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PRgFACg 

'rhe inspection and cri.ticism of the data from 2P factorial experi ~ 

rnents ae,, aJways necessary. A rule of inference is given for detectin~' 

a small number of real effects or interactions in the presence of a 

majority of error contrasts. This rule uses the ratio of the largest 
i·•'. 

order··statisU.c of the contrasts to one whose expected value is nearest 

the standard error of contrasts. A sensih vity function for this ratio 

is develope:p. The possibility of discovering the presence of bad values 

in the raw data is also studied. 
·.1. 

I wisq to express my sincere gratitude to Dr. David L. Weeks 

for his suggestion of the topic of this report and for his interesting 

comments on the subject. Appreciation should also be expressed to 

Professor Herbert Scholz, Jr., for serving on my advisory committee. 

Certainly, I am indebted to Mrs. Mary Jane Walters for typing this 

report in her off duty hours. 

V. G. G. 

iii 



TABLE OF CONTJtiNTS 

Chapter 

I. 

II. 

III. 

INTRODUCTION . . . . . . . . . . . . .. ' 

CONSTRUCTION OF A HALF-NORMAL PLOT 

AN ALTERNATE BASIC ASSUMPTION FOR THE 
ANALYSIS OF TWO-LEJVEL F ACT'ORIAL 
EXPERIMENTS ... , ...... , , .. . 

Page 

1 

• • • 2 

• • i 9 

IV. A TEST STATISTIC FOR HALF-NORMAL PLOTS • . 15 

V. STANDARDIZED HALF-NORMAL PLOTS 25 

VI. USE OF HALF.,.NORMAL PLOTS IN CRITICiZING DATA . 31 

VII. CONCLUSIONS . 

BIBLIOGRAPHY , . . . . . . 

iv -

" • • • • Ii • i • 

. . . 
' 

36 

38 



.LIST OF FIGURES 

Figure 

1 General purpose half-normal grid. . .. . . . 
2 Half-normal scales for (a) 15 d. f., (b) 31 d. f., 

(c) 6 3 d. f. , ( d) 12 7 d. f. . . . . , . . . . ) . . 
3 

4 

5 

6 

7 

8 

9 

10 

11 

Half-· normal plots of ten sets of 3 l random 
standard normal deviates. 

fj 
Half-normal plot of a 2·· experiment 

Half- normal plot of a 2 4 experiment 

Empirical cumulative distribution of log 10 t 31 (O) . 

Estimated cumulative distribution of log 10 t (O) 
for n"'l5, 31, 63, 127 ...... , . · .. 11 ••••••• 

Bounds on sensitivity function of t 31 (b.) for 
one effect of size ~ . . . . . . . . . . . . . . . . 

Approximate sensitivity function of t 15 (.6.) for one effect. . 

Ernpiric~J cumulative distribution for log 10t 15 _. (O) 
fo.rJ=O., l •...•... , ....... J. , . 

Standardized half-nonnal grid for 15 contrasts. . . . • • 

Page 

4 

6 

8 

12 

16 

18 

23 

23 

24 

28 

12 Standardized half-normal grid for 31 contrasts. 28 

13 Standardized half-normal grid for 63 contrasts.. • 29 

14 Standardized half-normal grid for 127 contrasts 29 

· 15 An example of a standardized half-normal plot 
for rn contrasts. . . . . 30 

16 Half-normal plot for 24 ranges . . 33 

17 Half-normal plot for 15 contrasts from original data . 34 

18 Half-normal plot for 15 contrasts from corrected data 34 

V 



CHAPT'FDH. 1 

lN'I' HO DU C'I'ION 

The idea of plotting the empirical distribution of the usual set of 

orthogonal contrasts from a 2P factorial experiment on a special grid 

as an aid in the criticism and interpretation of the experiment seems to 

have been l:hat of Cuthbert Daniel. Even if the idea wen~ not originally 

his, he has adopted it to the point that he is probably the best known ex-

ponent of the use of half-normal plots in the interpretation of suitable 

data. Mmh of the pub1ished literature on the subject of half-normal 

plots is by Cuthbert Daniel and his friend, Allan Birnbaum. Dlniel(5) 

:reports that .J. W. Tukey has developed a half-normal grid in which the 

half··norrnal li.ne is a horizontal strai.ght line and the logarithms of the 

absolute values of the contrasts are used as one coordinate. It is 

believed tha,t a paper on Tukey's hal:f···norrnal grid has never been pub-

lished si.nee it could not be found in the available literature and since 

Daniel indicated that his information on this half-normal grid was 

recei7ed from 'I'nkey in personal communications. This paper, then, 

is devol;Fd primarily to a discussion of the half ~normal plot as developed 

and used by Cuthbert Daniel and Allan Birnbaum. More specifically, 

thie paper discusses the use of the half-normal plots in the interpreta-,., 

ti.on of two-·level factorial experiments. 
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CHAPTER II 

CONSTRUCTION OF A HALF-NORMAL PLOT 

In a 2P faetorial experiment there are 2P - 1 contrasts. Each 

of these 2P - 1 contrasts is orthogonal and is composed of 2p- l 

observations minus 2p- l observations. If the original observations 

have errors which are independent and normally distributed with mean 

zero and variance er 2 , then the zP - 1 contrasts are independent and 

normally distributed with variance 2P cr2 • If the experiment is a null 

experiment, that is, there are no real effects or interactions, then the 

expected value of the contrasts is zero for each contrast and the con-

trasts are independent and normally distributed with mean zero and 

variance 2P IT2 . However, even though the expected value of each con-

trast is zero, we know that since the original observations have errors, 

the 2P - 1 contrasts will not be, in most cases, equal to zero. In 

fact, tt:ey may be either positive or negative and their sign is arbitrary. 

This indkates that maybe we should look at the absolute values of the 

contrasts. If there were no true effects or interactions, these con-

trasts will follow the positive half··normal distribution whose density is 

where O < x < oo and er. 2 ~ 2P o· 2 is the variance of a contrast. 
- C 

This suggests that we can compare the 2P - 1 contrasts with 
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this di<:-1tribut:i.on. Of course, this comparison may be done in several 

ways. One of these ways :i.s to graph the curnulative sample distribution 

of the contrasts against the cun1nlative haJf--norrnB.1 distribution. It is 

this method, which seems to be a very informative one, that is the sub~ 

j e ct of this report. 

Normal probability paper is so designed that the cumulative dis~ 

tribution of d normally distributed chance variable appears as a straight 

line. This is achieved by means of a non-·linear transformation of the 

vertical scale of the graph of the cumulative normal distribution curve. 

The result is a paper in which the h (horizontal) scale is arithmetic 

and the v (vertical) scale, which ranges from - oo to + oo , is labeled 

so that v equals zero is marked 50%, v equals 1. 282 is labeled 90%, 

v equals 1. 645 is labeled 95%, etc, 'I'he variable v is not normally 

printed on the paper, but only a sequence of the values of P where 

P • label for ordinate v ·· 1: I 2
1~ exp( -22 ) dx, -oo < x < +oo, 

Let us now consider a random sample xl' x 2, x 3, · · ·, xn from 

a.normal density function with mean zero and variance er 2 . . C 

Let k be a number such that P of the x's are less than or equal to 

k. Then 

rv 1 ( 
p ... Joo / 2-;~ exp 

·=·· f.k I a-c 1 I ,12 ) ::. · exp - 2·- du; 
.r21r ,. -oo V , 

-oo<u<+ oo 

where • means "is estimated by". Hence 



• V -· -- 1 
k . 

To put this in words, the plot of v against k fo:r: different P values 

will be linear through the origin w:ith slope l /<Tc • Also, the value of 

k that corresponds to a v value of unity is equal to <T • 
C 

In the present case, we are concerned with the half-normal dis"" 

t.:ribution. We will, therefore, ignore the lower half of the normal 

probability paper and relabel the upper part as P' where 

P' = 2P - 1. 

A rough ruling of this graph is given in Figure L 

P' 
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Fig. 1 ... General purpose half-normal grid. 
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To plot the empirical distribution we take the absolute values of 

the contrasts and order them from the smallest to the largest. We 

have, of course, a discrete set of numbers and we take the empirical • 

probability of the i-th largest to be 

where n is the total number of contrasts. The abscissa corresponding 

to the empirical probability P'. is the value of the i-th largest-in-
. 1 

absolute-value contrast. 

Cuthbert Daniel(5) has constructed special purpose grids for four 

of the most common 2P factorial experiments. '!'hey a.re the 24. 25, 26, 

and 2 7 factorial experiments where n = 15, 31, 63, and 127 respec-

tively. These are simpler to use since no proba.bilities need to be 

computed and the rank numbers are printed directly on the grids. The~f:! 
l ~{· 

four special purpose grids are shown in Figure 2. The largest con

trast is plotted on the top line an·d so on down to ·the smallest. However, 

there is little advantage in plotting each contrast of the smaller half of 

the set because of the enforced close correlation in magnitude between 

adja.cent ordered values. 

After the contrasts have been plotted, or even before, we can 

construct the straight line through the origin and with slope 1 /<Tc with 

which we wish to compare our contrasts. Of course, we do not know 

<T , but we have several ways we can estimate it. One estimate which 
C 

is very easy to obtain is to use the value of the contrast for which P.' 

is most nearly 0. 683. 'fhis is a logical choice for an estimate of <Tc 

si.nce if this is a half-normal population we are working with, we can 

expect 68. 3% of the population to be between zero and er c' For values 
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of n of 15, 31, 63, and 127, the correspori;ding o-c 

11th, 22nd, 44th, and 88th ordered contrast . 

estimators are the 

I 
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Fig. 2 ~ Half-normal scales for (a) 15 d. f., (b) 31 d. f., 

(c) 63 d. f., (d) 127 d, f. 

·--·-·-

--·-

-- --··· 
-- -·-

(d) 

To get some idea of the sampling variation inherent in this form 

of plol:ting, Cuthbert Danie/5 ) has plotl:e d ten sets of 31 random standard· 

normal deviates taken from Dixon and Massey's tables(?). The first 

31 in each of the columns 11 to 21 are used. 11he printed abscissa 

values are correct only for the first plot in each set, Each sloping line 

should start at zero. Each has the slope required by the population 

standard deviation (1. 00) and not the slope developed in the previous 
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paragraph. These ten plots are displayed in Figure 3. 

After the contrasts have been plotted a,nd the half-normal line has 

been constructed, we can look at the finished plot to decide if the con

trasts plotted are, in fact, all from the same half-normal population, 

the population of error contrasts. Any large deviation of a contrast to 

the right of the half-normal line would indicate that the contrast was 

probably not from the population of error contrasts. We can then drop 

all such contrast~ and plot the remaining as we did before. Of course, 

all of the P' values would change as well as our estimate of o-c' If we 

have removed all of the contrasts that are not error contrasts, the new 

plot should have no large deviations. 

to estimate error. The question of 

We can now use these contrasts 

when a deviation become large 

enough to be removed will be discussed later. 
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CHAPTER III 

AN ALTERNATE BASIC ASSUMPTION FOR THE ANALYSIS 

OF TWO-LEVEL FACTORIAL EXPERIMENTS 

In a 2P factorial experiment without replication, there is no 

estimate of error if all effects and interactions are real. The standard 

inference methods re qui.re the assumption· that certain of the main 

effects or interactions are not real. The sums of squares due to these 

main effects and interactions are then used to estimate the error sum 

of square1;1. It is ~ common practice to assign all interactions above a 

certain number of factors to error, since the higher order interactions 

are the ones most likely to be estimates of error. 

Experience in certain areas of experimentation suggests that 

usually the number of true maln effects or interactions will be quite 

small, relative to n, and in particular, that it will be much smaller 

than the number of main effects and interactions that were assumed to 

be real. Experience also suggests that higher order interactions are 

sometimes actually real. 

The preceding poi.nts suggest that maybe an alternative to the 

standard assumption of nuJ1 higher order interactions should be con-

. sidered. They also suggest that as a basis for inference, a. new under-
' 

lying assumption might be that any of the n main effects or interactions 

may be real but that, at most, only a certain small number of them are 

real. The statistical problem, then, is to infer which, if any, of the 

9 
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n main effects or interactions are real. 

This problem adapts itself very well to the half-normal plotting 

procedure. In our half-normal plotting procedure, all of the cl!>ntrasts 

that appear not to be from the population of error contrasts are re-

moved and a new half-normal plot is constructed. This is repeated 

until it appears that we have el:ilninated all of the contrasts that do not 

belong to the population of error contrasts. In other words, we remove 

all of the. contrasts that are real and we consider the main effects or 

interactions corresponding to these contrasts as real also. 

l)a · (6 ) d" 25 · . t ·. ·11· d t· . . v1:es rncusses a ~ exper1rnen · on pemc1 . 1n pro uc 10n 

which is analyzed below under these new assumptions. The 31 con-

trasts are arranged in decreasing order of absolute magnitude in 

Table I. For convenience. the values have been multiplied by 100 and 

rounded. 

TABLE I 

No. Effect Value No. Effect Value 

· 31 E 224 15 DE 30 
:30 A 190 14 BE 29 
29 C 153 l :3 EDE 28 
28 CE 93 12 ABJ:<J 22 
27 ABC DE 77 11 ADE 21 
2G AB G4 10 BCD' 18 
25 ABCD 58 9 BCDE 16 
24 ACE 58 8 ABDE 14 
23 AD [54: 7 CDE 12 . 
22 AC 5;3 6 D' 9 
21 BC 53 5 BD 7 
20 ACDE 47 4 B 6 
19 BCE 39 3 CD 4 
18 ABD 34 2 AE 2 
17 ACD 33 1 ABC 0 
16 ABCE 31 
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Figure 4 is t:he plot of this ch:1ta on a special half-normal grid 

where n equals :H. Since the value of the 22nd ordered contrast is 

53, our estimate of ere is 53 and we construct the half-normal line 

through the origin and with slope 1 / 53. Actually, all we do is to draw 

a straight line through the origin and the point on the graph where the 

value of the 22nd ordered contrast is plotted. It is clear from looking 

at the plot that EJ A, and C are probably not error contrasts. We a.re 

told that CE was judged likely to be appreciable from previous inforrna-

tion. If we remove these four contrasts and re-plot the remaining 27 

contrasts, 'we get the dashed line in Figure 4 where the x's are the 

values of the largest of the 27 contrasts; 

value of the 19th ordered contrast or 39. 

Our estimate of O" is now the 
C 

It appears from looking at 

this new plot that we have eliminated all contrasts that are not error 

contrasts. We can then use these 27 main effects and interactions to 

estimate error and we conclude that E, A, C, and CE are probably 

real. This agrees with the conclusion reached by those who ra.n this 

experiment except they believed that ABCDE should be significiant also 

since it was confounded with blocks. 

11 th 1 ·f · D . ( 6 ) . 2 4 . 't th _t1no . er examp .. e . rom . av1es 1s a exper1men · on e pre-

pa.ration of an isatin derivative from an isonitrosacetylarnine derivative. 

Again, for convenience , the data has been multiplied by 100 and 

rounded. The 15 contrasts are arranged in decreasing order of absolute 

magnitude in Table II. 

l•'igure 5 is the plot of this data on a special half-normal grid 

where n equals 15. Since the value of the 11th ordered contrast is 

15, our estimate of o- is 15 and we construct the half-normal line 
C 

through the origin and with slope 1 / 15. Since there are no large 
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TABLE II 

Effect Value No. Effect Value 

D 27 7 BC 6 
BD 25 6 AC 3 
A rn 5 CD 3 
AD 16 4 B 2 
ABC 15 3 ABCD 2 
BCD 12 2 ACD 1 
ABD 10 1 AB 0 
C 8 
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deviations to the right of the half-normal line, it appears that all of the 

contrasts are from the population of error contrasts and that there ar~ 
·~\ 
',\;;· 

no true main effects or interactions in the experiment. This does not 1 

agree with the conclusion reached by those who ran the experiment. 

They used the standard inference method and reached the conclusion 

that D was significant at the five per cent level and that BD, while not 

quite significant at the five percent level, should be considered signifi

cant because of prior knowledge about this interaction. 
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Fig. 5 ... Half-normal plot of a. 24 experiment 
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A possible explanation for this difference in the conclusions 

reached mif:;ht be that if this is a null experiment, t.he probability that 

at least one effect will show significance is not . 05 but 1 ·• . 95 lO = 

1 .... 60 = • 40. 'I'his results from the fact that in a null experiment, 

each of the effects tested., in this case ten, have the same probability of 

being considered significant. Since we are dealing in this case with a 

Type I error rate of • 05, the probability that none of the effects will 

appear significant is • 95 10 and the probability that at least one effect 

will appear significant is 1 - . 95 10• If we compare Figure 5 with 

Figure 11, we see that the D effect is near to the a = . 40 line. 



CHAPTgRIV 

A TEST STATIS'l9IC FOR HALF-NORMAL PLO':rS 

Allen Birnbaum(!) has investigated the ,usefulness. df,half-normal 

plots in distinguishing between the cases of no effects and those of one 

effect. The distributidls of interest are those of 

t (A) 
n 

where: 

un is the largest in absolute magnitude of n observed values of 

a random normal variable with population mean zero, variance u 2, 

but with one value chosen at random changed by the addition to its 

signed value of Acr ; 

ua is the absolute value of the order-statistic from the same set 

as u that is numbered nearest to (0. 683n + 0. 5) and which therefore 
n 

most nearly estimates er directly in a null experiment. For values of 

n of 15., 31, 63, and 127, the corresponding a- -estimators are the 11th, 

22nd, 44th, and 88th order statistic; 

tn (A) is then the ratio of the largest in absolute value of the n 

observed values (one perturbed by the addition of Acr) to the correspond-

ing a- -estimator., ua. 

Birnbaum has studied the distribution of tn (t:,.) for n == 31, 63, and 

127 and for 6 1s of 0-to 6. At his request, a machine sampling of 2500 

15 
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sets of 31 random standard normal deviates was carried out by G. L. 

Lieberman and associates at Stanford University. This information 

permitte~ an estimate of the distribution of t 31 (O) with good accuracy 

over the range of interest. It was found that the distribution of 

log 10 t 31 (0) is quite closely approximated by the normal distribution 

with mean .. O. 35 and standard deviation 0. 11. The points on Figure 6 

give several values from the empirical distribution of logarithms 

plotted on a normal probability f;!cale. ~niel (5) reports that H. M. 

Truax under slightly different assumptions found values closely 

approximating those given above. 
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-i--
-r-i----1---.--, 
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o. 3 

o. 2 

20 30 40 50 60 70 80 85 90 95 98 99 99. 5 

per cent 

Fig. 6 - Empirical cumulative distribution of log 10 t 31 (O) 
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Birnbaum's paper gives (asymptotic) approximations for the 

distributions oft (O) and uses them to approximate the distributions for n . 

n equal to 63 and 127. Daniel (5) has estimated the distribution of 

t 15 (O) usi~g 198 samples of 15 random standard normal deviates taken 

from the tables of Dixon and Massey(7); The approximate distribution 

of log10 tn (O) for n equal to 15, 31, 63 and 127 is given in Table III 

and the estimated cumulative distributions are plotted in ·Figure 7. 

TABLE III 

Approximate Distribution of log10 tn (O) 

All are nearly normal for P > O. 1 with estimated parameters µ, ~. 
; 

.... ,.. 
n µ (1' 

15 0.265 o. 135 

31 o. 345 o. 115 

63 0.405 0.078 

127 0.425 0,078 

Let y 1' y 2; • · · , y n be the n unordered constrasts and let k be 

a suitable positive constant such that if tn < k, it is inferred that all 

of the contrasts are from the population of null contrasts, If tn > k, 

it is inferred that one of the contrasts, the one corresponding to un, 

is not from the population of null contrasts. 

In order to study the probabilities of the various possible types 

of errors associated With the use of the above described procedures 

based on \·i' the distribution of tn must be considered under each of 

the following hypothesis: 



· o. 7 

0.6 

o. 2 

o. 1 
20 30 40 50 60 70. 80 90 , 95 98, 99 99. 5 
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Fig. 7 ~ Estimated cumulative distribution of log 10 tri (O) for 

n = 15, 31, 63, 127. 

H : E(y.) = 0, i = 1, 2, • " , n. A= O 
0 . l . 

HA; E(yj) = Ao-for just one unknown value j, while 

E(y.) -- 0 for each i j. j. Ais a 11on-zero constant. 
1 
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In order to test H0 against HA at a given significance level_ a, it 

is required that 

where k = k( n, a ). 

Where n is large, ua J o- with probability very near to one 

under both H and HA , for any A. Also; t is distributed almost · o . n 

identically with un/tr under both H0 and HLS. Therefore, 
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1 .. a = Pr(t < k I 1-L) = Pe(u /u < klH.) . n-- o . n a.- o 

• Pr:(u Irr< kjH.) = Pr (jy.1/u· < klH for i = 1, 2, ···,n) .n - o .. 1 - o 

where 

9} (k) = sk 1 e-x2 dx 
-oo V 271' z 

Let 

k* = k ~<(n,a ), 

such that 

1 • a = []9} (k*) - [In 
1 

(1 ~ a) n = 2121 (k*) ... 1 

l 
n 

29-1 (k 1:~) = 1 + (l - a) 

l 

= 1 + ( l - a)n 
2 2 

1 . 

-1 / 1 _(1 - af ) k>l< = 1,11 2 + 2 

The effect of approximating k(n, a) by k*(n, a) is represented 

by the discrepancy 

D(n,a) = · Pr(t < k*IH) - a n o 
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D(n, a) i. 0 the increase in Type I error rate caused by using k* instead 

of k as a critical value, Table IV gives some values of D(n, a) for n 

~qua.ls 31 as calculated by Allan Birnbaum(!). It is seen that 

D(31, a) < . 035 for a < • 5• Since D(n, a) decreases to zero as n 

increases for any fixed a, the values given provide a useful indication 

that for n' > 31, the approximation of k by k* is satisfactory for most 

practical purposes. 

TABLE IV 

Q' k(31, a) D(3 l, a) 

• 01 3,93 , 02 

• 02 3. 75 • 02 

• 05 3. 36 • 03 

, 10 3. 06 . 03 

.20 2.75 • 02 

• 30 2.54 • 02 

• 40 2. 38 • 01 

,50 2.24 • 03 

'l~he veJues of k* can now be computed from any full tables of ¢ 

or ¢'"' 1• Sqme values of k~:~ where n equals 63 and 127 and a equals 

• 40, . 20, • 10, • 05, and. 01 as found by Birnbaum(!) are presented 

in Table V 

TABLF. V 

a n == 63 n == 127 

• 01 3.78 3. 95 

• 05 3. 35 3.54 

• 10 3. 14 3.34 

.20 2.92 3. 13 

• 40 2.65 2.88 
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Under H6 , for a large n the probability of Type II error is 

Pr(t · < kjHA) = Pr(u /u < kjHA) ; Pr(u /if< kl HA) 
n- '-" n a- u. n - '-" 

= Pr{l)'il /fl'< kjH6 , for i = 1, 2, • • • , n) 

= Pr(ly1 j /rt.$. kl HA) Pr{jy2 1 /fl'<klHA)· • • Pr(jynj /rr < kjH6 ) 

n-1 -
= (1 .. a) n jt:(k .. A) - ¢(-k .. A] 

.! (1 ~ a) ~(k - l\) .. V.S(-k • AI] 

Thus with tables of ~ a simple calculation gives approximately the 

power function 

1 - Pr(type II error) = 1 - (1-a)@·(k-l\) - 9S (-k ... A] 

A related operating characteristic of interest".is the sensitivity func-

tion 

'Y = ,y(n,a,l\) = Pdly.j/u > kl!\) 
1 · a 

S-k-6 1 -x. 2 100 1 2 = FfF.:" e -2 dx + J,,,,_ e -x2..:. dx 
-oo ' f C.11 k-l\ 211" 
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1' may be interpreted as the probability that the correct obser

va.tion y., where E(y.) = o-L~ f. 0, will appear as significant, that.is 
1 1 

that IYil /ua > k whether or not IYil = um. For a large n and with 

A = k 

t(n, a, 6) :;; i + ~ (-2k) and the power fttnction 

1-(3; 1 ~ <1-a) [t~¢(-2kB 
If A = k_? 1. 3, then 

'Y ,; i and 1 - {3 ~ } + a/ 2. 

Thus to obtain sensitivity y = } against any specified value of 

6. > 1. 3, let the critical value k = A which gives a Type I error 

rate of 

a ~ 1 - @91(6) ~ I] n • 

The upper and lower bounds on the sensitivity function as found 

by Birnbaum(l) for n equals 31 and a equals • 05, . 20 and. 40 are 

shown in Figure 8 by the three pair of lines that converge to the right. 

Empirical sampling by Da.niel(5 ) for 6. equals 4 using 99 sets of 31 

random standard normal deviates gives the values shown by the three 

dots in that figure. 

A similar graph for n equals 15, estimated by D3.niel(5 ) from a 

sample of 198 sets of 15 random standard normal· deviates is given in 

Figure 9. Since bi. 's of 2 and 4 only were used, Uic ltf lines 

drawn are entirely conjectural, based on the analogy with the linear 

bounds found 1 by Birnbaum for n equals 31. 

It must be pointed out that the preceding discussion is based on 

the strong assumption that at most one of the main effects or inter~ 

actions is real. If many of them a.re real, the power and sensitivity 

of tests based on tn may be ;much reduced. However, if only a small 
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1 2 6 10 20 40 60 80 90 95 98 99 

100-y(31, a, ~ 

Fig. 8 - Bounds on sensitivity function of t 31 (A) for 

one effect of size A 

5 

1 2 5 10 20 40 GO 80 90 95 98 99 

100-y (31, a, ~ 

Fig. 9 - J\.pproxima.te sensitivi,ty function of t 15 (Li) for one effect 

(based on 198 sets of random normal deviates). 
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number of the main effects or interactions is• real, it seems likely 

that the power and sensitivity properties indicated above will tend 

to hold approximately, with appropriate reinterpretation for the 

,vari.ou_s. possible alternative hipothesj_s . 

Si.nee more than one non- zero effect or interaction is usually 

expec.ted, -the,distributions of t11 _ 1 (0), t11 _ 2 (o>, etc. are also of 

interest. Dariiel(5) has estimated the cumulative distribution of 
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t11 _ 1 (O) and tn_ 2 (O) empirically using the same 198 sets of 15 random 

standard 'normal deviates. Figure 10 shows the empirical cumulative 

distribution of log10 t 15 ... j (O) for j = O, 1, and 2. 

0.6 

0.5 

0.4 

o. 3 

0.2 

o. 1 

20 30 40 50 60 70 80 90 ,95 98 99 99. 5 

Per cent 

Fig. 10 .. Empirical cumulative distribution for log10 t 15_j (O) 

for j = 0,, 1, 



CHAPTI~R V 

STANDARDIZED HALF~NOHMAL PLOTS 

A half-normal plot on which the half-normal line and the proba-

bility of Type I error are already plotted would be convenient in the 

study of the results of 2P factorial experiments. · Dividing the computed 

ranked contrasts by the er-estimator contrast will give a scale-free set· 

of order-statistics that should in the absence of any real effects fall 

around a half-normal line plotted through the origin and a point on the 

er-estimator line with abscissa of one. The desired probability of Type 

I error, a, can now be chosen. Using Figure 7, the point on the esti

mated cumulative distribution of log 10 t 0 (O) line where it crosses the 

1 - a line is found. This gives a number whose antilogarithm can 

easily be found. This number, is now plotted on the top line of the· 

half-normal plot. The probability that a null contrast will fall to the 

right of this point is a. 

As an example of how this works, for n ::: 15 and a = . 05, 

the n :::. 15 line crosses the 1 ·· . 05 or . 95 line at the point . 49. This 

is a number whose antilogarithm is 3. 09. This number, 3. 09, is now 

plotted on the line marked 15. This now gives that the probability, in 

a null experiment, that u 15 /u 11 :::s 3. 09 is 5% or that the probability 

that u' 15 = u 15 /u 11 when plotted on line 15 will fall to the right of 

3. 09 is 5%. 

Another method which can be used to find this critical number, 

25 
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and which is probably more accurate, is to use the information in 

Table III to solve the following equation for the desired values of 

n and a, 

1 .. 1 x-µ Sz ( .... )2 
-~ V2rr!r exp .. 2 -a,-

which under the transformation y = (x ... µ )/ rT becomes 

S¥ l ( 2 l " --·· exp - ~ dy = 1 ... a , 
... a, {2ir . . 

By using the cumulative normal distribution tables, the value of 

(Z - j).)/ a- can be found for any value of 1 - a. After substituting the 

values of j). and a- , Z and its antilogarithm can be found. It is this 

value, the antilogarithm of Z, that is plotted on the top line of the half

normal graph. rrhe probability that a null contrast will fall to the 

right of this point is a. Table VI, which was developed by this second 

method, gives the critical values for the usual four values of n and 

for Type I error rates of • 01, • 05., • 10, . 20, •and • 40. 

TABLE VI 

Critical Values for Startdardized Half-normal Plots 

n o. 01 0.05 o. 10 o. 20 0.40 

15 3.79 3. 07 2.74 2.39 1. 92 
31 4. 10 3.42 3. 11 2.77 2. 37 
63 3.86 3. 41 3. 20 2.96 2.66 

127 4.04 3.58 3. 35 3. 10 2. '79 

Figure 11 is the standardized half-normal plot for n equals 15. 

The points on line 15 are taken from Table VI while the dotted lines fora 
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equal to. 05, • 20 and • 40 are as deduced by Daniel( 5 ) from Figure 10. 

Figures 12, 13, and 14 are the standardized half-normal plots for n 

equals 31, 63, and 127 respectively. The points on the top lines are 

taken from TableVI while the dashed lines are contributed by Daniel(5 >. 

As an example of the use of a standardized half-normal grid, we 

take another 24 experiment from Davies(6 >. TableVll gives the original 

values as well as the scale'"free values, ui/u 11 . 

.TABLE VII 

No. Value ui/ull No, Value lli /u 11 

15 41. 91 3.81 7 5.28 • 48 
14 16.72 1. 52 6 4.73 • 43 
13 13.64 1. 24 5 3. 63 • 33 
12 12.98 1. 18 4 2.64 .24 
11 11. 00 1. 00 3 1. 43 • 13 
10 8.36 . 76 2 1. 21 • 11 

9 7.92 . 72 l , 77 . 07 
8 7. 15 . 65 

When the data from the '\ /u 11 column from Table VII are. plotted 

on the standardized half-normal plot for n "" 15, the results are as in 

Figure 15. This figure shows that the 15th ordered contrast is signifi

cant at around the one per cent level and that the 14th and 13th ordered 

contrastsare significant at around the forty per cent level. 
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CHAPTER VI 

USE OF HALF-NORMAL PLOTS IN CRITICIZING DATA 

It appears that the half-normal plots are sensitive to certain 

types of defects in experimental data and that they can sometimes be 

used in detecting these defects. 

In an experiment conducted with more than one replication with 

the usual assumptions that the experimental error is distributed 

normally with mean 1.1. and variance cr2, it is expected that the range 

of the observations on experimental units treated alike will have the 

half-normal distribution. In other words, the difference between the 

largest observation and the smallest observation in a block has the 

half-norrnal distribution. These ranges can easily be found from the 

raw data. They can then be ordered and plotted on the appropriate 

half-normal grid. Any large deviation from the half-normal line 

would indicate the possible presence of a bad value in the data used 

to calculate the range of the one that deviated. In short, it would 

suggest that the largest reading is too la.rge or the smallest reading 

is too small. It also suggests that the data from this block should not 

be used in the estimation of the experimental error, 

As an example, Davies(G) presents a 2 x 3 x 4 experiment with 

two replications. There are two methods of manufacturing a product, 

three temperatures at which it is manufactured, and four batches of 

raw material frotn which it is manufactured, Table VIII shows the 

31 
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ordered ranges of the data from the 24 blocks. Under blocks, the 

first digit indicates the method number, the second the temperatµre Q.nd 

and the third the batch used. This data is plotted on a special half-

normal grid for n equals 24 in Figure 16. Here our O"-estimator 

is the 17th ordered range or 4. 3. As there are no significant devia"' 

tions from the half-normal line, it would appear that there are no 

significantly bad values in the data. 

TABLE VIII 

Order Block Range Order Block Range 

24 131 8.9 12 212 2.8 
23 213 7. 3 11 214 2.6 
22 234 6.2 10 123 2.2 
21 231 5. 6 9 111 2. 1 
20 222 4.9 8 121 2. 1 
19 224 4.7 7 232 2. 0 
18 124 4.3 6 211 1. 2 
17 113 4. 3 5 112 • 8 
16 114 4.2 4 133 • 8 
15 223 3. 4 3 221 . 7 
14 233 3. 1 2 134 • 6 
13 122 3. 0 1 132 • 1 

In a 2P factorial experiment without replication, a single very 

wide value may be spotted from inspecting the raw data if only one or 

two main effects are real. However, ·if there are more real main 

effects and interactions and the wild value is not too large, then there 

may be several responses exceeding the bad one. This would make it 

harder to find. This wild value would appear in every Contrast and it 

would increase half of them by the amount of the bias and the other 

half would be decreased by the same amount. However, the absolute 

value of those contrasts near zero would increase and a half-normal 

plot of the ordered contrasts will have too few contrasts near zero. 
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A straight line through the smaller contrasts will not pass through the 

origin but will pass to the rlght of it. Figure 17 is the plot of the 

contrasts from the original data from an experiment with 15 contrasts. 

As there are few contrasts near zero and a straight line drawn through 

the 12 smallest would pass to the :right of the origin, it was felt that 

there was a wild value present. From previous knowledge, it was felt 

that one of the observations was about seven points too large. It was 

reduced by seven and new contrasts calculated. Figure 18 is the plot 

of the contrasts from the corrected data.· Here, since there is such 

a wide difference between the 10th and the 11th contrast, and a line 

through the 10th contrast and the origin seems to be a good half-normal 

line for the ten s:n:1allest contrasts, it is felt that the 10th contrast is 

a better o--estimator than the 11th contrast. 1'herefore, the half-
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normal line was drawn as shown in F'i.gure 17 and the conclusion reachefl 

that the top five effects and interactions are significant. 



CHAPTER VII 

CONCLUSIONS 

While this paper was devoted primarily to the study of the use 

of the half-normal plots in the criticism and interpretation of 2P 

factorial experiments, it seems that it would be equally useful in the 

interpretation of all types of factorial experiments. While no pub

lished study has been made, it seems that it could also be useful in 

other types of experiments where the assumption of normality has 

been made. 

It must be pointed out, however, that the use of half-normal 

plots as suggested here is still full of subjective biases. It is not 

offered as a general substitute for the analysis of variance. Cuthbert 

Daniel(5) has made half .. normal plots for all of the 2p-q factorial 

experiments in the standard texts and the easily accessible journals as 

well as several hundred unpublished industrial experiments. In over 

nine tenths of them, he has found that the lower order contrasts give 

accept.abl:le lineal" graphs. However, smoothness of graph is,.,not a 

· guarantee of perfection. A smooth line witth no effects securely found 

might sometimes lead us to over-estimat~ the magnitude of the error 

and as a result to miss a number of real effects. An extremely 

irregular line might lead to the other sort of error, judging effects to 

be real when in fact they are not. 
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It appears that there is much work left to be done in the develop

ment of the half~normal plot as a useful statistical tool. 
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