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Abstract 

While investigating how the relationship of abilities and skill acquisition changes over 

the course of training, researchers have unknowingly obscured the very relationship they 

sought to examine by relying on analyses that focused on attainment and did not model 

acquisition. Although more recent approaches have modeled acquisition independently of 

attainment (e.g., Voelkle, Wittmann, & Ackerman, 2006), these analyses have neglected 

to allow for changes in the overall acquisition rate, which would permit a determination 

of exactly when and how abilities contribute to acquisition in accordance with current 

learning-phase based theory (e.g., Ackerman, 1987, 1988; Fleishman, 1972). Using a 

sample of 131 young adult males and a complex computer-based criterion task, the 

present research investigated the contribution of three abilities: general mental ability 

(GMA), psychomotor ability (PM), and visual attention (VA), to acquisition in different 

phases of training. Collectively, the findings suggest abilities do contribute to attainment 

early in training as has traditionally been found, but affect little difference in changes to 

acquisition rates throughout training. Furthermore, the results support an initial 

restructuring of the combination of abilities that contribute to acquisition and a stable 

(e.g., Fleishman, 1972) but not dynamic (e.g., Ackerman, 1987, 1988) contribution 

thereafter (e.g., Keil & Cortina, 2001). 
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Ability-Growth Interactions in the Acquisition of a Complex Skill: 

A Spline-Modeling Approach 

The topic of human learning has been researched for over a century. Today, debate 

continues over newer or finer points of this research, but the overarching motivation for 

this pursuit has remained steadfast. A strong theoretical framework for the study of skill 

acquisition will guide future research and practical endeavors (Davids, Button, & 

Bennett, 2008). 

Many important findings have developed from this fervor, and a few warrant 

increased attention in the current effort. One, skill acquisition progresses through stages 

(Fitts & Posner, 1967). Two, changes occur in the specific combinations of abilities 

contributing to performance across these stages (Fleishman, 1972), and three, theories 

have been developed that discuss the specific combinations of abilities contributing to 

performance during each stage (e.g., Ackerman, 1987, 1988; Fleishman, 1972). However, 

at least two weaknesses currently exist in the literature. First, researchers have done an 

inadequate job of identifying evidence for the relationship between ability and skill 

acquisition. They have either assumed patterns of correlations between ability and 

performance across time are evidence for a strong ability-acquisition relationship even 

though acquisition, that is growth, is not modeled (Woodrow, 1946), or, attempting to 

model acquisition with difference scores, they have failed to find consistent results 

(Voelkle et al., 2006). Second, although the role of ability in the early phases of skill 

acquisition is generally agreed upon, there is no consensus with respect to later stages 

(Ackerman, 2007). 
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Study Overview 

The present research seeks to expand current knowledge regarding the contribution of 

abilities to skill acquisition. Unlike many previous studies, the present research employs a 

more sophisticated analytic approach that explicitly models skill acquisition as opposed 

to skill attainment (i.e., achievement) in an effort to provide a more accurate depiction of 

the relationship between abilities and complex skill acquisition. Specifically, the current 

research will investigate the contribution of three abilities to acquisition trajectories—

general mental ability (GMA), psychomotor ability (PM), and visual attention (VA)—

which will be modeled across different segments or stages of training. Based on a search 

of the empirical literature, this represents the first attempt at including the commonly 

accepted acquisition-stage concept in an analytic model. This approach will allow for the 

examination of changes in acquisition rates across time as well as changes in the 

composite of abilities contributing to that acquisition in each stage. 

Definitions 

Skill 

Skill may be defined as the proficiency required for a certain level of task 

performance. It is the learned capacity of an individual to achieve desired outcomes often 

and at minimal outlay in terms of time and energy (Fleishman, 1972). Skills can typically 

be improved via practice. 

Skills may differ in many ways, but one of the most useful psychological distinctions 

has been with the definition of complexity. Wood (1986) differentiated among three 

types of task complexity: component, coordinative, and dynamic. Component complexity 

describes the number of distinct acts, or task components, and amount of stimuli 
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processing necessary in the production of a task product. Coordinative complexity 

describes the interrelation of different acts, stimuli processing, and task products. 

Dynamic complexity describes how coordinative complexity changes across time and can 

be thought of as the degree of inconsistency in information-processing demands. 

Accordingly, a complex skill is the proficiency required for task performance that 

contains some combination of strong component, coordinative, and dynamic complexity. 

Acquisition 

Acquisition is an internal process which produces a relatively permanent change in a 

learner’s capabilities (Schmidt & Wrisberg, 2004). Skill attainment is distinct from skill 

acquisition because attainment describes performance at distinct time points (i.e., skill 

execution or attainment) whereas acquisition describes a gradual improvement in 

successive performances during practice and instruction or training. Skill acquisition 

requires a learner to detect and react to environmental stimuli in a correct and timely 

manner, and the result is a behavior less vulnerable to transitory factors such as emotion 

or fatigue (Davids et al., 2008). Skill attainment is often measured through the 

observation of performance at one point in time whereas skill acquisition can only be 

observed through such observations repeated across time. 

Snoddy (1926) may have been the first to mathematically model skill acquisition with 

his power law of practice. His theory describes a linear relationship between the 

logarithmic functions of practice amount and performance and therefore predicts a 

quadratic or decelerating trend such that gains in performance slow over time (Davids et 

al., 2008). The performance of complex skills during practice typically improves 

according to this power law (Anderson, 2005). 
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Skill acquisition is typically described in three stages (Anderson, 1983; Fitts & 

Posner, 1967). In the first stage, termed the cognitive stage, learners memorize relevant 

facts and typically rehearse these facts during initial performance attempts. These 

performance attempts are often variable and error ridden. Two important things happen in 

the second or associative phase. One, errors in initial understanding are gradually 

detected and corrected, and two, associations facilitating successful performance are 

strengthened (Anderson, 2005). Therefore, performance attempts during this stage are 

more consistent and less error ridden. Both task complexity and learner abilities 

contribute to varying lengths of time across individuals in this stage. The third, 

autonomous stage requires extensive practice to achieve and is characterized by few 

errors and minimal mental effort (Davids et al., 2008). These stages can also be thought 

of in terms of novice, journeyman, and master stages of skill acquisition. 

Ability 

Ability reflects a general and relatively enduring capacity to learn tasks. Ability is 

typically considered stable, yet levels of ability may change over a lifetime. Such changes 

often occur during childhood and adolescence due to genetic and developmental factors 

(Bouchard, 2004; Fleishman & Mumford, 1989a; Plomin & Spinath, 2004). Because such 

factors are unique to each individual, rates and patterns of change, as well as actual levels 

of ability, differ across individuals. It is assumed that tasks differ in the extent to which 

they require different abilities, and tasks with similar ability requirements should have 

similar performance demands (Fleishman, 1972). 

Although many taxonomies of human ability exist, two common ability specifications 

include GMA (also commonly referred to as general cognitive ability, general 
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intelligence, or g: Hull 1928; Spearman, 1927) and broad-content abilities (Ackerman, 

1988). GMA is defined as the factor common to tests of cognitive ability and is theorized 

to be the ability to efficiently acquire, process, and use information (also commonly 

referred to as fluid intelligence or simply Gf: Cattell, 1971). Broad-content abilities 

describe a class of abilities which pertain to the general content of a given task. For 

instance, a task primarily composed of oral or written components might require the 

broad-content ability termed verbal ability. Two other common abilities in skill 

acquisition research are perceptual-speed and PM (Ackerman, 1988). Perceptual-speed 

ability refers to speed of processing information. PM refers to the speed and accuracy of 

motor responding. Regardless of type or taxonomy, greater ability generally leads to 

faster acquisition of skill and higher levels of performance. 

Fleishman’s Work 

Another important taxonomy central to the current discussion is Fleishman’s ability 

requirements approach. Much of Fleishman’s early work focused on the acquisition of 

skill in perceptual-motor tasks. This research ultimately led to a taxonomy that places 52 

separate abilities into cognitive, physical, and perceptual-motor classes (Fleishman & 

Reilly, 1992). Although Fleishman’s taxonomy represents the first useful organization of 

individual differences in performance and has contributed to research and applied 

activities in numerous ways, it is Fleishman’s subsequent work utilizing his taxonomy 

that is more pertinent to the current discussion. 

In general, this research showed that (a) changes occur in the specific combinations of 

abilities contributing to performance over the course of skill acquisition, (b) such changes 
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are progressive and systematic and become stabilized, and (c) the importance of task-

specific ability increases over the course of skill acquisition (Fleishman, 1972). 

More specifically, Fleishman showed that the combinations of abilities contributing 

to individual differences early in training were often markedly different than the 

combinations of abilities contributing to individual differences later in training. 

Fleishman emphasized two points about this general pattern. One, the changes in ability 

combinations frequently occurred relatively early in training, and two, as soon as higher 

levels of skill were obtained, the changes in ability combinations seemed to stabilize 

(Fleishman & Mumford, 1989b). Furthermore, Fleishman and Mumford (1989a) 

suggested late-stage acquisition may be partly the result of abilities not already identified 

by prior study (e.g., Jones, Dunlap, & Bilodeau, 1984) and called on future research to 

investigate. 

In a complex, perceptual-motor coordination task, Fleishman and Hempel (1954) 

found some abilities such as spatial orientation, visualization, and perceptual speed 

significantly contributed to performance early but declined in contribution to non-

significant levels later in acquisition. On the other hand, PM either continually and 

significantly contributed or steadily increased in its contribution toward performance 

across acquisition. After the initial changes in the composition of abilities contributing to 

performance, the composition stabilized and PM became the primary contributor. Similar 

findings have been repeatedly found (e.g., Fleishman, 1960; Fleishman & Fruchter, 1960; 

Fleishman & Hempel, 1955; Fleishman & Mumford, 1989b; Fleishman & Rich, 1963). 

However, no abilities specifically related to late-stage performance were identified. 
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Ackerman’s Work 

Ackerman’s dynamics of ability determinants of skill acquisition (1988, 1992) is a 

theory that attempts to address and explain the observation of dynamic criteria in 

complex skill acquisition. Borrowing from previous research (e.g., Anderson, 1982; Fitts 

& Posner, 1967; Fleishman & Hempel, 1954, 1955; Shiffrin & Schneider, 1977), 

Ackerman’s model includes three stages of skill acquisition (i.e., cognitive, associative, 

and autonomous), but adds a component showing how different abilities contribute to 

each of the three stages. Various task-, person- and situation-related factors dictate the 

relative importance of various abilities during each time point during acquisition, but the 

factors of complexity and consistency are the most prominent. Complexity, particularly 

component and coordinative, primarily moderates the relationship between cognitive 

ability and performance, whereas consistency (i.e., dynamism) moderates learning-stage 

progression. 

For complex yet consistent tasks, Ackerman suggests early skill acquisition will 

depend primarily on cognitive abilities—general and broad-content—because everything 

is new and learners must continually process new information. As the learner progresses 

to later stages of skill acquisition, cognitive ability will either remain or decrease in its 

contribution toward acquisition. For inconsistent tasks, cognitive ability should continue 

to contribute because performers must continually process inconsistencies. For consistent 

tasks, learners get better at processing the consistent information as acquisition 

progresses, and the contribution of cognitive ability thus declines. Perceptual-speed 

ability is particularly important during the middle of skill acquisition. As the production 

systems generated in the first cognitive phase are fine tuned in the second associative 
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phase, perceptual-speed ability becomes important, but less so once the task becomes 

largely automated in the final autonomous phase. If a task is perceptual-motor in nature, 

PM should have a stronger role in the final stage of skill acquisition. Production systems 

are largely automated at this stage, and therefore, it is PM that determines further skill 

acquisition (Ackerman, 1988). 

Complex tasks require the creation of more production systems which increase the 

contribution of cognitive ability toward skill acquisition but attenuate that of perceptual 

speed. This is because attention is utilized for increased system production while 

perceptual speed is not as effective across many uncompiled productions. Consistency 

moderates learning-stage progression because without some consistency learning is not 

possible. Therefore, inconsistency slows acquisition. For example, a learner may never 

progress beyond the first stage of learning in an extremely inconsistent task, suggesting 

that cognitive ability will strongly contribute to performance no matter the degree of 

practice (Ackerman, 1988). 

Because skill acquisition differs depending on task complexity and consistency, high- 

and low-ability learners might converge in performance over the course of practice and 

instruction. The prediction of decreasing interindividual variance in performance (i.e., 

convergence) across time is consistent with the lag hypothesis (Singer & Willet, 2003) in 

that slower learners lag behind faster learners but may catch up given additional practice 

and instruction. That is, high-ability learners display stronger linear and quadratic 

relationships between practice and performance (i.e., reach asymptote more quickly) than 

their lower-ability counterparts. The opposite hypothesis involving divergence, termed 

the deficit hypothesis (Singer & Willett, 2003), fan-spread effect, or Matthew effect 
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(Merton, 1968; Stanovich, 1986), describes increasing interindividual variance. Less 

complex and more consistent tasks typically portray a lag pattern. More complex and 

inconsistent tasks require more cognitive resources, which may prevent some learners 

from ever progressing beyond earlier stages of acquisition. Divergence in performance is 

especially likely for tasks that are largely dependent on declarative knowledge yet do not 

involve a finite domain of knowledge than on tasks which primarily require speed and 

accuracy of motor responding (Ackerman, 2007). 

Increasing Predictive Validity of GMA 

Alternative Findings 

Newer research suggests that the cognitive ability-performance relationship has been 

inadequately addressed because previous work does not predict a commonly observed 

general increase in the relationship between cognitive ability and performance (e.g., 

Arthur et al., 1995; Day, Arthur, & Shebilske, 1997; Deadrick, & Madigan, 1990; 

Rabbitt, Banerji, & Szymanski, 1989). Subjective reports collected at the end of the Day 

et al. (1997) study showed that the cognitive-ability and performance relationship 

increase occurred because executive attention control processes became increasingly 

important as strategies were discovered and utilized (Shebilske, Goettl, & Regian, 1999). 

This assertion extends the previously discussed research of Fleishman and Ackerman as 

well as other lines of research such as case-based and analogical reasoning, as well as, 

cognitive control theory. 

Case-based and Analogical Reasoning 

The structure of case-based knowledge is commonly thought to be like an indexed 

table of past experiences (Anderson, 1983; Gentner, 1983; Hammond, 1990; Kolodner, 
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1983; Schank, 1982). When any situation is encountered, a learner engages in a search of 

this table comparing case characteristics, such as information about causes, 

contingencies, and outcomes, from the current situation to past case attributes from the 

table (Hammond, 1990). The use of analogies, termed analogical reasoning, is necessary 

when no suitable past case can be identified (Mumford, Friedrich, Caughron, & Byrne, 

2007). Under this paradigm, experts might require increased cognitive resources to wield 

their increased number of exemplar cases. 

Executive System 

The executive system is thought to be responsible for more complex cognitive 

activities not typically addressed with traditional skill acquisition theories such as 

planning, abstract thinking, initiation, inhibition, and selecting sensory information on 

which to focus (Stuss & Knight, 2002). Executive control is thought to be important 

throughout acquisition (Gopher, 1996; Norman & Shallice, 2000). For example, early 

stages of acquisition require decisions on which stimuli to focus and how information 

relates to other information while later stages require decisions regarding which compiled 

productions will be most effective or what changes may be necessary for a given 

production to be effective. As such, these models allow for a prediction of increased 

contributions of cognitive ability during skill acquisition as the number of productions 

increases. 

Interactive Iterative Learning Phase Model 

An interactive iterative learning phase model provides an explanation for the 

increasing predictive validities of GMA toward performance across skill acquisition. 

Such a model represents an extension as opposed to a contradiction of previous research 
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by addressing complex tasks encompassing components of various complexities which 

can be both interdependent and hierarchically related. For example, Ackerman (1992) 

found increasing correlations between cognitive ability (i.e., reasoning and spatial) and 

performance over time but primarily discussed such findings in terms of support for the 

prediction that such correlations would be high and remain stable over time. However, it 

may be necessary to integrate component abilities later in skill acquisition (Fleishman, 

1972), and cognitive ability might be used for this purpose. With an interactive iterative 

learning phase model, learners proceed through three phases of learning, but they do so in 

an interactive and iterative way such that the interplay of processes, ranging from totally 

controlled to completely automatic, is complex and present throughout skill development 

(Day et al., 1997). The complexities inherent to this system may grow during skill 

acquisition, and therefore, increased cognitive capacity may be necessary to deal with the 

growing dynamics. 

Analytic Issues 

Traditional Approaches 

Traditional analytic approaches have relied on a “time-slice” approach where 

correlations between ability and performance or attainment are examined at discrete time 

points during practice and instruction or training. The traditional time-slice approach is 

appealing for a variety of reasons. For one, it is intuitive, meaning people generally 

accept the idea that changes in correlational patterns between abilities and attainment 

must be indicative of changes between ability and learning. Second, because no 

difference scores are computed, this method seems to avoid the issues associated with 
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gain scores (e.g., Cronbach & Furby, 1970), and third, the method is easy to apply 

(Voelkle et al., 2006). 

Unfortunately, the approach is also misleading for a variety of reasons. For one, the 

primary focus of the analysis is still on difference scores although these differences are 

among the correlations as opposed to raw scores, and this obscures the gain score issue. 

Second, skill acquisition is not modeled in these approaches, and therefore, contributions 

of ability toward that acquisition must be inferred from the disparate correlational 

observations (Preacher, Wichman, MacCallum, & Briggs, 2008). Third, the method is 

difficult to apply with more complex models (Voelkle et al., 2006). This third criticism is 

readily apparent when considering how necessary the control of indirect and mediated 

effects of past performance and ability is when assessing current ability-performance 

relationships. Traditional approaches have only modeled the “intra-slice” direct effects, 

thereby missing these crucial “inter-slice” indirect contributions, and this has resulted in 

the reporting of biased ability-performance relationship estimates in the literature 

(Fleishman & Mumford, 1989b). As an example, Ackerman’s assertions have often been 

based on analytic models that did not correctly control for past performance and ability 

contributions to that past performance. 

Growth Curve Models 

Fortunately today, learning researchers have various techniques for analyzing growth 

(e.g., acquisition) by directly modeling it (Bollen & Curran, 2006; Duncan, Duncan, & 

Strycker, 2006; McArdle & Nesselroade, 2002; Muthèn; 2004; Singer & Willet, 2003). In 

this family of analyses, variance components are handled in such a manner as to put the 

focus of the analysis on the individual learning curve, like recommended by Rogosa 
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(1995), and not on gain scores, like Cronbach and Furby (1970) advised against. Using 

these techniques, skill acquisition can be easily modeled over time as a function of 

individual differences in any readily available hierarchical analysis software (e.g., SPSS 

Mixed, HLM 6, SAS Proc Mixed). Growth curve models allow for the separate modeling 

of performance or attainment as intercepts and growth or acquisition as slopes. In 

addition, more complex learning models can be fit (Meredith & Tisak, 1984, 1990). 

However, most recent studies utilizing these methods have modeled skill acquisition as a 

constant parameter (e.g., linear), or set of constant parameters (e.g., linear and quadratic), 

throughout practice and have neglected to model acquisition-stage information (Newell, 

Liu, & Mayer-Kress, 2001). Put another way, recent studies have not targeted growth in 

skill over specific performance intervals, periods of training, or stages of acquisition. 

Spline Models 

Splines may be defined as piecewise polynomials of degree n whose function values 

and first n-1 derivatives agree at all join points (i.e., knots: Smith, 1979). It is possible to 

fit any number of pieces provided there are enough observations (Suits, Mason, Chan, 

1978). Spline models offer distinct advantages over ordinary polynomial regression. 

First, in low dimensions, polynomial regressions are not flexible enough to capture rapid 

slope change, especially at irregular intervals. In high dimensions, polynomial 

regressions fail due to Runge’s phenomenon, an increased and often undesirable 

oscillation at the edges of an interval. In contrast, spline regressions offer more flexibility 

and control (Suits et al., 1978) and can be fit in any standard statistics package. If one 

seeks to find that the underlying mechanism contributing to observations is not of the 

same kind throughout the range of the independent variable, then splines may be used to 
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model that assumption (Smith, 1979). That is, splines offer an opportunity to model skill 

acquisition in segments or phases, which extends recent studies (e.g., Voelkle et al., 

2006) that did model acquisition but neglected to examine how acquisition changes at 

specific points during training. 

Purpose of the Present Research 

Together, spline and growth curve modeling will allow a more complete investigation 

into ability determinants of complex skill acquisition than has been attempted previously. 

The present research examines the contribution of GMA, PM, and VA  to the acquisition 

of skill at performing the video game Space Fortress—a complex computer task that 

simulates the demands of a dynamic aviation environment (Mane & Donchin, 1989)—by 

fitting multiple, individual-focused spline segments throughout acquisition. This will 

allow a comparison of explicitly modeled contributions of ability to skill acquisition 

throughout training, and based on a search of the extant literature, no investigation like 

this has been attempted previously. 

I focus on the three abilities of GMA, PM, and VA for a variety of reasons. The 

inclusion of GMA is consistent with previous ability-performance dynamics research 

(e.g., Ackerman, 1987, 1988; Fleishman, 1972), as well as interactive iterative learning 

phase models (e.g., Day et al., 1997), and has been shown to correlate with Space 

Fortress performance (Day, Arthur, & Gettman, 2001; Fein & Day, 2004). The inclusion 

of PM is similarly consistent with previous research (e.g., Ackerman, 1987, 1988; 

Ackerman & Cianciolo, 2000; Fleishman, 1960, 1972; Fleishman & Fruchter, 1960; 

Fleishman & Hempel, 1954, 1955; Fleishman & Mumford, 1989b; Fleishman & Rich, 

1963) and has also been shown to be related to Space Fortress performance (Day et al., 
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1997; Gopher, Weil, & Siegel, 1989). Because VA has been shown to be related to Space 

Fortress performance and yield stronger relationships with Space Fortress performance 

compared to perceptual speed (Arthur, Bennett, Day, & McNelly, 2002) but is a 

relatively understudied ability, VA is an important ability variable to include. In 

particular, VA might be able to help better explain growth in late-stage skill acquisition, 

where researchers have historically had less success linking abilities to acquisition. 

Voelkle et al. (2006) reanalyzed data from Ackerman, Kanfer, and Goff (1995) to 

investigate the relationship of two abilities (e.g., spatial-numerical and perceptual speed 

ability) assessed by two extensive test batteries (e.g., Aptitude Assessment Battery: 

Ackerman & Kanfer, 1993; and a new battery) on the air traffic controller task TRACON. 

Relying on latent growth curve analysis, they showed how both abilities significantly 

contributed to the latent intercept (i.e., attainment) and latent linear slope (i.e., 

acquisition). While spatial-numerical ability exhibited a larger relationship with the latent 

intercept term, the reverse was true with the latent linear term in that perceptual speed 

ability exhibited the larger relationship. Voelkle et al. (2006) interpreted this pattern as 

support for Ackerman’s (1987, 1988) theory in that the broad-content ability (i.e., spatial-

numerical) made a relatively larger contribution early (i.e., with the intercept modeled as 

initial status) and perceptual speed made a relatively larger contribution later (i.e., with 

the linear slope) in accordance with the theory. However, they did not model a 

relationship to the latent quadratic factor, and the analysis did not account for the 

interaction between the type of predictor and the phase of skill acquisition as originally 

posited by theory. This prevented them from examining how abilities could differentially 
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contribute to acquisition and also help explain convergence or divergence in the 

performance trajectories across individuals throughout training. 

The present research represents a logical extension of Voelkle et al. (2006) through 

the inclusion of acquisition-phase information directly in the analytic model. Doing so 

allows for a direct examination of when and how abilities contribute to skill acquisition 

as opposed to only being able to discuss ability contributions to static skill acquisition 

across training. Additionally, it was possible to better examine convergence and 

divergence of interindividual variance with the present approach. 

Research Hypotheses and Questions 

The fitting of power functions to performance data collected repeatedly across time 

has become a traditional approach in the understanding of learning (e.g., Lane, 1987; 

Mazur & Hastie, 1978; Snoddy, 1926). Newell and Rosenbloom (1981) saw fit to refer to 

these power functions as the “universal” law of learning (Gallistel, Fairhurst, & Balsam, 

2004; Heathcote, Brown, & Mewhort, 2000; Newell et al., 2001). In this tradition, I 

tested the following hypothesis. 

Hypothesis 1: The skill acquisition growth curve will follow the power law of 

practice such that gains in performance will slow over time. 

Because researchers have long assumed a positive relationship between ability and 

skill acquisition, but have often failed to avoid a common confusion regarding correct 

variance decomposition when trying to produce evidence for that assumption (Voelkle et 

al., 2006), I tested the following hypothesis. 

Hypothesis 2: Each ability—GMA, PM, and VA—will positively contribute to 

growth in skill. 
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Although theories have been forwarded regarding the dynamic contributions of ability 

toward skill performance (e.g., Ackerman, 1988; Fleishman, 1972), actual pattern 

prediction remains difficult in the later stages of skill acquisition (Ackerman, 2007; 

Fleishman, 1972), and this is especially true with new criterion tasks. Therefore, I 

explored the following set of research questions. 

Research Question 1a: Will the contribution of GMA to growth in skill remain stable, 

increase, or decrease across early, middle, and later stages of skill acquisition (i.e., 

training sessions)? 

Research Question 1b: Will the contribution of PM to growth in skill remain stable, 

increase, or decrease across early, middle, and later stages of skill acquisition (i.e., 

training sessions)? 

Research Question 1c: Will the contribution of VA to growth in skill remain stable, 

increase, or decrease across early, middle, and later stages of skill acquisition (i.e., 

training sessions)? 

Fleishman’s research showed that changes occur in the specific combinations of 

abilities contributing to performance over the course of skill acquisition, that such 

changes are progressive and systematic and become stabilized, and that the importance of 

a task-specific factor increases over the course of skill acquisition (Fleishman, 1972). 

Therefore, I explored the following two research questions. 

Research Question 2: What will the relative contributions to growth be among 

abilities at early, middle, and later stages of skill acquisition (i.e., training sessions)? 
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Research Question 3: Will the relative contributions to growth among abilities 

change or remain stable across early, middle, and later stages of skill acquisition (i.e., 

training sessions)? 

Researchers have done an inadequate job of identifying evidence for the often 

accepted relationship between ability and skill acquisition. They have either relied on 

analyses that do not actually model acquisition or ones that produce inconsistent results 

(Voelkle et al., 2006). When research has modeled skill acquisition those models have 

neglected to account for phase information (e.g., Voelkle et al., 2006), and this precludes 

the examination of exactly when abilities interact with acquisition. The present analytic 

method does model acquisition in different segments or phases of training. If GMA is 

found to increase in its contribution toward skill acquisition, this might be viewed as 

evidence for cognitive restructuring or interactive iterative learning phase models as 

supported by case-based reasoning and cognitive control theory. If either PM or VA are 

found to increase in contribution toward late-stage skill acquisition, such findings might 

be viewed as evidence for how abilities contribute to the fine-tuning of skill later in 

acquisition. If none of the abilities investigated are shown to be related to late-stage 

acquisition, then task-specific ability and the building upon habits and skill developed in 

training could be interpreted as the primary determinant of late-stage skill acquisition. In 

any event, by applying a spline-modeling approach, the present research offers a unique 

investigation into the patterns of late-stage skill acquisition. 
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Method 

Participants 

Participants for this study initially included 170 males solicited through campus fliers 

posted around the University of Oklahoma. Participants were at least 18 years of age and 

were required to be right handed due to hardware constraints. Each was paid an hourly 

rate of $6 and had the opportunity to earn monetary bonuses of between $10 and $100 

based on performance. As additional incentive, participants were also placed in a lottery 

for an extra $50 upon study completion. Twenty-nine participants did not complete the 

entire one-week training, and ten participants had missing data due to hardware failures. 

This resulted in a final sample size of 131. Attrition analysis using baseline performance 

indicated no significant difference between the complete (M = -1863.06, SD = 937.71) 

and incomplete (M = -2048.46, SD = 920.23) groups, t’(63.36) = 1.10, p = 0.28, d = 0.17. 

Materials 

Criterion Task. Space Fortress (Mane & Donchin, 1989), a game often used to study 

complex skill acquisition (Donchin, 1989; Gopher, Weil, & Bareket, 1994), was utilized 

as the performance task. Because the game was designed to simulate the information-

processing and psychomotor demands of complex performance settings such as those 

found in dynamic aviation environments (Gopher, 1993), the game features short- and 

long-term memory loading, high workload, dynamic attention allocation, decision 

making, prioritization, resource management, discrete motor responses, and difficult 

manual controls (Day et al., 1997; Gopher et al., 1989), and therefore, exhibits positive 

transfer to actual flight in fighter jets (Gopher et al., 1994) and helicopters (Hart & 

Battiste, 1992). The game also measures quantifiable components that have been 
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analyzed in terms of consistent and inconsistent processing as well as implicit-automatic 

and explicit-controlled processing (Corrington, 1996; Shebilske et al., 1999). 

The primary objective of Space Fortress is to fly a ship in frictionless space while 

battling a stationary fortress located at the screen center. Battle is accomplished by firing 

missiles toward the fortress while evading ship damage or destruction from both fortress 

missiles or from pursuant mines, which periodically appear from random locations. 

Participants control ship path, speed, and rates of fire through joystick input. An 

information panel located at the bottom of the screen indicates fortress vulnerability 

which increases by one with each successful engagement from the ship. Once the 

vulnerability counter reaches ten or more, the fortress may be destroyed using a rapid 

double shot executed within a 250 millisecond interval. 

In addition to controlling the joystick, participants also operate a three-button mouse. 

During battle with the fortress, participants are expected to monitor an area of the screen 

where symbols are presented in random succession. Once a bonus opportunity is 

indicated by two consecutive “$” symbols, participants can choose between a point or 

missile bonus by clicking a corresponding button on the mouse with their left hand. Foe 

mines may be destroyed by identifying a particular mine as foe through the instrument 

pane, double clicking the third mouse button within a 250 to 400 millisecond interval, 

and then striking the mine with a missile. Friend mines may be destroyed immediately 

without identification, and the destruction of any mine results in additional performance 

points. 

The information panel also shows the number of remaining missiles, a total score, and 

component scores based on ship velocity, ship control, and the speed of dispatching 
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mines. In addition to the feedback continuously presented in the bottom panel, detailed 

summary information is provided on a screen at the end of every game. This screen 

includes info such as counts of the number of times the participant’s ship was damaged, 

destroyed, or wrapped around the screen. The final screen also displays the participant’s 

component scores as well as the total score, which is a composite of the others. Scores on 

Space Fortress typically range from approximately -3000 to 6000 with maximum or 

asymptotic performance levels of approximately 7500. Interested readers are referred to 

Arthur et al. (1995) for a more comprehensive description. 

GMA. GMA was assessed using Raven’s Advanced Progressive Matrices (APM; 

Raven, Raven, & Court, 2004). The APM consists of pattern completion problems 

presented in an ascending order of difficulty. Previous research has demonstrated 

statistically significant correlations between APM scores and Space Fortress performance 

(e.g., Day et al., 2001; Fein & Day, 2004). The original 36-item form was used with an 

administration time of 40 min., and the test exhibited a Spearman-Brown odd-even split-

half reliability of 0.88. Scores were converted to z-scores for ease of interpretation. 

Psychomotor Ability. PM was assessed via the Space Fortress aiming task (Mane & 

Donchin, 1989). The task consists of three 3-min. trials, and the goal is to destroy as 

many mines as possible. Participants use a joystick to rotate a stationary ship and fire 

missiles. During each trial, stationary mines periodically appear in random locations, and 

participants attempt to quickly and accurately destroy the mines. The mines disappear 

after a few seconds or immediately if hit. Previous research has utilized this aiming task 

as a measure of PM and has demonstrated statistically significant correlations with Space 

Fortress performance (e.g., Day et al., 1997; Gopher et al., 1989). PM was operationally 
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defined as the average total aiming score, a function of the number of mines destroyed 

and the speed with which they were destroyed, across the three trials and then converted 

to z-scores for ease of interpretation. A reliability analysis treating the separate games as 

test items produced a coefficient alpha of 0.85 in the present study. 

Visual Attention. VA was assessed using the Computer-Administered Visual 

Attention Test (CA-VAT; Arthur, Strong, & Williamson, 1994; Arthur et al., 1995).  The 

CA-VAT is a visual counterpart to the Auditory Selective Attention Test (ASAT; Gopher 

& Kahneman, 1971; Mihal & Barrett, 1976) and is based on protocol developed for the 

Visual Selective Attention Test (VSAT; Avolio, Alexander, Barrett, & Sterns, 1981). The 

short version of the CA-VAT was used in this study and consisted of 16 items, the first 

four of which were practice. 

Items consisted of 19 sub-items with the first 16 of each item using one cue word and 

the last three using another cue word. Cue words dictate the set of response rules to 

follow when participants respond to pairs of symbols in each sub-item. If a participant 

fails to respond to a sub-item within two seconds, it is marked as incorrect, and the next 

sub-item is presented. The time between stimulus onset and response key press is 

recorded as the reaction time for each sub-item. Items were scored with the following 

formula. 

 Item Score = [ 19 – Ei ] + [ ( 19 – Ei ) * ( 1 / Rc ) ] where (1) 

Ei = number of errors, including incorrect answers and non-responses 

Rc = reaction time for correct responses 

Therefore, a participant’s score is a function of both the number and reaction time of 

correct responses. The number of correct responses is multiplied by the inverse of the 
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reaction time to reward speed and accuracy. VA was operationally defined as the average 

score on the 12 non-practice items and then converted to z-scores for ease of 

interpretation. A Spearman-Brown odd-even split-half reliability of 0.97 was obtained in 

the current sample. More detailed information regarding the test can be found in Arthur et 

al. (1994). It is important to note that within the Cattell-Horn-Carroll (CHC) theory 

framework of human abilities scores on the CA-VAT reflect reaction and decision speed 

more so than perceptual speed ability (Carroll, 1993; McGrew, 2009). 

Procedures 

The study protocol involved nine training sessions spread over the course of five 

consecutive days. On the first day (Monday), participants were informed that the purpose 

of the study was to examine how different people learn novel and complex tasks. 

Participants first performed the aiming task and then watched a 17-min. training video 

accompanied by a seven-page manual detailing instructions and strategies for performing 

Space Fortress. Afterward, participants performed four 3-min. warm-up games of Space 

Fortress and then watched a 5-min. review video. Participants were then given a two-

page review of the instructions and strategies for reference throughout the remainder of 

their training. Participants then underwent a series of nine 10-game training sessions. 

Each session lasted approximately 30 mins. 

The first training session took place following the review of Space Fortress 

instructions. The second and third training sessions took place on the second day of 

training (Tuesday), the fourth and fifth sessions took place on the third day (Wednesday), 

the sixth and seventh sessions took place on the fourth day (Thursday), and the eighth and 

ninth sessions took place on the fifth and final day of training (Friday).  
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The first eight games of every 10-game session were considered practice games. The 

last two games of every session were considered test games. Monetary bonuses were 

based solely on test game scores. All games lasted 3 mins. Skill acquisition was 

operationalized using the averages of each pair of test games from every session with the 

first two games from the four-game warm-up serving as baseline. The APM was 

administered on the third day of training in between the fourth and fifth training sessions, 

and the CA-VAT was administered on the last day of training in between the eighth and 

ninth sessions. Other measures not germane to the present investigation were 

administered in between training sessions on the second and fourth days of training. 

Results 

Table 1 presents descriptive statistics for all study variables. Important, underlying 

conditions for the present research are that the present abilities are indeed related to 

performance and that performance significantly improved across sessions. In Table 1 

GMA showed an average zero-order correlation with performance across sessions of r = 

.41 (minimum = .34; maximum = .53) while PM demonstrated an average correlation of r 

= .48 (minimum = .34; maximum = .61), and VA showed an average of r = .53 

(minimum .42; maximum .58). Therefore, the abilities are related to performance. 

As apparent from the second and fourth columns (means and standard deviations) in 

Table 1, not only did the average performance seem to improve, but interindividual 

variance increased as well. In the last four sessions a leveling off of interindividual 

variation occurred, which is due to the beginning of asymptotic performance after a 

significant amount of task practice. Before conducting a repeated measures ANOVA to 

demonstrate performance improvement across sessions, a Mauchly’s test (Mauchly, 
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1940) indicated that the assumption of sphericity had been violated, χ2(44, N = 131) = 

454.40, p < .001, therefore degrees of freedom were corrected using Greenhouse-Geisser 

estimates of sphericity, ε = .48 (Greenhouse & Geisser, 1959). The results show that 

mean performance improved significantly, F(4.33, 563.36) = 663.89, MSE = 

1,050,143.53, p < .001, ωෝ2 = 0.83. Planned t-tests indicated all pairwise differences were 

significant. Figure 1 shows the mean performance across the ten sessions and illustrates 

the intraindividual variation, as well as the interindividual differences in intraindividual 

change over time. 

Before proceeding to test the hypotheses, I computed the intraclass correlation 

coefficient type 1 (ICC1; Bliese, 2000) for the criterion measure. In the current study, the 

ICC1 indicates how much of the variability in Space Fortress performance is a result of 

between-person differences across the ten measurement occasions. The ICC1 is 

calculated by determining the ratio of between-person variance to overall variance 

[between person variance / (between-person variance + residual within-person variance)] 

of an unconditional (random intercept) mixed-effects model (Bliese & Ployhart, 2002). 

Analyses revealed an ICC1 of .49, indicating that between-person variance explained 

49% of the variance in performance. This value is consistent with other studies utilizing 

growth curve models (e.g., .44: Lang & Bliese, 2009), and suggests because considerable 

individual differences in performance exist across time, growth curve modeling is an 

appropriate analytic technique (Bliese, 2000). 

Nature of the Growth Curve 

Unconditional Quadratic Growth Model. Hypothesis 1, which predicted that the 

skill acquisition growth curve would follow the power law of practice, was best answered 
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by an unconditional (no predictors) quadratic growth model because such a model offers 

the opportunity to examine both linear and quadratic trends without adding the 

complexity of Level 2 predictors. This model was as follows: 

 Yij = π0j + π1j(t)ij + π2j(t2)ij + rij     where rij ~ N(0, σ2) (2) 

and 

π0j = ß00 + u0j 

π1j = ß10 + u1j 

π2j = ß20 + u2j 

where 
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In this model Yij is Space Fortress performance for a given individual at a given time. 

The intercept, π0j, is coded to represent performance at baseline because t represents time 

from baseline. The parameters π1j and π2j are the linear and quadratic trends across time, 

respectively. All parameters were allowed to randomly vary across individuals as evident 

by the inclusion of random components in the Level 2 equations which include the beta 

coefficients. 

This model was fit using maximum likelihood and converged in two iterations due to 

the balanced nature of the data (e.g., Singer & Willett, 2003). The model represents a 

significant improvement over the unconditional mixed-effects model used to compute the 

initial ICC1, χ2(4, N = 131) = 2036.90, p < .001. The model results are presented on the 

left side of Table 2. The intercept, β00 = -1143.19, t(130) = -11.90, p < .001, and linear 

slope, β10 = 1174.15, t(1177) = 28.96, p < .001, estimates suggest that on average 

individuals perform at -1143.19 points on Space Fortress during baseline and progress at 
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a linear rate of 1174.15 additional points for each successive session played. More 

importantly, the quadratic estimate, β20 = -77.93, t(1177) = -19.88, p < .001, suggests that 

individual growth rates slow or decelerate across training sessions. Thus, these findings 

represent support for Hypothesis 1. Skill acquisition followed the power law of practice. 

Furthermore, baseline performance also seems to be positively related to linear, r = 

.79, p < .001, and negatively related to quadratic rates of acquisition, r = -.80, p < .001. 

This suggests individuals with high baseline performance have stronger linear and 

quadratic rates of acquisition than their lower performing counter parts. The linear and 

quadratic growth rates were also related, r = -.97, p < .001. This suggests linear growth is 

strongly related to quadratic deceleration and therefore eventual asymptote. In other 

words, high ability trainees reach asymptote more quickly. These findings are consistent 

with the lag hypothesis (Singer & Willet, 2003). 

Conditional Quadratic Growth Model. The unconditional quadratic growth model 

left a significant amount of unexplained variance in each of the random effects. 

Therefore, in accordance with Hypothesis 2, which predicted that each ability (e.g., 

GMA, PM, and VA) would positively contribute to growth in skill, a conditional 

quadratic growth model incorporating the abilities was fit to the data. This model 

replaced the Level 2 equations of the unconditional quadratic growth model with the 

following: 

 π0j = ß00 + ß01(zGMA) + ß02(zPM) + ß03(zVA) + u0j (3) 

π1j = ß10 + ß11(zGMA) + ß12(zPM) + ß13(zVA) + u1j 

π2j = ß20 + ß21(zGMA) + ß22(zPM) + ß23(zVA) + u2j 
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In this model each of the parameters (intercept, linear, and quadratic) from the 

unconditional quadratic model are now predicted from the abilities (GMA, PM, and VA) 

of individuals yet still allowed to randomly vary. The abilities were grand mean centered 

and standardized for ease of interpretation and understanding. 

This model was fit using maximum likelihood and converged in two iterations due to 

the balanced nature of the data (e.g., Singer & Willett, 2003). The model represented a 

significantly better fit to the data than the unconditional quadratic growth model, χ2(9, N 

= 131) = 99.00, p < .001, and the results can be found on the right side of Table 2. The 

performance of an average individual, represented by the Level 1 Model, as well as the 

growth parameter relationships, remained the same as in the unconditional quadratic 

growth model. Interestingly, although all abilities were related to intercepts (i.e., skill 

attainment), GMA: β01 = 147.26, t(1177) = 1.68, p < .10; PM: β02 = 496.04, t(1177) = 

79.28, p < .001; VA: β03 = 265.57, t(1177) = 3.03, p < .01, only VA significantly 

contributed to the linear, β13 = 172.28, t(1177) = 3.84, p < .001, and quadratic, β23 = -

13.98, t(1177) = -3.12, p < .01, growth rates. These results do not support Hypothesis 2 in 

that only VA, and not GMA nor PM, positively contributed to growth in skill. 

Ability Contributions to Growth: Conditional Spline Growth Model 

Collectively, the research questions address the contributions of ability to skill 

acquisition, and the current approach provides a more accurate depiction than past 

investigations which have examined the pattern of correlations between ability and 

performance, such as in the manner displayed in Figure 2. The pattern of correlations 

shown in Figure 2 suggest all the abilities contribute to skill acquisition throughout 

training, and as suggested by Fleishman (1972) this pattern stabilized after the early 
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stages of training. All of the research questions were answered by fitting a conditional 

spline growth model to the data; the results of which can be found in Table 3. 

Splines build off of each other in that to determine a model slope at a particular point 

in time, all previous spline coefficients must be added together. Figure 3 demonstrates 

this additive nature. Geometrically speaking, a slope can be represented as the angle 

between two vectors (Rodgers & Nicewander, 1988). Normally this angle is thought of as 

being in relation to the horizontal axis. However, while it is ultimately true that spline 

coefficients are in relation to the horizontal axis, it may be easier to think of the 

coefficients as being in relation to each other. The result is a model that can change slope 

as time progresses (e.g., the solid line in Figure 3). Table 4 specifies the cumulative and 

thereby instantaneous slopes of the Level 1 Model at the beginning of each spline from 

the conditional spline growth model. The pattern of decreasing but significant slopes 

indicates the average person continually improved at a decelerating rate throughout 

training. 

Splines were fit to the data according to day of training to allow an examination of 

how acquisition and ability contributions to that acquisition changed day to day. Because 

performance was operationalized as the average performance of the two test games from 

every 10-game session, and only two 10-game sessions occurred per day, the maximum 

degree of each polynomial spline that could be fit was linear. Similar to the linear trend 

of both the unconditional and conditional spline models in Table 2, the first spline 

(Monday spline) represents the underlying linear trend occurring at the onset of 

acquisition. The next spline (Tuesday spline) represents the deviation from the linear 

trend in the first spline starting on Day 2 of acquisition. The third spline (Wednesday 
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spline) represents the deviation from the deviation in the second (Tuesday) spline starting 

on Day 3 of acquisition. The fourth (Thursday spline) and fifth (Friday spline) splines 

followed this pattern of staggered summative deviation. As such the combination of 

linear splines is able to capture linear, quadratic, and potentially higher order polynomial 

trends over the course of training in a more precise and controlled manner than available 

with typical regression. 

Because individual differences in change were of primary interest in the present 

research, I investigated not only differences in Level 1 change but also whether Level 1 

change variables randomly varied across individuals. Following recommendations by 

several researchers (Bliese & Ployhart, 2002; Pinheiro & Bates, 2000; Snijders & Bosker, 

1999), I restrained Level 1 parameters when I found no random variability. Following 

recommendations in the literature (Bliese & Ployhart, 2002; Pinheiro & Bates, 2000), I 

conducted tests for random variability by contrasting models with log-likelihood ratio 

tests. The results of these tests forced the last two spline segments to be modeled as fixed 

because individuals did not appear to differ much in changes to the set pattern of skill 

acquisition at that late stage of practice. This decision was also supported by the leveling 

off of interindividual variance in performance as discussed when reporting the descriptive 

statistics. The conditional spline growth model was as follows. 

 Yij = π0j + π1j(i) + π2jD1i(i – i1) + π3jD2i(i – i2) + (4) 

π4jD3i(i – i3) + π5jD4i(i – i4) +  rij 

where rij ~ N(0, σ2) 

and 

π0j = ß00 + ß01(zGMA) + ß02(zPM) + ß03(zVA) + u0j 



 

31 

π1j = ß10 + ß11(zGMA) + ß12(zPM) + ß13(zVA) + u1j 

π2j = ß20 + ß21(zGMA) + ß22(zPM) + ß23(zVA) + u2j 

π3j = ß30 + ß31(zGMA) + ß32(zPM) + ß33(zVA) + u3j 

π4j = ß40 + ß41(zGMA) + ß42(zPM) + ß43(zVA) 

π5j = ß50 + ß51(zGMA) + ß52(zPM) + ß53(zVA) 

where 
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In this model Yij is the performance of an individual at a given time point while π0j is 

an intercept coded as performance at baseline. The parameter π1j represents the initial 

spline and the underlying linear trend, conditional on the other splines, throughout 

training. The i variables (i1, i2, i3, and i4) are set number of observations (e.g., sessions) 

since the beginning of skill acquisition denoting spline starting points (e.g., knots). The D 

variables (D1i, D2i, D3i, and D4i) are all dummy variables equal to 0 when the number of 

observations since the beginning of skill acquisition i, is less than i1, i2, i3, and i4 

respectively, and equal to 1 when i is greater than i1, i2, i3, and i4 respectively. The 

remaining parameters (π2j, π3j, π4j, and π5j) become summative decrements to the 

underlying trend when enough time passes according to the D dummy variables. 

Individually these splines represent acquisition in each phase, and collectively they can 

capture the negative deceleration of the learning curve. The abilities were again grand 

mean centered and standardized for ease of interpretation and understanding when 

predicting acquisition in each phase. 
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The conditional spline growth model was fit using maximum likelihood and 

converged in two iterations due to the balanced nature of the data (e.g., Singer & Willett, 

2003). The results are presented in Table 3. This model represented a significant 

improvement in fit over the conditional quadratic growth model, χ2(13, N = 131) = 

415.60, p < .001, and this model is closer to the actual average of performance at baseline 

than previous models, β00 = -1601.01, t(127) = -24.74, p < .001. The model suggests 

individuals start acquisition at a rapid rate, β10 = 1612.89, t(127) = 29.30, p < .001, and 

significantly slow in that rate on day two, β20 = -1327.84, t(127) = -17.85, p < .001. The 

average rates of acquisition change little past day two as signaled by the lack of any 

additionally significant spline coefficients. Although no significant changes to acquisition 

rates occurred after day two, it is important to note that acquisition rates were statistically 

significant across the remainder of training as shown in Table 4. 

Interestingly, in this model GMA did not contribute to performance (i.e., attainment), 

β01 = 124.90, t(778) = 1.60, p > .05. However, similar to the conditional quadratic growth 

model, both PM, β02 = 493.83, t(778) = 7.01, p < .001, and VA, β03 = 212.82, t(778) = 

2.73, p < .01, contributed to performance (i.e., attainment), and only VA significantly 

contributed to acquisition. However, in addition to the information provided by the 

conditional quadratic growth model, the spline model indicated the contribution of VA to 

acquisition only occurred early in training, β13 = 209.59, t(778) = 3.16, p < .01. 

Ability Contributions to Growth: Stable or Dynamic? 

The research questions all concern the ability-spline interactions from Table 3 

because the interactions speak to how dynamic ability contributions influence growth 

curves. Research Question 1 addressed how the intra-ability contributions changed across 
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skill acquisition. Research Question 2 addressed the relative contributions to growth 

among the abilities within each phase of skill acquisition. Research Question 3 addressed 

the relative contribution to growth among the abilities and whether or not the relationship 

among contributions changed over the course of skill acquisition. 

As displayed in Figure 4, the results did not show a dynamic relationship between 

ability and skill acquisition. Specifically, GMA and PM made no significant 

contributions to skill acquisition at any point during training. On the other hand, VA 

made a significant early contribution, but successive contributions were not significant. 

These patterns are displayed in a different way in Figure 5, which shows how each 

ability influences or does not influence both attainment (i.e., intercept) and acquisition 

(i.e., slope), while controlling for the other predictors. Specifically, all three plots show 

how abilities contribute to interindividual variance in attainment (i.e., intercept) when 

examining how far apart the high and low ability lines are within each plot. Additionally, 

in the VA plot, a pattern of increasing interindividual variance can be observed as 

training progresses whereas in the GMA and PM plots, interindividual variance remains 

constant. The pattern of VA contributing significantly to the initial, positive Monday 

spline and at the .10 level with the second, negative Tuesday spline could be construed as 

evidence of how VA contributes to an initial divergence, but later convergence, in 

performance between low and high ability individuals as consistent with the lag 

hypothesis (Singer & Willett, 2003). 

Results without Visual Attention 

Given that VA is not commonly investigated in ability-acquisition research, coupled 

with the fact that only VA was significantly related to skill acquisition in the primary 
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results, ancillary analyses based on the analyses of Tables 2 and 3 but focusing on only 

GMA and PM were conducted and reported in Tables 5 and 6. 

After removing VA, the results did not change with respect to PM, but the results did 

change with respect to GMA. In the conditional quadratic model the exclusion of VA 

resulted in the GMA intercept term becoming significant, Table 2: β01 = 147.26, t(917) = 

1.68, p < .10 vs. Table 5: β01 = 270.51, t(917) = 3.37, p < .001, as well as the GMA 

interaction with the linear trend, Table 2: β11 = -0.20, t(917) = 0.00, p = ns vs. Table 5: 

β11 = 79.75, t(917) = 1.91, p < .10. Similarly, in the conditional spline growth model the 

exclusion of VA resulted in the GMA intercept term becoming significant, Table 3: β01 = 

124.90, t(778) = 1.60, p = ns vs. Table 6: β01 = 223.67, t(778) = 3.15, p < .01, as well as 

the GMA interaction with the underlying linear trend (Monday spline), Table 3: β11 = 

21.58, t(778) = 0.33, p = ns vs. Table 6: β11 = 118.85, t(778) = 1.95, p < .10. 

These results highlight the stronger relationship of VA to GMA (r = .53) when 

compared to the relationship between VA and PM (r = .34) because much of the variance 

accounted for by the inclusion of VA was accounted for by GMA when VA was removed 

from the analyses. However, these results indicate that even in the absence of VA, both 

GMA and PM fail to contribute to acquisition beyond the first stage of practice. 

Discussion 

The present research offers a new perspective into the ongoing debate regarding the 

relationship between ability and skill acquisition. Through the combination of growth 

curve and spline modeling, I was able to model skill acquisition trends over different 

segments of training while properly controlling for the indirect and moderating effects of 

past performance and ability contributions to that performance (Fleishman & Mumford, 
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1989b). This is important because most early research failed to model skill acquisition 

and instead discussed correlations between abilities and performance as evidence of the 

ability-acquisition relationship (Voelkle et al., 2006). Although newer research is now 

modeling skill acquisition directly and independently of attainment, most studies still 

neglect to incorporate information about learning phases (e.g., Voelkle et al, 2006). The 

modeling of this phase information is imperative in any discussion about how abilities are 

related to skill acquisition because it allows for a more explicit examination of when and 

how abilities contribute to acquisition in accordance with the specification of current 

theory (e.g., Ackerman, 1988, 1989; Fleishman, 1972). 

Furthermore, relatively little is known about contributions of ability to late stage 

performance (Ackerman, 2007; Fleishman & Mumford, 1989b). To this end, I 

incorporated VA into the present investigation as an understudied ability in this area, 

which might be one of many potential abilities that may contribute in the late stages of 

skill acquisition. 

How the Choice of Analytic Approach Matters 

Traditional. The type of analysis matters. Based on the traditional approach of 

interpreting patterns of correlations between ability and attainment as evidence for 

ability-acquisition relationships, one might conclude the pattern of results in Figure 2 

shows all three abilities (GMA, PM, and VA) were moderate to strongly related to 

acquisition throughout training, which supports Ackerman’s (1987, 1988) assertions 

regarding the contribution of abilities during skill acquisition for a complex and 

inconsistent task such as Space Fortress. Additionally, this observed pattern partially 

supports other lines of research such as case-based reasoning (Anderson, 1983; Gentner, 
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1983; Hammond, 1990; Kolodner, 1983; Schank, 1982), executive control (Norman & 

Shallice, 2000; Stuss & Knight, 2002), and interactive iterative learning phase models 

(Day et al., 1997) in that GMA modestly increased across training sessions. However, the 

traditional approach does not actually model skill acquisition, and therefore 

interpretations that discuss skill acquisition are suspect. 

Growth. Models such as conditional growth models are an improvement over 

traditional analytic approaches because they directly model skill acquisition 

independently of attainment by distinguishing between ability contributions to growth 

slopes and intercepts. For instance, one might conclude based on the conditional 

quadratic model results presented in Table 2 that GMA, PM, and VA contributed to 

performance, but VA also influenced skill acquisition throughout training. However, 

these models have a limitation in that they do not address different segments or phases of 

acquisition as theory posits (e.g., Ackerman, 1988, 1989), and therefore, such models do 

not allow a critical examination of when and how abilities contribute to skill acquisition. 

Splined Growth. Therefore, coupling growth curve approaches with spline modeling 

is an even more promising approach in that splines allow for the dissection of acquisition 

into segments or phases similar to that dictated by theory (e.g., Ackerman, 1988; 1989) 

and thereby allow for the direct examination of exactly when and how abilities contribute 

to acquisition. An interpretation of the conditional spline growth model results presented 

in Table 3 suggest similar findings as that of the conditional quadratic growth model 

findings of Table 2. However, the incorporation of splines into the conditional spline 

growth model allowed acquisition to be represented in segments, and therefore, the 

deterioration of the VA contribution to changes in acquisition was now observable after 
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the second day of acquisition. This finding is consistent with Fleishman’s (1972) 

assertion that the contribution of cognitive abilities will decline as acquisition progresses. 

As an added benefit, splines allowed for better control over the indirect and moderating 

effects of previous performance when examining the relationship of abilities to skill 

acquisition (Fleishman & Mumford, 1989b). 

Implications 

As a whole, the spline results offer mixed support for prior theory on the relationship 

between abilities and acquisition (e.g., Ackerman, 1987, 1988; Fleishman, 1972). For 

example, Ackerman’s (1987, 1988) theory suggests that for complex yet inconsistent 

tasks, such as Space Fortress, early skill acquisition will depend primarily on cognitive 

abilities, such as GMA and possibly VA. His theory was supported in that VA 

significantly contributed to early attainment (i.e., intercept) as well as early acquisition 

(i.e., slope), and GMA offered similar support when VA was excluded from the model. 

Likewise, Fleishman (1972) predicted non-motor abilities such as VA and GMA would 

contribute to early acquisition in perceptual-motor tasks such as Space Fortress. His 

claims are also supported by the results of VA and to some extent GMA. On the other 

hand, both Ackerman and Fleishman were not supported in that the contribution of PM to 

growth did not increase later in training. In the present results PM made significant 

contributions early in training to attainment (i.e., intercept), but at no point, either in a 

model with or without VA, did PM contribute to later stages of skill acquisition. 

Additionally, the spline results do not seem to support the implications of previously 

observed increasing predictive validities of GMA (e.g., Arthur et al., 1995; Day et al., 

1997; Deadrick, & Madigan, 1990; Rabbitt et al., 1989) because GMA did not contribute 
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to skill acquisition at any point during training. Accordingly, the spline results also do not 

support iterative learning-phase models because such models assume GMA contributions 

to acquisition increase during training (Day et al., 1997). 

Furthermore, the results also support the idea that later growth is increasingly a 

function of habits and skills acquired in the task itself (Fleishman, 1972; Fleishman & 

Mumford, 1989b). Overall, ability does not seem to be as important of a determinant of 

growth as previous theory would suggest (e.g., Ackerman, 1987; 1988; Fleishman, 1972). 

However, it is important to note that ability is still important through its strong 

relationship to attainment. 

These claims are bolstered when examining the results of other recent growth curve 

analyses such as that of Lang and Bliese (2009). In their study examining adaptation to 

task change, GMA was found to be significantly related to initial performance and 

performance after a change in the criterion task (i.e., transition adaptation) but unrelated 

to skill acquisition or acquisition after the task change (i.e., reacquisition adaptation). 

Ability provides a strong edge for performance, but training and practice can 

compensate (Keil & Cortina, 2001). Because abilities seem to influence attainment but 

not acquisition (Lang & Bliese, 2009), and later performance may be a function of 

previous performance (Zyphur, Chaturvedi, & Arvey, 2008), training might be better 

tailored to knowledge and skills rather than abilities. Even though abilities are still 

important contributors to performance, a knowledge and skills approach to training needs 

assessment would prove useful when the costs of training are estimated and decisions 

regarding when to train or when to select individuals for a given job are made. 
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As a hypothetical example, consider how long it would take two individuals, one 2-

standard deviations above and the other 2-standard deviations below average on VA, to 

reach an expertise level of performance on Space Fortress. Based on the spline model 

results, the high ability individual might attain that level of performance in 15 sessions or 

7.5 hrs. whereas the low ability individual might require 45 sessions or 22.5 hrs. 

Therefore, the lower ability trainee would have to spend three times as long in training to 

reach the level of expert. If training is expensive, it may be more cost effective to simply 

select based on ability as opposed to training lower ability individuals. 

Strengths 

This study has a number of strengths that warrant note. In contrast to many previous 

analyses, skill acquisition was actually modeled, and random coefficients were used 

which allowed the analytic focus to remain on the individual as advised by Rogossa 

(1995). Spline modeling was incorporated which allowed for the inclusion of acquisition-

phase information into the model and therefore the determination of exactly when and 

how abilities contributed to skill acquisition. Even in previous analyses that modeled 

acquisition (e.g., Voelkle et al., 2006), the failure to include phase information can lead to 

different conclusions as previously demonstrated. Splines allowed for better control over 

the indirect and moderating effects of previous performance when examining the 

relationship of abilities to skill acquisition (Fleishman & Mumford, 1989b). Additionally, 

VA represents an initial bridge between this type of research and a newer taxonomy of 

human ability (e.g., CHC Theory). 
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Limitations and Future Research 

This study also has a number of limitations that should be mentioned. The sample 

size was moderate and not representative of the population at large. For instance, the over 

representation of undergraduates in the current sample led to some degree of range 

restriction on the measure of GMA. In addition, computer and game experience were 

both similarly restricted in range. It is possible these limitations may have combined to 

prevent any significant GMA-related findings. Future research should utilize larger, more 

representative samples to allow for improved generalizations. 

The operational definitions of GMA and PM were limited. Instead of adhering to the 

psychometric definition of GMA as a factor common to tests of cognitive ability, I used a 

single measure (APM: Raven et al., 2004). For PM, I used a very specific operational 

definition unlike the broad definitions used in previous research (e.g., Ackerman, 1987, 

1988). Future research could administer a number of test batteries and extract estimates 

that better fit the traditional operational definitions of the abilities under investigation. 

Moreover, this line of research should investigate additional abilities and might possibly 

continue to draw on the CHC framework. 

Additionally, the present study utilized a relatively “closed” task as opposed to a 

more “open” task. Ackerman (2007) suggests the closed or open nature of a task appears 

to dictate whether individuals will converge or diverge in their performance levels 

throughout training. As compared to open tasks, closed tasks are those that draw on a 

well-defined and generally smaller amounts of requisite knowledge. Once the basics have 

been acquired, there is little more to learn that will markedly improve performance. 

Consequently, high-ability individuals exhibit task mastery relatively quickly. Lower-
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ability individuals might also achieve task mastery but after a longer period of time. 

Therefore, closed tasks typically exhibit the lag hypothesis (Singer & Willett, 2003). 

Conversely, because open tasks are less specific and demarcated by the addition of 

novel components as soon as any one component is mastered, high performers of open 

tasks typically do not exhibit the same asymptotic performance as in closed tasks. As a 

whole, open-task knowledge demands are thought to be cumulative, and this suggests any 

given individual will eventually fail to master the increasing task complexities if the task 

is sufficiently “open” enough. As a result, a general decline in acquisition rate can be 

observed for all individuals. When this happens, the highest and lowest performing 

learners will separate in their performance across training. Therefore, open tasks 

generally portray the deficit hypothesis (Singer & Willett, 2003), fan-spread effect, or 

Matthew effect (Merton, 1968; Stanovich, 1986). 

The findings from investigations using a relatively closed task, such as Space 

Fortress, may not generalize to other more open tasks. For instance, because open tasks 

are generally more knowledge based, PM ability may offer little to no contribution at any 

point during open task acquisition. As another, more general example, abilities in open 

tasks would not be expected to be related to subsequent splines after the initial spline 

because acquisition should portray increasing interindividual variation across time 

(deficit hypothesis, fan-spread effect, or Matthew effect: Merton, 1968; Singer & Willett, 

2003; Stanovich, 1986).Therefore, future research should focus on cross-validation with 

other, more open tasks. 

Because open tasks essentially change with the addition of new components 

whenever anyone prior component is mastered, different abilities may become more 
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important at various points in acquisition (Ackerman, 1987, 1988). Because this type of 

task is continually reinvented, Fleishman and Mumford (1989b) suggest each change is a 

new task, and therefore, learners remain in early stages of skill acquisition where changes 

in the combination of abilities contributing to performance happen frequently. All of this 

points to the importance of matching specific abilities to specific components of the task 

at hand (Brunswik, 1956; Wittmann & Süß, 1999). In fact, the significant contributions of 

VA could be due to the nature of the Space Fortress task. The proper matching of abilities 

to task should be a primary endeavor of future studies as suggested by Voelkle et al. 

(2006). 

The operational definition of time may have also been a limiting factor. Like other 

recent growth curve modeling research (e.g., Lang & Bliese, 2009; Voelkle et al., 2006), 

time was defined on an ordinal scale when fitting the present models. This definition may 

not adequately capture the differences in time among any three observations and may 

therefore affect model parameter estimates. In the present study, the time between 

baseline and the first session does not actually equal the time between the first and 

second sessions as the models applied might suggest. As Newell et al. (2009) advise, 

future research must be careful in the treatment of time. 

Finally, the splines were fit to the data more as an artifact of methodological design 

than as determined by theoretical phase of skill acquisition. While this allowed for an 

examination of when and how abilities might contribute to acquisition at different time 

points during training and represents a closer approximation to existing theory, it is still 

not a direct mapping. The literature has often confused time vs. performance as the 

determinant of skill acquisition phase (Voelkle et al., 2006), and even the current spline 
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approach does not address this. In future research it may be possible to allow the spline 

knot points to be estimated from the data and then to allow these knot points to vary 

across individuals. Such an analysis would represent the direct application of learning-

phase theory to the examination of ability contributions to skill acquisition. 
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Table 3 
 
Conditional Spline Growth Model 
 

 
Fixed Effects 

 
Sym. 

 
Coef. 

 
Coef. SE 

 
   t 

 
Std. coef. 

 
Level 1 Model 

     

   Intercept β00 –1601.01   64.71 –24.74a***  –1.69 
   Splines      
      Monday β10  1612.89   55.05  29.30a***   0.70 
      Tuesday Deviation β20 –1327.84   74.40 –17.85a***  –0.57 
      Wednesday Deviation β30    29.53   58.34   0.51a   0.01 
      Thursday Deviation β40   –89.59   56.22  –1.59b  –0.04 
      Friday Deviation β50   –99.99   86.63  –1.15b  –0.04 
 
Level 2 Model 

     

   GMA β01   124.90   77.92   1.60b   0.05 
   PM β02   493.83   70.47   7.01b***   0.21 
   VA β03   212.82   78.02   2.73b**   0.09 
   Monday x GMA β11    21.58   66.28   0.33b   0.01 
   Monday x PM β12    32.61   59.94   0.54b   0.01 
   Monday x VA β13   209.59   66.36   3.16b **   0.09 
   Tuesday x GMA β21    –4.37   89.58  –0.05b   0.00 
   Tuesday x PM β22   –34.98   81.02  –0.43b  –0.02 
   Tuesday x VA β23  –153.92   89.69  –1.72b†  –0.07 
   Wednesday x GMA β31   –62.33   70.25  –0.89b  –0.03 
   Wednesday x PM β32    43.18   63.53   0.68b   0.02 
   Wednesday x VA β33   –42.69   70.34  –0.61b  –0.02 
   Thursday x GMA β41   110.19   67.69   1.63b   0.05 
   Thursday x PM β42   –79.65   61.22  –1.30b  –0.03 
   Thursday x VA β43   –45.53   67.78  –0.67b  –0.02 
   Friday x GMA β51   –66.43  104.31  –0.64b  –0.03 
   Friday x PM β52    74.81   94.34   0.79b   0.03 
   Friday x VA β53    86.23  104.44   0.83b   0.04 
 

    Correlations 
 

Random Effects 
 

Sym. 
 

Variance 
 

SD 
 

  1 
 

  2 
 

  3 
 

  4 
 
1. Intercept 

 
τ00 

 
298375 

 
546.24 

 
  ― 

   

2. Monday τ11 259252 509.17  .58***   ―   
3. Tuesday Deviation τ22 311067 557.73 –.72*** –.92***   ―  
4. Wednesday Deviation τ33 48086 219.29  .45† –.29 –.05   ― 
Residual σ2 302038 549.58     
 
Note. N = 131. k = 1310. The intercept reflects baseline performance. Abilities are grand mean 
centered and standardized. Standardized coefficients were derived by setting the standard deviation 
of all variables to 1 without altering the centering of the variables. Coef. = coefficient. Std. coef. = 
standardized coefficient. Sym. = Symbol. a df = 127. b df = 778. † p < .10. ** p < .01. *** p < .001.
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Table 4 
 
Daily Acquisition Rates 
 
 

Slope 
 
   Estimate 

 
 SE 

 
   t 

 
Standardized 

Estimate 
 
Monday 

 
1612.89 

 
55.05 

 
29.30a*** 

 
0.70 

 
Tuesday 

 
 285.05 

 
36.16 

 
 7.88a*** 

 
0.12 

 
Wednesday 

 
 314.57 

 
32.99 

 
 9.54a*** 

 
0.14 

 
Thursday 

 
 224.98 

 
34.37 

 
 6.55b*** 

 
0.10 

 
Friday 

 
 124.99 

 
65.92 

 
 1.90b† 

 
0.05 

 
Note. N = 131. k = 1310. a df = 127. b df = 778. † p < .10. *** p < .001.  
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Table 5 
 
Conditional Quadratic Growth Model without VA 
 

   
Conditional Model 

 
Fixed Effects 

 
Sym. 

 
Coef. 

 
Coef. 

SE 

 
t 

 
Std. 
coef. 

 
Level 1 Model 

     

   Intercept β00 –1143.19 75.30 –15.18a*** –1.49 
   Linear β10 1174.15 39.25  29.91a*** 0.51 
   Quadratic β20 –77.93 3.85 –20.24a*** –0.03 
 
Level 2 Model 

     

   GMA β01 270.51 80.28   3.37b*** 0.12 
   PM β02 544.86 80.28   6.79b*** 0.24 
   Linear x GMA β11 79.75 41.85   1.91b† 0.03 
   Linear x PM β12 62.00 41.85   1.48b 0.03 
   Quadratic x GMA β21 –5.46 4.11  –1.33b 0.00 
   Quadratic x PM β22 –4.87 4.11  –1.19b 0.00 
 
    Correlations 

 
Random Effects 

 
Sym. 

 
Variance 

 
SD 

 
1 

 
2 

 
1. Intercept 

 
τ00 

 
441165 

 
626.61 

 
― 

 

2. Linear τ11 121072 317.26 .87*** ― 
3. Quadratic τ22 1018 29.73 –.92*** –.97*** 
Residual σ2 487937 698.52   
 
Note. N = 131. k = 1310. The intercept reflects baseline performance. 
Abilities are grand mean centered and standardized. Standardized 
coefficients were derived by setting the standard deviation of all variables to 
1 without altering the centering of the variables. Coef. = coefficient. Std. 
coef. = standardized coefficient. Sym. = Symbol. a df = 127. b df = 917. † p < 
.10. ** p < .01. *** p < .001.  
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Table 6 
 
Conditional Spline Growth Model without VA 
 

 
Fixed Effects 

 
Sym. 

 
Coef. 

 
Coef. SE 

 
t 

 
Std. coef. 

 
Level 1 Model 

     

   Intercept β00 –1601.01   66.53 –24.06a***  –0.69 
   Splines      
      Monday β10  1612.89   57.09  28.25a***   0.70 
      Tuesday Deviation β20 –1327.84   75.17 –17.66a***  –0.57 
      Wednesday Deviation β30    29.53   58.54   0.50a   0.01 
      Thursday Deviation β40   –89.59   56.25  –1.59b  –0.04 
      Friday Deviation β50   –99.99   86.67  –1.15b  –0.04 
 
Level 2 Model 

     

   GMA β01   223.67   70.93   3.15b**   0.10 
   PM β02   532.95   70.94   7.51b***   0.23 
   Monday x GMA β11   118.85   60.86   1.95b†   0.05 
   Monday x PM β12    71.14   60.86   1.17b   0.03 
   Tuesday x GMA β21   –75.80   80.14  –0.95b  –0.03 
   Tuesday x PM β22   –63.28   80.15  –0.79b  –0.03 
   Wednesday x GMA β31   –82.14   62.41  –1.32b  –0.04 
   Wednesday x PM β32    35.34   62.41   0.57b   0.02 
   Thursday x GMA β41    89.06   59.97   1.49b   0.04 
   Thursday x PM β42   –88.02   59.97  –1.49b  –0.04 
   Friday x GMA β51   –26.41   92.40  –0.29b  –0.01 
   Friday x PM β52    90.66   92.40   0.98b   0.04 
 

    Correlations 
 

Random Effects 
 

Sym. 
 
Variance 

 
  SD 

 
  1 

 
  2 

 
  3 

 
  4 

 
1. Intercept 

 
τ00 

 
 329394 

 
573.93 

 
  ― 

   

2. Monday τ11  289092 537.67  .62***   ―   
3. Tuesday Deviation τ22  325774 570.77 –.73*** –.92***   ―  
4. Wednesday Deviation τ33   50736 225.25  .35 –.35 –.01   ― 
Residual σ2  302319 549.84     
 
Note. N = 131. k = 1310. The intercept reflects baseline performance. Abilities are grand mean 
centered and standardized. Standardized coefficients were derived by setting the standard 
deviation of all variables to 1 without altering the centering of the variables. Coef. = coefficient. 
Std. coef. = standardized coefficient. Sym. = Symbol. a df = 127. b df = 778. † p < .10. ** p < .01. 
*** p < .001.  
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Figure 1. Space Fortress performance across all sessions. The points along the solid line 
indicate mean performance, as well as the corresponding standard errors, at each session. 
Dotted lines represent individual trajectories of the 10% best and 10% worst participants 
of the entire sample (at the ninth session). Dashed lines represent the average of the best 
and worst 10% groups.  

‐1.73

‐1.23

‐0.73

‐0.23

0.27

0.77

1.27

1.77

2.27

2.77

‐4000.00

‐3000.00

‐2000.00

‐1000.00

0.00

1000.00

2000.00

3000.00

4000.00

5000.00

6000.00

7000.00

B 1 2 3 4 5 6 7 8 9

Sp
ac
e 
Fo
rt
re
ss
 P
er
fo
rm

an
ce
 (s
ta
nd

ar
di
ze
d)

Sp
ac
e 
Fo
rt
re
ss
 P
er
fo
rm

an
ce
 (u

ns
ta
nd

ar
di
ze
d)

Session

Individual Raw

Best 10% Average

Overall Average

Worst 10% Average



 

59 

 
Figure 2. Ability-performance zero-order correlations across sessions.
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Figure 3. A hypothetical example of the additive nature of splines.
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Figure 4. Conditional spline growth model ability-spline interactions. 
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Figure 5. Predicted performance as a function of abilities. 
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