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Abstract

The container trade has increased dramatically in the late decade. Forecast

projections indicate that this trend will continue in the future. Thus, effec-

tive and efficient operations become more essential for container terminals in

the transportation network. This study aims to analyze different operational

problems in container terminals to provide effective and efficient policies for

on-site operations. The three main topics in this study are the berth allo-

cation problem (BAP), the quay crane scheduling problem (QCSP), and the

inspection problem. Instead of analyzing these problems separately, I study

the combined problems. The first study addresses BAP and the inspection

problem, the second study addresses QCSP, and the third study addresses the

combined problem of BAP and QCSP. The first study estimates a reasonable

service rate for the inspection operation, so that the inspection will not be the

bottleneck of the system. Theoretical lower bound of the inspection service rate

is provided through different deterministic berthing heuristics. For the stochas-

tic job processing time cases, the inspection service rate can be acquired by a

simulation model with a heuristic approach. In this study, the simulation ap-

proach and the heuristic approach are combined by the embedded simulation

technique, and this combined approach is successfully applied for BAP with

inspection. The second study addresses QCSP. I consider the problem that

has one vessel and multiple cranes. Exact and heuristic solution approaches

are developed for the problem. A mathematical model with a time-space net-

work flow sub-structure and non-crossing constraints is established for small

size problems. Lagrangian relaxation approach is used to obtain tight lower

bounds and near-optimal solutions for medium size problems. For large size

problems, I adapt the heuristic approach. The theoretical analysis results show

that the error bound of the designed heuristics is no more than 100%. Numer-
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ical experiments are performed to evaluate efficiency and effectiveness of the

solution approaches for the problem. The third study focuses on a general prob-

lem that combines BAP and QCSP, named BAQCP. I develop a mathematical

formulation and use a heuristic approach to solve BAQCP. Two heuristics, pre-

emption and non-preemption, are developed. Both theoretical and numerical

results demonstrate the efficiency and effectiveness of these two heuristics. In

order to further improve the heuristic results, I combine the exact solution ap-

proach provided by the mathematical formulation and the heuristic approach.

The heuristic solutions are set to be the initial inputs for the mathematical

model. Numerical experiments show that this combined approach makes the

improvement of the solution quality within a reasonable execution time, and

that they can be applied for practical cases in the real world.
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1 Introduction

1.1 Background

A container is a large, standardized box typically used to transport goods from one

destination to another by seagoing vessels or trucks. Shipping goods in containers

has increased dramatically in the past twenty years. The United Nations (2005)

reports the growth of the container trade will continue to grow at least 3% until 2015.

Therefore, a seaport plays an essential role in the global transportation network. Due

to the high cost of transportation and cargo handling, designing an efficient scheduling

of the loading, unloading, systematic storage processes, and adequate resources is

extremely important. When cargo vessels enter the harbor, the operational process

begins with the following procedures (shown in Figure 1): being assigned a berth at

a dock, unloading the containers with cranes, and storage.

Figure 1: Operations in a container terminal

However, an inspection center becomes a potential bottleneck in the container

terminal due to the enhancements on the inspection operations. The goals of this

dissertation are to analyze the terminal system, to design approaches to evaluate sys-

tem performance and to develop new methodologies that will improve the operations.

In this study, I will focus on issues related to the berth allocation problem (BAP),

the Quay Crane Scheduling Problem (QCSP), and the security inspection operation.

Due to the essential role container trade plays in aspects of the U.S. economy, it
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is imperative to develop efficient and effective container terminal operations. Many

container terminal operation studies examined berth allocation problems, crane as-

signment problems, and storage and stacking problems. However, limited studies

solved both BAP and QCSP together. Previous researchers who studied BAP or

QCSP normally assumed these two problems were independent, which did not match

the real world. For example, in previous BAP studies, researchers assumed vessel

processing time is pre-determined. Actually, the vessel processing time is related to

the number of cranes working to unload the vessel. In this dissertation, BAP and

QCSP are combined to form a new problem, i.e. an integrated problem of berth

allocation and quay crane scheduling (BAQCP), to be studied.

Additionally, the previous research, which focused on BAP or QCSP, seldom con-

sider a stochastic job processing time in the real world. For instance, a service rate

of a crane is influenced by many factors, such as the varying skills of the operators or

the different types of the machines. In order to consider those uncertain factors, BAP

or QCSP require both the operations research approach and the simulation approach.

In this dissertation, an important study topic focuses on combining BAP with a se-

curity inspection in the container terminal. The analysis of inspection operations is

discussed to find the proper service rate for an inspection center so that the enhance-

ment of the security inspection operation will not be the bottleneck in the container

terminal.

1.2 Structure of the dissertation

This dissertation is divided into three sub-research stages, i.e., three-phase studies.

The Phase I study integrates the problem of BAP and inspection operations that is

solved by using the simulation and optimization approaches together. The combined

approach is studied to find the reasonable inspection service rate by different berthing

heuristics, and the service rate is verified by the theoretical lower bound. The Phase

2



II study combines a special case of the BAP and QCSP, i.e., one vessel multiple cranes

problem (QCSP itself), and is solved by exact and heuristic approaches that consider

crane traveling time. Theoretical and numerical studies show that the proposed

solution approaches were effective and efficient for this problem. The third phase is

the extension of the second phase study. The more general case of the combination of

BAP and QCSP is solved. Due to the complex nature of the problem, the heuristic

approach is the primary research tool. Two heuristics are proposed and verified,

both theoretically and numerically. Lastly, the model and heuristic approaches are

combined to enhance the solutions quality.

The first study has two main objectives. First, simulation and optimization ap-

proaches are combined to find a way to solve BAP with inspection. Second, using

combined approaches for deterministic and stochastic processing time cases, a lower

bound of the theoretical inspection rate is provided. This analysis of the numerical ex-

periments finds the reasonable inspection rate in order to avoid inefficient inspection

operations. The following shows the main structure of the first study:

• Establish an embedded simulation frame for analyzing BAP with security in-

spection.

• Modify deterministic heuristic algorithms for stochastic job processing time sce-

narios.

• Derive the theoretical lower bound of an inspection rate from different berthing

heuristics.

• Implement the heuristic algorithms to a simulation model by the embedded

simulation technique and verify this combined approach for the BAP with in-

spection operations.

• Perform the numerical experiments to evaluate the validity of the combined

3



approach and suggest the adequate scheduling policies for the problem.

The second study is the pilot study of the third study, which targets the combined

problem of the berth allocation and quay crane scheduling problems (BAQCP). This

study focuses on the special case of BAQCP, i.e., one vessel multiple cranes case

(QCSP). Distinguished from the most previous studies, the crane traveling factor is

considered in the final analysis. The main objective of this study is to establish a

solution approach for QCSP, which includes both exact and heuristic approaches.

The main tasks in this study are:

• Establish a mathematical model with time-space network flow sub-structure to

describe the QCSP and evaluate the capacities of the model.

• Develop a Lagrangian relaxation approach to solve QCSP for medium-size prob-

lems.

• Find the lower bound of the problem by Dynamic programming technique.

• Design two heuristics and derive the worst case bounds for the heuristics asso-

ciated with the lower bound.

• Carry out numerical experiments, which compare the present model with other

mathematical formulations, and evaluate the efficiency and the effectiveness

of the exact approaches, the Lagrangian relaxation approach, as well as the

heuristic approach for different size instances.

The purpose of the third study is to develop a solution approach to solve BAQCP.

Due to the complex nature of the problem, it is difficult to solve the problem by the

exact solution approach. Therefore, the heuristic approach is adapted as the main

approach. The outlines of this study are:

4



• Extend the results in the Phase II study to build a mathematical model to

describe BAQCP.

• Adapt the heuristic approach as the main analysis tool and design two types of

heuristics.

• Derive worst case analysis for the two designed heuristics.

• Evaluate the heuristic approach numerically and enhance the heuristic approach

by combining the model approach and the heuristic approach.

1.3 Dissertation contributions

The proposed contributions of this dissertation are:

1. With more demand for container security inspections in a container terminal, this

study analyzes BAP with inspection operations, which container operations re-

search seldom considers. The relationship between berth allocation and inspec-

tion is theoretically established, and the relationship is verified numerically by

deterministic and stochastic processing time cases. This allows for the sugges-

tion of proper operation policies for inspections to avoid creating a bottleneck

in the container terminal.

2. Analyze QCSP with consideration of crane traveling time. The solution ap-

proach includes exact and heuristic approaches. The advantages of these ap-

proaches are: the situation or incident is easily described, non-crossing and

non-interference constraints make the application of the model possible for real-

valued problems, and the model can easily include or exclude crane traveling

time effects. Additionally, the solution quality of the proposed heuristics is

proved theoretically and numerically to demonstrate the effectiveness and effi-

ciency of the solution approaches.

5



3. Develop a new mathematical model for BAQCP to describe this problem, analyze

the model capabilities, establish solution approaches to solve this problem in

deterministic cases, and ensure and evaluate the solution quality theoretically.

Finally, I enhance and improve the solution quality by combining the model

and the heuristic approaches. The main achievement of this study also includes

finding the theoretical upper bound for the problem, which the previous research

did not address.

6



2 Analysis of Berth Allocation and Inspection

Operations in a Container Terminal

Abstract

Nowadays, approximately 90% of the world’s cargos are moved by ships,

and the majority of goods are transported by containers. Each year, around

200 million containers are transported between the world seaports. A container

terminal becomes one of the important nodes in the transportation network and

plays a significant role in the global supply chain. After the terrorism attack

on September 11, 2001, container security issues aroused, especially in the

United States. U.S. government proposed and implemented several measures,

such as C-TPAT, CSI, and etc., to improve the security systems. However,

inefficiency or failure of the container supply chain becomes one of the most

concerned issues while implementing container security measures. This chapter

studies the container inspection operations in a container terminal. Improper

and inefficient inspection operations will make an inspection center to become

a bottleneck in the container terminal. In this chapter, I analyze the container

inspection system to find out the proper service rate so that the bottleneck can

be avoided. I derive the theoretical lower bound of the inspection service rate

of the operations and perform the simulation experiments to validate the the

bound for both deterministic and stochastic cases.
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2.1 Introduction

“The global supply chain is an international system that has evolved to make the

transport freight throughout the world amazingly efficient” (i.e., see Simchi-Levi et al.

(2002)). Maritime transportation is the most important component of the global sup-

ply chain, and highly related to the U.S. economy. According to the statistics of 2005

from U.S. Bureau of Transportation, 75% of goods imported to or exported from U.S.

are transported by maritime transportation. Data from World Trade Organization

2004 showed that U.S. is the world’s first importer and the second largest exporter.

Some other historical statistics (i.e., see Roach (2003)) showed that around 90% of

the world’s cargo are moved by vessel and each year over 48 million full containers

are transported between major ports in the world. For US trade, each year more

than six million containers are offloaded at US ports and almost half of them arrives

by vessels. Such a huge amount container transportation flow makes a container ter-

minal play an important role in the supply chain transportation network. Therefore,

the shipping containers and its transport system are vital components to the global

supply chain (RAND, 2004).

Prior to 2001, port security measures mainly focused on reducing cargo theft,

stowaways, and smuggling. Only 2% to 4% of several million containers shipped to

U.S. were physically examined by U.S. Customs (i.e., see Thibault et al. (2006)). The

low examination rate on the containers makes crime have a chance to smuggle weapons

into the U.S. by shipping containers. After the terrorism attack of September 11 2001,

security issues aroused, especially maritime security. A war game simulation held in

2002 for a major U.S. seaport under several terrorist scenarios (i.e., see Gerencser

et al. (2003)) showed that if the attacks would have been successful, it will seriously

harm U.S. economy and global trade.

In order to respond future possible terrorist threat, U.S. government adopted

and implemented new technologies, regulations, and operating process and protocols.

Most of the new measures focused on maritime shipping operations,which included

two major categories: policy measures and technology measures. Willis and Ortiz

8



(2004) listed the measures as follows,

• Policy measures: Customs-Trade Partnership Against Terrorism (C-TPAT),

Container Security Initiative (CSI), and Maritime Transportation Security Act

of 2002 (MTSA).

• Technology measures: Operation Safe Commerce (OSC), Antitamper Seals,

Radio-Frequency Identification, X-Ray and Gamma-Ray Scanning, Radiation

Pagers, Portal Sensors, and Remote Monitoring.

C-TPAT is a voluntary program and encourage shippers and carriers to cooperate

U.S. Customs and Border Protection (CBP). They will follow the best security prac-

tices for shipping containers and goods to U.S.. All those join the C-TPAT program

will reward faster processing and avoid the inspection delay. The goal of CSI is to

make it harder to ship illegal containers to the U.S. by inspecting the containerized

cargo at the ports of the origin. MTSA encouraged national ports and carriers with

U.S.-flagged vessels proposing and submitting security plans to U.S. Coast Guard.

Technology measures are mainly used with the up-to-date technologies as an assis-

tant tool to detect and inspect unusual shipments or illegal containerized cargo. For

example, X-Ray and Gamma-Ray Scanning technologies allow CBP to non-contact

inspect for a container’s content. Any suspicious containers will be inspected further

by CBP physically.

Willis and Ortiz (2004) concluded that security and efficiency are two distinct but

interconnected issues in the global supply chain. Improvement on the efficiency of the

system may or may not influence the security of the system. However, increasing a

security level will reduce efficiency of the system. For example, increasing the number

of containers to be inspected could cause delays for transporting container cargo, and

further lead to negative economic effects. Sekine et al. (2006) used a simulation-

based approach to find the balance of diverse of conflicting objectives, for instance,

considering efficiency and security factors into the objective function. In their study,

a real case was applied to verify the approach. Conclusions showed that this approach

can be applied but needs improvement on the simplified first order model.
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Although the demand of inspection operations is increasing recently, it is seldom

systematically studied on how inspection operations affect the terminal daily opera-

tions. This chapter studies terminal operations with an inspection operation to find

out the proper inspection service rate so that an inspection center will not become the

bottleneck of the system. The remaining part of this chapter is organized as follows:

In Section 2, I explain the overall terminal operations and the relationship between

the berth allocation and the inspection operation. In Section 3, three berth alloca-

tion policies for the deterministic processing time cases are reviewed and utilized for

the problem with stochastic processing time. In Section 4, I study how to embed

these three berth allocation policies into a simulation framework to evaluate their

performance for practical terminal operations. In Section 5, I perform the worst case

analysis for the inspection rate for the deterministic processing time case. I estimate

the ratio between the inspection service rate and quay crane service rate such that the

inspection operation will not be a bottleneck, once each container is required to go

through the inspection operation. In Section 6, I perform simulation study to test the

performance of three proposed policies under the stochastic processing time setting.

I also show the simulation experiment results to evaluate the inspection rate required

under the stochastic processing time setting and to justify the theoretical analysis in

Section 5. Finally, in Section 7, I present conclusions and suggest further study.

2.2 Terminal operations

Container terminals play an important role in the container transportation network.

They are usually the nodes where transportation modes change in the intermodal

freight flow transportation network system. Different container terminal may have

different functions. Some terminals mainly serve as the hub to connect incoming

ships and outgoing trains and trucks, or vice versa For instance, the port of Long

beach. Some terminals mainly serve as the hub to transship containers from one ship

to another, such as the port of Singapore. Although different terminals with different

functions, most container terminals include inbound and outbound operations.
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The inbound operations usually include all operations involved to unload a con-

tainer from an incoming vessel/train/truck and store it in the storage yard. For

instance, let I consider the case that the incoming transportation mode is vessel.

First, a vessel needs to be berthed after it arrives at the terminal; second, quay

cranes are arranged to unload containers from the vessel; third, an internal truck

picks the containers to the inspection center and then to the storage yard; Finally,

a container is unloaded from the internal truck and stored in the storage yard. The

outbound operations follow a reverse direction except the berth allocation part. Sim-

ilarly let us consider the case that outgoing transportation mode is also vessel. First,

a vessel needs to be berthed after it arrives at the terminal; second, a container is

loaded from the storage yard to an internal truck; third, the container is shipped by

the internal truck to the berth place; finally, the container is loaded to the vessel for

the final departure. The terminal operations are similar for the cases that incoming

and outgoing transportation modes are train or truck instead of vessel, except that

the berth allocation operations are not needed, which makes the terminal operations

less complicated. Without loss of generality, in this chapter, I study the inbound

operations with vessel as incoming transportation mode.

There have been extensive research on terminal operations. Recently, Stahlbock

and Voβ (2008) did a literature review on terminal operations. They categorized

literature in groups that include ship planing process (i.e., berth allocation and stor-

age planing), storage and stacking logistics, transport optimization (i.e., quayside

transport, landside transport and crane transport optimization), and integrative ap-

proaches. Of all the four research categories, integrative approaches are the most

challenging problems because those consider various interconnected operations to-

gether. Now I need to consider extra inspection operation, which makes the problem

even challenge to solve. This chapter will study berth allocation and inspection op-

eration together. The relationship between berth allocation and inspection operation

can be simplified as shown in Figure 2.

I define each berth contains one crane and consider one crane as one processor.
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Figure 2: System of the berth allocation with inspection

Within this system, a container is first unloaded from a vessel. Then it is picked by

a truck to the inspection center. Once the container completes the inspection, it will

leave the system.

2.3 Berth allocation policies

The berth allocation problem can be formulated as a multiprocessor task scheduling

(MTS) problem. An MTS problem is defined as one type of task scheduling problems

in which each task is processed by multiple processors (machines) simultaneously and

preemption is not allowed (i.e., see Drozdowski (1996)).

In the system described in this chapter, I want to let two major entities, vessels

and containers, go through the system smoothly with minimum delay. The berth

allocation and the inspection operation are two interlinked operations in the terminal

area. First, I have to find an efficient berthing policy, which can allocate berths

efficiently and vessels can leave the terminal as soon as possible with minimum delay.

Also, an efficient service rate of the inspection center needs to be determined such

that the inspection center will not be a bottleneck in the terminal area. In this
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section, I examine three heuristic algorithms for the stochastic processing time cases

and in later sections, I apply all three heuristics as the berthing policies to estimate

the service rate of the inspection center.

2.3.1 Time-space representation of a vessel

In the approach, I formulate a vessel as a time-space rectangle. The length of the

rectangle represents the processing time and the width of the rectangle represents the

length of the vessel in terms of number of berths. For example, a vessel with size 3

and processing time 6, assigned at time 2 and sections 2 to 4 can be represented as a

time-space rectangle shown in Figure 3.
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Figure 3: Time-space representation of a vessel

2.3.2 Guan et al.’s heuristic

In recent studies, there are three berthing heuristics, Guan et al.’s heuristic, Small

processing time first (SPT) heuristic and Li et al.’s heuristic, developed to assign

vessels along the berth. For all these case, the processing time for each vessel is

considered as a constant parameter. In practice, due to crane service rate uncertainty

and traffic within the terminal, the processing time may not be a constant. In this

approach, I consider that the processing time for each vessel is stochastic and I use the

expected processing time in the heuristics. Then, I compare the performance among

these three heuristics under the stochastic process time setting. In the following part,

I describe these three heuristics and later I show an example in Section 2.3.5.
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In Guan et al.’s heuristic (i.e., see Guan et al. (2002)), each individual vessel is

considered as one job. The heuristic includes three steps. The first step sorts all

jobs by vessel’s length and renumbers the job index. The second step groups jobs

according to the limitation of the total berth length. The final step assigns vessels to

the berths group by group. Corresponding to a vessel set {V1, V2, · · · , VN}, let Pi and

Li be the expected processing time and vessel length of Vi,∀1 ≤ i ≤ N respectively.

I assume L′is and P ′is are agreeable. That is, if Li ≤ Lj, then Pi ≤ Pj. The detailed

step for Guan et al.’s heuristic can be described as follows.

Guan et al.’s heuristic:

Step 0: Sort and renumber the vessels by P1 ≤ P2 ≤ · · · ≤ PN and L1 ≤ L2 ≤ · · · ≤

LN . Initialize I = 1.

Step 1: Let {V`, V`+1, . . . , VN} be the set of the unscheduled vessels. Let

u = max{q|
q∑
j=`

Lj ≤ S and q ≤ N}

in which S is the number of the berths, and N is the number of the vessels.

Set GI ← {V`, V`+1 · · · , Vu}.

Step 2: For r = `, `+ 1, · · · , u:

(a) If I is odd, then assign Vr to berths S −
∑u

j=r Lj + 1, S −
∑u

j=r Lj + 2,· · · ,

S −
∑u

j=r+1 Lj

(b) If I is even, then assign Vr to berths
∑u

j=r+1 Lj + 1,
∑u

j=r+1 Lj + 2,· · · ,∑u
j=r Lj

Schedule Vr behind the existing scheduled jobs on these berths, and make it

start as early as possible.

Step 3: Set I = I + 1. If there is no more unscheduled job, then stop, else go to

Step 1.
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2.3.3 SPT heuristic

SPT heuristic contains two main steps: the first step sorts the vessels from the smallest

to the largest in terms of vessel’s size and reindex the vessels; the second step assigns

vessels sequentially by checking if there is enough available space at the earliest time

for each vessel. The detailed step can be expressed as follows.

SPT heuristic:

Step 0: Sort and renumber vessels such that P1 ≤ P2 ≤ · · · ≤ PN and L1 ≤ L2 ≤

· · · ≤ LN , in which P ′is and L′is are agreeable. Let {R1, R2, · · · , RS} represent

berths 1 to S, and put all vessels into a vessel list {V1, V2, · · · , VN}. Initialize

the earliest available time for each berth w1 = w2 = · · · = wS = 0

Step 1: For each step, take vessel Vk out of the unassigned vessel list where k is the

smallest index in the unassigned vessel list and initialize
∏

= {1, 2, · · · , S}.

Step 2: Select a berth r̃ = arg min{wj : j ∈
∏
}. If r̃ + Lk − 1 ≤ S and wj ≤ wr̃ for

r̃ ≤ j ≤ r̃ + Lk − 1, allocate the kth vessel for the berths from Rr̃ to Rr̃+Lk−1.

Update wj = wr̃ + Pj for r̃ ≤ j ≤ r̃ + Lk − 1. Else, let
∏

=
∏
\{r̃} and repeat

Step 2 until Vk is assigned.

Step 3: Go to Step 1 and stop until all vessels are assigned.

2.3.4 Li et al.’s heuristic

In Li et al.’s heuristic, the vessels are sorted from the largest to the smallest and are

assigned sequentially. Comparing to the above two algorithms, Li et al.’s heuristic

tries to put a job as close to one of the two ends of the terminal as possible so that

the middle part of the terminal is reserved for other unassigned vessels. From the

largest to the smallest in the unassigned vessel list, to assign each vessel k, I check

starting from the earliest available time slot to see if there is enough space to assign

the current vessel k.
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Let C[1], C[2], . . . , C[k−1] represent the finish times of the first k−1 assigned vessels

and Π[i]k = {γ|position is unoccupied throughout the entire time period(C[i], C[i] +

Pk]. By the definition, Π[i]k can be expressed as [a[i]k1, b[i]k1] ∪ [a[i]k2, b[i]k2] ∪ . . . ∪

[a[i]kn[i]k
, b[i]kn[i]k

], where 0 ≤ a[i]k1 < b[i]k1 < a[i]k2 < b[i]k2 < . . . < a[i]kn[i]k
< b[i]kn[i]k

≤

S, where S is the number of berths, and n[i]k is the number of spaces which are unoc-

cupied throughout the entire time period (C[i], C[i] +Pk]. To assign the current vessel

k, the algorithm checks all possible positions in Π[i]k at each completion time C[i].

Figure 4 shows an example that explains the variables used in Li et al.’s heuristic. In

the example, C[1] = 4 (the completion time of V3), C[2] = 6 (the completion time of

V2), C[3] = 6 (the completion time of V1), C[4] = 8 (completion time of V4), C[5] = 9

(completion time of V5), and C[6] = 10 (completion time of V6).

Now assume I want to add the seventh vessel (V7) with the processing time P7 = 3

and the length L7 = 2 . If I consider the finishing time C[3], the time period is

(C[3], C[3] + P3] = (6, 9] and there are two unoccupied berthing space (n[3]7 = 2). The

corresponding available time slots are (a[3]71 = 2, b[3]71 = 3) and (a[3]72 = 6, b[3]72 = 8).

Since b[3]71− a[3]71 < 2 and b[3]72− a[3]72 = 8− 6 = 2, I can allocate the seventh vessel

from berths 7 to 8 at time 6. The details of Li et al.’s heuristic are shown as follows

(ref. Li et al. (1998)).
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Li et al.’s heuristic:

Step 0: Sort and renumber the vessels such that P1 ≥ P2 ≥ · · · ≥ PN and L1 ≥

L2 ≥ · · · ≥ LN .

Step 1: Set C[0] ← 0.

Step 2: For k = 1, · · · , N do:

Step 2-1: Set i← 0

Step 2-2: Determine n[i]k, and a[i]kj, b[i]kj for j = 1, · · · , n[i]k;

4← max j=1,··· ,n[i]k
{b[i]kj − a[i]kj};

if Lk ≤ 4 then

l← min{j|b[i]kj − a[i]kj ≥ Lk and 1 ≤ j ≤ n[i]k};

u← max{j|b[i]kj − a[i]kj ≥ Lk and 1 ≤ j ≤ n[i]k};

if a[i]kl ≤ S − b[i]ku then

schedule Vk to start at time C[i] between berths a[i]kl and a[i]kl + Lk − 1;

and update C[h], h = 1, · · · , k;

else

schedule Vk to start at time C[i] between position b[i]ku −Lk + 1 and b[i]ku;

and update C[h], h = 1, · · · , k;

else

set i← i+ 1 and go to Step 2-2.

2.3.5 An example of three heuristics

Table 1 shows a group of 5 sorted vessels with fix processing time by their size.

Assume there are 12 berths. The time-space graph for 5 vessels allocation by three

algorithms are shown in Figure 5.

According to Guan et al.’s heuristic, vessels will be grouped first. Then, according

to vessels’ sizes and processing times, vessels will be allocated to different berths. SPT

heuristic works similar to Guan et al.’s heuristic, but for each vessel group, the smaller

index berths are always allocated for the smaller index vessels, which implies that the
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Table 1: Example data information

j 1 2 3 4 5
Vessel size Lj 2 3 4 4 5

Processing time Pj 3 4 5 5 8
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Figure 5: Examples of the three heuristics

makespan by SPT heuristic is larger than that by Guan et al.’s heuristic. The sorting

rule of Li et al.’s heuristic is different from the other two heuristics, the smaller the

vessel index, the larger processing time of the vessel. Therefore, in this example,

the fifth vessel is assigned first, then the fourth vessel and so on. In terms of the

makespan, Li et al.’s heuristic has the best performance of all these three heuristic.

However, for stochastic processing time cases, it is not easy to judge which heuristic is

the best because different parameter settings will influence the performance of these

three heuristics.

2.4 Analysis of inspection service rate

In the MTSI system, I treat a berth as a processor. In current system, there are S

berths and one inspection center in the terminal. I expect that if the service rate of

the inspection center is S times of the service rate of the processors, the inspection

center will not be the bottleneck of the system, that is, all containers can go through

the system without any delay. However, in the system, I find one processor is often
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waiting for others, which indicates the service rate of the inspection is not necessary

S times of the service rate of a processor. To explain this phenomenon, I use time-

space graph representation and find out the vessel rectangles can not fully occupy the

time-space domain. One example of a six vessels case is shown in Figure 6.

V1 

V2 

V3 

V4 

V5 

V6 

Berth

Time

HC6

Figure 6: Space-time representation of a 6-vessels case by Guan et al.’s heuristic

In order to estimate the proper service rate of the inspection center, I establish

the relationship between the service rate of a processor and the service rate of the

inspection center. If I know the service rate of a processor and number of the pro-

cessors, I can estimate the service rate of the inspection center by the established

relationship. The following parameters are defined for the formula,

Total Area : A1, the product of makespan and total number of processors.

Solid Area : A2, the summation of the product of job size times processing time of

each vessel.

S: number of processors

ρ: The ratio of the occupied area and the total area.

γp: Service rate of a processor.
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γi: Service rate of an inspection center.

If I know S, makespan, service rate of a processor, and length and processing time

of each vessel, I can estimate the service rate of the inspection center,

γi = Sργp = S
A2

A1

γp (1)

In reality, a vessel-incoming pattern is not easily predictable. I can estimate service

rate of the inspection center while there is a sufficient large number of vessels coming

to the system. In the following section, the lower bound of ρ is derived by Guan et

al.’s heuristic, Li et al.’s heuristic, and SPT heuristic.

2.4.1 Service rate for inspection by Guan et al.’s heuristic

In Guan et al. (2002), a relaxed problem is provided for the berth allocation problem.

The relaxed problem indicates that I use multiple one unit size vessel rectangles

replace the original vessel rectangle. Figure 7 demonstrates how I can replace a vessel

rectangle by multiple one unit length rectangles. Assume a vessel j is with size Lj

and processing time Pj. The relaxation means for every Vj (a vessel is treated as one

job), I replace it by Lj identical jobs {Vj1, Vj2, · · · , VjLj
} with each of unit length.

Figure 8 shows an relaxed example of the case in Figure 6.
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Figure 7: Relaxation demonstration

In Guan et al. (2002), it is shown that the relaxed problem provides a lower bound

in terms of the total completion time for the proposed heuristics in Section 2.3.2.

Especially in Guan et al. (2002), the following conclusion holds.
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Figure 8: Relaxation of a 6-vessels case in Figure 6

Lemma 1 The completion time of Vj in the heuristic solution (i.e., CH
j ) is at most

twice the completion time of the first relaxed vessel rectangle of Vj in the relaxed

problem (i.e., CR
j1) for each j = 1, 2, · · · , N .

Proposition 1 If the processing time for each vessel Pi is bounded as a constant

number, then the ratio between the solid area and the total area for Guan et al.’s

heuristic converges to one half asymptotically as the number of vessels goes to infinity.

Proof: It can be first observed that the solid area for the original problem is the

same as the total occupied area for the relaxed problem. In general, based on the

relaxed problem, as shown an example in Figure 8, I have

N∑
i=1

PiLi ≥ S(CR
N1 −max{Pi})

and
N∑
i=1

PiLi/(C
H
N S) ≥ S(CR

N1 −max{Pi})/(CH
N S) = CR

N1/C
H
N −max{Pi}/CH

N .

Also, according to Lemma 1, I have CR
N1/C

H
N ≥ 1/2. Then, limN→∞

∑N
i=1 PiLi/(C

H
N S) ≥

limN→∞(CR
N1/C

H
N − max{Pi}/CH

N ) = 1/2 since CH
N tends to be infinity and Pi is a

finite number. Therefore, the conclusion holds. 2
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2.4.2 Service rate for inspection by Li et al.’s heuristic

In Li et al. (1998), the worst case bound is derived for their heuristic. Here I can use

the similar concept and obtain the following proposition.

Proposition 2 The ratio between the solid area and the total area is at least one half

for Li et al.’s heuristics.

Proof: In Li et al. (1998), it is shown that the ratio between the makespan ZH
f and the

lower bound Z∗f is greater or equal to 1/2. It is shown that Z∗f ≥ R1+R2+R3 > 0.5ZH
f ,

where

R1 =

∫ tn

0

(total size of the vessels being processed at time t) dt,

R2 =

∫ ZH
f −tn

tn

(total size of the vessels being processed at time t) dt,

R3 =

∫ ZH
f

ZH
f −tn

(total size of the vessels being processed at time t) dt.

In Li et al. (1998), the total length of the space is only one unit. In the case, the total

berth length is S. But the conclusion still holds. I can modify the formula derived

in Li et al. (1998) to Z∗f ≥ R1+R2+R3 > 0.5ZH
f S. Also, I can see that the Solid Area

A2 = R1 +R2 +R3 and Total Area A1 = ZH
f S. Therefore,

ρ = A2/A1

= (R1 +R2 +R3)/(Z
H
f S)

> 1/2.

The conclusion holds. 2

2.4.3 Service rate for inspection by SPT heuristic

The vessel assignments by SPT is similar to Guan et al.’s heuristic. The difference

is that vessels in the same group for SPT will always be assigned from the smallest
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to the largest index berths. For instance, the smallest vessel in one group by SPT

heuristic is always assigned from the first berth. Vessels are grouped as shown the

third time-space diagram in Figure 5. In the following, I also show the ratio between

the solid area and the total area is bounded below.

Proposition 3 If the processing time for each vessel Pi is bounded as a constant

number, then the lower bound of the ratio between the solid area and the total area

for SPT heuristic converges to 0.4 asymptotically as the number of vessels goes to

infinity.

Proof: I consider two cases to analyze the worst case bound of the inspection service

rate by SPT heuristic while there is an infinite number of vessels: 1) maxi∈N Li ≤ 0.5S

and 2) maxi∈N Li > 0.5S. First of all, due to the reason that vessel processing times

and vessel lengthes are agreeable, I have that the start time for the i + 1th group is

larger than the finish time for the i− 1th group.

Case 1: maxi∈N Li ≤ 0.5S. In this case, except the last group, I have at least

two vessels in each group. Figure 9 shows an example for this case. Each vessel group

is expressed as the area between two dashed lines. An area of the ith vessel group

between two dashed lines can be divided into three parts. The first is the solid area

occupied by vessel rectangles (denoted as ai), the second is the blank area under the

largest index of the vessel in that vessel group (denoted as bi1), and the third is other

blank area that not belongs to the bi1 (denoted as bi2). I can observe that bi2 ≤ ai+1.

The area of bi1 is smaller than the area of the smallest indexed vessel rectangle in the

(i + 1)th group. Therefore, bi1 ≤ 0.5ai since there are at lease 2 vessels within each

vessel group due to the assumption that maxi∈N Li ≤ 0.5S.

By induction, assuming there are n groups, I have

b11 + b12 ≤ a2 +
1

2
a2

b21 + b22 ≤ a3 +
1

2
a3

· · ·

bn1 + bn2 ≤ an+1 +
1

2
an+1.
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Figure 9: Case 1 for SPT

Accordingly, I have

Total Blank Area ≤ a2 + a3 + · · ·+ an+1 + 0.5(a2 + a3 + · · ·+ an+1)

≤ 3/2(a1 + a2 + · · ·+ an) + 3/2(an+1 − a1).

Then, I have

Total Solid Area

Total Area
=

Total Solid Area

Total Solid Area + Total Blank Area

=

∑n
i=1 ai∑n

i=1 ai + Total Blank Area

≥
∑n

i=1 ai∑n
i=1 ai + 3/2

∑n
i=1 ai + 3/2(an+1 − a1)

=
2

5
− 3/5(an+1 − a1)∑n

i=1 ai + 3/2
∑n

i=1 ai + 3/2(an+1 − a1)
.

Therefore, I have

lim
n→∞

A2

A1

= lim
n→∞

Total Solid Area

Total Area

= lim
n→∞

2

5
− 3/5(an+1 − a1)

(
∑n

i=1 ai + 3/2
∑n

i=1 ai + 3/2(an+1 − a1)

=
2

5
.
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The final equation follows from the fact that an+1 − a1 is bounded by a constant

number and (
∑n

i=1 ai + 3/2
∑n

i=1 ai + 3/2(an+1 − a1))→∞ as n→∞.

Case 2: maxi∈N Li > 0.5S. Under this case, there exists a number k∗ such that

the vessel groups after group k∗ contain only one vessel with its size larger than 0.5S

as shown in Figure 10. Therefore, I only have bi1 appears for i > k∗ and bi2 = 0 for

i > k∗. Thus, bi1 ≤ ai+1 for i > k∗. For group k∗, I have that the blank area is no

larger than 2ak∗+1. Thus, for groups after group k∗ (including group k∗), I have

Total Blank Area2 ≤ ak∗+1 + ak∗+2 + · · ·+ an+1 + ak∗+1.

 

Berth

Time 

V1 V2 

(k*)th vessel (k*+1)th vessel group 

Figure 10: Case 2 for SPT

Before group k∗ (including group k∗), I have at least two vessels assigned for each

group. Therefore, I have the blank areas before group k∗ described as follows:

Total Blank Area1 ≤ a2 + a3 + · · ·+ ak∗ + 0.5(a2 + a3 + · · ·+ ak∗)

≤ 3/2(a1 + a2 + · · ·+ ak∗−1) + 3/2(ak∗ − a1).

Therefore, in total, I have

Total Blank Area ≤ a2 + a3 + · · ·+ an+1 + 0.5(a2 + a3 + · · ·+ ak∗+1) + 0.5ak∗+1

≤ 3/2(a1 + a2 + · · ·+ an) + 1/2ak∗+1 + 3/2(an+1 − a1).
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Then, similarly as the proof in Case 1, I have

lim
n→∞

A2/A1 = lim
n→∞

Total Solid Area/Total Area

= lim
n→∞

2/5− 1/5ak∗+1 + 3/5(an+1 − a1)∑n
i=1 ai + 3/2

∑n
i=1 ai + 1/2ak∗+1 + 3/2(an+1 − a1)

= 2/5.

Therefore, the conclusion holds. 2

2.5 Embed heuristic policies into a simulation framework

For the stochastic processing time case, I run the experiments with the aid of em-

bedded simulation modeling technique. In the approach, I embed berthing allocation

policies into the simulation model. Figure 11 shows the concept of a two-level simu-

lation model for implementing the approach for terminal operations.
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Figure 11: Conceptual simulation structure

I choose Visual SLAM and AweSim simulation software with C++ programming

embedded to simulate the current terminal system. External C++ programming

codes and an internal simulation model can be combined in the “EVENT” function

node in the AweSim model. Once there is an entity going through the “EVENT”

node, the simulation time will temporarily suspend. At this moment, the simulation

process will go to the embedded codes, and then the simulation time will continue.

“Event” node provides a way to embed the heuristics into a terminal simulation

model. Figure 12 shows the detailed simulation model flow.

In the simulation flow, there are two systems, including the berthing system and

the inspection system. The vessel entities will go through the berthing system, and
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Figure 12: Simulation flow

the container entities will go through the inspection system. When the simulation

starts, the vessel entities will be generated periodically in a batch. At this moment, an

event (a batch of vessels arrive to the terminal) happens which triggers the embedded

heuristic to allocate arriving vessels to different berths.

If the vessels are assigned and the corresponding berths are available, vessel entities

will go though the berthing system, which also indicates cranes start to unload the

containers. Otherwise, the vessels will wait in the queue for next assignments where

some assigned berths are available. Once a vessel entity goes through the berthing

system, it will trigger the other event to generate the container entities to go through

the inspection system. The termination of generating the container entities is at the

time the corresponding vessel entity leaves the system. After the vessel entities or

container entities go through the systems, related statistics (average queue length,

average time in the queue, and flow time) will be collected for comparisons of the

three berthing heuristic. At the same time, I can evaluate the performance of the
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inspection center and find a proper service rate for the inspection center.

For a berth allocation simulation, the most challenging job in the simulation is

to handle the case that each entity occupies several consecutive processors. In this

study, I create a “copy entity” strategy to overcome the simulation difficulty. The

main idea of the copy entity strategy is that several entities instead of the original

vessel entity go through the simulation system. The number of the entities is the

same number of the size of the vessel. The following are brief descriptions of the copy

entity strategy.

1. Record a vessel’s attributes that includes vessel generation time and size of the

vessel once a vessel entity is generated.

2. Generate a number of copy entities in which the number is equal to the vessel’s

size. For example, if the length of a vessel is three, then 3 copy entities are

generated each with length 1. All attributes of the copy entities are the same

as those of the original vessel.

3. Replace the original entity by copy entities, and terminate the original entity

to avoid double counting performance statistics.

4. Put copy entities in temporary stacks and let them wait to go through a berthing

system.

5. Let copy entities start together once all designated berths are ready for those

copy entities

6. The statistics of a vessel entity comes from the average of all corresponding

copy entities.

2.6 Simulation experiments

In the simulation experiments, I first compare the performance among the three

different heuristics for the berth allocation under stochastic processing time setting.

I carry out numerical experiments for two cases. For the first case, all processors
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have the same service rate and the vessels with the same workload have the same

processing time. In the second case, I assume that different processors have a slightly

different service rate such that two vessels with the same workload may or may not

have the same processing time.

2.6.1 Experiment designs for comparing three heuristic for berth alloca-
tion

In order to verify the efficiency of the berthing policies and the effectiveness of the

service rate of the inspection center later on, I create a scenario with 12 processors,

i.e. a terminal with 12 berths. For convenience, I assume the service rate of all berths

is 1. After containers are unloaded from a vessel, a truck will pick up the unloaded

container immediately and move them to the inspection center. Land limitations and

truck capacities are not considered in this study.

For the deterministic cases, I generate 5 different runs. Each run contain 5000

vessels. The vessel sizes are from 1 unit length to 6 units length. The vessel size and

the vessel processing time are agreeable, ranging from 2 time units to 10 time units.

Every 6 minutes, the inspection center can check one container.

For stochastic cases, I create 3 different scenarios and name them low loading,

medium loading and high loading. For each scenario, there are 10 runs. The simulation

time horizon is 2 months. Vessels are arriving in the terminal for a batch every 3

days. For low loading scenario, every time, 20 to 60 vessels arrive. For medium loading

scenario, 60 to 100 vessels arrive. For high loading scenario, 100 to 140 vessels arrive.

The same vessel size has the same expected value of the processing time; however, a

maximum of 10% variance of the processing time difference is allowed. The processing

time of the vessel depends on the containers on the vessel. Unloading a container takes

10 minutes in this scenario.

2.6.2 Results comparison among three heuristics for berth allocation

Table 2 shows the simulation results for different scenarios. The simulation results

show that Guan et al.’s heuristic approach outperforms the SPT heuristic and Li et
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al.’s heuristic. For Guan et al.’s heuristic and the SPT heuristic, the smaller size

vessels are processed first rather than the lager size vessels, which leads to smaller

queue length when comparing to Li et al.’s heuristic.

I also compare the standard deviation (the number within parentheses in Table

2). Overall, the standard deviations from Li et al.’s heuristic are smaller than those

from Guan et al.’s heuristic and the SPT heuristic, which implies that the Li et al.’s

algorithm is more robust and more stable than other two policies. If I consider both

the mean and standard deviation results, Guan et al.’s algorithm are better than SPT

heuristic and Li et al.’s heuristic.

Table 2: Simulation of 10-run results

Scenario Average time in the queue (hours) Flow time (hours) Average queue length
Guan Li SPT Guan Li SPT Guan Li SPT

Low loading
84.67 106.93 88.94 202.36 259.01 211.87 198.4 255 207.89

(13.65) (13.74) (14.61) (26.49) (25.43) (28.66) (26.47) (25.42) (28.65)

Medium loading
487.7 526.16 492.03 486.85 549.13 491.45 482.93 545.09 487.54

(19.28) (18.18) (17.92) (18.73) (16.25) (20.03) (18.69) (16.2) (20)

High loading
908.38 960.98 912.88 580.26 654.93 579.62 576.36 650.84 575.71
(21.8) (22.79) (20.93) (18.69) (20.66) (15.36) (18.68) (20.7) (15.38)

2.6.3 Deterministic case verification

Figures 13, 14, and 15 show the simulation results for the ratio of Solid Area and

Total area (ρ) v.s. number of vessels. I generate 5000 vessels for each simulation run.

Initially, because of small number of vessels, ρ diverges at the very beginning and

converges as the number of the vessels increases. When the number of the vessels

reaches around 2000, the ratio tends to converge. For Guan et al.’s heuristic, the

ρ value converges to 0.81; for Li et al.’s heuristic, the ρ value converges to 0.78;

for the SPT heuristic, ρ doesn’t converge. The reason comes from the behavior of

the heuristic. Unlike Guan et al.’s heuristic and Li et al.’s heuristic, which try to

make the vessel rectangles compact as possible. The SPT heuristic always assign the

smallest index vessel in a vessel group from the smallest index berth first. Therefore,

it is difficult to converge to a fixed values for different instances by SPT heuristic.

Instead, instances reach certain fix values. For the current system, if the service
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rate of a processor is 1, then the service rate of the inspection center is around

12 × 1 × 0.81 = 9.72 by Guan et al.’s heuristic; 12 × 1 × 0.78 = 9.36 by Li et al.’s

heuristic. With the service rate, all containers can go through the inspection center

without any delay.

The simulation results also verify the theoretical lower bound of inspection ser-

vice rate by different heuristics when there are large enough number of vessels going

through the current system.
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Figure 13: Deterministic experimental runs by Guan et al.’s heuristic
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Figure 14: Deterministic experimental runs by Li et al.’s heuristic

2.6.4 Stochastic case verification

The deterministic approach provides a way to estimate the service rate of the inspec-

tion center. However, in the real world, the deterministic cases are rare. Therefore, in
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Figure 15: Deterministic experimental runs by SPT heuristic

this section, I carry out the numerical experiments with the aid of simulation tools. I

build a terminal system with 12 berths and one inspection center with three heuristics,

then I run the simulation model over a 2 months simulation period. I run different

scenarios. The scenarios use different the service rate of the inspection center.

In this study, the stochastic vessel processing time follows a normal distribution

with the mean value as the expected processing time. When applying a deterministic

heuristic to berth vessels, a vessel size is agreeable to a vessel processing time. How-

ever, under the assumption of stochastic processing time, the agreeable assumption is

no longer valid. In order to apply a deterministic heuristic, I use expected processing

time as input and let the vessel size be agreeable with the expected processing time.

While the vessel or container entities go through the system, actual processing time

is used instead of expected processing time.

Table 3 shows the average throughput percentages under different service rates of

the inspection center for the stochastic case. The throughput percentage is defined

as ratio between the container entities going through the inspection center and total

containers needed to inspect. The results show are slightly different from the analyt-

ical results. From the figure, resource capacity or service rate needs to reach 9 times

(instead of 9.72 by Guan et al.’s heuristic and 9.36 by Li et al.’s heuristic) as the

original value. The major differences come from two sources. First, analytical results

based on the assumption of deterministic processing time of each processor. Second,
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the assumption of vessel size being agreeable to vessel processing is violated.

Table 3: Average throughput % under different service rate setting

Service rate multiple Guan et al.’s heuristic Li et al.’s heuristic SPT heuristic
5 56.10 58.43 56.54
6 67.44 70.25 67.98
7 78.64 81.91 79.26
8 89.64 93.45 93.35
9 99.35 99.61 99.69
10 99.95 99.94 99.97
11 99.98 99.98 99.99
12 99.99 99.99 99.99

In practice, it is hard to increase service rate of the original setting by 9 times. For

example, in the harbor area, the land is limited, and most land will be planed for other

commercial activities, such as transportation, storage, etc. Expanding an inspection

center by increasing the number of inspection machines will influence commercial

activities and will be very expensive. In case that there is no enough inspection

capacity, I can utilize sampling strategy to find out a proper sampling rate such that

the system can run smoothly. Sampling rate can be decided by the inspection service

rate and the processor rate. For instance, the sampling rate can be Cγi/(Sγp)×100%.

C is a parameter, and need to be further determined by policy makers. Table 4 shows

average throughput % under different sampling rate policies. At the present system,

only about 11% can go through the inspection operation. The results also show if

sampling rate is 10%, all sampled containers will go though the inspection without any

delay. Table 4 can be a throughput results reference for a policy maker to determine

the proper sampling rate for the current system.

2.7 Summaries

In recent years, the container security inspection becomes more important for terminal

operations. In this chapter, I develop an approach to evaluate the service rate of the

inspection center so that the whole system can run smoothly.

I consider a system within a container terminal, which contains two operations,

the berth allocation and the security inspection. Theoretically, the service rate of the
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Table 4: Average throughput % under different sampling rate setting

Sampling rate (%) Guan et al.’s heuristic Li et al.’s heuristic SPT heuristic
10 99.8 99.9 99.9
12 86.2 89.8 87
14 74.8 77.8 75.4
16 66 68.7 66.5
18 59 59.5 59.5
20 56.1 58.4 56.6
30 37.4 38.9 37.7
40 28 29.2 28.3
50 22.4 23.4 22.6
60 18.7 19.5 18.9
70 16 16.7 16.2
80 14 14.6 14.1
90 12.5 13 12.6
100 11.2 11.7 11.3

inspection operation needs at least 0.4 of the service rate of the processors when the

SPT berthing policy is applied. By using different policies (Guan et al.’s or Li et al.’s

algorithms), the theoretical lower bound may increase to half of the service rate of the

processors. Deterministic and stochastic experiments show this argument is correct

for the designed scenarios. However, the deterministic and stochastic experiments

have similar results with minor difference. These differences mainly come from two

sources. First, analytical results based on the assumption of deterministic processing

time of each processor. Second, the assumption of vessel size being agreeable to vessel

processing for the deterministic cases may not be valid any more under the stochastic

processing time setting.

In the stochastic experiments, the simulation results also show that the service rate

of the security inspection center should be around 9 times the processor service rate

for the berth allocation. In practice, it is usually hard to achieve such a high service

rate. A high service rate examination machine may not worth for investment, or

maybe there is limited land to expand the inspection center. Therefore, to increase

the inspection rates or provide more inspection machines may not be feasible. I

can combine “increase service rate” and “reasonable sampling” to find the proper

alternatives for the container security inspection operation.

Teo and Dai (2003) carried out berthing planing project to deal with home berth

allocation problem and dynamic berth planing. In their research, they used the
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rectangle packing problem concept to deal with BAP. The advantage of this study

approach is BAP can be treated as one strip packing problem. For this type of prob-

lem, there exists developed efficient algorithms such as First-Fit Decreasing Height

(FFDH) algorithm, Split-Fit algorithm (SF), Next-Fit Decreasing Height (NFDH)

algorithm (Coffman et al. (1980)), Baker’s Up-Down (UD) algorithm (Baker et al.

(1981)), Reverse-fit (RF) algorithm and Steinberg’s algorithm (Steinberg (1997)).

These algorithms can be provided as the heuristics I use in this study for investigat-

ing more effective berthing heuristics for BAP with inspection operations.
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3 The crane scheduling problem: models and

solution approaches

Abstract

In this chapter, I study the crane scheduling problem for a vessel after the

vessel is berthed on a terminal and develop both exact and heuristic solution ap-

proaches for the problem. For the exact solution approach, I develop a network

flow formulation with non-crossing constraints to obtain an optimal solution for

small size problems. For medium-size problems, I develop a Lagrangian relax-

ation approach that allows us to obtain tight lower bounds and near-optimal

solutions. For the heuristic solution approach, I develop two heuristics and

show that the error bound of the heuristics is no more than 100%. Finally, I

perform computational experiments to compare different solution approaches

as well as evaluate efficiency and effectiveness of the solution approaches.
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3.1 Introduction

A container is a large and standardized box which can be used to transport goods

from one destination to another through different transportation modes such as ves-

sels, trucks, and etc. From the yearly container throughput historical data report

shown in UN (2005), I can find that container vessels and container trade had in-

creased dramatically in the past twenty years, and the container trade projection will

keep at least 3% growth till year 2015. Therefore, operation efficiency of container

terminals is essential to accommodate the increment of container flows through the

global transportation network.

Container terminal operations usually contain four main sections: assigning berths

for each particular vessel, loading or unloading containers between vessels and internal

trucks, transportation of containers by internal trucks between berths and storage

yard, and container loading or unloading service in the storage yard. Container

loading or unloading activities by cranes is one of the most important operations in

the container terminal. Effective and efficient crane scheduling policy will facilitate

container flows so as to shorten container flow time and improve terminal operation

performance.

Be aware of the importance of the crane operations, this study focuses on the quay

crane scheduling problem (QCSP). Quay cranes are equipments that load/unload

containers to or from a vessel in container terminals. A quay crane is made by heavy

steal frame and all quay cranes are mounted on the same rail. Thus, cranes need safety

distance between each other and they are not allowed to cross each other. Based on

real data obtained from a container terminal, I observe quay crane characteristics.

The safety distance between two adjacent cranes is 60 to 80 meters. The service rate

of each quay cane varies based on different types of cranes with the average service

rate to be 30 to 35 containers per hour. The velocity of a quay crane moving along

the rail is 30 to 45 meters per minute. When a crane is on duty, it is assigned on

a specific section. The crane will not move to other areas until it finishes all the

workload in this section. Besides this, no two cranes work in the same section at the
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same time. Finally, for a quay crane moving from a section to another, there is travel

time involved.

Several approaches have been developed to study QCSP. The first study was con-

ducted by Daganzo (1989) who developed a model in which non-crossing constraints

due to crane interference with each other are not considered. Peterkofsky and Da-

ganzo (1990) followed the previous study, and applied branch and bound technique

to solve the problem. Kim and Park (2004) took precedence relationship of jobs into

account in their model and developed a branch and bound algorithm to solve small

size problems. They also adopted the greedy randomized adaptive search procedure

to improve the performance of their branch and bound algorithm. Following Kim

and Park’s study, Moccia et al. (2006) developed a branch and cut algorithm to solve

some instances which can not be solved by Kim and Park’s approach.

Recently, there is also significant research done for the case that non-crossing con-

straints are considered. Lim et al. (2002) designed a dynamic programming algorithm

and compared its performance with tabu search approach. ? formulated the prob-

lem as an integer programming problem and proved the problem is NP-hard. This

indicates that it is difficult to find an optimum solution within a reasonable amount

of time. They developed a branch and bound algorithm with a special a branching

strategy to solve small and medium size problems. Their algorithms outperform de-

fault CPLEX solver. They also developed a simulated annealing algorithm with a

neighborhood search embedded to find near-optimal solutions for large size problems.

Most recently, Lim et al. (2007) compared the performance between the dynamic

programming and the simulated annealing technique. Lee et al. (2008b) applied a

similar approach as described in ? to show that QCSP with non-crossing constraints

is an NP-hard problem and elaborated a genetic algorithm.

In the above previous QCSP studies, most researchers ignored crane travel time in

their model. In this study, I will take crane travel time into consideration and develop

the corresponding model and algorithm. Since QCSP with non-crossing constraints is

a NP-hard problem, which is a special of the problem with zero travel time between
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sections, the problem is clearly NP-hard and it is hard to find an optimal solution

in short time. In the approach, I will develop a time-space network flow model to

formulate the problem with the objective of minimizing the makespan to serve the

particular vessel. The model will capture the non-crossing constraints and it is also

capable to cover crane travel time constraints. For large size problems, I develop three

heuristics: a Lagrangian relaxation based heuristic, a simple threshold heuristic and

a dynamic programming based heuristic. I perform worst case analysis and compare

the computational performance of different approaches.

In this study, I develop different approaches to solve QCSP, including the ana-

lytical approach, the Lagrangian relaxation approach, and the heuristic approach.

The remaining part of this chapter is organized as follows: Section 2 describes the

assumptions and the problem definition. Section 3 presents a mathematical model

for QCSP. A developed model demonstrates the advantages by comparing with other

two different QCSP models. The performance of this study model performance is also

evaluated. I solve the model by the Lagrangian relaxation approach to find out the

tight lower bound and near-optimum solution in Section 4. In Section 5, two heuris-

tics for large-size instances are developed. One simple heuristic is based on threshold

value and its worst case performance is studied. The other one is a dynamic pro-

gramming algorithm that requires each crane to work on consecutive sections. Its

performance is compared with the simple heuristic. In Section 6, I perform experi-

ments to evaluate the performance and effectiveness of the model and the proposed

heuristic approaches. Finally, Section 7 concludes this study.

3.2 Problem descriptions

In this study, I consider one vessel multiple crane instances. As shown in Figure 16,

when there is a vessel moored in the berth, several cranes are assigned to that vessel.

Then the assigned cranes move to their work areas along the rail and load or unload

the containers from that vessel to the land side truck or from the land side truck to

that vessel until the assigned cranes finish their jobs. The cranes then wait for the
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next assignments. If no further assignment, the cranes stay at the present positions.

The vessel leaves the assigned berth after all jobs are finished.

Figure 16: The illustration of the QCSP (ref. Lee et al. (2008b))

According to the descriptions, without loss of generality, I can make the following

reasonable assumptions for QCSP.

1. There are K cranes in total available to serve the moored vessel;

2. The total workload, assumed to be N units of workload in total, on the vessel

can be divided into S sections. There are Wj units of workload for each section

j = 1, 2, . . . , S. The partition is usually based on the safety distance required

for each crane operation. Note here each unit of workload represent the number

of containers. It is not necessary to be one container per workload unit.

3. Each section can only holds one crane at one time, i.e. no two cranes can work

for the same section at the same time.

4. Once a crane starts to work on a section, it will not stop until it finishes loading

or unloading all the containers in this section. For instance, no-preemption is

allowed.

5. A crane can move from one section to another along the rail and the travel time

between two consecutive sections is constant (i.e., ν1). This also indicates that

no two cranes can cross each other.
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6. I assume all cranes have the same service rate Y . For instance, there are Y

units of workloads served per time unit.

In this chpater, I study how to schedule quay cranes such that the total workload

of the vessel can be finished as soon as possible. Besides the parameters described

above in the assumption, I let binary parameter bj to represent if there is a crane

originally located in section j for j = 1, 2, ..., K at time period t = 1. For instance,

bj = 1 if originally there is a crane available in section j and 0 otherwise. I will

develop a time-space network follow model with side constraints to solve the problem

with the objective to minimize the makespace τ to finish all workloads in the vessel.

I let a binary decision variable xjt to indicate if there is workload left in section j at

time period t. I have xjt = 1 if there is still workload left in section j at time t, and

0 otherwise, where 1 ≤ j ≤ S and 1 ≤ t ≤ T . Here T is the planning horizon for the

problem. It can be any upper bound of the makespan τ . For instance, T = Sν1+N/Y

is an upper bound for τ and therefore it is a candidate for the planning horizon. I

also let decision variable wjt to represent the remaining workload in section j at time

period t with wj0 = Wj for all j : 1 ≤ j ≤ S and t : 1 ≤ t ≤ T . Finally, I let an

integer decision variable zt,t+1
j,j′ to represent the number of cranes moving from section

j to section j′, from time t to time t+ 1, where 1 ≤ j, j′ ≤ S and 1 ≤ t ≤ T .

3.2.1 Mathematical formulation

According to the problem description in the previous section, assuming each time unit

to be ν1, a mixed integer programming formulation with the objective to minimize

41



makespan for QCSP can be formulated as follows:

min τ (2)

txjt + 1 ≤ τ, (3)

wjt −Mxjt ≤ 0, (4)

wjt−1 − Y zt−1,t
j,j ≤ wjt, (5)

zt,t+1
j,j+1 + zt,t+1

j,j−1 + zt,t+1
j,j = bj, t = 1 (6)

zt−1,t
j−1,j + zt−1,t

j,j + zt−1,t
j+1,j − z

t,t+1
j,j+1 − z

t,t+1
j,j−1 − z

t,t+1
j,j = 0, t = 1, . . . , T − 1 (7)

S∑
j=1

zt−1,t
j,0 =

S∑
j=1

bj, t = T (8)

zt−1,t
j−1,j + zt−1,t

j,j + zt−1,t
j+1,j ≤ 1, (9)

zt−1,t
j−1,j + zt−1,t

j,j−1 ≤ 1, (10)

zt−1,t
j,j + xjt − zt,t+1

j,j ≤ 1, t = 1, . . . , T − 1 (11)

wjt ≥ 0, xjt ∈ {0, 1}, and zt,t+1
j,j′ ∈ {0, 1}. t = 1, . . . , T − 1 (12)

where M is a sufficient large number.

The objective function (2) is to minimize the makespan of all assigned cranes to

handle all containers, which is the completion time of the latest job. Constraint (3)

determines the finish time of the last job, i.e. makespan. Constraint (4) states that if

there is workload left in the section, the section is under a crane loading or unloading

process. Constraint (5) indicates the workload flow balance constraints. For instance,

for each section j. I have initial workload wj0 = Wj and then for each following time

period, the remaining workload will reduce by Y units before it reaches zero if there is

a crane working on the section during the period. Constraints (6) to (8) are network

flow balance constraints. Constraints (9) indicate that at each time unit, each section

can only hold at most one crane to work on the section. (10) indicates that cranes

cannot move cross each other. These two restrictions are shown in Figures 17. Finally,

constrains (11) represent no-preemption restrictions. For instance, once a crane starts

to work on a section, it has to finish all workload in this section before it moves to

other sections. Note here due to the restrictions for crane moving as described in
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Figure 17: Crane bump and non-crossing constraints

(9) and (10), I can limit the decision variables zt,t+1
j,j′ to be binary instead of general

integer as described in (12).

3.2.2 Model analysis

In the approach, I introduce a mathematical formulation with network flow con-

straints as a subset of the formulation. In the model described in the previous section.

I assume each time unit to be ν1. For more general cases, if each time unit is much

larger than ν1, then I do approximation that the travel time between two sections is

zero. In the model, I use decision variables zt,tj,j+1 instead of zt,t+1
j,j+1 and zt,tj,j−1 instead

of zt,t+1
j,j−1. If each time unit is smaller than ν1, then I can use decision variables zt,tj,j+ν

instead of zt,t+1
j,j+ν and zt,tj,j−ν instead of zt,t+1

j,j−ν , where ν is the closest integer for ν1/ν0

with ν0 representing the time for each time period.

From this approach, I can describe a network flow based model that solve the

problem to obtain an exact optimal solution for the problem. I first test the model

under a default CPLEX setting and compare its performance with other existing

formulations. By taking advantage of network flow substructure in the formulation,

this study model has better performance than other formulations, such as the models

described in Lee et al. (2008b) and ?. The detailed results are shown in Section 3.5.1.

3.3 Lagrangian relaxation approach

In order to evaluate the capacities of the developed model, I run the experiments in

different settings. The experimental results are shown in section 3.5.2. They show

that the model works for small size instances. For the medium and large size instances,

I solve the problem by the Lagrangian relaxation approach and the heuristic approach.
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In this section, I purpose a Lagrangian relaxation heuristic based on the mathe-

matical model to improve the analytic model approach.

3.3.1 A relaxed problem

Lagrangian relaxation approach relaxes some constraints and puts the constraints into

the objective function. The optimal objective value of the sub-problem provides a

lower bound for the original problem. The first step for this approach is to determine

which constraints are relaxed. Those related to the network flow constraints are

not relaxed because the CPLEX solver performs well for efficiently solving network

flow structure models. Except the network flow constraints, there are four candidate

constraints, (3), (4), (5), and (11), to be relaxed. I test 135 instances of the relaxed

problem of the 15 combinations to evaluate average objective values as shown in

Table 5. I also compare the optimum by the original model to the lower bound with

the Lagrangian relaxation method. I relax the constraints with the objective value

close to the optimum to form a relaxed problem. The results of Table 5 indicate that

constraint (11) should be constraints to be relaxed due to the tightest lower bound it

provides.

Table 5: Candidate constraints tests

Run
Relaxed constraints 1 2 3 4 5 6 7 8 9

(3) (4) (11) (5) -111.37 -95.35 -51.55 -46.46 -34.73 -72.01 -68.36 -63.09 -71.9
(3) (4) (11) 1 -45.85 -30.3 1.01 1.01 1 1 1 1
(3) (4) (5) -111.53 -97.13 -93.34 -46.44 -34.7 -71.81 -68.15 -62.97 -71.89
(3) (11) (5) 3.3 2.17 1.8 1.61 1.5 1.44 1.44 1.44 1.44
(4) (11) (5) -224.8 -182.09 -82.41 -56.48 -88.96 -35.41 -34.79 -36.61 -46.21

(3) (4) -29.88 -45.52 -30.09 -10.86 -5.46 -14.43 -14.43 -14.43 -14.44
(3) (11) 26.8 13.78 9.33 7.67 9 7.97 7.97 7.97 7.97
(3) (5) 3.3 2.18 1.8 1.61 1.5 1.44 1.44 1.44 1.44
(4) (11) 8.38 5.11 8.08 9.75 8.3 4.52 9.37 4.55 10.23
(4) (5) -464.99 -182.1 -191.07 -162 -149.64 -1036.85 -1067.13 -1192.78 -1096.49
(11) (5) 3.3 2.18 1.8 1.61 1.5 1.45 1.45 1.45 1.45

(3) 0 0 11.8 7.67 9 7.93 7.97 7.97 7.97
(4) 8.38 6.85 6.08 7.72 7.26 6.85 6.68 6.72 8.84
(11) 91 46 31 24 19 16 14 13 13
(5) 3.3 2.18 1.8 1.61 1.5 1.45 1.45 1.45 1.45

Objective value - - 31 - 21 20 19 18 13

Let µjt be the Lagrangian multipliers for a given j and t and µ be the vector of
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µjt. The relaxed problem can be written as

L(µ) = min τ +
S∑
j=1

T∑
t=1

µjt(z
t−1,t
j,j + xjt − zt,t+1

j,j − 1) (13)

subject to (3),(4),(5),(6),(7),(9),(10).

3.3.2 Subgradient algorithm

In this study, I adopt Subgradient method to obtain the optimal dual for the La-

grangian relaxation problem. Kalvelagen (2002) summarized Subgradient algorithm.

In the algorithm, µj represents the Lagrangian multiplier µjt in the jth iteration. The

details of the Subgradient algorithm in this study are listed in the following:

Step 1: Input the parameters, such as the number of cranes and the number of

containers per section

Step 2: Calculate the initial upper bound L∗, which can be provided by any feasible

solution of the QCSP. For convenience, in this approach, I set the value to be

time horizon T

Step 3: Calculate initial values for µ0 ≥ 0. In this approach, I set the initial value of

Lagrangian multiplier to be the dual values of the linear programming relaxation

of the mixed integer program

Step 4: Set the initial value θ0 = 2

Step 5: Subgradient iterations

for j = 0, 1, . . . , N, do (where N is the maximum number of iterations)

1. let γj = ∂L(µj)/∂µj. For this case, γj corresponds to constraint (11)

2. set the step size tj = θj(L
∗ − L(µj))/||γj||2

3. update the dual multiplier µj+1 = max{0, µj + tjγ
j}

4. if ||µj+1 − µj|| < ε, then stop
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end if

5. if no progress in more than M iterations (M is a pre-defined limited exe-

cution iterations)

then update θj+1 = θj/2

else θj+1 = θj

end if

6. update j = j + 1

end for

3.3.3 Lagrangian relaxation heuristic

I find in Table 5 that there are three cases where the original model can not return

the optimum within one day. However, lower bounds can be returned by Lagrangian

relaxation in all test cases, which indicates that the relaxed problem is easier to solve

than the original problem.

The experiment results also show that the duality gap in some cases are very

small, but they might still return an infeasible solution for the original problem. The

infeasible solutions come from the violation of the non-preemption constraint (11)

which I relax. Table 6 demonstrates a case with 6 cranes and 9 section jobs by

Lagrangian relaxation approach. The third column of Table 6 shows multiple cranes

serve the same section. In order to let an infeasible solution become feasible, I propose

the following method.

Algorithm for making an infeasible solution feasible (LR Heuristic)

Step 0: Sort the cranes in non-decreasing order from one end to the other end of the

terminal. Renumber them from the smallest to the largest accordingly.

Step 1: Record the cranes serving a corresponding section obtained by Lagrangian

relaxation approach.
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Step 2: For each section, find the minimum index crane serving the section, in other

words, allocate section jobs to the minimal index crane for that section.

Step 3: Calculate the makespan for each indexed crane. The maximum value among

makespans of all those cranes provides the first makespan for the problem.

Step 4: Repeat Steps 2 and 3 but find the maximum index crane instead of the

minimum index crane.

Step 5: The smaller makespan of the two feasible solutions provides the makespan

for the problem.

An example that shows how to apply LR heuristic to make an infeasible solution

to be feasible is described in Table 6. After I apply the proposed heuristic to make

an infeasible solution to a feasible solution, each crane will serve consecutive section

jobs, as shown in Table 6. In the example, columns 4 and 5 represent the feasible

solutions obtained by the minimum crane index and the maximum crane index cases

respectively. The maximum crane index solution provides a better solution, in which

the first crane works for section 1, the second crane works for section 2, the third

crane works for section 3, the fourth crane works from sections 4 to 6, the fifth crane

works for section 7, and the last crane works for sections 8 and 9.

Table 6: An example by LR heuristic to make an infeasible solution to be feasible

Section Workload Crane Min. Crane (1) Max. Crane (2)
1 7 1 1 1 Makespan (1)
2 12 1,2 1 2 19.1
3 10 2,3 2 3
4 5 2,3,4 2 4 Makespan (2)
5 7 3,4 3 4 18.1
6 5 3,4 3 4
7 12 4,5 4 5 Makespan
8 11 5,6 5 6 18.1
9 7 6 6 6

3.4 Heuristic approach

In this section, I study two different heuristics to solve large size instances. The

first heuristic is based on a threshold policy obtained by a lower bound generated
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by a dynamic programming algorithm. By this threshold, I can allocate jobs in

several consecutive section to different cranes. The worst case analysis shows that

any feasible solution obtained by this heuristic is bounded by 2 times of the lower

bound. The second heuristic utilizes a dynamic programming algorithm to obtain a

feasible solution directly. I first introduce the following notation before I describe the

heuristics.

s0
j : The initial location of crane j

t0j(s) : The time to move crane j from its initial location to section s, i.e., t0j(s) =

ν1|s0
j − s|

ν2 : The time to load or unload a container

s(i) : The section index for the ith container where i = 1, 2, ..., N

mj : The first working section of crane j

nj : The last working section of crane j

τj : The total time that the jth crane spend on loading or unloading containers

between sections mj and nj

ZH1 : The makespan by H1 heuristic

ZH2 : The makespan by H2 heuristic

H(i, j) : The optimal value function (i.e., makespan) for the first i containers served

by the first j cranes.

3.4.1 Lower bound by dynamic programming

Non-preemption is a common assumption for QCSP. It requires that once a crane

starts loading or unloading containers in a section, the crane will not stop until all

jobs in this section are finished. If I assume preemption is allowed for QCSP, i.e.,

jobs in one section can be shared by multiple cranes. It can be observe that, under
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this scenario, a crane will serve consecutive sections in an optimal solution as shown

in Figure 18 in which there are 4 cranes and 14 sections. This case demonstrates that

the workload of section 4 and section 9 are shared by two cranes.

 
 Section 1 2 3 … 12 13 14 

Workload W1 W2 W3 … W12 W13 W14 

1st Crane 
2nd Crane 

3rd Crane 
4th Crane 

Figure 18: Consecutive relaxed problem

The optimal solution of this preemption problem is the lower bound of QCSP in

which preemption is not allowed. By applying dynamic programming I can derive an

algorithm to find the lower bound of QCSP. The detailed step can be described as

follows.

Algorithm for the threshold by dynamic programming (TDP)

Step 0: Index the cranes and containers from the smallest to the largest along the

same direction as the index for sections along the vessel. For instance, I have

s(1) = 1, s(i) ≤ s(j) and s0
i ≤ s0

j if i ≤ j

Step 1: Initialize the dynamic programming value function

H(i, 1) = min{t01(s(1)), t01(s(i))}+ (s(i)− s(1))ν1 + ν2i for all i = 1, 2, ..., N

H(1, j) = t0j(s(1)) + ν2 for all j = 1, 2, ..., K

Step 2: Obtain the dynamic programming recursive function For i = 2, 3, · · · , N
and j = 2, 3, · · · , K

H(i, j) =
i

min
k=1

max
{
H(k, j − 1),min

{
t0j (s(k + 1)), t0j (s(i))

}
+ (s(i)− s(k + 1))ν1 + (i− k)ν2

}
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In above Step 1, I calculate the start value for dynamic programming. H(i, 1) repre-

sents the time required that one crane works for the first i containers. It includes the

time the crane moving from its initial position to the first loading or unloading posi-

tion (note here, the crane can start from the either end of the consecutive sections),

the traveling time the crane moving among the working sections, and the time for a

crane loading/unloading i containers. H(1, j) represents the time that the jth crane

will work for the first container and the first j − 1 cranes are idle.

In Step 2, I obtain the dynamic programming recursive value function correspond-

ing to each particular container i and crane j. The optimal makespan corresponding

to the state that the first i containers served by the first j cranes is determined by

choosing the maximum of two parts: first, the optimal makespan for the first j − 1

cranes serving k containers (k ≤ i), and second, the time that the jth crane serves

the k + 1th container to the ith container. The optimal makespan for the state (i, j)

is the minimum value among the choices k = 1 to i.

According to the algorithm, H(N,K) is equal to the minimum makespan of K

cranes serving N containers, which is the lower bound of QCSP.

For the dynamic programming procedure, I have to calculate all states, i.e. H(i, j)

for all i = 1, 2, · · · , N, j = 1, 2, · · · , K. To obtain H(i, j), I need to do calculations

corresponding to all states (i′, j − 1|i′ ≤ i) and the present state. Therefore, the

computational complexity to find the optimal objective value for the relaxed problem

of OCSP is O(N2K). Accordingly, the computational time of this algorithm depends

on the number of containers and the number of cranes of an instance.

Nowadays, the capacity of the largest container vessel is between 4000 containers

to 5000 containers. Normally, there are at most 6 cranes serving one vessel. Based on

these conditions, I test a practical instance to estimate the computational time of the

algorithm to evaluate the efficiency of this algorithm. I test the case that one vessel is

with 5000 containers, and there are 6 cranes serving that vessel. The computational

time to find the lower bound is around 72 seconds. In some studies, the projection

of a container vessel capacity will reach 12000 containers in 2010. Therefore, I test
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a scenario that 10 cranes serve one vessel with 12000 containers. This scenario takes

1102 seconds.

3.4.2 Heuristic by threshold method

I name this heuristic as H1 heuristic. In the previous section I can get a lower bound

H(N,K) by DPT algorithm. I define H(N,K) − ν1 as time threshold for H1 to

determine a consecutive section jobs for a crane. The algorithm starts assigning from

the first crane to the last crane, and from the lowest section to the highest section

to follow the non-crossing constraint. A section I assume that its horizon distance is

wide enough when two neighboring cranes will not interfere with each other.

Algorithm for the threshold heuristic (H1)

Step 1: Find H(N,K) by DPT. The threshold is H(N,K)− ν1

Step 2: Initialize τj = 0 for each j = 1, 2, . . . , K. Then, find partitions and makespans

for each crane j = 1, 2, . . . , K

Step 2-1: Set the start section for the first crane mj = 1 for j = 1

Step 2-2: Corresponding to the jth crane, I find an integer number 1 ≤ α ≤ S such

that

ν2

α−1∑
i=mj

Wi + |α− 1−mj|ν1 + min{t0j(mj), t
0
j(α− 1)} ≤ H(N,K)− ν1

and

ν2

α∑
i=mj

Wi + |α−mj|ν1 + min{t0j(mj), t
0
j(α)} > H(N,K)− ν1.

Let nj = α, τj = ν2

∑α
i=mj

Wi + |α−mj|ν1 + min{t0j(mj), t
0
j(α)}.

Step 2-3: Update the crane index j = j + 1 and the start section of jth to be

mj = α + 1. If α < S, then repeat Step 2-2, else go to Step 2-4.

Step 2-4: The makespan ZH1 = max{τj|1 ≤ j ≤ K}.
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The Step 1 of H1 is to find a threshold. In Step 2 of H1, the total sections are

divided into K ′ partitions (K ′ ≤ K), that is, each assigned crane only serves one

work zone. A specific working zone for a crane is determined by observing if the

accumulation time for the crane working on this zone is greater than or equal to the

threshold. The accumulation time includes the crane traveling time between sections,

the time serving containers, and the time for a crane traveling from its original location

to the one end of the working zone. The section providing the marginal pass is the

last section for the working zone.

H1 contains two steps. The computational complexity of the first step is O(N2K)

and that of the second step is O(S). In practice, N � S. It is clearly that O(N2K)

is much larger than S. The first step of H1 dominates whole H1 calculation time, and

therefore the total computational complexity for H1 is O(N2K).

3.4.3 Worst-case analysis of the threshold heuristic

In this section I examine the solution quality of H1 for QCSP by the worst case

analysis. The worst case analysis shows that relative error of H1 is not more than

100%, that is, the ratio between any feasible solution and the lower bound is bounded

by 2.

Theorem 1 The worst case ratio for H1 is at most 2. That is, ZH1/Z∗ ≤ 2, where

ZH1 and Z∗ are the objective values for the feasible solution and the optimal solution,

respectively.

Proof: I first derive the lower bounds for the problem. At first, I can observe that,

due to non-preemption constraints, I have the first lower bound

Z1 =
S

max
i=1
{Wi}ν2. (14)

From the conclusion for the relaxed problem, I can also observe that

Z2 = H(N,K). (15)

Therefore, based on (14) and (15), I have

Z∗ ≥ max{Z1, Z2}. (16)
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Now I prove the claim for two cases:

Case 1. Consider a special case in which there is only one section. If the initial

position of a crane is exactly on that section, then ZH1 = W1ν2 ≤ Z1 ≤ Z∗. If

the initial position of a crane is not on that section, then according to the heuristic,

the section is assigned to the first crane, which is the closest one. Therefore, I have

ZH1 = t01(s(1)) +W1ν2 ≤ Z2 + Z1 ≤ 2Z∗ since t01(s(1)) ≤ H(N,K) = Z2.

Case 2. Consider the case that there are multiple sections. For each general step

to assign a crane j, suppose that crane j serves multiple section jobs from sections

mj to nj as shown in Figure 19. The makespan of the crane j can be divided into

two parts. The total time for the first part (i.e., T1) is the service time of unloading

containers and traveling time from crane j’s original location to section mj, and to

section (nj − 1). The total time for the second part (i.e., T2) is the crane traveling

time from sections (nj − 1) to nj and the service time of unloading containers in the

section nj. According to the heuristic policy, I have

T1 ≤ H(N,K)− ν1.

I also have

T2 = ν1 +Wnj
ν2 ≤ ν1 + ν2

S
max
i=1
{Wi}.

Therefore,

ZH1 = T1 + T2 ≤ H(N,K)− ν1 + ν2
S

max
i=1
{Wi}+ ν1

= Z1 + Z2

≤ 2Z∗.

It can also be verified that, starting from the smallest index section, correspond-

ing to each crane j, I have that the index of the finishing section by crane j in the

heuristic is no smaller than the index of the finishing section by crane j in the re-

laxed problem. Therefore, if I use K cranes for the relaxed problem and achieve the

makespan H(N,K). Then I need no more than K cranes to finish the workload for

all sections in the heuristic approach.
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Section jm i

Workload jmW

jn

jnW  iW

Figure 19: one partition by H1

According to above two cases, I can conclude that ZH1/Z∗ ≤ 2. To prove the

bound is tight, I use an example with 2 sections and 2 cranes shown in Figure 20. In

this example, I assume ε is a very small positive number and ν1 < ε.

 

ε+= cW2ε21 −= cW

Crane 1 Crane 2

Figure 20: two sections jobs

In this case, the locations of cranes 1 and 2 are one section away from the sec-

tion with workload. Considering the relaxed problem, I know that the threshold is

(c+ε)ν2+ν1. According to the heuristic algorithm, I have ZH1 = (2c−ε)ν2+2ν1. The

optimum solution Z∗ = max{(c+ ε)ν2 +ν1, (c− ε)ν2 +ν1} = (c+ ε)ν2 +ν1. Therefore,

ZH1/Z∗ = ((2c − ε)ν2 + 2ν1)/((c + ε)ν2 + ν1) → 2 as ε → 0 and ν1 → 0. This result

indicates that the worst case bound is asymptotically tight and is not possible to be

improved. 2
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3.4.4 Heuristic by dynamic programming

For H2, I consider applying dynamic programming for the crane scheduling problem

with the consideration that all containers belonging to the same section is considered

as a job, comparing to the case that each individual container is treated as one job

for the relaxed problem. The detailed steps of the algorithm are shown as follows.

Algorithm for dynamic programming heuristic (H2)

Step 0: Index the cranes from the smallest to the largest along the same direction

as the index for sections along the vessel.

Step 1: Initialize the dynamic programming value function H(1, j) = ν2W1 + t0j(s1)

for all j = 1, 2, ..., K

and H(i, 1) = ν2

∑i
k=1Wk + (i− 1)ν1 + min{t01(1), t01(i)} for all i = 1, 2, ..., S

Step 2: For i = 2, . . . , S and j = 2, ..., K, I calculate

H(i, j) =
i

min
k=1

max{H(k, j−1), ν2

i∑
r=k+1

Wr+(i−k−1)ν1+min{t0j(k+1), t0j(i)}}.

QCSP by H2 is similar to a partition problem. For this problem, I can apply

H2 to find the optimal partition pattern by assuming all containers in one section

as one job. The computational complexity of H2 is O(S2K). In practice, N � S.

Therefore, the computation time of H2 is much smaller than that of H1. I can save a

lot of computational time by applying H2, especially in cases where there are a large

number of containers. In this study approach, the dynamic programming approach is

the way systemically check all of the possible partition patterns to find the optimum,

which indicates that the makespan of the same case by making H2 equal to or smaller

than that of H1. This ensures that the worst case bound of H2 is also bounded by 2.

3.5 Computational results

3.5.1 Model comparisons

In the computational experiments, I first compare the performance of this study

mathematical formulation with two other existing models (i.e., Lee et al. (2008b) and

55



?). In the experiment setting, I create 16 instances: 8 small size instances and 8

medium size instances. The results are shown in Figures 21 and 22. The instances

are expressed in 3 parameters, a× b− c, in which a represents the number of sections,

b represents the number of cranes, and c represents the number of jobs. For these

problem, I set one time unit to be the process time for 50 containers.
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Figure 21: comparisons for small size instances
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Figure 22: comparisons for medium size instances

For small size instances, all these three models can find the optimal solutions. This

study model and Lee’s model have very similar performance. Lim’s model spends
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more time on some scenarios, but still can finish within 30 seconds. For medium size

instances, I set 30 minutes as the time limit. All three models fail to find optimal

solutions. I examine the feasible solutions and relative optimality gap provided by

CPLEX solver. Overall the gap by running this study model is around 20% smaller

than the other two models.

3.5.2 Model performance

In order to further examine the limitation of the model I propose, I create different

scenarios to test the model. The experimental settings are listed in Table 7. I run

5 instances with the same parameter setting except the workload per section, and

take the average value as the representing value for the setting. The tolerance of the

optimality gap is set to be 1%. The final results are shown in Table 8.

Table 7: Experimental settings for testing the model

Number of cranes 1 crane to 3 cranes
Ship size 3 sections to 9 sections
Execution time limit 1800 seconds
Containers per section workload is randomly generated between 100 and 300 containers

From Table 8, I can observe that the model can find the optimal solutions within

the time limit for 22.78% of the cases. For around 54.43% of instances, default CPLEX

can not return any feasible solution within the time limit. I can observe that as the

number of nodes in the time space network is larger than 500. Default CPLEX to

run the model can not provide an optimal solution within the time limit. Therefore,

in the following, I describe Lagrangian relaxation and heuristic approaches to solve

medium and large size instances.

Table 8: Experimental results for the model approach

Case Results Number of runs Relative error (%)
1 Optimum 72 0
2 Feasible Solution 72 27.03
3 No solution return 172 100
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3.5.3 Performance of the Lagrangian relaxation heuristic

I implemented the Lagrangian relaxation heuristic for three cases in which the number

of cranes are 2, 3 and 4 respectively. For each case, I consider the size of the problem

to be 9 sections and the planning horizon is 100 time units. Under this setting, the

number of nodes is 900. Each time unit represents the time to process 25 containers.

Initial workload for each section are randomly generated from 4 unit containers (i.e.,

100 containers in total) to 12 unit containers (i.e., 300 containers in total). For each

case, I perform and record 5 runs. The results are shown in Table 9. I report the

ratio between the objective value for the best feasible solutio obtained by Lagrangian

relaxation heuristic (ZLRH) and the lower bound provided by Lagrangian relaxation

(ZL), and the computational time for each run.

In order to test the effectiveness of the heuristic, I run the model with the same

experiment setting for comparison purpose. For each of the 15 runs, the default

CPLEX can not return any feasible solution within one day. However, the proposed

Lagrangian relaxation approach can return feasible solutions for all 15 experimental

cases with the computational time range from 5.9 hours to 9 hours, and the av-

erage ratio (Z
LRH

ZL ) of the 15 cases is under 1.5, which indicates that the proposed

Lagrangian approach improves the exact mathematical model approach in terms of

solving medium size problems.

Table 9: Performance of the Lagrangian relaxation heuristic

No. of crane K = 2 K = 3 K = 4
ZLRH

ZL Time (hrs) ZLRH

ZL Time (hrs) ZLRH

ZL Time (hrs)

run 1 1.25 7.4 1.4 8.5 1.37 6.8
run 2 1.44 7.5 1.37 8.5 1.17 7.1
run 3 1.28 7.1 1.23 9 1.6 7.1
run 4 1.21 7.5 1.29 7.6 1.18 5.9
run 5 1.12 8 1.76 8.5 1.48 7.6

average 1.26 7.5 1.41 8.42 1.36 6.9

3.5.4 The Heuristic performance

In previous discussions, I report the computational experiment results of the default

CPLEX for the mathematical formulation and Lagrangian relaxation approach to
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solve small size and medium size instances. In this section, I evaluate the performance

of the two heuristics H1 and H2 by comparing the two heuristics with other analytic

approaches, including the analytic model and the Lagrangian relaxation heuristic.

Then, I compare H1 with H2 for large size instances.

I generate small size instances with known optimum (shown as “Obj” column in

Table 10) as benchmarks to determine if these two heuristics can run efficiently and

effectively comparing to the exact solution approach. For all instances, the default

CPLEX for the mathematical formulation can reach optimal values within ten minutes

(“M” column in Table 10). It is much larger than the computational time of H1 and

H2, which are less than one second. H2 yields optimal solutions for four instances.

Since H2 examines all possible consecutive sections and form working zones for cranes,

when the working zones in the optimal solution are not consecutive, H2 can not return

the optimal value. H1 does not yield optimal solutions for any case.

Table 10: Model and Heuristics Comparisons

K = 2 K = 3 K = 4 K = 5
Obj M H1 H2 Obj M H1 H2 Obj M H1 H2 Obj M H1 H2

S = 6 33 33 53 34 17 17 22 21 50 50 92 50* 33 33 37 33*
S = 7 23 23 36 25 18 18 22 21 42 42 76 44 20 20 36 22
S = 8 19 19 28 19* 28 28 52 30 22 22 42 23 38 38 70 42
S = 9 20 20 33 22 30 30 54 30* 39 39 76 40 38 38 72 42

An asterisk indicates that the heuristic provides optimal value

Lagrangian relaxation heuristic, H1, and H2 are compared among each other for

medium size problems. The results are shown in Table 11. The experimental settings

are the same as described in Section 3.5.3, and the only difference is that the number

of cranes is from 2 to 9. The average values of the ratios between the upper bounds

generated by feasible solutions and lower bounds generated by Lagrangian relaxation

are list in the table. The results indicate that H2 has the best solution quality of

the three heuristics. LR heuristic has the same solution quality comparing to H1.

However, Lagrangian relaxation heuristic requires large computational time in all

instances.

In order to further evaluate two heuristics, I create large size instances. There are
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Table 11: Comparisons among LR heuristic, H1, and H2

LR heuristic H1 H2

Case No. of Cranes E(ZLRH

ZL ) E(ZH1

ZL ) E(ZH2

ZL )

1 2 1.26 1.08 1.04
2 3 1.41 1.24 1.08
3 4 1.36 1.32 1.12
4 5 1.46 1.31 1.15
5 6 1.37 1.56 1.32
6 7 1.36 1.39 1.18
7 8 1.15 1.5 1.1
8 9 1 1.26 1
Overall average 1.3 1.33 1.12

4 types of vessel sizes, which contain 20, 30, 40, and 50 sections respectively. The

number of containers per section is generated uniformly distributed and categorized

into three different categories: Case I: 10 to 50 containers per section, Case II: 50

to 100 containers per section, and Case III: 100 to 300 containers per section. The

numbers of cranes are 5, 10, and 20 respectively. For each combination setting, I run

5 instances and take the average of the results for each combination setting. Table

12 shows the computational results for H1 and H2. In the table, “T” represents

the average computational time for a specific setting in terms of seconds, and “G”

represents the ratio between the upper bound generated by the feasible solution and

the Lagrangian relaxation lower bound.

According to the analysis in Section 3.4.2, the computational complexity of H1

is O(N2K), that is, the computational time of the experiment increases while the

number of containers increases or the number of cranes increases. Results also show

the same tendency; the number of containers dominates the computational time of

H1. In practice, one vessel normally needs 3 to 5 cranes to serve it. The close

examples in the experiments are the number of cranes K equals to 5. I can see that

average computational time by H1 in these cases is no more than 200 seconds, and

the ratio bound is under 1.3. H2 outperforms H1 in terms of both computational

time and optimality gaps, because the computational complexity of H2 is related to

the number of sections (i.e., S) instead of the number of containers (i.e., N) and H2

systemically examine all combinations of consecutive sections served by all cranes,
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which finds the minimum makespan if several consecutive working zones are served

by the same crane.

Table 12: Large instance comparisons by H1 and H2

K = 5 K = 10 K = 20
Sections Containers H1 H2 H1 H2 H1 H2

T G T G T G T G T G T G
Case I 0.26 1.19 0.06 1.1 0.56 1.04 0.06 1.18 1.08 1.66 0.07 1.08

20 Case II 2.72 1.19 0.05 1.08 6.01 1.42 0.1 1.16 11.98 1.76 0.07 1.02
Case III 40.9 1.25 0.06 1.11 79.18 1.5 0.06 1.22 155.58 1.73 0.08 1.02
Case I 0.62 1.19 0.06 1.07 1.46 1.32 0.06 1.14 2.67 1.67 0.06 1.17

30 Case II 5.67 1.14 0.06 1.06 12.29 1.31 0.06 1.14 24.95 1.56 0.08 1.29
Case III 80.88 1.13 0.06 1.04 190.55 1.3 0.06 1.15 329.93 1.68 0.0.8 1.32
Case I 0.96 1.12 0.06 1.05 2.32 1.31 0.06 1.11 4.14 1.51 0.07 1.26

40 Case II 10.96 1.11 0.06 1.03 21.54 1.26 0.06 1.08 45.08 1.63 0.07 1.17
Case III 131.51 1.1 0.06 1.05 322.13 1.29 0.05 1.12 657.74 1.6 0.07 1.27
Case I 1.61 1.09 0.06 1.04 3.47 1.27 0.07 1.09 6.83 1.53 0.07 1.14

50 Case II 15.28 1.08 0.09 1.03 35.81 1.19 0.07 1.08 69.01 1.4 0.07 1.19
Case III 185.09 1.09 0.06 1.03 517.99 1.21 0.06 1.09 988.57 1.45 0.07 1.16

3.6 Summaries

In this chapter, I study the quay crane scheduling problem for one vessel case. In

the study, I first developed a time-space network flow formulation for the problem.

This model is very flexible and it can easily include non-crossing and non-interference

constraints and easily include or exclude crane travel times. By aggregating containers

into batches, under some scenarios, it will have better performance than other models.

I then extended the exact solution approach to the Lagrangian relaxation set-

ting to solve medium size problems. Lagrangian relaxation heuristic is proposed to

make an infeasible solution to a feasible solution. In this approach, I improve the

analytic approach by getting the feasible solutions within reasonable computational

time. However, the Lagrangian relaxation approach is only applied for small and

medium size instances.

In order to solve the real world large size problems, I develop two heuristics. The

first heuristic is based on the threshold to find the consecutive sections as a working

zone for a crane. The threshold is determined by the lower bound from a dynamic

programming technique. This approach ensures the solution quality in which worst
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case bound is 2. However, in extreme cases, this heuristic takes time to find a lower

bound to provide the threshold. In order to conquer these issues in the first heuristic,

I develop the second heuristic. In this heuristic I treat all containers in one section

as one job. I do this to find the best partitions to form a working zone for cranes

by dynamic programming. This leads to the problem size decreased substantially.

Accordingly, the computational time decreases dramatically. The second heuristic is

more efficient and effective than the first heuristic from the computational point of

view as well.

In this study I focus on the crane scheduling problem. However, berth allocation

and crane scheduling problems are two inter-connected activities in the container

terminal operations. I will study combine berth allocation and quay crane scheduling

in the next chapter.
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4 Integrated Study of Berth Allocation and Quay

Crane Scheduling Problems

Abstract

In this chapter, I study the integrated problem of combining berth alloca-

tion (BAP) and quay crane scheduling (QCSP) together. That is, I solve BAP

and QCSP simultaneously. We first develop a Mixed Integer Programming for-

mulation for the problem and obtain optimal solutions for small-size problems.

For large-size problems, I develop two heuristic solution approaches and per-

form worst case analysis for each solution approach. I also use the solution

obtained from the heuristic as an initial solution to be inserted into the exact

solution framework to obtain a better feasible solution. Finally, computational

experiment results are provided to compare different solution approaches and

evaluate the effectiveness of our proposed solution approaches.
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4.1 Introduction

Most cargos in the world nowadays are transported by containers. Each year, around

200 million containers are transported among world seaports. The containerized mar-

itime transportation is important to the world trade network. Therefore, a seaport

becomes a crucial node in the transportation network. Efficient container terminal

operations not only affect the competitiveness of a port, but also release traffic con-

gestion in the transportation network. The berths and cranes are two important

resources in the container terminal related to the capacity of a port. The berths are

high cost facilities comparing to other facilities in a container terminal, therefore, an

efficient and effective usage of berths is critical to a container terminal. When a vessel

is allocated to berths, the cranes are scheduled to serve the vessel. The processing

time of a vessel is related to the number of cranes serving on the vessel. There-

fore, berth allocation and cranes scheduling need to be considered simultaneously for

terminal operations.

In the previous studies, there are fruitful researches on berth allocation problem

(BAP) (For instance, see Nishimura et al. (2001), Guan et al. (2002), Kim and Moon

(2003), Guan and Cheung (2004), Cordeau et al. (2005), Monaco and Sammarra

(2007), Imai et al. (2007), Lee and Chen (2008)), and quay crane scheduling problem

(QCSP) (For instance,see Daganzo (1989), Peterkofsky and Daganzo (1990), Lim et al.

(2002), Li and Vairaktarakis (2004), Lim et al. (2004), Kim and Park (2004), Good-

child and Daganzo (2006), Mak (2006), Lim et al. (2007), Sammarra et al. (2007), Lee

et al. (2008b), Lee et al. (2008a)). For BAP, researchers assumed the processing time

of each vessel is independent of the number of cranes assigned for that vessel. That is,

the processing time is a constant parameter and predefined. For QCSP, researchers

mainly dealt with the arrangement of the cranes so that all assigned jobs can be

finished as soon as possible . A lot of researchers focused on solving QCSP with

non-interference and non-crossing constraints. The vessel berthing allocation is not

considered in their studies. Up to now, only a few researchers tried to study BAP

and QCSP simultaneously.
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In the study of Daganzo (1989), quay cranes are scheduled for incoming vessels

for both static and dynamic problems. In his approach, only the scheduling sequence

of vessels was considered and no policies were studied on how to allocate vessels

to berths. Park and Kim (2003) suggested a two-phase procedure for scheduling

berth and quay cranes at the same time. In their approach, they first established

a mathematical model to describe the problem. By using Lagrangian relaxation

approach, the berth positions for a vessel and number of cranes assigned to that vessel

are determined. In the model, he made an assumption that the berthing processing

time of a vessel is inversely proportional to the number of the cranes assigned to the

vessel. Another important assumption was that every vessel has a most favorable

location of berthing. If a solution from Lagrangian relaxation is infeasible, he tuned

the Lagrangian multiplier to make an infeasible solution to a feasible solution. Once

the berthing position and the number of cranes are determined, in the second phase,

the detail schedule of each crane is found by a dynamic programming algorithm. Liu

et al. (2005) studied QCSP with the objective to minimize the maximum relative

tardiness of vessel departures. Therefore, in his approach, he had to involve the

vessel berthing factor into his model. Although he adapted two phases approach to

solve the problem, unlike the study of Park and Kim (2003), a vessel berthing pattern

is pre-defined already, that is, the berthing positions of each vessel are parameters

instead of decision variables. In the study, he focused on how to solve the quay crane

scheduling problem. Ak and Erera (2007) established a mixed integer programming

model to solve small size instances of simultaneous assignments of berths and quay

cranes for vessels. For large size problems, he develop Tabu Search algorithm to solve

the near-optimal solutions. Imai et al. (2008b) considered the vessel berthing with

limited quay crane capacity. He made an assumption that the handling time of a

vessel depends on its allocated berth length, which indicates the processing time of

a vessel is not determined by quay crane scheduling. Instead of solving BAP and

QCSP together, he solved the variation of BAP to approach BAP and QCSP. Imai

et al. (2008a) studied a simultaneous berth and quay crane allocation problem. He
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introduced a mathematical formulation and employed a genetic algorithm to solve the

problem. He improved the genetic algorithm to determine cran transfer scheduling

across the berth maximum flow problem-based algorithm.

In this chapter, I first develop a mixed integer programming formulation to de-

scribe the problem which combines BAP and QCSP together. I denote this combined

problem by BAQCP as an abbreviation. Then, I evaluate the capability of the model

and verify that it can solve small size problems. For large size problems, it is hard

to solve the problem into optimality in a reasonable amount of time by the exact

solution approach. Thus, I develop a heuristic approach to solve the problems to find

near-optimal solutions. I analyze the worst case ratio of the heuristics to measure

the solution quality of our proposed heuristics. In reality, First-in-First-out (FIFO)

is a common policy used to schedule vessel and cranes. Therefore, I also compare

the heuristics with FIFO approaches to evaluate the effectiveness of our designed

heuristics. Finally, I combine non-preemption heuristic together with exact solution

approach to further improve the solution quality.

The remaining part of this chapter is organized as follows. Section ?? describes

the problem, lists the notation used in this chapter, and provides a mathematical

formulation for the combined problem of berth allocation and quay crane schedul-

ing. In Section 4.3, the preemption heuristic and the non-preemption heuristic are

developed. Worst case analysis for both approaches is provided to ensure the so-

lution quality of each heuristics. I also describe the common used FIFO heuristic,

which is used as the base for comparison for the two designed heuristic. Section 4.4

provides the computational results, which include the evaluations of the model per-

formance and evaluations of the heuristic performance. I also combine the model

and the non-preemption heuristic together to further improve the solution from the

non-preemption heuristic. Finally, Section 4.5 concludes this chapter.
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4.2 Mathematical formulation

In this section, I discuss the mathematical formulation for the problem. In this

formulation, I decide the location of each vessel and the detailed scheduling for each

crane. I first make some assumptions which are listed in the following.

• Vessels arrive a terminal at the same time.

• Once a vessel is assigned to moor for berths, it will not leave until all jobs of

the vessel are finished.

• A vessel contains several holds, where store containers. The capacity of a hold

is agreeable to a vessel size. That is, the larger of a vessel, the larger capacity

of the hold in that vessel.

• Once a crane starts to its assigned jobs, it will not stop or work for another

assignment. After a crane finish its assigned jobs, if it is not assigned to a new

job, it will stay in the same position.

• the crane traveling time is ignored in this study.

• The width of a berth section is wide enough so that two neighboring working

cranes will not interfere with each other.

• Each quay crane has the same loading or unloading capacity.

• Workload on a vessel is uniformly distributed.

I can use a time-space diagram to describe BAQCP. The horizontal axis represents

time units and the vertical axis represents the berth sections. In this study, one berth

section distance represents as one hold width. In the time-space diagram, a vessel is

viewed as a rectangle. The height of the rectangle is the vessel size, and the length of

the rectangle is the processing time of the vessel, which depends on cranes work on

the vessel. A directional arrow linking with the two nodes of a time-space represents
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Figure 23: An example of a time-space diagram for two vessels

a crane moving from one position to another position and from one time to next time

unit. Figure 23 shows an example of a time-space diagram with two vessels.

In Figure 23, there are two cranes initially located in the section one and section

2. I use the left-bottom of a vessel rectangle to show the vessel is assigned. In Figure

23, one vessel is assigned at time one, on the first section, and the other vessel is

assigned at time four, on the section 3. The completion time of each vessel depends

on how cranes working for the vessel. In this example, the completion of the first

vessel is five, and the completion time of the second vessel is eight.

4.2.1 Notation for the model

Before I describe the mathematical formulation, I at first list all notation used in the

mathematical model.

Problem parameters

N : The set of vessels and the total number of vessels is N

K: The set of cranes and the total number of cranes is K

S: The set of berths and the total number of berths is S

T : Time horizon
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M : A sufficient large number

Y : The service rate of a crane with the unit “containers/unit time”

Li: The length of vessel i

Ui: Number of containers in vessel i

Bj: The number of cranes initially located in section j

ν: Processing time of each unit of containers

Decision variables

τ : The completion time of the last vessel

ci: The completion time of vessel i

wijt: Number of containers left in vessel i in section j at time t

yijt: Binary decision variable to indicate if vessel i is assigned in berths j to j+Li−1

starting at time period t. If yes, then yijt = 1; otherwise yijt = 0

oijt: Binary decision variable to indicate if there is workload left from vessel i at

section j at time t. If yes, then oijt = 1; otherwise oijt = 0

xijt: Binary decision variable to indicate if vessel i occupies section j at time t. If

yes, then xijt = 1; otherwise xijt = 0

δit: Binary decision variable to indicate if the completion time of vessel i is earlier

than or equal to time t. If yes, then δit = 1; otherwise δit = 0

pjt: Binary decision variable to indicate if a crane starts to load or unload containers

in section j at time t. If yes, then pjt = 1; otherwise pjt = 0

zt,t+1
j,j′ : Binary decision variable to indicate if there is a crane moving from section j to

section j′, from time t to time t+ 1. If yes, then zt,t+1
j,j′ = 1; otherwise zt,t+1

j,j′ = 0
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Due to the fact that a vessel i can not leave until there is no workload left for all

sections of the vessel, it can happen that the vessel i occupies section j at time t even

though there is no workload left on section j at time t. Thus, I introduce two types of

binary decision variables oijt and xijt respectively corresponding to vessel i in section

j at time t.

4.2.2 Model formulation

I establish a mixed integer programming model to describe and solve BAQCP. Accord-

ing to the descriptions of BAQCP and the notation defined, the model formulation
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is listed in the following.

min τ

ci ≤ τ, (17)

toijt + 1 ≤ ci, (18)
S−Li+1∑
j=1

T∑
t=1

yijt = 1, (19)

Ui/Li

j∑
k=j−Li+1

yikt ≤ wijt, (20)

wijt−1 − Y zt−1,t
j,j ≤ wijt, (21)

wijt −Moijt ≤ 0, (22)

ci − t ≤ M(1− δit), (23)

1 + t− ci ≤ Mδit, (24)

1−M(2−
t∑

t′=1

j∑
k=max(0,j−Li+1)

yikt′ − (1− δit)) ≤ xijt, (25)

N∑
i=1

xijt ≤ 1, (26)

zt,tj,j+1 + zt,tj,j−1 + zt,t+1
j,j = Bj, (27)

zt,tj−1,j + zt−1,t
j,j + zt,tj+1,j − z

t,t
j,j+1 − z

t,t
j,j−1 − z

t,t+1
j,j = 0, (28)

S∑
j=1

zt−1,t
j,0 =

S∑
j=1

Bj, (29)

zt,tj−1,j + zt−1,t
j,j + zt,tj+1,j ≤ 1, (30)

zt,tj−1,j + zt,tj,j−1 ≤ 1, (31)

wijt − wijt+1 ≤ Mpjt, (32)

zt−1,t
j,j + oijt + pjt − 2 ≤ zt,t+1

j,j , (33)

yijt, oijt, xijt, pjt, z
t,t+1
j,j′ ∈ {0, 1}, τ, ci, wijt ≥ 0,

The objective of the problem is to minimize the makespan to serve all vessels by

assigning cranes to handle all containers.

Constraints (17) and (18) determine the makespan by the completion time of each
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vessel. For instance, the makespan infers the completion time of the latest finished

job, and the completion time for each vessel should be the earliest time that no

containers left in each section on this vessel.

Constraints (19) to (22) represent vessel assignment and quay crane loading/unloading

containers. For instance, constraint (19) indicates that one vessel is assigned exactly

once. Constraint (20) describes that once a vessel is assigned, the corresponding

workload will be generated accordingly. Constraint (21) indicates that the remaining

workload will be reduced by Y if there is a crane working in the section. Constraint

(22) indicates if there is workload left in section j for vessel i at time t.

Constraints (23) to (26) decide the sections and time slots that will be occupied

by each vessel i and separate vessels from overlapping with each other. For instance,

constraints (23) and (24) indicate if vessel i is finished before or at time t. Constraint

(25) shows that section j at time t will be occupied by vessel i if the assignment

time of vessel i is before time t, the first assignment section is from j − Li + 1 to j,

and vessel i is finished after time t. Constraint (26) indicates each section at each

particular time unit can not be occupied by more than one vessel.

Constraints (27), (28), and (29) are network flow balance constraints for quay

cranes, which determine the cranes movement.

Constraints (30) and (31) represent the non-interference constraints, in which

constraint (30) describes that no more than one crane will stay work for the same

section at the same time and constraint (31) prevents cranes from crossing with each

other.

Constraints (32) and (33) represent non-preemption constraints, in which con-

straint (32) represent if crane starts to work on vessel i in section j at time t and

constraint (33) indicates that a crane will work for the same vessel once it starts to

work for this vessel.
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4.3 Methodology

In this section, I develop four heuristics (for the preemption, non-preemption, mod-

ified non-preemption heuristic, and FIFO cases) to assign the berths and the cranes

for a vessel simultaneously. All assumptions used for the model are applicable for the

heuristics. The preemption and non-preemption heuristics contain two steps. The

first step is to group the vessels into batches by the limitation of the berth length. The

modified non-preemption heuristic is a little different from non-preemption heuristic.

For those vessel lengths less then or equal to K berths, I use the limitation of the

length K instead of the length S. The second step is to assign certain number of

cranes to the vessels. The rule to group vessels is modified from the heuristic devel-

oped by Guan et al. (2002). The preemption heuristic allows multiple cranes share

the same section jobs. The non-preemption heuristic refers that once a crane starts

to load or unload the containers, it will not leave the current section for another job

until it finishes the assigned job. FIFO heuristic is a commonly used scheduling policy

in the real operation. FIFO is used as a comparison base to examine the performance

of the preemption and non-preemption heuristics.

4.3.1 Preemption heuristic H1

In this study, the preemption is only allowed for the cranes but not for the vessels,

because the cost of any re-berthing of a vessel is relatively high and re-berthing is

a rare event in the real world. The crane preemption sometimes happens while a

crane temporarily is out of order, or a high efficient crane finishes its assigned job

and takes over the job of the neighboring low efficient crane. In this section, We

design a heuristic that allows a crane preemption happening. Figure 24 shows a

three-vessels-and-two-cranes example to explain the preemption heuristic.

The first vessel has two holds, and there are one container within each hold. The

second vessel has three holds, and there are two containers within each hold. The

third vessel has four holds, and there are three containers within each hold. Accord-

ing to the preemption heuristic, vessels’ assignments are divided into two different
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Figure 24: An example to explain H1 preemption heuristic

groups. The berth allocation of those vessels with size less then or equal to K berths

is assigned by the limitation length of K berths (the vessels belong to category 1 in

the Step 1 of the heuristic). Cranes are fixed from berth 1 to berth K to serve those

vessels of category 1. Other vessels are assigned by the limitation length of S (the

vessels belong to category 2 in the Step 1 of the heuristic). At first, these three vessels

are grouped into two vessel categories. Because vessel 1 belongs to the category 1,

berth 6 and berth 7 are allocated for vessel 1, and two cranes are fixed at section 1

and section 2 to serve vessel 1. At t = 1 vessel 1 leave the terminal. vessel 2 and

vessel 3 are allocated based on Step 3-1 and Step 3-2. The cranes assignments follow

two rules. The first rule is that the vessels belong the smaller vessel group index have

higher priority to be served. The second rule is that when the left containers on the

berth sections are tight, the sections of the smaller vessel index has higher priority to

be served. While a condition that tight sections belongs two different vessel groups

happens, the first rule needs to be considered first. By observation by this example,

the vessels belong category 2 have a property that a smaller index vessel will leave

its assigned berths before a lager index vessel. The details of the H1 are listed in the

following.
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The preemption heuristic H1

Step 0 Sort and renumber the vessels according to the vessel length from the smallest

to the largest; that is L1 ≤ L2 · · · ≤ LN .

Step 1 Separate the vessels to two categories. If Li ≤ K, Vi goes to category 1,

named V 1
i . Otherwise, Vi is in category 2, named V 2

i . Set i0 = arg max{L1
i }.

Step 2 Assign vessels to berth sections and assign cranes to vessels in category 1.

Step 2-1 Assign crane k to berth section k, where k = 1, · · · , K. Crane k keeps

working in the section k.

Step 2-2 Let {V 1
l , V

1
l+1, · · · , V 1

i0
} be the set of ungrouped vessels.

u1 = max{q|
∑q

i=l L
1
i ≤ K and q ≤ i0}

G1
x = {V 1

l , · · · , V 1
u1}

Step 2-3 For r = l, l + 1, · · · , u1

(a) if x is odd, then assign V 1
r to berth sections

K −
∑u1

j=r Lj + 1,K −
∑u1

j=r Lj + 2,· · · , K −
∑u1

j=r+1 Lj

(b) if x is even, then assign V 1
r to berth sections∑u1

j=r Lj + 1,
∑u1

j=r Lj + 2,· · · ,
∑u1

j=r Lj.

Step 2-4 Set x = x+1, repeat Step 2-1 and Step 2-2 until no more vessel in category

1 need to be assigned for berth sections.

Step 2-5 Let t = 0. Assign crane k to berth section k, where k = 1, · · · , K. Crane

k keeps working in the section k. Set t = t + 1. Repeat Step 2-5, until no

workload occupied any berth sections. Record the first category finished time

t0.

Step 3 Set t = t0 and assign vessels to berth sections and assign cranes to vessels in

category 2.
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Step 3-1 Let {V 2
l , V

2
l+1, · · · , V 2

N} be the set of ungrouped vessels.

u2 = max{q|
∑q

i=l L
2
i ≤ S and q ≤ i0}

G2
x = {V 2

l , · · · , V 2
u2}

Step 3-2 For r = l, l + 1, · · · , u2

(a) if x is odd, then assign V 1
r to berth sections

S −
∑u2

j=r Lj + 1,S −
∑u2

j=r Lj + 2,· · · , S −
∑u2

j=r+1 Lj

(b) if x is even, then assign V 2
r to berth sections∑u2

j=r Lj + 1,
∑u2

j=r Lj + 2,· · · ,
∑u2

j=r Lj. Let t = t0.

Step 3-3 Set p(s, t) is priority of section s at time t for s = 1 · · · , S, t = 1, 2, · · · .

Initially set p(s, t0) = 0.

Let r(s, t) record the index of group occupied berth section s at time t.

Let g(i) record the index of group in which the vessel i belongs to.

Let j(s, t) record the index of vessel occupied berth section s at time t.

Let w(i, s, t) record the workload left in vessel i which occupy the berth section

s at time t.

Step 3-3-1 At time t,

if Gr(s,t) < Gr(d,t), p(s, t) = p(s, t) + 1

if g(j(s, t)) = g(j(d, t)) and w((j(s, t), s, t) > w(j(d, t), d, t), p(s, t) = p(s, t) + 1.

if g(j(s, t)) = g(j(d, t)), w(j(s, t), s, t) = w(j(d, t), d, t), and j(s, t) < j(d, t),

p(s, t) = p(s, t) + 1.

Step 3-3-2 Sorting p(s, t) at time t, s = 1, · · · , S.

Assign the cranes to the k largest p(s, t) sections.

w(j(s, t), s, t) = w(j(s, t), s, t)− 1.

Step 3-4 if there are still workload left t = t+ 1, go to Step 3-3, else τ = t.

4.3.2 Worst case analysis of H1

In this section, if H1 is applied, a smaller size vessel has a smaller processing time

whiles a larger size vessel has a longer processing time. This fact indicates the vessel
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size is agreeable to vessel processing time by applying H1. By this characteristic, I

can apply the study results of Guan et al. (2002) on the relaxed problem to find the

worst case bound of the preemption heuristic H1.

The relaxed problem means for every Vj (Vj is treated as one job), I replace it by

Lj identical jobs {Vj1, Vj2, · · · , VjLj
} with each of unit size, which is shown in Figure

25.
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Figure 25: An original job v.s. a relaxed job

Figure 26 shows an example of 5 vessels berth allocation by the heuristic of Guan

et al. (2002), and Figure 27 is the corresponding relaxed instance. In Guan et al.

(2002), the relationship between the completion time of a job and the completion

time of its relaxed job is shown as the following lemma.

Lemma 2 The completion time of Vj in the heuristic solution (i.e., CH
j ) is at most

twice the completion time of the first relaxed vessel rectangle of Vj in the relaxed

problem (i.e., CR
j1) for each j = 1, 2, · · · , N . That is, CH

j ≤ CR
j1.

Proposition 4 Vessel group G2
j+2 will be not served by cranes before all jobs of vessel

group G2
j is finished.

Proof: In H1, there are three priorities settings; first, within each vessel group,

sections with larger containers left have higher priority to be served by cranes than

sections with smaller containers do. second, within each vessel group, if the sections

have the same number of containers left, a smaller index vessel has higher priority

to be served by cranes than a larger vessel does; third, if the sections belonging to
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Figure 26: 5 vessels berth allocation by the heuristic developed by Guan et al. (2002)
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Figure 27: Relaxation of the example of 5 vessels of Figure 26

different vessel groups have the same number of containers left, a smaller index vessel

group has higher priority to be served by cranes than a larger vessel does;

According to these three priorities settings, a smaller index vessel has a smaller

completion time than a larger vessel does. For example in the Figure 29, the comple-

tion time of Va is less than the completion time of Vb, less than the completion time

of Vc. Therefore, ∀ Vi ∈ Gj and ∀ Vi′ ∈ Gj, the completion time of Vi is smaller than

the completion time of Vi′ .

Consider a case, ∃Vi′′ ∈ Gj+2, Vi′′ starts to be served by cranes before all vessels

belonging to Gj leave berths. There exists at least one Vi′ ∈ Gj+1 leave its assigned

berths and its completion time is less than the completion time of the vessel belonging
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Figure 28: An illustration of H1
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Figure 29: Three vessel groups in category 2

to Gj , which is a contradiction. Therefore, Proposition 4 is valid. 2

Proposition 5 At each time t, at most two vessel group in category 2 will be served

by cranes.

Proof: By Proposition 4, at each time t, there is no chance that cranes will serve

Gj, Gj+1, and Gj+2, therefore, Proposition 5 is valid. 2

Proposition 6 If the number of vessels tends to infinity, the ratio between makespan

by H1 and the optimal value of BAQCP is at most two.

Proof: By observing Figure 28, the time before τ1, that is, for the vessels of category

1, I can apply Lemma 2, i.e., CH1
i0
≤ 2CR

i01, and τ1 = CH1
i0

+ ∆1 ≤ 2CR
i01 + ∆1

For the vessels of category 2, according to Proposition 4, Proposition 5, and priority

settings of H1, each vessel size is greater than K berths length, which indicates at
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each time, all K cranes are serving vessels. Therefore, τ2 =
∑N

i=i0+1 Ui/K + ∆2 ≤

2
∑N

i=i0+1 Ui/K + ∆2

τ = τ1 + τ2 ≤ 2CR
i01 + ∆1 + 2

N∑
i=i0+1

Ui/K + ∆2

Let lower bound L = CR
i01 +

∑N
i=i0+1 Ui/K ≤ Z∗, therefore,

τ ≤ 2Z∗ + ∆1 + ∆2

τ/Z∗ ≤ 2 + (∆1 + ∆2)/Z
∗

As N →∞, (∆1 + ∆2)/Z
∗ → 0

τ/Z∗ ≤ 2

2

4.3.3 Preemption heuristic H1a

In the Section 4.3.1, H1 separates vessels into different categories according to the

vessel size by the length limitation of K berths. Worst case analysis of H1 shows that

the worst case bound is two. In this section, I relax the constraint of the K berth

length limitation, more berth space can be used by vessels with the length less than

K berths length. I name this heuristic as H1a, which provides a comparison base

for H1 to examine whether more space used by vessels will be more efficient or not.

The results will show in the Section 4.4 and the detail steps of H1a are listed in the

following.

The preemption heuristic H1a

Step 0 Sort and renumber the vessels according to the vessel length from the smallest

to the largest; that is L1 ≤ L2 · · · ≤ LN .

Step 1 Let {Vl, Vl+1, · · · , VN} be the set of ungrouped vessels.

u = max{q|
∑q

i=l Li ≤ S and q ≤ i0}

Gx = {Vl, · · · , Vu}
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Step 2 For r = l, l + 1, · · · , u2

(a) if x is odd, then assign V 1
r to berth sections

S −
∑u2

j=r Lj + 1,· · · , S −
∑u2

j=r+1 Lj

(b) if x is even, then assign V 2
r to berth sections∑u2

j=r Lj + 1,
∑u2

j=r Lj + 2,· · · ,
∑u2

j=r Lj. Let t = 0.

Step 3 Set p(s, t) is priority of section s at time t for s = 1 · · · , S, t = 1, 2, · · · .

Initially set p(s, t0) = 0.

Let r(s, t) record the index of group occupied berth section s at time t.

Let g(i) record the index of group in which the vessel i belongs to.

Let j(s, t) record the index of vessel occupied berth section s at time t.

Let w(i, s, t) record the workload left in vessel i which occupy the berth section

s at time t.

Step 3-1 At time t,

if Gr(s,t) < Gr(d,t), p(s, t) = p(s, t) + 1

if g(j(s, t)) = g(j(d, t)) and w((j(s, t), s, t) > w(j(d, t), d, t), p(s, t) = p(s, t) + 1.

if g(j(s, t)) = g(j(d, t)), w(j(s, t), s, t) = w(j(d, t), d, t), and j(s, t) < j(d, t),

p(s, t) = p(s, t) + 1.

Step 3-2 Sorting p(s, t) at time t, s = 1, · · · , S.

Assign the cranes to the k largest p(s, t) sections.

w(j(s, t), s, t) = w(j(s, t), s, t)− 1.

Step 4 if there are still workload left t = t+ 1, go to Step 3, else τ = t.

4.3.4 Non-preemption heuristic (H2)

H2 has the only different assumption from H1, preemption is not allowed not only

for vessels, but also for cranes. That is, a section job can not be shared by multiple

cranes. Vessels V1, V2, · · · , VN are sorted and renumbered according to the vessel

lengths from the smallest to the largest. If there are i0 vessels with the lengths

less than K berths length, vessels are assigned by Step 2 of H2 by using the length
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limitation of K berths length. K cranes are fixed from berth 1 to berth K and do

not move. For the vessels in which lengths are larger than K (Vi0+1, Vi0+2, · · · , VN),

vessel assignments are based on the berth length S instead of length K. The crane

assignments are based on the threshold method in the Step 4-6 of H2.

Figure 30 shows an example with three vessels and four cranes by H2. In the

example, the length of the first vessel is two and each hold has one container; the

length of the second vessel is two and each hold has two containers; the length of the

third vessel is six and each hold has two containers. According to the H2, the first two

vessels belong to category 1, and the third vessel belongs to category 2. For vessels in

the category 1, 4 cranes are fixed from berth 4 to berth 7. At t = 3, the first and the

second vessel are finished serving, and at this time, vessel assignments are based on

the total berth length limitation. Therefore, the third vessel are assigned from berth

1 to berth 6. Crane assignments is based on the threshold method and therefore, the

first crane serves section 1 and section 2, the second crane serves section 3 and section

4, and the third crane serves section 5 and second 6. The fourth crane is idle after t

= 3. The makespan of this example is seven. The details of the H2 are listed in the

following.
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Figure 30: An example of 3 vessels and 4 cranes by H2

The non-preemption heuristic H2

Step 0 Sort and renumber the vessels according to the vessel length from the smallest
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to the largest; that is L1 ≤ L2 · · · ≤ LN . Set j ← 1

Step 1 Separate the vessels to two categories. If Li ≤ K, Vi goes to category 1,

named V 1
i . Otherwise, Vi is in category 2, named V 2

i . Set i0 = arg max{L1
i }.

Step 2 Assign vessels to berth sections and assign cranes to vessels in category 1.

Step 2-1 Assign crane k to berth section k, where k = 1, · · · , K. Crane k keeps

working in the section k.

Step 2-2 Let {V 1
l , V

1
l+1, · · · , V 1

i0
} be the set of ungrouped vessels.

u1 = max{q|
∑q

i=l L
1
i ≤ K and q ≤ i0}

G1
j = {V 1

l , · · · , V 1
u1}

Step 2-3 For r = l, l + 1, · · · , u1

(a) if j is odd, then assign V 1
r to berth sections

K −
∑u1

i=r Li + 1, K −
∑u1

i=r Li + 2 · · · , K −
∑u1

i=r+1 Li

(b) if j is even, then assign V 1
r to berth sections∑u1

i=r Li + 1,
∑u1

i=r Li + 2,· · · ,
∑u1

i=r Li.

Step 2-4 Set j = j+1, repeat Step 2-1 and Step 2-2 until no more vessel in category

1 need to be assigned for berth sections. Record the completion time of Vessel

i0, denoted ti0 , and start to assign vessels in category 2 from time ti0 .

Step 3 j0 = arg max{G1
j |∃V 1

i ∈ G1
j} Let j ← j0 + 1.

Step 4 Assign vessels to berth sections and assign cranes to vessels in category 2.

Step 4-1 Let {V 2
` , V

2
`+1, · · · , V 2

N} be the set of ungrouped vessels.

u2 = max{q|
∑q

i=` Li ≤ S and q ≤ N}

G2
j ← {V 2

` , V
2
`+1, · · · , V 2

u }

Step 4-2 For r = `, `+ 1, · · · , u

(a) if j is odd, then assign V 2
r to berth sections

S −
∑u2

i=r Li + 1, S −
∑u2

i=r Li + 2, · · · , S −
∑u2

i=r+1 Li
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(b) if j is even, then assign V 2
r to berth

∑u2

i=r+1 Li + 1,
∑u2

i=r+1 Li + 2, · · · ,∑u2

i=r Li

Step 4-3 Set j ← j + 1, repeat Step 4-1 and Step 4-2 until no more vessel needs to

be determined for berths. Then let t = ti0 and j ← j0 + 1.

Step 4-4 Calculate hj the threshold value for assignments of cranes in G2
j ,i.e., hj =

ν
∑

i Uji/K, in which Uji is the total number of containers in V 2
i where V 2

i ∈ G2
j .

K is the number of cranes.

Step 4-5 Let cx be the initial location of Group G2
x. If x is odd, cx = S −

∑
i Li; if

x is even, cx = 1. Li is the size of the vessel V 2
i , where V 2

i ∈ G2
x.

Step 4-6 R = {Rx1, Rx2, · · · , RxK
} records partitions of group G2

x. Rxq is the qth

partition of group G2
x worked by the crane q, and 1 ≤ q ≤ K. cjq is the

first section of Rjq and djq is the last section of Rjq. Rjq is determined by

ν
∑djq−1

i=cjq
Wji ≤ hj and ν

∑djq

i=cjq
Wji > hj

if j is odd, then assign partitions from RjK to Rj1

if j is even, then assign partitions from Rj1 to RjK

Step 4-7 Let Fjq represent processing time of a crane q serving the partition Rxq

for vessels in group G2
j , where q = 1, 2, · · · , K. Then, Fjq =

∑djq

i=cjq
Wji and

Tj = maxKq=1 sec{Fjq}.

Step 4-8 Update t = t+ Tj.

Step 4-9 Set j ← j + 1, repeat Step 4-4 to Step 4-8 until no vessel group left.

Step 5 Makespan τ = t

4.3.5 Worst case analysis of H2

Before I precede the worst case analysis of the H2, I consider one vessel group which

are served by K cranes and within in this vessel group, the size of each vessel is larger

then K berths. For this special case, the following Lemma is obtained.
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Lemma 3 The ratio between makespan and lower bound is at most two for the one

vessel group and multiple cranes problem.

Proof: Assume a working zone partition of one crane for an one-vessel-group with-

multiple-cranes instance start from section a to section b. This working zone is deter-

mined by time threshold hj = ν
∑S

i=1Wji/K, where Wji represents the initial number

of containers for a section i of an arbitrary vessel group j. Let T1 is the processing time

for a crane to work from section a to section (b−1), which is less than hj and T2 is the

processing time for a crane to work for the section b, which is less than ν maxi{Wji}.

In this special case, lower bound L = max{ν
∑S

i=1Wji/K, ν maxi{Wji}}. A feasible

solution τ = T1 + T2,

τ = T1 + T2 ≤
ν
∑S

i=1Wji

K
+ ν max

i
{Wji} ≤ 2L

Therefore, I can conclude that the Lemma 3 is valid. 2

In the following, I apply the Lemma 2 and Lemma 3 to find the worst case bound

of the a multiple vessels with multiple cranes case by H2.

Proposition 7 The ratio between makespan by H2 and the optimum (Z∗)of BAQCP

is at most two.
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Figure 31: An illustration of H2

Proof: Figure 31 shows a general case by H2. Similar to the proof for H1, by Lemma

2, τ1 = CH2
i0

+ ∆ ≤ 2CR
i01 + ∆. And τ2 = Pj′+1 + Pj′+2 + · · ·+ PN , where j′ is a vessel
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group which contains the vessel i0.

Let Lj1 and Lj2 be two lower bounds of the vessel group j, and Γj = max{Lj1, Lj2},

in which Lj1 = ν maxi{Wji} and Lx2 = ν
∑

iWji/K. Pj is defined as a processing

time for a vessel group j. According to Lemma 3, for each vessel group, Pj ≤ 2Γj.

Therefore,

τ2 = Pj′+1 + Pj′+2 + · · ·+ PN

≤ 2(Γj′+1 + Γj′+2 + · · ·+ ΓN )

≤ 2(Γj′+1 + L(j′+1)2 − L(j′+1)2 +

Γj′+2 + L(j′+2)2 − L(j′+2)2 + · · ·+

ΓN + LN2 − LN2)

It is easy to prove that Γj−1 ≤ Lj2 is valid while vessel group length is lager then K

berth length. Hence,

τ2 = Pj′+1 + Pj′+2 + · · ·+ PN

≤ 2ν
∑
i

Ui/K + 2(ΓN − L(j′+1)2 − δ)

δ = L(j′+2)2 − Γj′+1 + L(j′+3)2 − Γj′+2 · · ·+ LN2 − ΓN−1

τ = τ1 + τ2 ≤ 2CR
i01 + ∆ + 2(ν

∑
i

Ui/K) + 2ΓN ≤ 2Z∗ + ∆ + 2ΓN

τ/Z∗ ≤ 2 + (∆ + 2ΓN )/Z∗

As N →∞, (∆ + 2ΓN )/Z∗ → 0

τ/Z∗ ≤ 2

2

4.3.6 Non-preemption heuristic (H2a)

H2a is an alternative non-preemption heuristic that does not separates vessels into

different categories according to the vessel size by the length limitation of K berths.

The detail steps of H2a are listed in the following.
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The non-preemption heuristic H2a

Step 0 Sort and renumber the vessels according to the vessel length from the smallest

to the largest; that is L1 ≤ L2 · · · ≤ LN . Set j ← 1

Step 1 Let {V 2
` , V

2
`+1, · · · , V 2

N} be the set of ungrouped vessels.

u2 = max{q|
∑q

i=` Li ≤ S and q ≤ N}

G2
j ← {V 2

` , V
2
`+1, · · · , V 2

u }

Step 2 For r = `, `+ 1, · · · , u

(a) if j is odd, then assign V 2
r to berth sections

S −
∑u2

i=r Li + 1, S −
∑u2

i=r Li + 2, · · · , S −
∑u2

i=r+1 Li

(b) if j is even, then assign V 2
r to berth

∑u2

i=r+1 Li + 1,
∑u2

i=r+1 Li + 2, · · · ,∑u2

i=r Li

Step 3 Set j ← j + 1, repeat Step 1 and Step 2 until no more vessel needs to be

determined for berths. Then let t = ti0 and j ← j0 + 1.

Step 4 Calculate hj the threshold value for assignments of cranes in G2
j ,i.e., hj =

ν
∑

i Uji/K, in which Uji is the total number of containers in V 2
i where V 2

i ∈ G2
j .

K is the number of cranes.

Step 5 Let cx be the initial location of Group G2
x. If x is odd, cx = S −

∑
i Li; if x

is even, cx = 1. Li is the size of the vessel V 2
i , where V 2

i ∈ G2
x.

Step 6 R = {Rx1, Rx2, · · · , RxK
} records partitions of group G2

x. Rxq is the qth

partition of group G2
x worked by the crane q, and 1 ≤ q ≤ K. cjq is the

first section of Rjq and djq is the last section of Rjq. Rjq is determined by

ν
∑djq−1

i=cjq
Wji ≤ hj and ν

∑djq

i=cjq
Wji > hj

if j is odd, then assign partitions from RjK to Rj1

if j is even, then assign partitions from Rj1 to RjK
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Step 7 Let Fjq represent processing time of a crane q serving the partition Rxq

for vessels in group G2
j , where q = 1, 2, · · · , K. Then, Fjq =

∑djq

i=cjq
Wji and

Tj = maxKq=1 sec{Fjq}.

Step 8 Update t = t+ Tj.

Step 9 Set j ← j + 1, repeat Step 4 to Step 8 until no vessel group left.

Step 10 Makespan τ = t

4.3.7 FIFO heuristic

In the real world, the FIFO heuristic is commonly used for allocating the berths and

the quay cranes to the vessels. In FIFO algorithm, each time-space node has two

main attributes: if the node is occupied by a vessel or not and if a crane is available

or not. The algorithm continuously checks time by time and vessel by vessel if there

are enough consecutive berths and available cranes for a vessel until no vessel needs

to be allocated for berths and cranes. Figure 32 shows an example with two cranes

and three vessels. At time 1, the first two berths and two cranes are available and

therefore, the first vessel can be assigned for the berths and the cranes. Although

there are still space for the second vessel, there is no crane available. Therefore, the

second vessel is not assigned until time 2. With the same reason, the third vessel has

to wait until there are both berths and cranes available, then it can be assigned at

time 4. In this section, the FIFO heuristic is proposed as a comparison base for the

H1, H1a, H2, and H2a which are listed in the following.

The FIFO heuristic

Step 1 Let biv record the finish time of vessel occupying the berth i. Let akv record

the finish time of vessel worked by the crane k at time v. Initially set bi0 = 0

and akt = 0 for s = 1, ..., S, k = 1, · · · , K, and t = 0.

Step 2 Check whether there exist enough berth sections and cranes for vessel Vi at

time t.
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Figure 32: An example of 3 vessels and 2 cranes by FIFO

Step 2-1 Check whether there exist enough berth sections at time t for vessel Vi.

Step 2-1-1 Let It = {i|bit < t} be the assignable section set at time t. Record as

It = {i1t , · · · , int }

If It = ∅, t = t+ 1, go to Step 2.

Let lt be the length of assignable sections, fBt be the first assignable section for

Vi.

And initially set lt = 1, fBt = 0, index j = 0.

Step 2-1-2 From jth element in It,

if ij+1
t = ijt + 1, lt = lt + 1, j = j + 1, go to Step 2-1-2; otherwise,

if j = n and lt < Li, set t = t+ 1, Go to Step 2,;

if j < n and lt < Li, lt = 1, fBt = ijt , go to Step 2-1-2 until j = n;

if j ≤ n and lt > Li then go to Step 2-2.

Step 2-2 Check whether there exist enough cranes at time t for vessel Vi.

Step 2-2-1 Let At = {k|akt < t} be the available crane set at time t. Record as

At = {k1
t , k

2
t , . . . , k

m
t }.

If At = ∅, t = t+ 1, go to Step 2.

Let ht record the number of available cranes for Vi at time t. Let fCt be the the
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first available crane. Initially set ht = 1, fCt = 0, index j = 0.

Step 2-2-2 From jth element of At,

if kj+1
t = kjt + 1, ht = ht + 1, j = j + 1, go to Step 2-2-2; otherwise,

if j = m, t = t+ 1, go to Step 2;

if j < m, ht = 1, fCt = kjt , go to Step 2-2-2.

Step 3 Assign vessel Vi to berth sections and assign cranes for Vi at time t. Set

i = i+ 1.

Step 3-1 Assign vessel Vi to the berth sections fBt , · · · , fBt + Li − 1.

Step 3-2 Assign cranes to vessel Vi and update bit and akt

If ht ≥ Li,

assign crane fCt + j to sectionfBt + j, j = 0, · · · , Li − 1.

Set available time for berths and cranes which assign to vessel i:

biv = akv = t+ ti,i = fBt , · · · , fBt + Li − 1, k =fCt , · · · , fCt + Li − 1,

v = t, · · · , t+ ti.

If ht < Li,

assign crane fCt + j to sections, fBt + j×bLi/htc, · · · , fBt +(j+1)×bLi/htc,

j = 1,...,ht − 2;

assign crane fCt +ht−1 to sections fBt +(Li−1)×bLi/htc, · · · , fBt +Li−1.

Set available time for berth sections and cranes which assign to

Vi: f
B
t + (ht − 1)× bLi/htc, · · · , fBt + Li − 1

biv = akv = t+ ti × (Li − ht + 1)× bLi/htc, k =fCt , · · · , fCt + hi − 1,

i = fBt ,. . . ,fBt + Li − 1, v = t, · · · , t+ ti × (Li − ht + 1)× bLi/htc.

Step 4 If i = N , the maximum makespan τ0 = t.
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4.4 Computational results

In this section, I first examine the capabilities of the mathematical model. Then, I

compare H1, H2, modified H2, and FIFO for different experimental settings. Fi-

nally, I combine the exact solution approach and the heuristic approach together to

take advantages from both exact and heuristic approaches to further improve the

solution quality. This approach has two steps, in which the first step is to find an

initial feasible solution from non-preemption heuristic H2. Then in the second step,

I will use this initial solution as a starting point for the mathematical model and run

the mathematical model for a period of time to improve the solution quality. The

experiments are executed by an INTEL dual core computer with T3200 CPU and 1

GB ram memory.

4.4.1 Performance of the model

Both BAP and QCSP are proved to be NP-hard problems. Since BAP and QCSP are

two sub-problems of BAQCP, it implies that BAQCP is also an NP-hard problem.

For some instances, especially for large size problems, it is hard to get the optimum

solution within a reasonable amount of time. In order to examine the capacities of

the model, I create different scenarios to test the model by using default CPLEX. In

the experiments, I set the execution time limitation to be 30 minutes and optimality

tolerance is 1%. For instance, the default CPLEX will stop and return the best

objective value if the execution time is more than 30 minutes. If the error gap is

under 1%, the default CPLEX will return the best solution as an optimal solution.

In the time space model, I apply an aggregation strategy to let 1 time unit to be the

time processing 50 containers. I test different combinations such that the number of

vessels to be 2 and 4, the number of cranes to be 4, 7 and 10, and the number of berth

sections to be 10, and 15 respectively. Table 13 lists the experimental settings for

the model evaluation. For each combination setting, I run 5 instances and report the

average value to represent the outcome for the corresponding combination setting.

The performance of the model is shown in Table 14. In the table, I use the
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Table 13: Experimental setting for the model evaluations

Execution Time 30 minutes
Time unit 50 containers processing time
Number of vessels (V) 2 and 4
Number of cranes (K) 4,7, and 10
Vessel size (S) 5 and 10
Berth sections (B) 10 and 15
Number of containers per section Case 1: 50 to 200 containers

(1 to 4 time units)
Case 2: 250 to 450 containers
(5 to 9 time units)
Case 3: 500 to 700 containers
(10 to 14 time units)

optimality gap, namely, the percentage difference between feasible solution and lower

bound, to show the performance of default CPLEX. For instance, I let gap = (Z −

ZL)/Z × 100%, where Z and ZL represent the best feasible solution and lower bound

that default CPLEX finds within the time limit. If the result shows 100%, it indicates

no solution return within time limitation; if the result is 0%, it represents the default

CPLEX can return the optimum; and if the result shows the optimality gap between

1% and 100%, the default CPLEX returns a feasible solution. Table 14 shows that

when there are 2 vessels, most of the instance can return feasible solutions. However,

if I increase the number of vessels from 2 to 4, most of cases have no feasible solution

return.

Table 14: Results of relative gap % to the optimum for two vessel cases

V=2 B=10 B=15
Case 1 Case2 Case3 Case 1 Case 2 Case 3

K=4 S=5 87.9% 88.9% 92.3% 88.9% 94.6% 98.3%
S=10 100% 100% 100% 100% 100% 100%

K=7 S=5 0% 3.8% 30.6% 22.2% 31% 54.2%
S=10 100% 100% 100% 100% 100% 100%

K=10 S=5 0% 0% 0% 0% 0% 0%
S=10 0% 0% 0% 0% 0% 0%

Table 16 summarizes the experiments including the number of optimum returns,

the number of instances that there are feasible solution returning, and the number of
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Table 15: Results of relative gap % to the optimum for four vessel cases

V=4 B=10 B=15
Case 1 Case2 Case3 Case 1 Case 2 Case 3

K=4 S=5 100% 100% 100% 100% 100% 100%
S=10 100% 100% 100% 100% 100% 100%

K=7 S=5 51.9% 90.9% 97.2% 78.2% 99.5% 97.9%
S=10 100% 100% 100% 100% 100% 100%

K=10 S=5 0% 30% 73.4% 23.9% 82.1% 79.9%
S=10 0% 17.2% 87.9% 49.4% 100% 100%

instances that there are no feasible solution returning. It can be observed that the

modeling approach can only solve small size problems.

Table 16: Results of two and four vessel cases

# of optimum # of feasible # of infeasible Total # of instances
2 vessels 69 83 28 180
4 vessels 13 50 117 180

4.4.2 Performance of the heuristics

I use the heuristic approaches for large size problems. In this section, I evaluate the

performance of four heuristics, H1, H1a, H2 and H2a, and compare them with the

commonly used FIFO heuristic. I generate different combinations in terms of the

number of berth sections and the number of vessels. For each combination, I test 10

instances and report the average value of the 10 instances. Table 17 shows the results

of performance of the heuristics. In the table, S, K, and V represent the number

of berth sections, the number of cranes, and the number of vessels respectively. The

vessel size is randomly generated in the interval [2, 7]. The number of containers per

section is uniformly distributed in the interval [100, 300]. The number in the table

represents the ratio between the makespan of the heuristics and the lower bound for

BAQCP. The lower bound of BAQCP is the time that total containers are served by

total cranes without any delay. “AVE” represents the average “ratio” of the “10”

instances, and “MAX” represents the maximum “ratio” of the “10” instances. After
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testing all combinations, I report the overall average ratio for each approach and the

corresponding standard derivation.

From the experiment results, it is easy to observe that among all the heuristics,

the preemption heuristic H1a has the smallest ratio. For instance, the maximum

average ratio is 1.49 for H1a, which is much smaller than that of H2a and FIFO

heuristic. Besides this, Non-preemption heuristic (H2, H2a) performs better than

FIFO heuristic for most cases. The computational results also show that the average

ratios obtained from H2 heuristic are smaller than those from H2a, which indicates

that if I separate vessels into two different groups, one vessel group contains vessels’

length less then or equal to K berths, the other contains vessels’ length larger than K

berths, solution quality of this approach is better than if I do not separate vessels into

two different groups for non-preemption heuristics. However, preemption heuristics

show an opposite tendency.

I can also observe that numerical results indicate that the ratios for both preemp-

tion and non-preemption heuristics are smaller than the theoretical results I prove in

the previous sections. From the reported standard deviation results, I can observe

that the preemption heuristic H1a and non-preemption heuristic H2 are more stable

than those from FIFO heuristic. In practice, the non-preemptive operation is more

popular than preemptive operation. From both the analytical point and the practical

point of views, the non-preemption heuristics are proper for BAQCP.

4.4.3 Post optimization by applying the exact solution approach

Although the heuristic approach is reasonable for large size problems, the solution

quality could be possibly improved by applying the exact solution approach, for the

given initial solution provided by the heuristics. In this section, I combine the exact

modeling and the heuristic approaches to take advantages from both approaches to

improve the solution quality.

I propose a two phase method to combine the model and the heuristic approaches.

In the first stage, I run the non-preemption heuristic to acquire an solution that

includes all initial values of the decision variables in the model. I use this feasible
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Table 17: Heuristics performance evaluations

AVE MAX
(S,K, V ) H1 H1a H2 H2a FIFO H1 H1a H2 H2a FIFO
(8, 2, 20) 1.02 1.02 1.14 1.15 1.13 1.04 1.04 1.17 1.21 1.17
(8, 2, 30) 1.03 1.02 1.16 1.16 1.13 1.05 1.02 1.20 1.19 1.17
(8, 6, 20) 1.23 1.13 1.21 1.69 1.87 1.28 1.23 1.35 1.85 2.07
(8, 6, 30) 1.16 1.12 1.29 1.63 1.85 1.24 1.13 1.42 1.7 1.91
(12, 4, 20) 1.09 1.06 1.2 1.26 1.31 1.17 1.11 1.25 1.3 1.46
(12, 4, 30) 1.1 1.04 1.22 1.22 1.31 1.13 1.06 1.24 1.24 1.39
(12, 9, 20) 1.38 1.24 1.38 1.54 1.83 1.46 1.49 1.46 1.64 2.12
(12, 9, 30) 1.36 1.2 1.36 1.57 1.84 1.43 1.38 1.43 1.63 1.97
(16, 4, 20) 1.09 1.05 1.16 1.19 1.33 1.17 1.09 1.19 1.25 1.48
(16, 4, 30) 1.1 1.06 1.16 1.19 1.32 1.14 1.09 1.2 1.21 1.51
(16, 12, 20) 1.34 1.14 1.34 1.72 1.93 1.51 1.26 1.51 1.78 2.22
(16, 12, 30) 1.23 1.09 1.28 1.72 1.85 1.39 1.19 1.39 1.8 2.07
Average 1.18 1.1 1.24 1.42 1.56
S.D. 0.13 0.07 0.08 0.24 0.32

solution as an initial point for the Branch and Bound method of default CPLEX

solver for further improvements. I create 18 instances for the experiments. I generate

instances that contain 8, 10 and 12 vessels and 4 and 6 cranes respectively. For

each combination of the number of the vessels and the number of the cranes, I let

the number of berth sections to be 10 and generate 3 different parameter settings in

terms of vessel sizes and the number of containers per section. The vessel sizes are

uniformly generated in the interval [1, 8], and the number of containers per section is

uniformly generated in the interval [4, 11], where 1 unit represents the working time

for 50 containers.

I set time limit to be 24 hours for the post optimization procedure and Table

18 demonstrates the results. In the table, for each combination, I list the average

objective value corresponding to initial feasible solutions obtained by the heuristic

(i.e., the first row), the final objective value obtained by the mathematical formulation

(i.e., the second row), and the relative gap between these two values to demonstrate

the improvements (i.e., the third row). If the gap is larger than 0%, which means the

model finds better feasible solutions. Otherwise, there is no improvement (i.e., 0%).

From the Table, I can observe that when the numbers of the vessels are 8 and 10, the

solution quality has been improved for most instances by applying the mathematical

formulation approaches. However, when the number of the vessels is increased to 12,
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only the solution quality for 2 cases has been improved. From the experiments, I can

conclude that the two stage method is suitable for the case that the number of vessels

is under 10 and average improvement is around 14.5%.

Table 18: Improvement on combination of the model and the heuristic approaches

No. of Cranes No. of Vessel V=8 V=10 V=12

K=4
Model 38 105 71
Heuristic 54 115 71
Improve % 29.6 11.8 0

K=4
Model 79 44 154
Heuristic 81 57 154
Improve % 2.5 22.8 0

K=4
Model 41 93 69
Heuristic 51 121 69
Improve % 19.6 23.1 0

K=6
Model 82 64 105
Heuristic 86 65 105
Improve % 4.7 1.5 0

K=6
Model 26 72 41
Heuristic 35 73 67
Improve % 25.7 1.4 24.4

K=6
Model 40 54 91
Heuristic 53 58 99
Improve % 24.5 6.9 8.0

4.5 Summaries

In this paper, I study algorithms to solve the integrated problem of combining berth

allocation and quay crane scheduling problems together (BAQCP). I first establish a

mathematical formulation to describe BAQCP. In the mathematical model, I provide

decisions on when and where to allocate each vessel and movements of quay cranes.

The approach provides one of the first mathematical formulations for the problem.

The model performs well for small size problems.

For large size problems, I develop two types of fast efficient heuristic algorithms.

The first type of heuristic is developed for the case that the preemption is allowed.

For instance, it is allowed that cranes can move among sections from time to time and

one section job can be shared by multiple cranes. The second type of heuristics are

developed for the case that non-preemption is not allowed. For this case, the cranes
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are not allowed to move to other sections until they finish all the workload in their

allocated sections. I study the worst case ratios for both types of heuristics. I prove

that the worst case bounds of the preemption heuristic and the non-preemption are

both tending to two when the number of vessels is increased to infinity. I also compare

the two designed heuristics to the commonly used FIFO heuristic. The results show

that in practice the designed heuristics have better performance than the commonly

used FIFO policy.

In order to further improve the solution quality, I combine the modeling approach

with the non-preemption heuristic. The results showed that the mathematical model

can be considered as a post-optimization approach to provide better solutions based

on the initial solution provided by the non-preemption heuristic.

In general, the research provided one of the first studies on developing exact solu-

tion models for the integrated berth allocation and quay crane scheduling problem, as

well as the worst case ratio study for this type of problems. Although the study shows

that the worst case bound of the preemption heuristic and non-preemption heuris-

tic are both tending to two times of the lower bound, the numerical experiments

indicate that all ratios between feasible solutions and the lower bounds are under

two. In the future study, I will consider studying other solution approaches such as

the Lagrangian Decomposition, Tabu Search and Genetic Algorithm to investigate

BAQCP.
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5 Conclusions and suggestions

5.1 Conclusions

The Phase I study focuses on the berth allocation and the security inspection for

a container terminal system. Three berthing heuristics (SPT, Guan et al.’s and

Li et al. ’s algorithms) are applied to estimate the service rate of the inspection

operation. The theoretical lower bounds are derived from these three heuristics. The

experiments for the stochastic setting verify the analytic results and show that the

combined optimization and simulation approaches work for the problem. Conclusions

for the Phase I Study are summarized as follows:

1. Combine optimization and simulation approaches to establish a model for the

berth allocation and the inspection systems. The processors of the berth sys-

tem must serve a vessel consecutively. The consecutive characteristic of the

processors becomes a bottleneck to implement a berth system into a simulation

model. By the embedded simulation technique, a copy entity scheme is designed

to conquer the modeling difficulty in the simulation model.

2. Modify the deterministic berthing algorithm used in this study for dealing with

stochastic processing time scenarios with the aids of the simulation model.

3. Derive a theoretical lower bound of the inspection service rate related to the service

rate of the processors by different berthing heuristics.

4. To allow more containers to be inspected, the inspection service rate has to in-

crease. However, due to some limitations, such as budget and land usages,

increasing the service rate of the inspection operation becomes a difficult sce-

nario. Therefore, the sampling policy can be chosen as another alternative.

In the Phase II study, QCSP is analyzed by the exact approach and the heuristic

approach. A mathematical formulation is established by using a network flow model-

ing technique, which makes the application of the model easier. This model can easily
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include or exclude the crane traveling factor. In order to solve larger size problems,

Lagrangian relaxation approach is developed, which may result in an infeasible solu-

tion. The Lagrangian relaxation heuristic is proposed to make an invisible solution

to a feasible one. Finally, two heuristics are developed for the large size problems.

The first heuristic is based on the time threshold to find the consecutive sections as

a working zone for a crane. The time threshold is determined by the lower bound

from a dynamic programming algorithm. The second heuristic directly applies the

dynamic programming algorithm to determine consecutive sections as a working zone

for a crane. Conclusions for the Phase II Study are summarized as follows:

1. Establish a mathematical model by network flow modeling technique to describe

QCSP with the consideration of the crane traveling factor.

2. Show the advantages of the proposed model as compared to other mathematical

formulations.

3. Derive the worst case bound theoretically for the designed heuristics to ensure the

solutions quality. The analysis shows that worst case bound is two.

4. Design different solution approaches for QCSP. The model is capable for the small

size instances. The Lagrangian relaxation approach and the heuristic approach

can deal with medium and large size instances. The numerical results conclude

that the solution approaches that I propose are efficient and effective for QCSP.

The Phase III Study focuses on the study of the combined problem of berth

allocation and quay crane scheduling. The heuristic approach is the main solution

approach. First, a mathematical model is established. The numerical experiments

show that the capabilities of the model are only for small size instances. Two heuristics

for large size instances are developed. The first one is the preemption heuristic, and

the second one is the non-preemption heuristic. The worst case analysis of these two

heuristics is performed to show that the worst case bound of the preemption heuristic

is less than three times the lower bound, and that of the non-preemption heuristic
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is less than four times the lower bound. However, as the number of vessels tends to

infinity, the worst case bound of the two heuristics is tending to two. The numerical

experiments verify the theoretical proofs. Further, the model and the non-preemption

heuristic are combined to improve the solution quality successfully. Conclusions for

the Phase III Study are summarized as follows:

1. Establish a mathematical model from the extension of the mathematical model of

the Phase II study to describe BAQCP without considering the crane traveling

factor.

2. Adapt the heuristic approach to develop two heuristics and derive the worst case

bounds for those two heuristics.

3. Numerical experiments show the effectiveness and efficiency of the solution ap-

proaches, which are proper for the real world cases.

4. Combine the model and the non-preemption heuristic to improve the solution

quality of the heuristic approach.

5.2 Future study

In the Phase I Study, a simulation frame is established to allow deterministic berthing

heuristics applying for the stochastic processing time cases, which indicates that this

approach can be used for the problem with uncertain data. Validation of this ap-

proach is suggested by the real data to make this approach more realistic. In addition,

the designed deterministic heuristic for the combined problem of the berth allocation

problem and quay crane scheduling problem needs to be verified and validated through

the hybrid approach established by real data. All approaches developed in this dis-

sertation may form a basis for a decision support system for the container terminal

operations.

BAQCP is still a new research field. In this dissertation, the worst case bound

analysis indicates that more room is needed to improve the solution quality of the

proposed heuristics. Currently, no evidence shows that the worst case bound is tight.
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Lastly, other solution approaches such as the Lagrangian Relaxation approach or other

meta heuristics (Tabu Search, Genetic Algorithm, and so on) are worthy investigating

for BAQCP in the future studies.
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