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Abstract

J. J. Gibson suggested that objects in our environment can be represented by an agent

in terms of the types of actions that the agent may perform on or with that object.

This affordance representation allows the agent to make the connection between the

perception of key properties of an object and these actions. In this dissertation, I

explore the automatic construction of visual representations that are associated with

components of objects that afford certain types of grasping actions. I propose that

the type of grasp used on a class of objects should form the basis of these visual

representations. The visual categories are driven by grasp types. A grasp type is

defined as a cluster of grasp samples in the 6D hand position and orientation space

relative to the object. Specifically, for each grasp type, a set of view-dependent visual

operators can be learned that match the appearance of the part of the object that

is to be grasped. By focusing on object parts, as opposed to entire objects, the

resulting visual operators can generalize across different object types that exhibit

some similarities in 3D shape. In this dissertation, the training/testing data set is

composed of a large set of example grasps made by a human teacher, and includes a

set of fifty unique objects. Each grasp example consists of a stereo image pair of the

object alone, a stereo image pair of the object being grasped, and information about

the 3D pose of the hand relative to the object. The grasp regions in a training/testing

image that correspond to locations at which certain grasp types could be applied to

the object are automatically estimated. First, I show that classes of objects can be

formed on the basis of how the individual objects are grasped. Second, I show that

visual models based on Pair of Adjacent Segments (PAS) features can capture view-

dependent similarities in object part appearance for different objects of the same class.

xii



Third, I show that these visual operators can suggest grasp types and hand locations

and orientations for novel objects in novel scenarios. Given a novel image of a novel

object, the proposed algorithm matches the learned shape models to this image. A

match of the shape model in a novel image is interpreted as that the corresponding

component of the image affords a particular grasp action. Experimental results show

that the proposed algorithm is capable of identifying the occurrence of learned grasp

options in images containing novel objects.
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Chapter 1

Introduction

J. J. Gibson (1977) suggested that objects in our environment can be represented

by an agent in terms of the types of actions that the agent may perform on or with

the object. This affordance representation allows the agent to make a connection

between the perception of key properties of an object and these actions. The key to

the affordance idea is that it simultaneously captures properties of an object, as well

as the morphology and capabilities of an agent. For example, a chair affords sitting to

a human, but not to a robot with wheels. How does an agent come to represent such

affordances? One can either curiously explore the world, or observe other agents with

similar capabilities interacting with the world. Smith et al. (2007) have shown that

during early development, infants not only curiously explore the world by themselves,

but also observe their parents interacting with the world. In particular, they pay more

visual attention to their parents’ hands than the other parts of the body. One possible

explanation is that this kind of observation helps infants to form representations of

how objects and hands interact during grasping and manipulation.

Computationally, affordances can be seen as providing a menu of actions that can

be applied by an agent to a target object (Gibson, 1966, 1977). These actions are

task neutral; an agent can further prune this set of actions given the context of a

larger task. Once the agent has determined which affordance to use, it is important

to properly instantiate this affordance with a real world object. One solution is to

use available visual cues to help with the selection and instantiation of an affordance

before any actions are made. These visual cues may indicate the possible contact

1



locations and other relevant properties of the object such as pose, material and weight.

How does an agent learn the association between visual cues and affordances? The

work of Pereira et al. (2010) suggests that the growth of visual and grasping skills

should be intertwined from the beginning of an agent’s “life.” Their experiments also

show that when infants are confronted with novel objects, they tend to grasp and

rotate these objects in order to observe them from different viewing angles. However,

not all viewing angles are equally important: the infants tend to pay more visual

attention to the views of an object that contain planar surfaces. One possible expla-

nation is that these “planar views” afford more stable visual features as the object is

rotated within a small range.

Is it possible for a robot to learn grasp affordances and associated visual repre-

sentations automatically as what we have done as infants? In this dissertation, I

provide a computational account of how such a representation for grasp affordances

may arise. Specifically, I propose an algorithm that associates grasps directly with

object parts without higher-level object recognition. In this way, a learned affordance

can possibly be generalized to novel object that shares some parts with a known ob-

ject. For example, the top parts of a mug and a glass are visually similar to each

other, and both of them afford a ball grasp around their rims. If we can associate the

set of visual features generated around the rims with this top grasp, we will achieve a

more compact and generalizable model. Based on the above idea, I propose a learn-

ing approach that allows a novice robot to automatically learn grasp affordances and

associated visual features by observing a human teacher and to apply learned models

to real-life grasping tasks. The association between grasps and visual features are

learned simultaneously using both grasping and visual experience. In particular, this

algorithm uses learned categories in the grasping domain to drive the learning of cat-

egories in the visual domain. The training/testing data set is composed of a large set

of example grasps made by a human teacher, and includes a set of fifty unique ob-

2



jects. Each grasp example consists of a stereo image pair of the background, a stereo

image pair of the object alone, a stereo image pair of the object being grasped, and

information about the 3D pose of the hand relative to the object. The grasp regions

in a training/testing image that correspond to locations at which certain grasp types

could be applied to the object are automatically estimated.

The key steps in this approach are as follows. First, the algorithm clusters the

example grasps into a compact set of proto-grasps using the approach of de Granville

et al. (2006). The entire set of proto-grasps defines a grasp affordance model. This

process takes into consideration both the hand positions and orientations of these

example grasps relative to the object. Second, the set of individual objects are par-

titioned based on the similarity between their grasp affordance models. These par-

titions define object categories. Third, for each object category, the algorithm learns

a unified grasp affordance model by using example grasps from all objects in this

category. Each cluster in this unified grasp affordance model defines a grasp type.

Fourth, the algorithm learns visual features that are predictive of these grasp types.

For each grasp type, the proposed algorithm extracts a set of image fragments from

example images based on locations at which object-hand contacts occur. These im-

age fragments contain similar looking object components corresponding to different

view angles. Then, for each group of image fragments, the proposed algorithm learns

a set of view-dependent visual features. Fifth, given a query image that contains a

novel object, the proposed algorithm identifies graspable locations by matching visual

features corresponding to different grasp types and viewing angles. Finally, the hand

orientation associated with the best matching visual feature is used together with the

identified graspable location to cue a grasp.

The experimental results show that objects with difference appearances can be

robustly categorized by their grasp affordance models. The different grasp types in

an object category can be used to drive the learning of meaningful visual models

3



that capture partial object shapes. These visual models, which describe object parts,

generalize well to novel objects with similar partial shapes. A matched visual model

can suggest an approximation to how the hand should be positioned and oriented

relative to the object in novel scenarios containing novel objects. In many situations,

the grasp types and corresponding hand poses are estimated accurately by matching

2D shape models. However, for certain visual aspects, the hand orientations are not

estimated reliably.
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Chapter 2

Related Work

2.1 Robotic Grasping

In order to manipulate objects in the world, a robot needs to first grasp these objects.

The goal of robotic grasping is to find a set of contact points on the object in order

to achieve a grasp that satisfies certain quality measures. The quality of a grasp

can be measured by its stability (force/form closure, Mason and Salisbury, 1985;

Bicchi, 1995), task compatibility and adaptability to novel objects (Sahbani et al.,

2012). Robotic grasping approaches can be divided into analytical and empirical

approaches.

Analytical approaches aim to find a set of quality grasps by considering the geo-

metric, kinematic and dynamic formulations of the hand and the object to be grasped.

These approaches have traditionally relied on a priori knowledge of the geometry of

the object being grasped or on estimates of the geometry based on visual or range

inputs (e.g., Bekey et al., 1993; Borst et al., 1999; Miller et al., 2003). Bekey et al.

(1993) develop a task-oriented grasp planner. This planner is based on the assump-

tion that the robot has knowledge about its own hand, the target object geometry, the

current task, and human grasps. In this approach, a set of canonical grasp types and a

set of geometric primitives are first defined. Then, given the current task description

and some geometric primitives contained in a target object, the algorithm selects a

subset of the canonical grasp types that is appropriate for the current task. Borst

et al. (1999) propose a grasp planning algorithm that applies to arbitrarily shaped

5



3D objects. Assuming the 3D model of an object and a large set of possible grasp lo-

cations, their algorithm quickly finds a small set of feasible candidate grasp locations

on the object, based on a static grasp stability measure (Ferrari and Canny, 1992).

These candidate grasps are further filtered by a computationally efficient hierarchical

approach, which is composed of simple heuristics, such as kinematic constraints of

the fingers. In the work of Miller et al. (2003), objects are simplified into a collec-

tion of geometric primitives, such as spheres, cylinders, cones and boxes, based on

their exact 3D mesh models. Each of the primitive shapes is associated with a set of

pre-defined hand poses and finger configurations. These possible grasps are further

evaluated using a simulation environment.

In the above algorithms, the modeled object geometry is used to assess the quality

of many potential grasps before one is selected for execution. In an alternative branch

of the analytical approaches, one could make minimal a priori assumptions about the

geometry of the object being grasped, and instead rely on haptic feedback to direct

the tactile exploration of an object until a suitable grasp is found. Teichmann and

Mishra (1994), and subsequently Coelho and Grupen (1997), introduced methods in

which the local surface normal for each of several contacts is first estimated. Based

on this information, contact displacements are computed that followed the negative

gradient of a cost function. The cost functions are such that their minima correspond

to a quality grasp of the object. In the case of Teichmann and Mishra (1994), this

cost function is based on the area of the triangle formed by three contact points.

In the case of Coelho and Grupen (1997), two cost functions are used: one that

describes the net force applied to the object by the set of contacts, and another

that describes the net moment applied by the same contacts. Then, the algorithm

switches between two controllers that iteratively minimize these two cost functions,

respectively. Platt et al. (2002) combine the actions of the two controllers through

a nullspace operation that favors the actions of the force controller over those of the
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moment controller. This work has showed promise in enabling a grasping system

to interact with objects of unmodeled geometries (Platt, 2006; Platt et al., 2006).

However, the current approach suffers when the object’s surface differs substantially

from assumption of local convexity. Wang et al. (2007) address the concavity issue by

introducing a second force controller that makes the assumption of local concavity. A

meta-level controller then switches, on a per-contact basis, between the convex and

concave control actions as a function of the estimated curvature of the object.

The haptic-based approaches are local in the sense that they do not assume global

geometry of the object. Due to this fact, these approaches inevitably suffer from the

problem of local optima. As a compensation, a robot can use vision or range data

to preshape its hand into a position and orientation in which the grasp controller is

more likely to succeed. Jonquières et al. (1999) propose an object-centered approach

for vision-guided robotic grasping. The algorithm matches a 2D image against the

projection of the CAD model of an object in order to achieve object recognition and

pose estimation. Given the recognized object location and orientation, a grasp can be

planned accordingly. Kragic and Christensen (2002) extend this approach by using

multiple images, which results in more robust object recognition and pose estimation

results. This extension falls within the framework of visual tracking. First, the

authors propose a 2D visual tracking approach based on some visual cues of the object,

such as color, texture, correlation and motion between image frames. A consensus of

these visual cues is achieved through a voting scheme. Second, the authors propose

a 3D visual tracking algorithm that assumes the 3D model of an object, which is

in spirit similar to the approach of Jonquières et al. (1999). Finally, the authors

argue that the 2D tracking algorithm can be used to initialize and enhance the 3D

tracking process. Since the target object being grasped is recognized and aligned with

a predefined 3D model as a whole, the above approaches will not generalize to novel

objects.
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An alternative approach is to cue grasps with partial visual information, and

without higher-level object recognition. Stanley et al. (2000) use 2D vision to guide

a parallel gripper for grasping planar objects. The algorithm first efficiently samples

a set of candidate grasp points on the object boundary by incrementally increasing

the sampling resolution. Then, the algorithm evaluates the quality of these candi-

date grasp points using a cost function. For a pair of grasp points (for a parallel

gripper), the cost function measures the curvature near the grasp points, the paral-

lelism between the two grasp points, and the distance between the grasp points to

the center of mass. Blake et al. (1993) propose a similar approach. In addition, their

algorithm exploits the symmetry property within 2D object contours. The proposed

algorithm can efficiently find these symmetries in 2D object silhouettes, and thus, a

set of candidate grasp points is calculated based on these symmetries accordingly. In

the work of Ikeuchi et al. (1986), a set of quality grasp points is calculated based on

both photometric stereo and range data. Given the surface normals of an object that

are estimated by photometric stereo, quality grasp points are selected as those on the

object contours that oppose each other with overlapping surface normals.

Rao et al. (1988) aim to develop an algorithm that can grasp 3D objects in more

generic scenarios. First, the 3D volumetric approximation of an object is obtained

by 3D range data. Then, this 3D volumetric model is decomposed into some prede-

fined primitive shapes. For each primitive shape, a set of candidate grasps is selected

accordingly from a list of heuristically defined grasp types. Dufournaud et al. (1998)

propose a grasp synthesis algorithm based on stereo vision. In this work, the shape of

an object part being grasped is approximated by conics. This is based on the observa-

tion that many objects in our environment contain curves and rotational symmetries.

Then, an ellipsoid is fitted to each conic, whose grasps can be calculated efficiently.

One disadvantage of the analytical approaches is the computational complexity.

This is due to the fact that a large set of grasps are sampled and evaluated before
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a feasible grasp is actually selected for execution. In order to reduce computational

complexity, some of these algorithms make simplifying assumptions about the geome-

tries of the robotic hand and the object being grasped, and are based on heuristics

that are elaborated by the designer. Also, these approaches usually treat each object

individually, which makes the previously found grasp solutions difficult to be reused

on similar objects. Instead, some recent works on robotic grasping use empirical ap-

proaches (e.g., Ying et al., 2007; Saxena et al., 2008; Goldfeder et al., 2009; Kjellström

et al., 2011; Aleotti and Caselli, 2011). Empirical approaches construct models from

data gathered in the context of grasping. These approaches formulate the grasp syn-

thesis problem as a learning problem, that is, a robot learns how to grasp a certain

object by observing either image features directly (Ying et al., 2007; Saxena et al.,

2008; Goldfeder et al., 2009), or human demonstration (Kjellström et al., 2011; Aleotti

and Caselli, 2011).

The work of Saxena et al. (2008) aims to grasp novel objects that are seen by a

robot for the first time. The proposed algorithm classifies each pixel in a given image

as either graspable or not. In order to generalize to novel objects, this classifier is

trained on a large number of synthetic images of different object classes and image

conditions (such as object pose and lighting condition). In the testing process, their

algorithm takes two or more images of a novel object by using a camera mounted on

a robot arm. For each image, their algorithm first predicts the graspable points. In

order to triangulate the 3D grasp location by using two images, their algorithm also

finds the correspondence between the grasp points in each of the image. Given the

uncertainty in their system (for example, the modeled camera/arm position may not

be accurate, and the grasp points may be mismatched to each other), the authors

propose a probabilistic model that maximizes the probability of a location in 3D

space being a graspable point given the set of grasp points in each 2D image. Once

the best grasp point in 3D is found, the robot will move its hand (in their case, a
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parallel gripper) to that location and then close the hand to perform a grasp. Their

experiments on a physical robot show promising results that novel objects can often

be grasped, even in cluttered scenes without pre-defined 3D models of the objects.

This algorithm is further improved by Balaguer and Carpin (2010a). The improved

algorithm uses principal component analysis (PCA) to reduce the dimensionality of

the visual descriptor for each pixel in the image, which results in a much more efficient

algorithm for both training and testing. Balaguer and Carpin (2010b) further propose

an algorithm to estimate the orientation of the hand that can be used to grasp an

object assuming that the grasp points have already been estimated. However, they

only consider a limited set of possible object orientations and the different grasp

points are not differentiated based on their functions.

Goldfeder et al. (2009) propose an algorithm that aims to solve the problem of

grasping novel objects by using partial 3D scans. A view sphere is a unit sphere in

the object-centered coordinate frame, and each point on the view sphere corresponds

to a particular viewing angle of the object. Instead of using a single view of an object

for matching, their algorithm combines visual features from a set of depth images

within a spherical cap on the view sphere of an object into a single feature (so-called

cap descriptor). By using a set of images surrounding a view point to construct a

feature descriptor (instead of just one image), the matching between objects is more

robust and less ambiguous. In this approach, partial matching is allowed for a given

object, since the cap descriptors only capture partial views of an object on the view

sphere. The authors test this method on the Columbia Grasp Database (CGDB) in

simulation. The CGDB is a collection of form closure grasps on the object models

contained in the Princeton Shape Benchmark (PSB). First, the algorithm calculates

cap descriptors on some canonical viewpoints of a set of training objects in CGDB

and stores them as a database. Then, for a test object, the algorithm matches its

cap descriptor corresponding to a single viewpoint to the ones in the database. The
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best matched cap descriptors in the database give rise to the object identity for the

test image. Next, the algorithm aligns the partial model of the test object to the

model of the matched training object. This gives the pose of the test object relative

to the object models in the database. Given the N best matching objects in the

database, the candidate grasps associated with these objects are ranked based on

their generalizability across these N objects. The top ranking candidate grasp is

selected as the recognized grasp for the test object. The simulation experiments show

promising results. However, the authors only test this method in simulation and they

do not deal with background clutter in natural scenes.

Aleotti and Caselli (2011) propose an empirical approach for part-based semantic

robot grasping, which aims to facilitate task-oriented manipulation. They first de-

compose the 3D mesh model of an object into parts topologically by using a Reeb

graph, which is a data structure that represents the skeleton of a geometric model.

Given the 3D mesh model of an object, the set of feasible grasps on this object is

demonstrated by a human teacher in an interactive 3D virtual environment with a

data glove. For a given grasp, the corresponding object part is detected as the one

that contains most of the contact points during human demonstration (by collision

detection). Given the 3D mesh model of a novel object, they first compute its Reeb

graph. Then, the object recognition process is a graph matching process. An object

is recognized if its Reeb graph matches one of those in the database in structure.

Once a good match of the test object is found in the database, the corresponding

grasps are recovered accordingly.

2.2 Human Visual Processing for Grasping

Humans are capable of recognizing objects robustly. The human visual processing

systems can be divided into two major parts: the dorsal pathway and the ventral
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pathway (Milner and Goodale, 1995, 2008). The dorsal pathway is responsible for

extracting useful visual information to facilitate action, such as grasping (vision for

action); while the ventral pathway is responsible for recognizing the identity of objects

(vision for recognition). Although these are two distinct processes, the dorsal and

ventral pathways must work together to solve many grasping problems (Jeannerod,

1997; Graf, 2006). Some of the previous works focus on the separate development

trends of these two systems in the early ages of children, and how these two systems

cooperate with each other (Johnson et al., 2001; Mareschal and Johnson, 2003; Street

et al., 2011).

Street et al. (2011) examine toddlers’ development in visual and motor skills

through a simplified version of the posting task. In this task, a toddler is required to

grasp and insert a planar object into a slot. The experimental results show that only

toddlers older than a certain age can accomplish this task (about 24 months old).

However, even 18-month-olds can successfully orient their empty hands to align with

the slot. This suggests that the observed developmental change is a reflection of the

ability of aligning object with object, instead of aligning hand with object (the slot).

In the task of inserting an object into the slot, the toddler not only needs to align

the hand with the object, but also needs to relate this object with a second object

(the slot). The hand-object task is generally believed to involve the dorsal pathway;

while the object-object task involves the ventral pathway, since the properties of both

objects need to be recognized in order to do the alignment. Therefore, these results

suggest that the developmental changes in the dorsal and ventral pathways are in-

tertwined. These results also suggest that one of the important skills that children

develop during their early age is to preshape the hand and to adjust the hand ori-

entation relative to the object to be grasped before actual contact. One interesting

question during this developmental process is how children filter out irrelevant visual

information and only focus on object properties that are useful for action.
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Smith et al. (2007) have done some experiments on visual attention in infants.

Unlike most of the other work with third person cameras tracking the actions of

infants, they use a camera attached to the forehead of an infant to see what the

infant sees. In their experiment, the parent and the infant interact with each other

by playing with some toys on a table. In addition to the infant mounted camera, a

forehead camera is also mounted to the caregiver. The field of view of a forehead-

mounted camera is used to approximate what the parent or the infant sees, giving

a first-person view of the interaction. From their experimental results, the first-

person views of the parent and the infant are very different. Compared to the parent,

the infant’s view tends to focus narrowly on the current object of interest. This is

not only because the infant is closer to the target object due to the length of the

arm, but the infant also actively moves the object of interest closer to their eyes.

As a result, the object of interest occupies a large portion of the field of view, and

therefore, background visual information is filtered out. The infant also changes

the view more dynamically than the parent, in order to track the object of interest

closely. All the above results suggest that the infant actively constrains the amount

of information that is extracted at a time. This property could simplify the process of

learning of visual and motor skills. These results provoke the question that whether a

robot can learn the association between vision and grasp actions in a similar manner.

Particularly, a robot should “zoom in” on the part of the object that is related to

the current grasp action, which may be made by either the robot itself or a human

teacher.

One reason that young children can develop their visual and motor skills rapidly

in a short period of time is their ability to generalize to novel objects with similar

properties. Human adults have the ability to recognize novel objects that share a few

common geometric components with previously known objects (Biederman, 1987;

Hummel and Biederman, 1992). The representation of objects in the human brain
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can be separated into two key components: the shape of individual parts and the

geometric configuration between these parts. Kotovsky and Gentner (1996) show

that younger children tend to recognize objects based on the shape of a few object

parts, while older children tend to pay more visual attention to geometric relations

between these parts. Augustine et al. (2011) further shows that these abilities develop

in the early stage of infancy in a very short period of time, and are separable in the

infants’ early development.

So how does an infant learn the association between visual cues and actions?

Pereira et al. (2010) suggest that the growth of visual and grasping skills are inter-

twined during the early ages of infants. Their experiments show that when infants are

confronted with novel objects, they tend to grasp and rotate these objects in order

to observe them from different viewing angles. However, not all viewing angles are

equally important: the infants pay more visual attention to the views of an object

in an upright orientation that contain planar surfaces. One possible explanation is

that these “planar views” afford more stable visual features as the object is rotated

within a small range. The planar view of an object in an upright orientation provides

a stable reference that helps an infant with relating other views of the object and

constructing a coherent multi-view model.

2.3 Developmental Robotics

Developmental robotics is a branch of robotics research that focuses on the problem

of how a robot can develop its sensory and motor skills incrementally through ex-

perience with the world. This experience may come from its own, or by observing

other agents (Asada et al., 2009; Argall et al., 2009). The concept of developmental

robotics is explained in Weng et al. (2001). In this paper, the authors discussed the

distinction between machine learning and robotics mental development. In “machine

14



learning,” the human designer manually programs an algorithm whose parameters

can be changed during execution. In developmental robotics, the human designer

designs an algorithm that allows the robot to improve itself on-the-fly, either through

its own experience or by interacting with other agents. This autonomous mental

development process from “infancy” to “adulthood” resembles that of human devel-

opment. A developmental robot is more generalizable to new environment and tasks,

since the specific tasks are not defined in advance. They also explicitly argue that

this development should be from simple to complex. For example, in order to manip-

ulate an object in a larger task, the robot should learn how to grasp it first. Finally,

the authors argue that developmental robotics and cognitive psychology can benefit

from each other: the latter inspires the former (Brooks et al., 1998; Asada et al.,

2001), while the former provides a computational testbed for verifying principles of

the former (Sporns, 2003).

Developmental robotics itself covers a wide range of robotics research areas, such as

social interaction, sensorimotor control, categorization, value system, developmental

plasticity, motor skill acquisition and morphological changes (Lungarella and Metta,

2003). Given the scope of this dissertation, I focus on works that involve human

demonstration and the development of grasping skills. A more comprehensive survey

of developmental robotics can be found by Lungarella et al. (2003). Some of the pre-

vious works explore developmental robotics in the domain of robotics grasping (Metta

and Fitzpatrick, 2003; Stoytchev, 2005; de Granville et al., 2006, 2009).

Instead of using heuristics or detailed models that pre-define a set of “good”

grasp points on an object, these approaches ground behavior in the real experiences

of the agent or nearby agent. Particularly, an agent curiously explores the world or

observes other agents interacting with objects. Metta and Fitzpatrick (2003) propose

an approach that allows a robot to learn visual and motor skills simultaneously. In

this work, the robot learns a vision-action association by curiously exploring the
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world with simple actions and observing the consequences. Similarly, in the work

of Stoytchev (2005), a robot learns a set of affordances during a babbling stage by

exploring a random series of actions on an object and observing the result. The set

of actions available to the robot is pre-programmed by the author. As a result, the

robot learns a set of so-called binding affordances). The term “binding” is defined

as a series of actions that allow a robot to attach objects to its body and to control

them as an extension of its body. The author uses this term in order to avoid from

committing to the purposeful act of grasping. Simulation experiments show that

this behavior-grounded approach can be used by a robot to autonomously learn the

binding affordances of different objects. One shortcoming of this approach is that the

set of actions available to a robot is pre-programmed and may not be thorough enough

to discover all possible binding affordances. Also, the learned binding affordances are

object specific and can not be generalized between objects with similar parts.

Instead of learning grasp affordances from self-experience, an agent can also learn

by observing other agents grasping objects. De Granville et al. (2006, 2009) propose

an algorithm that allows an agent to learn object specific grasp affordances by observ-

ing a human teacher grasping an object in some canonical ways. Each grasp sample

is a point in 6D pose space in an object-centered coordinate frame. The set of grasp

samples is explained by a mixture of probability distributions, with each individual

probability distribution corresponding to a single cluster. An example is shown in

Fig. 2.1. The object used in this example is a cylinder, as shown in Fig. 2.1(a). Given

this object, a human teacher wearing a dataglove demonstrates four types of grasps:

one for each end, and two along the major axis of the cylinder (corresponding to

“overhand” and “underhand” configurations). The grasp positions and orientations

of the grasp samples are shown in Fig. 2.1(b) and (c) respectively. The position of

a grasp is chosen to be roughly a point between the thumb and index fingers of the

human teacher, which is a fixed translation from the sensor mounted on the data
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(b) (c)

(a)
(d) (e)

Figure 2.1: The training examples and learned affordance model for the cylinder
within an object-centered coordinate frame (a figure from de Granville, 2008). (a)
The cylinder; (b) The position of the hand; (c) The orientation of the hand; (d) The
position component of the learned affordance model; (e) The orientation component
of the learned affordance model.

glove. The points that have extreme x coordinates in Fig. 2.1(b) correspond to the

grasps on the two ends of the cylinder with palms perpendicular to the major axis of

the cylinder.

The hand orientations that correspond to the hand positions in Fig. 2.1(b) are

shown as the two concentrated small circles of points in Fig. 2.1(c). In Fig. 2.1(c),

the center of the unit sphere corresponds to the center of the object, and the vector

connecting a sample point and center corresponds to an orientation perpendicular to

the palm. This visual representation aliases the hand rotations about the line per-

pendicular to the sphere surface. We lose one degree of freedom here for 3D rotation

since we only use S2 (3D unit sphere) for illustration. For the grasps on the ends

of the cylinder, the only degree of freedom of the hand is exactly the rotation about

17



the axis perpendicular to the palm. This explains why the orientations of these grasp

samples apparently collapse into two concentrated clusters in Fig. 2.1(c). The ma-

jority of points in the middle of the elongated shape in Fig. 2.1(b) correspond to the

grasp samples along the major axis of the cylinder, in either the overhand or under-

hand configurations. The orientations for these grasps correspond to the cluster of

points around a great circle of the sphere in Fig. 2.1(c). Again, the two clusters that

correspond to overhand and underhand configurations appear to collapse together

since these two grasps are related by a rotation about the axis perpendicular to the

palm. In Fig. 2.1(d) and 2.1(e), the above four clusters of grasp samples are cap-

tured by four probability distributions. A distribution in the position space and a

distribution in the orientation space (shown in the same color) together give a joint

distribution in the pose space. For the position component, the authors use multi-

variate Gaussian distributions. Intuitively, the volumes of the ellipsoids in Fig. 2.1(d)

describe the variations for each cluster. For the orientation component, they use dis-

tributions that capture the symmetry of rotations. Specifically, orientations with a

unidirectional mean direction is captured by a Dimroth-Watson (DW) distribution;

orientations with a rotational symmetry is captured by a girdle distribution (Mardia

and Jupp, 1999; Rancourt et al., 2000; Rivest, 2001). In this example, all four grasp

types are captured by girdle distributions since they are rotationally symmetric about

the length of the cylinder. Although the hand positions that correspond to the over-

hand and underhand grasps coincide, their orientations are very different (180 degrees

rotation about the axis that is perpendicular to the palm). This explains why the

algorithm chooses two distributions in Fig. 2.1(e) (blue and magenta), although the

visualization aliases them. Once the object position and orientation are known, each

of these grasp clusters can be used to parameterize a reach controller. This reach

controller brings the robot hand into a spatial relationship with the object, which is

specified by the learned grasp affordance model.
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2.4 Object Recognition

Object recognition deals with three major problems: representation, detection and

learning (Fergus et al., 2003). For representation, we need to find a method to rep-

resent the features that can be used to discriminate one object from another. Such a

representation can be the geometric configurations of individual features (such as pixel

gradients), or the distribution of gray or color values of sub-regions of a given image.

Ideally, these features should be invariant even when scale, pose or light conditions

change. For detection, the question is how to detect a feature in the corresponding

regions of two given images, given that the same object may be rotated, translated or

scaled in the different images. For learning, a system should be able to learn useful

features automatically in an unstructured environment.

There are many different ways to categorize object recognition algorithms. One

way is to divide these algorithms into texture-based1 recognition and shape-based

recognition (Opelt et al., 2006). Shape-based object detection and texture-based ob-

ject detection can be considered as two methods that operate at different frequencies

on a given image. The former focuses on the gross shape of a target object, while

the latter pays more attention to the finer details. For robotics applications such as

grasping, shape-based features are more relevant since the grasp types afforded by

an object depend more on its shape than its texture. However, as far as object iden-

tification, texture-based features are useful, since they usually provide some unique

features that differentiate one object from the others.

One way to recognize a known object is to match individual visual features. How-

ever, this method usually does not work well in reality since the images corresponding

to the same object may vary and it is difficult to find exact matches for individual

visual features. One way to compensate for this is to model an object as a class of

1In the scope of this dissertation, “texture” refers to the appearance texture.
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visual features and the object recognition problem as a classification problem. The

key idea behind this method is that a classifier allows us to represent volumes in the

feature space that correspond to a target concept (in this case, a particular object).

Pontil and Verri (1998) use classifiers to recognize 3D objects from 2D appearance.

They first transform color images into gray-level images and then reduce the image

resolution to 32 by 32 by averaging neighborhood pixels. They then reshape the 32

by 32 image pixel matrices into vectors. As a result, each image is represented as a

point in high dimensional Euclidean space. A set of images is taken for each object

from different viewing angles. Therefore, each object is modeled as a set of feature

vectors. Images from a pair of objects are classified by using linear Support Vector

Machines (SVMs) in the vector space without differentiating their poses. From their

experimental results, SVMs are well suited for appearance based recognition. How-

ever, their approach suffers due to requiring a large amount of memory when the

number of objects increases. This is because their algorithm needs to compute one

SVM to distinguish each pair of objects.

2.4.1 Texture-based Object Recognition

A family of robust object detection algorithms makes use of distributions of intensity

gradients around small local areas in a given image. These distributions represent

the overall structure of intensity gradients, which are more robust than gradients of

individual pixels. One representative algorithm is the scale invariant feature trans-

form (SIFT, Lowe, 2004). SIFT first detects a set of salient points (so-called keypoints)

and then calculates feature descriptors around each keypoint.

The goal of keypoint detection is to find the locations in a given image that

are robustly identifiable in other images of similar perspectives of the same or similar

objects. Specifically, SIFT aims to identify keypoints that are repeatable when scaling

and in-image rotation exist. First, scale space images are generated from the original
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image. Then, the Difference of Gaussian (DOG) responses are computed from the two

nearby scales in this scale space. These DOGs respond most strongly to areas of high

contrast (dark surrounded by bright, or vice-versa). The most stable locations are

identified by the spatial and scale extrema in the DOG images. These stable locations

are termed “keypoints” by (Lowe, 2004). The gradient (orientation) of a pixel in an

image is defined as the direction in which the image intensity changes most quickly. A

canonical orientation is assigned to each keypoint by using the dominant orientation

of pixels within a surrounding region. In order to achieve rotation invariance, the

orientation of the surrounding features are relativized to this canonical orientation.

Each keypoint corresponds to a 2D location in a given image. This location defines

the origin of a 2D coordinate frame, whose orientation and scale are determined by

the canonical orientation and scale of the keypoint. The SIFT descriptor is a vector

that represents the appearance of the patch surrounding the keypoint. First, a patch

is divided into subregions, and for each subregion, a histogram of local orientations is

computed. Each bin of this histogram counts the number of pixels with gradients in

a particular range of orientations. In practice, a shift by an individual pixel in either

direction does not substantially change the orientation histograms. This property

makes SIFT less sensitive to variations in registration of the patch location during

the matching process. Finally, the values of all bins for each histogram are appended

together into a single feature vector. Lowe shows experimentally that a descriptor of

length 128 gives high performance for feature matching. This corresponds to 4 × 4

patches and 8 bins in each patch. In order to reduce the effect of illumination changes,

the descriptor vector is normalized to unit length.

SIFT features are capable of identifying fine details within images, including both

shapes and textures. This type of visual feature is considered to be very discrimina-

tive (Mikolajczyk and Schmid, 2005) and is widely used in object recognition related

tasks (Rothganger et al., 2006; Romea et al., 2009). SIFT features are also robust to
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orientation, scale and lighting changes. However, since SIFT features are calculated

based on local appearance of an image, it is sensitive to object texture. Also, not all

objects have distinguished keypoints (for example, all the keypoints on a circle give

rise to very similar SIFT descriptors), and using keypoints alone sacrifices the shape

information available in smooth portions of object contours Belongie et al. (2002).

2.4.2 Shape-based Object Recognition

As a contrast, another family of object detection algorithms pays more attention

to object shape. This is more appealing to robotics grasping applications, since

one would like a learned model that is generalizable to objects with similar shapes.

Ardizzone et al. (2000) proposed a feature-based shape recognition algorithm. The

training set of images contains single objects of some basic geometric shapes (such

as the cube, cylinder and cone). The training images are first converted into grey-

scale images. Then, each grey-scale image is represented as a set of vectors with

each of the vector corresponding to a single row of pixel values of the image. Then,

this set of vectors is transformed into a new set of uncorrelated zero-mean vectors

by using a Karhunen-Loève transform. The shape of each object is described as a

feature vector that consists of eigenvalues of the covariance matrix computed from

the new set of vectors. This eigenvalue vector is directly related to the change of

surface normals of a given object and robust to rotations or scaling, and to some

extent, change in lighting conditions. Furthermore, the eigenvalue vectors calculated

from objects with similar shapes tend to form clusters in the feature space. SVMs are

trained in order to classify feature vectors that correspond to different shapes. Given

a test image that contains similar geometric shapes as the ones in the training set,

the algorithm first scans the image with a fixed window. The region of interest (ROI)

is determined by using the window location that maximizes the correlation between

the feature vector calculated on this window and one of the prototype feature vectors.
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Then, the object contained in the ROI is classified by using the learned SVMs. The

experimental results are promising and some known shapes can even be recognized

in natural scenes with partial occlusion. However, since this algorithm is trained on

single object views, there are some ambiguities in recognition (such as the side view

of a cone and a triangle). This algorithm fails in presence of complex textures on the

object surfaces.

Belongie et al. (2002) propose a method that aims to measure the similarity be-

tween shapes and use it for object recognition. Assuming there are some similarity

between two shapes, they first propose a method that automatically finds the corre-

sponding points on these two shapes. Given these corresponding points, they then

calculate an aligning transform between these two shapes. In order to solve the corre-

spondence problem, they propose a novel descriptor, namely, the shape context. This

descriptor first randomly samples a set of n points that lie on the edges exhibited

by an image. For each point in this set, the shape context descriptor of that point

captures the distribution of the remaining points relative to it. More specifically, for

each sampled point, they first calculate a set of n−1 vectors pointing from this point

to all the other sampled points. Then, a coarse histogram is calculated to describe

the distribution of this set of n − 1 vectors in log-polar space. The corresponding

pixels of two images are those that have similar shape contexts. Then, a non-rigid

transformation that relates the shapes in two images is estimated by using these

corresponding pixels. The dissimilarity between the two shapes is measured by the

matching errors of all points sampled on these two shapes, together with a term that

reflects how much deformation is needed to align these two shapes (which is measured

by the bending energy contained in the aligning transformation).

During the testing process, the dissimilarities between a novel image of a known

shape and all the images in the database are calculated, and the one with the least

dissimilarity is considered to be the best matched image that contains the same
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shape. The authors evaluate the performance of the shape context descriptor in

object recognition extensively on several data sets, including silhouettes, trademarks,

handwritten digits, and 3D objects. The proposed method performs well as far as

retrieving the most similar shape from the database for a given test shape. However,

the proposed algorithm assumes that the shape to be matched is perfectly segmented

from the background clutter. This assumption is generally not true in natural image

matching tasks, such as recognizing an object in order for a robot to grasp. The

shape context descriptor is invariant to in-image translation and scaling. However,

the descriptor used in the experiments is not invariant to in-image rotation since it

uses absolute coordinate frame for computing the shape context at each point. One

can compensate for this by using local coordinate frame associated with each sample

point.

Forssén and Lowe (2007) use an affine invariant shape descriptor for maximally

stable extremal regions (MSERs). A set of binary images are generated by applying

different thresholds to the original image. The set of extremal regions are the con-

nected black or white regions in these binary images, and MSERs correspond to the

regions that are stable across a set of thresholds. These MSERs are used to define

SIFT key points. Instead of using grey-scale images to calculate feature vectors, as

in SIFT, MSER-SIFT uses the binary MSER itself to calculate the SIFT descriptors.

Since MSERs usually capture the shape information of an image patch, the SIFT

features calculated on these regions depend more on the shape of the patch rather

than its texture. Experimental results show that MSER-SIFT features are often more

robust for feature matching on 3D scenes and images with large illumination changes

than SIFT features. However, SIFT features perform better for images that contain

planar and parallax-free scenes. The reason is that SIFT features incorporate more

context of an interest point than MSER-SIFT, and this context is preserved only

when the scene is planar. The results also show that when large scale changes exist,
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the MSER-SIFT features calculated over multiple scales increase the feature matching

performance.

Ferrari et al. (2010) employ a novel visual feature known as Pair of Adjacent

Segments (PAS) for shape matching. Given an image, the PAS features are found as

follows. First, the edges contained in this image are found by an edge detector. Then,

these edges are segmented into approximately straight segments. A PAS feature is

generated from each pair of adjacent edge segments. Intuitively, two segments are

adjacent if they belong to the same edge or if one segment is at the end of one edge

directing towards the other segment. Each PAS feature has a location (the mean of

the two segment centers), a scale (the distance between the two segment centers), a

strength (the mean of edge strengths), and a descriptor. The descriptor is designed

to be invariant with translation and scale changes, however, it is not invariant to

in-plane rotations. This descriptor depends on the order the two segments. The first

segment is determined as the leftmost segment of the two. If the two segments have

similar x coordinates, they are ordered from top to bottom. Given this ordering, the

descriptor is a 6-element vector:

(

rx2
Nd

,
ry2
Nd

, θ1, θ2,
l1
Nd

,
l2
Nd

)

,

where
(

rx
2

Nd
,
ry
2

Nd

)

denotes a vector pointing from the midpoint of the first segment to

the midpoint of the second segment, normalized by the distance between the mid-

points of these two segments, Nd. θ1 and θ2 are the orientations of the two segments

respectively. l1
Nd

and l2
Nd

are the lengths of the two segments, normalized by Nd.

Given a set of training images that have been labeled as containing the target

shape within an identified bounding box (as shown in Fig. 2.2-2.4), the algorithm

first searches for a common set of PAS features within these bounding boxes across

all images. During this process, most of the PAS features corresponding to the back-
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Figure 2.2: The set of objects used in our experiments. The rectangular regions in
each image correspond to the target objects, which are manually selected. The last
panel shows a learned model of the mug.

ground will be eliminated, because they tend to only exist in a small subset of the

training images.

The algorithm then constructs a codebook of prototype descriptors by clustering

the descriptors of these common PAS features. The codebook C is a collection of the

centermost PAS of each cluster, which is called a PAS type Ti. The set of common

PAS features is reduced to a small number of PAS types, which makes the future

feature matching process computationally efficient. The PAS types that frequently

occur at similar locations and scales relative to bounding boxes are selected as model

parts. Based on the idea that a good model should consist of naturally connected

model parts coming from a small number of training images, the model parts are

assembled together to form an initial shape model. The initial shape model grossly

describes the shape of the target concept. However, across the training set images,

some variation exists in the relative positioning of the PAS features. The model is

further refined by matching it back to the training images through the Thin Plate

Spline Robust Point Matching algorithm (TPS-RPM, Chui and Rangarajan, 2003).
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Figure 2.3: The set of objects used in our experiments. The rectangular regions in
each image correspond to the grasp regions for handle grasps, which are manually
selected. The last panel shows a learned model of the handle.

The TPS-RPM algorithm can robustly match two sets of points with a non-rigid

TPS mapping, which consists of an affine component d and a non-rigid warp w. It

estimates the correspondence between the two sets of points and searches for a set

of d/w parameters given the initial solution provided by aligning the bounding box

of the model and the one in the image. The dissimilarity between the shapes formed

by the two sets of points can be measured by the energy contained in the non-rigid

warping.

The TPS mappings between the shape model and each training image define a

subspace in the full parameter space of TPS mappings. This subspace is used as a

deformation model that describes how much within-class variation of the model shape

are observed in the training images. This deformation model is further used in the

testing process to constrain the matching between the model shape and a shape in the

test image. With this constraint, the model shape can only match to a shape in the

test image with a TPS mapping in the part of parameter space that is exhibited by

the training images. Since the training images may not cover all possible variations
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Figure 2.4: The set of objects used in our experiments. The rectangular regions
in each image correspond to the grasp regions for top grasps, which are manually
selected. The last panel shows a learned model for the top of the mug.

of the model shape, one can relax this constraint to allow some shape matches that

are slightly different from those in the training images. The learned shape models

are represented as sets of edgels (short for edge pixel, a pixel in an image that has the

characteristics of an edge, i.e., orientation and/or magnitude) sampled on the model

edges as shown in the last panels in Fig. 2.2-2.4. From these figures, we can see that

the learned shape models capture the common edge segments across different training

image fragments (the sub-images defined by the bounding boxes). These shape models

do not capture finer object details that only exhibit in individual objects (such as the

label on the mug in Fig. 2.2).

During the testing phase, the algorithm tries to find a match between a learned

shape model and a test image. First, the algorithm matches PAS features observed

in a test image to the model PAS types by using their descriptors. Since a PAS type

in the shape model is associated with a location (relative to the model centroid) and

a scale, each match votes for a particular center location and scale of the model in

the test image by using a Hough-style voting scheme. The local maxima in the 3D
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Hough voting space (x/y translation and scale) indicate potential good matches of

the model. The Hough voting process greatly reduces the complexity of the problem,

since the entire space of all possible translations and scales of the model in a given

image is huge.

The initial matches found by the Hough voting process are further refined by

the TPS-RPM algorithm. An initial condition from Hough voting specifies a center

location l and scale s of the shape model to be matched. The algorithm then “su-

perimposes” the edgels in the model onto the test image by centering and scaling the

model edgels according to l and s. The transformed model edgels form a point set

V . The bounding box of the superimposed model cut out a region of the test image.

The set of edgels in the test image that fall in this region form another point set S.

Notice that S may include edgels that do not belong to the target shape. The goal

of the TPS-RPM algorithm is to find the correspondence between S and V , while

rejecting points in S that do not correspond to any model points.

The two point sets V = {va}a=1..K and S = {si}i=1..N are matched with a non-rigid

TPS mapping {d, w}. Here, d is an affine component that captures the translation,

rotation, scaling, and shearing between these two point sets; w is a non-rigid warp that

captures the shape deformation between these two point sets. TPS-RPM estimates

the correspondence matrixM = {mai} between V and S, and searches for a set of d/w

parameters that minimize a cost function. The cost function is composed of 1) the

distance between points in S and the corresponding points in V after mapping them

by {d, w}, 2) the energy contained in {d, w}, which is measured by local warpings w

and deviations of d from the identity matrix, 3) the orientation difference between

corresponding points, and 4) a term which is inversely proportional to the edgel

strength of matched image points.

Since both M and {d, w} are unknown at the beginning, the TPS-RPM iterates

between the following two steps.
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1) Given the current TPS mapping {d, w}, update M . M is a continuous-valued

soft-assign matrix, which evolves through a continuous correspondence space.

2) While fixing the correspondence matrix M , update the TPS mapping {d, w}

between V and a point set U = {ua}a=1..K , where each point ua in U is a linear

combination of all points in S weighted by the soft assignment mai:

ua =
N
∑

i=1

maisi.

The TPS-RPM iterates between these two steps until a certain number of itera-

tions is reached, which is manually chosen.

The soft-assign matrix M is updated by setting its entry mai as a function of the

distance between si and va, after mapping by the TPS:

mai =
1

Γ
exp

(

−
(si − f(va, d, w))

T (si − f(va, d, w))

2Γ

)

, (2.1)

where f(va, d, w) is the mapping of model point va by the TPS {d, w}. M is normal-

ized to ensure the rows and columns sum to 1. Γ is a temperature parameter, which

is largest at the beginning. As the iterative process continues, Γ decreases, and the

algorithm is more certain about the correspondence between model points and image

points. At the same time, the TPS mapping between the model and image points is

less constrained, so that the matched shape can fit better to local object contours in

the test image.

Once the TPS-RPM converges for a given initial condition, a matching score is

computed. The matching score of a match is calculated by a weighted sum of the

following terms:

1) The number of model points that have been found as good matches to some

image points. According to Chui and Rangarajan (2003), this is measured by the
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number of points va with maxi=1..N (mai) > 1/N .

2) The sum of squared distances between the TPS-mapped model points and their

corresponding image points:

∑

a∈P

|f(va, d, w)− ua|
2 /r2,

where P is the set of indices of matched points from step 1. This measure is normalized

by the size of the matched shape model, r.

3) The deviation of the affine component d from the identity matrix I:

∑

i,j∈[1,2,3]

(

I(i, j)− d(i, j)/
√

det (d)
)2

.

The normalization term
√

det (d) eliminates deviations due to scale change. This

would prefer matches with the same orientation as the model.

4) The energy contained in the non-rigid warp w:

trace(wTΦw)/r2,

where Φ is the TPS kernel matrix (Chui and Rangarajan, 2003).

If the highest matching score among all initial conditions is greater than a exper-

imentally determined threshold, the corresponding match will be selected as the best

match of the model in the test image. Otherwise, the algorithm claims that the given

shape model is not observed.

One of the novelties of the PAS based shape model is that the TPS-RPM provides

not only a matching score between the model and part of the test image, but also the

boundary of the matched model in the test image. In most of the other work, the

shape model is only recognized up to a bounding box. Experimental results show that

a shape model of the target shape can be learned from cluttered images with only
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the bounding boxes of the target shape provided. The learned shape model can be

matched robustly to test images that contain similar shapes in a cluttered background.

This algorithm is also robust to scale change and small affine distortion. The PAS

feature can be modified to be rotationally invariant by using coordinate frames relative

to each feature (detailed in Appendix A). However, the PAS feature loses part of

its discrimination power when relative coordinate frames are used according to our

exploratory experiments.

2.4.3 Constellation-based Methods vs. Bag of Features

Above, we have discussed the categorization of object recognition methods based

on whether object texture or shape is used to construct discriminative visual fea-

tures. Depending upon whether the spatial relations between individual features are

used for recognition or not, object recognition methods can also be categorized to

constellation-based methods and orderless methods (Marszalek, 2008). Given a set

of local features that are extracted from training images, the matching of individ-

ual features to a test image can be ambiguous. Constellation-based methods reduce

the probability of false matches by taking into account the relative spatial informa-

tion between individual features (Piater and Grupen, 2002; Wang, 2007). However,

constellation-based methods are computationally expensive and can only be applied

to rigid and piece-wise planar objects. As a contrast, the orderless bag-of-features

method assumes no or only weak spatial relationships between individual features. In

this approach, a set of learned visual features is orderlessly put into a bag to describe

a target object. During the matching phase, the identified features in a test image

are matched to the ones in the bag. If the number of the matched features exceeds a

certain threshold, the test image will be recognized as containing the object described

by the bag. More generally, one can construct meta features that capture the distri-

bution of individual features in the bag. In this case, if the distribution calculated
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from a test image matches well with the one calculated from the bag, the test image

will be recognized as containing the object described by the bag.

Ohbuchi et al. (2008) propose a method for 3D object retrieval by using bag-of-

features and SIFT (called BF-SIFT). A feature vector is learned for each 3D object

model. Given the 3D mesh model of an object, they first render a set of depth images

by placing the camera uniformly on the aspect sphere. The location and scale of the

object are normalized to be consistent across all depth images. Then, they calculate

SIFT features on these depth images and cluster them by k-mean clustering. Each

cluster center corresponds to a prototype SIFT feature and all the prototype features

compose a codebook. The codebook serves as a look-up table. An arbitrary SIFT

feature can be approximated by a prototype feature in the codebook that has the

smallest distance to it in the 128 dimensional feature space. The SIFT features cal-

culated from all depth images are translated into prototype features according to the

codebook. Then, a histogram is composed by counting the frequency of each proto-

type feature observed in all depth images. Since these depth images cover different

aspects of a single object, this histogram is used as a feature vector that captures the

3D appearance of the object.

By using a codebook of prototype features instead of raw SIFT features, a 3D

object model is described more concisely, which saves space for feature storage and

accelerates the feature matching process. Since the relative locations between pro-

totype features are not encoded during the feature generation, BF-SIFT works es-

pecially well for articulated object retrieval. The authors test BF-SIFT against the

other state-of-the-art shape based 3D object retrieval methods (such as Light Field

Descriptors and Spherical Harmonics Descriptors) by using the McGill Shape Bench-

mark (MSB) of articulated 3D models and Princeton Shape Benchmark (PSB) of the

rigid 3D models. Experimental results indicate that the BF-SIFT performs substan-

tially better than the other methods for articulated 3D objects and comparably well
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for generic rigid 3D objects.

2.4.4 Mean Shift Clustering

The mean shift algorithm is a nonparametric clustering technique originally proposed

by Fukunaga and Hostetler (1975). Comaniciu and Meer (2002) revisit the mean

shift algorithm and explore its broad usability for a variety of vision tasks, such as

discontinuity preserving filtering and image segmentation. The mean shift algorithm

has some excellent qualities for computer vision tasks since it does not assume a priori

the number and the shape of clusters.

The mean shift procedure is a kernel based adaptive gradient ascent method that

converges on the modes (local maxima) of an underlying density function in a feature

space. Once converged, the basin of attraction of a mode, i.e., the data points visited

by all the mean shift procedures converging to that mode, automatically defines a

cluster of arbitrary shape. A Gaussian kernel is a common choice of kernel and is

usually sufficient for most vision tasks.

The only tuning parameter to mean shift is the resolution of the clustering process,

which is determined by the kernel bandwidth. This parameter can be selected based

on the stability and repeatability of the clustering results across different parameter

values, or by task-related domain knowledge.

Based on their experimental results, the mean shift algorithm achieves superior

performance on a variety of vision tasks. However, the authors point out that atten-

tion should be paid when using the mean shift approach on high dimensional data

(more than 6D).

2.4.5 3D Pose Estimation

The full pose (6D) of an object includes both its position (3D) and orientation (3D).

While the position of an object can usually be estimated accurately and robustly
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(usually solved simultaneously with object recognition), the problem of estimating

the orientation of an object is a hard one. This is partially because the space of

orientation is non-Euclidean and non-linear (Saxena et al., 2009). Furthermore, dif-

ferent orientations of an object may give the same appearance when symmetries exist.

For example, a cylinder looks exactly the same when it rotates about its major axis.

One possible way to solve this problem is to build a 3D model of a given object that

acknowledges the fact that its appearance is a function of orientation. Schiele (1997)

introduces a robust 3D object recognition algorithm. The basic idea is that by tak-

ing images of an object from different aspects, an object could be recognized with

less ambiguity than it could from a single image. However, since their goal is object

recognition, all features corresponding to different aspects of an object are equivalent,

that is, features are not associated with specific aspects.

Rothganger et al. (2006) use several images of an object taken from different

viewing angles to build a 3D model of the object. SIFT features are calculated from

each image, and these features are related together by matching images that are

closest to each other in viewing angle. The 3D coordinates of each SIFT feature are

calculated by using bundle adjustment and a 3D Euclidean model of the object is built

by using the patches that correspond to SIFT features. In their experiments, they test

their algorithm by taking novel images of the same object in cluttered scenes. Their

algorithm is robust in the sense that an object in the training set can be recognized

most of the time with arbitrary rotation and heavy occlusion. Although their goal is

object recognition, their algorithm has the potential to be used for pose recognition

purpose.

Based on this idea, Gordon and Lowe (2006) propose an algorithm for augmented

reality. In their algorithm, the pose of a known object in the current scene is rec-

ognized accurately in real time, by extracting SIFT features and matching them to

a trained 3D model of the object. Given a set of putative 2D-to-3D matches of fea-
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tures, the camera pose can be solved accurately by minimizing the summed projection

errors of all matched features. Since the position and orientation of the camera is

known, the position and orientation of the object can be solved accordingly. They

then evaluate their approach by inserting some animated objects into the real scenes

according to the pose of a recognized object. Even though their algorithm is visually

confirmed to work well in the above application, no quantitative measurements of the

pose estimation error are given. One limitation is that this algorithm depends on the

texture of the objects to be recognized, since the SIFT features are sensitive to object

texture. As a result, the trained 3D models are specific to particular objects.

Subsequently, Romea et al. (2009) use Gordon and Lowe’s algorithm in the robotics

grasping domain. Particularly, they use a clustering algorithm to deal with the prob-

lem of registering multiple instances of the same object in cluttered and partial oc-

cluded scenes. In their experiment, quantitative results of pose estimation errors are

given. Across all test objects, the average translation error is 0.67 cm and the average

rotation error is 3.81 degrees. Given that the pose of an object is estimated, they use

a trajectory planner to move the wrist of a robotic arm into the vicinity of the object

for grasping. They show that the pose estimate of the object is accurate enough to

help the robotic arm move into narrow openings and grasp the object in clutter.

All the above methods estimate object pose by building a 3D model of the object

without explicitly dealing with the symmetries in a given object. The idea is that by

explicitly modeling the symmetries that exist in an object, one may end up with a

more compact and simple model. This model can usually facilitate robotics grasping.

For example, recognizing the major axis of a cylinder is sufficient for a robot to grasp

it.
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2.5 Relating Vision and Grasping

2.5.1 Affordance-based Object Categorization

Object categorization is usually approached as a computer vision problem (Leibe

et al., 2008; Griffin and Perona, 2008). In these methods, objects are categorized

based on their visual appearance. However, for certain applications, such as robotics

grasping, we care more about object affordances rather than their visual appearances.

Objects that look visually different may share similar affordances. For example, both

a stool and a chair afford sitting. Also, vision-based object classification or recogni-

tion usually requires a large amount of training data to cover within-class variation,

different lighting conditions and aspects. Due to the above reasons, affordance-based

object categorization has brought great interest recently in the robotics community.

The idea of affordance based object categorization is supported by neurological ev-

idence (Gallese et al., 1996; Rizzolatti and Craighero, 2004). The mirror neurons

theory (Umiltà et al., 2001) suggests using resources that are connected to actions

during perceptual analysis. In addition to the original findings in the monkey brain,

recent research has shown similar structures in the human brain (Kilner et al., 2009).

A group of works focus on affordance-based object categorization. Bar-Aviv and

Rivlin (2006) proposed a method to categorize objects based on their functionalities

and properties instead of appearance. These functionalities are defined as a set of

configurations of an agent relative to an object, which are essentially affordances.

Given a CAD model or a real 3D scan of an object, these functionalities are verified

by using a virtual agent interacting with the object in a simulation environment. A

certain function is claimed to be found if the corresponding configuration of the agent

relative to the object can be obtained.

Castellini et al. (2011) propose an object classification algorithm that combines

grasp affordances with visual features. The grasp affordances of an object are encoded
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as the finger configuration of the human hand when object-hand contact occurs.

During the data collection process, a human teacher demonstrates a set of grasps

for a given object. During the grasping process, the algorithm couples the hand

configuration with images in which the object clearly shows up. For a given object,

their algorithm learns a mapping function between hand configuration and visual

features extracted from corresponding example images. An object is captured by an

augmented set of features combining both visual features and hand configuration data.

Then, they train a classifier for each pair of objects on these augmented features. In

the experiments, they compare the object classification performance by using different

algorithms: visual feature only, visual feature with hand configuration, and visual

feature with hand configuration reconstructed by the mapping function. The results

show that the approach using both visual and affordance cues outperforms the one

using visual only, even for the reconstructed hand configuration.

2.5.2 Affordance-based Object Perception

Another advantage of affordance-based object categorization is the possibility for

affordance-based perception. Woods et al. (1995) have done some early work on

function based object categorization. Particularly, they propose the GRUFF (Generic

Recognition Using Form and Function) system. During object classification, the

functionalities of object parts are verified partially by vision (a range image) and

partially by interaction (with a robot arm). This system allows reasoning about the

function of novel objects when the goal is task-oriented in an unknown environment.

For example, if the goal is sitting, it is reasonable to match an upside-down trash

can to the class of chairs. The GRUFF object recognition system reasons about and

generates plans for understanding 3D scenes of objects by performing a function-

based labeling process. One advantage over model-based recognition systems is the

possibility for action provided by the GRUFF system (perception for action). This
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is consistent with Gibson’s affordance idea.

In the work of Detry et al. (2009), vision and action are connected by an object-

centered representation. The visual model and the grasp affordance model of an object

are learned separately. The identity and pose of an object serve as an intermediate

step that bridges the gap between vision and action. Once the identity and pose of

an object is recognized and estimated, a robot can plan its grasp action accordingly

relative to the object.

The visual model learned by their algorithm aims to recover the object pose. The

authors use local 3D features to capture the appearance of image patches along object

contours. Then, they use a Markov tree to combine these local features together into

meta features hierarchically. The relative spatial configuration between a meta feature

and its parts is captured by nonparametric probability distributions. This approach

provides a method to parse an object into parts automatically. Given a novel image

of a known object, this approach first matches local features and then propagates

their belief of the object pose up the hierarchy.

The grasp affordance model aims to capture the distribution of a set of feasible

grasps relative to the object pose. The initial set of grasp hypotheses that is afforded

by an object is directly suggested by visual features. For example, the boundary

between a cup and background with certain curvature may suggest a grasp on the

rim of the cup. The grasp hypotheses generated by using the above method are hand

poses (position and orientation) relative to the object such that closing the hand will

result in stable grips of the object. These grasp samples are points in 6D pose (3D

position and 3D orientation) space defined in an object-centered coordinate frame.

The authors then use a probability distribution to capture the clusters of these grasp

samples. Rather than using a mixture distribution as in the work of de Granville et al.

(2006, 2009), they use nonparametric particle representation of probability density

functions composed of a large number of small Gaussian kernels. Each sample itself
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can be considered as an individual kernel and the overall distribution is simply a

summation of all these individual kernels.

The initial set of grasp hypotheses is further verified by a robot through actual

grasp experience. The nonparametric distribution can capture distributions of arbi-

trary shapes and it allows importance sampling during the grasp verification process.

Only the grasp hypotheses with a high success rate in practice are kept for future

use. This grasp verification process effectively increases the grasp success rate in the

real environment. However, this process eliminates some useful grasp types which are

more difficult to execute than the others. This is a drawback, since the goal of grasp

affordance learning is to discover all useful grasps on a given object.

In their testing process, given a known object, a robot first recognizes the identity

and pose of the object and aligns the learned grasp affordance model according to

the object pose. Then, given the object with recognized pose, a robot can execute

a learned grasp accordingly. This method is object specific since it requires the

recognition of a learned object as a whole. The algorithm needs to learn unique

models for each object to be manipulated, even though these objects may share the

same set of grasp affordances.

A group of works concentrate on mapping partial visual features to grasp actions

directly without high level semantics and object recognition (Piater and Grupen, 2002;

Varadarajan and Vincze, 2011; Stark et al., 2008; Aleotti and Caselli, 2011). Piater

and Grupen (2002) use appearance features to preshape a robot hand for tactile based

grasping. In their work, primitive features are combined into more discriminative

compound features. They employ two types of primitive features. An edgel is a pixel

in an image that has the characteristics of an edge, i.e., orientation and intensity. A

texel is a vector that encoded a local texture signature. Then, a constellation is a

compound feature combining primitive features with rigid position and orientation

relationship between them. A constellation of features is rotation-invariant in the
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image plane. They use feedback from object recognition, as well as robotic grasping

performance, to evaluate whether a constellation of features is useful or not. Useless

features are eventually removed from the feature repository and replaced with other

candidates. As a result, the system learns a set of useful visual features and associated

hand shapes. By choosing an initial hand shape and pose visually, the quality of a

haptic-based search for a grasp is considerably increased. Since this approach does

not require the recognition of specific objects and the visual features learned are

associated with local object parts, it has the potential to generalize to objects with

similar parts.

Varadarajan and Vincze (2011) introduce the idea of Conceptual Equivalence

Classes, which aims to solve the problem of goal-directed object recognition when

the exact object cannot be found. In the case where a target object is not found,

their algorithm will return an object with a similar set of affordances. However, they

need to pre-define a set of object categories and manually map the object parts to

part affordances. A possible solution is to map the object parts to affordances from

human demonstration.

Stark et al. (2008) demonstrate the feasibility to detect certain object parts that

afford certain grasp types in novel images. During the training process, a human

teacher demonstrates a certain grasp for a given object. A single image of the object

is taken, and the object part that is grasped by the human teacher is approximated by

the overlapping region between the hand and the object. Then, a set of visual features

(known as affordance cues) is calculated from this overlapping region, which captures

the partial object shape. During the testing phase, a match of these affordance cues

in a test image is interpreted as that the corresponding affordance is found. In their

experiments, the algorithm learns two sets of visual features that correspond to two

grasp types: a handle grasp and a side grasp on mugs. Since these visual features

only capture partial object shapes, they can generalize to novel objects with similar
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partial shapes. However, these visual features are only learned from a single image in

which the target object part is clearly visible (i.e., the frontal view). Therefore, these

visual features are limited in that they do not capture with-in class shape variation

and aspect change.
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Chapter 3

General Approach

The general goal of a robotic grasping algorithm is to find a set of points of contact

between the object and the hand that allows the object to be grasped reliably. Napier

(1993) and others (c.f., Cutkosky, 1989; MacKenzie and Iberall, 1994) define a grasp

type, or category, in terms of the set of contacts made by the hand, the possible forces

at each contact, and the ability of the contacts to resist perturbations. Our goal is

for a robot to learn the mapping between images of objects and possible contact

points by observing examples of successful grasps. Our hypothesis is that observed

grasp type can provide meaningful labels to drive the learning of visual models that

capture partial object shapes. Furthermore, a visual model learned by our algorithm

will suggest an approximation to how the hand should be positioned relative to the

object in different scenarios containing novel objects.

Visual feature descriptors such as SIFT are very discriminative and have been

shown to perform well at recognizing specific objects. However, SIFT features tend

not to generalize across small differences in objects because they capture very specific

arrangements of edges and texture. Our goal is to learn visual representations that

can be linked to grasping actions, and that do not rely on high-fidelity volumetric or

mesh-based models of specific objects. Our approach is to employ visual features that

1) can recognize common components of objects, 2) are locally robust to appearance

deformations due to rotations in 3D, and 3) are robust to common variations in ge-

ometries across objects (e.g., the shape of a mug handle). Furthermore, our approach

is to define the visual feature categories by clustering examples based on how the
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Figure 3.1: Outline of the grasp-driven visual model learning approach.

object component is actually grasped by a hand.

Given tuples of an example grasp (hand pose and configuration, relative to the

object) and the object image during this grasp, our proposed algorithm will learn

a set of visual features that will recognize object components in a novel image and

suggest appropriate grasps. We assume that tuples corresponding to a single object

are labeled as such (i.e., a set of tuples is sampled as an object is manipulated).

Although there will be several examples of each object class within the training data

set, we make no assumptions about the relationships between these different objects.

Furthermore, we assume that individual training images may contain multiple objects

and that the object in question may be occluded by the hand.
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The outline of the proposed approach is shown in Figure 3.1. I propose a specific

approach in the following sections. The training data to this learning algorithm are

tuples of an image and a grasp example (Box 1). The grasp examples can be either

provided by a human teacher or by the robot itself. Each grasp example includes

information about the hand pose and configuration. For each tuple, the object pose

is estimated (Box 2). Pose can be recovered using object-specific visual models (e.g.,

Romea et al., 2009) or by explicitly instrumenting the object with a pose sensor.

Using the work of de Granville et al. (2006) and Palmer and Fagg (2009), these

hand poses are clustered into compact sets of grasps (Box 3). We refer to these as

proto-grasp. Recall the example that we discussed in Figure 2.1. For this particular

cylinder, the algorithm finds four proto-grasps: two ball grasps on either end of the

cylinder and two power grasps about the major axis of the cylinder. However, these

proto-grasps are tied to the coordinate frame of the specific object and will not directly

apply to other objects because the transformation from one object coordinate frame

to another is unknown.

In order for the learned model to incorporate some degree of variation of object

shape and appearance, we further group similar proto-grasps across different objects

into a single grasp type (Box 5). For example, handle grasps on different mugs could

be grouped together as a single grasp type. Likewise, ball grasps that approach mugs

and cans from the top could be grouped together as another grasp type. The dotted

line from Box 1 to Box 5 indicates that grouping proto-grasps across objects into

grasp types can be informed by visual information describing the shape of the object.

The grasp types induce a partition on the training set of images. For each grasp

type, we identify the common visual features across sample images that suggest the

location of the contacts between the hand and the object. This process requires the

recognition of contact locations in the image coordinates frame. In Box 4, the contact

locations are the locations at which the hand contacts the object. With kinematics
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Figure 3.2: Data flow of the grasp-driven visual model learning approach.

and tactile sensors, a robot can estimate the 3D location of these contacts.

Box 4 and 5 meet at Box 6. The grasp contact locations define a region of interest

(ROI) in the image that putatively contains key geometrical features that can be

used to cue a grasp. For each grasp type, the algorithm of Box 6 attempts to identify

a small set of visual features that are likely to occur within the ROI. Because the

appearance of the object varies with aspect, we expect that a single object will require

a set of visual models to cover all aspects. Our algorithm then matches these visual

models to novel images (Box 7) in order to detect the grasp region for each grasp

type.
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3.1 Data Flow Structure

The data flow structure is illustrated in Figure 3.2. In this diagram, the leftmost

column of boxes represents a set of samples collected for some unique objects during

the data collection process. This data collection process is detailed in Chapter 4.

Specifically, we denote the jth tuple for object i as Tuplei,j =< I, o
gT >i,j, where I

is an image, and o
gT is the hand pose in the object coordinate frame. Each tuple is

called a grasp example.

For each unique object i, the corresponding grasp examples are clustered into a

compact set of proto-grasps. We denote the pth proto-grasp for object i as gi,p. We

further group similar proto-grasps across different objects into a single grasp type Gm.

We denote the entire set of grasp types as G = {Gm}m=1..M , with M denoting the

total number of grasp types for a given training set. During this process, the entire

set of grasp examples are partitioned by grasp types. The proto-grasp learning and

grouping process is discussed in Chapter 5, and the experimental results are given in

Chapter 6.

For each grasp type, Gm, we have a set of sample images corresponding to the set

of grasp examples, Im, which contains similar object components. We would like to

identify the common visual models Vm,k across Im that suggest the location of the

contacts between the hand and the object. Here, the subscript k in Vm,k denotes the

kth visual model for grasp type Gm when it is viewed from a particular viewing angle

(aspect). To do this, we further cluster the entire set of sample images by aspects.

A visual model, Vm,k, is learned from the kth set of aspect-clustered sample images.

This aspect clustering process is discussed in Chapter 7. Assuming a set of Km visual

models is learned for grasp type Gm, our algorithm then matches these visual models

{Vm,k}k=1..Km
to novel images in order to detect the grasp region for each grasp type

Gm. The visual learning and matching algorithms are detailed in Chapter 7, and the
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experimental results are given in Chapter 8.

When the robot is confronted with a novel object, it will detect possible contact

locations by using each learned visual model Vm,k for each grasp type Gm. These

contact locations are grasp type specific. If a visual model corresponding to a certain

grasp type matches a test image well enough, we consider that this grasp type can be

applied to the object contained in the test image. The 3D position of the matched

visual model can be estimated through stereo triangulation (e.g., Hartley and Zisser-

man, 2004; Gordon and Lowe, 2006). Given the 3D position of the matched visual

model, the robot can then use the relative 3D hand pose suggested by the visual

model for grasping the object.
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Chapter 4

Data Collection

4.1 University of Oklahoma Grasp Data set

Part of the contribution of this dissertation is the OUGD (University of Oklahoma

Grasp Data set1). In the OUGD, we have collected about 22,000 grasp samples with

corresponding stereo image pairs for ten different object categories and five objects in

each category. These ten object categories are: mugs, glasses, spray bottles, hammers,

hand drills, wine bottles, detergent/softener bottles, bowls, spatulas and spheres. For

the first three object categories, we have also collected the corresponding range images

using the Microsoft KinectTM , although the use of these range images is out of the

scope of this dissertation. The entire set of 50 objects in the OUGD are shown in

Fig. 4.1. In this figure, we show an example image for each object that corresponds to

the frontal view. This frontal view is used as the anchor aspect for the following multi-

aspect data collection process. Images of objects that belong to the same categories

are arranged next to each other. We can see that the objects in the same category

have similar gross shapes. However, these objects also have substantial within-class

shape variations and differ significantly in color and texture. Due to this reason,

color/texture-based visual features usually generalize poorly across different objects

in the same category. The number of grasp types that we demonstrated varies for

each object category. On average, about 120 samples were collected for each grasp

type, corresponding to viewing angles that are approximately evenly distributed on

the aspect sphere (about 30 degrees apart).

1http://www-symbiotic.cs.ou.edu/projects/OUGD

49



We employ a calibrated stereo camera system to collect the images. This system is

capable of localizing uniquely identifiable visual features to within a few centimeters in

3D. In addition, we use a Polhemus PatriotTM † to track the position and orientation

(we use pose to indicate both variables) of both the right hand of a human teacher

and the object being manipulated. The Polhemus sensor uses three perpendicular

magnetic fields to estimate both position and orientation. The pose of the camera

is measured in the global coordinate frame and remains the same during the entire

data collection process. Given the pose of the Polhemus frame relative to the global

coordinate frame, we derive a transformation from the camera frame of reference to

the Polhemus frame. The Polhemus sensor is affixed to each object; the position

does not change during the collection process with that object. However, from one

object to the next, there are no guarantees about the relationships between the sensor

locations. This is intended to model an agent’s ability to track the relative pose of

an object as it manipulates that object. However, it does not make any assumptions

about how different objects might relate to one-another.

In our experiment, we estimate approximate contact locations of an object in a

given image as the part of object occluded by the hand. Note that this only gives

us an approximation of the contact locations. Accurate contact location estimation

would require instrumentation of either the object or the teacher’s hand.

Given that we want to differentiate the object from the background and obtain a

gross approximation of where the contacts are on the object, in the data collection

process, we associate a training grasp sample with a triplet of images: a background

image, an object-only image and an object-with-hand image. Specifically, we collect

data using the following procedure: first, the stereo camera pair is oriented with their

field of view (FOV) covering the table. Then, we take a stereo image pair, which we

call the background. An individual sample is composed of the hand pose relative to

†http://www.polhemus.com
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Figure 4.1: The set of objects in the OUGD.

the object when grasping happens and a triplet of stereo image pairs: background,

object-before-grasp and object-after-grasp. We collect multiple samples in order to

cover different aspects and grasp types. To do this, we put the object on top of the

table, and rotate the object about the z axis (perpendicular to the table), so that we

can see the frontal view of the object from the left image. For example, the frontal

view of a mug is a view such that the mug is placed upright on the table with its

handle facing either left or right. We use the frontal view as the starting angle for

each object. The frontal view of each object is shown in Fig. 4.1. From the starting

angle, we tilt the object towards the camera until a top view is achieved, and tilt

the object away from the camera until a bottom view is achieved, for about every 20
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degrees. Also, for each tilt angle, we rotate the object about its z axis 360 degrees,

with about 30 degrees interval. The z axis of each object is defined to be coincident

with the z axis of the table in Fig. 4.1. Generally, the z axis is consistent with the

object’s rotational symmetry axis, if such a symmetry exists (though our algorithm

does not make use of this information). We repeat the above data collection process

for each grasp type on each object. For convenience, for the same object, some grasp

types are demonstrated when the object is in a different initial configuration. For

example, when we demonstrate the grasps on the bottom of a glass, the glass is

initially put on the table up-side down, as opposed to upright in Fig. 4.1. This new

initial configuration serves as the starting view point (frontal view), and the data

collection process is all the same as above.

For convenience, in the above process, we choose to rotate the object about its

rotational symmetry axis, if such a symmetry exists. This is equivalent to rotating

the camera about the object’s rotational symmetry axis. This choice makes the data

collection process easier to keep track of, but is not necessary. All grasp samples are

ultimately represented within the coordinate frame of the object.

The set of grasp types demonstrated for each object is summarized in Table 4.1.

Note that these grasp types are unlabeled during the data collection process and we

rely on the grasp affordance learning algorithm to recover these classes automatically.

The number in the parentheses denotes the number of such grasp types, which are

usually symmetric. For example, we can grasp from the side of a glass with either

the overhand or underhand hand orientations.

4.2 Contact Location Extraction

For each grasp sample, the goal of this step is to identify the area of the image that

contains any visible object contacts. We use each training image tuple to visually
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Table 4.1: Grasp types demonstrated for each object category
Rotationally symmetric Unidirectional

Mug Top Handle
Glass Top, Bottom1, Side, Side1

Spray
bottle

Nozzle (2), Trigger, Side (2), Bot-
tom1 (2)

Hammer Handle Precision, Handle Power Top (2)
Hand
drill

Handle, Barrel2 (2) Trigger

Wine
bottle

Neck, Neck1, Side, Side1, Bottom1

Detergent
bottle

Cap Handle, Side, Bottom1 (2)

Bowl Rim (2)
Spatula Handle (2)
Ball Ball Grasp

1As the starting aspect, the object is held upside-down
2As the starting aspect, the object is rotated 90 degrees counter-clockwise

identify the locations of the object that are occluded by the hand, and hence contain

the visible set of contact locations (as shown in Figure 4.2). A grasp sample is

composed of a tuple of three images: 1) background only, 2) object only and 3) object

grasped by a hand. We define the location in an image at which the hand contacts

the object as a grasp region. These grasp regions are estimated in a given image

by the area “covered” by the hand (Stark et al., 2008). The grasp regions in each

training image tuple can be estimated by a sequence of image differencing techniques

(Algorithm 1): 1) we remove irrelevant pixels from the object image (Iobj), such as

those belonging to the holding hand and shadows, based on color cues. 2) We subtract

the object image (Iobj) from the grasp image (Igsp), which gives us an image of the

grasping hand and part of the arm. 3) We subtract the background image (Ibk) from

the object image (Iobj), which gives us an image of the object without background.

4) In the above two steps, we obtain corresponding binary images by thresholding.

Then, we remove the extraneous pixels in these binary images by a set of erosion and
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Threshold/erosion/dilation

Figure 4.2: Simple steps to extract the grasp location from a tuple of training images.

dilation operations. 5) The intersection of the resultant images Igsp and Iobj gives us

an image region (the grasp region) that corresponds to the part of the object occluded

by the hand.

Some of the parameters in this process require separate tuning, given that some

of the objects in OUGD have colors that are close to skin, the table, or the data

glove. Since our goal is to extract object parts that are predictive to certain grasps,

we would like to remove pixels belonging to other extraneous objects (such as the

supporting hand and the cable) as much as possible. In order to do this, we calculate

a color model, Mskin, by using pixels manually selected on the hand. The likelihood

of a pixel being the skin color, given the skin color model, is p(pixel|Mskin). Then, for

a given image, we remove pixels that can be well described by the skin color model,

Mskin, by selecting a likelihood threshold value. If we set this threshold too low, both

the pixels that correspond to skin and object will be removed from the image. If we
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Algorithm 1 An algorithm that extracts contact location

procedure FINDGSPLOC(Ibk, Iobj, Igsp,Mskin,Mshadow)
Iobj =REMOVE COLOR(Iobj,Mskin)
Iobj =REMOVE COLOR(Iobj,Mshadow)
Igsp = Igsp − Iobj ⊲ locate the grasping hand
Igsp =THRESHOLD(Igsp)
Igsp =EROSION(Igsp)
Igsp =DILATION(Igsp)
Iobj = Iobj − Ibk ⊲ locate the object
Iobj =THRESHOLD(Iobj)
Iobj =EROSION(Iobj)
Iobj =DILATION(Iobj)
Icontact = Igsp ∩ Iobj ⊲ locate contact
return the largest blob in Icontact

end procedure

set this threshold too high, the extracted grasp region will contain a large part of

the hand and arm. In the scope of this dissertation, we hand-select the color model

threshold on a per-object basis to achieve reasonable separation of object and skin.

4.3 Synthesizing Ground Truth Bounding Boxes

Note that for each tuple of images, only one ground truth grasp region can be gen-

erated in this way, since only one grasp type is demonstrated for a tuple of images.

In the testing phase, we use the object-only image in each tuple of images as a test

image. However, for a given test image, other possible grasp regions may exist besides

the one that is demonstrated during data collection. For example, in Fig. 4.3, the

bottom row corresponds to a stereo image pair in which a top grasp is demonstrated.

However, one can still observe the grasp regions for a handle grasp (although part of

the handle is occluded by the supporting hand in this view). In the testing phase,

we would like a visual matching algorithm to detect all of the grasp regions associ-

ated with a test image and properly measure its performance. Therefore, we need to

infer the ground truth bounding boxes for all grasps that are afforded by the object
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contained in an image. We solve this problem by finding the nearest neighbor of this

image on the aspect sphere in which another grasp type is demonstrated. We then

overlay the ground truth bounding box of the nearest neighbor image onto the image

to be synthesized and translate and scale the bounding box accordingly. We calculate

the translation and scaling based on the 3D locations of the object relative to the

camera associated with this image and its nearest neighbor. However, sometimes, the

nearest neighbor image may not be close enough to the image in question. In this

case, we do not provide a ground truth bounding box for this particular grasp in this

image, since the neighbor image may look very different from the given image.

Examples of synthesized bounding boxes in a stereo image pair are shown in

Fig 4.3. In the stereo image pair on the bottom row, a grasp on the top of the mug is

demonstrated during the training process. Our goal is to find the bounding boxes of

the handles in this image pair. In order to do so, we first find all the samples with a

demonstrated handle grasp. Then, from these samples, we select the sample that has

the closest viewing angle to the given image. The stereo image pair corresponding to

the closest neighbor is shown in the top row in Fig. 4.3. If the viewing angle of the

closest neighbor is less than αth from that of the given image, and the camera in-plane

rotation difference is less than βth, we will consider these two samples as being close

enough. Here, αth = 10◦ and βth = 25◦ are selected and fixed based on exploratory

experiments. Since we also check the in-plane rotations, a sample with an upside-

down object will never be considered as the neighbor of a sample with an upright

object. This choice insures the correctness of the ground truth bounding boxes that

we extract. For an image with an upright object, the ground truth bounding boxes

corresponding to grasps learned on an image with an upside-down object will be set

to empty, and vice versa.

Since the object position may be shifted in the nearest neighbor image relative to

the image in question, we can not just superimpose the bounding boxes of the handle
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Figure 4.3: An example of synthesized ground truth bounding boxes from a neighbor
image. Top row: nearest neighbor stereo image pair with ground truth bounding
boxes generated by image differencing; bottom row: a stereo image pair with synthe-
sized bounding boxes.

on top of the image in question. Since we know the 3D position of the Polhemus

sensor in all images, we can shift the bounding boxes relative to the sensor position.

In the nearest neighbor image, we project the 3D position of the sensor, [X, Y, Z],

onto the image plane by using the camera projection matrix, C (assumed to be fixed

during the entire data collection process):
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where p = [xp; yp] is the projected sensor location in the image coordinate frame.

Assume that matrix 1B contains the homogeneous coordinates of the four corners

of the ground truth bounding box in image 1’s coordinate frame (the nearest neigh-

bor image), we calculate the corresponding homogeneous coordinates in image 2’s

coordinate frame, 2B, by:

2B = s 2
p2
T p1

1 T 1B,

where, s is a scalar that compensates for the scale difference of these two bounding

boxes. s = Z1/Z2, where Z1 is the depth of the sensor origin in image 1 and Z2 is the

depth of the sensor origin in image 2. p1 (denoted as an asterisk in Fig. 4.3) and p2

(denoted as a dot in Fig. 4.3) are the projected sensor locations in image 1 and image

2, respectively. We first translate the corners of the ground truth bounding box from

image 1’s coordinate frame into p1’s coordinate frame: p1
1 T 1B. Since the relative

position and orientation between the projected sensor location and the bounding box

is fixed (down to scaling), the coordinates of the corners in p2’s coordinate frame are

also p1
1 T 1B. Next, we translate the coordinates of the corners back into image 2’s

coordinate frame: 2
p2
T p1

1 T 1B. Finally, the corners of the bounding box are properly

scaled with respect to the origin of image 2: s 2
p2
T p1

1 T 1B, which accounts for the

distance change between the sensor and camera in images 1 and 2.

Special cases exist for some of the object categories. For the spray bottle, the

top and bottom grasps have two hand orientations that are related by a 180-degree

rotation about the object’s major axis. These grasp types share the same grasp

regions. If one of these ground truth bounding boxes is missing, we will use the other

one to replace it. The same is true for the two bottom grasps on the detergent bottles,

the two grasps on the rims of bowls, the two handle grasps on the spatulas, and the

two top grasps on the hammers.
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Chapter 5

Object Clustering

In this chapter, we detail a particular instantiation of the approach proposed in

Chapter 3. Given the grasp examples of different objects in the OUGD, the proposed

algorithm first learns a set of proto-grasps for each unique object. Then, the algorithm

clusters the entire set of object in the OUGD into object categories based solely on

the different ways that these objects are grasped. Specifically, we cluster objects

based on the similarity of their grasp affordance models. In particular, an object

is considered a good match if, after alignment of the two objects, that its model

explains the second object’s grasp data well. Alignment is necessary because in the

data collection process, we do not make any assumptions about how different objects

might relate to one-another. Finally, the proto-grasps are grouped into grasp types

for each object category.

5.1 Proto-grasps Learning

During the data collection process, the object and hand poses are specified in the

global coordinate frame. However, we would like to represent the hand pose in the

object coordinate frame, so that the learned grasp affordance model is independent

of the object pose. Specifically, we change the reference frame of the hand pose from

global coordinate frame to the object coordinate frame. Given the hand poses of grasp

samples in the object coordinate frame, a grasp affordance model is learned according

to de Granville et al. (2006) and Palmer and Fagg (2009) for each individual object in

OUGD. In the learned grasp affordance model, a weighted mixture model of PDFs is
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fit to the entire set of grasp samples. Each component PDF captures a single cluster

(Box 3 of Fig. 3.1), and is described as a joint PDF in both the hand position and

orientation space relative to the object. Given a set of grasp samples for an object,

the parameters of the mixture model is found using expectation maximization (EM).

Since EM is a gradient ascent method and local optima exist in our case, we perform

many attempts of EM with random initial conditions. The best mixture model is

selected by using the Integrated Completed Likelihood (ICL) metric. Assuming Mi is

a mixture model that captures the distribution of grasp samples for a given object i,

and that oi
gj
T denotes a grasp sample j of object i, the likelihood of this grasp sample

with respect to the grasp affordance model is described by:

p(oigjT |Mi).

Accordingly, assuming {oigjT}j=1..Ji is the entire set of hand pose samples demonstrated

for object i, the log likelihood of this set of grasp samples with respect to grasp

affordance model Mi is described by:

Li =

Ji
∑

j=1

log[p(oigjT |Mi)].

The above grasp affordance learning process provides us with grasp clusters for a

single object (Box 3 of Fig. 3.1). We refer to each grasp cluster as a proto-grasp. This

is because the affordance models learned by de Granville et al.’s approach are specific

to individual objects. However, these models, alone, do not necessarily generalize to

other objects of the same class because the alignment of these models is unknown

and because of within-class variations in geometry (e.g., relative size of the objects).

Nevertheless, these affordance models can serve as the basis for an object clustering

process. First, we employ a stochastic gradient approach that identifies the ideal
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alignment and scaling between object model pairs. The degree of match is measured

in terms of the likelihood of the grasps for one object in terms of the model of the

other object. Second, we identify groups of objects that mutually score well in terms

of this metric. This process is detailed in the next section.

5.2 Object Clustering

Since we would like our grasp affordance models to be generalizable to objects that

can be grasped in similar ways, we further group proto-grasps across different objects

into a smaller set of grasp types. In particular, we want to identify which clusters in

the hand pose space across different objects should be mapped to a single grasp type.

One way to solve this problem is to use a grasp-level matching approach (Box 5 of

Fig. 3.1). As indicated by the name, this approach clusters individual proto-grasps

into grasp types. For example, this approach might find a match between the rims

of a mug and a glass because a ball grasp is used for both. This approach requires

some form of matching process between the proto-grasps. One possible way would

be to compare the hand configuration (positions of the fingers) used for each cluster.

However, the currently available sensing system precludes the accurate extraction of

this information. The grasp-level matching between individual proto-grasps is made

difficult by only knowing the hand poses relative to the object.

We instead choose to use an object-level matching approach that matches the

entire set of proto-grasps associated with each object. The object-level matching ap-

proach clusters different objects by comparing their grasp affordance models rather

than clustering individual proto-grasps. Because such an approach requires a com-

plete match of objects, all partial matches are not considered. For example, a mug

and a glass will not be grouped together, since they afford different sets of proto-

grasps, despite the fact that these two sets may share some common proto-grasps.
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We define two objects as similar if there is a match between the two sets of proto-

grasps (grasp affordance models) associated with these two objects. We further group

similar objects together into a single object category.

The question is: how to find a match between the two sets of grasp clusters

associated with two objects. During the data collection process, even though the

object coordinate frames are known and fixed for individual objects, there are no

correspondences across objects. The coordinate frame of one mug is different from

the other mugs since there is no guarantee that the pose sensor is placed at exactly

the same location (relative to the object). In essence, the question is whether there

exists a relative pose that brings the different grasp clusters into alignment with

corresponding clusters from the other object. Specifically, if we describe a set of hand

pose samples for the first object as {o1gjT}j=1..J1 , the learned grasp affordance model

for the first object is a mixture distribution that describes the likelihood of a given

hand poses: p(o1gjT |M1). For the second object, we have a set of hand pose samples

{o2gjT}j=1..J2 . The question is whether there exists a transformation o1
o2
T and a scaling

RT
12S12R12 that results in a high log likelihood value for the following:

L12 =

J2
∑

j=1

log[p(RT
12S12R12

o1
o2
T o2

gj
T |M1)]. (5.1)

In this equation, R12 is a rotation matrix to be determined that allows scaling about

an arbitrary set of axes, and S12 is a diagonal scaling matrix. The detailed object

matching algorithm is given in Algorithm 2 to 5. Our goal is to maximize Equation 5.1

with respect to the transformation parameters. Here, we have three unknowns: o1
o2
T ,

S12 and R12. Specifically, in Algorithm 2, o1
o2
T is decomposed into a 3D rotation,

which is defined by a unit quaternion, q, and a 3D translation, which is defined

by a vector [px, py, pz]; the rotation matrix, R12, is defined by a unit quaternion, r;

and the scaling matrix, S12, is defined by the three diagonal elements, [sx, sy, sz].
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We use a gradient based search (Algorithm 3) to find the values of these variables

(q, px, py, pz, sx, sy, sz, r) that maximize L12. In Algorithm 3, the search process starts

with the initial values of these variables: (q̂, p̂x, p̂y, p̂z, ŝx, ŝy, ŝz, r̂). In addition, we

constrain the amount of scaling, [sx, sy, sz], to be between 0.5 and 2, and the norms

of q and r to be 1 (unit quaternions). However, since a gradient based search is subject

to local extrema, we attempt multiple search starts with different initial conditions.

This is reflected in Algorithm 2, where we call function FMAXCON multiple times by

starting the search at different initial q’s. Specifically, for each attempt, we regularly

sample a set qs of unit quaternions from the entire space of rotations. The initial

values of the other variables remain the same: the 3D translation, [px, py, pz], is

initialized to [0, 0, 0]; the 3D scaling, [sx, sy, sz], is initialized to [1, 1, 1]; and the

rotation, r, is initialized to [1, 0, 0, 0]. This generally works well in our case, since

the translation of the sensor location from object to object is typically small, and the

objects in the same category are typically of similar sizes. One can easily adapt this

search process to more general cases by attempting different starting 3D translations,

as well as a wider range of 3D scaling. In function OBJMATCH, we record the

current best solution returned by function FMAXCON, and update it whenever a

better solution is found by a new search attempt. After all search attempts, function

OBJMATCH returns the matrices, o1
o2
T , S12, and R12, that give the highest value of

L12. The matrices, o1
o2
T , S12, and R12, are recovered from (q, px, py, pz, sx, sy, sz, r)

using function ASSEMBLE (Algorithm 5).

If the log likelihood, L12, between a pair objects, 1 and 2, found by the above

object matching algorithm is higher than some threshold (e.g., 0), we claim that an

alignment (transformation, rotation and scaling) does exist between these two objects

and the proto-grasps match in their structure. Then, the aligned proto-grasps are

considered by our algorithm as being in the same grasp type. One advantage to

such a process is that objects may be compared with themselves so as to identify
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Algorithm 2 An object matching algorithm using grasp affordance models

function objmatch({o2gjT}j=1..J2 ,M1)
qs← regularly sample a set of unit quaternions
p̂x ← 0, p̂y ← 0, p̂z ← 0
ŝx ← 1, ŝy ← 1, ŝz ← 1
r̂ ← [1 0 0 0]
fvalmax ← a very small number
for all q̂ ∈ qs do

[T,R, S, fval]← FMAXCON({o2gjT}j=1..J2 ,M1, q̂, p̂x, p̂y, p̂z, ŝx, ŝy, ŝz, r̂)
if fval > fvalmax then

fvalmax ← fval
T ∗ ← T
R∗ ← R
S∗ ← S

end if
end for
return T ∗, R∗, S∗

end function

Algorithm 3 A search algorithm that maximizes a target function with constraints

function fmaxcon({o2gjT}j=1..J2 ,M1, q̂, p̂x, p̂y, p̂z, ŝx, ŝy, ŝz, r̂)
given initial values: q̂, p̂x, p̂y, p̂z, ŝx, ŝy, ŝz, r̂,
search for q, px, py, pz, sx, sy, sz, r that maximize

fval = TARGET({o2gjT}j=1..J2 ,M1, q, px, py, pz, sx, sy, sz, r)
subject to:

0.5 ≤ sx, sy, sz ≤ 2
‖q‖ = ‖r‖ = 1

[T,R, S]← ASSEMBLE(q, px, py, pz, sx, sy, sz, r)
return T,R, S, fval

end function

Algorithm 4 The target function that FMAXCON maximizes

function target({o2gjT}j=1..J2 ,M1, q, px, py, pz, sx, sy, sz, r)
[T,R, S]← ASSEMBLE(q, px, py, pz, sx, sy, sz, r)

L12 ←
∑J2

j=1 log[p(R
TSRT o2

gj
T |M1)]

return L12

end function
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Algorithm 5 A function that assembles variables into matrices

function assemble(q, px, py, pz, sx, sy, sz, r)
Q← q2tr(q) ⊲ convert unit quaternion to homogeneous transform
R← q2tr(r)

T ← Q









1 0 0 px
0 1 0 py
0 0 1 pz
0 0 0 1









S ←









sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1









return T,R, S
end function

structural symmetries that may exist (e.g., a glass can be flipped end-to-end and

have approximately the same set of proto-grasps as before). Another advantage of

this approach is that it does not require an explicit matching process between grasp

clusters, which could depend greatly based on how the examples are clustered for the

different objects.

5.3 Refining Object Clusters

Equation 5.1 provides us a way to calculate a similarity score between a pair of

objects. The similarity score between each pair of objects i and j is defined as:

sij = sji = min(Lij, Lji), (5.2)

where Lij and Lji are defined by Equation 5.1. Ideally, we can set a threshold (such as

0) for this similarity score, and group all objects with mutual similarity scores above

the threshold together into a single object category. However, in reality, the similarity

score between two objects belonging to different object categories can also achieve a

high value. For example, the likelihood of samples captured on the mugs is usually
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high given the affordance model learned on the set of glasses. This is because the

grasps on the handle of a mug can be described pretty well by a girdle distribution,

which is usually learned on the side of a glass.

The above observation suggests that we need some principled way to find clus-

ters of objects that are mutually well-connected with high similarity scores. These

clusters correspond to groups of objects that are mutually similar. To do this, we

first introduce two visual representations of the relationships between objects. Given

the similarity scores between each pair of objects, we can represent the relationships

between objects using either a weighted adjacency matrix or a graph.

We define a weighted adjacency matrix as a symmetric matrix with its element,

mij, calculated as:

mij = mji =
max(sij, 0)

max(sii, sjj)
.

In this equation, the similarity scores between all pairs of objects are pruned by a

threshold of zero. Note that the diagonal elements corresponds to the similarity score

of an object matching to itself, which is theoretically higher than that of the same

object matching to other objects. This is because the learned grasp affordance model

for an object is a maximum likelihood model given its own grasp samples. Given that

the similarity score depends on the number of grasp clusters of an object, we use the

diagonal element to normalize all the similarity scores when this object is matched

to the other objects. By using max(sii, sjj) as the normalizer, we ensure that the

normalized weighted adjacency matrix is symmetric. Therefore, an element mij in

the adjacency matrix can be considered as a normalized similarity score.

An example weighted adjacency matrix is visualized in Fig. 5.1. In this figure, a

weighted adjacency matrix is visualized by an image with different colors denoting

the magnitudes of the matrix elements. The value range of an element (i.e., the

normalized similarity score) is between 0 and 1, which is linearly mapped from blue
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to red. The objects of the same true class are organized contiguously. Therefore,

the non-zero similarity scores form square areas. However, we can also observe some

entries in the adjacency matrix with positive similarity scores outside of the square

regions, which correspond to matches between grasp affordance models of objects in

different categories.

Similarly, we can visualize the relationships between objects using a weighted

undirected graph. In such a graph, a vertex corresponds to an object, and an edge

between two vertices is weighted by the normalized similarity score between the two

corresponding grasp affordance models. An example graph is shown in Fig. 5.2, which

corresponds to the weighted adjacency matrix visualized in Fig. 5.1. Again, we have

pruned edges above a threshold of zero. Due to the complexity of this graph, edge

weights are not shown for clarity. In this graph, nodes are color-coded based on

true object categories. Although there are many extraneous edges between objects in

different true categories, the object clusters are pretty clear. This is due to the fact

that there are more “within-class” edges than “inter-class” edges.

The goal is to find the tightly-connected cliques in this graph, which correspond

to groups of objects that are mutually similar. The expectation is that objects of

the same class should have similar models and so should be able to explain each-

other’s data and achieve high mutual similarity scores. Furthermore, we expect that

models should most often not generalize well across object classes. Hartuv and Shamir

(2000) propose the Highly Connected Sub-graphs (HCS) algorithm that finds tightly-

connected sub-graphs (clusters of nodes) in an undirected graph. A graph G is k-

edge-connected ifG remains connected after arbitrarily removing fewer than k vertices

from G. Assuming that the number of vertices of a graph G is n (with n > 1), and

G is k-edge-connected, Hartuv and Shamir define that G is called highly connected

if k > n/2. A cut is an operation that separates a connect component of a graph

by removing a set of edges. Sometimes, a cut also refers to the set of edges that
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Figure 5.1: An example of a weighted adjacency matrix for all 50 objects in the OUGD
before graph clustering. The axes are labeled by object categories (five individual
objects in each object category). Each entry corresponds to the normalized similarity
score between a pair of objects. The objects of the same true category are organized
contiguously.
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Figure 5.2: An example of the original similarity graph for all 50 objects in the OUGD
before graph clustering. Nodes correspond to objects, which are color-coded based on
true object categories. Edges connect similar objects (those whose similarity scores
are above 0). Edges are weighted by normalized similarity scores (not shown for
clarity).

have been removed. Particularly, a minimum cut is defined as a cut with a minimum

number of edges. For a given a graph, the HCS algorithm recursively removes the

minimum cut from connected components that are not highly connected, until all

resultant sub-graphs are highly connected. However, they assume that the graph is

unweighted, so it is not important which cut is removed as long as it is minimal.

In our case, we have a weighted graph and prefer to remove the edges with lower

similarity scores first. Therefore, we modify the HCS algorithm and adapt it to

weighted graphs. The modified HCS algorithm is described in Algorithm 7. This

algorithm recursively cuts connected components that are not highly connected, until

all resultant sub-graphs are highly connected. Compared with Hartuv and Shamir’s

algorithm, we use function EDGECUT(G) to find a cut in a connected component

G. EDGECUT(G) repeatedly removes the lowest weighted edge from G until G is

disconnected. Another assumption that we make is that each cluster contains at least
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one object. So, in function HCS, the search is pruned prior to the EDGECUT that

would isolate the node, and returns the set of clusters before this EDGECUT.

Algorithm 6 The modified HCS graph clustering algorithm

function HCS(G)
{Gi} ←FINDCC(G) ⊲ Find connected components in G
G′ ← empty set
for each g ∈ {Gi} do ⊲ g: a connected component

if g is NOT highly connected then
gold ← g ⊲ Store the old g
g ← EDGECUT(g) ⊲ Cut g into a set of sub-graphs
if g contains isolated node then

g ← gold ⊲ Restore g
else

g ← HCS(g) ⊲ Recursion on the set of sub-graphs
end if

end if
G′ ← G′ ∪ g

end for
return G′

end function

Algorithm 7 An algorithm that finds a cut in a weighted graph

function EDGECUT(G)
while G is connected do

remove the lowest weighted edge in G
end while
return G

end function

5.4 Unified Grasp Affordance Models

The above process clusters objects into object categories in terms of how they are

grasped. During the grasp affordance model matching process, Algorithm 2 not only

measures the similarity score between a pair of objects, but also finds the alignment

between them (specified by o1
o2
T , S12, and R12 in Equation 5.1). For each object

category, each object is aligned relative to the first object (arbitrarily chosen). Then,
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for each object category, a unified grasp affordance model is learned by using grasp

samples from all objects in this category (as opposed to a single object in the previous

section). For each object category, we classify each grasp sample into one of the

grasp types described by the unified grasp affordance model of this object category.

Specifically, each grasp sample is assigned to its maximum likelihood class.

The object category induces a partition on the entire set of samples. Grasp type

further partitions the set of samples. For instance, we may have a set of images

containing different mugs and a corresponding set of grasp types: a ball grasp from

the top and a handle grasp that involves both a palmar opposition and a side oppo-

sition (MacKenzie and Iberall, 1994). Likewise, we may have another set of images

containing different hammers and a corresponding set of grasp types. In the latter

case, there are three grasp types: a grasp from the top, a power grasp and a pad

opposition about the length of the axis.
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Chapter 6

Object Clustering Experiments

In order to test the performance of our object clustering algorithm, we use a 10-fold

cross validation approach. For each object, we randomly split the grasp samples

into 10 equal folds. Since different grasp types are demonstrated on an object in

sequence, a random split ensures that each grasp type is represented in each fold. For

each experiment, we use nine folds of data for grasp affordance model learning and

matching (about 20,000 samples). The tuning parameters of the grasp affordance

learning algorithm and their chosen values are shown in Table 6.1. These values

were chosen based on exploratory experiments with reference to Palmer and Fagg

(2009), and remain unchanged for all 10 experiments. Specifically, the maximum

number of clusters, B = 10, was chosen to be larger than the largest number of

grasp types demonstrated on any object (the spray bottle with seven grasp types),

in order to prevent a ceiling effect. In the learning of the unified grasp affordance

models, the total number of grasp types (B) was also chosen to be 10. The complexity

punishment coefficient (ζ) was chosen to be 13, which is larger than the value (5) used

for single-object grasp affordance model learning. This is due to the fact that more

grasp samples are used for the unified grasp affordance model learning, and we have

observed model over-fitting for some object categories with small ζ in exploratory

experiments. Again, these parameter values remain unchanged for all unified grasp

affordance model learning. More details to the sensitivity analyses on these tuning

parameters can be found in de Granville (2008).
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Table 6.1: The list of parameters and their chosen values for grasp affordance model
learning.

Parameter Single Unified
Maximum number of clusters B 10 10
The number of EM attempts 40 40
The number of EM steps 20 20
ICL punishment factor ζ 5 13

6.1 Experimental Results

For each experiment, we first use de Granville et al. (2006, 2009) and Palmer and

Fagg (2009)’s algorithm to learn grasp affordance models for each individual object in

OUGD using 9 out of 10 training folds. We repeat this process for all 10 experiments.

For comparison, the algorithm also learns a unified grasp affordance model for each

object category. In order to do this, we use all 10 training folds to learn a grasp

affordance model for each individual object and align the objects within each ground

truth object category. Examples of both the single-object and unified grasp affordance

models are shown in Fig. 6.1 to Fig. 6.10. In each of these figures, the panel on the left

shows the grasp affordance model learned on nine training folds for a single object,

and the panel on the right shows the corresponding unified grasp affordance model

learned on all grasp samples from all objects in the same category after coordinate

alignment.

In Fig. 6.1(a), a learned grasp affordance model is superimposed on the image of

a mug. The 3D hand positions of grasp samples are represented as dots in the object

coordinate frame. There are two clusters of grasp samples in this figure: the one near

the top of the mug corresponds to top grasps, and the one near the handle of the mug

corresponds to handle grasps. The ellipsoids represent grasp centroids described by

3D Gaussian distributions, which are translated by certain distances from the sensor

positions (the sensor is located on the wrist). These translations are calculated on a

grasp-by-grasp basis per Palmer and Fagg (2009)’s algorithm. The circle on top of
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(a) Single (b) Unified

Figure 6.1: Grasp affordance models learned on the mugs using grasp samples from
a single object (left), and grasp samples from all five objects (right). Blue: top ball
grasp; red: handle grasp.

the mug represents a girdle distribution that captures the rotational symmetry of the

top grasp. The straight line extending from the ellipsoid near the handle represents a

DW distribution that captures the unidirectional property of the handle grasp. This

grasp affordance model is consistent with our ground truth of demonstrated grasp

types in Table 4.1. In Fig. 6.1, the grasp affordance models learned on a single mug

and all 5 mugs are composed of the same number of clusters. We can also see that the

population of grasp samples on the right panel is much larger than those on the left.

Generally, more grasp samples produce more consistent grasp affordance models with

the ground truth clustering of grasp types. However, the value of the complexity

punishment coefficient, ζ, should be increased accordingly in order to prevent the

grasp affordance learning algorithm from over-fitting.

Examples of grasp affordance models learned on the other object categories are

shown in Fig. 6.2(a) to Fig. 6.10(a). In most of these grasp affordance models, the

number of clusters found by the algorithm is consistent with the ground truth number

of grasp types in Table 4.1. Exceptions are on the hammer, the drill and the spat-

ula. For the hammer in Fig. 6.2(a), the grasp affordance learning algorithm learns
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(a) Single (b) Unified

Figure 6.2: Grasp affordance models learned on the hammers using grasp samples
from a single object (left), and grasp samples from all five objects (right). Red/blue:
top grasps; green: handle precision/power grasps.

a single cluster (captured by a joint distribution of a 3D Gaussian and a girdle)

that describes both the power and precision grasps on the handle. This is due to a

relatively high complexity punishment coefficient (ζ = 5). With a lower complex-

ity punishment coefficient, the algorithm usually finds two clusters that describe the

power and precision grasps separately. Also, we should note that the grasp affordance

model learned on the hammers is symmetric about a 180 degrees rotation about the

handle. When the algorithm aligns grasp affordance models of different hammers,

there are two local maxima in the log likelihood space. Accordingly, the algorithm

will select the higher local maximum in the log likelihood space. This happens if one

of the hammers is rotated about 180 degrees from the others around the handle after

coordinate alignment.

For the drill (Fig. 6.3a), the grasp affordance learning algorithm learns a single

cluster (captured by a joint distribution of a 3D Gaussian and a girdle) that describes

both the trigger (uni-directional) and handle grasps (rotationally symmetric). Again,

this is due to a relatively high complexity punishment coefficient (ζ = 5). With
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(a) Single (b) Unified

Figure 6.3: Grasp affordance models learned on the hand drills using grasp samples
from a single object (left), and grasp samples from all five objects (right). Green/red:
barrel grasps; blue: handle/trigger grasps.

a lower complexity punishment coefficient, the grasp affordance learning algorithm

usually finds two clusters that describe these two grasp types separately.

For the spatula (Fig. 6.4a), ideally, we expect two clusters to be learned by the

grasp affordance algorithm, which correspond to the overhand and underhand grasps

on the handle of a spatula. However, the grasp affordance learning algorithm occa-

sionally learns two clusters to describe one of these two grasp types. This may be

due to that there is some bias away from uniform in the examples that are used in

the training process.

The above results seem to recommend different complexity punishment coefficient

for different object categories. However, we should note that the number of clusters

learned by the grasp affordance learning algorithm has no direct influence on the

performance of our grasp affordance matching algorithm. This is because the number

of clusters is irrelevant when we calculate the similarity score between a pair of objects

according to Equation 5.1.

For the glass (Fig. 6.5), both the single-object and unified grasp affordance models

learn four clusters. This is consistent with the set of grasp types that are demonstrated

by the human teacher. All four clusters are described by rotationally symmetric girdle
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(a) Single (b) Unified

Figure 6.4: Grasp affordance models learned on the spatulas using grasp samples from
a single object (left), and grasp samples from all five objects (right). Blue: overhand
handle grasp; red: underhand handle grasp.

distributions.

For the spray bottle (Fig. 6.6), both the single-object and unified grasp affordance

models learn seven clusters. This is consistent with the set of grasp types that are

demonstrated by the human teacher. All seven clusters are described by unidirectional

Dimroth-Watson distributions.

For the wine bottle (Fig. 6.7), both the single-object and unified grasp affordance

models learn five clusters. This is consistent with the set of grasp types that are

demonstrated by the human teacher. All five grasp types are rotationally symmetric,

and therefore, are described by girdle distributions.

For the detergent bottle (Fig. 6.8), both the single-object and unified grasp af-

fordance models learn five clusters. This is consistent with the set of grasp types

that are demonstrated by the human teacher. The grasp type around the cap of

the detergent bottle is rotationally symmetric, and therefore, is described by a girdle

distribution. All the other four grasp types are unidirectional, and are described by
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(a) Single (b) Unified

Figure 6.5: Grasp affordance models learned on the glasses using grasp samples from
a single object (left), and grasp samples from all five objects (right). Green: top ball
grasp; magenta: overhand side grasp; blue: underhand side grasp; red: bottom ball
grasp.

(a) Single (b) Unified

Figure 6.6: Grasp affordance models learned on the spray bottles using grasp samples
from a single object (left), and grasp samples from all five objects (right). Red/gray:
nozzle grasps; blue: trigger grasp; brown/orange: side grasps; magenta/green: bot-
tom grasps.
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(a) Single (b) Unified

Figure 6.7: Grasp affordance models learned on the wine bottles using grasp sam-
ples from a single object (left), and grasp samples from all five objects (right).
Blue/orange: neck grasps; green/magenta: side grasps; red: bottom ball grasp.

Dimroth-Watson distributions.

For the bowl (Fig. 6.9), both the single-object and unified grasp affordance models

learn two clusters. This is consistent with the set of grasp types that are demonstrated

by the human teacher. Both grasp types are rotationally symmetric, and are described

by girdle distributions.

For the ball (Fig. 6.10), both the single-object and unified grasp affordance models

learn a single cluster. This cluster is captured by a Dimroth-Watson distribution

with a very low concentration about the mean hand orientation (the red bar). This is

because the human teacher demonstrated a ball grasp with uniformly sampled hand

orientations.

For the entire set of objects in OUGD, we compute their mutual similarity scores,

sij, by using their grasp affordance models (Equations 5.1 and 5.2). For each experi-

ment, we cluster objects by partitioning the similarity graph with the modified HCS
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(a) Single (b) Unified

Figure 6.8: Grasp affordance models learned on the detergent bottles using grasp
samples from a single object (left), and grasp samples from all five objects (right).
Orange: cap grasp; green: side grasp; magenta: handle grasp; Blue/red: bottom
grasps.

(a) Single (b) Unified

Figure 6.9: Grasp affordance models learned on the bowls using grasp samples from
a single object (left), and grasp samples from all five objects (right). Blue: overhand
rim grasp; red: underhand rim grasp.
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(a) Single (b) Unified

Figure 6.10: Grasp affordance models learned on the balls using grasp samples from
a single object (left), and grasp samples from all five objects (right). Red: ball grasp.

algorithm (Algorithm 7). Examples of different recursion steps for a single object

clustering process is shown in Fig. 6.11 to 6.14. Fig. 6.11 shows the original graph

with all edges bounded by a similarity score of zero. In this figure, we can see that the

initial graph has many false positive matches between objects that belong to different

categories. Two of the intermediate recursion steps are shown in Fig. 6.12 and 6.13.

In these figures, the lower weighted edges are being removed gradually. In this exam-

ple, nearly all of the removed edges are extraneous edges linking objects from different

ground truth categories. The final solution is shown in Fig. 6.14. Note that the fifth

cluster from the left (drills) is only 2-edge-connected, which is not highly connected

according to the definition of Hartuv and Shamir. However, a further EDGECUT on

this sub-graph will result in a single isolated node (drill 4). This is due to that several

edges linking different drills have been removed in previous steps, since they have rel-

atively lower similarity scores. Therefore, the object clustering algorithm terminates

and returns a cluster with all five nodes.

We obtain consistent object clustering results for 9 of the 10 cross-validated ex-

periments. In the tenth experiment, the original similarity graph contains many false

positive edges linking hammers and drills. By comparing the grasp affordance mod-
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Figure 6.11: Initial graph

els learned for the hammers (Fig. 6.2a) and drills (Fig. 6.3a), intuitively we can see

that the grasp affordance model of the drill can explain the samples of the hammer

fairly well after a 90-degree rotation in the image plane. This will result relatively

high similarity scores between hammers and drills, and some of them are even higher

than those between different drills. In order to remove the extraneous edges between

hammers and drills, the object clustering algorithm sacrifices some within-class edges

of drills.

6.2 Sensitivity Analysis

One question that we are interested in is how much data our algorithm needs in order

to cluster objects robustly. In order to answer this question, we vary the number of

grasp samples used to learn grasp affordance models. In the previous sections, we have

shown results with nine folds of training data. In this section, we repeat the above

experiments and reduce the size of the training data set. Recall that the modified HCS

algorithm will stop cutting a connected sub-graph and return the entire sub-graph
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Figure 6.12: Graph after recursion 1
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Figure 6.13: Graph after recursion 4
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Figure 6.14: Final graph

as a single cluster in one of the two conditions: 1) there is a single isolated object

that results from EDGECUT ; 2) this sub-graph is a HCS. Also, we should note that

our grasp affordance learning algorithm sub-divides the available grasp samples into

one training set and three validation sets (with a 2:1:1 split). In the grasp affordance

model matching process, only the training set of grasp samples (so about 1/2 of the

total available grasp samples) is matched against a learned grasp affordance model.

The result of using six, seven, or eight folds of grasp samples (about 40 to 50

training grasp samples for each grasp type) is very similar to that of using 9 folds

(about 60 training grasp samples for each grasp type). Using six folds of training

data, in 9 out of 10 experiments, the algorithm clusters the objects in a manner that

is consistent with the ground truth object categories. Specifically, the modified HCS

algorithm stops cutting edges due to single isolated nodes in two experiments. One

of the object partitioning results from the previous step is consistent with the ground

truth, and the other is slightly different from the ground truth clustering. For the

experiment that is inconsistent with the ground truth, the final set of object clusters is
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Figure 6.15: An example of object clustering using 6 folds of training data.

shown in Fig. 6.15. Our algorithm successfully clusters 8 object categories. However,

one bottle is clustered together with the set of glasses. This is due to the fact that

the set of grasp types demonstrated on the bottles and glasses are very similar.

Even with only 3 folds of grasp samples (about 20 training grasp samples for each

grasp type), the graph clustering algorithm clusters most of the object categories

correctly for some particular experiments (Fig. 6.16). However, the graph clustering

algorithm fails to cluster all 10 object categories correctly for all 10 experiments. The

grasp affordance models learned on such a small set of grasp samples are usually very

generic. The learned grasp affordance model for an object can also explain a small

set of grasp samples from an object in other object categories fairly well. This results

in many inter-category edges weighted by high similarity scores that are inseparable

from the within-class edges. In order to find a cut for a sub-graph that is not highly

connected, the graph clustering algorithm removes some within-class edges as well as

inter-category edges. The object clustering result in one of the experiments is shown

in Fig. 6.16. In this example, 7 out of 10 object categories are clustered correctly
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Figure 6.16: An example of object clustering using 3 folds of training data.

by the graph clustering algorithm. The cluster of balls and the cluster of bowls are

grouped together by a single strong edge between ball 1 and bowl 1. Since this edge

is very strong, in order to find a cut in this sub-graph, the graph clustering algorithm

has to remove many other lower-weighted edges first. During this process, a single

isolated node will be found and the graph clustering algorithm terminates and simply

returns the sub-graph with all 10 nodes. The set of bottles is also separated into two

clusters. This is because most of the edges between different bottles are not as strong

as some of the inter-category edges, and have been removed during the process of

finding a cut.

In order to measure the performance of our algorithm, we calculate the Rand

index (Rand, 1971) between the clusters found by our algorithm and those by ground

truth. Given a set of n elements in S = {O1, ..., On} and two partitions of S, X =

{x1, ..., xr} and Y = {y1, ..., ys}, the following is defined:

• a, the number of pairs of elements in S that are in the same set in X and in

the same set in Y
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Figure 6.17: Object clustering performance with various number of training folds

• b, the number of pairs of elements in S that are in different sets in X and in

different sets in Y

• c, the number of pairs of elements in S that are in the same set in X and in

different sets in Y

• d, the number of pairs of elements in S that are in different sets in X and in

the same set in Y

The Rand index, R, is defined as:

R =
a+ b

a+ b+ c+ d
=

a+ b
(

n
2

) .

Intuitively, a + b can be considered as the number of paired agreements between

X and Y and c+d as the number of paired disagreements between X and Y . A Rand

index of 1 means perfect agreement between X and Y .
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In Fig. 6.17, we show the mean and standard deviation of the Rand indices of 10

experiments as functions of training fold size. With 9 or 6 training folds, the clusters

found by our algorithm are very close to the ground truth. The performance of our

algorithm drops gracefully with fewer training folds. In the same figure, we also show

a more strict performance measure: the adjusted Rand index (Hubert and Arabie,

1985). The adjusted Rand index adds on top of Rand index with corrections for

chance agreement between X and Y :

adjusted Rand index =
Rand index− expected Rand index

1− expected Rand index
,

where the expected value of the Rand index is calculated according to Hubert and

Arabie (1985). In Fig. 6.17, we can see that the adjusted Rand indices for 6 to 9

training folds are very close to the corresponding Rand indices, which are essentially

close to 1. Even with this more strict performance measure, our algorithm achieves

a mean adjusted Rand index close to 0.7 by using only 3 folds of training samples.
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Chapter 7

Visual Learning Approach

The algorithm proposed in Chapter 5 1) clusters different objects into object cate-

gories, and for each object category, 2) clusters grasp examples into grasp types. This

process induces a partition of all grasp examples by object and grasp type. The goal

of the proposed visual learning algorithm is to learn a set of visual models for each

partition. Particularly, these visual models can be used to recognize the key visual

components that cue the grasp type.

7.1 Aspect Clustering

For each grasp type, there are multiple grasp examples across different objects. This

set of grasp examples corresponds to different visual aspects of the component that

has been grasped. Fig. 7.1 shows a set of image fragments of the mug handles corre-

sponding to different examples of a handle grasp. Each image fragment corresponds

to a grasp region generated by the contact location extraction process detailed in Sec-

tion 4.2. We use multiple visual models to account for the appearance difference of

these grasp regions. Assuming that different objects in an object category are already

aligned by their coordinate frames, the proposed visual learning algorithm groups im-

age fragments according to their aspects. Since these objects are already aligned, the

image fragments corresponding to similar aspects have similar visual appearance. We

discover the set of similarly-looking image fragments corresponding to neighboring

aspects by clustering the camera orientations at which they are taken. Then, a single

visual model is learned from the set of similarly-looking object components contained
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Figure 7.1: This figure illustrates how to cluster the grasp regions from multiple
images for the handle grasp. First, the coordinate frames of the two mugs are aligned.
For each mug, we assume that a set of sub-images that correspond to different aspects
of the mug handles is extracted by identifying the grasp regions. Then, the similarly-
looking sub-images are grouped together by aspect clustering across the mugs.

in the image fragments.

In Fig. 7.2, an aspect sphere is defined as a unit sphere in the object-centered

coordinate frame. Each point on the aspect sphere encodes a camera position with

the camera optical axis pointing to the object. For convenience, we attach coordinate

frames to both the object and the camera as shown in this figure. As a means of

organizing our data, the Z ′ axis of the object coordinate frame is defined by the

symmetry axis if this object is rotationally symmetric. Otherwise, we directly use

the coordinate frame defined by the Polhemus sensor that is attached to this object.
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Figure 7.2: The aspect sphere.

The coordinate frame of the camera is defined in the standard way, with the Z axis

aligning with the optical axis. We choose the orientation of the camera about Z, so

that Y and Z ′ are aligned with one-another (though in opposite directions). Assuming

that the camera is always pointing to the object center, O′, the camera pose can be

defined by a unit vector,
−−→
OO′ = [ux, uy, uz], and the camera X direction. In our

data collection process, the object is not intentionally rotated in the image plane.

This choice implies that, while the sampling process covers the entirety of the aspect

sphere, only one in-plan orientation is sampled at each point on the aspect sphere.

This reduces the number of required samples during the data collection process and

allows us to assume that no in-plane rotations must be accounted for in the shape

model training process. However, there are exceptions at the north and south poles

of the aspect sphere. For these aspects, in-image-plane rotations do exist due to the

fact that we rotate the object about the Z ′ axis during data collection. As a result,

the algorithm learns several different shape models for these aspects.
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In order to learn shape models that are robust, it is important that they are

responsive to small changes in viewing angle. The training set for a single shape model

is selected from a cluster of image samples on the aspect sphere. The grasp affordance

clusters are of two forms: unidirectional and rotationally symmetric. These each

suggest object geometries that should also be reflected in the learned shape models.

In particular, the visual models that are learned for a rotationally symmetric grasp

should focus on visual features that are also invariant to rotations about the same

axis. To this end, image samples are clustered together for the purposes of learning

a specific shape model in one of two ways. For unidirectional grasp affordances, the

image samples are drawn from a circular cap on the aspect sphere. These clusters

are found based on all three components of the unit vector
−−→
OO′, together with a unit

vector that defines the camera X direction. The camera X direction is added in order

to differentiate different in-image-plane rotations, particularly for the aspects around

the north and south poles of the aspect sphere. For rotationally symmetric grasp

affordances, the image samples are drawn from a band around the aspect sphere that

is perpendicular to the axis of rotation. These bands are found by clustering the uz

component of the unit vector
−−→
OO′ in the coordinate frame X ′O′Z ′.

In our implementation of the proposed algorithm, we use the mean shift algo-

rithm (Comaniciu and Meer, 2002) to cluster aspects. One advantage of using the

mean shift algorithm is that we do not need to commit to a certain number of clusters

ahead of time. Per the above discussion, for unidirectional grasp types, the mean shift

algorithm clusters a set of 6D vectors (3D for camera Z direction and 3D for cam-

era X direction) on the aspect sphere. For rotationally symmetric grasp types, the

clustering process takes place within a one DOF space, corresponding to the latitude

on the aspect sphere, in which the polar axis is aligned with the axis of symmetry.

Since the mean shift algorithm does not assume the shape of clusters a priori, we use

a normal kernel for all our analysis. The only tuning parameter to the mean shift
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algorithm is the kernel bandwidth, which determines the resolution of the clustering.

This parameter is selected based on the stability and repeatability of the clustering

results across different parameter values, as well as task-related domain knowledge.

In our case, we choose the kernel bandwidth by observing how different are those

images in a single cluster found by the mean shift algorithm. Generally, the set of

images in a cluster should be similar enough in order for the visual model learning

algorithm to learn a coherent shape model. In order to reduce the total number of

visual models learned for a single grasp type, the set of images in a cluster should also

cover a range of aspects on the aspect sphere. We chose kernel bandwidths separately

for the unidirectional and rotationally symmetric grasp types based on exploratory

experiments, and fix these values for all experiments described in Chapter 8.

Examples of aspect clusters that are found by the mean shift algorithm are shown

in Fig. 7.3. In this figure, the dots are the camera aspect for the entire set of grasp

samples of the five mugs. The coordinate of the mug is defined the same way as in

Fig. 7.2. Each mug is aligned relative to the first mug (arbitrarily chosen) during

the affordance model matching phase. Therefore, a point on the aspect sphere cor-

responds to consistent camera aspect on the different mugs. The entire set of grasp

samples of mugs are first clustered by different grasp types described by the unified

grasp affordance model (Section 5.4). In this figure, red dots correspond to examples

of the handle grasp, and blue dots correspond to examples of the top grasp. For each

grasp type, the mean shift algorithm further clusters the corresponding grasp exam-

ples. Two example clusters are highlighted and the corresponding image fragments

contained in each cluster are shown. The cluster of image fragments on the lefthand

side corresponds to handle grasps. The corresponding camera aspects on the aspect

sphere aggregate around a single spot. The area of this spot reflects the resolution of

the mean shift clustering algorithm, which is determined by the kernel bandwidth. In

this cluster of image fragments, we can see that the object components (handles) are
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• Handle grasp 

• Top grasp

Figure 7.3: Example aspect clusters found by the mean shift algorithm. Each dot
corresponds to the camera location of a grasp sample on the aspect sphere. Red
dots: handle grasp. Blue dots: top grasp. Cyan dots: an example aspect cluster
for the handle grasp. Green dots: an example aspect cluster for the top grasp. The
corresponding object components are shown.

viewed from similar aspects, and therefore have similar visual appearance. Similarly,

the cluster of image fragments on the righthand side corresponds to ball grasps from

the top of mugs. The corresponding camera aspects on the aspect sphere aggregate

around a band of the aspect sphere. The width of the band is determined by the

kernel band width. Although these aspects spread out on the aspect sphere, the cor-

responding image fragments in this cluster still have similar visual appearance. This

is due to the fact that the mugs are rotationally symmetric about the Z axis, and

the camera orbits about the same axis. For each aspect cluster, we can see that the

corresponding object components look visually similar to each other, which provides

a set of related shapes that makes the visual model learning process feasible.
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7.2 Visual Model Learning

For each aspect cluster, the visual learning algorithm learns a shape model by using

PAS features (Ferrari et al., 2010) (detailed in the background section 2.4.2). For each

aspect cluster, the algorithm uses both the left and right images in the stereo image

pairs to learn a single shape model. This visual model learning process on average

generates about 20 shape models for each grasp type that corresponds to different

aspects. The algorithm further uses two steps of filtering to remove low-quality shape

models and at the same time, determine the optimal model threshold t∗i for each

shape model i (where i is the model index).

High quality shape models are those that 1) match the training set well, and at the

same time, 2) will not find many false positive matches on images that contain objects

with different shapes. The first step of filtering is to match a learned shape model

back to the set of training images in which this shape model is learned. The quality of

the shape model is measured by the energy needed to match the set of model points

to the corresponding points in a training image. This energy is measured by the

amount of warping contained in the aligning TPS transform. Since a shape model

is learned from a set of training images, we use the average energy of this set of

images as a quality measure. The details of the shape model matching process and

energy computation can be found in the background section 2.4.2. Intuitively, a low

energy means that the learned shape model has a similar shape as the training image.

However, this is not the case when the training images have very different shapes,

which may be due to errors in the grasp region extraction process. For example,

an aspect cluster for a handle grasp may be composed of a set of aspects where the

mug handle is self-occluded and invisible. Due to this fact, the corresponding image

fragments will contain random object components that are accidentally occluded by

the grasping hand instead of mug handles (these are not occluded at all). Therefore,
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a shape model learned from these image fragments will try to generalize to unrelated

shapes and fail to match any particular training image very well. Due to the above

reason, this shape model will have high average energy. Examples of models with

their average energy are shown in Fig 7.4. In this figure, we can see that the shape

model with lower average energy (left) is more discriminative and identifiable compare

to the one with higher average energy (right).

For each grasp type in each object category, we keep the top k shape models

based on their average energy. The basic idea is to select the value of k such that

the different aspects corresponding to a grasp type are well covered. The number of

shape models needed for each grasp type in order to cover the different aspects, not

only depends on the robustness of the shape model, but also depends on the degree

of symmetry of the object component. For example, a single shape model is sufficient

to describe the top of a glass when it is rotated about its symmetry axis in front

of a fixed camera. As a contrast, for object components without symmetries, more

shape models are needed to account for shape variations due to aspect change. In the

meanwhile, we would like to filter out a nontrivial number of shape models that have

high average energy. Empirically, we choose to keep at least 80 percent of the learned

shape models for each grasp type. If the number of learned shape models for a grasp

type is too small (≤ 10 for a DW distribution or ≤ 5 for a girdle distribution), we

simply keep all of them. Based on the above, we determine the value of k for each

grasp type as follows:

k =











min(m,max(m× 0.8, 10)) if DW

min(m,max(m× 0.8, 5)) if girdle
,

where m is the total number of shape models learned for this grasp type before

filtering.

Besides measuring the quality of a shape model based on the training set of images,
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we also would like to know how discriminative this shape model is when matching

it to images that do not contain the target shape. Ideally, a shape model should be

locally robust and globally discriminative. That is, a shape model should match very

well with images that correspond to similar aspects as those of the training images,

and at the same time, reject images that correspond to very different aspects. There-

fore, in the second step of filtering, we measure the performance of a shape model on

a separate validation set of images drawn from all different aspects. Given a set of

positive images (where the target shape is observable), and a set of negative images

(where the target shape is not observable), the performance is measured by the rela-

tive numbers of correct and incorrect matches. In this step of filtering, we only keep

shape models with performance higher than a certain performance threshold. The

individual model threshold ti is selected as the one that maximize the chosen perfor-

mance measure. In order to measure the relative numbers of correct and incorrect

matches on a validation set composed of positive and negative images, we choose the

κ statistic (Cohen, 1960) as the performance measure. Specifically, we calculate the

κ statistic of a shape model when varying the threshold values. The κ statistic is

defined as:

κ =
observed agreement− chance agreement

1− chance agreement
, (7.1)

where observed agreement is the fraction of correct image labellings by the algorithm

((TP+TN)/(TP+TN+FP+FN); TP = number of true positives; TN = true nega-

tives; FP = false positives; FN = false negatives) and chance agreement is the fraction

of correct image labellings by the best algorithm that has no information about the

image. κ ≤ 0 is interpreted as performance being no better than the fixed strategy;

κ = 1 is interpreted as having perfect performance.

Unfortunately, for a given shape model, it is difficult to measure P/N exactly,

due to the fact that the ground truth labeling of an image with regard to this shape
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Mean energy: 0.43517

(a) A model with low average energy

Mean energy: 1.1225

(b) A model with high average energy

Figure 7.4: Examples of shape models with average energy needed to match back to
the training set of images.

model, does not exist (each image only has one demonstrated grasp). For a subset of

validation images, whose aspect is close (down to symmetry) to the training images

in which this shape model is learned, we may label them as positive for this particular

shape model. However, by doing so, we may overestimate the positive set of images.

Even though the aspect is consistent, the target object component may still be oc-

cluded by either the hand or the object itself. Even the images from which a shape

model is learned may or may not actually contain this shape model. For instance,

in some cases, a shape model of the mug handle is learned on the images in which

the handle is self-occluded and invisible. This is in part why we need this filtering

process to remove these “bad” models.

Instead, we use the following approach to find approximations to the true P/N. For

each learned shape model, we match it to a validation set of images from the same

object category. For each validation image, the shape model matching algorithm

either finds a match of this shape model or not. If the algorithm finds a match, it

also provides a matching score. Correspondingly, we use the algorithm proposed in

Appendix B to estimate a ground-truth labeling for a given validation image and

a match of a shape model. This labeling algorithm automatically labels a match
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as either correct, wrong or unknown. Images that are labeled as unknown are not

considered by the κ statistic. The set P is approximated by the set of images in

which the matched shape model is labeled as correct. The set N is approximated by

the set of images in which the matched shape model is labeled as wrong. By doing

this, we assume that whenever the target object component shows up in a validation

image, the shape model matching algorithm will detect it, and therefore the labeling

algorithm will label this match as correct. Then, we define a model threshold, ti, for

model i that determines whether the corresponding shape model is detected or not

in a given image. We select ti that maximizes the κ statistic.

Examples of shape models with their corresponding κ curves are shown in Fig. 7.5.

In this figure, both of the shape models are learned from a set of images when the

spray bottle is grasped by the trigger. The shape model on the left corresponds to a

frontal view of the spray bottle, while the shape model on the right corresponds to a

top view. Intuitively, the shape model on the left is more discriminative and visually

identifiable than the one on the right. The dotted vertical line indicates the selected

model threshold t∗i , which maximize the κ statistic. The corresponding maximum κ

value, κmax, is used as the quality measure of a shape model. In this filtering step, we

only keep shape models with κmax above some empirically determined threshold, κth.

The shape model in Fig. 7.5(a) has a much higher κmax than the one in Fig. 7.5(b),

which is consistent with our intuition that the former is more discriminative than the

latter.

7.3 Visual Model Matching

The visual learning process is done once a set of shape models are learned for some

grasp types. In the testing phase, for a test image that contains a novel instance of

an object from a previous known object category, we use the shape model matching
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Figure 7.5: Examples of shape models with κ curves

100



(a) Single image matching

(b) Stereo matching

Figure 7.6: Each row corresponds to a stereo image pair taken by the left and right
cameras. (a) A model of the mug top is matched to each image individually. (b) A
model of the mug top is matched to both images simultaneously.

algorithm detailed in the background section 2.4.2 to match each learned shape model

to this image.

Some example matches are shown in Fig. 7.6. In this figure, each row of images

comes from a stereo image pair taken by the left and right cameras. In the first

row of images, a shape model of the mug top is matched to each image individually.

While this approach generally works well, the algorithm occasionally ends up with a

mismatch on the background clutter. This motivates us to make use of the redundant

information provided by both images in a stereo image pair.
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7.3.1 Matching Shape Models with Stereo Constraints

By assuming that the target object is of similar distance to both cameras, the following

holds: 1) the target shapes to be matched in a stereo image pair have similar scales,

2) the affine transforms and TPS warpings between the model and the target shapes

across the stereo image pair are similar, and 3) the matched points in a stereo image

pair correspond to each other (even though there may be small errors induced by the

matching process). The corresponding points in a stereo image pair must also satisfy

the epipolar constraint (Hartley and Zisserman, 2004). Specifically, the positions of a

3D point in two 2D images taken by two cameras from distinct locations are related

by the epipolar constraint:

x
′TFx = 0,

where F is a 3×3 matrix known as the fundamental matrix, x
′

and x are the homoge-

neous coordinates of the 3D point in the first and second images respectively. In our

experimental setup, since the two cameras are approximately related by a horizontal

translation assuming the focus is sufficiently far, the epipolar constraint reduces to a

simple scalar form:

y
′

= y, (7.2)

that is, the y coordinates of the 3D point in a stereo image pair must be equal.

Based on the above idea, the process of matching a shape model to a stereo

image pair consists of two steps. The first step is a Hough style voting process that

combines evidence from both of the left and right images. First, the algorithm finds a

set of candidate matches by applying Hough voting to each image separately. Given

candidate i for the left image and candidate j for the right image, I define the following
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function to measure the cost of combining these two candidates:

cost(i, j) = exp

(

(yi − yj)
2

2σ

)

∗max

(

si
sj
,
sj
si

)

. (7.3)

The first term encodes the simplified epipolar constraint (Equation 7.2), whose value

is minimized when candidates i and j have the same y coordinates. The second term

measures the similarity of the two candidates in scale, whose value is minimized when

candidates i and j have the same scale. The shape model matching algorithm uses

Equation 7.3 to measure the cost of each pair of candidate matches in the left and

right images. Then, the algorithm selects the top k pairs that give lowest costs. Each

pair of candidate matches is composed of a candidate match in the left image and a

candidate match in the right image.

The second step is to apply TPS-RPM for all k candidate pairs. A candidate

pair in the first step specifies an initial center location and scale of the model in the

left and right images respectively. In each image, we apply the single-image TPS-

RPM algorithm as discussed previously. In our stereo matching algorithm, we assume

that the distance between the two cameras is much smaller than the object distance.

Therefore, the left and right images of the object should look similar to each other

(i.e., the parallax is small). Based on this assumption, we match the shape model to

both images by using two TPS mappings that are similar to each other.

After applying stereo constraints, the modified TPS-RPM procedure for a candi-

date pair is given in Algorithm 8. In this algorithm, there are actually two TPS-RPM

processes running in parallel: one for the left image, and the other for the right image.

The input variables to this algorithm are the two sets of model points in the left and

right images, Vl and Vr, the two sets of image points in the left and right images,

Sl and Sr, the deformation model, Mdeform, which is learned from the training im-

ages, the initial and final values of Γ, Γinit and Γfinal, the simulated annealing rate,
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Algorithm 8 TPS-RPM

1: procedure TPS-RPM(Vl, Vr, Sl, Sr,Mdeform,Γinit,Γfinal, anneal rate,N)
2: Γ = Γinit

3: V ′
l = Vl

4: V ′
r = Vr

5: while Γ > Γfinal do
6: for i = 1 to N do ⊲ repeat several times at each temperature
7: ▽ given TPS warped model points, image points, update M
8: Ml=CALC M(V ′

l , Sl,Γ)
9: Mr=CALC M(V ′

r , Sr,Γ)
10: ▽ given M, update the mapped image points
11: Ul ⇐MlSl

12: Ur ⇐MrSr

13: ▽ constrain by deformation model
14: Ul=PROJECT INSIDE VALID REGION(Ul,Mdeform,Γ)
15: Ur=PROJECT INSIDE VALID REGION(Ur,Mdeform,Γ)
16: ▽ given model points, mapped image points, update TPS transform
17: [wr, dr, wr] =CALC TRANSFORM(Vl, Ul)
18: [wl, dl, wl] =CALC TRANSFORM(Vr, Ur)
19: ▽ apply stereo constraint
20: wl ⇐ wl + Γ(wr − wl)
21: dl ⇐ dl + Γ(dr − dl)
22: wr ⇐ wr + Γ(wl − wr)
23: dr ⇐ dr + Γ(dl − dr)
24: ▽ transform model points by the current TPS
25: V ′

l =WARP POINTS(Vl, wl, dl)
26: V ′

r =WARP POINTS(Vr, wr, dr)
27: end for
28: Γ = Γ ∗ anneal rate ⊲ note that 0 < anneal rate < 1
29: end while
30: return Ml,Mr, V

′
l , V

′
r , Ul, Ur, wl, dl, wr, dr

31: end procedure
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anneal rate, which is a scalar in the range of 0 and 1, and the number of iterations

per temperature, N . Here, Γ is the same temperature parameter as in Equation 2.1.

At the beginning, Γ is initialized to Γinit. The algorithm then iteratively reduces the

temperature, Γ (line 28). For each temperature, the algorithm repeats a single step

of TPS-RPM several times. A single step of TPS-RPM is detailed between line 8 and

line 26. Specifically, for a single step of TPS-RPM, we apply stereo constraints on the

left and right images as follows. Assuming that in a certain iteration, the current TPS

mappings for the model points in the left and right images are {wl, dl} and {wr, dr},

respectively, we define the update functions as shown in line 20 to line 23. Here, Γ

determines the strictness of the stereo constraint. As discussed in Section 2.4.2, we

decrease Γ from iteration to iteration in line 28. This is because the correspondence

between the model points and the image points is coarser at the beginning of this

iterative process, and we want the TPS mappings of the left and right images to

be more constrained toward each other. As the iteration continues, the algorithm is

more certain about the correspondence between model points and image points, and

we want the TPS mappings to be less constrained so that the matched shape can fit

better to local object contours in the left and right images (the contours are slightly

different in these two images due to parallax). The rest of Algorithm 8 is the same

as single image TPS-RPM, which is detailed in Section 2.4.2.

Since Algorithm 8 uses the same number of iterations for both the left and right

images, the two TPS-RPM processes for a candidate pair converge at the same time.

We define the overall matching score of the candidate pair to be the sum of the

individual matching scores of the left and right images plus a weighted term that en-

codes the stereo constraint. This term measures how well the corresponding matched

model points in the left and right images satisfy the epipolar constraint, which can

105



be measured by:
√

∑

a=1..K

(f(va, dl, wl)TFf(va, dr, wr))
2,

where f(va, dl, wl) is the mapping of model point va by the TPS {dl, wl} in the coor-

dinate frame of the left image, and f(va, dr, wr) is the mapping of model point va by

the TPS {dr, wr} in the coordinate frame of the right image.

Fig. 7.6 compares the matches found by the single image and stereo matching

algorithms. Fig. 7.6(a) shows the matches of a shape model learned on the top of

mugs in the left and right images of a stereo pair using the original single image

matching algorithm. Although the shape model is correctly matched on the top of

the mug in the right image, the shape model is mismatched to background clutter

in the left image. By applying the stereo constraints, a correct pair of corresponding

matches of the same shape model are found in both the left and right images in

Fig. 7.6(b).

7.3.2 Adding Negative Examples

The shape matching algorithm with stereo constraints helps with eliminating incon-

sistent false positive matches in a stereo pair. However, it is not uncommon to observe

false positive matches that actually satisfy stereo constraints. This happens more of-

ten for simpler shape models, such as those that match the top or handle of a mug.

This is because shape models learned from a small number of PAS features are less

robust and image regions with many edges lead to many local maxima in the Hough

voting space. This leads to false positive matches in the later TPS-RPM process.

For a set of putative PAS features generated in an image that contains a target

shape, we want to be able to detect which features are discriminative. A better

way to do this is to select those features that are not observed in a set of negative

examples. Specifically, one can add negative training images to the shape model
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learning process (Ferrari et al., 2008). The positive training set includes images

of target objects while the negative training set may contain irrelevant objects or

background clutter. The algorithm first learns a codebook C of PAS features from

the training images. For a given region of an image, A feature vector is defined as a

histogram whose element captures the frequency of each PAS type Ti in C observed

inside this region. For a positive training image, a single feature vector is calculated

for the image region that contains the target shape. For a negative training image,

a set of feature vectors is calculated for some image regions that do not contain the

target shape. In order to capture the relative positions of PAS features observed inside

an image region, an image region is divided into sub-regions. Then, a histogram is

calculated for each sub-region and the histograms for all sub-regions are appended

together as a single feature vector. A SVM classifier is trained to distinguish the

positive and negative sets of feature vectors.

Given a test image, the learned target shape is detected by a sliding window

(SW) method. The algorithm slides rectangular windows with different offsets and

scales across the image. For each window, the algorithm calculates the corresponding

feature vector and classifies it by using the learned SVM classifier. As a result, the

SW method detects a set of rectangular regions in which the target shape is likely to

be observed.

The SW method is used in place of the Hough voting scheme to generate initial

hypotheses that can be used to seed the TPS-RPM process. Similar to the Hough

voting scheme, each hypothesis match of a shape model detected by the SW method

specifies a x/y location, a scale and a matching score. The x/y location corresponds

to the x/y position of the center of the detected window. The scale corresponds to

the scale of the detected window relative to the average size of the bounding boxes

of the target shapes in the training set. The matching score is the score calculated

by the SVM classifier.
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7.3.3 Performance Comparison between Shape Matching Algorithms

In this section, I compare the performance of several different shape model matching

approaches, in order to decide which one to use in the visual learning algorithm

proposed in this dissertation. In these exploratory experiments, I use 12 single-view

images of different mugs as the positive training set. For each positive training image,

I manually annotate bounding boxes that correspond to the mug, the handle and the

top. I use two images that do not contain mugs as the negative training set. For

testing, I take a set of 41 stereo image pairs of novel mugs by varying their orientations

slightly in a cluttered scene as examples shown in Figures 7.6.

I use the code released by the authors1 (Ferrari et al., 2010) with default param-

eters to learn three models on the training set of images that describe the mug, the

handle and the top respectively. For each model, I compare four different algorithms

that use sliding window (SW) or Hough transform for initial match and stereo image

pair or single image for TPS-RPM. The experimental results are summarized in Ta-

ble 7.1. The numbers shown in the table are the ratios of correct matches relative to

the total number of images (82). The correctness of a match is manually determined

by human annotation. A correctly identified grasp region is defined as the one whose

error is small enough such that a hypothetical grasp of the identified region will be

successful based on human judgment. Based on this criterion, some representative

test images with the model shapes correctly detected by the SW-stereo method are

given in Fig. 7.7, while some typical incorrect matches are given in Fig. 7.8.

This particular test set is difficult for shape matching because it contains im-

ages of novel objects and substantial aspect changes. By comparing the results, the

stereo matching algorithm performs as well as the single image matching algorithm

in most cases. In some other cases (Top-Hough, Top-SW and Handle-SW), the stereo

1http://www.vision.ee.ethz.ch/˜calvin
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Table 7.1: Performance Comparison between Shape Matching Algorithms. The num-
bers shown in the table are the ratios of correct matches relative to the total number
of images (82). Each algorithm uses either Hough voting or sliding window (SW)
to find initial matches; and uses either single image or stereo matching during TPS-
RPM. Row: Hough voting or SW. Column: shape model type. The two ratios in
each cell correspond to single/stereo matching.

Mug Handle Top
Hough 0.7805/0.8049 0.2805/0.2195 0.1098/0.2439
SW 0.7317/0.7561 0.4024/0.6951 0.4756/0.7439

matching algorithm performs substantially better. One exception is that the stereo

matching algorithm performs notably worse for the handle model. This is due to a

consistent false positive match observed on the spray bottle in many stereo pairs.

For the mug model, the SW algorithm performs comparably to the Hough voting

algorithm. For the handle and top models, however, the SW algorithm performs sub-

stantially better. This indicates that the SW algorithm is especially helpful for the

simpler models, which is consistent with our expectation. Based on the above results,

I choose to use the SW-stereo approach in the proposed visual learning algorithm in

the subsequent sections of this dissertation.

7.4 Grasp Identification

For a query stereo image pair, the above shape model matching algorithm finds a

set of matches of some previously learned shape models. Each shape model is grasp

type and aspect specific. If the matching score of a matched shape model is above

the corresponding model threshold t∗i , the proposed algorithm will assume that the

corresponding grasp type is recognized and its location is specified by the boundary

of this match. Given the estimated grasp locations in a stereo image pair and the

pose of the calibrated camera (in the global coordinate frame), the 3D grasp location

in the global coordinate frame can be calculated by stereo triangulation (e.g., Hartley

and Zisserman, 2004; Saxena et al., 2008).
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A shape model is learned from a set of training images, and each training image

is associated with a grasp that is demonstrated by the human teacher. As part of the

learning process, a shape model is associated with a set of example grasps. The hand

orientations of these grasps provide a natural estimation of the hand orientation that

the robot can use in order to grasp the object in the query image. Given the pose

of the camera, we specify these hand orientations in the camera coordinate frame.

Therefore, the robot can directly estimate the feasible hand orientations based on

what it “sees.” If a shape model matches a part of the object contained in the test

image well (so, the aspect difference between the training and query images is small),

the set of hand orientations (relative to the camera) can then be used to parameterize

the grasp controller to reach the object at the recognized grasp location. So, which

hand orientation in this set of orientations should the robot use? Recall that, for a

unidirectional grasp type, a shape model is associated with a set of hand orientations

that are concentrated around a single mean direction. Since the variation in this set

of hand orientations is usually small, the robot can simply select the the mean orien-

tation as the recommended hand orientation. However, for a rotationally symmetric

grasp type, a shape model is associated with a manifold of hand orientations that

are described by a girdle distribution. These hand orientations have a large variation

about the symmetry axis of the girdle distribution. One possible way is to select a

hand orientation in this manifold that has the shortest path length to the current

arm configuration (see de Granville, 2008, for details).

In the scope of this dissertation, we do not explicitly deal with in-image-plane

rotations. In OUGD, although the image samples corresponding to each grasp type

cover a full range of aspects on the aspect sphere, they only cover a limited number

of in-image-plane rotations for each aspect. For example, in OUGD, we only have

images corresponding to two different in-image-plane rotations for a glass: upright

and upside-down. Accordingly, our algorithm learns two distinct shape models that
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capture both the upright and upside-down configurations. In order to estimate the

grasp orientation for an object component in a test image that contains a large in-

image-plane rotation compared to the training set of images, the estimated hand

orientation should be adjusted by the rotation of the best matched shape model in

the image plane. This requires that the learned shape models to be rotationally

invariant in the image plane, and at the same time, be able to give an estimate of

the orientation of a match in the image. A possible way to extend the original PAS

features along these lines is given in Appendix A.
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Figure 7.7: Some correct matches by using the SW-stereo method. The number in
each image is the matching score.
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Figure 7.8: Some incorrect matches by using the SW-stereo method. The number in
each image is the matching score.
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Chapter 8

Visual Learning Experiments

For the visual learning experiments, we have two major hypotheses: 1) the observed

grasp types can be used to learn meaningful visual models that capture partial object

shapes, and 2) a learned visual model can suggest an approximation to how the hand

should be positioned relative to the object in novel scenarios containing novel objects.

For the purposes of the visual learning experiments, we assume that the entire set of 50

objects in OUGD has been correctly partitioned into object classes, which is true in all

9-fold experiments according to the results in Section 6.1. In this chapter, we design

an experiment to evaluate the performance of the proposed visual learning algorithm.

We divide the entire data set into training, validation and testing sets. According

to the visual learning algorithm proposed in the last chapter, we use the training,

validation, and test data as follows. For each object category, we partition each grasp

sample (and thus the corresponding image fragments) in the training set into one

of the grasp types described by the unified grasp affordance model of this object

category. For each grasp type, we further partition the training set of samples based

their aspects. For each aspect cluster, the proposed algorithm learns a shape model

from the training set of image fragments. On average, the learning algorithm gives

us about 20 shape models for each grasp type that corresponds to different aspects.

Given a validation set of images, we further use two steps of filtering to remove low-

quality models and at the same time, determine the optimal model threshold t∗i for

each shape model i (where i is the model index). Finally, we evaluate the performance

of the shape models that have survived the filtering process using a set of test images.
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8.1 Experiment Setup

We evaluate the performance of our specific implementation of the proposed algorithm

by using 5-fold leave-one-object-out cross-validation. First, we fix the order of the

five objects in each object category. Then, for each object category, we choose the

first object for testing, the second object for validation, and the remaining objects

for training. For each experiment, we rotate the order of the five objects by one.

For all the results shown below, we assume that the foreground image has already

been identified (the region of the image containing some object). It is this foreground

image that is compared against the set of shape models. Each test image is matched

against the set of shape models of the same object category to which this test image

belongs1. If not otherwise noted, each shape model uses its own model threshold, t∗i ,

that maximizes the κ statistic on the validation set.

8.2 Performance Measures

For each test image, the algorithm returns a list of matched shape models ordered by

their matching score. The algorithm then puts forward the N top shape models. If

any of these N top shape models is labeled as correct2, we will claim this test image

as correct. We call this approach Top N . By using the Top N approach, we label each

test image as correct/wrong (if there is at least one match of some shape model) or

no-match (if no shape model is matched above its model threshold). The test images

labeled as correct form the true positive (TP) set, and those labeled as wrong form

the false positive (FP) set. As we discussed before about the labeling of validation

1This version of the algorithm is called match-within-class. In Section 8.3.4, we compare the
performance of match-within-class with that of match-against-all

2Given that we have thousands of test images for a single experiment, we propose an algorithm to
automatically assess a matched shape model in a test image as correct or not as far as the predicted
grasp location and orientation, without a human “in the loop.” More details can be found in the
Appendix B.
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results during the second step of shape model filtering process, we do not have the

true labeling of P/N for the test set of images for the same reason. This precludes us

from using common statistics such as recall vs. precision to evaluate the performance

of our algorithm. Instead, we choose to use rate of coverage vs. precision. Specifically,

rate of coverage is defined as:

rate of coverage = (TP + FP )/total number of images,

and precision is defined as:

precision = TP/(TP + FP ).

We further define the probability of success by combining both rate of coverage

and precision:

probability of success = rate of coverage× precision. (8.1)

The rate of coverage gives us some idea about the probability of finding a match

(the prior) once the robot is confronted with a novel image. Once a match is found,

the precision indicates the probability of that match being correct (the posterior).

The probability of success combines both of these two measures: the probability of

finding a correct match as far as hand location and orientation (the joint distribution).

8.3 Experimental Results

I begin by showing the algorithm’s response to individual query images. An example

of the top five matches on a test image of the mug is shown in Fig. 8.1. In this

figure, the top row of images shows the same query image, but with the different
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matching shape models. Each matched shape model (after TPS mapping) is shown

as a set of green dots. The bounding box of the matched shape model is shown as

a green rectangle, and the ground truth bounding box is shown as a red rectangle.

As detailed in Appendix B, the match of a shape model is assessed based on the

intersection over union ratio (IoU) between the predicted and ground truth bounding

boxes and the error between the predicted and ground truth hand orientations (HOE).

All the ground truth bounding boxes with which the matched bounding box has

a IoU greater than 0.2 are shown. The matching score, IoU(s), and HOE(s) are

shown below each of the query images. The bottom row of images are example hand

positions/orientations recommended by each matched shape model. In the evaluation

process (Algorithm 9), the algorithm compares the mean hand orientation of the set

of training images from which the matched shape model is learned with the ground

truth hand orientation associated with each test image. The responses are ordered

by their matching scores, from high to low. Finally, below the bottom row of images,

each response is labeled as either correct or wrong, which are determined by our

automatic performance measuring process (Algorithm 9). A matched shape model is

only labeled as correct if the IoU is greater than 0.2 and the HOE is smaller than 30

degrees. In this example, all of the top five matched shape models are learned on the

top of mugs, due to the fact that the handle is occluded by the body of the mug. In

this example, all top five responses are labeled as correct.

An extensive set of examples of the top five responses on different object categories

is shown in Fig. 8.2 to Fig. 8.16. Fig. 8.2 shows another example of the top five

matches on an image of the mug. In this case, there are only two matched shape

models with matching scores above their respective model thresholds. Two ground

truth bounding boxes are associated with this test image, which correspond to the

handle and top grasps, respectively. For each matched shape model, we compare it

with both ground truth bounding boxes. The separate IoUs and HOEs with respect
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Score: 0.4382
IoU: 0.77
HOE: 14.3

correct

Score: 0.3722
IoU: 0.46
HOE: 28.2

correct

Score: 0.3719
IoU: 0.74
HOE: 17.1

correct

Score: 0.3149
IoU: 0.59
HOE: 17.5

correct

Score: 0.2761
IoU: 0.79
HOE: 16.3

correct

Figure 8.1: Top 5 matches on a mug. The top row of images shows the same query
image, but with the different matching shape models. Each matched shape model
(after TPS mapping) is shown as a set of green dots. The bounding box of the
matched shape model is shown as a green rectangle, and the ground truth bound-
ing box is shown as a red rectangle. The matching score, IoU, and HOE are shown
below each of the query images. The bottom row of images are example hand posi-
tions/orientations provided by each matched shape model. The matches are ordered
by their matching scores, from high to low. Below the bottom row of images, each
match is labeled as either correct or wrong, which are determined by our automatic
performance measuring process.
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Score: 0.2318
IoU: 0.57      0.25
HOE: 30.1     100.8

wrong

Score: 0.1504
IoU: 0.23      0.60
HOE: 136.6     132.3

wrong

Figure 8.2: Top 5 matches on a mug. However, there are only 2 matched shape
models with matching scores above their respective model thresholds.

to the two ground truth bounding boxes are shown below each query image. The first

shape model is learned from the handles of mugs. Although this looks like a good

match, the HOE is greater than the allowable threshold of 30 degrees. Therefore, it

is labeled as wrong. The second matched shape model is learned from the tops of

mugs, however, in an aspect that does not contain enough visual information. This

response has IoUs greater than 0.2 with respect to both ground truth bounding boxes,

but both of the HOEs are far greater than 30 degrees. Therefore, this response is also

labeled as wrong.

Fig. 8.3 shows another example of the top five responses on an image of the mug.

In this example, there is only one matched shape model with matching score above

its threshold. This shape model is learned from the handles of mugs. Although this

looks like a good match, the HOE is greater than the threshold of 30 degrees. The

large HOE comes from an ambiguity in aspects, where the mug can be explained as

either tilting toward the camera or away from the camera. As a result, this match is

labeled as wrong.

Fig. 8.4 shows an example of the top five matches on an image of the glass. In this
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Score: 0.3664
IoU: 0.40
HOE: 64.5

wrong

Figure 8.3: Top 5 matches on a mug. However, there is only 1 matched shape model
with matching score above its model threshold.

case, there are only three matched shape models with matching scores above their

respective thresholds. The first two shape models are learned from the tops of the

glasses, and the third shape model is learned from the bottoms of the glasses. The

first shape model matches the glass very well and has a matching score much higher

than the other two. This match satisfies both the IoU and HOE criteria and is labeled

as correct. The second shape model is learned from a top view of the top of the glass.

The matched shape model has a large HOE due to very different aspects between the

estimated hand orientation and the ground truth. The large shape warping (which

can be captured by an affine transform) between the shape model and its response in

the query image is reflected by a low matching score. For the third matched shape

model, some of the model points are distracted by the texture of the glass. As a

result, the matching score is low due to severe distortion. Nonetheless, it is labeled

as correct since it satisfies both the hand location and orientation criteria.

Examples of the top five matched shape models on the spray bottle are shown

in Fig. 8.5. The matched shape models correspond to top grasp, bottom grasp, top
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Score: 0.4758
IoU: 0.52
HOE: 6.7

correct

Score: 0.2016
IoU: 0.45
HOE: 34.6

wrong

Score: 0.1927
IoU: 0.54
HOE: 23.4

correct

Figure 8.4: Top 5 matches on a glass. However, there are only 3 matched shape
models with matching scores above their respective model thresholds.

grasp, side grasp, and side grasp respectively. We can see that only the top grasp

is associated with shape models that can be readily identified by human. The first

and fifth matched shape models match the object relatively well and are labeled as

correct. The fourth matched shape model matches the object well but has a HOE

greater than 30 degrees, and therefore is labeled as wrong. The second and third

matched shape models are false positives, which are distracted by the inner lines on

the spray bottle. The spray bottle is the most difficult object in the OUGD. We

have demonstrated seven unidirectional grasp types on this object category. From

the above example matches, we can see that most of these shape models do not

contain informative visual cues for robust visual matching. A few shape models that

are identifiable by human are learned for some very specific aspects, such as the first

response in Fig. 8.5. The above observation is generally true in our experiments.

Fig. 8.6 and Fig. 8.7 show some examples of the top five matches on the test images

of hammers. The first matched shape model in Fig. 8.6 is learned from the handles
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Score: 0.2782
IoU: 0.59
HOE: 24.9

correct

Score: 0.2680
IoU: 0.37      0.25
HOE: 57.8     163.5

wrong

Score: 0.2421
IoU: 0.28     0.41     0.55     0.29
HOE: 98.8   168.7   171.6   112.6

wrong

Score: 0.1787
IoU: 0.30
HOE: 44.8

wrong

Score: 0.1347
IoU: 0.62
HOE: 29.6

correct

Figure 8.5: Top 5 matches on a spray bottle.

of hammers. The single bounding box corresponds to both the power and precision

grasps on the handle, and this is why the two IoUs have equal values. This match

is labeled as correct since it satisfies both the bounding box and hand orientation

criteria. However, the shape models learned on the handles of hammers are usually

insensitive to aspect change when the hammer is tilted towards or away from the

image plane. These shape models can be matched to a wider range of aspects than

is allowed by our error tolerance (30 degrees). The second matched shape model is

learned on the head of hammers. This shape model tends to match equally well when

the hammer is rotated by 180 degrees about the handle. This is because the grasp

affordance models learned on hammers are symmetric about a 180 degrees rotation

about the handle. As a result, in the grasp affordance model matching process, one

hammer is aligned with the others when facing the opposite direction. Accordingly,

in the shape model learning process, our algorithm learns a generic shape model that

can be matched to hammers facing both directions. Due to the above reason, we

acknowledge this symmetry in the performance evaluation process. Since we compare
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Score: 0.9249
IoU: 0.45
HOE: 10.9

correct

Score: 0.3076
IoU: 0.26     0.43     0.67
HOE: 144.3    48.9    67.0

wrong

Figure 8.6: Top 5 matches on a hammer. However, there are only 2 matched shape
models with matching scores above their respective model thresholds.

a matched bounding box to all ground truth bounding boxes, a matched shape model

of hammer head will be labeled as correct if its prediction is consistent with the head

grasp on a hammer facing either direction. In this case, however, the match is labeled

as wrong due to a large hand orientation error (greater than 30 degrees).

Another example test image of a hammer is shown in Fig. 8.7. In this figure,

both of the matched shape models are learned on the head of hammers. These shape

models are learned from very similar aspects and both of them are labeled as correct.

Fig. 8.8 to Fig. 8.11 show some examples of the top five matched shape models

on different hand drills. Generally, the shape models learned from the handles of

drills generalize well to different hand drills and aspects where the handle is clearly

visible. The unified grasp affordance model uses a single cluster to describe both

the unidirectional (the trigger grasp) and rotationally symmetric grasp types on the

handle. Therefore, the automatic performance measuring process does not discrim-

inate between these two grasp types. The learned shape models can also generalize
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Score: 0.3503
IoU: 0.44
HOE: 29.8

correct

Score: 0.2385
IoU: 0.38
HOE: 16.0

correct

Figure 8.7: Top 5 matches on a hammer. However, there are only 2 matched shape
models with matching scores above their respective model thresholds.

to handles with or without the extra battery compartment, and aspects where the

handle is rotated about its symmetry axis.

Fig. 8.11 shows an example in which the top matching shape model is labeled as

wrong. The hand drill in the test image has high contrast inner edges, which distracts

the matched shape model. The second, third, and fourth responses are labeled as

correct. The fifth response is labeled as wrong due to a large hand orientation error.

Note that the two HOEs below each query image correspond to the two cases where

the estimated hand orientation is compared to the trigger grasp (unidirectional) and

the handle grasp (rotationally symmetric), respectively.

The wine bottle is one of the object categories in the OUGD that the proposed

algorithm achieves high performance. This is due to the fact that wine bottles are

rotationally symmetric. For grasp types that have rotational symmetry, the aspect

clustering process will return clusters with adequate numbers of images, which allows

the learning of meaningful shape models. Also, there is minimal ambiguity and self-

occlusion in wine bottles. Fig. 8.12 shows some examples of the top five matches on
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Score: 0.2883
IoU: 0.70      0.63
HOE: 10.3       4.7

correct

Score: 0.2867
IoU: 0.57
HOE: 7.5

correct

Score: 0.2373
IoU: 0.65      0.53
HOE: 103.0      30.8

wrong

Score: 0.2178
IoU: 0.57
HOE: 7.2

correct

Score: 0.1999
IoU: 0.78
HOE: 7.3

correct

Figure 8.8: Top 5 matches on a hand drill.

Score: 0.4614
IoU: 0.46
HOE: 23.4

correct

Score: 0.4132
IoU: 0.49
HOE: 6.8

correct

Score: 0.3931
IoU: 0.38
HOE: 28.2

correct

Score: 0.3634
IoU: 0.37
HOE: 22.9

correct

Score: 0.3584
IoU: 0.44
HOE: 5.6

correct

Figure 8.9: Top 5 matches on a hand drill.
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Score: 0.2397
IoU: 0.42      0.42
HOE: 22.3      10.9

correct

Score: 0.2260
IoU: 0.41      0.41
HOE: 58.9      51.1

wrong

Score: 0.2185
IoU: 
HOE: 

wrong

Figure 8.10: Top 5 matches on a hand drill. However, there are only 3 matched shape
models with matching scores above their respective model thresholds.

Score: 0.2942
IoU: 
HOE: 

wrong

Score: 0.2892
IoU: 0.51      0.51
HOE: 12.7      14.9

correct

Score: 0.2673
IoU: 0.43      0.43
HOE: 22.2      26.0

correct

Score: 0.2221
IoU: 0.51      0.51
HOE: 19.4      12.2

correct

Score: 0.1931
IoU: 0.42      0.42
HOE: 165.0      34.0

wrong

Figure 8.11: Top 5 matches on a hand drill.
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Score: 0.4164
IoU: 0.49      0.25
HOE: 25.5      27.7

correct

Score: 0.3370
IoU: 0.58      0.30
HOE: 14.3      16.5

correct

Score: 0.2973
IoU: 0.53      0.27
HOE: 15.4      13.4

correct

Score: 0.2611
IoU: 0.24
HOE: 39.2

wrong

Score: 0.2602
IoU: 0.34      0.30
HOE: 76.7      74.8

wrong

Figure 8.12: Top 5 matches on a wine bottle.

a wine bottle. The top 3 highest scored shape models match the neck of the wine

bottle very well and are labeled as correct. The fourth shape model is learned from

the bottom of wine bottles and is highly distorted when it is matched to the top of

the bottle. This large distortion is captured by a non-rigid warp during TPS-RPM,

and is reflected by the low matching score (though it is above threshold). The fifth

match shows that a shape model learned from the bottom of wine bottles matches the

body of the bottle. This example shows that the TPS-RPM can throw out outliers

and only match to a subset of image points.

Fig. 8.13 and Fig. 8.14 show some examples of the top matched shape models

on the images of detergent bottles. Similar to the spray bottles, the shape models

corresponding to the side grasps and bottom grasps do not contain enough visual

information for robust shape matching. However, the performance of the detergent

bottle is much better than that of the spray bottle. This is because of the rotationally

symmetric grasp that is demonstrated around the cap of the detergent bottle. In most
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cases, the shape models associated with this top grasp can be robustly matched (the

top three matches in Fig. 8.14). In Fig. 8.13, the first shape model is learned from

the handles of detergent bottles. The handle grasp is not well matched. Due to low

contrast caused by the shadow of the handle, the inner contours of the handle is

usually not detected by the edge detector. This causes the shape models learned on

the handles to fail to capture inner contours of the handles. The fourth shape model,

which corresponds to a side grasp, does not contain differentiable visual information

and gets distracted by the label. Note that two ground truth bounding boxes (red

rectangles) in the fourth column of Fig. 8.14 are shown, which means that the matched

bounding box has IoUs above 0.2 with both of them. The fifth match in Fig. 8.14 is

labeled as correct coincidentally. This shape model, which corresponds to a handle

grasp, is learned from images where the handles are not actually visible. Instead, it

captures the shape of the cap. In the test image, this shape model detects the location

of the cap correctly, and the hand orientation is also correct down to symmetry (since

the matched object component is rotationally symmetric). Therefore, this match is

labeled as correct.

Fig. 8.15 shows an example of the top five matches on an image of the bowl. In

this example, only part of the edges are occluded by the grasping hand and thus

included in the shape models, depending upon the size of the bowl. This gives rise to

indiscriminative shape models that only contain a single curve as shown in the first

three matches in Fig. 8.15. Since these shape models are insensitive to small affine

distortions, the matched shape models can have large HOE. The fourth shape model

is more robust compared to the other three shape models, since it captures both the

upper and lower edges on the side of the bowl.

Fig. 8.16 shows an example of the top five matches on an image of the spatula.

Similar as the handle of the hammer, the handle of the spatula has an ambiguity in

aspect when the camera is tilted towards or away from the image plane. This causes
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Score: 0.3211
IoU: 0.55      0.52
HOE: 80.1      58.1

wrong

Score: 0.3036
IoU: 0.50
HOE: 22.9

correct

Score: 0.2613
IoU: 0.64
HOE: 5.8

correct

Score: 0.2590
IoU: 
HOE: 

wrong

Figure 8.13: Top 5 matches on a detergent bottle. However, there are only 4 matched
shape models with matching scores above their respective model thresholds.

Score: 0.3451
IoU: 0.55
HOE: 10.1

correct

Score: 0.2313
IoU: 0.67
HOE: 22.9

correct

Score: 0.2300
IoU: 0.60
HOE: 16.1

correct

Score: 0.2267
IoU: 0.48      0.59
HOE: 65.2      36.1

wrong

Score: 0.2180
IoU: 0.26
HOE: 17.5

correct

Figure 8.14: Top 5 matches on a detergent bottle.
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Score: 1.4274
IoU: 0.26      0.25
HOE: 46.6     152.2

wrong

Score: 1.1484
IoU: 0.22
HOE: 16.6

correct

Score: 0.4766
IoU: 0.42      0.44
HOE: 48.2      71.1

wrong

Score: 0.1428
IoU: 0.30
HOE: 14.2

correct

Figure 8.15: Top 5 matches on a bowl. However, there are only 4 matched shape
models with matching scores above their respective model thresholds.

the large HOE of the first match, although the shape model matches the object

contour very well. The HOE of the second match is smaller than 30 degrees and is

labeled as correct.

8.3.1 Performance as a Function of Aspect

The precision for some object categories is low (for example, spray bottles). This is

due to the fact that, for some objects, the visual properties that are relevant to a par-

ticular grasp are not robustly visible from all visual aspects. In part, this invisibility

is due to self-occlusion. Fig. 8.17 shows algorithm performance as a function of visual

aspect for the mugs. This figure has three panels, which show the rate of coverage,

the probability of correct location and the probability of success respectively. Once

a robot is confronted with an image of a novel object in a previous learned object

category, we first would like to know whether the robot can recall a learned shape

model from its memory and find a match in the image. Following that, we would like

to verify whether the matched bounding box location is correct or not. Finally, we

would like to verify the estimated hand orientation. In these figures, different colors
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Score: 0.6468
IoU: 0.24      0.23
HOE: 118.8      60.4

wrong

Score: 0.5728
IoU: 0.36
HOE: 20.8

correct

Figure 8.16: Top 5 matches on a spatula. However, there are only 2 matched shape
models with matching scores above their respective model thresholds.

represent different values scaled in the range between the minimum and maximum

probabilities. The dots represent test set samples from all five experiments, with green

representing correct matches, red representing matches with wrong location and/or

hand orientation and blue representing no matches. Several example test images cor-

responding to different aspects are shown in the third aspect sphere. Each example

test image points to a single dot on the aspect sphere, whose location corresponds

to the aspect at which the test image is taken. To interpret these different aspects,

we can imagine a mug as being placed upright in the center of the sphere, with its

handle facing left. Accordingly, the north pole of the aspect sphere corresponds to a

top view of the mug, and the south pole corresponds to a bottom view of the mug.

The arrow pointing from an example test image to a dot on the aspect sphere is color

coded the same way as the dots.

Fig. 8.17(a) shows the RoC as a function of aspect. On this aspect sphere, a dot

is colored either green (match) or blue (no match). The range of the RoC is roughly
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between 0.28 and 0.98. We can see that most of the regions with hotter colors

aggregate on the upper hemisphere. This is because the shape models corresponding

to the top grasp are more readily matched compared to the handle grasp, and these

shape models are more robustly matched when the opening of the mug is visible.

Also, there is a large hot region around the frontal view biased towards left. This

region corresponds to some aspects at which the handle shape models are matched.

Intuitively, the handle of a mug is best visible in some aspects close to the frontal

view. Note that the right hand side of the aspect sphere corresponds to some aspects

where the handle is totally occluded by the body of the mug. We expect that these

aspects are not covered by handle shape models.

Fig. 8.17(b) shows the probability of correct grasp location (approximated by the

bounding box of a matched shape model) as a function of aspect for the mug. The

distribution of probabilities on the aspect sphere is very similar to that of the RoC.

However, both the minimum and maximum probabilities are lower compared to those

in Fig. 8.17(a). This is because we check the correctness of each matched bounding

box. Because of this, some of the green dots in Fig. 8.17(a) become red in panel b.

Since we calculate the probability of correct grasp location based only on the green

dots, the overall probability is lower.

Similarly, in Fig. 8.17(c), we check both the bounding box and the hand orien-

tation errors. Therefore, more green dots in Fig. 8.17(a) become red and the overall

probability is even lower than that in Fig. 8.17(b). By comparing Fig. 8.17(b) and

Fig. 8.17(c), we can see that the large hot region around the frontal view disappears.

This indicates that most of the matched handle shape models have hand orientation

errors greater than the error tolerance (30 degrees).

For the mug, we further show the performance as a function of aspect for different

grasp types. Fig. 8.18 shows the RoC, probability of correct grasp location and

probability of success as a function of aspect for the top grasp and Fig. 8.19 shows
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• Match

• No match

(a) Rate of coverage as a function of aspect

• Correct location

• Match, but incorrect 

location 

• No match

(b) Probability of correct location as a function of aspect

• Correct location & 

orientation

• Match, but incorrect 

location or orientation 

• No match

(c) Probability of success as a function of aspect

Figure 8.17: Performance as a function of aspect: mug
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the above probabilities for the handle grasp. For each triplet of aspect spheres, we

only match shape models corresponding to a single grasp type to the same set of test

images as before. Again, if there are multiple shape models found in a test image

with their matching scores above their respective model thresholds, we choose the

one with highest matching score (Top 1). It is possible for a test image previously

labeled as wrong (red dot) in Fig. 8.17(c) to be labeled as correct (green dot) if we

consider two grasp types separately. This is because the highest scored shape model

may be different if we only consider shape models from a single grasp type. In the

following triplets of aspect spheres, we only show some example images corresponding

to some camera locations on the aspect sphere in a single panel for clarity, since all

three aspect spheres in a triplet are aligned consistently.

In Fig. 8.18,we can see that the triplet of aspect spheres of the top grasp is similar

to that of the combined (Fig. 8.17). The difference is that the hot region around the

frontal view no longer exists, since this region corresponds to matched shape models

of the handle grasp. The minimum and maximum values of the probabilities on these

aspect spheres are similar to their counterpart in Fig. 8.17. This suggests that most

of the top 1 matched shape models in Fig. 8.17 are from top grasps. In Fig. 8.18, the

distributions of the probabilities are similar for all three aspect spheres. This suggests

that once a shape model of a top grasp is matched, the match is usually correct as

far as the predicted grasp location and orientation.

The handle grasp has a substantially lower maximum probability of success (Fig.

8.19c) than that of the combined (Fig. 8.17c). This is because the handle grasp is

unidirectional and the handle of a mug can only be reliably matched in some frontal

views as shown by the hot regions in Fig. 8.19(c). Since the probability of success is

the product of the rate of coverage and precision, a substantially low rate of coverage

will drag the probability of success down. Also we should note that some of the frontal

views do not have any match (as indicated by blue dots in Fig. 8.19a). By inspection,
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(a) Rate of coverage

(b) Correct location

Top Grasp

(c) Probability of success

Figure 8.18: Performance as a function of aspect: mug top
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this is because the matched handle shape models have slightly lower matching scores

than their respective model thresholds. This may suggest that the validation set has

different statistics than the test set.

Another reason that the overall probability of success in Fig. 8.19(c) is low is due

to large hand orientation errors (greater than 30 degrees). The learned shape models

on the mug handles tend to be insensitive to a large range of aspects, especially when

the mug is tilted towards or away from the image plane. The handle shape model

deformation caused by tilting can be alternatively explained by mug handles with

different heights, which is learned as within-class variation during the PAS shape

model learning process. We can confirm this by comparing the three aspect spheres

in Fig. 8.19. From Fig. 8.19(a) to Fig. 8.19(b), we can see that the distributions of the

probabilities on the aspect spheres are very similar, and the maximum probability is

slightly lower. This suggests that a matched handle shape model is usually correct as

far as grasp location. Note that the right-hand side of the aspect sphere corresponds

to aspects where the mug handle is totally invisible. Therefore, the probabilities in

these regions are very low. From Fig. 8.19(b) to Fig. 8.19(c), we can see that once

we check the hand orientation error, a substantial amount of the matched handle

shape models with correct hand locations are labeled as wrong. This confirms our

hypothesis that a common source of error comes from the hand orientation estimate.

The corresponding backsides of the aspect spheres in Fig. 8.19 are shown in

Fig. 8.20. It is somehow against our intuition that the backside of the aspect sphere

is very different from the front side. This is partially due to the fact that not enough

discriminative shape models are learned when the mug handle is facing the other side.

We believe that this is due to a sampling issue in the data collection process. This

problem can be alleviated by increasing the training set size. Another reason is that

many matched shape models have matching scores that are just below their model

thresholds.
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(a) Rate of coverage

(b) Correct location

Handle Grasp

(c) Probability of success

Figure 8.19: Performance as a function of aspect: mug handle front
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(a) Rate of coverage

(b) Correct location

(c) Probability of success

Figure 8.20: Performance as a function of aspect: mug handle back
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(a) Front (b) Back

Figure 8.21: Probability of correct grasp location as a function of aspect with uniform
model threshold 0.1: mug handle front and back

To confirm our hypothesis that the model thresholds corresponding to the mug

handles are high such that some correctly matched shape models have matching scores

below their model thresholds, we show the probability of correct grasp location as

a function of aspect with a low uniform model threshold. The aspect sphere with

uniform model threshold t = 0.1 is shown in Fig. 8.21. Compared to Fig. 8.19(b) and

Fig. 8.20(b), we can see that the maximum probability is much higher and the high

probability regions grow dramatically. However, the front and the back of the aspect

sphere are still not symmetric. This further convinces us that an insufficient number

of shape models have been learned when the handle is facing the the other side. In

Fig. 8.21(b), most of the samples with wrong matches can be corrected by using the

Top 3 version of the algorithm.

For the glass (Fig. 8.22), the probability of success is generally high across the

entire aspect sphere. Exceptions are on the top and bottom views. These two views

are ambiguous to each other, which causes large hand orientation errors. Also, the

shape models learned on these aspects are too simple to be discriminative (usually

only capturing circular shapes). There are also some strips on the aspect sphere with
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lower probabilities, which is due to the insensitivity of PAS-based shape models to

small aspect changes. As a result, some shape models apply to a wider range of

aspects than is allowed by our hand orientation criterion.

Note that a point on the aspect sphere only encodes the location of the camera

relative to the object, so two points with the same camera location but different in-

plane rotations will coincide. An image with a glass and an image with a upside-down

glass will therefore correspond to the same aspect on the aspect sphere (if they can

be explained by an in-plane rotation). This explains why the high probability regions

in the triplet of aspect spheres in Fig. 8.22 are roughly symmetric about the equator.

For the upper hemisphere, the opening of the top of glasses is visible, and the shape

models learned on the top (and some learned on the bottom) of a set of glasses can

be readily matched in these aspects. Likewise, for the lower hemisphere, the ellipse

shape on the bottom of glasses is fully visible, and the shape models learned on the

bottom (and some learned on the top) of glasses can be readily matched in these

aspects.

The triplet of aspect spheres for the spray bottles is shown in Fig. 8.23. The

regions with higher probabilities of success include some frontal views, some other

views in which the camera is slightly moved to the left of the frontal view, and some

of the bottom views. According to Fig. 8.23(b), we can see that our algorithm actually

matches target shape models with correct locations in a large amount of test images.

The maximum probability of correct hand location is close to 0.9. However, when

we add the hand orientation constraint, a large number of matched shape models are

labeled as wrong due to hand orientations errors greater than 30 degrees. The spray

bottles are the most difficult objects in OUGD for our algorithm. The reason in part

is because all seven grasp types demonstrated on spray bottles are unidirectional.

This means that the visual features will vary dramatically with visual aspect. Also,

most of the grasp types, such as side grasps and bottom grasps, are associated with
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(a) Rate of coverage

(b) Correct location

(c) Probability of success

Figure 8.22: Performance as a function of aspect: glass
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visually ambiguous object parts and difficult to recognize even for humans without

larger context.

The hammer can be identified in most aspects, except the top and bottom views

(Fig. 8.24a). The top and bottom views do not contain enough visual information for

robust identification of the learned shape models. From Fig. 8.24(a) to Fig. 8.24(b),

we can see that most of the matches are correct as far as grasp location. However,

when comparing Fig. 8.24(b) and Fig. 8.24(c), we can see that the overall probabilities

are lower with hand orientation constraint. One difficulty with the hammer is that

the shape models learned on the handle are not very sensitive to aspect change when

the hammer is tilted towards or away from the image plane, which causes large hand

orientation errors. Note that two hammers in the example test images around the

frontal view have inconsistent orientations. One hammer is rotated from the others

about 180 degrees around its handle. This is because the grasp affordance models

learned on hammers are symmetric about a 180 degrees rotation around the handle.

As a result, in the grasp affordance model matching process, one hammer is aligned

differently with the others. In the shape model learning process, our algorithm learns

a generic shape model that can be matched to hammers facing both directions.

In Fig. 8.25 and Fig. 8.26, we separate the shape models corresponding to grasps on

the head from those corresponding to grasps on the handle. By comparing Fig. 8.25(a)

and Fig. 8.26(a), we can see that shape models corresponding to the head grasps cover

more areas around the top views on the aspect sphere. This is because the head of a

hammer is not occluded on the top view, which is the case for the handle. However,

according to Fig. 8.25(c) and Fig. 8.26(c), neither the head nor the handle of the

hammers is correctly identified for the top view when hand orientation is considered.

The shape models corresponding to head grasps are best identified around the frontal

views; while the shape models corresponding to handle grasps are correctly identified

for most aspects surrounding the symmetry axis of the handle.
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(a) Rate of coverage

(b) Correct location

(c) Probability of success

Figure 8.23: Performance as a function of aspect: spray bottle
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(a) Rate of coverage

(b) Correct location

(c) Probability of success

Figure 8.24: Performance as a function of aspect: hammer

144



(a) Rate of coverage

Bbox

(b) Correct location

(c) Probability of success

Figure 8.25: Performance as a function of aspect: hammer head
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(a) Rate of coverage

(b) Correct location

(c) Probability of success

Figure 8.26: Performance of success as a function of aspect: hammer handle
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The drill is usually robustly identified in frontal views (Fig. 8.27). In the top

view, the handle is self-occluded. In the bottom view, the handle degenerates into

a simple rectangular shape, which does not contain too much information for robust

visual identification. Note that the drill is rotated by 90 degrees clockwise within

the image plane when the barrel is grasped. So in these images, the ground truth

bounding boxes for handle grasps do not exist. Similarly, for the test images where

the drill handle is grasped by the human teacher, the ground truth bounding boxes

for the barrel grasp do not exist.

The triplet of aspect spheres for the wine bottles is shown in Fig. 8.28. The

wine bottle is one of the object categories in the OUGD that the proposed algorithm

achieves high performance, due to its rotational symmetry. In panel c, the probability

of success is very similar to that of the glass (Fig. 8.22c). Exceptions are on the top

view, where the ambiguity between the top and bottom views of the glasses causes

large hand orientation errors.

The detergent bottles have similar shapes to those of the spray bottles (Fig. 8.29).

The performance of the detergent bottle is much better than that of the spray bottle,

due to a rotationally symmetric grasp around the cap. Similar to the spray bottle, the

side and bottom grasps are not robustly identifiable without larger visual contexts. In

some cases, the handle grasp is not reliably identifiable due to a low contrast caused

by shadowing. A high probability region on the aspect sphere is where the camera

is slightly above the equator of the aspect sphere. In these aspects, the top of a

detergent bottle is readily matched, due to the fact that the cap of a detergent bottle

is fully visible without self-occlusion.

For the bowl (Fig. 8.30), the upper semi-sphere has a higher probability of success.

The shape of the bowl is similar to that of a glass, with different aspect ratios.

However, the bowl is more difficult to identify than the glass. The reason is that

during the demonstrated grasp, the hand can only cover the bowl partially. This
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(a) Rate of coverage

(b) Correct location

(c) Probability of success

Figure 8.27: Performance as a function of aspect: drill
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(a) Rate of coverage

(b) Correct location

Wine Bottle

(c) Probability of success

Figure 8.28: Performance as a function of aspect: wine bottle
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(a) Rate of coverage

(b) Correct location

(c) Probability of success

Figure 8.29: Performance as a function of aspect: detergent bottle
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means that the region of interest generally does not cover the entire rim. This usually

yields a shape model with several contour lines that are not connected to each other.

Sometimes, only a single curve is learned as a shape model. These shape models are

not very discriminative and are ambiguous with aspect.

For the spatula (Fig. 8.31), the top and bottom views do not contain enough visual

information. Also, the shape models learned on the handles are not very sensitive to

camera tilt, which often results in large hand orientation errors.

8.3.2 Aggregate Performance

From the example images in the previous section, we have seen that, from a number

of viewing angles, the target object parts are either self-occluded or do not contain

enough information for robust visual matching.

In this section, we show the aggregate performance of the algorithm for a large set

of test images. In order to assess the performance of the proposed algorithm and to

differentiate the contributions of the shape model matching and the hand orientation

estimation processes, we compare the performance of our algorithm to several different

baseline algorithms. All these random algorithms make use of the highest scored shape

model in the test image (top 1). These different random algorithms are described as

follows:

Random orientation. Given a correct bounding box matched by the highest

scored shape model according to our algorithm, we randomly sample a hand orien-

tation. Then, in the performance evaluation process, we measure the error between

this random hand orientation and the ground truth hand orientation.

Random bounding boxes. Given a correctly estimated hand orientation by a

the highest scored shape model according to our algorithm, we randomly generate a

bounding box in the test image. The bounding boxes in the left and right images are

generated separately without applying stereo constraints.
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(a) Rate of coverage

(b) Correct location

(c) Probability of success

Figure 8.30: Performance as a function of aspect: bowl
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(a) Rate of coverage

(b) Correct location

(c) Probability of success

Figure 8.31: Performance as a function of aspect: spatula
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Random bounding boxes with stereo constraints. The same as above.

However, the random bounding boxes generated in the left and right images are

required to satisfy the stereo constraints.

In Fig. 8.32, we compare the mean precision of the above random algorithms

with the proposed algorithm (for top 1, top 2, top 3, and top all). The bars represent

mean performance over five experiments, and the whiskers on top of the bars represent

standard deviation. In the horizontal direction, these bar plots are grouped according

to the object categories. For all object categories, except for the balls, we match each

test image against shape models from the same object categories. For the balls, since

we have observed a ceiling effect on the performance, we match each test image of

balls against shape models from all object categories in order to show some variance

in performance. In each group of bars, the bars with red shading correspond to three

random algorithms, while the bars with blue shading correspond to our proposed

algorithm. For our proposed algorithm, besides the top 1, top 2 and top 3 approaches,

we also show the performance of top all, which simply labels a test image as correct

if any of the matched shape models is correct. Note that from top 1 to top all, the

performance monotonically increases, since more and more matched shape models are

added. For the set of matched shape models considered for evaluation, we have top 1

⊆ top 2 ⊆ top 3 ⊆ top all.

In seven out of ten object categories (all except the hammer, the spatula, and the

ball), the algorithms from low to high performance are: random orientation, random

bounding boxes, random bounding boxes with stereo constraints, and top 1. This is

consistent with the original ordering in Fig. 8.32 from left to right. The reason

that random orientation performs worse than random bounding boxes is because the

hand orientation is in a higher dimensional space than 2D bounding boxes and thus

has a higher number of degrees of freedom. In other words, it is easier to guess

the bounding box than hand orientation. The random bounding boxes with stereo
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Figure 8.32: Performance comparison with random algorithms and oracle

constraints performs better than random bounding boxes since the former is required

to satisfy the stereo constraints. This modification further reduces the number of

degrees of freedom, and thus has a higher chance of guessing the bounding boxes

correctly.

However, the above trend is not true for the hammer, spatula and ball. For the

ball, the reason is that we consider arbitrary hand orientations as correct as long as

the matched bounding boxes satisfy the IoU criteria. This is why the performance of

random orientation is the same as that of top 1. For the hammer and spatula, it is

relatively difficult to “guess” the correct bounding boxes for a test image, since both

the hammer and spatula have narrow ground truth bounding boxes on the handles.

A random bounding box tends to have small IoU with the ground truth bounding

box. Also, it is relatively easy to guess the hand orientation since the grasps on the

handles have rotational symmetry.

155



One of the oracle algorithms that we compare to is top all in Fig. 8.32. Top all

uses all matched shape models (above their respective model thresholds t∗i ). If any of

the matched shape models is correct, we label the image as being correctly identified.

One possibility is that the robot incrementally tries each grasp until it finds one that

works. Note that all algorithms (including the random algorithms) in Fig. 8.32 use

the same set of model thresholds t∗i to determine whether a shape model is matched

or not. Because of this, the rates of coverage are the same for all algorithms for a

particular object category.

The precision of top 1 is significantly higher than all random algorithms for all

object categories except for the balls according to paired single-tail t-tests with Bon-

ferroni adjustment (α = 0.017) (Jensen and Cohen, 2000). For the balls, the random

orientation algorithm has a precision exactly the same as the top 1 approach; the

precision of top 1 is significantly better than that of the other two random algorithms

(p < 0.002, in both cases). By aggregating results across all object categories, the

top 1 approach outperforms all random algorithms significantly (the same test as

above). However, for all object categories except for the balls, the precision of top

1 is significantly lower than any of top 2, top 3 or top all (paired single-tail t-tests

with Bonferroni adjustment, α = 0.017). For the balls, the precision of top 1 is not

significantly lower than top 2, top 3 or top all due to a ceiling effect (p > 0.022,

0.018 and 0.017, respectively). By aggregating results across all object categories,

the precision of top 1 is significantly lower than that of top 2, top 3 or top all (the

same test as above). This suggests that a statistically significant number of correct

matches are not the highest scored among all matches, and therefore, it is generally

beneficial to consider more matches besides the top one. However, for a majority of

the 10 object categories (6 out of 10), there is no statistically significant difference

between top 3 and top all, which means that most of the correct matches are ranked

within the first 3 highest scored matches. For hammers, drills, wine bottles, and
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detergent/softener bottles, there is a performance gain by considering more than the

top 3 matches (p < 0.010, 0.025, 0.002, and 0.047, respectively, paired t-test).

8.3.3 Generalization Across Object Categories

In the previous section, the experimental results are based on within-class shape mod-

els. One question that we would like to ask is how well do the shape models generalize

between object categories? To answer this question, we first match the shape models

learned on the glasses to the test images of mugs. The corresponding triplet of aspect

spheres is shown in Fig. 8.33. We can see that these figures are essentially similar

to those when matching against within-class shape models (Fig. 8.17). The shape

models learned on the top or bottom of the set of glasses are more readily matched

than the other shape models. These shape models are essentially very similar to those

learned on the top of mugs. In Fig. 8.33(a), the rate of coverage is generally very high

across all aspects, especially the upper hemisphere. Again, this can be explained by

the fact that the top shape models can be more robustly identified when the opening

of the mug is visible. Another reason that the rate of coverage is very high is because

there are more shape models learned on both the top and bottom of glasses (roughly

twice as many as those learned on the top of mugs). When considering grasp location

errors, the maximum probability is lower (Fig. 8.33a), but still is as high as about

0.9. Fig. 8.33(c) looks very similar to Fig. 8.17(c), which means that the shape mod-

els learned on the top and bottom of glasses actually achieve similar performance to

those learned on the top of mugs.

To further confirm the above observation, we also show the performance of the

shape models learned on the mugs as a function of aspect when matched against test

images of glasses (Fig. 8.34). Compared with Fig. 8.33, the maximum probabilities

are generally lower in these figures. This is because the number of shape models

learned on the top of mugs is fewer (roughly half) than those learned on the top and
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(a) Rate of coverage

(b) Correct location

(c) Probability of success

Figure 8.33: Performance as a function of aspect: mugs match against the shape
models learned on the glasses
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bottom of glasses. Another difference is that besides the upper hemisphere, the lower

hemisphere also has higher probability than the other regions. The upper and lower

hemispheres are roughly symmetric about the equator. This is because of the fact

that we rotate the glasses 180 degrees in the image plane when grasping the bottom.

For example, when the top of the glass is grasped during data collection, a point

on the upper hemisphere of the aspect sphere corresponds to an aspect where the

opening of the glass is visible. When the bottom of the glass is grasped, imagine that

the glass is rotated 180 degrees in the image plane. This gives us an image of an

upside-down glass with the opening visible, but the bottom surface is invisible. Since

aspects with different in-plane rotations correspond to the same point on the aspect

sphere, the image with the upside-down glass corresponds to the same point as the

original image on the aspect sphere. Symmetrically, a point on the lower hemisphere

corresponds to an aspect where the bottom surface of an upside-down glass is fully

visible. Similar to the opening of the glasses, the shape models learned on the top

of mugs are more robustly matched when the bottom surface of the glasses are fully

visible, which corresponds to aspects on the lower hemisphere.

So what happens when we match test images of mugs against shape models that

do not look similar to mug components? To answer this question, in Fig. 8.35, we

show the performance of the shape models learned on spatulas as a function of aspect

when matched against test images of mugs. Ideally, the shape models of spatulas

should not “pop out” from images of mugs (with matching scores lower than model

thresholds). Therefore, in this triplet of figures, we are interested in whether the rate

of coverage is low. In Fig. 8.35(a), we can see that the maximum rate of coverage

(about 0.4) is much lower than that in Fig. 8.17(a) (close to 1). The locations of the

high probability regions tend to be random. Some example matches are shown with

arrows pointing to the corresponding aspects (green dots) on the aspect sphere. In

the top two test images, the shape models are learned on the top views of spatulas,
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(a) Rate of coverage

(b) Correct location

(c) Probability of success

Figure 8.34: Performance as a function of aspect: glasses match against the shape
models learned on the mugs
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which accidentally capture part of the holding hand and data glove. In the bottom

two test images, the shape models are learned on the handle of spatulas. These shape

models accidentally match to the textures and patterns of mugs. Some of these false

positive matches accidentally overlap with the ground truth bounding boxes (IoUs

greater than 0.2, Fig. 8.35b). However, none of these cases actually suggest correct

hand orientations (Fig. 8.35c). This is consistent with our expectation and serves as

a sanity check for our experimental result evaluation process.

In Fig. 8.36(a), we show the generalization of learned shape models to different

object categories for a single experiment. In this figure, each entry in the matrix is

the rate of coverage when matching shape models of a particular grasp type (row) to

images from all object categories (column). In each entry, the range of the value is

between 0 and 1, with hotter colors representing higher values. For some particular

grasp types, such as those learned from balls, drill handles, and bottle bodies, the

corresponding shape models match to a wide range of object categories and achieve

high rates of coverage. These shape models are usually simple and not very discrimi-

native when matched to test images from other object categories. Therefore, some of

the high value entries in Fig. 8.36(a) are true generalizations beyond object categories

and the others are false positive matches. In order to know which entries are true

generalizations, we use the proposed labeling algorithm to evaluate each match and

show the corresponding probability of success matrix in Fig. 8.36(b). By comparing

the two matrices in Fig. 8.36, the values of most entries decrease from Fig. 8.36(a)

to Fig. 8.36(b), since we check the correctness of matches found in each test image

and only consider the test images that are labeled as correct in latter. Recall that

the PoS is the product of RoC and precision (Equation 8.1). Both the RoC and

precision need to be high in order to achieve high PoS. In Fig. 8.36(b), the peak value

is located at the right-bottom corner, which corresponds to the grasp type learned

on balls matching to test images of balls. In this particular case, the PoS is close
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(a) Rate of coverage

(b) Correct location

(c) Probability of success

Figure 8.35: Performance as a function of aspect: mugs match against the shape
models learned on the spatulas
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to 1, since both the RoC and precision are close to one. The second highest entry

corresponds to the grasp type learned on the top of glasses matching to test images

of balls. Symmetrically, the entry corresponding to the shape models learned on the

balls also achieve high probability of success on the test images of glasses. This is

because the top of a glass has a similar shape as a ball. Likewise, the shape models

learned on the top of mugs also generalize to balls, and vice versa. The shape models

learned on the top of mugs and the top/bottom of glasses achieve similar performance

on the test images of mugs and glasses (the entries around the left-top corner), which

is consistent with our observation in Fig. 8.33 and Fig. 8.34. Note that some of

the entries in Fig. 8.36(b) may still contain matches that are accidentally labeled as

correct by the labeling algorithm.

In order to show the generalizations between different object categories more

clearly, we show the corresponding graphs in Fig. 8.37. In these figures, green nodes

correspond to grasp types, and yellow nodes correspond to the test images of some

object categories. A directed edge pointing from a grasp type to an object category

indicates a generalization between them. For visual clearance, we only show edges

with RoC > 0.5 in Fig. 8.37(a), and edges with PoS > 0.2 in Fig. 8.37(b). In

Fig. 8.37(a), we can see that shape models from many different grasp types achieve

RoC > 0.5 on the images of bowls and detergent bottles. Shape models corresponding

to some grasp types, such as bottle body upside-down, achieve RoC > 0.5 on the test

images of many different object categories. However, some of these edges correspond

to RoCs that are exaggerated by false positive matches. In Fig. 8.37(b), most of the

false positive edges are pruned out by the labeling algorithm. An edge in Fig. 8.37(a)

that is removed in Fig. 8.37(b) usually corresponds to a false generalization caused by

false positive matches; while an edge that exists in both Fig. 8.37(a) and Fig. 8.37(b)

usually corresponds to a true generalization.

The observed generalizations of shape models across object categories in Fig. 8.37(b)
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Figure 8.36: The performance of matching shape models of different grasp types to
images from all object categories.
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Figure 8.37: Graph representation of typical generalizations between object categories

165



are summarized in the table below. In this table, A ⇒ B denotes a generalization

from a shape model learned on object A to test images of object B; A ⇔ B de-

notes a mutual generalization between objects A and B. Each generalization case

in this table is indexed into some example test images with matched shape models

(Fig. 8.38 to 8.57). These figures are composed of representative examples of general-

ization across object categories. Both true positive matches (those that are labeled as

correct by the automatic labeling algorithm) and false positive matches (those that

are labeled as wrong by the automatic labeling algorithm) are given. However, we

should note that some of the true positives are counter-intuitive matches that are

coincidentally labeled as correct by the labeling algorithm due to consistent hand

location/orientation with the ground truth.

• glass top/bottom ⇔ mug top ⇔ ball Fig. 8.38

• glass side ⇔ bottle body Fig. 8.39, 8.40

• spray bottom ⇒ mug top Fig. 8.41(a), (b)

⇒ bowl Fig. 8.41(c), (d), (e)

• spray side ⇒ glass side Fig. 8.42

⇒ wine bottle body Fig. 8.43

• hammer handle ⇔ spatula handle Fig. 8.44, 8.45

• drill handle ⇒ hammer handle Fig. 8.46

⇔ wine bottle Fig. 8.47, 8.48

⇒ spatula handle Fig. 8.49

• bottle bottom ⇒ mug top Fig. 8.50

⇒ glass top/bottom Fig. 8.51, 8.52

⇒ bowl Fig. 8.53
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Score: 0.1300
IoU: 0.66
HOE: 14.6

correct

(a)

Score: 0.1702
IoU: 0.70
HOE: 26.4

correct

(b)

Score: 0.1711
IoU: 0.56
HOE: 21.7

correct

(c)

Score: 0.5241
IoU: 0.76
HOE: 0.0

correct

(d)

Score: 0.2884
IoU: 0.46
HOE: 0.0

correct

(e)

Figure 8.38: Shape model generalization between mugs and balls

• bottle body upside-down ⇒ glass side Fig. 8.39(c)

⇒ hammer handle Fig. 8.54

⇔ detergent bottle side/cap Fig. 8.55, 8.56

• detergent bottle bottom ⇔ ball Fig. 8.57

In Fig. 8.38, we show some generalization between mugs and balls. Particularly,

the shape models learned on the top of mugs and balls capture similar circular shapes.

In Fig. 8.38(c), the match of a ball shape model is coincidentally labeled as correct,

due to the fact that the estimated hand location and orientation is consistent with

those of a handle grasp. In Fig. 8.38(d) and 8.38(e), the matches of shape models

learned from the top of mugs are labeled as correct since they satisfy the IoU criterion.

The HOEs are always 0 for test images of balls, since we consider arbitrary hand

orientation as correct.

In Fig. 8.39, we show some generalization between the glass and the wine bottle.

Particularly, the shape models learned from the side grasps of the glass and the

wine bottle capture similar shapes. In Fig. 8.39(b), the match of the shape model
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Score: 0.1753
IoU: 0.61
HOE: 17.1

correct

(a)

Score: 0.2304
IoU: 0.38
HOE: 6.4

correct

(b)

Score: 0.1142
IoU: 0.47
HOE: 26.2

correct

(c)

Score: 0.2293
IoU: 0.34      0.37
HOE: 14.2      12.5

correct

(d)

Score: 0.2775
IoU: 0.26      0.49
HOE: 8.7       8.0

correct

(e)

Figure 8.39: Shape models generalize between glass and wine bottle.

is distracted by inner textures of the glass and the sensor. However, this match is

still labeled as correct by the assessment algorithm, since it satisfies both the hand

location and orientation criteria.

In Fig. 8.40, we show some false positive matches between the glass and the wine

bottle. In Fig. 8.40(a), the shape model learned from the top view of wine bottles are

matched to the inner texture of the glass and part of the hand that holds the glass.

This match does not overlap with any of the ground truth bounding boxes with IoU

greater than 0.2, and therefore, is labeled as wrong by the assessment algorithm. In

Fig. 8.40(b), 8.40(d),and 8.40(e), the matches of shape models are labeled as wrong

due to hand orientation errors that are larger than 30 degrees, although these matches

match the gross shape of the query objects fairly well. In Fig. 8.40(c), the match of

the shape model actually estimates both the hand location and orientation accurately.

However, this query image of the glass does not have a ground truth that corresponds

to a side grasp. As a result, the matched shape model is only compared to the ground

truth hand location and orientation corresponding to a top grasp, and therefore, is
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Score: 0.2225
IoU: 
HOE: 

wrong

(a)

Score: 0.2899
IoU: 0.67
HOE: 44.8

wrong

(b)

Score: 0.1799
IoU: 0.31
HOE: 78.5

wrong

(c)

Score: 0.2137
IoU: 0.35      0.50
HOE: 36.0      38.0

wrong

(d)

Score: 0.3988
IoU: 0.29      0.44
HOE: 40.5      38.7

wrong

(e)

Figure 8.40: Shape models generalize between glass and wine bottle.

labeled as wrong due to a large hand orientation error.

In Fig. 8.41, shape models learned from bottom of spray bottles are matched to

the images of mugs and bowls. These shape models capture simple ellipse shapes, and

can match very well to the top of mugs and bowls for certain aspects. Although some

of these matches satisfy both the hand location and orientation criteria (Fig. 8.41a, c),

some of them have large hand orientation errors (Fig. 8.41d, e). In Fig. 8.41(b), the

shape model is matched to the outer contour of a mug. This match is compared to

both ground truths that are associated with this query image. This match is labeled

as wrong, since it has large hand orientation errors with both ground truth hand

orientations. In Fig. 8.41(d), the match of the shape model is distracted by the inner

edge of the bowl. This match causes large hand orientation errors, and therefore, is

labeled as wrong by the assessment algorithm.

In Fig. 8.42, shape models corresponding to a side grasp of the spray bottles

are matched to the query images of a glass. During the grasp region extraction, the

approximated grasp locations on the objects tend to be inaccurate, due to the fact that
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Score: 0.3744
IoU: 0.61
HOE: 26.9

correct

(a)

Score: 0.3410
IoU: 0.30      0.57
HOE: 161.7      51.2

wrong

(b)

Score: 0.4017
IoU: 0.41
HOE: 10.3

correct

(c)

Score: 0.2377
IoU: 0.43      0.65
HOE: 78.0      43.2

wrong

(d)

Score: 0.3168
IoU: 0.67      0.41
HOE: 63.9      60.7

wrong

(e)

Figure 8.41: Shape models learned on the bottom of spray bottles generalize to mugs
and bowls.

only a small portion of the spray bottle is occluded by the grasping hand. As a result,

the shape models learned from these grasp locations are noisy and discontinuous. In

this figure, most of these matches are distracted by the inner texture of the glass and

part of the hand that holds the glass.

However, the shape models corresponding to the side grasp of spray bottles tend

to match well on the body of wine bottles (Fig. 8.43). This is in part due to the

fact that the wine bottle also has a label, and the shape models match well to both

the outer and inner edges of the label. In addition, the hand orientations associated

with the grasps on the body of the wine bottles are consistent with those from the

side of the spray bottles. Therefore, the matches in Fig. 8.43(a), 8.43(b), and 8.43(c)

are labeled as correct by the assessment algorithm. In Fig. 8.43(d), the match does

not have IoU greater than 0.2 with any ground truth bounding box, and therefore, is

labeled as wrong. In Fig. 8.43(e), the shape model is labeled as wrong due to a large

hand orientation error.
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Score: 0.1436
IoU: 0.63
HOE: 22.4

correct

(a)

Score: 0.1633
IoU: 0.27      0.44
HOE: 61.3      30.9

wrong

(b)

Score: 0.2536
IoU: 0.38
HOE: 77.4

wrong

(c)

Figure 8.42: Shape models learned on the side of spray bottles generalize to a glass.

Score: 0.1555
IoU: 0.43
HOE: 18.9

correct

(a)

Score: 0.1832
IoU: 0.29      0.47
HOE: 18.8      18.5

correct

(b)

Score: 0.1686
IoU: 0.39      0.25
HOE: 22.0      21.3

correct

(c)

Score: 0.1764
IoU: 
HOE: 

wrong

(d)

Score: 0.2597
IoU: 0.38
HOE: 95.3

wrong

(e)

Figure 8.43: Shape models learned on the side of spray bottles generalize to glasses
and wine bottles.
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A major part of generalization between shape models comes from the handles of

different objects, such as the hammer, the spatula, and the drill. From Fig. 8.44

to 8.49, we show an extensive set of example matches of the shape models that are

learned from the handles of different objects.

In Fig. 8.44 and 8.45, we show the generalization between the handles of spatulas

and those of the hammers. In most cases, the shape models learned from the handles

of spatulas and hammers capture similar elongated cylindrical shapes. These shape

models usually generalize well between spatulas and hammers (Fig. 8.44a, b, 8.45a).

However, there is an ambiguity in aspect when the handle is tilted towards or away

from the camera. Due to this reason, some of the matches cause large hand orientation

errors (Fig. 8.44c, 8.45d). In Fig. 8.45(b), the shape model is learned from a top view

of the spatula. This shape model captures a small part of the spatula and a large

part of the grasping hand. In the query image, this shape model matches well to a

top view of the hammer, and is coincidentally labeled as correct. In Fig. 8.45(c), the

same shape model is matched to a frontal view of the hammer head. However, this

match is labeled as wrong due to a large hand orientation error.

In Fig. 8.46, shape models learned from the handle of drills are matched to the

query images of hammers. Again, in most cases, the matched shape models predict

hand locations and orientations accurately and are labeled as correct by the assess-

ment algorithm (Fig. 8.46a, b, c). However, in some other cases, the matches cause

large hand orientation errors (Fig. 8.46d, e).

In Fig. 8.47 and 8.48, shape models learned from the handle of drills are matched

to the images of wine bottles. In Fig. 8.47(a), 8.47(b), and 8.47(c), the shape models

match well to the neck or the body of the wine bottle, and are labeled as correct. In

Fig. 8.47(d) and 8.47(e), the shape models are distracted by the edges of the label

and the sensor, and are coincidentally labeled as correct by the assessment algorithm.

Some false positive matches are shown in Fig. 8.48. These matches are labeled as
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Score: 0.6440
IoU: 0.35
HOE: 27.8

correct

(a)

Score: 0.5682
IoU: 0.24
HOE: 9.3

correct

(b)

Score: 0.5082
IoU: 0.29      0.30
HOE: 104.3      76.0

wrong

(c)

Figure 8.44: Shape models generalize between hammer and spatula handles.

Score: 0.8909
IoU: 0.28
HOE: 28.0

correct

(a)

Score: 0.1945
IoU: 0.53
HOE: 14.4

correct

(b)

Score: 0.1386
IoU: 0.49     0.43     0.71
HOE: 140.2   165.4    63.2

wrong

(c)

Score: 0.4028
IoU: 0.52
HOE: 73.0

wrong

(d)

Figure 8.45: Some generalizations between hammer and spatula handles that are
labeled as false positives by the labeling algorithm.
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Score: 0.4268
IoU: 0.65
HOE: 9.8

correct

(a)

Score: 0.3955
IoU: 0.48
HOE: 14.5

correct

(b)

Score: 0.1819
IoU: 0.31
HOE: 25.7

correct

(c)

Score: 0.4067
IoU: 0.45
HOE: 41.3

wrong

(d)

Score: 0.2817
IoU: 0.28
HOE: 49.1

wrong

(e)

Figure 8.46: Shape models generalize between drill and hammer handles.

wrong by the assessment algorithm due to large hand orientation errors.

In Fig. 8.49, shape models learned from the handle of drills are matched to the

images of spatulas. Most of these shape models match very well to the handles of

spatulas. However, there is an ambiguity in aspect when the spatula is tilted towards

or away from the camera. Due to this reason, some of the matches cause large hand

orientation errors (Fig. 8.49d, 8.49e).

Another widely observed shape generalization between object categories corre-

sponds to the shape models learned from the bottom of wine bottles matching to the

top of the mug, the glass, and the bowl. An extensive set of such examples is shown

in Fig. 8.50, 8.51, 8.52, and 8.53. From viewing angles where the opening of the mug,

the glass, or the bowl are clearly visible (slightly above the frontal view), the shape

models learned from the bottom of wine bottles can usually match robustly to the

query images. In some cases, the corresponding hand orientation errors are slightly

above 30 degrees (Fig. 8.50b, 8.52a, and 8.53c). In some other cases, the learned

shape models are too simple to be discriminative, and are matched to a small set of
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Score: 0.2382
IoU: 0.42
HOE: 16.9

correct

(a)

Score: 0.3094
IoU: 0.52      0.37
HOE: 18.3      19.6

correct

(b)

Score: 0.2442
IoU: 0.28
HOE: 8.8

correct

(c)

Score: 0.3423
IoU: 0.22      0.28
HOE: 8.6       9.0

correct

(d)

Score: 0.2737
IoU: 0.38
HOE: 9.6

correct

(e)

Figure 8.47: Shape models generalize between wine bottles and drill handles.

Score: 0.1919
IoU: 0.25
HOE: 43.4

wrong

(a)

Score: 0.1589
IoU: 0.49      0.26
HOE: 50.5      48.8

wrong

(b)

Score: 0.2088
IoU: 0.45      0.23
HOE: 39.9      40.8

wrong

(c)

Figure 8.48: Shape models generalize between wine bottles and drill handles.
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Score: 0.4370
IoU: 0.32
HOE: 26.7

correct

(a)

Score: 0.3173
IoU: 0.36
HOE: 15.6

correct

(b)

Score: 0.4506
IoU: 0.28
HOE: 13.5

correct

(c)

Score: 0.2158
IoU: 0.30      0.30
HOE: 142.4      36.8

wrong

(d)

Score: 0.2085
IoU: 0.45      0.37
HOE: 117.3      66.5

wrong

(e)

Figure 8.49: Shape models generalize between drill and spatula handles.

edges in a query image (Fig. 8.50c, 8.52b).

In Fig. 8.54, a shape model corresponding to a side grasp of wine bottles is matched

to the images hammers. In Fig. 8.54(a) and 8.54(b), the matches are labeled as correct

due to consistent hand location and orientation with the ground truth. However, this

shape model can match to a wide range of aspects when the hammer is tilting towards

or away from the camera. This causes large hand orientation errors in some cases

(Fig. 8.54c).

In Fig. 8.55, the shape models learned from the bottom of wine bottles match well

to the the caps of detergent bottles. Due to the fact that the cap of a detergent bottle

is rotationally symmetric, these shape models can usually match well to a wide range

of aspects. Some false positive matches are shown in Fig. 8.56. In Fig. 8.56(a), 8.56(b),

and 8.56(c), the shape model is learned from a top view of the wine bottle, when the

human teacher is grasping from the side. Theoretically, the grasp regions extracted

from these images should be empty, since the grasping hand does not occlude any

part of the bottle. However, due to noise (e.g., the bottle is slightly moved during the
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Score: 0.3350
IoU: 0.68
HOE: 11.2

correct

(a)

Score: 0.2850
IoU: 0.77
HOE: 33.4

wrong

(b)

Score: 0.1460
IoU: 0.38
HOE: 100.5

wrong

(c)

Figure 8.50: Shape models generalize between mugs and wine bottles.

Score: 0.2034
IoU: 0.65
HOE: 13.5

correct

(a)

Score: 0.1578
IoU: 0.71
HOE: 18.4

correct

(b)

Score: 0.1381
IoU: 0.37
HOE: 13.8

correct

(c)

Score: 0.1435
IoU: 0.53
HOE: 9.2

correct

(d)

Score: 0.1496
IoU: 0.22
HOE: 25.2

correct

(e)

Figure 8.51: Shape models generalize between glasses and wine bottles.
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Score: 0.1555
IoU: 0.71      0.28
HOE: 33.7     112.8

wrong

(a)

Score: 0.1639
IoU: 
HOE: 

wrong

(b)

Score: 0.1366
IoU: 0.30      0.52
HOE: 49.8      90.2

wrong

(c)

Figure 8.52: Shape models generalize between glasses and wine bottles.

Score: 0.1920
IoU: 0.26
HOE: 14.8

correct

(a)

Score: 0.1412
IoU: 0.51
HOE: 14.5

correct

(b)

Score: 0.1929
IoU: 0.53      0.57
HOE: 76.2      68.8

wrong

(c)

Figure 8.53: Shape models generalize from wine bottles to bowls.
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Score: 0.2201
IoU: 0.64
HOE: 17.2

correct

(a)

Score: 0.2360
IoU: 0.36
HOE: 14.7

correct

(b)

Score: 0.2507
IoU: 0.22     0.26     0.52
HOE: 131.3   141.6    55.7

wrong

(c)

Figure 8.54: Shape models generalize from wine bottles to hammer handles.

grasp), our algorithm still finds some plausible image regions as the grasp regions.

These image regions usually do not contain related shapes, and therefore, the shape

models learned from these regions tend to be general and indiscriminative (although

a large portion of these shape models have already been filtered out during the model

filtering process). As a result, these shape models usually cause false positive matches

in query images. In Fig. 8.56(d) and 8.56(e), the learned shape models capture partial

textures on the labels, and are distracted by the inner edges on the labels of the

detergent bottle.

In Fig. 8.57, the shape models corresponding to bottom grasps on the detergent

bottles match well to the query images of balls. This is in part due to the fact

that the query images of balls are usually texture-free. As a result, the shape model

can usually find the correct location of the ball. Since we consider arbitrary hand

orientation as correct, the corresponding match is labeled as correct as far as the

predicted hand location is correct.
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Score: 0.2478
IoU: 0.50
HOE: 15.8

correct

(a)

Score: 0.3404
IoU: 0.50
HOE: 6.7

correct

(b)

Score: 0.2681
IoU: 0.65
HOE: 10.3

correct

(c)

Score: 0.1716
IoU: 0.39
HOE: 8.8

correct

(d)

Score: 0.1315
IoU: 0.50
HOE: 15.5

correct

(e)

Figure 8.55: Shape models generalize from wine bottles to detergent bottles.

Score: 0.2183
IoU: 0.53      0.24
HOE: 162.5     171.3

wrong

(a)

Score: 0.3912
IoU: 0.35     0.35     0.46     0.21
HOE: 91.3   153.7    40.4    −1.0

wrong

(b)

Score: 0.2172
IoU: 0.37
HOE: 95.4

wrong

(c)

Score: 0.1433
IoU: 0.51
HOE: 65.5

wrong

(d)

Score: 0.2023
IoU: 
HOE: 

wrong

(e)

Figure 8.56: Some generalizations between wine and detergent bottles that are labeled
as false positives by the labeling algorithm.

180



Score: 0.3703
IoU: 0.59
HOE: 0.0

correct

(a)

Score: 0.3988
IoU: 0.57
HOE: 0.0

correct

(b)

Score: 0.2664
IoU: 0.75
HOE: 0.0

correct

(c)

Figure 8.57: Shape models learned on the bottom of detergent bottles generalize to
balls.

8.3.4 Match-against-all vs. Match-within-class

One question that we would like to ask is how does the performance of matching a

test image against all shape models (match-against-all) look like when compared to

matching against the shape models learned within the same object category (match-

within-class)? In order to compare the performance of match-against-all and match-

within-class, we use Top 1 here. In the case of match-within-class, we assume that

we know a priori what the object class label is.

The rate of coverage, precision (correct location), and precision (correct loca-

tion and orientation) of match-against-all and match-within-class are compared in

Fig. 8.58. The difference between precision (correct location) and precision (cor-

rect location and orientation) is that we only check the IoU between the ground

truth and predicted grasp regions for the former. For all objects, the rate of cov-

erage of match-within-class is lower than that of match-against-all. This is because
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that match-against-all considers a much larger set of shape models, which covers a

much larger set of aspects on the aspect sphere. However, for all object categories,

the precision (correct location) and precision (correct location and orientation) of

match-within-class are higher than those of match-against-all. This is because that

the proposed algorithm has a smaller chance of finding false positive matches when

a given test image is matched against a set of shape models from the same object

category. Given the definition of precision (TP/(TP+FP)), the proposed algorithm

finds more true positive matches relative to the total number of matches when a given

test image is matched against within-class shape models. By comparing Fig. 8.58(b)

and 8.58(c), we can see that the precision is much higher without considering hand

orientation errors for both match-against-all and match-within-class. This is con-

sistent with our previous observation that the proposed algorithm achieves higher

performance on predicting grasp regions than hand orientations. For most object

categories, the superiority of match-within-class is more obvious when hand orienta-

tion error is considered. This is reflected by the larger difference between the two

bars in each pair in Fig. 8.58(c), compared with those in Fig. 8.58(b).

Most of the above comparisons are statistically significant. The statistically sig-

nificant comparisons are indicated by asterisks next to the object category names

on the x axis. In Fig. 8.58(a), the comparisons for object categories glass and ball

are not statistically significant (single-tail paired t-test, p < 0.09 and 0.11, respec-

tively). Due to ceiling effects on these two object categories, the match-against-all

and match-within-class methods perform very similar to each other. The objects in

these two categories are rotationally symmetric. The shape models learned on these

objects cover most of the aspects very well and achieve high rate of coverage. For

the mugs and spatulas, match-against-all and match-within-class have very different

rates of coverage. The spatula shape models that survive after the two steps of the

filtering process only cover the aspects where the handle is clearly visible (Fig. 8.31a).
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(b) Precision (correct location)
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(c) Precision

Figure 8.58: Performance comparison: match-against-all vs. match-within-class
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(a) Rate of coverage
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(b) Probability of correct location
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(c) Probability of success

Figure 8.59: Performance comparison: match-against-all vs. match-within-class
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Because of this, the rate of coverage for the spatula is low when only matching to

within-class shape models. For the mugs, it is beneficial to match test images against

shape models that are learned from other object categories, such as those learned from

the top/bottom of a set of glasses, the bottom of wine bottles, and the balls. These

shape models are learned from object components that resemble the top of mugs,

which generalize very well across object categories. As a result, match-against-all

achieves significantly higher rate of coverage on the mugs compared to match-within-

class. However, due to the fact that these shape models usually match to a wider

range of aspects than that is allowed by our HOE criterion, a large number of these

generalizations are labeled as wrong. As a result, match-against-all achieves signifi-

cantly lower precision on the mugs compared to match-within-class. In Fig. 8.58(b),

the comparisons for object categories mug, hammer, and spatula are not statistically

significant (single-tail paired t-test, p < 0.09, 0.07, and 0.28, respectively). For these

object categories, the proposed algorithm performs well for both match-against-all

and match-within-class as far as finding the correct grasp regions. In Fig. 8.58(c), the

comparison for object category glass is not statistically significant (single-tail paired

t-test, p < 0.06). The glass object category is fully rotationally symmetric. The

objects in this category are relatively simple and free of complex texture, and it is

not very likely for shape models from other categories to find a good match on these

objects. As a result, our algorithm achieves similar precision for match-against-all

and match-within-class on the glass object category.

In Fig. 8.59, we compare the rate of coverage, probability of correct location, and

probability of success of match-against-all and match-within-class. This triplet of

bar plots is arranged consistently with the triplets of aspect spheres we have seen in

the previous section. Fig. 8.59(a) is the same as Fig. 8.58(a), we include it here for
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comparison purpose. Between Fig. 8.58 and 8.59, we have the following relationship:

probability of correct location = precision (correct location)× rate of coverage,

probability of success = precision× rate of coverage.

Therefore, in order to achieve high probability of success, the algorithm has to achieve

both high rate of coverage and high precision. In Fig. 8.59(b), match-against-all

achieves higher performance than match-within-class for the mug, the spray bottle,

the hand drill, the bowl, and the spatula. Particularly, for the mug and the spatula,

match-against-all performs significantly better than match-within-class (paired t-test,

p < 0.01 in both cases). This is because the proposed algorithm achieves high rates of

coverage on these two object categories. For the glass, the wine bottle, the detergent

bottle, and the ball, match-within-class performs better than match-against-all as

far as probability of correct location. Particularly, for the wine bottle, the detergent

bottle, and the ball, these comparisons are significant (paired t-test, p < 0.02, 0.01,

and 0.05, respectively). For the hammer, match-against-all and match-within-class

achieve similar performance. The above comparisons indicate that match-against-all

performs comparably well as match-within-class as far as predicting grasp regions.

However, in Fig. 8.59(c), match-within-class outperforms match-against-all for most

object categories (all except the spatula) when hand orientation error is considered.

Particularly, for the spray bottle, the wine bottle, the detergent bottle, the bowl,

and the ball, match-within-class performs significantly better than match-against-all

(paired t-test, p < 0.01 in all cases). For the spatula, match-within-class achieves

slightly lower probability of success than match-against-all, due to the fact that the

latter achieves much higher rate of coverage than the former. However, this compar-

ison is insignificant (paired t-test, p < 0.09).
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8.3.5 The Quality of Synthesized Bounding Boxes

For a given image, there typically exists multiple suggested grasps. However, the

human teacher will have demonstrated but one of these grasps. When the proposed

algorithm matches this demonstrated grasp, it can serve as a ground truth against

which to measure the algorithm’s choice. When this demonstrated grasp is not the one

suggested by the algorithm, we need an alternative method of measuring the quality

of this choice. Our approach is to synthesize an answer given other samples of the

same object and from similar viewing angles (Section 4.2). A key question, however,

is how well do these synthesized answers compare to the true ground truth. In order

to answer this question, for a single object category, we compare the performance of

a set of shape models for a certain grasp type on two different sets of test images: the

one in which such a grasp type has been demonstrated (so the ground truth bounding

boxes for this grasp type come directly from the demonstration) and the one in which

such a grasp type has not been demonstrated (so the ground truth bounding boxes

are synthesized by using the method in Section 4.2).

In the following results, we select the mug object category. For mugs, two grasp

types are demonstrated during training: a ball grasp from the top and a handle grasp.

For each in the five mugs, we compare the performance of the following: 1) top shape

models matched to images in which top grasps are demonstrated (top-GT), 2) top

shape models matched to images in which top grasps are synthesized (top-syn-GT),

3) handle shape models matched to images in which handle grasps are demonstrated

(handle-GT), and 4) handle shape models matched to images in which handle grasps

are synthesized (handle-syn-GT). Here, we consider a test image as correctly identified

if the matched shape model with highest matching score is labeled as correct (so, the

Top 1 approach).

The comparisons of rate of coverage and precision between the ground truth

187



bounding box and synthesized bounding box are shown in Fig. 8.60(a) and Fig. 8.60(b).

Each bar is a mean of five experiments, corresponding to five mugs, and the whiskers

are standard deviations. In each figure, the bars are grouped by the grasp types of

shape models, either top grasps (the first group) or handle grasps (the second group).

In each group of two bars, the first one corresponds to a set of test images in which

top grasps are demonstrated (top image), and the second one corresponds to a set

of test images in which handle grasps are demonstrated (handle image). Recall that

for each test image, only a single grasp type is demonstrated by the human teacher.

Therefore, these two sets of test images are mutually exclusive and bisect the entire

set of test images. An unpaired t-test fails to show a statistical difference in the

rate of coverage between the top model pair, or the handle model pair (p < 0.17).

Furthermore, an unpaired t-test fails to show a statistical difference in the precision

between the top and handle model pairs, respectively (p < 0.64). This indicates that

the synthesized ground truth bounding boxes are as accurate as the ground truth

bounding boxes generated by image differencing.

8.4 Sensitivity Analyses

So far, we have shown results for a specific implementation of the proposed algo-

rithm. Within the algorithm, there are a variety of parameters that must be chosen

(Table 8.1). We have chosen many of these parameters empirically, based on valida-

tion set performance. In this section, we focus on several parameters, whose values

have critical impacts on the experimental performance. For the results that we have

reported in the previous sections, we determine the values of key parameters by using

a separate validation set. For the purpose of sensitivity analyses in this section, we

change their values and observe their influence on the performance.

One of the key parameters is the κ threshold, κth, that we choose to filter out less
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Figure 8.60: Performance comparison: ground truth bounding box vs. synthesized
bounding box
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Table 8.1: The list of parameters and their chosen values.
sub-algorithm Parameter Value
aspect clustering bandwidth on z (girdle) 0.01
mean shift min cluster size (girdle) 10

bandwidth on camera position (DW) 0.06
bandwidth on camera x direction (DW) 0.2
min cluster size (DW) 3

model learning PAS difference threshold 4.0‡

max number of images to learn codebook 10‡

number of PAS types 30‡

number of tiles 30†

SVM classifier number of negative images 100
SVM type C-SVC†

kernel type polynomial†

polynomial degree 10†

model filtering I percentage of models kept 80%
number of models kept 10(DW)/5(girdle)

model filtering II κ threshold: κth 0.1
model matching number of initial matches 10

enlarge model bounding box ratio 1.3‡

sliding window stepsize 5 pixels†

sliding window scaling factor 21/4†

max sliding window size min(model size ∗
2.5, image size)

min sliding window size model size ∗ 0.8
score weighting Werr: point matching error 10

Wnomp: number of matched points 0.1
Wtps: warping energy 1
Waff : amount of affine change 1
Wepi: epipolar constraint 0.01

evaluation IoU error bound 0.2‡

HOE bound 30◦

†These values are from Ferrari et al. (2008)
‡These values are from Ferrari et al. (2010)
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discriminative shape models during the second step of filtering process. A κth value

of 0.1 usually gives us about 300 to 350 shape models for all object categories in a

single experiment.

We also would like to know whether we have made a reasonable choice for the

model thresholds. Given that the entire parameter space is huge (one model thresh-

old for each shape model), we will reduce our search to a single dimension and use a

uniform model threshold t for all shape models. Specifically, we compare the perfor-

mance of individual model thresholds t∗i ’s and that of the uniform model threshold,

t. The hypothesis is that using separate model threshold, t∗i , for each individual

shape model should outperform using uniform model threshold, t. This is because

the former approach can increase the model thresholds for shape models that are

less discriminative based on their validation set performance. This helps to eliminate

some of the false positive matches at an early stage.

The rate of coverage (RoC) vs. precision curves when varying the uniform model

threshold t are shown in Fig. 8.61 to Fig. 8.80. The curves are means and the shadings

are standard deviations of five experiments. Top 1, top 2 and top 3 correspond to

three specific choices of our algorithm. The performance of model-specific threshold

t∗i is superimposed in these figures as single points.

Fig. 8.61 shows the rate of coverage vs. precision curves for the mugs. In this figure,

the three marked points, which correspond to top 1, top 2, and top 3 with individual

model thresholds, are all above the three curves with uniform model thresholds. This

means that given the same rate of coverage, the algorithms with individual model

thresholds achieve higher precision. Note that once the set of model thresholds t∗i is

determined, the rate of coverage is fixed. This explains why the three markers in this

figure have the same rates of coverage. The three curves corresponding to algorithms

with uniform model thresholds generally increase with higher t (lower RoC). With

higher t, the RoC monotonically decreases, since fewer shape models have matching
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Figure 8.61: Rate of coverage vs. precision curves for the mugs by varying the uniform
model threshold, t (match-within-class). Red: Top 1. Green: Top 2. Blue: Top 3.
The curves are means and the shadings are standard deviations of five experiments.
Each test image is matched against shape models within the same object category.
The three marked points correspond to using individual model thresholds, t∗i , which
are automatically chosen based on the validation set performance.
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scores above t. The three curves terminate when any of the experiments achieve

a RoC of zero, since the precision is meaningless in this case. Because only a small

number of test images have matches when t is high, the precision may jump erratically.

Therefore, we do not focus on the part of the curve with very low RoC (such as ≤ 0.1).

In general, these three curves are correlated with each other, since top 1 ⊆ top

2 ⊆ top 3. When increasing t to some value, top 3 will join top 2 if there are ≤ 2

shape models with matching scores above t. Similarly, when increasing t further to

some value, top 2 will join top 1 if there are ≤ 1 shape models with matching scores

above t. For the top 1 version of our algorithm, with higher t, the RoC will be equal

or lower, since the number of images with matches above t (TP+FP) is equal or

fewer than that of lower t. Similarly, with higher t, the number of test images that

are labeled as correct (TP) can either decrease or remain the same, depending upon

whether a correct or a wrong match is removed. For example, with higher t, if a

wrong match in a test image is removed, the rate of coverage will decrease, while

the precision, TP/(TP+FP), will increase. This is because the number of correct

images (TP) remains the same, while the number of matches (TP+FP) decreases.

However, if a correct match in a test image is removed, both the rate of coverage

and precision will decrease. This is because the new precision, (TP-1)/(TP+FP-1),

is smaller than the old precision, TP/(TP+FP). In the general case, if k matches are

removed, which include m correct matches and k − m wrong matches, the rate of

coverage decreases, while the change of precision is uncertain (depending upon the

ratio, m/k). In the cases where more than one matched shape models are involved

(top 2 and top 3), the relative change between TP and (TP+FP) is more complicated.

Since these curves are means of five experiments, they reflect the overall trends of the

change of precision with respect to the rate of coverage. The behaviors of the three

curves are summarized as follows.

Top 1: for all test images, if the false positives have relatively higher matching
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scores than the true positives, the precision will decrease as RoC decreases.

Top 2/3: for a single test image, if the false positives have relatively higher match-

ing scores than the true positives, the precision will decrease as the RoC decreases.

This is because the lower scored shape models are always first to be eliminated from

the top N matched shape models when increasing t.

We should note that, when t is sufficiently large, the RoC will decrease to zero. In

this case, the precision is undefined, and we will terminate the curve whenever this

happens. Also, the maximum value of RoC may be smaller than 1. This is because

the PAS shape model matching algorithm sometimes fails to find any shape model in

a test image.

The trends of these curves can be summarized as follows. For all objects, except

the balls, the precision of the top 1 curve generally increases with higher t and lower

rate of coverage. This means the true positives usually have higher matching scores

than the false positives across all test images.

For mugs, hammers, drills and spatulas, the curves corresponding to top 2/3 gen-

erally increase with higher t. With higher t, the rate of coverage will monotonically

decrease, since fewer shape models will have matching scores above t. For these ob-

jects, in the top 2/3 matches, the true positive matches usually have higher matching

scores than the false positive matches. As t increases, more false positive matches

will be eliminated, thus the precision increases.

For glasses, with higher t, the top 2/3 curves first decrease and then increase.

This suggests that for some images with lower matching scores, the false positives

have relatively higher scores than the true positives out of the top 2/3 best scored

matches. However, for images with higher matching scores, the true positives have

relatively higher scores than the false positives out of the top 2/3 best scored matches.

For spray bottles, wine bottles, detergent bottles and bowls, the top 2/3 curves

keep decreasing until a very low rate of coverage. This suggests that in most of the
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Figure 8.62: RoC vs. precision for the glasses by varying t (match-within-class)

test images, the false positives have relatively higher scores than the true positives

out of the top 2/3 best scored matches.

For the balls, we have observed that the precision is always 1, and the rate of

coverage is very close to 1. In order to show some variation in the rate of coverage

vs. precision curve, we match the balls to all shape models, rather than only the shape

models learned from balls. Because of this, the performance of our algorithm on the

balls is not directly comparable to that of the other objects. All three curves decrease

as the rate of coverage decreases. This suggests that in most of the test images, the

false positives have relatively higher scores than the TPs. This may be partially due

to the fact that we match the balls against all shape models.

For all object categories, the performance of the automatically chosen optimal

model threshold t∗i is substantially better than that of the uniform threshold t. In

some cases, top 1 with individual model thresholds is even better than top 3 with
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Figure 8.63: RoC vs. precision for the spray bottles by varying t (match-within-class)

Figure 8.64: RoC vs. precision for the hammers by varying t (match-within-class)
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Figure 8.65: RoC vs. precision for the hand drills by varying t (match-within-class)

Figure 8.66: RoC vs. precision for the wine bottles by varying t (match-within-class)
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Figure 8.67: RoC vs. precision for the detergent bottles by varying t (match-within-
class)
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Figure 8.68: RoC vs. precision for the bowls by varying t (match-within-class)

Figure 8.69: RoC vs. precision for the spatulas by varying t (match-within-class)
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Figure 8.70: RoC vs. precision for the balls by varying t (match-against-all)

uniform model threshold (indicated by a red cross above the blue curve). This shows

the advantage of choosing model specific thresholds. For shape models that are

not very discriminative on the validation set, we would like to increase their model

thresholds, in order to decrease chance of false positive matches on the test set. Also,

some shape models tend to have higher matching scores than the other shape models,

so we would like to increase their model thresholds accordingly.

8.4.1 Varying the κ Threshold

In all the above analyses, we have chosen the κ threshold (κth) to be 0.1 in the shape

model filtering step II. In the following, we are interested in the performance change

when varying κth. For these experiments, we use the model thresholds, t∗i , which are

automatically determined by using the validation set.

Fig. 8.71 shows the RoC vs. precision curves for the mugs when varying κth. We
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Figure 8.71: Rate of coverage vs. precision curves for the mugs by varying the κ
threshold, κth (match-within-class). Red: Top 1. Green: Top 2. Blue: Top 3. The
curves are means and the shadings are standard deviations of five experiments. Each
test image is matched against shape models within the same object category. The
three marked points correspond to the performance of using κth = 0.1.

vary κth in the range of [0, 1]. In this figure, the three curves go from right to left

as κth increases. The three marked points, which correspond to top 1, top 2, and top

3 with κth = 0.1, are on the three curves with various κth’s, since they correspond

to a particular choice of the κth. By choosing different κth values, the three marked

points slide along the corresponding curves. Ideally, we would like to choose a κth

value that yields a high RoC value, as well as a reasonably high precision (not much

lower than the peak). Note that the three marked points always have the same RoC.

This is because they choose the same κth = 0.1 and individual model thresholds t∗i .

In other words, they match a test image against the same set of shape models during

the testing phase, as well as measuring the RoC.

The effect of changing κth is similar to that of changing the uniform model thresh-
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old, t. The κ statistic is used to measure the performance of a learned shape model.

In this sense, shape models with higher κ values should be more discriminative and

have relatively higher precision. When increasing κth, more shape models will be

filtered and, thus, the RoC will monotonically decrease. If the shape model filtering

algorithm works well, the shape models that are less discriminative will be filtered

first and, thus, the precision should generally increase. When κth is sufficiently high,

more of the shape models that contribute to the true positive matches will be filtered

out than those that contribute to the false positive matches, and the precision will

drop.

Again, these three curves are correlated with each other, since top 1 ⊆ top 2 ⊆ top

3. When κth is sufficiently high, top 3 will join top 2 if there are ≤ 2 shape models

with κ ≥ κth. Similarly, when increasing κth further to some value, top 2 will join top

1 if there are ≤ 1 shape models with κ ≥ κth.

RoC vs. precision curves for the other object categories are shown in Fig. 8.72 to

Fig. 8.80. For all object categories other than the wine bottles, these curves gener-

ally increase as κth increases, which indicates the effectiveness of our model filtering

process. For the wine bottles, these curves generally decrease as κth increases. This

suggests that most of the shape models (even those with low κ values) are discrimi-

native enough and actually contribute to the TP matches. When κth increases, some

of the “good” shape models will be filtered out and the overall precision drops. From

these curves, we can see that our choice of κ = 0.1 is good for all object categories.

This is reflected by the fact that the marked points on these curves balance well

between RoC and precision.

8.4.2 Revisiting Model Filtering

In Section 8.3.1, we have discussed that the rate of coverage of the handle grasp on

the mugs is substantially lower than that of the top grasp (by comparing Fig. 8.18 and
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Figure 8.72: RoC vs. precision for the glasses by varying κth (match-within-class)

Fig. 8.19). This in part is because insufficient number of handle shape models survive

the model filtering process. One possible way to relax the model filtering process so

that more shape models can survive is to use a different performance measure. In the

second step of the filtering process, we measure the performance of a shape model

based on its κ statistic. An alternative approach is to measure the performance of a

shape model based on the Kolmogorov-Smirnoff distance (KSD, Utgoff and Clouse,

1996). Similar to the model filtering process with κ statistic, we select t∗i that gives

the KSD between the true positive rate (TPR = TP/(TP+FN); TP = number of

true positives; FN = false negatives) and false positive rate (FPR = FP/(FP+TN);

FP = false positives; TN = true negatives) of a validation set. In addition, we filter

out shape models that have KSD lower than some threshold, δth.

The κ and KSD curves of a handle shape model is compared in Fig. 8.81. The same

validation results are used to generate these two curves. For the same shape model,
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Figure 8.73: RoC vs. precision for the spray bottles by varying κth (match-within-
class)
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Figure 8.74: RoC vs. precision for the hammers by varying κth (match-within-class)

Figure 8.75: RoC vs. precision for the hand drills by varying κth (match-within-class)
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Figure 8.76: RoC vs. precision for the wine bottles by varying κth (match-within-class)

the κ statistic is stricter than KSD, since the former takes chance agreement into

consideration (Equation 7.1). Therefore, more shape model will survive the filtering

process when KSD is used. Also, the model threshold chosen by KSD tends to be

lower than that of κ. In order to achieve the same rate of coverage (so, the same

number of shape models survive the filtering process), the κ threshold, κth, has to be

lower than the KSD threshold, δth.

In Fig. 8.82, we compare the performance of κ and KSD for mugs by varying κth

and δth, respectively. As in the last section, we show the rate of coverage vs. precision

curves. The marked points on these two curves correspond to κth = 0.1 and δth = 0.1,

respectively. Here, we only show the results of the Top 1 version of our algorithm.

The starting points on the right of these two curves correspond to κth = 0 and δth = 0.

When κth = δth, the KSD method keeps more shape models than the κ statistic. In

addition, the model thresholds selected by KSD tend to be lower than those selected
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Figure 8.77: RoC vs. precision for the detergent bottles by varying κth (match-within-
class)
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Figure 8.78: RoC vs. precision for the bowls by varying κth (match-within-class)

Figure 8.79: RoC vs. precision for the spatulas by varying κth (match-within-class)
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Figure 8.80: RoC vs. precision for the balls by varying κth (match-against-all)

by κ, which results in more matches for a given set of test images. Because of the

above reasons, the performance curve of the KSD method starts with higher rate of

coverage than that of κ. Although the KSD method achieves higher rate of coverage

than κ when κth = δth, the corresponding precision is substantially lower than that of

κ. This is reflected by the fact that the κ curve is much higher above the KSD curve

for the whole range of rates of coverage. Except for a small region around the rate of

coverage of 0.9, the κ statistic substantially outperforms the KSD as far as precision.

This indicates that the shape models selected by the κ statistic have higher quality

than those selected by KSD, and thus, achieve higher precision when matching to

test images. This is consistent with our expectation, since the κ is a stricter statistic

than KSD by considering chance agreement. The above observations are generally

true for all object categories.
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(a) A handle shape model
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(b) The corresponding κ and KSD curves

Figure 8.81: Example κ and KSD curves for a handle shape model
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Figure 8.82: Rate of coverage vs. precision for different κth and δth. Red: κ. Blue:
KSD. The curves are means and the shadings are standard deviations of five exper-
iments for the mugs. Each test image is matched against shape models within the
same object category. The marked points correspond to κth = δth = 0.1.
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8.5 Discussion

The experimental results discussed in this chapter have confirmed our experimental

hypotheses. First, the different grasp types in an object category successfully drive

the learning of meaningful visual models. As shown by the extensive set of example

matches, most of these visual models are visually identifiable to humans. Second, in

many cases, the learned visual models successfully estimate the grasp types and hand

poses in novel images that contain novel objects in a known object category. The

experimental results have also shown that, these shape models, which capture partial

object shapes, generalize well to novel objects with similar components to those in

the training set. Sometimes, these shape models can even accommodate large shape

variations, such as the generalization between drill and hammer handles.

The OUGD is a challenging data set from both computer vision and robotics

grasping perspective. In our experiments, one challenge is to recognize object com-

ponents rather than the object itself. A substantial number of object components do

not contain enough information for robust visual matching, and some of them look

ambiguous with respect to different viewing angles. These object components are

difficult to differentiate even for humans without larger contexts. Also, our algorithm

is required to differentiate a full range of viewing angles, and, at the same time, to be

able to generalize to novel instances in a previously learned object category. These

two points actually conflict with each other. Differentiating different aspects requires

the learned shape models to be sensitive to shape variations due to aspect change,

while generalizing to novel objects requires the learned shape models to be insensitive

to small shape variations within an object category. However, the shape variation of

a shape model may due to both aspect and object identity changes, which usually

can not be decoupled. The PAS based shape model learned on the handle of a mug

allows shape deformations along certain dimensions that are exhibited on the train-
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ing set of images (for example, mug handles with different heights). This is key to

the generalization to novel objects in a learned object category, and also part of the

reason that we chose PAS features in the first place. By doing so, we sacrifice some

of the abilities for the learned shape models to describe visual aspects accurately.

The shape model that captures different heights of mug handles allows a wide range

of visual aspects when the mug is tilted away or towards the image plane. Due to

this choice, we observe large hand orientation errors for a substantial number of test

images.

Given the above difficulties, the experimental results have shown promising results.

One should note that the proposed algorithm is independent of particular visual

operators. One can easily use other visual operators in place of PAS-based shape

models in our framework. Some of the candidate visual operators may focus instead

on depth images (Ohbuchi et al., 2008; Goldfeder and Allen, 2011).

In our experiments, we choose to match the learned shape models to foreground

images (which usually contain the entire target object and part of the hand that is

holding the object). Matching to the entire image will slightly increase the computa-

tion time (only during the sliding window matching phase) and moderately decrease

the performance. We choose to only match to the foreground because the foreground

images can usually be extracted robustly with object-background segmentation on

2D or range images.

In our experimental results, the shape models associated with rotationally sym-

metric object components generally perform better than those associated with uni-

directional object components. Object components with rotational symmetries are

usually simpler and easier to match, and free of self occlusions. In addition, for ob-

ject components with rotational symmetry, we usually have adequate training sam-

ples since we acknowledge this symmetry during the aspect clustering process. In

the PAS shape model learning process, more training data usually yield more robust
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shape models. This ensures that a learned shape model generalizes well across novel

images in the same object category. In contrast, the appearance of object compo-

nents without rotational symmetries usually change dramatically with small aspect

change. This indicates that we need more shape models to cover different aspects for

object components associated with unidirectional grasp types. Given a certain num-

ber of training grasp examples, more shape models means less training data for the

learning of each shape model. For unidirectional grasp types, we typically have only

5 to 10 images in a single aspect cluster from which to learn a shape model. Based

on our experience, the shape models learned from such a small number of training

images tend to capture partial texture information of individual objects, and tend

not to generalize well to object components with similar shapes. All together, the

above suggests that we need more samples for object components without rotational

symmetries.

For a query image, the proposed algorithm is not intended to precisely determine

hand position and orientation. Instead, the proposed algorithm provides a set of ini-

tial guesses that could then be refined by other information (such as haptic feedback,

Coelho, Jr. and Grupen, 1997; Platt, Jr., 2006; Wang et al., 2007). In our experi-

mental results, one version of our algorithm returns a set of Top N matched shape

models. Finding N candidate grasps, instead of only the top one, allows the robot to

further refine and sub-sample these grasps based on “real” experience (Detry et al.,

2009; Goldfeder and Allen, 2011).

8.5.1 Common Source of Errors

The common source of errors made by the proposed algorithm is summarized as

follows:

1. A shape model is too generic (indiscriminative). For example, the algorithm

learns a shape model that contains a single curve on edge of the bowl (Fig. 8.15), or a
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shape model for a drill handle that is learned from a degenerated view. Although we

use two steps of filtering shape models to alleviate this problem, some indiscriminative

shape models can still survive. A possible solution may be to integrate visual features

of different modalities (such as those calculated on depth images) into our PAS based

shape models.

2. A shape model is too specific. We have shown generalization of shape models

learned by our algorithm to novel objects in known object categories. However, some

of the learned shape models do not generalize well to novel objects with similar shapes.

Some shape models still capture object-specific textures such as those on the labels,

and sometimes, even on the hand that holds the object, or the data glove. This

problem can be alleviated by increasing the training set size.

3. Ambiguity in aspects. Multiple explanations can be made to a 2D shape

without depth cues. An ellipse in a 2D image may correspond to a circle in 3D space.

In our experimental results, the shape models learned on the hammer handles are

insensitive to camera tilt. Another example is the ambiguity between the top view

and bottom view of a glass. These problems are inherent in 2D visual models and

can only be solved by incorporating some form of 3D depth information.

4. A shape model is insensitive to small aspect changes. We choose to use PAS-

based shape models, since they can generalize to novel objects with small variations in

shape compared to the training set of objects. However, shape deformations can come

from both aspect change and within-class object shape variation. In other words, we

trade off some of the sensitivity to aspect change by allowing generalization to novel

objects. A possible solution is to incorporate 3D depth information.

8.5.2 Running Time

The current running speed of our algorithm is slow, since for each test image, our

algorithm has to match to more than 200 shape models. One way to speed up this
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process is to only match to a subset of shape models given the current task. This

requires some type of semantic representation of an object category. For example, if

we want to grasp a mug in order to drink from it, we only need to search for a subset

of grasps that will not block the top of the mug.

In the above performance evaluation, the Top 2 and Top 3 versions of our algo-

rithm suggest more than one grasp hypotheses. A robot can further eliminate some

grasp hypotheses that do not perform reliably in practice (Detry et al., 2009), and

only keep those with high success rate.

For a grasp type with rotational symmetry, a matched shape model may suggest

a manifold of hand orientations surrounding the symmetry axis. We can select one

hand orientation from this manifold of orientations that is closest to the current hand

pose. For details of this approach, refer to de Granville (2008).
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Chapter 9

Conclusions and Future Work

J. J. Gibson (1977) argued that objects are represented in the brain (in part) in

terms of how the agent interacts with the objects. In particular, he argued that the

categories of objects are determined by the categories of this physical interaction. In

this dissertation, I propose a visual learning algorithm that is driven by the categories

of grasps that are used to interact with a set of objects. Based on Gibson’s idea, the

proposed algorithm categorizes objects based on how they are grasped by a human

teacher. For each object category, the proposed algorithm maps partial visual models

directly to hand positions and orientations that can be used for grasp control. When

a robot is confronted with a novel object, the proposed algorithm allows the robot

to visually index into the appropriate set of grasps that can be applied to the object.

The proposed algorithm maps from partial visual models directly to hand positions

and orientations without explicit object recognition. This allows generalization to

novel objects with similar partial shapes.

In this work, the grasp experience of a robot comes from human demonstration.

The OUGD is composed of 50 objects in 10 different categories. In the OUGD, each

object is associated with multiple examples of each of several grasp types, and each

grasp sample is associated with a triplet of stereo image pairs: background, object and

object with hand. By using this triplet of stereo image pairs, the proposed algorithm

automatically approximates the visual locations of the object-hand contacts.

The two key contributions of this dissertation are as follows:

1. An algorithm learns object categories based on how the objects are
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grasped. The different ways (grasp types) that an object can be grasped are captured

by its grasp affordance model. The proposed algorithm then measures the similarity

between each pair of objects by matching their grasp affordance models in structure.

In reality, the affordance model matching result is noisy in that objects from different

true categories can also partially match to each other’s affordance model in structure.

The similarity relationship between objects is represented by a graph, and a modified

Highly Connected Sub-graphs algorithm is used to find the highly connected sub-

graphs in the entire graph. These highly connected sub-graphs usually correspond to

objects that belong to the same true category.

In the affordance matching experiments, by using sufficient training data, the

modified Highly Connected Sub-graphs algorithm clusters the entire set of objects

in the OUGD consistently with the ground truth. The performance of the proposed

algorithm decreases gracefully when the amount of training data decreases. Even with

a small amount of training data (about 20 training samples for each grasp type), the

proposed algorithm clusters most of the object categories correctly for some particular

experiments.

2. An algorithm learns visual operators that predict grasp actions for

novel objects. For each object category found above, the proposed algorithm learns

a unified grasp affordance model by aggregating grasp samples from all objects in this

category. The unified grasp affordance model then partitions the entire set of grasp

samples based on which grasp type they belong to. Each partition of grasp samples

is associated with a set of corresponding image fragments in which the object-hand

contacts happen. For each grasp type, these image fragments are further partitioned

by aspect, Pair of Adjacent Segments shape model is then learned for each partition

of image fragments. Each shape model is then associated with a hand orientation

that is appropriate for grasping the object.

When the hypothetical robot is confronted with a novel image pair, the proposed
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algorithm identifies which of the learned shape models occur within the image. I

extend the original PAS shape matching algorithm to include stereo image constraints.

This results in a more robust shape model matching process, compared with single

image shape matching. A shape model is detected if it matches to a sub-region of

the image with a matching score above its model threshold. When there are multiple

shape models matched in the image, the proposed algorithm ranks these matches

based on their matching scores. Since a shape model is associated with a grasp type

and a relative hand pose, a matched shape model can suggest a possible grasp plan

that can be used by the robot to reach and grasp the target object.

In the visual learning experiments, the proposed algorithm learns shape models

that are usually visually identifiable by humans. With automatically extracted grasp

regions, the proposed algorithm successfully learns visual models that capture the

gross shapes of target object components. These shape models capture within-class

shape variations, and are robust to small aspect changes. In many cases, these shape

models match well to novel objects, and predict grasp type and hand poses reliably.

However, some visually indiscriminative shape models still survive the shape model

filtering process, and do not perform well for some particular aspects. The learned

shape models usually estimate the location of the hand reliably, while some shape

models match to a wider range of aspects than is allowed by the chosen error bound.

The proposed visual learning algorithm performs significantly better than any base-

line algorithm. For a given query image, it is usually beneficial to consider more

candidate matches of shape models other than the one that gives the highest match-

ing score. The experimental results show extensive generalizations of shape models

across different object categories. Some of these generalizations even involve objects

with very different gross shapes (such as a hammer and a hand drill). However, the

learned shape models successfully generalize between object components with similar

shapes in these objects.
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9.1 Conclusions

This dissertation is concluded as follows:

1) Objects can be categorized by the way in which they are grasped and manip-

ulated. The affordance based object categorization scales well with the amount of

training data. The different grasp types in an object category can be used to drive

the learning of meaningful visual models that capture partial object shapes.

2) Because the PAS-based visual models capture common shapes and within-

class variations in a set of training image fragments, they generalize well to novel

objects with similar shapes. However, the PAS-based shape models are insensitive to

small variations in visual aspect. In addition, since the PAS-based shape matching

operates on 2D images (although a stereo image pair is used), some visual ambiguities

are inevitable.

3) Visual models describing object components generalize well to novel objects

with similar partial shapes. This generalization is very important in robot grasp

learning, since it greatly reduces the total number of objects that a robot needs to

learn to grasp.

4) A matched visual model can suggest an approximation to how the hand should

be positioned and oriented relative to the object in novel scenarios containing novel

objects. In many situations, the grasp types and corresponding hand poses are esti-

mated accurately by matching 2D shape models. However, for certain visual aspects,

the hand orientations are not estimated reliably. This is in part due to the fact that

the PAS-based visual model is insensitive to small aspect change. This is also due to

some visual ambiguities in 2D shape matching.
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9.2 Future Work

In the experiments, some shape models apply to a wider range of aspects than is

allowed by the hand orientation error criterion. For example, handles can appear

in 2D to be the same over a wide range of out-of-plane orientations. As a result,

the proposed algorithm achieves high performance on finding the relevant part of the

object, but performs poorly when estimating the appropriate hand orientation. In a

future implementation of the algorithm, we plan to integrate depth information to

make the final decisions about hand orientation. Specifically, depth information can

be derived from range sensors or dense disparity maps. For all object categories, since

we have recorded both the left and right images in stereo pairs, the corresponding

dense disparity maps could be calculated accordingly.

Another extension to the proposed algorithm is to integrate hand configura-

tion besides hand location and orientation into the grasp affordance clustering pro-

cess (de Granville, 2008). This will allow matching between proto-grasps directly

without object categorization. Also, this will allow for the pruning of redundant

grasp types associated with different object categories. An example is that the top

grasp learned from the mugs is very similar to the top grasp learned from the set of

glasses. The hand configuration can be described as clusters in eigengrasp space (Cio-

carlie et al., 2007).

The current running time of the proposed algorithm is expensive. This is due to

the fact that, for each test image, our algorithm needs to match to a large set of shape

models. One way to alleviate this problem is to integrate semantic context. Given

the current task, a robot only needs to consider a subset of relevant shape models.

For example, if the current task is to grasp an object in the environment that allows

pouring water into it, a robot may only need to consider shape models corresponding

to a handle grasp of the mug, a side grasp of the glass, or a side grasp of the bowl.
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In the scope of this dissertation, the hypothetical robot observes a human teacher

demonstrating a set of grasp examples. We instrument both the object and the

grasping hand. This is intended to model an agent’s ability to track the relative pose

of an object as it manipulates that object. In the future work, we would like the robot

to learn from its own experience in grasping and manipulating objects. This would

require that the object pose be estimated during the manipulation process. The robot

could use a combination of depth, visual and proprioceptive cues to estimate pose.
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Appendix A

Rotationally-invariant PAS features

Given the way that the PAS descriptor is constructed, it is not rotationally invariant

since the ordering of the two edges and the edge orientations are defined in the image

coordinate frame. When the camera is rotated within the image plane, the set of

edges in the image will also rotate accordingly. However, the image coordinate frame

is always the same. Thus, the PAS descriptors calculated from the original scene

will no longer match to those calculated from the rotated scene. However, the affine

transformation in a TPS mapping allows small rotations to be encoded, which makes

the learned shape model be able to match to a shape rotated slightly (up to about

25 degrees) in the image plane (the first pair of images in Figure A.1).

To make the PAS descriptor rotationally invariant, the key is to use a coordinate

frame that is relative to each PAS feature. Since the PAS descriptor is calculated

based on the order of the two segments, we need a unique way to determine the

order of the two segments, so that the same PAS always gives the same ordering after

rotation. The original approach may give an inconsistent ordering, since the relative

left-right and/or top-bottom locations between two segments may change after the

image is rotated. For this reason, I reorder the two segments based on their lengths.

Without loss of generality, I order the shorter segment as the first segment. The first

two elements of the PAS descriptor denote a unit vector pointing from the midpoint

of the first segment to the midpoint of the second segment. It is natural to use this

vector as the x axis of the PAS coordinate frame. The y axis can be determined

accordingly by rotating the x axis 90 degrees clockwise (the right hand rule). The
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Adding Rotational Invariance 

Figure A.1: Adding rotational invariance to the PAS features. There are four groups
of images and two images next to each other in each group. The image on the left
in each group is recognized by the original PAS features. The image on the right in
each group is recognized by the rotational-invariant PAS features. The number in
each image is the estimated in-plane rotation in degrees.

direction of the x axis is also used as the canonical orientation of the PAS. The

segment orientations θ1 and θ2 are calculated based on the PAS coordinate frame.

The segment lengths l1
Nd

and l2
Nd

remain the same in the new descriptor, since they

are rotationally invariant.

During the matching process, the algorithm matches the model PAS features to

those observed in a test image. Since the modified PAS features are rotationally

invariant, they can match to arbitrarily rotated objects in the test image. Recall that

in the original PAS matching, each match votes for a center location (x/y) and a

scale in a 3D Hough space. As a contrast, in my extension, each match votes for a

center location, a scale and a rotation of the model in a 4D Hough space. Each local

maximum in this case specifies a center location, a scale and an initial rotation of

the model. Again, the local maxima are used as initial conditions for the TPS-RPM

step. Given each initial condition, the algorithm centers, scales and rotates the shape

model in the test image accordingly based on the Hough voting result. Given a initial
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condition, a subset of edgels in the test image is cropped by using the translated,

scaled and rotated bounding box of the shape model. Given the model points and

the subset of image points, the algorithm uses TPS-RPM to find a mapping between

them, as before. The estimated rotation of the recognized shape is the sum of the

initial rotation found by the Hough voting and the rotation specified by the affine

component d of the TPS mapping.

In each pair of images in Figure A.1, the left image shows a match of the mug

model found by using the original PAS features. The right image shows a match

found by using the rotationally invariant PAS features. The original PAS features

can only tolerate in-plane rotations up to about 25 degrees, while the rotationally

invariant PAS features work well on all rotations that we examined. However, the

discriminative power of the PAS descriptor is reduced because of this extra degree

of freedom in rotation. The rotationally invariant PAS features are more likely to

incorrectly match an image, as compared with the original PAS features. As a result,

the 4D Hough voting process returns many false positive local maxima. An alternative

approach is to regularly sample a series of rotations, and for each rotation, use the 3D

Hough voting approach to find the local maxima in x/y position and scale. For each

candidate in each orientation, we use TPS-RPM to then refine the match. Finally, the

best match across all sampled orientations is selected as the one with the highest score.

Currently, this approach yields the most promising results. However, rotationally-

invariant PAS features were not used in the results reported in this dissertation.
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Appendix B

Automatically Evaluating Shape Model Matches

One of the difficulties in the performance evaluation process is how to properly as-

sess whether a matched shape model in a test image is correct or not. Since we

have thousands of test images for a single experiment, we would like to label them

automatically, without a human “in the loop.” One possible solution is to measure

1) whether a matched shape model overlaps with the ground truth bounding box of

a test image above some threshold value, together with 2) whether the difference be-

tween the estimated and ground truth aspects is smaller than some threshold value.

If a matched shape model in a test image satisfies both 1 and 2, we label this test

image as correct. However, this approach will not allow the generalization of a shape

model to other objects that share similar parts with those objects on which this shape

model is originally learned. For example, the shape model learned from the top of a

glass may match well with the top of a mug in a test image, and we would like to label

this match as correct. The above approach fails in this case, because it is meaning-

less to compare aspects of objects from different object categories, whose coordinate

alignment is unknown. Also, there are multiple ground truth bounding boxes asso-

ciated with a single test image, and for a given shape model, we do not know which

ground truth bounding box we should compare with. In the forementioned example,

our algorithm simply has no idea about the fact that a shape model of the mug top

is expected to be observed on the top of a glass. In order to tackle this problem, one

way is to manually build connections between these similar object parts. However,

this turns out to be difficult since some object parts only look similar to each other
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for some particular viewing angles. For example, a ball looks exactly like a glass when

observed from the top (without 3D depth information).

Given the above difficulties, we propose an algorithm that automatically labels

a match based on the estimated grasp, i.e., the hand location and orientation. In

order for a match in a test image to be labeled as correct, it needs to satisfy the

following: 1) the matched shape model has to overlap very well with one of the

ground truth bounding boxes corresponding to an object part; and 2) the estimated

hand orientation (relative to the camera) should align very well with the ground truth

hand orientation associated with this object part. We assume that a matched shape

model is correct if it satisfies the above two criteria with any of the ground truth hand

locations and orientations associated with a test image. Accordingly, we label this

test image as correct. Since we do not compare the match to a single ground truth

grasp type corresponding to a certain object component, there is no need to know a

priori which grasp type this match corresponds to across different object categories.

Also, we do not need to explicitly calculate the alignment of two objects in order to

compare hand orientations, since these hand orientations are relative to the camera

coordinate frame. When a mug is observed from a point of view where its top looks

like that of a glass, grasps with the same orientations relative to the observer can be

applied to both them. In the scope of this dissertation, we assume that there is no

in-plane rotation between the shape model and its match in the test image.

Specifically, the algorithm that we use to assess a set of matched shape models in

a test image is detailed by Algorithm 9. For a given test image with the matching

results of a set of shape models, we use Algorithm 9 to label a match corresponding

to shape model i, where i is a unique model index. Recall that each test image

is associated with a set of grasp types that are automatically found by the grasp

affordance learning algorithm: G = {Gm}m=1..M , withM denoting the total number of

grasp types. Each of these grasp types is associated with a ground truth bounding box
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and a hand orientation, which are found by either image differencing or synthesizing

(Appendix ). Given the above, the for loop iterates through each ground truth grasp

type, Gm, associated with a test image, I, and compares the hand location and

orientation estimated by shape model i with the ground truth bounding box, Bm,

and hand orientation associated with Gm. The degree to which a matched bounding

box overlaps with a ground truth bounding box is measured by the intersection over

union ratio (IoU). The hand orientation error, HOE, is calculated as the mean of

errors between the estimated hand orientation and all hand orientations (down to

symmetry, as explained below) associated with the set of training images in which

this shape model is learned.

Algorithm 9 An algorithm that automatically labels a match of a shape model in a
test image. Input: a test image, I, and a match of shape model i, matchi

procedure ASSESSMATCH(I,matchi)
if matchi.score > t∗i then

valid← 0
for all Gm in G do ⊲ G comes from the grasp affordance model

[Bm, Om, PDF ] =GET GT(I,Gm)
if Bm is NOT empty then

valid = 1
if IoU(matchi.boundingbox,Bm) > 0.2 &

HOE(matchi.orientation,Om, PDF ) < 30◦ then
return correct

end if
end if

end for
if valid then

return wrong
else

return invalid
end if

else
return not found

end if
end procedure

Before entering the for loop, we first check whether the the matching score of
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Algorithm 10 A function that calculates the IoU between two bounding boxes

function IoU(bbox1, bbox2) ⊲ bbox: bounding box
return bbox1 ∩ bbox2/bbox1 ∪ bbox2

end function

Algorithm 11 A function that calculates the HOE between the estimated and ground
truth hand orientations
function HOE(Oest, Ogt, PDF )

▽ Oest comes from a set of samples from which a shape model is learned
for all Oi in Oest do

if PDF is girdle then
▽ project Oi onto the plane spanned by PDF.u1 and PDF.u2

Omin =PROJECT(Oi, PDF.u1, PDF.u2)
end if
hoei =ROTATION ANGLE(Omin, Ogt)

end for
return MEAN(hoe)

end function

the matched shape model exceeds its model threshold t∗i . If so, the algorithm enters

the for loop and evaluates the quality of this match, matchi, against all grasp types,

G = {Gm}m=1..M , associated with the test image. We first check the IoU between the

detected and ground truth bounding boxes. Note that the ground truth bounding

boxes associated with some of the grasp types may be empty. This is due to the

fact that we only demonstrate a single grasp for this image and a close neighbor may

not exist during our bounding box synthesis process. The test image is labeled as

valid if at least one ground truth bounding box exists. If the detected and ground

truth bounding boxes have an IoU greater than 0.2, we further calculate the mean

hand orientation error, HOE. If a matched shape model satisfies both the IoU and

HOE criteria, we label it as correct.1 The for loop terminates after it iterates through

all grasp types. A valid test image will be labeled as correct if the matched shape

model is labeled as correct with respect to any of the grasp types in G. Otherwise,

the test image is labeled as wrong. So, given a valid test image, a shape model in the

1In the case of correct location, we only check the IoU criterion.
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repository can either be found or not found. If a shape model is found, it can either

be correct or wrong. If this test image is matched against a set of shape models, we

further repeat the above assessment process for the other shape models in this set.

The entire assessment process is done after we have checked the matches of all shape

models for this test image.

The key component to the above assessment algorithm is the calculation of hand

orientation error (Algorithm 11). This error measure respects any symmetry property

of a ground truth grasp type, Gm, associated with the test image. For a uni-directional

grasp type, whose ground truth hand orientations are described by a Dimroth-Watson

distribution, we directly calculate the hand orientation error between the ground truth

and each predicted hand orientation.2 Since a shape model is learned from a set of

grasp samples, each grasp sample in this set recommends a separate hand orientation.

Since we do not have any pre-knowledge to determine which hand orientation to use

out of this set of orientations that are suggested by the shape model, we simply calcu-

late the mean of hand orientation errors between each of the hand orientation in this

set and the ground truth hand orientation. The hand orientation error between the

ground truth and a single predicted hand orientation is measured by the magnitude

of the minimal rotation angle that aligns the two.

In the case where the ground truth hand orientation is captured by a girdle dis-

tribution, we take into consideration the rotational symmetry in order to calculate

the hand orientation errors. A girdle distribution describes a manifold of orientations

that are spanned by its two axes (two orthogonal unit quaternions), u1 and u2. Our

goal is to find the ground truth hand orientation, Omin, in this manifold of hand orien-

tations that has minimal rotation to the predicted hand orientation, Oi (represented

by a unit quaternion). Specifically, Omin is found by projecting the predicted hand

2Note that the grasp type associated with the matched shape model can be either uni-directional
or rotationally symmetric, which does not make a difference in the HOE calculation
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orientation, Oi, to the plane spanned by u1 and u2. More details of this process can

be found in de Granville (2008). Again, since there are multiple hand orientations

associated with the shape model, the mean hand orientation error is calculated. If

the mean hand orientation error is smaller than 30 degrees, the assessment algorithm

will consider the estimated hand orientation as correct.

By using the above assessment algorithm, we acknowledge the generalization of

shape models beyond object categories. An example is given in Fig. B.1. In this

example, the shape model is originally learned on the bottom of a set of glasses.

However, our assessment algorithm still assesses a match of this shape model on the

top of a mug as correct, since a ball grasp on the bottom of a glass will very likely

succeed on the top of a mug, as far as the hand location and orientation are concerned.

Caveats. Attention should be paid when assessing matched shape models learned

from spatulas, bowls, and the barrels of hand drills. For these objects, multiple grasp

types (overhand/underhand) share visually identical grasp regions. So, a matched

shape model of a grasp type will be mis-labeled if it is compared to a ground truth

hand orientation corresponding to the other grasp type that shares the same grasp

region. However, this is not a problem for our assessment algorithm, since it compares

a matched shape model to ground truth hand orientations of all grasp types associated

with a test image. For balls, we assess a matched shape model only based on the IoU

criterion, since the ground truth hand orientation is arbitrary.
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Figure B.1: A shape model learned on the bottom of glasses matches the top of a
mug. The first row: a test stereo image pair. The second row: a training stereo
image pair from which the matched shape model is learned. Green dots: matches of
the shape model. Green boxes: the bounding boxes that enclose the matches of the
shape model. Red boxes: the ground truth bounding boxes that enclose the rim of
the mug. The proposed algorithm labels this match as correct based on the hand
location and orientation criteria.
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