```
    #
```



```
    Gachenor or gotanee
```



```
        Pane zlurt,Ar&ancke
        193%
        Wagter of seiance
```



```
            Iowh GB4y, lows
                1937
```

```
Submitbed to the facuty of the Grachata shool of
    the chlahoca ste te tnivergity
    En partial fulfillught of the refutreants
    for tha fecree or
```



```
        蛙第, 1956
```


I執 EVEN MEXAS OCLDEES

Thests Approved:

RALTACE

I graterully acinouleage my indehtsane ss to

- James 筑. Zent, my adviser, for he guldance ane conetrie.ve criticigm given throughout the stuay. I thank Dr. 保ary vobet and Dr. Janee Frazier for their valuatle aceistanee id helpiul suggestions.

I heraby expresa appreciation for the finanolal aid Lven by The Danforth Foundation men the ganinistration of uston-Tillotson college wheh made this study poscible.

Thanks are due Mr. Alton p. Juhlin, head of the speoiel prvices depertment of the library of oklanons state Univerity, Who eqcured nnpublished aissertatione for fe from other niversity 11 brariss.

The cooperation of the matheraties tagehers of Biehop. Uston-Tillotson, Jervie, Prairie Fien, Texes, Texes Souther nd thley made the convietion of thie study possible.

I am also indebted to the persons whe have contributed be this investigation by giving of their thought and thas in sncwering the cuestionmire.

I an especially thankul for the constant sncouregement uncergendine, end helo of my mife, gertha, and my ohildrent Joen, Janct, James, Patricia, end Ronald.

TABLE OF CONTENTS

Chapter Page
I. THE PROBLEM 1
II. METHOD AND PROCEDURE 13
III. ANALYSIS OF DATA AND FINDINGS OF THE STUDY 40
IV. GENERAL SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 70
BIBLIOGRAPHY 77
APPENDIX 82

IIST O TABEES

rable page
I. Wanes, Locations, and सucational Posituonc of Jury kembere 34
I. Fenkinge of the seventy-three obyectives by Experts 45
III. objectivea gonsidered to be Highly Desirpzle by the Expertes 47
IV. Objective Considered by the Experts to be of slight or to value 51
V. Ranizinge of the seventy-three objectives by Methenatice Instructors in the Soven Texae Colleged 54
VI. Table for the calculation of the Goefficient of gorrelation 89

Gheman I

THW KROSLE

Whet are the objectives of freshmen and sowhore mathlatics course for libspel arte colleger? ig there general reement among experts and teschers in the steld of mothetice eduction as to the relative valua of these objective , What extent axe these objectives beang reallgea in oertain beral arte colleges in cexps these cuegtions stemed on the mriter's interest in the ingrovement of the college thenatice curriedlum, and the present study grew out of an itempt to ancwer these evestions which were inherent in the -oblem.

```
Statemert or the Problen
```

The present study is an investigation of the objectives ? the lower division aetherntios courees. In maticuler, 1e study is concernw thith the objectives of freghen and whonore hathematics courses in the following pexas colleges

 axas Southera Univarsity of Rouston, and liley College of archell. In an aftort to arrive at a solution of this
roblem, the followng stevs were taveno

1. A list of objectives for freshmen and sophomore mathematics courses was formulated.
2. The opinione of experts in mathenatics educetion were obtained concerning the relative values of the objectives on the Itst.
3. The extent of agreement between the jury of experts and the mathematics teachers of the cooperating colleges twa determined.
4. A testy, onstructed by the witer, wes given to a sample or gtudents in the seven schools.
5. Avallabie teaching asterialg fron these schocls tore extudned to detemine the extent or achievemont of the stated objectives.

Need for the study

Todey colleges are not only athenpting to adjust their methantiog progran to the Inrge, heterogene ous en collmentg, but are also faced with the tesk of re-examining their goals. Recent developments by the Russians in mathenatics have fooused criticisn vpon the mathematics programs In this emonty. Questione such as the pollowing ere ased: Jan the mathematics obgectives of the past be expectad to nold tor priority tadyy Ie there substansisi gereetent mong the curriculum makers and mathematicg teachers in algher edveation on behavioral outcomes which should be expected of students tho have taken certain mathematics courgest To what extent are the objectives which are said to be desirabie being satisiectoriny achieved?

This study was undertaken in an attempt to answer these questions. That such a study was needed was shown by the finding that college students and graduates are often deficient in mathematical requigites. Oonceming this,

Ulan etated:
It would be interesting and perhaps curorising to learn the ennll percentuge of those in oollere mathemthos who have hed any clear conception of the peanings of the
 sork.?
writine pbout the present etatus of monematics in our hoolo sho colleges, buren told of the conecm of industry
a the feacral governent with the deficlencies of the
srigen youth in menematies. We etated.
 realige Thes cus scononit peditan and our military security were dependent upon asintelnine sn sxpending
 the publie the raete about the degeneration in the
 about the poor chowing which an Ansrican youth makee
 a Ruasian youth. ${ }^{2}$

At the preaent tine many educstors are cueationing the
egusey of the rasthenatice currleulua. Vsrious eonaltees
ve been sppolnted bo study the problem. Ven Engen gnid:
The condiseion on trathematies is not the only group to give thought to curribulua problems. Whe committoe on the Unorexaduste Program of the Hatheratical Associs-
 orgenization just prior to the activithes of the Comatsion, Fine Segondery schocl Guriculum Gomittee of the detional Council of moehere of Hethenatice ceme into being during the year 1955. since then einilar grows in high schools and colleges have been apoointed to make ntudee at local lavale.

[^0] varioue notioasi and loeal scurces, coula ony mean that there is g generel aisatisfaction when the program of the flugt toyrtean grades and that aducatore regi it as that to get.?

This etwdy has needed bepsuse in it uneful information
 ilhecea end nonyond.

Thts stuay is nesdud becguse no adecuate investipation
 Wer in the coopergting collages.

In the senreh of the Iltsrature, it we foun that Fexti stuales of a similar nature hac been made. Tone of Lese R tuates, hoqeqer, atrempted to evaluate the methematios
 thus progreme of those colleceg those stuenate whe pre-

Selated gtuaies

in 1948 , Rida repertea on ratearoh done on tha objective
 sit that the purpose of his atury was thres-fold:
. . to describe the mathendical training osing provided for students in the verious curricula of the gublis funior college, to formulate and evaluete mathem wattical objectives in the training of these gtwantu, and to gtste ismicotions of finding for the mabheratie progran in the funiot college. 4

[^1] Les for Teminal stuatents in anifornta Junior Golleges" Which the mathematicel objectivee for these studenta vere lected and analyzed.
 heabtieg courses such as calculue, trigenotietry and alfebre. C. Wecpuffee published an articla deanisg with the objectiv a cotrse in calculus. Echast wote about the sing in the ching of trigononetry. Brown. reaorting on the general henatles program, steted thet there hud been littye atempt evelutte the ofiectivghese of coursen guch as eleebra,
 es.

The writer wan uble to find any atulies ooncemine the annent in mathematics courses of eertesin goals, sech as Is of mprecistion and the aevelopent of attituaes, habits, intereste. This is perhape due to the difiloulty of

SJack L. Rowe, "Genersi Hatherathee for merminal students Galifornia Junior Collegest (unpub. Ed. D. diseertation, verblty of colorsdo, 1957) p. 110.

6a. 0. Macduffee, nobjectives in cteniue, "ge fmeriegn hexatios Monthly, Liv (1947), ph. 335-337.
 Pathemetice Pescher, xv (1952), 9p. 445-450.
$\sigma_{\text {Renmeth }}$. Brown, Gengral Mathematics in Agericgn golEs, Contributione to Equcation 0.893 (tow Lork, Burean Fubliontions, Colvabie Vniveraity, 1943), pe. 150-151.
suring these objectives．Some educatore who aree with
＊view are cuoted below．
Gonoerning this difficulw，路orthroo eata：
 nomber af wribars re hola moued te cuestion whether or not the objectives of methonation in miberal whertion have yot besn aleariy etatec；or，if eteted，whether or not bhay heve bean phagured by neans of tests and exan－ inations．Cf 女his majl growy of ordtan，sons believe
 have rot baen found to date．A very few avspeet thet olgnficant feste may never be fourd．
 ；the thpraisal of ourtain asecte of the sacational pro－
a．In Peporting on this，they seia：
A sound research and aproisal progran dowands that te use both qualitative and ountitative iata．．．In wine it may be expected that many gusintative types of data in educstion will be reduces to quantitative deta． It in not too much to hove thet in due time moet of the co called intougibles，such as interesta，sttitudee， sppreciation，loyalties，and beliefs vill be cuantified． －．It is the compler and not readily observed treits to a quelitieg that are frecusntly the rost dificult to quantify．

5acic 点soumbtione

The present study ascunee the the guelity of the oollege heratics progran esn be improved if tho testhers fommlate －wisely the sims of the ourges shich they tach．

It is ascumed in the study that methemattog courses

[^2]Wh the geme titie, although even in dictereme shools,

 ins coneerned are to be able to adecutely evaluate the indentai tranceripte.

Followng other stwates, guch ss the study by hadausti
 shaicue of formulathng the objectives mas valid procedure a, that 总 concencus thua eqtablishea could be acestea as
 is tha mest prationg, is not the onty, wechntext to use a selecting the elemente which were to bongtitute the fiterion. Fidgus said, jghe practicable nethod for conwetrge the suay secaed to be the jury bechnicue. ${ }^{\text {the }}$

Dertintions

Throughout this stuay, texms such as movisage abili-
 oncects ar* used. Definitions of sony of these texmene

11 herbert s. Madsus, "Valaetion of Beatc Spinciples ne uriteria fof Euluating the Crganizstion and Adminifmation of student-heschane progess, (umbub. Sa. D.

12Arehie o. Thomse, gmhe pevelopment of friterion in

 - 12.
swen belom.
 Lon, the definstan of matheastical pojectiven corremponda o that of "eavestional objective as given by Rlaon balon.
 Inthons of the way in mhich sevachts smesrected to be changed by the sducetive proeess. That 3s, the weys
 tealingt, me thelr getione. 13
the tema objectiv, seal, sad ain are used anterhangeably in this atudy to degignt te the "outcones in temms i desirable chapoteridtas the the educetional product houla pogsese. ${ }^{414}$

Bloon' ${ }^{15}$ dehnes "knowleage" ss thet mhem incluase
 Qraboeming, ejther by recognition or recall, of idest,
 'fter to organded modes of operstion and generalized techicves for desling with materinle sud problene.

Throughout the 1 iterature, "eritiokl titinting, "reason .ng, and "acductive rescontng mean actantially the atae

 Diectives, (Wher Iork, 1956). p. 20.

15 B1006, p. 201.

so taid, "Logical thinking means aigingouiehire between noclucions which follow logicelly from ctiven ascumptions ad conclusions which do not follow locically from eiven ssumptions."
"Interests" emphasize liking an activity, while "epore-
 etivity, wnderetanding $1 t$, realizing ite true velue, and ne lite.

Jolnson ${ }^{17}$ defines attitudes as man enduring emotional gt or predispotition to react in 2 charactaristic wey oward a given person, object, tuea, or stuation."

In epeaking of the terr "concept" Sobel seld:
Although the literature reveals a lack of agreement conerning the exsot meaning and noture of a concept, this difliculty may be avolaed ir the field of mathematice by operationally derining a atudent's oncert of some particuler term as the mamation of a given set of responses which the student is expected to elleit 2t some civen atage in his methometcal acvelonnent. . . F Fossescion of the concept is sacump if the student 1 s tble to respond successfully.

The Purpose of the stuay

Specifteally, the purpose of this study was:

1. To aesist the seven cooperatine oollegee by brineing to the attention of their mathematles departments a list of objectiveg thought to be lmportant by a Jury of sxperts in the field of mothemetics education.

17 Doneven A. Jommen, "Attitudes in Mathematice class'oont," Sehool Science gne Hethegetteg, LVIT (2957), p. 113.

2. 30 deternine the extent of the suecas of the teachers in realizine thege objective and to anmage the togehere of the inndings.
 currioulta of colleges siminar to the colleges of this enudy by maning the timalnae of the study avelzoble to them.

Scope sua Limitation

While this stugy was undertaker for the vurpoes of olleeting and anglyaing infoxmation mand woula contribute - the mestung of the neads nentioned sbove, th ta nob prom
 ne final solution of these neads.

5he colleges included in thas study matall thoss
 istion of golleses and seoondary schools, and mhinh ars thended predominenty by hegroes. These dollegen are motity 1borel srts colvegea with tempher-twatng prograns. Acorolng to the catelogues of the se inttivetions of the

 Gachers tho do not have the goctomat degras heve done urther work towera stunced degraes.

The matheratios coursee with which this stuay ts conerned are restricted to the curtonary tremban and sophmare coursen. she se are: colleg* algebre, trigonomebry,
 ifferertial alculue.

䠌 k teart L made in thig investigation to compare r to contrast the mathemstice progrems or schlevenents of he coopertating institutions.

It is recognized thet this inveatigation deals with nly one acpect of corplete evaluation of the athenatics rogrons of the colleged and is, therefore, limted to the valuation of the mathemtios objectives and nakes no Iain of loentifying other values or contributions.

Sovreas of Data

In order to accomplish the firgt step in the solution if the problen of this study, a survey wa made of the itereture aceling with the alas of higher eduestion in seneral and the objectives of mothematical training in yarticuler. The literature surveyed included bools and journele in gavertion, rathearticg textbooks, college and inivercity eataloge, mathenatien Journas, and published and unrublished doctoral diesertstions.

The textbooks, syllebi, outlines, and bibliographies iged in the rtathematies courges of the cooperating colleges served an sources of ante for thic investigstion.

The teste an axeninstion prepared ond samingterea
 Lut the An.ret term of the 2957-2958 sohool year served ae furborw sources of data.

The cuestionnoires which were conoleted and returned by a competent jury of amperts constituted nother soures of data.

Furthar inforation wa received from the questionaaire gant to the mothematies ingtruetora of the geven s011eges.

The examination prepared by the uriter and adnintetered to a maple of etudents in the cooperatine colleges ylelded Purther information veca in this stugy.
sumatry of Ghapter I

In this chapter the euthor has given gtatement of the problem, the nega for and purposes of the study, snd the sourese of deta ge well as the scope and llattations af the problem. Furthermore, a short discusefon is found In this chapter concernine the research previously done in related studieg, and certain terms, rhose maninge micht 2e in doubt, gre clarified.
cheoter I which followe, deals with the rocedures and methodology employed in the oollection and anolysie 2 the deta.

CHAPTER II

METHOD AND PROCEDURE

The ourpose of this chapter is to give an explanation the steps taken by the writer in order to find a solution the problem of the study. The methodology and procedure r obtaining the necessary information are given in this apter. Inciuded is a cegcription of the methods used to ranlate a questionnaire, to select a jury of sxperts to dge the objectives of the questionnaire, and to prepare test administered to a sample of stuxents. Also, this apter deals with the oollection of the data from the estionnaire sent to mathomatice teachers in the seven lleges and other sources.

Objectives from College Catslogs

A list of objectives was formulated from the many obetives found in the search of published and unpublished terials. These sources insluded prefaees and introunctions textbooks, artioleg in mathemetical journels, college and Iversity eatalogs, and doetoral dissertations.

Two hundred college, junior college, and univergity taloge in the library of orlahoma State University vere amined for objectives of freshman and sophomore mathematics
urses. Many of the catalogs did not set forth the objectves of their mathematics courses. Some of the catalogs ive the objectives in the form of courge content while Thers gave the objectives explicitly for each course. The , Jectives given below which were gathered from these italogs are representative of all the objectives of the swer division mathematics courges found in the two hundred talogs in the Oklahoma State University library.

The objectives of the Department of Mathematics of The gricultural and Technical College of North Carolina, as et forth in its catalog are the following:

1. To review and strengthen students in the basic fundamentals of mathematics in order that they may be adequately equipped for expressing or interpreting quantitative ideas in this and related areas.
2. To provide an opportunity for all students to increase their sense of utility of the subject matter by emphasizing the apolication of mathematical processes to problems involving personal snd socisl living.
3. To equip the students whose interests and abilities lead to further study, research, and/or technology with an adequate mathematical background.
4. To contribute to the teaching efficiency of prospective secondary school mathematics teachers by insuring mastery of essential subject materials, and the developraent of a reasonable degree of skill, accuracy and speed in dealing with these materials.

It was found in The University of Vyoming catalog hat one of the three aims of teaching mathematics in college

Agricultural and Technical College of North Carolina ulletin, (Greensboro, 1954-1955), pp. 165-166.

1. For its own sake
a) For the intellectual and aesthetic pleagure it gives.
b) In order to hear and read understandingly much that is asid and written about today's problems.
c) As one of the greatest contributors to the culturel life of the race.

The catalog of Fresno State College ovtlines the mathebtios courses, thus indicating the desired objectives in erms of mathematical ideas and concepts to be developed. n giving objectives for mathematics in general, the catalog A Fresno State College states:

Hathematies aerves as a part of general education, e.s an integral part of technical studies in physical science and engineering, as a foundation in other fields of stuay, and as a pure science for those interested in mathematics itself and for those who use it in some applied fleld such as statistics, economics, or actuarial vork. A program of training is offered for teachers of mathematics in secondary schools. ${ }^{3}$

The aimg of mathematics training in the lower division if the college as determined by the contents of the courees escribed in the Fresno State College catalog are:

Trigonometry: Concept of a function, sine and cosine functions, tables and graphs, other trigonometric functions, identities and equations, trigonometrie functions of angles, solution of triangles, logarithas.

Analytic Geometry: Functions and their graphs, transformation of axes, straight ilne, curves incluaing conic sections, parametric equations, polar coordinates
${ }^{2}$ University of Wyoming Bulletin, (Laramie, 1955), p. 330
3rreano State College, General Cstalog, (Fresno, 1957),). 226.

Differential Calculus: Limits, theory and technique of differentiation, differentials, law of mean, applications.

The University of Chicago stated through its catalog that the major aims of its one-year course (Math. A, B, C) zre:
. . . to train the student in the elements of scientifi discourse and their use in the statement, organization, and communication of ideas (logic, deductive theories); mathematical thinking (abstraction, symbolic expression structure of mathematical systems); and to supply him with certain concepts, facts, and methods basic to exact science (relations and functions, number systems, analytic geometry, trigonometry).

The major aim of Math. 150 (A, B, C) is to train the student in the fundamentals of differential and integra calculus; the course being organized around the concep of limit with the aim of giving the student good understanding of the concept and its place in calculus. 5

At Florida Agricultural and Mechanical University, the
objectives of "Introduction to College Mathematics" are:
. . . to explain (1) how the various branches of mathematics originated; and (2) how they have been and are now being used in the development of man's civilization. This includes the meaning and apolication of the sine, cosine, and tangent functions, the meaning and apolication of logarithms, and the fundamentals of mathematics of finance.

College Algebra: A review of elementary operations followed by a study of the function concept, logarithms quadratic functions and equations, equations of higher degree, and complex numbers.

Trigonometry: An elementary treatment of the trigonometric functions which continues with a graphical discussion of the right triangle and of the oblique triangle; applications.

4Ibid., p. 228.
5The University of Chicago Catalogue, (Chicago, 195859), p. 68 .

Anslysis I: An introduction to the concepts of analytic geonetry and calculus, embracing elementary treatment of the straight line and the circle, and differentiatior and integration of simple algebraic forms.

Analysis II: Advanced algebra and trigonometry includes quadratic equations, progressions, the binomial theorem, iogarithme, inequalities, mathemetiesl induction, and complex numbers. Thorough treatment of the trigonometri functions and solutions of triangles with apolications.

Analytie Geometry; mpeate the atraight line and conic sections in detail; rotation of axes, parametric equations, and nolar coordinates. Recognizing a curve from its equation is emphasized.

Galculus I: Deels with the derivetives and differential of both sigebraic and transoendental functions, application of maximua and minimum, parametric equations, and poler equatigns, curvature, the law of the mean and its application. 6

The following aiss of the Wathomatics Depnrtment of rkansas Polytecinic College are found in its eatalog:

The objectives of the department of mathematics are to assist the student in the accuisition of important information and wori experience, in the cultivation of useful woris habits and study skills, in an appreciation of the assthetic values of mathematics and of the role it has had in the growth of our culture, and in the development of effective methods of thinking, salable skills, and certain hasidnto-sxpress intancibles represented by fairness of judgment and intellectual honesty.?
Northeastern Oklahoma A and N College ${ }^{8}$ states in its stalog that mathematioce study gives a basis for understandng the technical and scientipie developments of modern times it is further atated here that matheratios develops intel-

[^3]ctual initiative, createa an ideal of clarity and precision reasoning, and increases the imaginative power of the udent in general.

From the catelog of Bennington College, a New England rls' school, come the following aimg of two mathematice urses:

College Algebra: Seeks to develop the student's power of analysis. Beginning with the concent of number the fundamental algebraic processes will be developed rapidiy, emphasis being placed upon the role of definition. Extension of definition and an introduction to rigorous deductive methods of oroof will be served by the close examination of Pagcal's triangle and tentative statement of the Binomial Theorem will be derived and will serve as an introduction to proof by inductive methods. Such other topics as permutations, combinations and probability will be considered if time permits.

Plane Trigonometry: From the initial definitions relating to the right triangle, extensions of definitions to ratios of sngles of any size will be made. The course will develop through a study of the graphs of circular functions, solutions of trigonometric equations solutions of oblique triangles. (Students will be encouraged to relateg their findings to problems encountere in everyday life.) ${ }^{9}$

Objectives from Mathematical Journals

Articles from mathematical journals such as School sience and Mathematics, The Mathematics Teacher, and The nerican Mathematical Monthly were used as a source in the ompilation of objectives for the questionnaire. In disussing the qualities that our future scientists and matheaticians should have, Norton states the following:

[^4]Most authorlties agree that the folloving traits, qualities, and characteristics are ones of particular value to individuals interested in gcientific and mathematical endeavors. . . . They are: 1) Dependabilit 2) Goal directed sctivity, 3) Experimentation, 4) Human relationships, 5) Logical thinking, 6) Creativity, 7) Self-expression, 3) Patience, 9) Modesty, and 10) Alertness. 10

Hendergon and Dickman ${ }^{11}$ list some ninety-seven needs ? prospective students in the college of engineering. The jllowing needs, mong others, are found in their axticle: incept of an aporoximate number; concept of algebraic risibles and constants; preparation and interoretation of ;atistical graphs; common special products; laws of exnents including negative and fractional exponents; solvtios : a pair of linear equations including solution by deternants; solution of a cuadratic equation by factoring, by mpleting the square, and by the formula; addition, subaction, multiplication, and divigion of radicals and comple: mbers; computation by means of logarithms; interpolation; incept of locus; laws of eines, cosines, and tangents; and incept of a vector.

Included among the aime given by Schaaril are the

[^5]'ollowing:

1. To give a thorough working knowledge of trigonometry.
2. An insight into the userulness of mathematics is gained from trigonometry far more than from any other course.
3. An introduction to the ideas of mathematically describing a periodic function.
4. An appreciation of the beauty in the marvelous combinations of which trigonometric functions are capable is a worthy aim.
5. To give training in functional thinking through graphical representation of functional relations.
6. To develop the power of quantitative and space parception and soatial imacination.
7. To develo mental habits of snalysis, exactnesa, and logical organization.
MacDuffee e^{13} said that the firet objective in a course n colculus has to be the basic techniques of differentiaion and integration and that our proper goal in the calculut s to develop the student's ability to interoret the physical orld in mathematical terainology. MacDuffee further stated hat the first course in calculus should be rigorous up to he capacity of the student to aporeciate rigor.

Hassler is a good example of some of the earlier riters who emphasized some of the more intangible objecives. Hassler, writing in 1929, said:

A knowledge of the history of the develoment of matheratical processes he is learning vill kindle the pupil's interest in the subject matter. . . . A knowledge of the history of mathemstics gives. . . an appreciation of the value of the subject and its inaeparable and vital connection with the development of civilization. ${ }^{4}$

13 Me.cDuffee, D. 335 .
14 J . 0. Hassler, "The Use of Mathematical History in eaching," The Mathematics Tescher, XXII (1929), p. 166.

Although Nowlan admitted that there were other worthhile objectives, he classified the major aims of mathematict eaching under two main headings. He wrote:

I do not underestimate the value of practical application in the teaching of mathematics, nor the necessity for the mastery of mechanical skills in numerical and algebraic operations. I assume that these are taken care of, 28 a matter of course, in our instruction.

There are two main aims in the teaching of college mathematics, whether to liberal arts students or to students of engineering. These, in order of importance, are:

1. Training in precise thinking and a gresp of principles.
2. The accuisition of information and a mastery of certain technical skills. ${ }^{15}$

Fehr, when writing on the purposes of the study of athematics, said that there are at least four fundamental oals that should be attained. They are given below:

First it should serve as a functional tool in solving our . . . problems.
In the second place, mathematics serves as a handmaiden for the explanation of the quantitative situations in other subjects, such as economics, physies, navigation, finance, biology, and even the arts. . . .
In the third place, mathematics, when proverly concerned becomes a model for thinking, for developing scientific structure, for drewing conclusions, and for solving problems
In the fourth place, mathematics is the describer of the universe about us. 16
In the Fifteenth Year Book ${ }^{17}$ of The National Council

15 Nowlan, p. 78.
16Howard F. Fehr, "Reorientation in Mathematics Educa:ion, "Teachers College Record, LIV (1953), po. 430-439.

17v. R. Reeve, Editor, Fifteenth Year Book, The Nationa louncil of Teachers of Mathematics, The place of Matheratics In Secondary Education, (Bureau of Publications, Columbia Iniversity, 1940), p. 253.

P Teachers of Mathematics, the objectives are classified ider the following headings:

1. Ability to think clearly.
2. Ability to use information, concepts, and general principles.
3. Abllity to use fundmental skills.
4. Desirable attitudes.
5. Intereste and appreciations.

Under "ability to think clearly", are found such :tivities as "gathering and organizing data," "drawing onclusions," and "establishing and judging claims of proof*. me of the attitudes which are considered desirable are:

1) Respect for knowledge, (b) Respect for good worknanship,
2) Respect for understanding, (d) Social-mindedness,
3) Open-mindedness.

In an article concerning the teaching of a first course 1 calculus, Parker lists the following major objectives;

1. To give the student an understanding of the fundamental concepts of the calculus and a point of view relative to the higtorieal background out of which these concepte grew.
2. To develop proficieney in the manipulative skills of differentiation and integration.
3. To develo the ability in making practical gpolications of the principle learned. . . .

The concepts of a function, a variable, inerement, limit, and continuity are absolutely necessary stepoingstones for the beginning student. 18

In describing a plan for a program in mathematices for beral arts students, Allendoerfer wrote:

In thinking of these students . . First we have utility as a chiei reason for their study of methematics
1.8 James E. Parker, "The Teaching Objectivea in a Pirst uree in CaIculus, "The Mathematics Teacher, XXXVII (1944), 347 .

- . second, matheratios is traditionally known as a logical subject, sad its purguit is supposed to improve the capacity of the aind for reasoning. And, finaliy, the student may hope to attain some understanding of the nature of mathematies and of its contribution to our culture. 19

In describing the mathemsties progrem at the University f Chicago, Northrop outlines the objectives as follovs: - . the student should be taught to think deductivsly, to know what a deductive system is, to understend the relation between an abstract deductive systom and i.ts models, or conerete interpretetions, snd to have eone appreciation of what rigor is and how it may be achieved Add to this the fect that he should lespn, both for the skills thenselves and for the part they will play in his later courgse in ectenes, how to understand and to deal with the probler of quantity and space, and the content of a ysar course in mathematios aporopriate to a program of liberal education becomes fairly clesr: It should include at least the study of logic, algebra, and geometry. 20

Objeotives from Dissertations

Among the publiched and unpublished aissertations some bjectives for the ouestionnaire were found. The abstrects f dissertatione found in the library of Oklahore State niversity vere searched for ueabie objectives. The Epecisi iervices Depsrtment of the Iibrary secured unpublished disiertations from other universities for the investigator.
190. B. Aliendoerfer, "Mathematics for Liberal Arts itudents, The American Mathematical Monthly, LIV (1947), 1. 573.

20E. P. Northrop, "The Mathematios Program in the lollege of the University of Chicago," The American lathematical Monthly, LV (1948), p. 2.

The dissertation by Banks ${ }^{2 l}$ proved quite fruitful in his respect. In his study, Banks compared the relative ffectiveness of general mathematics and college algebra in mproving the ability to think critically. The responses hat Banks received from 213 colleges and universities ndicated that the ability to do critical or logical thinking s considered to be the most important contribution which he study of mathematics has to make to the education of the tudents who are not to specialize in mathematics.

In a study undertaken to aid in the clarification of The role of mathematics in the program of the community ollege, Bentz arrived at thirty-one critical mathematical 'equirements for the comunity college student. Among these inirty-one requirements, the following objectives were found:

1. Skill in computing with integers, common fractions
2. Familiarity with terms used in the identification of various numbers
3. Ability to interpret and express relationships by means of a chart, formula, or graph
4. Skill in setting up and solving simple equations to find the value of the unknown number
5. Ability to make a proper selection and use of a formula from memory or from a reference source
6. Ability to carry out an interpolation
7. Understanding of the usefulness of a system of coordinates
8. Understanding of the meaning of the more common symbols used in the field of mathematics
9. Ability to collect and tabulate accurately various kinds of numerical data
10. Understanding of the significance of such fundamental statistical measures as the arithmetic mean, median, mode, range, and standard deviation
11. Ability to use the slide rule and calculating machines to perform various fundamental operations
[^6]```
12. Understanding of the meaning of a logarithm and the ability to use it as a short out in making oalculations
13. Skill in the uae of the sine, cosine, and tangent trigonometric ratios in deteraining diatances and anglea
14. Avareness of the importance of doing careful, sccurate vork and of checking results
15. Avareness of the importance of developing correct habite of a elerical nature in writing figures
16. Ability to deal intelligently with the matter of locus, investments, and the cost of borrowing money
17. Ability to make a selection of the significant facte in a given problem, and to apply the neesssary technicues to bring about a setisfactory solution. \({ }^{22}\)
```


## Objectives from Textbooks

Textbooks for courses in freshman and sophomore matheatics were examined in order to find the objectives of the uthorg. Forty-three textbooks were examined. Inoluded mong these books were those used in the cooperating colleges P this study and some found in the Iibrary of this universit hese books have a wide range of publication dates- 1904 to 956. The aime of the authors were determined by an analysis $f$ the prefaces and introductions of the textbooks. While ome of the textbooks did not gtate the objectives of the uthors, others gave detalled objectives for the course.

Typical of some of the algebra textbooks is collgge 1gebra, whose authors ${ }^{23}$ stated that their book emphasizes

[^7]igebraic technicue, . . . $n$ d is sufficientiy rich in terpretation and general problems to develop the student's wers of analysis. . . Strese is laid upon concents, the terial is presented with logical rigor, they say. The thors further state that in order to add to the cultural turity of the student, many brief yet complete historical etches of elementary mathematics are given.

Cooley and others give the cultural objectives of their xtbook to be the following:

1. To show how many of the fundamental ideas of mathematics have their sources in physical experience.
2. To show, how, from these ideas, mathematics builds broad logical theories which have wide application in the physical, biological, and social sciences, the arts, and philosophy.
3. To shov that mathematics is a vast unified systam of reasoning.
4. To scquaint the student with the logical structure of the mathematical system and thus provide him with a standerd of exact reasoning which should helo him to achieve a more critical attitude toward conclusions arrived at in other fields.
5. To show that science and philosophy are indebted to mathematics for many precise concepts, such as velocity, motion, and infinity.
6. To open the student's mind to the fact that the development of mathematics from ancient to modern times has been an important factor in the development of civilization. 24

One of the general metheratics textbooks with a modern proach is Eundamentals of Mathematics. The author of the ok gives the following es the objectives of the book:

1. An appreciation of the natural origin and evolutionary growth of the basic mathematical ideas from anticuity to the present;

24 Hollis R. Cooley et 21. , Introduction to Mathematics, inicago, 1937), p. v.
2. A critical logical attitude, and a wholesome respect for correct reasoning, precise definitions, and a clear gresp of underlying assumptions;
3. An underetanding of the role of mathematics as one of the major branches of human endeavor, and its relations with other branches of the accumuleted wiedom of the human race;
4. A discuesion of some of the simpler important probleas of pure mathematies and its applications, inclading sone thich often come to the attention of the educational layman and caues hin needless contrusion;
5. An understanding of the nature and progties. importanee of postulational thinking. 25

Aa the suthor further discusses the objectives of the extbook, he states:

The author has intended to present a course in mathematiea which vill saphasize the distinction betweer faniliarity and undsrstanding, between logical proof and routine manipulation, between critiesl attitude or mind and habitual uncuestioning belies, between scientific knowledge, and both encyelopedie colleotions of faets and mere opinion and conjecture, and which will give the atudent a wholesome agprseistion of the nature and importanes of mathenatios. 26

Another author, Dadourian, gave the objectives which e hoped his textbook would assiat the student achieve. In he preface of the trigonometry book written by hin is ound the following:

In writing this book the avthor has hed the following objectives: (I) To stimulate the gtudent's interest and motivation, and to deaven his comprehension of the subject. To these ends, emphaeia is laid on concepte, principles, and general methods; trigonometric functions are applied to simple probleme of mensurstion, mechsnics, engineering and surveying; and the application of the functions to other fields is pointed out.

25 Moses Richardson, Fundamentals of Mathematics, New York, 1941), pp. v-vi.

26Ib1a., p. Vi.
. . (2) To reduce the need for memory work to a minimum. . . To present proofs and solved problems in such a way as to reduce the amount of necessary verbal explanation to a minimum, to make analytical work orderly, concise and lucid; and thus to familiarize the student with a general method of procedure which is conducive to clear thinking, and to greater freedgm from blunder, and to economy of time and effort. 27 Rosenbach, Whitman, and Moskovitz 28 seid that in their ixtbook on trigonometry every effort was made to present ie material in a manner that is clear and simple, yet imulating and rigorous. They have attempted to emphasize lose topics which are generally recognized to be essential, latever the aims of the student or the objective of the rurse.

Nathan and Felmer ${ }^{29}$ wrote that one of the objectives analytic geometry shovld be the direct preparation for te study of calculus, engineering, and the physical and cial sciences. They say that a study of analytic geometry In develop the student's powers of intuition and rigorous inking and can provide him with an example of a unified dy of thought. The examples and problems in the book body applicstions to physics, chemistry, astronomy, igineering, and economics.

27H. M. Dadourian, Plane Trigonometry, (Cambridge, 1941) ). vil-viil.

28y. B. Rosenbach, E. A. Mhitman, and David Moskovitz, Lene Trigonometry, (New York, 1937), 0. 111.

29pavid Nathan and Olaf Helmer, Analytic Geometry, lew York, 1947), p. v.

Buchanan and Wahlin said in their textbook:
Every mathematics instructor is aware of the urgent need to develop the brilliant student and at the same time to impart to the average student some feeling for mathematics as a living subject, one that has not only had a trenendous influence on the development of our civilization, but is vitally important in present-day afiairs. In writing this book ve have kept these needs in mind. . . .

For the better students we have provided a sufficient number of more or lese advanced exercises and also historical reports, . . . to challenge his ability and make him feel his efforts are worthwhile. 30

Maxine Bocher ${ }^{31}$, of Harvard University, stated that if delytic geometry is properly taught it is a difficult subject Id that it should not be degreded to a course in graphics; at is, curve plotting, numerical problems, and the like.
says, "The one aim should be to put the student into igsession of an instrument which he himself cen uge in 'oving new geometricsl theorems or solving new problems."

In stating the objectives of his onalytie geometry xtbook, Sisan stated the following in the preface:

The course in analytic geometry has several major objectives, each of which has been fully considered in the preparation of this text. It should follow in a natural way from the student's previous work in mathematice, which it is expected to unify; it must acquaint the student with the methods, the spirit, and the escential facts of analytic geometry; and it should stress the particular types of geometric reasoning that the student will encounter most frequently in his later work. 3

30H. E. Buchanan and G. E. Wahlin, Elements of Analytic ometry, (New York, 1937), p. v.

3lMaxime Bocher, Plane Analytic Geometyy, (New York, 15), o. v.

32Charles H. Sisam, Analytic Geometry, (New York, 1936), ii1.

Murnaghan, declaring that the aim of calculus is more aan mechanical manipulations and technicues, also stated ast his calculus book aims at meaning and understanding.

```
* stated the following:
```

The method used is radically different from that of the currently popular texts. Many teachers seem to feel and have no hesitation in expressing their feeling, that it is impossible to teach calculus correctly. The best one can do, they claim, is to give some idea of what the subject is about and to impart, by repeated drill and practice, proficiency in the manipulative details of the subject. The results obtained by this procedure are familiar; the ordinary student who has worked hard in the courge can tell you the dexivetives and the integrals of the most sinister-looking function, but he has no clear and confident understanding of that a derivative and an integral really are. 33

Neeley and Tracey agree that differential and integral
alculus should have two aims. They stated:
The student who studies this subject because of his attraction to mathematics is not well eculpoed if he lacks a fair appreciation of the wide applications of the calculus in aodern science and engineering. On the other hand, the student who is required to use the caloulus in some chosen field of scienoe can make more intelligent and extensive applications if he understands the underlying principles of the subject. Hence, whether mathmatics is to be regarded as the queen of the sciences or as the tool of the scientiste, the study of the calculus for the future teacher of mathematics and for the future encineer should differ only in the degree of emphasis placed on the theory and the apolications. 34

The oldest textbock that the writer exeminec ves ritten in the firgt part of this century by Granvilie.

33Francis $P$. Murneghan, Difforential and Integral gleulus, (Brookiyn, 1947), pp. 11i-v.
$34 y$. E. Neeley and J. I. Tracey, Differential and מtegra Galculug, (New York, 1932), D. v.

1e two ains of the author were to sharpen the student's ituition and to increase his analytic ability. In the reface of the calculus textbook by Granville, one finds:

The present volume is the regult of an effort to write a modern textbook on the calculug which shall be escentially a drill book. With this end in view, the pedagogic orinciple that each result should be made intuitionally as well as analytically evident to the student has been kept constantly in mind. . . . The object has not been to teach the student to rely upon his intuition, but in some cases to use this faculty in advance of the analytic investigetion. 35

In a study reported out of Teachers follege, Golumbia niversity, in 1943, Brown ${ }^{36}$ found that a survey of the ojectives of general mathematics as given by the authors f more than fifty general mathematics textbooks indicates hat the aims of general mathematics courses fall into three ategories. They are given belov:

1. To prepare the student for a profesaion, semirofession, or vocation in which mathematics is useful as tool and emphesis is placed on facility in mathematical anipulation as well as on understanding of the concepts nvolved.
2. To prepare students to be intelligent citizens, athematically. . . .
3. To attain both the above objectives by meeting the eeds of the large academic teminal mathematice group and

35William A. Granville, Elements of the Differential nd Integral galculug, (Boston, 1904), 0. i11.

36 Kenneth E. Brown, Genersi Mathematics in American olleges, (New York Bureau of Publications, Teachers ollege, Columbis University, 1943), 0. 61.
so to furnish an adequate preparation for the minority 0 wish to purgue further courses in mathematics.

After obvious duplications had been eliminated, the jectives given above were incorporeted into a single list seventy-three general and specific objectives. This ilst pears as Appendix $A$ of this atudy. The selection of tha jectives was besed upon the writer's opinion arrived at om an examination of the literature.

## Selection of the Jury

These seventy-three objectives were put in questionnalre rim and sent to thirty-nine outstanding educators in the eld of mathematics. These thirty-nine educators made up e panel from which the jury of experts were selected.

Eseential criteria were establighed for the selection
the experts of the jury who met some or all of the requirents given below. The cxiteria were:

1. Extensive and recent experience in teaching college mathematics.
2. Scholarly publications in educationel and/or mathematical journals.
3. The experte must have shown interest in mathematics education at the college level as evidenced by one or rore of the following sccomplishments:
a) Publications in mathematical journals.
b) Membership on special committees, such as the Committee on the Undergraduate Program in Mathematics of the Mathematical Ascociation of America, and the Comission on Mathematics of the College Entrence Examination Board.
c) Head of the departiment of mathematies in a laading college or university.
d) Author of a modern textbook of mathematics for freshinen or sophomores.
e) Mathematics instructor especially concerned with mathematies education.

In order to increass the validity of the objectives of te questionnaire, some experts were chosen from colleges d universities similar to the cooperating institutions this study.

Table I below gives the names, locations, positions, id some of the qualifications of the members of the jury.

That the jury members were well-qualified is seen by le fact thet eighty-8ix per cent of them were members of .ther The Mathematical Association of Americe or The ierican Mathematical Society. Kenneth E. Brown, Specialist 1 Mathematics in the United States office of Education, also ; a member of the Research Committee of the National Council ? Teachers of Mathematics. C. B. Lindquist was recently ppointed as Chief for Natural Sciences and Mathematics in 1e United States Office of Education. Duren is Professor $p$ Mathematics and also Dean of the College of Arts and siences of Virginia University. Seidin is Professor of athematics and Dean of the Graduate School of Alfred Uniersity. Favcett is the Chairman of the Department of qucation and Professor of Mathematics Education at Chio tate University. Jones, Gager, Priee, and Pingry are olding or have held offices in the National Council of eachers of Mathematics. Twenty-two jurymen of the twentyight have had one or more articles in the leading matheatical journals of the nation. Twenty-five jury members re teachers of college mathematics, and ten are chairmen $r$ heads of their departments of mathematics. Eight of

NAMES, LOCATIONS, AND EDUCATIONAL POSITIONS OF JURY MEMEERS

| Name | Location | Posktion |
| :---: | :---: | :---: |
| 1. Beaumont | U. of Washingt on | Executive officer of Mathemstice Department |
| neth E. Brown | U. S. Office of Education | Speciellst for Mathematics |
| L. Duren, Jri. | U. of Virginia | Mathematics Professor, Dean, College of Arts and Sciences |
| old Fawcett | Ohio state v . | Head, Department of Mathematies Education |
| ard Fehr | Teachers College Columbia U. | Head, Mathematics Department |
| I1am Gager | Florida U. | Professor, Methematics |
| n R. Fatcher | Fisk University | Assistant Professor of Mathemstics |
| F. C. H1ldebrandt | Northwestern U. | Associate Professor |
| 1ism N. Euff | Cklehoma U. | Head, Mathematics Dept |
| Ilip S. Jones | U. of Michigan | Assoclate Professor |
| ston T. Karnes | Louisiana State | Head, Mathematics Depl |
| I. Layton | Stephen F.Austin | Head, Mathematics Dept |
| B. Lindquist | U. S. Office of Education | Chier, Natural Seience and Mathemstics |
| odore Love | Fisk University | Head, Mathematics Depl |
| C. Maoduffee | U. of Wisconsin | Professor of Mathemat: |
| ce Megerve | New Jersey State Teacherg College | Head, Mathematics Departient |
| V. Nevsome | New Yoric 0. | Preasdent |
| lert Pingry | U. of Ilinnois | Associate Professor |

## TABLE I (continued)

| Neme | Location | Position |
| :---: | :---: | :---: |
| obsrt Poe | Central Stete | Assistent Profensor |
| - Vernon Price | U. of Iowa | Professor of Mathema |
| - B. Read | Wichiter U. | Head, and Professor |
| oses R1.chardson | Brooklyn College | Proressor |
| ack L. Rowe | ```Bakersfield Junior College``` | Eeed, Mathenatics Department |
| 1111am L. Schaar | Brooklyn College | Associate Professor of Mathemstios |
| oseph Seidin | Alfred U. | Dean of Graduate School and Professor of Mathematics |
| P. Vance | Oberlin College | Associate Professor of Mathematice |
| enry Ven Engen | Iove State Teschers College | Associate Professor of Mathematics |
| - Lynvood Wren | George Peabody college | Profeseor of Mathematics |

he experts of this study are authors or co-authors of athematics textbooks. Fehr and Van Engen are members of he Commission on Mathematies of the College Entrance xamination Board, while Schasf, Vance, Hildebrandt, Jones, nd Read have been editors of mathematical journals or ditors of departments in these journals. Hildebrandt, rown, and Fehr were considered to be specialists in matheatics education by Woodby. ${ }^{37}$

The consensus, therefore, of such a jury should be eadily acoepted as representative of the best thinking in he united States with respect to the aims and objectives is mathematice instruction.

## Data from Questionnaire and Other Sources

After the formulation of the questionnaire and the election of the jury members as described above, the eventy-three 1 tem questionnare, sccompanying letter, and elf-addressed return envelope were sent to thirty-nine xperts in the field of mathematics education. (Appendix A)

A four-point rating scale was placed at the top of the 'irst page of the mimeographed list of the seventy-three ibjectives. The experts were asked to assign to each item ' value of "4", "3", "2", or "1" in the space provided, ccording to the following alrections:

[^8]irections: Please indicate your opinion of the value of each objective for freshman and soohomore mathematics courses by placing the number 4 , 3, 2, or 1 before the statement of the objective according to the following seale:

4 The objective is highly desireble. $\frac{1}{3}$ The objective is of considerable value. The objective is of slight velue. 1 The objective is of no value.

Nine weeks elapsed between the receiving of the first nd last completed questionnaires. Thirty-four, or eightyeven per cent, of the thirty-nine questionnairss were eturned. Two were returned unopened becauge the persons ad retired. Five persons did not respond at all, although follow-up card was sent to each. Of the thirty-four comleted questionnaires, four were rejected as not being sable since the respondents admitted that they evaluated he items from a different frame of reference than that uggested in the directions. This gave twenty-eight omoleted ovestionnaires uon which to base the conclusions bout the desirable objectives.

In order to compare the opinions of the experte and he opinions of the mathematics instructorg in the seven olleges of the study, the seventy-three-item questionnaire as sent to the mathenetics instructors. The instructions or rating the items were the same as for the experts. The uestionnaire, accompanying letter (Appendix B), and selfdiressed, stamped envelope were sent to the heads of the 3themstice departments of the seven colleges with the nstmuction to heve each teacher of freshman and sophomore athematics complete the questionnaire. After many follow-ux
itters and long distance telephone calls, nineteen teachers, - one-hundred per cent of the teachere of lower division thematics, completed and returned the questionnaires.

In order to obtain evidence of the echlevement of the ifectives, the investigator requested copies of the tests id examinations given during the first term of the school ar 1957-1958.

A thorough search of the literature was made in an effort find a standardized test which could be administered to a mple of students in the cooperating colleges. Correspondenc s carried on between the Educational Testing Service and e writer. Sample tests were examined. One test which was ought to be suitable was found to be no longer available. Since no suitable standardized test was available, a st was constructed by the writer. It was designed to asure to some extent the achievement of some of the objecves of the questionnaire by the students of the sample. e test items included many ideas from the questionnaire. copy of the test appears $2 s$ Appendix C in this study.

The thlirty-five students of the sample were selected by eir respective teachers as representative of those students o had completed freshman and sophomore mathematics courses their school. These selected students were administered e test by their respective teachers.

The teachers of the cooperating colleges were asked to nd to the writer syllabi, outlines, bibliographies, and sts of other teaching materials used in their freshman
d sophomore mathemstics ecurses. The investigator used is material in an effort to detemine what attempts were de by these mathematics instructors to arrive at the sired goals.

## Summary of Chapter IT

The writer has given in this chapter the source of the jectives uged in the queationnaire. These objectives vere isembled and formulated from lists of objectives found in Ilege catalogs, mathematical journals, published and uniblished doctoral disgertations, and mathematies textbooks. Is chapter has described the method of selection and the dilifieations of the members of a jury of experts who were ked to give their opinions concerning the relative merits eeventy-three objectives. Also a description was given 1 this chapter of other data used in this study, including 1labi, outlines, bibliographies, and a test prepared by 1e writer and administered to a sample of students of the roperating colleges.

Chapter III is concerned with the colleotion and the 1aiysis of the data.

## CHAPTER III

## ANALYSIS OF DATA AND FINDINGS OF THE STUDY

The purpose of this chapter is to present and analyze e data. The data presented and analyzed Include those om the questionnaire regponses of the jury of experts and e mathematics teachers of the cooperating colleges. In dition to this, the chapter discloses the results from the st given to the sample of students in the colleges.

## Data from the Questionnsire

In the covering letter sent with each questionnaire to ie experts of the jury and the teachers of mathematics, it is suggested that the objectives should be those for the reshman and sophomore mathematics courses in libersi arts slleges. The writer recognized the fact that because of adividual differences each student would need a unicue get P objectives, no matter what curriculum he followed. It $s$ evident that this is impractical. As a compromise, the riter pronosed to assemble a sufficiently broad list of ojectives such that the seven cooperating colleges as well $s$ similar institutions would receive benefit therefrom. hat all respondents did not respond from the frame of eference intended by the writer is shown by the comments $f$ some of them.

Comments of Respondents

Provision was made for the respondent to the questionire to make comments on the objectives ir he desired to 'so. Several respondents avalled themselves of the opporinity. Although the letter of trangmittal suggested that te proposed objectives were for liberal arts freshmen and phomores, respondent Albert E. Meder, Jr. commented that ; was difficult to complete the check list because it was Jt clear to him just what tyoe of student these courses 1d objectives were to serve. He asked the following destions:

Is this to constitute a list of objectives for all freshmen and sophomores? or for all electing mathematice as a requirement for a liberal arts degree? or as a prerequisite for future mathematical or scientific work? Or as an elective part of general education? Also, what entrance requirements are assumed?

2rthermore Meder suggested serlously that "having some good Lean intellectual fun be added as an objective.

The coments of Duren are worthy of mention since they re siadiar in many respects to some of the other comments. uren, Dean of the College of Arts and Sciences and Profeseor P Mathematies of the University of Virginia, made the ollowing comments:

I gave a low value to many aubjects which I regard as high school subjects. If they are not learned in high school, it is my opinion that the students ought not to be in college mathematice which should be reserved for those who can take a form of mathematioe in which
analytic geometry, calculus, and problem solving are given top priority. This does not imply that I think that trigonometry is not important. It just isn't right to assign it a high priority in college mathematics.

I also gave a low priority to some objectiveg which would be fine if you could achieve them, but should not be given high priority if you carnot. In teaching it is not noble to attempt the impossible. Hence I take a dim view of function theoretic rigor though it is good in itself. Also I take a dim view of developing the creative imagination because teschers who claim that a college mathematics course can do this are frauds.

You left out one big mathematical skill: The recognition of form. The old simplification probleme, factoring problems, as well as the technicue of integration, helped to develop $1 t$.

Jack L. Rowe, who completed a similar study as this st year, commented as follous:

I believe the opinions of respondents vould be much more reliable if you vere to tell just what kind or kinds of mathematice courses you had in mind for freshmen and sophomores. Do you mean objectives for freshman and sophomore calculus courges, business mathematics, trigonomstry, advenced algebra, etc.--sill of them, part of them, or any of them?

Are you implying that every freshman or sophomore should be excosed to some kind of matheratics course, and if so, what kind? Obviously, a person's ooinion of desirable objectives would be different according to the particular point of view held.

Not all comments, however, were adverse. One of the
perts who teaches in an Oklshoma college wrote:
Your questionnaire is fine. . . . I think your questions are of resl value. However, you know my answers are prejudiced by my stronger feeling towards the theory or pure phase of mathematice.

Bruce Meserve of Montclair State Teachers College and
B. Read of wichita University both showed interest in the udy by requesting coples of the results of the study.

One of the teachers of the cooperating colleges stated
lat the study, so far, had given him some helprul suggestion

## Treatment of Data

In scoring the opinions of the respondents, the writer ssigned veights of $4,3,2$, and 1 to the responses accord$1 g$ to the directions of the questionaire. The mean score : each objective was obtained as follows: The sum of the eights of each objective was divided by the total number ? responses to the item. Example: Objective No. 1, "Skill 1 solving verbal problems and checking solutions", was ited "3" by respondent No. 1, "4" by respondent No. 2, $t^{n}$ by respondent No. 3, and so on to respondent No. 28, who sted it " 4 ". Thus, the sum of $3+4+4 \boldsymbol{T}$. . +4 or 100 vas tvided by 28 , giving a mean score of 3.57 for objective , 1. This mean, when compared with the means of the other joctives, is interoreted as an index of the relative exent to which an objective was recommended by the experts. ch weiginted mean may be interpreted by means of the 2llowing scale:

fis clear that if the mean of an objective differs slighty rom 4, the jury considered the objective to be of great ilue; whereas, if the mean differs slightly from 1 , the ary considered the objective to be of little or no value.

The mean scores of all the seventy-three objectives re ranked in order of magnitude, the greatest being ranked rst. The rankinge of the seventy-three objectives by the ry of experts axe given in Table II, page 45 .

When the seventy-three objectives are grouped Into artiles, the objectives whose ranks range from one to 18 , 11 In the first cuartile. It seems reasonable to assume at these objectives are the ones considered to be more portant than the others. These hishest ranking objectives e given in Table III on pages 47 and 48. The objectives e Iisted in order of importance, the most importent objecve being given first.

TABLE II
RANKINGS OF THE SEVENTY-THREE OBJECTIVES BY EXPERTS

| jective <br> lumber | Rank | Frecrency of Response in Categories of value |  |  |  | Heighted Hating | Mean Weighted Rating |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1 | 2 | 3 | 4 |  |  |
| 1 | 14.5 | 0 | 2 | 8 | 18 | 100 | 3.57 |
| 2 | 24.5 | 3 | 0 | 3 | 22 | 100 | 3.57 |
| 3 | 60 | 1 | 10 | 11 | 5 | 74 | 2.74 |
| 4 | 68 | 4 | 13 | 11 | 0 | 63 | 2.25 |
| 5 | 35 | 0 | 6 | 7 | 15 | 93 | 3.32 |
| 6 | 6 | 1 | 0 | 7 | 20 | 102 | 3.64 |
| 7 | 18.5 | 2 | 2 | 5 | 20 | 99 | 3.54 |
| 8 | 46 | 1 | 6 | 10 | 11 | 87 | 3.11 |
| 9 | 22 | 2 | 2 | 7 | 18 | 98 | 3.50 |
| 10 | 72 | 11 | 9 | 5 | 2 | 52 | 2.93 |
| 11. | 6 | 0 | 3 | 4 | 21 | 102 | 3.64 |
| 12 | 4 | 1 | 0 | 6 | 21 | 103 | 3.68 |
| 13 | 65.5 | 3 | 14 | 9 | 2 | 66 | 2.36 |
| 14 | 18.5 | 0 | 3 | 7 | 18 | 99 | 3.54 |
| 15 | 64. | 4. | 6 | 15 | 3 | 73 | 2.61 |
| 16 | 49.5 | 2 | 4 | 12 | 10 | 86 | 3.07 |
| 17 | 58 | 1 | 10 | 10 | 7 | 79 | 2.82 |
| 18 | 9.5 | 0 | 2 | ? | 19 | 101 | 3.61 |
| 19 | 59 | 1 | 8 | 15 | 4 | 78 | 2.79 |
| 20 | 28 | 0 | 1 | 14 | 13 | 96 | 3.43 |
| 21 | 40 | 0 | 6 | 10 | 12 | 90 | 3.21 |
| 22 | 69.5 | 7 | 12 | 6 | 3 | 61 | 2.18 |
| 23 | 46 | 0 | 8 | 9 | 11 | 87 | 3.11 |
| 24 | 14.5 | 1 | 1 | 7 | 19 | 100 | 3.57 |
| 25 | 52 | 0 | ? | 15 | 6 | 83 | 2.96 |
| 26 | 62 | 5 | 7 | 6 | 9 | 73 | 2.70 |
| 27 | 42 | 2 | 2 | 13 | 11 | 89 | 3.18 |
| 28 | 42 | 1 | 4 | 12 | 11 | 89 | 3.18 |
| 29 | 52 | 2 | 5 | 13 | 8 | 83 | 2.96 |
| 30 | 65.5 | 4 | 12 | 10 | 2 | 66 | 2.36 |
| 31 | 49.5 | 4 | 2 | 10 | 12 | 86 | 3.07 |
| 32 | 73 | 18 | 8 | 2 | 0 | 40 | 1.43 |
| 33 | 52 | 1 | 7 | 12 | 8 | 83 | 2.96 |
| 34 | 46 | 0 | 4 | 17 | 7 | 87 | 3.11 |
| 35 | 18.5 | 0 | 2 | 9 | 17 | 99 | 3.54 |
| 36 | 55.5 | 1 | 10 | 8 | 9 | 81 | 2.89 |

TABLE II (continued)

| gective umber | Rank | Frequency of Response in Categories of Value |  |  | Welghted Rating | Mean veighted Rating |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 12 | 3 | 4 |  |  |
| 37 | 31 | 03 | 11 | 14 | 95 | 3.39 |
| 38 | 14.5 | 02 | 8 | 18 | 100 | 3.57 |
| 39 | 31 | 05 | 7 | 16 | 95 | 3.39 |
| 40 | 9.5 | 00 | 11 | 17 | 101 | 3.61 |
| 41 | 42 | 04 | 15 | 9 | 89 | 3.18 |
| 42 | 71 | 712 | 8 | 1 | 59 | 2.11 |
| 43 | 29 | 03 | 10 | 14 | 92 | 3.41 |
| 44 | 6 | 12 | 3 | 22 | 102 | 3.64 |
| 45 | 24.5 | 11 | 9 | 16 | 94 | 3.48 |
| 46 | 33 | 11 | 12 | 13 | 91 | 3.37 |
| 47 | 27 | 11 | 10 | 15 | 93 | 3.44 |
| 48 | 37.5 | 13 | 11 | 12 | 88 | 3.26 |
| 49 | 9.5 | 10 | 8 | 19 | 101 | 3.61 |
| 50 | 2 | 01 | 4 | 22 | 102 | 3.78 |
| 51 | 1 | 00 | 4 | 23 | 104 | 3.85 |
| 52 | 3 | 10 | 4 | 22 | 101 | 3.74 |
| 53 | 22 | 00 | 13 | 13 | 91 | 3.50 |
| 54 | 37.5 | 14 | 9 | 13 | 88 | 3.26 |
| 55 | 18.5 | 02 | 9 | 17 | 99 | 3.54 |
| 56 | 12 | 01 | 9 | 17 | 97 | 3.59 |
| 5 ? | 24.5 | 11 | 9 | 16 | 94 | 3.48 |
| 58 | 31. | 11 | 12 | 14 | 95 | 3.39 |
| 59 | 46 | 13 | 16 | 8 | 87 | 3.11 |
| 60 | 34 | 01 | 16 | 10 | 90 | 3.33 |
| 61 | 26 | 12 | 8 | 17 | 97 | 3.46 |
| 62 | 22 | 12 | 7 | 18 | 98 | 3.50 |
| 63 | 61 | 37 | 13 | 5 | 76 | 2.71 |
| 64 | 67 | 514 | 5 | 4 | 64 | 2.29 |
| 65 | 69.5 | 317 | 8 | 0 | 61 | 2.18 |
| 66 | 39 | 15 | 7 | 13 | 84 | 3.23 |
| 67 | 9.5 | 01 | 9 | 18 | 101 | 3.61 |
| 68 | 51 | 78 | 9 | 10 | 84 | 3.00 |
| 69 | 63 | 112 | 11 | 4 | 74 | 2.64 |
| 70 | 36 | 12 | 13 | 12 | 92 | 3.29 |
| 71 | 55.5 | 45 | 9 | 10 | 81 | 2.89 |
| 72 | 46 | 06 | 13 | 9 | 87 | 3.11 |
| 73 | 57 | $0 \quad 9$ | 14 | 5 | 80 | 2.86 |

TABLE III
OBJECTIVES CONSIDERED TO BE HIGHLY DESIRABLE BY THE EXPERTS

| JectiveJumber |  |
| :---: | :---: |
|  |  |
| 51 | Hablt of evaluating the conclusion in light of the basic assumptions and given data. |
| 50 | Heblt of dissatisfaction with incompleteness, ambiguity, and incoherent arguments. |
| 52 | Habit of solving problems independently, and th development of confidence in one's own ability. |
| 12 | Sk111 in making mathematical generalizations and discoveries. |
| 6 | Ability to translate word statements into equations. |
| 11 | Skill in formulating problems. |
| 44 | Attitude of suspending judgment until sufficien evidence is available. |
| 18 | Abllity to prove simple theorems. |
| 40 | Abllity to apply mathematics to other fields. |
| 49 | Habits of orderliness, accuracy, neatness, exactness of expression, concentration and organization. |
| 67 | Understanding limit, continuity, function, derivative. |
| 56 | Expansion of student's interest in mathematics |
| 1 | Skill in solving verbal problems and checking solutions. |
| 2 | Skill in arithmetical and algebraic fundamentals. |

## TABLE III (continued)

| jective umber | Objective |
| :---: | :---: |
| 24 | Ability to deine certain mathematical termg. |
| 38 | Ablilty to use mathematical symbols, such as $>$ and $\rightarrow$. |
| 7 | Ability to solve simple linear equations. |
| 35 | Ability to find the equation of a line given two points on the line. |
| 14 | Skill in the use of positive, negative and fractional exponents. |
| 55 | Attitudes of curiosity, creativeness and research. |

In so far as the aims in the first quartile are concerne ie opinions of the experts seem fairly consistent. Twentyiree of the twenty-seven experts who scored objective no. 51 ive it a score of "4", and the other four experts gave it a :ore of "3". Twenty-two of twenty-seven experts gave 1 tem 2. 50 a score of "4", whereas four gave it a score of "3", dd only one scored it " 2 ". Item no. 52 was rated " 4 " by renty-two experts, "3" by four experts, and "I" by one pert. General agreement is further shown by the ratings .ven objectives no. 2 and no. 44 , where 81.5 per cent of the rperts rated each "4". Also, 75.0 per cent of the experts insidered objectives no. 11 and no. 12 to be of "great ilue", while 71.4 per cent of the experts considered objec.ves no. 6 and no. 7 to be of "great value". Of the sixsen highest ranking objectives, each was given a rating of freat value" by more than 60 per cent of the experts. Nine : these sixteen top ranking objectives were not rated of to value" by any of the experts.

Objective no. 7 was rated "Lq" by twenty experts, yet it illed to be included in the first quartile because it had a ink of only 18.5. Three other objectives which had the ime rank of 18.5 might be included in the first quartile. lese objectives were no. 35 , no. 14, and no. 55 , which vere, ispectively, "Ability to find the ecuation of a Ilne, given to points on the Ine," "Skill in the use of positive, Pgative, and fractional exponents," and "Attitudes of ariosity, creativeness, and research."

In his coments on the questionnaire, professor C. B. ad of Wichita University said,

It is almost impossible to rate a concept as of no value, even though it is relatively far less important than another. . . . It is quite a different question: Are these stressed in your own courses?

This hesitation by the experts to give a low rating to : objective le seen throughout the ratinge of the seventyree objectives. Naverthelase, some of the experts did neider certain objectives to be of "no value". Thie made ssible the differentietion between important objectives d unimportant objectives.

The nineteen lowest ranked objectives, grouped in the urth quartile, are considered by the experts to be relavely unimportant. They are listed in Table IV, page 51, order of value as determined by the ratings of the experts, ie objective of least value being placed last.

## TABLE IV

OBJECTIVES CONSIDERED BY THE EXPERTS
TO EE OF SLIGFT OR NO VALUE

| jective | Cbjective |
| :---: | :---: |
| $\frac{\text { ymber }}{36}$ | Ability to ind the equstion of a circle, given three points of the circle. |
| 71 | Knowledge of the relations between the roots and the coefficients of equetions. |
| 73 | Knowiadge of permutation and conbination formul |
| 17 | Ability to rationalize the denominators of eractions, such es $1 /(1-21)$. |
| 19 | Ability to transform equations by translating and rotating axes. |
| 3 | Ability to use Iogarithma. |
| 63 | Knowledge of the history of our nuniber system. |
| 26 | Ability to do certain simple geometric constructions. |
| 69 | Understanding of the rigorous proofs of the basie theorems of calculv. |
| 15 | Ability to solve systems of equations by determinants. |
| 13 | Ability to use synthetic division. |
| 30 | Ability to solve oblique triangles. |
| 64 | Concept of geometric terms such as medians and incenter. |
| 4 | Ability to use slide rule or calculating machil |
| 22 | Abllity to use the law of tangents. |
| 65 | Coneept of simple spherical trigonometry. |
| 42 | Ability to use the multinomial theorem. |
| 10 | Ablilty to solve cubic equations. |
| 32 | Ability to use a surveyor's transit. |

The three objectives in the fourth quartile which no Expert considered to be of "great value" were "Ability to us illde rule or calculating machine," "Ability to use a survey. rr's transit," and "Concept of simple spherical trigonometry inly two of the lower quartile objectives received more 'atings of "no value" than they did of any other ratings. These two objectives were no. 10 and no. 32 , which were, espectively, "Ability to solve cubic equations," and "Abilit o use a surveyor's transit." Only one expert considered Ability to use the multinomial theorem" to be of "great alue", whereas geven consldered it to be of "no value" and welve experts considered this objective to be of only "slig? slue." The final rankings of these lower quartile objective ere largely detemined by the number of experts who rated hem of "slight value" and of "considerable value."

Those objectives which were considered to be of "slight alue" by ten or more of the twenty-eight members of the ury are the following, with the number of experts who rated he objective "2" being given in parentheses: "Ability to se slide rule or calculating machine"(13), "Ability to se synthetic division" (14), "Abllity to rationalize the enominators of fractions, such es 1/(1-21)" (10), "Ability o use the law of tangents"(12), "Ability to solve oblique riangles"(12), "Ability to find the equation of a eircle, iven three points of the circle"(10), "Ability to use he multinomial theorem" (12), "Concept of geometric
rms such as median and incenter" (14), "Concept of simple herical trigonometry" (17), and "Understanding of the gorous proofs of the basic theorems of ealculus"(12).

As stated in Chapter II, the same questionnaire which sent to the jury of experts wes also sent to the mathetios teachers in the cooperating colleges. The regulte id analysis of this questionnaire follow.

The Ratings of the Objectives by the Teachers

The questionnaires which were returned by the mathetice instructors were anslyzed in a manner aimilar to lose from the experts. The rankings of the seventy-three igectives by the instructors and the mean weighted ratings - given in table $V$, which follows on pages 54 and 55.

TABLE V
RANKINGS OF THE SEVENTY-THREE OBJECTIVES BY MATHEPATICS INSTRUCTORS IN THE

SEVEN TEXAS COLLEGES

| bjective Number | Rank | Precueney of Responaes in Categories of Value |  |  |  | $\begin{aligned} & \text { Wighted } \\ & \text { Rating } \end{aligned}$ | $\begin{aligned} & \text { Mean } \\ & \text { Velghte } \\ & \text { Rating } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1 | 2 | 3 | 4 |  |  |
| 1 | 4.5 | 1 | 0 | 1 | 17 | 72 | 3.79 |
| 2 | 4.5 | 1 | 0 | 1 | 17 | 72 | 3.79 |
| 3 | 47.5 | 0 | 1 | 13 | 5 | 61 | 3.21 |
| 4 | 72 | 1 | 12 | 5 | 1 | 44 | 2.32 |
| 5 | 34.5 | 0 | 2 | 8 | 9 | 64 | 3.37 |
| 6 | 10.5 | 1 | 0 | 2 | 16 | 71 | 3.74 |
| 7 | 4.5 | 1 | 0 | 1 | 17 | 72 | 3.79 |
| 8 | 40 | 0 | 3 | 7 | 9 | 63 | 3.32 |
| 9 | 34.5 | 1 | 2 | 7 | 10 | 64 | 3.37 |
| 10 | 68 | 3 | 4 | 9 | 3 | 50 | 2.63 |
| 11 | 64 | 1 | 6 | 8 | 4 | 53 | 2.79 |
| 12 | 53.5 | 2 | 1 | 9 | 7 | 59 | 3.15 |
| 13 | 65 | 2 | 5 | 8 | 4 | 52 | 2.74 |
| 14 | 10.5 | 0 | 0 | 5 | 14 | 71 | 3.74 |
| 15 | 67 | 2 | 5 | 9 | 3 | 51 | 2.68 |
| 16 | 40 | 0 | 2 | 9 | 8 | 63 | 3.32 |
| 17 | 40 | 0 | 2 | 9 | 8 | 63 | 3.32 |
| 18 | 30 | 0 | 3 | 5 | 11 | 65 | 3.42 |
| 19 | 62 | 2 | 3 | 10 | 4 | 54 | 2.84 |
| 20 | 30 | 0 | 2 | 7 | 1.1 | 65 | 3.42 |
| 21 | 40 | 0 | 2 | 9 | 8 | 63 | 3.32 |
| 22 | 62 | 0 | 5 | 11 | 3 | 54 | 2.84 |
| 23 | 15 | 0 | 0 | 6 | 13 | 70 | 3.68 |
| 24 | 17.5 | 1 | 1 | 2 | 15 | 69 | 3.63 |
| 25 | 40 | 1 | 2 | 6 | 10 | 63 | 3.32 |
| 26 | 26 | 2 | 2 | ? | 9 | 62 | 3.26 |
| 27 | 32.5 | 0 | 0 | 11 | 7 | 61 | 3.39 |
| 28 | 4.5 | 0 | 1 | 2 | 16 | 72 | 3.79 |
| 29 | 53.5 | 1 | 2 | 10 | 16 | 59 | 3.15 |
| 30 | 45 | 0 | 3 | 8 | 8 | 62 | 3.26 |
| 31 | 53.5 | 0 | 4 | 9 | 6 | 59 | 3.15 |
| 32 | 73 | 6 | 8 | 4 | 0 | 34 | 1.90 |
| 33 | 53.5 | 1 | 3 | 8 | 7 | 59 | 3.15 |
| 34 | 59 | 1 | 5 | 7 | 6 | 56 | 2.95 |

TABLE V (continued)

| bjective Number | Rank | $\begin{aligned} & \text { Frecuency of } \\ & \text { Response in } \\ & \text { Catecories } \\ & \text { of Value } \end{aligned}$ |  |  |  | Weighted Rating | Mean Weighted Rating |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1 | 2 | 3 | 4 |  |  |
| 35 | 15 | 0 | 1 | 4 | 14 | 70 | 3.68 |
| 36 | 40 | 0 | 2 | 9 | 8 | 63 | 3.32 |
| 37 | 30 | 1 | 2 | 4 | 12 | 65 | 3.42 |
| 38 | 47.5 | 1 | 3 | 6 | 9 | 61 | 3.21 |
| 39 | 59 | 2 | 4 | 6 | 7 | 56 | 2.95 |
| 40 | 23 | 2 | 0 | 3 | 14 | 67 | 3.53 |
| 41 | 26 | 0 | 1 | 8 | 10 | 66 | 3.47 |
| 42 | 70 | 2 | 9 | 5 | 3 | 47 | 2.47 |
| 43 | 45 | 1 | 2 | 7 | 9 | 62 | 3.26 |
| 44 | 15 | 1 | 1 | 1 | 16 | 70 | 3.68 |
| 45 | 20 | 0 | 0 | 8 | 11 | 68 | 3.58 |
| 46 | 20 | 0 | 0 | 8 | 21 | 68 | 3.58 |
| 47 | 20 | 0 | 0 | 8 | 11 | 68 | 3.58 |
| 48 | 10.5 | 0 | 1 | 3 | 15 | 71 | 3.74 |
| 49 | 4.5 | 1 | 0 | 1 | 17 | 72 | 3.79 |
| 50 | 10.5 | 1 | 0 | 2 | 16 | 71 | 3.74 |
| 51 | 1. | 1 | 0 | 0 | 17 | 69 | 3.83 |
| 52 | 4.5 | 1 | 0 | 1 | 17 | 72 | 3.79 |
| 53 | 10.5 | 1 | 0 | 2 | 16 | 71 | 3.74 |
| 54 | 27.5 | 1 | 0 | 4 | 14 | 69 | 3.63 |
| 55 | 23 | 1 | 1 | 4 | 13 | 67 | 3.53 |
| 56 | 23 | 0 | 1 | 7 | 11 | 67 | 3.53 |
| 57 | 26 | 0 | 2 | 6 | 11 | 66 | 3.47 |
| 58 | 28 | 0 | 3 | 4 | 11 | 62 | 3.44 |
| 59 | 50 | 0 | 3 | 10 | 6 | 60 | 3.16 |
| 60 | 26 | 0 | 1. | 8 | 10 | 66 | 3.47 |
| 61 | 50 | 0 | 4 | 8 | 7 | 60 | 3.16 |
| 62 | 5 ? | 1 | 3 | 9 | 6 | 58 | 3.05 |
| 63 | 59 | 1 | 3 | 11 | 4 | 56 | 2.95 |
| 64 | 62 | 1 | 7 | 5 | 6 | 54 | 2.84 |
| 65 | 69 | 4 | 4 | 9 | 2 | 47 | 2.49 |
| 66 | 32.5 | 1 | 1 | 6 | 10 | 62 | 3.39 |
| 67 | 40 | 0 | 5 | 3 | 11 | 63 | 3.32 |
| 68 | ? 7 | 4 | 5 | 6 | 3 | 44 | 2.44 |
| 69 | 66 | 5 | 3 | 4 | 7 | 51 | 2.69 |
| 70 | 56 | 1 | 4 | 5 | 8 | 56 | 3.11 |
| 71 | 36 | 0 | 1 | 10 | 7 | 60 | 3.33 |
| 72 | 10.5 | 0 | 0 | 5 | 14 | 71 | 3.74 |
| 73 | 50 | 1 | 3 | ? | 8 | 60 | 3.16 |

It is seen from an examination of Table $V$, pages 54 and , that the following objectives will fall into the first artile, thus indicating that the teachers consider these jectives to be very important. These objectives, in order rank, are: $51,1,2,7,28,49,52,6,14,48,50,72$, , $35,44,24$, and 54.

The objectives considered by the teachers to have little no value in the freshman and sophomore mathematics courses e grouped in the fourth quartile. They are as follows, th the objective of lower rank preceding that of higher nk: $32,4,68,42,65,10,15,69,13,11,19,22,64$, , 39, 63, 62, and 70.

> Relationship between the opinion of the Jury of
> Experts and the Opinion of the Mathmatios Teachers of the Cooperating Colleges

To deternine the relationehip between the opinions of s experts on the one hand and the opinions of the teachers the cooperating colleges on the other hand concerning the lative merits of the seventy-three objactives, the productnent method of correlation was used. The product-moment thod of determining the coefficient of correlation as scribed by Garrett ${ }^{1}$ is given in Appendix $D$ of this study. th the use of Garrett's formula and the data found in ble VI (Apcendix D), the coefficient of correlation of the
${ }^{I_{\text {Henry }} E}$. Garrett, Statistics $\frac{1 n}{}$ Psycholocy and Educaon, (4th ed., New York, 1953), p. 139.

Inions of the experts and the teachers is also calculated 1 Appendix 0 .

It was found in this calculation that the coerficient ? correlation, $r$, was equal to .78 , and that the confidenceiterval at the ninety-ifve per cent level was .67 to .86 . at is, the ifduciary probability is .95 that the interval if to .86 contains the true $r$.

The magnitude of this coefficient of correlation indithed that a substantial positive relationship existed sween the opinions of the experta and the opinions of the 1thematics teachers of the Texas colleges. Garrett wrote se following concerning the size of $r$ and the degree Iationship:

It is customary in mental aeasurement to deseribe the correlation between two teats in a general way as high, marired or substantial, low or negligible. While the descriptive label applied will vary somewhat in meaning vith the author using it, there is a fairly good agreement among workers with psychological and educational tests than an . . . r from $\pm .70$ tot 1.00 denotes high to very high relationship; reom 4.40 to $\mathbf{I} .70$ denotes substantial to marked relationship. ${ }^{2}$

The inigh positive relationship $2 s$ shown by the coPficient of correlation was an indication that the athematics teachers of the cooperating colleges knew what jectives were important as judged by the jury of experts.

In spite of the over-all high coefficient of correlation few of the rankings and ratings indicated distinct and Lde differences between the two groups of experts and

$$
{ }^{2} \text { Ib1d., p. } 173 .
$$

achers. Some indications of these difference foliow: Objective No. 28, dealing with the ability to solve ght trianglee vac ranked 4.5 by the teachers, whic the perts of the jury ranked it only 42 . An explanation of Is may be found in the oomments of some of the experts who najder trigononetry to be a high school subject. The achers ranksd Objective No. 48, "Appreciation of methematics d its role in the develoment of civilizetion," 10.5 , while e experts ranked it 37.5 . The teachere gave Objective - 72 a rank of 20.5 ; the experts ranked it 46 .

On the other hand, the teachers gave a Iov rank of .5 to Cbjective No. 12, compared to a rank of 4 by the perts. This objective was concerned with making mathemetal generalizations and discoveries. Objective No. il, kill in formulating probleme," received a rank of 6 by the perts, but only 64 by the teschers. Likevise, Objective 1. 67 wae ranked 9.5 by the expertg and 40 by the teachers. 1is might be explained by the fact that calculus is not ught as freshman and sophomore mathematice courses in all iven colleges.

Both groups rated the following objectives in the first artile: $51,1,2,7,49,52,6,14,50,35,44$, and 24. Both grouns juaged the following objectives to be of Ittle or no value by placing them in the fourth quartile: $? 4,42,65,10,15,69,13,19$, and 64.

It is beyond the scope of this inveatigetion to snalyze 1 factore responsible for the differences between the sohers' ratings and those of the experts.

## Teaching Materials

Although the heads of the mathematics departments of the opersting colleges were aeked to send descriptions of studer ojects being carried on in their eehools, no repert or ntion of such projects was received. It might be inferred st no such project exiets. The existence of in-school or t-of-school projects might be an indication of attempts schieving certain objectives, such as No. 12, "Skill in king mathomatical generalizations and discoveries," No. 40 , bility to apply matheratics in other fielde," No. 45, thamalation of the imagination," No. 55, "Attitude of riosity, creativenese, and ressarch," and other objectives ialing with ekills, knowledge, appreciation, and hebits. ; is poselble that projects are not needed to achieve these geotives. Further study is needed along this line.

Syllabl and outlines of courses were recuested. Five illeges sent outlines, while two colleges stated that the uthern Association of Colleges and Secondary Sehools reilred that outlines of courges remain in the office of the sen. The anelysis of the outlines which were received was ine from the standpoint of searching for evidences of the sjectives in the outlines. Most of the objectives of the
iestionnaire were also found in the outlines. Examples of igectives in the outlines follow:

1. Some essentials of logic--hypothesis, conclusion, necessary and suff1cient conditions.
2. Solving linear and cuadratic equations.
3. Systems of equations.
4. Negative, zero, and fractional exponents.
5. Interpolation, and computation with logarithms.

The aim of one course in Differential Calculus as given 1 the outilne is "To introduce the student to the vast field ' analysis. More specifically, the student is introduced , the fundamental concepts of continuity, limits, derivative so great sffort is exercised in showing how these concepts ty be utilized in solving problems in Algebra, Physics, and ugineering." The objective of a courge in Plane Analytical ometry in this college is "To assist students in making od preparation for the calculus." One of the alme of - igonometry is "To prepare the student for more advanced jurses in mathematics." An outline from one of the other jlleges states that Analytic Geometry contributes to the sility of the student to reason.

The bibliographies contrined in the outlines consisted f the ordinary textbooks. No biographies of mathemeticians, ithematicel magazines, or books on mathemetics which might ıcrease the student's interest were reported.

It is generally agreed that teachers' examinations sually reflect their ideas of what is of value in the jurses. Tests and examinations given in the first terin $f$ this year were sent to the writer from five of the seven
chools. In analyzing the teats, the writer used the intropective method. By closely studying a test, an atterpt was ade to determine what objectives the teacher was trying to valuate. Upon sxamination of each cuestion of the tests, he writer asked himself what concepts, knowleage, and athenatical abllities were necescary to anewor the questions orrectly. The writer was interested also in determining roil the tests what attitudes, habite, skills, and appreos... tions the teacher was attempting to eveluate. In this nalysis of the tests, the writer found the following: Alhough the objective "Checking" received a high ranking by he teachers who answered the quectionnaire, only a few sst questione included it. All verbel problems of the este were "type" problems not likely to ereate interest fenthusian for methemetics. One such typieal verbal roblem was; A sixteen foot ladder makes an angle of $60^{\circ}$ Ith the vall of a house. What angle does the ladder make th the level ground?

Upon considering all examinations from the five schools, 10 writer found that arithmetical and algebraic fundamentals are stressed more than other objectives. One teacher ited these objectives of no velue on the questionnaire, sating that thase were more proverly high sohool aims. Pverthelesa, tests from this achool revealed that fundaintals wers the things conalaered important in the courses. Bither the ability to use logarithms nor en unaerstanding P the meaning of them received a high ranking from the
xperts or the teachers. Nevertheless, the examinations reuired this skill and this concept in many problems. On he other hand, objectives numbered $44,49,50,48,51,52$, nd 53, dealing with intangibles such as appreciations, sbits, and attitudes, were not in evidence on the tests, Ithough they were ranked highly by the teachers of the leven colleges. This does not mean that the objectives ere neglected in class instruction; because they are not 'eadily adaptable to the usual methods of testing, they are ifssing from test questions.

In most cases, the low ranking objectives were not 'ound on the tests. These objectives included "Ability to ise the slide rule," "Ability to solve cubic equations," Skill in formulating problems," "Skill in making generaliations and discoveries," "Ability to uge synthetic divisiol 'Ability to use complex numbers," "Ability to transform quations by rotation or translation," "Ability to use the aw of tangents," and "Ability to use the surveyor's irangit." In addition to these were the following objeciives which vere not discernible from a study of the tests: 'Ability to add or subtract vectors," "Ab1lity to use the iultinomial theorem," "Knowledge of the history of our number system," "Concept of spherical trigonometry," 'Undergtanding of the sine of a number," "Concept of group, "ield, and set," "Understanding of rigorous proofs in :alculus," "Knowledge of the relations between the roots ind the coefficients of equations," and "Knowledge of
permutation and combination formulas."
Only one college of the seven offered College Geometry during the first term of the 1957-58 school year. The examination for this course consisted of elementary sonstructions and definitions usually found on high school tests. Examples of itens on the test are: At a point on a ilne construct a perpendicular to the line. Define eircle, square, congruent triangles, and perpendicular oisector of a line segment.

The grades achleved by the students were sent with the tests to the investigator. Of the 1888 grades recorded, 1145 were 60 or less, bsesed on maxinum grade of 100 . Ninety of these grades were zero and seventy-nine were 100 . The arithmetic mean of the 1888 grades vas 61.3. According to two cataloge from these Texas colleges, a grade of 62.3 is s falling grade.

Data from Test Administered
to a Sample of Studenta

The test devised by the writer was administered to thirty-five students of the seven colleges. Besed upon a score of 100 per cent for all answers correct, the thirty:Ive students achieved an average grade of 43.9 per cent. item No. 1 on the test dealt with exponents. This objective to. 14 , was ranked in the first auartile by the teachers. ?welve students, or 34.3 per cent, falled to answer this juestion correctily. Item 2 on the test was a simple verbal
roblem requiring the use of the elementary formula: Disancs equals Rate times Time, of elsmentary reasoning. No tudent worked this problem. Itea 3, lika objective No. 35 , scuired the sbility to find the equation of a line, given wo points on the line. Twenty-nine, or 82.9 per oent, of he gtudente answered this correctly. Item 4 wes designed o determine the acquisition of the ability to do logical, ritical or constructive thinking. Only four students gave he correct answer to this item. This objective No. 57, and 0. 61, though not ranked in the ilrgt quartile by the exerts or the teachers, was deamed to be of considerable alue by both groups. Iten 5 of the Coliege Mathematies est was a verbal problem dealing with the ability to solve he right triengle and to know the definition of the sine f X. Pifteen students failed to answer Item 5 correctly. tom 6, a verbal problem dealing with the abllity to use he law of sines and the abllity to solve oblique triangles, 28 not attempted by e1ght of the students. Fourteen stuents ansvered it correctiy. Rated of considerable value $y$ both the experts and the tachers, objective No. 60 . Inderstanding the meaning of logarithms ${ }^{n}$ wea tested in tem 7. Only six students answered this item correctly. a order to be able to answer Item 8 correctly, one needs D know the definitions of the trigonometric functions. ight of the thirty-five students answored correctiy. To nswer Item 9, the student needs to have achieved objective 2. 13, "Ability to use aynthetic division." Twenty-one
students snswered this correctly. Eighteen students did not nnow that the cosecant of an angle is equal to the secant if the complement of the angle. If the student is to ichisve Objective No. 15, "Ability to solve systems of squations by use of determinants," it is necessary that he ,e able to solve a problem similar to Item 11. Thirteen students succeeded in doing this.

If the roots of a quadratic equation are equal, the inscriminant equals zero. Twenty-five of the thirty-five students answered this correctly in Iter 12. Since Objectiv 10. 33 is not recommended highly be experte or teachers, it . $s$ surprising that the atudents made such a high score on Ctem 13, which dealt with complex numbers. Only five stulents failed to answer this question correctly. Only nine itudents were able to recognize a rational integral equation :tem 15 of the test is concerned with pescartes' Rule of iigns. Only four students, or eleven per cent, were able io give the correct answer to this item. Item 16 was in:Iuded in the test in order to evaluate the achievement of bojective No. 71, "Knowledge of the relations between the "oots and the coefficients of equations." Only three of ihe thirty-five students answered this question correctly. item 17 of the test is used to determine the achievement if Objective No. 20 , "Ability to find the maximum and minilum of simple functions." Eleven students were sble to inswer this iter correctly. Item 18 is an Analytic Geometry qestion. In order to successfully answer this question,
the student needs to know the equations of the straight line Twenty-four students successfully answered this question. Objective No. 31 was rated of considerable value by the jury of experts and the teachers of the cooperating colleges Item 19, related to objective No. 31 , requires a familiarity with inverse trigonometry functions. Seventeen of the thirty-five examinees answered Item 19 correctly. The binomial theorem, conaidered to be important by both the Jury of experts and the teachers, was considered in Item 20. Twenty-four of the thirty-five students were able to answer the question of this item correctly. The ability to interpolate in tables is evaluated by Item 21. Nineteen, or 54.3 per cent, of the thirty-five students answered Item 21 correctly. In typing the multiple choices to Item 22 , the correct answer was omitted. Because of this, Item 22 was omitted from the analysis of the test. Twenty-five students were able to solve the analytic geometry problem in Item 23, which dealt with parallel lines and their equations.

The students were asked to indicate on the test paper names of the mathematics courses that they had completea. It was found that all thirty-five students had completed College Algebra, Trigonometry, and Plane Analytic Geometry. Thirty students had completed Differential Galculus, and four of them were taking Calculus at the time of the test. Several students indicated that they had completed more
dvanced mathematics courses, such as Integral Calculus, heory of Equations, Solid Analytic Geometry, and Differentis quations. In analyzing the results of the College Matheatics Test, the investigator recognized that there were everal weaknesses in the procedure. Other than for a minium of two years of college mathematics, the students did lot have a comron mathematics background. Factors such as ntelligence of the students, number of years of high school sathematics, grades on entrance and placement tests, and the intentions of the students to make mathematics their major or minor were not considered in the analysis of the results of the test.

In drawing conclusions from the data of this College Mathematics Test, the investigator recognized the weakneases mentioned above and acted accordingly.

## Summary of Chapter III

In this chapter, the data from the questionnaires returned by the jury of experts and the teachers of the cooperating colleges heve been presented and analyzed. Moreover, data obtained from tests and examinations given during the first term of this school year, data obtained from a sample of students, and data from outlines and syllabi of the methematics courses were presented and analyzed in this chapter.

It was found that there was substantial agreement between the jury and the teachers concerning the relative
values of eertain objectives. On the other hand, there was some disagreement concerning certain objectives. The coefficient of correlation between the opinions of the gury and the teschers vas .78. This coefilcient of correlation was significant at the five per cent level. The high coefficient of correlation indicated agreement between the jury and the teachers.

It was found that the examination and test questions submitted by the teachers did include most, but not sll, of the highly recommended objectives. Only three questions, however, pertaining to objectives which were ranked in the fourth quartile by the teachers were found in the test questions. These pertained to concepts of geomstric terms, mathematical induction, and inverse trigonometric functions Of the 1888 scores earned by the students on the tests and examinations, 1145 were not greater than sixty. This was an indication that the objectives which the teachers were attempting to evaluate were not being fully realized.

Low scores were made by the students who took the test constructed by the writer. This was an indication that sone of the objectives which were generally considered to be important were not being adequately realized.

The outlines of the mathematics courses, the college estalogs of the seven schools, and the textbooks used in the courses were analyzed by the writer. These were found to contain many of the same or similar objectives which were on the questionnaire sent to the experts and the
eachers.
Chapter IV, which follows, will sumarize the study,
raw conclusions, and make recommendations based on the 'indings of the study.

## CHAPTER IV

GENERAL SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

The aim of this chapter is to re-state the problem and the purposes of the study, to review the procedure of the investigation, to summarize the findings, to draw conclvsions, and to make recommendations.

The Problem and the Purpose of the Study

The problem of this investigation was to determine what objectives are desirable for freshman and sophomore courses in seven Texas colleges, and to ascertain to what extent these objectives are being achieved. The position was taken in this study that the first step in the development of an effective mathematics program is that of determining the objectives of mathematical training that are most valuable. The purpose of this study has been to formulate a list of objectives of mathematical instruction whereby the seven colleges cooperating in the study could be benefited by an awareness of the desirable objectives and the realization of their success or fallure in attaining these objectives. The present study also proposed to assis institutions similar to the seven of this study by making the findings of this study available to them.

## Method and Procedure

In order to arrive at a solution of the problem, the following step were taken:

1. A list of objectives for freshman and sophomore matheratics courses was formulated.
2. The opinions of a jury of experts and the ooinions of the mathematics teachers in the colleges of the study were determined by the questionnaire method.
3. The extent of agreement between the jury of experts and the mothematics teachers was determinel
4. A test devised by the investigator was given to a sample of students of the seven colleges, and teaching materials, including outlines and syllabi, tests and examinations, and grades from these tests were analyzed with the idea of deter. mining the objectives of the courses and the extent of realization of these objectives.

The objectives of the questionnaire were obtained from a search of the literature on mathematical education. Criteria for the selection of the jury included some or all of the following accomplishments by the members:

1. Extensive and recent experience in teaching college mathematics.
2. Scholarly publications.
3. Interest in college mathematics education shown by one or more of the following:
a. Publications in mathematical journals.
b. Membership on national or regional committees dealing with the teaching of mathematics.
c. Head of the mathematics department in a leading college.
d. Author of a modern mathematics textbook for freshmen or sophomores.
e. Mathematics instructor especially concerned with mathematics education.

Outlines of courses, cataloge, and tests given in the first term of this year were analyzed to determine more fully the objectives of the individual institutions of the study.

A test, constructed by the writer and administered to a sample of thirty-two students, was designed to measure to some extent the achlevement of some of the objectives of the questionnaire.

## Analysis of Data and Findings

The twenty-eight members of the jury of experts rated each of the seventy-three objectives of the questionnaire with respect to their importance. A numerical value of 4, 3, 2, or 1 was assigned to an objective if the expert thought it to be highly desirable, of considerable value, of slight value, or of no value, respectively. The mean

Neighted rating was obtained for each objective, as lescribed in Chapter III, and ranked according to size. Phose objectives of high rank were then taken as those considered desirable by the jury, while those of low rank were taken as those considered to be of little or no value. 0 aing the same procedure, the same seventy-three objectives were rated by all teachers of freshman and sophomore mathenatics in the cooperating colleges. The product-moment nethod was then used to determine the coefficient of correlation between the opinions of the jury of experts and the opinions of the teachers. The coefficient of correlation was found to be . 78 , thus showing a definite agreement concerning the relative values of most of the objectives.

Both experts and teachers rated most highly those objectives which are intangible, such as Objective No. 51, "Fiabit of evaluating the conclusion in light of the basic assumptions and the given data," and Objective No. 52, "Habit of solving problems independently, and the development of confidence in one's own sbility."

The experts and teachers gave lowest ratings to those objectives dealing with "Ability to use the surveyor's transit," "Ability to use the slide rule and calculating machine," and "Concepts of spherieal trigonometry."

The experts and teachers were generally agreed on what was highly desirable and what was of no value; the disagreements were mostly in the middle rankings where the scale used did not differentiate sharply between objectives
if considerable value and those of ellght value. Objectives lumbered $1,2,6,7,14,24,35,49,50,51$ and 52 were fiven top rankings by both groups, while objective numbers t, $10,13,15,19,22,32,42,63,64$, and 65 were ranked Low by both groups.

The tests made and administered by the teachers in the Pirst term of this year did not reveal attempts to measure attitudes, appreciations, habits, and interests of the students. The scores from these tests further revealed that the objectives which the teachers were evaluating were not being fully achieved.

That a large proportion of the desirable objectives were not being realized was shown by the low scores made by the sample of students on the test constructed by the writer. The mean score for all thirty-five students was 44.7.

Conclusions

On the basis of the evaluation of date obtained in this study, and with the recognition of the limitations inherent in the study, the following conclusions appear to be warranted for the objectives of freshman and sophomore mathematics courses in the colleges of the study:

1. Consensus of opinions of mathematical educators regarding the importance of objectives can be determined, and this consensus can be used as a guide to detemine the proper objectives for
mathematics courses.
2. Subgtantial agreement existe between the jury of mathematical experts and the group of teachers In the coopereting colleges as to the relative iaportence of ob jectives.
3. As a general rule, the objectives concerned uith hablis, sppreciations, and attitudes sce judged to bs of grest relative importance.
4. In general, the objectives concerned strietly with mathematical manipulations are judged to be relatively unimportant.
5. Objectivee which logically should be realized in high school courses are judged relatively unimportant for college courses.
6. A careful analyeis of the teete given by the classroom teachers revesis that the tests are limited to the measurement of the achievement of only a few of the recominded objectives. The test items are usually concerned with the objectives of mathematicel skills and knowledge, while attitudes, habits, sppreciations, and interestethe rost important goals according to the experts and teachers--are not included.
7. The low scores rade by the students who took the test constructed by the writer indicate that some of the recommended objectives are not being fully $r e s l i z e d$.

Recommendations

The following recommendations are supported by the findings and conclusions of this study:

1. It is very important that the mathematies teachers of the cooperating colleges incorporate in the daily instruction and tests more aspects of the development of desirable habits, attitudes, appreciation, and interests.
2. Objectives which should properly be attained in high school should be mitted or passed over quickly.
3. Rigorous proofs in calculus should not be stressed.
4. Recommendations for further study along the following lines are made:
a. Evaluation of the attainment of the objectivs of mathematical training.
b. The attainment of objectives in the colleges of the study compared with the attainment in other colleges.
c. Ways and means by which instruction may be best organized to accomplish the given objectives.

## BIBLIOGRAPHY

Allendoerfer, G. B. Mathematies for Liberal Arts Students. The American Mathematical Monthly, LIV (November, 1947) 573-578.

Andree, Richard V. "Yodern Trigonometry." The Mathematics Teacher, XLVIII (February, 1955), 82.

Banks, John H. "Gritical Thinking in College Freshman Kathematics. Unpubllshed Ph. D. dissertation, George Peabody College for Teachers, 1949.

Barr, Arvil S., Davis, Robert A., Johnson, Palmer 0. Educetional Regearch and Aporaigal. Ohicago: J. B. Lippencott C0.s 1953.

Bentz, R. P. "Criticel Mathematical Recuirements for the Program of the Community College." The Mathematics Geacher, XLVII (January, 1954), 51-52.

Bloom, Benjamin S. (Editor) Taxonomy of Educational Cbjectives. New York: Longmans, Green and Co.s 1956.

Bocher, Maxime. Plane Analytic Geometry. Nev York: Henry Holt and Co., 1915.

Erown, Kenneth $\mathbb{E}$. General Mathematics in American Colleges. New York: Bursau of Publlcationg, Teacherg College, Columbia University, 1943.

Brueckner, Leo. Walter S. Monroe Encyclooeila of Educations Research. Nev York: The KacMillan Co., 1950.

Buchanan, H. E., and Wahlin, G. E. The Elements of Anslytic Qeometry. Nev York: Ferrar and rinehart, 2937.

Cooley, Hollis R., et al. Introduction to Msthergetics. New Yorik: Houghton Miffin Co. 1937.

The Comnittee of College Algebra. College Alpebrg. New York: Pitmen Publishing Co., 1956.

Dadourian, H. M. Plane Trigonometry, with Tables. Cambridge Addison-Vesley Press, Inc., 1950.

Dragoo, R. C. "reaching the Calculus." National Mathematics Magazine, XIX (March, 1945), 186-193.

Duren, William L. "School and College Mathematica." The Mathematics Teacher, XLTX (November, 1956), 514-518.

Fehr, Howard F. "Reorientation of Mathematics Education." Teschers College Record, IIV (May, 1953), 430-39.
"Teaching for Appreciation of Mathematics." School Science and Mathematics, LII (1952), 19-2h.

Gerrett, Henry E. Statieties in Psycholagy and Edveation. New York: Longmans, Green and Co., 1953.

Good, Garter V. Dictionery of Educetion. New York: MoGrawHill Booke Co. Ine., 19 tis.

Granville, Villiam A. Elements of Differential and Integral Calculus. Boston: Ginn añ CO., 1904.

Hartung, M. L. "A Foruard Look at Evaluation." The Mathematios Teroher, XLII (January, 1949), 29-33.
. "A New Day?" The Mathematics Teacher, XLIX
(December, 1956), 622.
Hassler, J. O. "The Use of Mathematical History in Teaoh1ng." The Mathemstics Tescher, XXII (March, 1929), I66

Henderson, Kenneth B, and Dickman, Kern. "Mathematical Need of Prospective Stuaents in the College of Engineering. " The Mathematics Tercher, XLV (February, 1952). 89-93.

Hildebrandt, E. H. C. "For a Better Mathematies Progran in the College." The Mathematics Tescher, LI (February, 1956), 89.

Johnson, Donovan A. "Attitudes in the Mathenaties Classroon Sohool Science and Mathematics, LVII (February, 1957), 113.

Kidd, Kenneth P. Objectives of Mathematical Training in the Public Junior Collepe. Nashville: George Peabody College for qeachers, 1948.

Kilbridge, J. T. "How Different Are the Several Objectives of a Course of Study in Mathematics?" College and University, XXIII (1948), 201-6.

KacDuffee, C. O. "Objectives in Calculus." The American Methematical Monthly, LIV (June, 1947), 335-7.
ladaus, Herbert. "Validation of Basie Principles and Criter for Evaluating the Organization and Administration of Student-Teacher Progress.n Unrublished Ed. D. disserta. tion, Oklahoma A and M College, 1957.
ililer, Norman. "mat Permanent Valuss Have Courses in Methematics for Students tho Will Make No Professional Usa of Them?" The Kathematios Teacher, XLIV (November, 1951), 449-451.

Turnaghan, F. D. Differentlal and Integral Calculvs. Brooklyn: Remsen Press, 19li?.
"The Teaching of College Mothemstieg. "The Amerig Mathematical Monthly, LIII (September, 1946), 419-25.

Nathen, David S., and Helmer, Olaf. Analytic Geometry. Nev York: Prentice-Hall, Ine., 1947.

The National Council of Tezchers of Mathematics. Fifteenth Yearbook, The Place of Kathematics in Secondary Education. New York: Bureau of Publications, Columbla University, 1940.

Neeley, J. H., and Trecey, J. I. Differential and Integral Galculus. Nev York: The Macmilian Co., 1932.

Nevsom, C. V. "The Teaching of College Mathematics." Schoc Seience and Mathemntics, LII (March, 1952), 130-2.

Northrop, E. P. "Kathematies in a Liberal Education." The Ameriogn Kathemetical Monthly, XIII (March, 1945), 132-
"The Mathemstics Program in the University of Chicago." The American Jatheraticgl Konthly, iv (January, 1948), $2-3$.

Norton, Konte S. "Developing Suceess Cuslities in our Future Scientists and Mathematicians." School Science and Kathematics, LVII (November, 1957), 620-35.

Hovlen, F. S. "Objectives in the Teaching of College Methematies." The American Mathematieal Monthly, LVII (January, 1950). 62.

Parker, James A. "The Teaching Objectives in a Pirgt Course in the Galculus." The Mathematice Teacher, XXXVI: (May, 1944), 347-49.

Pingry, Robert E. "Critical minking--What Is It?" The Mathematics Teacher, XLIV (Ootober, 1951), 466-470.
ichardson, Moses. Fundamentals of Mathematics. New York: The Meckillan CO., 1941.
$\qquad$ - "On the Teaching of Klenentery Mathematics." The American Mathematical Monthly, XIIX (September, 194र), 499-515.
losenbach, Joseph B., Whitman, Edwin A., and Moekovitz, Davil Plane Trigonometry, Hith Tables. New York: Ginn and Co. 1937.
lowe, Jack L. "General Kethematics for Terminal Studente in California Junior Colleges. ${ }^{\circ}$ Unpub;ished Ed. D. diseertation, Iniversity of Colorado, 1957.
icharf, William $L$. "The Teaching of Trigonometry." The Mathematics Teacher, XLV (October, 1952), 445-50.
... "Testing and Evaluation in Mathematics." The Mathemetice Tescher, XLV (April, 1952), 220-1.

31 gam , Charles H. College Algebra. New York: Henry Holt and Co., 1940. 1936.

Smith, Eugene R., Tyler, Ralph, et al. Aporaising and Becor ing, student Procress. New York: Haxper and Brothers, 1942.

Sobel, Max. "Concept Larning in Algebrs." The Mathematies Pescher, XLIX (October, 1956), 426.

Phomas, Archle. "The Develoment of a Criterion in the Measureaent of Shorthand Transcription Production." Unoubllshed $5 d . D$. dissertation, Oklahoma $A$ and $M$ College, 1951.

Vance, E. P. "Teaching Trigonometry." The American MetheMetlcal Konthly, LIV (January, 1947), 36-37.

Van Engen, Henxy. "plans for the Reorganization of College Preparatory Mothemetice, " School Science and Mathemeties, LVIII (1958), 277.

Hoodby, Lauren G. "A Synthesis and Evaluation of SubjectMatter Toplcs in Matheratics for General Education." Unpublished Ph. D. dissertation, Univereity of Michigan, 1952.

Wren, F. Lynwood. "The Merits and Content of a Freshman Mathematics Gourse." School Seience and Mathematies, LII (Decsmber, 1952). 595-603.

Zant, James H. "Critical Thinking as an Ain in Kathematics Courses for General Education." The Mathematies Teacher, XLV (Apr11, 1952), 249-256.

Directions: Please indicate your opinion of the value of each objective for freshman and sophomore mathematics courses by placing the number 4, 3, 2, or 1 before the statement of the objective according to the following scale:
$\frac{\frac{4}{3}}{\frac{2}{2}}$ The objective is highly desirable. The objective is of considerable value. The objective is of slight value. The objective is of no value.

1. Skill in solving verbal problems and checking solutions.
2. Skill in arithmetical and algebraic fundamentals.
3. Ability to use logarithms.
4. Ability to use slide rule or calculating machine.
5. Ability to construct and interpret tables and graphs.
6. Ability to translate word statements into equations.
7. Ability to solve simple linear equations.
8. Ability to solve quadratic equations by two methods.
9. Ability to solve sinple systems of linear equations.
10. Ability to solve cukic equations.
11. Skill in formulating problems.
12. Skill in making mathematical generalizations and discoveries.
13. Ability to use synthetic division.
14. Skill in the use of positive, negative, and fractional exponents.
15. Ability to solve systems of equations by determinants.
16. Ability to work with numbers of the form $\sqrt{3}$.
17. Ability to rationalize the denominators of fractions, such as $1 / 1-2 i$.
18. Ability to prove simple theorems.
19. Ability to transform equations by translating and rotating axes.
20. Ability to find maxima and minima of simple functions.
21. Ability to use the laws of sines and cosines.
22. Ability use the law of tangents.
23. Ability to change radians to degrees and vice versa.
24. Ability to define certain mathematical terms precisely.
25. Ability to solve problems involving arithmetic and geometric progressions.
26. Ability to do certain simple geometric constructions.
27. Ability to interpolate and extrapolate in tables.
28. Ability to solve the right triangle.
29. Ability to find the mean, median, and standard deviation of statistical data.
30. Ability to solve oblique triangles.
31. Familiarity with inverse trigonometric functions.
32. Ability to use a surveyor's transit.
33. Ability to add, multiply, and divide complex numbers.
34. Ability to add and subtract vectors.
35. Ability to find the equation of a line given two points on the line.

## vu

_36. Ability to find the equation of a circle, given three points of the circie.
_37. Ability to differeltiate functions such as $\left(1-3 x^{2}\right)^{5}$.
38. Ability to use mathematical symbols, such as $\rightarrow$ and < .
39. Ability to use mathematical induction.
40. Ability to apply mathematics in other fields.
41. Ability to use the binomial theorem.
42. Ability to use the multinomial theorem.
43. Ability to solve simple inequalities.
44. Attitude of suspending judgment until sufficient evidence is available.
45. Stimulation of the imagination.
46. Appreciation of the beauty of mathematics.
47. Appreciation of the power and economy of mathematics.
48. Appreciation of the important role that mathematics has played in the development of civilization.
_49. Habits of orderliness, accuracy, neatness, exactness of expression, concentration, and organization.
50. Habit of dissatisfaction with incompleteness, ambiguity, and incoherent arquments.
51. Habit of evaluating the conclusion in light of the basic assumptions and the given data.
_52. Habit of solving problems independently, and the development of conficience in one's own ability.
53. Habit of checking matrematical operations.
54. Attitudes of cooperation, open-mindedness and tolerance.
55. Attitudes of curiosity, creativeness, and research.
56. Expansion of student's interest in mathematics.
57. Acquisition of the skills and habits involved in critical and constructive thinkiria.
58. Foundation for further and hiaher mathematics.
59. Understanding statistical meastires, such as mean.
60. Understanding of the meaning of logarithms.
61. Knowledge of fundamental logical principles.
62. Knowledge of some direct and indirect methods of proof.
63. Knowledge of the history of our number system.
64. Concept of geometric terms such as median and incenter.
65. Concept of simple spherical trigonometry.
66. Understanding of the meaning of the sine of a NUMBER.
67. Understanding limit, continuity, function, derivative.
68. Concepts of group, field, and set.
69. Understanding of the rigorous proofs of the basic theorems of calculus.
70. Concepts of polar coordinates.
-71. Knowledge of the relations between the roots and the coefficients of equations.
_72. Knowledge of values of trigonometric functions of certain special ang? es such as, $\sin 30^{\circ}=\frac{1}{2}$.
_73. Knowledge of permutation and combination formulas.
Please use back of sheet for comments.
JuAME

211 Thatcher Hall
Oklahoms State University Stillwater, OkIahoma October 22, 195 ?

Under the direction of Dr. Jemes H. Zant of Oklahome State University, I am conducting a study to determine the objectives of freshman and gophomore mathemstics courses. Also, I hope to ascertain how well these objectives are being attained in certain liberal arts colleges in Texas.

One phase of the study is the appraisal by competent persons in the field of mathematics education of a list of objectives formulated from the literature. The desirable objectives are to be determined by an analysis of the opinions and suggestions obtained from the cuestionnaire.

I would appreciate your agsistance in the completion of the study by filling in the enclosed cuestionnsire and returning it to me. A stamped, self-addresaed envelope 1s enclosed for your convenience.

Yourg truly,

James H. Means

JHM/bem
enclosures

211 Thatcher Hall Oklahoma State Univergit Stillwater, Oklahoma February 7, 1958

```
Dear Fsllow-Tescher:
```

This is to request your participation and help in a doctorel study being made at Oklahoma State University. It is a gtudy of the objectives of college mathematics courses through differential ealeulus. On the enclosed cuestionnaire, please express your opinion about aach objective according to the directions on the questionnaire.

Although all objectives on the questionnaire may or may not apply to the courses that you teach, in grading the objectives, please think of yourself as a teacher of all the mathematics courses through differsntial calculve.

Your thoughtful response and the return of the attached instrument vill be very much appreciated.

The results of the study will be summarized and the Information will be available to you as goon as the study is completed.

Again, I thank you very much for your help.

Yours truly,<br>Jemes H. Means

JHY
enclogures

## APPENDIX 6

OOLLEGE MATHEMATICS TEST
Student's Name
Iist here all college mathematics courses you have complete

DIREOTIONS: Place the aporopriate letter $A, B, C, D$, or $E$ in the parenthesis at the right of each question. (This is a test to determine how well certain objectiv have been achieved. In order thet a clear, true pictu may be had, you are asked to do your best on this test

1. Which of the following is the largeat?
(A) $27^{-2 / 3}$
(B) $10^{-1}$
(c) $4^{-3 / 2}$
(D) $10 / 99$
(E) $(3 / 2)^{0}$
2. An automobile went up a hill at a speed of 10 miles an hour and down the same distance at a speed of 20 miles an hour. The average speed for the round trip was:
(A) $12 \frac{1}{2} \mathrm{~m} . \mathrm{p} . \mathrm{h}$.
(B) none of
m.p.h.
(D) $15 \mathrm{~m} . \mathrm{p} . \mathrm{h}$.
(E) none of theae.
3. The points $(6,12)$ and $0,-6)$ are connected by a straight Ilne. Another point on this line is (A) $(3,3)$ (B) (2 (C) $(7,16)$ (D) $(-1,-4)$ (E) $(-3,-3)$
(B) $)^{2}$
4. The contradictory of the etatement, "All men are honest Is (A) No men are honest (B) All men are dishonest (C) Some men are dishonest (D) No men are dishonest (E) Some men are honest.
5. If $X$ is an acute angle such that $\tan X=K / 2$, $\sin X=($ ? )
(A) $K /(2+K)$
(B) $2 / \sqrt{4-\mathrm{K}^{2}}$
(c) $K / \sqrt{4-K^{2}}$
(D) $2 / \sqrt{4+x^{2}}$
(E) $K / \sqrt{4+K^{2}}$
6. A plane flies 120 mlles on a course $60^{\circ}$ west of south. It then takes a course $70^{\circ}$ east of south until it is directly south of its starting point. Its distance (in miles) from the starting point is (A) $12081 n 20^{\circ}$
(B) $120 \sin 50^{\circ} \cos 70^{\circ}$ (C) $120 \sin 500^{\circ} \sin 70^{\circ}$
(D) $120 \sin 50^{\circ}$ (E) $120 \sin 50^{\circ} \mathrm{csc} 70^{\circ}$
7. If $\log _{10} 5=0.70, \log _{5} 10=(7)$
(A) 0.30
(B) 0.70
(c) 1.40
(D) 1.43 (E) 1.70 (
8. Trigonometrio functions are (A) units of Iencth
(B) abstract numbers (C) equationa of conaltion
(D) identities (E) pure imaginaries
9. The work of dividing a polynomial in $x$ by $x-r$ may be bhortensd by uaing (A) Horner's method (B) synthetic division (C) Descartae Fule of Signs (D) The Remainat Theorem (5) Transformation
10. $\sec \left(90^{\circ}-\theta\right)=$ (?) (A) $\operatorname{cose}$ (B) $\cot \theta$ (0) csce (D) Eine (5) sece
11. The value of the esterminant $\left|\begin{array}{ccc}0 & 1 & 3 \\ 1 & -1 & 0 \\ 2 & 0 & -2\end{array}\right|$ is
(A) -8
(B) -4
(c) 0
(D) 4 (E) 8
12. That is the value of the diseriainant of a quaratic equation whose roote are ecual? $\begin{array}{lllll}\text { (A) }-16 & \text { (B) }-2 & \text { (C) } 0 & \text { (D) } 36 & \text { (E) } 48\end{array}$
13. Rationalizing the denominator of $\sqrt{3} /(2+1)$ makes uee of (A) synthetie division (B) polar coordinates (C) Remaindar theorem (D) mraphs (इ) confugate comply numbers
14. Wich of the following is a pational integral ecuations

$$
\begin{aligned}
& \text { (A) } x^{\frac{1}{2}}=3 \quad \text { (B) } 3 e^{x}=4 \quad \text { (C) } \log x=42 \text { (D) } x^{19}=1 \\
& \text { (B) } x^{2}+2 x^{3 / 2} x-1=0
\end{aligned}
$$

15. According to Descertes Fule of slgns $x^{6}+4 x^{4}-3 x^{2}+6=0$ has (A) at least two noslitive roots (B) at mot two imaginary roots (C) at least two negative roots (D) at raset two negative roots (B) only one imsginer: root
16. In the squation $x^{4}-8 x^{3}+42 x-12=0$, the sum of the producta of the roots taken two ef a time 1 E $\begin{array}{lllll}\text { (A) }-42 & \text { (B) }-8 & \text { (C) } 0 & \text { (D) } 8 & \text { (E) } 42\end{array}$
17. The curve $y=f(x)$ vith derivatives $f^{\prime}(x)$ and $f^{\prime \prime}(x)$ has a maximum at $x=c$ if (A) $c$ is a root of $a y / a x=0$ (B) c is a root of $d^{2} y / d x^{2}=0$ (d) e is a root of $f(x)=0$ (D) 0 ie a root of $f^{\prime}(x)=0$ and for $b$ and $d$ arbitrarily near $c, f^{\prime}(a)>0$ for $d>c$ and $f^{\prime}(b)<0$ fol $b<c \quad(E) f^{\prime}(c)=0$ and $\mathrm{P}^{\prime}(\mathrm{c})<0$.
18. Which one of the following would you use to find most quickly the equation of a line with slope $m$, going through the point ( $\mathrm{x}_{1}, \mathrm{y}_{1}$ )?
(A) $\left.\left(y-y_{1}\right) / x-x_{1}\right)=\left(y_{1}-y_{2}\right) /\left(x_{1}-x_{2}\right)$
(B) $A x+B y=C$
(c) $\mathrm{y}=\mathrm{mx}+\mathrm{b}$
(D) $\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}\left(\mathrm{x}-\mathrm{x}_{1}\right)$
(E) $\mathrm{y}_{1}=\mathrm{mx}_{1}$
19. The principal value of $\operatorname{Arcsin}(-\sqrt{3} / 2)$, expressed in radians is
$\begin{array}{ll}\text { (A) } \pi / 3 & \text { (B) } \pi / 4\end{array}$
$\begin{array}{ll}\text { (D) }-\pi / 3 & \text { (E) }-3 \pi / 2\end{array}$
20. The fifth term in the expansion of $(1+y)^{10}$ is
(A) $\mathrm{y}^{5}$
(B) $(1+y)^{5}$
(C) $210 y^{4}$
(D) $210 y^{5}$
(E) $252 \mathrm{y}^{5}$
21. The mantissa for $\log 2670$ is 0.4265 ; the mantissa for $\log 2680$ is 0.4281 . The logarithm of 267.3 is equal approximately to (A) 2.4260 (B) 2.4270 (C) 2.4276 (D) 2.4286 (E) 3.4270
22. What are the coordinates of the foch of the ellipse

$$
\begin{aligned}
& 4 x^{2}+9 y^{2}=36 ? \text { (A) }( \pm 65,0) \quad \text { (B) }( \pm 5,0) \quad \text { (C) }( \pm \sqrt{5} \\
& \text { (D) }(0, \pm \sqrt{5}) \text { (E) }(0, \pm 5)
\end{aligned}
$$

23. The equation of a line through $(2,4)$ and parallel to $3 x+2 y=-1$ is (A) $3 x+2 y-14=0$ (B) $2 x+3 y-16=$ $\begin{array}{ll}\text { (C) } 2 x+3 y-8=0 & \text { (D) } 2 x-3 y-8=0\end{array}$
(E) $2 x-3 y-16=0$

## APPENDIX D

TABLE VI
TABLE FOR THE CALCULATION OF THE COEFFICIENT OF CORRELATION

| $\begin{aligned} & \text { jec- } \\ & \text { ve } \\ & \text { mber } \end{aligned}$ | Score of Experts | score of Teachers | $\begin{array}{r} \text { Deviat } \\ \text { from } \mathrm{M} \\ \text { of } \mathrm{X} \\ \hline \end{array}$ | Deviat <br> from $M$ of $Y$ | ion |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | X | Y | X | y | $\mathrm{x}^{2}$ | $\mathrm{y}^{2}$ | X |
|  | 3.57 | 3.79 | . 42 | . 51 | . 1764 | . 2601 | 21 |
|  | 3.57 | 3.79 | . 42 | . 51 | . 1764 | . 2601 | . 21 |
|  | 2.74 | 3.21 | -. 41 | -. 07 | . 1681 | . 0049 | . 02 |
|  | 2.25 | 2.32 | -. 90 | -. 96 | . 8100 | . 9216 | . 86 |
|  | 3.32 | 3.37 | . 17 | . 09 | . 0289 | . 0081 | . 07 |
|  | 3.64 | 3.74 | . 49 | . 46 | . 2401 | . 2116 | . 22 |
|  | 3.54 | 3.79 | . 39 | . 51 | . 1521 | . 2601 | . 15 |
|  | 3.11 | 3.32 | -. 04 | . 04 | . 0016 | . 0016 | -. 00 |
|  | 3.50 | 3.37 | . 35 | . 09 | . 1225 | . 0081 | . 05 |
|  | 1.93 | 2.63 | -1.22 | -. 65 | 1.4884 | . 4225 | . 78 |
|  | 3.64 | 2.79 | . 49 | -. 49 | . 2401 | .2401 | -. 21 |
|  | 3.68 | 3.15 | . 53 | -. 13 | . 2809 | . 0169 | -. 06 |
|  | 2.36 | 2.74 | -. 79 | -. 54 | . 6241 | . 2916 | . 48 |
|  | 3.54 | 3.74 | . 39 | . 46 | . 1521 | . 2116 | . 17 |
|  | 2.61 | 2.68 | -. 54 | -. 60 | . 2916 | .3600 | . 32 |
|  | 3.07 | 3.32 | -. 08 | . 04 | . 0064 | . 0016 | -. 08 |
|  | 2.82 | 3.32 | -. 33 | . 04 | . 1089 | . 0016 | -. 01 |
|  | 3.61 | 3.42 | . 46 | . 14 | . 2116 | . 0196 | . Ot |
|  | 2.79 | 2.84 | -. 36 | -. 44 | . 1296 | . 1936 | . 11 |
|  | 3.43 | 3.42 | . 28 | . 14 | . 0784 | . 0196 | . 0 |
|  | 3.21 | 3.32 | . 06 | . 04 | . 0036 | . 0016 | . 01 |
|  | 2.18 | 2.84 | -. 97 | -. 44 | . 9409 | . 1936 | . $4:$ |
|  | 3.11 | 3.68 | -. 04 | . 40 | . 0016 | . 1600 | -. 01 |
|  | 3.57 | 3.63 | . 42 | . 35 | . 1764 | . 1225 | . 11 |
|  | 2.96 | 3.32 | -. 19 | . 04 | . 0361 | . 0016 | -. 00 |
|  | 2.70 | 3.26 | -. 45 | -. 02 | . 2025 | . 0004 | . 01 |
|  | 3.18 | 3.39 | . 03 | . 11 | . 0009 | . 0121 | . 01 |
|  | 3.18 | 3.79 | . 03 | . 51 | . 0009 | . 2601 | 0 |
|  | 2.96 | 3.15 | -. 19 | -. 13 | . 0361 | . 0169 | . $0:$ |
|  | 2.36 | 3.26 | -. 79 | -. 02 | . 6241 | . 0004 | . 0 |
|  | 3.07 | 3.15 | -. 08 | -. 13 | . 0064 | . 0169 | . 0 |
|  | 1.43 | 1.90 | -1.72 | -1.38 | 2.9584 | 1.9044 | 2.31 |
|  | 2.96 | 3.15 | -. 19 | -. 13 | . 0361 | . 0169 | . 0 |
|  | 3.11 | 2.95 | -. 04 | -. 33 | . 0016 | . 1089 | . 0 |
|  | 3.54 | 3.68 | . 39 | . 40 | . 1521 | . 1600 | . 1 |
|  | 2.89 | 3.32 | -. 26 | . 04 | . 0676 | . 0016 | -. 0 |
|  | 3.39 | 3.42 | . 24 | . 14 | . 0576 | . 0196 | . 0 |

TABLE VI (continued)


Let $\bar{X}$ and $\bar{Y}$ denote the means of the $X ' s$, and $Y^{\prime} s$, respectively,

$$
\begin{aligned}
& \bar{x}=\frac{\sum x}{N}=\frac{229.93}{73}=3.15 \\
& \bar{y}=\frac{\sum y}{N}=\frac{239.7}{73}=3.28 \\
& r=\frac{\sum x y}{\sqrt{\Sigma x^{2} \sum y^{2}}}=\frac{11.3832}{\sqrt{(17.762)(12.147)}}=\frac{21.3832}{14.68}=.775
\end{aligned}
$$

The formula for determining $r$, the coefficient of correlation, is given by Garrett as:

$$
r=\frac{\sum_{x y}}{\sqrt{\sum x^{2} \varepsilon y^{2}}}
$$

(coefficient of correlation when deviations are taken from the means of the two distributions)

In which $x$ and $y$ are deviations from the actual means and $\boldsymbol{\sum} x^{2}$ and $\sum y^{2}$ are the sums of the squared deviations in $x$ and $y$ taken from the two means. Using Table VI in this Appendix, the coefficient of correlation was calculated 2.8 shown above.

In testing the reliability of the obtained coefficient of correlation, the method suggested by Garrett was conside appropriate. Garrett stated:

A mathematically more defensible method of testing the significance of an $r$, especially when the coefficient is high, is to convert $r$ into $R$. A. Fisher's $z$-function and find the SE of $z$. The function $z$ has two advantages over $r$ : ( 1 ) its sampling distribution
is approximately normal and (2) its SE depends only upon the size of the sample $N$, and is independent of
the size of r. With data from Table VI and the formula $S E_{z}=1 / \sqrt{\mathbb{N}-3}$, the reliability of the coefficient of correlation is obtained:

$$
\begin{aligned}
& \mathrm{SE}_{\mathrm{z}}=1 \sqrt{73-3}=.119 \text { or } .12 \\
& \mathrm{z}=1.05 \text { (Table C in Garrett's book) }{ }^{2}
\end{aligned}
$$

The .95 confidence-interval for the true $z$ is .81 to 1.29 (that $1 \mathrm{~s}, 1.05 \pm 1.96(.12)$ or $1.05 \pm .24$ ). Converting the $z^{\prime} s$ back into $r^{\prime} s$, a confidence-interval of from .67 to. 86 is obtained. Thus, the flduciary probability is .95 that this interval contains the true $r$.

IHenry E. Garrett, p. 198.
${ }^{2}$ Ibid., $p .426$.

## VITA

James Horatio Means<br>Candidate for the Degree of<br>Doctor of Education

## hesis: OBJECTIVES OF INSTRUCTION IN FRESTHMAN AND SOPHOMORE MATHEMATICS GOURSES IN SEVEN SELECTED COLLEGES IN TEXAS

```
agor Field: Education
```

iographical:
Personal data: Born in Pine Bluff, Arkansas, the son of Levis $H$. and Rebecca Means.

Education: Attended the public schools of Pine Bluff, Arkansas, and was graduated from Merrill High School in 1929; received the Bachelor of Science degree, with a major in Mathematics, from Arkansas Agricultural, Mechanical, and Normal College in 1933; recelved the Master of Science degree, with a major in Mathematics, from the State University of Iowa in January, 1937; sttended the graduate schools of the University of Michigan and the University of Texas; completed the reauirements for the Doctor of Education degree in May, 1958.

Professional experience: Served as a teacher of mathematics and science for four years in the practice high school of Arkansas $A$. M. and $N$. College; served one year as teacher of mathematicu and science in West Kentucky Industrial College, Paducah, Kentucky; has taught in the Mathematics and Physies Department of Huston-Tillotson College since 1938.

Professional orgenizations: Elected to membership in the following organizations: The Mathematics Association of America, The American Mathematical Society, Pi Mu Epsilon, Phi Delta Kappa, Alpha Kappe Mu Honor Society, and The National Institute of Science.


[^0]:    Th. E, onlan, wbjectives in the fegchirg of rollege
    
     1e Methemsties yegoher, XLIX (1956). 514.

[^1]:    
     TII (1950). 277.
     a the fublic Jumar bolyse fontribution to tivetamono.
    

[^2]:    9E．P．Morthrop，Mathenaties jn Liberal Mucation，＂
    

    10A．S．Serr，Robert A．Devis，ard Petuer O．Johneon，
    

[^3]:    ${ }^{6}$ Florida A and M University Catalogue, (Tallahasee, 955), p0. 123-124.
    ${ }^{7}$ Arkansas Polytechnic College Gatalog, (Russellville, 955-56), 0.77 .
    $8_{\text {Northeastern }}$ Oklahoma A and M College Catalogue, Tahlecuah, 1957-1959), 0.66.

[^4]:    9Bennington College Getalog, (Bennington, 1955-56), . 29.

[^5]:    10 Monte $s$. Norton, "Developing Success qualities in Our ture Scientists and Mathematicians," School Science and themstice, LVII (1957), p. 620.
    $11_{K}$. 8. Henderson and Kern Diokman, "Mathematical Needs ' Prospective Students in the College of Engineering," 1e Mathematies Teacher, XLV (1952), pp. 89-93.

    12W. L. Schaaf, "The Teaching of Trigonometry," pp. 44618.

[^6]:    21John H. Banks, Gritical Thinking in College Freshman fathematics, (unpub. Ph. D. dissertation, George peabody jollege for Teachers, 1949), D. 15.

[^7]:    ${ }^{22}$ Ralph Porter Benty, "Critical Kathenatios Recuireients for the Progran of the Comanity College, Abstracts If Dissertations, (George Peabody College for Teachers, 1952 - 13.

    23Gomittee of College Algebra, gollege Algebra (New (ork, 1956), p. ix.

[^8]:    $37_{\text {Lauren } G . W o o d b y, ~ " A ~ S y n t h e s i s ~ a n d ~ E v a l u a t i o n ~ o f ~}^{\text {E }}$ jubject-Matter Topice in Mathematics for General Education" iunpub. Ph. D. dissertation, University of Michigan, 1952), 3. 26.

