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CHAPTER I
INTRODUCTION

1-1 Historical Study

In 1931 Piicher(l), in his dissertation, presented the equilibrium
~ equations for the general shell of double curvature in terms of a stress
function and projected forces. He also presented a series solution for

stresses in an elliptical paraboloid.

(2)

Fliigge'“’, in 1950, discussed the analysis of translational shells

by finite differences, using 'relaxat‘i.on to solve the simultaneous equa-
tions,

- In 1953 Shizuo Bari(B) extended the use of the membrane forces in
shells of double curvature to the determination of membrane deformations

of hyperbolic-paraboloid shells. At the same time and independently of
(4) ‘

Ban, F. T. Geyling developed»a general theory of deformations: of

membrane shells, and discussed the deformations d‘f the elliptical parab-.

oloid using finite differences. In 1955 Eric Reissner(5) presented a

5

paper in which he discussed the membrane deformations and _displace-—
menté of a hyperbolic shell due to its own weight according to shallow
membrane theory.

In 1 956 Parme(S) gave a detailed account of the partial differential

equation for determination of shell stresses. In 1957 W. Fliigge and

F. T. G‘eyling(7’ 8) presented two papers on the General Theory of
(4)

Deformationé of Membrane Shells based on the earlier work of Géyling



The solution of finite difference equaﬁons by infinite geometric
series . for two dimensional, second order problems was presented by
Tuma, Havner, and French(g) in 1958. The idea of extending the Alge-
braic Carry-Over method to the splution of translational shells was pro-

(10) (11)

posed by Havner in shell lectures delivered in 1959, D, ‘I. Tilden

carried out the extension of this method in 1961,

1-2 Scope of Study

A systematic finite difference procedure for the solution of mem-
brane deformations of translational shells is presented. The partial
differential equation in finite difference form is developed in terms of
the »vertical deformations, w, and the stréss resultant Ny' The latter
values ére directly obtained from the membréne force solution.

In solving the differential equations for w some simplifications
are made in evaluating the term R. These simplifications are accom-
plished by the use of power series and the neglect of fourth order powers
of the slopes as compared with unity.

A numerical example is included,

1-3 Membrane Equations of Equilibrium

An element of a shiell, projected into the x-y plane is shown in
Fig. 1-1, For simplification in the expressions of the equilibrium
equations, the internal forces on the shell element have been transferred
to the projected element. Internal forces are shown in the positive
sense.

The shell is considered to be in the extensional (membrane) state.

Thug, the forces on the element are membrane forces.



Figure 1-1

"Elerr-\;eﬁt of Shell Projected in x-y Plane

The relationship between the projected internal forces and actual
internal forces may be determined by geometry. The final equations

are:



s cos B

Ny - Ny cos «
e cos o

Ny . Ny Zos B >

ny = ny

(1-1)

Considering loading in the z direction only, the final three equations of

(1),

equilibrium are®

oN, oN

X 4+ X -9

ox oy

oN, 8N

-+ XY - o0

y ):s

N + N zZ = -p.
X TXX y U yy Xy “xy z

1-4 Shells of Translation

(1-2)

(1-3)

(1-4)

The equation of the surface for a general shell of translation is

given as
z = fl(x) + f2 (y)

Differentiating Equation (1-5) twice with respect to x yields

_ it
Zyx f1 (x)

Similarly, with respectto y

. 1
Zgg = fy (y)

with respect to y and then x

zZ
Xy

(1-5)

(1-6)

(1-7)

(1-8)



z = kl(x)

Figure 1-2

Shell of Positive Gaussian Curvature

1-5 Boundary Conditions

The shell is supported by vertical shear diaphragms, and it is
assumed that no tangential sliding takes place between the shell and the
diaphragms, The diaphragm is usually denied all rigidity transverse to

its plahe.. Therefore, at the edges

x = + L, N =0
X

and at the edges

y=+L ., N _=o0.



CHAPTER If

MEMBRANE DEFORMATIONS OF
TRANSLATIONAL SHELLS

2~-1 Introduction

An element of the shell is shown in Figure 2-1 with the positive
displacement components u, v, and w, and the geometric parameters

a, B, and w .

dx

C
/

x = 0f ~D

Element of Shell with Displacements Shown

Figure 2-1



2-2 Differential Equations for u, v, and w.

The development of the equations of deformations appears else~-

(4, 7, 8)

where and is not repeated here. The three equations of defor-

mations are

u, = -w_z_+ f (2-1)
X X °x
v, = - + 2-2
¥ Wy %y T8 (2-2)
u + v, = - w_z_ =~ w_z_ + k (2-3)
NA X X'y y X .
where
f = 12 51 N(1+Zz)2+2N— zz(1+zz)
Eh(l+z%+2 %)% ¥ X xy “x"y x
X y
+N'(z222 - 1/(1+22+z2)J
yix
1 e 2 e 2
g = 1N (1+2z7) + 2N._z z (1+z2°7)
Eh(1+zX2+zz) y y X y
+“N—{zzz2 - v{l+z +zz)}
x| "x Ty
- 2 — ) - 2
k = 5 5 NX z, zy(1+zx) + ny [(1+V)(1+ZX

+ zz)+ 22222:] + N z z (1+22)‘,L
y X ¥y y Xy y |

-~

The final differential equation for the displacement w is:

- =k, _ - f -

\ A/ W__ Z + w__z g
xx “yy Xy “xy yy “xx Xy yy XX



Since A 0 for a translational shell, Equation (2-4) becomes

, |
w Y+ w o= L R . (2-5)
XX vy Z %

2-3 Edge Conditions Imposed Upon Membrane Displacements by a

Shear Diaphragm

Figure 2-2

Edge Displacements

The shear diaphragm has no rigidity normal tc its own plane.
Thus, there will be no conirol imposed on displacement components u

along the edges x = + LX nor on displacement components v along



edges y =+ L

_ 1 , 2, % g '
W = e (v (142 ) - =R (2-6)
z N z
Yy y Yy

Similarly, along y = + Ly

Z

1
W= _...‘.,1<._ [u' (1 -+ ZXZ)Z} - L_i._ N (2—7)
XX ’ X '

The boundary condition . for v along the edges x = + LX is:

i v! 2.%

v o= =L gmz[__m(uz)] ° (2-8)
Z.. yiLZ N
yy y Y

Similarly, along y = + Ly

z b

u = = f - z [1—1‘1 (1 =z 2) 2} ‘ (2-9)
zZ X |2z - x ‘
XX X X

where u', v', w', and w' are deformations tangential and normal,re-
spectively, to the shear diaphragms (Figure 2-2).

The deformations of the edge members due to the shear forces
from the shell are neglected, that is u' = v' = 0. Equations {2-6, 7,

8, 9) then become

w = - B ' (2-6a)
yy
w o= - ;i— ‘ | (2-7a)
XX
Z
v = ;Z_ g (2-8a)
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(2-9a)



CHAPTER III

FINITE DIFFERENCE EQUATIONS
AND THEIR SOLUTION

3-1 Introduction

For most shells of double curvature, even for such a simple case
-as a translational shéll, an algebraic solution becomes extremely in-
volved._ In such cases, the conversion of the various differential equa-
tions irﬂ:o finite-differences equations is more practical. The finite dif~
ference equations necess.ary for the solution of the deformation differen-

tial equation of any translational shell are developed in this chapter.

3-2 . The Finite Difference Equation for the Vertical Deformation w

The differential equation for the vertical deformation, (Equation

2-5) is:
Z 1 .
w (»—1-3—’) + w = — R . (2-5a)
XX \ 2 Yy p2 :
XX XX
82w
The finife difference approximation of —5 at the point i, j (Figure
: ox
3-1) is:
02w _ Wiv1,3 7 2Vt Wiiy, (3-1)
ax° Ax?

Similarly in the y-direction

11



w _ Wi el T Wit W5 (3-2)

ay Ayz

Figure 3~1

Finite Qifference Network

Substituting Equations (3-1,’ 2) into Equation {2-5) results in

12

Wivt, i T 2Vt Wil (Zyy) T 05 Wit W T ¥ I
Ll (0 ,

sz XX Ayz
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In a form suitable for iteration Equation (3-3) becomes

Wi T 2L a5 Wiel,§ T %-1, 45 Wi-1,5 T PV e T W, - T
(3-4)
where
t . = ﬁ?.(.
X
y
(zyy/zxx)ij
a. L=
i+1, ij Nz, |z +t2)
vy XX
( z_
Zyy/ Xx)ij ,
B P Y
A4S XX
i} 1
B aan? 2y 2y + 1)
1
Wk, = R..
ij 2 2 ij
2(zyy/AX + ZXX/Ay)

The value of the deformation w in the z-direction may now be
computed at each pivotal point through a system of simultaneous equa-

tions of the type (3-4).

3-3 Evaluation of the R Value

According to Equation (2-4), the R value is:

R=%k_-f_-g
Xy NAA XX

For simplification of the terms k, f, and g the following proce-

dure is followed.
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1. The k, f, and g are expanded by power series:

k(k - 1) 2

(1+x)k= 1 + kx + 7R x° +

4 2 2
, -z z")are
Yy Xy

‘rnieglected. in' comparison with unity. ' This assumption, re-

2, All fourth order terms in the slopes (zx4, Z

ciuiring only that Z and Zy be less than one, was first made

(),

by Reissner

3. The Nx value is replaced by its equivalent value in terms of

T\Ty according to Equation (1-4).

4. . The load is considered to be uniform (pz = po) .

The algebraic quantities k, f, and g then simplify to

1 2 1 2 1 2 1 2
+ ny [1 + o5z + 'Q—Zy + v + -2=1/zy + 7V'Zx]
(3-5)
r Z2 Z2
.1 o1 3 7x 1%
P mR P "z " 2% *z“’“zj
XX XX XX
Z Z.__\
LN [a» Iy gz}f(zyy} N 122(Zzy) .
Y XX xx4 Y \xx

1 2 kT )
=.27vzx. =2—sz] +._ny[22Xzy} (3-6)
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2
o1 v 3.% 3. % ~
g - T‘f}’_l pO [Z - ?VZ “Z_VZ } + ny [2szy]
XX XX XX
Z Z
+ N v.-zxy— -vévzz—-'zz - Vz2+1-lz
y Z 2 X \z y 2
XX XX
+-§iz2]v+“1\T {22 z} : | (3-7)
y Xy XYy

These quantities must now be differentiated for -substitution into
‘the equation for R. Differentiating k with respect to x, then with re--
spect to y, solving Equations (1-2), (1-3), and (1-4) for 'N_X, and ny in
terms of Ny’ and substituting into the differentiated term of k, the

following equation is obtained:

2 [n ~ |2
Key = ER {Po | Zyy} " N;y-[ Zyy T Zxx zyyj

B'Z'N_y 'Zyy
T By Lﬁ 2x %y <ZX-X) "% Zy]
Der
9N
; _ _ 1. 2 , 1 _ 2
+ --a—;-§==- { 1 12 *'2'ZX (1 +:V) '-2-Zy (1+ V)i}

Similarly,
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.1 “yy < [ 2
"R \Polz | TNyl v
Yy xx N R yy
N 22
+ _B——Z i\2 z (EZ«Y_> - 2vz_2z }
- y “yy
i D=
oON_ r : 9" N z
* axy E_4zx (Ely_)j * ’axay {szz -zly}
Y \ 24y Y Y Zxx
az”N“ z z
e A yy_ézz'(_zz) +_22(_lz)
ayz - Pxx 2 7x Zxx Y\ Zxx
1 2 2
-V - gvz, - gV Z.YJ (3'?9)‘

and

-— - ‘ - - 2
€xx - ER §Po { SUZxx:] * Ny { SV Zyux %yy Z.XX}

+ J [— 6vz =z - 2z 2 J
ax yy X XX
N r
az”N“ VA 3 9
SRR S (T A A B A L A4
2 p2 2 7x 7
XX XX
_ 3,2 (fmwYy 1,2 3,2 -10)
i Zy <Zxx) 2 *x i ,2L<'Zy‘] - (3-10)
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Equat’ions (‘3*-'8, 9, 10), when substituted into Equation (2-4),
yield a general expression for the function R in terms of the membrane

force T\Ty and its derivatives. Using Equations (3-8, 9, 10)—R becomes:

. _ 5N o
R=gr (Po1 * Ny T+ 53+ 574
aZN‘y az”N‘y 9° N, |
+ T. + T, + — T, (3-11)
8y 5 T ouf 6 o2 T

where the 7 values are given in Table (3-1).

3-4. The Finite Difference Scheme for Determining the Value R in

Terms of the Internal Forces ﬁy

The finite difference approximations for derivatives of the internal

force T\I‘_y at point i, j (Figure 4-1) are:

9 N. ., .- N. .
Yy i+1,j Ti-1,j _
= y— , (3-11)
X
oN N. .., -N. . ' - ‘
y - i,j+1 i,j-1 (3-12)
By A
| y
82N - N - N + N
y i+1, j+1 i-1,j+1 i+1,j-1 " 7"i-1,4-1 (3-13)
9x 0y ' ' A
Xy
92N N. . . -2N. .+N. . .
¥ = L L,j “i-1,] (3-14)
ox N
X
32"'1\?' N, ., ., =2N. . +N. .
y i, j+1 i,J i,j-1 ' (3-15)
8y2 2 29— .
y



TABLE 3-1 ALGEBRAIC 7 VALUES
T Algebraic Equivalent
: 2
) z
Ty - 2z - E-}—’:X + 3I/ZX
yy —_— X
Z3
o 22 + z__z (2+3v)+zz(i/—2)'-—~—zy‘
XX - xx “yy NAZ Z
XX
2
z
T3 2z Z s + 4vz =z - 6z (EQD
g Yy XX
2
Z . p
Ty 6ZXXZV - Zzy (—-ﬂz ) + z zy(v—4)
XX
z
T 4z =z 1 -(—Z-}—’)
' Y “xx
gy (3. 3 1.2 3 2
"7'6 1 + 7 '(EVZX +'§VZ "1/)+°=Z—ZX "-z—Zy'
XX :
b/ Z zZ
T SRR, » ANTRNE: SN (R TP TSV S A RS (R TS NN S A 4
7 z X 2° 2.z y 2 2 z

81
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where for convenience the ':symbol"N—y has-been replaced by the symbol N.
Substituting Equations (3-11, 12, 14, 15) into Equation (3-11) and

making some simplifications will result in

a

1 J i i ij i
Ri; * ER Lpo‘bl TNy 89 Ny 583+ Nyg, 524
ij 1] .
TNy e %5 TN a1 % +[Ni+1,j+1 Nio1,j+1
Niti,5-1 7F Ni=1,j~1] ? (3-12)

where the ¢ values are given in Table (3-2).
The R value at each pivotal point may now be computed by substi-

tuting the ¢ and the N values at the pivotal points into Equation {3-12).
(1)

The N values are either computed by the Pucher solution of the

stresses or by the finite difference method of solution of the forces as

was done by Tilden(lz).

3-5 The Finite Difference Equations for the Horizontal Deformations

u and v

Knowing w, the horizontal deformatidns uand v can be obtained
from equations (2-1) and{2-2) as follows.

vConsidering the case of a symmetrically loaded, symmetr"ic_al.
translational shell, it is evident that the horizontal deformation, u,
equals zero on the y-axis as an axis of symmetry for u. Ina similaf
. fnanr;er the horizontal deformation v is zero on the x-axis,
Equation {2-1) is nbow‘ written in finite difference form for the point,

i+1, j+1



Table (3-2) ALGEBRAIC § VALUES
g1 Algebraic Equivalent
ij ij
STl M
| S i T
PRV it 27
2 2 T LT e
. 4 a2
ij ij
BRI T "6
3 || 28, N
X
| ij ij
@ 0o ’3 + i
4 I8 A2
X
1j ij
R | IS
5 || 25 N2
y
ij 1j
s - |
6 25 22
' Y
i
513 75
i T5.A
x "y

u

i,§+1 ~ Yi+2,9+41 _

Wi+l "

Wit2, j+1 (-2.) N

20
X

2A
X

x'i+1, j+1

f

i+1, j+1

20

('3-131)

Cohsidering the values of w known, the value of u at i+2, j+1

can be.computed from Equation (4-11):as u at i, j+1 is equal to zero.



21

1 i1
e 1,3

24
@
Q= &
&
o

o ® —
& q> i,] i+1,] i+2,1
- @ & i ) 4 s
X
i-1,j+1 ji,3j+1 i+1,j+1 | i+2, j+1
| b é ?(1, j+2 i+1,j+2 Ji+2, j+2 4
< :! 4 D & @&
!

Figure 3-2

Symmetrical Finite Difference Network

Equation (2-1) is now written in finite difference form for the point

i, j+1 as follows:

Yipt 541~ Yie1, 441 _ Vitl, g+l T Wie1 941 (-2

A - T z ¢ T B e
X v X

(3-14)
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The right hand side of the above equation is known and the left hand

side may be reduced to one unknown by symmetry, that is

Y, 41 T 7 Y-l g4l (3-15)

In a similar manner values of u at all points of the shell may be

determined.

Similarly, values of v can be determined by using Equation (2-2)

and following the same procedure as for u, resulting in:

At point i+1, j+1

V. . - V. . W, . - W, .
i+1, j+2 i+l _ Tit+l, j+2 itl,§ .. _
oA ) oA = Czoding i1t &g, e (8716)
Y y
At point i+1,]j
Vit g1 " Vied g1 Virn, g1 " Visdge1 (3-17)

2Ay Zy)i+1, i Bi1,

y

When the shéll is subjected to an unsymmetrical load, the horizontal
deformations u, and v are no longer zero on the axis of symmetry.
There are no starting points on the shell that can be used for the elemina-~
tion of unknowns. Sufficient equations of the type (3-13, 16) are available

to obtain a solution if forward or backward differences are used.

3-6 Solution of the Finite Difference Equations

A. Methods of Solution -

For a discussion on the methods of solution the reader is referred

(11)

to Tilden His discussion on the solution of the internal forces is

equally applicable to the deformations.
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B. The Network -

Considering the case of the symmetrically loaded, symmetrical
translational .shell, the carry-over factors and deformations are
symmetrical to both the x and y axes, By taking advantage of this
symmetry, a twenty five point network (Figure 3-3) covering only one
quadrant of the shell has been chosen for the analysis.

Carry-over factors that contribute to final values on the axis of
symmetry are modified, As an example the point 1 (Figure 3-3) re-
ceives contributions of 2a2‘1 W, due to the fact that W and agq have

equivalent values, respectively, in the opposite symmetrical quadrant,

C. Reduction of the Network from Boundary Conditions -
From Equations (2-6a) and (2-7a), it is noted that w is a pre-

scribed value at points 5, 15, 20, 21, 22, 23 and 24:

A at x = + L (2-6a)
z Y
Yy
_ f _
W oE = e at y = + L (2-Ta)
z <
xx

Since the value is prescribed, iteration can in no way effect w at
points 5, 15, 20,21, 22, 23 and 24. Therefore it follows that all carry-

over factors to these points must equal to zero, That is

89 10 7 @14, 15 ~ 219,20 ~ 2P5 T P19 T Py5 T by O (3-18)

=bgg =byg =by, = 2a 0 (3-19)

22 ~ Po3 = Poy 22,21 223,22 7 %24,23 7 25,24
From Equation (3-4), the expression for w, may be written

w. + a w, + 2b

Wy Tag 4 Wy tag , wa a Vg T WE (3-4a)

4
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Figure 3-3

Twenty-Five Point Network
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where &g 4 \315 is a known value-similar in form to the-starting value,
W*4. Denotihg the carried-over-starting value as-A, the values at

points .4, 9, 14, 16. 17, 18 and 1‘9-,beco-me

hy T B35 4V ‘6 = Pis Va1

A9 =819 9 W19 g = Pi7 Vag

- | (3-200 > (3-21)
2 - ' - . :

A4 T 215,14V . Mg T Pig Va3

19 = 220,19 V20 Mg = Pyg ™

The twenty five-point 'net.wor*k has beén reduced to a 's;igt‘_eennpoint

network as showh in Figure (3-4).

2, . a, ., &
o Bl g 232, 3 %3 AN g
: : B 4 @ B x
a "a ‘ -
1,2 2,3 3,4
O r—t b- o cO ag » <#
Q F\u o |l o o |tle
! Wi (e & o
| e |, P87 |4 298
16,¢ ‘ - A — # 8 21O 9>t
VU7V T o | 7
1 %67 7,8 8,9
— © i b~ — i @
0 ﬁ: e |lla Q Q ,
| 21201 |, 2132 |, 214,13
11— g “‘“""“._ S T ¢ 142
11, 12 @12, 13 13, 14
@R~ AN e o5 oIkt
g e rPalire s e s s
2a . a :
217, 16 18, 17 219, 18
16t g1l w2’ [ 18a-2n” Joqgy
AT = X g {3\ .
216,17 %17,18 ... 218,19
9 i
% y | ' Figure 3-4

Sixteen-Point Network



CHAPTER IV
NUMERICAL EXAMPLE

It is required to compﬁte the deformations w, u, and v for the
elliptical paraboloid shell shown in Figure (4-1). The shell is subjected
to a uniform load P, The edges of the shell are supported by shear
diaphragms that are denied all rigidity transverse to their planes. The
Poisson’sb ratio is considered to be zero. The values of the internal
forces Ny’ T\TX, and ﬁx have been computed by the use of tables and

equations presented by Parme(ﬁ). Thus,

Nx = - 4 P, L (Coeff.)
Ny = - 4 p,L (Coeff. )
ny = - 4 p,L (Coeff. )

where the coefficients are as given in Reference 6.

|3

The equation for the elliptical paraboloid shown in Figure (4-1) is:

hx 2 hy 2
z = x© + y
?Z _I_—,T
X y

Substituting the known quantities, the slopes of the shell in the

x and y directions are:

26
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-

Figure 4-1

El].iptical Paraboloid

Frdm Equations (1-6) and {1-7)

. Zo, = o
)x 2L vy 2L

From Equation (3-4)

arzTy C? orn Y

— = ,,_1‘ PR -
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Choosing a 25 pivotal point network

a, =L, Ay=%, t o= 1
then

a = 1+ 2(1+1) = 0.2500

b = 1+ 2(1+1) = 0.2500

It is npted that for the elliptical paraboloid the carry-over factors,
a and b, ar;e constant over the domain of the shell.

In order to determine the starting value w*ij’ and the carry-over
starting value A, the following procedure_"is followed.

Since the elliptical paraboloid is a square, the vertical deforma-
tions-are symmetrical about the diagonal of the shell. Therefore the
vertical deformations are calculated for one octant of the shell only.

Using Equation (3-6) and substituting the known quantities at the
points 1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, and 19. will
result in the f values given in Table (4-1).

Using Equation (3-7) and substituting the known quantities at the
points 5, 10, 15, and 20 will result in the g values given in Table
(4-2).

Using Table (3-1) and substituting the known quantities at the points
1, 2, 3, 4, 7, 8, 9, 13, 14, ’and 19 will result in the 7' values given
in Table {4-3).

Using Table (3-2) and substituting the known quantities at points
1, 2, 3, 4, 7, 8, 9, 13, 14 and 19 will result in the ¢ values given

in Table (4-4).



Table 4-1  NUMERICAL-{ VALUES
Pivotal ‘ ¢
» Point

1 1. 0000 Pol
’ BhH
2 0.9541 Po
PO Eh
3 0 7963 Pol
' “Eh
4 0. 4803 o
o Bh
;6 p L
- 1.0596 —p

7 - 1.0193 B
 8 - 0.8817 Pol
: " Eh
9 0 5%63 Po’
w o
11 12323 Lo
: Eh
iz 12117 Po
S o)
.£3 | p,L
u - 1.1325 g
14 0.9091 Po
: Eh
16 1.4838 Pol
4838 oy
17 1 5191 Po
: ER
18 1. 5340 Pol
- 99V BR
p. L
19 - 1.5410 o

29



TABLE 4-2

NUMERICAL g VALUES

30

Pivotal g
‘Point ,
P, L
p L
10 - 1.8510 —p
’ p,L
15 - 2.1800
20. - 2.8690 —f
TABLE 4-3 NUMERICAL r VALUES
Pivotal- ' T T T T Te T Tr.
Point || - }1 2 3 4 5. 6 7
1 —1’5%QO~ -0 0 0 -1. 0000 |-1.0000 | 0
2 |[-12900 o 1.0.25004 o }.0.9922 [-0.9922 . 0
L T , : |
1.500 © 0.5000 : A ara
3 g vt B s o 0. |-0.9688-0.9688 | 0O
4 ||-1:B000° 1 5 ) 0.7800F 5 |.0 9207 [-0.9297 | ©
- | 1.5000.| .- | 0.2500]|,0.0625 e |
7 220 73 s -|-1. 0156 1.0156 | 0
o 1. 5000 0.5000,0.0625 | _ -
8 -t 0 | -2y |y 0.9922 |-0. 9922 0
1.5000 | 0.7500|,0.0625 |  ara1 l.a ac
9 S22 0 S vl e v 0.9531.-0.9531 | - 0
o 1, 5000 10,5000 0. 1250} . or |1 agon | |
13 -2 0 o3 A ‘.1.0625 1. 0625 0
1. 5000 0.7500| 0. 1250 o | _ |
14 J-=25 0 P |+ep| 10234 |-1.0234 | 0
| 1.5000 | 075007 0. 1875 | _ Nl g
19 =T | 0 | # = 1. 1406 |-1.1406 | 0
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TABLE 4-4 ¢ VALUES
Pivotal{] ¢ ¢ y 6, | ¢ ¢ ¢
Point 1 2 ;3 4 5 , 6 7
. 15000 | 64,000/ 16,000| 16.000| 16,000 16.000
: T Ty Ty Ty Ty | T 0
» L L | L L L
1 15000 | 63,500 16.375| 15.375| 15,875 15,875
2 S e ey nal Beke Bl Rbaves Sl kel e 0
- L L | L7 s L L
'« |1:1.5000 | 62,000! 16,500| 14,500 15.500| 15,500
SO | S saal Rt Rl b Rl ey Sl R Sl e 0
r L L L L L
) 115000 | ,'59.500| 16.375 | 13.375 | 14.875| 14,875
S I | nns vt Rkeever Bl el Il A e R
L IL B T S T
- 1.5000| 65.000| 16.750 | 15.750 | 16..125 | .16, 375
7 B voal i ol R Sl s Sl Rk Banl Rt 0
, 1.5000 | 63.500| 16,875 | 14,875 | 15,750 | 16.000|
8 = L : + 2 :‘= 2 - \2 O Ao 2 I Sl 2 . \O
) | L L L L L
; 1.5000 | ,61.000 16.750 | 13.750 | 15.125| 15.3175
2 SRR S e Bl R Rurl - Rl I Rl I 0
| L L L L L
1,5000{,68.:000 | 18.000 | 16.000 | 16.750 | 17.250 |
13 e e e R B e 0
~ | L L L L° L
1.5000| [65.500 | 17.875 | 14,875 | 16.125 | 16,625 .
14 (e P e Rl et R s R R Rl A 0
1 1.5000 | .73, 000! 19,750 | 16,750 | 17.875 | 18,625
LR | v Rt s> il R Rl I Bl s 0
L L | L ) L B S -

Using Equation (3-12) -and substituting the known quantities at
points 1, 2, 3, 4, 7, 8, 9, 13, 14, and 19 will result in the R values

i

. given in Table (4-5).
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' TABLE 4-5 NUMERICAL R '"VALUES
Pivotal R-
Point '
0
1 - 1, 500}0 ERT
p
. _ . o)
; 2 1.3648 ERT,
) po
3 ~ 1.2200 AT
P..
. ) Q 0’
Y
ke
7 - 5,9900 BAT
' p
8 0.7195 EhL
o
. o A o
9 - .0, 6482 1
, Py
13 - 0.7450 BRT -
g - Py
; : ~ Py
19 + 1.1250 BRT
The starting value w-*ij is computed from Eguation (3-4) by sub-

stituting the known quantities of R at each pivotal point according to
Table {(4-5). The W:;:?ij values for the points 1, 2, 3, 4, 7, 8, 9, 13, 14,

and 19 are givén in Table (4-6).



TABLE 4-6 NUNEHHCAL'w%jVALUES
Pivotal | ‘W*i“
Point J
pOL2
1 - 0,0469 ~ER
pOL2
2 = 0.0427 -~
,pOLz
3 - 0.0381 —pp
pOL2
. poLz
7 : - 0. 1872 —
pOL2
8 - 0.0225 o
, "pOLZ
9 - 0.0203 —gp
2
pO
13 | - 0.0233 g
| ;poLz
14 - 0°0132 TG
p L
19 | +0.0352 —pp

The boundary condition for w aloﬁg the line x = +L, is:.

according to Equation {(2-6a},
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Therefore, at points 5, 10, 15, and 20, w is as given in Table (4-7) .

TABLE 4-7 NUMERICAL w VALUES ALONG
THE EDGE x = + L
Pivotal i W
Point
pOLZ
5 + 3.5000  —gy—
poL2
10 + 3.7020 TR
. -poL2
15 + 4,3600 TERT
2
20 + 5.7380 Po
: “Eh

Using Equations (3-20, 21) and substituting the quantities of w at
points 4, 9, 14, and 19 will result in the starting values {X) given in
Table 4-8.

Note that 19.has 22 due to the fact that it is a corner point and

i9

Va0 T W24

Writing the carry-over Equations of the type> {(3-4) for the points
1, 2, 3, 4, 7, 8, 9, 13, 14 and 19 by uging the known quantit.i.es found
in Tables (4, 6, 8) will result in the matrix equation (4-1).

Solving this matrix equation for w, the values corresponding to

one octant of the shell are obtained:

L2

Pa
W = (Coeff.>mﬁ-=



T o,

ES U R o 0 6 8 o o o W, +6. 0469

C
o
y

=
5°

)

|40, 0427,

=
=

40,2500 -1 +6.2500 @, +0.5000 © .0 B S8 . @ |w

o
o}
.

0 +0,2500 -1 +0.2500 @ 40,5000 O -0 .90 8 |lw +0, 0381

, , o o | | ~ L
‘0 0 +0,2500 . -1 ) 9 +0,5000 6 O 6 fw, 1-0.8622 —3—

0 +0.5000 0 0 -1 +6.5000 6 8 . 0 0 |w 140, 1872

0 8 +0,2500 0 +0.2500 -1 +0.2500+0,2500. 0 0 llw, | 1+0.0225

e o 0 +0.2500 0 +0.2500 -1 - 0 +0,2500 - 0 |lw 1-0.9053
9 0 0 o . 0 +0.50000 O -1 +0.5000 0 flw..| |+0.0233 —S—

~-1,0718

‘a0 0. 0 9 0 +0.2500+0,2500- -1 +0.2500}w,

R o " e @ 0 © 0 40,5000 -1 |iw -2.9042 -2~

- T T »_(4e1) -

GE
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where the coefficients are given in Table 4-9. These values are shown

graphically in Figure 4-1.

TABLE 4-38 NUMERICAL x VALUES
Pivotal 7 A o )
Point
| pOLZ
4 j + 0,8750 . =
pOLZ‘
9 + 0.9255 =T
pOL2
14 + 1,0900 BE
pOL2
19 + 2,8690 <5
TABLE 4-9 COEFFICIENT VALUES OF w IN'ONE
OCTANT OF THE SHELL
% [I,
yIL 0 0.25 0.50° 0.75 1. 00
0 2.7195: 2, 7"664 3.0578 3. 4927 3. 5000
0. 25 2.7289 3.0635 3.6372 3.7020
0. 50 3.8393 4,217 4,.3600
‘0.75 5.0131 5, 7380
1.00 infinite-
. N . |

The general results can be compared with those from the uniformly
loaded cylindrical shell. In each case the membrane solution is not
" adequate to develop the desired boundary conditions of zero displacements

-w along the edges.
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Center 0.25 0.50 0.75 1. 00

Y
s

v = 3. 5000

Infinite

Figure 4-2

, vDefiection_s W in One Quadrant of the Shell
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Having the values for w at all points, the displacements u and
v must now be computed. u is determined acéording to the following
procedure; |
1. At points 1, 6, 11, 16, and 21 u is zerp, and at points 21,
22, 23, and 24, the boundary conditions idicta.te the values of
u (Equation 2-9a).
2. Using Equations of the type (3-14), and substitutihg the known
‘values of w aﬁd f, u is determined for the points 2, 7,
12, and 17.
3. In a similar manner and by the use of Equation (3-13), uis
determined for points 3, 5, 8, 9, 10, 13, 14, 15, 18, 19,
and 20,
Table (4-10) gives the u values over the entire domain of the

first quadrant.

TABLE 4-10 COEFFICIENT VALUES'OF u IN ONE

QUADRANT OF THE SHELL
=L

y/L ~ o . 0.25 ~0.50 0,75 1,00
0 0 0. 2500 -0.5193 | -0,8298 | -0.9298
0.25 0 -0.2649 -0.5468 | -0.9329 | -1.0714
0.50 0 | -0.3081 | -0.7036 | -1.1630 | -1.3535
10,75 I o 20,8710 | -0.8502 | -1.4820 | -2.1908
.00 || 0. | -0.4628 | -1.0905 | -2.1518 | infinite
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Since u and v correspond to each other by symmetry, a table
for v is obtained by transposing Table (4-10) about the diagonal of the
shell.

Figure (4-2) shows the variation of the values for u over the

domain of the first quadrant.
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~u=-0,9208

. 00

Center 2
0. 25 0,50 0.75 lfOO »
X

i

.25 -

.50

-1 ~~ u#-2.1908

1. 00 ! .

‘Edge \ Corner
¥ S Infinite
X
- L

Figure 4-3

Deflections u in One Qua?dr‘ant of the Shell



CHAPTER V
SUMMARY AND CONCLUSIONS

5-1 Summary

A systematic finite difference procedure for the solution of mem-
brane deformations of translational shells is presented. The solution is
accomplished through the following steps.

1. 'The finite difference equation for the vertical deformation w

of the general shell of translation is formulated in terms of

the value R.

2. The term R is simplified through the following procedure:

a. The algebraic terms k, f, and g of R are expanded by
power series, and all fourth order powers of the slopes
are neglected in comparison with unity.

b. The final value of R is expressed in terms of the mem-
brane forces Ny only. |

c. The difference scheme of R 1is obtained for its evaluation
at any point on the shell.

3. The finite difference equations for the hor‘izont.al deformations

u and v in terms of the vertical deformations w are

obtained.

4, A basic difference network of twenty-five pivotal points for

one quadrant is chosen.

5. The twenty-five points are reduced to sixteen utilizing boundary

41
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conditions and carry-over methods. The numerical solution
is performed by matrix inversion.
6. The membrane deformations w, u, and v are found for an

elliptical paraboloid of specific dimensions.

5-2 Conclusions

The systematic finite difference procedure outlined in this report
makes the solution of the membrane deformations of translational shells
a simple and straightforward process.

The simplification of the term R eiiminates polynomial or higher
order difference approximations in the numerical differtiations of the
algebraic terms k, f, and g. Rather, the differentiation of these terms
is carried out analytically. Moreover, R is evaluated through the
solution of the Ny membraﬁe forces only.

The application of the method presented in this report to a specific
elliptical paraboloid resulted in a straight forward solution without any

complex mathmatical operations.
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