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ABSTRACT

In this dissertation, a new method for obtaining convexity and optimization results
for functions with integer and real (i.e. mixed) variables is introduced and this new
method is applied to obtain mixed convexity and optimization results for some of
the known mixed variable functions in the literature. These mixed variable func-
tions include the Erlang delay and loss formulae in telecommunication systems, an
(S —1,S5) inventory model (suggested by Das (1977)), and an M /Ey/1 queueing
system model (suggested by Kumin (1973)). Local and global mixed convexity and
optimization results for these mixed variable functions are obtained after introducing
definitions for a condense discrete convex set, a condense discrete convex function, a
discrete Hessian matrix, a mixed convex set, a mixed convex function, and a mixed
Hessian matrix. Symbolic toolbox of MATLAB R2009a is used to obtain symbolic
results. Computational discrete and mixed convexity and optimization results are
also obtained by using MATLAB R2009a. The results obtained in this work are
important because prior to this work no joint convexity results for mixed functions
for mixed functions have been defined. This dissertation obtains such joint results. In
addition, for real variable functions that are strictly convex, it is well-known that any
local minimum is also the global minimum. In this work, similar results are obtained
for mixed strictly convex functions. A new Hessian matrix defined for mixed variable
functions can be used to determine whether any local minimum is also the global

minimum.
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CHAPTER 1

INTRODUCTION

In the design of diverse systems, models obtained for optimization can have both
integer and real (mixed) variables. These models include the Erlang delay, Erlang
loss, (S — 1, S) inventory model (suggested by Das (1977)), and an M/Ej,/1 queueing
system model (suggested by Kumin (1973)). A practical way to obtain optimization
results for functions with real variables is by determining the convexity of the pro-
posed model since every local minimum is also a global minimum. The convexity
definition of a real multivariate function is unique in real convex analysis; however,
there are many convexity definitions of a discrete multivariate function. This varia-
tion of definitions in discrete convex analysis can result in different convexity results
for the same model. Combinatorial and algorithmic techniques are often applied
to solve discrete variable function optimization problems. Then the following nat-
ural question arises: Is there a practical way to obtain mixed convexity results for
mixed variable functions that can be used to obtain optimization results for the
corresponding models?

Convexity of mixed multivariate functions, functions with domain Z" x R™, are
obtained either for the integer variables when the real variables are assumed constant
or the real variables when the integer variables are assumed constant. For example,
Harel (2010) proves the real convexity of the Erlang delay formula with respect to

the real variable traffic intensity (p) when the integer variable number of servers (s)



is assumed constant for more than two servers in the system. Let

s : Number of servers, A : Arrival rate,

i . Service Rate,

p : Traffic intensity,

a The offered load in the system,

B The probability that all servers busy in an M/M/s queue,
W, : The average waiting time in the queue,

I, The number of customers waiting in the queue,

L : The number of customers waiting in the system,

where p = 2. Table 1.1 summarizes some of the queueing system models with mixed

sp”

variables, authors, and the corresponding obtained convexity results:

Table 1.1 Queueing system models & Convexity results
Queueing System Model & Results Author
00 o0 : o0 3
W(s)=Yem |2 > &,
M/D/s n=1 j=ns j=(n+1)s Rolfe (1971)
W, convez in s.
-]
Wy (5) = 2o | 8+ 5 |
M/M/s ! t(1-8)m |z #01-%) Dyer & Proll (1977)
W, convez in s.
W, = —8__ (B : Erlang delay formula),
M/M|/s +(0) = o ( g peiegs ) Lee & Cohen (1983)
W, convez in p.
L(p) = sp+ B:&,
M/M/s (b) = sp+ Br; Grassmann (1985)
L is convex in p.
Lq (p) = 'l_.iLBs
M/M/s i Lee & Cohen (1985)
L, is convex in p.
Erlang delay & Erlang Loss formulae,
M/M/s Harel (2010)
CONVET in P




All the convexity results given in Table 1.1 have the following common properties:

1. All the models are associated with a queueing system where p is the service
rate, the number of servers s is the integer variable, and the traffic intensity p

ig the real variable.

2. The convexity results are obtained when either p or s is assumed constant.

The results obtained in this research are important because prior to this work
no joint convexity results for mixed functions for mixed functions have been defined.
This dissertation obtains such joint results. In addition, for real variable functions
that are strictly convex, it is well-known that any local minimum is also the global
minimum. In this work, similar results are obtained for mixed strictly convex func-
tions. A new Hessian matrix defined for mixed variable functions can be used to
determine whether any local minimum is also the global minimum.

The convexity definition of real multivariate functions and the corresponding
optimization results will be an integral part of the results obtained for condense dis-
crete and mixed convexity and optimization of the corresponding functions; there-
fore, the convexity and optimization results obtained for discrete, real, and mixed

multivariate functions will be introduced in the next chapter.



CHAPTER 2

CONVEXITY AND OPTIMIZATION

In this chapter, the definitions and results known in the literature relevant to this
work are summarized for real (continuous), discrete, and mixed (integer and real)

variable functions.

2.1 CONTINUOUS CONVEX ANALYSIS AND OPTIMIZATION

Real convex analysis is shaped by the lecture notes of Fenchel while lecturing at
Princeton University in the early 1950’s where concepts such as convex sets, cones,
and functions are covered (Rockafellar (1970)). Fenchel ((1953), (1971), (1974), and
(1987)), Bonnesen ((1971), (1974), and (1987)), and Rockafellar ((1970), (1974), and
(1998)) are some of the leading researchers in real convex analysis of 1900’s. The
following two definitions are the basic definitions that we will be using throughout
this work.

A set D C R" is called convex if it satisfies the condition
zyeD,0<a<l=ax+(l-a)y€D.

Definition 2.1 (Convex function): A function f : R” — RU{oc} is called a
convex function on a convex set D C R* if and only ifforVz,y € Dand0<a <1,
the inequality

flaz+ (1 - a)y) < af(z) + (1 —a)f(y) (2.1)



holds. f is called strictly convex if the inequality in (2.1) is a strict inequality when
O0<ax<l

Convexity results obtained for nonlinear real multivariable functions have impor-
tant applications in the optimization of real variable functions (Borwein and Lewis
(2000)). In particular for the case when a function is convex /concave local optimality
guarantees global optimality and the global optimum can be found by descent algo-
rithms. The (Legendre-Fenchel) duality and separation theorems hold which are
well known results in real convex analysis (Rockafellar, (1970)). In addition, it is
well known in real convex analysis that a C? function has a unique minimum point
if it is strictly convex in a convex domain. The convexity of a C? function is equiv-
alent to the positive definiteness of the corresponding Hessian matrix, the matrix
that consists of all the second order partial derivatives of the function. Convexity
of functions with constraints have also important applications in engineering where

algorithmic approaches can also be taken (Boyd and Vandenberghe (2009)).

2.2 DISCRETE CONVEX ANALYSIS AND OPTIMIZATION

A real valued function f with a single discrete variable is defined to be discrete convex
by Fox (1966) if its first forward differences are increasing or at least non-decreasing;

That is,
flz+2)-2f(z+1)— f(z) 20.

Discretely convex functions are introduced by Miller (1971) , and Integrally-convex
functions are introduced by Favati and Tardella (1990). M, L, M*, and L* convexity
are introduced by Murota (1996) , Murota (1998), Murota and Shioura (1999), and
Fujishige and Murota (2000), respectively. The Hessian matrices corresponding to M,
L, M" and L" convexity are introduced by Hirai and Murota (2004) , and Moriguchi

and Murota (2005). Yiiceer (2002) introduced strong discrete convexity of functions



with positive semi-definite matrix of second forward differences. D-convex function
introduced by Ui (2006) has a unified form that includes discretely convex, integrally
convex, M, MY, L, and L! convex functions in local settings. Tokgoz, Nourazari and
Kumin (2011) introduced the condense discrete convexity of multivariable functions
by extending the discrete convexity definition of Fox (1966) which will be explained

in chapter 4.

2.3 MIXED CONVEX ANALYSIS AND OPTIMIZATION

Mixed integer programming problems in operations research contain functions with
integer and real variables where the constraints of these problems also have integer
and real variables. Particular solutions to these problems can be obtained by using
algorithmic approaches. A theoretical approach to the mixed convexity of mixed
functions is suggested by Tokgoz, Maalouf, and Kumin (2009) where the mixed con-
vexity of a mixed variable function associated with an M/Ey/1 queueing system is
obtained with respect to the constraints. In this work we obtain local and global
mixed convexity results after introducing definitions, and obtaining results for con-
dense discrete convex sets and functions. In addition, optimization results for mixed
convex functions are obtained. Tokgdz (2009) introduced the mixed convexity of
mixed variable functions T, T*, E, and E* with the corresponding discrete convex
counterparts M, L, M!, and L* convexity definitions. In addition, Hessian matrices
corresponding to the mixed T, T*, E, and E* functions are introduced to obtain

mixed convexity results.

2.4 ORGANIZATION OF THE DISSERTATION

Tn this work, discrete and mixed convexity definitions of multivariable functions are

introduced and the corresponding theoretical convexity and optimization results are



obtained using these definitions. These convexity and optimization results are used
to obtain numerical results for several mixed variable functions.

In chapter 2 we cite the literature on convexity and optimization of real, dis-
crete, and mixed variable functions. In chapter 3, condense discrete convex function,
condense discrete convex set, discrete Hessian matrix, local minimum, and global
minimum definitions of a multivariate discrete function are introduced, and con-
dense discrete convexity and optimization results are obtained with an application
to an adaptation of Rosenbrock’s function proposed by Yiiceer (2002). In chapter 4,
condense mixed convex function, condense mixed convex set, mixed Hessian matrix,
local minimum, and global minimum definitions of a multivariate mixed function are
introduced, and mixed convexity and optimization results are obtained. The mixed
convexity and optimization definitions and results obtained in chapter 4 are used
to obtain mixed convexity and optimization results corresponding to the M /Ey/1
queueing systems in chapter 5, to the Erlang Delay and Loss formulae in chapter 6,
and to an (S — 1,8) inventory model proposed by Das in 1977 in chapter 7 where
numerical and graphical illustration of the results are presented. In chapter 9, con-
clusion and possible future work are provided. In appendices A, B, and C the algo-
rithms/programs and theoretical mixed convexity results will be obtained by using

the symbolic toolbox of MATLAB R2009a program and algebraic calculations.



CHAPTER 3

CONDENSE DISCRETE CONVEXITY AND OPTIMIZATION OF
FUNCTIONS

In this section, condense discrete convexity of multivariate nonlinear discrete func-
tions (3 : Z™ — R is introduced, which is a generalization of the integer convexity
definition of Fox (1966) for a one variable discrete function to nonlinear multivariable
discrete variable functions. Similar to the difference operator definition of Kiselman
and Christer (2010), we define the first difference of an integer variable function
f:Z* =R by
Vif (x) = f(z + &) — f(z),
and the difference of the first difference, namely the second difference of f is defined
by
Vi (f(@)=Ff(z+ete)—flate)-flzt+e)+f(z),

where e; represents the positive integer vectors of unit length at the ith position of
the function f. A discrete Hessian matrix H consisting of second differences V ;3
(1 < i,j £ n) corresponding to a condense discrete convex function g : Z" —
R in local settings is introduced, and convexity results are obtained for condense
discrete functions similar to the convexity results obtained in real convex analysis.
The discrete Hessian matrix H is shown to be symmetric, linear, and vanishes when
the condense discrete function is affine.

Yiiceer (2002) proves convexity results for a certain class of discrete convex func-

tions and shows that the restriction of the adaptation of Rosenbrook’s function from

8



real variables to discrete variables does not yield a discretely convex function using
Miller’s (1971) discrete convexity definition. Here, it is shown that the adaptation
of Rosenbrook’s function considered by Yiiceer (2002) is a condense discrete convex

function where the set of local minimums is also the the set of global minimums.

3.1 CONDENSE DISCRETE CONVEXITY OF FUNCTIONS

In discrete convex analysis, Fox (1966) defined a single variable discrete function
to be convex if the first forward differences of the given function are increasing or
at least non-decreasing. A multivariable discrete L-convex function is defined to be
the generalization of the Lovész extension of submodular set functions in (1988) by
Murota. L#—convex functions are defined in (2000) by Fujishige and Murota. The
concept of M-convex functions is introduced by Murota in (1996) and that of M#
convex functions by Murota-Shioura in (1999) . The discrete analogue of Hessian
matrices corresponding to multivariable discrete L, L#, M, and M# functions are
introduced by Hirai and Murota (2004), and Moriguchi and Murota (2005) . Impor-
tant applications of L, L#, M, and M# discrete convex/concave functions appear
in network flow problems (see Murota (2003) for details). The convexity proper-
ties of nonlinear integer variable, integer valued objective functions are investigated
by Favati and Tardella (1990) where algorithmic approaches are also presented.
Kiselman and Samieinia (2008) define the convex envelope, canonical extension and
lateral convexity of multivariable discrete functions where the second difference of a
function f : Z* — R is introduced to define lateral convexity.

Let S be a subspace of a discrete n-dimensional space. A function f: S — R is
defined to be discrete convex by Yiiceer (2002) (using Miller’s (1971) definition) if

for all z,y € S and a > 0 we have

af(z)+ (1 - e)f(y) 2 min f(u) (3.1)

uEN(2)



where z = az + (1 — @)y, N(z) = {u € S : |lu—z|| <1}, and ||u|| = max{|u;]: 1 <
i < n}. This discrete convex function definition yields nonnegative second forward
differences in each component, and a symmetric matrix of second forward cross
differences. By imposing additional submodularity conditions on discrete convex
functions, the concept of strong discrete convexity is introduced in [17]. A strong
discrete convex function has a corresponding positive semi-definite matrix of second
forward differences which has practical and computational implications. D-convex
and semistrictly quasi D-convex functions are introduced in (2006) by Ui where
D-convex functions have a unified form that includes discretely convex, integrally
convex, M convex, M" convex, L convex, and L¥ convex functions in local settings.

We define a condense discrete convex set D to be the set of points that coin-
cides with a real convex set on the integer lattice which is large enough to support
the second difference of a given condense discrete function. We assume that the
union of condense discrete convex sets are discrete convex sets as well. The following
definition of an n-integer variable function holds for a certain class of discrete func-
tions. The definition of a condense discrete convex function is based on its quadratic
approximation in a condense discrete convex neighborhood D C Z". The quadratic
approximation of f is the quadratic discrete function that agrees with f in a local
neighborhood. It is called "approximation" because the function under consideration
may not agree with the quadratic function over the entire space. A local neighbor-
hood needs to have the second difference points in it.

Definition 3.1: A discrete function f : D — R on a condense discrete convex

set D C Z" is defined to be condense discrete convex if its quadratic approximation

flzg)= —;—:z:TA:c +bz+e (3.2)

10



in the neighborhood D is strictly positive where A is the symmetric coefficient matrix
of the quadratic approximation of f. f is called condense discrete concave if —f is
condense discrete convex. A is called the discrete coefficient matrix of f.

Proposition 3.1: Let f : D — R be defined on a condense discrete convex set
D C Z™ with its quadratic approximation defined by (3.2) .The coefficient matrix A
corresponding to f is the symmetric matrix [Vi; (f)],xp -

Proof: We first prove the symmetry of the matrix [Vi; (f)],xn-

Vif (@) = Vi(f(z+e5)— f(z))
= flz+e+e)—flz+e)—flr+e)+ f(z)
= V;(f(z+e)— f(x))
= V;(Vif (2)) = Vif (z).

Assuming that A is symmetric, for all 7 and 7,

1 T T
—2—V, (($ + Ej) A (3!,' + 63') =i A‘E)

Vi (f ()

TA(z +e;) + eT Az + ej) — o7 Ax)

s—lto:-—-l\:»—t

Vi(z
\VA (SBTA:L' + av:TAej + eTA:J: + eTAeJ - .TTA'L')
(z

T Aej + eTAa; + eTAeJ)

i

— b

I
/—-\4

(z+e)" Aej — xTAej + €] A(x +e;) — eanc)

B =B =D

(:cTAej + efAej - :BTAej - e?Am -+ efAei - e;rAa:)

€; AEj + e?Ae.,-)

Il
£
'--3.

Therefore
A.f = [a'ij]nxn = [vijf]nxn :

which completes the proof.
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Proposition 3.2: The coefficient matrix Ay of f : D — R given above in
proposition 3.1 satisfies the properties of the discrete Hessian matrix corresponding
to real convex functions. That is, Ay is linear with respect to the condense discrete
functions, symmetric, and vanishes when f is discrete affine.

Proof: Let f; : S; — Rand fs : S» — R be condense discrete functions with the

corresponding coefficient matrices Ay, and Ap, respectively. Then

Vi (fi + Fo)luxn = Anth
= Af1+Af2

= [Vij (f)]nsen + [Vis (f2)lnxn

which also proves the linearity of the second difference operator with respect to the
condense discrete functions. The symmetry condition is proven in proposition 3.1.

Considering the condense discrete affine function f,

¥ (w) = Zbifﬂi
=1

the second difference operator vanishes since V; (f) = b; and V; (f) = 0 for all 4
and j.

Theorem 3.1: A function f : D — R is condense discrete convex if and only if
the corresponding discrete Hessian matrix is positive definite in D.

Proof: Consider the discrete function

2
flz)=aTAsz = Za,;ja:iscj
i,j=1

where a;; € Rforall 1 <4,j <2,and z € 72. We prove the case for 2 x 2 matrix
and n x n matrix case follows similarly. Suppose Ay is positive definite.

Case 1:If we let z = (1,0), then

2 2
f (:E) =an1T] + 2012712 + QgaTy = Q11 > 0.

12



Case 2:1If we let z = (0,1), then
f (z) = a1z} + 20122122 + T3 = ag > 0.

To show A; > 0 for any z # 0 consider the following cases.

Case 1:If we let = = (z1,0) with z; # 0. Then,
f(z) = a11%5 + 20127122 + Qe Th = aua:'“{ >0&a; >0.

Case 2: If we let z = (21, T5) with 25 # 0. Let 2 = tx, for some ¢ € R. Therefore

we have

f (.’.13) = (a11t2 + 2a10t + G;gg) CL'%

where f(z) >0 ¢ (t) = aq11t? + 2a1at + aze > 0 since x4 # 0. Note that

QO’ (t) = 2a11t + 2&12 =0
5 =8
11
@"(t) = 2au.

If a;; > 0 then

a —a}
p(t) =2 e)=¢ (—ﬁ) =—2 tay

a11 aii
1 ai; a2
= —det
a
H a1 022

Therefore if a;; > 0 and the determinant given above is positive then ¢ (¢) > 0
for all £ € R. Conversely, if f (x) > 0 for every z # 0 then ¢ (t) > 0 for some ¢,

therefore

(,O(t) > 0= a4 > 0, and 4&%2 — 4aq1Q92 = —4 det (Af) < 0,

() > 0&ay; >0 and det(Ay) > 0.

which completes the proof.
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3.1.1 AN EXAMPLE

Suppose we want to find the second difference of a function f : Z? — R defined by

f(z,y) = € + €¥ on the the integer domain

Sl = {(Ov 0) ’ (1: 1) ’ (0? 1) 3 (0! 2) ) (1’0) ) (230)} .

2
y
1 <
0+ ; 4 } $
00 05 1.0 L5 20
X

The first concern is whether we can find a quadratic discrete variable function in

S; or not. As we want to find a quadratic function of the form

1 a1 Q2| |Z1 T
Lig) = 3 [561 .'172] + [bl bz] +ec
Q21 Q22| | T2 )
1
= § (anl‘% + 12129 + 9119 + O‘:ggﬂ’;’%) + bl.’El -+ 52322 4 e

we can find the coefficients corresponding to the approximation of f by using the
values of f and determine the discrete quadratic function corresponding to f easily.

This can be done by finding the values a;;, b;, and ¢ by solving the system of equations

f(0,00 = +e"=2=¢
f,1) = %@uﬂf+amﬂﬂn+ﬂmﬂﬂu+ﬁmﬁ)+hﬂj+hﬂj+c

F(0,1) = %am (1) 4 bg (1) + ¢

£0,2) = %a22(2)2+62(2)+c

£(1,0) = %an (12 + by (1) + ¢

f (2, O) = ';-0:11 (2)2 E bl (2) e

14



where there are six equations with six unknowns assuming that the matrix A is
symmetric. As long as this system of equations has a solution, it is possible to find
the quadratic approximation for any given function on a set where we can calculate

the second differences.

Graph of e® + €Y on S;.

The discussion above indicates that any well defined function on a set where the
second difference elements exist in Z? can have a quadratic approximation. In Z",
the number of elements in a set should be at least 1 (n® + 3n + 2) to be able to find
the quadratic approximation of the function in that neighborhood. For that reason,
in chapter 4 it is assumed that the condense discrete convex set is large enough to
support the second difference for the given function. We can also expand the set S;

to another set

S3 = SlLJSz

= {(070) ) (1= 1) ) (Os ]-) ; (0:2) ? (1,0) ) (21 0)} U {(330) ’ (2, 1) ) (1:2) ’ (0: 3)}

3
).
2 o
1 o o
0+ 4 4 $
0 1 2 3
X

15



In this case, by using the subsets

D, = {(1:0) ) (2:0) ) (3:0) ) (17 1) ’ (1:2) ) (2’ 1)} )

and

Dy = {(0: 1) ) (05 2) ) (U: 3) ) (1a 1) ) (172) ) (21 1)} )

we find two other quadratic approximations for the function f (z) in the neighbor-
hood S;. By finding the condense discrete convexity of these quadratic functions we

find the convexity condition of the function in the neighborhood Sj.

Graph of e* + e¥ on Ss. Graph of €* + e¥ on Ss.

Neighborhood S5 does not necessarily need extension further since the condense
discrete convexity of the function for each point of the set Sz is covered by using the
method above. If we do want to extend the set S3 to Z? we can enlarge S3 by adding
elements as above where we can calculate the second differences. For example, we

can expand S to the set Sy defined by

Si = S1USUS;
= {(0,0),(1,1),(0,1),(0,2),(1,0),(2,0),(3,0),(2,1),(1,2),(0,3)} U
{(4,0),(3,1),(2,2),(1,3),(0,4)}

16



3 Led
2 o o
1 < <& (v
0+ $ 4 $ $
0 1 2 3 4
X
Set 84.

The discrete function f (z,y) = e* + e¥ with domain S, is illustrated below.

Graph of e* + e¥ on S;. Graph of e* + e¥ on S;.

If we extend the domain of f(z,y) = e® + €¥ from S3 to Z? then instead of
checking the neighborhood convexity by finding what the coefficient matrix A is, we

can check the second differences of the function itself. Therefore

e® (e? — 2e + 1) 0
H=
0 e’ (e2 —2e+1)

corresponds to the discrete Hessian matrix of f (z,y) = e® + Y. This Hessian matrix

is clearly positive definite.

3.2 CONDENSE DISCRETE CONVEX FUNCTION OPTIMIZATION

To obtain minimization results for a given condense discrete convex function, we

require the given condense discrete convex function to be C*'. By a C" condense

17



discrete convex function f : Z® — R we mean the extended function f:R*—=Rto
be a O function. This extension depends on the given discrete function; however,
the real extension of f has to agree with the discrete function f on the integer lattice.
This extension might be possible by assuming the integer variable is a real variable.
After defining the local and global minimum of condense discrete convex functions,
we obtain convexity results for C? condense discrete convex functions. Condense
discrete concave function maximization results follow similarly.

We let ;llez- — 7" where S; is a non-empty sufficiently small condense discrete
convex neighborhood to support quadratic approximation of f, E;Si =0, Jisa
finite index set, and {s;} is a singleton in Z".

The partial derivative operator of a C! discrete function f : Z* — R will be

denoted by 9f (z) := (%, %, ., a%%) _

Definition 3.2: The local minimum of a condense discrete C! function f : Z" —

R is the minimal value of f in a local neighborhood .UIS;- which is also the smallest
e

value in a neighborhood N = J_gJ (igljsi) where J is a finite index set. The global
minimum value of a condense discrete convex function f : Z" — R is the minimum
value of f in the entire integer space Z".

We define the set of local minimums of a C* condense discrete convex function

f by
U ={p=(01,rPa) : P € {[1:], [1:]} CZ for all 3} C 2"

where 9f (v) = 0 holds for 7 € R". As the domain is Z", we consider the solutions
in ¥ where p, = [v;] or p; = |v;] is the solution for multivariable integer function

§.
Example 3.1: We consider the following function f : Z* — R defined by

3 1

2
f(m,n)= (nﬂﬁm—ﬁ)ﬁ) +e[(m—33)2+(n—~1)2]

18



where
_
(332 +1) 1002

Noting that the domain of f is Z2, the Hessian matrix corresponding to f is

18 -6
_|ie T2 1o

—6
100 2+26

which is positive definite.

Supposing we want to find the local minimum corresponding to f starting from
(0,0) , we need to visit the entire domain nodes and calculate all the corresponding
function values which is computationaly costly. To be able to find the local min-

imum(s) we initially let the domain to be

Sy = {(030) ’ (Ow 1) ) (1: 0)} .

Then the minimum in S; is

3 i % 1 2
s [l il § e g (38
/(0,0 ( 100" 100) +EEr 00 0%
1 2
N W—
teEre 0 Y
~ 0.0002

since

f(0,1) = (1—-3—0 : )2+—--1—(0—33)2

100 100 (332 + 1) 1002
1 2
i ) o
teEEr o0 Y
= 0.98020
3 1)’ 1 5
N | . AN ([ — .
£(1,0) ( 100 100) + G n0e %)
1 2
—__(0-1
teErwoe 0 Y
— 0.001694
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We extend the domain to Ny = 1<L_J<2.S'z- by defining
<i<
= {(Oa 2) ) (1:0) , (2, 0)}
The minimum in the domain S, can be found by using the following calculations:

£(0,2) = (2 3 1) +(——1——(0—33)2+(—3?ﬂ1—1~)ﬁ3(2-1)2

T 100 100 332 + 1) 1002
= 3.9602
3 i 3° 1 5 1 3
1) = (sl = NN N - ST, N Y, |
f(1,0) ( 100 100) e ¥ e O Y
= 1.694 x 1073
3 i % 1 . 1 2
2.0) = o AT e (2-33P 4 —————(0-1
F12,0) (0 100 100)+(332+1)1002( 3)+(332+1)1002( )
— 4.9883 %1073

The minimum of f in S, occurs at (1,0,1.694 x 10~2) and in N, at (0,0, 0.0002) .

In its most general form, letting k = ¢ + j with 0 < ¢, j < k, we can define
S = {(3,7) : for all i and j such that k =i+ j}

and

N,= U 8.
1<i<k

Considering the neihgborhood Ny, it is easy to see that the local minimum
occurs in Nis at (33,1,0) which is the smallest value in N = 1<%Jami.’\fi C Z* (These
calculations can be done by writing a simple computer prograrn.)_A_s it is noted above,
it is costly to calculate the local minimum of f by visiting every node; therefore,
noting that f is a C* function with domain Z?, the practical way to find the local

minimum of f is by calculating 8f = 0;

af 6 3 1 s
am — 100 (n“mm—m)+(332+1)1ooz it i) =0
af

3 1
an (" 100 " 100) + 33T 1) 1002 (n—1)=0

20



which is satisfied when (m,n) = (33,1). It is easy to see that the local minimum is
also the global minimum and vice versa in this case.
Lemma 3.1: Let f : Z" — R be a C' condense discrete convex function in

N ¢ Z»*. Then there exists a local minimum value in N C Z" such that

fo= Iglel‘ll} {f(8)}-

Proof: Let f: N — R be a C! strict condense discrete convex function. There-
fore f has a local minimum value f (xo) in some neighborhood 8= iLEJIS,- by theorem
3.1. By definition of N, EIS" C N hence f(zo) is also the local minimum in the
neighborhood N.

It is well known that the local minimum of a C* function f is obtained when the

system of equations

af (x) ﬁlimf(m-'_tei) — f(x)

ox; t—0 t =0
is solved simultaneously for all 4,1 < i < n. We first find df () = 0 which implies
the existence of a y; € R for all 7. Noting that the domain is Z", we take the ceiling
and floor of the components of 7; to obtain the minimal point which consist of
integer numbers |;] or [v;] for all i. This gives a local minimum point § € ¥ and
the corresponding value fy = %lelérl {f(B)}.

Based on the statement of lemma 3.1 we try to find the minimum of f where 8

belongs to ¥. Based on the set definition of ¥ we have to have 9 f (7) = 0 meaning

(Of Of O91Y_
of (x) := (83:173:172""’ an) == (.

Here the basic assumption is simply there exists a 8 in ¥ so that the function value

holds. If there does not exist such a 3 then clearly fy does not exist. rﬁ?l‘% corresponds
(=4

to existing at least one 3 satisfying the first partial derivative equal to zero since

B € W. Considering the example f(n,m) = "™ in 72, we cannot have the first
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partial derivatives of the function equal to zero for any point in Z?, therefore there
does not exist a 8 to start checking the minimum for the function, therefore the
lemma. cannot be applied to this function.

The following result for condense discrete convex functions is a result similar to
a result in real convex analysis.

Theorem 3.2: Let f : Z" — R be a C? strict condense discrete convex function.
Then the set of local minimums of f form a set of global minimums and vice versa.

Proof: Suppose f : Z" — R be a C' condense discrete convex function. Let
icL;JolS.i — 7" where S; are sufficiently small condense discrete neighborhoods that
support quadratic approximation of f for all ¢, and 51& = ). Let Q; be the set of
local minimum points of f in Z", and £, be the set of global minimum points of f
in Z™.

Let f : Z® — R be a C* condense discrete convex function and suppose f has
global minimum points in Z" = ;leSi. Noting that f is nonlinear, there exists a finite
collection of S, ié}us"’ where the global minimum points are located. The solution
set of %ffl =0 for all j,1 < j < n, gives the set of local minimums in S;. Therefore
for all = € €, there exists a set of integer vectors y € ) such that fé}% f(x)=f(y)
which indicates 23 C (2; since igﬂ&- c Ncz".

Now suppose there exists a vector zg in a local neighborhood S = t_éJhSz- such
that zo ¢ Qy (Note that zo is not necessarily an element of Q) since it is a local
minimum in a local setting). x is a local minimum which is not a global minimum
in S, therefore there exist ; and y such that f(zo) > f(z1) > f (1) in N =
jléJJ (zgerz) > S where y; becomes the new local minimum of the local neighborhood
N. Therefore g is the new local minimum of N where zo is not a local minimum of
N. Suppose ¥ is a local minimum that is not a global minimum otherwise it would
be an element of Q. Continuing to enlarge the local obtained neighborhoods in this

way to the entire space Z", we obtain a set of points in a local neighborhood D of
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7" where local minimum points z € Q; satisfy f(z) < f(y) for all y € Z" — D.
Therefore = € )y and hence £y C Qy which completes the proof.
Next we consider an adaptation of Rosenbrook’s function suggested by Yiiceer

(2002) and show that this function is a condense discrete convex function.

3.2.1 AN EXAMPLE

Yiiceer (2002) shows that the adaptation of Rosenbrook’s function
1
gk, ) = 25(2p — k)* + 1(2 —k)* where k,u € Z. (3.3)
is not a discretely convex function when continuous variables are restricted to the

integer lattice. Here, we first prove the condense discrete convexity of the function
given in (3.3) and then show that the set of local minimums is also the set of global
minimums.

The diagonal elements of the discrete Hessian matrix that corresponds to g (k, 1)

are

Vug(k,p) = 25(2p—k— 2)* + ikz -50(2u—k—1)
1 1
—5(1—k)2+25(2p-—k)2+ Z(2—16)2
101
= —>0.
3 >
Vaag (k,p) = 25(2u+4— k) —50(2u+2—k)> +25(2p — k)°

= 200.

By the symmetry of the discrete Hessian matrix, the off diagonal elements of the

discrete Hessian matrix are

Vig = Vaug=252p+2-k-1)2-25(2u—k - 1)°
—25(2 + 2 — k)? + 25(2p — k)?
= —100.
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Therefore

101
det(H) = 200.%—(100)2

= 100.101 — (100)?

= 100,

This indicates that the discrete Hessian matrix is positive definite. Therefore, the
adaptation of the Rosenbrook’s function given in the equality (3.3).

It is important to note that the optimization results stated in this section assume
the condense discrete convexity of a discrete function to find a local or global min-
imum if it exists. Based on Miller’s (1971) definition of discrete convexity, the adap-
tation of Rosenbrock’s function defined by (3.3) is not a discrete convex function;
therefore, to obtain minimization results for (3.3), we have to check the function
value at every point of the domain in every possible neighborhood to find out where
the minimum value is since it is not a discrete convex function from Miller’s discrete
convexity point of view. However, by using the condense discrete convexity and the
corresponding optimization results, we only need to first check whether it is a con-
dense discrete convex function or not by finding the corresponding discrete Hessian
matrix, and if it is a condense discrete convex then find the first partial derivatives
to obtain the corresponding optimization results (clearly in the case when a solution
for the equation 8f (z) = 0 exists.) Therefore, calculating the minimum value of
a condense discrete convex function is more practical compared to calculating the
minimum value of a function by using Miller’s discrete convexity definition. From an
algorithmic solution point of view, even in a bounded set there is a huge computation
difference between these two methods. Note that in lemma 3.1 the discrete set IV is
not necessarily a bounded set.

Next we show that the set of local minimums of the adaptation of the Rosen-

brock’s function is also the set of global minimums. Clearly, g is a C' function
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therefore

% — _50(2u—k)—i(2-k)=0
IS & i S

gg = 1002 — k) =0
where simultaneous solution of this system of two equations indicate k = 2 and p» = 1.
Therefore the minimal value is g(2,1) = 0. Since the adaptation of Rosenbrock’s
function is a C! condense discrete convex function, the local minimum point set

which is the singleton {(2,1,0)} is also the set of global minimum points.
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CHAPTER 4

MIXED CONVEXITY AND OPTIMIZATION

In this section, mixed convexity and optimization of mixed (real and integer) vari-
able set and function definitions will be introduced. In addition, mixed convexity
and optimization results will be stated and proven. Examples of a mixed convex
and a non-convex mixed function will be given in the last section. Many examples
of optimization problems with mixed variable functions can be found in queueing

systems and network designs where the results obtained in this work can be applied.

4.1 DEFINITIONS AND RESULTS

Let Vi € Z™ be a condense discrete convex set and Vo C R™ be a real convex set. A
mixed convex set is the set of the form V = V; x V5 C Z" x R™. Throughout this
work g will be assumed to be a C? function with respect to its real variable unless
stated otherwise, and the indices 4,7 and k,l will be used for the integer and real
variables, respectively.

Definition 4.1: A mixed function g : V — R on a mixed convex set V' C Z" xR™

is defined to be mixed convex if its quadratic approximation
1 1
g(z,y)= §$TA.’B +2TBTy + EyTC'y + 6T +cTy+d (4.1)

in the neighborhood V is strictly positive where A and C are the symmetric coeffi-
cient matrices of the quadratic approximation of g with respect to z and y, respec-

tively. h is called mixed concave if —h is mixed convex.
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Proposition 4.1: Let ¢ : V — R be defined on a mixed convex set V C
Z™ x R™ with its quadratic approximation given in (4.1). The coefficient matrix H,

corresponding to g is the symmetric matrix

g < | T [2vi]

3 _9%
I:vz Iy (g)] mxn [3yk3y: ] mxm

Proof: The symmetry of the matrix [V;; (g)],

(4.2)

wp I the mixed Hessian matrix H,

follows from proposition 3.1. Clearly

&g 0%
oulyi  OOys

yields to a symmetric matrix. The off diagonal block matrices of H, satisfy the

symmetry condition

0 0
a—m(ng(ﬂ?,y)) = 5y—k(9(fﬂ+ej:y)“9($,y))
0 0
= a—yzg(ﬁﬂ‘ej,y)—a—mg(x,y)
J
= Vja—ykg(-'r,y)

for all j and k. Therefore H, is a symmetric matrix.
Assuming A is symmetric, by proposition 3.1
Vii (9 (z)) = aij

holds for all 7 and j. Therefore

A = [a'ij]nxn = [V'Ug]nxn "

Straightforward calculations indicate

(st =C
OO | msm
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The off diagonal elements satisfy

0 0 T T T T
R} = 5 - ~2TB
Do i(g(z,9)) Do (($+BJ) B'y—=m :u)
0 [ ror T pT T T
= ayk(mBerejBy =" BTy)
9 o
- 3yk(ejB y)
= By

Proposition 4.2: The coefficient matrix H, of g : V — R given in proposi-
tion 4.1 satisfies the properties of the mixed Hessian matrix corresponding to real
convex functions. That is, H, is linear with respect to the condense mixed functions,
symmetric, and vanishes when g is mixed affine.

Proof: Let ¢, : W; — R be condense mixed functions where W, are mixed convex

sets (for t = 1,2) with the corresponding coefficient matrices

A, B,
H, =% "], t=12

gt
Bga Cgt
Note that
d 0
—Vilg1+g9) = —1{n (z+ej,y) + g2 (z +ej,y) — [01(2,9) + 92 (z, )]}
Oy OYr
d 0
= 5‘1}; (91 (93 ¥+ 6j1'y) - g1(z,y)) + 5@ (92 (z + 63',?1) — 092 (CE, )

indicating

nxim XM

= By, + By,

Therefore, by using the symmetry property obtained in proposition 4.1,

[Vii (91 + 92)]nm [E%Vj (g1 + 92)] .

2
_[a%;vj (1 + 92)] [?ﬁiTm (91 + 92)] -

Hgl+gi
mxn

Ash +g2 BQ'I + BQ:

32Q1 8232
-Bgl + BQ? Oydyr  Oyrdu
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~ |4n+ 4, Bu+ ng}
LBQ‘I + Bgz Oy1 + ng

_ Agl By, N Bl
_Bgl Cgl Bg:a c

= Hg1 * ng

92

which also proves the linearity of the second difference operator with respect to the
condense mixed functions. The symmetry condition is proven in proposition 4.1.

Considering the mixed affine function g,

n m
g(z,y) =) dimi+ Y _weay,
i=1 k=1

the second difference operator vanishes since V; (g) = b; and V;; (g) = 0 for all ¢
and j. Similarly Via =0 and 55— ay 3 =0 for all 4, k&, and (.

Theorem 4.1: A function g : V — R is strict mixed convex if and only if the
corresponding mixed Hessian matrix H, is positive definite in V.

Proof: In the case when m = 0 the proof follows from theorem 3.1. In the case
when n = 0 the result is well known from real convexity theory. Consider the mixed
function

1 1
g(z,y) = §$TA:1: +zTBTy + §yTC’y

= az?+ 2bxy + c?

where a,b,c € R and (z,y) € Z x R. We prove the case for 2 X 2 matrix and
(n+m) x (n+ m) matrix case follows similarly. Let z = (z,y). Suppose Hy is
positive definite.

Case 1: If we let z = (1,0), then

g(2) = ax® + 2bzy + cy® = a > 0.
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Case 2: If we let z = (0,1), then
g(z) = az® + 2bzy + ey’ = ¢ > 0.
To show H, > 0 for any z # 0 consider the following cases.
Case 1:If we let £ = (z,0) with z # 0, then
g(z) = az® + 2bzy + ¢y’ = ax’ >0 a > 0.

Case 2: Let ¢ = (z,y) with y # 0, and z = ty for some t € R. Therefore we
have

g(x) = (at? +2bt +c) v°

where g (2) > 0 & ¢ (t) = at® + 2bt + ¢ > 0 since y # 0. Note that

o' (t) = 2at+26=0

= t”‘:—E
a

If @ > 0 then

Therefore if @ > 0 and the determinant given above is positive then ¢ (t) > 0 for all

t € R. Conversely, if g (z) > 0 for every z # 0 then ¢ (t) > 0 for some ¢, therefore

e(t) > 0=a>0, and 4° - dac = —4det (H,) <0,

@(t) > 0&a>0 and det(Hg) >0

which completes the proof.
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To obtain minimization results for a given mixed convex function, the given mixed
convex function will be required to be C! with respect to all of its variables. After
defining the local and global minimum point concepts of mixed convex functions, we
prove optimization results for ¢! mixed convex functions. Mixed concave function
maximization results follow similarly.

Let Z" x R™ = U Si X U R; where S; x R; is a non-empty sufficiently small
mixed convex nelghborhood to support quadratic approximation of g, ﬂ S; = 0 for
all S; where S; have at least one common element for all 2 € I, I is a finite index

set, and {(s;,;)} is a singleton in Z" x R™.

The partial derivative operator of a C' mixed function ¢ : Z" x R™ — R will be

denoted by

3g 99 Bg 99 Bg g
g (z) := 5 oy — | -

9z, 83:2 B.’Bn 8y1 3y2 OYm
Definition 4.2: The local minimum of a mixed C' function g : Z" X R™ - R
is the minimal value of g in a local neighborhood _léJISg- X 'UIRj which is also the

7 JE
smallest value in a neighborhood M = N x R where I is a finite index set and
R = UIR The global minimum value of a mixed convex function g : Z" x R™ — R
3€

is the minimum value of g in the entire mixed space Z" X R™.

Define the set of local minimums of a C* mixed convex function g by
= (o= (pyy s Prs 0y o) £ 1 € {91, 17:]} C 2 Vis0; € RV} C 2" X R™

where dg (v, @) = 0 holds for (v, @) € R**™. We consider the solutions in ¥ where
= [;] or p; = |v;] is the solution for multivariable mixed function g.
Lemma 4.1: Let g: M — R be a C' mixed convex function in M C Z"* x R™.

Then there exists a local minimum value in M such that

9o = ggqr}{g( A}
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Proof: Let g : M — R be a C" strict mixed convex function. Suppose dg (z, y) =

0 holds in some neighborhood S = -LéJ;S"' X 'Uer C M for all (z,y) € M. Therefore
) JE

the local minimum of C? function g is obtained when the system of equations

0g(x) _ . 9(z+te) —g(z)

ax'i o t—0 t =1
9g(z) _
Oy;

are solved simultaneously for all i, 1 < 7 < n, and for all j, 1 < j < m. This indicates
the existence of a (v, @) € R™™™. For the integer variables in domain Z", we take the
ceiling and floor of the components of -, to obtain the minimal point which consist
of integer numbers |v;| or [v,;] for all 4, 1 < i < n. This gives a local minimum
point (3, @) € ¥ since there exists a unique minimum value of a real convex function
and the corresponding value go = %}51\1111 {9(B)}.

Suppose g (z,y) # 0 for some z and y. Then either d¢g (z,y) > 0 or dg (z,y) <0
holds which in either case the minimum value is obtained for the boundary values
of M for x and y satisfying dg (z,y) # 0.

The following theorem for mixed convex functions has a similar statement to the
results obtained for real and condense discrete convex functions. It is evident that
a condense mixed convex function can have more than one global minimum point
since a condense discrete convex function can have more than one minimum point.
A simple example of a condense mixed convex function g : Z" x R™ — R with 27

minimum points is

9(®)=2_(2: =05+ (y;—05)".

Theorem 4.2: Let g : Z" x R™ — R be a C! strict mixed convex function
which has local and global minimum points. Then the set of local minimum points

of g form a set of global minimum points and vice versa.
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Proof: Suppose g : Z" x R™ — R is a C"! mixed convex function. Let IOL?lSi X
i=

j:LCJ’le = Z" x R™ where S; X R; are sufficiently small condense mixed neighborhoods
supporting quadratic approximation of g for all ¢ and j, and ﬁlSi = (). Let ®; be the
set of local minimum points of g in Z" x R™, and ®; be the set of global minimum
points of g in Z™ x R™,

Let g : Z" x R™ — R be a C*! mixed convex function and suppose g has global
minimum points in Z" x R™. Noting that g is strict mixed convex, there exists a
collection of S; X R; C iELIITOSi X jg{oRj where the global minimum points are located.
Considering the quadratic approximation of g in the neighborhood S; x R;, the
solution set of g (z) = 0 gives the set of local minimums in S; X R;. Therefore for

all 2z, € ®, there exists a set of vectors z; € ®; such that n”éig g (z1) = g (z2) which
21 1

indicates ®; C ®; since U S; x U R; CZ" x R™.
i€lp j€lp

Now suppose there exists a vector zg = (Zg,yo) in a local neighborhood M; =
igﬁS@ Xjé:lrle such that zy ¢ ®, (Note that zg is not necessarily an element of ¢, since
it is a local minimum in a local setting). zp is a local minimum which is not a global
minimum in M;, therefore there exist z; and z such that g (20) > g(21) > g(22) in
M, = jLeJJ (251.5’2) * J.LEJJ (tgjﬂ) O M; where z; becomes the new local minimum
of the local neighborhood M,. Therefore z; is the new local minimum of M; where
2o is not a local minimum of M;. Suppose z; is a local minimum that is not a global
minimum otherwise it would be an element of ®;. Continuing to enlarge the local
obtained neighborhoods in this way to the entire space Z" x R™, a set of points in
a local neighborhood V' of Z™ x R™ is obtained where local minimum points z € @,
satisfy g (2) < g (%) for all Z € Z™ — V. Therefore z € ®; and hence &; C ®; which
completes the proof.

Example 4.1: If a function is real convex with respect to its real variables when

the integer variable is assumed constant, and if it is condense discrete convex when
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the real variables are assumed constant doesn’t necessarily imply the mixed convexity
of the proposed function. A simple counter example can be seen by choosing ¥ : Z X

R — R, ¥(a, 8) = (a? + 0.5) (8% + 1). In this case,

2082+1) 26(2a+1)
26 (2a+1) 2(a?+0.5)

and the choice of o = 8 = 1 gives det(H) = —24 which shows that ¥ is not a strict
mixed convex function; however, it is easy to see that for each fixed a, (B2 +1)is

strict convex and for each fixed S,

Vul = [(@+2)°-2(a+1)+%] (8% +1)

= 2(8%+1)

strictly positive.

Example 4.2: An example which shows that the global minimum value is unique
while the point that corresponds to the global minimum value is not necessarily
unique is as follows:

Define a function §: Z"x R™ — R by

(8- 3)’

M=

S (o, 8) = Z(ai - 1.5+

j=1

where a = (@1, g, ..., @) € Z" and f = (B4, By, .. B,,) € R™. The global minimum
points of & are (a;,8;) € Z" x R™ such that oy = 1,2, and §; = j where the
corresponding global minimum value is 0.25n.

In the next section, it will be shown that the Rosenbrock’s function with mixed
variables is not a mixed convex function, and the adaptation of Rosenbrock’s function

(3.3) will be shown to be a mixed convex function.
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4.2 EXAMPLES OF CONVEX AND NON-CONVEX MIXED FUNC-
TIONS

In this section examples of convex and non-convex mixed condense functions will be

given.

4.2.1 AN EXAMPLE OF A MIXED CONVEX FUNCTION

The adaptation of Rosenbrock’s function given in equation (3.3) failed to be a strong
discrete convex function in domain Z? as it was shown in Yiiceer (2002). In chapter
3, equation (3.3) is shown to be a condense discrete convex function with the corre-

sponding positive definite discrete Hessian matrix

Vg (ﬁa 'y) Vi2g (-'L', ’g)

H =
| Va9 (2,y) Vazg(z,y)
[ 200 —100
|—100 2

In this section we consider the function introduced in equation (3.3) with domain
Z x R. The mixed Hessian matrix corresponding to ¢ : Z x R — R will be shown to
be a positive definite matrix after calculating the mixed Hessian matrix components.
The diagonal elements of the mixed Hessian matrix that correspond to the function

given in equation (3.3) are

Vig(zy) = (-7 -2+ 707 ~50(2y 5~ 1)’

1 1
——2—(1—m)2+25(2y——m)2+1(2—:r:)2

= 25(2y —z)* — 100 (2y — =) + 100 + %2
—50(2y — x)* + 100 (2y — ) — 50

1
—5(1—x)2+25(2y—x)2+i(2—$)2
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= 50+im2—%(l—m)2+—i~(2—m)2
= 50+%2—%+$—%2+1-33+%2-
= }-g—1>0
and
@9 (2:9) _ 599
dy?

By the symmetry of the mixed Hessian matrix, the off diagonal elements of the

mixed Hessian matrix are

d _ dg (z,4)\ _
L 90 = Vi (L2 1002y -2 - 1)~ 100(2y - 2)
= —100
Therefore
det(H) = 200.1%1—(100)2

= 100.101 — (100)?

= 100

indicating positive definite mixed Hessian matrix. By theorem 4.1, the adaptation
of Rosenbrock’s function given in equation (3.3)is a strict mixed convex function.

Clearly, g is a C" function hence

9 — _50(2y—z) - 1(2-2)=0
Og(wy)=0=1 " =)= 3(2-2)

% —=100(2y — ) =0
where simultaneous solution of this system of two equations indicate z = 2 and
y = 1. Therefore the minimal value is g(2,1) = 0. Since (3.3) is a C" strict mixed

convex function, the local minimum point set which is the singleton {(2, 1, 0)} is also

the set of global minimum points.
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Fig.4.1: Rosenbrook’s function f : R? — R

4.2.2 AN EXAMPLE OF A FUNCTION THAT IS NOT MIXED CONVEX

It is well known and easy to check that Rosenbrock’s function defined by
f : R*=R
(z,y) — (1-2)*+100(y —z?)

is not a real convex function. The mixed Hessian matrix components corresponding

to the Rosenbrock’s function f: Z x R — R are

Vuf(zy) = (1-(z+2)*+100(y - (z+2))
—2(1 = (z+1))* +100 (y — (z + 1)*)
+(1 - 2)?+ 100 (y — z?)

= —300z% — 600z — 498 + 300y

3% (Vif (z,9) = —3%[(1 (& + 1) + 100 (y - (¢ + 1)?)
= [(1 - $)2 + 100 (y — :r:)])
= 100 - 100
= {)
and
0% f
@2—- = (.
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Therefore the mixed Hessian matrix corresponding to the Rosenbrock function is not
a positive definite matrix indicating Rosenbrock’s function is not a mixed convex
function.

If the Rosenbrock’s function is considered with the change in the variables, f :
R x Z — R, then the corresponding mixed Hessian matrix components change;

however, the mixed convexity condition remains same for this function:
Vuf(zy) = (1-2)°+100((y+2) - z?)

—-2[(1 —z)*+100 (y + 1 — 2?)]

+(1 —2)® + 100 (y — 2?)

-0
Pf
ol —198
Vi (gt @) = Vil-2(1-2)+100(-20)
= 0
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CHAPTER 5

MIXED CONVEXITY AND OPTIMIZATION APPLICATIONS IN
QUEUEING SYSTEMS

In this section we will consider the mixed convexity of the functions associated to

the M/E;/1 queueing systems suggested by Kumin (1973).

51 MIXED CONVEXITY OF AN M/E/1 QUEUEING SYSTEM

In this section we consider an automated machine that can perform up to k oper-
ations in series. Each step takes the same mean time, with the times distributed
exponentially. If the arrival process is Poisson, we have an M/Ej /1 queueing system.
Kumin (1973) considers the following design problem: Assume that there is a linear
cost C; associated with each operation, a linear cost C; associated with each unit of
service, and a linear cost Cs associated with the length of the queue, L,. Then the

design problem is to minimize

f : ZxR-—-R

(k,pu) +—— Cik+ Cop+ C3E(L,)

subject to u > A > 0, for k = 1,2... on the neighborhood U = {u | p > A > 0} where

_ A (k+1)
E(Lg) = (u) —_Zk(l— 3)

and p = —.
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In this problem, we have

(k+2)
an(k,ﬂ) - (Ol(k * 1) + O?ﬂ * 03(2(]{; + 1) (1 _ P)
(k+1) ¢ )

2k (1-p)

CaA242C1 k(1 + k)(A — p)p
2k(k +1)(A — p)u

8f(k,p) _ Cslk+ 1A\ = 2p) +2Cak(A — p)*p?

o 2k(\ — p)2u?

)

—"(Olk + GQ,U -+ C‘3(

The mixed matrix elements would be

Vuflk,p) = — Ol
’ (2k + 3k2 + K3)(A — p)p
O(Vif(k,p) _ _ C3X*(A — 2p)
op 2k(k + 1)(A — p)2p?
vl(af(k: ].L)) - 03)\2()\ — 2”)
op 2k(k + 1)(A — p)?p?
Pf(k,n)  Ca(k+1)N(N? — 3+ 3u?)
ar k(x— p)3p?
Therefore, the mixed matrix is then
C3A? Cs (X — 2u)
H, = 2k + 3k2 + K3 (A — 1)1t T 2%k(k+ DX = w2
Cs ?(\ — 2p) Cs(k 4+ 1)A*(A* — 3)\p + 3p?)
T2+ DA -pP k(X — )33

The results above show that the first principal minor

Vil () = - 9
WS E = "0 ¥ 3k2 + ) (A — )

is strictly positive and the determinant of this mixed matrix, which is found to be

(C3)2N4((2 + E(T + 4k))N? — 4(1 + k(5 + 3k))Ap + 4(1 + k(5 + 3k))p?)
4k2(k + 1)2(k + 2)(A — p)pt

is also strictly positive. Therefore, the mixed matrix is positive definite for all C3 > 0,
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and all p € U which implies that the function f(k,p) is convex in p and integer
convex in k. In addition, this function is a 2-smooth strictly mixed convex function;
hence, the determinant of the mixed Hessian matrix is strictly positive and f(k, )

has a unique global minimum value by corollary 5.4.

41



CHAPTER 6

MIXED CONVEXITY APPLICATIONS IN TELECOMMUNICATION
SYSTEMS

In telecommunication engineering, the quality of the service and the grade of service
are the two measures used to specify the quality of voice service. Grade of Service
(GoS) is the probability of a call in a circuit group being blocked or delayed for more
than a specified interval. This is always with reference to the busy hour when the
traffic intensity is the greatest in the network. One way of viewing GoS is to consider
it independently from the perspective of outgoing versus incoming calls, and is not
necessarily equal in each direction or between different source-destination pairs.

A. K. Erlang used a set of assumptions that relied on the network losing calls
when all circuits in a group were busy to calculate the Grade of Service of a specified

group of circuits or routes. These assumptions are (Flood (1998)):

e All call arrivals and terminations are independent random events
e The average number of calls does not change
e Every outlet from a switch is accessible from every inlet

e Any call that encounters congestion is immediately lost.

By using these assumptions Erlang developed the Erlang-B ( or Erlang loss) for-
mula which describes the probability of congestion in a circuit group. The probability

of congestion gives the Grade of Service experienced.

42



Convexity analysis of Erlang delay and loss formulae are useful in the study of
multi-server queueing systems. This can be done by finding simple and sharp bounds
(see for example Ko, Serfozo and Sivakumar (2004) , Fuhrmann, Kogan and Milito
(1996) and Harel (1990)) These bounds also enable one to obtain related convexity
results; however, these convexity results are obtained by holding constant either the
number of servers or the traffic intensity. We provide a technique for determining
convexity without fixing either the service rate or the number of servers. Convexity

results obtained previously are special cases of the results provided in this work.

6.1 ERLANG DELAY AND LOSS FORMULAE

Suppose p is the service rate of the circuit to the incoming calls, s is the number of
circuits, A is the arrival rate of new calls to the circuit, c = % is the offered load of
the circuit and p = ¢ is the expected traffic intensity in Erlangs. To determine the
Grade of Service of a network when the traffic load and number of circuits are known,
telecommunications network operators make use the Erlang loss formula given by
(6.1) which allows operators to determine whether each of their circuit groups meet

the required Grade of Service, simply by monitoring the reference traffic intensity

(Flood (1998)).
1

R
;}(%)S 4

For delay networks, the Erlang delay (or C) formula, Eq4, allows network operators

E; (31 p) = (61)

to determine the probability of delay depending on peak traffic and the number of

circuits

Ed (Sa ,U.) T : (62)

s—1 . -
(s - 1)132]%7;11 (%)

when 0 < ¢ < s ( see for example Harel (1990)).
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Jagers and van Doorn (1991) provided the real extensions of the Erlang loss

formula Fj, Ej,, and the Erlang delay formula E;, E4,, by the formulas

1

E, = = and Ey = 2 ! ,Vz € R*
[&(L+t)"dt [&t(1+ )"t dt
0 0

For traffic calculations in most telecommunication queueing systems, the math-
ematics is based on the assumption that call arrivals are random and Poissonian. In
telecommunication network queueing systems, the convexity of the Erlang delay and
loss formulae play important role in the minimization of the circuits and the traffic
intensity. We provide strong convexity results for the Erlang B and C formulae with
boundary conditions.

In queueing theory, the Erlang B formula can be used to show whether the
M/@G/s/s queueing system is full or not. The steady-state probability of delay in
the M/M/s queueing system can be obtained from the Erlang C formula. Harel
and Zipkin (1998), Harel ((1981),(1988), and (1988)) obtains sharp bounds for
the Erlang delay and loss formulae. Considering the large offered load case and the
number of servers, Newell (1984) obtains asymptotic approximations for the Erlang
loss formula. Following Halfin and Whitt (1981), asymptotic results are developed
by Janssen, van Leeuwaarden and Zwart (2008) . Sharp heavy traffic approximations
are obtained by Halfin and Whitt (1981) . Simple inequalities for some of the per-
formance measures of multi-server queues are obtained by Sobel (1980). A family of
upper bounds which are sufficiently close to the Erlang loss formula is obtained by
Adelman (2008) . Harel (1990) develops convexity results for the Erlang delay and
loss formulae. Lee and Cohen (1982) outline the proof of the convexity of the Erlang
delay formula in the traffic intensity when the number of servers is held constant and
Harel (1990) provides a short proof for this result. [For a comprehensive approach to
the Erlang loss function see Jagerman (1974) and see Whitt (2002) for applications

of the Erlang delay and loss formulae.|
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6.2 CONDENSE DISCRETE CONVEXITY RESULTS FOR THE ERLANG
LOSS FORMULA

Erlang (1917) proposed the Erlang loss formula

l(s,,u) = (6'3)

=1 (2
134 (3)
Jj=0
for the number of busy servers under the following M/M /s queue system assump-

tions:

e The customer arrival follows a Poisson Process with arrival rate A; independent

from each other,
e Service rate follows an exponential distribution with mean i,

e If some of the customers find all the servers busy, they leave the system and

have no effect on the system.

Let
e*(s) == Zi (6.4)

e (s) = ~ (3‘-) (6.5)

e and e will be used instead of e” (s) and € (s) respectively for simplicity. Erlang
loss formula given in (6.3) can be expressed as a function of the number of servers

for fixed service rate p by the formula

E‘L
*(s)= e—f;.
8

Lemma 6.1: The Erlang loss formula, I* (s), given in (6.3) is a condense dis-
crete convex function with respect to the number of servers when the service rate is

assumed constant for all s > 1 and 0 < A < sp.
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Proof: The second difference of I* (s) is

e et b

Vul*(s) = —El_'g - 2Z—+1 + e—i
e.5i+2 es-i—l €s

)\3+2 }‘3+1 S
= e +
T2, (ot Dipridly, | el
Letting
s+2
K (s) = - CYN TR
(s +2)lpt2eses 184
we have

2

Vult (s) = kE* (s) [e‘s"‘e‘:ﬂ == 2% (s +2)elel o+ % (s+2)(s+1)et qebyy

By basic algebra and using the inequality s +1 > 2, “—‘:—QE > 2% holds, and in

addition

>|=

1
(s+1)el,, = 3 (s+1) [e’; + egﬂ]
indicates

(s+1) f§+1

%(s+l)e‘;+“ > 2t

A 8

2
u T
2 (s +2) (s +1) e 0650, > 2; (s +2) efecss

therefore V1;1* (s) > 0.

The following graphs illustrate special cases of lemma 6.1. We use the letters [
to represent the arrival rate A, and m to represent the service rate yu. Figure (1)
illustrates the second difference graphs in the case when the number of servers is 5
and both the service and the arrival rates range from 1 to 100. Figures (2) illustrates
the second difference graphs in the case when the number of servers is 10 and the
service and the arrival rates range from 1 to 200. Figure (3) illustrates the second
difference graphs in the case when the number of servers is 50 and the service and

the arrival rates range from 1 to 200. Figure (4) illustrates the second difference
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graphs in the case when the number of servers is 100 and the service and the arrival

rates range from 1 to 400.

ﬁme&mﬂmMMaﬁ,lanﬂmmhﬂhlm. anzmmmmnmsm_lmmmmmm

6.3 CONDENSE DISCRETE CONVEXITY RESULTS FOR THE ERLANG
DELAY FORMULA

In this section we consider an M /M /s queue satisfying the conditions
e Unlimited capacity of waiting space in the queueing system,
o Constant arrival rate A,
e Service rate is exponentially distributed,

e If a customer finds all the s servers busy then the customer joins the queue
and waits until receiving service,
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e No server can be idle if a customer is waiting.

The probability that all the servers busy in this M/M/s queue, namely the Erlang

delay formula, is defined to be the function

d(s,p) = a—1 ) (6.6)

when sp > A (Harel (1996)). By replacing the summation index ¢ in the above

equality with i — s — 1, the Erlang delay formula takes the form

1
d(s,pu) = —

(s—1)13 (;ﬂ)l ([f)1

i=0

In this section we will show that the Erlang delay formula is a condense discrete
convex function with respect to the number of servers s when the service rate p
is assumed constant. This result will be used to show the mixed convexity of the
Erlang delay formula.

Erlang delay formula given in (6.6) will be expressed as a function of the number
of servers s for the constant service rate u by either d* (s) or d¥ throughout this
work.

Lemma 6.2: The Erlang delay function, d* (s), given in (6.6) is a condense
discrete convex function of the number of servers, s > 1, for all 0 < A < su and

fixed values of the service rate, p.

Proof: Let
" o i, S | 1 i+1
gy =1 1)[i=0 GG—1-1) (,\) (6.7)
s - 1
R N AR .

By using the inequality A < sp, we let sy = A+ for some 6 > 0.
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Using (6.7) and (6.8) , the second difference of the Erlang delay formula is
Viudt (s) =d'(s+2) —2d* (s + 1)+ d" (s)

= h*(s) [f* (s +1) f*(s) — 2f* (s) f* (s +2) + f* (s + 1) f* (s + 2)]

(6.9)
The last two terms on the left side of equation (6.9) are
s—1 - s
2 + ]_ “ i+1
—9fH K == —1)! | O /T (i .
21 (s) f (s +2) =—2(s — 1) (s + 1)! lg(sﬂl_ﬂ! (A) ]

s+1 i1
st ) ]

fAs+1)f*(s+2)=(s+ 1! (s+2)!

Therefore

—2f" () + fr (s + D] 4 (s 42) = [(s— DI ’ 6+D3 tl ()m]'

[;Zu (+1) (%)HI [(S __12_ Al & (s +(i)£i-; 1) .s”

is positive since (s+2)(s+1)s > 2(s—1¢) for all 0 < i < s+ 1 which completes

the proof.

The following graphs illustrate special cases of lemma 6.2. We use the letters [
to represent the arrival rate A, and m to represent the service rate p. Figure (1)
illustrates the second difference graphs in the case when the number of servers is 6
and both the service and the arrival rates range from 1 to 100. Figure (2) illustrates
the second difference graphs in the case when the number of servers is 11 and the
service and the arrival rates range from 1 to 100. Figure (3) illustrates the second
difference graphs in the case when the number of servers is 51 and the service and
the arrival rates range from 1 to 200. Figure (4) illustrates the second difference
graphs in the case when the number of servers is 101 and the service and the arrival

rates range from 1 to 400.
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The illustrated graphs (1) — (4) agree with the general result obtained in lemma

6.2

6.4 COMPUTATIONAL MIXED CONVEXITY RESULTS FOR THE
ERLANG LOSS FORMULA

In this section we will illustrate numerical mixed convexity results with several
graphs in addition to the particular mixed convexity values. Let Hg, be the mixed
Hessian matrix corresponding to the Erlang Loss formula. Please see Appendiz A
for the determinant of the Hessian matrix corresponding to the Erlang Loss formula.
Table 2 below displays several different values corresponding to the determinant of
Hpg, for several different cases of s, p1, and A when sy = A. As it can be seen in the

table all the particular cases indicate a positive definite Hessian matrix. In the case
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when the number of servers is 200, the service and the arrival rate change, Matlab

R2009b results in NaN (Not a number.)

Table 6.1 Determinant of Hp, when sy is equal to A.
(i, 5) A= (i, 5) A=10 (i, 8) A =100
(0.1,10) | 0.4955 | (1,10) 0.5x 1072 | (10,10) | 4.955 x 1075

(0.02,50) | 1531 | (0.2,50) |1.53x1072| (2,50) |1.5313 x 10~

(0.01,100) | 2.332 | (0.1,100) |2.33x 1072 | (1,100) | 2.332 x 10~*

(0.005,200) | NaN | (0.05,200) | NaN | (0.5,200) NaN

In the case when sy = ), the determinant of Hp, for several different cases of s,
p, and X are illustrated in Table 3. Similar to the case in Table 2 Matlab R2009b
program did not give a numerical result when the number of servers is 200, the

service and the arrival rate change.

Table 6.2 Mixed Convexity Results for the Erlang Loss Formula when sy is bigger than A.
(1, 8) A=5 (1, 8) A=150 (1, 8) A =500
(0.6, 10) 0.016 (6,10) 1.598 x 10~* | (50.1,10) | 1.982 x 10~°

(0.15,50) | 3.1499 x 10~* | (1.1,50) | 5.3323 x 10~* | (10.1,50) | 6.1728 x 107

(0.06, 100) 0.0171 (0.6,100) | 1.7077 x 10~ | (0.51,100) | 9.467 x 10~

(0.06,150) | 1.2701 x 1018 | (0.6,150) | 1.2701 x 1072 | (6,150) | 1.2701 x 10722

(0.03, 200) NaN (0.26, 200) NaN (2.6,200) NaN

The following table (Table 4) illustrates the change in the determinant of the
mixed Hessian matrix when the number of servers is 10, the service rate increments

by 1+ € and the arrival rates considered are 1, 10, and 100.
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Table 6.3 Mixed Convexity Results for the Erlang Loss Formula.

(7)) (1+¢10) (14+610) | (10+¢10)
A=1 A=10 A=100

e =100 | 5.97 x 10757 | 4.906 x 10737 | 1.243 x 1078
e=10 |7.637 %1073 | 1.243x 10" | 1.674 x 107
e=1 5.998 % 10720 | 1.674 x 107 | 4.693 x 107°
e=01 |1243x 10" 0.0047 4.956 x 1075
e=0.01 | 6.779 x 10°4 0.005 4.9554 x 1073
e =0.001 | 8.091 x 1074 0.005 4.955 x 107°

Table 5 indicates the change in the mixed convexity when the integer variable

changes for the specified service and arrival rates.

Table 6.4 Mixed Convexity Results for the Erlang Loss Formula.

(,8) | (0.1,10+€) | (1,10+¢) (10,10 +¢€)
=1 A=10 A=100

e=1 0.506 0.0051 5.0603 x 1075
€=2 0.4524 0.0045 4.5240 x 107°
€=3 0.3538 0.0035 3.5378 x 107%
e=4 0.2411 0.0024 2.4107 x 1078
e=5 0.1427 0.0014 1.4267 x 1075
e=6 0.0733 | 7.3260 x 10~ | 7.3260 x 10~°
e="T 0.0327 | 3.2697 x 10~* | 3.2697 x 107°
e=38 0.0127 | 1.2736 x 10~* | 1.2736 x 10~¢
€=9 0.0044 | 4.3537 x 1075 | 4.3537 x 1077
e=10 0.0013 1.3149 x 107° | 1.3149 x 1077

The following graphs illustrate the determinant of the mixed Hessian matrix
corresponding to the Erlang Loss formula. Figure (9) illustrates the determinant

of the mixed Hessian matrix corresponding to the Erlang Loss formula when the
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number of the servers is 5, and the service and arrival rates range from 1 to 5 in
the system. In this case it is easy to see that the mixed Hessian matrix is positive

definite; therefore, Erlang Loss formula is a mixed convex function.

Figure 9: Mixed Convaxity of the Erlang Loss Formula when s=5, 1 and m are betwesn 1 and 5
.

The Determinants of the Mixed Hessian Matrices.

2 B
land m

Figure (10) illustrates the determinant of the mixed Hessian matrix determinant
corresponding to the Erlang Loss formula when the number of the servers in the
systems is 10, and the service and arrival rates range from 1 to 10 in the system.
In this case also it is easy to see that the mixed Hessian matrix is positive definite

therefore Erlang Loss formula is again a mixed convex function.

Figure 10 Mixed Convexity of the Erlang Loss Formula when $=10, | and m are betwaen 1 and 10
an 3™

The Deteminant of the Mixed Hessian malix.

w *

B
Tand m

Figures (11) and (12) illustrate the determinant of the mixed Hessian matrix for
the Erlang Loss formula when the number of the servers and the arrival rate have
the same conditions as in figure 10; however, the service rate ranges from 1 to 100

in figure (11) and ranges from 1 to 1,000 in fugure (12) . In these two cases it is easy

53



to see that the mixed Hessian matrix is positive definite therefore the Erlang Loss

formula is again a mixed convex function.

Figurs 12; Mixed Convexiy of Erlang Loss when £=10, 1<110, and T=m< 1000

Figura 11 Mixed Conwendey of Eriong Loss when =10, 1410, and 1+m=100.

The Determinant of Me Mixad Hessisn Matrix.

Figure (13) illustrates the determinant of the mixed Hessian matrix corre-
sponding to the Erlang Loss formula when the number of the servers in the system
is 50, the service rate increments from 0.1 to 1 by 0.1 and the arrival rates ranges

from 1 to 10 in the system. The mixed convexity condition also holds in this case

similar to the cases mentioned above.

ang Loss when s=50, | and m are between 1 and 50.
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Figure (14) illustrates the determinant of the mixed Hessian matrix corre-
sponding to the Erlang Loss formula when the number of the servers in the system
is 100, the arrival rate A ranges from 100 to 900, and the arrival rate p ranges from

0.1) to 10 with an increment of 1 in the system. The mixed convexity condition

continues to hold in this case similar to the cases mentioned above.
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Figure 14 Mixed Convexity of Erang Loss when s=100.
T T T T T T

The Determinant of the Mixed Hessian Matrix.
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Considering all the particular cases considered above, the mixed convexity holds

for the Erlnag Loss formula.

6.5 COMPUTATIONAL MIXED CONVEXITY RESULTS FOR THE
ERLANG DELAY FORMULA

In this section numerical mixed convexity results for several different special cases
will be obtained. In addition some of the mixed convexity results corresponding to
the Erlang Delay formula will be illustrated with graphs. Let Hg, be the mixed
Hessian matrix corresponding to the Erlang delay formula. Please see Appendiz B
for the determinant of the Hessian matrix corresponding to the Erlang Delay formula.
Table 6 below displays several different values corresponding to the determinant of
Hp, for several different cases of s, y, and A\ when sy = A. As it can be seen in the
table all the particular cases indicate a positive definite Hessian matrix. In the case
when the number of servers is 200, the service and the arrival rate change, Matlab

R2009b results in NaN (Not a number.)
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Table 6.5 Determinant of Hp, when sy is equal to A.

(m,8) | A=1| (ms) |[A=10| (ms) |A=100
(1,6) |220148| (X,6) |02201 | (13%6) | 0.0022
(L,11) |64.4792 | (%,11) | 0.6448 | (47,11) | 0.0064
L.51) | 0.0196 | (%,51) |0.1961 | (§7,51) | 1.9608
(L-,101) | 0.0099 | (25,101) | 0.099 | (igf,101) | 0.9901

In the case when sy = ), the determinant of Hp, for several different cases of
s, pu, and A are illustrated in Table 7. Similar to the case in Table 6 Matlab 2009b
program did not give a numerical result when the number of servers is 200, the

service and the arrival rate change.

Table 6.6 Mixed Convexity Results for the Erlang Delay Formula.

(1, 8) A=60 (n,8) | A=150
(£,6) |0.2576 | (%.,6) |0.0085
(£,11) |1.3159 | (3,11) | 0.0227
(&,51) |2.2282| (1,51) |0.2624
({%,101) | NaN | ($,101) | NaN
) A =500 (1, 8) A = 5000
(32,6) |8.7708 x 107° | (5%2,6) |8.8024 x 1077
(32,11) |2.5463 x 107* | (9%,11) | 25759 x 107°
(3%2,51) 0.0033 (301 51) | 3.3190 x 107
(52,101) | NaN | (%%,101) | NN

The following table (Table 8) illustrates the change in the determinant of the
mixed Hessian matrix when the number of servers is 10, the service rate increments

by 1+ € and the arrival rates considered are 1, 10, and 100.

56



Table 6.7 Mixed Convexity Results for the Erlang Delay Formula.

(7% (1,11) (k,11) (p,11)

A=1 A=10 A=100
p=101 |5.3314 x 1073 | 4.4675 x 10~% | 7.5981 x 10~
p=11 |5.8524 x 10740 | 1.1509 x 1078 0.0016
p=11 |1.1509 x 10718 0.1618 3.2407
p=101 | 7.5981 x 10716 0.3133 3.8563

p=1.001 | 9.2534 x 10716 0.3344 3.9271

Table 9 indicates the change in the mixed convexity when the integer variable

changes for the specified service and arrival rates.

Table 6.8 Mixed Convexity Results for the Erlang Delay Formula.

(,8) | (0.1,10+€) | (1,10+¢) (10,10 +¢)
A=1 A=10 A=100
e=1 33.681 0.3368 0.0034
e=2 19.1326 0.1913 0.0019
g= 9.9449 0.0994 9.9449 x 10~*
e=4 4.7086 0.0471 4.7086 x 10~*
=5 2.0349 0.0203 2.0349 x 10~
e=6 0.8175 0.0082 8.1749 x 1075
e=7 0.3196 0.0032 3.1961 x 107°
e=8 0.1312 0.0013 1.3119 x 1073
E=9 0.0617 | 6.1670 x 10~* | 6.1670 x 108
e=10| 00352 |3.5217 x 107 | 3.5217 x 10~°

The following graphs illustrate the determinant of the mixed Hessian matrix
corresponding to the Erlang Delay formula. Figure (15) illustrates the determinant
of the mixed Hessian matrix corresponding to the Erlang Delay formula when the

number of the servers is 6, the service rate is between 1 and 10, and the arrival
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rate changes between 1 to 6 in the system. In this case it is easy to see that the
mixed Hessian matrix is positive definite; therefore, Erlang Delay formula is a mixed

convex function.

@™ Fig_um 15: Mixed Convaxity of Ed When s=6, 116, and 1=<m=10,

30
I and m

Figure (16) illustrates the determinant of the mixed Hessian matrix determinant
corresponding to the Erlang Delay formula when the number of the servers in the
systems is 11, and the service rate changes between 1 and 10, and the arrival rate
ranges from 1 to 11 in the system. In this case also it is easy to see that the mixed
Hessian matrix is positive definite therefore Erlang Delay formula is again a mixed

convex function.

.o~ Figurs 18: Mixed Convexity of Ed When s=11, 1=l=41, and 1=m=10,
= - " T T

-\

The Determinant of the Mixed Hessian Matix

30
Tand m

Figures (17) and (18) illustrate the determinant of the mixed Hessian matrix for
the Erlang Delay formula when the number of the servers and the arrival rate have
the same conditions as in figure 16; however, the service rate is between 1 and 100

in figure (17) and between 1 and 1,000 in fugure (18). In these two cases it is easy
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to see that the mixed Hessian matrix is positive definite therefore the Erlang Delay

formula is again a mixed convex function.

ot PR Mixed Canvesity of Ed When s=11, 1<k<t1, and 1<m<100, e Figure 1.mud Convty of EQWhan =11, 1411, ond $m<1000.

The Doterminant of the Mixed Hessian Matrx
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Figure (19) illustrates the determinant of the mixed Hessian matrix corre-
sponding to the Erlang Delay formula when the number of the servers in the system
is 50, the service rate increments from 0.1 to 1 by 0.1 and the arrival rates ranges
from 1 to 10 in the system. The mixed convexity condition also holds in this case

similar to the cases mentioned above.

The Defaminantof the Mixed Hessian Matix.

0 = £ o0 £

=5
I and m

Figure (20) illustrates the determinant of the mixed Hessian matrix corre-
sponding to the Erlang Delay formula when the number of the servers in the system
is 101, the arrival rate A ranges from 1 to 101, and the arrival rate p ranges from 1
to 10 in the system. The mixed convexity condition continues to hold in this case

similar to the cases mentioned above.
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ixed Convexity of Ed When =101, 1=i=<101, and 1<=m=10_
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Considering all the particular cases considered above, the mixed convexity holds

for the Erlnag Delay formula.
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CHAPTER 7

MIXED CONVEXITY AND OPTIMIZATION RESULTS FOR
INVENTORY SCIENCE

The assumptions for the existing models in the literature were either completely
backlogged or lost demand prior to Das’s (S — 1,5) inventory model with par-
tial backlogging (Das, 1977). For instance, Feeney-Sherbrooke (1966) analyzed the
backlogging and lost-sale cases for any distribution of replenishment time where the
demand is assumed to be compound Poisson. Gross-Harris (1973) allowed the replen-
ishment time to depend on the level of unfilled demands when Poisson demand is
considered to analyze backlogging. Hadley-Whitin (1963) considered any distribu-
tion of replenishment time and Poisson demand to analyze the lost-sale cases and
backlogging. Galliher-Morse-Simond (1959) assumed the replenishment time to be
either exponentially distributed or constant to analyze the backlogging case under
the stuttering Poisson demand assumption. Among all these models that are suitable
for recoverable items, the (S — 1, S) inventory model is appropriate for items when
the demand is low but the item is expensive so that the cost of ordering in negligible
compared with the costs of holding and shortage. Das’s (S — 1,5 ) inventory model
has a realistic demand condition in which the customers reaction to stockout is to
wait a certain amount of time before cancelling their orders and it is also applicable
to non-service systems with partial backlogging, such as production systems where
the input material need not be processed immediately but processing must be done

before a specific fixed amount of time (Das, 1977).
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7.1 DAS’S INVENTORY MODEL

Following Das, let N € Z* be the initial number of items in stock, A be the arrival
rate of the demand per unit time (constant), p be the traffic intensity, 0 < p = ﬁ z 1,
11 be the service rate, K (N, p) be the expected total cost per unit time of operating
the system, L(p) = i—? be the arbitrarily chosen cost per unit time of receiving
replenishment at the rate p , Cp, be the holding cost per unit per unit time, Cy be
the cost per unit time of keeping an order waiting, C; to be the penalty cost (in
addition to T'C,) per lost order, a = T, and the tolerable delay for each customer
be T units away from his arrival time. Then the total cost per unit time for the

(S — 1, S) model has the closed function form

M(N,p) = K(N,p)+L(p)
1 p—pN+1
Ch]—e‘“(l_f’)pNH{ - 1—p }

C
g _dp [1 _ e—oz(l—p) +ap (1 _ P) eﬁa(l—p)] ,DN+1

+CA (1 —p)e @@= + L(p). (7.1)

+

Analyzing the convexity and optimization of a function with unbounded domain
D C Z* x R™ for n,m > 1 can be difficult (Kumin 1973). Das (1977) emphasizes
the difficulty of minimizing the cost function M : D — R, D C Z* x R*, with
respect to the initial number of items in the stock and the service rate by applying
the previously known methods as follows: "Sufficient conditions for the minimum of
a function of mixed variables such as M have been discussed recently by Kumin in
1973. Unfortunately, these conditions are not easy to verify for the present case."
Noting that the cost per unit time of receiving replenishment at the rate 4, L(p) =
%—g—, is a convex function of the real variable p, he approximates the minimal value of
the cost function by computing the values of the approximation function M*(p) =

K*(p) + L(p) for each p, 0 < p < 1, where K*(p) = K(N* (p),p) and N*(p) is the
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optimal initial stock for a given p. It is also shown that for all test problems K*(p) is
found to be a strict convex function and so is L(p), therefore M*(p) is a strict convex
function. This is a useful technique to find the optimal p that minimizes M*(p) for
0 < p < 1 for which any line-search can be applied; however a closed form solution
to the suggested minimization problem cannot be obtained by this method as it
requires calculations for all p, 0 < p < 1. In this case finding an optimal solution
to the model M*(N, p) implies finding a particular optimal solution for the original
model M (N, p).

The goal of in the following sections is to carry out a study to examine com-
putational optimization results and obtain generalized mixed convexity results for
the cost function M given in (7.1) by applying Theorem 4.1. These generalized
mixed convexity results improve the results of Das and determine necessary and suf-
ficient mixed convexity conditions for the cost function associated with the (S—1,5)
inventory model he suggested. The mixed convexity conditions obtained for the cost
function M form a subset of the domain D, the convexity region containing possible
minimal values of the cost function. The discrete convexity condition (V1M > 0)
of the cost function M which needs to be satisfied to carry out the mixed convexity
results agrees with the discrete convexity results of Das. Some of the numerical
results obtained in Section 7.2 are employed as counter examples for the mixed con-
vexity of the cost function M. Considering the numerical data used by Das and the
mixed convexity results obtained in Section 3, we find minimization results when
the parameters and constant unknowns vary. In the last section we conclude that
the cost function M : D — R is not a mixed convex function over the entire space
(Z+)? x (R*)? with the real variables (T, u) € (R*)? and integer variables A, N,
Cy, Cy, Cy € (ZJf)5 under the constraint A < g, but a region of mixed convexity
can be determined by using Theorem 4.1. Note that even though naturally N is the

only positive integer variable which represents the initial stock level, we consider the
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variables A, Cj,, Cy, and C; to be integer as well since the numerical results presented
in this work are for particular integer values of A, C}, Cy4, and C;. The mixed con-
vexity conditions of the cost function M are not satisfied for (IV, 1) € Z+ x Rt with
the particular integer values of A, Cj, Cy, and C; therefore, the mixed convexity

conditions cannot be satisfied for real values of A, Cy,, Cy, and C;.

7.2 COMPUTATIONAL CONVEXITY RESULTS

A generalized closed-form mixed convexity result is obtained in chapter 5 to solve a
mixed convexity problem raised by Kumin (1973). Das (1977) encountered a similar

convexity problem to that of Kumin (1973) where the mixed convexity of the mixed

variable cost function given in (7.1) was the concern. By using the equalities p = ﬁ

and o = pT, M(N, p) given in (7.1) can be rewritten as

Y 5. (A) N+1
M(N:'ru‘) T Ch . N+1 N_Iu 1 #)\
— —p+A)TY [ A T a
1 — (el-#+M )(”) .
N+1
+ C“A {1 — =N L T (1 - 5) e(_““)T] (5)
] == - H H

A N )\ N+1 25 2
(@)

In this section we obtain numerical mixed convexity results for M (N, 1) and pro-
vide relevant graphs based on the data used by Das. It is a difficult task to compute
the elements and the determinant of the mixed Hessian matrix H corresponding to
the cost function M; therefore, we provide the following (symbolic programming)

algorithm.
Algorithm 7.1:

Introduce symbols T, A u, N,C},Ch,Cy

i A_(ﬁ)N.H'
Define M(N,p) = C’hl_(e(_wmqq)(é)ﬁ,,+1 (N - %)

64



+10?§ [1 _ ol—uNT L (1 _ %) e(_“+’\)T] ("fz) wa c;/\((%e):_;gf)wl) $BE

Calculate Vi (M(N,p)) = M(N + 1,u) — M(N, p).

Calculate Vi (M(N,p)) = M(N +2,p) —2M(N +1,p) + M(N, ).

Calculate % (V1 (M(N,p))) //Differentiate M(N+1, pw)—M (N, p) with
respect to pu.

Calculate det(H) = Vi (M(N, 1) & (M(N, ) — (&(VaM(N, #)))2.

Considering D C Z* x R,

f (Vu(M)>0) {

M is strictly discrete convex with respect to its integer
variable;
if (det(H) > 0)
M is strictly mixed convex with respect to its mixed
variables;

end }

M is not strictly mixed convex.

Note that the differential of the first difference is the difference of the first dif-
ferential by the symmetry of the mixed Hessian matrix. By applying this algorithm,
closed-form mixed convexity conditions for M (N, p) are obtained symbolically. In
particular, numerical mixed convexity results for the cost function M (N, p) associ-
ated with the (S—1, S) inventory model under the time limit on backorders suggested
by Das can be obtained by modifying this algorithm. These convexity results depend
on the fixed variables T, A, C;, Cj, and C,; where we choose L(p) = -f;%. Considering
the initial number of items in the stock and the service rate to be the only parameters
of the cost function M, the mixed convexity conditions of the cost function consist
of the integer convexity of M (i.e., ViuM(N,p) > 0) and the positive determinant

of the mixed Hessian matrix corresponding to M (i.e., det (H) > 0). By using these
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two conditions, we specify the mixed convexity region to find the minimal values
of the cost function in the domain and therefore generalize the results of Das. To
specify the region for which we can find optimal values, we first check whether or
not the cost function has a mixed convex structure in its domain.

In this section, we illustrate the graphs of the second difference of the cost func-
tion with respect to the initial number of items in the stock, the second derivative of
the cost function with respect to the service rate and the determinant of the mixed
Hessian matrix H that corresponds to the cost function M (N, u), in addition to the

related numerical results.

7.2.1 CHANGE IN THE ARRIVAL RATE (})

In this section we observe the effect of the change in arrival rate of the demands
per unit time (A) on the mixed convexity of the cost function M (N, u) generated
for the (S — 1, .9) model. The following graphs assume that the arrival rate is either
1, 10 or 100, the tolerable delay for each customer is 7' = 0.5 units away from his
arrival time, the holding cost per unit per unit time is 6, the cost per unit time of
keeping an order waiting is 4, and the penalty cost per lost order is 35 when the
initial number of items range between 1 and 40, and A+1 < g = m < 40. From this
point on, use p and m interchangeably.

Case 1: We first consider T = 0.5, A =1, C}, = 6, C; = 4 and C; = 35. In this
case, using the basic assumption 0 < p = ﬁ < 1, figures 1-3 below are obtained for
the second derivative of M, the second difference of M and the determinant for the
mixed Hessian matrix H. These figures and the numerical data indicate the mixed
convexity of the cost function for the (S —1,.S) model when the arrival rate is 1, the
tolerable delay of the customer is 0.5 units away from his arrival time, holding cost

per unit per unit time is 6, cost per unit time of keeping an order waiting is 4, the
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penalty cost per lost orders 35, and the initial number of items in the stock varies

between 1 and 40 while the service rate ranges between 2 and 40.

Fig 1. Second difference of M when lambda Is 1. Fig 2. Second derivative of M when lambda is 1.
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Fig 3. Determinant of the Hessian matrix H when lambda is 1

Defeminant of Hessian matrix

Case 2: Similar to the first case, we consider the case where T' = 0.5, A = 10,
C,=6,Cs=4,C, =35 and p = ﬁ < 1; however, this time we consider the
values 1 < N < 40 and 11 < m < 40. The graphs of the determinant of H, the
second derivative of M and the second difference of M indicate that there exist
negative values of the second derivative of M and the determinant of the mixed
Hessian matrix H, therefore the mixed convexity condition of M is not satisfied on a
bounded domain. Hence the cost function M does not have a mixed convex structure
when the arrival rate is 10, the tolerable delay of the customer is 0.5 units away from
his arrival time, holding cost per unit per unit time is 6, cost per unit time of keeping

an order waiting is 4, the penalty cost per lost orders is 35, the initial number of

67



items in the stock varies between 1 and 40 while the service rate ranges between 11

and 40.

Fig 4. Second difference of M when lambda is 10.
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Fig 5. Second derlvative of M when lambda Is 10.
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Fig 6. Determinant of the mixed Hessian matrix H when lambda is 10.
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For the quantities considered in this case, the following graphs serve as coun-

terexamples to the global mixed convexity (i.e., the mixed convexity in the entire

domain) of the cost function M.

M 140 N=1

80

M 150
100 D=

i0 15 20

Case 3: Similar to the first two cases, we assume that the tolerable delay of

the customers to be 0.5 units away from his arrival time, the arrival rate to be
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100, the holding cost per unit per unit time to be 6, the cost per unit time of
keeping an order waiting to be 4, the penalty cost per lost orders to be 35, the initial
number of items in the stock to vary between 1 and 40 while the service rate changes
between 101 and 200. Some of the values of the determinant of H and the second
derivative of M are negative which violate the definition of mixed convexity. The
integer convexity condition of the cost function for each fixed arrival rate holds based
on the the second difference graph of the cost function M . This indicates that the
cost function corresponding to the (S — 1, .5) inventory model under the time limit
on backorders suggested by Das (1977) is not necessarily a mixed convex function
for the quantities T' = 0.5, A = 100, C, =6, Cy =4 and C; = 35, when 1 < N < 40
and 101 < m < 200.

Fig 8. Second derivative of M when lambda is 100.
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7.2.2 CHANGE IN THE HOLDING COST (C})

In this section, we observe the effect of the change of holding cost per unit per unit
time (C}) on the mixed convexity of the cost function M. The following figures are
illustrated for the mixed convexity conditions of the cost function when the arrival
rate is 5, the tolerable delay of the customer is 0.5 units away from his arrival time,
the cost per unit time of keeping an order waiting is 4, the penalty cost per lost
orders is 35 when the holding cost per unit per unit time ranges between 1 and 10,

and the initial number of items in the stock ranges between 1 and 40.

Fig 10. Second difference of M when lambda Is 5. Fig 11. Second derivative of M when lambda is 5.
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Fig 12. Determinant of the mixed Hessian matrix of M when lambda is 5.
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The numerical data indicate that the second difference of M is strictly positive
as was observed by Das; however the second derivative of M and the determinant of

the mixed Hessian matrix H have negative values. Therefore, the cost function M
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is not a strict mixed convex function when C}, ranges between 1 and 10 for the fixed

parameter values considered in this case.

7.2.3 CHANGE IN THE COST OF KEEPING AN ORDER WAITING (Cy)

In this section, we observe the effect of Cy, the change in the cost of keeping an order
waiting, on the mixed convexity conditions of the cost function.

The numerical data indicate that V1;M > 0, as was observed by Das; however,
M and det (H) have negative values when the arrival rate of the demands is 5, the
tolerable delay of the customer is 0.5 units away from his arrival time, the holding

cost per unit per unit time is 6, and the penalty cost per lost orders is 35 when

1<C;<10,1 <N <40 and 6 < m < 40. In this case, we verified the integer

convexity results of Das (1977) by obtaining V1M > 0 for various values of the cost
of keeping an order waiting; however, the mixed convexity condition, det (H) > 0,

of the cost function does not hold.

Fig 13. Second difference of M when lambda is 5. Fig 14. Second derivative of M when lambda Is 6.
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7.2.4 CHANGE IN THE PENALTY COST PER LOST ORDER ()

The effect of the penalty cost per order (C;) on the strict mixed convexity of the cost
function under the parameter assumptions A = 5, T' = 0.5, Cqy = 4 and Cy = 6 when
30<C;<40,1 <N <40 and 6 < m < 40 is similar to the effect of Cy and C}, on
the mixed convexity of the cost function M. That is; The second difference of the
cost function M is strictly positive, whereas the determinant of the mixed Hessian

matrix is negative for some values of the parameters as illustrated in the following

graphs.
Fig 16. Second difference of M when lambda Is 5. Fig 17. Second derivative graph of M when lambda Is 5.
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Fig 18. Determinant of the mixed Hessian matrix H when lambda is 5.
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7.2.5 CHANGE IN THE TOLERABLE DELAY (T)

The change in the tolerable delay for each customer from his arrival time is an impor-

tant factor in the mixed convexity of the cost function. Assume that the tolerable
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delay for each customer ranges between 0.1 and 0.9, the arrival rate is 5, the holding
cost per unit per unit time is 6, the cost per unit time of keeping an order waiting is
4, the penalty cost per lost order is 35, the initial number of items range between 1
and 40, and the service rate ranges between 6 and 40. Under these assumptions, the
numerical data indicate that the cost function is not a mixed convex function, but
is an integer convex function. The following graphs illustrate the numerical data for

this case.

Fig 19. Second difference of M when time changes. Fig 20. Second derivative of M when time changes.
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Fig 21. Determinant of the mixed Hessian matrix when time changes

In the cases considered above, the numerical data indicate that the cost function

is not a strict mixed convex function for some T, A, C, Cy and C; where L(p) = %%.
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7.3 COMPUTATIONAL OPTIMIZATION RESULTS

Computational results for the optimization of mixed variable functions are necessary
because of the complex nature of the problems encountered (see for example, Benders
(2005) , Giimiig and Floudas (2005) , and Al-Yakoob, Sherali and Al-Jazzaf (2010) .)
In the previous section, counter examples to the global mixed convexity of the cost
function considered by Das are given for some p and N. Considering the mixed
convexity conditions of the cost function M obtained by applying Theorem 4.1, a
subdomain of the domain of the cost function can be found to find the minimum
values of the cost function. In this section, several computational optimization results
are illustrated by using the mixed convexity results obtained for the cost function
M (N, ). In addition to the cases for which minimal values of the cost function M
can be found, we consider the cases where the real convexity conditions of the cost
function M hold but optimal values do not exist, and the real convexity conditions
of the cost function M do not hold, and therefore minimal values do not exist.
Case 1: In this case we assume the arrival rate to be 1, the tolerable delay of the
customers to be 0.5 units away from his arrival time, holding cost per unit per unit
time is 6, cost per unit time of keeping an order waiting is 4, the penalty cost per
lost orders is 35, and the initial number of items in the stock varies. Computations
indicate the real convexity of the function M (N,m) for each fixed N; however,
minimum values of the cost function do not exist. That is, in the case in which the
arrival rate of the customers is 1 and the tolerable delay for each customer is 0.5
units away from his arrival time, the minimal total cost per unit time does not exist
for any of the fixed initial number of items in the stock when the service rate changes
for A < p. Figure 22 illustrates the graphs of M versus p for various values of N

and indicates the real convexity behavior of M with respect to p.
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Now suppose that the tolerable delay of the customers change from 0.5 to 0.9 and
the other assumptions for this case remain the same. The change in the tolerable
time delay does not result in a change where the minimal service required can be
found for 1 item in the stock. Figure 23 illustrates the graphs of M versus y for

various values of N and indicates the real convexity behavior of M with respect to

L
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Fig 23 N=1, N=5, N=10, and N=20

Case 2: Assume the arrival rate to be 10, the tolerable delay of the customers to
be 0.5 units away from his arrival time, holding cost per unit per unit time is 6, cost
per unit time of keeping an order waiting is 4, the penalty cost per lost order is 35,
and the initial number of items in the stock varies. In this case, figure 24, N =1, is
a counter example for the mixed convexity of the cost function. The numerical data
indicate that M cannot be minimized for any number of initial number of items in

stock.
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Now suppose the tolerable delay of the customers change from 0.5 to 0.9 and
the other assumptions in this case remain same. The increase in tolerable delay
of the customers results in mixed convexity where the minimal total costs can be
found. The numerical data indicate that the total costs are increasing as the initial
number of items in the stock increases. In addition, the service rate decreases when
the number of items in the initial stock increases. For various values of unknowns in

this case, figures 25 — 28 illustrate the real convexity behavior of the cost function

62.2110070
62.2110068
62.2110066

12.5550 12.5555
m

M versus u for various values of V.

914320000
914300000
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m

Fig 25. M versus m when Fig 26. M versus m when
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120125 120130 1201 11.2003 11.2005
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Fig 27. M versus m when

N=3
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Case 3: Suppose the arrival rate to be 100, the tolerable delay of the customer
to be 0.5 units away from his arrival time, holding cost per unit per unit time is 6,
cost per unit time of keeping an order waiting is 4, the penalty cost per lost orders is
35, and the initial number of items in the stock varies. The numerical data indicate
that the mixed convexity holds where minimal total cost can be found. For various
values of unknowns in this case, figures 29 — 32 illustrate the real convexity behavior

of the cost function M versus p for various values of N.

M 53.659394 M
53.659302 54.805877
53.659390 54.805876 .

123.42 123.44 120.19 120.2
m m
Fig 29. M versus m when Fig 30. M versus m when
N=1 N=2
M M
57.885406 101.7049810
i 101.7049805
116.95 116.96 107.333 107.334
m m
Fig 31. M versus m when Fig 32. M versus m when
N=3 N=5

Under the assumptions of case 3, suppose we change the tolerable delay for each
customer from 0.5 to 0.9 units away from his arrival time. This change results in
an increase of the service rate and a decrease in the total cost. For various values
of unknowns in this case, figures 33-36 illustrate the real convexity behavior of the

cost function M versus p for various values of N.
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The following algorithm can be used to determine the minimal values of the cost
function M (N, p).

Algorithm 7.2:

Define M (N, p).

Apply algorithm 7.1 to find the mixed convexity region of M under
the specified constraints and call it D.

Fix the integer variable N symbolically in region D.

Find the p values by solving Mﬂ“‘)

s = (0 symbolically.

The drawbacks of this algorithm are that the solution of the differential equation

dM(N )

i = 0 is not easy to obtain and the minimum value of the function depends

on the strict mixed convex domain of the cost function.
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The following table summarizes the convexity of the cost function M with respect

to the initial number of items in the stock and the service rate.

Table 7.1 Convexity of M (N, p) with varying parameters in A

A
Convexity

1 10 100

Integer convexity holds 4 € [2,40]  p € [11,40] p € [101,200]

Mixed convexity holds  Locally Vary Locally Vary Locally Vary

Table 7.2 Convexity of M (N,u) for parameters Cy, Cy, C; and T

Convexity C, Cq G T
Integer convexity holds  [1,10] [30,40] [L,10] [0.1,0.9]
Mixed convexity holds Locally Vary Locally Vary

The minimal values are summarized in the following table when M is mixed
convex and @—%”‘—) = 0, the holding cost per unit per unit time is 6, the cost per
unit time of keeping an order waiting is 4, and the penalty cost per lost order is 35

and A+ 1< p <40

Table 7.3 Some of the Minimum Values of M (N, i)

Test Values 1<p<40 11<p<40 101 < p <400

N=1 53.6594
T = 0.5,
N=2 54.8059
D.N.E. D.N.E.
N=3 57.8854
N=5 101.705
N=1 59.9143 53.654
T =09,
N=2 62.211 54.7843
D.N.E.
N=3 67.428 57.7939
N=5 82.2913 66.801
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where D.N.E. (does not exist) is the case when the condition u"‘ﬂ,ﬁ’—“) = 0 is not
satisfied. By using least squares we obtain the following best fitting models that fit

the minimal value data of M with respect to N when T is fixed and p changes:
F(N,09,11 < p < 40) = —0.180483N? + 2.54305N° — 4.069067N + 61.6208, (7.2)

F(N,0.5,101 < p < 400) = 1.32757N°® — 6.9989N2 + 12.85023N + 46.4805, (7.3)
F(N,0.9,101 < g < 400) = —0.110417N°+1.602145N?—2.90323N+55.0655, (7.4)

with the corresponding curves in figure 37. It can be seen that even for the case
when N < 2, the approximation function given in (7.3) has a non-convex behavior.
It is not always obvious that the second forward difference of the cost function M

is positive for N > 2 which indicates the complexity of the cost function M.

Fig 37 The graphs of the functions given in (8.2), (8.3), and (8.4).

7.4 CONCLUSION

In this work, computational mixed convexity and optimization results for the cost
function corresponding to the (S — 1,5) inventory model under the time limit on
backorders suggested by Das (1977) are given. A generalized convexity result for
the cost function suggested by Das is also shown to find a region for which mixed

convexity results hold. The integer convexity results obtained in this work support
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the integer convexity results obtained by Das for the cost function M (N, ;1) . How-
ever, the mixed convexity of the cost function with respect to the number of items
initially in stock and the service rate parameters do not hold as shown by the numer-
ical results in this work. Therefore, the same result holds true when a more general
global mixed convexity result is considered for the cost function with respect to the
integer variables )\ (the arrival rate of the demand per unit time), N (the initial
number of items in stock), C, (the holding cost per unit per unit time), Cy (the cost
per unit time of keeping an order waiting), and C; (the penalty cost (in addition to
TC,) per lost order), and the real variables j ( the service rate) and T (the tolerable
delay for each customer).

That is,

M (Z+)5 s (R+)2 — R,

(/\,N,Ch,Cd,C[,T,,u) L d M(,\,N,Ch,C’d,Cl,T,u),

does not satisfy the global strict mixed convexity properties with respect to the
constraint A < p. The violation of the global strict mixed convexity condition of
M (N, ) is based on the negative values of the second derivative of M in all the
conditions other than when T' = 0.5, A = 1, C}, = 6, C; = 4 and C; = 35 when
1< N <40 and 6 <m < 40.

In this work, we obtained necessary and sufficient conditions to find a local mixed
convexity result of the cost function M corresponding to the (S — 1,S) inventory
model under the time limit on backorders suggested by Das, where minimal values

of M can be obtained by using the mixed convexity region of the cost function.
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CHAPTER 8

CONCLUSION AND FUTURE WORK

Convexity of multivariate mixed (integer and real variable) functions have impor-
tant applications in many fields of study. Examples of such functions can be found
in management science and telecommunication systems. In particular, some of these
functions have number of servers to be the integer variable and the service rate
to be the real variable. Special case convexity and optimization results for multi-
variate mixed functions are mainly obtained by either algorithmic or combinatorial
approaches. In this work, a unified theoretical convexity method is introduced to
obtain mixed convexity results of mixed variable functions. The main component
of this mixed convexity method is a Hessian matrix which has a Hessian matrix for
multivariate discrete functions as a special case. The mixed convexity of multivariate

functions associated to

1. An M/E}/1 queueing system suggested by Kumin (1973),
2. An (S — 1, 8) inventory model suggested by Das (1977),

3. Erlang Delay and Loss formulae

are investigated using the method suggested in this work.
The optimization problems designed for queuning systems usually have mixed vari-
able functions where the corresponding solutions obtained are particular solutions

of the general problem. The future goal is to apply the method introduced in this
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work to obtain mixed convexity results for functions exist in queueing systems opti-
mization problems. In addition, the results obtained for discrete convex functions

can be improved for mixed variable functions.
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APPENDIX A

MIXED CONVEXITY OF THE ERLANG LOSS FORMULA

By using the following symbolic MATLAB R2009a program we obtain the determi-

nant of the mixed Hessian matrix corresponding to the Erlang Loss formula.

syms 1 s me_2 e_1 e ePl eP2 eps_1 eps epsPl epsP2
Ty s e e All the epsilon’s are written in terms of eps -——————-—-
epsP2 = ((172)/((s+2)*(s+1)*m"2))*eps
epsP1 = (1/((s+1)*m))*eps
eps_1 = ((s*m)/1)*eps
e e A All the e terms written in terms of es -———————=———————— yA
e — eps - eps_1
e - eps
ePl = e + epsPl
e + epsPl + epsP2
U Mixed convexity components of the Erlang Loss Fromula-----—------- h
Nabla_11 = (epsP2*ePl*e - 2xepsP1l*eP2xe + eps*eP2xeP1)/(eP2xePl*e)
Diff_Nablal = (1/((m*ePlxe)"2))*(-eps*ePl*e~2 + epsP1*e"3 + eps_1*(eP172)%*e
- eps*(eP172)*e_1)
Scnd_Diff = (eps/((m~4)*e~3))* ( s*(m~2)*(s+1)*e"2
- 2x1#m*(s+1)*exe_1 + 2x(1"2)*(e_1)"2 - (1"2)*e*e_2)
Det = (Nabla_11)*(Scnd_Diff) - (Diff_Nablal) "2
collect(Det,e,eps)
simplify(Det)
= simple(Det)
pretty(C)

== R Wl ve g
onou

The output of the algorithm gives the following:

A2e?

2
A sm
2 2 3 2
—— |e%egyq +Eg1€° , — ————e, — — (ese
mieled ‘: g8+ s s+1 m(s-l—l) 5 2\ ( 8 s+1)
s+41
€ A2

8
2
& — &= (€t ,
el it [“" neosa ~ 2ory (e H o G v D “)]

[2)\263_1 + M, (%E - es_l) +m?s(s+1)e? -2 m(s+1) eses_l]

Det(H) =
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Ae 1 Ae (e 3¢ €5 sel .
Det(H) = - |— — — -
aw) = -3 (2s)+ 2 (%) - wem (25) el

" e (1 2 L), M2e? 1
mi \ el md(s+1) \ &3 es+1 mb (s +1) (s +2) \ e3esyo
[2,\2 2+ smhees — Ne,_je, + e 25 (s 4+ 1) — 2 meye 1 (s + 1)]

After multiplying out the terms in the determinant we obtain

A% Me* fef e e? s%e? 1
Det (H 4 T A 2 ] 2\ 4 ]
m .5-|-1 m € m8 (3 =+ 1) es~}~1 m* €5
i 2)\2 e [ e,y +2 A2 € 4 2)\862 1
m? \ e2esiy m(s+1) \ el m3 \ esesi1
+ o A3e? €1 ) 2A & fé..4 s A2ge2 21
mb (s +1) 6383+1 md \ el mi(s+1) \esy
2,\?- 2 fe sAe3 1\ N (e  s(s+1)é (1
m4 84 + €3 m* \ el + m? e?
_2é (s +1) 4)3¢? 2 1 2\%e3s 1
m5 (s+1) e3es+1 m? (s +1) \ e2es1
_ 2/\3 2 €s_1 & 2)\36 )\2 >
mS (3 -+ 1 ¢ 5€s+1 €s€s+t1 62€3+1
2)\4 2 ﬁ /\3638
mb(s+1)(s+2) \ eley m5(9+1)(s+2) eZesio

Me? N Aes 1 2)3¢2 €s—1
m8(s+1)(s+2) Pes+2 mi(s+2) \esessn) ™m0 (s+2) \e2e,12

To be able to cancel out the common terms we number the components of the

determinant as follows:

2.3 3.9 7.8 4.2 2 2.3

Det (H) = X 1\ Me (e q) Ae ey _sel
mt \el,, m4 \ el mé(s+1)° \ei, m? e?

—— \"W—/

Ne? [ e, A3¢? es Ase? 1
-2 7 3 + 2 z 3 + 2——3
m* \ e2esyq m® (s +1) \ 3, m3 \ es€s11

e B

/\3 2 2 - 2,.2 1
49 € €s—1 +2)\ -1\ _, A“se .
m® (s + 1) \e.,e2,, m? \ e mi(s+ 1) \ e,
| TR SV S

90




+2A252 e, N she (1Y N (e, L8 (s+1)e (1
mt \ el m3 \ el mA \ el m? e?
e ——

N o
"

_2)é¥(s + 1) 413 e, 2X%e%s 1
T mb(5+1) \eBeppn) mi(s+1) \eegn
N 9A%et )\e s 4)\2 2 ey
mB(s+1) \ e2esa m3 esesﬂ md \e? €3+1

" 2\t Meds 1
mb (s + 1) (s+2) \ e es+2 t o (s+1)(s+2) \e2esy2

€s—1 Ne2s 1 B 2232 Co_1 )
e2est2 m4 (s +2) \esessa m3 (s +2) \ e2esy2

(s+ 1 (s+2)
Simplifying the terms (1.1) — (1.2) through (5.1) — (5.2) we obtain
X2 (e,
. 1.2) = — | =

an+az = 22 (%),
set 1

(21)+(2.2) = 3 (%) ;

22 (e,
(B31)+(B2) = —‘m—g( 631),

(4.1)+ (4.2) = 0,
(5.1) + (5.2) = 2ﬁ( Se) )

m* \ eZesi1

Therefore after simplification we obtain the determinant of the mixed Hessian to be

X (1 M féd
Det(H) = =2 (ez—)+ F(ea)
s+1 s
N — e’

Follows from 1

Me? e 5 se? A
m8 (3+1)2 €341 m? \ e2

| Follows from 2|

(3 ]
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2222 [ e, b €s e it
S R +2 s— | +2 5
m? \ e2es41 mP (s+1) \es ms(s+1) \eses,q
[Follows from 5|
5 A2se? 1 3 e3sh [ 1 Ae? es_ 2)\6 €s-1
mt(s+1) \ e, m3 \e? m4 e3
Iﬁllows from 3|

4232 ez, 2)%e%s 1 N 2)3¢2 €s—1
_mP(s+ 1) \edest1/ T mA(s+1) \e2esrt ms(s+ 1) \eZess1/)

v

2A%¢? ( e2_, ) " Aeds ( 1 )
m8 (s + 1) (s +2) \elesya mb (s +1) (s +2) \ e2es42

Me? o1 e 1 223¢2 o1
(s + 1) (5 +9) () T+ () T+ ()

Simplifying the terms (6.1) with (6.2), and (7.1) with (7.2) we obtain

61)+(62) = — e (83—1 ) L2 (es_l)

m5(s+1) \edesa m5 (s + 1) \ e2es1
2N e,
= 2e,.
m? (s + 1) (e €s+1) [~2e0-1+ei]
_ 232 €51 sy ot ]
— b (,5 T 1) egeﬂ-l_l s—1 s

e e_, & 2233 €s—1
T mb(s+1) \elesn)  m°(s+1) \efen
2/\3 2 62
T md(s+1) (e €s+1) A

4
€s

—eses_l) _ ~ )\ (65#1>
1 =T 1
el m el

P (e§_1 — (€4-1 + €5) 63—1)



Therefore,

Det(H) = _/\262( 1 )_ Me? ( e’ )+ PR ( es )
m? \ el mb (s+1)? \ ety mb(s+1) \ e,
49 5)\3 €2 ( €51 ) b 4)\2623 ( 21 )
m® (s +1) \ el 4 mi(s+1) \ €2, -
M fe,1\ X[ 1 se? (1 2)e® (e,_1
e () (@) e (@) - (8)

—— N’
1oo

(1
+[_ 20%2 (e§_1)+c] 227 ( 1 )
md (s +1) \efes o mA(s+1) \e2esn
+2)\2€2 ( €s1 ) N A2 ( ez,
m? \ e2esi mb (s + 1) (s +2) \elesy2/
LT

i ABBS 1 _ /\462 €51
m5 (s+1)(s+2) \ e2espa m8 (s +1) (s +2) \ e2es42

[1.2]
i Ae2s 1 2X3e? €s_1
m? (s +2) \ esesi2 m® (s + 2) \ e2es42
We first simplify the terms given in (10.1) and (10.2);

(101) +(102) = — (-1-) (ses —2;’;—334)

8

62
= ﬁ (6_3) [smes - 2/\63_1],

8

L+

S’

and second simplify the terms (11.1) and (11.2);

Al
B 5 11.2) = (2e5—
(11.1)+112) mé(s+1)(s+2) (8365+2) e
Xl
= S-l-]. S—|—2) (6 63+2) ea—l+6s l_es)
)\4 2
T mb(s+1)(5+2) (f’ €3+2) €1~ &)
B }\4 2 €s—1
T omb(s+1)(s+2) e€3+2 m6(9+1) (s+2) \e3esq2
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Therefore
AQ 2 )\4 2 2 2)\3 2 3
o< - atinl) i
m €st1 mb (s +1)° \€n (s+1) \ein
232 €sr1 )\2626
+2 -
m® (s +1) \ ese §+1 +1)

M (esq s)\B 62 1
— o m3 = [smes — 2Xes—1]

>

v

Result of 10

2)3€2 i 22 %% 1 2)@ 2 [ es1
- c
ms (s —|— 1) \ e es+1 e mt(s+1) 62€3+1 mt \e2e,q1

/\4 €51
mS (s + 1 (s+2) e3es+2 m8 (s +1) (s +2) \edest2/
[Bﬁm

22
+m5 (s+1 )(s+2) (e es+2) m4(s+2 (e es+2)
2)‘3 2
m ( +2) (8363+2)

In the above inequality, first we collect and write the negative terms that contains

¢2, second we collect and write the positive terms with €2, and last, we collect and

write the terms that contain €. Therefore we have

Det(H) = _)\262( i )_ g2 (eﬁ) 222235 ( 1 )
m4 63—#1 o mﬁ (S + 1)2 s+1 m? (9 i 1) s+14;

'

21
B 2232 ( &2y ) B 2232 ( o1 )
m® (s + 1) \ e2esia mS (s +2) \ e2ess2
32 2
e () o5 (&) e
et 2232 ( €s—1 ) i 2222 ( &5t )
m3(s+1) \ese2; )  m' \efesi1/
TZ2

A e x " MeZs 1
mé (s +1)(s+2) \edego m (s +2) \ esess2

N
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_)\2@ (es_1> 4 s ( 1) 3 20%s ( 1 )
mt \ el m3 \ e m (s +1) \e2espn
N ( €s—1 ) % Mels ( 1 )
mb(s+1)(s+2) \eleso mb(s+1) (s +2) \ e2esy2

Simplifying (8.1) and (8.2) we have

(8.1)+(82) =

W ey
m5(3+1 8+1 (S—I—2) edesi2

s+1)
B A4 2 8 g 1
 mS(s+1) S+1 e‘§+1 s~|—2 edes o

A4 2 ( )
= s+2)ele g+ (s+1)es 2
m8 (s + 1) (s+2) edel 1esin ~ ) exeera+( ) €aa 1]
A4 2

5
= —€,6;5 +c
m8 (s +1)% (s +2) ( s+1€s+2) ]+

T Tms(s +A14)2( +2) ( s;) e

Simplifying (12.1) and (12.2) we have

i 1
)\2 2 1 .
T YA (s+1) (EEGEH) [(S +1) (es — €) (5 + €541) — 563]
\e? 1 ) ,
A2e? 1 2 5 X
& 2m4 G+ D) \ee,, [seZ + €2 + (s + 1) (—€e, + €s4185 — €€541) — se?
A2 1 )
= ol (s+ 1) (ersﬂ) [es + (s +1) (—ees + €sq16 — EEs-l-l)]
_ g N LY (@)
mt(s+1) \e2e? /)
A2 1
V2 () o+ D et e =)
222 1 2\2¢2 1
= @ 2 —EsCs -8 s $
m (s +1) (e§+l) MY (836344) (=eses + €onaes = Eskora)
- Tmi(s+1) el '

95



Therefore we have

Ve 2xte? e,
Hy = = - = 1
pa(m = 4 (7) -7 (de) ®
e e
3.1

42 ( e )-I—c _ 2)\3¢2 ( €s—1 )
MG+ \eh/) ™+ \ e
}Remamlng from 8|
62 : AS 2
+ﬁ (E.g.) [smes — 2Xes—1] + (s+1) ( s+1)

s 3 €1 )\22 ( 1 )+a
m® (s+ 1) \ese, m4 (s+1) \e2, !

o

Iﬁﬂl
A (821)_'_ Netg ( 1 )
mS (s +1) (s +2) \edesya) m*(s+2) \eseora/
32

_A@(es_1)+s@(l)+_ 22 7s ( 1 )
i\ )T \&) T TG \ e

M (83-1 )—I— Meds ( 1 )
S GTD D \Feups) TG DG+ D) \Ferrs

First simplifying (13.1) with (13.2),

(13.1) + (132) = M (1), Ne?s 1 )
' T mt \ely m* (s +2) \esess2
Nege )
T mA (s +2) eseqrel,, [‘ (8 +2) esesia + Ses+1]
s€s &
e )
T mA(s+ 2) esesrzel [— (s +2) €5 (es + €51 + €ata) + 5 (€5 + €511)°]
sts+2bg41
A3

2 2
= —3se; — 2e
m (s +2) eses+2e§+1{ 2 2

—(s+2)es (€41 + €sq2) + 5 (62 + 2e5€541 + €§+1)}
A2¢2

2 2
= —-5es — 2e
mi (s +2) €3€8+26§+1{ ¢ 4

—(5+2) €5 (€51 + €op2) + 862 + 2846541 + S€2,1}
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Ae?

= {262 — (8 +2) €, (€51 + €sp2) + 25€5€541 + S€2,1}

i (5 1 2) eseeracin

222 22

= —2¢2) +
m? (s + 2) eseraeii ( S)

2
—2€, (€s+1 + €s42) + S€s€sp1 + S€oq }

m (s +2)

1
2
€5€542€5 11

) {—s€4€s12

2222 €s
G m AL (134
and then simplifying the outcome (13.4) with (13.3) we obtain

—2)%¢2 ( €s ) Joe ( 1 )
13.4 13.3) = +c3+2 +a
BH+39) = oty \emdn) @ miGr o) T

=224 es 2)2%e2 ( €yid )

- + +a;+c
m? (s +2) (es+2e§+1) m# (s +1) \esro€l,4 ——

mi(s+1)(s+2)

e-Es‘+2€s+1

(( (s+2);3+2 ) L

_ =2 [ (st e 2AZe2
= m# (S +2 S + ]. 63.1_263 1 m4 S + 1) s+ 2) €3+26§ )
* +
2)3¢2
N s+1 es+(s+ 2)e + ¢
mt ( (S + 2) (83+268+1) ( ) ( ) 5+2] 4
2A22
= S + 1 6s S + ]_ es + es + c
mi(s+1)(s+2) es+2€3+1) [—( + ( ) €st2 o] +
2)%¢?
i ) [(s+1) (=5 + €ay2) + €aya] + 4

m*(s+1)(s+2)
2)\22

63+2es+1

[(5 + 1 (€s+1 + E.‘H—‘Z) ¥ eS+2] +C4

2)2¢2

<
-
- s (e
{

mA (s +1) (5 + 2)

€ +1)

m4 (s +2)

2A2 2
= +
m* (s +1) (s +2) ( s+1) “

Therefore the determinant takes the form

232

(Es+1 + €gt2

2
€s+26541

€s—-1

)-

fn5@~+2)(

2
€5€s+2

)

2A3 2 82
Det (H) = 23
3( ) Lfrn5(s—|-].) (6634»1
14.1
M2

2
s

mS (s + 1) (s + 2)
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63+1

>+C3

v

15.1

)+C4
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232 €s 2N 63_1
- 3 +
m5 (3 + 1) es—l—l m5 (8 + 1) €sC 3~|-1
14.2

X2 1 i A e,
Mt D E 4D \ ) O m D (+2) \dews

Il}lﬂ

2

+% (glg) [smes — 2Ae,—1]
N 63_1) L (l 2% ( 1 )
T md ( et )" md \e) mi(s+1) \eless
MY ( €s_1 )+ Ml ( 1 )
T mS(s+1)(s+2) \elessz) m°(s+1)(s+2) \elesrs

Adding (14.1) and (14.2) we obtain

(14.1) + (142) = - 2272 (63_1 ) L (e)

m® (5 + 1) \edes m® (s +1) \ el

233 ( 1 ) e3_1+ es ]

- mi(s+1) €s+1 et eln
A3 2 g .

T mb(s+1) \é 16 —Co1165-1 + €]

2}\3 2

~(es +€s41)° (€5 — e+ e;‘]

(€2 + 2e5€041 + e,,) (€2 — 2e,e,+ €2) + €3]

Cb

...;

C'b
\___/\___/\_/\.__./,——,

- 2e3e, — 6262 2e3€.11
m5 s+1 el 163 {2es6s o
2
+4€ s€s+1€s — s+l€ + 283 €s4+16s — s+les}
2)\3¢ 2 €2
3 26 €s€s — — — €4€st1
m5 S+1 .5+1e'3){ s-5 2 sCs

2 2
s+1€ + 2e.€ S_HFS — esﬂes}

o (t)m e
S+163 8 \ s+1 s+1 2

$ 3
+4eses+1es — €162+ 2e,e2 16, — €5,160)

+4e? “€s41€5 —
2A3 2

(=
(o

T omb (/\33:1 (egjle
(
k
(=
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M

2X°%el 1 2 (s+1)m 2
= E Ll L .
wen (@) o (= (5 1) en )

2 2 2 2 2 2
+deles 165 — €2,1€0 + 26,65, 1€, — €5,1€5}

223 1 5 (s+1)m :
- e () 04 (4 (5 1) o= )

9 2 2 2 2 2
+46363+163 — €516 + 263€S+163 - €s+163}

X%l 1
= ; Ky
mP(s+1) \e;,,€3
Note that k; is positive since
9 sm+m €2 " m e\ . sm
263 €s 3 -1 €g11 — E > 263 (N (T) €1 — —2— since T > ].,

2
2 Liss _S%
- SR (es()‘)eaﬂ 2)

> 0

M

since Ze,e 41 > €2 by direct computation. Clearly

2 2 2 2 2 2 _ .2 2 2
deje, 165 — €546, T 26565, 1€ — €516 = €4€541 (4e; — €a1) + €544 (26365 — es)

> 0.

Adding (15.1) to (15.2) we obtain

32 3.2
(15.1) + (15.2) = 24 ( sl )+ 2)€ ( ced )

T mB (s +2) \e2e.rs mB (s + 1) \ e,€2,;
2X%€2 €s—1 1 1
FEneTD o) eV e,
2)\3¢? s e? e.e
_ () [t oy 2 |
md(s+1)(s+2) \ e eZ 1es€sy2 €s€st2€2,

N 2X°¢? o1 1
ms(s+1)(s+2) \ es e
2A%? €51 €§+1 €5€s+2
= 5 - 7+ 2
mi(s+2) \ e €sCs42€2,)  €s€s42€541

+

2A3¢? €s-1
ms (s +1) (s +2) \ el
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 mS(s+2) €s€s 12621 BaL T et

)\3 ¥
+m5(9 “|"1) s+ 2) (es s+1)
= 2}‘32 2 +(6 1 — € 1)(8 1+€ 2)]
mo (S 4+ 2 es+2es+1 €st+1 s+ 5+ s+ s+
2A3 2
+
1) (5 +D (+)

2 (es— ) )
= €s+1€s+2 — €s+16541 — es+1€s—|—2]
md (S + 2) 6385+2€s+1

N )\3 2 €51
mS (s +1) (s +2) \eseip
B DN €s—1 )k’ » 223 ( €s-1 )
T omb(s+2) \e2esq2el,, 2T mb(s+1) (s +2) \esel,
where clearly k; < 0. Therefore

2X\%e2 1 N ( € )
Det (H) = ka— ol
et (H) m5(s+1)(s+1e3) T s 12 (54 2) \eh) T

ﬁtemammg from I4J

23 €s—1 223¢2 €s—1
+ 2 2 kg + 5 2
56 12 \Fewrat ) TG+ D +9) \adl,

lﬁemainin; from 15.2J

N 2)%¢? 1 ) P Xie? ( ez, )
C
m (s +1) (s +2) \ el > mS (s +1)(s+2) \€edesta 9

'l

e (1
+$ (%) [Smes — 2)\65_1]
N (e SN (1Y 22 %% 1
mt \ el m3 \ el m?(s+1) \ e2esp1
}\4|EE| €51 n AaEls ( 1 )
m8 (s + 1) (s + 2) \ edesq2 mS (s +1)(s+2) \e2eu

Adding (9.1) and (9.2) gives
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)\462 62 A4€2 62 . )
9.1)+ (9.2 = = S + 8—
(0-1)+(02) mé(s+1)*(s+2) (6§+1) mb(s+1)(s-+2) (e 3es1o

M2 1 . L .
R - +(s+1
m8 (s 1)?(s+2) (e €s+ze§+1) ( esesra + (s )es_les+1)

> 0

because e?,; > e and (s + 1) e?_; > eseqra. Therefore
2)\3¢? 1 2)3¢? €s—1
Det(H) > k k
R mb (s + 1) (8§+1e§') Ty m® (s + 2) (3§83+233+1) ’
6D (o) * meaners ()
(s - 1) (s +2) \ese?,, (s -+ 1) (s+2) \e2,4
A462 62 1 62 1
= — | = 2 — 2Ae,_
T 1) (s + (€3€s+2) T (63) e, = 2l

2)
€s—1 S ( 2)\2@3 1
( )+ 5 (3) -7 (o)

,\4@ €1 A%l 1
mS(s+1)(s+2) \edesya) mP(s+1)(s+2) elesr2)

17.1 17.2
Note that
3)\E| 1 )\2@ €s5-1
(161) +(162) = — (5) - ( i )
M 1
- m4e4()\6_83ﬁ1)>0
and
X €s-1 1
AT +172) = ~ Sy DG+ (e es+2) " s+1 (s+2) (e es+z)
- N [e + ]
T omb(s+1)(s+2) 6€s+2 =
@ o+ 2 2]
T omb(s+1)(s+2) \eesio o A
ME sm . sMm
7 D) (5 +2) (e 6s+2) (TES) sl Tl
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Therefore

91Xt 1 NP2 &5 4
Det(H) > 4 k = k
et (H) mS (s + 1) (6§’+162) L (s+2) (eiesweiﬂ) ’
¥ 2232 es-1 ) | 2322 1 )
m5 (s +1) (s +2) \eselss mi (s +1) (s +2) \ef

2 2A2
+c5 + 6—3 (—}5) [smes — 2Xes—1] — £ ( ! )
m3 \e

3 m? (s +1) \egest1

Because of the complicated nature of this inequality we obtain numerical results

corresponding to the determinant of the mixed Hessian matrix.
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ArPENDIX B

MIXED CONVEXITY OF THE ERLANG DELAY FORMULA

In this section we determine the determinant of the mixed Hessian matrix corre-

sponding to the Erlang delay formula

1
(-T2 (3)"

Next we rewrite the Erlang delay formula as a function of the service rate p and

Ed (Sa Ju')

the number of servers s by using the equality p = ﬁ

1
Ed(S,,LL) = 5—1i
(s— 1)'2(s ‘)( )
_ B
(- (9
1

1 i §=1
(s=11% Li ()

Replacing ¢ with s — i — 1 we have

Eq(s,p) = 3_11
(=D (5
B ) 1
-0 R R
1




Let j =i+ 1 therefore

1
Ed (S?nu) = 8

(6 = IS oy (&)

=1

The first difference and the differential of the Erlang delay formula are

1 1
led = s+1 -

oS et (8 6= V! (8

2

% - e @] Eea @ (

1

A

- e @] B

and the Hessian matrix components are

)

B @] B @]

-3 (sl— 1)! [Z(sjj)' (%)J

a0
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Let

d*E,
dp?

Vi Eq

d
—V1Bq

d 1 B 1
d[.l', s+1 s j
N e 4y - 1)!2%3—3)‘ (%)

s+2
— ! J Ky’
s+1 _7 nY;
B =
SZ(S+1 —) (A)
— ()
= (=1 £
¢ & )g(s—j)l (,\)
8 -9 i
= 17 eyt
= ;(s—j)! (%)
~jG= 1) oy
E = —_ | =
; (s —j)! ()\)
s+1 ) "
J A
F = — (=
jgl(s—l- 1-j) ()\)
By using this notation we have the Hessian matrix components as follows:
= oS [2D* - CE]
M (s—1)!
1 -1
= ———{AB — 1)AB
(s—l—l)!( C) " [BC —2(s+1)AC +s(s+ 1) AB]
= %B*G~2 (~C*F + sB*D)

dy
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Therefore the determinant of the mixed Hessian matrix corresponding to the

Erlang delay formula is as follows:

1 1
d PP MY o -3 =8 B
et H 2 (3—1)!0 [2D? — CE] GED (ABC)™'[BC —2(s+ 1) AC + s (s + 1) AB]
1 2
— _B-z =Zif 2 2
B 0 C'F-I—SBD)]
A_]'B"IC_4
= 2D* - CE)[BC—-2(s+1) A 1) AB
)\2(3—1—1)!(3—1)!( )| (s +1) AC + s (s + 1) AB]
—4v—4
_.B_ZC_2_ [C4F2_230232FD+3234D2]
A% (s!)
_ ATBTC (apB® — CEB) (BC —2(s+1) AC 1) AB
= gy (2D~ CEB’) (BC - 2(s + ) AC+s(s+1) AB)

—(s+1) [AC‘4F2 — 2sAC®B*FD + s*’AB*D?]}

Letting
ARG
T %! (s+1)!
we have
det H = K{2sB'CD?-4s(s+1) AB*CD? +25* (s + 1) AB*D”
—sB*C?E +2s (s + 1) AB*C?E — s* (s + 1) AB'CE
—(s+1) AC*F? + 25 (s + 1) AB*C?DF — s* (s + 1) AB'D*}
In this case the only two terms that we can cancel out are 2s? (s + 1) AB*D? and

s% (s + 1) AB*D?. Therefore

det H = K{2sBCD?—4s(s+1)AB3CD? + s* (s + 1) AB*D?
—sBC?E +2s (s + 1) AB3C?E — s* (s + 1) AB'CE
—(s+1) AC*F? + 25(s + 1) AB*C*DF}

The complex structure of the determinant is making it difficult to determine the

determinant to be positive therefore we observed the special cases in chapter 8.
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