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Abstract

This dissertation addresses existence and stability results for a two-parameter

family of solitary-wave solutions to systems in which an equation of nonlinear

Schrödinger type is coupled to an equation of Korteweg-de Vries type. Such

systems govern interactions between long nonlinear waves and packets of short

waves, and arises in fluid mechanics and plasma physics. Our proof involves the

characterization of solitary-wave solutions as minimizers of an energy functional

subject to two independent constraints. To establish the precompactness of

minimizing sequence via concentrated compactness, we develop a new method

of proving the sub-additivity of the problem with respect to both constraint

variables jointly. The results extend the stability results previously obtained by

Chen (1999), Albert and Angulo (2003), and Angulo (2006).

In addition, we also study the stability of solitary-wave solutions to an

equation of short and long waves by using the techniques of convexity type.

We shall apply the concentration compactness method to show the relative

compactness of minimizing sequences for a different variational problem in which

functional involved are not conserved quantities, and then, we use conserved

quantities which arise from symmetries via Noether’s theorem to obtain a

relationship that makes it possible to utilize the variational properties of the

solitary waves in the stability analysis. We prove that the stability of solitary

waves is determined by the convexity of a function of the wave speed. The method

is based on techniques appeared in Cazenave and Lions (1982), Levandosky

(1998), and Angulo (2003), along with a convexity lemma of Shatah (1983).

vi



Chapter 1

Introduction

1.1 Background

The central equations of study in this dissertation are model equations for waves

which take account of both nonlinear and dispersive effects. In general, nonlinear

effects become important when the waves being modelled have amplitudes large

enough that the linear equations of motion are no longer good approximations

on the time scales of interest. In particular, increasing the amplitude of a wave

by multiplying it by a constant will affect the amplitude of the wave. Nonlinear

effects tend to steepen the profile of a wave as it propagates. Dispersive effects

become important when the medium through which the wave travels is such

that the velocity of a wave is dependent on its frequency. They tend to cause

the bulk of a wave to be dispersed as it propagates. The equations known as

nonlinear dispersive wave equations are valid as models when these two types

of effect are roughly of equal importance. Examples of such equations are the

Korteweg-de Vries equation, Boussinesq equations, the Benjamin-Ono equation,

and the nonlinear Schrödinger equation, along with many others. They appear as

models for such varied phenomena as the propagation of pulses in long-distance

communication devices such as transoceanic optical fibers ; atmospheric and

oceanic internal and surface gravity waves ; elastic waves in the earth; and

ion-acoustic waves in plasmas, to name but a few.

The equations mentioned above govern the time evolution of one-dimensional
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waves, and are written as equations for unknown functions u(x, t) of a space

variable x and a time variable t. Many of them have traveling-wave solutions,

which are solutions of the form u(x, t) = φ(x− ct), representing a wave moving

without change of shape, with constant velocity c. More generally, in the case

when u is complex-valued, there also exist traveling wave solutions of the form

u(x, t) = eiωtφ(x− ct), where the phase velocity ω is a constant. In particular,

when φ(z)→ 0 as z →∞ and z → −∞, traveling waves are known as solitary

waves. Intuitively, traveling waves and solitary waves occur when the competing

effects of nonlinearity and dispersion are balanced. A typical feature of nonlinear

dispersive wave equations is that such solutions exist for a range of values of the

parameters ω and c, and play a significant role in the evolution of more general

solutions of the underlying equations.

It is sometimes found that solitary waves retain their structure even after

nonlinear interactions with other solitary waves. For example, two solitary

waves with different velocities might effectively pass through each other without

ultimately having an effect on each other, besides a change of phase. Solitary

waves with such elastic scattering properties are generally known as solitons.

The existence of solitons was first discovered in 1960’s when they were brought

to light as solutions of the Korteweg-de Vries equation. A detailed background

on nonlinear waves and solitons may be found in [43], [21], [22], and [48].

In this dissertation our main interest will be in the stability of solitary-wave

solutions of some nonlinear dispersive equations arising in mathematical physics.

The equations we investigate do not appear, in general, to have soliton solutions

which undergo completely elastic interactions. But we are able to show that

they do have solitary-wave solutions which are stable in the sense that a slight

perturbation of a solitary wave will continue to resemble a solitary wave for all

time, rather than evolving into some other wave form. This stability property
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means that the solutions have the potential to model real, observable, physical

phenomena.

We now introduce the equations that will be the focus of this dissertation.

Both the nonlinear Schrödinger equation

iut + uxx + |u|qu = 0 (1.1)

for a complex-valued function u of x ∈ R and time t, and the generalized

Korteweg-de Vries equation

vt + vxxx + vpvx = 0, (1.2)

for a real-valued function v of x and t, are examples of universal models for

nonlinear waves that describes many physical nonlinear systems. Equation

(1.1) describes the evolution of small amplitude, slowly varying wave packets in

nonlinear media. Equation (1.2) arises generically as a model for waves whose

motion, to first order, is governed by the linear wave equation vt + vx = 0, but

which on account of their long wavelength and small but finite amplitude are

influenced by weak nonlinear and dispersive effects. Discussions of the canonical

nature of these equations may be found, for example, in Chapters 13 and 17 of

[48], Chapter 2 of [37], or Chapter 10 of [36].

In this dissertation we will consider a system describing the interaction of a

nonlinear Schrödinger-type wave with a Korteweg-de Vries type wave:

iut + uxx + τ1|u|qu = −αuv

vt + vxxx + τ2v
pvx = −α

2
(|u|2)x,

(1.3)

where τ1, τ2, and α are real constants. Systems of the form (1.3) govern the
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interactions between long waves and long-wavelength envelopes of short waves,

and arise in fluid mechanics as well as in plasma physics. For example, it appears

in [25] and [29] as a model for the interaction between long gravity waves and

capillary waves on the surface of shallow water, in the case when the group

velocity of the capillary wave coincides with the velocity of the long wave. In

[7] and [38], a system of similar form appears as a model for the interaction

of Langmuir waves and ion-acoustic waves in a plasma. A system of similar

equations appears in [40] as the unidirectional reduction of a model for the

resonant interaction of acoustic and optical modes in a diatomic lattice.

The system (1.3) possesses the following conserved quantities:

E(u, v) =
Z ∞
−∞

�
|ux|2 + v2

x − β1|u|q+2 − β2v
p+2 − α|u|2v

�
dx, (1.4)

where β1 = 2τ1/(q + 2) and β2 = 2τ2/((p+ 1)(p+ 2)),

G(u, v) =
Z ∞
−∞

v2 dx+ Im
Z ∞
−∞

uux dx, (1.5)

where ux is the complex conjugate of ux and Im(z) denotes the imaginary part

of z, and

H(u) =
Z ∞
−∞
|u|2 dx. (1.6)

In other words, for given initial functions u(x, 0) = u0(x) and v(x, 0) = v0(x),

the solution of (1.3) emanating from (u0, v0) has the property that

E(u(t), v(t)) = E(u0, v0), G(u(t), v(t)) = G(u0, v0) and H(u(t)) = H(u0)

for all t for which the solution exists.

This dissertation is concerned with the existence and stability results for
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(coupled) solitary traveling-wave solutions of (1.3). Such a solution is of the

form

(u(x, t), v(x, t)) =
�
eiωteic(x−ct)/2φ(x− ct), ψ(x− ct)

�
, (1.7)

where c > 0, ω ∈ R, and φ : R → C and ψ : R → R are functions that vanish

at infinity in some sense (for example, φ ∈ H1
C and ψ ∈ H1). (Here H1 and H1

C

are L2-based Sobolev spaces of real- and complex-valued functions on the line,

respectively. For more details on our notation, see Section 1.3.) Inserting the

ansatz (1.7) into (1.3), we see that (u, v) is a solution of (1.3) if and only if φ

and ψ satisfy the system of ordinary differential equations

−φ′′ + σφ = τ1|φ|qφ+ αφψ

−ψ′′ + cψ =
τ2

p+ 1
ψp+1 +

α

2
|φ|2,

(1.8)

where σ = ω − c2/4, and primes denote derivatives of a function of a single

variable.

We will use the following definition of stability throughout.

Definition 1.1. Let Y be a Banach space of ordered pairs of functions (u(x), v(x))

in which the initial value problem for equation (1.3) is well-posed. A subset B

of Y is said to be stable if for every ε > 0, there exists δ > 0 such that for all

(u0, v0) ∈ Y with

inf
(φ,ψ)∈B

‖ (u0, v0)− (φ, ψ) ‖< δ,

the solution (u(x, t), v(x, t) of (1.3) with (u(x, 0), v(x, 0)) = (u0, v0) exists for all

t, and satisfies

sup
0≤t<∞

inf
(φ,ψ)∈B

‖(u(., t), v(., t)− (φ, ψ)‖Y < ε.
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By well-posedness in Y we generally mean that for given initial data in Y,

there exists a time T > 0 and a unique solution (u, v) of (1.3), which stays in

Y and depends continuously on the initial data as a map from Y to Y . For

comprehensive discussion and bibliography of the topic of well-posedness of

nonlinear dispersive wave equations, we refer the reader to the Dispersive PDE

Wiki at http://wiki.math.toronto.edu/DispersiveWiki/.

1.2 Review of the Literature

The first rigorous treatment of the problem of stability of solitary-wave solutions

to nonlinear dispersive equations was given by Benjamin [9] for the KdV solitary

waves. Benjamin’s arguments were improved and perfected by Bona [10]. Their

theory uses the Hamiltonian structure of KdV equation and is based on the fact

that solitary waves can be characterized as critical points of the Hamiltonian

energy on level sets of a momentum functional.

Variational methods for proving orbital stability or instability of solitary-wave

solutions to wave equations with Hamiltonian structure, based on the analysis

of energy-momentum functionals, were subsequently greatly advanced by many

authors. Notably, Grillakis, Shatah and Strauss [27] obtained sharp conditions

for the orbital stability and instability of solitary waves for a class of abstract

Hamiltonian systems. Bona, Souganidis and Strauss [11] obtained similar results

for KdV type equations, a class not considered by Grillakis et al. [27]. For other

important works in this direction, see Weinstein [46],[47], Shatah and Strauss

[42], Maddocks and Sachs [35].

The stability theory of solitary-wave solutions developed in the works cited

above rely on local analysis. This means that we must show that the solitary-

wave solution is a local constrained minimizer of a Hamiltonian functional,
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and the procedure for this is carried out basically by studying specific spectral

properties of a linear operator obtained by linearizing the solitary-wave equation.

In practice this spectral analysis is difficult to carry out. An alternate method of

proving stability of solitary waves, which avoids these difficulties, was developed

by Cazenave and Lions [14] using the concentration-compactness principle of

P. L. Lions [33]. In this approach, instead of starting with a given solitary wave

and attempting to prove that it realizes a local minimum for a constrained

variational problem, one starts with the constrained variational problem and

looks for global minimizers. When the method works, it shows not only that

global minimizers exist, but also that every minimizing sequence is relatively

compact up to translations. This then is enough to conclude that the set of

solitary waves which solve the minimization problem is a stable set. In [14],

Cazenave and Lions proved the stability of solitary-wave solutions to nonlinear

Schrödinger equations. In the last couple of decades, a similar method was

applied by many authors to prove orbital stability of solitary waves for a great

range of dispersive evolution equations: see for example, Albert [2], Albert et al.

[4], Angulo [5], Chen et al. [17], Chen and Bona [16], Kichenassamy [30], and

Ohta [39].

The work presented in Chapter 2 of this dissertation is in the same spirit as

those above. We use the concentration compactness method to prove existence

and stability results of solitary-wave solutions of (1.3). Our existence result is

obtained by studying the variational problem of finding, for given positive values

of s and t, minimizers of E(u, v) subject to the constraints that
R∞
−∞ |u|2 dx = s

and
R∞
−∞ v

2 dx = t. The connection to solitary waves is due to the fact that

equations (1.8) are the Euler-Lagrange equations for this variational problem,

with σ and c playing the role of Lagrange multipliers.

The standard technique of proving the stability of solitary-wave solutions
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using the concentration compactness method require proving the strict subaddit-

ivity of the variational problem with respect to the constraint parameters. More

precisely, we require to prove strict subadditivity of the function I(s, t) defined

for s > 0 and t > 0 by

I(s, t) = inf
§
E(f, g) : (f, g) ∈ Y,

Z ∞
−∞
|f |2 dx = s, and

Z ∞
−∞

g2 dx = t
ª
. (1.9)

For equations (1.1) or (1.2), the variational problems which characterize solitary

waves depend on a single constraint parameter, and proofs of strict subadditivity

are accomplished by simple arguments, dating back to Lions’ original paper [33],

which take advantage of homogeneities present in the equation.

To prove strict subadditivity for the two-parameter problem defined in (1.9),

however, seems to be more difficult. In [3], which treats the case where p = 1

and τ1 = 0, it was noted that strict subadditivity, as defined below in Lemma

2.14, holds for α = 1/6 (corresponding to setting the parameter q in [3] equal to

2), and it was shown that strict subadditivity continues to hold for α in some

neighborhood of 1/6.

Here we are able to extend the existence result for solitary waves to all

positive values of α, all non-negative values of τ1, all positive valued of τ2, all

p ∈ [1, 4), and all q ∈ [1, 4). To do so, we prove subadditivity by relying on an

argument due to Byeon [12] and Garrisi [26], which exploits the fact that the H1

norms of certain functions are strictly decreased when the mass of the function

is rearranged by symmetrization.

Previously, Dias et al. [20] had proved that for p ∈ {1, 2, 3} (with α > 3

if p = 1), (1.3) has an infinite family of positive bound states which decay

exponentially at infinity. Compared to the result of [20], ours has the advantages

that we do not require α > 3 when p = 1, and also that the sets Ss,t of solitary
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waves obtained as minimizers of (1.9) form a true two-parameter family, in that

Ss1,t1 and Ss2,t2 are disjoint if (s1, t1) 6= (s2, t2). In [20], nonempty sets Tδ,µ of

solitary waves are obtained by minimizing E subject to
R |u|2 + δv2 = µ, but it

is not clear whether Tδ1,µ1 is necessarily disjoint from Tδ2,µ2 if (δ1, µ1) 6= (δ2, µ2).

Besides the question of existence of solitary-wave solutions of (1.8), a separate

question we address in Chapter 2 is that of stability of these solitary-wave

solutions as solutions of the initial-value problem for (1.3). The stability theory

involves another variational characterization of solitary-wave solutions for (1.3).

For s > 0 and t ∈ R, define

W (s, t) = inf{E(h, g) : (h, g) ∈ Y, H(h) = s and G(h, g) = t}. (1.10)

The variational problem associated to W (s, t) is suitable for studying stability

because not only the functional E being minimized, but also the constraint

functionals G and H are conserved for (1.3). If minimizers (Φ, ψ) for W (s, t)

exist, they satisfy the Euler-Lagrange equations

−Φ′′ + ωΦ + ciΦ′ = τ1|Φ|qΦ + αΦψ

−ψ′′ + cψ =
τ2ψ

p+1

p+ 1
+
α

2
|Φ|2

(1.11)

where the real numbers c and ω are the Lagrange multipliers. These equations

are satisfied by Φ and ψ if and only if the functions u and v defined by

(u(x, t), v(x, t)) =
�
eiωtΦ(x− ct), ψ(x− ct)

�
(1.12)

are solutions of the NLS-KdV system (1.3). That is, solutions (Φ, ψ) of the

variational problem for W (s, t) are solitary-wave profiles, and (1.7) is recovered

from (1.12) by setting Φ(x) = eicx/2φ(x). We use an argument given in Albert
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and Angulo [3] to prove the stability of solitary waves. Our stability theorem

generalizes the stability results of [15], which treated the case when τ1 = 0, p = 1,

and α = 1/6; and of [3], which treated the case when τ1 = 0, p = 1, and α is

in some neighborhood of 1/6. We also note the interesting paper of Angulo [5],

which proves stability by a different method in the case when τ1 = 0, p = 1,

α > 0, and the wavespeed σ appearing in (1.8) is sufficiently small.

The approach presented in Chapter 2 for proving stability of solitary waves

works whenever the functionals involved in the variational analysis are conserved

quantities for the evolution equation in question. In Chapter 3, we show how

the concentration compactness method can still be used to prove the stability

of solitary waves if the functionals involved in the variational problem are not

conserved quantities. This approach has been put forward by Levandosky, in

[31], in which the stability of a fourth-order wave equation is studied. We

apply this method to study the nonlinear stability of solitary-wave solutions

of (1.3) with p = 1 and q = 1. We shall apply the concentration compactness

method to show the relative compactness of minimizing sequences for a different

variational problem that define solitary-wave solutions for (1.3) and then, we

use functionals E, G, and H to obtain a relationship that makes it possible to

utilize the variational properties of the traveling waves in the stability analysis.

The proof of our stability result is based on the ideas of Cazenave and Lions [14],

Levandosky [31], and Angulo [5], along with a convexity lemma of Shatah [41].

1.3 Dissertation outline

The dissertation is organized as follows. In Chapter 2, we prove existence and

stability of a two-parameter family of solitary waves of (1.3). We begin by

briefly discussing some well-posedness results which we will use in our stability
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analysis. For the benefit of the reader, we present an outline of the concentration

compactness principle, which is the key tool in this dissertation. We refer the

reader to the work of Albert [2] (see also [6]) to get a detailed illustration of

the concentration compactness method, where the method is used to obtain

stability results of solitary-wave solutions to nonlocal nonlinear wave equations.

In Section 2.2, we prove a number of preparatory lemmas. We do not develop

the elements of the theory of Sobolev spaces in this dissertation, but use a

number of Sobolev type inequalities throughout the dissertation. A detailed

account of Sobolev spaces can be found in Adams [1], Evans [23], Friedman

[24], and Lieb and Loss [32]. Section 2.3 presents the concept of the symmetric

decreasing rearrangement, which replaces a given nonnegative function f by

a radial function f ∗, and we prove Byeon and Garrisi’s rearrangement lemma.

In Section 2.4, we use rearrangement lemma of Section 2.3 to prove the strict

subadditivity of I(s, t). In Section 2.5, we use the concentration compactness

method to prove the existence of solitary-wave solutions of (1.3). Finally, Section

2.6 provides the statement and proof of our stability theorem.

In Chapter 3, we study the stability of solitary-wave solutions of (1.3) with

p = 1 and q = 1 by using the concentration compactness method and convexity

techniques. In Section 3.2, by considering a different variational problem, we

apply the concentration compactness method to prove the existence of solitary

waves. In Section 3.3, after establishing some technical preliminaries, we use the

conserved functionals of (1.3) to obtain a relationship that makes it possible to

utilize the variational properties of the solitary waves in the stability analysis.

We prove that the stability of solitary waves is determined by the convexity or

concavity of a function of the wave speed.

Notation. The notation used in this dissertation is the standard notation
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used in the literature on partial differential equations. For 1 ≤ p ≤ ∞, we denote

by Lp = Lp(R) the space of all measurable functions f on R for which the norm

|f |p is finite, where

|f |p =
�Z ∞
−∞
|f |p dx

�1/p

for 1 ≤ p <∞

and |f |∞ is the essential supremum of |f | on R. The Fourier transform bf of a

tempered distribution f(x) ∈ S ′(R) is defined as

bf(ξ) =
Z ∞
−∞

f(x)e−iξx dx.

For any tempered distribution f on R and any s ∈ R, we define

‖f‖s =
�Z ∞
−∞

�
1 + |ξ|2

�s ��� bf(ξ)
���2 dξ�1/2

,

and we denote by Hs
C(R) the Sobolev space of all complex-valued functions f

for which the norm ‖f‖s is finite. We will always view Hs
C(R) as a vector space

over the reals, with inner product given by

〈f1, f2〉 = Re
Z ∞
−∞

�
1 + |ξ|2

�scf1
cf2 dξ.

The space of all real-valued functions f in Hs
C(R) will be denoted by Hs(R).

In particular, we use ‖f‖ to denote the L2 or H0(R) norm of a function f. We

define the space Y to be H1
C(R)×H1(R), and the space X to be H1(R)×H1(R),

each provided with the product norm.

We occasionally use below the operation of convolution of two functions, here
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denoted by the symbol ? and defined by

f ? g(x) =
Z ∞
−∞

f(x− y)g(y) dy. (1.13)

The letter C will frequently be used to denote various constants whose actual

value is not important for our purposes.
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Chapter 2

A Two-Parameter Family of Solitary-Wave Solutions

to the Schrödinger-KdV Equations

In this chapter we prove existence and stability results of a two-parameter family

of solitary waves of (1.3). We assume throughout the section, unless otherwise

stated, that α > 0, τ1 ≥ 0, τ2 > 0, 1 ≤ q < 4, and 1 ≤ p < 4, where p is a

rational number with odd denominator. Our proof involves the characterization

of solitary-wave solutions as minimizers of an energy functional subject to

two constraints. To establish the precompactness of minimizing sequences via

concentrated compactness, we establish the sub-additivity of the problem with

respect to both constraint variables jointly.

2.1 Introduction

The local and global well-posedness results of (1.3) have been studied by a

large number of authors. For the non-periodic setting, the system of the form

(1.3) with p = 1 and q = 2 was first studied in Tsutsumi [45] for a global

well-posedness theory in H
m+1/2
C (R)×Hm

R (R) with m ∈ N. Later, by using the

Fourier restriction method, Bekiranov, Ogawa and Ponce [8] proved a local

theory in Hs
C(R) × Hs−1/2

R (R) for s ≥ 0. Corcho and Linares [18] proved that

the system (1.3) with p = 1 and q = 2 is locally well-posed for initial data
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(u0, v0) ∈ Hk(R)×Hs(R) with k ≥ 0, s > −3/4 and

k − 1 ≤ s ≤ 2k − 1/2 if k ≤ 1/2,

k − 1 ≤ s ≤ k + 1/2 if k > 1/2.

Furthermore, they proved the global well-posedness of the Cauchy problem

associated to (1.3) in the energy space H1(R)×H1(R) by using three conserved

quantities discovered by Tsutsumi [45]. (See also Guo and Miao [28] for a

well-posedness result for q = 2). Dias, Figueira, and Oliveira [20] recently proved

the existence of an infinite family of smooth positive bound states for (1.3) which

decay exponentially at infinity.

In our study of existence and stability of solitary-wave solutions of (1.3), we

use the method of concentration compactness to prove the relative compactness

of minimizing sequences for the variational problem, and hence the existence of

minimizers. The method is based on the following lemma:

Theorem 2.1 (Lions [33]). Let {ρn}n≥1 be a sequence of nonnegative functions

in L1(R) satisfying
R∞
−∞ ρn(x) dx = λ for all n and some λ > 0. Then there

exists a subsequence {ρnk}k≥1 satisfying one of the following three conditions:

(1) (Compactness) There are yk ∈ R for k = 1, 2, . . ., such that ρnk(.+ yk) is

tight, i.e., for any ε > 0, there is R > 0 large enough such that

Z
|x−yk|≤R

ρnk(x) dx ≥ λ− ε.

(2) (Vanishing) For any R > 0,

lim
k−→∞

sup
y∈R

Z
|x−y|≤R

ρnk(x) dx = 0.
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(3) (Dichotomy) There exists α ∈ (0, λ) such that for any ε > 0, there exists

k0 ≥ 1 and ρ1
k, ρ

2
k ∈ L1(R), with ρ1

k, ρ
2
k ≥ 0, such that for k ≥ k0,

8><>:
|ρnk − (ρ1

k + ρ2
k)|1 ≤ ε,

���R∞−∞ ρ1
k dx− α

��� ≤ ε,
���R∞−∞ ρ2

k dx− (λ− α)
��� ≤ ε,

supp(ρ1
k) ∩ supp(ρ2

k) = ∅, dist(supp(ρ1
k), supp(ρ2

k))→∞ as k →∞.

Remark 2.2. In Theorem 2.1 above, the condition
R∞
−∞ ρn(x) dx = λ can be

replaced by
R∞
−∞ ρn(x) dx = λn where λn → λ > 0 as n → ∞. Indeed, it is

enough to replace ρn by ρn/λn and apply the theorem.

Typically, one proves compactness by ruling out the last two possibilities.

This requires proving the strict subadditivity of the function I(s, t). In the next

few sections we will focus on proving the strict subadditivity of I(s, t).

2.2 The two-parameter variational problem

We consider the problem of finding, for any s, t > 0,

I(s, t) = inf
¦
E(f, g) : (f, g) ∈ Y, ‖f‖2 = s and ‖g‖2 = t

©
, (2.1)

where E(f, g) is defined by (1.4). We define a minimizing sequence for I(s, t) to

be any sequence {(fn, gn)} of functions in Y satisfying

lim
n→∞

‖fn‖2 = s, lim
n→∞

‖gn‖2 = t, and lim
n→∞

E(fn, gn) = I(s, t). (2.2)

Lemma 2.3. Every minimizing sequence for I(s, t) is bounded in Y . Further-

more, one has −∞ < I(s, t) < 0.

Proof. First, observe that if {(fn, gn)} is a minimizing sequence for I(s, t), then

‖fn‖ and ‖gn‖ are bounded. From the Gagliardo-Nirenberg inequality (see, for
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example, Theorem 9.3 of [24]), we have that

|fn|q+2
q+2 ≤ C‖fnx‖q/2‖fn‖(q+4)/2, (2.3)

and since ‖fn‖ is constant, it follows that

|fn|q+2
q+2 ≤ C‖(fn, gn)‖q/2Y . (2.4)

Similarly,

|gn|p+2
p+2 ≤ C‖gnx‖p/2 ≤ C‖(fn, gn)‖p/2Y . (2.5)

(Here, as throughout the paper, C denotes various constants which may depend

on s and t but are independent of fn and gn.) Moreover, the same estimate (2.4)

with q replaced by 2 shows that

|fn|44 ≤ C‖fnx‖ · ‖fn‖3 ≤ C‖fnx‖,

so by Hölder’s inequality,

Z ∞
−∞
|fn|2|gn| dx ≤ |fn|24 · ‖gn‖ ≤ C‖fnx‖1/2 ≤ C‖(fn, gn)‖1/2

Y . (2.6)

Now

‖(fn, gn)‖2
Y = ‖fn‖2

1 + ‖gn‖2
1

= E(fn, gn) +
Z ∞
−∞

�
β1|fn|q+2 + β2g

p+2
n + α|fn|2gn

�
dx+ ‖fn‖2 + ‖gn‖2,

and E(fn, gn) is bounded since {(fn, gn)} is a minimizing sequence. Therefore
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from (2.4), (2.5), and (2.6) it follows that

‖(fn, gn)‖2
Y ≤ C

�
1 + ‖(fn, gn)‖1/2

Y + ‖(fn, gn)‖q/2Y + ‖(fn, gn)‖p/2Y

�
.

Since q/2 < 2 and p/2 < 2, we deduce that ‖(fn, gn)‖Y is bounded.

Once we have shown that {(fn, gn)} is bounded in Y , a finite lower bound on

E(fn, gn) also follows immediately from (2.4), (2.5), and (2.6). So I(s, t) > −∞.

Finally, to see that I(s, t) < 0, choose (f, g) ∈ Y such that ‖f‖2 = s,

‖g‖2 = t, and f(x) > 0 and g(x) > 0 for all x ∈ R. For each θ > 0, the functions

fθ(x) = θ1/2f(θx) and gθ(x) = θ1/2g(θx) satisfy ‖fθ‖2 = s, ‖gθ‖2 = t, and

E(fθ, gθ) =
Z ∞
−∞

�
|fθx|2 + g2

θx − β1|fθ|q+2 − β2g
p+2
θ − α|fθ|2gθ

�
dx

≤ θ2
Z ∞
−∞

�
|fx|2 + g2

x

�
dx− θ1/2

Z ∞
−∞

α|f |2g dx.

Hence, by taking θ sufficiently small, we get E(fθ, gθ) < 0, proving that I(s, t) <

0.

Lemma 2.4. Suppose (fn, gn) is a minimizing sequence for I(s, t), where t > 0

and s ≥ 0. (Note that we do not require s > 0 here.) Then there exists δ > 0

such that ‖gnx‖ ≥ δ for all sufficiently large n.

Proof. If the conclusion is not true, then by passing to a subsequence we may

assume there exists a minimizing sequence for which lim
n→∞

‖gnx‖ = 0. From (2.5)

it then follows that

lim
n→∞

Z ∞
−∞

gp+2
n dx = 0.

Moreover, because of the elementary estimate

|gn|∞ ≤ C‖gn‖1/2‖gnx‖1/2,
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we can write, in place of (2.6),

Z ∞
−∞
|fn|2|gn| dx ≤ C‖fn‖2‖gn‖1/2‖gnx‖1/2 ≤ C‖gnx‖1/2, (2.7)

from which it follows that

lim
n→∞

Z ∞
−∞
|fn|2gn dx = 0.

Hence

I(s, t) = lim
n→∞

E(fn, gn)

= lim
n→∞

Z ∞
−∞

�
|fnx|2 − β1|fn|q+2

�
dx.

(2.8)

Now let ψ be any non-negative function such that ‖ψ‖2 = t. For every θ > 0,

the function ψθ(x) = θ1/2ψ(θx) satisfies ‖ψθ‖2 = t, so that I(s, t) ≤ E(fn, ψθ)

for all n. On the other hand, if we define

η = θ2
Z ∞
−∞

ψ2
x dx− β2θ

p/2
Z ∞
−∞

ψp+2 dx, (2.9)

then since p/2 < 1, by fixing θ > 0 sufficiently small we can arrange that

η < 0. (2.10)

Then for all n ∈ N,

I(s, t) ≤ E(fn, ψθ)

=
Z ∞
−∞

�
|fnx|2 − β1|fn|q+2 − θ1/2α|fn|2ψ

�
dx+ η

≤
Z ∞
−∞

�
|fnx|2 − β1|fn|q+2

�
dx+ η.
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Therefore

I(s, t) ≤ lim
n→∞

Z ∞
−∞

�
|fnx|2 − β1|fn|q+2

�
dx+ η,

which contradicts (2.8) and (2.10).

Lemma 2.5. Suppose g(x) is an integrable function on R such that

Z ∞
−∞

g(x) dx > 0. (2.11)

Then for every s > 0 there exists f ∈ H1 such that ‖f‖2 = s and

Z ∞
−∞

�
f 2
x − αf 2g

�
dx < 0.

Proof. Let ψ be an arbitrary smooth, non-negative function with compact

support such that ψ(0) = 1 and ‖ψ‖2 = s, and for θ > 0 define ψθ(x) = θ1/2ψ(θx).

Then ‖ψθ‖2 = s, and

Z ∞
−∞

�
ψ2
θx − ψ2

θg
�
dx = θ2

Z ∞
−∞

ψ2
x dx− θ

Z ∞
−∞

ψ(θx)2g(x) dx. (2.12)

But, by the Dominated Convergence Theorem,

lim
θ→0

Z ∞
−∞

ψ(θx)2g(x) dx = B,

where B =
Z ∞
−∞

g(x) dx > 0. Therefore from (2.12) it follows that

Z ∞
−∞

�
ψ2
θx − ψ2

θg
�
dx ≤ θ2

Z ∞
−∞

ψ2
x dx− θB/2 (2.13)

for all θ in some neighborhood of 0. Since the quantity on the right-hand side
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can be made negative by taking θ sufficiently small, the desired f can be found

by taking f = ψθ for a sufficiently small value of θ.

Lemma 2.6. Define J : H1 → R by

J(g) =
Z ∞
−∞

�
g2
x − β2g

p+2
�
dx. (2.14)

Let t > 0, and let {gn} be any sequence of functions in H1 such that

lim
n→∞

‖gn‖2 = t,

and

lim
n→∞

J(gn) = inf
¦
J(g) : g ∈ H1 and ‖g‖2 = t

©
.

Then there exists a subsequence {gnk} and a sequence of real numbers yk such

that gnk(x+ yk) converges strongly in H1 norm to g0(x), where

g0(x) =

�
λ

β2

�1/p

sech2/p

 √
λpx

2

!
, (2.15)

and λ > 0 is chosen so that ‖g0‖2 = t. In particular,

J(g0) = inf
¦
J(g) : g ∈ H1 and ‖g‖2 = t

©
. (2.16)

Proof. The proof that some subsequence of gn must converge, after suitable

translations, strongly in H1 norm is by now a standard exercise in the use of

the method of concentration compactness. A proof in the case p = 1 appears,

for example, in Theorem 2.9 of [2], or Theorem 3.13 of [3]. A similar proof, with

obvious alterations, works for all p ∈ [1, 4) because for such p the Gagliardo-

Nirenberg inequality (2.5) permits one to obtain a uniform bound on ‖gn‖1.
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Denote the translated subsequence of {gn} which converges strongly by

{gnk(x+ ỹk)}, and let ψ ∈ H1 be its limit. Then ψ must satisfy

J(ψ) = inf
¦
J(g) : g ∈ H1 and ‖g‖2 = t

©
, (2.17)

and must also be a solution of the Euler-Lagrange equation

−2ψ′′ − (p+ 2)β2ψ
p+1 = −2λψ (2.18)

for some real number λ. Equation (2.18) can be explicitly integrated to show

that, in order for ψ to be in H1, λ must be positive and ψ must be a translate of

the function g0 defined in (2.15), say ψ(x) = g0(x+ y0) for some y0 ∈ R. Then

(2.16) follows from (2.17). Also, defining yk = ỹk − y0, we have that gnk(x+ yk)

converges to g0 in H1.

Lemma 2.7. Suppose β1 > 0, and define J̃ : H1
C → R by

J̃(f) =
Z ∞
−∞

�
|fx|2 − β1|f |q+2

�
dx. (2.19)

Let s > 0, and let {fn} be any sequence of functions in H1
C such that

lim
n→∞

‖fn‖2 = s,

and

lim
n→∞

J̃(fn) = inf
¦
J̃(f) : f ∈ H1

C and ‖f‖2 = s
©
.

Then there exists a subsequence {fnk} of {fn}, a sequence of real numbers yk,

and a real number θ such that e−iθfnk(x+ yk) converges strongly in H1
C norm to
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f0(x), where

f0(x) =

�
λ

β1

�1/q

sech2/q

 √
λpx

2

!
, (2.20)

and λ > 0 is chosen so that ‖f0‖2 = s. In particular,

J̃(f0) = inf
¦
J̃(f) : f ∈ H1

C and ‖f‖2 = s
©
. (2.21)

Proof. The comments in the first paragraph of the proof of Lemma 2.6 apply

as well to J̃ as to J , since the proof alluded to there works here with no

formal changes: the only difference is that now ‖fn‖ represents the modulus

of a complex-valued function. Therefore we can conclude that there exists a

subsequence {fnk} and a sequence of real numbers ỹk such that {fnk(x+ ỹk)}

converges strongly in H1
C to a (now complex-valued) function φ for which

J̃(φ) = inf
¦
J(f) : f ∈ H1

C and ‖f‖2 = t
©
, (2.22)

and for which the Euler-Lagrange equation

−2φ′′ − (q + 2)β1φ
q+1 = −2λφ (2.23)

holds, where here λ is again a real number.

It is proved in Theorem 8.1.6 of [13] that for every solution φ of (2.23), there

exists a real number θ such that φ(x) = eiθφ̃(x) on R, where φ̃(x) is real-valued

and positive (the same argument used there is also given below in the proof

of part (iv) of Theorem 2.15). The H1 function φ̃ also satisfies (2.23), and so,

as in the proof of Lemma 2.6, it follows that there exists y0 ∈ R such that

φ̃(x) = f0(x + y0) on R, where f0 is as defined in (2.20). Since J̃(φ) = J̃(φ̃),

then (2.21) follows from (2.22). Also, if we define yk = ỹk − y0, then we have
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that e−iθfnk(x+ yk) converges in H1
C to f0.

Lemma 2.8. Suppose (fn, gn) is a minimizing sequence for I(s, t), where s > 0

and t ≥ 0. If t > 0, or t = 0 and β1 > 0, then there exists δ > 0 such that

‖fnx‖ ≥ δ for all sufficiently large n. If t = 0 and β1 = 0, then I(s, t) = 0.

Proof. As in the proof of Lemma (2.4), we argue by contradiction. If the

conclusion is not true, then by passing to a subsequence we may assume there

exists a minimizing sequence for which lim
n→∞

‖fnx‖ = 0. From (2.3) and (2.6) we

have that

lim
n→∞

Z ∞
−∞
|fn|2gn = lim

n→∞

Z ∞
−∞
|fn|q+2 = 0, (2.24)

so

I(s, t) = lim
n→∞

Z ∞
−∞

�
g2
nx − β2g

p+2
n

�
dx. (2.25)

In case t > 0, we have from (2.16) that

I(s, t) ≥ J(g0), (2.26)

where g0 is as (2.15), and therefore g0 is integrable with positive integral. There-

fore, by Lemma 2.5 there exists f ∈ H1 such that ‖f‖2 = s and

Z ∞
−∞

�
f 2
x − αf 2g0

�
dx < 0. (2.27)

It follows that

I(s, t) ≤ E(f, g0) =
Z ∞
−∞

�
f 2
x − αf 2g0 − β1|f |q+2

�
dx+ J(g0) < J(g0), (2.28)

which contradicts (2.26).

In case t = 0 and β1 > 0, then by (2.25), I(s, t) = 0. On the other hand
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I(s, t) = I(s, 0) is the infimum of

E(f, 0) =
Z ∞
−∞

�
|fx|2 − β1|f |q+2

�
dx (2.29)

over all f ∈ H1
C satisfying ‖f‖2 = s. Let f be any non-negative function in H1

such that ‖f‖2 = s, and define fθ(x) = θ1/2f(θx). Then

E(fθ, 0) = θ2
Z ∞
−∞

f 2
x dx− β1θ

q/2
Z ∞
−∞

f q+2 dx, (2.30)

and since q < 4, we can make the right-hand side negative by choosing a

sufficiently small value of θ. Therefore I(s, t) < 0, giving a contradiction.

Finally, if t = 0 and β1 = 0, then I(s, t) = I(s, 0) is the infimum of

E(f, 0) =
Z ∞
−∞
|fx|2 dx (2.31)

over all f in H1
C such that ‖f‖2 = s. This infimum is clearly non-negative, but

on the other hand if we replace f by fθ, as defined in the preceding paragraph,

then we can make E(fθ, 0) arbitrarily small by taking θ sufficiently small. Hence

I(s, t) = 0.

Lemma 2.9. Suppose (fn, gn) is a minimizing sequence for I(s, t), where s > 0

and t > 0. Then there exists δ > 0 such that for all sufficiently large n,

Z ∞
−∞

�
|fnx|2 − β1|fn|q+2 − α|fn|2gn

�
dx ≤ −δ.

Proof. If the conclusion is false, then by passing to a subsequence we may assume

that there exists a minimizing sequence (fn, gn) for which

lim inf
n→∞

Z ∞
−∞

�
|fnx|2 − β1|fn|q+2 − α|fn|2gn

�
dx ≥ 0, (2.32)
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and so

I(s, t) = lim
n→∞

E(fn, gn) ≥ lim inf
n→∞

Z ∞
−∞

�
g2
nx − β2g

p+2
n

�
dx. (2.33)

Define J and g0 as in Lemma 2.6. Then (2.33) implies that

I(s, t) ≥ J(g0). (2.34)

On the other hand, by Lemma 2.5, there exists f ∈ H1 such that ‖f‖2 = s and

Z ∞
−∞

�
f 2
x − αf 2g0

�
dx < 0.

Therefore

I(s, t) ≤ E(f, g0) ≤
Z ∞
−∞

�
f 2
x − αf 2g0

�
dx+ J(g0) < J(g0), (2.35)

which contradicts (2.34).

Lemma 2.10. For all (f, g) ∈ Y , one has E(|f |, |g|) ≤ E(f, g).

Proof. What has to be proved is that if f ∈ H1
C, then |f(x)| is in H1 and

Z ∞
−∞
||f |x|

2 dx ≤
Z ∞
−∞
|fx|2 dx. (2.36)

For the reader’s convenience, we repeat the proof from Albert et al. [4]. Let

µ > 0, and define the function Nµ(x) by cNµ(ξ) = 1/(µ+ ξ2). Then Nµ(x) > 0

for all x ∈ R. Moreover Nµ ∈ Lp for every p ∈ [1,∞]. Now, if g = |f | , then

Nµ ∗ g(x) ≥ Nµ ∗ f(x) for all x ∈ R and every µ > 0. In consequence, one has
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that

Z ∞
−∞

1

µ+ ξ2
|bg(ξ)|2 dξ =

Z ∞
−∞

g(x)(Nµ ∗ g)(x) dx

≥
Z ∞
−∞

f(x)(Nµ ∗ f)(x) dx

=
Z ∞
−∞

1

µ+ ξ2
| bf(ξ)

���2 dξ.

By Parseval’s identity,
R∞
−∞ |bg(ξ)|2 dξ =

R∞
−∞ | bf(ξ) |2 dξ, so it follows that

Z ∞
−∞

µ

�
1− µ

µ+ ξ2

�
| bf(ξ)

���2 dξ ≥
Z ∞
−∞

µ

�
1− µ

µ+ ξ2

�
|bg(ξ)|2 dξ.

Taking the limit µ → ∞ on both sides of the preceding inequality, and using

the monotone convergence theorem gives

Z ∞
−∞
|ξ|2 | bf(ξ)

���2 dξ ≥
Z ∞
−∞
|ξ|2 |bg(ξ)|2 dξ,

which yields the desired result.

We end this section with the following lemma.

Lemma 2.11. The functionals E, G, and H are continuous from Y to R.

Proof. This follows easily (for all p ≥ 0 and q ≥ 0) from the Sobolev embedding

theorem, in particular using the fact that the inclusion of H1 in L∞ is continuous.

2.3 Symmetrization and a technical lemma

The concept of the symmetric rearrangement of a function will play an important

role in our proof of strict subadditivity of the function I(s, t). For a non-negative
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function w : R → [0,∞), if {x : w(x) > y} has finite measure m(w, y) for all

y > 0, then the symmetric decreasing rearrangement w∗ of w is defined by

w∗(x) = inf {y ∈ (0,∞) :
1

2
m(w, y) ≤ x} (2.37)

(or see page 80 of [32] for a different but equivalent definition). For (f, g) in Y ,

both |f | and |g| are in H1, and hence |f |∗ and |g|∗ are well-defined.

The next lemma state that E(f, g) decreases when f and g are replaced by

|f | and |g|, and when |f | and |g| are symmetrically rearranged.

Lemma 2.12. For all (f, g) ∈ Y , one has E(|f |∗, |g|∗) ≤ E(f, g).

Proof. This follows from classic estimates on the symmetric rearrangements of

functions. A basic fact about rearrangements is that they preserve Lp norms (cf.

page 81 of [32]), so that

Z ∞
−∞

(|f |∗)q+2 dx =
Z ∞
−∞
|f |q+2 dx (2.38)

and Z ∞
−∞

(|g|∗)p+2 dx =
Z ∞
−∞
|g|p+2 dx. (2.39)

Another basic inequality about rearrangements, Theorem 3.4 of [32], implies

that Z ∞
−∞

(|f |∗)2|g|∗ dx ≥
Z ∞
−∞
|f |2|g| dx. (2.40)

Finally, from Lemma 7.17 of [32] we have that

Z ∞
−∞
|(|f |∗)x|2 dx ≤

Z ∞
−∞
||f |x|2 dx,

and similarly for g(x). In light of these facts, and because α, β1, and β2 are all
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non-negative, it follows from Lemma 2.10 that E(|f |∗, |g|∗) ≤ E(f, g).

We will also make crucial use of the following Lemma, due to Garrisi [26]

(see also the N -dimensional version given in Byeon [12]). We include a proof

here since our version of the lemma differs slightly from that stated by Garrisi.

Lemma 2.13. Suppose u and v are non-negative, even, C∞ functions with

compact support in R, which are non-increasing on {x : x ≥ 0}. Let x1 and x2

be numbers such that u(x+ x1) and v(x+ x2) have disjoint supports, and define

w(x) = u(x+ x1) + v(x+ x2).

Let w∗ : R → R be the symmetric decreasing rearrangement of w. Then the

distributional derivative (w∗)′ of w∗ is in L2, and satisfies

‖(w∗)′‖2 ≤ ‖w′‖2 − 3

4
min{‖u′‖2, ‖v′‖2}. (2.41)

Proof. First consider the case when u′(x) < 0 for all x ∈ (0, c) and v′(x) < 0 for

all x ∈ (0, d), where [−c, c] is the support of u and [−d, d] is the support of v.

Let a = sup{u(x) : x ∈ R} and b = sup{v(x) : x ∈ R}. By interchanging u and

v if necessary, we may assume that a ≤ b.

Define zu : [0,∞)→ [0, c] by

zu(y) = inf{x ∈ [0,∞) : u(x) ≤ y}. (2.42)

For y ∈ (0, a), zu(y) is equal to the unique number x(y) ∈ (0, c) such that
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u(x(y)) = y. The function zu is differentiable on (0, a), with derivative

z′u(y) =
1

u′(x(y))
< 0,

and we have

‖u′‖2 = 2
Z c

0
(u′(x))2 dx

= 2
Z a

0

−1

z′u(y)
dy

= 2
Z a

0

1

|z′u(y)|
dy.

For y ≥ a we have zu(y) = 0.

Similarly, we define zv : [0,∞)→ [0, d] by

zv(y) = inf{x ∈ [0,∞) : v(x) ≤ y}. (2.43)

Then

y′v(v(x)) =
1

v′(x)
< 0

on (0, d), and

‖v′‖2 = 2
Z b

0

1

|z′v(y)|
dy.

Now, for each y ∈ [0,∞), define

z(y) = zu(y) + zv(y). (2.44)

Then z is continuous on [0,∞) and differentiable, with strictly negative derivative,

on (0, a) and on (a, b). Therefore z is strictly decreasing on [0, b], and so

its restriction to [0, b] has an inverse function z−1 : [0, c + d] → [0, b], with

z−1([0, c]) = [a, b] and z−1([c, c+ d]) = ([0, a]). From (2.37) and the definition of

w, using the fact that u(x+ x1) and v(x+ x+ 2) have disjoint supports, we see
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that w∗ is supported on [0, c+ d] and coincides with z−1 there. In particular, for

all y ∈ (0, a) ∪ (a, b), we have

(w∗)′(z(y)) =
1

z′u(y) + z′v(y)
.

Now making use of the fact that for all positive numbers µ and ν, there holds

the elementary inequality

2

µ+ ν
≤ 1

2

�
1

µ
+

1

ν

�
,

we have the following computation:

‖(w∗)′‖2 = 2
Z c+d

0
((w∗)′(x))2 dx

= 2
Z c

0
((w∗)′(x))2 dx+ 2

Z c+d

c
((w∗)′(x))2 dx

= 2
Z a

0

1

|z′u(y)|+ |z′v(y)|
dy + 2

Z b

a

1

|z′v(y)|
dy

≤ 1

2

Z a

0

�
1

|z′u(y)|
+

1

|z′v(y)|

�
dy + 2

Z b

a

1

|z′v(y)|
dy

<
1

2

Z a

0

1

|z′u(y)|
dy + 2

Z a

0

1

|z′v(y)|
dy + 2

Z b

a

1

|z′v(y)|
dy

=
1

2

Z a

0

1

|z′u(y)|
dy + 2

Z b

0

1

|z′v(y)|
dy

=
1

2

Z c

0
(u′(x))2 dx+ 2

Z d

0
(v′(x))2 dx

= 2
Z c

0
(u′(x))2 dx+ 2

Z d

0
(v′(x))2 dx− 3

2

Z c

0
(u′(x))2 dx

=
1

2
‖u′‖2 +

1

2
‖v′‖2 − 3

4
‖u′‖2

=
1

2
‖w′‖2 − 3

4
‖u′‖2

≤ 1

2
‖w′‖2 − 3

4
min{‖u′‖2, ‖v′‖2}.

Thus (2.41) is proved in the special case when u′ < 0 on (0, c) and v′ < 0 on
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(0, d).

Now we consider the general case, which we can reduce to the case treated

above as follows.

Let φ1(x) be a smooth, even function such that φ1(x) > 0 for x ∈ (0, c)

and φ1(x) = 0 for x ≥ c, and such that φ1(x) is strictly decreasing on (0, c).

Let φ2(x) be a similar function with support on (0, d). For each ε > 0, define

uε(x) = u(x)+εφ1(x) and vε(x) = v(x)+εφ2(x), and let wε(x) = uε(x)+vε(x−T ).

Since u′ ≤ 0 and φ′1 < 0 on (0, c), then u′ε = u′ + εφ′1 < 0 on (0, c), so uε is

strictly decreasing on (0, c). Similarly, vε is strictly decreasing on (0, d). So, by

what has been proved above,

‖(w∗ε )′‖2 ≤ ‖w′ε‖2 − 3

4
min{‖u′ε‖2, ‖v′ε‖2}. (2.45)

Now take limits on both sides of (2.45) as ε goes to zero. By the dominated

convergence theorem, the right hand side approaches

‖w′‖2 − 3

4
min{‖u′‖2, ‖u′‖2}.

Also, since wε converges in H1 norm on R to w, then by a theorem of Coron [19],

w∗ε converges in H1 norm to w∗. Therefore the left-hand side of (2.41) converges

to ‖(w∗)′‖2, and (2.41) is proved.

2.4 Proof of subadditivity

We are now able to prove the following subadditivity property of I(s, t).

Lemma 2.14. Let s1, s2, t1, t2 ≥ 0 be given, and suppose that s1 + s2 > 0,
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t1 + t2 > 0, s1 + t1 > 0, and s2 + t2 > 0. Then

I(s1 + s2, t1 + t2) < I(s1, t1) + I(s2, t2). (2.46)

Proof. We claim first that, for i = 1, 2, we can choose minimizing sequences

(f (i)
n , g(i)

n ) for I(si, ti) such that for all n ∈ N, f (i)
n and g(i)

n

(i) are real-valued and non-negative on R;

(ii) belong to H1 and have compact support;

(iii) are even functions;

(iv) are non-increasing functions of x for x ≥ 0;

(v) are C∞ functions; and

(vi) satisfy ‖f (i)
n ‖ = si and ‖g(i)

n ‖ = ti.

To prove this, we can take i = 1, since the proof for i = 2 is identical. Also we

may assume that s1 > 0 and t1 > 0, since otherwise we can simply take f (1)
n or

g(1)
n to be identically zero on R.

Start with an arbitrary minimizing sequence (w(1)
n , z(1)

n ) for I(s1, t1). Since

functions with compact support are dense in H1, and E : Y → R is continuous,

we can approximate (w(1)
n , z(1)

n ) by functions (w(2)
n , z(2)

n ) which have compact

support and which still form a minimizing sequence for I(s1, t1). Then from

Lemma 2.12 it follows that the sequence defined by

(w(3)
n , z(3)

n ) = (|w(2)
n |∗, |z(2)

n |∗)

is still a minimizing sequence for I(s1, t1), and for each n, w(3)
n and z(3)

n have the

properties (i) through (iv) listed above.
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Next, observe that if f and ψ are any two functions with properties (i) through

(iv), then their convolution f ? ψ, defined as in (1.13), also satisfies properties

(i) through (iv). Moreover, as is well known, if we define ψε = (1/ε)ψ(x/ε) for

ε > 0, and choose ψ such that
R∞
−∞ ψ(x) dx = 1, then convolution with ψε is an

“approximation to the identity”: that is, the functions f ?ψε converge strongly to

f in H1 as ε→ 0. Finally, if ψ is C∞ then f ? ψε will be C∞ also. Therefore by

choosing ψ(x) to be any non-negative, C∞, even function with compact support,

which is decreasing for x ≥ 0, and satisfies
R∞
−∞ ψ(x) dx = 1, and defining

(w(4)
n , z(4)

n ) = (w(3)
n ? ψεn , z

(3)
n ? ψεn),

with εn chosen appropriately small for n large, we obtain a minimizing sequence

(w(4)
n , z(4)

n ) for I(s1, t1) that satisfies not only the properties (i) through (iv) above,

but also property (v).

Finally, we obtain the desired minimizing sequence satisfying properties (i)

through (vi) by setting

f (1)
n =

(si)
1/2w(4)

n

‖w(4)
n ‖

and g(1)
n =

(ti)
1/2z(4)

n

‖g(i)
n ‖

,

respectively, which is possible since for n sufficiently large we have ‖w(4)
n ‖ > 0

and ‖z(4)
n ‖ > 0.

Next, choose for each n a number xn such that f (1)
n (x) and f̃ (2)

n (x) = f (2)
n (x+

xn) have disjoint support, and g(1)
n (x) and g̃(2)

n (x) = g(2)
n (x + xn) have disjoint

support. Define

fn =
�
f (1)
n + f̃ (2)

n

�∗
,

gn =
�
g(1)
n + g̃(2)

n

�∗
.
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Then ‖fn‖2 = s1 + s2 and ‖gn‖2 = t1 + t2, so

I(s1 + s2, t1 + t2) ≤ E(fn, gn). (2.47)

On the other hand, from Lemma 2.13 we have that

Z ∞
−∞

�
f 2
nx + g2

nx

�
dx ≤

Z ∞
−∞

�
(f (1)
n + f̃ (2)

n )2
x + (g(1)

n + g̃(2)
n )2

x

�
dx−Kn

=
Z ∞
−∞

�
(f (1)
nx )2 + (f̃ (2)

nx )2 + (g(1)
nx )2 + (g̃(2)

nx )2
�
dx−Kn,

(2.48)

where

Kn =
3

4

�
min

¦
‖f (1)

nx ‖2, ‖f (2)
nx ‖2

©
+ min

¦
‖g(1)

nx ‖2, ‖g(2)
nx ‖2

©�
. (2.49)

Furthermore, from the properties (2.39), (2.38), and (2.40) of rearrangements,

we have that

Z ∞
−∞
|fn|q+2 dx =

Z ∞
−∞
|f (1)
n |q+2 dx+

Z ∞
−∞
|f (2)
n |q+2 dxZ ∞

−∞
gp+2
n dx =

Z ∞
−∞

(g(1)
n )p+2 dx+

Z ∞
−∞

(g(2)
n )q+2 dxZ ∞

−∞
|fn|2gn dx ≥

Z ∞
−∞
|f (1)
n |2g(1)

n dx+
Z ∞
−∞
|f (2)
n |2g(2)

n dx,

(2.50)

and therefore, combining with (2.47) and (2.48), we have that for every n,

I(s1 + t1, s2 + t2) ≤ E(fn, gn) ≤ E(f (1)
n , g(1)

n ) + E(f (2)
n , g(2)

n )−Kn. (2.51)

It follows by taking the limit superior on the right-hand side that

I(s1 + t1, s2 + t2) ≤ I(s1, t1) + I(s2, t2)− lim inf
n→∞

Kn. (2.52)

Since t1 + t2 > 0, then either t1 and t2 are both positive, or one of t1 and t2
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is zero and the other is positive. In the latter case, we may assume that t1 = 0

and t2 > 0, since otherwise we can simply switch t1 and t2. Then we will argue

separately according as to whether s2 is positive or zero. To prove the theorem,

then, it suffices to consider the following three cases: (i) t1 > 0 and t2 > 0; (ii)

t1 = 0, t2 > 0, and s2 > 0; and (iii) t1 = 0, t2 > 0, and s2 = 0.

In case (i), when t1 > 0 and t2 > 0, it follows from Lemma 2.4 that there exist

numbers δ1 > 0 and δ2 > 0 such that for all sufficiently large n, ‖(g(1)
n )x‖ ≥ δ1

and ‖(g(2)
n )x‖ ≥ δ2. (Note that by Lemma 2.8, this is still true even when s1 = 0

or s2 = 0.) So, letting δ = min(δ1, δ2) > 0, (2.49) gives Kn ≥ 3δ/4 for all

sufficiently large n. From (2.52) we then have that

I(s1 + t1, s2 + t2) ≤ I(s1, t1) + I(s2, t2)− 3δ/4 < I(s1, t1) + I(s2, t2), (2.53)

as desired.

In case (ii), we have t1 = 0, t2 > 0, s2 > 0, and, since s1 + t1 > 0 by

assumption, s1 > 0 also. By Lemma 2.8 there exists δ1 > 0 such that for all

sufficiently large n, ‖(f (1)
n )x‖ ≥ δ1.

If, in case (ii), β1 > 0, then by Lemma 2.8 there also exists δ2 > 0 such

that for all sufficiently large n, ‖f (2)
nx ‖ ≥ δ2. Letting δ = min(δ1, δ2) > 0, we get

Kn ≥ 3δ/4 for large n, and (2.53) follows from (2.52) as in case (i).

On the other hand, if in case (ii) we have β1 = 0, then by Lemma 2.8 we have

I(s1, t1) = I(s1, 0) = 0, and I(s1 + s2, t1 + t2) = I(s1 + s2, t2) is the infimum of

E(f, g) =
Z ∞
−∞

�
|fx|2 + g2

x − β2g
p+2 − α|f |2g

�
dx (2.54)

over all f ∈ H1
C and g ∈ H1 such that ‖f‖2 = s1 + s2 and ‖g‖2 = t2. By Lemma

36



2.9, there exists δ > 0 such that for all sufficiently large n,

Z ∞
−∞

�
|f (2)
nx |2 − α|f (2)

n |2g(2)
n

�
dx ≤ −δ.

Let

fn =

s
s1 + s2

s2

f (2)
n ; (2.55)

then ‖fn‖2 = s1 + s2 and from (2.54) we see that, for all sufficiently large n,

I(s1 + s2, t2) ≤ E(fn, g
(2)
n ) = E(f (2)

n , g(2)
n ) +

s1

s2

Z ∞
−∞

�
|f (2)
nx |2 − α|f (2)

n |2g(2)
n

�
dx

≤ E(f (2)
n , g(2)

n )− s1δ

s2

.

(2.56)

This implies, after taking the limit as n→∞, that

I(s1 + s2, t2) ≤ I(s2, t2)− s1δ

s2

< I(s2, t2) = I(s1, t1) + I(s2, t2), (2.57)

as desired. Thus the proof is complete in case (ii).

In case (iii), we have s1 > 0 and t2 > 0, and we have to prove

I(s1, t2) < I(s1, 0) + I(0, t2). (2.58)

Let g0 be as defined in Lemma 2.6 with t = t2, so that I(0, t2) = J(g0).

If β1 > 0, we have from Lemma 2.7 that I(s1, 0) = J̃(f0), where f0 is as

defined in (2.20) with s = s1. Clearly,

Z ∞
−∞
|f0|2g0 dx > 0,
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and so

I(s1, t2) ≤ E(f0, g0) = J̃(f0) + J(g0) +
Z ∞
−∞
|f0|2g0 dx

< J̃(f0) + J(g0) = I(s1, 0) + I(0, t2),

(2.59)

as desired.

On the other hand, if β1 = 0, then I(s1, 0) = 0 by Lemma 2.8. By Lemma

2.5, there exists f ∈ H1 such that ‖f‖2 = s1 and

Z ∞
−∞

�
f 2
x − αf 2g0

�
dx < 0, (2.60)

and hence

I(s1, t1) ≤ E(f, g0) =
Z ∞
−∞

�
f 2
x − αf 2g0

�
dx+ J(g0) < J(g0), (2.61)

which proves (2.58). The proof of Lemma 2.14 is now complete in all cases.

2.5 Existence of solitary waves

In this section we prove the following existence result.

Theorem 2.15. Suppose α > 0, τ1 ≥ 0, τ2 > 0, 1 ≤ q < 4, and 1 ≤ p < 4,

where p is a rational number with odd denominator. For s > 0 and t > 0, define

Ss,t =
§

(φ, ψ) ∈ Y : E(φ, ψ) = I(s, t),
Z ∞
−∞
|φ|2 dx = s, and

Z ∞
−∞

ψ2 dx = t
ª
.

(2.62)

Then the following statements are true for all s > 0 and t > 0.

(i) Every minimizing sequence {(fn, gn)} for I(s, t) is relatively compact in Y

up to translations. That is, there exists a subsequence {(fnk , gnk)} and a sequence

38



of real numbers {yk} such that {(fnk(·+ yk), gnk(·+ yk)} converges strongly in

Y to some (φ, ψ) in Ss,t. In particular, the set Ss,t is non-empty.

(ii) Each function (φ, ψ) ∈ Ss,t is a solution of (1.8) for some σ and c, and

therefore when substituted into (1.7) yields a solitary-wave solution of (1.3).

(iii) For every (φ, ψ) in Ss,t, we have that ψ(x) > 0 for all x ∈ R, and there

exist a number θ ∈ R and a function φ̃ such that φ̃(x) > 0 for all x ∈ R, and

φ(x) = eiθφ̃(x). Also, the functions ψ and φ are infinitely differentiable on R.

We begin by establishing the relative compactness, up to translations, of

minimizing sequences for I(s, t). Let {(fn, gn)} be a given minimizing sequence,

and define an associated sequence of functions ρn by

ρn = |fn|2 + g2
n.

We then have Z ∞
−∞

ρn(x) dx = s+ t

for all n. The sequence of functions Mn : [0,∞)→ [0, s+ t] defined by

Mn(r) = sup
y∈R

Z y+r

y−r
ρn(x) dx.

is a uniformly bounded sequence of nondecreasing functions on [0,∞), and

therefore (by Helly’s selection theorem, for example) has a subsequence, which

we will still denote by Mn, that converges pointwise to a nondecreasing function

M on [0,∞). Then

γ = lim
r→∞

M(r) (2.63)

exists and satisfies 0 ≤ γ ≤ s+ t.

From Lions’ Concentration Compactness Lemma, Theorem 2.1 above, there
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are three possibilities for the value of γ :

(a) Case 1 : (Vanishing) γ = 0. Since M(r) is non-negative and nondecreasing,

this is equivalent to saying

M(r) = lim
n→∞

Mn(r) = lim
n→∞

sup
y∈R

Z y+r

y−r
ρn(x) dx = 0,

for all r <∞, or

(b) Case 2 : (Dichotomy) γ ∈ (0, s+ t), or

(c) Case 3 : (Compactness) γ = s+ t, that is, there exists {yn} ⊂ R such that

ρn(.+ yn) is tight, namely, for all ε > 0, there exists r <∞ such that

Z y+r

y−r
ρn(x) dx ≥ (s+ t)− ε.

We claim now that γ > 0. To prove this, we require the following lemma.

Lemma 2.16. Suppose wn is a sequence of functions which is bounded in H1

and which satisfies, for some R > 0,

lim
n→∞

sup
y∈R

Z y+R

y−R
w2
n dx = 0. (2.64)

Then for every r > 2,

lim
n→∞

|wn|r = 0.

Proof. This is a special case of Lemma I.1 of part 2 of [33], but for the sake of

completeness we give a proof here. Let

εn = sup
y∈R

Z y+R

y−R
w2
n dx, (2.65)
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so that lim
n→∞

εn = 0. For every y ∈ R, we have by standard Sobolev inequalities

(see Theorem 10.1 of [24]) that

Z y+R

y−R
|wn|r dx ≤ C

�Z y+R

y−R
|wn|2 dx

�s �Z y+R

y−R

�
w2
n + w2

nx

�
dx
�1+s

,

where s = (r − 2)/4. It then follows from (2.64) that

Z y+R

y−R
|wn|r dx ≤ Cεsn

�Z y+R

y−R

�
w2
n + w2

nx

�
dx
�
‖wn‖s1

≤ Cεs
Z y+R

y−R

�
w2
n + w2

nx

�
dx.

(2.66)

Now if we cover R by intervals of length R in such a way that each point of R is

contained in at most two of the intervals, then by summing (2.66) over all the

intervals in the cover, we obtain that

|wn|r ≤ 3Cεsn‖wn‖2
1 ≤ Cεsn,

from which the desired result follows.

Next we prove that

γ 6= 0. (2.67)

Indeed, suppose for the sake of contradiction that γ = 0. Then (2.64) holds

both for wn = |fn| and for wn = gn. Since both {|fn|} and {gn} are bounded

sequences in H1 by Lemma 2.3, then Lemma (2.16) implies that for every r > 2,

fn and gn converge to 0 in Lr norm. Since

����Z ∞−∞ |fn|2gn dx
���� ≤ |fn|1/24 ‖gn‖

41



and ‖gn‖ is bounded, it follows also that

lim
n→∞

Z ∞
−∞
|fn|2gn dx = 0.

Hence

I(s, t) = lim
n→∞

E(fn, gn) ≥ lim inf
n→∞

Z ∞
−∞

�
|fnx|2 + g2

nx

�
dx ≥ 0, (2.68)

contradicting Lemma 2.3. This proves (2.67).

Lemma 2.17. Suppose γ is defined as in (2.63). Then there exist numbers

s1 ∈ [0, s] and t1 ∈ [0, t] such that

γ = s1 + t1 (2.69)

and

I(s1, t1) + I(s− s1, t− t1) ≤ I(s, t). (2.70)

Proof. Since the proof is almost the same as the proof of Lemma 3.10 of [3], with

only slight modifications, we just give an outline here, and refer to [3] for the

details. Let ρ and σ be smooth functions on R such that ρ2 +σ2 = 1 on R, and ρ

is identically 1 on [−1, 1] and is supported in [−2, 2]; and define ρω(x) = ρ(x/ω)

and σω(x) = σ(x/ω) for ω > 0. From the definition of γ it follows that for

given ε > 0, there exist ω > 0 and a sequence yn such that, after passing to

a subsequence, the functions (f (1)
n (x), g(1)

n (x)) = ρω(x − yn)(fn(x), gn(x)) and

(f (2)
n (x), g(2)

n (x)) = σω(x − yn)(fn(x), gn(x)) satisfy ‖f (1)
n ‖2 → s1, ‖g(1)

n ‖2 → t1,

‖f (2)
n ‖2 → s− s1, and ‖g(2)

n ‖2 → t− t1 as n→∞, where |(s1 + t1)− α| < ε, and

E(f (1)
n , g(1)

n ) + E(f (2)
n , g(2)

n ) ≤ E(fn, gn) + Cε (2.71)
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for all n. To prove (2.71), one writes

E(f (1)
n , g(1)

n ) =
Z ∞
−∞

ρ2
ω

�
|fnx|2 + g2

nx − β1|fn|q+2 − β2g
p+2
n − α|fn|2gn

�
dx

+
Z ∞
−∞

�
(ρ2
ω − ρq+2

ω )β1|fn|q+2 + (ρ2
ω − ρp+2

ω )β2|gn|p+2 + (ρ2
ω − ρ3

ω)α|fn|2gn
�
dxZ ∞

−∞

�
(ρ′ω)2(|fnx|2 + g2

nx) + 2ρωρ
′
ω(Re fn(fn)x + gngnx) + (ρ′ω)2|f |2

�
dx,

and observes that the last two integrals on the right hand side can be made

arbitrarily uniformly small by taking ω sufficiently large. A similar estimate

obtains for E(f (2)
n , g(2)

n ), and (2.71) follows by adding the two estimates and

using ρ2
ω + σ2

ω = 1.

Now we show that the limit inferior as n→∞ of the left-hand side of (2.71)

is greater than or equal to I(s1, t1) + I(s − s1, t − t1). If s1, t1, s − s1, and

t− t1 are all positive, this follows by rescaling f (i)
n and g(i)

n for i = 1, 2 so that

‖f (1)
n ‖2 = s1, ‖g(1)

n ‖2 = t1, ‖f (2)
n ‖2 = s−s1, and ‖g(2)

n ‖2 = t− t1, since the scaling

factors tend to 1 as n→∞. On the other hand, if s1 = 0 and t1 > 0 then as in

(2.68) we have

lim
n→∞

E(f (1)
n , g(1)

n ) = lim
n→∞

Z ∞
−∞

�
|f (1)
nx |2 + (g(1)

nx )2 − β2(g(1)
n )q+2

�
dx

≥ lim inf
n→∞

Z ∞
−∞

((g(1)
nx )2 − β2(g(1)

n )q+2) dx ≥ I(0, t1),

and similar estimates hold if t1, s− s1, or t− t1 are zero.

Taking then the limit inferior of the left-hand side and the limit of the

right-hand side of (2.71) as n→∞, we obtain

I(s1, t1) + I(s− s1, t− t1) ≤ I(s, t) + Cε,

which proves (2.70), as ε is arbitrary.
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The next lemma shows that the dichotomy alternative of Lions’ Concentration

Compactness Lemma does not hold here.

Lemma 2.18. Suppose s, t > 0, and let {(fn, gn)} be any minimizing sequence

for I(s, t). Then

γ = s+ t. (2.72)

Proof. Suppose to the contrary that γ < s + t. Let s1 and t1 be as defined in

Lemma 2.17, and let s2 = s− s1 and t2 = t− t1. Then s2 + t2 = (s+ t)− γ > 0,

and also (2.67) and (2.69) imply that s1 + t1 > 0. Moreover, s1 + s2 = s > 0

and t1 + t2 = t > 0. Therefore Lemma 2.14 implies that that (2.46) holds. But

this contradicts (2.70). Thus (2.72) is proved.

Once we have ruled out both vanishing and dichotomy, assertion (i) of

Theorem 2.15, concerning the relative compactness of minimizing sequences

up to translation, can be proved. Indeed, Lions’ Concentration Compactness

Lemma guarantees that sequence {ρn} is tight, i.e. there exists a sequence of

real numbers {yn} such that for every k ∈ N, there exists ωk ∈ R such that, for

all sufficiently large n,

Z yn+ωk

yn−ωk

�
|fn|2 + g2

n

�
dx > s+ t− 1

k
. (2.73)

Let us now define wn(x) = fn(x+ yn) and zn(x) = gn(x+ yn). Then, by (2.73),

for every k ∈ N, we have

Z ωk

−ωk

�
|wn|2 + z2

n

�
dx > s+ t− 1

k
, (2.74)
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for all sufficiently large n. (In other words, the measures

µn = (|wn|2 + zn) dx

form a “tight” family on R, in the sense that for every ε > 0, there exists a

fixed compact set K such that µn(R\K) < ε for all n ∈ N.) Since {(wn, zn)} is

bounded uniformly in Y, there exists a subsequence, denoted again by {(wn, zn)},

which converges weakly in Y to a limit (φ, ψ) ∈ Y. Then Fatou’s lemma implies

that

‖φ‖2 + ‖ψ‖2 ≤ lim inf
n→∞

Z ∞
−∞

�
|wn|2 + z2

n

�
dx = s+ t.

Moreover, for fixed k, (wn, zn) converges weakly in H1(−ωk, ωk)×H1(−ωk, ωk)

to (φ, ψ), and therefore has a subsequence, denoted again by {(wn, zn)}, which

converges strongly to (φ, ψ) in L2(−ωk, ωk)× L2(−ωk, ωk). By a diagonalization

argument, we may assume that the subsequence has this property for every k

simultaneously. It then follows from (2.74) that

Z ∞
−∞

�
|φ|2 + ψ2

�
dx ≥

Z ωk

−ωk

�
|φ|2 + ψ2

�
dx ≥ s+ t− 1

k
.

Since k was arbitrary, we get

Z ∞
−∞

�
|φ|2 + ψ2

�
dx = s+ t,

which implies that (wn, zn) converges strongly to the limit (φ, ψ) in L2 × L2.

Next, observe that

Z ∞
−∞

(zn |wn|2 − ψ |φ|2) dx =
Z ∞
−∞

zn
�
|wn|2 − |φ|2

�
dx+

Z ∞
−∞

(zn − ψ) |φ|2 dx.

(2.75)
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For the first integral, we have

����Z ∞−∞ zn �|wn|2 − |φ|2� dx
���� ≤ ‖zn‖ ‖wn − φ‖ (‖wn‖1 + ‖φ‖1)

and the right-hand side goes to zero as n→∞, since {(ωn, zn)} is bounded in

Y. Similarly, the second integral on the right-hand side of (2.75) converges to

zero. It follows then from (2.73) that

lim
n→∞

Z ∞
−∞

zn |wn|2 dx =
Z ∞
−∞

ψ |φ|2 dx.

Moreover,

|zn − ψ|p+2 ≤ C ‖zn − ψ‖1/(p+2)
1 ‖zn − ψ‖

p+1
p+2 ≤ C ‖zn − ψ‖

p+1
p+2

,

which implies |zn|p+2
p+2 → |ψ|

p+2
p+2 as n→∞. Also,

|wn − φ|q+2 ≤ C ‖wn − φ‖1/(q+2)
1 ‖wn − φ‖

q+1
q+2 ≤ C ‖wn − φ‖

q+1
q+2 ,

and hence |wn|q+2
q+2 → |φ|

q+2
q+2 as n → ∞. Therefore, by another application of

Fatou’s lemma, we get

I(s, t) = lim
n→∞

E(wn, zn) ≥ E(φ, ψ), (2.76)

whence E(f, g) = I(s, t). Thus (φ, ψ) ∈ Ss,t. Finally, since equality holds in

(2.76), then

lim
n→∞

Z ∞
−∞

�
|w′n|

2
+ (z′n)

2�
dx =

Z ∞
−∞

�
|φ′|2 + (ψ′)2

�
dx,

so (wn, zn) converges strongly to (φ, ψ) in the norm of Y. This proves statement
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(i) of Theorem 2.15.

Since (φ, ψ) is in the minimizing set Ss,t for I(s, t), and so minimizes E(u, v)

subject to H(u) and H(v) being held constant, the Lagrange multiplier principle

(see, for example, Theorem 7.7.2 of [34]) asserts that there exist real numbers σ

and c such that

δE(φ, ψ) = σδH(φ) + cδH(ψ), (2.77)

where δ denotes the Fréchet derivative. Computing the Fréchet derivatives we see

that this means that equations (1.8) hold, at least in the sense of distributions.

But since the right-hand sides of the equations in (1.8) are continuous functions

of the unknowns, distributional solutions are also classical solutions (cf. Lemma

1.3 of [44]). This then proves assertion (ii) of Theorem 2.15.

It remains to prove the assertions in part (iii) of Theorem 2.15.

Multiplying the first equation in (1.8) by φ and integrating over R, we have

after an integration by parts that

Z ∞
−∞

�
|φ′|2 − τ1|φ|q+2 − α|φ|2ψ

�
dx = −σ

Z ∞
−∞
|φ|2 dx = −σs. (2.78)

In particular, it follows from (2.78) that σ is real. Similarly, multiplying the

second equation in (1.8) by ψ and integrating over R yields

Z ∞
−∞

�
|ψ′|2 − τ2

p+ 1
ψp+2 − α

2
|φ|2ψ

�
dx = −c

Z ∞
−∞
|ψ|2 dx = −ct. (2.79)

From Lemma 2.9, applied to the constant sequence (fn, gn) = (φ, ψ), we have

that Z ∞
−∞

�
|φ′|2 − τ1|φ|q+2 − α|φ|2ψ

�
dx < 0, (2.80)

and since τ1 = β1(q+ 2)/2 > β1, it follows that the integral on the left-hand side
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of (2.78) is negative, and so we must have σ > 0. Therefore, a calculation with

the Fourier transform shows that the operator −∂2
x + σ appearing in the first

equation of (1.8) is invertible on H1
C, with inverse given by convolution with the

function

Kσ(x) =
1

2
√
σ
e−
√
σ|x|.

The first equation of (1.8) can then be rewritten in the form

φ = Kσ ? (τ1|φ|qφ+ αφψ) , (2.81)

where ? denotes convolution as in (1.13).

Now we observe that it follows from the first equation in (1.8) that there

exist θ ∈ R and a real-valued function φ̃(x) such that φ(x) = eiθφ̃(x) on R. This

is proved for the case τ1 = 0 in part (iii) of Theorem 2.1 of [3], and it is easy to

check that the same proof works as well when τ1 6= 0.

Note next that (φ̃, |ψ|) and (|φ̃|, |ψ|) are also in Ss,t, as follows from Lemma

(2.10). Therefore, if we let w = |φ̃|, then φ̃ and w satisfy the Lagrange multiplier

equations

−φ̃′′ + σφ̃ = τ1w
qφ̃+ αφ̃|ψ|

−w′′ + σw = τ1w
qw + αw|ψ|.

(2.82)

(That the Lagrange multiplier σ is the same in both equations follows from the

fact that σ is determined by the equation (2.78), and this equation is unchanged

when φ is replaced by w.) Multiplying the first equation by w and the second

equation by φ̃, and subtracting the two equations, we find that the wφ̃′′−φ̃w′′ = 0.

Therefore the Wronskian wφ̃′ − φ̃w′ of w and φ̃ is constant, and since w and φ̃

are both in H1, this constant must be zero. So w and φ̃ are constant multiples

of each other, and hence φ̃, like w, must be of one sign on R. By replacing θ by
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θ + iπ if necessary, we can assume that φ̃ ≥ 0 on R.

We claim that Z ∞
−∞
|φ|2|ψ| dx =

Z ∞
−∞
|φ|2ψ dx. (2.83)

To prove this, note that since E(|φ|, |ψ|) = E(|φ|, ψ) = I(s, t), we have

α
Z ∞
−∞
|φ|2(|ψ| − ψ) dx =

Z ∞
−∞

�
(|ψx|2 − ψ2

x)− β2(|ψ|p+2 − ψp+2)
�
dx. (2.84)

Using (2.36), we see that the right-hand side of this equation is less than or

equal to zero, so we must have

α
Z ∞
−∞
|φ|2(|ψ| − ψ) dx ≤ 0 (2.85)

also. But since the integrand is non-negative, this proves (2.83).

From (2.83) it follows that ψ(x) ≥ 0 at every point x in R for which φ̃(x) 6= 0.

Now (2.81) implies that

φ̃ = Kσ ?
�
τ1|φ̃|qφ̃+ αφ̃ψ

�
. (2.86)

Since the convolution of Kσ with a function that is everywhere non-negative and

not identically zero must produce an everywhere positive function, it follows

that φ̃(x) > 0 for all x ∈ R. But this in turn implies that ψ(x) ≥ 0 for all x ∈ R.

Now suppose, for the sake of contradiction, that ψ(x0) = 0 for some x0 ∈ R.

Then from the preceding paragraph it follows that x0 is a point where ψ takes

its minimum value over R, and therefore we must have ψ′(x0) = 0. But then

standard uniqueness theory for ordinary differential equations, applied to the

second equation in (1.8) viewed as an inhomogeneous equation for ψ, yields that

ψ must be identically zero on its entire interval of existence about x0, which in
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this case is R. But this contradicts the fact that ‖ψ‖2 = t > 0. Therefore ψ

must be everywhere positive on R.

Finally, since ψ and |φ| are everywhere positive on R, and the right-hand

sides of the equations in (1.8) are infinitely differentiable functions of φ and

ψ on the domain {(φ, ψ) ∈ C × R : |φ| > 0 and ψ > 0}, it follows from the

standard theory of ordinary differential equations that any solution of (1.8) must

be infinitely differentiable on its interval of existence.

This completes the proof of Theorem 2.15.

2.6 Stability of solitary waves

In this section we consider the full variational characterization of solitary-wave

solutions for (1.3), namely, the problem of finding

W (s, t) = inf{E(h, g) : (h, g) ∈ Y, H(h) = s and G(h, g) = t}.

for any s > 0 and t ∈ R. Following our usual convention, we define a minimizing

sequence for W (s, t) to be a sequence (hn, gn) in Y such that

lim
n−→∞

H(hn) = s, lim
n−→∞

G(hn, gn) = t and lim
n−→∞

E(hn, gn) = W (s, t).

Lemma 2.19. Suppose 1 ≤ q < 4 and 1 ≤ p < 4/3, and let s > 0 and t ∈ R. If

{(hn, gn)} is a minimizing sequence for W (s, t), then {(hn, gn)} is bounded in Y .

Proof. Since ‖hn‖2 = H(hn) is bounded, then

‖gn‖2 =
����G(hn, gn)− Im

Z ∞
−∞

hn(hn)x dx
���� ≤ C (1 + ‖hn‖ · ‖hnx‖)

≤ C (1 + ‖(hn, gn)‖Y ) ,

(2.87)
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where C is independent of n. Therefore

‖(hn, gn)‖2
Y = E(hn, gn) +

Z ∞
−∞

�
β1|hn|q+2 + β2g

p+2
n + α|hn|2gn

�
dx+ ‖hn‖2 + ‖gn‖2

≤ C
Z ∞
−∞

�
|hn|q+2 + |gn|p+2 + |hn|2|gn|

�
dx+ C (1 + ‖(hn, gn)‖Y ) .

(2.88)

From (2.87) it follows that

Z ∞
−∞
|gn|p+2 dx ≤ C‖gnx‖p/2‖gn‖(p+4)/2

≤ C
�
‖(hn, gn)‖p/2Y + ‖(hn, gn)‖(3p+4)/4

Y

�
.

On the other hand, as in (2.4), we have

Z ∞
−∞
|hn|q+2 dx ≤ C‖hnx‖q/2‖hn‖(q+4)/2 ≤ C‖(hn, gn)‖q/2Y ,

and, as in (2.6),

Z ∞
−∞
|hn|2|gn| dx ≤ C‖hnx‖1/2‖gn‖ ≤ C (1 + ‖(hn, gn)‖Y ) .

Combining these estimates with (2.88) gives

‖(hn, gn)‖2
Y

≤ C
�
1 + ‖(hn, gn)‖Y + ‖(hn, gn)‖q/2Y + ‖(hn, gn)‖p/2Y + ‖(hn, gn)‖(3p+4)/4

Y

�
,

and since q < 4 and p < 4/3, the exponents on the right-hand side are all less

than 2. Hence ‖(hn, gn)‖Y is bounded.

Lemma 2.20. Suppose k, θ ∈ R and h ∈ H1
C. If f(x) = ei(kx+θ)h(x), then

E(f, g) = E(h, g) + k2H(h)− 2k Im
Z ∞
−∞

hhx dx
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and

G(f, g) = G(h, g)− kH(h).

We omit the proof, which is elementary.

The next lemma gives a relationship between W (s, t) and I(s, t).

Lemma 2.21. Suppose s > 0 and t ∈ R, and define b = b(a) = (t − a)/s for

a ≥ 0. Then

W (s, t) = inf
a≥0
{I(s, a) + b(a)2s}.

Proof. First, suppose a ≥ 0 and let (h, g) ∈ Y be given such that ‖h‖2 = s and

‖g‖2 = a. Let b = b(a) and

c = Im
Z ∞
−∞

hhx dx,

and put f(x) = eikxh(x) with k = (c/s)− b. Then from Lemma 2.20,

E(f, g) = E(h, g) + k2H(h)− 2k Im
Z ∞
−∞

hhx dx

= E(h, g) +
�c
s
− b

�2

s− 2
�c
s
− b

�
c

= E(h, g) + b2s− c2

s
≤ E(h, g) + b2s, and

G(f, g) = G(h, g)− kH(h)

= ‖g‖2 + Im
Z ∞
−∞

hhx dx−
�c
s
− b

�
H(h)

= a+ c−
�c
s
− b

�
s = a+ bs = t.

Since H(f) = s, we conclude that

W (s, t) ≤ E(f, g) ≤ E(h, g) + b(a)2s.
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Taking the infimum over the set of functions (h, g) such that H(h) = s and

‖g‖2 = a gives

W (s, t) ≤ I(s, a) + b(a)2s,

and taking the infimum over a gives

W (s, t) ≤ inf
a≥0

¦
I(s, a) + b(a)2s

©
.

To prove the reverse inequality, let s > 0 and t ∈ R be given. Suppose that

(h, g) ∈ Y is given such H(h) = s and G(h, g) = t. We will show that there

exists a ≥ 0 such that

E(h, g) ≥ I(s, a) + b(a)2s.

Choose a = ‖g‖2 . Then

a = t− Im
Z ∞
−∞

hhx dx.

Define f(x) = eibxh(x), where b = b(a) = (t− a)/s. Then

E(eibxh, g) = E(h, g) + b2H(h)− 2b Im
Z ∞
−∞

hhx dx

= E(h, g) + b2s− 2b(t− a) = E(h, g)− b2s.

Since ‖f‖2 = ‖h‖2 = s and ‖g‖2 = a, we have a ≥ 0 and I(s, a) ≤ E(f, g).

Hence

E(h, g) = E(f, g) + b2s ≥ I(s, a) + b2s

≥ inf
a≥0

¦
I(s, a) + b(a)2s

©
.
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Taking infimum over h and g such that H(h) = ‖h‖2 = s and G(h, g) = t gives

W (s, t) ≥ inf
a≥0

¦
I(s, a) + b(a)2s

©
.

Combining both inequalities, we get the desired conclusion.

Lemma 2.22. Suppose s > 0 and t ∈ R, and define b(a) = (t− a)/s for a ≥ 0.

If {(hn, gn)} is a minimizing sequence for W (s, t), then there exists a subsequence

(still denoted by {(hn, gn)}) and a number a ≥ 0 such that

lim
n→∞

‖gn‖2 = a,

lim
n→∞

E(eib(a)xhn, gn) = I(s, a),

and

W (s, t) = I(s, a) + b(a)2s. (2.89)

If β1 = 0, we can further assert that a > 0.

Proof. The sequence an defined by

an = ‖gn‖2 = G(hn, gn)− Im
Z ∞
−∞

hnhnx dx = t− Im
Z ∞
−∞

hnhnx dx

is bounded, by Lemma 2.19. Hence, by passing to a subsequence, we may assume

that an converges to a limit a ≥ 0. Let b = b(a) and define fn(x) = eibxhn(x).

Then from Lemmas 2.20 and 2.21 we have that

lim
n→∞

E(fn, gn) = lim
n→∞

�
E(hn, gn) + b2H(hn)− 2b Im

Z ∞
−∞

hnhnx dx
�

= W (s, t) + b2s− 2b(t− a) = W (s, t)− b2s ≤ I(s, a).

(2.90)
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We claim that also

lim
n→∞

E(fn, gn) ≥ I(s, a). (2.91)

For if a > 0, then for sufficiently large n we have that ‖fn‖ > 0 and ‖gn‖ > 0, so

the sequences βn =
√
s/‖fn‖ and θn =

√
a/‖gn‖ are defined, and both approach

1 as n→∞. Since ‖βnfn‖2 = s and ‖θngn‖2 = a, then E(βnfn, θngn) ≥ I(s, a),

and therefore

lim
n→∞

E(fn, gn) = lim
n→∞

E(βnfn, θngn) ≥ I(s, a).

On the other hand, if a = 0, then ‖gn‖ → 0 as n→∞, so it follows as in the

proof of Lemma 2.4 that (2.8) holds: that is,

lim
n→∞

E(fn, gn) = lim
n→∞

Z ∞
−∞

�
|fnx|2 − β1|fn|q+2

�
dx ≥ I(s, 0). (2.92)

Hence (2.91) holds in either case.

All the assertions of the Lemma, except the last one, now follow from (2.90)

and (2.91).

To prove the last assertion of the Lemma, assume to the contrary that β1 = 0

and a = 0. From Lemma 2.8 we know that I(s, a) = 0, so from (2.89) it follows

that W (s, t) ≥ 0. But on the other hand, we can let g0 be the function defined in

Lemma 2.6, and f0 be the corresponding function defined for this g0 in Lemma

2.5. Then f0 is real, ‖f0‖2 = s, and ‖g0‖2 = t, so H(f0) = s and G(f0, g0) = t,

and hence W (s, t) ≤ E(f0, g0). Since

E(f0, g0) =
Z ∞
−∞

�
f 2

0x − αf 2
0 g0

�
dx+ J(g0) < 0,

it follows that W (s, t) < 0, giving the desired contradiction.
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The following is our stability result:

Theorem 2.23. Suppose α > 0, τ1 ≥ 0, τ2 > 0, 1 ≤ q < 4, and p = 1. For

s > 0 and t ∈ R, define

Fs,t = {(Φ, ψ) ∈ Y : E(Φ, ψ) = W (s, t), H(Φ) = s, and G(Φ, ψ) = t} . (2.93)

Then the following statements are true for all s > 0 and t ∈ R.

(i) Every minimizing sequence {(hn, gn)} for W (s, t) is relatively compact in

Y up to translations. That is, if

lim
n→∞

H(hn) = s, lim
n→∞

G(hn, gn) = t, and lim
n→∞

E(hn, gn) = W (s, t),

then there is a subsequence {(hnk , gnk)} and a sequence of real numbers {yk}

such that {hnk(·+ yk), gnk(·+ yk)} converges strongly in Y to some (Φ, ψ) ∈ Fs,t.

In particular, the set Fs,t is non-empty.

(ii) Each (Φ, ψ) ∈ Fs,t is a solution of (1.11) for some ω and c, and therefore

when substituted into (1.12) yields a solitary-wave solution of (1.3).

(iii) For every (Φ, ψ) ∈ Fs,t, let a = ‖ψ‖2 and b = (t − a)/s. Then there

exist θ ∈ R and a real-valued function φ̃ such that (φ̃, ψ) ∈ Ss,a and

Φ(x) = ei(−bx+θ)φ̃(x) (2.94)

on R. Further, if τ1 = 0, then a > 0, ψ(x) > 0 for all x ∈ R, and we can take φ̃

to be everywhere positive on R.

(iv) The set Fs,t is a stable set of initial data for (1.3), in the following sense:
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for every ε > 0, there exists δ > 0 such that if (h0, g0) ∈ Y ,

inf
(Φ,ψ)∈Fs,t

‖(h0, g0)− (Φ, ψ)‖Y < δ,

and (u(x, t), v(x, t)) is the solution of (1.3) with

(u(x, 0), v(x, 0)) = (h0(x), g0(x)),

then for all t ≥ 0,

inf
(Φ,ψ)∈Fs,t

‖(u(·, t), v(·, t))− (Φ, ψ)‖Y < ε.

Furthermore, the sets Fs,t form a true two-parameter family, in that Fs1,t1

and Fs2,t2 are disjoint if (s1, t1) 6= (s2, t2).

Remark 2.24. We remark that, if it is assumed that that (1.3) is globally well-

posed in Y when 1 ≤ p < 4/3 (where p is rational with odd denominator), then

the above stability result extends to these values of p as well, with the same

proof.

Remark 2.25. From the definition of the variational problem for W (s, t) it is

clear that the sets Fs,t are invariant under the transformation

(Φ(x), ψ(x)) 7→ (eiθΦ(x− ξ), ψ(x− ξ)),

for every pair of real numbers θ and ξ, and so are at least two-dimensional in

size. On the other hand, for a given solitary-wave profile (g, h) in Fs,t, the orbit

O = {(u(x, t), v(x, t)) : t ∈ R} of the corresponding solitary wave is seen from
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(1.12) to be given by

O =
¦
(eictΦ(x− ct), ψ(x− ct)) : t ∈ R

©
,

and hence is a proper (one-dimensional) subset of Fs,t. Therefore Theorem 2.23

is somewhat weaker than an orbital stability result for the solitary waves in Fs,t.

We now prove Theorem 2.23. To prove statement (i), we start from a

given subsequence and use Lemma 2.22 to conclude that some subsequence

of (fn, gn) = (eibxhn, gn) is a minimizing sequence for I(s, a). We claim that

upon passing to a further subsequence, there exist real numbers yn such that

(fn(x + yn), gn(x + yn)) converges in Y to some (φ, ψ) in Ss,a. If a > 0, this

follows immediately from part (i) of Theorem 2.15. If, on the other hand, a = 0,

then as in the proof of Lemma 2.22 we obtain (2.92). But from (2.92) we see

that

lim
n→∞

E(fn, gn) = lim
n→∞

E(fn, 0),

and since E(fn, gn) converges to I(s, 0), this means that (fn, 0) is a minimizing

sequence for I(s, 0). Since a = 0, then Lemma 2.22 implies that β1 must be

positive, so the claim follows from Lemma 2.7. Thus the claim has been proved

in all cases.

Now, by passing to yet another subsequence, we may assume that eibyn

converges to eiθ for some θ ∈ [0, 2π). Then (hn(.+ yn), gn(.+ yn)) converges to

(Φ, ψ) in Y , where Φ(x) = e−i(bx+θ)φ(x). As in (2.90), we have

I(s, a) = E(φ, ψ) = E(Φ, ψ) + b2H(Φ)− 2b Im
Z ∞
−∞

ΦΦx dx

= E(Φ, ψ) + b2s− 2b
�
G(Φ, ψ)− ‖ψ‖2

�
= E(Φ, ψ) + b2s− 2b(t− s) = E(Φ, ψ)− b2s.

(2.95)
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It then follows from (2.89) that E(Φ, ψ) = W (s, t), and hence that (Φ, ψ) ∈ Fs,t.

Part (ii) of the Theorem follows from the Lagrange multiplier principle, just

as did part (ii) of Theorem 2.15.

Next we prove part (iii) of Theorem 2.23. Suppose (Φ, ψ) ∈ Fs,t. Applying

Lemma 2.22 to the minimizing sequence for W (s, t) defined by setting (hn, gn) =

(Φ, ψ) for all n ∈ N, we obtain that (eibxΦ, ψ) is a minimizing sequence for I(s, a),

where a = ‖g‖2 and b = (t − a)/s. Therefore (eibxΦ, ψ) ∈ Ss,a. Hence by part

(iii) of Theorem 2.15, there exist a number θ ∈ R and a real-valued function φ̃

such that eibxΦ(x) = eiθφ̃(x). So

Φ(x) = ei(−bx+θ)φ̃(x),

which is (2.94). In case τ1 = 0, then β1 = 0 and it follows from Lemma 2.22

that a > 0. Since (φ̃, ψ) ∈ Ss,a, it follows from part (iii) of Theorem 2.15 that

ψ(x) > 0 on R, and that either φ̃(x) > 0 for all x ∈ R or φ̃(x) < 0 for all x ∈ R.

In the latter case, we can add π to the value of θ and replace φ̃ by eiθφ̃ to get

that φ̃ is positive on R.

To prove part (v) of Theorem (2.23), suppose that Fs,t is not stable. Then

there exist a number ε > 0 and sequences (hn, gn) of initial data in Y and times

tn ≥ 0 such that, for all n ∈ N,

inf{‖(hn, gn)− (h, g)‖Y : (h, g) ∈ Fs,t} <
1

n
; (2.96)

while the solutions (un(x, t), vn(x, t)) of (1.3) with initial data

(un(x, 0), vn(x, 0)) = (hn(x), gn(x))
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satisfy

inf{‖(un(·, tn), vn(·, tn)− (h, g)‖Y : (h, g) ∈ Fs,t} ≥ ε (2.97)

for all n ∈ N.

From (2.96) and Lemma 2.11 we have that

lim
n→∞

E(hn, gn) = W (s, t),

lim
n→∞

H(hn) = s,

lim
n→∞

G(hn, gn) = t.

(2.98)

Let us denote un(·, tn) by Un and vn(·, tn) by Vn. Since E(u, v), G(u, v), and

H(u) are independent of t, then (2.98) implies

lim
n→∞

E(Un, Vn) = W (s, t),

lim
n→∞

H(Un) = s,

lim
n→∞

G(Un, Vn) = t,

which means that {(Un, Vn)}, like {(hn, gn)}, is a minimizing sequence for W (s, t).

Now part (i) of Theorem 2.23 tells us that there exists a subsequence

{(Unk , Vnk)}, a sequence of real numbers {yk}, and a function pair (Φ, ψ) ∈ Fs,t

such that

lim
k→∞
‖(Unk(·+ yk), Vnk(·+ yk))− (Φ, ψ)‖Y = 0. (2.99)

So, for some sufficiently large k,

‖(Unk(·+ yk), Vnk(·+ yk))− (Ψ, ψ)‖Y < ε,

and hence

‖(Unk , Vnk)− (Φ(· − yk), ψ(· − yk))‖Y < ε. (2.100)
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But (Φ(· − yk), ψ(· − yk)) is also in Fs,t, and hence (2.100) gives

inf{‖(Unk , Vnk)− (h, g)‖Y : (h, g) ∈ Fs,t} < ε.

Since this contradicts (2.97), we conclude that Fs,t must in fact be stable.

It remains only to prove that the sets Fs,t form a true two-parameter family.

Suppose (Φ1, ψ1) ∈ Fs1,t1 and (Φ2, ψ2) ∈ Fs2,t2 , where (s1, t1) 6= (s2, t2). We

want to show (Φ1, ψ1) 6= (Φ2, ψ2). If s1 6= s2, the conclusion is obvious, since

then ‖Φ1‖2 6= ‖Φ2‖2. So we can assume s1 = s2 and t1 6= t2. From part (iii), if

we let ηi = (‖ψi‖2 − t1)/si for i = 1, 2; then there exist numbers θ1 and θ2 and

real-valued functions φ̃1 and φ̃2 such that

Φ1(x) = ei(η1x+θ1)φ̃1(x) and Φ2(x) = ei(η2x+θ2)φ̃2(x) (2.101)

on R. We may assume that Φ1 = Φ2, or else we are done. Then

ei((η1−η2)x+(θ1−θ2)) = φ̃2(x)/φ̃1(x)

is real-valued on R, and hence η1 must equal η2. Since s1 = s2, this implies that

‖ψ1‖2 − t1 = ‖ψ2‖2 − t2. But t1 6= t2, so therefore ‖ψ1‖2 6= ‖ψ2‖2, and hence

ψ1 6= ψ2, as desired.

The proof of Theorem 2.23 is now complete.
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Chapter 3

Stability of Solitary Waves–A Different Method

The techniques presented in Chapter 2 for proving stability of solitary waves

works whenever the functionals involved in the variational analysis are conserved

quantities for the evolution equation in question. In this chapter, we will show

how the concentration compactness method can still be used to prove the stability

of solitary waves if the functionals involved in the variational problem are not

conserved quantities. By considering a different variational problem and using

convexity techniques, we establish the stability result of solitary waves of (1.3)

when p = 1, q = 1, and τ2 = 1.

3.1 Introduction

We consider the following nonlinear Schrödinger-KdV system

8><>:
iut + uxx + β |u|u = −αuv

vt + vxxx + vvx = −α
2

�
|u|2

�
x

, (3.1)

where u = u(x, t) ∈ C denotes the short wave term, v = v(x, t) ∈ R denotes the

long wave term, and α, β are positive real constants. To obtain solitary-wave

solutions of the system (3.1), we set

(u(x, t), v(x, t)) = (eiωteic(x−ct)/2φ(x− ct), ψ(x− ct)), (3.2)
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and we may transform the system (3.1) to the following system of ODEs

8><>:
−φ′′ + σφ = β |φ|φ+ αψφ

−ψ′′ + cψ = 1
2
(ψ2 + αφ2)

, (3.3)

The conserved functionals H, G, and E for the system (3.1) are given by

H(u) =
Z ∞
−∞
|u|2 dx, (3.4)

G(u, v) =
Z ∞
−∞

v2 dx+ Im
Z ∞
−∞

uux dx, (3.5)

E(u, v) =
Z ∞
−∞

�
|ux|2 + v2

x −
1

3
v3 − 2β

3
|u|3 − αv |u|2

�
dx. (3.6)

One question we address below is whether nontrivial solutions of (3.1) exist.

Our existence result is obtained by studying a different variational problem and

using the concentration compactness method. We use the following three-step

approach to prove the existence of travelling-wave solutions:

Step 1 : We consider first the problem of finding, for λ > 0,

Iλ = inf {Zc,ω(f, g) : (f, g) ∈ X and N(f, g) = λ} ,

where Zc,ω(f, g) and N(f, g) are given by

Zc,ω(f, g) =
Z ∞
−∞

[(f ′(x))2 + σf 2(x) + (g′(x))2 + cg2(x)] dx (3.7)

with c > 0, σ > 0, and

N(f, g) =
Z ∞
−∞

�
αg(x)f 2(x) dx+

2β

3
f 3(x) +

1

3
g3(x)

�
dx. (3.8)
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Using the concentration compactness method, we show that the set of minimizers

Pλ = {(f, g) ∈ X : Zc,ω(f, g) = Iλ, N(f, g) = λ}

is non-empty. Moreover, any minimizing sequence {(fn, gn)} is compact in X

up to translation.

Step 2 : We consider next the minimization problem over Y := H1
C ×H1 and

establish the relation between this complex case and the real case in Step 1.

More precisely, we consider the following minimization problem

ICλ = inf{ZC
c,ω(h, g) : (h, g) ∈ Y and N (h, g) = λ},

where ZC
c,ω(h, g) and N (h, g) are defined by

ZC
c,ω(h, g) =

Z ∞
−∞

�
|h′(x)|2 + σ |h(x)|2 + (g′(x))2 + cg2(x)

�
dx (3.9)

with c > 0, σ > 0, and

N (h, g) =
Z ∞
−∞

�
αg(x) |h(x)|2 +

2β

3
|h(x)|3 +

1

3
g3(x)

�
dx. (3.10)

Step 3 : Our theory of stability has another variational characterization of

solitary-wave solutions for (3.1). For c > 0 and ω > c2/4, we consider the full

minimization problem over Y,

Jλ = inf{Qc,ω(h, g) : (h, g) ∈ Y and N (h, g) = λ},
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where λ > 0, and Qc,ω(h, g) is defined by

Qc,ω(h, g) =
Z ∞
−∞

�
|h′|2 + (g′)2 + ω |h|2 + cg2 + c Im(hh′)

�
dx. (3.11)

Then the set Pλ of minimizers of Jλ is non-empty, namely

Pλ = {(h, g) ∈ YC : Qc,ω(h, g) = Jλ and N (h, g) = λ} 6= ∅.

Moreover, any mimimizing sequence {(hn, gn)} is compact in Y up to translation

and rotation, that is, there are subsequences {(hnk , gnk)}, {ynk} ⊂ R and (h, g) ∈

Pλ such that

{(eicyk/2hnk(.− ynk), gnk(.− ynk))}

converges strongly in Y to (h, g). Furthermore, (h, g) = (eiθeicx/2f, g) where

θ ∈ R and (f, g) ∈ Pλ.

The three-step approach gives the existence of travelling-wave solutions to

(3.1). For the stability theory, we make use of the functionals H, G, and E to

obtain a relationship that makes it possible to utilize the variational properties

of the traveling waves in the stability analysis. We show that the set of solitary

waves is stable provided the associated action is strictly convex.

3.2 Existence of solitary waves

In this section we prove the existence of solitary-wave solutions for the equation

(3.1) by using the concentration compactness method.

First, we consider the minimization problem over the real numbers, that is,

the problem of finding, for any λ > 0,

Iλ = inf {Zc,ω(f, g) : (f, g) ∈ X and N(f, g) = λ} , (3.12)
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where Zc,ω(f, g) and N(f, g) are given by (3.7) and (3.8) respectively. The set

of minimizers for Iλ is

Pλ = {(f, g) ∈ X : Zc,ω(f, g) = Iλ, N(f, g) = λ}

and the minimizing sequence for Iλ is any sequence {(fn, gn)} of functions in X

satisfying

lim
n→∞

Zc,ω(fn, gn) = Iλ and N(fn, gn) = λ, ∀n.

Clearly, the functional Zc,ω(f, g) ≥ 0 and hence Iλ is non-negative. It will be

shown later that indeed Iλ > 0.

Remark 3.1. Because of the homogeneity of the functionals involved,

inf{Zc,ω(f, g) : N(f, g) = 1} = inf{ 1
λ2/3

Zc,ω(f, g) : N(f, g) = λ},

it follows that for any λ > 0, Iλ = λ2/3I1. Because of this homogeneity, we

consider instead the problem

I1 = inf{Zc,ω(f, g) : (f, g) ∈ X, N(f, g) = 1}.

Let {(fn, gn)} be a minimizing sequence and consider the concentration

function ρn(x) := (f ′n)2 + f 2
n + (g′n)2 + g2

n. As ‖(fn, gn)‖X ≤ C for all n, the

sequence {an} of real numbers given by

an :=
Z ∞
−∞

ρn(x) dx

is bounded. Therefore, by passing to a subsequence, we may assume that an

converges to a limit a ∈ R. So by restricting consideration to the corresponding
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subsequence of ρn, which we again denote as ρn, we may assume that

a = lim
n→∞

Z ∞
−∞

ρn(x)dx.

Define a sequence of nondecreasing functions Mn : [0,∞)→ [0, a] as follows

Mn(r) = sup
y∈R

Z y+r

y−r
ρn(x)dx.

As Mn(r) is a uniformly bounded sequence of nondecreasing function in r, it is

straight-forward to show that it has a subsequence, which we still denote as Mn,

that converges pointwise to a nondecreasing limit function M(r) : [0,∞)→ [0, a].

Let

a0 = lim
r→∞

M(r) :≡ lim
r→∞

lim
n→∞

sup
y∈R

Z y+r

y−r
ρn(x)dx.

Then 0 ≤ a0 ≤ a. Our goal is to show that the possibilities a0 = 0 and

a0 ∈ (0, a), which correspond to the vanishing and dichotomy alternatives in

Lions’ Concentration Compactness Lemma, do not occur.

The following technical lemma is needed to rule out the case of vanishing.

Lemma 3.2. There exists a constant C > 0 such that for every interval I ⊂ R

of length 1 and every g ∈ H1(I), one has

�
sup
x∈I
|g(x)|

�2

≤ C
Z
I

�
(g′(y))

2
+ (g(y))2

�
dy. (3.13)

Proof. Let I ′ = [0, 1]. By a standard Sobolev embedding theorem (sometimes

called Morrey’s inequality, see Theorem 5 of Section 5.6 of Evans [23]), there

exists a constant C, independent of f, such that

�
sup
x∈I′
|f(x)|

�2

≤ C
Z 1

0

�
(f ′(y))

2
+ (f(y))2

�
dy (3.14)
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for all f ∈ H1(I ′) We claim that (3.13) holds on any interval of length 1 with

the same constant C. Indeed, let I = [a, a+ 1] be a given interval in R of length

1, and let g ∈ H1(I) be given. Then f(x) := g(x − a) is in H1(I ′), so (3.14)

applies, and hence

�
sup
x∈I′
|g(x− a)|

�2

≤ C
Z 1

0

�
(g′(y − a))

2
+ (g(y − a))2

�
dy.

Then (3.13) follows immediately by a change of variables.

Lemma 3.3. There exists a γ > 0 such that

lim
n→∞

Mn

�
1

2

�
= lim

n→∞
sup
y∈R

Z y+1/2

y−1/2
ρn(x)dx ≥ γ.

Therefore a0 ≥ γ > 0.

Proof. Suppose that

lim
n→∞

sup
y∈R

Z y+1/2

y−1/2
ρn(x)dx = 0.

Let j ∈ Z be given, and let Ij = [j − 1/2, j + 1/2]. On the interval Ij, by

Lemma 3.2, there exists a C (independent of j) such that

 
sup
x∈Ij
|gn(x)|

!2

≤ C
Z
Ij

�
(g′n(y))

2
+ (gn(y))2

�
dy

≤ C sup
y∈R

Z y+1/2

y−1/2
ρn(x)dx,

and also  
sup
x∈Ij
|fn(x)|

!2

≤ C sup
y∈R

Z y+1/2

y−1/2
ρn(x)dx.
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From the expression for N(f, g), it is deduced that

|N(fn, gn)| ≤
∞X

j=−∞

 
sup
x∈Ij
|gn(x)|

!Z
Ij

�
αf 2

n(x) +
1

3
g2
n(x)

�
dx

+
∞X

j=−∞

 
sup
x∈Ij
|fn(x)|

!Z
Ij

2β

3
f 2
n(x)dx

≤ C ‖(fn, gn)‖2
X

 
sup
y∈R

Z y+1/2

y−1/2
ρn(x)dx

!1/2

.

Hence |N(fn, gn)| → 0 as n→∞, a contradiction. It follows that

a0 = lim
r→∞

M(r) ≥M
�

1

2

�
= lim

n→∞
Mn

�
1

2

�
≥ γ > 0,

proving the lemma.

From the preceding lemma it follows that a0 6= 0 so that the sequence {ρn}

does not ‘vanish’ in the sense of Lions. Next we rule out the possibility of

‘dichotomy’. To do this we need some preliminary results on the behavior of

minimizing sequences in the case 0 < a0 < a.

Given any ε > 0, for all sufficiently large values of r, we have

a0 − ε < M(r) ≤M(2r) ≤ a0.

Assume for the moment that such a value of r has been chosen. Then we can

choose N large enough that

a0 − ε < Mn(r) ≤Mn(2r) ≤ a0 + ε
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for all n ≥ N. Hence for each n ≥ N one can find yn such that

Z yn+r

yn−r
ρn(x)dx > a0 − ε, and

Z yn+2r

yn−2r
ρn(x)dx < a0 + ε.

Choose φ ∈ C∞0 [−2, 2] such that φ ≡ 1 on [−1, 1], and let ψ ∈ C∞(R) be such

that φ2 + ψ2 ≡ 1 on R. For each r ∈ R, let φr(x) = φ(x/r) and ψr(x) = ψ(x/r).

Define

un(x) = φr(x− yn)fn(x), eun(x) = ψr(x− yn)fn(x),

vn(x) = φr(x− yn)gn(x), evn(x) = ψr(x− yn)gn(x)

and we consider

ρ(1)
n = (u′n)

2
+ u2

n + (v′n)
2

+ v2
n and ρ(2)

n = (eu′n)
2

+ eu2
n + (ev′n)

2
+ ev2

n.

Notice that un, eun, vn and evn depend on r (which will be chosen later).

The following lemma is used to describe the behavior of {(fn, gn)} in the

case 0 < a0 < a (the case of dichotomy).

Lemma 3.4. For every ε > 0, there exist R and N large enough such that for

all n ≥ N and r ≥ R, one has

(i) Zc,ω(fn, gn) = Zc,ω(un, vn) + Zc,ω(eun, evn) +O(ε)

(ii) N(fn, gn) = N(un, vn) +N(eun, evn) +O(ε).
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Proof. From the definition of un, eun, vn and evn, it follows that

Zc,ω(un, vn) + Zc,ω(eun, evn) =
Z ∞
−∞

�
(f ′n)2 + σf 2

n + (g′n)2 + cg2
n

�
dx

+
Z ∞
−∞

��
(φ′r)

2 + (ψ′r)
2
�

(f 2
n + g2

n)
�
dx

+
Z ∞
−∞

[(2φrφ
′
r + 2ψrψ

′
r)(fnf

′
n + gng

′
n)] dx,

where for brevity we have written simply φr and ψr for the functions φr(x− yn)

and ψr(x− yn). Now |(φr)′|∞ = |φ′|∞ /r and |(ψr)′|∞ = |ψ′|∞ /r. Thus, making

the use of Holder’s Inequality, one can rewrite the preceding equation in the

form

Zc,ω(un, vn) + Zc,ω(eun, evn) = Zc,ω(fn, gn) +O
�

1

r

�
,

where O(1/r) denotes the term bounded in absolute value by A1/r with A1

independent of r and n. For N(fn, gn), let us denote

B(fn, gn) := αgnf
2
n +

2β

3
f 3
n +

1

3
g3
n.

Then we obtain

N(un, vn) +N(eun, evn) =
Z ∞
−∞

B(fn, gn) dx

+
Z ∞
−∞

(φ3
r − φ2

r + ψ3
r − ψ2

r)B(fn, gn) dx

= N(fn, gn) + A2ε,
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because

����Z ∞−∞(φ3
r − φ2

r + ψ3
r − ψ2

r)B(fn, gn)
���� ≤ C |gn|∞

�Z
r≤|x−yn|≤2r

f 2
n + g2

n

�
+C |fn|∞

�Z
r≤|x−yn|≤2r

f 2
n

�
≤ A2ε,

where again A2 is independent of r and n. It is now time to choose r, and we

make the choice so large that the O(1/r) term is less than ε in absolute value.

Consequently, for all n ≥ N, we have

Zc,ω(fn, gn) = Zc,ω(un, vn) + Zc,ω(eun, evn) +O(ε)

and

N(fn, gn) = N(un, vn) +N(eun, evn) +O(ε),

proving the lemma.

Lemma 3.5. a0 /∈ (0, a), the case of dichotomy cannot occur.

Proof. The following argument is adapted from Levandosky [31]. Suppose

dichotomy happens. Let {(fn, gn)} be a minimizing sequence and consider the

two sequences {(un, vn)} and {(eun, evn)} as defined in Lemma 3.4. Then for large

r, Lemma 3.4 assures that

Zc,ω(fn, gn) = Zc,ω(un, vn) + Zc,ω(eun, evn) +O(ε),

N(fn, gn) = N(un, vn) +N(eun, evn) +O(ε).

As {(fn, gn)} is bounded uniformly in X, it follows that {(un, vn)} and {(eun, evn)}

are also bounded independently of n and ε. Consequently N(un, vn) and N(eun, evn)
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are bounded and we can pass to subsequences to define

θ(ε) = lim
n→∞

N(un, vn) and eθ(ε) = lim
n→∞

N(eun, evn).

As θ(ε) and eθ(ε) are bounded independently of ε, we can pick a sequence {εj} → 0

such that both limits

lim
j→∞

θ(εj) = θ and lim
j→∞

eθ(εj) = eθ
exist. Certainly, θ + eθ = 1, and there are 3 cases to consider now.

Case 1 : θ ∈ (0, 1). Then

Zc,ω(fn, gn) = Zc,ω(un, vn) + Zc,ω(eun, evn) +O(εj)

≥
�
N2/3(un, vn) +N2/3(eun, evn)

�
I1 +O(εj).

We first let n→∞ to obtain

I1 ≥
�
θ2/3(εj) + eθ2/3(εj)

�
I1 +O(εj).

Then letting j →∞, we arrive at I1 ≥ [θ2/3 + eθ2/3]I1 > I1, a contradiction.

Case 2 : θ = 0 (or equivalently, when θ = 1), we have

Zc,ω(un, vn) ≥ C
Z ∞
−∞

�
(u′n)2 + u2

n + (v′n)2 + v2
n

�
dx

= C
Z
|x−yn|≤2r

�
(f ′n)2 + f 2

n + (g′n)2 + g2
n

�
dx+O(εj)

= Ca0 +O(εj).
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Therefore

Zc,ω(fn, gn) = Zc,ω(un, vn) + Zc,ω(eun, evn) +O(εj)

≥ Ca0 +O(εj) +N2/3(eun, evn)I1.

Letting n and j → ∞ respectively, we obtain I1 ≥ Ca0 + I1 > I1, which is a

contradiction.

Case 3 : θ > 1 (or equivalently, when θ < 0), we have

Zc,ω(fn, gn) = Zc,ω(un, vn) + Zc,ω(eun, evn) +O(εj)

≥ Zc,ω(un, vn) +O(εj) ≥ N2/3(un, vn)I1 +O(εj).

As before, letting n and j → ∞ respectively, we obtain that I1 ≥ θ2/3I1 > I1,

a contradiction. Thus, each case gives a contradiction, which implies that

a0 /∈ (0, a).

Theorem 3.6. Let ω > c2/4 and λ be any positive number. Then any minimizing

sequence {(fn, gn)} for Iλ is relatively compact in X up to translation, i.e., there

are subsequences {(fnk , gnk)} and {ynk} ⊂ R such that

(fnk(.+ ynk), gnk(.+ ynk))

converges strongly in X to some (f, g) which is a minimum of Iλ. Therefore, the

minimizing set Pλ is nonempty.

Proof. As we ruled out both vanishing and dichotomy, Lions’ concentration

compactness lemma ([33]) guarantees that sequence {ρn} is tight, i.e., there

exists a sequence of real numbers {yn} such that for any ε > 0, there exists
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r = r(ε) so that for all n ∈ N,

Z yn+r

yn−r
ρn(x)dx =

Z yn−r

yn−r

�
(f ′n)2 + f 2

n + (g′n)2 + g2
n

�
dx > a− ε,

and therefore Z r

−r
ρn(x+ yn) dx > a− ε. (3.15)

Define wn and zn by wn(x) := fn(x+ yn) and zn(x) := gn(x+ yn). From (3.15),

we have that Z
|x|≥r(ε)

�
(wn)2 + (zn)2

�
dx < ε (3.16)

for all n ∈ N. Now since {(wn, zn)} is bounded uniformly in X, there exists a

subsequence, denoted again by {(wn, zn)}, which converges strongly in L2 × L2

locally to some element (f, g) of X. We now show that (wn, zn)→ (f, g) strongly

in L2(R)× L2(R). Indeed, for any given ε > 0, we first choose r0 so large that

Z
|x|≥r0

�
f 2(x) + g2(x)

�
dx < ε. (3.17)

Let r1 = max{r0, r(ε)}. From (3.16) and (3.17), we have

Z
|x|≥r1

�
(f − wn)2 + (g − zn)2

�
dx < 4ε.

On the other hand, from the strong convergence in L2 × L2 locally of (wn, zn),

there exists N = N(ε) ∈ N such that for all n ≥ N ,

‖(wn, zn)− (f, g)‖2
L2(−r1,r1)×L2(−r1,r1) < ε.

Consequently, ‖(wn, zn)− (f, g)‖2
L2(R)×L2(R) < 5ε, which proves that (wn, zn)

converges strongly to (f, g) in L2(R)× L2(R).
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Now, by the boundedness of wn and zn in H1, we have

Z ∞
−∞

���w2
nzn − f 2g

��� dx ≤ Z ∞
−∞

���w2
nzn − w2

ng
��� dx+

Z ∞
−∞

���w2
ng − f 2g

��� dx
≤ C

h
‖wn − f‖L2(R) + ‖zn − g‖L2(R)

i
,

and hence,
R∞
−∞w

2
nzn dx→

R∞
−∞ f

2g dx.

Also, by the Sobolev embedding theorem,

|wn − f |3 ≤ C ‖wn − f‖1/6
1 ‖wn − f‖

5/6 ≤ C ‖wn − f‖5/6 ,

so
R∞
−∞w

3
n dx →

R∞
−∞ f

3 dx as n → ∞. Similarly,
R∞
−∞ z

3
n dx →

R∞
−∞ g

3 dx as

n → ∞. Therefore, since N(wn, zn) = λ for all n, it follows that N(f, g) = λ.

Finally, by the weak compactness of the unit sphere in X and the weak lower

semicontinuity of Zc,ω, we obtain

Iλ = lim
n→∞

Zc,ω(wn, zn) ≥ Zc,ω(f, g).

Thus, (f, g) must be a minimizer for Iλ.

Remark 3.7. Let (f, g) ∈ P1. Then there exists some multiplier K ∈ R such that

8><>:
−f ′′ + σf = K(αfg + βf 2)

−g′′ + cg = K
2

(αf 2 + g2).

The Lagrange multiplier K is positive. Indeed, multiplying the first and second

equations above by f and g, respectively, and then adding, we obtain that

K = 2I1/3 > 0.

We consider next the minimization problem with complex-valued functions ;
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for λ > 0, let

ICλ = inf{ZC
c,ω(h, g) : (h, g) ∈ Y and N (h, g) = λ}, (3.18)

where ZC
c,ω(h, g) and N (h, g) are defined by (3.9) and (3.10) respectively. Clearly,

ZC
c,ω(h, g) ≥ 0 and hence ICλ is non-negative. Notice that ZC

c,ω(h, g) is equivalent

to the Y -norm of (h, g). Thus any minimizing sequence {(hn, gn)} is uniformly

bounded in Y. Then, by using exactly the same method as before with the

concentration function ρn = |h′n|
2 + |hn|2 + (g′n)2 + g2

n, the cases of vanishing and

dichotomy of the minimizing sequence {(hn, gn)} can be ruled out. Consequently,

one has the following.

Theorem 3.8. Let ω > c2/4 and λ be any positive number. Then, any minim-

izing sequence {(hn, gn)} for ICλ is relatively compact in Y up to translation, i.e.,

there are subsequences {(hnk , gnk)} and {ynk} ⊂ R such that

(hnk(.+ ynk), gnk(.+ ynk))

converges strongly in Y to some (h, g) which is a minimum of ICλ . Moreover,

(h, g) = (eiθf, g) where θ ∈ R and (f, g) ∈ Pλ.

Proof. The only thing that needs to be proved is the relation between minimizers.

Let (h, g) be a minimizer of ICλ and let h = h1+ih2. We claim that (h0, g) is also a

minimizer for ICλ , where h0 = |h1|+ i |h2| . Indeed, using N (h0, g) = N (h, g) = λ

and the inequality

Z ∞
−∞
|h′i(x)|2 dx ≥

Z ∞
−∞

���|hi|′ (x)
���2 dx,

it follows that ICλ = ZC
c,ω(h, g) ≥ ZC

c,ω(h0, g) ≥ ICλ , proving the claim. Therefore,
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there exists K > 0 (Lagrange’s multiplier) such that

8><>:
−h′′i + σhi = K(hig + |hi|hi)

− |hi|′′ + σ |hi| = K(|hi| g + |h| |hi|)

for i = 1, 2. Since |hi| > 0, it follows from the Sturm-Liouville theory that

−σ is the smallest eigenvalue of the operator − d2

dx2
−K(g + |h|) and therefore

is simple. Hence there are µi ∈ R\{0} such that hi = µih
∗
0, where h∗0 is a

positive function. Then h = µ1h
∗
0 +µ2h

∗
0 = (µ1 +µ2)h∗0. Therefore, there exists a

positive function f and θ ∈ R such that h = eiθf. Moreover, from the constraint

N(f, g) = N (h, g) = λ and the fact that

ICλ = ZC
c,ω(h, g) = Zc,ω(f, g) ≥ Iλ ≥ ICλ ,

one concludes that (f, g) ∈ Pλ.

The stability theory involves yet another variational characterization of

solitary wave solutions for (3.1). For λ > 0, and fixed c > 0 and ω > c2/4, let

Jλ = inf{Qc,ω(h, g) : (h, g) ∈ Y and N (h, g) = λ}, (3.19)

where Qc,ω(h, g) and N (h, g) are defined by (3.11) and (3.10) respectively. The

set of minimizers of Jλ is

Pλ = {(h, g) ∈ Y : Qc,ω(h, g) = Jλ and N (h, g) = λ},

and a minimizing sequence for Jλ is any sequence {(hn, gn)} of functions in Y

satisfying

lim
n→∞

Qc,ω(hn, gn) = Jλ and N (hn, gn) = λ, ∀n.
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The next theorem gives the existence of a minimizer for Jλ and the relation

between Pλ and Pλ.

Theorem 3.9. Let c > 0, ω > c2/4 and λ be any positive number. Then the

minimizing set Pλ is nonempty. Moreover, any minimizing sequence {(hn, gn)}

for Jλ is relatively compact in Y up to rotations and translation, that is, there

are subsequences {(hnk , gnk)} and {ynk} ⊂ R such that

(eicyk/2hnk(.+ ynk), gnk(.+ ynk))

converges strongly in Y to some (h, g) which is a minimum of Jλ Moreover,

(h, g) = (eiθeicx/2f, g) where θ ∈ R and (f, g) ∈ Pλ.

Proof. Let {(hn, gn)} be a minimizing sequence for Jλ. Then by definition,

lim
n→∞

Qc,ω(hn, gn) = Jλ and N (hn, gn) = λ.

Set fn = e−icx/2hn, then one has N (fn, gn) = N (hn, gn) = λ and

Qc,ω(hn, gn) = Qc,ω(eicx/2fn, gn) = ZC
c,ω(fn, gn) ≥ ICλ (3.20)

Since ICλ ≥ Jλ, it follows from (3.20) that {(fn, gn)} is a minimizing sequence

for ICλ . Therefore, by Theorem 3.8, there are subsequences {(fnk , gnk)} and

{ynk} ⊂ R such that

(fnk(.+ ynk), gnk(.+ ynk))

converges strongly in Y to some (h0, g) which is a minimum of ICλ . Then (h0, g) =

(eiθf, g), where θ ∈ R and (f, g) ∈ Pλ. Hence, from the definition of fn, we have

that

(e−icx/2eicynk/2hn, gnk(x+ ynk))→ (eiθe−icx/2f, g)
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in Y, and hence (h, g) = (eiθeicx/2f, g) ∈ Pλ.

Corollary 3.10. Let c > 0, ω > c2/4 and λ be any positive number. If {(hn, gn)}

is any minimizing sequence for Jλ, then

(i) lim
n→∞

inf
θ,y∈R ;

−→
ψ∈Pλ

‖ (eiθhn(.+ y), gn(.+ y))−
−→
ψ ‖Y = 0

(ii) lim
n→∞

inf−→
ψ∈Pλ

‖ (hn, gn)−
−→
ψ ‖Y = 0.

Proof. Suppose that (i) does not hold. Then there exists a subsequence {(hnk , gnk)}

of {(hn, gn)} and a number ε > 0 such that

inf
θ,y∈R ;

−→
ψ∈Pλ

‖ (eiθhnk(.+ y), gnk(.+ y))−
−→
ψ ‖Y ≥ ε

for all k ∈ N. But, since {(hnk , gnk)} itself is a minimizing sequence for Pλ,

Theorem 3.9 implies that there exists sequences {ynk}, {θnk} and
−→
ψ ∈ Pλ such

that

lim inf
k→∞

inf ‖ (eiθnkhnk(.+ ynk), gnk(.+ ynk))−
−→
ψ ‖Y = 0,

which is a contradiction, and hence the statement (i) is proved.

Because of the invariance of the functionals Qc,ω and N under rotations and

translations, Pλ contains any rotations and translations of
−→
ψ , if it contains

−→
ψ .

Consequently, statement (ii) follows from statement (i).

3.3 Stability of solitary-wave solutions

In this section we prove that the set of solitary waves is stable provided the

associated action is strictly convex. We first establish some technical preliminaries

that will be used in the stability analysis. Define the minimization problem

Tc(ω) = inf
(h,g)∈Y

Qc,ω(h, g)

[N (h, g)]2/3
. (3.21)

80



Then, because of the homogeneity of the functionals involved, we have

Tc(ω) = inf
(h,g)∈Y

{Qc,ω(h, g) : N (h, g) = 1} . (3.22)

Thus, if (h, g) ∈ Y and satisfies Qc,ω(h, g) = Tc(ω) and N (h, g) = 1, then

from Theorem 3.9, (h, g) = (eiθeicx/2f, g) where θ ∈ R and (f, g) ∈ P1. Hence,

Tc(ω) = Qc,ω(h, g) = Zc,ω(f, g) and N(f, g) = 1, and so (3.22) can be written as

Tc(ω) = inf
(h,g)∈X

{Zc,ω(f, g) : N(f, g) = 1} = I1. (3.23)

For fixed c > 0 and ω > c2/4, we define

Bc,ω =
�

(eiθeicx/2φ, ψ) : (φ, ψ) ∈ X, N(φ, ψ) =
2

3
Zc,ω(φ, ψ) =

8

27
[Tc(ω)]3

�

Then, for (eiθeicx/2φ, ψ) ∈ Bc,ω, we have that (φ, ψ) satisfies (3.3). Indeed, let

N(φ, ψ) = λ. Then, N(φ/λ1/3, ψ/λ1/3) = 1 and further,

Qc,ω(eiθeicx/2
1

λ1/3
φ,

1

λ1/3
ψ) = Zc,ω(

1

λ1/3
φ,

1

λ1/3
ψ) =

Zc,ω(φ, ψ)

[N(φ, ψ)]2/3
= Tc(ω).

Therefore, (eicx/2 1
λ1/3

φ, 1
λ1/3

ψ) ∈ P1, and this implies ( 1
λ1/3

φ, 1
λ1/3

ψ) ∈ P1. Then

there is K0 ∈ R such that

8><>:
−φ′′ + σφ = 1

λ1/3
K0(αφψ + βφ2)

−ψ′′ + cψ = 1
λ1/3

K0

2
(αφ2 + ψ2).

Hence Zc,ω(φ, ψ) = 3
2

1
λ1/3

K0N(φ, ψ), and so K0/λ
1/3 = 1, proving the claim.

Next, for (Φc,ω(ξ),Ψc,ω(ξ)) = (eicξ/2φc,ω, ψc,ω) ∈ Bc,ω, we define the following
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functional

d(c, ω) = E(Φc,ω,Ψc,ω) + ωH(Φc,ω) + cG(Φc,ω,Ψc,ω), (3.24)

where H, G and E are invariants of motion for (3.1), defined by (3.4), (3.5) and

(3.6), respectively, and we consider the following function of one parameter ω,

dc(ω) ≡ d(c, ω) with c > 0 fixed and ω ∈ (c2/4,∞). Then

dc(ω) = Qc,ω(eicξ/2φc,ω, ψc,ω)−N (eicξ/2φc,ω, ψc,ω)

= Zc,ω(φc,ω, ψc,ω)−N(φc,ω, ψc,ω)

=
3

2
N(φc,ω, ψc,ω)−N(φc,ω, ψc,ω) =

1

2
N(φc,ω, ψc,ω) =

4

27
[Tc(ω)]3.

Hence, the function dc(.) is well defined. Our goal is to show that the set of

solitary waves Bc,ω is stable with respect to (3.1) if dc(ω) is a strictly convex

function in ω.

Lemma 3.11. dc(.) is well-defined on (c2/4,∞), continuous, strictly increasing

and is differentiable at all but countably many points of (c2/4,∞).

Proof. For nonzero fixed (f, g) ∈ X, Zc,ω(f, g)/[N(f, g)]2/3 is just a line. Since

Tc(ω) is the infimum of this family of lines, it follows that Tc(ω) is a concave

function on (c2/4,∞), and thus Tc(ω) is continuous and differentiable at all

but countably many points and hence, we can conclude that same regularity

properties hold for the function dc(.).

Now, let c > 0 fixed and ω1 > ω2 > c2/4, let (Φ1,Ψ1) ∈ Bc,ω1 and (Φ2,Ψ2) ∈

Bc,ω2 . Then

Tc(ω1) =
Zc,ω(φ1, ψ1)

N2/3(φ1, ψ1)
≥ Tc(ω2) +

(ω1 − ω2)
R∞
−∞ φ

2
1dx

N2/3(φ1, ψ1)
> Tc(ω2), (3.25)
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This shows that Tc(ω) is strictly increasing, so that dc(.) must be strictly

increasing as well.

Remark 3.12. Let ω1 > ω2 and (Φ1,Ψ1), (Φ2,Ψ2) as in Lemma 3.11. By reversing

the roles of ω1 and ω2 in (3.25), we also have

Tc(ω2) =
Zc,ω(φ2, ψ2)

N2/3(φ2, ψ2)
≥ Tc(ω1) +

(ω2 − ω1)
R∞
−∞ φ

2
2dx

N2/3(φ2, ψ2)
, (3.26)

From (3.25) and (3.26), we find that

R∞
−∞ φ

2
1dx

N2/3(φ1, ψ1)
≤ Tc(ω1)− Tc(ω2)

ω1 − ω2

≤
R∞
−∞ φ

2
2dx

N2/3(φ2, ψ2)
.

Because this holds for all solitary-wave solutions, we also have

9αc(ω1)

4[Tc(ω1)]2
≤ Tc(ω1)− Tc(ω2)

ω1 − ω2

≤ 9βc(ω2)

4[Tc(ω2)]2
, (3.27)

where αc(ω) and βc(ω) are the infimum and supremum, respectively, of

§Z
R
|Φ(x)|2 : (Φ,Ψ) ∈ Bc,ω

ª
.

At points of differentiability, we have αc(ω) = βc(ω) (see Lemma 3.2, [31]), and

hence d′c(ω) = H(Φ) = H(φ).

The following result is taken from Shatah [41].

Lemma 3.13. Let h be any function which is strictly convex in an interval I

around ω. Then given ε > 0, there exist N(ε) > 0 such that for ω1 ∈ I and

|ω1 − ω| ≥ ε, we have
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(i) For ω1 < ω < ω0, |ω0 − ω| < ε/2, ω0 ∈ I. Then

h(ω1)− h(ω0)

ω1 − ω0

≤ h(ω)− h(ω0)

ω − ω0

− 1

N(ε)
.

(ii) For ω0 < ω < ω1, |ω0 − ω| < ε/2, ω0 ∈ I. Then

h(ω1)− h(ω0)

ω1 − ω0

≥ h(ω)− h(ω0)

ω − ω0

+
1

N(ε)
.

From Lemma 3.13 and from the inequalities (3.27), the following result holds.

Lemma 3.14. Suppose that dc(.) is strictly convex in an interval I around ω.

Then given ε > 0, there exists N(ε) > 0 such that for ω1 ∈ I and |ω1 − ω| ≥ ε,

we have

dc(ω1) ≥ dc(ω) + βc(ω)(ω1 − ω) +
1

N(ε)
(ω − ω1) for ω1 < ω;

dc(ω1) ≥ dc(ω) + αc(ω)(ω1 − ω) +
1

N(ε)
(ω1 − ω) for ω1 > ω.

For ε > 0, we define the following ε−neighborhood of the set Bc,ω,

Uc,ω,ε =

¨
(u, v) ∈ Y : inf

(Φ,Ψ)∈Bc,ω
‖(u, v)− (Φ,Ψ)‖Y < ε

«
.

From the facts that dc(.) is a continuous strictly increasing, Bc,ω is a bounded

set in Y and the function (Φ,Ψ) 7→ N (Φ,Ψ) is uniformly continuous on the

bounded set, it is deduced that there is a small ε and a continuous map ρ :

Uc,ω,ε → (c2/4,∞), defined by

ρ(u, v) = d−1
c

�
1

2
N (u, v)

�
= d−1

c

�
1

2
N(u, v)

�
(3.28)
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such that ρ(Φc,ω,Ψc,ω) = ω for any (Φc,ω,Ψc,ω) ∈ Bc,ω.

The following lemma is needed in proving our stability result.

Lemma 3.15. Let ω > c2/4 and a fixed c > 0. Suppose that dc is strictly

convex in an interval I around ω. Then there exists ε > 0 such that for any

−→u = (u, v) ∈ Uc,ω,ε and any
−→
Φ = (Φc,ω,Ψc,ω) ∈ Bc,ω, one has

E(−→u )−E(
−→
Φ ) + ρ(−→u )(H(−→u )−H(

−→
Φ )) + c(G(−→u )−G(

−→
Φ )) ≥ 1

N(ε)
|ρ(−→u )− ω| ,

where ρ(−→u ) is defined in (3.28) and N(ε) is given by Lemma 3.14.

Proof. Let ε be small enough such that ρ(Uc,ω,ε) ⊂ (ω − η,∞) ⊂ (c2/4,∞) for

η > 0. Then, since

E(−→u ) + ρ(−→u )H(−→u ) + cG(−→u ) = Qc,ρ(−→u )(
−→u )−N (−→u ), (3.29)

2dc(ρ(−→u )) = N (−→u ) and N (Φc,ρ(−→u ),Ψc,ρ(−→u )) = 2dc(ρ(−→u )), we get that N (−→u ) =

N (Φc,ρ(−→u ),Ψc,ρ(−→u )). Therefore

Qc,ρ(−→u )(
−→u ) ≥ Qc,ρ(−→u )(Φc,ρ(−→u ),Ψc,ρ(−→u )) (3.30)

and hence, from (3.29), (3.30) and using Lemma 3.14, we obtain

E(−→u ) + ρ(−→u )H(−→u ) + cG(−→u ) = Qc,ρ(−→u )(
−→u )−N (−→u )

≥ Qc,ρ(−→u )(Φc,ρ(−→u ),Ψc,ρ(−→u ))−N (Φc,ρ(−→u ),Ψc,ρ(−→u )) = dc(ρ(−→u ))

≥ dc(ω) +H(
−→
Φ )(ρ(−→u )− ω) +

1

N(ε)
|ρ(−→u )− ω|

= E(
−→
Φ ) + cG(

−→
Φ ) + ρ(−→u )H(

−→
Φ ) +

1

N(ε)
|ρ(−→u )− ω| .

This proves the Lemma.
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The following is our stability theorem. It gives a sufficient condition for the

set Bc,ω of solitary waves to be stable with respect to (3.1).

Theorem 3.16. Let c > 0 be fixed, ω > c2/4 and suppose that dc is strictly

convex in an interval I around ω. Then the set Bc,ω of solitary waves is Y−stable,

that is, for every ε > 0, there exists δ > 0 such that if

inf
(Φc,ω ,Ψc,ω)∈Bc,ω

‖(u0, v0)− (Φc,ω,Ψc,ω)‖Y < δ,

then the solution (u(x, t), v(x, t)) of (3.1) ( or to (3.3)) with (u(x, 0), v(x, 0)) =

(u0, v0) satisfies

inf
(Φc,ω ,Ψc,ω)∈Bc,ω

‖(u(., t), v(., t))− (Φc,ω,Ψc,ω)‖Y < ε, ∀t ≥ 0.

Proof. Suppose the Theorem is false. Choose initial data −→u k(0) ∈ Uc,ω,1/k such

that

sup
0≤t<∞

inf
Φ∈Bc,ω




−→u k(t)−
−→
Φ




Y
≥ δ,

where −→u k(t) = (uk(t), vk(t)) is a solution of (3.1) with initial data −→u k(0). Then,

by the continuity in t, there exists tk such that

inf
Φ∈Bc,ω




−→u k(tk)−
−→
Φ




Y

= δ. (3.31)

Since E,H,G are invariants of (3.1) and since Bc,ω is bounded, we can find

−→
Φ k ∈ Bc,ω such that

���E(−→u k(tk))− E(
−→
Φ k)

��� =
���E(−→u k(0))− E(

−→
Φ k)

���→ 0,���H(−→u k(tk))−H(
−→
Φ k)

��� =
���H(−→u k(0))−H(

−→
Φ k)

���→ 0,���G(−→u k(tk))−G(
−→
Φ k)

��� =
���G(−→u k(0))−G(

−→
Φ k)

���→ 0.
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as k →∞. If δ is chosen so small that Lemma 3.15 applies, then

E(−→u k(tk))− E(
−→
Φ k) + ρ(−→u k(tk))

h
H(−→u k(tk))−H(

−→
Φ k)

i
+c

h
G(−→u k(tk))−G(

−→
Φ k)

i
≥ 1

N(ε)
|ρ(−→u k(tk))− ω|

Since −→u k(tk) is uniformly bounded for k, so from the last inequality ρ(−→u k(tk))→

ω as k →∞. Hence, by (3.28) and the continuity of dc, we have N (−→u k(tk))→

2dc(ω) as k →∞. On the other hand, we have

Qc,ω(−→u k(tk)) = dc(ω) + E(−→u k(tk))− E(
−→
Φ k) + c[G(−→u k(tk))−G(

−→
Φ k)]

+ω[H(−→u k(tk))−H(
−→
Φ k)] +N (−→u k(tk)) ;

consequently,

lim
k→∞

Qc,ω(−→u k(tk)) = 3dc(ω) =
4

9
[Tc(ω)]3.

Let −→w k(tk) = [N (−→u k(tk))]
−1/3−→u k(tk). Then N (−→w k(tk)) = 1 and

lim
k→∞

Qc,ω(−→w k(tk)) = lim
k→∞

[N (−→u k(tk))]
−2/3Qc,ω(−→u k(tk))

=

�
1

2dc(ω)

�2/3 4

9
[Tc(ω)]3 = Tc(ω).

Therefore, −→w k(tk) is a minimizing sequence for J1 and by Corollary 3.10, there

exists
−→
ψ k ∈ P1 such that

lim
k−→∞




−→w k(tk)−
−→
ψ k





Y

= 0. (3.32)

Now from Theorem 3.9,
−→
ψ k = (eicx/2fk, gk) for (fk, gk) ∈ P1, hence there exists
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K > 0 such that

J(fk, gk) =
3

2
K.N(fk, gk) =⇒ Tc(ω) =

3

2
K =⇒ K =

2

3
Tc(ω).

Let λ efk = fk and λegk = gk. Then J( efk, egk) = 3
2
λK.N( efk, egk). Choosing λ = 1/K,

we obtain J( efk, egk) = 3
2
N( efk, egk) and

J( efk, egk) =
1

λ2
J(fk, gk) = K2J(fk, gk) =

4

9
[Tc(ω)]3,

so that N( efk, egk) = 2
3
J( efk, egk) = 8

27
[Tc(ω)]3. Therefore, (eicx/2 efk, egk) ∈ Bc,ω. It

follows that
−→
Ψ k := (eicx/2fk, gk) ∈ Bc,ω, and so from (3.32), we have

0 = lim
k→∞




−→w k(tk)− λ
−→
Ψ k





Y

= lim
k→∞





−→w k(tk)−
3

2
[Tc(ω)]−1−→Ψ k






Y

(3.33)

Therefore, from (3.33) and since Bc,ω being a bounded set in Y, we have




−→u k(tk)−
−→
Ψ k





Y

= |N (−→u k(tk))|
1/3



[N (−→u k(tk))]

−1/3(−→u k(tk)−
−→
Ψ k)





Y

≤ |N (−→u k(tk))|
1/3
�



−→w k(tk)−

3

2
[Tc(ω)]−1−→Ψ k






Y

+ C
����[N (−→u k(tk))]

−1/3 +
3

2
[Tc(ω)]−1

�����

and therefore we have that ‖−→u k(tk) −
−→
Ψ k ‖Y → 0 as k → ∞, which is a

contradiction by (3.31). This completes the proof.
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