ions exhibit a complex

behavior due to the formation of clusters [7, 16]. Vibrational spectroscopy is one

of the most powerful tools used to probe ionic association of polymer and liquid

electrolytes [12, 15, 17–20].

The objective of the present study is to investigate the temperature dependence

and concentration dependence of ionic conductivities for concentrated solutions

of LiTf in acetates and ketones. More importantly, the formation of multiple

ionically-associated species at high concentrations provides a stringent test of

the CAF formalism, which has been tested in dilute solutions of TbaTf. The

bulky cation of TbaTf minimizes ionic association to the point where it is not

spectroscopically observed. Here, the SO3 symmetric stretching and CF3 symmetric

deformation modes of the triflate ion are used to examine ionic association in LiTf-

acetate and ketone solutions over the temperature range 5 to 75◦C using FTIR

spectroscopy. Additionally, the carbonyl stretching mode of the solvent is studied to

better understand the lithium-solvent interactions. In order to gain insight into the
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aggregate formation, equilibrium constants were calculated for both concentrated

acetate and ketone solutions. In parallel to these studies, self-diffusion coefficients

were examined using pulsed field gradient NMR.

6.2 Experimental Methods

Acetate and ketone solvents were obtained from either Aldrich or Alfa Aesar.

Lithium trifluoromethanesulfonate (99.5%) was purchased from Aldrich and used

as received. The composition of all samples are reported as molal concentration, m,

i.e. the number of moles of salt per kg of solvent (mol kg−1). All samples (0.3 and

0.8 m) were prepared by dissolving a weighed amount of LiTf in acetate or ketone

solvents. Each sample was stirred for at least 24 hours in a glove box (≤ 1 ppm

H2O and approximate temperature 25◦C) before taking measurements.

The conductivities and dielectric constants were calculated using the same

experimental process as we explained in the section 5.2.2 (chapter 5) for both

concentrated LiTf-acetate and ketone solutions. Infrared spectra were collected

under a flowing dry nitrogen atmosphere over the temperature range 5 to 75◦C

using a Bruker IFS66V FTIR spectrometer for both salt concentrations (0.3 and

0.8 m). The samples were sealed in a liquid cell (model-TFC-M25-3) with sodium

chloride windows (25× 2 mm dimensions) that were separated by either 0.025

and 0.05 mm path length teflon spacers. Sodium chloride windows were utilized

to avoid the fringing effect of the sample spectrum. All spectra resulted from

64 scans and were collected over the spectral range 400-4000 cm−1 using 1 cm−1
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spectral resolution. The samples equilibrated for 20-30 minutes prior to recording a

spectrum at each temperature. A Laird Technologies thermoelectric module (TEM)

was used to extract heat for temperatures less than 25◦C. The current is supplied

using a DC power supply(HP 6002A) to maintain the temperature gradient between

the hot and cold sides. The sample temperature was regulated using a temperature

controller and Neslab CFT-33 refregirated recirculater and also measured with a

resistance temperature detector(RTD). The sample temperature was monitored

using an Omega temperature controller(model-CN9000A)

For the equilibrium constant analysis, IR spectra were collected at room temper-

ature. The LiTf-hexyl acetate samples filled the semi-permanent KBr rectangular

liquid cell equipped with 0.1 mm teflon spacer and nine spectra were recorded for

each concentration (0.3, 0.5, 0.8 m). For LiTf-heptanone solution, 0.3, 0.5, 0.7

and 1.0 m concentration samples were prepared. Each sample (∼ 1-3 drops of

LiTf-heptanone solution) was sandwiched between two NaCl windows and twelve

IR spectra were collected. Each spectrum was curve-fitted using OriginPro software

(OriginLab Origin 8.5). A Varian VNMRS 400 MHz NMR spectrometer operated

with an Auto-X-dual broad band probe(5 mm) was utilized to measure self-diffusion

coefficients. The Larmor frequency for 7Li and 19F were 376.22 and 154.40 MHz,

respectively.
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6.3 Results and Discussion

6.3.1 Ionic conductivities of LiTf in acetate and ketone-based elec-

trolytes

Our present study reports the ionic conductivities and dielectric constants of LiTf

in acetate and ketone solvents as functions of concentration and temperature. Here,

ionic conductivities and dielectric constants were measured for 0.30 m and 0.80 m

LiTf in five acetates (n-butyl, n-pentyl, n-hexyl, n-octyl, n-decyl acetates) in the

temperature range of 5 to 85◦C. The dependence of ionic conductivity on the static

dielectric constant of the solutions is illustrated in Fig. 6.1 for both 0.3 m and 0.8 m

LiTf-acetates. This figure shows that both conductivity and dielectric constant

increase with increasing salt concentration. The ionic conductivities of the 0.8 m

solution are approximately one order of magnitude higher than that of the 0.3 m

solution. The data falls on well-separated curves for each family member at both

concentrations.

In the Introduction, the variation of molar conductivity with concentration for

low dielectric constant liquid electrolytes has been discussed. The three different

regions (I, II, III) represent different qualitative behavior of the molar conductivity

with respect to the concentration [21]. In this chapter, we present measured

conductivities for two different concentrations of LiTf-acetate solutions and examine

the molar conductivities using λ = σ/c. We noticed that the molar conductivity

increases with the concentration. This behavior may be due to increased ion

mobility.
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Figure 6.1: Conductivity versus static dielectric constant for solutions

of LiTf in (A) butyl acetate (B) pentyl acetate (C) hexyl acetate (D)

octyl acetate (E) decyl acetate over the temperature range 5 to 85◦C

for 0.3 m LiTf (left hand figure) and 0.8 m LiTf (right hand figure).

Note the diffrence in the ordinate scales.

The compensated Arrhenius equation (previously described in detail) was

applied to the conductivity data at both 0.3 and 0.8 molal concentrations [22,

23]. A high degree of linearity was observed in both simple Arrhenius and the

compensated Arrhenius plots for 0.3 and 0.8 m concentrations. As an example,

Fig. 6.2 demonstrates the simple Arrhenius and compensated Arrhenius plots for

0.3 mol kg−1 concentration.

These data indicate that the compensated Arrhenius formalism can be applied

to temperature dependent ionic conductivities in concentrated solutions with ionic

association as well as in dilute solution. The activation energy was obtained from

slopes and intercepts of both CAE and simple Arrhenius plots [3, 22–25]. Table

6.1 summarizes the activation energies of 0.3 m LiTf-acetate solutions. These
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Figure 6.2: Simple Arrhenius and compensated Arrhenius plot for

0.3 mol kg−1 LiTf-acetate solutions

values were calculated for pentyl and hexyl acetates at four different reference

temperatures (25, 35, 45, 55◦C). The average activation energy calculated from the

CAF is 35.4±0.6 kJ mol−1, while Ea values resulting from simple Arrhenius plots

increase systematically with acetate chain length.

Following a similar procedure, the average activation energies were found for 0.8

m LiTf-acetates and also reported in Table 6.2. The calculated average activation

energy was 32.7 ± 1.0 kJ mol−1, which is smaller than that observed for 0.3 m

acetates (35.4 kJ mol−1).

In order to more closely examine ion transport in acetate and ketone electrolytes,

ionic conductivities and dielectric constants of 0.3 m LiTf-ketone solutions were

collected over the temperature range 5 to 85◦C. These solutions were made by using
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Table 6.1: Activation energies from compensated Arrhenius and simple

Arrhenius plots resulting from conductivity data for 0.3 m LiTf-acetates

CAE Ea (kJ/mol) simple Arrhenius Ea (kJ/mol)

0.3 m LiTf Tr 0.3 m LiTf

Solvent (◦C) Slope Intercept Solvent Slope

pentyl acetate 25 35.8± 0.6 35.8± 0.6 butyl acetate 9.0± 0.1

35 35.8 ± 0.6 35.9± 0.6 pentyl acetate 10.6± 0.1

hexyl acetate 25 34.7± 0.6 35.0± 0.5 hexyl acetate 12.6± 0.1

35 35.0± 0.7 35.4± 0.7 octyl acetate 16.0± 0.1

45 34.8± 0.6 35.2± 0.6 decyl acetate 18.6± 0.1

55 35.4± 0.5 35.8± 0.5

five ketones (2-hexanone, 2-heptanone, 2-octanone, 2-nonanone,and 2-decanone).

The CAE plot exhibits linear behavior and the simple Arrhenius plot is approxi-

mately linear but does show slight curvature for the 0.3 m LiTf-octanone systems

as shown in Fig. 6.3. We reported this non linear behavior of simple Arrhenius

plot for 0.0055 M TbaTf-2-ketones in chapter 5 [4]. Non-Arrhenius behavior is

expected due to the temperature dependence of the dielectric constant contained

in the exponential prefactor.

Figure 6.4 shows the conductivity versus static dielectric constant of these

solutions. This graph consists of well separated curves similar to Fig. 6.1 and

shows higher conductivity for lower chain length ketone electrolytes. Calculated

activation energies from Compensated Arrhenius plot for LiTf in four ketones
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Table 6.2: Activation energies from compensated Arrhenius and simple

Arrhenius plots resulting from conductivity data for 0.8 mol kg−1 LiTf-

acetates

CAE Ea (kJ/mol) simple Arrhenius Ea (kJ/mol)

0.8 m LiTf Tr 0.8 m LiTf

Solvent (◦C) Slope Intercept Solvent Slope

pentyl acetate 25 33.7± 0.7 33.7± 0.7 butyl acetate 6.69± 0.08

35 32.2± 0.7 32.3± 0.7 pentyl acetate 8.17± 0.02

hexyl acetate 35 32.8± 1.4 33.3± 1.4 hexyl acetate 10.30± 0.03

45 33.0± 1.3 33.4 ± 1.3 octyl acetate 12.67± 0.04

55 32.1± 1.1 32.4± 1.1 decyl acetate 14.55± 0.14

65 31.6± 0.9 31.7± 1.0

(heptanone, octanone, nonanone, decanone) are listed in Table 6.3. The resulting

average activation energy was 26.1 ± 0.6 kJ mol−1.

To determine the exponential prefactors of acetate and ketone solutions, tem-

perature dependent ionic conductivities of each family member were divided by the

Boltzmann factor, exp(- Ea

RT
). Fig. 6.5 presents the comparison of exponential factor

versus dielectric constant for 0.3 and 0.8 m LiTf-acetates, and 0.3 m LiTf-ketone.

This figure shows that all set of electrolyte data lie on a single master curve. This

behavior also seen in other system studied in the chapter 5. These results give

supporting evidence to the validity of the two fundamental assumptions of the

compensated Arrhenius formalism. Further, it is clear that we need to use the CAE
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Figure 6.3: Simple Arrhenius and compensated Arrhenius(at Tr=45◦C)

plots for 0.3 mol kg−1 LiTf-octanone solutions.

to get meaningful activation energy values. These data also support the idea that

ion transport is governed by a single activated process in these electrolyte solutions.

The master curve was plotted for arbitrarily chosen Ea values to determine the

sensitivity of those values to produce a single master curve. The master curve

for 0.3 m LiTf-acetate is observed only for a narrow range of Ea values (31-40

kJ mol−1), while for 0.8 m master curve has a range of 28-37 kJ mol−1. Similarly,

the master curve for 0.3 m LiTf-ketone does result for Ea values within the range

from 24-30 kJ mol−1. It is interesting to note that the median value of all three

ranges are close to average Ea values of those three systems.

The three curves in Fig. 6.5 are horizontally displaced from each other due to

the different dielectric constant range encompassed by the concentrated acetate
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Figure 6.4: Conductivity versus static dielectric constant for 0.3 m LiTf-

ketone solutions of (A) 2-hexanone (B) 2-heptanone (C) 2-octanone (D)

2-nonanone (E) 2-decanone over the temperature range 5 to 85◦C.

and ketones solutions. The exponential prefactors for 0.3 m LiTf-ketones are larger

than those for 0.3 LiTf-acetates. Further, the higher the concentration, the higher

the dielectric constant range for each acetate family member over the temperature

interval 5 to 85◦C. This is in contrast with the TbaTf-alcohol solutions studied

by Fleshman et. al. [21]. This is mainly due to the fact that alcohols are strongly

self-associated through H-bonding and span a greater dielectric constant range even

for low salt concentrations. In acetate-based electrolytes, the exponential prefactor

is a weaker function of temperature for both low and high concentrations than

ketone-based electrolytes. This non-negligible dependence of σ0 is causes linear

behavior in the Arrhenius plot of both concentrations.
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Figure 6.5: Exponential prefactor versus dielectric constant for (A) 0.3

m LiTf-acetate, Ea = 35.4 kJ mol−1 (B) 0.8 m LiTf-acetate, Ea = 32.7

kJ mol−1 (C) 0.3 m LiTf-ketone, Ea = 26.1 kJ mol−1
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Table 6.3: Activation energies from compensated Arrhenius plots from

conductivity data for 0.3 m LiTf-ketones

CAE Ea(kJ/mol)

0.3 m LiTf Tr

Solvent (◦C) Slope Intercept

2-heptanone 15 26.7± 1.0 26.7± 0.9

25 25.8± 0.8 25.9± 0.8

35 25.5± 0.6 25.6± 0.6

45 26.5± 0.5 26.6± 0.5

2-octanone 45 26.0± 0.4 26.1± 0.4

55 25.6± 0.4 25.7± 0.4

2-nonanone 65 26.2± 0.3 26.2± 0.3

6.3.2 Temperature dependent IR spectroscopic measurements

TbaTf-acetate/ketone solutions

Our previous study considered TbaTf-acetate and ketone based electrolytes. The

most important observation is that TbaTf does not show discrete ionically associated

species. Fig. 6.6 illustrates that temperature dependence of vibrational modes of

acetates and ketones. The δs(CF3) symmetric deformation mode of 0.2 mol kg−1

TbaTf-acetate is shown in Fig. 6.6(a). The single band visible at 753 cm−1 is

attributed to the “free” ions. This band frequency is unchanged at all temperatures

we measured. Similarly, the SO3 symmetric stretching vibrational mode, νs(SO3) of
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0.2 TbaTf-heptanone is illustrated in Fig. 6.6(b). At each temperature, there is only

one band observed at 1032 cm−1, assigned to “free” ions. Both data clearly indicate

that there is no ionic association in TbaTf-organic solvents when temperature

changes.

(a) (b)

Figure 6.6: (a) Temperature-dependent IR spectrum of 0.2 m TbaTf-

butyl acetate solution for δs(CF3) (b) Temperature-dependent IR spec-

trum of 0.2 m TbaTf-heptanone solution for νs(SO3)

LiTf-acetate solutions

In order to gain insight into the ionic association of LiTf-acetate and ketone

solutions, temperature and concentration dependent spectroscopic studies were
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carried out using Fourier Transform Infrared Spectroscopy.

Figure 6.7: IR spectra of the symmetric CF3 bending mode for 0.8 m

LiTf-hexyl acetate at 35◦C. (squares = experimental data, solid and

dotted lines = fit from deconvolution analysis.)

Figure 6.7 shows the IR spectra of the non-degenerate symmetric bending or

deformation mode, δs(CF3), for LiTf-hexyl acetate in the 750-770 cm−1 spectral

region. Three distinct bands were observed in this spectral mode corresponding

to three different ionic species. The band at lower frequency (758-759 cm−1) is

attributed to contact ion pairs. The middle band at 762 cm−1 is due to either a triple

cation (Li2Tf+) or a dimer (Li2Tf2). These spectroscopically indistinguishable ion

species are described as aggregate I throughout the paper. The highest frequency

band at 765-766 cm−1 is designated as aggregate II. According to Huang et al.,

ion aggregate II is a Li3Tf2+ entity and is observed in low dielectric, aprotic

solutions [7]. The relative intensities of each species change with both temperature
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and concentration. To study the temperature dependence of ionic species, IR

spectra measured at different temperatures were curve-fitted using advanced non-

linear curve fitting software (OriginPro 8.5). Gaussian functions were used to

obtain the best fits for data. The relative band intensity or area fraction, defined

as the ratio of each area to the total area of all the species, is calculated.

Figure 6.8: Relative intensity versus temperature for δs(CF3) in 0.8 m

LiTf-hexyl acetate

Figure 6.8 illustrates relative intensities of δs(CF3) mode in 0.8 m LiTf-hexyl

acetate as a function of temperature. The IR temperature data were collected three

times for the 0.8 m LiTf-hexyl acetate sample and average intensities are reported

in the Fig. 6.8. As the temperature increased, the relative intensities of contact

ion pairs and aggregate II bands increased, while intensity of aggregate I decreased.

The same behavior was observed for 0.8 m LiTf-butyl, octyl and decyl acetates.
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These observations, can be described in terms of following mechanisms:

2 {Li2Tf}+ −→ {Li3Tf}2+ + {LiTf}0

The superscript denotes the net charge of the ionic species. In this process, we

assume that the ion aggregates I are present as triple ions {Li2Tf}+ in the sample.

The spectroscopic data indicate that there is contact ion pairing between Li+ cation

and Tf− anion. Ion pair formation is expected in acetates because it a low dielectric

constant solvent.

The relative intensity change of the δs(CF3) spectral mode for different acetate

family members is shown in Fig. 6.9. All spectra were collected for a 0.8 molal con-

centration at 35◦C temperature. The amount of ionic species at higher frequencies

which are noted as ion aggregate II increase with the chain length of the acetate.

Further, the amount of ion-pairs is higher in short-carbon chain acetates compared

to the long-carbon chain acetates.

LiTf-ketone solutions

In ketones, the symmetric deformation mode, δs(CF3) overlaps the solvent band at

762 cm−1. Therefore, the SO3 symmetric stretching vibrational mode, νs(SO3) was

analyzed in the spectral range from 1000 to 1100 cm−1 as shown in Fig. 6.10.

There are three components in this region for 0.3 m LiTf-heptanone. These

component bands are assigned to “free” ions (1032-1033 cm−1), contact ion pairs

(1040-1041 cm−1) and ion aggregates I (1048-1050 cm−1). A weak shoulder was

observed at 1060 cm−1 for LiTf in octanone, nonanone and decanone solutions.

We believe this additional peak may be due to highly associated ion aggregates
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Figure 6.9: Relative intensity variation of δs(CF3) spectral mode for

0.8 m LiTf-butyl, hexyl, and decyl acetates.

that appear in longer chain ketones. The estimated relative intensities of 0.3 m

LiTf-heptanone are plotted as a function of temperature as shown in Fig. 6.11(a).

In this figure, ion aggregate I and ion pairs are dominant in the solution while

“free” ions are a minor species. We interpret these observations by proposing the

following two temperature-dependent processes:

(1) 2 {LiTf}0 −→ {Li2Tf2}0 (dimers seem as ion aggregate I)

(2) {LiTf}0 −→{Li}++{Tf}1−

Based on the slower rate of appearance, the formation of the dimer, Li2Tf2,

from two ion pairs (process 1) appears to be more favorable than the dissociation

of the ion pairs to form “free” lithium and triflate ions (process 2).
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Figure 6.10: IR spectra of the νs(SO3) mode in 0.3 m LiTf-heptanone

at 45◦C. (squares = experimental data, solid and dotted lines = fit from

deconvolution analysis.)

The band assignment of the ν(SO3) mode for LiTf-acetone has been previously

studied by several research groups [9, 15]. Our band assignment is closer to that

reported by Alia et. al.. Stevens et. al. reported four band components for LiTf-

acetone molar ratio 16 at 300 K [9]. However, the broad band with a maximum at

1076 cm−1 was not seen in our spectra. Also, they suggested that the band located

at 1051 cm−1 is due to the triplet species Li+Tf−1Li+ [15].

Figure 6.11(b) shows the intensity change of the SO3 band with increasing

carbon chain length of ketones. Here the intensity of the high frequency band,

which is designated as aggregate I, increases with chain length of the ketone.
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(a) (b)

Figure 6.11: (a) Relative intensity versus temperature for the νs(SO3)

mode in 0.3 m LiTf-heptanone. (b) Relative intensity variation of

νs(SO3) spectral mode for 0.3 m LiTf-heptanone, octanone, nonanone,

and decanone.

CO stretch of LiTf-acetate and ketone solutions

The CO stretching vibrational mode, ν(CO), occurs as a strong IR absorption

band in the region 1660-1800 cm−1. The frequency depends on the potential energy

environment of the CO group and the physical state of the sample. Fig. 6.12 shows

the CO stretch band of the pure decyl acetate and a 0.3 m LiTf-decyl acetate

solution. The single contour on the high wave number side (at 1744 cm−1) is

due to the ν(CO) of pure acetate. The small band at 1714 cm−1 results from

the Li cation coordination with carbonyl group. The shift of 30 cm−1 indicates
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a strong interaction between the lithium ion and the carbonyl oxygen atoms of

the acetate molecules. Similar observations have been reported by Deng et.al. for

LiAsF6-methyl acetate solutions using Raman spectroscopy. According to their

results, the CO stretching vibrational mode of methyl acetate shows a band at

1740 cm−1 and a shoulder at 1720 cm−1 due to the solvation of Li cation through

carbonyl group in electrolyte solution [18]. Further, we studied the temperature

dependence of CO stretching vibrational mode over the 25-75◦C temperature range

for 0.3 m LiTf-decyl acetate solution. The frequencies of the two ν(CO) bands

were not changed when the temperature increases.

Figure 6.12: CO stretching vibrational mode of pure decyl acetate at

25◦C and 0.3 m LiTf-decylacetate at 25◦C and 75◦C.

Similarly, IR spectra were observed for both pure ketone and LiTf-ketone elec-

trolytes. Fig. 6.13(a) presents the CO stretching region for both pure octanone
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and 0.3 m LiTf-octanone solutions. The two bands have a very similar asymmetric

broad band features. However, the deconvoluted spectra for pure octanone shows

two components under the asymmetric band, which shows a maximum peak at

1711-1713 cm−1. This kind of band splitting can be expected due to the vibra-

tional coupling between neighboring molecules [26]. As shown in the Fig. 6.13(b),

deconvolution of 0.3 m LiTf-octanone band feature reveals the presence of two

components, suggesting that the ketone molecule exists in two different environ-

ments. The band at 1712 cm−1 can be assigned to pure solvent. The new band at

1723 cm−1 is attributed to the Li solvated ketone molecules. In this case, 0.3 m

is quite a low concentration to observe the two clearly separated bands compared

to acetate solutions. Deng et.al. have reported the concentration dependence of

LiAsF6-acetone in the CO stretching region. For the electrolyte solution, they have

observed two separate bands for concentration above 2.0 m. They suggested that

the band on the high frequency side originates in cation solvation [27].

Equilibrium constants

As we mentioned earlier, some association-dissociation processes of ion species are

observed in concentrated acetate and ketone solutions. The equilibrium constant

of these processes can be determined by considering the equilibrium between dif-

ferent ion species. It is important to understand the concentration dependence

of equilibrium constant of LiTf in acetate and ketone solutions. Petrowsky et

al. reported equilibrium constants at various salt concentrations of diglyme-LiTf

solutions. They showed that equilibrium constant for dimer formation is constant
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(a) (b)

Figure 6.13: (a) CO stretch vibrational mode of pure octanone(solid

line) and 0.3 m LiTf-octanone(dash line) at room temperature.(b) Band

deconvolution and component fitting in 0.3 m LiTf-octanone. (squares

= experimental data, solid lines = fit from deconvolution analysis.)

over a wide range of concentrations [17]. In our case, equilibrium constants were

determined for LiTf-n-hexyl acetate and LiTf-2-heptanone solutions. For the former

solution, samples were prepared for three concentrations (0.3, 0.5, 0.8 m) and the

latter solutions, four concentrations were used (0.3, 0.5, 0.7, 1.0 m). An equilibrium

process between ion pairs and dimers can be written as follows [17]:

2 [LiTf]0 
 [Li2Tf2]
0

Here, both species are electrically neutral. The equilibrium constant of this process

can be calculated using following relation.
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K =
γLi2Tf2cLi2Tf2

(γLiTfcLiTf )2
(6.2)

Here γLi2Tf2 and γLiTf are the activity coefficients of Li2Tf2 and LiTf, respectively

and are approximated as 1. CLi2Tf2 and CLiTf are the concentrations of Li2Tf2 and

LiTf, respectively. Calculated equilibrium constants(K) for LiTf-n-hexyl acetate

and LiTf-2-heptanone solutions are listed in table 6.4. Values of these constants

decrease with salt concentration. This may be due to the formation of triple ions

in addition to the simple equilibrium between ion pairs and dimers [17]. However

this observation contradicts with the NMR results which are described in the next

section. Neglecting activity coefficients may play a role in IR data.

Table 6.4: Equilibrium constants of LiTf-n-hexyl acetate and LiTf-2-

heptanone solutions at different concentrations

total salt concentration- LiTf-hexyl acetate LiTf-heptanone

(mol/kg) K(kg/mol) K(kg/mol)

0.3 2.84 0.99

0.5 2.67 0.80

0.7 2.05 -

0.8 - 0.71

1.0 1.59 -
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7Li and 19F Self-diffusion measurements

Self-diffusion coefficients of cations(7Li) and anions(19F) in 0.3 m LiTf-2-heptanone

solution were determined at room temperature (25◦C). Calculated diffusion coeffi-

cients for Li+ and CF3SO3
− ions in solution are virtually identical each other for the

0.3 m concentration (see table 6.5). Williamson et al. claim that fluorine diffusion

coefficients are slightly greater than that of lithium at low salt concentrations for

polymer electrolytes [28]. Similar values of anion and cation coefficients in different

solvents has been observed by number of groups [28]. According to their suggestion,

Li+ and CF3SO3
− ions in ion pairs can move as single species with increasing ionic

association. In addition, they suggested that there is a correlated motion of the

anions and cations in neutral ion pairs or clusters. We believe that these suggestions

are valid for our observations. Further, we proposed two possible processes based

on our temperature-dependent IR data. According to both NMR and IR data,

it may be concluded that observed ion aggregate I in 0.3 m LiTf-ketone solution

as dimers. However, equilibrium constants described in previous section are not

consistent with this argument. IR data indicate that there is triple ion formation

with concentration.

Table 6.5: Values of self diffusion coefficients

0.3 m LiTf- Diffusion coefficient

heptanone (m2s−1)

7Li 4.15 × 10−10

19F 4.11 × 10−10
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6.4 Conclusions

The results in this chapter are based on three major set of data: (1) temperature-

dependent ionic conductivity measurements (2) concentration-dependant ionic con-

ductivities (3) temperature-dependent and concentration-dependent measurements

of ionic association. The purpose of this study was to understand temperature-

dependent charge transport behavior in electrolytes that exhibits ionic association.

A second purpose was to verify the validity of the compensated Arrhenius formalism

in concentrated electrolytes. Ionic conductivities and dielectric constants were exam-

ined for 0.3 m LiTf-acetate, 0.8 m LiTf-acetate, 0.3 m LiTf-ketone systems. These

data showed that dielectric constant of the pure solvent is significantly increased

with the addition of LiTf. Both low and high concentrations of acetate-based

electrolytes exhibit simple Arrhenius behavior due to the weaker dependance of σ0

on temperature. However, a non-linear behavior is observed in the simple Arrhenius

plot of 0.3 m LiTf-ketone due to the strong temperature dependence of σ0. This

strong temperature dependence arises through the temperature dependence of

the dielectric constant. The results presented here (temperature-dependent ionic

conductivities for both acetates and ketones) obey the compensated Arrhenius

formalism. As expected, the ionic conductivity and the molar conductivity are

observed to increase with concentration. The calculated activation energies are

summarized in Table 6.6.

In the table, the activation energy appears to slightly decrease when the molal

concentration increases. Further, the CAF Ea is slightly lower than that for 0.0055
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Table 6.6: Values of activation energies from CAE plots

Solvent Average activation energy

system from CAE (kJ/mol)

0.3 m LiTf-acetate 35.4±0.6

0.8 m LiTf-acetate 33± 1

0.3 m LiTf-ketone 26.1 ± 0.6

M TbaTf-acetate solutions (36.5 kJ mol−1) [3].

In the IR studies, ion-ion and ion-molecule interactions are observed for both

ketone and acetate-based electrolytes. It is concluded that “free” ions, contact ion

pairs and more highly associated ionic aggregates exist in LiTf-ketone solutions.

Two types of ion aggregates are observed in LiTf-acetate solutions. These two

distinct aggregates have been reported by a few other groups [7, 20]. It would

be helpful to study crystal structures of acetates and ketone-based electrolytes

with LiTf to understand the coordination bonds of these aggregate species. The

longer the chain length of acetates, the higher the fraction of ion aggregates II. In

contrast, the fraction of contact ion pairs decreases. Similarly, the relative amount

of aggregate I is increased with the chain length of ketones. From IR spectra studies

it is evident that there is contact ion pairing in both acetate and ketone solutions.

Further, IR data of both LiTf acetates and ketones suggest that lithium cations

are binding through the carbonyl functional groups.

Concentration-based equilibrium constants are estimated for both LiTf-acetate

and ketone solutions assuming a simple equilibrium process between contact ion
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pairs and dimers. Our results show that these values are changed with the total

salt concentration. This behavior may be due to the neglect of activity coefficients;

alternatively there may be equilibria between additional ionic species. PFG-NMR

data show that the diffusion constants for 7Li and 19F are identical, suggesting the

presence of contact ion pairs and dimers.
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Chapter 7

Vibrational Spectroscopic and X-Ray

Crystallographic Study of Secondary

Amine/Phosphoric Acid Systems

7.1 Introduction

Linear and branched poly (ethyleneimine) (PEI, -CH2CH2NH-)-acid systems have

been widely studied during past few years because of their potential as polymeric

proton conductors [1–4]. It has been shown that the membranes made from

these materials exhibit good proton conducting properties. Glatzhofer et al. [1]

reported IR studies for LPEI-HCl/H3PO4 systems. This work concluded that

NH groups of PEI form hydrogen bonds with oxygen atoms of phosphoric acid

due to protonation. This gives rise to NH2
+ stretching modes between 2000 and

2500 cm−1 in the IR spectrum. Further, they suggested that the membranes

made from LPEI-HCl/H3PO4 could be used as electrolytes in H2/air fuel cells.

An understanding of the proton transport mechanism is important to make well-

functioning proton exchange membranes. However, due to the complex structure

of polymer electrolytes, it is very difficult to identify various factors that affect the

proton transport mechanism. Therefore, model compounds are used to explain

the parts of the local structure of polymer electrolytes [5–9]. In particular, the

crystal structures of these model compounds provide insight into the local structure

or chemical environment of the polymer segments. Amine hydrohalide salts and

amine-acid systems are good candidates to examine the hydrogen bond network.
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Since H3PO4 is a promising electrolyte in the fuel cell industry, it is useful

to study the secondary amine-H3PO4 systems. However, no previous study has

obtained crystal structures or vibrational assignments for these systems. The aim

of the present work is to understand the hydrogen bonding network of secondary

amine-phosphoric acid model compounds. Particularly, protonation of nitrogen

atoms in the backbone of the amine leads to hydrogen bonding that can be observed

in the NH stretching mode and the NH bending mode. These modes can generally be

recognized using Fourier Transform Infrared (FTIR) and Raman spectroscopy. This

study also provides essential insight needed to understand many other vibrational

modes of amine/phosphate materials.

A number of groups have studied IR vibrational modes of protonated amino

groups in different regions. They observed strong IR bands of NH2
+ stretching

vibrational modes in the region 2000-2900 cm−1 for secondary amine salts [10–12].

Furthermore, authors observed weak band features in 2000-2900 cm−1 that were

assigned as strong overtone and combination bands. Other IR bands in the region of

1500-1700 cm−1 have been observed, which were assigned to the NH2
+ deformation

(scissors) mode [10–13].

In this chapter, crystal structures for three secondary amine/phospheric struc-

tures are presented. We studied diethylamine (CH3CH2NHCH2CH3), piperazine

(C4H10N2), and N,N’- dimethylethylenediamine (C4H12N2) complexed with phos-

phoric acid. All three amines are secondary amines. Piperazine is the simplest

cyclic member of the ethyleneamine family and has two secondary amine groups.

Three crystal structures were solved by single crystal X-ray diffraction methods.
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Examination of the vibrational spectra of these crystals revealed distinct broad IR

bands at 2300-2600 cm−1 for the NH2
+ stretching mode and bands at 1500-1700

cm−1 for the NH2
+ bending mode. This clearly agrees with literature values for

PEI-acid systems. Therefore, these model compounds can be used to study future

fuel cell candidates. In addition, vibrational assignments for H3PO4 ion species

were studied.

7.2 Experimental Methods

7.2.1 Sample preparation

The N,N’ dimethylethylenediamine (DMEDA) and diethyleneamine (DEA) were

obtained from Aldrich. Piperazene was purchased from Alfa Aesar. The sample

solution was prepared by adding a weighted amount of concentrated phosphoric

acid and pure amine solvent into distilled water. All samples were stirred for a

few hours before use. All solution samples were reported as an amine:phosphoric

acid molar ratio (N:H+). During this study three samples were prepared with

1:1, 2:1, and 3:1 N:H+ ratio for each compound. Crystals were formed by a slow

evaporation process of solution after 1-2 weeks. The crystals were observed in 2:1

and 3:1 samples for both DEA and DMEDA compounds. However, crystals were

formed in 1:1 and 2:1 solutions of piperazine.
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7.2.2 X-ray crystallography

Intensity data of crystal samples were collected using a diffractometer with a

Bruker APEX CCD area detector and graphite-monochromated Cu Kα radiation

(λ = 1.54178 Å) [14, 15]. The sample was cooled to 100(2)K. Cell parameters

were determined from a non-linear least-squares fit, and the data were corrected

for absorption by the semi-empirical method giving minimum and maximum

transmission factors [16]. The triclinic space group was determined by statistical

tests and verified by subsequent refinement. The structure was solved by direct

methods (SHELXTL) and refined by the full-matrix least squares method on

F2 [17, 18]. Hydrogen atom positions were initially determined by geometry and

refined by a riding model. Non-hydrogen atoms were refined with anisotropic

displacement parameters. Hydrogen atom displacement parameters were set to 1.2

(1.5 for methyl) times the displacement parameters of the bonded atoms. In this

study, all structural data were obtained only for 2:1 crystals of each compounds.

DEA:phosphoric acid

A total of 182 parameters were refined against 2886 points to give wR(F2) = 0.0878

and S = 1.128 for weights of w = 1/[σ (F2) + (0.0480 P)2], where P = [F2
o + 2F2

c ]/3.

The final R(F) was 0.0328 for the 2481 observed, [F > 4σ(F)], data. The largest

shift/s.u. was 0.001 in the final refinement cycle. The final difference map had

maxima and minima of 0.308 and -0.321 e/3, respectively.

147



DMEDA:phosphoric acid

A total of 147 parameters were refined against 3390 points to give wR(F2) = 0.1416

and S = 1.011 for weights of w = 1/[σ (F2) + (0.0760 P)2 + 0.3600 P], where P =

[F2
o + 2F2

c ]/3. The final R(F) was 0.0530 for the 2838 observed, [F > 4σ(F)], data.

The largest shift/s.u. was 0.000 in the final refinement cycle. The final difference

map had maxima and minima of 0.374 and -0.348 e/3, respectively.

Piperazine:phosphoric acid

A total of 130 parameters were refined against 2163 points to give wR(F2) = 0.1804

and S = 1.057 for weights of w = 1/[σ2 (F2) + (0.1240 P)2 + 0.2400 P], where P =

[F2
o + 2F2

c ]/3. The final R(F) was 0.0480 for the 1745 observed, [F > 4σ(F)], data.

The largest shift/s.u. was 0.000 in the final refinement cycle. The final difference

map had maxima and minima of 0.511 and -1.125 e/3, respectively.

7.2.3 Vibrational spectroscopy

The crystal and solution sample spectra were collected by using Fourier Transform

Infrared and Raman spectroscopy. For IR measurements, a Bruker IFS66v spec-

trometer was used and all crystal sample data were recorded from 400 to 4000 cm−1

with a spectral resolution of 1 cm−1, 64 scans with a KBr beam splitter, and a

DTGS detector. Crystal samples were prepared as KBr pellets, which were made

using a finely ground mixture of crystal and potassium bromide. All IR spectra for

crystal samples were recorded under a vacuum (pressure=13 mbar). A thin sample

layer sandwiched between two ZnSe windows was used to observe IR spectrum of
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solutions. These samples were run under a dry air purge. The Raman spectra were

collected using a Bruker Equinox 55 FRA 106/S. A Coherent Nd:YAG laser was

used for excitation at a power level of 300 mW at 1064 nm. The crystal sample was

packed in a NMR capillary tube and the spectra were taken at a spectral resolution

2 cm−1 with 1000 scans in the 50-3500 cm−1 range with a CCD detector.

7.3 Results and Discussion

7.3.1 Crystallographic structures

Both DEA:H3PO4 and DMEDA:H3PO4 crystals form triclinic unit cells belonging

to the P1̄ space group. The former has four asymmetric units in the unit cell and

the latter two asymmetric units in the cell. Piperazene:H3PO4 crystal forms a

monoclinic unit cell with the P21/n space group, with four asymmetric units in the

cell.

Figure 7.1: Asymmetric unit of DEA:H3PO4.

Fig. 7.1 shows the asymmetric unit of DEA:H3PO4. In this figure, the nitrogen

atom from a single DEA molecule is protonated and makes a hydrogen bond
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Figure 7.2: Packing diagram of the DEA:H3PO4 crystal structure

(N-H–O) between it and oxygen atom in phosphoric acid. Also, remaining oxygen

atoms in H3PO4 form hydrogen bonds (O-H–O) with oxygen atoms from different

H3PO4 molecules. The packing diagram is shown in Fig. 7.2. All four ammonium

hydrogen atoms form hydrogen bonds with oxygen. Two (N-H–O) bonds have the

same bond lengths and angles while the other two have different values. This may

be due to different environments of the ammonium hydrogen atoms.

The hydrogen bond network in the DMEDA:H3PO4 crystal structure is presented

in Fig. 7.3(a). Both N atoms are protonated and make hydrogen bonds with the

oxygen atoms of H3PO4. Two water molecules contained in the system coordinate

with oxygen atoms from H3PO4 molecule, forming a very complex crystal structure.

Only four hydrogens out of the eight ammonium hydrogens make hydrogen bonds in

this structure, and their bond angles and lengths differ from each other. According

to the diagram in Fig. 7.3(b), DMEDA:H3PO4 crystals are packed in a polymeric

one-dimensional network along the crystallographic c axis.
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(a) (b)

Figure 7.3: (a) Asymmetric unit of DMEDA:H3PO4. (b) Packing

diagram of the DMEDA:H3PO4 crystal structure

The third crystal structure was obtained for piperazine:H3PO4 as shown in Fig.

7.4(a). Piperazine compound is different from the other two secondary amines due

to its six membered ring structure. Even though it has a complex structure, both

nitrogen atoms of the piperazine form hydrogen bonds with the oxygens from the

H3PO4 molecule. The asymmetric unit of the cell contained two half cations, one

anion and one water molecule. The water molecule is coordinated with the one of

the oxygen atoms from H3PO4. Fig 7.4(b) presents the packing diagram of the

piperazine:H3PO4 crystal structure.

The detailed parameters of these three crystal structures are given in table 7.1
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(a) (b)

Figure 7.4: (a) Asymmetric unit of piperazine:H3PO4. (b) Packing

diagram of the piperazine:H3PO4 crystal structure

7.3.2 Vibrational spectroscopy

The three crystal structures provide a deep insight into the local structures and

their hydrogen bond networks. The parallel studies of IR and Raman spectra

of DEA:H3PO4, DMEDA:H3PO4 and piperazene:H3PO4 were used to probe the

nature of the amino group hydrogen-bonding network and their interactions with

phosphoric acid. In this study, IR spectra of two spectral regions were analyzed:

the NH2
+ stretching vibrational modes in the range of 2200-2600 cm−1 and NH2

+

bending vibrational modes in the range of 1500-1700 cm−1. Both IR modes are

very sensitive to hydrogen bonding.

The crystal structure formation of 2:1 DMEDA:H3PO4 compound was investi-

gated. Fig. 7.5(a) shows the IR spectra of neat DMEDA, phosphoric acid/water

solution and crystal structure of DMEDA:H3PO4 in the spectral region from 2200 to
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Table 7.1: Structural data for crystal structures

Parameters DEA:H3PO4 DMEDA:H3PO4 Piperazene:H3PO4

Crystal system Triclinic Triclinic Monoclinic

Space group P1̄ P1̄ P21/n

Temperature(K) 100(2) 100(2) 100(2)

a 8.2884(4) 4.6531(12) 6.372(4)

b 8.7311(4) 8.6765(16) 12.215(7)

c 11.5419(6) 13.171(2) 11.150(7)

α 89.381(6) 80.822(6) 90

β 82.995(6) 82.411(8) 96.958(14)

γ 79.229(7) 81.967(9) 90

Volume(A3) 814.35(7) 516.50(18) 861.5(9)

Z 4 2 4

Density(Mg/m3) 1.396 1.429 1.559

R1 0.0328 0.0530 0.0480

crystal size(mm3) 0.34×0.26× 0.08 0.52×0.24× 0.14 0.49×0.42× 0.24

2600 cm−1. This figure also shows the time evolution of this band of DMEDA:H3PO4

solution after 6 hours, 1 day, and 2 days. The broad band feature appeared af-

ter 6 hours in the region of 2200-2600 cm−1. After 48 hrs, the intensity of this

band was increased, and the broad band split into two components in the crystal

DMEDA:H3PO4. These bands are attributed to the NH2
+ stretching vibrational

mode. Specially, the NH2
+ stretching mode is sensitive to the hydrogen bonding
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interactions, which increases the dipole moment derivatives, leading to prominent

IR bands. Similarly, IR spectra in the region of 1400-1800 cm−1 are shown in Fig.

7.5(b). Mixed band features were observed in this region due to NH2
+ stretching

and the OH stretching modes. It was noted that the intensity of the OH band

decreases and the NH2
+ stretching band intensity increases with time.

(a) (b)

Figure 7.5: (a) IR spectra of DMEDA:H3PO4 in the region 2200-

2600 cm−1 (b) IR spectra of DMEDA:H3PO4 in the region 1400-

1800 cm−1

NH2
+ stretching band region, ν(NH2

+)

In general, free NH stretching vibrations for secondary amines can be observed

between 3000 cm−1 and 3400 cm−1 as a single band. For a complex structure like

amine:H3PO4, NH2
+ stretching bands are shifted to the lower frequency side of the
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NH stretching vibrational modes. Fig. 7.6 illustrates the IR and Raman spectra

of the NH2
+ stretching region (2200-2600 cm−1) for three crystalline structures

(DEA:H3PO4, DMEDA:H3PO4 and piperazene:H3PO4).

DEA:H3PO4

Figure 7.6(a) shows the IR spectrum of NH2
+ stretch mode for DEA:H3PO4 crystal

structure. The four bands appear at 2518, 2468, 2408 and 2379 cm−1 in this IR

spectrum within ±1 cm−1 uncertainty. It is important to note that, while two

bands are well separated, the other two are broadened with similar intensities in

the IR spectrum. This behavior may be due to the different ammonium hydrogen

environments in the crystal structure. The Raman spectrum contains a strong

band at 2518 cm−1 and a weak shoulder at 2422 cm−1. These features appear in

both IR and Raman spectra due to the protonation of a secondary amine. Early

studies revealed that the band on the higher frequency side can be attributed to the

symmetric NH2
+ stretch mode and that on the lower frequency side corresponds to

asymmetric NH2
+ stretch mode [19].

According to group theory, the NH2
+ vibrational stretching modes can be

classified in terms of irreducible representations of the Ci unit cell group as follows:

Γ(ν(NH2)
+) = 2Ag + 2Au.

This predicts two infrared active modes and two Raman active modes for each

νs(NH2
+) and νas(NH2

+) vibrations in the crystal structure. However, four IR

active modes and two Raman active modes were observed in the spectra. The IR

spectrum suggests that there is vibrational coupling between the asymmetric units
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Figure 7.6: Symmetric (NH2)+ stretching mode of (a) DEA:H3PO4 (b)

DMEDA:H3PO4 (c) Piperazene:H3PO4

in the unit cell. In the IR and Raman spectra, many sub maxima are observed with

low intensities. These kind of bands can appear due to combination or overtone

bands or due to disorder in crystal symmetry.

It is also noted that N-H stretching band at 2518 cm−1 is both Raman and IR

active, despite their different intensities. Usually symmetrical modes tend to be

Raman active and hence appear as strong peaks in the spectrum. Therefore, one

expects distinct Raman peaks for symmetric vibrational modes. The infrared band

at 2408 cm−1 appears to correspond with the Raman band at 2422 cm−1 in the

higher frequency side. The maximum shift (∆ν) of the bands was approximately

14 cm−1. In the Fig. 7.6(a), Raman bands were not observed for the two IR bands

at 2468 and 2379 cm−1. This behavior can be interpreted as a result of the mutual

exclusion principle. According to this rule, IR active modes are strictly Raman

inactive, while Raman active modes are strictly IR inactive, if there is a center of

symmetry of the crystal structure. It is reasonable to suggest that NH2
+ stretching
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vibrational modes obey the mutual exclusion principle and hence the crystal has a

crystallographic symmetry.

DMEDA:H3PO4

Figure 7.6(b) shows the IR and Raman spectra of the NH2
+ stretching mode in

DMEDA:H3PO4 crystal. In contrast to the DEA:H3PO4 vibrational data, broad

band features were observed in the region of 2200-2600 cm−1. In the IR spectrum,

two bands were centered at 2424 and 2399 cm−1, while the Raman spectrum

contains two bands at 2466 and 2379 cm−1.

The N-H stretching modes in DMEDA:H3PO4 can be described according to

the irreducible representations of the Ci (P1̄ space group) unit cell group as:

Γ(N-H) = 2Ag + 2Au.

Similarly, O-H vibrational modes can be classified using the following irreducible

representations:

Γ(O-H) = 2Ag + 2Au.

This suggests that mixed vibrational modes of N-H stretching and OH stretching may

occur between 2200 and 2600 cm−1. On the other hand, four amino hydrogens do not

form hydrogen bonds as mentioned earlier. Accordingly, DMEDA:H3PO4 molecules

undergo minimal or no hydrogen-bonding interactions and hence, very little spectral

change can be expected. These two scenarios can explain the strong and broadened

band features in both the IR and Raman spectra. In the DMEDA:H3PO4 spectra,

all band intensities appears to obey the mutual exclusion rule resulting from the

crystallographic center of symmetry of the crystal structure.
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Piperazine:H3PO4

The IR spectrum of the piperazine:H3PO4 crystal shows four prominent band

features at 2555, 2450, 2418 and 2343 cm−1 (see Fig. 7.6(c)). In the Raman

spectrum, four bands are observed at 2552, 2486, 2456, and 2351 cm−1. Both IR

and Raman vibrational modes appear to be poorly resolved and a significant amount

of frequency shifts were noted as well. This behavior is a result of the intermolecular

coupling of NH vibrational modes in the unit cell. The piperazine:H3PO4 crystal

structure belongs to the P21/n (C2h) space group. (NH2)
+ stretching modes can be

classified according to the irreducible representation of the C2h unit cell group as:

Γ(ν(NH2)
+)) = 2Ag + 2Bg + 2Au + 2Bu.

The group theory analysis predicts four infrared-active (Au and Bu) modes

and four Raman-active (Ag and Bg) modes for piperazine:H3PO4 spectra. Several

weak intensity bands appearing in this region may be attributed to overtones

and combination bands. The band intensities of both structures(in Fig. 7.6 b

and c) appears to obey the mutual exclusion rule. Glatzhofer et al. showed that

broad band features between 2200 to 2500 cm−1 for polymer electrolytes based on

cross-linked LPEI-HCl/H3PO4 systems and that are ascribed to NH2
+ vibrations.

Further, they suggested that the oxygen atoms in the phosphate species coordinates

with NH group of PEI via hydrogen bonding [1, 20]. These results give supporting

evidence to the our IR spectroscopic data.
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NH2
+ deformation region, δs(NH2

+)

Figure 7.7 presents the IR and Raman spectra of DEA:H3PO4, DMEDA:H3PO4 and

piperazene:H3PO4 in the range 1500-1700 cm−1. The bands located in this region

can be assigned to the symmetric NH2
+ deformation mode, which is also known

as NH2
+ scissoring mode. As shown in Fig. 7.5(b), these bands overlapp with the

OH bend mode of the water molecules. The DEA:H3PO4 crystalline structure (Fig.

7.7(a)) has two IR bands at 1624 and 1591 cm−1. Raman bands appear at 1630

and 1607 cm−1. Bands at lower frequencies are attributed to the NH2
+ deformation

mode, while higher frequency side bands correspond to the OH bending mode.

Only a single band is found at 1635 cm−1. Similar to the DEA:H3PO4 spectra,

two Raman bands were observed for the piperazene:H3PO4. Here, IR band at

1632 cm−1 and Raman bands at 1649 and 1633 cm−1.

Figure 7.7: Symmetric (NH2)
+ deformation mode of (a) DEA:H3PO4

(b) DMEDA:H3PO4 (c) Piperazene:H3PO4
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H3PO4 acid species

Aqueous phosphoric acid and orthophosphoric acid have been extensively studied

using Raman and IR spectroscopy [21–24]. In general, H3PO4 can be dissociated

into three species in an aqueous solution: dihydrogen phosphate(H2PO4
−), mono-

hydrogen phosphate(HPO4
2−), and phosphate(PO4

3−). Vibrational spectroscopy

was used to examine the abundance of phosphoric species in the amine:H3PO4

compounds. PO4
3− exhibits Td symmetry while HPO4

2− and H2PO4
− possesses

C3v and C2v symmetry, respectively. The ”free” phosphate ion(PO4
3−) consists of

nine vibrational modes. The irreducible representations of this vibrational mode

can be described as:

Γ(Td) = a1 + e + 2f2.

According to group theory, two infrared-active modes and four-Raman active

modes can be assigned for phosphate ions ( ν1, ν2, ν3, ν4). Previous studies reveal

that an IR band appears at 540-560 cm−1 due to the ν4 mode. Further, Raman

bands at 900-1100 can be attributed to ν1 and ν3 modes, and the peak at 400 cm−1

corresponds to the ν2 mode in the Raman spectrum [21–24].

Both IR and Raman spectra of DEA:H3PO4, DMEDA:H3PO4 and piperazene:H3PO4

crystals in two regions are shown in Fig. 7.8(left) and (right). These regions can

be used to extract details about the phosphate ion species. In Fig. 7.8(right),

several Raman bands are shown in the 900-1100 cm−1, which probably correspond

to ν1 and ν3 vibrations of PO4
3− ion. Most of the IR and Raman bands observed

in the 1200-800 cm−1 region may be due to the stretching vibration of P-O and

160



P-OH bonds. It is also noted that bands around 400-500 are due to ν2 and ν4

vibrational modes. HPO4
2− and H2PO4

− can be produced by the acid dissocia-

tions [1, 21, 22, 25, 26]. In the 1000-1100 cm−1 region, a number of sharp Raman

bands are located. These bands may be attributed to the H2PO4
− anions [21–24].

These spectral data clearly indicate that phosphate vibrational modes are primarily

a mixture of different H3PO4 species in these samples. Therefore, it is difficult to

precisely interpret these vibrational modes.
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Figure 7.8: Abundance of Phosphate species (a) DEA:H3PO4 (b)

DMEDA:H3PO4 (c) Piperazene:H3PO4
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7.4 Conclusions

In this study, three crystal structures are reported for DEA:H3PO4, DMEDA:H3PO4,

piperazene:H3PO4. We arrive at several conclusions from the results. Strong bands

are observed in the NH stretching frequency region due to the strong H-bonding

between Nitrogen atom of amine and the oxygen atom from the phosphoric acid.

Both NH2
+ stretching vibrations and NH2

+ deformations can be observed as a result

of amine protonations. All three crystal form N-H–O hydrogen bonds. In addition,

there are O-H–O bonds due to the interaction between water and phosphoric

molecule. Many weak bands were noticed in the 2200- 2600 cm−1 region and they

can be assigned as strong overtone and combination bands. Spectroscopic evidence

supports the presence of hydrogen bonding interactions between secondary amine

and H3PO4. These results are in good agrement with the crystallographic data.
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Appendix 1

Program 1

pro QfitNT_JF_zero

;File:71009_purePEO_norm.txt in F(normalized data,6 decimal friquencies)

file=’071709_PEOLT_1to20_norm’

readcol,’F:\IDL\data\’+file+’.txt’,x,r1,t30,t40,t50,t60,t70,t80

format=’D,D,D,D,D,D,D,D’

tble=dblarr(n_elements(x),21)

tble(*,0)=x

tble(*,1)=r1

tble(*,2)=t30

tble(*,3)=t40

tble(*,4)=t50

tble(*,5)=t60

tble(*,6)=t70

tble(*,7)=t80

;S-G smooting 3rd order 10 pts before & after

;Find min values between pklft:pklft1 & pkrgt1:pkrgt

;Choose 20 pts on either side of min(min moves with T)

;Fit to quadratic polynomial F(x)= Cx^2+Bx+A to this range

;find position of minX=-b/2*c

;Find minx, miny both sides

savgolFilter =savgol(10,10,0,3,/double)

minlx=dblarr(16)

minly=dblarr(16)

minrx=dblarr(16)

minry=dblarr(16)

pklft=min(where(tble(*,0) le 617d));664

pkrgt=min(where(tble(*,0) le 740d));732

pklft1=min(where(tble(*,0) le 628d));682

pkrgt1=min(where(tble(*,0) le 730d));718

A = FINDGEN(16) * (!PI*2/16.)

USERSYM, COS(A), SIN(A),/fill

!x.thick=3

!y.thick=3

!p.thick=2

!p.charsize=1.0

!p.charthick=1.5

!x.charsize=1.1

!y.charsize=1.1

device,set_font=’Times’,/TT_FONT

plotPosition = ASPECT(1.0/1.0)

area=dblarr(8)

for i=1,7 do begin

tble(*,i)=CONVOL(tble(*,i), savgolFilter, /EDGE_TRUNCATE)

minlft=pklft1+where(tble(pklft1:pklft,i) eq min(tble(pklft1:pklft,i)))

minrgt=pkrgt+where(tble(pkrgt:pkrgt1,i) eq min(tble(pkrgt:pkrgt1,i)))

rngl=tble(minlft-20:minlft+20,i)

rnglx=tble(minlft-20:minlft+20,0)
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rngr=tble(minrgt-20:minrgt+20,i)

rngrx=tble(minrgt-20:minrgt+20,0)

n=n_elements(rnglx)

sx=total(rnglx)

sx2=total(rnglx*rnglx)

sx3=total(rnglx*rnglx*rnglx)

sx4=total(rnglx*rnglx*rnglx*rnglx)

sy=total(rngl)

syx=total(rngl*rnglx)

syx2=total(rngl*rnglx*rnglx)

tmpl=invert([[n,sx,sx2],[sx,sx2,sx3],[sx2,sx3,sx4]])##[[sy],[syx],[syx2]]

a1=tmpl(0)

b1=tmpl(1)

c1=tmpl(2)

minlx(i)=-b1/(2d*c1)

minly(i)=a1+b1*minlx(i)+c1*minlx(i)*minlx(i)

n=n_elements(rngrx)

sx=total(rngrx)

sx2=total(rngrx*rngrx)

sx3=total(rngrx*rngrx*rngrx)

sx4=total(rngrx*rngrx*rngrx*rngrx)

sy=total(rngr)

syx=total(rngr*rngrx)

syx2=total(rngr*rngrx*rngrx)

tmpr=invert([[n,sx,sx2],[sx,sx2,sx3],[sx2,sx3,sx4]])##[[sy],[syx],[syx2]]

a2=tmpr(0)

b2=tmpr(1)

c2=tmpr(2)

minrx(i)=-b2/(2d*c2)

minry(i)=a2+b2*minrx(i)+c2*minrx(i)*minrx(i)

;Find slope and intercept of the line bet two points

;Fit a linear

;Subtract linear fit from original spectrum data

;repeat the procedure for other peaks

;Write the xmin,ymin values for a file in figPEO

;integrate

slope=(minry(i)-minly(i))/(minrx(i)-minlx(i))

intcpt=minry(i)-slope*minrx(i)

tble(pkrgt:pklft,i)=tble(pkrgt:pklft,i)-(intcpt+slope*tble(pkrgt:pklft,0))

x=tble(pkrgt:pklft,0)

y=tble(pkrgt:pklft,i)

area(i-1)=int_tabulated(x,y,/sort)

if (i eq 1) then plot,tble(pkrgt:pklft,0),tble(pkrgt:pklft,i),$

title=file+’(peak_region_JF)’,$

xstyle=2,background=’FFFFFF’x,color=’000000’x,POSITION=plotPosition

if (i ne 1) then oplot,tble(pkrgt:pklft,0),tble(pkrgt:pklft,i),color=’000000’x

endfor

lftstr=strtrim(string(tble(pklft,0)),1)

tmp=strsplit(lftstr,".",/extract)

lftstr=tmp(0)

rgtstr=strtrim(string(tble(pkrgt,0)),1)
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tmp=strsplit(rgtstr,".",/extract)

rgtstr=tmp(0)

taxis=[20,30,40,50,60,70,80]

im1=tvrd()

write_jpeg,’F:\IDL\figPEO\’+file+lftstr+’_’+rgtstr+’_’+’.jpeg’,im1

plot,taxis,area,psym=8,xtitle=’Temperature’,ytitle=’Integrated Intensity’,$

xstyle=2,background=’FFFFFF’x,color=’000000’x,POSITION=plotPosition,$

title=file+’(area_JF)’+lftstr+’_’+rgtstr

im2=tvrd()

write_jpeg,’F:\IDL\figPEO\’+file+’_area_JF’+lftstr+’_’+rgtstr+’_’+’.jpeg’,im2

end

Program 2: Adapted from Liu et al.

pro QfitLT_Liu

ncol = 10

file=’071409LiTF_PEO_norm’

readcol,’F:\IDL\data\’+file+’.txt’,x,r1,t1,t2,t3,t4,t5,t6,t7,t8,t9,$

format=’D,D,D,D,D,D,D,D,D,D’,/silent

tble=dblarr(n_elements(x),11)

tble(*,0)=x

tble(*,1)=r1

tble(*,2)=t1

tble(*,3)=t2

tble(*,4)=t3

tble(*,5)=t4

tble(*,6)=t5

tble(*,7)=t6

tble(*,8)=t7

tble(*,9)=t8

tble(*,10)=t9

;S-G filtering 3rd order 10 pts before & after

savgolFilter =savgol(10,10,0,3,/double)

pklft_k = 1400.

pkrgt_k = 1200.

pklft = min(where(x le pklft_k))

pkrgt = min(where(x le pkrgt_k))

tble3=dblarr(pkrgt-pklft+1,11)

;this hold only the data of the peak of all the columns

tble3(*,0)=tble(pklft:pkrgt,0)

area=dblarr(ncol)

for i=1,ncol do begin ;do the same for all columns

tble2=dblarr(pkrgt-pklft+1,2)

;this is where we do the smoothing using S-G filter

tble(*,i)=CONVOL(tble(*,i), savgolFilter, /EDGE_TRUNCATE)

tble2(*,0)=tble(pklft:pkrgt,0)

tble2(*,1)=tble(pklft:pkrgt,i)

err=0.5d ;initilize the err(or) for the WHILE loop to run
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while (err gt 0.0005d) do begin

tmpx=tble2(*,0)

;Following are the matrix elements needed to get the quadratic least square fit

n=n_elements(tmpx)

sx=total(tmpx)

sx2=total(tmpx*tmpx)

sx3=total(tmpx*tmpx*tmpx)

sx4=total(tmpx*tmpx*tmpx*tmpx)

sy=total(tble2(*,1))

syx=total(tble2(*,1)*tmpx)

syx2=total(tble2(*,1)*tmpx*tmpx)

;Finding fitting parameters a,b,c

tmp=invert([[n,sx,sx2],[sx,sx2,sx3],[sx2,sx3,sx4]])##[[sy],[syx],[syx2]]

a=tmp(0)

b=tmp(1)

c=tmp(2)

;Find the standard error, s

sqdev=total((tble2(*,1)-(a+b*tmpx+c*tmpx*tmpx))^2)

s=sqrt(sqdev/(n_elements(tmpx)-3))

tmp=temporary(tble2) ;deleting table tble2

;Find the indices of the data points where the deviations are

;smaller than the standard errors

igood=where((tmp(*,1)-(a+b*tmpx+c*tmpx*tmpx)) lt s,count)

tble2=dblarr(count,2)

;now tble2 holds the "good" data points

tble2(*,0)=tmp(igood,0)

tble2(*,1)=tmp(igood,1)

tmpx=tble2(*,0)

;err is the average deviation per point. This is the

;quantity we are minimizing

err=total(abs(tble2(*,1)-(a+b*tmpx+c*tmpx*tmpx)))/count

endwhile

tmpx=tble(pklft:pkrgt,0)

tble3(*,i)=tble(pklft:pkrgt,i)-(a+b*tmpx+c*tmpx*tmpx)

pkmax=max(tble3(*,i))

xmax=where(tble3(*,i)eq pkmax)

minlft=min(tble3(0:xmax,i))

xminlft=where(tble3(0:xmax,i)eq minlft)

minrgt=min(tble3(xmax:*,i))

xminrgt=xmax+where(tble3(xmax:*,i)eq minrgt)

x=tble3(xminlft:xminrgt,0)

y=tble3(xminlft:xminrgt,i)

area(i-1)=int_tabulated(x,y,/sort)

endfor

avg=MEAN(area)

taxis=[20,30,40,50,60,70,80,100,120,140]

A = FINDGEN(17) * (!PI*2/16.)

USERSYM, COS(A), SIN(A),/fill

!x.thick=3

!y.thick=3

!p.thick=3

!p.charsize=1.0

!p.charthick=1.5
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!x.charsize=1.1

!y.charsize=1.1

device,set_font=’Times’,/TT_FONT

plotPosition = ASPECT(1.0/1.0)

lftstr=strtrim(string(tble(pklft,0)),1)

tmp=strsplit(lftstr,".",/extract)

lftstr=tmp(0)

rgtstr=strtrim(string(tble(pkrgt,0)),1)

tmp=strsplit(rgtstr,".",/extract)

rgtstr=tmp(0)

plot,taxis,area,psym=8,xtitle=’Temperature’,ytitle=’Integrated Intensity’,$

title=file+’(Liu)’+’ ’+rgtstr+’ to ’+lftstr,xstyle=2,$

background=’FFFFFF’x,color=’000000’x,POSITION=plotPosition

err=dblarr(n_elements(area))

err(*)=stddev(area)

oploterr,area,err

im=tvrd()

write_jpeg,’F:\IDL\figPEO\’+file+’(Liu)’+lftstr+’_’+rgtstr+’.jpeg’,im

openw, datfile2, ’F:\IDL\figPEO\’+file+’(Liu)’+lftstr+’_’+rgtstr+’.txt’,/get_lun

for i=0,n_elements(area)-1 do begin

printf, datfile2, taxis(i),area(i)

endfor

free_lun,datfile2

end
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Appendix 2

List of abbreviations

PEO Poly(ethylene oxide)
LiTf Lithium trifluoromethanesulfonate, Lithium triflate
TbaTf Tetrabutylammonium trifluoromethanesulfonate
CH3CN Acetonitrile
KBr Potassium bromide
DMEDA N, N’-dimethylethylenediamine
DEA Diethylamine
LPEI Linear poly(ethyleneimine)
PEM Proton exchange membrane
H3PO4 Phosphoric acid
νs(NH2

+) Symmetric NH2
+ stretch mode

νas(NH2
+) Asymmetric NH2

+ stretch mode
FTIR Fourier transform infrared spectroscopy
NMR Nuclear magnetic resonance
PFG NMR Pulsed field gradient nuclear magnetic resonance
MIR Mid infrared
δs(CF3) CF3 symmetric deformation mode
νs(SO3) SO3 Symmetric stretch mode
CAE Compensated Arrhenius equation
CAF Compensated Arrhenius formalism
Tg Glass transition tempearture
Tr Reference temperature
T Absolute temperature
c Concentration
D Self-diffusion coefficient
kB Boltzmann’s constant
ε Dielectric constant of solvent medium
ε0 Dielectric constant of vacuumm
εs Relative dielectric constant
λ Wavelength
Λ Molar conductivity
σ Conductivity
Ea Activation energy
σ0, D0 Conductivity and diffusion exponential prefactors
C Capacitance
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