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CHAPTER I 

INTRODUC+ION 

The rigid frame structure is becoming more popular than 

the column-truss combination structure. The reason for this 

general trend of development is that they provide a greater 

free space under certain specified conditions and result in 

a more pleasing appearance and over-all economy. In some 

parts of the world where str~ctural steel is either·very 

expensive or not readily obtainable 1 and the locality offers 

plenty of aggregates and cheap labor, reinforced concrete 

rigid gable frame structures are more frequently adopted 

than that of steel, with advantages which result in greater 

economy. Realizing the practical importance of reinforced 

concrete gable frames in structural engineering, two differ­

ent methods for the analysis of a two-span pinned base gable 

frame and brief designs of·the same frame are presented by 

the writer. 

The elastic method of analysis, using the· moment coef­

ficents prepared by Gillespie (1) and Hale (2), is described 

in Chapter II. The plastic method of analysis, based o~ the 

plastic hinge theory for reinfor:eed concrete {raipes devel­

oped by Baker (J), is briefly introduced in Chapter III and 

with its application to the same structure shq~n in Chapter 

1 
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IV. In Chapter V, brief designs of critical sections are 

presented and finally, the results of design are summarized 

and compared in Chapter VI. 

In the analysis by the elastic or conventional method, 

the analysis is greatly facilitated by the use of moment 

coefficients for continuous gable frames. Since the method 

is based on Hooke's Law1 a large portion of the structure 

is understressed, resulting in uneconomical use of material. 

This is particularly true for a statically indeterminate 

structure. 

The analysis by plastic hinge theory of reinforced 

concrete is based upon the plastic behavior of both con­

crete and reinforcing steel bars after yield stresses of 

both materials are reached. The design is dependent on the 

ultimate load a structure will support. Besides those 

three necessary conditions for the plastic analysis of steel 

structure, i.e., (1) equilibrium condition, (2) collapse 

condition and (3) yield dondition, the rotation capacity of 

the concrete should be investigated in detail in order to 

ensure the simultaneous formation of all the necessary 

hinges as required by a collapse mechanism and prevent any 

undesirable sudden failure of the structure. 

Since the method of analysis by plastic theory recog­

nizes the redistribution of stresses during the period of 

occurrence of first yield in a certain highly stressed 

portion of a structure and the formation of n + 1 plastic 

hinges for an n times statically indeterminate structure 1 
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more economical use of material can be achieved than by 

the conventional method of analysis. Also, for a structure 

with a large number of redundants, the approach by plastic 

theory seems to offer a simpler solution. 



CHAPTER II 

ELASTIC ANALYSIS 

2-1. General 

A two span pin based reinforced concrete gable frame 

is analyzed by the method of moment distribution and the 

adoption of "The Moment Coefficient Tables. 11 The frame 

has three different values of the ratio~ of the rise in 

gable to the span length. Spacing of frames is 20 ft. on 

centers and each span is 60 ft., the column height is 

20 ft. Sections are considered constant through the anal­

ysis for all members. A set of three different gravity 

loads, including dead weight of members, is assumed. The 

wind load is 30 pounds per vertical square foot. A gen­

eral sketch of the frame and its loading is shown below. 

WD+L 
k (W1 = 1 ;fto k w2 =21ft. k w3 = 31ft~) 

. l ' I l t { l f l f I I i ~ 1 f l 1 +> 

~~ ~ 4 2 5 r= 0.1. d 1 3 0.2, 
0 and II IC\l 

~ 0 0 0 0.3 

I L = 60 1 I 
L"" 60' 'I 

Figure 2-1. Two Span Gable Frame 

4 
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2-2. Analysis by Moment Coefficient Tables 

In t}lis·elastic analysis, the moment.distribution 

method, with the aid of the moment coefficient tables, is 

followed, Two cases of loading are considered in the 

analysis, and oy superposing the results of those two 

cases, the moments for the third case of loading are ob­

tained. Those cases of loading are shown in the following: 

WD+L = 1, 2 and 3k;ft. 

I 11 l t l l llJJJ_Uli .LUJ_U I f f l I l I f i 
..,.;a.60 

i 
s1 4 2 5 \0 ~ :O.l 

1 3 - - ~L:61 0 \0 
(\I (\I 

II h 1 
0 0 0 .s::I a=r:=3 

1---- 60·1 · 60' s1 = 30.601 

Caf?e (1) Loading 132 = 0.20 

• 
S2 = 32.31' 

of,) 
133 = 0.30 

~~, -
\0 5 \D. 3 = 34.98 . . 3 0 .. - . \0 

II . 0 (\I 
(\I 

.;,: - 0 60 1 
0 

·• I- I 

• 
.I,) 

-~ 

J4U'\ 
..::j-

11 2 -\0 

3 -\0 .;- 0 (\I 
(\I - d 

~ 60' 0 
--1. 

Case (3) Loading 

Figure 2 ... 2. Cases of Loading 



(A) Analysis of Case (1) Loading 

1. For parameters ex = 1;3 ~ = ~l = 0 .10 

k \.\ = l ;ft. 

i = 1, 2, and 3 

w 12 = 3600 k-ft. 
l 

(b) End Moment Coefficients: 

M21 +Q21 +.080777 

6 

= ( W 1L2 ) = ( 3600) 

M23 -Q2l -.080777 

M32 +Ql2 +.060563 

(c) End Moments for w1 = l k/ft. 

M12 = -218. 2ok-ftM21 = +290. 7if-ftr123 = -290. 7cf--ft 

M32 = +21s.2ok-ft 

(d) End Moments for w2 = 2 17ft. and w3 = 3 k/ft. 

k For w2 = 2 ;ft. 

M12 = -436.4ok-ftr121 = +581.5~-ft;vr23 = -58L5:f-ft 

M32 = +436.4cf-ft 

For w3 = 3 k/ft. 

M12 = -654.66k-ftM21 = +872. 37k-.ftM23 = ... s72.37k-ft 

M32 = +654. 60k-ft • 



2. For para.meters ex l = ;3 ~ = B2 = 0. 20 and 

End moments for~== 13 2 = 0.20 and~== 13 3 = 0.30 

are found by the same method shown previously, 

and the results are tabulated in Table 2-1. 

7 

(B) Analysis of Case (2) Loading 

1. Analysis for the case ex = 1;; ~ = ~l = 0.10 

Consider first that all joints are fixed against 

translation, and end moments due to rotation only 

are computed by the method of moment distribution. 

In this analysis, the gable members are consider-

ed as single structural elements. 

(a) Stiffness Factors 

K'10 = K'20 = K' 30 = 3EI = 0.15EI h 

Kl2 K21 K23 K32 
7EI 

:; = = = 28- = 0 .114EI 
l 

(b) Distribution Factors 

DlO = n,o = 0.568 

Dl2 ::; D32 = 0.432 

D21 = D23 = 0.301 

D20 = 0.39s 

(c) Carry-Over Factors 

010 = 020 = c,o = 0 

012 = 021 = 023 = c,2 = -0.143. 



TABLE 2-1 

END MOMENTS FOR CASE (1) LOADING 

13i_-= 0.10 :f32 = 0.20 - f33 = o • .:;o End 
Moments w1 = 111rt. 

. k k k k k ··k k w3 = :f/rt. w2 ='21ft. w3 =31ft. W1 = 1/f~. w2 =21ft. w3 = 31ft. w1 = 11ft. ~=2Yrt. • 

~2 · -218.20 -436.40 -654.60 -215.16 -430.32 -645.48 -205.71 -411.42 -617.13 

M21 .+290.79 +581.58 +872.37 +243.60 +487 .. 20 +730.80 +205.80 +411.6-0 +617.40 

M23 -290.79 -581.58 -872.37 -243.60 -487.20 -7,30.80 -205.80 -411.60 -617.40 

! 

M32 +218.20 +436 .4o I +654.60 +215.1,6 +430.32 +645.48 +205.71 +411.42 +617.13 
! 

0) 



C ¢1) Fixed End Moments 

Fl".112 
2wf2 2.25 ],{-ft. = - 48 = -

FM21 
wf2 

0.45 k-ft. ..., - 48- ::;: -

EM 10 
wh2 

+30.00 k.,.ft. 
::;: + 8 = 

Ce) Distribution Table 

tl) l2) 
1 (') , i;) ?l ?O 23 

... D's - ._568 - .• 432 - .301 - .398 - .301 
C's - .11r3 - .143 - .1zr3 

FM•s +30.00 - 2.25 ... .45 
-15.76 ... 11.99 + ol4 + .17 + .14 

- .02' +1.71 
+ .01 + .01 - .52 - .68 - -51~ 

+ .07' ... 0 0 
, 

- .o4 .. .03 0 0 0 

RM1 $ -15.79 ... 11.96 +1.33 -0.51 -0.37 

M's +14.21 -14.21 +o.88 -0.51 

(f) Thrust Induction Factors 

(g) Fixed End Thrusts 

= _ 2~f = 

wf 
= - -zr = 

k -2.70 

k -0.90 

(h) Thrusts Due to Rotations 

Rl'112 Rl'121 O 

-0.37 

0 RH12 

RH21 

RH23 

RH32 

RM21 RM12 0 0 
= 

O O Rl'123 RM32 

0 0 

9 

t3) 
32 30 

- .432 ':" o56~ 
--=-.143 

, ... • 02 
,+ .01 + .01 
''+ ~07 

':'"· .03 - .04 
+0.03 -0.03 

+0.03 -0.03 



RH12 

RH21 

RH23 

RH3g 

~11.96 + 1.33 0 0 

+ 1.33 -11.96 0 0 
= 

0 0 -0.37 +0.03 

·o 0 +0.03 -0.37 

(i) Total Horizontal Thrusts 

Hl2 RH12 

H21 RH21 
= + 

H23 RH23 

H,2 RH32 
... 

(j) End Shears 

V10 MlO 

V20 
l = -h 

v30 

(k) ~alancing Forces 

Joint ;i.. 

Joint 2. 

FR12 

FH21 

F:S:23 

FH32 

·Wb.2 
+7 

M20 

M30 

;= 

10 

+0.125 -1.66 

-0.125 +1.66 
= 

+0.125 -0.05 

-0.125 +0.05 

-4.36 
-··· 

+0.76 

-0.05 

+0.05 

... 6.71 

+0.03 

0 

k = -11.07 

H2l + V20 + H23 = +0.76 +0,03 - 0.05 

= +o.74k 

Joint 3, 

H32 + v30 = +0.05 + 0 = +0,05k 



(1) 

M(P) 
12 

r,{P) 
2l. 

M(P) 
20 

M(P) 
23 

M(P) 
32 

Thus 

pl = + 11.07k 

P · = - 0.05k 
3 

11 

P1L = +664.20k-ft. P2L = -44.40k-ft. 

P3L = - 3.ook-ft. 

End Moments Due to Balancing Forces 

. (P) Q(l) Q(2) Q(3) P1L 
M 12 12 12 12 
M(P) 

21 
Q(l) 

21 
Q(2) 

21 
Q(3) 

21 

M(P) = Q(l) Q(2) Q(3) P'.)L 20 - 20 - 20 - 20 c.. 

M(P) 
23 

Q(l) 
23 

Q(2) 
23 

Q(3) 
23 

M(P) 
32 

Q(l) 
32 

Q.(2) 
32 

QC 3) 
32 P3L 

.116819 .079858 .079063 +664.20 +73.81 

.045012 .086809 .092439 +25.76 

= -.137451 -.173618 -.137451 - 44.40 = -83.17 

.. 092439 .086809 .045012 :+57 .41 
I 
I 

.079063 .079858 .116819 - 3.00 r-48.62 

(m) Final End Moments 

M12 +59.60 

M21 +26.64 

M20 = -~3.68 

. M23 +57 .04 

M32 +48.65 
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2. Analysis For Cases a. = 1;; f3 == 13 2 = 0.20 and 

f3 = 133 = o.~o 

Analysis of these two cases was carried out 

b1 the same method and the results obtained are 

tabulated in the following. 

TABLE 2-2 

END MOMENTS FOR CASE (2) LOADING 

Final f31 = 0.10 f32 = 0.20 133 = 0.30 
Moments 

Ml2 +59.60 + 98.03 +140.46 

M21 +26.64 + 24.54 + 21.90 

M20 -83.68 -109,17 -133.88 

M23 +57,04 + 84.63 +111.98 

M32 +48.65 + 56.74 - 61.43 
,.....,.......~ 

(C) Final End Moments for Case (3) Loading 

End moments for case ( 3) loading are obtained by 

superposing end moments for both case (1) and case 

(2) loading, The final moments obtained from this 

superposition are tabulated in Table 2-3. The super­

position is carried out only for the case of 



combining W D+L = 1 k;;rt. with Ww = 
k 0.6/"ft. 

TABLE 2 .... 3 

END MOMENTS FOR CASE (3) LOADING 

Final Momente ~l = 0.10 ~2 = o. 20 

Ml2 - 118.95 87.80 

M2l + 238.07 + 201.90 

M20 62.76 81.80 

M23 - 175.31 - 119.10 

:r1,2 + 200.14 + 204.00 

13 

~3 = 0.30 

48.94 

+ 170.78 

- 100.41 

70.37 

+ 200.36 

2-3. Tables of Moments, Sb.earing, and Normal li'orces 

From those end moments obtained in the foregoing 

analyses, shearing forces anq. normal forces for all mem­

bers with different load intensity and parameter~ are 

found by the conditions for static equilibrium.. Finally, 

these end moments, shearing forces,and normal forces 

acting at various critical sections are tabulated in order 

to be used for brief designs of sections and their steel 

requirements in Chapter V. The tabulation follows in 

Tables 2-4, 2-5, and 2-6. 



TABLE 2-4 

ELASTIC AN~YSIS. : END MOMENTS, SHEARING FORCES, AND NORMAL FORCES ( a= 1/3 J3 = ~ = 0 .10) 

· . End. Moments Shearin,r F.orees - Normal Forces 

MembeI Mwl . Mw2 M~/ . M' \).75 Vw , Vw2 . V· Vw .·_ 0.75 . . N . Nw N· Nw. 
3 . -WW [Mw1+Mwwl 1· . W3 . w, [vw1+vwwJ . w1 . 2' . w3 . w 

1-0 .+21e1.20 +43o.40 +t:64.oO -.59.oO +111:1.95 -:10.91 -n.1:12 ...-32.73 -::-3_.02 . ..;10.45 ;..:;,cs. 79 - 57.50 - eo.37 +1.62 
1,- 4· -218.20 -436~40 -654.60 +59.60 ..;.U8.95 +26.06. +52.12 +28.1.8 ..;.2.18 +17,91 -16.34 _ ":" 32~68 - 49.02 -2.64 

4 - 1 -130.o4 I -260.09 . .;.390.13 +17.80 -- 84.i8 ..,. 3.34 - 6.68 -10.0:? -2~89 - 4..-67 -10,46 - 20~92 - 31.38 . ..;.6.16 

·4-: 2 +l.30.o4 +260.09. +390.13 . -l?_.80 · · + 84~18 - +0.94 +18.80 + 2.82 . ~-29 +0.49 -10.94 -21~88 "". 32.82 · -6.80 
2·.,. 4 · +290.79 . +581.58 +872.37 +26.64 +238.07 · -28.46 .. 56.92 ·..;85.35 +0.?9 ;..21.13. .. 16.82 ... 33.64 - 50.46 · ;..6.80 

2-0 0 o· 0 -.83.62 ...- 62.76 0 ·O 0 +4.19 . + 3.14 -62.42 -124.84 -187.26 +0.14 

2-5 -:290.79 -581.58 .:372.37 +57..-o4 ,..175.31. +28.46 +56.92 +85.35 ;..2.20 +19.70 · .;.16.82 - 33.64 ..,. 50.t,-6 . ..:2.03 
.. 

5 - ::i -130.04 -260.09 .... 390.13- +10 •. 4o. -: 89.73 - 0~94 -18.80 - 2.82 -2.?0 ;_ 2.36 -10.94 - 21.88 - 32.82 -2.03 

5 - 3 +130.o4 .. +:?6o.09 +390.13 -10.40 + 89.73 + 3.34 + 6.68 +10.0? -1.24 + 1.58 :..10.46 - :?0.92 - 31.38 ..,.2.73 

.3-5 +218.20 +436.40 +654.60 ·+48.6-? ·. +200.14 -26.06 .:.52.12 "'.'78.l.8 -1.24 -20.48 . -16.34 - 32.68 - 49.02 -2.73 
3 -_o -218.20 -436.46 -654.60 . -48.65 . -206.14 +10.91 +21.8? +3?.73 +2.43 +10 •. 01 -28.79 - 57.58 - 86..-37 ,..:1.76 

0-1 0 0 0 0 0 -10.91 -21.82 -32-73 +8.98 - 1~45 -?8_.79 - 57._58 · - 86.37 +1.62 

0-2 0 0 0 0 0 0 0 0 +4.19 .. + 3.14 -62.42 -124.84 -187.26 +0.14 

O - 3 0 0 0 0 0 +10.91 +21.82 +3:,.73 +2.43 +10.01 -28.79 "".57.58 .. 8Q.37 .;.1.76 

0.75 ·. 
· [NWi+NwwJ 

-20-.43 
-14.24 

.. -12.4? 
-13..-3i_ 
-17,72· 

· -46.71 
-14.14 

· -9.73 
- 9.89 
-14.30 
-22.91· 
-20.38 
-46.71 
-22.91 

}-I 
.p-



TABLE 2-5 

ELASTIC ANALYSIS : END MOMENTS~ SHEARING FORCES, AND NORMAL FORCES (ex= 7'3 !3 = [32 = 0.20) 

End Moments Shearing Forces Normal Forces 

Member Mw Mw M Mw 
0.75 

Vw Vw Vw V 0.75 
Nw I Nw Nw Nw 

l 2 W3 w [Mw +M,~ ] 1 2 3 Ww [Vwl +VwJ ! 1 2 3 w 1 •w I 

l - 0 · +215,16 +430,3? +645.48 - 98.03 + 87.80 -10.76 -?l.52 -32,27 - 1.10 - 8.90 -29.53 - 59.06 - 88.59 +2.76 

l - 4 -215,16 -430,32 -645.48 + 98.03 - 87.80 +23,40 +46.80 +70,20 - 2.97 +15,32 -21.00 -42.00 - 63.00 +0,01 

4 - 1 - 91.60 -183.20 -274,80 + 41.17 "'37.80 - 4.44 - 8.88 -13.32 - 5.65 - 7.57 - 9.84 - 19.68 - 29.52 -6.67 I 

4 - 2 + 91.60 +183.20 +274.80 - 41.17 + 37.80 + 3.54 + 7 .08 +10.62 + 0.53 + 3.05 -10.14 - 20.28 - 30.42 -8.73 
2 _,4 +243.60 +487.20 +730,80 + 24.54 +201.90 -24,30 -48.60 -72,90 + 0.53 -17.83 -21.33 - 42.66 - 63.99 -8.73 

2 - 0 ·o 0 0 -109.17 - 81.80 0 0 0 + 5.46 + 4.10 .,.60.94 -121.88 -182.82 -0.40 

2 - 5 -243.60 -487.20 -730.80 + 84.63 -119,10 +24,30 +48.60 +72.90 - 3.25 +15,79 -21.33 - 42.66 - 63.99 -1.61 

5 - 2 - 91.60 -183.20 -274.80 + 20.25 - 53.60 - 3,54 - 7.08 -10.62 - 3.25 -50,93 -10.14 - 20.28 - 30.42 -1.61 

5 ... 3 + 91.60 +183.20 +274.80 - 20,25 + 53,60 + 4.44 + 8.88 +13,3? - 1.13 + 2.48 - 9.84 - 19,68 - 29,52 -3,25 

3 - 5 +215,16 +430,3? +645.48 + 56.74 +?o4.oo -23,40 -46.80 -70,?0 - l.13 -18.40 -21.00 - 42.00 - 63.00 -3.25 

3 - O -215.16 -430,32 -645.48 - 56.74 -204.oo +10.76 +21.52 +32,27 + ?.84 +10,20 -29,53 - 59.06 - 88.59 -2.36 

0 - l 0 0 0 0 0 -10.76 -21,52 -32,27 +10.90 + 0.10 -29,53 - 59.o6 - 88.59 +2.76 

0 - 2 0 0 0 0 0 0 0 0 + 5.46 + 4.10 -60,94 -121.88 -182.82 -0.40 

O - 3 0 0 0 0 0 +10.76 +21.52 +32.27 + 2.84 +10.20 -29,53 - 59.06 - 88.59 -2.36 

/ 

0.75 
!}lw +Nw J · 

l \Ii 

-20.08. 

-15,74 

-12.38 
-14.34 

-22.55 
-46.0l 

-17,21 

- 8.81 
- 9.82 
-18a9 

· -23,92 

-20.07 
-46.0l 

-23,92 

. 

!-' 
\J1 



TABLE 2-6 

ELASTIC ANALYSIS: END MOMENTS, SHEARING FORCES, AND NORMAL FORCES (ex.= 73 l3 = ~ = 0.30) 

End Moments Shearing· Forces Normal Forces 
Member Mw Mw Mw I Mw l 0.7~ ~ Vw v· Vw Vww 0.75 Nw Nw Nw N 

1 2 3. ! w hw1+ w 1 w2 3 [VW:i. +VwwJ 1 2 3 . WW 

1 - 0 +205.71 +411.4? +617.13 -140.46 . + 48.94 -10.:?9 -20.57 -30.86 + 1.03 I - 6.95 -30.00 - 60.00 - 90.00 + 4.33 
1 - 4 -411.42 -617.13 +140.46 - 48.94 +20.42 +4o.84 +61.:,6 

. . . I 
+lf'.93 -?4.?4 - 48.48 -205.71 - 3.18 I - 72.72 + 3.11 

4 - I - 59.07 -118.14 -177-21 + 68.10 + 6".77 - 5.29 -10~58 -15.87 - 3.73 ,'."'.10.52 - 8.8:? - 17.64 - 26.46 - 6.14 
4 - 2 + 59.07 +118.14 +177.?l .. 68.10 - 6.77 + 5.:,9 +10.58 +15.87 +' 1.31 , + 4.95 - 8.82 - 17.64 - 26.46 -10.60 .. 

2 - 4 +205.80 +411.60 +617.4o + 21.90 +170.78 -?0.42 -40.84 -61.?6 + 1.31 -14.33 -24.?4 - 48.48 - 72.72 -10.60 
2 - 0 0 ·o 0 -133.88 -ioo.41 0 0 .·· 0 + 6.70 + 5.03 -60.00 -l?0.00 . -180.00 - 1.44 • 

2 - 5 -205.80 -411.60 -617.1,0 +111.'.)8 - 70.37 +?0.4? +40~84 +6i.?6 - 4~06 +l?.?7 -?4.24 - 48.48 - 72.72 - 1.44 

5 - 2 - 59.07 -118.14 ,..177.n + 29.98 - 21.82 - 5.:,9 -10.58 -15.87 - 4.06 - 7.01 - 8.82 - 48.48 - 72.72 - 1.14 

5 - 3 + 59.07 +1i8.14 +177.21 - :,9.98 + ?1.8::i + 5.:,9 +10.58 +15.87 - 0;90 + 3.:,9 - 8.82 - 17.64 - ?6.46 - 4.12 

3 - 5 +205.71 +411.4? . +617~13 + 61.43 +200.36 -20.42 -40.84 -61.26 - 0.90 -15.99 -24.24 - 48.48 - 7:,.72 - 4.12 
3 - O -?05.71 -4],1~4? -617.13 - 61.43 -?00,36 +10.29 +20.57 +30.86 + 3.07 . +10.02 -30.01) - 6o.oo "- 90.00 -·2.89 

0 - 1 0 0 0 0 0 -],0,?9 -?0.57 -30.86 +13.03 · + 2.06 ... 30.00 - 60.00 - 90.00 + 4.33 
0 - 2 0 0 0 0 0 0 0 0 + 6.70 + 5.02 -60.00 -120.00 +180.00 - 1.44 
O .. 3 0 0 0 0 0 +10.?9 +?0 • .$7 +30.86 + 3.07 +10;0? -30.00 - 60~00 . - 90.00 - 2.89 

. u.75 
[Nw1+NwwJ 

-19.25 · 
-15.85 
-11.22 

-i4.57 
-26.13 
-46.08 

· -J.9.26 

- 7.47 
- 9.71 
-21.27 

· -24.67 

-19.25 
-46.oS 
-24.67 

1--' 
(j) 



CHAPTER III 

THE PLASTIO HINGE THEORY OF REINFORCED 

CONCRETE FRAMES 

3-l. General 

The development of design methods based on inelastic 

behavior of redundant steel structures preceded that of 

similar methods for concrete structures. After World War 

II, engineer$ throughout the world concentrated much ef­

fort in investigating tb.e behavior of steel frameworks at 

ultimate load and in the development of practical plastic 

design methods. Thus, a number of alternative methods of 

plastic design for steel frames have been developed. The 

approaches of these different methods differ, but they all 

recognize th~ following conditions as the requirements for 

collapse of an all~steel structu~e. 

(A) Equilibrium Condition 

Bending moment distribution must be in 

equilibrium with external loads. 

(B) Collapse Mechanism Condition 

A sufficient number. of plastic hinges must 

exist to transform either the whole or part of 

the structure into a mechanism~ 

17 
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(C) The Yield Condition 

Full plastic moment must nowhere be ex­

ceeded. A design is considered valid when all 

the three numerated conditions are satisfied at 

the final collapse stage. 

In the case of designing reinforced con­

crete structures~ not only the satisfaction of 

these conditions is necessary, but also two 

other important considerations related to a 

successful design should be investigated 

carefully. 

(~) Rotation Capacity 

In structural steel, little attention is paid to how 

much any one hinge section is strained, before all the 

other hinges are formed. Such considerations are usually 

not necese;ary for structural steel because of its high 

ductility. The ultimate strain for concrete in fle:xural 

compression is limited from 0.3% to 0.5%. Therefore, in 

limit design of structural concrete, rotation capacity of 

sections must be considered in greater detail than for 

structural steel. 

Furthermore, to avoid excessive flexural cracking, it 

is desirable to limit hinge rotations for structural con­

crete even w}J.en considerable rotation capacity is present 

after extensive cracking. 
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(B) Distribution of Moment Resistance 

By varyin~ the amount and location of reinforcement, 

the positive and negative moment resistance of structural 

concrete members can easily be made different, and the 

moment capacity can be varied along the length of a pris-

matic member. It is therefore conveniently possible to 

reinforce a concrete structure in such a manner that all 

plastic hinges necessary to form a mechanism will then 

form at practically the same load, and thereby the hinge 

rotations required are small. Similarly, it is also pos­

sible to reinforce the structure in such a manner that the 

yield condition may be satisfied without causing yielding 

between the chosen plastic hinges. 

An introductory explanation of "The Theory of Plastic 

Hinges for Reinforced Concrete Frames." developed by 

Professor A. L. L. B~ker, will be shown in the following 

section, 

3-2. The Plastic Hinge Theory 

(A) Basic Concept 

•'G 

The classical elastic equations, deyeloped by Muller-

Breslau and others, may be applied to the n Idealized 

Frame II in order to check that the hinge positions chosen 

are at sections where plastic deformation will occur under 

ultimate load, other sections being reinforced to remain 

elastic, and to ensure that the rotation of the hinges is 

not excessive. 



The principal aim, when designing a frame by the 

theory of plastic hinges, is to obtain uniformity of the 

cross'.""'section of the various members, and an economical 

distribution of bending moments under the plastic condi­

tions, which occur with over-loading prior to failure. 

(B) Basic Assumptions 

1. When a frame which is n times statically inde­

terminate, is increasingly loaded throughout, n 

plastic hinges form before failure occurs, and 

the structure becomes statically determinate. 

2. 1rhe load applied when the nth plastic hinge 

forms is the ultimate load. 

3. The reinforcement in the members of the frame 

between the plastic hinges remains elastic and 

does not yield when ultimate load is applied. 

4. The plastic hinges are concentrated at points. 

20 

5. Throughout the frame, under increasing load, the 

relation between load and moment of resistance 

follows a straight line portion OA, except at the 

hinge points where, after the plastic moment of 

resistance has developed~ a horizontal line por­

tion such as AB in Figure 3-1 is followedo 



B 

Load 

Load governed by limtt of 
hinge rotation. 

Figure 3-1. Idealized Bending 
Moment-Load Characteristics 
of a Plastic Hinge 

(C) General Equations for Statically-Indeterminate 
Frames 

21 

In deriving the general equations for a frame n times 

statically indeterminate, n frictionless hinges are 

assumed to be inserted in the frame and n unknown equal 

and opposite bending moments x1 Xn are assumed to act 

on the membe~s on either side of the hinges. For the 

elastic condition~ the rotation at each hinge due to ex­

ternal load and all unknown moments acting is zero. Hence, 

for each of the hinges an equation is derived giving the 

following n equations from which then unknowns may be 

found. 

where 

k=n 

6io + I xk6ik = 0 
k=l 

i = ls 2 ""° n (3-1) 



oiO = Rotation of hinge i due to external load only 

acting. 
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oik = Rotation of hinge i due to unit bending moment 

acting at hinge kin direction~ in a frame 

that has become statically determinate by the 

assumed insertion of sufficient number of 

hinges, 

Xi = Unknown moment of resistance acting at hinge i 

when the section is elastic. 

In a frame n times statically indeterminate, which 

has bee.n loaded until n plastic hinges have formed, the 

rotations e1 , e2 :• •• en, are the sum of the rotations due 

to the external loads and the plastic moments acting at each 

hinge so that expressions of Equation ( 3-1) are then modified to 

k=n 

6io + I Xk 6·k = 
k=l 1 

Also, it can be shown that 

where, 

i = 1, 2, ••• n. (3-2) 

(3-3) 

Xi = Plastic moment of resistance for hinge 

section :i,. 

M0 = Free bending moments due to external load 

only acting on the frame being made stat­

ically determinate by the insertion of 

hinges. 
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Mi or Mk= Bending moments due to unit moment acting 

at hinge i or kin direction Xi or Xk on 

the frame made statically determinate. 

e1 = Resultant opening or rotation of hinge i 

in the direction opposite to Xi due to 

external load and all plastic hinge 

moments acting. 

(D) Available Hinge Rotation 

In the limit analysis of reinforced concrete frame, 

the amount of hinge rotation should be studied carefully 

and limited below a permissible value, so that to prevent 

the undesirable sudden failure of the structure, which 

might otherwise occur. The plastic deformation adjacent to 

any hinge section (Figures 3-2 and 3-3) equals 

ds 

for members in which tension develops, or 

L' J P sd 
- ds 

0 d 

for members such as columns in which no tension occurs. 



d 

Actual distribution 

Idealized distribution 

L' p 
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(a) Bending Stress (b) Plastic Strain 

Typical Beam Support 

Actual distribution 

Idealized distribution 

L' p 

(c) Bending Stress (d) Plastic Strain 
Ty;pical Column 

Figure 3-2. Actual and Idealized Distributions 
of Plastic Strain 

e0 (1-n1 )F 

nl 

/ 

L_· -

(a) Elastic (b) Flastic .(c} = (a) + (b) (d) 
Strain Strain 

. Beams Columns 
Figure 3-3. Distribution of Strains at Hinge Section 

at Ultimate Load 
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The distribution of plasticity along a member is gen­

erally determined by: 

1. · The slope of the bending·moment diagram. 

2. The stress-strain curves of the concrete 

and steel. 

3~ The local behavior of the member in resist-

ing bend.ing. 

It has been proved by tests that plasticity can 

spread over a length at least equal to the depth of the 

member. (3). Therefore, it is safe to assume an idealized 

uniform distribution of plastic strain, as shown in 

Figures 3-2 (b) and (d), over a length Lp equal to the 

depth of the member. The available plastic deformation 

then, before failure occurs, is (see Figures 3-2 and 3-3) 

1~ 
0 

for members in which tension develops. It is safe 

and generally convenient, when checking values of rota­

tions, to assume n1p = nh. And 

for members in which tension does not occur. 

Safe limiting value of Sd = 0.01 for suitably bounded 

prismatic sections is given by Baker (3) based on test 

results. 



26 

(E) Safe Limiting Values of EI 

The derivation of EI values from the basic stress­

strain characteristics of the steel and concrete used has 

been discussed in various papers. The following results 

are reproduced from Baker's book (3). 

TABLE 3-1 

MOMENT OF INERTIA FOR CRACKED AND UNCRACKED SECTIONS 

Generally E'c (elastic)= 500 Cu E'c (plastic)= 500 C' 

Condition Section E'c 

Elastic : Cracked 
bd3 

Rectangular 500 cu 2 (n:[ - Ynf ) * * 

Plastic : Cracked Ii 

I' = M1n1 d 
C' 

0.120 bd3 

0.120 bd3 

Elastic : Uncracked 
bd3 

500 cu 12 + pbd3 <m-1) <1-~ )2** 0~135 b&* 

*Assuming n1 = 0.5 d = 0.9h~ p :oOl 

**Adopting British notations for ultimate strength design of concrete 
sections. 

(F) Summary of Design Procedure 

The procedure for designing a frame by The Plastic 

Hinge Theory may be summarized as follows: 

1. Assume a general arrangement of the frame and 

concrete sections appropriate for the loads. 



2. Assume sufficient hinges in the frame to make a 

statically determinate system. Also assume re­

sisting moments acting at the hinges giving an 

economic distribution of bending moments. When 

necessary, assume different sets of hinges for 

different cases of load. 
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3. Check the positions of the hinges and value of 

rotation at ultimate load by applying general 

Equation (3-2), making adjustments until a satis­

factory solution is obtained for each case of 

idealized frame. 

4. Design a practical frame at least as strong in 

all parts as each case of idealized frame. 

3-3. Design Criteria of Plastic Hinge Theory 

A design can be considered valid, if for a set of 

assumed positions, plastic moments and rotations of hinges, 

the followi~g conditions are satisfied: 

1. The sum of the rotations at each hinge due to 

loads and all plastic-hinge moments, i.e., 

k=n 
6 ~-
iO + ~ 1Xicoik' i = 1, 2 ••• n 

is negative following the usual sign convention. 

2. The resultant bending moments for ultimate load 

at all sections between the plastic hinges are 

within the elastic range of the main steel and 

the ultimate strength of the concrete. 



3. The rotation at each hinge does not exceed a 

safe limiting value for that hinge, in order 

to avoid premature crushing of the concrete 

or fracture of the steel, if steel with con­

siderably limited ductility is used. 

4. At working load~ elastic conditions obtained 

at all hinges and the strains are small enough 

to avoid wide cracks, large deflections or 

spalling of the concrete. 
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CHAPTER IV 

ANALYSIS BY THE PLASTIC HINGE THEORY 

4-1. General 

The plastic hinge theory and the design procedure by 

the trial and adjustment method, developed by Baker (3) 

and briefly introduced in previous chapters, will now be 

applied in the limit analysis of the same structure which 

was analyzed in Chapter II by a conventional method based 

on elastic theory. The primary purpose of this chapter is 

to show the application o:C the theory to the limit anal­

ysis of a pin based reinforced concrete gable frame, having 

parameters~= 0.1, 0.2 and 0.3. A detailed analysis is 

carried out for the case with~= 0.1 and following cases 

of loading. 

(A) 

(B) 

(C) 

Gravity load or dead plus live load: 

Wind load: 
3 ... 
14 (WD+L + WW) . 

= lk/ft. 
k = 0.61ft. 

For the cases with~~ 0.2 and 0.3, only loadings (A) 

and (B) are considered in analyzing critical end moments 

and compared to the corresponding end moments obtained from 

the elastic analysis. 

29 



30 

Other data necessary for the analysis are assumed as 

follows~ 

Load Factor '"' 2 fDc = 3000 psi 

Cu~ lo25 fDc = 3750 psi CD = 0.85 Cu= 3200 psi 

4-2. Analysis by The Plastic Hinge Theory 

Each of the three case,s of diff ere:nt loading is ana-

lyzed separatelyo The re s obtained are tabulated. 

(A) Analysis of Case (A) L(iading 

1. Sketch. of Loaded. Frame 

0 
f-

w."\' '" ,.,. 

fE 3 
0 . 

0 

'"""i 

( a) o Fraine W:i th Case (A) Loading 

o:1nn1iii1 

~-
I ~" constant 

C> s-, 

\0 0 
((\J 11;\j 

---o ~- . I 
(b) o Reduced l!'rame With Case (A) Loading 

Figure 4=1". Sket,ch of Loaded Frame 
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The structure shown in Figure 4-l(a) is symmetrical 

about its center column and is also symmetrically loaded. 

Therefore, joint av2uo can be considered as a fixed end sup-

port and, thus, reducing the frame to the one shown in 

Figure 4-l(b)" 

2. Assumption of Hinge Locations and Trial Sections 

Since the reduced structure has two redundants, two 

plastic hinges are located at joint n 1 uo and "2 vv, thus 
' 

making the ~tructure a statically determinate one. A con­

crete sec.ti on .of 12 vi· x 27 °0 will be used in this trial and 

adjustment solution. 

3. Moment Diagrams due to Loads and Plastic Moments 

Wu = · 2k;rt • 

I i , l l I t l& f l I 

0 

(a). Determinate Structure 

0 

k-1 m2 = 900 
k-1 

ml+:= 900 
_.-i.--._ 2 

(b). Moment Diag. due to 
Load 



(c}. Moment Diag. due 
to xl = 1 

0 

(d). Moment Diag._. due 
to x2 = 1 

Figure 4-26 Moment Diagrams due to Load and 
Plastic Moments 

Determination of' E 0 I 0 Value 
C 

From Table 3-1, E ° CI 0 .. value for cracked section is 

given as follows: 

E 0 I 0 = 500 0° X 0.120 bd' 0 
C 

For f'c = 5000 psi Cu = 3750 psi C 0 =0.85 Cu 

= 3200 psi 

32 

E 0 
0 I 1 = 500 X 3200 X 0. 120 X 12 X 2~ X lk4- = 221 X 103 k-ft2 

s -2fb.60' 1.4 X 10=4 
E 9 I 4 = 221 X 10' = 
.. C . 

h 20 -4 
Ei I 1 = 221 X 103 = 0o9 X 10 

e 0 

5. Solution by the Trial and Adjustment Method 

The solution is carried out in tabular form, with 

p:I'operly assumed values of X, 0 s and the values of rotation 
. J. 
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coefficients of 

JL 
Mi Mk 

and 5 ik = O E 'c I ' ds ' 

which are readily obtained by performing integration for 

all members concerned. 

TABLE 4-=l 

NUMERICAL SOLUTION OF PLASTIC MOMENTS 

Plastic Hinge l Plastic Hinge 2 
·- i,-, 

p A· p ~ 0 Is* p AP ~ QI s* p Ap ~ 

ml 1800 - .607 -1091 -.233 -419 

m2 900 + .397 + 357 +.175 +168 

m3 1800 - .397 - 671 -.467 -838 

m4 900 + .280 + 252 +.292 +263 

x1 400 70 170 +1.364 + 547 +96 +232 +.677 +271 +54 +115 

x2 400 70 150 + .677, + 271 +48 +102 +.700 +280 +49 +105 

- -
-1155 +144 +334 -826 +103 +220 
+ 818 -337 +551 -275 

1st Trial 
.. -4- -4 5 - 337xl0 - · 3 -275xl0 - 5 

-e rad. 4 xio-4 xio-4 i -4-+ 144xl0- = 0 +l02xlO :!: 0 

2nd Trial ; i• - l,93xl0- 4 -172xlo-4 
- 61 

II 



6. Investigation of Hinge Rotation 

The permissible plastic hinge rotation for members in 

which tension develops is given by 

e = ~ 
np 

1 

for 

8 = 200 X 10-4 radian. 

The calculated values of 8 1 s at hinge 1 and 2 are 

el = 193 X 10-4 rad.< 200 X 10-4 radian. O.K. 

62 = 172 X 10-4 rad.< 200 X 10-4 radian. O.K. 

Since no excessive hinge rotation will occur, the 

analysis is considered satisfactory. 

7. The Resultant Bending Moment Distribution 

Applying the conditions of static equilibrium with 

the plastic moments xl = 470k-l, x2 = 47ok-l the bending 

moment distribution under ultimate load is shown for the 

frame. 

0 

3 
134;5k-ft 

~f~~?I 
Figure 4-;. Bending Moment Distribution 

Under Ultimate Load 



(B) Analysis of Case (B) Loading 

1. Sketch of Loaded Frame 

1 

0 0 

1 ... 
60 1 

ill~'° -
- \.0 0 (\j 
(\j 

0 

.. , 

Figure 4-4. Frame With Case (B) Loading 

2. Assfuription of Hinge Locations 
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The structure shown in Figure 4-4 is indeterminate to 

third degree, three hinges at joints 1, 2 and 3 are 

assumed. 

3. Moment Diagrams Due to Load and Plastic Moments 

• .µ ~J ~~ ' 1 3 

II 

.:f 0 0 0 

(a) Determinate Structure 



k-ft. 
m1 = 60 

m2 = 274.8 " 

m3 = 21.6 " 

m4 = 296.4 " 

m5 = 384 " 
m6 = 384 " 

(b) Moment Diagram Due to Load 

5 

'1. = 1 3 

0 

(c) Moment Diagram Due to Plastic Moment x1 = 1 

lr~ 
0 0 0 

i 

(d) Moment Diagram Due to Plastic Moment x2 = 1 

(e) Moment Diagram Due to Plastic Moment x3 = 1 

Figure 4-5. ~oment Diagrams Due to Load and 
Plastic Moments 
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4. Determination of E'cI' Value 

E' I' 
C 

s 
E' I' 

C 

h 
E' I' 

C 

k-ft2 
= 221 X 103 

= 1.4 X 10-4 

-4 = 0.9 X 10 

5. .Solut.ion by the Trial and Adjustment Method 

The solution is carried out in tabular form 

as follows: 

'!'ABLE 4-2 

NUMERICAL SOLUTION OF PLASTIC MOMENTS 

. ~ . 

. ·. Momen'ts Plastic H;b1ge ·i Plastic Hinge 2 

iiii .. 60 .· . ' .· +>~3:00 . + 18 . ,, O . ·. o 
!112 274~8 • · ·. - ,,849 "'.231 ..... · - ,233 ., _; 64 
ill '. 21.-6 : .· .. ·. · -: ·,,'(:? - .12 •, .... ,l75 - 4 ·· ;! 296';!i\ .• .... ·. ·• < •. 84o. -:'249 .. - ,46'7 . ..;1,;S 

ms . 3a1t - ·"° .. 29~ - .sa, ,.~24 
m6 • ;581+ ... · .. .)00 . ...115 0 · .·· 0 • 

XJ. .:· 96· . 14: 'J:O +3,~10 +299' +44 +125 +l.610 +154 

x2 . 92< .lt> )4 +1.610 .+148 +16 + .55 +l,400 +129 

x~ 78··· .. · · .18 ~8 +1.919 +148 +35 + 54 . + •257 ;1- 20 

+23 
+14. 

+ 5 

+65 
+48 
+ 7 

Plastic Hinge.3 

0 0 

. - ,233 -·64 

·- ,175 - 4 

- ,467 .. i38' . ·- .583 -224· 

0 0 

+l,910 +183 ·+n 
+ .,257 + 24 + 3 
+2.365 +185 +43 

+77 

+ 9: 

+67 

.-545 +70. +.153 
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-430 . +38 . +120 · 

.. +3Q3 . . -12? .·· 

... ,.· . 4. . 
+392 .. ·• -153 . . . . . 
-153xio-4 •· o · ·.• 
+··20x10"'4 

. · J,~t. :rrili:t-·6ir~d •• ··.· · 

·. ,2nd,' ·~1a1-~1 r~d.' .. ····, 

-i27x10 - '7 
. .:.. -zll ·-4 -4 • · ~xlO · ,:ia.o · .. 

·· .. -l~o..;4 . = O · . ,-105rl0-4 . 
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Investigation of Hinge Rotation 

el = 194 X 10-4 rad. < 200 X 10-4 rad. O.K. 

62 = 107 X 10-4 rad. < 200 X 10-4 rad. O.K. 

83 = 105 X 10-4 rad. < 200 X 10-4 rad. O.K. 

The analysis, with the assumed positions of 

hinges and the plastic moments xl = 11ok-l~ 

x2 = 102k=l, and x 3 = 96k-l acting at joints 1, 

2, and 3, respectively, can be considered 

satisfactory. 

7. The Resultant Bending Moment Distribution 

With those known plastic moments x1 , x 2 , 

and x,~ and applying the conditions for static 

equilibrium, the bending moment distribution un­

der ultimate load is shown below. 

llOk..ft 

332ki~~.,;f 
. ll~~ft 

Figure 4-6. Bending Moment Distribution Under 
· Ultimate Load 



(C) Analysis of. Case (C) Loading 

1. Sketeh of Loaded Frame 

~4 Wu = l.~/ft. 

I l I J i f 6 , f l l I l I I I I l I 11 l I 

0 0 m 3 
. 

' 

0 

l 

I· 60• . 60• 

Figure 4-7· Sketch of Loaded Frame 

2. Assumption of Hinge Locations 

As in the previous case, three hinges at 

joints 1, 2, and 3 are assumed. 

3. Moment Diagrams due to Load ~nd Plastic Moments 

39 



1'4 W11 ~ 1.f/rt. 

I t l I l l I I 1 fl J I ff i l l fl 1 l f 11 i ff i J 

(a) Determinate Structure 

. ·4o·k-rt m1 ,= . 
m2 = 1143,,9k-f:t 
m3 = 691. 2k-f.t 

m4 = 452.7k-ft 
m5 = 387 k-.fct 

m6 = m9 = m11 
Moment Diagram due to Load = 6?_5k-f.t 

m7 = 28Sk-..f.t 

(b) 

40 

1.3 ma= m10 = 135Qk-ft 

0 0 0 

(c) Moment Diagram due to Plastic Moment x1 = 1 

0 0 0 

(d) Moment Diagram due to Plastic Moment x2 = 1 
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1 

0 

( e) . Moment Diagram.1 · due to Plastic Moment x3 = 1 

Figure 4-8. Moment Diagrams due to Load and 
Plastic Moments 

Determination of E' I' Value . e 

E' I' .· e 
~· k-ft2 

= 221 X lQ;, . · 

S -4 
EI Ii = 1. 4 X 10 .· e. 

h Q··.9· X l~-4-El r• = \;J 

e 

5. <Solution by the Trial and Adjustment Method 

The solution is carried out in tabular form 

(Table 4-;).o:m. the following page. . . . 

6. Investigation of Hinge Rotation 

The e1 values obtained at hinges 1, 2, and 

3 are 179 x 10-4 , 76 x 10-4 and 200 x 10-4 

radians, respectively. Since the permissible 

value of hinge rotation S = 200 x 10-4 radian (3) 

is not exceeded, the analysis can be considered 
' satisfactory. 



TABLE 4-3 

NUMERICAL SOLUTION OF PLASTIC MOMENTS 

Moments Plastic Hinge 1 Plastic Hi~e 2 Plastic Hi~e 2 
p 

~ AE 6' • s p ~ AE o' • s p AP AE 6' • s p AP AE 

ml 45 - .300 - 14 0 0 0 0 

m2 1143.9 - .840 -960 - .233 -266 + .233 +266 

m3 691.2 + .572 +395 + .175 +121 - .175 -121 

m4 452.7 - .840 -380 - .467 -211 + .467 +211 

m5 387 - .770 -298 - .583 -225 + .583 +225 

m6 675 + .502 +338 + .408 +275 - .408 -275 

m7 288 + .300 + 86 0 0 - .300 - 86 

mg 1350 0 0 - .467 -630 - .373 -503 

m9 675 0 0 + .292 +197 + .280 +189 

'\o 1350 0 0 - .233 -314 - .607 -819 

'\I 675 0 0 + .175 +118 + .513 +346 

x1 200 30 100 +3.110 +622 + 93 +311 +1.610 +322 + -48 +161 -1.910 -382 - 57 -191 

x2 300 120 180 +1.610 +483 +193 +290 +1.400 +420 +168 +252 - .257 - 77 - 31 - 46 

300 86 200 -1.910 -573 -164 -382 - .257 - 77 - 22 - 52 +2.365 +710 +204 +473 

:...2225 +122 +219 -1723 +194 +361 -2263 6 6 
+1924 -201 +14,22 -270 +1947 

1st Trial-8. rad. -1+ ,..4 . -4 -4 -4 -30lxl0 -82xl0 -270xl0 +9lxl0 -316xl0 
1 

+ 122xl0.Jt. +194xl0-4 +116xl0-4 :i: 0 :i: 0 ::::: 0 

2nd Trial - ei rad • . :i. 6 -4 ,..4 .p-
-179xl0 rad. - 7 xlO rad. -200xl0 rad. I\) 



7. The Resultant Bending Moment Distribution 

With those values of plastic moments, 

x1 = 23ok-ft, x2 = 42ok-ft'., and x3 = 3s6k-ft:, 

and by applying the conditions for static 

equilibrium, the following bending moment 

distribution under ultimate load is obtained. 

23ok.:it~~~-~ .. ~. ~38~-0-1?~-f . r 36.85k-ft 
122 .f-fl; 132k-ft 

Figure 4-9. Bending Moment Distribution Under 
Ultimate Load 

4-3. Table of Moments, Shearing and Normal Forces 
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Having found those ultimate moments at each critical 

section for different loadings, the corresponding shear­

ing and normal forces are easily obtained by the conditions 

for static equilibrium(shown in Table 4-4). 



Section 

1 - 0 

1 - 4. 

4 - 1 

4 - 2 

2 - 4 
2 - O 

2 - 5 

5-- 2 

5 - 3 

TABLE 4-4 

PLASTIC ANALYSIS: END MOMENTS, SHEARING FORCES,AND NORMAL FORCES. (ex.:: 3J3 ~= f\ = 0~10) 

Moments 

Loading 

(A) te, (CJ 

+470.0 -110.0 +230.0 

-470.0 +110.0 -230.0 

-289.0 + 54.4 -136.7 

+289.0 - 54.4 +136.7 

+470.0 + 76.0 +552.0 
0 -178.0 -132.0 

-470,'0 +102.0 -420.0 

-289.0 + 25.8 -156.2 

+289.0 - 25.8 +156.2 

Shearing Forces Normal Forces 

Normal. 
Moments L d' Shear L d' Force . oa 1ng oa ing . for for ,r for 
Desi~ . (A) (B) (C) Design (A) (:B) (C) Design· 

+470.0 
-110.0 
-470.0 
+110.0 
-289.0 
+ 54.4 
+289.0 
- 54.4 
+552.0 

0 
-178.0 
-470.0 
+102.0 
-289.0 
+ 25.8 
+289.0 
-r 25.8 

=23050 - 6.50 -20.50 ~23.50 - 60.00 + 3.46 -38.82 - 60.00 
- 34.75 
- 5.69 +54.16 - 4.66 +33.98 +54.16 - 34.75 - 5.69 -27.71 

4 6 . 6 . . . 4 ·4 ·4 - 23.00. 
- 0 0 - · .• 07 -11.13 -llol3 - 23.00 -12.7 -2 .l . - 12.74 

+ 4.60 - 0.71 - 0.99 + 4.60 - 23.00 -14.10. -26.56 

-54.16 - 0.71 +45.03 -54.16 - 34.75 -14.lO -35°35 
0 + 8.90 + 6.60 + 8.90 -120.00 + 1.34 -96.75 

+54.16 - 4.17 +40.92 +54.16 - 34.75 - 4.05 -27.83 

- 4.60 - 4.17 - 3.23 - 4.60 - 23.00 - 4.05 ~19.01 

+ 4.60 - 2.~9 + 4.33 + 4.60 - 23.00 - 5.35 -18.79 

- 23.00 
- 14.1.0 

- 35°35 
-120.00 
+ 1.34 
- 34.75 
- 4.05 
- 23.00 . 
- 4.05 
- 23.00 
- 5.35 

3 - 5 +470.0 + 96.0 +386.o +470.0 -54.16 - 2.29 -39.72 -54.16 - 34.75 - 5.35 -27.60 - 34.75 
3 - O -470.6 - 96.0 -386.0 -470.0 +23.50 + 4.80 +19.30 +23.50 - 60.00 - 3.30 -44.43 - 60.00 
O - 1 . O O O O -23.50 +17.50 - 2.50 -23.90 - 60.00 + 3.46 -38.82 - 60.00 
o - 2 O O O O O + 8.90 + 6.60 + 8.90 -120.00 + l.34 -96.75 -120.00 . ' . 

/ 

0 - 3 0 0 0 0 +23.50 + 4.80 +19.30 +23.50 - 60.00 - 3.30 -44.43 - 60.00 t 
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4-4. Comparison of Critical Section Moments 

The same structure is again analyzed for cases. with 

13 = 0~20 and 13 ""'Oa30 in a similar way for both cases of 

loading (A) and (B). The critical moments thus obtained 

from these analyses are tabulated and compared with the 

corresponding moments obtained in the previous elastic 

analysis~ in Table 4-50 

From the 00 k 00 values of Table 4-5? it can be concluded 

that for an indeterminate structure~ in general, portions 

of the structure which are less stressed as indicated by 

elastic analysis~ carry greater ultimate moments as can be 

seen by values of 00 k 00 greater than 2.0 (load factor) while 

those portions of the structure which are highly stressed 

according to the same analysis~ undergo reduction of mo­

ments~ as shown by values of 00 k 00 less than 2o0, due to the 

redistribution of moments recognized in plastic or limit 

analysis. 

In this particular study, it is observ:ed, in the case 

of gravity loads that the degree of redistribution of mo­

ments amor.i.g those critical sections reduces as the value 

of 13 increases ( as 13 increases, the ' 0 k II value approaches 

load factor value= 2o0). However~ no significant trend 

of redistribution in moments related to the value of 13 

can be seen in the case of wind load. This is probably 

because of the resulting smaller values of moment due to 

wind load and the greater freedom allowed in limit design 

for a random selection of plastic moments within the limi ta­

tion of rotation capacity requirementso 



TA13LE 4=5 

COMPARATIVE TABLE OF END MOMENTS OBTAINED FROM BOTH THE ELASTIC AND PLASTIC ANALYSES 

g . •k = ~~lasti7'i'i~lastic A:::- . 
·.i·.::· Case '·' :~ .. :_.· ',_, ·- ."k~i• 

~ ~-10 
l - 0 ""1r70.oo ]+445;501 ·+410;861. .:.;t1.0.oo I ,.no.cio I :..336.00 I ::i.15 

'. l - 4 J .. n!i •. :?O I -n5.i6 r-:?05;71, I +59,60 , ~470.001-4~5,50 I ;4i,o.s¢J. +1io.oo I +no,oo l :.336.00 

4 .. 1 :..130.oti: .. 9i.60· :'- 59.07 +17.8p + 'ti.17 t: 68.16 ..c:,89.00 -??o.oo ~1~0.00 + 54,.'+ci . +. 4?~6o + 37.:,q :,.:,:, 

· ·f II· .. ~~· ~1~ ~~ ·5II §I·. l~Il · './:~ .• '.d:~ .:ci:Ii!~:~• •. i:I\ ;I~, ,m 

-·~-· 
L6? 

1.6? 

5 - 3 \130;04 + 9~,60 + 59.of -;io.4~ '" ?0.?5 - :;,9;913 +PS:).oo .~;?Q;o() +i}o.oci - :,5.30 ·.::. 65+0~ - '.P,4o 

3 :.. .5 +;18~?0 :,h5.1.6 +:,05~71 +48;65 + 56.74 + 61.1;3 +1170.00 +1+45.50 +410.86 .... 9G.oo +140 •. 00 tJifl,001 2.15 

3. - 'o :.?18.~0 :..::ii,5.16 :.:,05:.n '-48,65 - 56.74 - 61.43 -470.0.0 -41i5.50 ~1.10:86 :_ 96'.00 ';;;;i40.oo I ~116~00 

·-·~ II 

::i.4o I ::•.:cio I 3,06 1;04 J . 0-55. Jt;91 
..... .... ·1 .... 

: 11.98 ., 
1~56 r· 1~90 :,..85 

::i.i3 I i~6.3 11;55 t:i:-80 

i.56 i.90 1.19 .1 :,;10 I 1~97 1.s~ 
::s.iio.· ?~?o· l·.··.:>.4if 3.n I. 1:15 J.::i.3$ 

·n. n_·. "· 
.,,_ 

:,.:07 :?.00 1.97. ?.47 , . J..89' :c>.09 

.·u-· 
tt I "· 

n.· 

' .· . . .... · ··· .. ·: . . . . 1.5 1,;90 1.79 0.55 T.80 
Range of. Redistribution Ratio,s "k"· . · Ii · : . ·. « ·: · ll . Q. . · ll. · .. 

2.40 :;,.20· 3.06 · ::i .• 39 2.,s 
: . . . . . .. . . . . . . . . . · . 

. •Note: Tl\e load ,fate-tot, ~sed ,in the p{astic anaiysfais ?.O, th~;~efore: ~ valu~ cjf "k'; ~r~,iter than :,.p i~iiicates an incre,i~e in inome.nt d:ue t~ the redis- ' 
tI'ib1,l(i.o~ of nlqme~t$ _.rec;:ogni_z.~~- ·in_ pla~ti<? annlysiS~ · Aina;, a_ ·va~Ue of "k'·' ie:5s '·than · ?.'Q _iridic~t.en· a de~~eas~ i1i mome~t due . .-to ~~e· re?,istributio~.· ·· ·· 

..p:, 

°' 



CHAPTER V 

BRIEF DESIGN OF CRITICAL SECTIONS 

5=lo General 

A brief design of critical sections of the reinforced 

concrete frame is carried out in th.is chaptero The conven­

tional design method for reinforced concrete members is 

applied to the resulting e.nd moments under working load ob­

tained in Chapter IIj and the ultimate strength method of 

designing reinforced concrete members is applied to the 

resulting end moments under ultimate load obtained in 

Chapter IV o In the former case~ · tihe ACI Building Code of 

1956~ and 49I Reinforced Concrete Design Handbook are 

used~ and for the latter case Guide for Ultimate Strengta 

DesiEig of Reinforced Concrete is followed. (7) ~ (9) ~ (10). 

Only those design procedures for a couple of typical sec­

tions are shown in detail, and no design for shearing and 

bond stress is qonsidered. 

The designed results of necessary cross-sectional 

dimensions and the corresponding steel requirements are 

tabulated for both methods of design, and compared in 

Table 5-1. (page 57) o 
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5-2 •. Conventional Design 

(A) 

The following data are used in the design: 

fs = 20,000 psi 
E s n = E = 10 f' c = 3000 psi 

C 

fe = o ... 45 f'e = 1350 psi b = 12 11 t = 27 II 

d = 24" d' = 3 tt 

The design follows. 

Design of Girder (Section 2-4) 

M 290.79k-ft. N k b 12 1• d 241r = = -16 .. 82 = = 

d·' = 3" t = 27'' 

b 

,d ·. 
,!id 

't1 

.µ ... -A 6 
't1 

-r 'O ~ 
Figure 5-1. General Sketch of Sections 

e = 12 X 290.?9 + 10.5 = 
16.82 217.5" 
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1. From Table 1, for 20,000/10/1350 

From Table 4, for bd = 12 x 24 

k = 236 

F = 0.576 

then, 

NE = 16.82 X 18.15 = 305.4k-ft. 

kF = 236 X 0.576 = 135.9k-ft. 

NE - kF = 169.5k-ft. 

49 

Compressive rein.forcement is required, since 

(NE - kF) is positive. 

d' From Table 7b, fo~ cf= 0.125 C = 1.29; 

therefore~ 

A n NE - kF 
8 = cd 

e From Table 10, ford= 9.07 j = 0. 866 : i = 1011 

From Table 1, for fs = 20,000 psi ,a= 1.44; 

therefore') 

NE 290°79 = 
As= adi = 1.44 x 24 x 1.11 

EAs =As+ A's= 7.58 + 5.47 = 13.05 i~. 

(B) Design of Column (Section 1- 0) et' > 1 

M = 218.2k-tt P 1 = 28.79k b = 12 11 d = 24" 

d O = 3 OV t : 27 OU h : 20 ft• 



1. h Rt' - a J.O t 

h 
t = 

20xl2 
12 = 20 > 10 

50 

Long Column 

According to ACI Code, Sec. 1107, the equivalent 

eccentrically applied load on a short column is 

given by 

Also, 

p = P' 28~?9 
h = 1.3 - 0.03 x.20 [1.3 - 0.03 t] 

k ( . ) = 41.2 • 10. 

e 10\.5 d = 2 = 4.23 • 

2. From Table 1, for 20,000/10/1350 

From Table 4-, for bd = 12 x 24 

Then 

k = 236 

F = 0.576. 

NE = 41.2 X 8.45 = 348k-ft. 

kF = 236 X 0.576 :;: 135. 9k-ft_. 

NE - kF = 212.1k-ft. • 

Compressive reinforcement is required. 

d' From Table 7b, for cf"= 0.125 C = 1.29 

212.1 
= 1.29 X 24 = 6.85 in.2 •. 
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. e 
From Table 10, ford= 4.23 j = 0.866, 

i = 1.258, also a= 1.44. 

NE 348 --~ 
As = adi = 1.44 x 24 xl7258 - S.02 in.2 

:EAS = As + A's = 8.02 + 6.85 = 14.87 in.~ 

(C) Design· of Column (Section 2-0) ·~ < 1 

M = 83.68k-ft P 0 = 62.42k b = 12" d = 15 11 

t = 20 II 

l. ~ Ratio 

h 20 X 12 
t=-~= 

therefore, 

p = 

h = 20 ft. 

20 > 10 Long Column 

k = 89.2 • 

2. For g = 15/20 = Oo75 from Table 27, part 1, the 

average value of D = 5.25, and from part 2, with 

20,000/10/3,000 and an estimated p = 0.030, de­

termined C = 0.58. 

Compute 

CD l2M 
t = 0.58 X 5.25 X 12 x2g3• 68 = 153k 

Add N = 89.2k-

p = 242.2k 0 



Equivalent eccentric load: 

From Table 18'l part 1~ with 

Ag= 12 x 20 = 240 in.2 

and f 1 c = 3000 psi~ load on concrete = 130k 

Balance to be carried by longitudinal 
bars = 112. 2k 

From Table 18 9 part 2~ select 6 No. 10 Qars~ 

As = 7 .62 in2 
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Actually p = ±: -2246ci == 0.031 assumed p = 0. 030 

(D) Design of Other Critical Sections 

Other sections of the,frame are also designed simi­

larly for their cross-sectional dimensions and the corre­

sponding steel requirements. The final results are tabu-

lated in section 5=4o 

5-3. Ultimate Strength Design (Whitney's Method) 

The following data are used in the design~ 

fy = 40~000 psi f 0 c = 3000 psi b = 12 99 

t = 2710 d = 24 19 

The design follows on page 53. 



----~--e~-----1 
---------r-t·----

-----t-d----i 

d' 

n.a. 

=a 

I 0.85 f'c 

Cc = O. 8 5 f ' c b a 

Figure 5-2. Ultimate Strength Notation 
With Rectangular Stress Block 

(A) Design of Girder (Section 2-4) 

M = +552k-ft and Mu= -102k-ft 
u 

k 
N = 35.35 

Since the normal force is relatively small as com-

pared to the bending moment, only the bending moment Mu 

will be considered in the design. 

As a rectangular beam without A's the maximum steel 
f'c for Asl is limited by p1 = 0.40 fy, which provides 

M1 = 0.306 f'c bd2 = o.306x3000xl2x242 x 12 ,~00 

= 528k-ft. 
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A81 = 0.40 f 0 c ~ = 0.40x3000xl2x24/40,000 

M2 = Mu - M1 = 552 - 528 = 24k-ft. 

T 2 = C 2 = M 2/ ( d - d O ) = _g4 ~ 1_2 ~ OOO = 13 , 700 1 b • 

T2 13,70Q 4 2 = fy = 40,000 = o.3 in. 

Since 
Asfs 

a= 0 . 85 roe ~ the ultimate moment is 

expressed as~ 

for Mu.= 102k-ft 0
, the steel requirement is found 

to be~ 

(B) Design of Column (Section 1-0) 
6 I 

t > 1 

Mu = 470k-ft 

do = 3uo 

,g Ratio 
t 

P' 

t 

= u 
60k. b 

= 27 01 h = 

h 20 X 12 t - 12 = 20 > 15 

= 12 11 d = 24'' 

20ft. 

Long Column 
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According to the recommendation given for the slender 

compression members in page 471·or the reference (7), the 

equivalent eccentrically applied load on a short column is 

given by~ 

Since 

p 
u 

· C ( d = d O ) = P i · and s u 

60 
0.8 = 

e v 470 X 12 ·-- 9· 4 eo = . 60 

A O . f ( d - d O) = P ( e 1 - 0. 5t + 0. 5a) o s Y· u 

For d O = 3 °0 d ... d O · = t = 2d u = t-6 assume a = 2 11 

then~ 

For t = 27ou AO = 5.8 in2 
s 

pu 
a u 60 2000 & 

"" 0 o 85 f' 1 C b ·- 0 o 85 X 3000 X 12 

as assumed O.K. 

P 0 u_z = 60~000 (94= 13.5 + Oo98) :!:: 4~888,000lb-in. 

Puz = ?5~000 x81.,48 = 6~111iooo1b-in. 

Au = ~ll.l ,i 000 ~ 7 28 i 2 - A 
· S 40 , 000 X ?l - 0 

· . n - S 



(C) Design of Column (Section 2-0) 

P 0 = 120 k. u 

120 
= 0.8 = 150 k. 

b = 12 OU t = 20 Oi 

p 
f u --c = bt 

150 2000 _ 463 psi 
12 X 27 -

< f 0 c = 3000 psi. 

No reinforcement is required. 

t = 20 °0 

P 0 = 1.34 k = 0 u b = 12" 
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In this case~ the section can be considered 

as under the action of Mu only. 

MC = 0. 306 f ° C bd2 = 0 • 306 X 3000 X 12 X ( 20 )2 

= 441 k-,fto > M = 178 k-ft. O.K .. u 

Also~ 

A !f: :z h 5 in. • 2 = A 0 s /~ s 

(D) Design of Other Critical Sections 

Similarly~ other critical sections of the frame are 

al.so designed for their cross-sectional dimensions and 
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corresponding steel requirements. The final results are 

also tabulated in Table 5-1. 

5-4 ... Table of Dimensions and Steel Requirements 

TABLE 5-1 

Cross- Steel Area Re~uirements 
Section Sectional Elastic Analysis Plastic Analysis Dimension 

As A' s AstA's As A' . s A +A' s. s 

1 0\ l2Dox 2700 

3 - 0 0 0 8.02 6.85 14087 7.28 7.28 14.56 

1 - 4 vu 

3 - 5 . 0 0 5°93 3.14 9.07 7.35 1.45 8.80 

4 l DD 

4 2 00 

3.50 0.36 3.86 4.05 0.70 4.75 
5 - 2 ii 

5 - 3 e o 

2 4 DO 

2 - 5 OD 7.58 5.47 13.05 8.63 1.35 9.98 

/ 

2 - 0 12 10 x 20 10 3.81 3.81 7.62 3.50 3.50 7 .. 00 

Total Steel Area 48.37 45.09 
in2 i:o.2 

% saving of steel 

E(As)E - E(As)P 
X 100 48. 37 - 45.09 X 100 ::!: 7.5% E(As)P = ' 45.09 



CHAPTER VI 

SUMMARY·AND CONCLUSIONS 

6-1. Summary 

A two-span hinged base reinforced concrete frame was 

analyzed both by elastic and plastic methods and briefly 

designed for its critical-sections. The dimensions are 

-the.same, and the moment of inertia is assumed constant 

throughout the frame fo.r both methods. 

In t_he case of elastic analysis, end moments for three 

values of parameter 13, with three different gravity loads 

and a censtant windJ ,,load,; were . obtained ;by utiliz:j.ng 

t.he: mome:m.t .. ;coefficients"" Analysis : of; the, same frame' 

by the plastic approach;.· was,. done by ,the application 

of the plastic hinge theory for reinforced concrete frames, 

generally considered as a part of the theory of limit 

design.. 

A detailed analysis was carried out for the case with 

(3 = 0.1, WD+L = lk/ft. , WW = .6k/ft. , and L.F. = 2.0, how­

ever, ·.· only brief Eillalyses of the critic al end moments for 

the cases with 13 = 0.2 and. 0.3, were done for the purpose 

of comparison. 

A brie.f design of cross-sectional dimensions and the 
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corresponding steel requirements was carried out. For the 

conventional design, the 122§ ACI Building Code (10) was 

followed and,for the ultimate strength design, procedures 

recommended by Whitney ( 7) was followed. Finally, results 

obtained were tabulated and compared. In this particular 
. . : 

study, it was revealed that approximately 7.5% of steel 

might be saved by the adoption of the plastic approach. 

6-2. Conclusions 

Two basically different methods of analysis were pre­

sented in this report. The conventional method of approach 

to the analysis of indeterminate structures is based on 

the theory of elastic deformation and is generally recog­

nized as the most efficient. and powerful tool in the solu­

tion of structural problems. The second method of ap­

proach differ·s from the first, i:n recognizing the read­

justment in the relative magnitude of moments<i and thereby 

the corresponding stresses at various sections, due to 

non-linea~ relationship between load and moment as ulti-

mate load, is approached. Regarding the plastic method of 

approach, the following conclusions were made: 

(A) The maximum load capacity of statically deter-

minate structures with sections proportioned by 

ultimate strength design equals t.he capacity 

computed by equilibrium conditions alone. For 

indeterminate structures, however, the maximum 

moments at various sections as calculated by 



the theory of elastic displacements are due to 

different load combinations. Therefore, the 

maximum load capacity of an indeterminate 

structure as a whole may be considerably 

greater than that indicated by the ultimate 

strength of one section. By limit design, 

the moment redistribution involved is con­

sidered in design, and the maximum load capac­

ity will equal the calculated capacity for an 

indeterminate structure. 

(B) Limit design is simpler than the design by 

60 

the theory of elastic displacements, especially 

for those structures with large number of re­

dundants. The former permits an intelligent, 

arbitrary choice of redundant moments, while 

the latter requires solution of simultaneous 

equations. 

(C) A reduction of negative support moments by lim­

it design would avoid reinforcement congestion. 

This would be an advantage particularly in 

buildings where negative beam reinforcement in 

two directions intersects the column reinforce­

ment. By reducing beam moments at these joints 

and~ thereby, the corresponding amount of nega­

tive reinforcement required, better concrete 

placement and compaction would become possible, 

and an improved concrete structure would result. 



This report is expected to serve as a guide to the 

future application of the concept of limit design to the 

analysis of indeterminate reinforced concrete framed 

structures. 
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