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Abstract 

Results of environmental models (EMs) are often used to assist decision 

making.  However, EM outcomes vary significantly with different input data, 

model parameters and model assumptions.  Therefore, informed decision making 

requires an in-depth understanding of how the changes in input data, model 

parameters and model assumptions influence the model outputs.  While EMs are 

now accustomed to geo-spatial data, the influences of spatial uncertainty are often 

overlooked.  This research examines the influence of spatial uncertainty 

throughout the three stages of general environment modeling: 1) examine the 

uncertainty in geo-spatial data as representation of the environment, 2) examine the 

uncertainty in the linkage between EMs and Geographic Information System (GIS) 

and, 3) examine and compare the influence of spatial uncertainty with the 

uncertainty of model parameters.  LiDAR data and urban atmospheric dispersion 

model (UADM) are used as a use case, to demonstrate the methods and benefits of 

examining the influence of spatial uncertainty toward EMs. 
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Chapter 1 : Introduction 

1. Introduction 

Environmental modeling commonly contributes to decision making 

processes in many application domains.  Many important policies and decisions 

are made based on the results of environmental modeling (King and Kraemer, 

1993).  City planners use hydrological models to determine flood plain areas 

(Maidment, 1993).  Emergency managers employ atmospheric dispersion models 

to evacuate citizens during accidental toxic material release (NRC, 2003).  

Environmental agencies apply land use change models to study deforestation and 

suggest future development plans (Moran and Brondizio, 1998). 

However, the outcomes of environmental models may not be sufficiently 

reliable for decision makers due to three kinds of uncertainty.  First, uncertainty is 

inevitably associated with input geo-spatial data:  How accurate are the 

geo-spatial data representing the environment?  Second, uncertainty can be 

introduced from data processing:  How does the data change during data 

conversion between GIS and EMs?  Third, uncertainty attaches with the modeling 

parameters:  How well our knowledge on phenomena is represented in a model?  

Without in-depth understanding of the uncertainty from these aspects, the 

outcomes of the environmental models are questionable.   
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In order to assure the outputs of environmental model are reliable, scientists 

validate their environmental models with observation data.  On the other hand, to 

assure the input data are accurate, scientists also validate the input data through 

accuracy assessments.  However, accuracy assessment of input data are becoming 

more and more difficult since the input data in the environmental models are 

becoming more complicated with the blossoming of geo-spatial technologies (i.e. 

Geographic Information Systems, Global Positioning Systems and Remote 

Sensing).  Input data for environmental models are now available in different 

formats, multi-dimensional (3D or even 4D), and with fine resolutions (Burrough 

and McDonnell, 1998).     

Geo-spatial data has become one of the standard input requirements for 

environmental modeling.  Hydrological modeling requires digital elevation data, 

urban atmospheric dispersion modeling demands building dimension and location, 

and land use change modeling needs land use and population data.  Even with a 

great variety of data sources, geo-spatial data still may not meet the specific input 

requirement of environmental models because of the different paths in 

development (Fedra, 1993).  Environmental modelers focus more on the model 

performance while geographic information scientists focus more on spatial 

representation of reality.  Use of different data models and formats challenge 
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data-model integration and therefore, geo-spatial data often demands conversion 

before entering into the environmental models. 

Besides the input data, model parameters are another source of input 

uncertainty.  Using atmospheric dispersion modeling as an example, uncertainty 

of model parameters includes variations in wind speed and direction, wind profile 

formula, atmospheric stability, surface roughness and other parameters.  Each 

model may have a distinct set of parameters, and the uncertainty from parameters 

is commonly handled by conducting sensitivity analysis.  However, most analyses 

focus on comparing uncertainties of different model parameters while uncertainty 

in input data (i.e. geo-spatial data) is overlooked.   

A comprehensive understanding on the influence of uncertainty is 

beneficial to both decision makers and modelers.  However, due to the 

complexity of environmental models and geo-spatial data, it is very difficult to 

analyze the influence of all uncertainties involved in environmental modeling.  

Nevertheless, this research proposes a three-stage approach to examine the 

influence of uncertainty in environmental modeling.  To test the concept and 

methodology, this study use urban atmospheric dispersion modeling as an example.  

This method analyzes the uncertainty encountered in data-model integration in 

three common stages: 1) uncertainty arising from data gathering using LiDAR data 
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as example, 2) uncertainty arising from data conversion between Geographic 

Information System (GIS) and urban atmospheric dispersion models (UADMs), 

and 3) the uncertainty of the model outcomes arising from the uncertainty input.  

 

2. Background  

This study first defines the term “uncertainty” because for different 

disciplines the term “uncertainty” may have distinctive meanings and contain 

different components.  In environmental modeling, uncertainty can be considered 

in various categories.  The United States Environmental Protection Agency 

(USEPA, 1992) divided the uncertainty of environmental models into “scenario 

uncertainty”, “parameter uncertainty,” and “model uncertainty” referring to 

missing information on exposure and dose, model parameters, and gaps in 

scientific theory, respectively.  However, Cullen and Frey (1999) characterized 

uncertainty by “input uncertainty” and “model uncertainty”, where “model 

uncertainty” arises from limited understanding of the model structure, and model 

detail as well as limited model validation, extrapolation, model boundaries, and 

model scenarios.  “Input uncertainty” is due to empirical quantity errors such as 

measurement errors of pollutant concentrations.   
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In Geographic Information Science, uncertainty has been defined as a 

“discrepancy between geographic data in GIS and the geographic reality these data 

are intended to represent” (Zhu, 2005).  Uncertainty in spatial data also refers to 

“spatial uncertainty” which includes measures of accuracy, statistical precision, 

bias in initial values, and estimated statistical coefficients in prediction, as well as 

estimation of error in the final output of modeling results (Mowrer, 2000).  

Moreover, in GIS and Remote Sensing literature, spatial uncertainty relates 

to terms such as accuracy, error, incompleteness, precision, randomness, bias, and 

data quality.  These terms are commonly used to describe the nature of spatial 

uncertainty and data quality.  In the following paragraphs, these terms are defined 

and their relationships to spatial uncertainty provide a foundation to further 

examine the spatial uncertainty.     

Accuracy refers to how close a measurement is to the reality it represents.  

In contrast, error refers to a discrepancy between a measurement and the reality it 

represents.  Often, the term error is interchangeable with the term uncertainty in 

the literature.  While the terms are very similar in meanings, they represent 

different approaches in measuring the associated discrepancy.  Error is used 

when measuring discrepancy in absolute term while uncertainty is used when 

measuring discrepancy in relative term (Goodchild, Buttenfield, and Wood, 1994).  
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Error can be random or systematic.  Random error implies that the discrepancy 

between a measurement and the reality it represents is caused by chance, and 

cannot be attributed to any underline processes.  Systematic error implies a 

consistent discrepancy between measurement and the reality, which is also called 

bias (Mowrer, 2000).   

The concept of data quality contains two meanings and seven dimensions.  

It can refer to the accuracy of data production or the fitness of use, which depends 

on application (Mead, 1982).  The seven dimensions that contribute to data 

quality include lineage, position accuracy, attribute accuracy, completeness, logical 

consistency, semantic accuracy and temporal information (Morrison, 1995).  

Uncertainty is closely related to data quality.  Data with greater uncertainty tend 

to be less useful and less accurate, and hence poorer in data quality.  

Incompleteness is an element of data quality which means lacking a part of data 

and is a cause for error or uncertainty.  Precision refers to the degree of detail in 

measurement; higher precision means more detailed in measurement (Goodchild, 

1993).  However, higher precision does not necessarily mean lower uncertainty.  

For example, we can measure a building height in meters up to 12 decimal places 

but it can be far away from actual building height.   
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This study focuses on spatial uncertainty with respect to a “discrepancy 

between geographic data in GIS and the geographic reality these data are intended 

to represent”(Zhu, 2005), and the parameters uncertainty defined by USEPA.  In 

particular, the study evaluates the spatial uncertainties in position (i.e. location of 

buildings) and attributes (i.e. height of buildings), and uncertainty in the 

meteorological variables of wind speed and wind direction.   

A comprehensive understanding on how various kinds of spatial 

uncertainty contribute to the model results is necessary and beneficial to both 

decision makers and modelers.  Particularly, in the field of urban atmospheric 

dispersion modeling (UADM), such understanding is desirable as UADM requires 

a large number of parameters and detailed spatial data.  For example, emergency 

managers need to know the uncertainty of modeling results in case of hazardous 

material releases because uncertainty in one parameter or input data may 

significantly change the model results (NRC, 2003).  Ultimately, the goal of the 

study is to improve the understanding of the modeling results with uncertainty and 

facilitate decision making under uncertainty.   

A common approach is to test the influences of different model parameters 

through Monte Carlo simulation or sensitivity analysis.  Many researchers focus 

on how uncertainties in model parameters affect UADM results.  For example, 
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Sullivan et.al. (2004) examined uncertainty in wind speed, wind direction, 

atmospheric stability, and emission rate in two dispersion models (i.e. ISCST3 and 

TOXST model).  The results indicate that the model output is sensitive to 

uncertainty in emission rate.  Manomaiphiboon and Russell (2004) examined the 

uncertainty in friction velocity, mean surface turbulent heat flux magnitude, 

surface roughness height, and mean surface temperature.  They identified 

uncertainty of friction velocity as the most influential factor among other 

meteorological variables.  Levy et. al. (2002) determined that the results of the 

CALPUFF dispersion model were moderately insensitive to the parameterization 

of chemical mechanism, wet/dry deposition, background concentration, and size of 

the receptor region.  Overall, the significance of uncertainty in model input 

parameters tends to vary according to the model and the applications.  Few 

studies, however, have focused on the uncertainty of model parameters compared 

to uncertainty from spatial data, and the uncertainty effects on the results of 

UADM.     

With the growth of utilizing geo-spatial data in environmental models, 

decision makers and modelers face not only the challenge of uncertainty from 

model parameters, but also the challenge of uncertainty embedded in the 

geo-spatial data.  In the field of atmospheric dispersion study, building data is one 
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of the fundamental inputs.  In the past, building data could only be obtained 

through land survey or acquiring building footprints from the building owners.  

Either process was time consuming and labor intensive.  Advances in remote 

sensing technologies afford detailed and accurate building data, including height, 

with active sensors such as LiDAR (Light Detection and Ranging).  LiDAR is a 

fast and relatively inexpensive method to capture detailed terrain elevation up to 

one-meter resolution.  With these advantages, the LiDAR technique has been 

applied to a broad range of environmental applications such as forestry, urban 

planning and coastal morphological study (Hill, Graham, and Henry, 2000).  

Nonetheless, more detailed data does not guarantee less uncertainty.  In fact, 

studies show that LiDAR accuracy may depart significantly from the estimate in 

complex terrain structure such as urban environments (Hopkinson et al., 2001; 

Ahokas, Kaartinen, and Hyyppa, 2003; Schenk, Csatho, and Lee, 1999).  While 

many researchers have identified the possibility of greater LiDAR error than the 

overall estimated error in relation to vegetation (Huising and Pereira, 1998; 

Hopkinson et al., 2001), the error distribution in relation to urban environments is 

not yet fully understood.     

Furthermore, the uncertainty in LiDAR data is blurred by the linkage 

between GIS and EMs, such as UADM.  A linkage between GIS and 
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environmental models is necessary since they do not share common data models.  

Similar to most of the EMs, the format of geo-spatial data needs to be converted 

before ingesting to the UDAMs.  Although data formats vary between different 

models, conversions are made mostly between two main data models: vector and 

raster models.  A vector model represents objects as points, lines and polygons 

whereas, a raster model represents objects as groups of grid cells or pixels.  

Uncertainty associated with vector-raster conversion have been identified and 

studied in the field of GIS (Congalton, 1997; Wedhe, 1982; Piwowar, Ledrew, and 

Dudycha, 1990; Bregt et al., 1991).  Most studies focused on examining the 

uncertainty in two-dimensional surface.  However, in UADM, building data are in 

three-dimensional surface, as well as the uncertainty.  

In response, this study primarily focuses on uncertainty arising from 

LiDAR-derived building data and examines its subsequent use in UADM, using 

the QUIC (Quick Urban and Industrial Complex) dispersion model as an example 

of UADM.  This study also compares the uncertainty arising from LiDAR data 

with the uncertainty introduced by meteorological parameters.   
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3. Research Hypothesis  

This study hypothesizes that the location uncertainty in geographical data is 

inevitable and it will propagate through the linkage between GIS and UADM.  As 

a result, the uncertainty will alter the outcome of UADM.   

“Location uncertainty in geographical data will propagate and alter 
the outcome of UADM.” 
 

4. Statement of Research Problems 

With the significant amount of uncertainty resulting from the spatial data, 

linkage between GIS and UADM, and model parameters in UADM, deterministic 

results of pollutant concentration without associated uncertainty information are 

not reliable to decision makers.  Therefore, there is a need to understand how 

each source of uncertainty contributes to the results of UADM in urban 

environments.  While the research takes the use-case of UADM, the approach 

developed is applicable to evaluate uncertainty in general GIS-Environmental 

modeling applications.   

The goal of this research is to examine how spatial uncertainty in 

LiDAR-derived building data affects the result of the UADM in response to the 

urban environment.  To achieve this goal, this study identified the following 

objectives: 
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1. Examine and quantify the spatial uncertainty of LiDAR-derived 
building data in relation to urban environments, using CBD in 
Oklahoma City as an example;  

 
2. Examine and quantify the spatial uncertainty resulting from the 

linking GIS and UADM, using ArcGIS and QUIC dispersion 
model as an example; 

 
3. Examine and quantify the effects of the spatial uncertainty in 

LiDAR-derived building data toward UADM, and compare the 
effects with meteorological parameters uncertainty, using QUIC 
dispersion model as an example. 

 

5. Research Design 

5.1 Conceptual flowchart 

The concept of the research design is shown in Figure 1.1.  First, the 

sources of spatial uncertainty in LiDAR-derived building data are identified.  

Then, with ground observations, the spatial uncertainty in statistical terms such as 

mean and standard deviation of discrepancies in building heights and locations are 

quantified.  This study also examines the spatial distribution of uncertainty and 

summarizes the urban environments where spatial uncertainty is greater than 

average.   After that, using ESRI ArcGIS and the QUIC dispersion model as 

examples, a linkage between GIS and UADM is created.  As the linkage involves 

a transformation of building data, this study also quantifies the spatial uncertainty 

caused by the data transformation.  Finally, the building data and model 
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meteorological parameters are perturbed based on the spatial uncertainty quantified 

above and ground observation in Joint Urban 2003 Atmospheric Dispersion Study 

(JU2003).  Under the same dispersion scenario, this study generates two sets of 

simulations: one set with uncertainty from model meteorological parameters only 

and the other set with both spatial and meteorological sources of uncertainty.  The 

final results are obtained by comparing and examining the uncertainty of the 

QUIC’s results with the ground observations from JU2003 in Oklahoma City.  

The study area, rationale and summative synopses for each objective are described 

and explained as follows.  Detailed research procedures and analytical outcomes 

are documented in subsequent chapters. 
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Figure 1.1. The conceptual flowchart of the research design. 
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5.2 Study area  

The study area for the first and second objective is approximately 0.5 

square kilometers of flat terrain which is located within the Central Business 

District (CBD) of OKC (Figure 1.2).  The city center is well defined and similar 

other CBDs dominated by high-rise buildings surrounded by open area and 

low-rise commercial buildings.  Due to the nature of the dispersion, computation 

power and limited field data, a smaller extent (about 612 x 830 meters) of the study 

area is used in the last objective of the research.      

0 170 340 510 68085
Meters  

 
Figure 1.2. The study area located in the Central Business District of 
Oklahoma City, Oklahoma.  Study area for objective 3 is shown in white 
boundary. Data source: U.S. Geological Survey, capture date: 2002-03-26. 
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5.3 Objective 1: Identifying and quantifying the sources of spatial uncertainty in 
LiDAR-derived building data 

This method begins by identifying the source of spatial uncertainty in the 

spatial data.  With a list of procedures that describe how building data is derived 

from the LiDAR data, sources of spatial uncertainty are identified (Figure 1.3).  

For LiDAR-derived building data, each procedure contributes to spatial uncertainty.  

Three main sources of spatial uncertainty have been identified: extraction 

algorithm, manual digitizing, and LiDAR raw data.  Results from feature 

extraction vary depending upon the chosen feature extraction algorithm.  Manual 

extraction results in inconsistent digitized boundaries.  Furthermore, accuracy of 

LiDAR raw data varies with response to different ground surfaces.       

Each source of uncertainty influences different aspects of spatial data.  

Manual digitization creates uncertainty in building boundaries (i.e. location); 

extraction algorithms create uncertainty both in building boundaries and building 

height (i.e. attribute) because the final building heights are determined by 

algorithms that extract building footprints and bare-earth elevation.  LiDAR data 

create uncertainty in building attributes because water and asphalt can absorb 

LiDAR signals and create incomplete coverage.   
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Figure 1.3. Procedures of generating building model from LiDAR data.   

LiDAR Raw Data 

LiDAR Grid Data  
(1st Return DEM, 2nd Return DEM, 

Intensity, Color) 

Bare Earth 

Building Footprints 

Detailed Building 
Footprints  

Detailed Building Footprints 
with Elevations 

Final Building 3D 
Model 

Import to ESRI ArcView3.x 

Extract Bare Earth using 
LiDAR Toolkit* 

Feature Extraction Algorithm* 

Manual Digitizing*  

Object Elevation Extraction* 

Ground Truth  

*Uncertainty may introduce during these processes. 



 18

For this study, the uncertainties of these different sources are quantified by 

the following methods: 

1) To quantify spatial uncertainty of building location arising from 
the extraction algorithm, this study calculates the differences 
between the x, y coordinates of automatically generated building 
footprints and the x, y coordinates of the final building model.  
For spatial uncertainty of building attribute, this study compares 
the building heights using different extraction algorithm options. 

 
2) To quantify spatial uncertainty resulting from manual digitizing, 

this study calculates the differences between the x, y coordinates 
of a building boundary digitized by 30 people on the same 
computer screen at the same scale (i.e. 1:1000).    

 
3) To quantify the spatial uncertainty of building elevation caused 

by LiDAR data, this study examines the building heights in the 
field where great elevation differences are found between final 
model and LiDAR data.   

Finally, the mean and standard deviation of the differences are calculated.  

Results are shown as maps and distribution graphs that can be used to simulate 

uncertainty for the final objective.   

 

5.4 Objective 2: Create a linkage between GIS and UADM dispersion model and 
examine the spatial uncertainty associated with the linkage 

After quantifying the spatial uncertainty of LiDAR-derived building data, 

conversion procedures are necessary to link GIS data into an UADM.  ESRI 

ArcGIS 9 and the QUIC dispersion model are used to illustrate the creation of a 

linkage between GIS and UADM.  ArcGIS 9 is a popular commercial GIS 
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software developed by the Environmental Systems and Research Institute (ESRI, 

Redlands California).  QUIC stands for Quick Urban and Industrial Complex 

dispersion modeling system and is a new light-weight dispersion model developed 

by Los Alamos National Laboratory (Pardyjak and Brown, 2002; Williams, Brown, 

and Pardyjak, 2002).  QUIC runs in the MATLAB software package and uses a 

diagnostic wind field model (QUIC-URB) that has been coupled with a Lagrangian 

dispersion model (QUIC-PLUME).  QUIC has been selected for its ability to 

produce rapid predictions of atmospheric dispersion in urban areas.   

This study employs a tight-coupling strategy for the linkage between 

ArcGIS and QUIC due to time and skill constraints.  Other possible strategies are 

loose-coupling and full integration.  Compared to loose-coupling, tight coupling 

integrates data and user interfaces to reduce demand of user input during the 

linkage.  On the other hand, tight coupling enables both GIS and environmental 

models to run independently and allow maximal flexibility for linkage in 

comparison to a full integration.  The tight-coupling strategy transfers data 

between GIS and UADM through an alternate user-interface.  A user-interface 

was designed using Visual Basic (VB) scripts within ArcMap because Visual 

Basic provides access to spatial data as well as spatial analysis tools.  However, 

ArcMap and QUIC do not share the same building data model.  Therefore, the 
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building data are modified before importing to QUIC, and hence additional spatial 

uncertainty is introduced.  For instance, QUIC only accepts rectangles or circles 

as building shapes while ArcMap can store irregular building shapes.  As a result, 

the building data are modified in two ways before importing to QUIC.  First, the 

building data are converted to a gird according to user-defined resolution.  Second, 

the building grids are converted back to polygons and divided into rectangles.  

The logic of the algorithm is shown in Figure 1.4.  For transferring data from 

QUIC to ArcGIS, this function is already available inside QUIC dispersion model.  

Since the output data model are the same between QUIC and ArcGIS (i.e. both use 

raster model), no uncertainty assessment is needed.   

During the data transformation from ArcGIS to QUIC, spatial uncertainty 

is again introduced.  Building location and height vary according to the 

user-defined resolution.  To quantify spatial uncertainty arising from change of 

resolution, this study first produce building data at one to twelve meter resolution 

in QUIC’s format, then calculate the differences between the x, y coordinates of 

building boundaries at the different resolutions, using one meter resolution as the 

default.  Same as objective 1, the mean and standard deviation of the differences 

are calculated.  Results are shown as maps and distribution graphs, which can be 

used to simulate uncertainty for the final objective. 
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Figure 1.4. The logic of algorithm that divide buildings into rectangular 
blocks.   
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5.5 Objective 3: Examining the effect of spatial uncertainty towards the outcomes 
of QUIC dispersion modeling  

With the uncertainty information from above, the final step is to examine 

how the spatial uncertainty of building data affects the results of the QUIC 

dispersion model.  Two approaches are commonly used to examine the 

uncertainty: 1) the Monte-Carlo method and, 2) Taylor series analysis.  The 

Monte-Carlo method processes the model with numerous perturbed copies of 

original input data and then examines the model outcome.  It requires a large 

amount of computing time.  Complimentarily, Taylor series analysis estimates the 

uncertainty of model outcomes by evaluating the derivatives of the output function.  

While the Taylor series analysis requires less computation by the substitution of 

mathematical formulas, it is limited to deterministic environmental models.  Since 

the QUIC dispersion model is a stochastic model, this study employs a 

Monte-Carlo method to examine the effect of spatial uncertainty on the QUIC 

dispersion model. 

The Monte-Carlo method starts by perturbing input data of the model.  

The input data are divided into three categories: 1) spatial, 2) meteorological and, 3) 

scenario.  The spatial category includes building location and building dimension.  

The meteorological category includes wind direction, wind speed, reference wind 

speed, wind profile and reference wind height.  The scenario category includes 
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emission source material, emission amount, release type, source type and emission 

location.  However, in this study building location in spatial category and wind 

direction and wind speed in meteorological category are perturbed because these 

input data are the most common input for UADM.  Uncertainty of building 

location is determined from objectives one and two, while uncertainty of wind 

speed and wind direction are based on ground observations from Joint Urban 2003 

project (JU2003).  

After perturbation of input data, sixty dispersion simulations according to 

one of the experimental setups at JU2003 (Table 1) are generated with the 

consideration of computation time and output data size.  JU2003 is one of the 

largest atmospheric dispersion experiments in the United States.  It aims to 

advance the knowledge of the contaminant movement inside an urban environment 

and thus improve atmospheric dispersion modeling.  The JU2003 includes 

intensive measurements of meteorological variables and chemical tracers in the 

downtown area of Oklahoma City, Oklahoma.  More than 200 portable wind 

sensors and tracer gas samplers were placed within the city for this experiment.  

With the ground observations from JU2003, the simulation results can be 

validated. 
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Table 1.1.  The fixed input parameters for QUIC dispersion model.   
 
Group Parameters Values 
Meteorolog
y Wind profile Power law 
Information Profile parameters  
 Uref(m/s) 1.5 
 Zref(m) 10 
 exp 0.3 
Release Gas material  Gasideal 
Information Total Mass release (g) 1000 
 Release type  Instantaneous 
 Source type Point 

 

Source location (UTM) X: 634775.02567 
Y: 3925884.38097 
Z:1.9  

Simulation  No of Particles 2000 
Information Simulation time step (s) 5 
 Simulation duration (s) 1200 
 Particles output frequency (s) 30 
 Concentration averaging time (s) 60 

 
Start time for concentration 
averaging (s) 0 

 

Sixty simulations are further divided into two groups in order to examine 

the influence of spatial uncertainty.  Each group contains thirty simulations.  The 

first group of simulations is generated with perturbed meteorological data while the 

second group of simulations is generated with perturbed spatial and meteorological 

data.  To identify the influence of spatial uncertainty, the perturbed 

meteorological data are the same for both groups of simulations.  Differences in 
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two groups of simulations are mapped to show the spatial distribution.  Moreover, 

the simulation results are validated with the ground observations from JU2003 

because results from the simulations alone do not distinguish whether the spatial 

uncertainty of building data and the model parameters contributes positively or 

negatively to the dispersion model.  With these methods, how spatial uncertainty 

may affect the accuracy of QUIC dispersion models in an urban area can be 

understood. 

 

6. Organization of the Dissertation 

The dissertation addresses the broad issue of spatial uncertainty in GIS and 

urban dispersion modeling in three stand alone articles that are embodied with 

introduction and conclusion chapters.  The three objectives described earlier form 

the three respective chapters and each chapter will be prepared in forms ready for 

submissions to academic journals.  This introductory chapter and the conclusion 

chapter in the end of the dissertation provide a common research prelude, 

summaries for coherence and integration of findings from the three objectives, as 

well as suggestions for future research. 
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Chapter 2 : Assessing Spatial Uncertainty of LiDAR-derived 
Building Model: A case study in Downtown Oklahoma City 

Abstract 

Light Detection and Ranging (LiDAR) technology enables cost-effective 

rapid production of digital models that capture topography and vertical structures of 

surface features at a fine spatial resolution.  This capability has promoted LiDAR 

applications for mapping terrain, buildings, forest stands, and coastal features that 

cannot be adequately captured by other remote sensing means over a large area.  

However, in complex terrain, LiDAR data and LiDAR-derived products may contain 

significant uncertainty.  This research provides a simple method to assess the 

spatial uncertainty of LiDAR-derived building model, using downtown Oklahoma 

City as an example.  Results indicate that significant uncertainty could be found in 

urban environment where: 1) building structures are complex, 2) buildings are 

constructed with reflective materials, and 3) vegetation grows near-by.  In addition, 

cities under fast development also challenge the accuracy assessment of 3D building 

models.  To conclude, this study suggest: 1) careful pre-flight planning before data 

collection, 2) improve the feature extraction algorithm if possible, 3) use of other 

remote sensing data, and 4) accuracy assessment on suggested urban environments to 

reduce the spatial uncertainty of LiDAR data and LiDAR-derived products. 
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1. Introduction 

Light Detection and Ranging (LiDAR) technology, also known as Laser 

Altimetry or Airborne Laser scanner, enables cost-effective rapid production of 

digital models that capture topography and vertical structures of surface features at a 

fine spatial resolution (Flood, 2001).  The capability has promoted LiDAR 

applications for mapping terrain, buildings, forest stands, and coastal features that 

cannot be adequately captured by other remote sensing means over a large area.  

With such an advantage, LiDAR data have been applied as basic input data for a 

wide range of environmental models, such as models for estimating forest biomass, 

measuring coastal erosion, and calculating atmospheric dispersion in urban area.  

Although LiDAR data provide fine resolution digital terrain models, the data 

do not guarantee quality results from environmental models.  Especially in areas 

with complex terrain, LiDAR data may contain significant spatial errors.  An 

overall accuracy assessment of a LiDAR dataset says nothing about the spatial 

distribution of LiDAR errors.  In addition, the post data processing also introduces 

additional uncertainty to the environmental modeling.  This study asserts that a 

spatial accuracy assessment of LiDAR data and post-processing (i.e. LiDAR-derived 

data) are critical to LiDAR applications, especially in urban area where terrain 

structure is complex and post-processes are required to generate building models.   
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This study uses the term, “uncertainty” here instead of “error” because the 

actual heights of buildings and other geographic features (such as tree canopies) are 

generally lacking.  The term “error” is often interchangeable with the term 

“uncertainty” in the literature.  While the terms are very similar in meaning, they 

represent different approaches in measuring the associated discrepancy.  “Error” is 

used when measuring discrepancy in absolute terms while “uncertainty” is used 

when measuring discrepancy in relative term (Goodchild, Buttenfield, and Wood, 

1994).  Spatial uncertainty, nevertheless, can be assessed by comparison and 

relative measurements in the field.   

With a comprehensive understanding of the spatial uncertainty of LiDAR 

data and LiDAR-derived data related to urban environments, target locations for 

groundtruthing and data correction can be identified.  Even when a field survey is 

constrained by the limits of time and resources, an understanding of LiDAR 

accuracy and post-processing effects on data accuracy serves as a foundation for the 

interpretation of modeling outcomes, such as urban viewshed analysis and 

atmospheric dispersion modeling.  

To discern spatial uncertainty of LiDAR data and post-processing effects in 

relation to urban environments, this study first examine the spatial uncertainty of 

LiDAR data and then the post-processing effects on spatial uncertainty.  Next, 
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processes that can introduce spatial uncertainty to the building model are identified. 

The spatial uncertainty is related to building location (i.e. x, y coordinates) and 

height for each process.  Finally, this study reviews the spatial distribution of 

uncertainty embedded in the LiDAR data and post-processes with digital 

ortho-photos and field measurements.  The Central Business District (CBD) of 

Oklahoma City is used as the study area. 

 

2. Background  

LiDAR works similar to traditional radar technology, but rather than radio 

waves, LiDAR emits beams of light and captures the returned light.  Combined 

with Global Positioning Systems (GPS) and Inertial Navigation Systems (INS), 

LiDAR theoretically can provide accurate vertical measurements, up to sub-meter 

accuracy, of ground objects. Raw LiDAR data consist of massive points with x, y, 

and z co-ordinates and are seldom used as an end product.  LiDAR vendors usually 

provide various levels of LiDAR data to meet the needs of user’s applications.  

Flood (2002) identified five levels of LiDAR deliverables: 1) Basic or “All-Points”, 

2) Low Fidelity or “First-Pass”, 3) High Fidelity or “Cleaned”, 4) Features layers, 

and 5) Fused.  Higher-level LiDAR data attempts to provide more accurate 

information, and are refined with other sources of remote sensing data; and 
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consequently incurs higher cost and longer delivery time.  Level-4 and Level-5 

LiDAR products consist of extracted features and are extensively reviewed.  

LiDAR data from levels one to three are processed at increasing degrees of data 

filtering but have no classifications or feature identification.   

Depending on the LiDAR product level and degree of detail required by the 

users, many methods have been developed to derive a 3D building model from 

LiDAR data.  General procedures involve separation of non-ground points from 

ground points, segmentation of different objects on the ground, generation of bare 

earth elevation, and building boundary detection and regularization.  Most 

procedures are processed through customized automatic algorithms by LiDAR data 

providers with the assumption that buildings are rectangular in shape and have flat 

roof surfaces.  However, the assumption is violated in downtown areas where 

buildings have complex structures and roof tops.  Manual refinement becomes 

necessary to identify problematic locations and adjust heights with other data 

sources.  

In addition to the assumption of simplified building geometry, there are other 

sources of errors or uncertainties in LiDAR data.  Through various procedures, 

errors or uncertainties can be introduced.  With extensive use of laser scanning for 

topographic measurements, Huising and Pereira (1998) outlined three main sources 
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of error:  1) the laser system, 2) data collection and processing, and 3) the target 

surface.  The laser system can introduce errors caused by laser pulse delay, GPS 

and INS misalignment.  Errors from data collection and processing are due to 

mistakes in flight line planning, system calibration and data filtering.  The 

reflectivity of target surfaces can induce errors for asphalt and water surfaces which 

do not reflect laser back to the system.  Moreover, Huising and Perreira (1998) 

classified the terrain surface into six groups: 1) flat paved, 2) flat barren, 3) flat grass 

and scrubs, 4) hilly paved, 5) hilly barren, and 6) hilly grass and scrub, and examined 

the error for each surface category.  They found that LiDAR data acquired on grass 

and scrubs terrain were less accurate than other surfaces and errors could reach up to 

0.3 meters (30 percent).  Similarly, Hopkinson et.al. (2001) studied LiDAR’s error 

on ground elevation and wetland vegetation height.  Their results showed largest 

errors were associated with low shrub, tall vegetation classes and aquatic vegetation.  

In addition to vertical accuracy, Alharthy et.al. (2004) assessed the planimetric 

accuracy of LiDAR data on flat terrain and found that the planimetric accuracy 

varies with the swath width.  Larger errors could be found at the end of the swath 

width.  Ahokas et.al. (2003) examined the LiDAR elevation error associated with 

flight lines, flight altitudes and observation angles.  They concluded that flight lines 

might generate both random and systematic error, higher flight altitudes generated 
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greater random error, and observation angles induced systematic error up to ten 

centimeters.  Most of these citied studies examined LiDAR’s uncertainty regarding 

to vegetation cover in rural area.  

In urban areas, 3D building modeling involves additional sources of 

uncertainty that are not discussed in the studies above.  They come from data 

post-processing such as feature extraction algorithm and manual digitizing, which 

outline the buildings footprints and structures.  Feature extraction involves numbers 

of procedure such as data segmentation, filtering, boundaries detection and 

smoothening, but the algorithms behind the procedures can vary from vendor to 

vendor.  It can be a critical source of uncertainty in 3D building models as a small 

displacement of the laser footprint can result in a large vertical discrepancies on 

building edges (Schenk, Csatho, and Lee, 1999).  Yet, feature extraction algorithms 

are hard to evaluate because ground information in urban area is difficult to obtain.  

For example, tall buildings blockage in urban downtown area limits the use of GPS.  

Private ownership or security issues restrict access to building roof features, and 

direct measurements of buildings dimensions.  Manual identification of building 

footprints also introduces uncertainty to the 3D building model that is hard to 

evaluate without ground truth information.  Therefore, 3D building models inherit 
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not only the uncertainty embedded in LiDAR data, but also uncertainty introduced 

by the post-processing of the LiDAR data.  

Nevertheless, uncertainty assessments of raw LiDAR data have been well 

addressed in flat terrain.  For example, a common approach is to interpolate the raw 

LiDAR data points into a raster layer and then compare it with existing DEMs from 

traditional photogrammetry.  It is also common to compare the interpolated LiDAR 

data with ground control points (GCPs).  By comparing the differences between 

raw LiDAR data and existing ground information, mean error with a confidence 

level can be calculated using statistical techniques.  However, different 

interpolation methods may generate different terrain elevation and result in 

uncertainty up to one meter (Smith, Holland, and Longley, 2003, 2004).   

The other way to assess the accuracy of raw LiDAR data is to measure the 

relative accuracy, by comparing overlapping strips and calculating the relative offset 

in height for the same area (Latypov, 2002; Mass, 2002).  Obviously, good “relative 

accuracy” using the method only means better consistency within the laser system.   

This research focuses on assessing the spatial distribution of LiDAR 

uncertainty and LiDAR-derived building model uncertainty, using a LiDAR dataset 

covering the Central Business District in downtown Oklahoma City as example.  

To understand the cause of uncertainty distribution, this research further examine the 
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urban environments (i.e. building characteristics, arrangements and vegetation 

growth) in the study area.  The following section describes the research design, 

followed by results and discussion. 

 

3. Research design 

This study first describes the LiDAR data and other data sources, then the 

study area, and the procedures to generate a 3D building model from the LiDAR data.  

Following that, adjustment strategies to develop a refined 3D building model are 

elaborated and the LiDAR data is compared with the refined model as a basis to 

assess LiDAR uncertainty.  The results of feature extraction and manual digitizing 

with the refined model are compared to examine the spatial uncertainty of 

LiDAR-derived building data.  Finally, this study compares the uncertainty 

embedded in LiDAR data and uncertainty in LiDAR-derived building data in the 

study area (Figure 2.1). 

 

3.1 Study area and data sources 

The study area (approximately 0.8 square miles) is located in the CBD of 

Oklahoma City (OKC) with a flat terrain and well-defined central city area (Figure 

2.2).  Similar to other CBDs, this area is dominated by high-rise buildings in the  



 39

 
Figure 2.1.  The conceptual flow chart of the research design. 
 

 

 
Figure 2.2.  Study area: Central Business District of Oklahoma City.  Aerial 
photo from: U.S.G.S., date: March 2002. 
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center with surrounding open areas and low-rise commercial buildings.  With the 

flat terrain in OKC, LiDAR uncertainty that caused by the terrain roughness can be 

minimized.   

The LiDAR data was collected in late October 2001 by the Optech Airborne 

Laser Terrain Mapper (ALTM) 2033 sensor at an operation altitude around 2000 to 

2500 meters and swath width of 540 meters.  The Joint Precision Strike 

Demonstration (JPSD) Program Office of the U.S. Army executed the flight plan, 

geo-referenced, and geo-rectified the LiDAR data.  LiDAR data products from the 

JPSD Program Office include the first return DEM, second return DEM, intensity 

layer and a color LiDAR image in one meter resolution (Figure 2.3).  First return 

DEM records the first return of laser pulse, while the second return DEM captures 

second return of laser pulse.  Therefore, the first return DEM usually reflects the 

very top part of the object and the second return DEM reflects the lower part of the 

object if the laser beam can pass through the object.  The color LiDAR image 

shows the lowest elevation in blue and the highest elevation in red.  The data come 

in GeoTIFF format with a header file specifying the co-ordinates and projection 

information.  The general accuracy of the LIDAR data is about 0.3 meters for 

vertical measurements and 0.5 meters for the horizontal measurements, with a 90 

percent confidence level. 



 41

a)  b)  

c)   d)  

Figure 2.3.  The LiDAR data: a) first return DEM, b) second return DEM, c) 
Intensity layer, d) color-code image. 

 

In addition to the LiDAR data, United States Geological Survey (USGS) high 

resolution ortho-photographs are used to aid the construction of a refined 3D 

building model in Oklahoma City (Figure 2.4).  The ortho-photograph is an aerial 

photograph in which distortions caused by terrain and sensor orientation have been 

removed mathematically.  The ortho-photograph used here has 0.3 meter resolution 

with horizontal accuracy around 1 meter.  The image was captured in March 2002.    
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Figure 2.4.  USGS orthophotograhy of the Oklahoma City.  Date: March 
2002. 

 

3.2 Procedures of generating a 3D building model with LiDAR data 

To construct a 3D building model with LiDAR data, the RTV LiDAR Toolkit 

originally developed by the JSPD program is used.  The LiDAR Toolkit is an 

extension of ArcView 3.x (Environmental System and Research Institute), and it 

contains functions that include visualization, extract bare earth, buildings, vegetation, 

roads and network features from LiDAR data.  The toolkit has been used in 
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numerous projects funded by the National Geospatial-Intelligence Agency (NGA), 

U.S. Geological Survey (USGS) and U.S. Army Topographic Engineering Center 

(SAIC, 2005).    

A bare earth surface for the study area is first computed by the algorithm 

based on the first and second return DEM.  Then, the bare earth is subtracted from 

the first return DEM to derive object heights.  Building footprints are generated by 

the feature extraction algorithm in LiDAR toolkit.  To obtain the detail of building 

structures within a footprint, this study classifies the objects according to height and 

converted them into polygons.  Next, building layouts and structural details are 

delineated with the aid of aerial photographs, color LiDAR imagery and field 

measurements.  The refinement procedures include manual adjustment of building 

footprints based on ortho-photographs and field measurements.  The height of each 

feature is assigned by the majority object height (Figure 2.5).  Also, additional field 

observations and comparative estimates are used to discern ambiguous areas, such as 

buildings blocked by shadows in the aerial photos or noise in the color LiDAR 

image.  Finally, a refined 3D building model is generated (Figure 2.6). 

From the refinement procedures, two main steps that may introduce spatial 

uncertainty to the 3D building model are identified: 1) feature extraction, and 2) 

manual digitizing.  These two steps are identified because they are primary 
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procedures in creating a 3D building model regardless of the methods selected for 

3D building generation.  The following paragraphs describe the methods used to 

assess and quantify the spatial uncertainty of LiDAR data and LiDAR-derived 

building dimensions.  

 

Polygon A

 
Figure 2.5.  Examples of determining building height by the majority rules.  
White area represents elevation lower than 43.5m; light grey represents 
elevation between 43.5m to 44.5m; medium grey represents 44.5m to 46.5m; 
darkest grey represents elevation higher than 46.5m.  Therefore, polygon A is 
assigned 44m. 
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Figure 2.6.  The flowchart of generating 3D building model from LiDAR data. 
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3.3 Spatial assessments of LiDAR data and LiDAR-derived building data 

To assess the spatial uncertainty of LiDAR data, the LiDAR data is compared 

with a refined building model.  With adjustments based on ortho-photograph and 

ground observations, this study assumes the refined 3D building model represents a 

more accurate building model.  Two issues arise when comparing the LiDAR data 

with the refined 3D building model.  The refined 3D building model stores 

buildings as polygons, which cannot accurately capture elevations along sloping 

building surfaces (e.g. parking ramps or tilted roofs), as only one elevation can be 

assigned to a given polygon.  Also, the refined model needs to be converted to 

raster in order to compare with the LiDAR data.  Both issues can introduce 

disparity between the polygon building footprints and LiDAR data.  Therefore, the 

following procedures are utilized to reduce the differences caused by data conversion 

and data representation.    

First, the refined 3D building model is converted to a grid based on the 

elevation attribute of building polygons.  Then, the building height grid is 

subtracted from the LiDAR data and classified the differences into five classes: 1) 3 

meters and above, 2) 1 to 3 meters, 3) 1 to -1 meter, 4) -1 to -3 meters, and 5) -3 

meters and less.  Positive values indicate that LiDAR height measurements are 

higher than the heights adjusted in the refined building model, while negative values 
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indicate the opposite.  Most differences with +/- one to three meters (i.e. classes 2 

to 4) result from sloped surfaces or equipment on roofs, these differences are 

acceptable for the 3D modeling.  Moreover, differences around one meter of 

building edges are removed to eliminate the differences caused by vector-raster 

transformation.  Areas with differences more than three meters (i.e. class one and 

five) are identified as uncertainty for both the LiDAR data and the refined 3D 

building model.  Finally, field observations and assessments are made in order to 

identify the causes of uncertainty. 

For LiDAR-derived data, feature extraction algorithms and manual digitizing 

both introduce spatial uncertainty to building boundaries.  To examine the spatial 

uncertainty of building boundaries introduced by feature extraction algorithms, this 

study computes the distances based on x and y co-ordinates between the vertices of 

automatically generated building footprints and vertices of refined building 

footprints.  Locations with differences greater than two standard deviations from 

the mean are further examined with field survey and aerial photographs inspection.  

To examine the spatial uncertainty introduced from manual digitizing, fifteen 

graduates and fifteen undergraduates students who study in geography department at 

the University of Oklahoma are asked to digitize a sample building footprint based 

on the color LiDAR image (Figure 2.7) at the same scale (i.e. 1:1000).  Instructions  
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Figure 2.7.  The building sample for digitizing test.  The building is outlined 
by white lines.  LiDAR color image is used as background image for digitizing 
test. 

 

on how to digitize building on-screen using ESRI ArcMap and building 

orth-photograph were given prior to digitizing.  A sample building from the CBD 

was chosen to represent the typical building structure in the study area.  It is 

assumed that spatial uncertainty found in the sample building is representative of 

uncertainty embedded in the other building footprints captured in the refined 

building model.  The elevation difference between the building structures is 

significant with the highest elevation at 119 meters and the lowest elevation at four 

meters.  The sample building is also representative of a range of structural 
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complexity as it contains a parking lot, tilted roof, gaps and vegetation near one of 

the corners.  Then the variance of x, y coordinates digitized from the 30 subjects is 

computed.  Unlike feature extraction algorithms, only a sample of the building is 

examined because of time and labor constraints.  Therefore, it is assumed the 

spatial uncertainties found in the sample will be the representative of the 

uncertainties found in the other buildings.    

   

4. Results and Discussions 

4.1 Spatial distribution of LiDAR uncertainty 

Figure 2.8 shows the spatial distribution of LiDAR uncertainty with elevation 

differences greater than three meters between the raw LiDAR data and the refined 

building model.  About five percent of the total building area was identified as 

uncertainty in the LiDAR data.  The spatial uncertainty was broadly distributed 

across the study area.  However, larger patches of uncertainty appeared in the outer 

area while noise-like smaller patches primarily occurred in the inner part of the study 

area. 
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Figure 2.8.  Area in black show potential LiDAR errors with more than 3 
meters differences from the refined building model. 

 

Every patch of LiDAR uncertainty was further inspected in the field.  Five 

urban conditions that were associated with large differences between the LiDAR 

data and the 3D building model were summarized.  The first three conditions 

suggested LiDAR error, while the last two conditions related to 3D building model 

construction. 
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The first condition was found around building gaps.  For example, the gap 

in the First National Center (Figure 2.9) should be at the ground level, but the 

LiDAR data shown a height around 30 meters in the gap.  On the east side of the 

First National Center building, the gaps in Sante Fe Parking Garage also had similar 

differences, but this occurred only near the edge of the gap.  The LiDAR data 

suggested a higher elevation at narrow gaps (i.e. either length or width was less than 

ten meters), where the laser pulse might be reflected back to the sensor before 

reaching to the ground.       

0 40 8020 Meters

 

 

 

 

Figure 2.9.  LiDAR errors caused by gaps in the First National Center. 
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The second condition was found around the highest building, the Bank One 

Tower, in the study area.  The Tower is 150 meters tall with a platform at about 

eleven meters high.  However, the LiDAR data suggested a portion of the platform 

up to 54 meters (Figure 2.10a).  In addition, a filtered effect was found in that area 

(Figure 2.10b).  The area was mis-captured by LiDAR data.  However, the reason 

for the error could not be verified with the data provider.   

a)     b)  

c) d) 

0 20 4010 Meters

 
 
Figure 2.10.  LiDAR errors in Bank One Tower. a) Photograph showing the 
actual view of Bank One Tower, b) a filtered effect of elevation was found in 
LiDAR data, with color scheme from white to black, represents heights from 
the lowest to the highest, c) the 3D view of the filtered effect of Bank One Tower, 
d) area with differences greater than 3 meters between LiDAR data and refined 
building model. 

 

N 
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The third condition was identified around glass surfaces, such as Leadership 

Square with glass exteriors.  Glassy material generated noisy signals in the LiDAR 

data, but as shown in Figure 2.11, the noise surrounded the glassy building edge 

instead of the interior of the building footprint.     

0 20 4010 Meters

 

Figure 2.11.  Glassy material of the Leadership Square generates noise for the 
LiDAR data. 

 

The above three conditions introduce much uncertainty in LiDAR data and 

deserve special attention for ground-truthing.  As significant elevation differences 

and various kinds of building structures are common in urban downtown areas, there 

are high probabilities for laser reflected back to the sensor before reaching the 

ground.  Anticipation of these three conditions is crucial to flight route planning in 
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LiDAR data collection.  Extra flight routes perpendicular to original flight routes 

can reduce the chance of missing data or potential error inside building gaps and 

hence increase the accuracy of LiDAR data.  However, if the building is covered by 

glassy material, data noise may not be avoided and manual adjustments are needed.   

Beside the three conditions related to building structures, vegetation on top of 

buildings and construction sites were two other sources identified in the study area.  

Vegetation like trees was detected with the feature extraction algorithm.  However, 

when a tree grew over or on top of a building, the building could not be extracted.  

Moreover, the algorithm proved incapable of detecting building boundaries when 

vegetation was planted near or around the buildings.  An example was found at a 

drive-through bank located north of the study area (Figure 2.12).  Construction sites 

are another potential source of uncertainty in the 3D building model because 

building construction might already be completed by the time user received the 

LiDAR data (Figure 2.13).  As a result, the building characteristics were outdated 

upon the release of the LiDAR data. 

Moreover, there are some salt and pepper effect and small patches of LiDAR 

uncertainty located around the center of the study area.  These discrepancies were 

mainly caused by the vector-to-raster conversion which occurred over the one meter 

buffer of the building polygons.      
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Figure 2.12.  Vegetation on top of the drive-through bank causing differences 
between LiDAR data and building model. 
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Figure 2.13.  Example of construction site in Oklahoma City, it causes 
uncertainty in LiDAR data and feature extraction algorithm. 
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4.2 Uncertainty from feature extraction algorithm 

 Figure 2.14 shows an overlay of automatically generated building footprints and 

refined building footprints.  Light grey footprints represented buildings delineated 

by both the automatic algorithm and the refined model, which was about 91 percent 

of total building footprint area.  Dark grey footprints were defined by the refined 

model but not by the automatic algorithm, while black footprints were extracted by 

the automatic algorithm but not by the refined model.  About 8.7 percent of the 

total refined building footprint area was not detected by the automatic algorithm and 

they were mainly located around the north-west and south-east parts of the study 

area.  Of the total automatically generated footprint area, 5.3 percent were not 

classified as building in the refined model, and these footprints appeared on the 

southern edge of the study area.    

Figure 2.15 shows the Euclidean distances between building vertices in the 

refined model and the automatically generated building footprints.  Small black 

dots are used to represent distances of less than one standard deviation; medium 

black circles represent distances between one and two standard deviations; and large 

black circles represent distances greater than two standard deviations.  

Comparatively large distances were found on the east, south and west part of the 
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study area.  Overall, the average distance between the automatic footprints and the 

refined footprints was 4.3 meters with a standard deviation of 12.8 meters.   

 

 

Figure 2.14.  Overlay automatic building footprint with refined building 
footprint.  Grey shows area of intersection; black shows area that are classified 
as building by algorithm but not by the refined model; medium-dark grey 
shows area that are classified as building by refined model but not the 
algorithm. 
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Figure 2.15.  The distribution of differences between automatic building 
footprint and refined building footprint; measured by the distances between 
vertices of two building footprints.  Black dots represent distances less than 1 
standard deviation (<17.1m); medium circles represent distance within 1 to 2 
standard deviations (17.1 – 29.9m); and large circles represents distance greater 
than 2 standard deviation (>30m). 
 

Cases with differences greater than two standard deviations were due to 

mis-classification of trees or small rectangular objects as buildings by the feature 

extraction algorithm.  Examples of such mis-classification include an individual 

tree inside the park, cargo containers, bridges and cover parking canopy (Figure 
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2.16).  These errors are commission errors resulted by the feature extraction 

algorithm.  If the commission error is omitted, the average and standard deviation 

values will be greatly reduced to 2.29 meters and 3.5 meters respectively.  Unlike 

the spatial distribution of LiDAR uncertainty, the above results suggest that the 

major spatial uncertainty of feature extraction is distributed around the outer range of 

the study area where parks, cargo containers are most likely present.  Moreover, 

construction sites and complex building structures are also causes of spatial 

uncertainty; one example of complex building structure is the baseball stadium on 

the east side of the study area (Figure 2.17).        

0 10 205 Meters 0 6 123 Meters

 

0 10 205 Meters

 
Figure 2.16.  Examples of objects that are mis-classified by the feature 
extraction algorithm.  Top: trees (left) and cargo (right); bottom: bridge. 
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Figure 2.17.  Example of complex building structure which is difficult to be 
detected by feature extraction algorithm.  A softball stadium in downtown 
Oklahoma City. 

 

4.3 Spatial uncertainty from manual digitizing  

Figure 2.18 shows the results of differences in manual digitizing by thirty 

students.  Each of the seventeen building corners was labeled with an ID number.  

Among all the corners, corners five, and thirteen through sixteen showed a more 

dispersed pattern than the others.  The variance of x and y co-ordinates for each 

corner were computed (Table 1).  On average, the digitizing variances were 1.01 

square meters for x coordinate and 0.63 square meters for y coordinate.  The 

greatest digitizing variance for x coordinate, 3.56 square meters, occurred at corner  



 61

5

2

9 8

7 6

4

31

17 16

1514

13 12

11 10

0 30 6015 Meters

Digitizing points

Refined Building Model

 
Figure 2.18.  Uncertainty of manual digitizing.  Samples from thirty students. 
 
Table 2.1.  The variances of x, y coordinates computed from samples of 
manual digitzing. 

ID 

Variance in 

x 

Variance in 

y 

1 0.23 0.35 

2 0.86 0.63 

3 0.50 0.71 

4 0.79 0.44 

5 3.05 1.08 

6 0.49 0.64 

7 1.29 0.62 

8 1.31 0.50 

9 0.45 0.41 

10 0.50 0.46 

11 0.69 0.49 

12 0.47 0.30 

13 1.25 0.34 

14 0.72 1.00 

15 0.65 1.37 

16 3.56 0.66 

17 0.34 0.65 

Average 1.01 0.63 
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sixteen, while the greatest digitizing variance for y coordinate, 1.37 square meters, 

occurred at corner fifteen.  Corner five had the second greatest digitizing variance 

in both x and y coordinates (i.e. 3.05 and 1.08 square meters respectively). 

High spatial uncertainty could be found at corner five because there was 

vegetation near the corner of the building where the boundary becomes blurry.  

Corners thirteen to sixteen also contain significant spatial uncertainty as they were 

close to each other.  When compared to the distances between corners six, seven, 

ten and eleven, the distances between corners thirteen to sixteen were smaller.  

Distances between corners six and seven, ten and eleven were around ten meters 

while the distances between corners fourteen and fifteen, thirteen and sixteen were 

only around six meters.  Therefore, vegetation cover near the building and gaps 

smaller than six meters tended to generate a greater degree of spatial uncertainty 

during manual digitizing.     

 

4.4 The influences of urban environments on the spatial uncertainty of 

LiDAR-derived building model 

To summarize, three main factors related to urban environments have notable 

influences on LiDAR-derived building data:  1) vegetative interference, 2) 

complexity of building structures and, 3) building materials.  Vegetation 
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interference introduces spatial uncertainty during LiDAR data acquisition, feature 

extraction and manual digitizing.  Although trees can be distinguished by feature 

extraction algorithms, trees also mask out building footprints where trees grow 

adjacent to buildings or grow over the roofs.   

Complex building structure, such as building with gaps of less than six 

meters, can prohibit the penetration of laser pulses, consequently resulting excessive 

LiDAR elevation values.  Small gaps blur building boundaries and also challenge 

identification of building boundaries during manual digitization.  Moreover, most 

feature extraction algorithms assume a rectangular building shape, and hence are 

inadequate in classifying complex buildings structure.  In addition, rectangular 

non-building objects (e.g. cargo containers and bridges) may also lead to 

mis-classification. 

The third major factor, building material, results from reflective 

characteristics of surface materials.  Glassy material reduces the accuracy of 

LiDAR data, feature extraction algorithms and manual digitizing as it introduces 

noise to the LiDAR data and hence generates blurred boundaries.         

Besides the three major factors, many cities are undergoing urban 

development or urban renewal projects.  These fast-changing city landscapes pose 
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additional challenges in developing 3D building models as buildings in a 

construction site would have been completed after LiDAR data collection.   

Urban environments are complex and dynamic.  To reduce the spatial 

uncertainty of a 3D building model, several suggestions are offered.  First, 

pre-flight planning in data acquisition helps to reduce LiDAR uncertainties.  Lower 

flight attitude, smaller swath angles and perpendicular flight routes also help to 

reduce LiDAR uncertainty.  Second, even though it is hard or impossible to modify 

feature extraction algorithms as they are usually provided by the system vendors, the 

spatial uncertainty can be reduced by referencing other remote sensing data such as 

InSAR and ortho-photographs.  Data fusion techniques have been suggested as a 

critical research area for understanding urban environments (Gamba and Houshmand, 

2002).  Finally, resources can be focused on accessing the quality of model in 

locations where: 1) building structures are complex, 2) buildings are constructed 

with reflective materials and, 3) vegetation growth near the buildings.  

 

5. Conclusion 

      LiDAR data receive wide recognition in terrain modeling because of fine 

resolution and high elevation accuracy.  However, in an urban environment where 

buildings vary greatly in height, shape and building material, uncertainty of LiDAR 
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data can reach ten meters or more.  Moreover, vegetation near or grow over 

buildings reduce the accuracy of feature extraction and manual digitizing.   

Pre-flight planning in data acquisition and data fusion techniques always help 

to reduce spatial uncertainty in 3D building models.  However, assessment is 

necessary to justify whether the additional flight route or data collection is worthy.  

Improvements to the feature extraction algorithm also help to reduce the spatial 

uncertainty in a 3D building model only if user has the skills and access to modify 

the algorithm.  When time and labor are limited, LiDAR data users can focus their 

assessments on buildings with glassy surface materials, gaps smaller than ten meters, 

and with vegetation near-by.   

Since the study site, CBD of OKC, is situated in a very flat area, the methods 

and findings here can only attribute spatial uncertainty to building characteristics and 

surrounding environments.  Further research could examine the spatial uncertainty 

of LiDAR and LiDAR-derived data in cities with complex terrain such as San 

Francisco and Hong Kong.        
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Chapter 3 : Spatial Uncertainty of 3D Data from Coupling 
Geographic Information Systems and Urban Atmospheric 
Dispersion Model: An Example using ArcGIS and QUIC 

Abstract 

Understanding spatial uncertainty is fundamental to Geographical 

Information System (GIS) applications and environmental modeling.  In addition 

to uncertainty inherited in the input data, additional spatial uncertainty is 

introduced through necessary data conversion and manipulation to couple a GIS 

and an environmental model.  Spatial uncertainty may vary depending on 

applications.  This research investigates the common sources and patterns of 

spatial uncertainty involved in coupling GIS and EMS, particular with a focus on 

3D building data.  While several researchers have attempted to address spatial 

uncertainty for 2D data, there is no systematic research to examine spatial 

uncertainty associated with conversions of 3D GIS data for environmental 

modeling.  ArcGIS (Environmental Systems and Research Institute Inc., Redlands, 

California) and the QUIC atmospheric dispersion model (Los Alamos National 

Laboratory) are chosen as an example to examine the extent and ramification of 

spatial uncertainty from GIS-EMS coupling.  Typical of most environmental 

models, QUIC imposes specific requirements on spatial data, and therefore, 

conversion of GIS data to meet the requirements is inevitable.  Like many data 
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conversion procedures, spatial data resampling is needed to convert ArcGIS data 

for QUIC.  Consequently, spatial resolution (or cell size) plays a key role in the 

introduction of spatial uncertainty in GIS-EMS coupling.  Furthermore, footprints 

and the height dimension of building data required by the QUIC model contribute 

additional complexity to spatial uncertainty.  To account for three-dimensional 

data and spatial resolution, this study analyzes spatial uncertainty in building 

footprint, building location, and building volume across twelve spatial resampling 

resolutions during data conversion to meet QUIC data input requirements.  

Results show a linear relationship between the mean shifting distance of building 

location and spatial resampling resolution.  As the spatial resolution increases 

from one meter to twelve meter, measurements of building footprint and volume 

vary from one to three percent, while eighty percent of footprint area and building 

volume remains unchanged.  Elongated buildings or linear urban structures, such 

as skywalks, may be missing after the conversion.  The study first presents a 

novel algorithm to convert 3D GIS building data for atmospheric dispersion 

modeling and then systematically examines spatial uncertainty introduced during 

data conversion.  While the study is only an example to explore the manifestation 

of spatial uncertainty of 3D data in coupling GIS and environmental modeling, the 

commonality of resampling in data conversion and the complexity of resampling 
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3D building data warrant the research findings relevant to many GIS-EMS 

coupling applications. 
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1. Introduction 

Many environmental modeling systems (EMS) take geo-spatial data as a   

fundamental part of input data.  Although geospatial data are easily accessible, 

these EMSs are likely to have unique data requirements that are not directly 

compatiable with existing geospatial data.  Since EMSs have limited capability in 

handling geospatial data, the burden is mostly carried out through GIS 

transformation of geospatial data.  To overcome the frequent needs for intensive 

labor and time on data transformation, linkages of customized programs can 

facilitate automation of data exchange between the EMSs and Geographic 

Information Systems (GIS). 

Two general approaches of linkages can be identified: 1) coupling and, 2) 

integration (Bernard and Kruger, 2000; Goodchild, 1996; Fedra, 1996).  Coupling 

means linking two systems through data conversion while integration means 

linking two systems based on the same data model and functionality.  Each 

approach carries its own advantages and limitations, which have been well 

discussed in the literature (Martin et al., 2005; Fedra, 1996).  Although the 

integration approach is ideal to fully facilitate GIS and EMS interactions and 

minimize data loss between the two systems, this approach is not always practical 

because of high level of development cost and skills.  Instead, the coupling 
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approach is more commonly used than integration approach because coupling only 

requires development in the data conversion algorithm, without the needs to 

disassemble and reassemble one system into the other.  However, geospatial data 

conversion inevitably results in spatial uncertainty, and therefore, proper 

interpretation of modeling output depends upon a good understanding of how 

spatial uncertainty may be introduced through data conversion process.  

This paper follows the definition of spatial uncertainty as “discrepancy 

between geographic data in GIS and the geographic reality these data are intended 

to represent” in Geographic Information Science (Zhu, 2005).  Distinguished 

from the definition of “error”, the term “uncertainty” is used when true values of 

the discrepancy are not available (Goodchild, Buttenfield, and Wood, 1994).  

Longley et.al. (Longley et al., 2001) explain that spatial uncertainty appears as 

soon as we conceptualize the reality, and it continues to propagate through the data 

life cycle including data capture, storage, spatial analyses and modeling.  In 

addition, the attributes and geospatial representation of data may be altered through 

different stages of the data life cycle.   

Understanding spatial uncertainty is fundamental to GIS applications and 

environmental modeling.  This study asserts that a comprehensive assessment of 

spatial uncertainty during GIS-EMS linkage is necessary.  In urban atmospheric 
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dispersion modeling (UADM), for example, uncertainty in geographic data can be 

a critical issue.  A small change in building location may lead to a significant 

difference in how pollutants disperse within an urban area.  Moreover, 

understanding the spatial uncertainty in geospatial data provides crucial 

information to further assess the behaviors of UADMs.  Subsequent GIS analyses, 

such as overlaying dispersion estimates with demographic data, are often used for 

emergency planning.  Knowledge about spatial uncertainty from GIS-UADM 

coupling aids interpretation of the dispersion outcome and vulnerable population to 

hazardous chemical exposures.  Therefore, this paper aims to first couple a GIS 

and an UADM, using ESRI ArcGIS and the Quick Urban and Industrial Complex 

(QUIC) atmospheric dispersion modeling system as an example and then assess 

the spatial uncertainty that arises during the coupling. 

 

2. Background 

2.1 Overviews of ArcGIS and QUIC 

This study uses ArcGIS and QUIC dispersion model as an example to 

demonstrate the spatial uncertainty involved during linkage of GIS and 

environmental modeling systems.  First, the data models and formats used by 

ArcGIS and QUIC are described, and a linkage approach is identified.  After that, 
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a literature review provides insights in assessing the spatial uncertainty arising 

from the linkage. 

ArcGIS is a popular commercial GIS software developed by the 

Environmental Systems and Research Institute (ESRI, Redlands California) to 

store, manipulate and display spatial data from different sources and at different 

resolutions.  Primary components of the software consist of ArcMap, ArcCatalog 

and ArcToolbox.  The main functions of ArcMap are to display and query spatial 

data.  ArcCatolog manages spatial databases; whereas ArcToolbox contains data 

processing and spatial analytical tools.   

The QUIC dispersion modeling system is a new dispersion model 

developed by Los Alamos National Laboratory (Pardyjak and Brown, 2002; 

Williams, Brown, and Pardyjak, 2002) in MATLAB software with a diagnostic 

wind field model (QUIC-URB) and a Lagrangian dispersion model 

(QUIC-PLUME) to provide fast predictions of atmospheric dispersion in urban 

areas.  QUIC windfield and dispersion models take detailed building information 

to estimate chemical dispersion patterns.   

Building data are commonly available in GIS formats.  While buildings 

can be represented in raster or vector data models, the discrete nature of building 

footprints makes vector representation more appropriate to store building data than 
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raster representation.  Even when LiDAR technology is used to capture building 

footprints and heights, LiDAR cells represented buildings are delineated to form 

building polygons and determine building heights.  Similarly, ArcMap stores 

buildings as vector polygons, which are composed of lines and points with x, y 

co-ordinates.  Each polygon is associated with an attribute table which stores 

other information about the building such as height, base height, name and roof 

features.  In QUIC, buildings are stored as either rectangular or circular shapes.  

Information of each shape includes building ID, group numbers, types (i.e. either 

rectangle or circle), width, length, height, xfo (the middle x co-ordinate of the 

length), yfo (the middle y co-ordinate of the width) and zfo (base height) which are 

stored as a line of text in a file (i.e. QU_buildings.inp).   

The fact that both ArcGIS and QUIC represent building data in vector form 

suggests that data format will not be the primary source of spatial uncertainty 

during the coupling of the two systems.  Rather, spatial uncertainty is likely to 

due to the change of shape and location of buildings during the data conversion.  

Buildings are conceptualized as polygons with discrete boundaries.  The main 

differences are that building data in QUIC is limited by resolution defined by users, 

and shapes (i.e. either rectangle or circle), while in ArcGIS, building data are not 

limited by resolutions and shapes.     
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A linkage also enables exporting dispersion results from QUIC to ArcGIS.  

Similar to most of the UADMs, both ArcGIS and QUIC utilize raster model to 

represent the concentration of pollutants in atmosphere because the spatially 

continuous nature of pollutant dispersion.  Although QUIC includes a function 

that exports dispersion results as ArcGIS raster format, it only exports one layer at 

a time.  An automatic export function that exports all outputs at once is desirable.   

 

2.2 Approach for linking ArcGIS and QUIC 

Which linkage approach should be adapted to bridge ArcGIS and QUIC?  

As mentioned in section 1, integration and coupling are the two main approaches.  

Although integration is the ideal linkage for GIS and EMS, it may not be practical 

to rewrite GIS or EMS to integrate one into the other.  For instance, most of the 

GIS and EMS are developed as individual software; integration of them will be 

similar to re-design a brand new software package.  The cost and the risk are too 

high for most of the users.  Therefore, coupling approaches are comparably 

effective to bridge the two systems while maintain the advantages of each system.   

Coupling approach can be further divided into tight-coupling and 

loose-coupling (Nyerges, 1993).  Tight-coupling transfers data between GIS and 

EMS using the same user-interface, while loose-coupling uses different 
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user-interfaces.  A user-interface is a computer program that interacts between 

user and computer systems.  It can be developed by any computer languages such 

as Fortune, C++ or Visual Basic.  Although coupling approach is very common in 

application due to low development cost, spatial uncertainty can be introduced and 

embedded during the data conversion. 

 

2.3 Spatial uncertainty from the linkage  

Although different UADM may have different formats for inputting spatial 

data, they face the similar problem during the linkage.  For example, QUIC 

dispersion modeling system represents buildings as rectangles by default.  This 

default assumption is common to many other UADMs (Vardoulakis et al., 2003).  

However, buildings can be in many different shapes, and an ArcGIS database 

represents building as such.  When importing building data from ArcGIS to 

QUIC, procedures are necessary to transfer irregular polygons in GIS to orthogonal 

shapes of rectangles used in QUIC.  This study utilizes rasterization as one of the 

procedures to convert irregularly shaped buildings in ArcGIS into regular 

rectangles in QUIC.  Consequently, rasterization contributes to the main source of 

spatial uncertainty during the linkage.       
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The relationship between rasterization and data accuracy had been 

well-studied in the GIS literature.  When vector polygons are converted to raster 

cells, there are a number of factors influencing data accuracy.  The cell size (i.e. 

resolution) is always the main issue regarding rasterization.  Piwowar (1990) 

found that accuracy of data decreased as cell size increased during data conversion 

between vector and raster models.  In addition, he recommended using one-fourth 

of the minimum polygon area as the cell size in order to maintain the integrity of 

the data.  If the cell size was larger than twice of polygon area, the polygon would 

be absent after the conversion.    

Besides the cell size, the position of the grid also induces uncertainty 

during rasterization.  Wedhe (1982) examined the relationship between cell size 

and map error.  He found out that the grid position could determine the presence 

of a polygon if the cell size was the same as the area of the polygon.  In general, 

he concluded that the grid position was not an important consideration for the 

overall map accuracy but it was a significant factor for accuracy of individual 

polygons.   

Congalton (1997) explored the errors introduced during rasterization and 

vectorization in relation to various shapes of simplistic polygons.  By computing 

the area change before and after conversion, he found that as cell size increased, 
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larger differences in shape and area of original polygons were expected.  

Moreover, some polygons might disappear after conversion if the area was the 

same or less than the cell size.  This issue is critical when there are linear features 

with width equal to the cell size.  In conclusion, he suggested further study with 

real world examples. 

Bregt et al. (1991) estimated the errors from rasterization using an approach 

termed the double-conversion method.  They converted polygons into raster twice 

using a desired resolution and a much finer resolution.  By comparing the two 

raster maps, they found a linear relationship between rasterized errors and the 

boundary index computed by dividing the total boundary length of polygons in 

centimeters by the total area of the map in square centimeters.  However, the 

linear relationship varied with cell size and rasterization methods, and the 

relationship only applied to certain resolutions.       

While these studies summarize errors or uncertainty introduced by 

rasterization of polygons at different resolution, these studies are limited to issues 

on a two-dimensional surface.  However, spatial uncertainty arising from 

coupling between GIS and urban atmospheric dispersion models extends to the 

third dimension (i.e. building height).  This study contributes to the understanding 

of rasterization and spatial uncertainty in both horizontal and vertical dimensions.  
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The following sections examine the spatial uncertainty of rasterization during 

coupling related to: 1) the displacement of building location, 2) the change of 

building footprint area, and 3) the change of building volume at various 

resolutions.   

 

3. Method 

3.1 Study area and data 

The central business district of downtown Oklahoma City is selected as the 

study area to explore spatial uncertainty due to the coupling of a GIS and an urban 

dispersion model.  Downtown Oklahoma City is located in the central portion of 

Oklahoma.  With an area of about one square mile, downtown Oklahoma City is a 

typical urban business district with high-rise buildings in the center surrounded by 

low-rise business buildings and open areas.  Its well-defined central business 

district and flat terrain make it suitable for urban atmospheric dispersion studies 

and easy for assessing the accuracy of geographic data.   

The building model used in this paper was derived from LiDAR data which 

were collected by the Joint Precision Strike Demonstration (JPSD) Program Office 

of the U.S. Army in late October 2001.  The LiDAR data had one meter 

resolution with the overall accuracy of the data up to 0.3 meters in vertical 
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measurement and 0.5 meters in horizontal measurement (i.e. with 90 percent 

confidence level).  The building model was extracted with the aid of the RTV 

LiDAR toolkit, an extension in ArcView 3.x developed by the JPSD program 

specifically for the LiDAR acquisition technology.  The building model was 

quality assured with references to aerial photography and ground observations.  

Corrections were made manually to achieve the highest level of details possible 

with these auxiliary data. 

The final building model is stored as a shape-file with heights in ESRI 

ArcMap (Figure 3.1).  The study area contains 390 buildings and seven skywalks 

that together are represented by 1465 polygons.  The building heights range from 

three meters to 150 meters among which 90 percent of the buildings are below 53 

meters.  The area of building footprints ranges from 20 m2 to 4250 m2, and 

volume of buildings ranges from 1,728 m3 to 27,404 million m3.  Most polygons 

are rectangular in shape.   

 

3.2 The concept of coupling algorithm 

This study developes a coupling algorithm of ArcGIS and QUIC and 

implements it using Visual Basic for Application (VBA) inside ArcMap.  VBA is  
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Figure 3.1. The building model developed for this research.  The buildings 
are quality-assured through field surveys and air-photography corrections. 

 

chosen because of its capability to access the spatial data information and spatial 

analytical functions in ArcMap.  The algorithm contains two main functions: one 

to convert building data from ArcMap shape-files to data format required by QUIC 

and the other to convert dispersion results from the QUIC format to a grid data 

format in ArcMap.  Since QUIC and ArcMap employ the same underlined data 

organization (i.e. raster model) for the dispersion results, no data model 
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transformation is needed from QUIC to ArcMap.  Figure 3.2 shows the user 

interfaces of the conversion algorithm.    

 

a)  

b)  

c)  
 

Figure 3.2.  The user interfaces of the coupling algorithm: a) Beginning 
interface, b) interface of exporting shape file to QUIC, and c) interface of 
importing QUIC results to ArcGIS. 
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Many buildings exhibit different geometries or spatial configurations over 

height.  For example, some buildings may have extended structures on the ground 

level or have skywalks at multiples levels.  This algorithm reshapes each building 

horizontally and then vertically to derive a simple rectangular block as required by 

the QUIC model.  The user first determines the vertical and horizontal resolutions 

for the data conversion.  These resolutions are used to create a grid to which a 

building configuration is modified to the closest grid lines to approximate the 

building shape with orthogonal angles.  Then, the algorithm slices a building 

horizontally according to the predefined intervals of elevation (i.e. vertical 

resolution) to derive the spatial configuration of the building at an elevation (i.e. a 

building slice).  At each elevation interval, if the building is not a rectangle, the 

algorithm will vertically slices the polygon into several rectangles.  Finally, the 

algorithm calculates the dimension (i.e. width, length and the height) of each 

rectangle and records the dimension data into a QUIC building file.  Figure 3.3 

presents a simplified example that illustrates the concept of the conversion 

algorithm to reshape a building slice.   
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Figure 3.3.  A simplified example to demonstrate the concept of data 
conversion in coupling algorithm.  The building polygons are first converted 
to raster, then sliced into blocks horizontally and vertically. 
 

Horizontal slice 

Vertical slice 

Step 1. Convert to raster. 

Step 2. Perform horizontal slice, then 

vertical slice. 
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3.3 Methods of spatial uncertainty assessment 

The algorithm was applied to all building in the study area.  As buildings 

were rasterized and approximated into rectangles, the algorithm inevitably changed 

building location, footprint area and volume, and thus introduced spatial 

uncertainty to the input data of the QUIC model.  First, in order to quantify the 

building displacement (i.e. how far the location of building shifted after 

conversion), the Euclidean distance between the building vertices before and after 

the conversion at various resolutions were measured (Figure 3.4) and then the 

statistics of the shifting distances, including the mean and standard deviation were 

calculated.  In addition, this study examined the locations where the shifting 

distances of building vertices were more than twice of the defined resolution.  

Finally, the angle of displacement was calculated and classified into eight 

directions.  

 
Building vertices before  

the conversion 

Building vertices after  

the conversion 

 

 

 

Figure 3.4.  The shifting distance that is measured by calculating the distance 
between the vertices before and after the conversion.  Arrows showing the 
shifting directions. 
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Second, this study explored the change to building footprints area by 

computing the difference between building footprint area before and after the 

conversion.  The footprints before conversion with the footprints after conversion 

were compared at various resolutions by GIS overlays.  Then the percentages of 

footprint area that were unchanged, omitted and committed across various 

resolutions were calculated.  The results were also compared with the shifting 

distance at various resolutions. 

Third, this study explored the change in building volume by computing the 

percentages of building volume unchanged, omitted and committed after 

conversion.  In order to determine the percentages of building volume unchanged, 

omitted and committed, the double-conversion method from Bregt et.al. (1991) 

was utilized.  First, the elevation of the building model was converted into a 

reference raster layer with 0.5-meter resolution (one half of the vertical resolution 

of the LiDAR data).  Then, the building elevation was converted into various 

raster layers using different horizontal resolutions.  By comparing the reference 

layer to other layers with coarser resolutions, the volume unchanged, omitted and 

committed across various horizontal resolutions could be computed.   

In addition, this study executed the above uncertainty assessments with two 

rasterization methods that were supported by ArcMap.  One was central position 
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method and the other was dominant unit method.  The central position method 

assigned values to the grids by taking the polygons that fell at the center of the 

grids.  The dominant unit method assigned values to the grids by considering the 

polygons that shared the dominant unit of the grid. 

 

4. Results and Discussions 

4.1 Coupling algorithm 

The coupling algorithm worked reasonably well in converting building data 

from ArcMap shape-file to QUIC format.  Table 3.1 shows the conversion 

algorithm run-time and the number of records after the conversion.  The 

algorithm is ran on a desktop computer with a 3.4 GHz Pentium four CPU, two GB 

RAM.  With the range from thirteen minutes nineteen seconds to one minute 

forty-two seconds, the processing time decreased as the resolution became coarser.  

The number of records after the conversion also decreased dramatically from 9258 

records at one meter resolution to 477 records at twelve meter resolution (Table 1).  

Compared to the original number of polygons for buildings (i.e. 1458 polygons), 

represented in ArcMap shape-file, the QUIC building model required a greater 

number of records to represent all buildings in the study area than ArcMap when 

the selected resolution is finer than seven meters. 
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Table 3.1. The run-time for conversion algorithm and number of records after 
conversion. 

Resolution  
(meter) 

Time for conversion 
(mm:ss) 

Number of records after 
conversion 

(Original no of polygons: 1458) 
1 13:19 9258 
2 08:28 4580 
3 05:29 3356 
4 03:51 2370 
5 03:23 1885 
6 03:05 1463 
7 03:50 1273 
8 02:29 978 
9 02:14 815 
10 01:57 686 
11 01:41 566 
12 01:42 477 

 

Even though the algorithm was reasonably well and easily to run via the 

graphic user interface (GUI) menus, the run time is still unpractical to convert a 

large number of buildings at a fine resolution.  Using the building complex 

depicted in Figure 3.5 as an example, since it was not in rectangular shape, the 

algorithm would slice the building into many long narrow rectangles.  With such 

a large number of records, users might not able to run the QUIC dispersion model 

due to memory shortage when displaying buildings or calculating the wind field at 

every grid cell.  Such challenges were common to many small-scale 

environmental models that were computationally demanding and could easily be 
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over-burdened by large data volumes.  Utilizing data compaction techniques in 

slicing the buildings might reduce the number of records.  However, at a fine 

resolution, even though the number of records was reduced, a large number of grid 

cells for the study area were still necessary.  For instance, a hundred m3 study 

area required 1,000,000 grid cells at one meter resolution.  If two meter resolution 

was used, the number of grid cells was reduced to 125,000 which were about 12.5 

percent of grid cells used at one meter resolution.  Also, decrease in spatial 

resolution, such as from one meter to two meter resolution, could greatly reduce 

the number of blocks in QUIC to nearly 50 percent (Table 3.1).  Therefore, a  

 
 

             Building polygon before the conversion  

 

             Building polygon after the conversion  

 

Figure 3.5.   An example of building in downtown Oklahoma City using six 
meter horizontal resolution, which results more number of records after the 
data conversion. 
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simpler solution would be either to increase the resolution or to reduce the size of 

study area.   

On the other hand, converting the results from QUIC to ArcMap was easier 

and more direct than from ArcMap to QUIC because no data conversion was 

involved.  However, ArcMap was not fully capable of displaying a large number 

of temporal 3D data.  Results from urban atmospheric dispersion models always 

included numerous time steps, each of which consists of chemical dispersion 

estimates in 3D space.  Alternative solutions included displays of chemical 

dispersion estimates one time step at a time, displays of lows or pattern of changes 

in chemical concentrations, animation of time-stamped dispersion estimates, and 

other visualization approaches.   

Returning to the research focus on exporting the building model from 

ArcMap to the QUIC dispersion model, the sensitivity of the building footprint 

location, area and volume are examined by changes in spatial resolution.  The 

next section presents the results from spatial uncertainty assessment of building 

footprint location, area and volume. 
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4.2 Change in building location 

The change in building location was represented by the mean distance 

between building vertices shifted after conversion.  The shifting distances were 

transformed with natural log for normality.  Figure 3.6 shows the mean shifting 

distance of all building vertices after conversion with both methods of rasterization.  

The mean shifting distance was around 50 percent of the defined resolutions and 

increased steadily as the spatial resolution became coarser.  Figure 3.7 

summarizes the shifting directions across various resolutions.  The directional 

shifts of building vertices were similar in proportion, contributing about 12.5 

percent for each direction across twelve resolutions.  Compare two methods of 

rasterization, results were almost the same.  
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Figure 3.6.  The relationship between the change in resolutions of the gird 
used in conversion and the average shifting distances.  Comparing two types 
of rasterization. 
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Central Position Method

N NE E SE S SW W NW
 

Dominant Unit Method

N NE E SE S SW W NW
 

Figure 3.7.  The proportion of shifting directions across twelve resolutions, 
comparing two types of rasterization. 
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Figure 3.8 depicts the spatial distribution of the building vertices that 

shifted over two standard deviations (i.e. 2.6 meters) after conversion with one 

meter horizontal resolution.  These building vertices were found across the whole 

study area.  Both methods of rasterization received the almost the same 

distribution except two vertices that were located at the southern part of the area.  

Across twelve resolutions, the numbers of buildings vertices with shifting distance 

exceeded two standard deviations were first increased at two meter resolutions and 

then gradually declined (Table 3.2).  As resolution became coarser, although both 

methods of rasterization got fewer building vertices with abnormal shifting 

distance, some abnormal shifting were found at different locations (Figure 3.9).  

Compare both rasterization methods, extra abnormal shifting distances were found 

at some buildings with relative small footprint area when dominant unit method 

was employed.  If the building was smaller than the user-defined resolution, it 

could be absented from the model after rasterization using dominant unit method 

and hence introduced abnormal shifting distance.  However, if central position 

method was chosen, the building might still exist and the shifting distance would 

be reduced. 
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Figure 3.8.  Building vertices with shifting distance above two standard 
deviations after conversion, using one meter user-defined spatial resolution.  
Red dots represent dominant unit rasterization while black crosses represent 
central position rasterization. 
 
Table 3.2.  The number of building vertices with shifting distances above two 
standard deviations across twelve resolutions. 
Resolution
(meters) 

Maximum area method Cell center method 

1 339 347 
2 462 469 
3 404 408 
4 335 339 
5 207 232 
6 171 189 
7 129 161 
8 163 192 
9 135 133 
10 142 133 
11 133 129 
12 120 112 
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Figure 3.9.  The location of building vertices with shifting distance above two 
standard deviations, at twelve meter resolution.  Red dots represent results 
using maximum area method while black crosses represent results using cell 
center method. 

 

Buildings with great shifting distance after conversion might greatly 

influence the results of atmospheric dispersion model.  This study summarized 

building characteristics with great shifting distance by examining the relationship 
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between the shifting distance and building characteristics.  First, compactness and 

edge index (Wentz, 2000) were calculated to characterize the buildings.  

Compactness also called circularity ratio which compared the area of a shape to the 

area of a circle.  It was calculated by:  

4π(area) / (perimeter)2 

, where compactness of one represented a circle and zero represented an 

infinitely long and narrow shape.  Edge index characterized the roughness or 

smoothness of a shape by: 

2* log (perimeter) / log (area) 

, where larger edge index represented a shape with rougher edge. 

Second, the sum of the shifting distance for each building polygons after 

conversion was calculated.  Figure 3.10 shows the scatter plots of two indexes 

against the sum of shifting distance after conversion at one meter resolution using 

dominant unit method.  No obvious relationship could be found between the sum 

of shifting distance and shape compactness.  For edge index, buildings with 

greater edge index tended to have a smaller sum of shifting distance.  However, 

the range of the shifting distance was large for buildings with small edge index.  

Similar results were observed from central position method.  Although no 

significant relationship could be found between shifting distance and two shape 
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indexes, the buildings with abnormal shifting distances were visually examined 

and three building characteristics that accounted for the results were summarized. 

0
5

10
15
20
25
30
35
40

0.00 0.20 0.40 0.60 0.80 1.00
Compactness

Sh
ift

in
g 

di
st

an
ce

 (m
et

er
s)

 

0
5

10
15
20
25
30
35
40

1.00 1.20 1.40 1.60 1.80 2.00
Edge index

Sh
ift

in
g 

di
st

an
ce

 (m
et

er
s)

 

Figure 3.10.  The scatter plot of shifting distance and two shape indexes at 
one meter resolution, using dominant unit method. 
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The first building characteristic is “sloping roof top”.  As Figure 3.11a 

shows, that buildings with sloping roofs could be represented by triangular shape 

in ArcMap with heights recorded as minimum, maximum, and the slope of the roof.  

However, when converted to a rectangular shape in QUIC’s format, those vertices 

must be eliminated and resulted in significant shifting distances after data 

conversion.   

a)  

b)  

 
Figure 3.11.   Two examples of building vertices with shifting distances 
above two standard deviations at one meter user-defined resolution:  a) 
building with sloppy root-top and, b) building with excessive vertices. 



 101

The second characteristic resulted in high shifting distances was the 

presence of excessive building vertices.  For example, Figure 3.11b shows a 

building polygon with excessive building vertices.  After conversion, those 

vertices disappeared and hence the shifting distance greatly increased.    

The third characteristic accounted for the differences between dominant 

unit method and central position method.  When the building was smaller than the 

user-defined resolution, it might still be recognized as a building by central 

position method but not by dominant unit method.  A significant shift might occur 

if it absented from the model after rasterization.  However, if there were buildings 

near this absented building, the shifting distance of the absented building would be 

reduced since the algorithm searched for the closest building vertices and 

calculated the shifting distance.  

Although the above three characteristics of buildings could not be 

quantified with the shape index, two of them could be easily discovered using 

spatial editing and spatial query functions in GIS software except the sloppy roof 

top of buildings, which could be hard to detect if no information about the roof was 

obtained during data collection.   

Finally, with a systematic analysis of the building displacements due to 

data conversion could be used to model the spatial uncertainty for building location 
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in urban dispersion modeling.  By calculating the shifting distance in x and y 

co-ordinates from all buildings, a frequency distribution of x, y shifting for all 

resolutions could be computed (Figure 3.12).  The frequency distribution 

provided the basis to simulate uncertainty of building location when we studied the 

influence of spatial uncertainty on the urban atmospheric dispersion model.    

 

 

Figure 3.12.  The frequency distribution of shifting distance in x and y 
co-ordinates at one meter resolution. 
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4.3 Change in building footprint area  

Figure 3.13 illustrates the percentage changes in total building footprint 

area and the unchanged building footprint area across twelve resolutions, two 

methods of rasterization.  As resolution became coarser, the total footprint area 

after conversion changed within +/- one percent.  The building footprint area 

remained unchanged steadily decreased from 98.6 percent to 84.6 percent and 81.7 

percent for central position method and dominant unit method respectively.  The 

changes in the percentage of building footprint area omitted and committed were 

very similar for central position method, where they both increased from 1.3 

percent to around fourteen percent and fifteen percent (Figure 3.14).  However, 

for the dominant unit method, the percentages changes in building footprint area 

omitted and committed were increased from one percent to eighteen percent and 

eleven percent respectively.  The changes in area omitted were larger while the 

changes in area committed were smaller at twelve meter resolution.   

As resolution became coarser, the interior of building footprints remained 

unchanged and the edge of buildings became less complex.  The building 

footprints omitted and committed were distributed around the edges of the original 

building footprints (Figure 3.15).  Coarser resolution contributed a larger area 
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Figure 3.13.   Percentages of building footprint area changed (black line) 
and unchanged (grey line) after conversion across twelve resolutions, 
comparing two methods of rasterization.   
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Figure 3.14.   The percent of footprint area omitted (Grey dotted line) and 
committed (black dotted line) after conversion. 
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Figure 3.15.  The spatial distribution of omitted and committed footprint 
area after conversion.  Area in grey is a combination of omitted and 
committed footprint area at twelve meter resolution. 

 

around the original building footprints.  Conversely, linear features like skywalks 

or gaps between buildings might become disappear after conversion (Table 3.3). 

When the central position method was chosen to rasterize polygons, there 

was no fixed pattern for the absence of skywalks after conversion.  Unlike the 

results from dominant unit method, skywalks would not be presented again once it 

absented from previous resolution.  Exceptional case was found at skywalk  
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Table 3.3.  The resolutions that missed skywalks after conversion. 
Comparing two methods of rasterization. 
 

 Skywalk ID Skywalk ID 
Resolution (Central Position) (Dominant Unit) 

(meter) 1 2 3 4 5 6 7 1 2 3 4 5 6 7
1               
2               
3       x       x
4    x  x x    x  x x
5  x  x  x   x  x  x x
6  x  x  x   x  x  x x
7    x  x x  x  x  x x
8 x x x   x  x x x x  x x
9 x x x  x x x x x x x x x x
10 x   x   x x x x x  x x
11 x  x x   x x x x x x x x
12   x x x x x x x x x x x x

x – Absented of the skywalk 

 

number five where the width of the skywalk was about five meters.  Therefore, 

the presence of this skywalk at ten meter resolution would be depended on the 

spacing of the grid.  Although Wedhe (1982) stated that the position of the cell 

was not important for overall map accuracy, it would become an important factor if 

the study area was composed of polygons of similar sizes and regular patterns, or 

polygons in linear shape.  For example, buildings in a residential area usually 

were similar in sizes and were distributed in a regular pattern.  If these buildings 

were converted to a raster using the same cell size as the building area, the position 
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of the cell could determine whether or not most of the buildings would be 

absented.   

Moreover, the central position method for rasterization could be 

problematic in an urban atmospheric dispersion study.  For example, the 

skywalks in downtown Oklahoma City could be absented at nine meter resolution 

but presented at ten meter resolution.  However, for atmospheric dispersion 

modeling, beyond a certain resolution, the size of skywalks were considered 

insignificant to the dispersion process.  Alternatively, the dominant unit method, 

where a polygon was converted to raster cell when the polygon occupied the 

dominant area of the cell, might be a better option for building rasterization when 

the building data was used for urban atmospheric dispersion modeling.           

 

4.4 Change in building volume 

The changes in total building volume were not explicit from one to six 

meter resolutions.  From seven meter resolution onward, the total building 

volume fluctuated up to three percent for central position method and nine percent 

for dominant unit method (Figure 3.16).  As the horizontal resolution became 

coarser, the percentage of buildings volume unchanged steadily decreased from 99 

percent at one meter resolution to 77 percent and 74 percent at twelve meter  
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Figure 3.16.   The change in total building volume after the conversion (solid 
lines) and the building volume unchanged (dotted lines) across twelve 
resolutions, comparing two methods of rasterization. 

 

resolution for central position method and dominant unit method respectively.  

The changes in percentage of building volume omitted and committed were similar 
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for central position method (Figure 3.17).  Both percentages increased from one 

percent to about 21 percent across twelve resolutions.  For dominant unit method, 

the changes in percentages percentage between building volume omitted and 

volume committed increased from one percent to 26 percent and 19 percent 

respectively.  Comparing two methods of rasterization, greater differences in 

building volume omitted and committed could only be found at resolution beyond 

ten meter. 
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Figure 3.17.  The percent building volume omitted (grey dotted line) and 
committed (black dotted line) after conversion. 
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At one meter resolution, most building volume omitted and committed was 

found at building edges.  As the horizontal resolution became coarser, building 

volume omitted and committed was found not only at the edge of the buildings, but 

also across the study area because there was a remainder from dividing the 

elevation of the building by vertical resolution (Figure 3.18).  Similar patterns 

were obtained from central position method and dominant unit method. 

 

 

 
Figure 3.18.  The spatial distribution of building volume omitted (right) and 
committed (left) at one meter (up) and six meter (bottom) resolutions. 
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In comparison to the change in building footprint, more buildings 

disappeared after the conversion incorporating a vertical resolution that affected 

building elevation.  Those omitted buildings were mostly located at the outer 

range of the study area, where buildings were lower in elevation.  However, 

unlike the changes in building footprint, buildings with elevation smaller than half 

of the resolution would not be occurred again once it disappeared at a vertical 

resolution.  For modeling atmospheric dispersion in urban area, whether or not 

the source of emission was located near the absented buildings became more 

important because buildings near the emission source might change the dispersion 

pattern significantly.  In order to reduce the influences of omitted or committed 

building volume towards the atmospheric dispersion modeling, the dispersion 

models should be able to assign a vertical resolution separately.   

  

5. Conclusions 

Based on the results of uncertainty assessment in building location, 

footprint area and volume, this study finds that coupling GIS with UADMs 

involves two main issues.  First issue is concerned with practicality.  Although a 

fine spatial resolution provides a more detailed representation of the building 

model, it is not always practical for UADMs.  Also, data outputs from the 
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dispersion model output conform to the raster GIS data, but many GIS software do 

not readily display 3 dimensional data with an additional temporal dimension.  

Future studies may focus on enhancing displays of the 4D atmospheric dispersion 

results in GIS. 

The second issue concerns data accuracy after conversion.  As the spatial 

resolution becomes coarser, spatial uncertainty grows in the building model.  A 

linear relationship is found between the spatial resolution and the mean shifting 

distances of building vertices.  In the case of rasterization using the central 

position method, linear features with an area or height similar to the resolution may 

be absented without a predictable pattern.  An alternative option is the central 

position method for rasterization when dealing with building models.  The results 

of the spatial uncertainty assessment for coupling ArcMap and QUIC can be used 

to model spatial uncertainty in building models.  Future work should assess the 

influence of building model uncertainty on the results of urban atmospheric 

dispersion modeling.   
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Chapter 4 : The Influences of Spatial Uncertainty toward Urban 
Atmospheric Dispersion Model 

Abstract 

Urban atmospheric dispersion models (UADMs) estimates the atmospheric 

circulation and predict how pollutants are dispersed within an urban environment.  

Many important decisions are made in reference with the output from UAMDs.  

However, UADMs output may be unreliable due to uncertainties in input data, 

parameter settings and model assumptions.  Many research efforts focus on 

examining the sensitivities of parameter settings toward UADMs.  

Complementarily, this paper compares the influences of uncertainties from spatial 

input data and meteorological parameters toward UADMs, using Quick Urban and 

Industrial Complex dispersion model (QUIC) as an example.  Buildings are one 

of the fundamental spatial data sets for UADMs.  Often, spatial uncertainty is 

introduced to the UADMs through changes in data resolution and formats, such 

that locations, shapes and heights of buildings are modified during the 

transformation.  With a field experiment in Oklahoma City and Monte-Carlo 

simulation, this study examines the influences of uncertainties from both 

meteorological parameters and building data.  The building data are perturbed 

base on previous assessment of spatial uncertainty.  Wind speed and wind 

direction are perturbed according to the uncertainty obtained from field 
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observation.  Then, under the same scenario, two groups of tracer chemical (i.e. 

Sulfur Hexafluoride - SF6) dispersion simulations are generated: one group with 

uncertainty from meteorological parameters only and the other group with 

uncertainties from both building data and meteorological parameters.  Each group 

contains thirty simulations.  Two groups of simulations are then compared with 

ground observation data.  Results show that locations near the release point and 

building edges show significantly higher simulated concentration than observations 

by ground sensors for both simulation groups.  The overestimation of 

concentration is particularly apparent within the first two minutes of the release 

and near the release points.  Over-estimation is also prominent from ground level 

up to twelve meters around the buildings.  Furthermore, at five out of eight 

sampling sites, simulations with uncertainties from both meteorological parameters 

and building data generate a closer concentration than the other simulation group 

that represents uncertainty only from meteorological parameters.  The finding 

seems suggest that uncertainty from meteorological data and building data may 

have canceling effects in dispersion modeling.  Future research should examine 

additional scenarios and with other UADMs and identify the mechanisms of 

uncertainty effects from multiple sources.  
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1. Introduction 

Urban atmospheric dispersion models (UADMs) are commonly used to 

monitor air quality, predict air pollutants dispersion, establish environmental 

regulations, and response to accidental hazardous gas releases in urban area.  One 

of the key challenges in UADMs is to account for the complex building structures 

and arrangement in an urban environment. 

As all process models, UADMs are subject to uncertainties from various 

sources.  For instance, the results of UADMs can be influenced by meteorological 

uncertainties such as changes in wind speed, wind direction, and wind profile; 

spatial uncertainties such as inaccuracy in building dimension, location and terrains; 

and scenario uncertainty such as emission type, duration and amount (USEPA, 

1992).  Therefore, any UADM outcome cannot be confidently interpreted and 

used for decision making without understanding the model’s behavior towards the 

influences of uncertainties from potential sources.  Uncertainty in this paper 

refers to the discrepancies between the data and the reality the data represent, 

without ascertain true differences.  Therefore, it is usually represented by 

statistical probability at a confidence level.  For example, at a 90 percent 

confidence level, the accuracy of the digital elevation model (DEM) falls within 

+/- 30 meters.  From the perspective of environmental modeling, uncertainty is 
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inevitable and presented in every aspect such as model assumptions and data 

representation (Goodchild, 1993).   

A good understanding of the effects of data uncertainties on UADM 

outcomes provides the basis of model reliability.  Consequent decision making 

processes such as planning of evacuation route in case of emergency and planning 

of buildings in urban downtown area will need to consider the inherit uncertainty 

in UAMS estimates.  Fundamentally, understanding uncertainty provides 

references to model development for improved estimation of atmospheric 

dispersion in urban environments. 

While there are many sources of uncertainty, this paper focuses on 

examining the influences of spatial uncertainty toward the results of UADMs, 

using a newly developed UADM-QUIC (Quick Urban and Industrial Complex 

atmospheric dispersion system), as an example.  This study examines the 

influences of spatial uncertainty using a combination of Monte Carlo approach and 

sensitivity analysis.  First, two sets of uncertainties are generated: one is 

meteorological uncertainty and the other is spatial uncertainty.  Second, under a 

controlled dispersion scenario, QUIC model is run with two sets of parameters.  

First set of parameters is perturbed with meteorological uncertainty and second set 

of parameters is perturbed with uncertainty from meteorological and building data.  
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Finally, the results of the QUIC model are examined and validated with ground 

observations. 

 

2. Background 

UADM estimates atmospheric circulation and pollutants dispersion within 

an urban environment.  Urban dispersion modeling requires advanced 

computation power, detailed information of urban environment and knowledge of 

fine-scale atmospheric circulation.  With the improvement in computer and 

remote sensing technologies, UADMs have become a common tool in studying air 

quality and atmospheric dispersion.  However, uncertainty remains a challenged 

issue for scientists, modelers and decision-makers.   

According to Fox (1984), uncertainty in atmospheric dispersion models 

originates from two main sources: one is the stochastic nature of atmospheric 

motion, and the other is the errors in the input data.  Stochastic nature of 

atmospheric motion such as turbulence is by large random and cannot be predicted 

precisely.  Therefore, every model’s prediction inherits some degree of 

uncertainty.  Meanwhile, urban dispersion modeling also accounts for errors in 

input data, such as model parameters, emission characteristics, meteorological and 

terrain conditions.  Errors in these data and inadequate settings of model physics 
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lead to uncertainty in model’s results.  Theoretically, uncertainty can be reduced 

through improvement in input data accuracy and computation algorithms.   

In practice, however, improvement in data accuracy does not necessarily 

reduce uncertainty in model results.  A typical case is the uncertainty from spatial 

data, or we called spatial uncertainty.  Spatial uncertainty is introduced mainly 

during the data collection and conversion processes.  For examples, an urban 

environment with complex building structures and constructions can challenge the 

development of an accurate, representative three dimensional building model.  

Even with current remote sensing technology such as LiDAR (i.e. Light Detection 

and Ranging), which can achieve one-meter horizontal resolution and sub-meter 

accuracy on building heights, the building data accuracy can also be varied greatly 

due to different environment settings and spatial arrangements of buildings and 

urban landscape (Burian et al., 2004).  Moreover, most UADMs requires model 

specific data formats (USEPA, 1992).  Data transformation to the specified data 

format inevitably leads to data modification.  In addition, the 

computation-intensive nature of UADMs with spatial data at a fine resolution can 

exhaust computation resources.  Therefore, some UADMs are designed for coarse 

building data to reduce the processing time.  Consequently, these UADMs 

encounter an additional degree of uncertainty.  Issues with the data accuracy, data 
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requirements and model operation further raise the importance of understanding 

the influence of spatial uncertainty on urban atmospheric dispersion modeling.  

Research is aiming to address the influence.      

While research on the influence of spatial uncertainty on UADMs is 

lacking, several studies examined uncertainty effects from other input data such as 

meteorological condition, emission characteristics and model parameters.  For 

examples, Yegnan et.al. (2002) analyzed the influences of wind speed and ambient 

temperature toward the results of ISCST dispersion model using Taylor series 

approach and Monte Carlo approach.  They found that the dispersion results were 

more sensitive to wind speed than ambient temperature.  Sullivan et.al. (2004) 

combined two dispersion modeling system (ISCST3 and TOXST) to predict the 

emission of fumigants.  By conducting a sensitivity analysis on key input 

parameters, they found that emission rate was a critical input parameter to 

modeling outcomes.  Manomaiphiboon and Russell (2004) evaluated the 

uncertainties of five model parameters towards a Lagrangian particle model.  

Among the friction velocity, mean surface turbulent heat flux, surface roughness 

height, mean surface temperature and a universal constant in model equations, they 

found that the friction velocity was the most influential factor that affects the mean 

ground-level concentration.  Sax and Isakov (2003) estimated the uncertainty of 
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hexavalent chromium concentrations from welding operating using ISCST3 and 

AERMOD.  By comparing emissions, spatial and temporal allocation of 

emissions, model parameters and meteorology, they found that Gaussian models 

are sensitive to all components but most sensitive to emissions amount.  Together, 

these studies highlight the influential factors and model assumptions to model 

sensitivity and outcome uncertainty.   

With uncertainties coming from different input data sources, uncertainty 

analysis is the key to informed decision making based on the results of UADMs.  

Analysis of uncertainty has been an important research topic in different fields of 

atmospheric study such as air quality models (Britter and Hanna, 2003), exposure 

assessment (USEPA, 1992; Cullen, 1999), and weather forecasting (Brooks et al., 

1995; Krzysztofowicz, 1998).  In general, Taylor series analysis and Monte Carlo 

simulations are two common approaches for uncertainty analysis.  Taylor series 

approach analyzes the uncertainty by evaluating the derivatives of the model 

output function while Monte Carlo approach simulates the uncertainties and 

evaluates the perturbed outputs of the model.  In comparison of the two 

approaches, Monte Carlo approach is more suitable for stochastic models such as 

UADMs, while Talyor series approach is more appropriated for deterministic 

models (Heuvelink, 1998).   
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However, Monte Carlo approach is often limited by computation cost since 

UADMs usually consume huge data storage and require long computation time.  

Besides the intensity of computation needs, Monte Carlo approach describes only 

the variation of the model results caused by the uncertainties of input data.  

Addition analyses are needed to distinguish the influence of uncertainty from 

different input data.  Expanding upon the Monte Carlo approach, this research 

examines the influence of spatial uncertainty towards a newly developed UADM – 

QUIC, using Monte Carlo approach with sensitivity analysis.  The Central 

Business District in downtown Oklahoma City (OKC) is used as an example and 

the study simulates part of the field dispersion experiment taking place in OKC at 

2003.  The detailed research design is described in the following section, 

followed by results, discussions and a conclusion.   

 

3. Research Design 

Figure 4.1 shows the conceptual design of the research.  Using QUIC 

dispersion model as an example, two groups of simulations are generated under the 

same scenario.  The first group (Group A) of simulations associates with 
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meteorological uncertainty only (i.e. changes in wind direction and wind speed). 

 
Figure 4.1. Conceptual flowchart of the research design. 

 

This group of simulations assumes with no spatial uncertainty (i.e changes in 

building locations and dimensions) which are presumed by the most UADMs.  

The second group (Group B) of simulations associates with both meteorological 

and spatial uncertainty.  This group of simulations is assumed to be more 
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examined and the model outcomes are compared with field observation.  Thirty 

simulations are chosen based on the consideration of computation power and the 

Central Limit Theorem.  Without prior knowledge on the distribution of tracer gas 

concentration, the statistical rule of thumb suggested thirty simulations as a starting 

point.    

The simulations are run on a Dell desktop with 512 RAM and Pentium 4 

2GHz CPU.  Each group of simulations includes thirty runs of the model under 

the considerations of the limitation in computation power and the requirement for 

statistical significance.  Only wind speed and wind direction are perturbed for 

simulating meteorological uncertainty because these variables are the basic 

meteorological inputs for UADMs.  For spatial uncertainty, it is assumed that the 

major source of spatial uncertainty is attributed to data conversion to meet the data 

requirements for model input.  This research assumes that there was no scenario 

uncertainty because scenario uncertainty is infeasible to quantify, given that each 

scenario varies greatly in terms of emission type, location, amount and duration.  

The detailed description of QUIC dispersion model, settings of scenario, 

generation of spatial and meteorological uncertainty and the examinations of the 

models results are outlined as follows. 
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3.1 QUIC dispersion model 

QUIC is a new dispersion model developed by Los Alamos National 

Laboratory.  The model is designed to provide fast predictions on the dispersion 

of air contaminants in an urban environment with limited computation power (i.e. 

laptop).  QUIC is composed of two parts: QUIC-URB and QUIC-PLUME.  

QUIC-URB calculates the three dimension wind field among buildings using 

empirical algorithms for certain flow regions near buildings (such as wakes, 

cavities, street canyons etc.).  In these empirical parameterizations, the 

dimensions of the different flow regions are expressed as functions of the building 

dimensions.  It can thus be expected that QUIC-URB is particularly sensitive to 

uncertainties in the GIS building database (Pardyjak and Brown, 2002).  

QUIC-PLUME simulates the dispersion of air contaminates using wind field from 

QUIC-URB and Langevin random walk equations (Williams et al., 2004).  

Dispersion towards building surfaces is handled as the particles are elastic.  

Reflection angle is determined by calculating the direction with the largest 

penetration into the wall.  The reflected distance is equal to the penetrated 

distance.  Moreover, the model is tested thrice with identical input parameters to 

ensure that the model outputs are reproducible.  The model also comes with a 

graphical user interface (GUI) for data input, parameter settings and results 
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visualization that are built inside MATLAB software.  Figure 4.2 shows the 

QUIC user interface.  Detailed descriptions of the QUIC could be found on the 

QUIC’s user manual. 

 

Figure 4.2.  QUIC user interface modules. 

 

3.2 Scenario settings  

Table 4.1 shows the detail settings of the scenario.  The dispersion field 

experiment took place in downtown OKC, July 2003, also known as Joint Urban 

2003.  The study was one of the largest dispersion studies in United States, 

sponsored by U.S. Department of Energy, U.S. Department of Homeland Security 

and U.S. Department of Defense.  The study area was shown in Figure 4.3.  It 

was located at downtown Oklahoma City with an extent about 612 meters by 830 
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meters.  Flat terrain and well-defined central area reduced the complexity of 

UADM.  Given the scale of tracer gas release, this study assumed that the 

concentration of tracer gas was not significant outside the extent of the study area.  

With over 200 tracer gas samplers and wind samplers covered in downtown OKC, 

tracer gas (i.e. sulfur hexafluoride, SF6) was released at three different locations 

over ten intensive operation periods (IOP).  The scenario settings mimicked part 

of the second IOP, conducted at July 2nd 2003, where one kilogram of SF6 was 

released instantaneously near Westin Hotel, on the west side of Broadway Avenue.  

Under the scenario, the QUIC ran the simulated dispersion for twenty minutes with 

thirty seconds interval.  The simulations were then compared with the results 

from fieldworks. 

 

 

Table 4.1.  Settings of dispersion scenario. 
Simulation parameters   
Number of particles: 2000 
Simulation time step:  30 seconds 
Simulation duration: 1200 seconds 
Concentration field average time: 30 seconds 
Source parameter  
Total mass release: 1 kg 
Source type: Point 
Release type: Instantaneous 
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Figure 4.3.  The study area – Downtown Oklahoma City.  Date souce: 
U.S.G.S., date: March-2002. 

 

3.3 Spatial and meteorological uncertainties 

An assessment of the influence of spatial uncertainties towards results of 

QUIC requires probability distributions of the uncertainties.  This study assumes 

that the data conversion is the key source of spatial uncertainty as a comprehensive 

study of the 3D building model has identified that locations and sources of 

uncertainty in building data (Cheuk and Yuan, 2008).  QUIC employs a unique 

data format for building input, and the building data in QUIC are stored as either 
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rectangles or circles.  Each record contains height, width (length in y co-ordinate), 

length (length in x co-ordinate), xfo (minimum x co-ordinate), yfo (middle y 

co-ordinate), and zfo (base height).  Nevertheless, buildings, in reality, are often 

in complex shapes.  As a result, when data are converted into QUIC format, the 

location of the buildings may be shifted.  Based on the spatial uncertainty 

involved during the data conversion from ArcGIS to QUIC, a frequency 

distribution of spatial uncertainty at four meter resolution in terms of direction and 

magnitude is computed.  Then, the distribution is used to perturb the building data 

(Figure 4.4, also see Appendix I).  The four meter resolution is chosen because of 

the computational limitations of the computer system used in the study.  With 

resolutions finer than four meter, dispersion simulation using QUIC is not feasible 

because the computer will freeze.   

 

 

 

 

 

 

Figure 4.4.  Frequency distribution of spatial uncertainty at four meter 
resolution. 
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For meteorological uncertainty, this study assumes that the main source of 

uncertainty comes from variations in wind speed and wind direction.  Therefore, 

the meteorological data obtained during the Joint Urban 2003 project is used to 

derive meteorological uncertainty.  Figure 4.5 shows the locations of two wind 

samplers used to generate the meteorological uncertainty.  These samplers are 

chosen because they are located at relatively open space compared to other 

samplers.  Site fourteen is at the roof of the buildings, and site fifteen is at a 

sampling tower forty meters above ground.  Figure 4.6 shows the wind speed and 

wind direction variations during the second IOP.  Table 4.2 shows the 

meteorological parameters used in the thirty simulations. 

 

Figure 4.5.  Locations of two wind samplers which are used for generating 
meteorological uncertainty. 
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Figure 4.6.  Variations of wind speed and wind direction (meteorological 
uncertainty) during second IOP. 
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Table 4.2.  Wind speeds and wind directions used in the simulations. 
Simulation 
ID 

Wind speed 
(m/s) 

Wind 
direction 

Height 
(m) 

A1 4.65 232 26 

A2 3.75 235 40 

A3 2.7 225 26 

A4 4.88 222 40 

A5 2.65 234 26 

A6 3.39 258 26 

A7 2.7 223 26 

A8 4.84 214 26 

A9 4.71 257 26 

A10 4.08 239 40 

A11 4.88 207 26 

A12 3.23 228 40 

A13 2.89 217 26 

A14 5.26 227 40 

A15 4.3 216 40 

A17 4.09 184 40 

A18 1.85 209 40 

A20 5.67 227 40 

A21 4.58 221 40 

A22 1.23 232 26 

A23 2.52 206 40 

A24 1.43 229 40 

A25 2.81 232 26 

A26 5.8 222 26 

A27 4.84 243 26 

A28 3.23 203 40 

A29 2.69 216 40 

A30 4.86 240 26 

A31 4.05 217 40 

A32 4.83 217 40 
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3.4. Examinations of model outputs 

With Monte Carlo method, this study perturbs the spatial and 

meteorological inputs and generated two groups of the model outputs.  Each 

group contains thirty simulations and each simulation is composed of a 3D field 

(612m x 830m x 150m) of concentration over twenty minutes.  A cube in the 3D 

field of concentration is four by four by four meters.  Concentration at a particular 

height and time is expressed as a raster layer in GIS, and therefore one simulation 

contained 1640 raster layers (40 time steps x 41 layers in height).  Additional 

three layers in height are required by the QUIC model in order to compute the 

wind circulation.  With massive amount of output data, the study focuses on two 

aspects: 1) the spatial distribution of integrated concentration over time and, 2) the 

spatial distribution of concentration over time.  

First, this study looks at the spatial distribution of integrated concentration, 

the sum of concentration across simulation time.  Since each group of output data 

sets contains thirty simulations, the mean and variance of integrated concentrations 

are calculated.   The absolute differences in mean integrated concentration are 

also computed and student T test is conducted in order to identify locations with 

significant differences at 95 percent confidence interval based on mean integrated 

concentration.  The null hypothesis is that there are no significant differences 
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between the mean integration concentrations between two groups of outputs.  

After prescreen of the simulation, examination of mean and variance integrated 

concentration are stopped beyond twenty meters in height as very small 

concentrations are found above this level. 

Second, this study examines the spatial distribution of concentration over 

time.  For each group of simulations, the mean and variance concentration for 

every time step are computed.  Student T tests are also performed to determine 

whether there are any significant differences in the concentrations between two 

groups of output data sets at every time steps up to 95 percent confidence interval.  

The null hypothesis is that there are no significant differences between the mean 

concentrations between two output data sets at every time step.  However, 

prescreen of the simulations determines to discard concentrations after the tenth 

time step as the concentrations are relatively small and dispersed.  

 

3.5. Evaluations of model simulations 

This study compares the concentration between two sets of simulations and 

evaluates the simulation results with ground observations in Joint Urban 2003 in 

order to examine the influence of spatial uncertainty towards model accuracy.  

Figure 4.7 shows the sensor locations.  Each observation point is equipped with a 
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real-time sampler operated by Lawrence Livermore National Laboratory (LNLL).  

These samplers are chosen for validations because they are close to the release 

point and are determined by meteorology collaborators with good data integrity.   

 

 

Figure 4.7.  Locations of the ground observation sites. 

 

However, there are only eight real-time sampling sites, and the observations are 

only available at ground level. 
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There are many different methods to compare the ground observation with 

model simulations.  Chang and Hanna (2004) reviewed and presented various 

measures that used to evaluation atmospheric dispersion models.  For examples, 

fractional bias, geometric mean bias, the normalized mean square error, correlation 

coefficient and the faction of predictions within a factor of two of observation.  

They suggested multiple measures for model evaluation since each measure carried 

its own limitations and advantages.  

This paper first compares the simulated integrated concentration with 

ground observations for each sampling site.  Then, the predicted concentration is 

compared with observatory data by pairing them with both time and space.  Four 

common evaluation measurements are used in the evaluation and their equations 

are shown as follows: 

1) Fractional bias (FB) = ( )
( )CpCo

CpCo
+

−
5.0

·································· equation 1 

2) Geometric mean bias (MG) = ( )CpCo lnlnexp − ··············· equation 2 

3) Normalized mean square error (NMSE) = ( )
CpCo
CpCo
⋅
− 2

····· equation 3 

4) Geometric variance (VG) = ( )[ ]2lnlnexp CpCo − ·············· equation 4 

 
, where Co is the observed values; Cp is the predicted values; overbar 
represents the average over the dataset. 
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4. Results and Discussions 

4.1 Spatial distribution of integrated concentration 

Figure 4.8 shows the mean integrated concentration for both Group A and 

B simulations at the ground level.  The mean integrated concentrations of both 

groups were classified into quintiles in order to compare their spatial distributions.  

Locations with the highest mean integrated concentration were shown in red while 

the lowest mean integrated concentration were shown in dark green.  In general, 

both groups simulated similar dispersion patterns.  Dispersion progressed along 

the north-east side of the study area.  The mean integrated concentration gradually 

declined from release points toward northeast as the simulated wind direction went 

from south-west (i.e. between 184 and 258 degree).  The location for the highest 

mean integrated concentrations were also very similar, both appeared at the 

northwest of release point, mainly caused by eddies generated by the building west 

of release point.    

Nevertheless, this study identified three main differences between the two 

simulation groups by subtracting the mean integrated concentration of Group B 

from Group A at the ground level (Figure 4.9).  The blue color represented area 

where Group B generated a higher mean integrated concentration than Group A, 
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Figure 4.8.  Mean integrated concentration at the ground level for simulation 
Group A (left) and Group B (right). 
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Figure 4.9.  Differences in mean integrated concentration at the ground level.  
Area with blue color represents Group B generated a higher concentration; 
while area with red color represents Group A generated a higher 
concentration. 
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while the red color represented area represented the opposite.  Higher mean 

integrated concentration could be found inside the building footprints for Group B 

as the location of buildings in Group B were perturbed and shifted.  Moreover, 

Group B generated a higher concentration around the edge of building as well as 

around the release point (i.e. about 26m). 

Similar comparisons between the two groups of simulations were identified 

at different height levels.  Figure 4.10 displayed results from both groups at five 

different height levels.  Only five height levels were displayed as the mean 

integrated concentration above level five (i.e. twenty meters) was negligible when 

compared to the concentration at ground level.  Since Group B simulated higher 

mean integrated concentration adjacent to the release points at various height levels, 

this study suggested that there might be more vertical mix of tracer gas when 

spatial uncertainty was accounted.  

This study also performed student T tests to find out whether there were 

significant differences between the mean integrated concentrations from both 

simulations at various height levels.  Figure 4.11 shows the location where the 

mean integrated concentrations were significantly different between two 

simulation groups at the 95 percent confidence interval.  The blue color  
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Figure 4.10.  Differences in mean integrated concentration at various height 
level.  From left to right, top to bottom, represents height level 2, 3, 4 and 5 
respectively. 
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Figure 4.11.  Locations with significant differences in mean integrated 
concentration at various height level.  From left to right, top to bottom, 
represents height level 1, 2, 3, 4 and 5 respectively. 
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represented location with significantly higher mean integrated concentration from 

Group B, while the red color represented locations with significantly higher mean 

integrated concentrations from Group A.  Across most of the study area, there 

were no significant differences in mean integrated concentrations between Group 

A and B except at the edges of buildings near the release point where small clusters 

of blue and red points appeared.  The differences were more extensive at the first, 

second and the third height levels.  Away from the release point, individual red 

and blue points were found but those could be treated as differences caused by the 

randomness of dispersions between two simulation groups.      

 

4.2 Spatial distribution of concentration over time 

Figure 4.12 shows the differences of mean concentrations between two 

groups of output data sets at the ground level, from time-steps two to nine.  For 

consistency, the same color scheme was applied in Figure 4.9 to Figure 4.12.  

Step one was the initial condition, the same for every simulation, so it was ignored.  

From step two to step four, differences between output Group A and Group B were 

apparent.  As the tracer gas dispersed from the release point to northeast area, 

higher concentration accumulated near the release point in Group B simulations.  

From step five to nine, the tracer gas was dispersed to the northeast side of the  
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Figure 4.12.  Differences in mean concentrations between two groups of 
simulations at ground level (0 to 4 meters), from time step two to nine.  
Sequence from left to right, top to bottom. 
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release point in no particular pattern, except for higher concentrations from Group 

B simulations.  Concentration differences at other heights level were examined.  

Similar patterns at the lower altitudes appeared at height level-two to level-four.  

The concentrations simulated from Group B adjacent to the release point were 

higher than concentration simulated from Group A at time step two, three and four.  

Beyond step four, the concentrations were dispersed and mixed inside the street 

canyon northeast to the release point.  Around twenty meters above the ground 

(i.e. height level five), this pattern dissipated but was still discernible. (Figure 4.13 

to 4.16).  These results suggested that the spatial uncertainties accounted in the 

QUIC dispersion model (i.e. Group B) might have hampered the dispersion of 

tracer gas compared to those simulations without spatial uncertainties (i.e. Group 

A). 

Although higher concentration could be found around the release point with 

spatial uncertainties, not all of the results were significantly different.  At the 95 

percent confidence interval, significant differences in concentration could only be 

found at locations near the release point (within thrity meters), and within the first 

three time-steps (within 1.5 minutes).  Figure 4.17 shows the maps at different 

height levels and time steps which significant differences could be observed.  The  
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Figure 4.13.  Differences in mean concentrations between two groups of 
simulations at level two (four to eight meters), from time step two to nine.  
Sequence from left to right, top to bottom. 
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Figure 4.14.  Differences in mean concentrations between two groups of 
simulations at level three (eight to twelve meters), from time step two to nine.  
Sequence from left to right, top to bottom. 
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Figure 4.15.  Differences in mean concentrations between two groups of 
simulations at level four (twelve to sixteen meters), from time step two to nine.  
Sequence from left to right, top to bottom. 
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Figure 4.16.  Differences in mean concentrations between two groups of 
simulations at level five (sixteen to twenty meters), from time step two to nine.  
Sequence from left to right, top to bottom. 
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Figure 4.17.  Locations and time steps with significant differences in mean 
concentration between two groups of simulation outputs.  Top row 
represents time step two, three and four at ground level.  Bottom row 
represents time step two at height level two and three respectively. 

 

differences were only apparent at the first three time-steps at ground level, and 

second time-step at level-two (four to eight meters) and second time-step at 

level-three (eight to twelve meters).  Above height level-three, no significant 

differences appeared. 
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4.3 Validations of model simulations  

Figure 4.18 shows the mean integrated concentrations of model simulations 

and ground observations across eight sampling sites.  Both Group A and Group B 

over-estimated the concentrations at all the sampling sites, except for site A, where 

observed concentration was under-estimated by a factor of five.  Among the 

over-estimated sites, only estimates at site D and H fell within a factor of three.  

Other sampling sites (C, E, F, I and J) were over-estimated exceeding a factor of 

ten.   

0.00

0.01

0.02

0.03

0.04

0.05

0.06

A C D E F H I J

Site ID

M
ea

n
 I

n
te

g
ra

te
d
 C

o
n
ce

nt
ra

ti
o
n

(g
/m

3
) Group A

Group B

Ground

 
Figure 4.18.  Mean integrated concentration at eight sampling sites. 

 

Four common measurements were calculated for both groups of 

simulations (Table 4.3).  A perfect model would have zero for FB and NMSE and 

one for MG and VG.  Both groups of simulation received negative FB which 

meant over-estimation.  A MG of 0.03 from both groups of simulation also 
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referred an over-prediction of around 30 times between mean estimated 

concentration and mean observed concentration.  Relative large NMSE and VB 

from both groups of simulation represented the large differences between 

estimated and observed values, which were mainly contributed by the wrong 

estimation of a log-normal and relatively scattered distribution of concentration.  

  

Table 4.3.  Four common evaluation measurements for two groups of 
simulations. 

 FB MG NMSE VG 

Group A -0.54 0.03 14.17 0.170E+11 

Group B -0.25 0.03 13.07 0.550E+10 

  

To further understand the influence of spatial uncertainty on the results of 

QUIC, the mean concentrations of model simulations were plotted with ground 

observation over time (Figure 4.19, also see Appendix II).  Green solid lines with 

diamonds represented mean concentration from the ground observations.  Red 

and blue solid lines with squares and triangles represented mean concentrations 

from Group A and Group B simulations, respectively.  Three patterns appeared in 

comparison of the concentrations between ground observations and simulations.  

First, both groups of simulations over-estimated the concentrations at five out of 

eight sampling sites (i.e. Site C, E, F, I and J).  Among those sampling points, 
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Group B usually generated lower concentrations than Group A and closer to the 

ground observations.  Second, at sampling sites D and H, both groups of 

simulation over-estimated the concentration at the beginning (i.e. time steps one to 

four) but then under-estimated the concentrations later (i.e. time step five to eight).  

There seemed to be a two minute time lag of tracer gas arrival at sites D and H 

between the QUIC’s simulations and ground observations.  Again, concentration 

from Group B was smaller than Group A and closer to the ground observations.  

Third, both groups of simulations under-estimated the concentrations at site A.  

The concentration observed at ground level was much higher (almost ten times 

higher) than the both sets of simulation at the fourth time step.    

 

4.4 The influences of spatial uncertainty 

Under the same dispersion scenario settings with an instantaneous release 

of one kg tracer gas, QUIC simulated a different dispersion pattern with the 

influence of spatial uncertainty.  First, higher mean integrated concentration 

appeared near the building edges.  Second, higher mean concentration appeared 

near the release point at the first two minutes of dispersion.  Similar results 

persisted up to twenty meters in height.  Third, at seven out of eight sampling 

sites, the mean concentration over time was lower than the mean concentration  
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Figure 4.19.  Comparison between model simulations and ground 
observations.  Top showing results from site A, C, E & H, bottom showing 
results from site D, F, I, & J. 

  

[_

")

")

")

")")")

")

")
Main

Park

Sa
nt

a 
Fe

R
ob in son

Sheridan

B
ro

ad
w

ay

J

I

H F E

D

C

A

0 30 60 90 12015
Meters

") Tracer gas sampling sites

[_ SF6 Release Point

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

1 6 11 16 21 26 31 36

Time Step (30 seconds)

C
o
n
ce

nt
ra

ti
o
n 

(g
m

-3
)

Ground Group A Group B

0.000

0.002

0.004

0.006

0.008

0.010

1 6 11 16 21 26 31 36

Time Step (30 seconds)

C
o
nc

en
tr

at
io

n 
(g

m
-3

)

Ground Group A Group B

0.000

0.001

0.001

0.002

0.002

0.003

0.003

0.004

0.004

1 6 11 16 21 26 31 36

Time Step (30 seconds)

C
o
nc

en
tr

at
io

n 
(g

m
-3

)

Ground Group A Group B

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

1 6 11 16 21 26 31 36

Time Step (30 seconds)

C
on

ce
nt

ra
tio

n
 (

g
m

-3
)

Ground Group A Group B

[_

")

")

")

")")")

")

")
Main

Park

Sa
n t

a 
Fe

R
ob inson

Sheridan

B
ro

ad
w

ay

J

I

H F E

D

C

A

0 30 60 90 12015
Meters

") Tracer gas sampling sites

[_ SF6 Release Point

0.000

0.005

0.010

0.015

0.020

1 6 11 16 21 26 31 36

Time Step (30 seconds)

C
on

ce
nt

ra
tio

n 
(g

m
-3

)

Ground Group A Group B

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

1 6 11 16 21 26 31 36

Time Step (30 seconds)

C
o
nc

en
tr

at
io

n 
(g

m
-3

)

Ground Group A Group B

0.000

0.002

0.004

0.006

0.008

0.010

0.012

1 6 11 16 21 26 31 36

Time Step (30 seconds)

C
on

ce
nt

ra
tio

n 
(g

m
-3

)

Ground Group A Group B

0.000

0.005

0.010

0.015

0.020

0.025

1 6 11 16 21 26 31 36

Time Step (30 seconds)

C
o
n
ce

n
tr

at
io

n
 (

g
m

-3
)

Ground Group A Group B



 156

simulated without accounting for spatial uncertainty.  However, after account for 

spatial uncertainty, the mean concentration overtime was closer to the ground 

observation.  All three differences could be explained by the shifting of building 

locations which generated different sizes of urban canyons.  Smaller urban 

canyons near the release point might trap the gas inside and lead to a higher 

concentration at the beginning of dispersion.  After a period of dispersion, the 

concentration was diluted to the atmosphere and the differences became less 

significant.  Since higher concentrations were found near the release point, lower 

concentrations were found at the other part of the study area.  Therefore, lower 

concentrations were observed from simulation with spatial uncertainty as the 

ground observation points were located farther away from the release point.   

However, there were limitations in this research and further studies were 

required on the influence of spatial uncertainty towards UADMs.  First, only one 

dispersion scenario were tested on one atmospheric dispersion model.  Additional 

tests on other scenarios and urban atmospheric dispersion models would be 

desirable.  Continuous release of gas was not tested which might be also 

important to decision making for emergency managers in real chemical dispersion 

scenarios.  Second, the simulations with spatial uncertainty generated a closer 

concentration than simulations without spatial uncertainty.  The potential 
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canceling effect of uncertainty sources was intriguing and needed future validation 

with other scenarios, models, and sources of uncertainty, such as model physics 

and accuracy of other model parameters.  Third, the complexity of urban 

environments required a sufficient number of ground observations and data 

modifications before we could run the UADMs with spatial uncertainty.  Other 

approaches that minimized preprocessing cost were desirable to model the 

influence of spatial uncertainty.   

 

5. Conclusions 

Many studies on UADMs have emphasized meteorological and scenario 

uncertainties.  Yet spatial uncertainty should not be ignored.  This paper 

demonstrated the influences of spatial uncertainty towards QUIC dispersion model 

by conducting two groups of Monte Carlo simulations: Group A with 

meteorological uncertainties in wind speed and direction and, Group B with 

meteorological uncertainties and spatial uncertainty in building location.  With 

simulations of an instantaneous release of one kg tracer gas (SF6) in downtown 

OKC area, this study found that Group B simulations generated a significantly 

higher mean integrated concentration near the release point when compared to 

Group A simulations.  The significant differences (up to 95 percent confidence 
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interval) in mean integrated concentration could be found up to three height levels 

(i.e. up to twelve meters in height).  Moreover, by examining the mean 

concentration over time, Group B simulations generated higher mean concentration 

near the release point but lower mean concentration away from the release point.  

However, significant differences (up to 95 percent confidence interval) could only 

be found during the first two minutes of simulation at the ground level.  With 

field observations from eight real-time tracer gas samplers, both groups of 

simulations over-estimated the mean concentration except one location.  Overall, 

Group B simulations were closer to the field observations.  Although more 

uncertainties in model input generated simulations closer to field observations, the 

potential canceling effect of uncertainty sources required further validations on 

various scenarios and different UADMs.  Furthermore, due to the complexity of 

urban environment, processing cost was high to examine the influence of spatial 

uncertainty toward UADMs.  Development in new approaches that determined 

whether or not the introduction of spatial uncertainty was necessary to UADMs at 

certain scales was also desirable.   
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Chapter 5 : Conclusion 

1. Introduction 

Knowing the output uncertainty in environmental models is crucial for 

decision-makers because important policies are made with the aid of 

environmental models.  Lack of complete knowledge in natural phenomena, 

errors in input data and inadequate setting of model parameters are examples that 

contribute to the uncertainty of the model results.  This dissertation traces back 

the sources of uncertainty in the geo-spatial data and summarizes how the 

uncertainty of geo-spatial data influences the results of an urban atmospheric 

dispersion model (UADM), using LiDAR-derived building data and Quick Urban 

and Industrial Complex (QUIC) dispersion model as an example.   

Advances in remote sensing technologies have acquired geo-spatial data at 

high resolution and multi-dimensions.  For example, light detection and ranging 

(LiDAR) technique allows users to capture detailed terrain elevation information 

up to sub-meter resolution.  Combined with feature extraction algorithms, surface 

features such as buildings elevation, tree branches, sand dunes and even light pole 

can be captured by LiDAR.  Previous studies show that LiDAR data also 

contributes uncertainty to environmental models because of the limitations in 

LiDAR technique and feature extraction algorithms (Burian et al., 2004).  A 
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comprehensive understanding of LiDAR data accuracy helps identify potential 

source of uncertainty before inputting the data into the environmental models. 

Another source of uncertainty arises during the data transference between 

geographic information systems (GIS) and environmental models.  Unique data 

models and formats in environmental models require data conversion.  Data 

conversion processes such as changing in scale and re-sampling of data alter the 

data location and further introduce uncertainty to environmental models.  

Previous studies have been focused on the shifting of objects location in a 

two-dimensional surface (Huising and Pereira, 1998; Ahokas, Kaartinen, and 

Hyyppa, 2003; Alharthy, Bethel, and Mikhail, 2004; Hopkinson et al., 2001).  

However, as three-dimensional data are now common, understanding the 

uncertainty in the third-dimension is also necessary. 

A final source of uncertainty relates to model parameters.  Settings of 

model parameters such as meteorological factors and equations variables can be 

uncertain due to missing information or natural variability.  Using UADM as an 

example, model parameters such as wind profile parameters and pollutant release 

information can greatly influence the results of the models (Williams, Brown, and 

Pardyjak, 2002).  However, most studies have focused on examining uncertainties 

from model parameters without acknowledging the uncertainty from geo-spatial 
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data (Sax and Isakov, 2003; Sullivan, Holdsworth, and Hlinka, 2004; Yegnan, 

Williamson, and Graettinger, 2002; Manomaiphiboon and Russell, 2004).  To 

fully understand the influence of spatial uncertainty toward the results of UADM, 

research on comparing influence of uncertainty between model parameters and 

geo-spatial data is necessary.  

This chapter first summarizes the findings from: 1) spatial uncertainty from 

LiDAR-derived building data, 2) spatial uncertainty from the linkages between 

GIS and QUIC and, 3) influence of spatial uncertainty toward the QUIC dispersion 

model, and then the chapter concludes with discussions on research contributions 

and suggestions for future research. 

 

2. Summary of Findings 

2.1 Spatial uncertainty from LiDAR-derived building data 

Three main sources of uncertainty were accounted for using LiDAR data to 

derive a three-dimensional building model.  Environmental settings in urban area, 

feature extraction algorithm and manual digitizing contribute to the sources of 

uncertainty. 

By comparing the LiDAR data with field observation, this study found that 

environmental settings such as complex building structure, sky-rise buildings, 
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different surface materials and frequent changing of the environments reduced the 

accuracy in capturing three-dimensional data.  Building gaps smaller than six 

meters prevented laser pulse from reaching to the ground and hence produce a 

higher elevation than actual elevation (Figure 2.9, p.51).  Similarly, high-rise 

buildings could block laser pulses and cause missing data in surrounding area, 

resulting in significant data errors (Figure 2.10, p.52).  Buildings with glassy 

surface also generated signal noises to surrounding area and caused a rougher 

surface (Figure 2.11, p.53). Vegetation covers near the buildings could hinder 

determination of building boundary.  Sometimes, trees could grow over or on top 

of the building and mask the actual building heights (Figure 2.12, p.55).  

Construction sites were in transition and, therefore, could result in significant 

differences in spatial configuration and height in an urban environment.  By the 

time that a three-dimensional model was established, the construction might be 

completed and hence, the 3D model became outdated.   

Raw LiDAR data consisted of massive amount of points with x, y and z 

co-ordinates, which required feature extraction algorithm to identify useful 

information.  Assumptions built in any feature extraction algorithm introduced 

additional spatial uncertainty.  For example, building extraction algorithms might 

assume that building is rectangular objects, and consequently many smaller 
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rectangular objects in urban area could be mis-classified as buildings.  Cargo 

containers, trees in the park, cover parking canopy and bridges were commonly 

mis-classified objects (Figure 2.16, p.59).  Moreover, the feature extraction 

algorithm only extracted building’s footprints, detailed building outlines required 

laborious inspections and manual adjustments. 

While manual adjustments were necessary to finalize the construction of 

3D building models, the procedure was also a source of uncertainty.  Our human 

subject test showed that discrepancies among digitizing operators might lead to 

significant uncertainty in building locations in two ways (Figure 2.18, p.61):  

First, when buildings were too close to each other with separation less than six 

meters, and second where there were vegetation outgrowth near buildings.   

Auxiliary remote sensing data, such as aerial photos, could be useful to 

reduce spatial uncertainty in LiDAR-derived 3D building models to supplement 

information about geography.  Features in a complex urban environment could be 

difficult to discern with LiDAR data alone.  The dissertation research offered 

guidelines to recognize spatial uncertainty and area where significant uncertainty 

was most likely and needed detailed analysis in development 3D building model 

with LiDAR data under the consideration of time and cost limitations.   
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2.2 Spatial uncertainty from the linkages between GIS and QUIC 

More often than not, data transformation was necessary to ingest geospatial 

data to environmental models.  In this research, the data transformation between 

ArcGIS and QUIC resulted in discrepancies of both location and shape.  The 

LiDAR data were converted using Visual Basic for Applications (VBA) inside 

ArcGIS.  In ArcGIS, LiDAR-derived building data were represented as polygons 

with irregular shapes, composed of lines that made up of multiple points with x 

and y co-ordinates.  In QUIC, building data were stored as either rectangle or 

circle, which were composed of building ID, width, length, height, base-height, 

and location in terms of middle x and y co-ordinates.  Therefore, the main source 

of spatial uncertainty came from the conversion from irregular polygons to 

rectangular shapes.  Other environmental models might require different forms of 

transformation, but shape and location were the two common elements to which 

data transformation introduce uncertainty.  

According to the QUIC model needs, our algorithm converted the building 

data from irregular polygons to rectangular shape, utilizing two types of 

vector-to-raster conversion in ArcGIS, dominant unit method and central position 

method.  The central position method assigned values to the grids by taking the 

polygons that fell at the center of the grids.  The dominant unit method assigned 
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values to the grids by considering the polygons that shared the dominant unit of the 

grid.  However, two issues arose during the conversion.  First, the number of 

records increased dramatically (i.e. 6.3 times) after conversion with the finest 

resolution.  Second, location, area and volume of the building data were changed 

after conversion.  First issue could be solved by reducing the study area or 

increasing the resolution.  As resolution became coarser, the number of records 

decreased from thirteen percent to fifty percent.  In the study area, the number of 

buildings became smaller than that of original records when the resolution is seven 

meters or coarser.   

Second issue related to uncertainty in spatial location.  The location of 

building shifted about half a unit of resolution after data conversion (Figure 3.6, 

p.93).  As a result, there were also changes in building footprint area and building 

volume.  From one meter to twelve meter resolutions, the total building footprint 

area changed within one percent for both methods of conversion.  Footprint area 

omitted and committed increased from one percent to fourteen percent and fifteen 

percent for central position method, while the area omitted and committed 

increased from one percent to eighteen percent and eleven percent with dominant 

unit method.  Total building volume fluctuated around three percent and nine 

percent for central position method and dominant unit method respectively (Figure 
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3.16, p.109).  The percentage of volume omitted and committed were similar for 

central position method, both increased from one percent to twenty-one percent 

across twelve resolutions.  However, the percentage of volume omitted and 

committed for dominant unit method changed from one percent to twenty-six 

percent and nineteen percent, respectively.  Most of the changes occurred at the 

edge of buildings except two conditions.  First, linear features such as skywalk 

and buildings smaller than half a unit of the resolution might disappear after data 

conversion with dominant unit method but might not disappear using central 

position method.  Second, building heights were altered after data conversion and 

the effects happened across the entire study area for any building which height 

could not be evenly divided by the chosen vertical resolution (Figure 3.18, p.111). 

 

2.3 Influences of spatial uncertainty toward the QUIC dispersion model 

Based on the spatial uncertainty from LiDAR-derived building data and 

data conversion, Monte-Carlo simulations were used to examine their influences 

toward QUIC dispersion model.  Two groups of simulations were generated.  

Group A simulations were perturbed with meteorological uncertainty that were 

composed of variations in wind speed and wind direction.  Group B simulations 

were perturbed with both meteorological and spatial uncertainty.  The results of 
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the simulations were summarized in terms of integrated concentration, 

concentration over time and concentration versus ground observations. 

The main difference between Group A and Group B simulations could be 

found near to the building edges (Figure 4.9, p.140); whereas, the integrated 

concentrations from Group B simulations showed further dispersion across the 

downwind side of the study area and they were also higher around the release point 

than Group A.  Similar results could be observed at different height levels.  

However, significant differences between the two groups of simulation only 

appeared near the building edges. 

By comparing concentration estimates over time, apparent differences were 

found during the first two minutes of simulation (i.e. four simulation time steps) 

(Figure 4.12, p.145).  The release gas generally dispersed from southwest to 

northeast.  With the influence of spatial uncertainty, higher concentrations could 

be observed near the release point, while lower concentrations could be found at 

the street block northeast to the release point.  Similar pattern could also be 

observed at height level two to level four (i.e. eight to sixteen meters).   

Eight sampling sites near the release points were chosen for model 

evaluations (Figure 4.19, p.155).  Overall, both groups of simulations 

over-estimated the integrated concentration by a factor of three or above at seven 
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out of eight locations.  Sampling sites farther away from the release point 

received larger differences between model prediction and ground observation.  By 

comparing the mean concentration over time, both groups of simulations 

overestimated the concentration mainly at the first-two minutes.  At two locations, 

both groups of simulations over-estimated the concentration at first and then 

under-estimated it later.  Simulations with spatial uncertainty usually generated 

lower concentrations at the sampling points when compared to simulations without 

spatial uncertainty.  However, the predictions were closer to the ground 

observation.        

 

3. Concluding Remarks 

Uncertainty is inevitable and ubiquitous in GIS applications, propagating 

through how we conceptualize the earth’s surface and objects using computer 

models, associates with the data through data collections, manipulations, analyses 

modeling, and interpretations.  A good understanding of the degree to which 

spatial uncertainty influence the decision-making processes is critical to proper use 

of geospatial data and modeling outcomes.  This dissertation research has shown 

a proof in the research hypothesis that the uncertainty embedded in the 
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LiDAR-derived building model and the data conversion process, has influences on 

the results of an UADM.    

Although improving remote sensing technology delivers richer sources and 

more accurate spatial data, spatial uncertainty is still involved in every stages of 

the data life cycle.  Understanding the influence of spatial uncertainty in each 

stages of the data life cycle provides a clearer scene for the data applications and 

hence reduces the chance of mis-leading results from environmental models.  

Future research could further examine the influence of spatial uncertainty, such as 

under what scenario or what scale of study, that may change the decisions-making 

processes. 
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Appendix I – Building perturbations in Group B simulation 
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Appendix II – All simulation results at eight sampling sites. 
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