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Abstract

In this dissertation, we consider three aspects: comparison theorems on com-

plete manifold which posses a pole, geometric inequalities on complete man-

ifolds, and the applications of inequalities to p-harmonic geometry. More

precisely, we first derive a comparison theorem of the matrix-valued Riccati

equation with certain initial conditions, and then use this as a tool to ob-

tain Hessian comparison theorem on manifolds with nonnegative curvatures.

We study Hardy type inequality, weighted Hardy inequality and weighted

Sobolev inequality via Hessian comparison theorems. One of the main results

in this dissertation is the Caffarelli-Kohn-Nirenberg type inequality on Cartan-

Hadamard manifolds, which is an extension of the the result in Caffarelli-

Kohn-Nirenberg’s paper [6]. Furthermore, we also discuss some Lp version of

Caffarelli-Kohn-Nirenberg type inequalities on punched manifolds and point

out a possible value of the constant. Finally, we study Liouville theorems of p-

harmonic functions, p-harmonic morphisms, and weakly conformal maps, with

assumption only on curvature and q-energy growth. As further applications

we obtain Picard type theorems in p-harmonic geometry.
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Chapter 1

Introduction and Statements of Main Results

In this chapter, we introduce the history, motivation, background and main

results of this thesis.

1.1 History, Motivation and Background

On the 10th of June 1854 Georg Friedrich Bernhard Riemann (1826-1866) gave

his famous “Habilitationsvortrag”(probationary lecture) in the Colloquium of

the Philosophical Faculty at Göttingen. In his important talk “Über die Hy-

pothesen, welche der Geometrie zu Grunde liegen” (“On the hypotheses that

lie at the foundation of geometry”), he introduced (what is now called) an

n-dimensional Riemannian manifold and its curvature tensor.

In Riemannian geometry, sectional curvatures of a Riemannian manifold

M have strong influences on other geometric features of M . As Riemannian

manifolds with constant sectional curvature are the simplest, it is natural to

discuss general manifolds via the study of manifolds with constant sectional

curvature (the model). One of the important parts is the comparison theorems

on manifolds. From comparison theorems, various quantities such as volume,

diameter, and the first eigenvalue are bounded by the corresponding quantities

of the model (cf. [42]). For example, Toponogov’s theorem affords a character-

ization of sectional curvature in terms of how “fat” geodesic triangles appear

when compared to their Euclidean counterparts; Rauch comparison theorem

1



roughly states that for large curvature, geodesics tend to converge, while for

small (or negative) curvature, geodesics tend to spread; Hessian comparison

theorem roughly says that the larger the curvature, the smaller the Hessian of

the distance function.

Inequalities play an important role in almost all branches of mathematics as

well as in other areas of science and engineering. We derived geometric inequal-

ities on manifolds (e.g. Proposition 3.1, Theorem 3.11), and we also proved

weighted Hardy and weighted Sobolev inequalities (Theorem 3.7,Theorem 3.8)

on Cartan-Hadamard manifolds. We extend important inequalities, such as

Hardy’s inequality (first published in 1920 [23]) and Caffarelli-Kohn-Nirenberg

inequality (published in 1984 [6]) from Euclidean spaces to general Rieman-

nian manifolds In fact, we pioneered the use of Hessian comparison theorem to

prove generalized Caffarelli-Kohn-Nirenberg type inequalities and its L2 and

Lp versions on various complete manifolds under curvature assumptions. The

technique of Caffarelli-Kohn-Nirenberg is to use the rotational symmetry of

the Euclidean spaces to reduce an inequality in high dimension to that in one

dimension. This does not seem to carry over to general manifolds. To overcome

this difficulty, we employ the weighted Hardy inequality and weighted Sobolev

inequality to prove generalized Caffarelli-Kohn-Nirenberg type inequalities on

Cartan-Hadamard manifolds(cf. [29]).

In recent years, p-harmonic geometry has become an active research field,

since p-harmonic maps are natural generalizations of geodesics, minimal sub-

manifolds, conformal maps, analytic functions on the complex plane ℂ, har-

monic map, etc. A great deal of work has been done by B. White [52], R.

Hardt and F.-H. Lin [22], S. Luckhaus [?] from the view point of geometric

measure theory, and by S.W. Wei and others from the view point of differen-
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tial geometry [43], [44], [51], [46]. In particular, S.-C. Chang, J.-T. Chen and

S.W. Wei showed in [10] a Liouville type theorem for p-harmonic function via

inequalities and energy functional. This motivates us to study the application

of inequalities to p-harmonic geometry (like Liouville type theorems, Picard

type theorems, and etc.).

1.2 Main results

In this section, we describe the main results presented in this thesis into the

following categories:

A. Comparison Theorems.

Let E be a vector space with an inner product ⟨ , ⟩ , S(E) be the space of

self-adjoint linear endomorphisms of E , and Ri : (0, ti)→ S(E) be continuous

functions with maximal ti ∈ (0, ∞] (i = 1, 2). We say

R1 ≤ R2

if

⟨R1(t) (x), x⟩ ≤ ⟨R2(t) (x), x⟩

for every t ∈ (0, t0) and every x ∈ E , where t0 = min{t1, t2}.

Theorem 2.1 . Let Ri : (0, ti) → S(E) be smooth with 0 ≤ R1 ≤ R2. Let

S1 : (0, t1)→ S(E) be a solution of the Riccati equation

S ′1 + S2
1 +R1 = 0

with maximal t1 ∈ (0, ∞]. Let S2 : (0, t2) → S(E) satisfy the following
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inequality

S ′2 + S2
2 +R2 ≤ 0

with maximal t2 ∈ (0, ∞]. Define U := S2−S1 and assume that lim sup
t→0+

U(t) ≤

0. Then t2 ≤ t1 and S2 ≤ S1 on (0, t2).

Theorem 2.3 . If the radial curvatures K of M satisfy for some c ∈ [0, 1]

and all r > 0

0 ≤ K ≤ c(1− c)
r2

then we have

c

r
∣X∣2 ≤ Hessr(X, X) ≤ 1

r
∣X∣2, X ∈ TxM∖ℝ∇r(x)

Hessr(X, X) = 0, X ∈ ℝ∇r(x).

Application: See Theorem 3.13.

B. Geometric Inequalities.

Theorem 3.3 . Let M be a complete n-manifold with sectional curvature

SecM ≤ 0 and with n > p > 1 . Given a fixed point x0 ∈ M , and let r be the

distance form x0. Then for every u ∈ C∞0 (M) the following inequality holds:

�
n− p
p

�p Z
M

∣u∣p

rp
dv ≤

Z
M

∣∇u∣p dv.

Theorem 3.4 . Let M be a complete Riemannian n-manifold with a pole x0 .

If RicM ≥ 0 and 2 ≤ n < p, then for every u ∈ C∞0 (M) and u
r
∈ Lp(M) , one
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has �p− n
p

�p Z
M

∣u∣p

rp
dv ≤

Z
M
∣∇u∣p dv,

where r is the distance function from the pole of M .

Theorem 3.7(Weighted Hardy Inequality) . Let M be an n-dimensional

Cartan-Hadamard manifold. Let x0 be a fixed point and r be the distance from

x0. Then for every u ∈ C∞0 (M), the following inequality holds:

�
n+ �− p

p

�p Z
M
r�
∣u∣p

rp
dv ≤

Z
M
r�∣∇u∣pdv,

where dv is the volume element on M , 1 ≤ p <∞ and n+ �− p > 0.

Theorem 3.8 (Weighted Sobolev Inequality) . Let M be an n-dimensional

Cartan-Hadamard manifold. Let x0 be a fixed point and r be the distance from

x0. Then for every u ∈ C∞0 (M), the following inequality holds:

�Z
M
r�p

∗ ∣u∣p∗dv
� 1
p∗ ≤ C

�Z
M
r�p∣∇u∣pdv

� 1
p

,

where dv is the volume element on M , 1 ≤ p < n, �−1
n

+ 1
p
> 0, p∗ = np

n−p and

C is a positive constant independent of u.

Theorem 3.9 (Generalized Caffarelli-Kohn-Nirenberg type Inequality) . Let

M be an n-dimensional Cartan-Hadamard manifold. Let x0 be a fixed point

and r be the distance from x0. Suppose there exists a constant C̃ such that

Area(∂Br(x0)) ≤ C̃rn−1.

Let p, q, s, �, �, 
, �, a be fixed real numbers satisfying

q, s ≥ 1, 1 ≤ p < n, 0 ≤ a ≤ 1,
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1

s
+



n
> 0,

1

p
+
�

n
> 0,

1

q
+
�

n
> 0,

where


 = a� + (1− a)�.

There exists a positive constant C such that the following inequality holds for

all u ∈ C∞0 (M)

∥r
u∥Ls ≤ C∥r�∣∇u∣∥aLp ∥r�u∥1−a
Lq

if the following relations hold:

1

s
+



n
= a(

1

p
+
�− 1

n
) + (1− a)(

1

q
+
�

n
).

�− � ≥ 0, if a > 0,

�− � ≤ 1, if a > 0 and
1

s
+



n
=

1

p
+
�− 1

n
.

Theorem 3.11 . Let M be a complete noncompact Riemannian n-manifold.

Then for every x0 ∈ M , every u ∈ C∞0 (M∖ {x0}), and every a, b ∈ ℝ , with

a+ b ∕= 1, the following inequalities hold:

(i) For p ≥ 2,

1

p

Z
M

a+ b− rΔr
ra+b+1

∣u∣p dv ≤

�Z
M

∣u∣p

raq
dv

� 1
q
�Z
M

∣∇u∣p

rbp
dv

� 1
p

.

(ii) For 1 < p < 2,

1

p

Z
M

a+ b− rΔr
ra+b+1

(∣u∣2 + �)
p
2dv ≤

�Z
M

∣u∣p

raq
dv

� 1
q
�Z
M

∣∇u∣p

rbp
dv

� 1
p
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where � > 0, dv is the volume element of M , r is the distance to x0, and

p, q > 1 satisfy 1
p

+ 1
q

= 1. In particular, if RicM ≥ 0 and a+ b+ 1 ≥ n , then

(a+ b+ 1)− n
p

Z
M

∣u∣p

ra+b+1
∣u∣p dv ≤

�Z
M

∣u∣p

raq
dv

� 1
q
�Z
M

∣∇u∣p

rbp
dv

� 1
p

.

Theorem 3.12 . Let M be an n-dimensional Cartan-Hadamard manifold.

Then for every x0 ∈ M , every u ∈ C∞0 (M∖ {x0}), and every a, b ∈ ℝ , with

a+ b+ 1 ≤ n , the following inequality holds:

n− (a+ b+ 1)

p

Z
M

∣u∣p

ra+b+1
dv ≤

�Z
M

∣u∣p

raq
dv

� 1
q
�Z
M

∣∇u∣p

rbp
dv

� 1
p

where dv is the volume element of M , r is the distance to x0, and p, q satisfy

1
p

+ 1
q

= 1.

Theorem 3.13 . Let M be an n-dimensional manifold with a pole of radial

curvature 0 ≤ K ≤ c(1−c)
r2

, where c ∈ [0, 1]. Then for every u ∈ C∞0 (M) and

every a, b ∈ ℝ with c(n− 1)− (a+ b) ≥ 0, the following inequality holds:

cn− (a+ b+ c)

p

Z
M

∣u∣p

ra+b+1
dv ≤

�Z
M

∣u∣p

raq
dv

� 1
q
�Z
M

∣∇u∣p

rbp
dv

� 1
p

where dv is the volume element of M , r is the distance to x0, and p, q satisfy

1
p

+ 1
q

= 1.

C. Applications to p-harmonic Geometry

A C2 function u : M → ℝ is said to be p-harmonic ( resp. p-superharmonic,

and p-subharmonic ) in a storng sense if its p-Laplacian Δpu := div(∣∇u∣p−2∇u) =

0 ( resp. ≤ 0 , and ≥ 0). A function u : M → ℝ is said to be p-harmonic (
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resp. p-superharmonic, and p-subharmonic ) in a weak sense if its p-Laplacian

Δpu := div(∣∇u∣p−2∇u) = 0 ( resp. ≤ 0 , and ≥ 0) in the sense of distribu-

tions.

Theorem 4.11 (Liouville Theorem for p-harmonic functions). Let M be a

complete noncompact Riemannian n-manifold with a pole, and non-positive

radial curvature. Suppose that RicM ≥ −� (n−2)2

4r2
a.e. , where � is a constant

satisfying

� <
4 (q − 1 + �+ b)

q2
,

in which� = min{(p− 1)2

n− 1
, 1} and b = min{0, (p− 2)(q − p)}.

Let u ∈ C3 (M) be a p-harmonic function in a weak sense for p ∈ {2}∪ [4,∞),

and in a strong sense for p ∈ (1, 2) ∪ (2, 4) , with finite q-energy Eq (u) =R
M ∣du∣qdv, for p and q satisfying one of the following:

(1) p = 2 and q > n−2
n−1

,

(2) p = 4, q > 1 and q − 1 + �+ b > 0,

(3) p > 2, p ∕= 4, and either max
n

1, p− 1− �
p−1

o
< q ≤ p− (p−4)2n

4(p−2)
, or both

q > 2 and q − 1 + �+ b > 0.

Then u is constant. If p and q satisfy

(4) 1 < p < 2 and q > 2,

then u does not exist.

Theorem 4.12. Let N be a Riemannian (n + 1)-manifold, M be a stable

minimal hypersurface in N , and � be a unit normal vector to M , such that

the length ∣A∣ of the second fundamental form of M in N satisfying ∣A∣2 +

RicN(�) > 0 a.e.. Suppose RicM ≥ −�(∣A∣2 + RicN(�)) , where � is as in

Theorem 4.11. Let u ∈ C3 (M) be a p-harmonic function with finite q-energy,

8



for p and q as in Theorem 4.11. Then the same conclusion as in Theorem

4.11 holds.

Theorem 4.14 (Liouville Theorem for p-harmonic morphisms). Let M be as

in Theorem 4.11 or in Theorem 4.12. Suppose RicM ≥ −� (n−2)2

4r2
, where � is as

in Theorem 4.11. If u ∈ C3 (M) is a p-harmonic morphism u : M → ℝk, with

finite q-energy, for p and q as in Theorem 4.11. Then the same conclusion as

in Theorem 4.11 holds.

Theorem 4.15 (Liouville Theorem for weakly conformal maps). Let M be

as in Theorem 4.11 or in Theorem 4.12, in which p = n in Theorem 4.11.

If u : M → ℝn is a weakly conformal map with finite q-energy, for n and q

satisfying one of the following:

(1) n = 2 and q > 0,

(2) n = 4, q > 1 and q + b > 0,

(3) n > 2, n ∕= 4, and either n(n−2)
n−1

< q ≤ n − (n−4)2n
4(n−2)

, or both q > 2 and

q + b > 0,

then u is a constant.

Theorem 4.16(Picard Theorem for p-harmonic morphisms). Let M be as in

Theorem 4.11 or Theorem 4.12. Suppose that u ∈ C3 (M) is a p-harmonic

morphism u : M → ℝk∖{y0}, and the function x 7→ ∣u(x) − y0∣
p−n
p−1 has

finite q-energy where p ∕= n, for p and q satisfying one of the following:

(1), (2), and (3) as in Theorem 4.11. Then u is constant. For p and q satis-

fying (4) as in Theorem 4.11, then u does not exist.

Theorem 4.17(Picard Theorem for weakly conformal maps). Let M be as in

Theorem 4.11 or in Theorem 4.12, in which p = n in (4.5). Suppose that u :

M → ℝn∖{y0} is a weakly conformal map and the function x 7→ log ∣u(x)−y0∣

has finite q-energy, for n and q satisfying one of the following: (1), (2), and (3)

9



as in Theorem 4.15. Then u is constant.
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Chapter 2

Comparison Theorems

We denote Tx0M the tangent space to M at x0 ∈ M . A pole is a point

x0 ∈M such that the exponential map expx0 : Tx0M →M is a diffeomorphism.

Furthermore, if M possess a pole, M is complete. Given such a manifold M

with a pole x0 , for any point x ∈ M , there is a unique geodesic 
 emanating

from the pole x0 such that 
(t) = x. Let r(x) be the distance from x0 to x ,

then ∇r is a vector field defined on M∖{x0} such that for any x ∈ M∖{x0},

∇r (x) is the unit vector tangent to the unique geodesic joining x0 to x and

pointing away from x0. A radial plane is a plane � which contains ∇r(x) in

the tangent space TxM. By the radial curvature K of a manifold with a pole,

we mean the restriction of the sectional curvature function to all the radial

planes. We define K(t) to be the radial curvature of M at x for any x such that

r(x) = t. Let (M, g) be a manifold with a pole x0. Then r is a smooth function

on M∖{x0}. The Hessian of r by definition the second covariant differential

Hessr of r, i.e.,

Hessr(X, Y ) = X(Y r)− (∇XY )r,

for all vector X, Y on M . It is a symmetric tensor. Let a tensor g−dr⊗dr = 0

on the radial direction, and is just the metric tensor g on the orthogonal

complement of ∇r. The Hessian comparison theorem roughly says that the

larger the curvature, the smaller the Hessian of the distance function. We

recall the following Hessian comparison theorem on manifolds with nonpositive

11



radial curvature:

Theorem A. (cf. [19] ) (i) If −�2 ≤ K(r) ≤ −�2 with � > 0, � > 0, then

� coth(�r)[g − dr ⊗ dr] ≤ Hessr ≤ � coth(�r)[g − dr ⊗ dr]

(ii) If − a
1+r2
≤ K(r) ≤ 0 with a ≥ 0, then

1

r
[g − dr ⊗ dr] ≤ Hessr ≤

1 +
√

1 + 4a

2r
[g − dr ⊗ dr]

(iii) If −Ar2q ≤ K(r) ≤ −Br2q with A ≥ B > 0 and q > 0, then

B0r
q[g − dr ⊗ dr] ≤ Hessr ≤ (

√
A coth

√
A)rq[g − dr ⊗ dr]

for r ≥ 1, where B0 = min{1,− q+1
2

+ [B + ( q+1
2

)2]1/2}.

Greene and Wu obtain the above comparison theorem via Jacobi equations.

As Jacobi equations are related to Riccati equations, We are interested in

obtaining Hessian comparison theorems for manifolds with nonnegative radial

curvatures via Riccati equations.

Let E be a vector space with an inner product ⟨ , ⟩ , S(E) be the space of

self-adjoint linear endomorphisms of E , and Ri : (0, ti)→ S(E) be continuous

functions with maximal ti ∈ (0, ∞] (i = 1, 2). We say

R1 ≤ R2

if

⟨R1(t) (x), x⟩ ≤ ⟨R2(t) (x), x⟩

12



for every t ∈ (0, t0) and every x ∈ E , where t0 = min{t1, t2}.

In [17], Eschenburg and Heintze gave a short prove for the comparison

theory of the matrix valued Riccati equation with singular initial value. We

weaken their initial condition, extend their comparison class of Riccati equa-

tions and obtain the following theorem:

Theorem 2.1. Let Ri : (0, ti) → S(E) be smooth with 0 ≤ R1 ≤ R2. Let

S1 : (0, t1)→ S(E) be a solution of the Riccati equation

S ′1 + S2
1 +R1 = 0

with maximal t1 ∈ (0, ∞]. Let S2 : (0, t2) → S(E) satisfy the following

inequality

S ′2 + S2
2 +R2 ≤ 0

with maximal t2 ∈ (0, ∞]. Define U := S2−S1 and assume that lim sup
t→0+

U(t) ≤

0. Then t2 ≤ t1 and S2 ≤ S1 on (0, t2).

We fix a basis of a vector space, then any linear endomorphism of the vector

space can be represented by a matrix. For the simplicity, we now consider the

operators as matrices.

Proof: Let t0 = min{t1, t2}. Denote X = −1
2
(S1 + S2) and Y = R1 − R2.

By the ricatti equation S ′1 +S2
1 +R1 = 0 and the inequality S ′2 +S2

2 +R2 ≤ 0,

U satisfies

U ′ ≤ X ⋅ U + U ⋅X + Y. (2.1)

Since S ′j ≤ −Rj ≤ 0 (j = 1, 2), then for any fixed t∗ ∈ (0, t0) we have

Z t∗

t
S ′j ≤

Z t∗

t
−Rj ≤ 0,

13



which imply

Sj(t) ≥ Sj(t
∗) for any t ∈ (0, t∗).

That is, Sj is bounded from below near 0. Hence X is bounded from above

near 0, i.e. there exists c ∈ ℝ such that X ≤ c ⋅ I.

Let g : (0, t0) → End(E) be a nonsingular solution of the homogeneous

equation

g′ = X ⋅ g. (2.2)

In fact, we could use all the elements gij of g to form a new vector v and

all the elements Xij of X to form a new matrix A such that the following

homogeneous equation holds

v′ = A ⋅ v. (2.3)

Then by the existence and uniqueness of homogeneous equation, once the

initial condition is given, there exists a unique solution of (2.3). In other

words, there is a unique solution of (2.2).

Once the initial value g(s0) where s0 ∈ (0, t0) with g(s0) nonsingular is

given, it is easy to show the solution of (2.2) is nonsingular. To show this

claim, we consider the following initial value problem:

ḡ = −ḡ ⋅X, ḡ(s0) = g(s0)−1, (2.4)

where ḡ : (0, t0) → End(E). It has a unique solution and also satisfies

(ḡg)′ = 0. Therefore, we get ḡ(t)g(t) = ḡ(s0)g(s0) = I, for any t ∈ (0, t0), i.e.

ḡ is the inverse of g.
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Now let U = g ⋅ V ⋅ gT , where V : (0, t0)→ S(E) satisfies

V ′ ≤ g−1 ⋅ Y ⋅ (g−1)T . (2.5)

Then

U ′ = g′ ⋅ V ⋅ gT + g ⋅ V ′ ⋅ gT + g ⋅ V ⋅ (gT )′

≤ X ⋅ g ⋅ V ⋅ gT + g ⋅ (g−1 ⋅ Y ⋅ (g−1)T ) ⋅ gT + g ⋅ V ⋅ (X ⋅ g)T

= X ⋅ g ⋅ V ⋅ gT + Y + g ⋅ V ⋅ (X ⋅ g)T

= X ⋅ U + Y + U ⋅X

That is, U is a solution of (2.1).

Since Y ≤ 0, then V ′ ≤ 0 on (0, t0). Next we have to show that lim sup
t→0+

V (t) ≥

0. Since V ′ ≤ 0 on (0, t0), then either lim
t→0+

V (t) exists, or lim
t→0+

V (t) =∞ which

means

lim sup
t→0+

V (t) = lim
t→0+

V (t).

Note that

⟨V x, x⟩ = ⟨g−1 ⋅ U ⋅ (g−1)Tx, x⟩ = ⟨U ⋅ (ℎx), ℎx⟩

for any x ∈ E, where ℎ = (g−1)T . Consider the function f = ∥ℎx∥2,

f ′ = 2⟨ℎ′x, ℎx⟩ = −2⟨X ⋅ (ℎx), ℎx⟩ ≥ ⟨c ⋅ I ⋅ (ℎx), ℎx⟩ = −2cf.
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Then

Z t∗

t

f ′

f
≥
Z t∗

t
−2c

⇒ ln f(t∗)− ln f(t) ≥ −2c(t∗ − t)

⇒ ln f(t) ≤ ln f(t∗) + 2c(t∗ − t)

⇒ ln f(t) ≤ ln f(t∗) + 2ct∗

for any t ∈ (0, t∗). That is f is bounded near 0.

Therefore, there exists a sequence sk → 0+ such that ℎ(sk)x converges to

some y ∈ E as k →∞. Then we have

lim
t→0+
⟨V x, x⟩ = lim

k→∞
⟨U ⋅ (ℎ(sk)x), ℎ(sk)x⟩

≤ ⟨lim sup
t→0+

u(t)y, y⟩

≤ 0

Now from lim
t→0+

V (t) ≤ 0 and V ′ ≤ 0, we get V ≤ 0 and hence U ≤ 0. Thus

S1 ≥ S2 on (0, t0).

If t1 < t2, we have S1(t) ∼ 1
t−t1 I +O(t) near t = t1. As t→ t−1 , S1 → −∞.

However, S2 is finite on (0, t1). We get a contradiction. Hence t0 = t2 ≤ t1.

Let Si : (0, ti) → S(E) (i = 1, 2). If R1(t) = 0, S1(t) = 1
t
I + O(t) as

t→ 0+, then

S1(t) =
1

t
I,

where I is the identity linear transformation, is the solution of

S ′1 + S2
1 +R1 = 0 with t1 =∞ .
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Similarly, if R2(t) = c(1−c)
t2

I, where 0 < c < 1 , S2(t) = c
t
I + O(t) as t → 0+,

then

S2(t) =
c

t
I,

is the solution of

S ′2 + S2
2 +R2 = 0 with t2 =∞.

Then the following corollary holds immediately:

Corollary 2.2. If 0 ≤ R ≤ c(1−c)
t2

I and S : (0, ∞)→ S(E) is a solution of

S ′ + S2 +R = 0

satisfying S(t) = 1
t
I +O(t) as t→ 0+, then

c

t
I ≤ S(t) ≤ 1

t
I.

Let M be a manifold which posses a pole x0. Let S be the shape operator

of geodesic balls in M (cf. [35]), i.e S : TxM∖ℝ∇r(x) → TxM∖ℝ∇r(x) with

S(v) = ∇v∇r. Then we have

∇∇rS + S2 +R = 0,

where R : TxM∖ℝ∇r(x) → TxM∖ℝ∇r(x) is the radial curvature given by

R(v) = R(v, ∇r)∇r.

Since Hessr(X, X) = ⟨S(X), X⟩ and the radial curvature K of M is given

by K(v) := ⟨R(v), v⟩, we have the following theorem as an application of the

above comparison theorem in differential equation:
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Theorem 2.3. If the radial curvatures K of M satisfy for some c ∈ [0, 1] and

all r > 0

0 ≤ K ≤ c(1− c)
r2

then we have

c

r
∣X∣2 ≤ Hessr(X, X) ≤ 1

r
∣X∣2, X ∈ TxM∖ℝ∇r(x)

Hessr(X, X) = 0, X ∈ ℝ∇r(x)

There are some applications of comparison theorems: one is geometric in-

equalities, which will be shown in Chapter 3, and the other is the monotonicity

results studied in [15].
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Chapter 3

Geometric inequalities

3.1 Preliminaries

A Cartan-Hadamard manifold is a complete simply-connected Riemannian

manifold of nonpositive sectional curvature. The theorem of Cartan-Hadamard

states that if M is a Cartan-Hadamard manifold, and x ∈ M , then the ex-

ponential map expx : TxM → M is a diffeomorphism. Thus every point of a

Cartan-Hadamard manifold is a pole.

Without curvature assumption, we derive geometric inequalities on mani-

folds with a pole for functions u ∈ C∞0 (M) .

Proposition 3.1. [49] Let M be a complete Riemannian n-manifold with a

pole x0. For every u ∈ C∞0 (M), every � > 0 , and every � > 0, with � < d0 ,

one has the following:

�����− R
∂B�(x0)

r
rp+�
∣u∣pdS +

R
M∖B�(x0)

(rp+�)(rΔr+1)−p rp
(rp+�)2

∣u∣p dv
�����

≤ p

� R
M∖B�(x0)

� ∣u∣p−1r
rp+�

� p
p−1dv

� p−1
p
� R
M∖B�(x0)

∣∇u∣p dv
� 1
p

(3.1)

where d0 = max
x∈Spt u

dist(x0, x) , Spt u is the support of u , dist(x0, x) is the dis-

tance from x0 to x , ∂B�(x0) denotes the C1 boundary of the geodesic ball B�(x0)

centered at x0 with radius � > 0, r is the distance from x0, Δr is the Laplacian

of r, dS and dv are the volume element of ∂B�(x0) and M respectively.
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Proof: We first fix � > 0 and consider I := p
R

M∖B�(x0)

¬
∣u∣p−2u r∇r

rp+�
,∇u

¶
dv ,

for any given � > 0. Then it follows that

I =
Z

M∖B�(x0)

div
�
r∇r
rp + �

∣u∣p
�
dv −

Z
M∖B�(x0)

div (r∇r)
rp + �

∣u∣p dv (3.2)

+
Z

M∖B�(x0)

prp

(rp + �)2
∣u∣p dv,

for every u ∈ C∞0 (M). By the divergence theorem, and the fact that the unit

outward normal vector � on ∂B�(x0) is −∇r, the first term on the right hand

side of (3.2) satisfies

Z
M∖B�(x0)

div
�
r∇r
rp + �

∣u∣p
�
dv =

Z
BR(x0)∖B�(x0)

div
�
r∇r
rp + �

∣u∣p
�
dv (3.3)

= −
Z

∂B�(x0)

�
r∇r
rp + �

∣u∣p, �
�
dS

=
Z

∂B�(x0)

r

rp + �
∣u∣pdS

where BR(x0) is a geodesic ball centered at x0 with radius R > d0 and Spt u ⊂

BR(x0) ⊂M.

Let {ei}ni=1 be a local orthonormal frame field on M such that e1 = ∇r.

Denote ∇ the Riemannian connection on M. Then ∇∇r∇r = 0 in M and the

Hessian of r is given by (∇eidr)(ei) = ∇ei (dr(ei)) − dr(∇eiei). Furthermore,

off B�(x0)
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div(∇r) = ⟨∇∇r∇r,∇r⟩+
nX
i=2

⟨∇ei (∇r) , ei⟩ (3.4)

=
nX
i=2

(∇eidr)(ei)

=
nX
i=2

Hessr(ei, ei)

where Hessr is the Hessian of r.

Note that

∇(rp + �)−1 = −(rp + �)−2prp−1∇r (3.5)

Substituting (3.3)-(3.5) into (3.2), one has

−
Z

∂B�(x0)

r

rp + �
∣u∣pdS+

Z
M∖B�(x0)

(rp + �)
�
nP
i=2
rHessr(ei, ei) + 1

�
− p rp

(rp + �)2
∣u∣p dv = −I

In view of Hölder inequality and the fact
nP
i=2
rHessr(ei, ei) + 1 = rΔr + 1 ,

one obtains the desired (3.1).

Based on this proposition, we obtain the following geometric inequalities,

which have simpler forms on M . Here we allow the values of the integrals on

the right hand sides to be +∞.

Proposition 3.2. [12] Let M be a complete Riemannian n-manifold with a

pole x0.

(i) For every u ∈ C∞0 (M) , and every � > 0, the following inequality holds:

������
Z
M

(rp + �)(rΔr + 1)− p rp

(rp + �)2
∣u∣p dv

������ ≤ p

�Z
M

∣u∣p

rp
dv

� p−1
p
�Z
M

∣∇u∣p dv
� 1
p

. (3.6)

(ii) For every u ∈ C∞0 (M) , every � > 0 , and for every � > 0, with � < d0 ,
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one has the following:

Z
M∖B�(x0)

p rp − (rp + �)(rΔr + 1)

(rp + �)2
∣u∣p dv ≤ p

�Z
M

∣u∣p

rp
dv

� p−1
p
�Z
M

∣∇u∣p dv
� 1
p

.

(3.7)

Proof: Note that the right hand side of (3.1) is less than or equal to

p

� R
M
∣u∣p
rp
dv

� p−1
p
� R

M ∣∇u∣
p dv

� 1
p

. As � tends to zero,
R

∂B�(x0)

r
rp+�
∣u∣pdS tends

to zero, and hence the left hand side of (3.1) tends to
���RM (rp+�)(rΔr+1)−p rp

(rp+�)2
∣u∣p dv

���
as � → 0. This proves (i) .

On the other hand, the left hand side of (3.1) is greater than or equal to

Z
∂B�(x0)

r

rp + �
∣u∣pdS +

Z
M∖B�(x0)

−(rp + �)(rΔr + 1) + p rp

(rp + �)2
∣u∣p dv

≥
Z

M∖B�(x0)

−(rp + �)(rΔr + 1) + p rp

(rp + �)2
∣u∣p dv

for every u ∈ C∞0 , for every � > 0 , and for every 0 < � < d0 . This proves (ii) .

3.2 Hardy Type Inequalities on Complete Manifolds

Hardy’s inequality is an important inequality in mathematics, which was first

published in 1920 (cf. [23]) in the one dimensional case:

Z ∞
0

� ∣F ∣
x

�p
dx ≤

� p

p− 1

�p Z ∞
0
∣F ′∣pdx.

Later on, it has been extended to higher dimensions and there have been lots of

research concerning the higher dimensional extension on the Euclidean space
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(e.g. [4], [18], [41]), in particular, sharp inequalities (cf. [5]) as well as improved

versions. In recent years, some attention has been paid to Hardy’s inequality

in sub-Riemannian spaces (e.g. [20]). However, there is less literature for a

general Riemannian manifold.

We first discuss whether there are Hardy type inequalities on manifolds

with a pole. That is, whether the following inequality

�����n− pp
�����
p Z
M

∣u∣p

rp
dv ≤

Z
M

∣∇u∣p dv, (3.8)

holds for every u ∈ C∞0 (M).

Theorem 3.3. [49] Let M be a complete n-manifold with sectional curvature

SecM ≤ 0 and with n > p > 1 . Given a fixed point x0 ∈ M , and let r be the

distance from x0. Then for every u ∈ C∞0 (M) the following inequality holds:

�
n− p
p

�p Z
M

∣u∣p

rp
dv ≤

Z
M

∣∇u∣p dv. (3.9)

Proof: M is a complete n-manifold with sectional curvature SecM ≤ 0, then

by Cartan-Hadamard Theorem, any point in M is a pole. For any fixed point

x0 ∈ M , in view of Theorem 3.2(i) and Hessian comparison theorem, one

obtains

Z
M

(n− p)rp + n�

(rp + �)2
∣u∣p dv (3.10)

≤ p

�Z
M

(rp)
1
p−1

(rp + �)
p
p−1

∣u∣p dv
� p−1

p
�Z
M

∣∇u∣p dv
� 1
p
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For sufficiently small � > 0, one has

Z
M

(n− p)rp + n�

(rp + �)2
∣u∣p dv ≥

Z
M

(n− p)rp + n�− p�
(rp + �)2

∣u∣p dv (3.11)

≥ (n− p)
Z
M

(rp + �)
1
p−1

(rp + �)
p
p−1

∣u∣p dv

≥ (n− p)
Z
M

(rp)
1
p−1

(rp + �)
p
p−1

∣u∣p dv.

Combining (3.10) and (3.11), one has

n− p
p

�Z
M

(rp)
1
p−1

(rp + �)
p
p−1

∣u∣p dv
� 1
p ≤

�Z
M

∣∇u∣p dv
� 1
p

. (3.12)

Letting �→ 0 , one obtains the desired (3.9).

Surprisingly, (3.8) does not hold in general for smooth function u with

compact support in a complete Riemannian n-manifold with a pole x0 and

with nonnegative Ricci curvature. The following is a counter example (cf.

[12]).

We choose M = ℝn and u ∈ C∞0 (ℝn) to be a standard smooth cutoff

function in ℝn with 0 ≤ u ≤ 1 , u ≡ 1 on Ba(0) , u ≡ 0 off B2a(0) , and

∣∇u∣ ≤ C in B2a(0)∖Ba(0) , for some constants a and C . If p > n, then via

coarea formula, the left hand of (3.8)

�
p−n
p

�p R
M
∣u∣p
rp
dv ≥

�
p−n
p

�p R
Ba(0)

1
rp
dv

= (p−n
p

�p
lim�→0

R a
�

R
∂Br(0)

1
rp
dSdr

= (p−n
p

�p
n!n lim�→0

R a
� r

n−p−1dr

=∞

where dS is the volume element of ∂Br(0) , and !n is the volume of the unit
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ball in ℝn . On the other hand the right hand of (3.8)

Z
ℝn
∣∇u∣p dv ≤ Cp!n(2n − 1)an <∞

Consequently, (3.8) does not hold for u ∈ C∞0 (M) in general.

To obtain the Hardy type inequality on complete Riemannian manifolds

with a pole and with nonnegative Ricci curvature, we need the Laplacian

comparison theorem (cf. [19], [37]) and the essential condition that u
r
∈ Lp(M).

Theorem 3.4. [12] Let M be a complete Riemannian n-manifold with a pole

x0 . If RicM ≥ 0 and 2 ≤ n < p, then for every u ∈ C∞0 (M) and u
r
∈ Lp(M) ,

one has �p− n
p

�p Z
M

∣u∣p

rp
dv ≤

Z
M
∣∇u∣p dv, (3.13)

where r is the distance function from the pole of M .

Proof: In view of Theorem 3.2(ii) , and the Laplacian comparison theorem,

for every u ∈ C∞0 (M) , for every � > 0 , and for every � > 0, with � < d0 ,

Z
M∖B�(x0)

p rp − (rp + �)n

(rp + �)2
∣u∣p dv ≤ p

�Z
M

∣u∣p

rp
dv

� p−1
p
�Z
M

∣∇u∣p dv
� 1
p

(3.14)

In particular, for every � <
dp0(p−n)

n
, we choose � = �0(�) defined to be�

�n
p−n

� 1
p , then 0 < �0(�) < d0 , and (3.14) takes the form of

Z
M

prp − n(rp + �)

(rp + �)2

���u�M∖B�0(�)(x0)

���p dv (3.15)

≤ p

�Z
M

∣u∣p

rp
dv

� p−1
p
�Z
M

∣∇u∣p dv
� 1
p
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where �M∖B�0(�)(x0) is the characteristic function on B�0(�)(x0) .

Since prp−n(rp+�)
(rp+�)2

���u�M∖B�0(�)(x0)

���p ≥ 0, we apply monotone convergence the-

orem to the left hand side of (3.15) by letting � → 0, we get the desired

inequality for u ∈ C∞0 (M) with u
r
∈ Lp(M) .

As immediate application of the Hardy type inequalities, we obtain the

following topological application via the same idea as in Proposition 5.1 in

[45].

Theorem 3.5. [49] Let M be a complete Riemmanian n-manifold. If M

supports inequality (3.9) with n > p for every u ∈ C∞0 (M) , then M is not

compact.

Proof: If M were compact, then substituting u ≡ 1 into (3.9) we would haveR
M

∣u∣p
rp
dv = 0, or u = 0 a.e. This is a contradiction.

Since geometric inequalities are linked to topology, and since curvature is

related to topology, we have the following geometric application:

Theorem 3.6. [49] Let M be a complete Riemannian n-manifold with n > p,

and x0 ∈M. If M supports inequality (3.9) for every u ∈ C∞0 (M) , then there

does not exists a constant � > 0 such that the Ricci curvature RicM ≥ �.

Proof: Suppose on the contrary, then by Bonnet-Myers’ Theorem (cf. [3, 33]),

M would be compact. This contradicts Theorem 3.5.
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3.3 Geometric inequalities on Cartan-Hadamard manifolds

3.3.1 Weighted Hardy inequality and Weighted Sobolev inequality

In [24], Hardy and Littlewood first gave a one-dimensional weighted Hardy

inequality and proved the constant is sharp via Bliss lemma (cf. [1]). After

that, plenty of work has been done on weighted Hardy inequalities in Euclidean

spaces (e.g. [38], [39]). Employing the Divergence theorem and the Hessian

comparison theorem, we obtained the following weighted Hardy inequality on

Cartan-Hadamard manifolds.

Theorem 3.7 (Weighted Hardy Inequality). [29] Let M be an n-dimensional

Cartan-Hadamard manifold. Let x0 be a fixed point and r be the distance from

x0. Then for every u ∈ C∞0 (M), the following inequality holds:

�
n+ �− p

p

�p Z
M
r�
∣u∣p

rp
dv ≤

Z
M
r�∣∇u∣pdv, (3.16)

where dv is the volume element on M , 1 ≤ p <∞ and n+ �− p > 0.

Proof: Let u = (r2 + �)
�
2 , where  ∈ C∞0 (M) and � < 0. We have

∣∇u∣ = ∣�
2

(r2 + �)
�
2
−1 ∇r2 + (r2 + �)

�
2∇ ∣.

Since for 1 ≤ p <∞, the following inequality is valid:

∣v + w∣p − ∣v∣p ≥ p∣v∣p−2 ⟨v, w⟩ ,

for any v, w ∈ V , where V is a vector space with the inner product ⟨ , ⟩. This
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yields

r�∣∇u∣p ≥ pr�∣�
2

(r2 + �)
�
2
−1 ∇r2∣p−2

®
�

2
(r2 + �)

�
2
−1 ∇r2, (r2 + �)

�
2∇ 

¸

+r�∣�
2

(r2 + �)
�
2
−1 ∇r2∣p

= p�∣�∣p−2r�+p−1(r2 + �)(�
2
−1)(p−2)+�−1 ∣ ∣p−2 ⟨∇ , ∇r⟩

+∣�∣pr�+p(r2 + �)(
�
2
−1)p∣ ∣p.

Integrating the above inequality over M and applying the divergence the-

orem, we obtain

Z
M
r�∣∇u∣pdv ≥ ∣�∣p

Z
M
r�+p(r2 + �)(

�
2
−1)p∣ ∣pdv

+∣�∣p−1
Z
M
r�+p−1(r2 + �)(

�
2
−1)p+1Δr∣ ∣pdv

+(� + p− 1)∣�∣p−1
Z
M
r�+p−2(r2 + �)(

�
2
−1)p+1∣ ∣pdv

+(�p− 2p+ 2)∣�∣p−1
Z
M
r�+p(r2 + �)(

�
2
−1)p∣ ∣pdv.

By the Hessian comparison theorem, rΔr ≥ n− 1, then

Z
M
r�∣∇u∣pdv ≥ ∣�∣p

Z
M
r�+p(r2 + �)(

�
2
−1)p∣ ∣pdv

+(n− 1)∣�∣p−1
Z
M
r�+p−2(r2 + �)(

�
2
−1)pr2∣ ∣pdv

+(� + p− 1)∣�∣p−1
Z
M
r�+p−2(r2 + �)(

�
2
−1)pr2∣ ∣pdv

+(�p− 2p+ 2)∣�∣p−1
Z
M
r�+p(r2 + �)(

�
2
−1)p∣ ∣pdv

= ∣�∣p
Z
M
r�+p(r2 + �)(

�
2
−1)p∣ ∣pdv

+(n+ �− p+ �p)∣�∣p−1
Z
M
r�+p(r2 + �)(

�
2
−1)p∣ ∣pdv.
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Let � = p−�−n
p

< 0, then n+ �− p+ �p = 0, and we obtain

Z
M
r�∣∇u∣pdv ≥

�
n+ �− p

p

�p Z
M
r�+p(r2 + �)−p∣u∣pdv.

Since r�+p(r2 + �)−p∣u∣p ≥ 0 and
R
M r� ∣u∣

p

rp
dv < ∞ if n + � − p > 0, we apply

monotone convergence theorem to the right hand side of the above inequality

by letting �→ 0 and we get the desired (3.16) for u ∈ C∞0 (M).

Sobolev inequalities, also called Sobolev imbedding theorems, are very pop-

ular in partial differential equations or in the calculus of variations, and have

been investigated by a great number of authors (cf. [40],[31]). In geomet-

ric analysis, the Sobolev inequality plays an important role as well. For in-

stance, it is well known that the isoperimetric inequality is equivalent to the

Sobolev inequality on manifold M . It is also shown that if M is a complete

n-dimensional Riemannian manifold and the Sobolev inequalities holds on M ,

then the geodesic ball has maximal volume growth (cf. [36]). On Cartan-

Hadamard manifolds, the following Sobolev inequality holds (cf. [27], [13],

[26]):

Theorem B. Let M be an n-dimensional Cartan-Hadamard manifold. For

any u ∈ C∞0 (M), the following inequality holds:

�Z
M
∣u∣p∗dv

� 1
p∗ ≤ C

�Z
M
∣∇u∣pdv

� 1
p

, (3.17)

where 1 ≤ p < n, p∗ = np
n−p and C is a positive constant independent of u.

Similar to the weighted Hardy inequality, there is a weighted Sobolev in-

equality on Cartan-Hadamard manifolds.

29



Theorem 3.8 (Weighted Sobolev Inequality). [29] Let M be an n-dimensional

Cartan-Hadamard manifold. Let x0 be a fixed point and r be the distance from

x0. Then for every u ∈ C∞0 (M), the following inequality holds:

�Z
M
r�p

∗ ∣u∣p∗dv
� 1
p∗ ≤ C

�Z
M
r�p∣∇u∣pdv

� 1
p

, (3.18)

where dv is the volume element on M , 1 ≤ p < n, �−1
n

+ 1
p
> 0, p∗ = np

n−p and

C is a positive constant independent of u.

Throughout the proof, C denotes a constant, depending on the parameters

n, �, p, whose value may change from line to line.

Proof: It is clear that if � = 0, (3.18) is just the Sobolev inequality. If � ∕= 0,

since �−1
n

+ 1
p
> 0, then

R
M r�p

∗∣u∣p∗dv < ∞ and
R
M r�p∣∇u∣pdv < ∞ for any

u ∈ C∞0 (M). Note that for any � > 0 and u ∈ C∞0 (M), (r2 + �)
�
2 u ∈ C∞0 (M).

Apply (3.17), we have

�Z
M
∣(r2 + �)

�
2 u∣p∗dv

� 1
p∗ ≤ C

�Z
M
∣∇
�
(r2 + �)

�
2 u
�
∣pdv

� 1
p

.

Since

∇
�
(r2 + �)

�
2 u
�

= (r2 + �)
�
2∇u+

�

2
(r2 + �)

�
2
−1u∇r2,

Then by Minkowski inequality

�Z
M
∣∇
�
(r2 + �)

�
2 u
�
∣pdv

� 1
p

≤
�Z

M
∣(r2 + �)

�
2∇u∣pdv

� 1
p

+
�Z

M
∣�
2

(r2 + �)
�
2
−1u∇r2∣pdv

� 1
p

.

If � < 0, �Z
M
∣(r2 + �)

�
2∇u∣pdv

� 1
p ≤

�Z
M
r�p∣∇u∣pdv

� 1
p

.
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And by the weighted Hardy inequality

�Z
M
∣�
2

(r2 + �)
�
2
−1u∇r2∣pdv

� 1
p ≤ ∣�∣

�Z
M
r�p
∣u∣p

rp
dv

� 1
p

≤ C
�Z

M
r�p∣∇u∣pdv

� 1
p

.

Combine the above two inequalities, we obtain

�Z
M
∣(r2 + �)

�
2 u∣p∗dv

� 1
p∗ ≤ C

�Z
M
r�p∣∇u∣pdv

� 1
p

.

Letting � → 0, we obtain the desired (3.18) by the monotone convergence

theorem.

If � > 0, then
�R
M ∣∇

�
(r2 + �)

�
2 u
�
∣pdv

� 1
p ≥

�R
M r�p

∗∣u∣p∗dv
� 1
p∗ obviously. On

the other hand,

Z
M
∣(r2 + �)

�
2∇u∣pdv ≤ 2

�p
2

Z
M

�
r�p + �

�p
2

�
∣∇u∣pdv,

And by the weighted Hardy inequality

Z
M
∣�
2

(r2 + �)
�
2
−1u∇r2∣pdv ≤ ∣�∣p

Z
M

(r2 + �)
�p
2
∣u∣p

rp
dv

≤ 2
�p
2 ∣�∣p

Z
M

�
r�p + �

�p
2

� ∣u∣p
rp

dv

≤ C
Z
M
r�p∣∇u∣pdv + C�

�p
2

Z
M
∣∇u∣pdv.

Combine the above three inequalities we have

�Z
M
r�p

∗ ∣u∣p∗dv
� 1
p∗ ≤ C

�Z
M

�
r�p + �

�p
2

�
∣∇u∣pdv

� 1
p

.

Let �→ 0, we obtain the desired (3.18).
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3.3.2 Generalized Caffarelli-Kohn-Nirenberg Type Inequalities

In 1984, Caffarelli-Kohn-Nirenberg obtained a class of first order interpolation

inequalities with weights on Euclidean spaces (cf. [6]).

Theorem. Let p, q, r, �, �, 
, �, a be fixed real numbers satisfying

p, q ≥ 1, r > 0, 0 ≤ a ≤ 1, (3.19)

1

r
+



n
> 0,

1

p
+
�

n
> 0,

1

q
+
�

n
> 0, (3.20)

where


 = a� + (1− a)�. (3.21)

Then there exists a positive constant C such that the following inequality holds

for all u ∈ C∞0 (M)

∥r
u∥Lr ≤ C∥r�∣∇u∣∥aLp ∥r�u∥1−a
Lq (3.22)

if and only if the following relations hold:

1

r
+



n
= a(

1

p
+
�− 1

n
) + (1− a)(

1

q
+
�

n
). (3.23)

(this is dimensional balance),

�− � ≥ 0, if a > 0, (3.24)
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and

�− � ≤ 1, if a > 0 and
1

r
+



n
=

1

p
+
�− 1

n
. (3.25)

These inequalities include many results such as Hardy inequality and Sobolev

inequality. In 1986, C. S. Lin extended their result to higher order derivatives

(cf. [30]). Recently, a special case of Caffarelli-Kohn-Nirenberg type inequal-

ity on sub-Riemannian manifold was proved in [21] via Hardy inequality and

Sobolev inequality. Unlike Caffarelli-Kohn-Nirenberg’s procedure, we obtain

Caffarelli-Kohn-Nirenberg type inequalities on Cartan-Hadamard manifolds

by employing the weighted Sobolev inequality and weighted Hardy inequality.

Theorem 3.9. [29] Let M be an n-dimensional Cartan-Hadamard manifold.

Let x0 be a fixed point and r be the distance from x0. Suppose there exists a

constant C̃ such that

Area(∂Br(x0)) ≤ C̃rn−1. (3.26)

Let p, q, s, �, �, 
, �, a be fixed real numbers satisfying

q, s ≥ 1, 1 ≤ p < n, 0 ≤ a ≤ 1, (3.27)

1

s
+



n
> 0,

1

p
+
�

n
> 0,

1

q
+
�

n
> 0, (3.28)

where


 = a� + (1− a)�. (3.29)

Then there exists a positive constant C such that the following inequality holds

for all u ∈ C∞0 (M)

∥r
u∥Ls ≤ C∥r�∣∇u∣∥aLp ∥r�u∥1−a
Lq (3.30)
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if the following relations hold:

1

s
+



n
= a(

1

p
+
�− 1

n
) + (1− a)(

1

q
+
�

n
). (3.31)

�− � ≥ 0, if a > 0, (3.32)

�− � ≤ 1, if a > 0 and
1

s
+



n
=

1

p
+
�− 1

n
. (3.33)

Throughout the proof, C denotes a constant, depending on the parameters,

whose value may change from line to line.

Proof: M is a Cartan-Hadamard manifold. Then (3.27)-(3.28) tell us that

∥r
u∥Ls , ∥r�∣∇u∣∥Lp , ∥r�u∥Lq <∞.

If a = 0, then (3.30) holds obviously. So we only need to treat the case

0 < a ≤ 1.

Case I: a = 1.

When a = 1, (3.29) and (3.32)-(3.33) imply

�− 1 ≤ 
 = � ≤ �,
1

s
+



n
=

1

p
+
�− 1

n
.

Let p∗ = np
n−p . Then p ≤ s ≤ p∗ and there exists t ∈ [0, 1] such that

s = tp+ (1− t)p∗ =
p(n− tp)
n− p

,

and

�s = ns(
1

p
+
�− 1

n
)− n = �s− tp = � (tp+ (1− t)p∗)− tp.

Apply Hölder inequality, weighted Hardy’s inequality (3.16) and weighted

34



Sobolev inequality (3.18), we obtain

�Z
M
r
s∣u∣sdv

� 1
s

=
�Z

M
r�(tp+(1−t)p∗)−tp∣u∣tp+(1−t)p∗dv

� 1
s

≤
�Z

M
(r�tp−tp∣u∣tp)

1
t dv

� t
s
�Z

M
(r�(1−t)p∗∣u∣(1−t)p∗)

1
1−tdv

� 1−t
s

≤ C
�Z

M
r�p∣∇u∣pdv

� t
s
�Z

M
r�p∣∇u∣pdv

� p∗
ps

(1−t)

= C
�Z

M
r�p∣∇u∣pdv

� 1
ps

(tp+(1−t)p∗)

= C
�Z

M
r�p∣∇u∣pdv

� 1
p

This is the desired (3.30) for a = 1.

Case II: 0 < a < 1 and 0 ≤ �− � ≤ 1.

Since 0 ≤ �− � ≤ 1, then it is easy to check p ≤
�

1
p

+ �−�−1
n

�−1
≤ p∗. An

argument similar to the Case I shows that there exists t ∈ [0, 1] such that

�
1

p
+
�− � − 1

n

�−1

=
p(n− tp)
n− p

,

and

�

�
1

p
+
�− � − 1

n

�−1

= �

�
1

p
+
�− � − 1

n

�−1

− tp.

Hence,

Z
M
r�(

1
p

+�−�−1
n )

−1

∣u∣(
1
p

+�−�−1
n )

−1

dv ≤ C
�Z

M
r�p∣∇u∣pdv

� 1
p(

1
p

+�−�−1
n )

−1

.

(3.34)

By (3.29) and (3.31), 1
s

= a
�

1
p

+ �−�−1
n

�
+ 1−a

q
. For s = 1, apply Hölder
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inequality

�Z
M
r
s∣u∣sdv

� 1
s

=
Z
M
ra�+(1−a)�∣u∣a+(1−a)dv

≤
�Z

M
(ra�∣u∣a)

1
a(

1
p

+�−�−1
n )

−1

dv
�a( 1

p
+�−�−1

n ) �Z
M

�
r(1−a)�∣u∣1−a

� q
1−a dv

� 1−a
q

=
�Z

M
r�(

1
p

+�−�−1
n )

−1

∣u∣(
1
p

+�−�−1
n )

−1

dv
�a( 1

p
+�−�−1

n ) �Z
M
r�q∣u∣qdv

� 1−a
q

Combine (3.34) and the above inequality, we obtain the desired (3.30). For

s > 1, 1 = a
�

1
p

+ �−�−1
n

�
+ 1−a

q
+ s−1

s
. Then apply Hölder inequality

Z
M
r
s∣u∣sdv

=
Z
M
ra�+(1−a)�+
(s−1)∣u∣a+(1−a)+(s−1)dv

≤
�Z

M
(ra�∣u∣a)

1
a(

1
p

+�−�−1
n )

−1

dv
�a( 1

p
+�−�−1

n ) �Z
M

�
r(1−a)�∣u∣1−a

� q
1−a dv

� 1−a
q

�Z
M

�
r
(s−1)∣u∣s−1

� s
s−1 dv

� s−1
s

=
�Z

M
r�(

1
p

+�−�−1
n )

−1

∣u∣(
1
p
− 1+�

n )
−1

dv
�a( 1

p
+�−�−1

n ) �Z
M
r�q∣u∣qdv

� 1−a
q

�Z
M
r
s∣u∣sdv

� s−1
s

Combine (3.34) and the above inequality, we obtain the desired (3.30).

Case III: 0 < a < 1 and �− � > 1.

The idea of proving Case III follows [6]. (3.33) tells us that 1
s
+ 


n
∕= 1

p
+ �−1

n
.

Setting A = ∥r�∣∇u∣∥Lp and B = ∥r�u∥Lq , then (3.30) can be written as

∥r
u∥Ls ≤ CAaB1−a.

Rescaling u such that AaB1−a = 1, our goal becomes to show ∥r
u∥Ls is
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bounded by a constant. From now on, we assume AaB1−a = 1, since this

normalization may be achieved by scaling.

To investigate our goal, we introduce a smooth compactly-supported func-

tion �(x) (0 ≤ �(x) ≤ 1) on M with the properties

�(x) =

8><>:
1 if r(x) < 1

2
,

0 if r(x) > 1.

We have already checked that for � = � and � = � − 1, (3.30) holds.

Hence, we conclude that

Z
M
r�m∣u∣mdv ≤ C and

Z
M
r�k∣u∣kdv ≤ C (3.35)

where �, �, m, k satisfy

� = b� + (1− b)� (3.36)

1

m
=

b

p
+

1− b
q
− b

n

� = d(�− 1) + (1− d)�

1

k
=

d

p
+

1− d
q

for some choice of b and d, 0 ≤ b, d ≤ 1, and provided that

1

m
+
�

n
> 0,

1

k
+
�

n
> 0. (3.37)
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Obviously,

1

s
+



n
= a(

1

p
+
�− 1

n
) + (1− a)(

1

q
+
�

n
)

1

m
+
�

n
= b(

1

p
+
�− 1

n
) + (1− b)(1

q
+
�

n
)

1

k
+
�

n
= d(

1

p
+
�− 1

n
) + (1− d)(

1

q
+
�

n
)

If 1
p

+ �−1
n

< 1
q

+ �
n
, then take b < a < d, otherwise take d < a < b such

that

1

k
+
�

n
<

1

s
+



n
<

1

m
+
�

n
(3.38)

A direct computation shows that

1

s
− 1

m
= (a− b)(1

p
− 1

q
− 1

n
) +

a

n
(�− �)

1

s
− 1

k
= (a− d)(

1

p
− 1

q
) +

a

n
(�− � − 1)

Since a > 0 and � − � > 1, then 0 < a
n
(� − � − 1) < a

n
(� − �). Therefore if

∣b− a∣ and ∣a− d∣ are sufficiently small, then (3.37) holds and 1
m
< 1

s
, 1
k
< 1

s
.

Meanwhile, Fubini theorem and (3.26) show that

Z
B1(x0)

r
(
−�)ks
k−s dv ≤

Z 1

0
r

(
−�)ks
k−s Area(∂Br(x0))dr (3.39)

≤ C
Z 1

0
r

(
−�)ks
k−s rn−1dr

≤ C
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and

Z
M∖B 1

2
(x0)

r
(
−�)ms
m−s dv ≤

Z ∞
1
2

r
(
−�)ms
m−s Area(∂Br(x0))dr (3.40)

≤ C
Z ∞

1
2

r
(
−�)ks
k−s rn−1dr

≤ C

Hence, we obtain the following inequalities by applying Hölder inequality

�Z
M
r
s�∣u∣sdv

� 1
s ≤

�Z
M
r�k∣u∣kdv

� 1
k
�Z

B1(x0)
r

(
−�)ks
k−s dv

� 1
s
− 1
k

(3.41)

≤ C
�Z

M
r�k∣u∣kdv

� 1
k

,

and

�Z
M
r
s(1− �)∣u∣sdv

� 1
s

(3.42)

≤
�Z

M
r�m∣u∣mdv

� 1
m

�Z
M∖B 1

2
(x0)

r
(
−�)ms
m−s dv

� 1
s
− 1
m

≤ C
�Z

M
r�m∣u∣mdv

� 1
m

.

Combining (3.35), (3.41) and (3.42), we deduce that

∥r
u∥Ls ≤ C

The following theorem gives us a sharp constant for (3.30).

Theorem 3.10. [50] Let M be an n-dimensional Cartan-Hadamard manifold.

Let s > p, 1 < p < n and �, � be fixed real numbers satisfying
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1

p
+
�

n
,

p− 1

p(s− 1)

�
1 +

�

n

�
,

1

s
+



n
> 0 (3.43)

where


 =
1

s
(�− 1) +

p− 1

ps
� (3.44)

Then for any point x0, any u ∈ C∞0 (M), the following inequality holds:

Z
M

r
s∣u∣sdv ≤ s

n+ 
s

�Z
M

r�p∣∇u∣pdv

� 1
p
�Z
M

r�∣u∣
p(s−1)
p−1 dv

� p
p−1

. (3.45)

where dv is the volume element of M , r is the distance to x0.

The inequality is sharp when M = ℝn with the assumption that n + � <�
1− � + �

p

�
(s−1)p
s−p . This has been discussed in [53].

Proof: As the sectional curvature of M is non-positive, we know that Δr2 ≥

2n by the hessian comparison theorem. Start with
R
M
r
s∣u∣sdv, and apply the

divergence theorem, we have

R
M
r
s∣u∣sdv ≤ 1

2n

R
M
r
s∣u∣sΔr2dv

= 1
2n

R
M

(div(r
s∣u∣s∇r2)− ⟨∇(r
s∣u∣s), ∇r2⟩) dv

= − 1
2n

R
M
⟨
sr
s−1∇r∣u∣s + r
ss∣u∣s−2u∇u, 2r∇r⟩dv

= − 1
n

R
M

(
sr
s∣u∣s + ⟨r
s+1s∣u∣s−2u∇u, ∇r⟩) dv

(3.46)

Combine the like terms, one obtains

�
1 +


s

n

� Z
M

r
s∣u∣sdv ≤ − 1

n

Z
M

⟨r
s+1s∣u∣s−2u∇u, ∇r⟩dv (3.47)

40



Since 
 = 1
s
(�−1)+ p−1

ps
, then �+ p−1

p
� = 
s+1. Apply the Höler’s inequality,

�
1 + 
s

n

� R
M
r
s∣u∣sdv

≤ − 1
n

R
M
⟨r
s+1s∣u∣s−2u∇u, ∇r⟩dv

≤ s
n

�R
M
r�p∣∇u∣pdv

� 1
p
�R
M
r
p−1
p
� p
p−1 ∣u∣(s−1) p

p−1 ∣∇r∣
p
p−1dv

� p−1
p

= s
n

�R
M
r�p∣∇u∣pdv

� 1
p
�R
M
r�∣u∣

p(s−1)
p−1 dv

� p−1
p

(3.48)

Then (3.45) follows immediately.

3.4 Weighted-norm Inequalities for Functions with Compact Support

in M∖{x0}

Let M be a complete Riemannian n-manifold. For any p ∈M , giving a vector

X ∈ TpM , let 
(t) be the unique geodesic starting from p along the direction

X. When t is small, we have expp(tX) = 
(t) for t > 0, and 
 is the unique

minimal geodesic joining p and expp(tX).

Let

t0 = sup{t > 0 : 
 is the unique minimal geodesic joining p and 
(t)}.

If t0 < ∞, then 
(t0) is called a cut point of p. The set of all cut points of p

is called the cut locus of p (denoted by Cut(p)).

If we denote Sp = {X ∈ TpM : ∥X∥ = 1}, it is clear that for any X ∈

Sp there can be at most one cut point on the geodesic expp(tX), t > 0. If

expp(t0X) = q is a cut point of p then we set �(X) = d(p, q), the geodesic

distance between p and q. If there is no cut point we set �(X) =∞.
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Define

Ep = {tX : 0 ≤ t < �(X), X ∈ Sp}

Then it can be shown that expp : Ep → expp(Ep) is a diffeomophism. Also

M = expp(Ep) ∪ Cut(p).

Cut(p) has n-dimensional measure zero.

If Cut(p) = ∅, it is clear that p is a pole in M . If Cut(p) ∕= ∅, notice

that Ep is a star-shaped domain of TpM . Hence one can construct a family of

smooth star-shaped domains E�
p ⊂ Ep such that lim

�→0
E�
p = Ep in the sense that

∪
�>0
E�
p = Ep. Let Ω� = expp(E

�
p).

It is important to note that the function r(x) = d(x, p) is smooth on

M∖(Cut(p) ∪ {p}) and the function satisfies

∣∇r∣ = 1 on M∖(Cut(p) ∪ {p}).

Theorem 3.11. [50] Let M be a complete noncompact Riemannian n-manifold.

Then for every x0 ∈ M , every u ∈ C∞0 (M∖ {x0}), and every a, b ∈ ℝ , with

a+ b ∕= 1, the following inequalities hold:

(i) For p ≥ 2,

1

p

Z
M

a+ b− rΔr
ra+b+1

∣u∣p dv ≤

�Z
M

∣u∣p

raq
dv

� 1
q
�Z
M

∣∇u∣p

rbp
dv

� 1
p

. (3.49)

(ii) For 1 < p < 2,

1

p

Z
M

a+ b− rΔr
ra+b+1

(∣u∣2 + �)
p
2dv ≤

�Z
M

∣u∣p

raq
dv

� 1
q
�Z
M

∣∇u∣p

rbp
dv

� 1
p

(3.50)
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where � > 0, dv is the volume element of M , r is the distance to x0, and

p, q > 1 satisfy 1
p

+ 1
q

= 1. In particular, if RicM ≥ 0 and a+ b+ 1 ≥ n ,

(a+ b+ 1)− n
p

Z
M

∣u∣p

ra+b+1
∣u∣p dv ≤

�Z
M

∣u∣p

raq
dv

� 1
q
�Z
M

∣∇u∣p

rbp
dv

� 1
p

. (3.51)

Proof: Given any fixed point x0 in M , let cut(x0) be the cut locus of x0. If

cut(x0) ∕= ∅, let Ω� = expx0(E
�
x0

) and Ω = expx0(Ex0). Then lim
�→0

Ω� = Ω, and

for ∀x ∈ Ω�∖{x0}, there exists a unique normal geodesic linking x to x0. Thus,

∇r is well defined in Ω�∖{x0}, and ∣∇r∣ = 1 a.e. in Ω�.

For p ≥ 2, for every u ∈ C∞0 (M∖ {x0}), consider II := p
R
Ω�

¬
∣u∣p−2u ∇r

ra+b
,∇u

¶
dv .

Then it follows from the Green’s formula that

II =
1

1− (a+ b)

Z
Ω�

¬
∇∣u∣p, ∇r1−(a+b)

¶
dv

= − 1

1− (a+ b)

�Z
Ω�

∣u∣pΔr1−(a+b)dv −
Z
∂Ω�

∣u∣p∂r
1−(a+b)

∂�
dS
�
,

where � is the outward unit normal vector of ∂Ω�.

Since a+ b ∕= 1 which implies 1− (a+ b) ∕= 0, then 1
1−(a+b)

∂r1−(a+b)

∂�
> 0 on

∂Ω�. One obtains

1
1−(a+b)

R
Ω�

¬
∇∣u∣p, ∇r1−(a+b)

¶
dv

≥ − 1
1−(a+b)

R
Ω�

∣u∣pΔr1−(a+b)dv

= − 1
1−(a+b)

R
Ω�

∣u∣p
�

1−(a+b)
ra+b

Δr + (1− (a+ b))(−(a+ b)) ∣∇r∣
2

ra+b+1

�
dv

=
R
Ω�

∣u∣p a+b−rΔr
ra+b+1 dv.

(3.52)
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On the other hand, Hölder inequality shows

∣II∣ ≤ p

�R
Ω�

��� ∣u∣p−2u∇r
ra

���q dv� 1
q
�R

Ω�

���∇u
rb

���p dv� 1
p

= p

�R
Ω�

∣u∣p
raq
dv

� 1
q
�R

Ω�

∣∇u∣p
rbp

dv

� 1
p

.

(3.53)

Combine (3.52) and (3.53), one obtains

Z
Ω�

∣u∣pa+ b− rΔr
ra+b+1

dv ≤
�Z

Ω�

∣u∣p

raq
dv

� 1
q
�Z

Ω�

∣∇u∣p

rbp
dv

� 1
p

. (3.54)

Since cut(x0) is a measure zero set and u ∈ C∞0 (M∖ {x0}), then let �→ 0,

the desired (3.49) follows.

If cut(x0) = ∅, then consider ĪI := p
R
M

¬
∣u∣p−2u ∇r

ra+b
,∇u

¶
dv .

By the divergence theorem, and ∣∇r∣ = 1 a.e., one has

ĪI = 1
1−(a+b)

R
M

¬
∇∣u∣p, ∇r1−(a+b)

¶
dv

= 1
1−(a+b)

R
M

�
div(∣u∣p∇r1−(a+b))− ∣u∣pdiv(∇r1−(a+b))

�
dv

= − 1
1−(a+b)

R
M
∣u∣pdiv(∇r1−(a+b)) dv

= − 1
1−(a+b)

R
M
∣u∣p

�
1−(a+b)
ra+b

Δr + (1− (a+ b))(−(a+ b)) ∣∇r∣
2

ra+b+1

�
dv

=
R
M
∣u∣p a+b−rΔr

ra+b+1 dv

(3.55)

Similarly, Hölder’s inequality shows

∣ĪI∣ ≤ p
�R
M

��� ∣u∣p−2u∇r
ra

���q dv� 1
q
�R
M

���∇u
rb

���p dv� 1
p

= p

�R
M

∣u∣p
raq
dv

� 1
q
�R
M

∣∇u∣p
rbp

dv

� 1
p

(3.56)

Combine (3.55) and (3.56), one obtains the desired (3.49).
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For the case 1 < p < 2, if cut(x0) ∕= ∅, in case that u ≡ 0 on a subset of

Ω�, we consider II1 := p
R
Ω�

D
(∣u∣2 + �)

p−2
2 u ∇r

ra+b
,∇u

E
dv , where � > 0.

Then it follows from the Green’s formula that

II1 =
1

1− (a+ b)

Z
Ω�

¬
∇(∣u∣2 + �)

p
2 , ∇r1−(a+b)

¶
dv

= − 1

1− (a+ b)

�Z
Ω�

(∣u∣2 + �)
p
2 Δr1−(a+b)dv −

Z
∂Ω�

(∣u∣2 + �)
p
2
∂r1−(a+b)

∂�
dS
�
,

Similarly, one obtains

1
1−(a+b)

R
Ω�

¬
∇(∣u∣2 + �)

p
2 , ∇r1−(a+b)

¶
dv

≥ − 1
1−(a+b)

R
Ω�

(∣u∣2 + �)
p
2 Δr1−(a+b)dv

= − 1
1−(a+b)

R
Ω�

(∣u∣2 + �)
p
2

�
1−(a+b)
ra+b

Δr + (1− (a+ b))(−(a+ b)) ∣∇r∣
2

ra+b+1

�
dv

=
R
Ω�

(∣u∣2 + �)
p
2
a+b−rΔr
ra+b+1 dv

(3.57)

And since 1 < p < 2,

∣II∣ ≤ p

 R
Ω�

����� (∣u∣2+�)
p−2
2 u∇r

ra

�����
q

dv

! 1
q
�R

Ω�

���∇u
rb

���p dv� 1
p

= p

�R
Ω�

(∣u∣2+�)
(p−2)q

2 ∣u∣q
raq

dv

� 1
q
�R

Ω�

∣∇u∣p
rbp

dv

� 1
p

≤ p

�R
Ω�

∣u∣p
raq
dv

� 1
q
�R

Ω�

∣∇u∣p
rbp

dv

� 1
p

(3.58)

Combine (3.57) and (3.58), one obtains

Z
Ω�

(∣u∣2 + �)
p
2
a+ b− rΔr
ra+b+1

dv ≤
�Z

Ω�

∣u∣p

raq
dv

� 1
q
�Z

Ω�

∣∇u∣p

rbp
dv

� 1
p

(3.59)

Let �→ 0, the desired (3.50) follows.

45



If cut(x0) = ∅, consider ¯II1 := p
R
M

D
(∣u∣2 + �)

p−2
2 u ∂

ra+b
,∇u

E
dv .

By the divergence theorem, and ∣∇r∣ = 1 a.e., one has

¯II1 = 1
1−(a+b)

R
M

¬
∇(∣u∣2 + �)

p
2 , ∇r1−(a+b)

¶
dv

= 1
1−(a+b)

R
M

�
div((∣u∣2 + �)

p
2∇r1−(a+b))− (∣u∣2 + �)

p
2 div(∇r1−(a+b))

�
dv

= − 1
1−(a+b)

R
M

(∣u∣2 + �)
p
2 div(∇r1−(a+b)) dv

=
R
Ω�

(∣u∣2 + �)
p
2
a+b−rΔr
ra+b+1 dv

(3.60)

Hölder’s inequality and the assumption 1 < p < 2 show that

∣ ¯II1∣ ≤ p

 R
M

����� (∣u∣2+�)
p−2
2 u∇r

ra

�����
q

dv

! 1
q �R

M

���∇u
rb

���p dv� 1
p

= p

�R
M

(∣u∣2+�)
(p−2)q

2 ∣u∣q
raq

dv

� 1
q
�R
M

∣∇u∣p
rbp

dv

� 1
p

≤ p

�R
M

∣u∣p
raq
dv

� 1
q
�R
M

∣∇u∣p
rbp

dv

� 1
p

(3.61)

Combine (3.60) and (3.61), one obtains the desired (3.50).

In particular, if RicM ≥ 0 then by the Laplacian comparison theorem

rΔr ≤ n− 1. If a + b + 1 ≥ n, then a + b− rΔr ≥ a + b + 1− n ≥ 0. Hence

we obtain

1

p

Z
M

∣u∣pa+ b− rΔr
ra+b+1

dv ≥ a+ b+ 1− n
p

Z
M

∣u∣p

ra+b+1
dv

and

1

p

Z
M

(∣u∣2 + �)
p
2
a+ b− rΔr
ra+b+1

dv ≥ a+ b+ 1− n
p

Z
M

(∣u∣2 + �)
p
2

ra+b+1
dv

≥ a+ b+ 1− n
p

Z
M

∣u∣p

ra+b+1
dv
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Combine the above inequalities and (3.49)-(3.50), we obtain the desired (3.51).

Theorem 3.12. [50] Let M be an n-dimensional Cartan-Hadamard manifold.

Then for every x0 ∈ M , every u ∈ C∞0 (M∖ {x0}), and every a, b ∈ ℝ , with

a+ b+ 1 ≤ n , the following inequality holds:

n− (a+ b+ 1)

p

Z
M

∣u∣p

ra+b+1
dv ≤

�Z
M

∣u∣p

raq
dv

� 1
q
�Z
M

∣∇u∣p

rbp
dv

� 1
p

(3.62)

where dv is the volume element of M , r is the distance to x0, and p, q satisfy

1
p

+ 1
q

= 1.

Proof: Since M is a Cartan-Hadamard manifold, then every point in M is

a pole. Thus, given a fixed point x0 ∈ M , ∇r is well defined in M∖{x0}. By

the Hessian comparison theorem, rΔr ≥ n− 1.

If p ≥ 2, from (3.55), one obtains

−ĪI = 1
1−(a+b)

R
M
∣u∣p

�
1−(a+b)
ra+b

Δr + (1− (a+ b))(−(a+ b)) ∣∇r∣
2

ra+b+1

�
dv

≥ 1
1−(a+b)

R
M
∣u∣p (1−(a+b))(n−(a+b+1))

ra+b+1 dv

= (n− (a+ b+ 1))
R
M

∣u∣p
ra+b+1dv

(3.63)

Combine (3.63) and (3.56), one obtains the desired (3.62).
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If 1 < p < 2, from (3.60), one obtains

− ¯II1 = 1
1−(a+b)

R
M

(∣u∣2 + �)
p
2

�
1−(a+b)
ra+b

Δr + (1− (a+ b))(−(a+ b)) ∣∇r∣
2

ra+b+1

�
dv

≥ 1
1−(a+b)

R
M

(∣u∣2 + �)
p
2

(1−(a+b))(n−(a+b+1))
ra+b+1 dv

= (n− (a+ b+ 1))
R
M

(∣u∣2+�)
p
2

ra+b+1 dv

≥ (n− (a+ b+ 1))
R
M

∣u∣p
ra+b+1dv

(3.64)

Combine (3.64) and (3.61), one obtains the desired (3.62).

Using the same technique and the Hessian comparison theorem (Theorem

2.3), we obtain the following:

Theorem 3.13. Let M be a complete n-dimensional manifold with a pole of

radial curvature 0 ≤ K ≤ c(1−c)
r2

, where c ∈ [0, 1]. Then for every u ∈ C∞0 (M)

and every a, b ∈ ℝ with c(n− 1)− (a+ b) ≥ 0, the following inequality holds:

cn− (a+ b+ c)

p

Z
M

∣u∣p

ra+b+1
dv ≤

�Z
M

∣u∣p

raq
dv

� 1
q
�Z
M

∣∇u∣p

rbp
dv

� 1
p

(3.65)

where dv is the volume element of M , r is the distance to x0, and p, q satisfy

1
p

+ 1
q

= 1.

In the Euclidean spaces ℝn, Costa gave a short proof of (3.62) for the case

p = 2 in [9] using divergence theorem and completing the square technique.

Later, Catrina and Costa (cf. [8]) showed the constants are sharp when p = 2

and they found the functions that achieve them. However, for p ∕= 2, the

sharpness of the constants is still unknown.
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Chapter 4

Application to p-harmonic Geometry

We use Hardy type inequalities and techniques and results of S.-C. Chang,

J.-T. Chen and S.W. Wei (cf. [10]), to study Liouville theorems of p-harmonic

functions, p-harmonic morphisms, and weakly conformal maps, with assump-

tion only on curvature and q-energy growth. As further applications we obtain

Picard type theorems in p-harmonic geometry.

4.1 Preliminaries

First of all, let us recall some related basic facts, notations, definitions, and

formulas.

Definition 4.1. A C2 function u : M → ℝ is said to be p-harmonic ( resp.

p-superharmonic, and p-subharmonic ) in a storng sense if its p-Laplacian

Δpu := div(∣∇u∣p−2∇u) = 0 ( resp. ≤ 0 , and ≥ 0). A function u : M → ℝ

is said to be p-harmonic ( resp. p-superharmonic, and p-subharmonic ) in a

weak sense if its p-Laplacian Δpu := div(∣∇u∣p−2∇u) = 0 ( resp. ≤ 0 , and

≥ 0) in the sense of distributions.

Definition 4.2. Let (M, g) be an n-dimensional Riemannian manifold with

local orthonormal frame {ei}ni=1 , where n ≥ 2 . The q-energy functional Eq ,

q > 1 of smooth map u : M → ℝ is given by

Eq (u) =
1

q

Z
M
∣du∣p dv
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where ∣du∣ = Pm
i=1 ⟨du (ei) , du (ei)⟩ is the Hilbert-Schmidt norm of the differ-

ential du of u , and dv is the volume element of M .

Definition 4.3. A map u : M → N is said to be horizontally weakly conformal

if for any x ∈ M such that the differential dux ∕= 0 , the restriction of dux to

the orthogonal complement of the Kernel of dux is conformal and surjective.

Definition 4.4. Let M, N be differentiable manifolds. A differentiable map-

ping � : M → N is said to be an immersion if d�p : TpM → T�(p)N is injective

for all p ∈ M . if, in addition, � ia a homeomorphism onto �(M) ⊂ N , where

�(M) has the subspace topology induced from N , we say that � is an embed-

ding. If M ⊂ N and the inclusion i : M → N is an embedding, we say that

M is a submanifold of N .

Definition 4.5. An immersion f of anm-dimensional manifoldM with bound-

ary ∂M (possibly empty) into a Riemannian manifold N is called minimal if

the mean curvature vector field H of M with respect to the induced Rieman-

nian metric vanishes identically. Then M is called a minimal submanifold of

N .

Definition 4.6. A minimal submanifoldM is called stable if for every compact

region on M all the second variations of the volume are positive.

Definition 4.7. If M and N are differentiable manifolds. dimN−dimM = 1,

and if an immersion f : M → N has been defined, then f(M) is a hypersurface

in M .

Definition 4.8. A C2 map u : M → N is called a p-harmonic morphism if

for any p-harmonic function f defined on an open set V of N , the composition

f ∘ u is p-harmonic on u−1(V ).
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In [33], Roger Moser introduced the following linearized operator ℒ:

ℒ (Ψ) = div
�
fp−2A (∇Ψ)

�

where

A := id + (p− 2)
∇u⊗∇u

f 2
, and f = ∣∇u∣ .

In [10], Chang-Chen-Wei introduced an operator ℒs," by

ℒs," (Ψ) = div (f s"A" (∇Ψ)) ,

for Ψ ∈ C2 (M) , where s ∈ ℝ, p > 1, " > 0, f" =
√
f 2 + " and

A" := id + (p− 2) ∇u⊗∇u
f2"

.

ℒs," is a linearized operator of the nonlinear p-harmonic equation, and

ℒs," (f 2
" ) (x) is well define for all x ∈M since f" > 0 and f 2

" ∈ C2 (M) .

They further derive

Theorem 4.9 (a generalized Bochner formula for a p-harmonic function,

p > 1). [10] Let u ∈ C3 (M) be a p-harmonic function, f = ∣∇u∣ and

f" =
√
f 2 + ". Then for any s ∈ ℝ, and " > 0, the following formula

1
2
ℒs," (f 2

" ) = s
4
f s−2
" ∣∇f 2

" ∣
2

+ f s"
Pn
i,j=1

�
u2
ij +Rijuiuj

�
+ (p−2)(s−p+2)

4
f s−4
" ⟨∇u,∇f 2

" ⟩
2

+"
�
f s−2
" ⟨∇u,∇Δu⟩+ p−4

2
f s−4
" ⟨∇u,∇f 2

" ⟩Δu
� (4.1)

holds at every point in M, where uij is the Hessian of u, and Rij is the Ricci
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curvature tensor of M . In particular, if p = 2, then

1
2
ℒs," (f 2

" ) = s
4
f s−2
" ∣∇f 2

" ∣
2

+ f s"
Pn
i,j=1

�
u2
ij +Rijuiuj

�
(4.2)

holds on all of M and for all s ∈ ℝ.

and derive

Theorem 4.10 (a sharp Kato’s inequality for a p-harmonic function, p > 1).

[10] Let u ∈ C2 (M) be a p-harmonic function on a complete manifold Mn,

p > 1 and � = min
n

(p−1)2

n−1
, 1
o
. Then at any x ∈M with du (x) ∕= 0,

∣∇ (du)∣2 ≥ (1 + �) ∣∇ ∣du∣∣2 , (4.3)

and ”=” holds if and only if

8>>>><>>>>:

u�� = 0 and u11 = −n−1
p−1

u��, for (p− 1)2 = n− 1,

u�� = 0, u1� = 0 and u11 = −n−1
p−1

u��, for (p− 1)2 < n− 1,

u�� = 0 and uii = 0, for (p− 1)2 > n− 1,

for all �, � = 2, . . . , n, � ∕= � and i = 1, . . . , n.

4.2 Liouville Theorem for p-harmonic functions on manifolds

Using a generalized Bochner formula and sharp Kato’s inequality, S.-C. Chang,

J.-T. Chen and S.W. Wei prove the following Liouville type

Theorem C (Liouville Theorem for p-harmonic functions, p > 1). [10] Let

M be a complete noncompact Riemannian n-manifold that supports a weighted
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Poincaré inequality

R
M � (x) Ψ2 (x) dv ≤ RM ∣∇Ψ (x)∣2 dv. (4.4)

for every smooth function Ψ with compact support on M , where �(x) is a pos-

itive function a.e.. Let Ricci curvature RicM ≥ −�� , where � is a constant

satisfying

� <
4 (q − 1 + �+ b)

q2
, in which� = min{(p− 1)2

n− 1
, 1} and b = min{0, (p−2)(q−p)}.

(4.5)

Let u ∈ C3 (M) be a p-harmonic function in a weak sense for p ∈ {2}∪ [4,∞),

and in a strong sense for p ∈ (1, 2) ∪ (2, 4) , with finite q-energy Eq (u) =R
M ∣du∣qdv, for p and q satisfying one of the following:

(1) p = 2 and q > n−2
n−1

,

(2) p = 4, q > 1 and q − 1 + �+ b > 0,

(3) p > 2, p ∕= 4, and either max
n

1, p− 1− �
p−1

o
< q ≤ p− (p−4)2n

4(p−2)
, or both

q > 2 and q − 1 + �+ b > 0.

Then u is constant. If p and q satisfy

(4) 1 < p < 2 and q > 2,

then u does not exist.

The following Liouville theorem in p-harmonic geometry follows from the

above theorem and Theorem 3.3 in which we choose p = 2 , M supports a

weighted Poincaré inequality with �(x) = (n−2)2

4r(x)2
.

Theorem 4.11 (Liouville Theorem for p-harmonic functions). [11] Let M

be a complete noncompact Riemannian n-manifold with non-positive sectional

curvature. Suppose that RicM ≥ −� (n−2)2

4r2
a.e. , where � is as in (4.5). Let
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u ∈ C3 (M) be a p-harmonic function with finite q energy, for p and q as in

Theorem C. Then the same conclusion as in Theorem C holds.

For completeness, we sketch the proof as follows:

Proof: Following [10], giving a fixed point x0 ∈ M , let 0 ≤ � ≤ 1 be a

smooth cut-off function satisfying � ≡ 1 in BR(x0), � ≡ 0 off B2R(x0), and

∣∇�∣ ≤ C
R

in B2R(x0)∖BR(x0).

For the case p ∕= 2 , in view of the divergence theorem and the Cauchy-

Schwarz inequality, one obtains:

1
2

R
M �2ℒs," (f 2

" ) dv ≤ "1
R
M �2f s" ∣∇f"∣

2 dv + (1+∣p−2∣)2
"1

R
M ∣∇�∣

2 f s+2
" dv,

(4.6)

where "1 is a positive constant.

On the other hand, combining Theorems 4.9 and 4.10, one obtains

1
2
ℒs," (f 2

" ) ≥ (s+ 1 + �) f s" ∣∇f"∣
2 + f s"

Pn
i,j=1Rijuiuj

+ (p−2)(s−p+2)
4

f s−4
" ⟨∇u,∇f 2

" ⟩
2

+"

�
f s−2
" u2

ij + f s−2
" ⟨∇u,∇Δu⟩+ p−4

2
f s−4
" ⟨∇u,∇f 2

" ⟩Δu
�
,

(4.7)

for p > 1 and p ∕= 2.

Let b = min {0, (p− 2)(s− p+ 2)}. Then via the Cauchy-Schwarz in-

equality
(p−2)(s−p+2)

4

R
M �2f s−4

" ⟨∇u,∇f 2
" ⟩

2
dv

≥ b
R
M �2f s" ∣∇f"∣

2 dv − b" RM �2f s−2
" ∣∇f"∣2 dv

(4.8)

Combining (4.6)-(4.8), one obtains

A1
R
M �2f s" ∣∇f"∣

2 dv +
R
M �2f s"

Pn
i,j=1Rijuiujdv + "B

≤ (1+∣p−2∣)2
"1

R
M ∣∇�∣

2 f s+2
" dv,

(4.9)
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where A1 = s+ 1 + �+ b− "1 and

B =
R
M �2

�
f s−2
"

Pn
i,j=1 u

2
ij + f s−2

" ⟨∇u,∇Δu⟩+ p−4
2
f s−4
" ⟨∇u,∇f 2

" ⟩Δu

−bf s−2
" ∣∇f"∣2

�
dv.

Let q = s+ 2, then the first term on the left hand side of (4.9) becomes

A1
R
M �2f s" ∣∇f"∣

2 dv

= 4A1

q2

R
M �2

���∇f q/2"

���2 dv
≥ 4A1(1−"2)

q2

R
M

���∇ ��f q/2"

����2 +
4A1

�
1− 1

"2

�
q2

R
M ∣∇�∣

2 f q" dv.

where "2 is a positive constant satisfying "2 < 1. Thus, (4.9) implies

4(1−"2)A1

q2

R
M

���∇ ��f q/2"

����2 dv +
R
M �2f q−2

"

Pn
i,j=1Rijuiuj dv + "B

≤
 

(1+∣p−2∣)2
"1

+
4
�

1
"2
−1
�
A1

q2

! R
M ∣∇�∣

2 f q" dv.
(4.10)

By assumption and Theorem 3.3 (in which we select p = 2), for every

u ∈ W 1,2
0 (M), Z

M

∣n− 2∣2

4r2
∣u∣2 dv ≤

Z
M
∣∇u∣2 dv. (4.11)

To simplify (4.10), we apply the generalized sharp Hardy inequality (4.11)

to the first term on the left hand side of (4.10) in which u = �f
q
2
" . Then with

the assumption q − 1 + �+ b > 0, one obtains

R
BR A2f

q−2
" dv + "B ≤ C2B1

R2

R
B2R∖BR f

q
" dv, (4.12)
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for all fixed R > 0, where

A2 = (1−"2)(q−1+�+b−"1)(n−2)2

q2r2
f 2
" −

Pn
i,j=1 Rijuiuj

and

B1 = (1+∣p−2∣)2
"1

+
4
�

1
"2
−1
�

(q−1+�+b−"1)

q2
.

By the Ricci curvature assumption, there exists a constant 0 < � < 1 such

that

RicM ≥ −(q − 1 + �+ b) (n− 2)2 �

q2r2
.

Since

(i) If s > 0, then "B → 0 as "→ 0.

(ii) If b ≤ − (p−4)2n
4

and s > −1, then "B ≥ −" RM �2f s−2
" f ∣∇Δu∣ → 0 as

"→ 0.

(iii) In particular, if p = 4 and s > −1, then "B ≥ −" RM �2f s−2
" f ∣∇Δu∣ → 0

as "→ 0.

Then let "→ 0 in (4.12), and q = s+ 2, we have

R
BR A3f

qdv ≤ C2B1

R2

R
B2R∖BR f

qdv, (4.13)

where

A3 =
�

(1−"2)(q−1+�+b−"1)
q2

− (q−1+�+b)�
q2

�
(n−2)2

r2
.

We note A3 > 0 for sufficiently small "1 > 0 and "2 > 0. Since f ∈ Lq (M),

the assertion follows by letting R→∞ in (4.13).

For the case p = 2, use the same method as above, the assertion follows.
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For the case 1 < p < 2 and q > 2, by letting R → ∞ in (4.13), u is

constant. But a constant function is not a p-harmonic function in a strong

sense for 1 < p < 2. The nonexistence result follows.

This idea can be extended to a large class of manifolds or submanifolds,

such as stable minimal hypersurfaces:

Theorem 4.12. [11] Let N be a Riemannian (n+ 1)-manifold, M be a stable

minimal hypersurface in N , and � be a unit normal vector to M , such that

the length ∣A∣ of the second fundamental form of M in N satisfying ∣A∣2 +

RicN(�) > 0 a.e.. Suppose RicM ≥ −�(∣A∣2 + RicN(�)) where � is as in

(4.5). Let u ∈ C3 (M) be a p-harmonic function with finite q-energy, for p and

q as in Theorem C. Then the same conclusion as in Theorem C holds.

Proof: Since M ⊂ N is a stable minimal hypersurface in N , then for every

smooth function Ψ with compact support on M the following inequality holds:

R
M

�
∣A∣2 + RicN(�)

�
Ψ2 (x) dv ≤ RM ∣∇Ψ (x)∣2 dv. (4.14)

Precede as in the proof of Theorem 4.11, the assertion follows.

There are examples of stable minimal hypersurfaces M in N that satisfy

the conditions in Theorem 4.12. These include a counter-example to Bernstein

conjecture, i.e. a nonlinear entire minimal graph in ℝ9 that was found by

Bombieri-de Giorgi-Giusti [2] satisfying the assumption ∣A∣2 + RicN(�) > 0

a.e.. For appropriate p and q, such a minimal hypersurface M satisfies the

assumption RicM ≥ −� ∣A∣2 + RicN(�), since 0 ≥ RicM and −∣A∣2 = ScalM ,

where ScalM is the scalar curvature of M (see e.g. [28]).
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4.3 Applications to p-harmonic morphisms and Weakly Conformal Maps

Lemma 4.13. [47]Let M,N and K be manifolds of dimension n , k , and ℓ

respectively, and u : M → N , and w : N → K be C2. If u is horizontally weak

conformal, then ∣d(w ∘ u)∣p−2 = ( 1
k
)
p−2
2 ∣dw∣p−2∣du∣p−2.

Theorem 4.14 (Liouville Theorem for p-harmonic morphisms). [11] Let M

be as in Theorem 4.11 or in Theorem 4.12. If u ∈ C3 (M) is a p-harmonic

morphism u : M → ℝk, with finite q-energy, for p and q as in Theorem C.

Then the same conclusion as in Theorem C holds.

Proof: Let ui = �i ∘ u , where �i : ℝk → ℝ is the i-th projection. Then

the linear function �i is a p-harmonic function (cf. 2.2 in [46] ). Hence ui ,

a composition of a p-harmonic morphism and a p-harmonic function, is p-

harmonic. Since u is horizontally weak conformal, it follows from Lemma

4.13 that Ep(u) < ∞ implies Ep(u
i) < ∞ . Now apply ui to Theorem C, the

assertion follows.

Our previous result can be applied to weakly conformal maps between

equal dimensional manifolds based on the following:

Theorem D. [34] u : M → N is an n-harmonic morphism, if and only if u

is weakly conformal, where n = dimM = dimN .

Theorem 4.15 (Liouville Theorem for weakly conformal maps). [11] Let M

be as in Theorem 4.11 or in Theorem 4.12, in which p = n in (4.5). If

u : M → ℝn is a weakly conformal map with finite q-energy, for n and q

satisfying one of the following:

(1) n = 2 and q > 0,

(2) n = 4, q > 1 and q + b > 0,
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(3) n > 2, n ∕= 4, and either n(n−2)
n−1

< q ≤ n − (n−4)2n
4(n−2)

, or both q > 2 and

q + b > 0,

then u is a constant.

Proof: By Theorem D, u is an n-harmonic morphism. Now the result follows

immediately from Theorem 4.14 in which p = n.

4.4 Further Applications: Picard Theorems

Theorem 4.16 (Picard Theorem for p-harmonic morphisms). [11] Let M

be as in Theorem 4.11 or Theorem 4.12. Suppose that u ∈ C3 (M) is a p-

harmonic morphism u : M → ℝk∖{y0}, and the function x 7→ ∣u(x) − y0∣
p−n
p−1

has finite q-energy where p ∕= n, for p and q satisfying one of the following:

(1), (2), and (3) as in Theorem C. Then u is constant. For p and q satisfying

(4) as in Theorem C, then u does not exist.

Proof: Since x 7→ ∣x∣
p−n
n−1 is a p-harmonic function on ℝn, and ∣u(x)−y0∣

p−n
n−1 :

M → ℝ is a p-harmonic function with finite q-energy. By Theorem 4.11 or

Theorem 4.12, when p ∕= n, ∣u(x)−y0∣
p−n
n−1 is constant. This implies that on M ,

rank du < n. Since a p-harmonic morphism is a horizontally weakly conformal

map, u is constant.

Theorem 4.17 (Picard Theorem for weakly conformal maps). [11] Let M be

as in Theorem 4.11 or in Theorem 4.12, in which p = n in (4.5). Suppose

that u : M → ℝn∖{y0} is a weakly conformal map and the function x 7→

log ∣u(x)− y0∣ has finite q-energy, for n and q satisfying one of the following:

(1), (2), and (3) as in Theorem 4.15. Then u is constant.

Proof: Since x 7→ log ∣x∣ is an n-harmonic function, and log ∣u(x)−y0∣ : M →

ℝ is an n-harmonic function with finite q-energy. Now the result follows from
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Theorem 4.11 or Theorem 4.12, when p = n, and u is a a weakly conformal

map.
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