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CHAPTER I 

INTRODUCTION 

1-1 Historical Study 

In 1931 Pi.icher(l), in his dissertation, presented the equilibrium 

equations for the general sheU of double curvature in terms of a stress 

function and projected forces. He also presented a series solution for 

stresses in an elliptical paraboloid. 

Fli.igge(2 ), in 1950, discussed the analysis of translational shells 

by finite differences, using relaxation to solve the simultaneous equa-

tions. 

lri 1953 Shizuo Ban(S) extended the use of the membrane for.ces in 

shells of double curvature to the determination of membrane deformations 

of hyperbolic-paraboloid shells. At the same time and independently of 

Ban, F. T. Geyling(4 ) developed a general theory of deformations. of 
.. 

membrane shells, and discussed the deformations of the elliptical parab.-, 

oloid using finite differences; In 1955 Eric Reissner(5 ) presented a 

paper in which he discussed the membrane deformations and displace-

ments of a hyperbolic shell due to its own weight according to shallow 

membrane theory. 

In 1956 Parme(B) gave a detailed account of the partial differential 
. . 

equation for determination of shell stresses. In 1957 W. Fliigge and 

• (7 8) F. T .. Geyling • presented two papers on the General Theory of 

Deformations of Membrane Shells based on the earlier work of Geyling( 4 ). 

1 



The solution of finite difference equations by infinite geometric 

series for two dimensional, second order problems was presented by 

Tuma, Havner, and Frenc1/9) in 1958. The idea of extending the Alge-

2 

braic Carry-Over method fo the solution of translational shells was pro

posed by Havner(lO) in shell lectures delivered in 1959. D. I. Tilden(ll) 

carried out the extension of this method in 1961. 

1-2 Scope of Study 

A systematic finite difference procedure for the solution of mem-

brane deformations of translational shells is presented. The partial 

differential equation in finite difference form is developed in terms of 

the vertical deformations, w. and the stress resultant N . The latter , y 

values are directly obtained f;om the membrane force solution. 

In solving the differential equations for w some simplifications 

are made in evaluating the term R. These simplifications are accom-

plished by the use of power series and the neglect of fourth order powers 

of the slopes as compared with unity. 

A numerical example is included, 

1-3 Membrane Equations of Equilibrium 

An element of a shell, projected into the x-y plane is shown in 

Fig. 1-1. For simplification in the expressions of the equilibrium 

equations, the internal forces on the shell element have been transferred 

to the projected element. Internal forces are shown in the positive 

sense. 

The shell is considered .to be in the extensional (membrane) state. 

Thus, the forces on the element are membrane forces. 



y 

'~ __L __ . _._ 

Figure 1-1 

N yx 

Elenient of Shell Projected in x.,,y Plane 

N 
y 

'N 
X: 

The relationship between the projected internal fore-es and actual 

internal forces may be determined by geometry. The final equations 

are: 

3 
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N = N cos /3 
y y cos a 

N N 
cos a = 
cos /3 X X 

( 1-1) 

N = N xy xy 

Considering loading in the z dir~ction only, the final three equations of 

equilibrium are ( 1): 

oN oN 
X + __E_ 0 ax = 

oy 
(1-2) 

oN oN 
.....J.. + -2:X. = 0 ay ax 

(1-3) 

N z + N z + 2N z = - p ·x xx y yy xy xy z 
(1-4) 

1-4 Shells of Translation 

The equation of the surface for a general shell of translation is 

given as 

z = f 1 (x) + f 2 (y) (1-5) 

Differentiating Equation (1-5) twice with respect to x yields 

z = f '1' (x) . xx 
(1-6) 

Similarly, with respect to y 

z = f2"(y) yy (1-7) 

with respect to y and then x 

z = 0 xy 
(1-8) 
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Figure h2 

Shell of Positive Gaussian Curvature 

1- 5 Boundary Conditions 

The shell is supported by vertical shear diaphragms, and it is 

assumed that no tangential sliding takes place between the shell and the 

diaphragms~ The diaphragm is usually denied all rigidity transverse to 

its plane.. Therefore, at the edges 

and at the edges 

y = + L 
y 

N = o 
X 

N = 0 .. y 



CHAPTER II 

MEMBRANE DEFORMATIONS OF 

TRANSLATIONAL SHELLS 

2- 1 Introduction 

An element of the shell is shown in Figure 2- l with the positive 

displacement components u, v, and w, and the geometric parameters 

a, S, and w . · 

X 
dx 

y z 
dy 

I 

CL V w 

I --------x = o/ .__ 
I Figure 2.:a. 1 

Element of Shell with Displacements Shown 
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2-2 Differential Equations for u, v,. and w. 

The development of the equations of deformations appears else

where(4, 7, S) and is not repeated here. The three equations of defor-

mations are 

u = - w z + f (2-1) 
X X X 

V = - w z + g (2-2) 
y y y 

u + V = - w z w z + k (2-3) y X X y y X 

where 

f = . 1 . {N (1 + z 2)2 
Eh ( 1 + z 2 + z 2 ) \ x x 

X y 

- 2 + 2N z z (1 + z ) xy X y X 

+ N [z 2 z 2 - v (1 + z 2 + z 2>]} y X y X y 

g - 1 1:{N (1 + z 2) + 
Eh ( 1 + z 2 + z 2 ) 2 y y 

X y 

2 2N z z (l+z ) xy X y y 

+ N z z - v(l+z +z } · 1 2 2 2 2 J} 
x_x y x y 

7 

k=--------, N z z(l+z) 2 { · 2 
Eh'(l + z 2 + z ~)\ X X y X 

+ N .[(l+v)(l+z 2 
xy X 

X ·y . 

+ z 2 ) + 2 z 2 z 2J . + 
y X y 

N z z (1 + z 2)l 
y X y y r 

.J 

The final differential equation for the displacement w is: 

w z - 2 w z + w z = kxy - fyy - gxx = R xx yy xy xy yy xx 

(2-4) 



Since zxy = 0 for a translational shell, Equation (2-4) becomes 

w (~)+ xx z xx 
w -

YY 
1 

z xx 
R. (2-5) 

2- 3 Edge Conditions Imposed Upon Membrane Displacements by a 

. Shear Diaphr_agm 
. ' 

y 

Figure 2-2 

Edge Displacements 

X 
-v _-? 

A
·~-v' 

I /3 

+w" f +w · 

The shear diaphragm has no rigidity normal to its own plane. 

Thus,, there will be no control imposed on displacement components u 

along the edges x = + L nor on displacement components v along 
- X . 

8 



S V::: + 
...., -· 

The boundary condition for w along x = + L is: 
X 

1 [ 2 1:J w = z- v' (1 + z ) 2 
- ..L 

yy y y zyy 

Similarly, along y = + L 
-- y 

1 [ 2 :k] w -· ·-- u' (1 + z ) 2 

Z X 
XX X 

f 
z xx 

The boundary conditiort . for v along the edges x = + L 
X 

V = zy g - Z Z-(1 + Z ) z { l v' 2 \J } 
YY y Y y Y 

Similarly, along y = + L 
- y 

u = 
z 

X 

z xx 
{ [ u' 2 \] l 

f - zx ·z: (1 - zx ) xJ 

(2-6) 

(2-7) 

is: 

(2-8) 

(2-9) 

where u ', v', w 1, and w 11 are deformations tangerttial and normal, re -

spectively; to the shear diaphragms (Figure 2-2), 

The deformations of the edge members due to the shear forces 

from the shell are neglected, that is u' = v 1 = 0. Equations (2-6, 7, 

8, 9) then become 

w = _g_ (2-6a) 
z 

YY 

f (2-7a) w = 
z 
xx 

z 
V = J_ g (2-Sa) 

z yy 

9 



u :; 
z 
2-r 
z xx 
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3-1 Introduction 

CHAPTER III 

FINITE DIFFERENCE EQUATIONS 

AND THEIR SOLUTION 

For most shells of double curvature, even for such a simple case 

as a translational shell, an algebraic solution becomes extremely in-

volved. In such cases, the conversion of the various differential equa-

tio~s into finite-differences equations is more practical, The finite dif

ference equations necessary for the solution of the deformation differen-

tial equation of any translational shell are developed in this chapter. 

3-2 . The Finite Difference Equation for the Vertical Deformation w 

The differential equation for the vertical deformation, (Equation 

2-5) is: 

+ w yy 
= -. l_R 

z xx 
(2-5a) 

a2w The finite difference approximation of -- at the point i, j (Figure 
ax2 

3-1) is: 

w.+l . - 2w .. + w. 1 . 
1 , J 1~ J 1- , J 

6.x2 
(3-1) 

Similarly in the y-direction 

11 



( 
\ 

I 

I 
~ 

w. ·+l - 2w .. + w .. 1 · 
1, J . 1, J 1, J -

. 2 
t::.y 

I 

/1,j+J 

z 

Figure 3.·d 

Finite Difference Network \ . ... . 
',. 

12 

(3""'.2) 

Subst~tutin:g Eq1.iations '(e-1,'._2) into ~quatior\('2-5) results i:J?-
. ' . .. ., 

w. 1 . 'e' 2w .. + w. 1 . 
1 + ,J . ly, J . 1- , J 

A 2 
.u.X 

( ~-) + z· 
. x:x 

w. ·+l - 2w .. + ~- ._ 1 . 1,J 1, J 1,:J · . = 
t::.y2 

1 -R .. z lJ xx 

($-3) 



In a form suitable for iteration Equation (3-3) becomes 

w .. = a.+l .. w.+l . + a. 1 .. w. 1 . + b .. (w. ·+l + w .. 1) + w* .. 1, J l , lJ 1 , J 1- , lJ 1- , J lJ 1, J 1, J- lJ 

where 

ai+l, ij = 2 2(z I z + t ) yy xx 

2 
2(z I z + t > yy xx 

1 b .. ::: 
lJ 2(1/t2 z /z + 1) YY xx 

w* ij = 2 (z I 6 2 + z I 6 2 ) Rij 
yy X XX y 

1 

(3-4) 

The value of the deformation w in the z-direction may now be 

computed at each pivotal point through a system of simultaneous equa-

tions of the type (3-4). 

3-3 Evaluation of the R Value 

According to Equation (2-4), the R value is: 

R=k -f -g xy yy xx 

For simplification of the terms k, f, and g the following proce

dure is followed. 

13 
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1. The k, f, and g are expanded by power series: 

(1 + x)k = 1 + kx + k(k 2-1 1) x2 + 

2 All f th d t · th 1 , ( 4 z 4, z .2 z 2 ) are . our . or er erms 1n e s opes zx • y x y 

rieglected .. fn.· comparison with unity. This assumption, re-

quiring only that z and z be less than one, was first made 
X y 

by Reissner( 5 )_ 

3, The N value is replaced by its equivalent value in terms of 
X 

N according to Equation (1-4). 
y 

4 •. The load is considered to be uniform (p = p ) . 
Z 0 

The algebraic quantities k, f, and g then simplify to 

+ z z J X y 

1 2 + V + -VZ 
2 y + }vzx2]} 

(3-5) 
2 2 

r 1 3 zx 1 z J l- zxx - 2 -z-·- + 2 -./--
xx x.x 

+ N [- :yy - J z} (:)'Yi.\ + ,,,~ zy2(:yy )·. v 
Y xx xxJ xx · 

1 2 - -v z 2· X 
(3-6) 



g = ·°iih {Po [~ -
xx 

+. 3 2] . .... z 
~ y 

2 
!vi_] 2 z . xx 

+ N xy 

15 

(3-7) 

These· quantities must now be differentiated for ·substitution into 

·the equation for R. Differentiating k with respect to x, the·n with re-

spect to y, solving Equations (1-2), (1-3), ·and (1-4) for N .. and N in x·· xy 

terms of Ny, and substituting into the differentiated term of k, the 

following equation is obtained: 

Similarly, 

aN 
+ _J_ ax. 

+ z z J X y 

. 2-
a N" [ . 1 2 

+ -:-?- - 1 - V - 2 ZX (1 ·+, V) -
ay: 

1 2 . J l 
2 zy (l + v) J 

(3-,8) 



and 

f yy 
1 

= Eh p [JX J + N [JX - v z 2 J { 
2 3 

0 Z ·y Z yy xx · ·xx 

aN 
+ __y_ 

ay 

1 2 -v--2 vz 
·x 

- 2flz z J y yy 

- ~ z 2, (JZ) 
2 X Z xx 

+ l. z 2(~) 2 y z xx 

1 2J} - 2° V Zy . 

16 

(3-9) 

+ N [-y · 3vz z -z 2 ] ' xx yy .xx 

[ - 4 z z J xx y 

a'N [- 2 z·. z J + _L_ 6 V Z z -. ax X yy X .XX 

a2N [- zx zyJ +~ 2 axay 

2-aN [1 + V ( :;; ) 
3 2 (z ) + y - 2~x ~ 7 

3 2 (~) 1 2 3 2J} (3-10) - -vz - 2 zx + z· 2 y .2..- y . 
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Equations ('3 ... 8, 9 , 10 ), when substituted into Equation (2-4), 

yield a general expression for the function R in terms of the membrane 

force N and its derivatives. Using Equations (3-8, 9, .. 10)--Rbecomes: 
y 

ih {Po 71 
oN oN 

R = + N 72 + al- T3 + y 
y "°'ay T 4 

a2N a2N a2N 
7 7} y + 

__ y 
T + y (3-11) + axay 75 ax2 6 7 

where the T values are given in Table (3-1). 

3-4. The Finite Differ~nce Scheme for Determining the Value R in 

Terms of the Internal Forces N 
~~~~~~~~~~~~~~y 

The finite difference approximations for derivatives of the internal 

force N at point i, j (Figure 4-1) are: 
y 

oN . aI = 
N.+1 . - N. 1 . 1 ,J .. 1-,J 
. 2 2S 

X 

oN N .. 1 - N .. 1 _,..J_ = . 1, J+ 1, J-
ay 26 y 

a2N 

~ = 

ax 

a2N 

-f = 
ay 

_Ni+l,j+l - Ni-1,j+l - Ni+l,j-1 + Ni-1,j-1 
4 6 b. 

. X y 

N.+1 . - 2N . . + N. 1 . 
1 ' J 1, J 1- ' J 

D. 2 
X 

N. ·+1 - 2N. . + N .. 1 
- 1, J 1, J 1, J- . 

D. 2 
y 

(3-11) 

(3-12) 

(3-13) 

(3-14) 

(3-15) 



TABLE 3..,.1 

'T 

Tl 

72 

. 73 

T4 

T5 

76 

T7 

ALGEBRAIC T VALUES 

Algebraic Equivalent 

2 
z 

- 2 z - yy + 3 V Z 
YY z xx 

xx 

3 
2 2 : z 

z + z z (2+3v) + z (v - 2} - _xx 
xx xx yy yy z xx 

' 
2 

2 z z + 4v z z - 6z (e) X xx X yy X 

-

2 

6z z - 2z (~) + z z . (v - 4) 
xx y y xx y yy 

4z z 1 -(e) X y 

z . 3 2 3 2 1 2 3 2 
1 + _..I;L (-v z · + 2 v zy - v) + 2 zx - -z. 

Z. · 2 X 2 y 
xx 

z 
2 ( 1 3 z ) - 2 - V + yy + z -1--v+-_IT + z . X ' 2 · 2 Z · xx · ·xx 

2 ( 1 1 ~ ) z -1--v--...'.ll y 2 2 z xx 

t-"' 
co 
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where for convenience the syrribol N . has-been replaced by the symbol N, 
y 

Substituting Equations (3-11, 12, 14, 15) into Equation (3-11) and 

making some simplifications will result in 

R .. 
lJ 

lj + N ~lj + N ~lj 
+ Nij ¢ 2 i+ 1, j 'P 3 i-1, j 'P 4 

lj lj [ + Ni,j+l ¢5 + Ni,j-1 ¢6 + Ni+l,j+l - Ni-1, j+l 

- N. 1 . 1 + N. 1 . 1] ¢ 17.j } .. .\ 1+ ,J- 1~ ,J- (3-l2) 

where the ¢ values are given in Table (3-2). 

The R value at each pivotal point may now be computed by substi-

tuting the ¢ and the N values at the pivotal points into Equation (3--12). 

The N values are either computed by the Pucher(l) solution of the 

stresses or by the finite difference method of solution of the forces as 

was done by Tilden ( 12 ). 

3-5 The Finite Difference Equations for the Horizontal Deformations 

u and v 

Knowing w, the horizontal deformations u and v can be obtained 

from equations (2-1) and(2-2} as follows. 

Considering the case of a symmetrically loaded, symmetrical 

translational shell, it is evident that the horizontal deformation,· u, 

equals zero on the y-axis as an axis of symmetry for u. In a similar 

manner the horizontal deformation v is zero on the x-ax{s. 

Equation (2-1) is now written in finite difference form for the point, 

i + 1, j + 1 
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Table (3-2) ALGEBRAIC ¢ VALUES 

·¢ ij Algebraic Equivalent·. 

ij 
,¢ 1 

ij 
'T 1 . 

i. ij 2 ij 
ij ij 

..,. ..,..6 .. 7 
!ZS 2 'T2 - 7 - ? y x·· 

ij .,. ij 
ij 'T3 

+ 6 
¢3 ~- ·~ . x 

X 

'T ij .•. 
7' ij 

¢ ij .. 3 + 6 
4 '2r ~ X 

X 

•ij ij 
¢ ij 'T4 

+ 
'T7 

. 5 ... w- ·-:-Y• 
.··y. ~ y 

ij ij 
16 ij 7'4 

+ 
7"7 - 2~ -;r 6 y y 

¢ ij 
. ..,. ij 
.5 

''7 4 A 3. 
X y 

W, ' 1 -· W, 2 '+1 l,J+ l + .• J ( ) f 
22S -zx i+l.j+l + i+l.j+l . X 

(3-13) 

Considering the values of w known, the value ·of u at i+2, .j+l 

can be.computed from Equation (4-ll);as u at i, j+i is equal to ze,ro. 
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T 
' 

i 

i-1, j-1 l :i+l, j-1 
I 

! 

I 
I 
' i -di i, j i+l, j i+2~ j 
~ ~ ' -'. -

I 

I X 

I i-1,j+l i, j+ 1 i+ 1, j+l i+2,j+l ~-- ~ 
I 

~- i, j+2 i+ 1, i+2 i+2~ i+2--;~ 
I 

.- ., 

Figure. 3,-2 , 

Symmetrical Finite Difference Network 

Equation (2 --1) is now written in finite difference form for the point 

i, j+ 1 as follows: 

ui+l,j+l - ui-1,j+l = 

2~ 
X 

wi+l,j+l - wi-1,j+l 
2~ · (-z ). ·+1 + f. ·+1 

X X 1, J. . l, J 

(3-14) 
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The right hand side of the above equation is known and the left hand 

side may be reduced to one unknown by symmetry, that is 

ui+l,j+l = -ui-1,j+l (3-15) 

In a similar manner values of u at all points of the shell may be 

determined. 

Similarly, values of v can be determined by using Equation (2-2) 

and following the same procedure as for u, resulting in: 

Atpoint i+l,j+l 

vi+l,j+2 - vi+l,j = 
2.t. y 

At point i+ 1, j 

v.+1 ·+1 - v.+1 ·-1 1 ,J 1 ,J 
2.t. 

y 

wi+l,j+2 - wi+l,j 
2~ (-zy\+1, j+l + gi+l, j+l 

y 
(3-16) 

(3-17) 

When the shell is subjected to an unsymmetrical load, the horizontal 

deformations u, and v are no longer zero on the axis of symmetry. 

There are no starting points on the shell that can be used for the elemina

tion of unknowns. Sufficient equations of the type (3-13, 16) are available 

to obtain a solution if forward or backward differences are used. 

3 - 6 Solution of the Fini~ Diff ~ence ~quations 

A. Methods of Solution -

For a discussion on the methods of solution the reader is referred 

to Tilden (1 l). His discussion on the solution of the internal forces is 

equally applicable to the deformations. 



B. The Network 

Considering the case of the symmetrically loaded, symmetrical 

translational ,shell, the carry-over factors and deformations are 

symmetrical to both the x and y axes. By taking advantage of this 

symmetry, a twenty five point network (Figure 3-3) covering only one 

quadrant of the shell has been chosen for the analysis. 

Carry-over factors that contribute to final values on the axis of 

symmetry are modified, As an example the point 1 (Figure 3-3) re-

ceives contributions of 2a21 w2 due to the fact that w2 and a 21 have 
. , ' 

23 

equivalent values, respectively, in the opposite symmetrical quadrant. 

C. Reduction of the Network from Boundary Conditions 

From Equations (2-6a) and (2-7a), it is noted that w is a pre-

scribed value at points 5, 15, 2 0, 21, 22. 23 and 24: 

w - _g_ at X = +L (2-6a) 
z y yy 

f at +L (2-7a) w :;: - -- y = z X xx 

Since the value is prescribed, iteration can in no way effect w at 

points 5, 15, 20, 21, 22, 2 3 and 24. Therefore it follows that all carry-

over factors to these points must equal to zero. That is 

(3-18) 

From Equaticn (3-4), the expression for w 4 may be written 

(3-4a) 
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1 2 3 4 5 
X -,. ,,.. -,... --al,2 a2 3 a,3 4 a4 5 , ' ' 

~- ~ k 
I 

~1 ~M ~m~ ~~ }~ ~~ 
2'a7 6 a ag 8 alO 9 

..sl!: ' ~ 7 • ""1t. 8, 7 8 ..,;,,r.· ' .. g· ~ , ' lb 
a(:'1 - a P"' 

" - 111' 
_.. 

7, 8 as 9 a9 10 
' ' 

' 6 

k A~~ k ~i ~00 ~~J k ~~ ~o 
,,-1 

.0 

2a12.11 a ·a14. 13 a15 }4; 
"111:. ' 

12. ....c:13, 12 '13 ~ ' ~ 14 ..S." ' 
.15 

')/I'" ..,_, 
'. .,,,,_ a ~ 

al 1 12 a·12, 13· al 3, 14 14\ t5 · 
' 

11 

1~~ ~l ~ 1 l'M ~~J ~ ~l ~ ,,-1 . 

.). ,d .0 
I 

'· 

16 
2a17 16 a a a 
... !J. 17 ...ii! 18, 17 18 "'"""'19, 18 . 19 .... 20, 19 

·. 2-0 ...,. .. 11/iiP .,,.... >"' 
a16, 17 a17,18 al8, 19 a .. ·. -

19, 2·0 

'Ji ~~J ~~. ,.Q' ~~~ }J ~~ ;J ·~ 

Za22 21 a a· a 
,.,;<I ' .. 22 ~3,22 . 23 ,,..g24, 2 3- 24 dll£25124 

2.5 
JIii>" JP' )IP' Ji!"" 

a2 l, 22 a22,23 a23, 24 · a ,, 24,25 

21 

y 

Figure 3=3 

Twenty-Five Point Network 



where ~,~, 4 .W.,~ is a known value-·similar in form to the· starting value, 

w*4 • Qepotih-g,the carried-over··starting value .as. X, the values at 

points :<>4, · 9, ·14, Hi. 17, 18 and 19·.become 

Xl6 = bl.a' w.21 

:.\17 = b17· w22 

.25 

· (S-:20) (!3-21) 
~· ·'~14 - ··~18· = .hrs W:2·3 a15 14 w15 • 

X19 = h19'W:24 

The twenty five-point n~twork nas been re(iuced to l;l · s~t:een ~potpt 

network as show'n in Firir~ (3 .. '4). 

Figure 3-4 

Sixteen-Point Network 



CHAPTER IV 

NUMERICAL EXAMPLE 

It is required to compute the deformations w, u, and v for the 

elliptical paraboloid shell shown in Figure (4-1). The shell is subjected 

to a uniform load p . The edges of the shell are supported by shear 
0 

diaphragms that are denied all rigidity transverse to their planes. The 

Poisson's ratio is considered to be zero. The values of the internal 

forces N , N , and N have been computed by the use of tables and y X xy 

equations presented by Parme(6 >. Thus, 

N = 
X 

4 p L (Coeff. ) 
0 

N ~ - 4 p 0 L (Coeff.) y 

N = - 4 p L (Coeff.) xy o 

where the coefficients are as given in Reference 6. 

The equation for the elliptical paraboloid shown in Figure (4-1) is: 

z = 

Substituting the known quantities, the slopes of the shell in the 

x and y directions are: 
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'P 0 

z 

Figure 4-1 

Elliptical Paraboloid 

1 z = yy 2L 

From Equation (3-4) 

= (1/2 L) 
.a 072 L) 2 1/2L + t2 

172·-L 

b = 1 2 .1 1/2L + l 7 1/2C 

27 
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Choosing a 25 pivotal point network 

!::J,. = L !::J,. = L t = 1 
X 4 ' y 4 ' 

then 

a = 1 2 (1 + 1) = 0.2500 

b = 1 2(1 + 1) = 0,2500 

It is n~ted that for the elliptical paraboloid the carry-over factors, 
! ' 

a and b, are constant over the domain of the shell. 

In order to determine the starting value w~:c .. , and the carry-over 
lJ 

starting value A, the following procedure 'is followed. 

Since the elliptical paraboloid is a square, the vertical deforma-

tions are symmetrical about the diagonal of the shell. Therefore the 

vertical deformations are calculated for one octant of the shell only. 

Using Equation (3-6) and substituting the known quantities at the 

points 1, · 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, and 19. will 

result in the f values given in Table (4-1). 

Using Equation (3-7) and substituting the known quantities at the 

points 5, 10, 15, and 20 will result in the g values given in Table 

(4-2). 

Using Table (3-1) and substituting the known quantities at the points 

1, 2, 3, 4, 7, 8, 9, 13, 14, and 19 will result in the 'T values given 

in Table (4~ 3). 

Using Table (3-2) and substituting the known quantities at points 

1, 2, 3, 4, 7, 8, 9, 13, 14 anct 19 will result in the 121 values given 

in Table (4-4). 
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Table 4-1 NUMERICAL f VALUES 

Pivotal f 
Point 

I 1 1.0000 
poL 

- Eh I 

I 2 0.9541 
POL 

I 
- Eh 

,. 

poL 
3 0. 7963 - Eh 

4 o. 489'3 
poL 

- Eh 

I 
~-·-·-.... --·-

6 1. 0596 
poL 

- Eh 

Pa L 
7 - 1.0193 Eh ---· 

Po L 
8 - 0.8817 

1:Dh 
.. .:.~ 

poL 
9 0.57b3 - EJ;i 

:-,,----.-

11 1. 2 32 3 
poL 

- .Eh 
-

p L 
12 1.2117 0 - . 

Eh 

' Po L 
l3 - 1. 132 5 Eh 

Po L 
14 - 0. 9091 Eh 

Po L 
16 - 1. 4~3~ Eh 

Po L 
17 - 1. 5191 F5h 

- .. p L 
18 1. 5340 0 - Eh 

poL I 
19 1. 5410 I - Eh 



30 

TABLE 4-2 NUMERICAL g VALUES 

Pivotal g 
Point 

' 

5 1. 7850 
POL 

- Eh 

p L 
10 1. 8510 

o· - Eh 

Po L 
15. - 2. 1800 

Eh 

I 
Pc;:, L 

2,-0 
! 

- 2.8690 Eh 
·-.· . ···----"-· ·- ··----- -.. -..~-· 1 . 

~~-·--~,-~,,----~-···•"--..,, ' ·--·-··--·-·~--........ --,---"·-·--' ·---·--·--···-·····---······-------,-·---

TABLE 4:-3 NUMERICAL T VALU;ES 

Pivotal· 7 1 72 7 3 74 7' 5 76 'T7 
f>oint ··. 

1 1. 5000 0 0 0 -1. 0000 -1. 0000 0 -
L 

:2 1. 5000· 0 0. 2500 0 -0, 9922 -0. 9922 · 0 - -
L L 

3, 1. 5000 0 
0.5000 0 -b. 9688, -0. 9688 (}, - L -~L-

4 1. 5000 0 0. 7500 0 -0.9297 -0. 9297 0 - --L L 

7 1. 5000 0- 0. 2500 +0.0625 -1. 0156' -1. 0156 @ .,._L·' - .. 

L ... n 
•• ... 

, __ 

8" 1. 5000 0 0. 5000 +o. 0625 -0. 9922 -0. 9922 0 - - L L L '· 

9 1. 5000 0 0.7500 +o· 0625 -o. 9531- -0.9531 0 - -L - L L 
' 

'. t. 50QO o. 5000· +o. 1250 
13 - 0 - -1. 0625 ·-1. 0625 0 

L L L 
-

14 1. 5000 0 0. 7500 +o. 1250 -1. 0234 ..;l. 0234 0 - -
L L L : 

1. 5000 ' 0,: 7500 +o· 1875 -1. 1406 -1. 1406 0 19 - 0 - L ,, . 

L L . 
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~---------------------·-----------------
TABLE 4-4 ¢ VALUES 

Pivotal , ¢ 1 ·--· -~-- ¢ 3 1 ¢ 4 
Point 

¢ 
5 

,1 0 

0 

0 

0 

Using Equation ( 3 ·-12) and substituting the known quan~ities at 

points 1, 2, 3, 4, 7, 8, 9, 13, 14, -and 19. will result in the R values 

given in Table (4-n}. 
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---···-····---··· ------- ·----. -·- -- ····· ---·--··-- ··-- ---~--"- ----···-·· -·----·--·--·------- .. 
I 

TABLE 4-5 NUMERICAL R ·vA,LUES 
-- ...-----:::.- - . -· --

I Pivotal R· 
I Point 

p. 
1 1. 5000 0 - EhL 

----f-r--~--..--

' 

2 .1. 
. - Po - 3648 EhL 

·--~-
I p 

3 1. 2200· 0 - EfiL 

4 0. 4088: 
P6; 

-
EhL 

7 5.9900 
po 

- EhL 

8 0.7195 
Po - Ehl,,· 

9' - 0. 6482 
Po 

EhL··· 

13 0.7450 
Po - Ent·· 

I 

I; I 
--------

p. 
14 0. 5815 0 I . -. 

Eh:i:, 

t 19 + 1. 12.50 
po 

J EhL 

The starting ·iralue w* .. is computed from Equation (3-4) by sub-lJ . . 

stitu.ting th.e known quantities ot" R at each pivotal point according to 

Table (4-5). The w*i· values for the points 1, 2, 3, 4, 7, 8, 9, 13, 14, 
' . . J . ' 

and 19. are given in Table (4-6). 



___ " ___ 
TABLE 4-6 NUMERICAL w,;,~ .. 

lJ 
VALUES 

Pivotal w-J.~ ' .. 
Point lJ 

Po 
L2 

1 - 0.0469 
~ 

Po 
L2 

2 - 0. 04.27 Eh 

·P L2 

3 0. ·0381 0 - ETI1 

p L2 

J 0.0128 0 - Eh 

p L2 

7 ·o. 1872 0 - Eh-

po L2 

8 - 0.0225 
Eh 

. 2 .. p L 
,g - 0. 0203 

0 .. 

Ell 

Po 
L2 

13 - 0.0233 'Eh i 

-Po 
L2 

14 - 0.0182 Eh I 

L2 
19 + 0. 0352 

Po -
Ell" 

The boundary condition for w along the line x = +L is: 

according to Equatipn (2-6a), 
' . 

w :: - _g_ 
z yy 

33 
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Therefore, at points 5, 10, 15, and 20, w is 11s given in Table (4-7) . 

-·---··· .. -- ---1 
TABLE 4-7 NUMERICAL w VALUES AL~ 

THE EDGE X = +L 
- -

I 
i 

Pivotal I w 
Point ~- ·- .. --

Po 
L 2, 

5 + 3,5000· ~Eh 
-

I po L2 

10 + 3,7020 -Eh 

Po 
L2 

15 + 4.3600 -~ 
--

'L2 

20 _11 + 5,7380 
Po 

I ~ I 
-------·---· l L ... - --

Using Equations (3-20, 21) c:1-nd substituting the quantities of w at 

points -4, 9, 14, and 19 will result in the starting values (A) given in 

Table 4-8, 

Note that 19 has 2 A 19 due to the fact that it is_ a corner point an;d 

W20 = W24 ' 

Writing the carry-over Equations of the type (3-4) for the. points 

1, 2, 3, 4, 7, 8, 9, 13, 14 and 19 by using the known quantities found 

in Tables (4, 6, 8) will result in the matrix equation (4-1). 

Solving.this matrix equation for w, the values corresponding to 

one octant of the shell are obtained: 



"!"l '+1 - -0 0 0 .() , -a 0 .. 0 0 
1 ' 

Wl 

-2 
·p 'L' 

0 
+9.0469 Efi 

·o .• 2soo·- -1 :fQ. 2500, - :.- .. · . 0·. +O~_QOO.Q - o· -0 0 0 , .. ,_;;- ,0 
~-

:. L2 
. ··Po 

+o. 0427_ -

r 

0 +o ... 2soo .. 1 - ·,+o. 250@. .. -0 +0.,-{;ClOO Cf '··, .. .O. .... 0 

0 €)· +G~2500 , -1 €) o- +0,#.c:5000 0 0 

· · O +G'° 5000 · · 0 0 ..a.1 . - ;,t-·"@ •. 5@00 0 ', 0_ . ·:() 

..... 
-: 

0 G · +O. '250~ O .. +'.il:i~50(t. -,l -+tt.2500+0.2.5-00, 0 

'(} ~'. 0 +0,.2500 .Q. +O. 250_0 - ... 1 o· +0,2500 

.{) 0 0 0 @· +o. 5000-' e . ·~l +0.5000 

p L2 

llw3 1· ' . 0 
0 1 +o. ?~8-1 -mi 

/ 

2 
p L 

0 uw4 _ ·1 . ·1 ~o. 8622 __ ~h 

. 2 
pL 

o_ 
lfw1 I _ r· 1872 ~ 

- L2--P . 
a lj w8 :1 I +o. 0225 _ ~h 

. 2 
p L. 

0 

Eh 0 IJw9 ·• :'."'·O. 9053 

. 2 

·O, Hw1:r +O. 0233: 
p· L 

0 

Eh 

·2 

; o: O· o ._ ·o (), ~- -+o. 2sod+o~-250(} ·,..;1 +0.25001l\\rl4 -1,. 0718 
p L 

0 
Eh 

0 o· o· - - . - e . ·. @'. . 0 0 0 +0.5000 -1 . /' 
w19/ ii ! ! , 

I, I ·. 
.JL .. J 

. 2 
P- L 

. 0 
-2~ 9042 Eh 

(4-.1) ..J 
c-, 
CJ1 
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where the coefficients are given in Table 4-9. These values are shovtn 

. graphically in Figure 4-1. 

TABLE 4-8 NUMERICAL A VALUES 
--==~-·="'"·'-'·""- - -

Pivotal A Point 

I p 
L2···· 

4 + 0.8750 0 

Eh 

Po 
L2 

9 + 0.9255 
Eh· 

, ....... -~--- .... ------
2 

pL 
14 + 1. 0900 

o; 
Eh ·., -- ·- -· ·-

p L~ 
19 + 2.8690 0 

~ 

TABLE 4-9. COEFFICIENT VALUES OF w IN!QNE 
OCTANT OF THK--SHELL 

x/L 

i y/L · o o. 2.5 
!------ - - -- ,- ------------·-·- - ---

0. 50' 0.75 1. do 

3. 0578 3.4927 3. fJooor 
l~~o~~-tt-~2_._1_1_9_5_·-+-~2_._1_B_6_4~--~~~~-+-~~~~-i-~~~~~ 

j 0.25 2.7289 3.0635 3.6372 3. 7020 

0 .. 50 3.8393 4.2177 4.3600 

5.0131 5.7380 I 

I 0.75 

1. 00 I infinite· \ 

The general resull.ts can be compared with those from the uniformly 

loaded cylindrical shell. In each case the membrane solution is not 

adequ:atef ta develop the desired boundary conditions of zero displacexpents 

w along the edges. 
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Center 0.25 0.50 0.75 1. 00 X 

L 

-0.25 

-0.50 
w=2.7195 

= 3. 5000 
-0. 15 

Infinite 

Figure 4-2 

Deflection~ w in One Quadrant of the Shell 
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Having the values for w at all points, the displacements u and 

v must now be computed. u is determined accor,ding to the following 

procedure: 

1. At points 1, 6, 11, 16, and 21 u is zero, and at points 21, 

22, 23, and 24, the boundary conditions i:iicta.te the values of 

u (Equation 2-9,a). 

2. Using Equations of the type (3-14), and substituting the known 

· values of -w and f, u is determined for the points 2; 7, 

12, and 17. 

3. In a similar manner aBd by the use of Equation (3-13), u is 

determinetl for:points 3, 5, 8, 9, 10, 13, 14, J5, 18, 19, 

and 20. 

Table (4-10) gives the .u values over the entire domain of the 

fir.st quadrant. 

TABLE 4"'.10 -GOEFFICJl]NT, VALUES-,OF u IN ONE 

·QUADRANT OF THE SHELL 

.x'/L 

y/L 0 0.25 o. 5·() 0.75 1. 00 

0 0 ,-Q, 2500 -0.5193 -0.8298 -0.9298 

. 0. 25 0 -0.2649 -0.5468 -o. 9329 -1. .0714 

0.50 0 -0.3081 -0. 7036 -1. 1630 -1. 3535 

·o. 75 0 ·-o. 3710 -0.8502 -1. 4820 -2. 1908 
, ..... .. 

· 1. 00 0: -0.4628 -1. 0905 -2. 1518 irifiriit¢ 
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Since u and v correspond to each other by symmetry, a table 

for v is obtained by transposing Table (4-10) about the diagonal of the 

shell. 

Figure (4-2) shows the variation of the values for u over the 

domain of the first quadrant. 



Center 
0 25 0 50 0. 75 0.00.-----~-·n--C...------i",..,.._.--~~-,..~ 

o. 25 ... 

0. 5 0 .._ 

; 

0.75-

. i I 

u=-0.9208 

? 1. 00 

X 

1,. 

1. 00 !------__ _,__ ----- _.,____,,_ ----1.-. .--J.--1 -----l 
\ Corne I' .Edge 

1 f 

.:'ff.. 
. -L. 

Irifipite 

Figure 4-3' 

Deflections u in One Quadrant of the SlieH 
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CHAPTER V 

SUMMARY AND CONCLUSIONS 

5-1 Summary 

A systematic finite difference procedure for the solution of mem-

brane deformations of translational shells is presented. The solution is 

accomplished through the following steps. 

1. The finite difference equation for the vertical deformation w 

of the general shell of translation is formulated in terms of 

the value R. 

2. The term R is simplified through the following procedure: 

a. The algebraic terms k, f, and g of R are expanded by 

power series, and all fourth order powers of the s1opes 

are neglected in comparison with unity. 

b. The final value of R is expressed in terms of the mem

brane forces N only. 
y 

c. The difference scheme of R is obtained for its evaluation 

at any point on the shell. 

3. The finite difference equations for the horizontal deformations 

u and v in terms of the vertical deformations w are 

obtained. 

4. A basic difference network of twenty-five pivotal points for 

one quadrant is chosen. 

5. The twenty-five points are reduced to sixteen utilizing boundary 
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conditions and carry-over methods. The numerical solution 

is performed by matrix inversion. 

6. The membrane deformations w, u, and v are found for an 

elliptical paraboloid of specific dimensions. 

5-2 Conclusions 

The systematic finite difference procedure outlined in this report 

makes the solution of the membrane deformations of translational shells 

a simple and straightforward process. 

The simplification of the term R eliminates polynomial or higher 

order difference approximations in the numerical diff ertiations of the 

algebraic terms k, f, and g. Rather, the differentiation of these terms 

is carried out analytically. Moreover, R is evaluated through, the 

solution of the N membrane forces only. y . 

The application of the method presented in this report to a specific 

elliptical paraboloid resulted in a straight forward solution without any 

complex mathmatical operations. 
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