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CHAPTER I
INTRODUCTION

The rigid frame structure is becoming more popular than
the column-truss COmbihation structure. The reason for this
general trend of development is that they provide a greater
free space under certain specified conditions and result in
a more pleasing appearance and over-all economy. In some
parts of the world where structural steel 1s either very
expensive or not readily obtainable, and the locality offers
plenty of aggregates and cheap labor, reinforced concrete
rigid gable frame structures are more frequently adopted
than that of steel, with advantages which result in greater
economy. Realizing the practical importance of reinforced
concrete gable frames in structural engineering; two differ-
ent methods for the anélysis of a two-span pinned base gable
frame and brief designs of the same frame are presented by
the writer.

The elastic method of analysis; using the moment coef-
ficents prepared by Gillespie (1) and Hale (2); is described
in Chapter II. The plastic method of analysis, based om the
plastic hinge theory for reinforced concrete fra@es devel%
oped by Baker (3); is briefly introduced in Chapter III and

with its application to the same structure shown in Chapter



IV. 1In Chapter V; brief designs of critical sections are
presented and finally; the results of design are summarized
and compared in Chapter VI,

In the analysis by the elastic or conventional method,
the analysis is greatly facilitated by the use of moment
coefficients for continuous gable frames. Since the method
is based on Hooke's Law; a large portion of the structure
is understressed; resulting in uneconcmical use of material.
This is particularly true for a statically indeterminate
structure.

The analysis by plastic hinge theory of reinforced
concrete is based upon the plastic behavior of both con-
crete and reinforcing steel bars after.yield stressés of
both materiais are reached. The design is dependent‘on the
ultimate load a structure will support. Besides those
three necessary conditions for the plastic analysis of steel
structure; i,eq; (1) equilibrium condition, (2) collapse
condition and (3) yield condition, the rotation capacity of
the concrete should be investigated in detail in order to
ensure the simultaneous formation of all the necessary
hinges as required by a collapse mechanism and prevent any
undesirable sudden failure of the structure.

Since the method of analysis by plastic theory recog-
nizes the redistribution of stresses during the period of
occurrence of first yield in a certain highly stressed
portion of a structure and the formation of n + 1 plastic

hinges for an n times statically indeterminate structure,



more economical use of material can be achieved than by
the conventional method of analysis. Also, for a structure
with a large number of redundants, the approach by plastic

theory seems to offer a simpler solution.



CHAPTER IT
ELASTIC ANALYSIS
2=~1. General

A two span pin based reinforced concrete gable frame
is analyzed by the method of moment distribution and the
adoption of '"The Moment Coefficient Tables.' The frame
has three different values of the ratio £ of the rise in
gable to the span length. Spacing of frames is 20 ft. on
centers and each span is 60 ft., the column height is
20 ft. ©Sections are considered constant through the anal-
ysis for all members. A set of three different gravity
loads, including dead weight of members, is assumed. The
wind load is BOvpounds per vertical square foot. A gen-

eral sketch of the frame and its loading is shown below.

k k k
W, g (W =17/ft. W, =27/ft. w:,)ma/ft.)

ANEEER NN ERN

0.6%5t .

L}

W

[ b -
" L=e60 T L = 60 ~

Figure 2-1. Two Span Gable Frame
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2-2. Analysis by Moment Coefficient Tables

In this elastic analysis, the moment. distribution
method, with the aid of the moment coefficient tables, is
follo‘wed‘, Two cases of loading are considered in the
analysis, and by superposing the results of those two
cases, the moments for the third case of loading are ob-

tainéd. Those cases of loading are shown in the following:

Wy =1, 2 and 37¢t.
L_U_U_U]Ji}' AITREEEEARNRITRRER!
2/"\ O Bl=Ool
o o| B,L=6"
R R
0 . o 04—= LT3
- 60" e 60" — Sl = 30,.60!
Case (1) Loading B, =0.20
5,=32.51!
Pt 60" B, = 0.30
= >
M;i = [ 5=34.98
O I =5 8
1= g, ©
33v ‘9 60! 40 60! O‘:
L i )
| Case (2) Loading
$ 3/4 (Wy,1) = 0.75, 1.5 and 2.257%t.
ME\ HJ o i
. Oo
~ 3] .1 %
= & ©
N\{ 60" O5s

A

Case (3) Loading

Figure 2-2. Cases of Loading



(A) Analysis of Case (1) Loading

1. For parameters o = 1/5 B = Blzo‘lo

(a)

(b)

(e)

(a)

Values of (WD+L)iL2 i=1,2, and 3
W, =1 Ket, W, I2 = 3600 k-f%.
End Moment Coefficients:

. 7 B B B , B
Ml2 —ng - . 060563
M21 +Q‘2l +.080777

_M32_ —+Q12_ ] +°O60563—

End Moments for wl = 1 k/fto

+29O.79k"ft1"125 - -290.7 Tt

+218, 20k-1t

M ~218. 205 Eh

12 21

M

i}

32
k0 k
End Moments for W2 = 2 “/ft. and WB = 3 “/ft,

For W, = 2 Kes.

‘ _ e ) ~F  eaq edeft
My, = ~436.40 T, = +581.5& %25 - -581,58°
. £t
Mg, - +436 , 40F
For Wy = 3 Koy,
o o - o K f
My, = -654 60K My, = +872.375 M,y = ~872.37
M., = +654.605" T,

32



0.20 and

]

For parameters a = 1/5 B = B2

B = BB = 0.30.

End moments for P = B, = 0.20 and B = By = 0.30
are found by the same method shown previously,

and the results are tabulated in Table 2-1.

(B) Analysis of Case (2) Loading

l.

Analysis for the case o = %75 B =28y = 0.10

Consider first that all joints are fixed against
translation, and end moments due to rotation only
are-computed by the method of moment distribution.
In this analysis, the gable members are consider-
ed as single structural elements.

(a) Stiffness Factors

K' = K! = K! . 2EL _ ')
10 © 20 © 30 © h 0.15E1
= = = - 7BL _
K12 = K21 = K25 = K32 = 281 = 0,114ET

" (b) Distribution Factors

D D

10 = P30 0.568

i

D D 0.43%2

12 7 “32 ©

D21 = D25 = 0,301
DZO = O¢ 598
(¢) Carry-Over Factors

C = C

10 Czp = O

30

021,= 023 = C

20 T

012 = 32 = "“00145.



TABLE 2-1

END MOMENTS FOR CASE (1) LOADING

£nd B, =0.10 B, =0.20. By=0.30

Moments|| W, = 15t. W, = 2%rt, iy = 3k/ftf W= 12t W, = K5t Wy = 375t W, -.-=":1?.k/ft.» Wy =225, iy = 35t
., | -218.20 | ~436.40 | -654.60 || -215.16 | -430.322 | -645.48 ~205.71 | =411.42 | -617.13
M21 4290.79 | +581.58 | +872.37 || +243.60 | +487.20 | +730.80 +205.80 | +411.60 | +617.40
Moz -290.79 | -581.58 | -872.27 || -243.60 | -487.20 | -730.80 -205.80 | ~#11.60 | -617.40
M +218.20 +436».40 +654.60 |1 +215.16 | +430.32 | +645.48 | +205.71 | +411 .5 +61’7 .13

22




(d) Fixed End Moments

M, = - 25 - - 2,25 BTE
R, = - Y2 - - o.u5 K-IT
My, -+ Y2 - 430.00 B-EF
(e) Distributioﬁ Table
- ' (2) )

et L 2L L 20 L 23 L 22 120
= D'g|- o568l - Jh30|- .301| - .398] - 301] = k32|~ .568

C's - I3 .143 - 183 = L1h3

TM1s|+30,00 |- 2.25 |- .45
-15,76‘ -11099 + alq + 017 + 014

2

- L0227 ¥1.71 -~ .02
+ 01 |+ .0L - .52 |- .68 [~ .51L.i+ .01 |+ .01

T .07 K0 o PG o0 |
- Ok |- O3} O 0 0 - 403 |- Oh

RM's| =15.79 [=11.96 |[+1.33 |[-0.51 -O.j? +0.03 [ ~0.03

M'S +14.21 *14521 +0088 -0051 “0957 +0003 _0003

(f) Thrust Induction Factors

. = = e v ..Z__ .
IEL2 - 1121. - 1125 - 1152 = LLBIJ = '+O.:125
(g) Fixed End Thrusts
p _ _ Bwf _ _ k
31;12 = - 4_ - 2070
_ wf k
(h) Thrusts Due to Rotations
- - - - _
RH, 5 R, RM,; O 0 o
Rpy | [ By Hyp O 0 Doy
RH25 10 0 | | BM25 ZE?.I"I52 1’125
__RH52__ : _O o) RM32 RMQ5 | n52




g :

12
21
23

B OB A

(k) Balancing Forces

Joint 1.
- Hypp
Joint 2.
Hyp

Joint 3.

32

+ Vlo

+ V20
= +Oo

+ VBO

- 4.%6 - 6.71 = =11.07%

23

oK

= +0.05 + O = +0,05%

10
~-11.96 + 1.33 O 0 +0.125 -1,66T
+ 1.%3 =11.96 O 0 -0.125 +1,66
o 0  -0.37 +0.03 +0.125| |-0.05
Lo 0 +0.0% -0.37 -0.125 +0.05
(i) Total Horizontal Thrusts
Hip| [P FHpp %30
Hyp RH,, FH,, +0.76
= + =
Hyy RH, FHp -0.05
H§2J | 3332 FHj, +0.05
(j) End Shears
i ] B whe B
Y10 | Mo+ 72 &7t
1
V30 Mzo 0



Thus
P, =+ 11.07%
o ok
Py =~ 0.05
P.L = +664 ., 205-ft-
P,L = - 3, 00k-1t.

AV
i

P2L =

44,40

(1) End Moments Due to Balancing Forces

M 12

P
M; 21
| (@

¢ 20

P

W),

P).
M€ %2~

(m)

M

(P
M€ 12

P
mF,

P
N,

P
NP,

1
‘Final E

Mo

21
Moo | =

23

M

P
¢ éo =

(1 2
Q( £2 Q( £2
1) (2
QS 01 @ 121

1 2
.‘Q( éo - éo

1 2)
o 23 Q€ 25

1 2
M, o,

—

.116819 .079858 079063
}045012 .086809 .092439
= -;157451 -.173618 -.1%7451
.092439 086809 045012

i .079063 .079858 .116819|-

nd Moments

- 1
+59.60
+26.64
—85 068

+57 .04

| M35 |

+48.65
.

11

= - 0.74%

k"fto

Q(5ﬂé_ P,L |
Q(Eél
O NP
a3,
Q(§é2 P,L
:664.25 -;73085
+25;76
- 44.40==—85;17
§+57;41
5;00 ij48;62
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2. Analysis For Cases « =295 B =B, =0.20 and
B = By = 0.30

Analysis of these two cases was.carried out
by the same method and the results obtained are

tabulated in the following.

TABLE 2-2
END MOMENTS FOR CASE (2) LOADING

= 0050

Mgizgés By = 0.10 By = 0.20 85
M12 +59.60 + 98.03 +140.46
M2l +26.64 + 24,54 + 21.90
M2O -8%.68 -109,17 -133.88
M23 +57,04 + 84.63% +1ll,98
M52 +48.65 + 56.74 - 61.43%

(C) PFinal End Moments for Case (3) Loading

End moments for case (3) loading are obtained by
superposing end moments for both case (1) and case
(2) loading. The final moments obtained from this
superposition are tabulated in Table 2-3. The super-

position is carried out only for the case of
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. ok . o k.
combining wD+L = 17/ft. with W, = 0.6 /ft.

TABLE 2-3 ,
END MOMENTS FOR CASE (3) LOADING

Final Moments By =0.10 . By =0.20 55==o.3o
M, - 118.95 - 87.80 - 48
My + 238.07 + 201.90 + 170.78
Mo - 62.76 - 81.80 - 100.41
M, - 175.31 - 119.10 - 70.37
Mgo + 200.14 + 204,00 + 200.%6

2-3, Tables of Moments, Shearing, and Normal Forces

From those end moments obtained in the foregoing

analyses, shearing forces and normal forces for all mem-
bers with different load intensify and parasmeter B are
| found by the conditions for static equilibrium. Finally,
these endvmoments, shearing forces, and normal forces
acting at various critical sectidns are tabulated in order
to be used for brief designs of sections and their steel
requirements in Chapter V. The tabulation follows in

Tables 2-4, 2-5, and 2-6.



ELASTIC ANALYSIS : END MOMENTS, SHEARING FORCES, AND NORMAL FORCES ( o= Y3 p= B =

TABLE 2-4

0.10)

] —End .Momente.s 3 L i Shearing Forces ] ‘ﬁdrrﬁ'al Forces :
Member My, . | My, | My M, [m;giwwj U U A [vf,;ZxSerJ - Nuy My ] Mg Nug mﬁ;iﬁwwz
[T -0 #218.20 | +438.50| +0504e00 | ~59.00 | +118.95 | ~10a01 | —P1a02 | ~32+75 | =3+02 | =10.85 | ~28.79| = 5758 | = 8057 | +1.62 | -20.43
1= 4| -218.20 426,40 ~654.60 | #59.60 211895 | +96.06 [+52.12 | 498,18 | =-2.18| 2791 | <16.34| - 32.68 | - 49.07 | -2.6k | -1h.24
4§ = 1 {=130.04 -?60.09' ~390.13| +17.80 { = 84.18 - 3.3% | - 6.68 | -10.02 -2.89| - 467 | -10.46 - 20.92 | - 31.38| =6.16 | -12.47
4 =2 [ 4130.04 | +260.09| +390.13 | ~17.80 | + 84.18 | + 0.94 | +18.80 | + 2.82 | -0.29] + 0.4o | -10.94| - 21.88| - 30.82| -6.80 | -13.31
2w 4| 4290.79 | +581,58] +872.37 | +26.64 | +238.07 | -28.46 | -56.92 | -85.35| +0.29] -21.13 | -16.82] - 23.64 | - 50.461 -6.80 -17.7?-
2 -0 o o 0 |-83.62| -62.76 6 -0 0 | +#419] +Z.ab ~62.42 ~104,84 | ~187.26 | +0.14 | -46.71
2 - 5| -290.79| -581.58 “872.37| +57.0k | 175.31 | +28.46 | +56.92 | +85.35 22.20| +19.70 | -16.82| - 33.64 | = 50.46 | ~2.03 | -1k.14
5 - 5| -130.04 | ~260.09 | =390.13| +10.40 | - 89.73 | - 0.9% | ~18.80 | - 2.82 | =2.20| = 2.36 | =10.94| - 21.88| - 22.82| -2.03 | - 9.73
5 - 3| +130.04 | +260.00 | +290.13 | <10.40 | + 89.75 | + 2.34 | + 6.68 | +10.02{ ~L.2k| + 1.58 | -10.46 - 20.92| - 31.38| -2.73 | - 9.89
3 - 5| +018.00 | +436.450 | +654.60 | +48.65 | +200.14 | ~26.06 | ~52.12 | -78.18 | ~1.04| -20.48. | -16.34| - 20.68| - 49.02| -2.73 | -14.30
3 - 0} -218.20 | -436.40| -654.60 | -48.65 -200.14 | +10.91 | +21.82 | +30.73 | +2.43 +10,01 -28.791 --57.58 | - 86.37| ~1.76 | ~22.91
o-1{ o | .o 0 0 0 ~10.91 | -21.82 | -22.73 | +8.98| - 1.45 | -28.79| - 57.58{ = 86.37 | +1.62 | -20.38
0-2 0 o} 0 o} o o 0 0 | +h19| .+ 3.1k -62.42 | «12L .84 -187.?6 +0.14 | <46.71
0=-3 o] )] o] 0 0 +10.91 § +21.82 | +32.73 | +2.43 | +10.01 ~28.79| -57.58 | = 86.37| -1.76 -é?.91

1



ELASTIC ANALYSIS : END MOMENTS, SHEARING FORCES, AND NORMAL FORCES (o =

TABLE 2-5

V5 B=g, = 0.20)

" Shearing Forces

End Moments Normal Forces
Hember') - My, My M Mty (Mgizgww] T B Y Yy Bézzgwwﬂ AT R Bis | Ny (Ngizgww
1 - 0 [4215.16 | +430.32| +645.48 | - 98.03 | + 87.80 || -10.76 | -21.52| -32.27| - 1.10 | =~ 8.90 | -29.53| - 59.06| - 88.59 | +2.76 | -20.03
1 -4 {-215.16 | ~420.22! -645.48 1 + 98.03 | - 87.80 || +23.40| +46.80| +70.20{ ~ 2.97 +15.32 | =21.00| - 42.00] - 63.00| +0.01 -15.74
L -1 j-91.60]| -182.20] -274.80 | + 41.17 | ~ 37.80 || - b4k | - 8.88| -13.37{ - 5.65 - 7.57 § - 9.84 1 - 19,68} - 29.52 | -6.67 =12.38
L - 2 1+ 91,60} +183.20| +274.80] < 41.17 | + 37.80 || + 3.54) + 7.08| +10.62| + 0.53 + 3.05 -10.14 | - 20.28] - 30.42 ) -8.73 -i&.;g
T ok {4243.60 | +487.20] +730.80 | + 24.54 | +201.90 || -24.30| -48.60! -72.90| + 0.53 -17.83 | -21.33 2 h2.66) - 63.99 | -8.73 -22.55
2-01 -0 o} 0 -109.17 | - 81.80 o} 0 -0 + 5,46 + 4,10 || =60.94 | -121.88} -182.82 | -0.40 -46.0%
2 - 5 |-o43.60 | -487.20] -730.80 | + 84.63 | -119.10 || +oh.30 | +48.60] +72.90| - 3.25 | +15.79 | -51.33| - 42.66| - 63.99 | -1.61 -17.21
5= 2 {= 91.60 | =183.20} ~274.80| + 20.25 | ~ 53.60 | = 3.54 | - 7.08 | -10.62] - 3.25 -50,9% | ~10.1k | - 20.28] - z0.42 | ~1.61 | - 8.81
5 < 3 |+ 91.60 | +183.20 '+274;8o - 20.251 + 53.60 § + 4.hli |+ 8,881 +13.32] - 1.13 +2.48 | - 9,84} - 19.68] - 29.52 | -3.25 - 9.82
3 -5 [+215.16 | +430.30 | +645.48 | + S6.74 | 4P04.00 || -53.40 | -46.80 | =70.20 | - 1.13 | -18.40 || -21.00 | - 42.00| - 63.00 | -3.25 | -18.19
3 = 0 {-215.16 | -430.32 | ~645.481 = 56.74 | 204,00 | +10.76 | +21.52 | +22.27 | + 2.84 +10.20 | ~29.53 | - 59.06| - 88.59 | =2.36 |- -23.92
0-1 0 0 0 0 o -10.76 | -21.52 | -32.27 | +10.90 | + 0.10 || -29.53 | - 59.06 | - 88.59 | +2.76 -20.07
0-2 0 0 0 0 0 o | o© 0 + 5.46 + 4,10 || 60.94 | -121.88 | -182.82 | 0.0 | -46.01
0-3 o] 0 o] 0 0 +10.76 | +21.52 | +32.27 { + 2.8k +10.20 || =29.53 | - 59.06! - 88.59 | =2.36 -23.92

a1



TABLE 2-6

ELASTIC ANALYSIS : END MOMENTS, SHEARING FORCES, AND NORMAL FORCES (o =:&3 B= ﬁg = 0.30)

End Moments Shearing Forces Normal Forces
Member] My, My, Mw3 My, [Mﬁzz ] Vi Vi, VWB N Vi, [V;:fggw] Nuy ng Nw3 Nu EN§;3§LWJ
1 - 0 4205.71 | #411.42. | +617.12 | =140.46 1] + 48.94 | =10.29 | =20.57 | =20.36 [ + 1.03 |~ = 6.95 || =30.00 | = 60.00 | = 90.00 | # 4.33 -19.25
1 -k | -205.71 | -b11.h2 | —617.13 | +140.46 | - 48.9% [ +20.42 | +40.84 | +61.06 | - 3.18 | 412,93 | —oh.ohk | - 48,48 |- 72.72 { + 3.11| -15.85
b= 1-59.07|-118.14 | -177.21 | + 68.10| + 6.77 | - 5.29 | -10.58 | -15.87 | — 3.73 ~10.52 || - 8.82 |'= 17.64 | = 26.46 | = 6.1k -11.22
L o 2|+ 59.07 ] «118.14 | +177.01 | = 68,101 - 6.77 | + 5.79 | +10.58 | +15.87 | + 1.31 |, + 4.95 | - 8.82 | - 17.64 | = 26,46 | <10.60| -1k.57
2 - L | +205.80 | +411.60 | +617.40 | + 21.90| +170.78" || ~20.42 | <40.84 | -61.96 | + 1.71 -1k.332 | -oh.ol | - 48.48 | - 72.72 | =10.60 -26.13
2-0 o] 0 0 -173,88| -100.41 o] o | o +6.701 + 5,03 | -60.00 | -120.00'] -180.00 | ~ 1kt 46,08
2 = 5| -205.80 | -411.60 | ~617.540 | 4111.98| - 70.37 | +P0.4 | +40.84 | +61.76 | = 4,06 | +12.27 | ~Ph.ok | - 48,48 | - 72.72 | - 1.kk =19.26
S =2 =59.07 | ~118.14 | -177.21 | + 29.98| - 21.82 |- 5.79 | -10.58 | <15.87 | - k.06 | - 7.00 | - 8.82| - 48.48 | - 72.72 | - 1.2k | - 7.47
5 = 3|+ 59.07 | +118.14 | 4177.21 | - 295.98 ] + 21,82 | + 5,29 | +10.58 | +15.87 | - 0.90 + 2,29 § - 8,82] - 17.64 | ~ 26,46 | - h,12 - 9.71
3 - 5| +205.71 | +411.40 | +617.13 | + 61.43| +200.36 || -20.42 | 40,84 | -61.26 | - 0.90 |  -15.99 | —2lk.ok | - 48.U8 | - 72,72 |- 12| -21.27
3 - 0| =P05.71 | 11.k0 | 617.13 | - 61.43 | -200.36 | +10.29 | 400.57 | +30.86 | + 3.07 | T +10.02 | ~20.00 | = 60.00-| = 90.00 - 2.89| -2k.67
0-1 0 o 0 0 0 <10.79 | -20.57 | -30.86 +12.03| + 2,06 | =30.00 | = 60.00{ ~ 90.00 | + 4.331 ~19.25
0-2 o 0 0 o 0 0 0 0  [+6.70| +5.02 | -60.00| -120.00 | +130.00 | - 1.44 | -46.08
0=-3 o] 0 0 o} o] +10.29 | +20.57 | +20.86 | + 3,07 +10.02 || =20.00| - 60.00 | = 90.00 | - 2.89 =24 67

o1



CHAPTER IIT

THE PLASTIC HINGE THEORY OF REINFORCED
CONCRETE FRAMES

3.1, General

The development of design methods based on inelastic
behavior of redundant steel structures preceded that of
similar methods for concrete structures. After World War
IT, engineers throughout the world concentrated much ef-
fort in investigating the behavior of steel frameworks at
ultimate load and in the development of practical plastic
design methods. Thus, a nuﬁber of alternative methods of
plastic design for steel frames have been developed. The
approaches of these different methods differ, but they all
recognize the following conditions as the requirements for
collapse of an all+stéel structure.

(A) Equilibrium Condition

Bending moment distribution must be in
equilibrium with external loads.

(B) Collapse Mechanism Condition

A sufficient number of plastic hinges must
exist to transform either the whole or part of

the structure into a mechanism.
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(C) The Yield Condition

Full plastic moment must nowhere be ex-
ceeded, A design is considered valid when all
the three numerated conditions are satisfied at
the final collapse stage.

In the case of designing reinforced con-
crete structures, not only the satisfaction of
these conditions is necessary, but also two
other important considerations related to a
successful design should be investigated

carefully.
(A) Rotation Capacity

In structural steel, little attention is paid to how
much any one hinge section is strained, before all the
other hinges are formed. Such considerations are usually
not necessary for structural steel because of its high
ductility. The ultimate strain for concrete in flexural
compression is limited from 0.32% to 0.5%. Therefore, in
limit design of structural concrete, rotation capacity of
sections must be considered in greater detail than for
structural steel.

Furthermore, to avoid excessive flexural cracking, it
is desirable to limit hinge rotations for structural con-
crete even when considerable rotation capacity is present

after extensive cracking.
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(B) Distribution of Momént Resistance

By varying the amount and location of reinforcement,
the positive and negative moment resistance of structural
concrete members can easlly be made different, and the
moment capacity can be varied along the length of a pris-
matic member. It is therefore éonveniently‘possible to
reinforce a concrete structure in such a manner that all
plastic hinges necessary to form a mechanism will then
form at practically the same load, and thereby the hinge
rotations required are small. Similarly, it is also pos-
sible to reinforce the structure in such a manner that the
yield condition may be satisfied without causing yielding
between the chosen plastic hinges.

An introductory explanation of '"The Theory of Plastic
Hinges for Reinforced Concrete Frames!' developed by
Professor A, L. L. Baker, will be shown in the following

section,
3~2. The Plastic Hinge Theory
(A) Basic Concept

The classical elastic eqguations, developed by Miller—
Breslau and others, may be applied to the '"Idealized
Frame'" in order to check that the hinge positions chosen
are at sections where plastic deformation will occur under
ultimate load, other sections being reinforced to remain
elastic, and to ensure that the rotation of the hinges is

not excessive.



20

The principal aim, when designing a frame by the
theory of plastic hinges, is to obtain uniformity of the
cross-section of the various members, and an economical
distribution of bending moments under the plastic condi-

tions, which occur with over-locading prior to failure.
(B) Basic Assumptions

1. When a frame which is n times statically inde-
terminate, is increasingly loaded throughout, n
plastic hinges form before failure occurs, and
the structure becomes statically determinate.

th plastic hinge

2. The load applied when the n
forms is the ultimate load.

3. The reinforcement in the members of the frame
between the plastic hinges remains elastic and
does not yield when ultimate load is applied.

4, The plastic hinges are concentrated at points.

5. Throughout the frame, under increasing load, the
relation between load and moment of resistance
follows a straight line portion OA, except at the
hinge points where, after the plastic moment of

resistance has developed, a horizontal line por~

tion such as AB in Figure %-1 is followed.
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Figure %-1. Idealized Bending
Moment-Load Characteristics
of a Plastic Hinge

(C) General Equations for Statically-Indeterminate

Frames

In deriving the general equations for a frame n times
statically indeterminate, n frictionless hinges are
assumed to be inserted in the frame and n unknown equal
and opposite bending moments Xl «ao Xn are assumed to act
von the members on either side of the hinges. For the
elastic condition, the rotation at each hinge due to ex-
ternal load and all unknown moments acting is zero. Hence,
for each of the hinges an equation is derived giving the
- following n equations from which the n unknowns may be
found.

k=n :
6iO'+£Zleéik = 0 i=1, 2 .00 1 (3-1)

where
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6.~ = Rotation of hinge i due to external load only

i0
acting.

6ik = Rotation of hinge 1 due to unit bending moment
acting at hinge k in direction Xk in a frame
that has become statically determinate by the
assﬁmed insertion of sufficient number of
hinges,

Xi = Unknown moment of resistance acting at hinge i

when the section is elastic.

In a frame n times statically indeterminate, which
has been loaded until n plastic hinges have formed, the
rotations 8,, 65 ... 8 , are the sum of the rotations due
to the external loads and the plastic moments acting at each

hinge so that expressions of Equation (3-1) are thenmodified to

k=n
6io + glxkaik = ol ei i = l, 2’g oas Ile (5"“2)

Also, it can be shown that

M. M M. M
_ 0k _ ik
801 _f,EI ds by -f s ds (3-3)
where,
ii = Plastic moment of resistance for hinge
section i.
MO = Free bending moments due to external load

only acting on the frame being made stat-
ically determinate by the insertion of

hinges.,
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M. or Mk = Bending moments due to unit moment acting
at hinge i or k in direction Xi or Xk_on
the frame made statically determinate.
ei = Resultant opening or rotation of hinge i
in the direction opposite to Xi due to

external load and all plastic hinge

moments acting.
(D) Available Hinge Rotation

| In the limit analysis of reinforced concrete frame,
the amount of hinge rotation should be studied carefully
and limited below a permissible value, so that to prevent
the undesirable sudden failure of the structure, which
might otherwise occur. The plastic deformation adjacent to
any hinge section (Figures 3-2 and_B—B) equals
!

P s
o md

for members in which tension develops, or

L'
-—a= S
0

for members such as columns in which no tension occurs.
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Lp
\
I
L'?
Actual distribution 000 e
Idealized distribution
(a) Bending Stress (b) Plastic Strain

Typical Beam Support

)/l R S S A | Lt
/
Y

1 N

Actual distribution _______

Idealized distribubtion

(¢) Bending Stress (d) Plastic Strain

Typical Column

Figure 3-2. Actual and Idealized Distributions
of Plastic Strain

P ‘ 'S
. n-d I =g
nl“i £e 1 nyd 6 15 :
d p |
)
|

e n
Nr= 81 ’ o
/Z o (T-n) 4
l_":ec;(lw-nl)F
By |
(2) Elastic  (b) Plastic (c¢) = (a) + (b) ()
Strain Strain - AE NG
Peems Columns

Figure %3-3. Distribution of Strains at Hinge Section
at Ultimate Load
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The distribution of plasticity along a member is gen-
erally‘determined by:

1. The slope of the bending moment diagram.

2. The stress-strain curves of the concrete

and steel.

%, The local behavior of the member in resist-

ing bending.

It has been proved by tests that plasticity can
spread overva length at least equal to the depth of the
member. (3). Therefore, it is safe to assume an idealized
uniform distribution of plastic strain, as shown in
Figures 3-2 (b) and (d), over a length Ip equal to the
depth of the member. The available plastic deformation

then, before failure occurs, is (see FPigures 3%-2 and 3-3)

for members in which tension develops; It is safe
and generally convenient, when checking values of rota-

tions, to assume an = Ty And

for members in which tension does not occur.
Safe limiting value of Sd = 0,01 for suitably bounded
prismatic sections is given by Baker (3) based on test

results.
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(E) Safe Limiting Values of EI

The derivation of EI values from the basic stress-—
strain characteristics of the steel and concrete used has
been discussed in various papers. The following results

are reproduced from Baker's book (3).

TABLE 3-1
MOMENT OF INERTIA FOR CRACKED AND UNCRACKED SECTIONS

S L © M'nqd
Generally E'c (elastic) = 500 Cu E'c (plastic) = 500 ¢t If= C‘l
Condition Section E'c I I'(nléOQB)
. b33 -
Elastic : Cracked Rectangular 500 cu —5-(nf »Ynf) 0.120 ba3
3
Plastic : Cracked " 500 ¢t g% %?ﬁ(nf “Yﬁl3)** 0.120 bd3
5
Elastic : Uncracked " 500 cu bd, pbd3 (m=1)(1-n, )2** 0,135 bF*
15 ™
Bg
*Assuming n, = 0.5 d = 0.9h, p =-01 m = =
1 E.

*Adopting British notations for ultimate strength design of concrete
sections.

(F) Summary of Design Procedure

The procedure for designing a frame by The Plastic
Hinge Theory may be sﬁmmarized as follows:
1. Assume a general arrangement of the frame and

concrete sections appropriate for the loads.
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2. Assume sufficient hinges in the frame to make a
statically determinate system. Also assume re-
sisting moments acting at the hinges giving an
economic distribution of bending moments. When
necessary, éssume different sets of hinges for
different éases of load.

2. Check the positions of the hinges and value of
rotation at ultimate load by applying general
Equation (3-2), making adjustments until a satis-
factory solution is obtained for each case of
idealized frame.

4, Desgign a practical frame at least as strong in

all parts as each case of idealized frame.
3-3, Design Criteria of Plastic Hinge Theory

A design can be considered valid, if for a set of
assumed positions, plastic moments and rotations of hinges,
the following conditions are satisfied:

1, The sum of the rotations at each hinge due to

loads and all plastic-hinge moments, i.e.s
k=n

5+ 2 Th. . i~
lO + k:lX bik‘) 1 = lg 2 s 00 I

is negative following the usual sign convention.
2. The resultant bending moments for ultimate load

at all sections between the plastic hinges are

within the elastic range of the main steel and

the ultimate strength of the concrete.



The rotation at each hinge does not exceed a
safe limiting value for that hinge, in order
to avoid premature crushing of the céncrete

or fracture of the steel, if steel with con-
siderably limited ductility is used.

At working load, elastic conditions obtained
at all hinges and the strains are small enough
to avoid wide cracks, large deflections or

spalling of the concrete.



CHAPTER IV
ANATYSTS BY THE PLASTIC HINGE THEOCRY
4.1, Genersal

The plastic hinge theory and the design procedure by
the trial and adjustment method, developed by Baker (3)
and briefly introduced in previous chapters, will now be
applied in the limit analysis of the same structure which
was aﬁalyzed in Chapter II by a conventional method based
on elastic theory. The primary purpose of this chapter is
to show the application of the theory to the limit anal-
ysis of a pin based reinforced concrete gable frame, having
parameters B = 0,1, 0.2 and 0.%3. A detailed analysis is
carried out for the case with B = 0.1 and following cases

of loading.

(A) Gravity load or dead plus live loads: wD+L =Iﬁ?ft,
(B) Wind load: W, = 0.67ft.

(©) 74 (Wp,p + W) -

For the cases with B = 0.2 and 0.3, only loadings (4)
and (B) are considered in analyzing critical end moments
and compared to the corresponding end moments obtained from

the elastic analysis.

29
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Other data necessary for the analysis are assumed as
follows:

Load Pactor = 2  f'c = 3000 psi
Cu = 1,25 £'¢c = 3750 psl C' = 0.85 Cu = 3200 psi

4.2, Analysis by The Plastic Hinge Theory

Each of the three casges of different loading is ana-

lyzed separately. The results obtained are tabulated.

{4) Analysis of Case (A) Loading
1. Bketeh of Loaded Frame

20" [6°
6

(a). Frame With Case (A) Loading

wUl w8 ?lyf“t:o
NEENENENEEN

= ‘ Q
D 4 &
Wi & I = constant
()
L 60’ N
" [

(k). Reduced Frame With Case (A) Loading

Figure 4=1. Sketch of Loaded Frame
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The structure shown in Figure 4-1(a) is symmetrical
about its center column and is also symmetrically loaded.
Therefore, Jjoint "2" can be considered as a fixed end sup-

port and, thus, reducing the frame to the one shown in

Figure 4-1(Db).
2. Agsumption of Hinge Locations and Trial Sections

Since the reduced structure has two redundants, two
plastic hinges are located at joint““lﬁ and ' 2%, thus
making the structure a statically determinate one., A con-
crete section of 12”:X 27" will be used in this trial and

adjustment solution.

%, Moment Diagrams due to Loads and Plastic Moments

2
Liber bbb bidy

~%

(a). Determinate Structure (b). Moment Diag. due to
Load
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(e¢). _Moment Diag. due (a). _Moment Diag. due

to Xy = 1 to X, = 1

Figure 4-2. Moment Diagrams due to Load and
Plastic Moments

4, Determination of E' I’ Value

Fromn Table 3-1, E“GIVavalue for cracked section is

given as follows:
E”CI“ = 500 C' x 0.120 bd3,

For f'c = 3000 psi Cu = 3750 psi C'=0.85 Cu

= 3200 psi
' P2
E',I' = 500 x 5200 x 0,120 x 12 x 247 xi—}m = 221 x 103 K-T%
S _30.60 . ., i
BT I7 - 22w ior © Lt EL0
n 20 -
ETIT T Tk IO - 0.9x10 © |

5. ©Solution by the Trial and Adjustment Method

The solution is carried out in tabular form, with

properly assumed values of Xi“s and the values of rotation
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coéfficients of
fLMlMO LM.iMk
Bep = = 48 and &,, = == d8,
i0 % E' I ik 0 EGI

which are readily obtained by performing integration for

all members concerned.

| TABLE 4-1
NUMERICAL SOLUTION OF PLASTIC MOMENTS

Plastic Hinge 1 Plastic Hinge 2
P Ap A, | &'s* Pla; [Ap [0'S]| P Ay |4
m, |1800 - .607|-1001 . 233 419
m, | 900 + .397)+ 357 . 175] +168
m, |1800 - .397|- 671 -.467| -838
m, | 900 + .280}+ 252 . 292| +263
X, | 400|70]|170| +1.364|+ 547|+96 +252'+f677 +271| +54 [+115
X, | 400[70|150|+ .677|+ 271|+48 [+102 [+.700| +280| +49 [+105
~1155 +144 +334 -826 +103 +220
+ 818 ~-337 +501 -275
1st Trial - 330x10°" - 3 ~275%10™" - 55,
-9, rad. 4:{10—4 4:xl()"
_ + 144x10° 0 +103x10" 0
nd Teigl o, | ~193x10° % ~172%107%

L L |
M.M M.
*610 = Ij E—.}——]—:Q.- ds] 10“’%L rad. *6ik ’U E.lMIk. ds:’ 107 rad,
0
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6. Investigation of Hinge Rotation

The permissible plastic hinge rotation for members in

which tension develops is given by

5 |
8 = —& ror s, = 0.0, an - 0.5

ny

200 x 10~% radian .

D
]

The calculated values of O's at hinge 1 and 2 are

4 4

rad.< 200 x 10~

D
it

192 x 10~ ‘radian. O.K.

8 ~* rad.< 200 x 107 radian. O0.K.

5 172 x 10

i

Since no excessive hinge rotation will occur, the

analysis is considered satisfactory.
7. The Resultant Bending Moment Distribution

Applying the conditions of static¢ equilibrium with
1

the plaStic moments Yl = 470k”l, fg = 470k_ the bending
moment distribution under ultimate load is shown for the

frame.

Figure 4-3%3. Bending Moment Distribution
Under Ultimate Load
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(B) Analysis of Case (B) Loading
1. ©Sketch of Loaded Frame

g = 20:8

26!

wu=JJ25Tt.

0
| 60! g 60° |
L

Figure 4-4. Frame With Case (B) Loading

2. Assumption of Hinge Locations
The structure shown in Figure 4-4 is indeterminate to
third degree, three hinges at Jjoints 1, 2 and 3 are

agsumed.

5. Moment Diagrams Due to Load and Plastic lMoments

wu = l.gk/ft.

(a) Determinate Structure



60 k-ft °

= 27408 "
L}. = 2960"1‘
=384 v

(b) Moment Diagram Due to Load

(¢) Moment Diagram Due to Plastic Moment X; = 1

3

(e) Moment Diagram Due to Plastic Moment X, = 1

Figure 4=5. Moment Diagrams Due to Load and
Plastic Moments

36



4, Determination

)
ECI

BT TV
E'LL

S
T
E CI

of E'CI' Value

221 x

L}

1.4 x

0.9 x

103

10

10

-

k-2

4

5. Solution by the Trial and Adjustmen_t Method

The solution isl

as follow\s:

TABLE 4-2

carried out in tabular form

NUMERICAL SOLUTION OF PILASTIC MOMENTS

o -Plaséic H_in_ge 1

Plastic Hinge 2

Plastic Hinge 3

ot s 0

vMonv;'enbts_U : .
F APAE Ofgh B Ay Ag BT P A Ap s'vs' Poohp Ay

,ﬁ'l’ G A 4..300.-,»18,.',_ '_'0_, * o - 3 o,.
my 2748 . o - 840 -231 - 233 - 64 - 033 - 6l
‘ma 216 ‘  - - 572 -12 =175 - 4 =175 -k
my 296k = .8h0 - ~2h9 - k67 138 - Jh67 -138
mg 384 =770 <296 - 2583 ~22h - o583 224
mg B4 L =300 115 - oo .0 o
X 96 ‘:1#_' 40' +3.110 4299 +hl 4125 41,610 #154 +23° +65 +1.910 +183 427 . 477
X, 92 10 3k +1.610 +148 +16 '+ 55 +1.400. 4129 41k +h8 +.257 + 2k +3 +9 .
Xy 78 "‘;8 “2:_8- +1.910 +148 435+ 54 . + -.2‘5? 420 45 +7 +2.365 +185 43 +67
U =903 495 +23k 430 438 #120 w5h5 470 +153

ST _+61h =289 4303 127 4392 =153
lst. Trial-8 rad. - 5289:‘;101, - 551; . -127x16‘_:, - 7 -lsleo"; o
L _+95x10° ¢ X107 _+ 28x10" - x10~ +-70x10°

~ ond. ﬁ;al-ei‘réd.{ ' s1ghx107t 20 o 167

-lO5xlOJ‘

37
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Investigation of Hinge Rotation

6, = 194 x 107 rad. < 200 x 107" rad. 0.K.
» " o

62 = 107 x 10 rad. < 200 x 10 rad. 0.K.
" " o

65 = 105 x 10 rad. < 200 x 10 rad. 0.K.

The analysis, with the assumed positions of
hiﬁges and the plastic moments il - 11051,
?2,= 102k”13 and ?5 - 9eF—1 acting at joints 1,

2, and 3, respectively, can be considered

‘satisfactory.

- The Resultant Bending Moment Distribution

With those known plastic moments il’ Ezg

and X,, and applying the conditions for static

3

equilibrium, the bending moment distribution un-

der ultimate load is shown below.

Figure 4-6. Bending Moment Distribution Under
Ultimate Load
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(C) Analysis of Case (C) Loading

1. Bketch of Loaded Frame

;3/4wu = 1.5Y¢t.
TR ER NN ARRERRNNY

20! |64
26!

'Figure 4=,

Sketch of Loaded Frame

2. Assumption of Hinge Locations

As in the previous case, three hinges at
joints 1, 2, and 3 are assumed.

3.

Moment Diagrams due to Load and Plastic Moments
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. S o > 1.5%t.
xg\i bri bbb bbb bbb bbbedd
(&)

i

3?
e

(a)

: 4Ok;~f t

W

i

1143, 9kt
691.0k-ft
Lg2 PRIt
387 k-ft
] ° m9 = mll
(b) Moment Diagram due to Load Gysk-Et
o88k-ft

[ I 1

i

ftou

(e)

(d) Moment Diagram due to Plastic Moment 332 =1
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(e) lMoment Diagram::due to Plastic Moment 3('5 =1

Figure 4-8. Moment Diagrams due to Load and
Plastic Moments -

4, Determination of E'CI' Value

E.'@iv' = 201 x 105 ¥t
ﬁTS'—IT = l.4 x 10-4

oL
E—r'll—]:T = 0.9 x 10-4

¢

5. Bolution by the Trial and Adjustment Method
The solution is carried out in tabular form

(Table 4-3).on the following page.
6. Investigation of Hinge Rotation

The 6, values obtained at hinges 1, 2, and

- -4 4

3 are 179 x 107, 76 x 10” and 200 x 10~

radians, respectivelyq Since the permissible

~ value of hinge rotation ® = 200 x 10~% radian (3)
is not exceeded, the analysis can be considered’

sa‘cisfac_tbry°



NUMERICAL SOLUTION OF PLASTIC MOMENTS

TABLE 4-3

Moments Plastic Hinge 1 Plastic Hinge 2 Plastic Hinge 3

S R W PAp Ag B s T T P8 A
m, 45 - 300 - 1h4 0 o} 0 0
m,, 1143.9 - 840 =960 - 233 266 + 233 +266
oy 691.2 + .572 +395 + .175 +121 - .175 =121
m,, Lso .7 - 840 =380 - JA67 -211 + 467 4211
e 287 - .770 =298 - .583 =225 + 583 +225
mg 675 + .502 +338 + 408 4275 - 408 -275
iy 288 + .300 + 86 0 0 - 300 - 86
mg 1350 0 0 - 467 =630 - 373 =503
mg 675 0 0 + 292 +197 + .280 +189
m, 4 1350 0 0 - .233 =314 - 607 =819
m 675 0 0 + .175 +118 + 513 +346
X, 200 30 100 +3.110 +622 + 93 +311 +1.610 +322 + 48 +161 -1.910 -382 - 57 =191
X, 300 120 180 +1.610 +483 +193 +290 +1.400 +420 +168 +252 - .257 - 77 - 31 - 46
x3 300 86 200 -1.910 -573 -164 -382 - .257 - 77 - 22 - 52 +42.265 +710 +204 +473

T G am T Om o
1st Trial -0, rad. -BOJ.XJ.Oi -82x10"b’ -270x10:1+ +91x10 -316::10_1F -80x10
+122x10 =0 +194x10 =0 +116x10 =0

ond Trial -0; rad. -179x10 rad. - 76x10 rad. -200x10 rad.

ctr
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7. The Resultant Bending Moment Distribution

With those values of plastic moments,
1 = 250k‘ft9 j—cg = 420k_ft, and iB = 586k—ft,

and by applying the conditions for static

X

equilibrium, the following bending moment

distribution under ultimate load is obtained.

Figure 4-9. Bending Moment Distribution Under
Ultimate Load )

4-3, Table of Momenté, Shearing and Normal Forces

Having found those ultimate moments at each critical
section for different loadings, the corresponding shear-
ing and normal forces are easily obtained by the conditioms

for static equilibrium.(shown in Table 4-4).



TABLE =&
PLASTIC ANALYSIS : END MOMENTS, SHEARING FORCES, AND NORMAL FORCES. (a.= /3 PBa= 8 =0.10)
Moments Shearing Forces Normal Forces 7
Normal_
Section - Loading Morgzits Loading S?i:r Loading ., Fggzc;e,
’ () (B) (C) _ Design (a) (B) () Design (a) 6) (C) _ Design
1-0 #470.0 -110.0 +230.0 :ﬁzg°g 223,50 - 6.50 =20.50 -23.50 - 60.00 + 3.46 =38.82 - 60.00
1=k -470.0 +110.0 =230.0 T470°0  45h.16 - .66 +33.98 454,16 - 3h.75 - 5.69 -27.71 T 2T
b1 -289.0 + Sk -136.7 :2§Z°2 - 4,60 - 6.07 -11.13 -11.13 = 23.00 -12.74 <-2k.ib ~ ig:gﬁ~
ho2  +289.0 - Sk +136.7 t2§2°2 +15.60 - 0.7L - 0.99 +4.60 - 23.00 -14.00 -26.56 ~ 2700
- 4 +470.0 + 76.0 +552.0 +552.0 =54,16 - 0,71 +45.03 ~54.16 = 34,75 <14.10 -35.35 = 35.35
-0 0  -178.0 -132.0 _17g o 0  +8.90 + 6.60 + 8.90 -120.00 + 1.34% -96.75 ;12§:g2

2.5 -4700 +102.0 -420.0 :igg°g +54.16 - bo17 +40.92 454,16 - 34.75 - 405 -27.83 32:3?
5.2 -289.0 +25.8 -156.2 :2§g°g - 460 - k17 - 3.23 - 460 - 23.00 - b.o5 -19.00 700
5.3 4289.0 - 25.8 #156.2 fggg'g + 460 - 2.29 + k.33 +h.60 -23.00 -5.35 -18.79 T 2200
3.5 4470.0 + 96.0 +386.0 +470.0 54,16 = 2.29 =39.72 ~54.16 = 34.75 = 5.35 -27.60 - 3475
3.0 470.0 - 96.0 -386.0 -470.0 +23.50 + 4.80 +19.30 +423.50 - 60,00 - 3.30 -4k.43 - 60,00
0-1 0 0 0 0 “23.,50 417.50 - 2,50 =23.90 - 60.00 + 3.46 -38.82 =~ 60.00
0=-2 0 0 0 0 0 + 8.90 + 6.60 + 8.90 <=120.00 + 1l.34 =96.75 -120.00
0-3 0 0 0 O 423,50 + 4.80 +19.30 +23.50 = 60.00 = 3.30 ~4k.43 - 60.00
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4.4, Comparison of Critical Section Moments

ihe same structure is again analyzed for cases with
B = 0:20 and B = 0.30 in a similar way for both cases of
loading (A) and (B). The critical moments thus obtained
from these analyses are tabulated and compared with the
corresponding moments obtained in the previous elastic
‘analysis, in Table 4=5,

From the "k'" values of Table 4-5, it can be concluded
that for an indeterminate structure, in general, portions
~of the structure which are less stressed as indicated by
eiastic analysis, carry greater ultimate moments as can be
seen by values of "k" greater than 2.0 (load factor) while
those portions of ﬁhe structure which are highly stressed
according to fhe gsame analysis, undergo reduction of mo-
mehts9 as shown by values of "k" less than 2.0, due to the
redistribution of moments recognized in plastic or limit
analysiée_

In this particular study, it is observed, in the case
of gravity lcads that the degree of redistribution of mo-
ments among those critical sections reduces as the value
of B increases (as B increases, the "k" value approaches
load factor wvalue = 2.0). However, no significant trend
of redistribution in moments related to the value of B
can be seen in the case of wind load. This is probably
because of the resulting smaller values of moment due to

wind load and the greater freedom allowed in limit design

for a random selection of plastic moments within the limita-

tion of rotation capacity reguirements.



COMPARATIVE TABLE OF END MOMENTS OBTAINED FROM BOTH THE ELASTIC AND PLASTIC ANALYSES

TABLE 4<5

Aver—

o . . o M lasth‘
9 Elastic Analysis ~ C : Plaatio Analysis ) e P / lJ‘elast:u: e
- — Q - N = g g - "t .
o .. Cage (A) Loading Case (B) Loading = .- _Case (A) Loading .~ ‘Case (B) Loading. . Case (A) Loading Case (B) Loadlng k
.9 =010 1B=0.20 | B=0.30 | [=0.10 ] B=0.50 | B=0.30 | P=0.10 1 P=0.20 ] F=0.30 | B=0.10 1 B=0.20 ] [=0.20 | P=0.10] P=0.20] B=0.30| B=0.10] B=0.%0 | B=0-
X~ 0] #218.20 | +215.16 | #P05:71 | -59.60 = 98:03 | =140.46 | +470.00 ["+445,50 |"+410:86} =110.00{ ~£10.00 | ~336.00-{ 2.15. | -2.07 2.00 1.85 2,1k ?.39 2.10
11 b | =218.20 -215.16: | -505.71. | 459.60 [+ 98.02 | +140.56 | ~470.00 | -45,50 '-’41‘0’ 86| +110.00 | #710.00 ’+,,6 oof » " R w e L
1oh = ;f £130.0k | = 91.60 _'- 59.07 | +17.80 | + 41.17 + 63.107| =789.00 | -220.00 | ~130.00] + 450 |+ 42,60 Sapon| oo 2.40 " 2,50 | 306 | 1.04 0.55 11491
gl 413(5.,04' # 91.60 459,07 | -17.80 <4117 |- 68.10] +?8<')-..o<v>"§9?o.oo-]' 130.00 "< 5440 | - 42,60 [~ 37,00 | . M " S " " " "
? -”4 +290,79" ?2243.60 +905.So" *ée.eu.r + o5k .+ ?1.'90 470,00 | +380.00" +390.oo x 76'.00' 0 o} 1621 15671 1.90 _2.85 - - 1,98~
2“-.-'0 0 S0 0 | 83467 | ©102.177 -122.88 o ‘ov 0. 178,00 -178.00‘ 270,001, - -] - ' 9.'1; _1.63 | 1.65 }'1.80
2= 5] =290.79 | -Ph3.60 | ~205.80 | +57.04 | + 8463 | +111.98" -470.00 { ~380.00 | ~290.00 4107.00{ ¥178.00 | +220.00 | 1.67 | 1.56 | 1.90.| 1.79.{ 2.0 | 1.97 | 1.82
5= 2.| -130.04°| = 9160 = 59.07-| +10:40 | + 50.95| + 29.98 | ~789.00 | -70.00 |. 130,00} +'55.80| +.65.00 | + 52:h0 | 2.55 | k0’| p.p0 | S8 | maor | 1075 | 2.38
5= 3 | 413004 | + 91.60 |+ 59.07 | -10.40 | = 20.25 | = 29.987 +269.00 | +20.00 | +120.00] - #5.80| - 65,00 = sp.ko | v " " " " W]
3= 5| 4218.20 | #715.16 | +005.71 | +4B.65 | + 56.74 | + 61.43 | +470.00 | +445.50 | +410.86{ + 96.00| +140.00 | +136:00 | 2.15 | 2.07.| 2,00 | 1.97| 2.7 1.89 | 2.09
3= 0 =p18.20 | ~#15:16 | ~05.71 | ~48.65 |~ 56.74 | = 61.43 | ~470.00 | ~ii5.50 | +410.86 = 96.00 | “146.00 | <1160 | " " " N R "
.Rahge of! Redist:ribu.tion RatiosMk™ 111'62 ];56 135.90 . 111'79 122{07* . 0&'55 v 11;80
- S ©1o2.22 ) 2:4071 7 2.20- | 3.06 Z.21 2.39 1 ' 2.38

*Note: The load factor used in the plastic analysis is 2. 0 therefcre, & value of Wk greater th'm 2.0 1nd1cates an _increase in moment due to the redis- -
’ v_trlbutlon of moments recognlzed in plastic analysis. Aloo, a ‘value of My Jess than 2.0 irdicates a decrea_,e in moment due. to the redlstrlbutlon.

ot



CHAPTER V
BRIEF DESIGN OF CRITICAL SECTIONS
5=1. General

A brief design of critical sections of the reinforced
concrete frame is carried out in this chapter. The conven-
tional design method for reinforced concrete members is
applied to the resulting end moments under working load ob-
tained in_Chapter 119 and the ultimate strength method of
designing reinforoed concrete members is applied to the
resulting end moments under ultimate load obtained in

Chapter IV. In the former'éaseg'the ACI Building Code of

1956, and AKX['Reinfdrced Concrete Degign Handbook are

used, and for the latter case Guide for UltimatevStrength

Design of Reinforced Concrete is followed. (7), (9), (10).

Only those design preocedures for a couple of typical sec=
tions are shown in detail, and no design for shéaring and
bond stress is comsidered,

The designed results of necessary cross-sectional
dimensions and the corresponding steel requirements are
tabulated for both methods of design, and compared in

Table 5-1 (page 5730

47
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5-2. .Conventional Design

The following data are used in the design:

B .
fs = 20,000 psi n == = 10 f'c = 3000 psi
c
fe = 0.45 f'e = 1350 psi b = 12" t = 27"

d = 249 d' = 3"

The design follows.

(A) Design of Girder (Section’2~4)

M = 290.795=ft-  y - _16.82F b = 12" a4 = 24"

du = 3@0' t = 2711
N
b - P B
I =

[\
]
EN
AN
ﬁ\\g
NS
3 l ‘
d
kd
IV
|
=
\Lf
= e(in)
E(ft.)

t
mﬁ"
g
N
\\\\<

L i
%! JNES

General Bketch of Sections

Figure'5-1.

12x290:79 1 10.5 = 217:5" E = 35 = £552-18.15

¢ = T 16.82

e _ 217.5 _
d - 24 = 9907
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1. From Table 1, for 20,000/10/1350 k = 2%6
F

From Table 4, for bd = 12x 24 = 0.576
then, ' ,

NE = 16.82 x 18,15 - 305,4K-1t.

kF = 236 x 0.576 = 155,9k‘ftf

NE -~ kF = l69¢5k—ft.

Compressive reinforcement is required, since

(NE - XF') is positive.

| | |
2. From Table 7b, for & = 0.125 ¢ = 1.29;

therefore,

_NE - kF _ _169.5 _ _ ¢ 40
Als = ==g—= = T35 % o5 = O-47 1inf.

i

3. From Table 10, for § = 9.07 § = 0.866:1 = 1,11

From Table 1, for fs 20,000 psi a = l.44;

il

therefore,

As = B __290.79 - 7.58 in? .

Tadi T O l.44 x 24 x 1.11

Ths = As + A's = 7,58 + 5,47 = 13,05 in?.
. 1]
(B) Design of Column (Section 1-0) %; > 1
M = 218,25t pr _ oog.o¥ - 1om @ = ou

a' = 3" § = 27" h = 20 ft.
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h X
= Ratio
h 20x12
T = Tas o~ 20 > 10 Long Column

According to ACI Code, Sec. 1107, the equivalent

eccentrically applied locad on a short column is

given by
P = A p! - — 28.79
) [105 - 0005 %h_.] 195 - 0005 X2O
= 4lo2k ° (10).
Also,
_ 12 x 218.2 L \ o onen
e = 58,55 + 10.5 = 101.5! E = 8.45
e _ 101.5
d_ = 24 = 4‘023 °
From Table 1, for 20,000/10/1350 k = 236 ‘
From Table 4, for bd = 12 x 24 = 0.576 .
Then _ :
NE = 41.2 x 8.45 - 3ugk-Tt-
KF = 236 x 0.576 = 135,95 Tt
NE — kF = 21201k-ft. e

Compressive reinforcement is required.

| _
From Table 7b, for & = 0.125 ¢ = 1.29

- NE-KE  _2l2.l. . ¢ 85 in.2.

As! od T55x 24
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4, From Table 10, for % = 4,23 j = 0.866,
i = 102583 alSO a = 19440

= 8.02 in.?

L . NE _ 348
s ~ adi T l.44 x 24 x 1,258
ZAS = AS + AwS = 8002 + 6085 = 14087 inog

(C) Design of Column (Section 2-0) % <1

M= 83,685 T% P - e2.42K b =12v 4 = 15®
t = 20" h = 20 £5.
l; % Ratio
’ % = ~97§?lg = 20 > 10 Long Qolumn

therefore,

0 | S
P! 62.42 _ gg ok

P = - = ——
[1.5 - 0,03 21 ©O.7

2. For g = 15/20 = 0,75 from Table 27, part 1, the
average value of D = 5.25, and from part 2, with
20,000/10/3,000 and an estimated p = 0.0%20, de~
termined C = 0.58,

Compute
cp 22 . 0.58 x 5.25 x 12 X 83.68 _ yg53k
T 0
Add = 89,25
P = 240,25
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Equivalent eccentric load:

From Table 183 part 1. w1th
Ag = 12 x 20 = 240 in.?

and f'c = 3000 psi, load on concrete = lBOk
Balance to be carried by longitudinal Kk
bars = 112.2

From Table 18, part 2, select © No. 10 bars,
As = 7.62 in? “

- A 06 - ’
hetually p = 32 - 2582 - 0.031 - assumed p = 0.030

OOKO
:(D) Design of Ofther Critical Sections

Other sections of the frame are also designed simi-
larly for thelr cross—-sectional dlmen51ons and the corre-
sponding steel requirements. The final results are tabu~

lated in section 5-4.
5-%, Ultimate Strength Design (Whitney's Method)

The follewing data are used in the design:

fy = 40,000 psi f“e = 3000 psi b = 12"
t = 2!7H d = 2“_“ dﬂ - 59!

The design follows on page 53.
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el Py
B
t
d
N—1—
A ; A T
s
) s
n.as
klkud'
=a
l 0.85 £,
a a
2
T ' Agf : in,///cs = Mgty
= Agly

Cc = 0.85 f'c ba

Figure 5-2. Ultimate Strength Notation
With Rectangular Stress Block

(A) Design of Girder (Section 2-4)

k-ft k-t

M, = +552 N = 35.35"

u

and Mu = =102

Since the normal force is relatively small as com-
pared to the bending moment, only the bending moment Mu
will be considered in the design.

As a rectangular beam without A's the maximum steel

: . _ f'c : :
fox Asl is limited by Py = 0.40 Ty which provides

1

M 0.2306 f'c bd® = 0.306x 3000 x 12 x 242 XW

1

I
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b=
]

TA_ =

Since

expressed

for

to bes

e
i

Zhg =

0.40

8.63

=
o
i

H;! B
iy o
1

Asl

as:
Mu

Mu

1.35

8.63%

(B) Design of

= 15{700 lbo

fle % = _0040x5000x12x25/4ogooo
in.?

M, = 552 - 528 = oy k-1,
My/(d=d') = 2452%?%000

%8?%%8 = 0,34 in.?

+ ASE = 8,63 + 0,34 =8.97 in.?

ASfS

= 58575 ° the ultimate moment is

i

Asfy (d

- 102kwft

5 2
in®d > ASQ

=

o

=

a
§> = Asfy(d -

. A.S
l ° 508 “"'2"“’)

o

the steel requirement is found

0.34 in? , use

+ 1.35 = 9,98 in?

= 60

Koo o= o120

£t

3"t = 27" h =200

Mu = 4705~f%  po
u
ar =
b .
ln "E Ra’tl@
b 20x12
£

N

As2 1.35 in?

)
Column (Section 1~0) %— > 1

d = o4

Long Column
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According to the recommendatidn given for the slender
compression members in page‘@71 of the reference (7), the

equivalenﬁ eccentrically applied load on a short column is

given by:
Pu" : 60 k
P’Ll = = iy = 0.8 = 75 e
[1.6 - 0.04 2] .
Since C . (a-=4%) sz z  and e' = 470x 12 | o4 1
8 v u o0
0 Yy . I
Aty £.(d-a") = By(e' = 0.55+0.5a).
For 4d' = 3" d-4' = t-24"' =1t-6 assume a = 2"
thellg 4090@0 Ags(t°"6) = 603000(:949005174'005}{2)
For t o= 27" A“s = 5,8 in?
P! 60,000 ‘
B am 12- = A4 = 2
& = §E5TTCD ~ 0.85x 3000x 13 - 1-9%6T = 2"
as assumed 0.K,
P' 7 = 60,000 (94-13.5+0.98) = 4,888,000107 12
P | 1b-in.
uz = 75,000x81.48 = 6,111,000
1b-in.

As"3’3°y'»'((,1:== d“} zPuZ = 6,111,000

a0 . 65111.000 7.28 in® = A

s 40,000x 21 8

TA

i

7028 4+ 7028 = 14056 inog



(C) Design of Column (Section 2-0)

56

1. P"u = 120 k. M. =0 b=12" +t = 20"

u

P =253 = 150 k. £, = E% - %2Ox923 - 463 psi
< flc = 5000 psi;
No reinforcement is required.
2 Mu = 178 k-ft, P“u = 1,34 k &£ 0O b = 12"
t = 20" d = 17;5” a' = 2;5”

In this case, the section can be considered

as under the action of Mu only.

vz
§

He

Also, M, =,Asfy(d_*_%)

441 k-ft. > Mu = 178 k-ft.

= 0,306 f'c bd® = 0.306 x 3000 x 12 x (20)2

0.K.

a = 1.308 AS

178,000 x 12 = 40,000 AS(17~cOo654aAS)

5@5 inoz = Aﬂ

fe

A

] S

ZA

<] 5"5 + 505 = 7aO iﬂoz

]

(D) Design of Other Critical Sections

-Simiiarly9 other critical sections

of the frame are

also designed for their cross-sgectional dimensions and
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corresponding steel requirements. The final results are

also tabulated in Table 5-1.

5t

Table of Dimensions and Steel Requirements
TABLE 5-1
Cross—~ Steel Area Reguirements
Bection Sootlondl  Elastic Analysis Plastic Analysis
}As ‘AE As*Avs Ag Ass As+Aﬂs
1 =0, 12"x27" ) ) _ 3
3 -0 . 8.02 .85 14.87 7.28 7.28 14.56
1-4 i g :
3.5 ' 5.9%3 3,14 9.07 7.35 1.45 8.80
4 - 1 v
4 om 2 L] - “ . .
N . : ’ 5050 0056 5086 4005 Oo?O 4075
5 = 2 29
5 = 5 LR
2 e i Ll .
2 -5 0 7,58 5.47 13,05 8.63% 1.35 9.98
2 -0 12"x20" 3.8l 3.8l 7.62 3.50 3.50 7.00

Total Steel Area

48,37 45,09
‘ in? in?

% saving of steel

B(A)g - Z(A))p

x 100 = 28:37=45.09 + 100 = 7.5%

Z(AS)P 45.09



CHAPTER VI
SUMMARY'AND CONCLUSIONS
6-1. Sdmmary

A twomspan hinged base reinforced concrete frame was
analyzed both by élastic and plastic methods and briefly
designedﬂfor'its'critical sections. The dimensions are
-the same, and the moment of inertia is assumed constant
throughout the frame for both methods.

In the case of elastic analysis, end moments for three
values of parameter B, with three different gravity loads
and ‘a constant win&:léadq:wefe'dbtained-by utilizing
the moment ‘coefficients. Analysis of' the same . frame,
by the plastic approach, was.- done by.‘the application
of the plastic hinge theory for reinforced concrete frames,
generally considered as a part of the theory of limit
design.

A detailed analysis was carried out for the case with

B =0.1, W 1%f6, , W, = .6¥£t. , and L.F. = 2.0, how-

D+L ©
'evergvonly brief analyses of the critical end moments for
the cases with B = 0.2 and 0.3, were done for the purpose
of comparison.

A brief design of cross-sectional dimensions and the

>8
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corresponding steel requirements was carried out. For the

conventional design, the 1956 ACI Building Code (10) was

followed and,for the ultimate strength _design9 procedures
recommended by Whitney (7) was followeda Finally, results
obtained were tabulated and compared. In this particular
study, 1t was revealed that approximétely 7.5% of Stee;
might be saved by the adoption of the plastic approach.

6-=2. QConclusions

Two basically different methods of analysis were pre-
sented in this report. The conventional method of approach
to the analysis of indeterminate structures is based on
the theory of elastic deformation and is generally recog-
nized as the most efficient and powerful tool in the solu-
tion of structural problems. The second method of ap-
proach differs from the first, in recognizing the read-
Jjustment in the relative magnitude of moments,; and thereby
the corresponding stressés at various sectionsg due to
non=linear relationship between load and mdment as ulti-
mate load, is approached. Regarding the plastic method of
approach, the following conclusions were made:

(A) The maximum load capacity of statically deter-
minate structures with sections proportioned by
ultimate strength design equals the capacity
computed by equilibrium conditions alone. For
indeterminate structures, however, the maximum

moments at various sections as calculated by



(B)

(¢)
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the theory of elastic displacements are due to
different load combinations. Therefore, the
maximum load capacity of an indeterminate
structure as a whole may be considerably
greater than that indicated by the ultimate
strength of one section. By limit design,

the momentvredistribution involved is con-
sidered in design, and the maximum load capac-
ity will equal the calculated capacity for an
indeterminate st#ucture,

Limit design is simpler than the design by

the theory of elastic displacements, especially
for those structures with large number of re- |
dundants. The formqr permits an intelligent,
arbitrary choice of redundant moments, while
the latter requires solution of simultaneous
equations.

A reduction of negative support_moments by limf
it design would avoid reinforcement congestion.
This would be an advantage particularly in

buildings where negative beam reinforcement in

Two directions intersects the column reinforce-

ment. By reducing beam moments at these Jjoints

and, thereby, the corresponding amount of nega-

tive reinforcement required, better concrete

placement and compaction would become possible,

and an improved concrete structure would result.



This report is expected to serve as a guide to the
future application of the concept of 1limit design to the
analysis of indeterminate reinforced concrete framed

structures.

61
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