KANI'S METHOD OF ANALYZING

MULTISTORY BUILDING

FRAMES

By

ARDESHIR AMIRSHAHI

Bachelor of Science

Oklahoma State University

Stillwater, Oklahoma

1961

Submitted to the Faculty of the Graduate School of the Oklahoma State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August, 1962

KANI'S METHOD OF ANALYZING

MULTISTORY BUILDING

FRAMES

port Approved:

Report Adviser Report Adviser oan

Dean of the Graduate School

PREFACE

By using the principal concept of Professor Kani, a method of ulysis of multistory frames is presented. This method is compared th two other methods commonly used.

In writing this report, I am indebted to Dr. James W. Gillespie his expert advice and not too infrequent aid. In formulating this k, extensive use was made of Dr. Gillespie's lectures and notes in Civil Engineering courses: Theory of Structures II, and Theory of ructures III.

I am also indebted to many scholars and friends; specifically my inks go to Mr. C. M. Diri who sparked my interest in this subject. rould like to express my appreciation to Mrs. Frank Roberts and . Arlene Starwalt for their assistance in completion of this work.

TABLE OF CONTENTS

rt		Page	
٤.	INTRODUCTI	DNl	
	1-1.	General	
Γ.	BASIC CONC	EPTS OF KANI'S METHOD	
	2-1. 2-2.	Joint Translation Prevented	
۲.	COMPARATIV	E EXAMPLE	
	3-1. 3-2. 3-3. 3-4.	General	
Ι.	SUMMARY AN	CONCLUSIONS	
	4-1. 4-2.	Summary	
FER	ENCES		

. .

LIST OF TABLES

ble							Pa	ge
l.	Constants	•	•	•	•	•	•	13
2.	Kani's Distribution	•	•	•	٠	•	•	16
3.	Kani's Distribution	• .	•	•	•	•	0	17
4.	Final End Moments (Kani's Method)	•	•	•	•	•	•	18
5.	Distribution of Wind Load Moments	•	•	•	•	•	0	20
6.	Distribution of Moments Due to Δ_1	•	•	•	•	•	•	21
7.	Distribution of Moments Due to Δ_2	•	•	•	•	•	•	22
3.	Distribution of Moments Due to Δ_3	•	•	•	•	•	•	23
9.	Final End Moments (Moment Distribution Method)	•	•	•	•	•	0	25
Э.	Carry-over of Moments Due to Wind Load	•	•	•	•	•	•	27
l.	Moments Due to Wind Load	•	•	•	•	•	•	28
2.	Carry-over of Moments Due to Δ_1	•	•	•	•	•	•	2 9
3.	Moments Due to Δ_1	•	•	•	•	•	•	30
_↓ •	Carry-over of Moments Due to Δ_2	•	•	•	•	•	•	31
5.	Moments Due to Δ_2	•	•	•	•	•	•	32
5.	Carry-over of Moments Due to Δ_3	•	•	•	•	•	•	33
7.	Moments Due to $\Delta_3 \cdots \cdots$	•	•	•	•	•	•	34
3.	Final End Moments (Carry-over Joint Moment Method).	•	•	•	8	0	•	35

LIST OF FIGURES

ju:	re	Pa	age
,	End Moments on Bar ij	• •	4
,	Fixed End Moments Due to Relative Joint Translation	• •	6
,	Section of a Building Frame	• •	8
,	Three-story Building Frame	D. D	11

PART I

INTRODUCTION

1 General

Many methods are available for the analysis of multistory frames. bbably the most widely used are the methods of slope deflection and nent distribution. Recently, the method of carry-over joint moments been introduced by Tuma and presented in M.S. theses by Gregory (1) j Sturm (2).

A modified iterative procedure for analyzing multistory frames has en developed by Kani (3). It is the purpose of this report to prent Kani's method of analyzing building frames, and to compare the merical procedure of Kani's method with that of moment distribution an rry-over joint moments. This comparison is accomplished by means of numerical example.

The moments of inertia of the individual members may be constant variable. The customary assumptions of elastic analysis are made, d the sign convention of slope deflection is used.

The general procedure of application of Kani's method is as follows

- (1) Evaluate all necessary constants (carry-over factors, distribution factors, etc.).
- (2) Compute the fixed end moments due to loads, and the sum of fixed end moments at each joint.
- (3) Compute the shear moment for each story.

- (4) Select an arbitrary sequence for the iteration, and iterate the joint moments and shear moments in that order.
- (5) Compute the final end moments from the results of Step 4.

The general procedure for the application of the moment distribution hod is well established and is not shown. The procedure for analysis the method of carry-over joint moments is available elsewhere.(1,2).

PART II

BASIC CONCEPTS OF KANI'S METHOD

Joint Translation Prevented

A typical bar of a continuous structure of variable cross-section d by a general system of transverse forces is considered (Fig.l). ing that the ends of the beam are restrained against displacement, inal end moments are composed of (Fig.l)

a) Fixed End Moments Due to Loads

b) Rotational Moments Due to Rotation of End i

c) Rotational Moments Due to Rotation of End j.

in terms of the notation introduced in Fig. 1, the final end mobecome

$$M_{ij} = RM_{ij}' + RM_{ij}'' + FM_{ij}'$$

$$M_{ij} = RM_{ji}' + RM_{ji}'' + FM_{ji}'.$$
(1)

'rom the general slope deflection equations

$$\begin{split} \mathbb{R}\mathbb{M}_{ij} &= \mathbb{R}\mathbb{M}'_{ij} + \mathbb{R}\mathbb{M}'_{ij} \\ \mathbb{R}\mathbb{M}_{ji} &= \mathbb{R}\mathbb{M}'_{ji} + \mathbb{R}\mathbb{M}'_{ji} , \end{split} \tag{1a}$$

$$RM_{ij} = K_{ij} \Theta_i$$

$$RM_{ji} = K_{ji} \Theta_j$$
(1b)

$$\mathbb{R}^{\mathsf{M}_{\mathsf{i}\mathsf{j}\mathtt{z}}^{\mathsf{C}}} C_{\mathsf{j}\mathsf{i}} K_{\mathsf{j}\mathsf{i}} \Theta_{\mathsf{j}} \mathtt{z}^{\mathsf{C}}_{\mathsf{j}\mathsf{i}} R_{\mathsf{j}\mathsf{i}}^{\mathsf{M}_{\mathsf{j}}}$$

$$\mathbb{R}^{\mathsf{M}_{\mathsf{j}\mathsf{i}}^{\mathsf{T}}} \mathtt{z}^{\mathsf{C}}_{\mathsf{i}\mathsf{j}} K_{\mathsf{i}\mathsf{j}} \Theta_{\mathsf{i}} \mathtt{z}^{\mathsf{C}}_{\mathsf{i}\mathsf{j}} R_{\mathsf{i}\mathsf{j}}^{\mathsf{M}_{\mathsf{i}}}$$

$$(1c)$$

From the equilibrium of moments at joint j

$$\Sigma M_{j} = \Sigma R M_{j}^{\prime} + \Sigma R M_{j}^{\prime} + \Sigma F M_{j}^{\perp} = 0 , \qquad (2)$$

re

re

...

 $\Sigma M_j =$ summation of all end moments at joint j.

lving Eq.(2) for the sum of the rotational moments at joint j due to tation of joint j

$$\Sigma RM_{j}^{!} = -(\Sigma RM_{j}^{"} + \Sigma FM_{j}^{L})$$

$$\Sigma K_j \Theta_{j=} - (\Sigma RM_j'' + \Sigma FM_j)$$
.

om this

$$\Theta_{j} = -\frac{1}{\Sigma K_{j}} \left(\Sigma RM_{j}^{"} + \Sigma FM_{j}^{L} \right) .$$
(3a)

(3)

stituting into Eq.(1b), the rotational moment becomes

$$RM_{ji}^{i} = -\frac{K_{ji}}{\Sigma K_{j}} \left(\Sigma RM_{j}^{"} + \Sigma FM_{j}\right) .$$
 (4)

oting

$$D_{ji} = \frac{K_{ji}}{\Sigma K_{j}}$$
, distribution factor, (4a)

rotational moment becomes

$$\mathbb{R}M_{ji}^{\prime} = -D_{ji} \left(\Sigma \mathbb{R}M_{j}^{\prime\prime} + \Sigma \mathbb{F}M_{j}^{L}\right)$$
(4b)

$$RM_{ji}^{i} = -D_{ji} \left(\Sigma C_{ij} RM_{ij}^{i} + \Sigma FM_{j}^{i} \right) , \qquad (4c)$$

re $\Sigma C_{ij} RM'_{ij}$ includes the effect of rotation of the far ends of all bers framing into joint j.

Joint Translation Permitted

If the ends of bar ij are allowed to undergo translation normal to bar axis, one additional contribution to the final end moment must considered (Fig.2)

(d) Fixed End Moments Due to Joint Translation.

TO RELATIVE JOINT TRANSLATION.

the general slope deflection equations, the fixed end moments due relative translation of the ends are

$$F_{ij}^{\Delta} = S_{ij} \frac{\Delta ji}{L_j} = K_{ij} (1 + C_{ij}) \frac{\Delta ji}{L_j}$$

$$F_{ji}^{\Delta} = S_{ji} \frac{\Delta ji}{L_j} = K_{ji} (1 + C_{ji}) \frac{\Delta ji}{L_j}.$$
(5)

;, the final end moments become

$$M_{ij} = RM_{ij} + RM_{ij} + FM_{ij} + FM_{ij} \qquad (6)$$

$$M_{ji} = RM_{ji} + RM_{ji} + FM_{ji} + FM_{ji}$$

n the equilibrium of moments at joint j

$$\Sigma M_{j} = \Sigma R M_{j} + \Sigma R M_{j} + \Sigma F M_{j} + \Sigma F M_{j} = 0, \qquad (7)$$

solving for the sum of the rotational moments due to θ_j

$$\Sigma RM_{j} = - (\Sigma RM_{j}^{"} + \Sigma FM_{j} + \Sigma FM_{j}) . \qquad (7a)$$

rotational moment on member $\overline{\text{ij}}$ at end j due to $\boldsymbol{\theta}_{j}$ is

$$RM_{ji = -D_{ji}} (\Sigma RM_{j} + \Sigma FM_{j} + \Sigma FM_{j}), \qquad (8)$$

re

$$D_{ji} = \frac{K_{ji}}{\Sigma K_j}$$
,

is the same as in Eq. (4).

In order to completely satisfy equilibrium of the structure, the ar must be balanced at each story level. A section of a multistory lding frame is considered (Fig. 3). The shear at the top of a typical umn jk due to the end moments is

$$H_{jk} = -\frac{M_{jk} + M_{kj}}{h_{ik}}$$
 (9)

, the total column shear at a typical story is

$$\Sigma H_{jk} = -\Sigma \frac{M_{jk} + M_{kj}}{h_{jk}} , \qquad (10)$$

e the summation includes all columns of the story.

SECTION OF A BUILDING FRAME

m the condition of horizontal shear equilibrium at any story ${\bf r}$

$$\Sigma \nabla_{\mathbf{r}} = \Sigma H_{jk} , \qquad (11)$$

re

$$\Sigma V_{n} = \text{total shear at story } r_{\bullet}$$

)anding Eq. 10

$$\Sigma H_{jk} = -\Sigma \frac{1}{h_{jk}} \left[RM'_{jk} + RM''_{jk} + FM'_{jk} + FM'_{jk} + RM'_{kj} + RM'_{kj} + RM'_{kj} + RM'_{kj} + FM'_{kj} + FM'_{kj} \right]$$
(12)

$$h_{r} \Sigma H_{jk} = -\Sigma \frac{h_{r}}{h_{jk}} \left[(1 + C_{jk}) RM_{jk} + (1 + C_{kj}) RM_{kj} + FM_{jk} + FM_{jk} + FM_{kj} + FM_{kj} + \frac{L}{M_{kj}} \Delta_{jk} \right]$$
(12a)

ere

 h_r = any convenient column height.

noting

$$B_{jk} = \frac{h_r}{h_{jk}} (1 + C_{jk})$$
$$B_{kj} = \frac{h_r}{h_{jk}} (1 + C_{kj}) ,$$

d solving Eq. (12a) for the relative translation

$$\Delta_{jk} = - \frac{\left[h_{r} \Sigma V_{r} + \Sigma B_{jk} RM_{jk} + \Sigma B_{kj} RM_{kj} + \Sigma (FM_{jk}^{L} + FM_{kj}^{L})\right]}{\sum \frac{h_{r}}{h_{jk}} \frac{S_{jk} + S_{kj}}{h_{jk}}}$$
(13)

ubstituting into Eq's. (5), fixed end moments due to translation becom

$${}^{p}e \qquad \frac{S_{jk}}{h_{jk}}$$

$${}^{D}jk = \frac{\sum \frac{h_r}{h_{jk}} \frac{S_{jk} + S_{kj}}{h_{jk}}}{\sum \frac{h_r}{h_{jk}} \frac{S_{jk} + S_{kj}}{h_{jk}}}$$

$${}^{D}kj = \frac{\sum \frac{h_r}{h_{jk}} \frac{S_{jk} + S_{kj}}{h_{jk}}}{\sum \frac{h_r}{h_{jk}} \frac{S_{jk} + S_{kj}}{h_{jk}}}$$

•

 $\ensuremath{ \ \ }$ are called translation distribution factors, and

,

 $\mathtt{h}_r \ \Sigma \mathtt{V}_r$ is denoted as the shear moment.

(15)

re

PART III

COMPARATIVE EXAMPLE

-l General

A three-story building frame is considered (Fig. 4). All embers are of constant cross-section, and the relative stiffnesses re indicated on the members. There is no restraint against sidesway, nd the structure is loaded by a uniformly distributed wind load.

THREE-STORY BUILDING FRAME

This structure is analyzed by

(a) Kani's Method

(b) Moment Distribution

(c) Carry-over Joint Moments.

procedures and results of these methods are compared and discussed.

Kani's Method

The structure in Fig. 3 is analyzed by the method described in : II of this report.

The necessary constants are evaluated using the appropriate ations from Part II. These constants are tabulated in Table 1 . te the members are of constant cross-section, all carry-over factors

C = + .500.

arbitrary height dimension is chosen as

all stories.

For the calculation of shear forces, generally, any kind of loadcan be replaced by an equivalent concentrated force which is applied the joints. This equivalent concentrated force is equal to the end ction of a simply supported bar with a similar loading. Therefore, in s frame, the equivalent concentrated forces are

CONSTANTS

	<u>ن</u>			
STA.	D	D	FM ^(L)	
12	.882	•000	0.0	
14	.118	.250	12.0	
21	.882	•000	0.0	
25	.118	. 250	0.0	
34	.800	•000	0.0	
36	.200	.167	12.0	
41	•068	. 250	- 12.0	
43	.414	•000	0.0	
45	. 414	•000	0.0	
47	.104	.167	0.0	
52	.118	. 250	0.0	
54	.706	.000	0.0	
58	.176	.167	0.0	
63	.167	.167	-12. 0	-
67	.555	•000	0.0	
69	.278	•247	12.0	
74	.112	.167	0.0	
76	.370	•000	0.0	
78	•370	•000	0.0	
710	<u>14</u> 8.	.158	0.0	
85	.176	.167	0.0	
87	•588	.000	0.0	
811	.236	.158	0.0	
96	.000	•247	- 12.0	
107	•000	.158	0.0	
118	.000	.158	0.0	

$$P_{II} = \frac{(12)1}{2} = 6 k \qquad (upper story)$$

$$P_{II} = \frac{(12+12)1}{2} = 12 k \qquad (middle story)$$

$$P_{III} = \frac{(12+12)1}{2} = 12 k , \qquad (lower story)$$

the shear moments are

e moments are written on the left side of the corresponding story, the constants from Table 1 are entered in the appropriate places ple 2).

The method of analysis is an iteration procedure which is reed until the desired degree of accuracy is obtained. One cycle of ation consists of the solution of Eq.(13a) for the sidesway effect, owed by iteration of Eq.(8) from joint to joint in an arbitrary ence. The sequence chosen is in order of Joints 1, 2, 5, 4, 3, 6, 7,

The calculation is started with the determination of FM_{11}^{Δ} and . Since there are, as yet, no approximate values for the rotational ributions, the sums consist only of the corresponding shear moments. fixed end moments due to load are eliminated, because in the case of tant cross-section and uniform loading, the term

$$\Sigma (FM_{jk}^{L} + FM_{kj}^{L}) = 0.$$

$$\text{FM}_{11}^{\Delta} = \text{FM}_{11}^{\Delta} = -.25(+72+0+0) = -18.00$$
.

same procedure is used in the middle and the lower story columns, and results are tabulated in Table 2. Now, the rotational contributions calculated at Joint (1)

$$RM'_{12} = -.882 (+12.00+0+0-18.00) = -13.58$$
$$RM'_{11} = -.118(+12.00+0+0-18.00) = -1.81$$

general procedure is repeated until the desired results are obtained.

The iteration is interrupted after the fifth cycle in Table 2, iteration of the last cycle, for clarity, is shown in Table 3. he upper story,

$$\operatorname{FM}_{14}^{\Delta} = -.25 \left[72 + \frac{3}{2} (+.01+4.12+2.30+6.22) \right] = + 22.74.$$

oint (1).

÷

$$RM_{12} = -.882 (+12.00 + \frac{17.27}{2} + \frac{4.12}{2} - 22.74) = + .04$$
$$RM_{14} = -.118(+12.00 + \frac{17.27}{2} + \frac{4.12}{2} - 22.74) = + .01.$$

emparison between the last two cycles indicates that the desired degree accuracy is obtained; therefore, the operation is ended, and the final ents are tabulated (Table $\frac{1}{4}$).

BLE	4
- DTTTT	- 44

.

)

BLE	: 4			FIN	AL END MOMENTS
	RM	RM"	FM ^L	$_{\rm FM}\Delta$	М
	•04	8.645	.00	.00	8.68
	.01	2.06	12.00	- 22.74	- 8.67
	17.29	.02	.00	. 00	17.31
	2.32	3.11	•00	- 22.74	-17.31
	12.68	12.575	.00	•00	25.25
	3.17	13.23	12.00	- 53.61	-25.21
	4.12	.005	-12.00	- 22.74	-30.62
	25.15	6.34	.00	•00	+31.49
	25.15	18.60	.00	•00	+43.75
	6,31	2.605	•00	- 53.61	-44.70
	6.22	1.16	•00	- 22.74	-15.36
	37.20	12.575	•00	•00	+49.77
	9.26	10.03	•00	- 53.61	34.32
	26.46	1,585	-12.00	- 53.61	-37.57
	88.20	8.595	.00	•00	+96.80
	44.10	•00	-12.00	- 115.34	-59.24
	5.21	3.155	.00	- 53.61	-45.25
	17.19	44.10	.00	•00	+61.29
	17.19	33.54	.00	•00	+50.73
	6.87	•00	.00	.00	-66.77
	20.06	4.63	.00	- 53.61	-28.92
	67.08	8.595	.00	.00	+75.68
	26.90	•00	.00	- 73.64	-46.74
	.00	22.05	-12.00	-115.34	-105.29
	.00	3.4305	.00	- 73.64	- 70.21
	.00	13.45	.00	- 73.64	- 60,19

Moment Distribution Method

Since the elastic constants and the condition of loading is the e as for Kani's Method, the tabulation of the distribution factors, ry-over factors, and fixed end moments due to wind load are not reted.

The fixed end moment due to translation, in general form, is

$$FM_{jk}^{\Delta} = \frac{6EI}{h_{jk}} \frac{\Delta_r}{h_{jk}} = 1.5 K_{jk} \frac{\Delta_r}{h_{jk}}$$
.

s, the fixed end moments, in terms of X_1 , X_2 , X_3 , are

$$\begin{array}{l} \mathrm{FM}_{114}^{\Delta} = \mathrm{FM}_{41}^{\Delta} = \mathrm{FM}_{25}^{\Delta} = \mathrm{FM}_{52}^{\Delta} = -.025\Delta_{1} = -100 \ \mathbf{X}_{1} \\ \mathrm{FM}_{114}^{\Delta} = \mathrm{FM}_{41}^{\Delta} = \mathrm{FM}_{25}^{\Delta} = \mathrm{FM}_{52}^{\Delta} = +.025\Delta_{2} = +100 \ \mathbf{X}_{2} \\ \mathrm{FM}_{36}^{\Delta} = \mathrm{FM}_{63}^{\Delta} = \mathrm{FM}_{47}^{\Delta} = \mathrm{FM}_{74}^{\Delta} = \mathrm{FM}_{58}^{\Delta} = \mathrm{FM}_{85}^{\Delta} = -.0375\Delta_{2} = -150 \ \mathbf{X}_{2} \\ \mathrm{FM}_{36}^{\Delta} = \mathrm{FM}_{63}^{\Delta} = \mathrm{FM}_{47}^{\Delta} = \mathrm{FM}_{74}^{\Delta} = \mathrm{FM}_{58}^{\Delta} = \mathrm{FM}_{85}^{\Delta} = +.0375\Delta_{2} = -150 \ \mathbf{X}_{2} \\ \mathrm{FM}_{36}^{\Delta} = \mathrm{FM}_{63}^{\Delta} = \mathrm{FM}_{47}^{\Delta} = \mathrm{FM}_{74}^{\Delta} = \mathrm{FM}_{58}^{\Delta} = \mathrm{FM}_{85}^{\Delta} = +.0375\Delta_{3} = +150 \ \mathbf{X}_{3} \\ \mathrm{FM}_{69}^{\Delta} = \mathrm{FM}_{96}^{\Delta} = -.0625\Delta_{3} = -250 \ \mathbf{X}_{3} \\ \mathrm{FM}_{710}^{\Delta} = \mathrm{FM}_{107}^{\Delta} = \mathrm{FM}_{811}^{\Delta} = \mathrm{FM}_{118}^{\Delta} = -.050\Delta_{3} = -160 \ \mathbf{X}_{3} \end{array}$$

Since the horizontal forces in any story are in equilibrium, three ar equations are written

$$\overrightarrow{v_{11}} + \overrightarrow{v_{25}} = 0$$

$$\overrightarrow{v_{36}} + \overrightarrow{v_{17}} + \overrightarrow{v_{58}} + 12 = 0$$

$$\overrightarrow{v_{69}} + \overrightarrow{v_{710}} + \overrightarrow{v_{811}} + 24 = 0$$

ידם אידף	л с		 		 יה דרו	ר ותו זכד כדי				
IADL	т. >				D12	TRIBULI		MIND TC	JAD MOM	ENTS
					STA.	14	12	21	25	
					-0-8 	110	=,002	=.002	110	
					FMIS	+12.00	0.00	0.00	.5	
					L	- 1 /1	-10.59	0.00	0.00	
						+ 0,01	0.00	-5.30	0.00	
						- 0.05	- 0,36	+4.68	+0.62	
						+ 0.19	+ 2.34	-0.18	-0.15	
						- 0.30	- 2.24	+0.29	+0.04	
						+ 0.06	+ 0.15	-1.12	-0.08	
						- 0.02	- 0.19	+1.06	+0.14	
						+ 0.04	.+ 0.53	-0.09	-0.02	
						- 0.07	- 0.50	+0.10	+0.01	
					M's	+10.86	-10,86	-0.56	+0.56	
1	STA.	36	34	43	47	41	45	54	52	58
	-D's	200	800	414	104	068	414	706	~.118	176
	C's	.5	.5	 5	.5	1.5	.5	·5	.5 1	1.5
	FM's	+12.00	.00	.00	.00	-12.00	.00	.00	.00	.00
		- 2.40	-9.60	+4.96	+1,25	+ 0.82	+ 4.96	0.00	0,00	0.00
		0.00	+2.48	-4.80	0.00	- 0.70	0.00	+2.48	0.00	0.00
		- 0.49	-1.99	.+2.28	+0.57	+ 0.37	+ 2,28	-1.75	-0,29	-0 . 44
		+ 0.10	+1.14	-1.00	-0,03	- 0.02	- 0.87	+1.14	+0,31	0.00
	i.	- 0.25	-0.99	+0.80	+0.20	+ 0.13	+ 0.80	-1.03	-0,17	-0.25
		+ 0.03	+0.40	+0,50	-0.03	- 0.15	- 0.51	+0.40	+0,02	+0.03
		- 0.09	-0.34	+0.49	+0,12	+ 0.08	+ 0.49	-0.32	-0.05	-0.08
		+ 0.02	+0.24	-0.17	-0.01	- 0.01	- 0,16	+0,24	+0.07	+0.02
		- 0.05	-0.21	+0,14	+0.04	+ 0.02	+ 0.14	-0.23	-0.04	-0.06
	M's	+ 8.87	-8.87	+2.20	+2.11	-11,46	+ 7.14	+0.93	-0.15	-0.78
STA.	69	63	67	76	74	710	78	87	811	85
-D's	278	167	555	370	112	148	370	588	236	176
)'s	.5	1.5	.5	<u>←5</u>	.5	• .5	.5	+s	.5	.5
'M's	+12.00	-12,00	.00	.00	.00	.00	00	00	.00	00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00 ·	0,00	0.00
	+ 0.33	- 1.20	0.00	0.00	+0.62	0.00	0.00	0.00	0,00	0,00
	0.00	- 0.25	+0.07	-0.23	-0.07	- 0.09	-0.23	0.00	0.00	0.00
	+ 0,10	+ 0.06	+0.21	0.22	+0.20	0.00	0.00	-0.12	0.00	-0.22
	0.00	- 0.12	-0.11	-0.25	-0.07	- 0.09	-0.23	+0,19	+0.09	+0,06
	+ 0.06	+ 0.04	+0.12	-0.11	-0.03	- 0.00	+0.10	-0.11	0,00	-0.12
	0.00	- 0.04	-0.05	+0.06	+0.06	- 0.04	-0.11	+0.13	+0.06	-0.04
	+ 0.03	+ 0.01	+0.05	-0.06	+0.02	- 0.03	+0.06	-0.05	0,00	+0.01
fis	+12.52	-13.30	+0.77	-0.14	+0.87	- 0,25	-0.47	+0,10	+0.03	-0.29
STA.	96	1				107	1	-	118]
FMIa	-12,00					.00	1		.00	1
	t									1
	+ 0.26					- 0.12	1		+0.09	1

TABL	E 6				DISTI	RIBUTIÇ	N OF M	OMENTS	DUE TO	Δ
	<u> </u>		· · · · · · · · · · · · · · · · · · ·	·	STA.	IJ,	12	21	25	
					-D's	118	882	882	118	
					C's	.5	.5+	·5	.5]	
					FM's	-100.0	0.0	0.0	-100.0	
						+ 11.8	+88.2	+88,2	+ 11.8	
						+ 3.3	+44.1	+հհ.1	+ 5.9	
					-	- 5.6	-41.8	-14.1	- 5.9	
						- 1.u	-22.0	-20.9	- 1.5	
						+ 2.7	+20.7	+19.8	+ 2.6	
						+ 0,7	+ 9.9	+10,3	+ 0.7	
						- 1.2	- 9.4	- 9.7	- 1.3	
						- 0.3	- h.8	- 4.7	- 0.3	
						+ 0.6	+ 4.5	+_4 . 4	+ 0.6	
					M' s	- 89.1:	+89.4	+87.4	- 87.4	
. [STA.	36	34	43	47	41	45	54	52	58
	-D's	200	800	1:11	J.Cl.	c68	եւյի	706	118	176
	Cʻs	.5	.5	← 5	.5	1.5	.5+	<u>ج</u>	.5	1.5
	FM's	0.0	0.0	0.0	0.0	-100.0	0.0	0.0	-100.0	0.0
		0.0	0.0	+41.4	+10.4	+ 6.7	+41.4	+70.6	+ 11.8	+17.6
	`	0.0	+20.7	0.0	0.0	+ 5.9	+35.3	+20.7	+ 5.9	0.0
		-4.1	-16.6	-17.0	- 4.3	- 2.8	-17.0	-18.8	- 3.1	- 4.7
	•	0.0	- 8.5	- 8.3	- 0.3	- 2.8	- 9.4	- 8.5	- 3.0	- 0.7
		+1.7	+ 6.8	+ 8.6	+ 2.2	+ 1.4	+ 8.6	+ 8.6	+ 1.4	+ 2.1
		+0.2	+ 4.3	+ 3.4	+ 0.2	+ 1.3	- 4.3	+ 4.3	+ 1.3	+ 0.2
		-0.9	- 3.6	- 3.8	- 1.0	- 0.6	- 3.8	- 4.1	- 0.7	- 1.0
		-0.1	- 1.9	- 1.8	- 0.1	- 0.6	- 2.0	- 1.9	- 0.6	- 0.1
		+0.4	+ 1.6	+ 1.9	+ 0.5	+ 0.3	+ 1.9	+ 1.8	+ 0.3	+ 0.5
M's		-2.8	+ 2.8	+24.4	+ 7.6	- 91,2	+59.3	+72.7	- 86.7	+13.9
STA.	69	63	67	76	74	710	78	87	811	85
-D's	278	167	555	370	112	-,148	370	588	236	176
C19	.5	.5	.5	<u>← .</u> 5	.5	.5	.5	<u>←_,5</u>	.5	1.5
FM's	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	· 0.0	0.0	0.0
	0.0	0.0	0.0	0.0	+ 5.2	0.0	0.0	0.0	0.0	+ 8.8
	0.0	0.0	0.0	- 1.9	- 0,6	- 0.8	- 1.9	- 5.2	- 2.1	- 1.5
	0.0	-2.0	- 0.9	0.0	- 2.2	0.0	- 2.6	- 0.9	0.0	- 2.3
	+0.8	+0.5	+ 1.6	+ 1.8	+ 0.5	+ 0.7	+ 1.8	+ 1.8	+ 0.7	+ 0.5
	0.0	+C.8	+ 0.9	+ 0.8	+ 1,1	0.0	+ 0.9	+ 0.9	0.0	+ 1.0
	-0.5	-0.3	- 0.9	- 1.0	- 0.3	- 0.4	- 1.0	- 1,1	- 0.5	- 0.3
	0.0	-0.4	- 0.5	- 0,4	- 0.5	0.0	- 0.5	- 0.5	0.0	- 0.5
	+0.3	+0.1	+ 0.5	+ 0.5	+ 0.1	+ 0.2	+ 0.5	+ 0.6	+ 0.2	+ 0.2
M's	+0.6	-1.3	1 + 0.7	- 0.2	+ 3.3	- 0.3	- 2.8	1 - h.h	- 1.7	+ 6.0
STA.	96]				107]		118].
FMIg	0.0	1				0.0	1		0.0	1
		-				J	4		L	j
	+0.3]				- 0.1	1		- 0.8]

-	-		-	-	_	~	
	Ľ.	Δ	к		.н.	- 7	

.

THDI	ן כוני				-	LTDOI TO	N OF TR			<u>2</u>
					STA.	77	12	21	25	
					-D's	118	882	882	-,118	
					C's	.5	.5	·5	.5 🖡	
					PHIS	+100.0	0.0	0.0	+100,0	
						- 11,8	-38.2	-98.2	- 11.8	
						+ I.6	-հե.1	-կկ.1	+ 2.9	
						+ 5.0	+37.5	+36.7	+ 4.8	
			·			- 2.7	+13.2	+18.7	- 1.0	
						- 1.8	-13.7	-15.6	- 2.1	
						+ 0.6	- 7.8	- 6.8	+ 1.0	
						+ 0.8	+ 6.4	+ 5.1	+ 0.7	
	· .					- 0.5	+ 2.5	+ 3.2	- 0.2	
						- 0.4	- 1.6	- 2.6	- 0.4	
					M's	+ 90.8	-90.8	-73.9	+ 93.9	
	STA.	36	34	43	47	41	45	54	52	58
	-D's	200	800	414	104	068	կ1հ	706	118	176
	C's	1.5	.5	← 5	.5	1.5	.5	 .5	.5 1	.5
	FM' s	-150.0	0.0	0.0	-150,0	+100.0	0.0	0.0	+100.0	- 150.0
		+ 30.0	+120.0	+20.7	+ 5.2	+ 3.3	+20.7	+35.3	+ 5.9	+ 8.8
		+ 12.5	+ 10.3	+60.0	+ 8.3	- 5.9	+17.7	+10,3	- 5.9	+ 13.2
		- h.5	- 18.3	-33.2	- 8.3	- 5.4	-33.2	-12.4	- 2.1	- 3.1
		- 3.5	- 16.6	- 9.1	- 4.9	+ 2.5	- 6.2	-16.6	+ 2.4	- 2.8
		+ 4.0	+ 16.1	+ 7.3	+ 1.9	+ 1.2	÷ 7.3	+12,0	+ 2.0	+ 3.0
		+ 1.5	+ 3.7	+ 8.0	+ 1.4	- 0.9	+ 6.0	+ 3.6	- 1.0	+ 1.5
		- 1.0	- 4.2	- 6.0	- 1.5	- 1.0	- 6.0	- 2.9	- 0.5	- 0.7
		- 0.5	- 3.0	- 2.1	- 0.6	+ 0.4	- 1.5	- 3.0	+ 0.3	- 0.5
	······	+ 0.7	+ 2.8	+ 1.6	+ 0.4	+ 0.2	+ 1.6	+ 2.9	+ 0.4	+ 0.6
	M's	-110.9	+110,8	+17.2	-148.1	+ 94.4	+ 6.4	+23.5	+101.5	- 130.0
STA.	69	63	67	76	74	710	78	87	811	85
-D's	278	167	555	370	112	148	370	588	-,236	176
C's	.5	1.5	.5	·5	.5	1.5	.5	·5	.5	1.5
PH' 2	0.0	-150.0	0.0	0.0	-150.0	0.0	0.0	0.0	0.0	- 150.0
	+41.7	+ 25.0	+ 83.3	+55.5	+ 16.6	+ 22.2	+55.5	-88.2	+ 35.4	+ 26.1
	0.0	+ 15.0	+ 27.7	+1.1.7	+ 2.6	0.0	-54.1	+27.7	0.0	+ 4.L
	-11.9	- 7.1	- 23.7	-32.7	- 2.3	- 13.1	-32.7	-18.9	- 7.6	- 5.6
	0.0	- 2.2	- 16.3	-11.3	- h.1	0.0	- h.h	-16.3	0.0	- 1.
	+ 5.2	+ 3.1	+ 10.2	+ 9.4	+ 2,9	+ 3.7	+ 9.4	+10.4	+ 4.2	+ 3.
	0.0	+ 2.0	+ 4.7	+ 5.1	+ 1.0	0.0	+ 5.2	+ 4.7	0.0	+ 1,
	-1.9	- 1.1	- 3.7	- h.2	- 1.2	- 1.7	- 4.2	- 3.6	- 1.5	- 1,
	0.0	- 0.5	- 2.1	- 1.9	- 0.7	0.0	- 1.8	- 2.1	0.0	- 0.
	+ 0.7	+ 0.4	+ 1.4	+ 1.6	+ 0.5	+ 0.6	+ 1.6	+ 1.4	+ 0.6	+ 0.
M's	+33.8	-115.4	+ 91.5	+62,8	-142.3	+ 11.7	+67.7	+91.5	+ 31.1	- 122.
STA.	96] .				107]		· · · ·	1
PM's	0.0					100	1		110	ł
···	+16.9	i				5.0	4		+) 5 5	ł
·····	+16.9					+ 5.8	1		+ 15.5	-
	· · · · · · · · · · · · · · · · · · ·	۱ ·····				I	1		د. د. ۱	1

22

. .

TABI	LE 8				DIST	RIBUTI	ON OF M	OMENTS	DUE TO) ^Δ 3
				•	STA.	14	12	21	25	
					-D's	118	882	882	118	
					C' a	.5	.5	·5	.5	
					FM' s	0,0	0,0	e. 0	0.0	
						0.0	0.0	0.0	0.0	
						- 5.0	0.0	0.0	- 8.8	
				•		+ 0.6	+ հ.հ	+ 7.8	+ 1.0	
						+ 3.7	+ 3.9	+ 2.2	+ 1.7	
						- 0.9	- 6.7	- 3.4	- 0.5	
						- 0.6	- 1.7	- 3.3.	- 1.4	
		•				+ 0.3	+ 2.0	+ 4.2	+ 0.5	
						+ 0,6	+ 2,1	+ 1.0	+ 0.2	
						- 0.3	- 2,4	- 1.1	- 0.1	
	<u>,</u>					- 1.6	+ 1,6	1 + 7.4	- 7.4	l
	STA.	36	34	43	47	կլ	45	54	52	58
	-D' 9	200	800	հ1հ	104	068	414	706	118	176
	C ¹ s	1.5	.5	<u>←5</u>	.5	1.5	.5	<u>← .5</u>	.5 1	•5
	FM's	+150.0	0.0	0.0	+150.0	0:0	0.0	0.0	0.0	+150.0
		- 30.0	-120.0	-62.1	- 15.6	- 10.1	-62,1	-105.9	- 17.7	- 26.1
		+ 8.3	- 31.0	-60.0	+ 0.5	0.0	-52.9	- 31.0	0.0	+ 0.9
		+ 4.5	+ 18.2	ʻ+46 . 6	+ 11.7	,+ 7.5	+46.6	+ 21.3	+ 3.5	+ 5.3
		+ 1.1	+ 23.3	+ 9.1	- 1.2	+ 0.3	+10.7	+ 23.3	+ 0.5	+ 1.0
		- 4.9	- 19.5	- 7.8	- 2.0	- 1.2	- 7.8	- 17.5	- 2.9	– հ.ե
		+ 0.1	- 3.9	- 9.7	- 0.7	- 0.4	- 8.7	- 3.9	- 0.2	+ 0.1
		+ 0.5	+ 3.0	+ 8.1	+ 2.0	+ 1.3	+ 8.1	+ 2.8	+ 0.5	+ 0.7
		+ 0.4	+ 4.0	+ 1.5	0.0	+ 1.0	+ 1.9	+ 4.0	+ 0.2	+ 0.4
	<u></u>	- 0.9	- 3.5	- 1.8	- 0.5	- 0.3	- 1,5	- 3.2	- 0.5	9.0 -
'g		(+12).4	-129.4	-76.1	1 +144.2	- 1.9	-66.0	-110.1	- 16.6	+126.8
ΠΑ.	69	63	67	76	74	710	78	87	811	85
D's	278	167	555	370	112	178	370	588	236	17
15	.5	1.5	.5	• •5	.5	.5	.5	← 5	.5	1
<u>X' 8</u>	-250.0	+150.0	0.0	0.0	+150.0	-160.0	0.0	0.0	-160.0	+150.0
	- 27.8	+ 16.7	+ 55.5	+ 3.7	+ 1,1	+ 1.5	+ 3.7	+ 5.9	+ 2.3	+ 1.0
	0.0	- 15.0	+ 1.8	+27.7	- 7.8	0.0	+ 2.9	+ 1.8	0.0	- 13.
	+ 3.7	+ 2.2	+ 7.3	- 8.4	- 2.5	- 3.4	- 8.4	+ 6.7	+ 2.7	+ 2.0
	0.0	+ 2.2	- 4.2	+ 3.6	+ 5.8	0.0	+ 3.3	- 4.2	0.0	+ 2.6
	+ 0.6	+ 0.3	+ 1,1	- h.7	- 1.L.	- 1.9	- 4.7	+ 0.9	+ 0.4	+ 0.
	0.0	- 2,4	- 2.3	+ 0.5	- 1.0	0.0	+ 0.4	- 2.3	0.0	- 2.2
	+ 1.3	+ 0.8	+ 2,6	0.0	0.0	0.0	0.0	+ 2.7	• 1.0	+ 0.8
	0.0	+ 0.4	0.0	+ 1.3	+ 1.0	0.0	+ 1.3	0.0	0.0	+ 0.3
·	- 0.1	- 0.1	- 0.2	- 1.3	- 0.4	- 0.5	- 1.3	- 0.2	- 0.1	0.0
18	-216.7	+155,1	+ 61.6	+22.4	+144.8	-164.3	- 2.8	+ 11.3	-153.7	i + 145.4
ΤΑ.	96					107	1		118]
M' 8	-250					-160.0	1		-160.0	1
	+ 16,6					- 2.1].		+ 3.1]
	1	1				f	7		356	1

anding these shear equations, by using the results of Tables 5, 6, and 8, the following matrix equation is obtained:

$$\begin{bmatrix} +354.7 & -380.6 & +27.5 \\ +26.7 & -769.3 & +842.7 \\ + 1.5 & -102.0 & +959.7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} +71.79 \\ -213.42 \\ +360.70 \end{bmatrix}.$$

Solving the above matrix equation, the result is

[x _l]		+1.047]
x ₂	93	+0.822	
[X ₃]		+0.462	

ng these values, the final moments are obtained and tabulated in le 9.

TABLE	9					 FI	JAL	END MOMENTS
M12		+89.4	- 90.8	+ 1.6	-10.86	Xl	, ,	+ 8.79
₩ _ב ע		- 89 . 4	+ 90.8	- 1.6	+10.86	х ₂		- 8.79
M ₂₁		+87.4	- 93.9	+ 7.4	- 0.56	x ₃		+ 17.24
^M 25		-87.4	+ 93.9	- 7.4	+ 0.56	1.0		- 17.24
^M 39		+ 2.8	+110.8	-129.4	- 8.87			+ 25.10
^M 36		- 2.8	-110.8	+129.4	+ 8.87			- 25.10
мді		-91.2	+ 94.4	- 1.9	-11.46			- 30.36
^м 43		+24.4	+ 47.2	- 76.1	+ 2.20		:	+ 31.19
™45		+59.3	+ 6.4	- 66.0	+ 7.14			+ 43.92
^м 47		+ 7.6	-148.1	+144.2	+ 2.11			- 44.95
™52	. 22	-86.7	+101.5	- 16.6	- 0.15		8	- 15.19
M54		+72.7	+ 28.6	-110.1	+ 0.93			+ 49.69
[™] 58		+13.9	-130.0	+126.8	- 0.78		:	- 34.52
M63		- 1.3	-115.4	+155.1	- 13.30			- 37.66
™67		+ 0.7	+ 81.5	+ 61.6	+ 0.77			+ 96.93
™69		+ 0.6	+ 33.8	-216.7	+12,52			- 59.25
м ₇₄		+ 3.3	-142.3	+144.8	+ 0.87			- 45.46
[™] 76		- 0.2	+ 62.8	+ 22.4	- 0.14			+ 61.40
^M 78		- 2.8	+ 67.7	- 2.8	- 0.47			+ 50.71
M ₇₁₀		- 0.3	+ 11.7	-164.3	- 0.25			- 66.75
M85		+ 6.0	. 122.7	+142.4	- 0.29	1		- 28.85
^M 87		- 4.4	+ 91.5	+ 11.3	+ 0.10			+ 75.99
M ₈₁₁		- 1.7	+ 31.1	-153.7	+ 0.18			- 47.14
M96		+ 0.3	+ 16.9	-233.4	-11.74			-105.53
M _{l07}		- ŏ.ı	+ 5.8	-162.1	- 0.12	-		- 70.46
M _{l18}		- 0.8	+ 15.5	-156.9	+ 0.09			- 60.53

Carry-over Joint Moment Method

Since all necessary constants are tabulated in Sections 3-2 and , they are not repeated. Also, since all members are of constant ss-section, the joint carry-over factors are one-half of the corresling distribution factors.

In order to establish equilibrium of horizontal forces, the three ar equations are

$$\overrightarrow{v_{14}} + \overrightarrow{v_{25}} = 0$$

$$\overrightarrow{v_{36}} + \overrightarrow{v_{47}} + \overrightarrow{v_{58}} + 12 = 0$$

$$\overrightarrow{v_{69}} + \overrightarrow{v_{710}} + \overrightarrow{v_{811}} + 24 = 0.$$

anding these equations, by using the results of Tables 11, 13, 15, 17, the following matrix equation is obtained:

$$\begin{bmatrix} +354.5 - 381.2 + 28.2 \\ +26.6 - 769.9 + 842.8 \\ + 1.5 - 101.7 + 959.1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} +71.78 \\ -213.44 \\ +360.72 \end{bmatrix}.$$

: results from solving this matrix equation are

$$\begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \\ \mathbf{x}_{3} \end{bmatrix} = \begin{bmatrix} +1.046 \\ +0.818 \\ +0.461 \end{bmatrix}.$$

÷

ing these results, the final moments are obtained and tabulated in Tab

									·	
TABI	E 10			CA	RRY-OV	ER OF M	IOMENTS	DUE TO) WIND	LOAD
					JOINT	1			2	
			•		- 5 0	Հե	12	21	25	
					- 0,0	059	441	441	059	
					m	- 12	.00	0.	,00	
								+ 5.30	0.00	
						- 2.3	4 - ,60	(+ !	5.30)	
						(- 2	•94)	+ 1,30) + .23	
						6	7 - ,10	(+ :	.53)	ļ
						(-	.77)	اد. + ۱	1 + .04	
						- ,1	702	(+	.38)	
						(-	.19)	+ ,0	1 + .01	
						0	2 + .00	(+	.09)	
						(-	•02)			
					JM	-15	.92	+ :	.30	
	JOTNT		3 .			4			5	
	- 0.0	36	34	43	47	41	45	54	52	58
		- ,100	400	-,207	052	034 1	- ,207	353	059	088
	m	- 32.	,00		+ 3	.2,00		L	0,00	
				· ·	4.80 + 0.00	0 + 0.71 + 0.	00			
		- 0,10	- 3.62		(+ 1	.7.51)		- 3,02 - 32 + 0,00		
		(- 3.	,72)	ļ	1,49 + 0.07	4 + 0.17 + 1.	40	L	(- 3.94)	
	0565				(+	3.13)		-	.6509 -	.05
	(70)			4 '	.28 + .03	+ .04 + .28			(-,79)	
		01 -	.13		(+	.63)	 	-	.1302 -	.01
		()	ц) —	4 •	.05 + .01	+ .01 + .05			(- ,16)	
		0,00 -	.02		(†	.12)			.02 + .00 +	.00
		((4	* + 2	1.39			(= .02)	·····
	JM	- 16.	.58		• · · · · · · ·			ļ 	- 4.91	
TNIOI		6	(1		-1	7			8	1
- c,o	09	0)		(0	14	710	78	87	811	85
	139	083	278	185	056	074	185	294	118	088
		0 + 1 20 + 0						0.	0.00	0.00
		(+ 1.20)			- 31 - 91	+ 0.00 + 0.0		{ .	(0.00)	
	0.0	0 + 0.37 + 0	.23	4	- , , , , , , , , , , , , , , , , , , ,	1.211)	0		23 + 00 +	24
		(+ 0.60)	-		1716	+ .0017	·.····	-	(+ .58)	• • • •
	0.0	0 + 0.07 + 0	.09	-	(-	.50)		+	.09 + .00 +	.06
		(+ 0.16)		·	Ch03	000h	·····	1	(+ .15)	
	0.0	0 + 0.01 + 0	.02	4	(-	.11)			.02 + .00 +	.01
		(+ 0.03)			,0001 +	.00 + .00		1	(+ .03)	•
				1	(-	.01)			(
л		+ 1.99			-	1,86	· <u>·</u> ····	1	+ .76	
JOINT	9]		T		10]		11]
- c.o	96]				107].		118	
	0.00]				0.00]		0.00]
n	+ 12,00]				.00]		.00]
	27]				+ .12			- ,09	1
JH	+ 11.73				<u> </u>	+ .12] ·		09	<u> </u>

				· · · · · · · · · · · · · · · · · · ·	
STA.	<u>1</u>]4	12	21	25	
FM' s	+12.00	0.0	0.0	0.0	
JM	-15.92 +7.30				
D's	,118	.882	.882	.118	
r's	.059	.441	.441	.059	
M's	+10,85	-10,85	-0,58	+0.58	

STA.	36	3L	43	47	ել	45	54	52	58
FM's	+12.00	0.0	0.0	0.0	-12.00	0.0	0.0	0.0	0.0
JM	-16,	58		+21.39 -4.91					
D's	.200	.800	.414	.104	•068	.434	.706	.118	.176
r's	↓ .100	.400	.207	.052	ىلەە. 1	.207	•353	1.059	.088
M' ş	+ 8.84	- 8.83	+2,24 .	+2,12	-11.48	+7.12	+ .94	16	79

STA.	69	63	67	76	7L [:]	710	78	87	811	85
FM'8	+12.00	-12.00	0,00	0.00	0,00	0.00	0,00	0,00	0.00	0.00
JM		+1.99	. ,		- 1.	86	+0.76			
D's	.278	.167	.555	.370	.112	.148	.370	.588	.236	.176
r's	J .139	.083	.278	.185	• .056	.074	.185	.294	.118	1.088
Mte .	+12.55	-13.33	+0.77	-0-14	+0,90	-0.28	-0,47	+0,11	+ .19	+ 0.30

.

										29
TABI	E 12				CA	ARRY-OV	ER OF N	IOMENT S	DUE TO	
					JOINT		L	[2 .	
						14	12	21	21 25	
	· .				-0.0	059	hh1	h41	059	
				m +100,0			+100,0			
							- հե.1	- 5.9		
	•					- 2.0	- 22,1	- (+ 5	0.0)	
						(- 2	4.1)	+ 10.6	+ 0,8	
						- 0.4	- 5.0	(+ 1	1.4)	
			•		(- 5.4)			+ 2.4	+ 0.2	
						- 0,1	- 1.1	(+	2.6)	
								+ 0.5	+ 0.1	
						0.0	- 0,2	(+	0.6)	
					17	(-		+ 0	1.0	
					JF.	+ •	9.1	ł		
1	THICL	3			·······	4	· · · -	[5	
	- 6 0	36	34	43	47	41	45	54	52	58
		100	400	207	052	034 1	207	353	059	088
	m	0.	0		+ 1	.00,0			+ 100.0	
					0.0 + 0.0 -	5.9 - 35.3				
	0.0 - 12.2				(+ 5	8,8)			2.2 - 2.9 +	8.0
	(- 12.2)				+ h.9 + 0.0	+ 1,4 + 5,0			(- 14.3)	
	- 0.1 - 2.3				(+ 1	1.3)		-	2.3 - 0.7 -	0.1
		(-2	<u>,4)</u>	4	+ 1.0 + 0.1	+ 0.3 + 1.1	ļ	(-3,])		
		0.0	- 0,5		(+	2.5)	- (0.5 = 0.1 + 0	.0	
		(- 0	•>)	+ 0.2 + 0.0 + 0.2 + 0.2						
		(- 0	- 0.1					(-0.1)		
	.TM	-15	• ±) 2	-	• 1	J+C .		+ 81.9		
			.	1 				1	÷ 01.9	
JGINT		6				7	,		8	
- c.o	69	63	67	76	714	710	78	87	811	85
	139	083	278		056]	074	185	294)18	088
n		0,0			с с	0.0			0.0	
•	0	.0 + 0.0 + 0	•0		0.0 - 1.1	+ 0 0 + 2 6		-	0.0 + 0.0 - 1	•••
	0	.0 + 1.2 + 0	.1	-	(-	0.5)		+	(-5.0) 0.1 + 0.0 +	1.2
		(+1.3)	•		-0.4 - 0.5	+ 0.0 - 0.4		1	(+ 1.3)	1
	0	.0 + 0.2 + 0	.2	1	(-	1.3)		•	0.2 + 0.0 +	0.3
		(+0.4)			-0,1 - 0,1	+ 0.0 + 0.1	· /··	-	(+ 0.5)	
	0	.0 + 0.0 + 0	.0	1	(-	0.3)			0.0 + 0.0 +	0.0
		(0.0)			0.0 + 0.0	+ 0.0 + 0.0	·	7	(0.0)	
JM		+1.7			(0.0)				
	1 	1		ł		<.1	-	1	- 7.0	,
JCTNT	. 9					10	4		11	1 · 1
- C.O	96	4				107	4		118.	4
	0,00 1	4				0.00	-l `		0.00]	4
n	0.0	4				0.0	-		0.0	4 1
TW	+ 0.2	4				-0.1	4		-0.8	4
<u>, 1</u>	<u>+ 0.4</u>	ļ	·			-0.1	+	· · · · · ·	-0.8	┥────┤

TABLE 13

moments due to Δ_1

	1					
STA.	14	12	21	25		
FK's	-100.0	0.0	0.0	-100.0		
M	+6	9.1	+64.6			
D's	.118	.882	.882	.118		
r's	.059	1441 -	<u>لېلېلې</u>	.059		
H's	- 89.5	+85.9	+87.6	-87.6		

STA.	36	34	43	47	41	L5	514	52	- 58			
РМ' в	0.0	0.0	0.0	0.0	-100.0	0.0	0.0	-100.0	0.0			
JH	-15	5.2		+73.9					+81.9			
D's	,200	.800	· • ^{µ14}	.104	.068	.կ1կ	.706	,118	.176			
r'8	.100	.400	.207	.052	1.034	.207	▲ .3 53	1 .059	.088			
H ¹ B	- 3.1	+ 3.1	+211.2	+ 7.5	- 90.9	±59.2	+72.9	-86.5	+13.8			

STA.	69	63	67	76	74	710	78	87	811	85
FM's	0.0	0,0	0.0	0.0	0.0	0,0	0.0	0.0	0.0	0.0
JM		+ 1,7			- 2	.1	- 7.0			
Dia	.278	,167	.555	.370	.112	.148	.370	.588	.236	.176
r's	.139	1 .083	.278	,185	1.056	.074	.185	.294	118	.088
¥'s	+0.5	- 1.2	+0.7	-0 . 4	+3.6	-0.3	-2.9	-և.և	- 1.6	+ 6.0

JCINT		1		2		
- 6 0	14	12	21	25		
- 0.0	059	441	441	059		
m	- 10	0,0	- 30	0.0		
			+ 44.1	- 2.9		
	+ 1.0 +	26.0	(- 5	5.8)		
	(+27.0) $-11.9 + 0.0(-11.9)$					
	- 0,1 +	5.3	(- 11.9)			
	(+ 5	•2)	- 2.3	3 + 0.1		
	0.0 +	0.9] (-	2.2)		
	(+ 0	•9)	- 0.1	+ 0,0		
	0.0 +	0.2] (-	0.4)		
	(+ C	.2)	- 73.3			
JM	- 66	.7]			

JCUT		3			4			5		
- 6 6	36	34	43	47	41	45	54	52	58	
- 0,0	-,100	1:00	207	052	034	207	353	- 059	830	
m	+ :	150.0		+	50.0	·•		+ 50.0 + 6.2 + 3.5 - 1 (- 0.7)		
				- 60.0 - 8.1	+ 5.9 - 17	.7				
	- 8.9	9 + 6.2		(-	30.2)		+ 6.2 + 3.5 - 10.4			
	(-2.7)			+ 1.1 + 3.5	- 1.6 + 0.2	(-0.7)				
	- 1.0	0.7	1	(+	3.2)	- 0.7 + 0.7 - 1.0				
	(-	1.7)		+ 0.7 + 0.4	- 0.3 + 0.3	(- 1.0)				
	- 0.1	- 0.2	7	(+	1.1)		- 0.2 + 0.1 - 0.1			
	(-	0.3)		+ 0.1 + 0.0	+ 0.0 + 0.0		1	(- 0.2)	
	+ 0,0	0+0.0		(+	0.1)			0.0 + 0.0 +	0.0	
	(0.0)			-	25.8	(0.0)				
JM	+ 11	15.3	7					·		

JOINT		6				7		T	8		
. 0.0	69	63	67	76	7կ	710	78	87	87 811 85		
	139	083	278	185	056	074	185	294	118	088 1	
л		+ 150.0			+]	.50.0			+ 150.0	· .	
	0.	.0 - 15.0 -	27.8					- 27.8 + 0.0 - 4.4			
		(+107.2)			29.8 + 1.6	+ 0.0 - 34.6	(+ 117.8)				
	Ô,	.0 + 0.3 + 1	1.6	1	(-	62.8)	+ 11.6 + 0.0 + 0.0				
		(+ 11.6)			- 3.4 - 0.2	+ 0.0 - 3.4	(+ 11.6)				
	0.	.0 + 0.2 + 1	.3	1	(-	6.9)	+ 1.3 + 0.0 + 0.1				
		(+ 1.5)			- 0.4 + 0.0	+ 0.0 - 0.4		(+ 1,h)			
	0.	.0 + 0.0 + 0	.1	1	(-	0.8)		+	0.1 + 0.0 + 0	0,0	
		(+ 0.1)			0.0 + 0.0 +	0.0 + 0.0	· · · · · · · · · · ·	(+ 0,1)			
Jн		+120.7		1	((),0)	+130.9				
	I				+ 79	0.5		7			

JOINT	9
- 0.0	96
	0.00 1
m	0.0
	+16.8
JM	+16.8

:

moments due to Δ_2

TABLE 15

STA.	յի	12	21	25		
FM*s	+100.0	0.0	0.0	+100.0		
JĶ	-66	5.7	-73.3			
D's	.118	.882	.882	.118		
r's	.059	<u>.</u> 441	.hhı	.059		
M's	+ 91.2	-91.2	-94.1	+ 94.1		

STA.	36	34	43	47	41	45	54	52	58
FM's	-150.0	0.0	0.0	-150.0	+100.0	0.0	0.0	+100.0	-150.0
JM	+145.3 -25.8 +48.1				-25.8				
D's	.200	.800	.եւկ	.104	.068	.կյի	.706	.118	.176
r's	1.100	.400	.207	.052	1.034	.207	• 353	1.059	.088
Mia	-110.9	+110.9	+47.5	-148.2	+9lı+lı	+6.3	+28,6	+101.5	-130.1

STA.	69	63	67	76	74	710	78	87	811	85
FM's	0.0	-150.0	0.0	0,0	-150.0	0.0	0.0	0.0	0.0	-150,0
лм	+120.7				+7	9.5	+130.9			
D's	.278	,167	.555	.370	.112	<u>, 148</u>	.370	.588	.236	,176
r's	.139	1.083	.278	.185	1.056	.074	,185	.294	1.118	1.088
K's	+33.7	-115.5	+81.7	+62.9	-142.5	+11.8	+67.8	+91.6	+30.9	-122.7

M ⁴ a 0.0	
	0.0
11 5 +16,8 +5.9	+15.4

CARRY-OVER OF MOMENTS DUE TO Δ_3 2000 1 22 1 23 25 1 2 2 1 25 0.0 0.0	<u> </u>			•								
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	TAB	L E 16				CAI	rry-ove	ROFM	OMENTS	DUE TO	Δ3	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						JOINT		1	2			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						- C.O	يلا 059 ا	12 441	21 441	25 059		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	•					· n	0	.0	0.0			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						L			0.0	1		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							+ 1.3 - 3.9		(+	8.8)		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							(-	2.6)	+1,1	1		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							0,0	- 0.3	(+	0,8)	ŀ	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							(-)	0.3)	+0,1	+ 0.0		
$\frac{3N}{3} = \frac{(3.0)^{7}}{-2.9} + 9.7$ $\frac{3}{3} = \frac{1}{3} + \frac{5}{-2.9} + 9.7$ $\frac{3}{2.9} + 7.8$ $\frac{3}{$							0.0 + 0.0		(+	0,1)		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							(0.0)		•	9,7		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						JM	-	2.9			1	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$												
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							1		I		i	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		JOINT)		1	•	·	[5	,	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		- 0-0	36	3lı	43	47	կլ	45	54	52	58	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			- ,100	100	-*.207	052	034	-,207	353	059	- ,088	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		2'5	- 19	0.0		- 19	÷0.0					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						+ 60,0 - 0,5	+ 0,0 + 53.0)				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			- 9.4	- 9.4 + 7.8 (- 37.5)			1.5)		+	7.8 - 0.5 -	1,9	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			(-)			+ 0,6 + 2,0 + 0,1 - 1,9			(+ 5,4)			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			- 0,5	0.5 - 0.1 (+ 0.8)			·	- 0.1 + 0.0 - 0.5				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(-0.6)				(+ 0.	6)		+ 0.1 + 0.0 - 0.1			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			(- (- 0,1),1)		-36,1				(- 9.2)		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		JM's	- 19	2.3					- 145.4			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					1							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					1		· · · · - · · · · · · · · · · · · · · ·		1			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	01017		6	(1)			7			8		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C.O	09	03	07	185	74	710	78	87	811	85	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		137	+100.0	210	.= ,05		0.0	-,105	294	118 -	- ,088	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.	0 - 1.8 + 15	.0	<u> </u>					1.8 + 0.0 +	13.2	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			(+113.2)			- 31.5 + 1.9	+ 0.0 - 6.3		1	(+ 21.4)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.	0 + 6.6 + 0.	1	1	(-3	5.9)	, ,	+	6.6 + 0.0 -	0.5	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			(+ 6.7)			- 1,8 + 0.	0 + 0,0 = 1,	8	1	(+ 6.1)		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.	0 + 0.7 + 0.	0	1	(-	3.6)		+	0.7 + 0.0 +	0.0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			(+ 0,7)			- 0.2 + 0.	0 + 0.0 - 0.	2]	(+ 0.7)	·····	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4		+120.6 (- 0.4)				. <u>_</u> <u></u>		+28.2			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						-2	9 .9		l			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											1	
$1M$ 9 $c_{*}0$ 96 $.00$ 10 $.00$ 107 $.00$ 100 $.00$ 100 $.00$ 100 $.00$ 100 $.00$ 100 $.00$ 100 $.00$ 100 $.00$ 100 $.000$ 100 $.000$ 100 <		- 4	-					4			, ,	
0.0 107 118 0.01 0.01 0.01 $+ 250.0$ $+ 160.0$ $+ 160.0$ $- 16.8$ $+ 2.4$ $- 3.3$ $+ 233.2$ $+ 162.4$ $+ 156.7$	TRE	9	1				10	1		<u> </u>	4	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	c.o	96	4	· · ·			107] .		118	<u>ا</u> .	
+ 250.0 +160.0 +160.0 - 16.8 + 2.4 - 3.3 + 233.2 +162.4 +156.7		.00	4				.00	4			4.	
+ 233.2 +162.4 +156.7		+ 250,0	-{		11 - A4		+160.0	4		+160.0	4	
	1	+ 232 0	-				+162.4	4		+156.7	-	
			- 1		<u></u>	w.	+	ł <u>.</u>	n., 1	1		

TABLE 17

MOMENTS DUE TO Δ_3

STA. 14 21 12 25 FN'a 0.0 0.0 0.0 0.0 -2.9 9.7 JH .118 .882 .882 D' s .118 .059 059 .141 <u>.</u> . . . r's -1.6 +1.6 M' s +7.4 -7.4

				l	1			r	<u> </u>		
STA.	36	34	43	47	<u>ц</u> і	45	54	52	58		
FM' s	+150.0	0.0	0.0	+150.0	0.0	0.0	0.0	0,0	+150,0		
JH	-15:	-152.3 -36.1									
D's	,200	.800	.414	.104	•068	•րյի	.706	.118	.176		
r ¹ 8	.100	.400	.207	.052	1.034	.207	.353	1.059	1.088		
H' s	+129,4	-129.4	-75.7	յիր՝ զ	- 2.6	-66.3	-110.1	-16,6	+126.8		

...

STA.	69	63	67	76	74	710	78	87	811	85
FN' s	-250.0	+150.0	0.0	0.0	+150.0	-160.0	0,0	0.0	-160.0	+150.0
JK .	+120.6				-2	9.9		+28,2		
D's	.278	.167	.555	.370	.112	. 1 48	.370	•588	.236	.176
r†s	.139	1.083	.278	.185	1.056	.074	.185	.294	118	1.088
M'a	-216.5	+155.0	+ 61.5	+22.4	8. بلبلة+	-16հ.կ	- 2.8	+11,1	-153.3	+1175°5
	-									
STA.	96					107			118]
FM's	-250.0					-160.0] .		-160.0].
H'a	-233.2]				-162,4]		-156.7]
							-			•

٨	р	T ID	٦	Q
Д	в	T HC		ന

ABLE 18	}				· · · ·	 FIN	JAL	END MOMENTS
M _{l2}		+89.5	- 91.2	+ 1.6	-10.85	xl		+ 8.79
MJ		-89.5	+ 91.2	- 1.6	+10.85	X ₂		- 8.79
M ₂₁		+87.6	- 94.1	+ 7.4	- 0.58	x ₃		+ 17 . 44
M25		-87.6	+ 94.1	- 7.4	+ 0.58	1.0		- 17.44
^M 34		+ 3.1	+110.9	-129.4	- 8.83			+ 25.26
^M 36		- 3.1	-110.9	+129.4	+ 8.83			- 25,26
™ці		-90.9	+ 94.4	- 2.6	-11.48			- 30 .3 8
M43		+24.2	+ 47.5	- 75.7	+ 2.24			+ 31.41
^M 45		+59.2	+ 6.3	- 66.3	+ 7.12			+ 43.57
^M 47		+ 7.5	-148 . 2	+144.6	+ 2.12			- 45.03
^M 52		-86 . 5	+101.5	- 16.6	- 0.16			- 15.12
^M 54	B	+72.9	+ 28.6	-110.1	+ 0.94		8	+ 49.54
^м 58		+13.8	-130.1	+126.8	°⊶ 0 . 79			- 34.62
^M 63		- l.2	-115.5	+155.0	-13.33			- 37.63
^M 67		+ 0.7	+ 81.7	+ 61.5	+ 0.77			+ 96.85
^M 69		+ 0.5	+ 33.7	-216.5	+12.55	-		- 59.23
M74		+ 3.6	-142.5	+144.8	+ 0,90			- 45.34
^M 76		- 0.4	+ 62.9	+ 22.4	- 0.14			+ 61.23
^M 78		- 2.9	+ 67.8	- 2.8	- 0.47			+ 50.70
^M 710		- 0.3	+ 11.8	-164.4	- 0.27			- 66.93
^M 85		+ 6.0	-122.7	+142.2	- 0.30			- 28.74
M ₈₇		- 4.4	+ 91.6	+ 11.1	+ 0.11			+ 75.73
™ ₈₁₁		- 1.6	+ 30.9	-153.3	+ 0.19			- 46.87
^M 96		+ 0.2	+ 16.8	-233.2	-11 . 73			-105.53
M ₁₀₇		- 0.1	+ 5.9	-162.4	- 0.14			- 70.42
M ₈₁₁		- 0.8	+ 15.4	-156.7	+ 0.09			- 60.55

PART IV

SUMMARY AND CONCLUSIONS

Summary

A method for analyzing multistory building frames, developed by (3), has been presented in this report. The necessary equations are ved physically, and presented in a convenient form for iteration. The vidual members of the frame may be of constant or variable section, the frames may have nontranslating or translating joints.

A numerical example has been worked by Kani's method, illustrating general procedure of application. This example has also been worked he methods of moment distribution and carry-over joint moments for a arison of procedures and results.

Conclusions

Certain advantages of Kani's method have been observed in working the ple. The primary advantages are:

- (1) Amount of numerical labor is reduced.
- (2) Possible computation errors do not affect the final results.
- (3) No shear equations are required.
- (4) In analyzing for different types of loading, the results of a previous analysis can be used as starting values for a new analysis.

(5) For checking the results, only the numerical values from the last cycle of iteration need to be considered.

of these advantages exist to a greater or lesser degree, depending the method being compared.

From the results of this comparison, it is believed that Kani's od has certain advantages over other numerical methods for analyzing multistory building frames.

REFERENCES

Gregory, Robert G. "Analysis of Continuous Rigid Frames with Joint Franslation Prevented", M.S. Thesis, Oklahoma State University, 1959.

Sturm, Edward R. "Analysis of Multi-story Rigid Frames with Joint Franslation Permitted", <u>M.S. Thesis</u>, Oklahoma State University, 1959.

Kani, Gaspar. Analysis of Multistory Frames, (translated by Hyman), Frederick Ungar Publishing Co., New York, 1957.

VITA

ARDESHIR AMIRSHANI

Candidate for the Degree of

Master of Science

rt: KANI'S METHOD OF ANALYZING MULTISTORY . BUILDING FRAMES

r Field: Civil Engineering

raphical:

Personal Data: Born October 23, 1935, in Kazvin, Iran, the son of Ahmad and Behjat Amirshahi.

Education: Graduated from Darelfonoon High School, Tehran, in June 1955. Attended the Northeastern Oklahoma A & M College from September, 1956, to May, 1958, then transferred to the Oklahoma State University and received the degree of Bachelor of Science in Civil Engineering, May, 1961; completed requirements for the Master of Science Degree in August, 1962.