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ABSTRACT:  

 

The modern standard for multi-rotor unmanned aircraft system (UAS) propulsion is an 

electric configuration typically consisting of battery-powered electric motors. The 

primary issue with this type of propulsion system is the low energy density of the battery, 

which results in shorter flight times or lower payload capacity than typically desired. One 

possible solution for this is implementation of a hybrid-electric power system, which has 

been demonstrated to improve endurance in both fixed and rotary wing aircraft. The 

purpose of this study is to investigate the integration challenges of implementing a 

hybrid-electric power system on multi-rotor UAS, specifically one that utilizes a gasoline 

internal combustion engine. While design of a fully-integrated hybrid-electric power 

system is not within the scope of this study, rather experiments are conducted with 

intentions to provide crucial insights to expedite the design and implementation process. 

Integration challenges such as vibration, cooling requirements, and additional noise of 

small combustion engines are investigated. It is shown that a small combustion engine 

can produce forceful vibration signatures, the affects of which must be considered when 

designing a hybrid-electric power system. Without proper dampening, this additional 

vibration has been shown to negatively impact the function of the on-board sensors 

necessary for controlling small UAS (sUAS). It has also been shown that forced 

convection, or other external cooling, is a requirement for the small combustion engine 

used for this study, which presents a unique challenge in hover-capable aircraft that don't 

inherently supply active airflow. However, the cooling requirements of these types of 

engines can be estimated when designing a hybrid-electric power system, and weight-

efficient solutions can be found. Finally, it has been shown that a small, two-stroke 

combustion engine would have a significant contribution to the overall noise signature of 

a hybrid-electric sUAS. Through a computational method of isolating and combining 

individual noise sources, the theoretical acoustic signature of a multi-rotor sUAS with a 

hybrid-electric power system was produced. The conclusion of this study confirms that 

each of the initially identified major integration challenges (vibration, cooling, and noise) 

must be considered when designing a hybrid-electric power system for multi-rotor sUAS, 

and also provides insights into how each challenge could be addressed. 
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CHAPTER I 
 

 

INTRODUCTION 

 

1.1  Motivation 

Due to the increase in usage of unmanned aircraft systems (UAS) in both industry and military 

fields, there has been a recent increase of interest in exploring the boundaries and limitations of 

this technology and pursuing advancements that would allow for broader mission capabilities. 

There are a variety of applications that would benefit in particular from the expansion of payload 

and endurance capabilities of small UAS, such as photogrammetry, surveillance, and payload 

transportation. Nex [1] explains that while photogrammetry has previously been reliant on 

manned aircraft for image collection, the increasing availability and decreasing cost of small UAS 

has opened new doors in this field. He also stipulates that endurance limitations of some UAS can 

lead to difficulty in data collection and post-processing.  

The main driving factor for endurance as well as payload capacity is the propulsion system of the 

aircraft. There are two main types of UAS, based on the method of lift: fixed-wing and rotorcraft. 

Fixed-wing aircraft generate lift with the aerodynamics of their wing structures, and are driven 

usually by a single propeller. Rotorcraft generate lift with a single or multiple rotors oriented 

parallel to the ground, and travel by directing the flow into the rotors or changing the speed of 

rotors to change the roll and pitch which in turn propels the rotorcraft in the desired direction. 
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Fixed-wing aircraft can be powered by either electric motors or combustion engines as the source 

of mechanical power to the propeller(s). Power for these aircraft can be drawn from batteries 

alone, both for the onboard electronics and the propulsion system with an electric motor. When 

using a combustion engine, power for propulsion is drawn from the fuel and power for onboard 

electronics is typically drawn from a secondary battery supply. Multi-rotor aircraft are typically 

driven by electric motors that receive power from batteries. Due to the necessity of distributing 

power to multiple propulsion points on these vehicles, mechanical power from combustion is 

traditionally not utilized. 

Despite rapid development in many areas of UAS technology, there are potentially limits to the 

advancements of battery technology, which specifically limit the endurance capabilities of 

electrically-powered aircraft [2]. Because of this, new and innovative methods of supplying 

power to these vehicles must be considered. The scope of this work is to investigate on-board 

power generation as a supplement to passively stored power to increase endurance, specifically 

for multi-rotor aircraft.  While fixed-wing aircraft could also benefit from endurance-boosting 

solutions, multi-rotor aircraft were chosen for investigation in this study to fill a research gap.  

There are several companies currently attempting to produce and sell hybrid power systems for 

multi-rotor UAS [3][4][5], but there are limited detailed technical publications about this 

technology. 

The method of interest for extending endurance of multi-rotor UAS is a hybrid power system that 

actively generates power during flight as well as storing excess for rapid distribution when 

necessary. There are many existing technologies for power generation and storage that could be 

combined for this purpose. A gasoline internal combustion engine (ICE), specifically one 

utilizing intermittent combustion (piston engines), has been chosen for this work. Piston ICEs are 

a well-known mechanical power source, and there are several readily-available options in the size 

and power range of interest for this study. The mechanical power from the engine would drive an 
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alternator and produce electrical power on-board which can either be directly distributed to the 

propulsion system (electric motors) or stored in LiPo batteries.  

1.2  Goals 

When considering the implementation of a hybrid-electric power system, as discussed above, on 

multi-rotor aircraft, the following basic integration challenges are anticipated: vibration, cooling, 

and noise. Small internal combustion engines are known to produce strong vibrations during 

operation, which could potentially affect the function of the onboard control and navigation 

sensors as well as drive structural design decisions for the aircraft of interest. These engines also 

produce significant amounts of heat that must be properly dissipated in order to allow the engine 

to continue to function and efficiently deliver power. Last, but not least, the combustion and 

mechanical noise produced by these small engines has the potential to significantly affect the 

overall noise signature of a multi-rotor platform.  

For the investigation of the ramifications when introducing additional vibration to a multi-rotor 

UAS, the first step will be to characterize the expected vibration from small combustion engines. 

The vibration of a small internal combustion engine running on a test stand at relevant operating 

points will be measured to determine the magnitude and general characteristics. Depending on the 

results of this characterization, it will be determined if a suitable method exists for replication of 

this vibration signature with a system that could be easily mounted to a COTS multi-rotor 

platform for flight-testing. By isolating a single integration challenge for initial flight tests, it can 

be determined what issues, if any, are caused by vibration alone. The severity of these issues, 

such as disrupting communication or affecting navigation precision, can then be determined and 

strategies for mitigation can be developed. 

For the investigation of the cooling requirements of small internal combustion engines, the 

temperature behavior of a small internal combustion engine will be observed during operation on 
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a test stand at relevant operating points, and a determination will be made as to whether or not 

these engines can operate in static air with no additional cooling system. If additional cooling is 

required, calculations will be done to estimate this requirement for small engines of interest, and 

potential cooling solutions will be identified. Based on these results, it can also be determined 

whether or not the added complexity and weight for the required cooling system will detract 

significantly from the overall benefit of implementing a hybrid-electric power system. 

For the investigation of the combustion engine noise signature, acoustic measurements will be 

taken of the internal combustion engine running on a test stand, both in indoor and outdoor 

environments, at relevant operating points. Steps will also be taken to isolate what components of 

the collected acoustic data are due solely to the engine's combustion and mechanical noise from 

any ambient noise contributions as well as contributions from the engine loading method. 

Acoustic measurements will also be taken of COTS multi-rotor platforms of interest in flight to 

identify a baseline for the common electric-only configuration of this type of UAS. Based on 

these two data sets, an analytical technique will be used to normalize the data and estimate the 

combined noise signature from both of these sources. Based on these results, noise reduction 

strategies can be discussed, and determinations can be made for what missions the noise signature 

from a hybrid-electric UAS might be prohibitive. 
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CHAPTER II 
 

 

BACKGROUND & PREVIOUS WORK 

 

2.1  Previous Work 

For fixed-wing UAS the two main types of propulsion systems are battery-driven electric motors 

and ICE-driven, while for rotorcraft UAS (specifically multi-rotors) the main type of propulsion 

system is battery-driven electric motors, due to the mechanical complexity of implementing an 

ICE-driven propulsion system to multiple rotors. Battery driven propulsion systems are 

mechanically simple, provide instantaneous torque, and usually have low weight and footprint. 

However, ICE-driven propulsion systems have much higher energy density (Figure 1), which is 

crucial for endurance. 

 

Figure 1: Comparison between power density (W/lb) and energy density (W-hr/lb) for 

several common power sources [6] 
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A hybrid power system could potentially increase the endurance of UAS by combining the 

benefits of a battery-driven propulsion system with those of an ICE-driven propulsion system. 

This technology has been used in other applications, such as automotive and other ground vehicle 

systems. Morita[7] identifies hybrid-electric vehicles as being one of the few alternatives to 

conventional vehicles that competes in terms of cost and convenience, while also promising good 

efficiency with a variety of fuels. These types of vehicles allow the engine to function at its most 

efficient operating point to supply a steady load while the electrical power storage component 

provides a buffer which can either absorb excess or supply the deficit as the power requirement 

changes with time [8]. 

The two most common types of hybrid power systems for UAS are fuel cell and hybrid electric. 

Both options are desirable for their higher energy density in comparison to batteries. Fuel cells 

also have minimal mechanical losses, no undesirable emissions, and low noise signature. 

However, fuel cells tend to be fairly costly to implement, require an on-board hydrogen supply, 

and the reliability of fuel cells as an energy source for UAS is relatively untested [9]. Fuel cell 

hybrid propulsion systems have been explored in simulation, and show promise with optimization 

[10].  

While ICEs generally have greater noise signatures and higher emissions than fuel cells, they are 

relatively inexpensive and readily available. The technology is more mature and there has 

recently been demand for the optimization and reliability improvement of small ICEs for use on 

UAS platforms [11]. A hybrid electric power system consists of a diesel or gasoline ICE working 

in combination with a battery. There are other components involved in this hybrid system, such as 

a generator or clutch, depending on the configuration. These components, along with the required 

fuel supply, add dead weight to a system that can present a challenge when implementing on 

smaller UAS platforms.  
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2.2  Power System Configurations 

The two main configurations of hybrid-electric power systems are series and parallel (Figure 2).  

 

Figure 2: Series and parallel hybrid-electric power system configurations[12] 

The series configuration consists of an ICE in-line with a generator that produces current to 

charge the battery. The battery then discharges to the electric motors, which drive the propellers. 

This configuration is subject to losses through the ICE and generator, and is restricted by the 

charge rate of the standard battery, which is typically an order of magnitude smaller than the 

discharge rate. The parallel configuration consists of an ICE that can directly drive the propellers 

and/or charge the battery through a generator, while the battery also has a direct line to the 

propeller. This configuration allows for multiple operating states depending on the requirements 

and conditions at any given time. While the series configuration is mechanically simpler than the 

parallel configuration, it is also considered to be ideal for high-torque, low-speed applications. An 

additional configuration for hybrid power systems is an electric-parallel system (Figure 3), which 

consists of an ICE which drives an alternator, producing the main supply of electrical power, as 

well as a backup battery which can be recharged by the alternator output or discharged to supply 

additional power instantaneously.  

 



8 

 

 

Figure 3: Electric-parallel hybrid power system block diagram (specific to gasoline ICE) 

In preparation for this study, studies that have explored the potential benefits of hybrid systems 

were reviewed. One such study used MATLAB Simulink simulation models to predict the 

behavior of a fixed-wing aircraft with a parallel hybrid-electric propulsion system, specifically 

during a ISR (intelligence, surveillance, and reconnaissance) mission, and to compare this 

performance to that of the same system propelled by only an ICE [13]. The conclusion from this 

study was that during a 1-hour ISR mission with the selected physical components under the 

given conditions, a 54% energy savings was seen with the hybrid-electric propulsion system, and 

for a 3-hour ISR mission, a 22% energy savings (given in kWh) was seen. The flight plan for both 

missions included takeoff, climb, cruise, endurance speed, high speed dash, descent, and landing. 

Another similar study also used MATLAB Simulink to develop models for a parallel hybrid-

electric propulsion system and gasoline-only propulsion system, both implemented on a fixed-

wing aircraft [14]. The conclusion from this study was that during an approximately 10 minute 

flight consisting of climb, cruise, descent, and loiter (repeated once), a fuel savings of 6.5% was 

seen.  
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2.3  Integration Challenges 

Hybrids have shown promise for fixed-wing UAS, and implementation of these types of power 

systems is being pursued [15], but there has been limited published exploration of hybrid-electric 

power systems for multi-rotor UAS. One of the most important design challenges when 

considering the addition of a hybrid power system that utilizes a mechanical power source such as 

a gasoline ICE is physical integration with an existing dynamic system. Some major 

considerations include vibration, cooling, and noise. The purpose of this study is to conduct 

analysis of some of these major integration challenges in an effort to further establish the true 

viability of hybrid-electric power systems for multi-rotor aircraft. Vibration is considered a major 

integration challenge due to its potential effects on the stability and function of the aircraft, and 

its on-board sensors. While vibration is present on standard multi-rotor UAS, the potential for the 

additional vibration signature of an internal combustion engine to be detrimental to the function 

of the aircraft and its on-board sensors must be considered. 

Studies have been conducted which help to characterize combustion engine vibration and isolate 

the individual components which contribute to the overall signature. It has been shown that the 

motion of the piston caused by the combustion, a major contributing source of vibration, actually 

contributes different vibration behavior than the combustion itself, which creates an affect called 

combustion knock [16]. There are a variety of different contributing factors to combustion engine 

noise, each which contribute a different component of the overall vibration signature. Jin explains 

that the steady, cyclic motions of the engine such as the cam rotation, produce a continuous 

vibration component that is related to the RPM of the engine during operation [17]. It is also 

noted in his work, and elaborated on in other publications, that more transient components of the 

vibration signature can be caused by gas pressure pulsation, cylinder pressure fluctuation caused 

by combustion, and other interactions between internal engine components [18].  
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Cooling requirements of a small internal combustion engine is also considered to be a major 

integration challenge due to the hover capabilities of multi-rotor UAS. On fixed wing aircraft the 

engine is air-cooled by the forced convection from the free-stream velocity, however multi-rotor 

UAS cannot necessarily provide the same forced convection during flight. For a hybrid-electric 

multi-rotor UAS to be able to utilize all of its unique functions, it must be determined whether or 

not a small internal combustion engine could be effectively cooled by some additional source of 

forced convection, or a water-cooled system. An air-cooling system has the potential to be 

lighter-weight than a water-cooling system, but the effectiveness of an air-cooling system is 

limited by the amount of airflow it can produce. 

Last but not least, noise is also considered a major integration challenge. For the small 2-stroke 

ICEs being considered in this study, there are two main components of the noise signature: 

mechanical noise and combustion-related noise. Mechanical noise refers to noise produced by the 

mechanical interactions of the engine, the sources of which include some of the vibration sources 

discussed above. For combustion-related noise, both intake and exhaust act as outlets for the 

combustion noise and are primary contributors to the overall noise signature. With projects for 

which detection and avoidance is a critical consideration, it is important to understand how a 

small internal combustion engine would affect the existing noise signature of a multi-rotor UAS. 

Noise can also be critical in other scenarios, such as for the simple annoyance factor of the 

aircraft when it is in hearing range of populated areas. 

 

2.4  Potential Endurance Benefits 

As discussed in Power System Configurations, an electric-parallel hybrid power system requires a 

mechanical power source (internal combustion engine) and an alternator to convert the 

mechanical power into electrical. When selecting a compatible set of engines and alternators, it is 

important to consider the power output of the engine, the efficient operating range of the engine, 
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and how those values align with the RPM required to produce a given amount of power for the 

available alternators. With these considerations in mind, there is a finite number of effective 

engine/alternator pairs which can be considered for hybrid power systems. For UAS on the size 

scale of from the DJI S1000 to the Gryphon X8 and larger, several small combustion engines are 

available for mechanical energy production. Options for alternators with compatible energy 

conversion capabilities are more limited, however. The main producer of alternators design for 

use on UAS is Sullivan Unmanned Vehicle, and Table 1 shows several potential combinations of 

small combustion engines with those available alternators. The potential electrical power given 

for each of these combinations is an estimate of the electrical power that the hybrid system could 

supply.  This estimate accounts for approximate power transmission losses as well as what power 

the alternator can provide at the chosen operating point for each engine (alternator power curves 

can be found in the Appendix). 

Table 1: Power system sizing 

Source 
Mechanical 

Power (HP) 

Optimal 

RPM 

Compatible 

Alternator 

Potential Electrical 

Power (W) 

DA 35 

DLE35RA 
~4.0 7000 S676-400U-01 1200 

DLE40 4.8 6000 S676-500U-01 1800 

DA 50 5 6500 S676-500U-21 2250 

DA 70 7 6000 S676-550U-01 3000 

DA 100 10 5500 S676-600F-01 3500 

 

There are several currently available COTS UAS platforms the power requirements of which 

could potentially be supplied by hybrid-electric power system solutions. A few of these that fall 

in the power supply range shown in Table 1 include the DJI S1000 [19], DJI M600 [20], and 

Gryphon Dynamics GD-28X [21]. These are shown in Table 2 along with their empty weight (no 

batteries) and the power requirements at hover for a specified GTOW. 
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Table 2: COTS platforms with potential for hybrid-electric 

conversion 

Platform 
Empty 

Weight 
Power Required at Hover 

S1000 8.8 lbs 1500 W @ 21 lbs 

M600 12.2 lbs 2250 W @ 33 lbs 

Gryphon GD-

28X 
26.4 lbs 3320 W @ 70.5 lbs 

 

Power management is another major consideration when sizing these systems. The alternators 

produce an AC voltage that must be regulated to a stable DC voltage in order to directly power 

the electric motors and charge the backup battery (if necessary). Sullivan Unmanned Vehicle also 

offers a hybrid PMU (power management unit) which can handle all the necessary operations. 

Table 3 shows four potential power supply cases, and for each, the system weight factors in the 

weight of the engine, its compatible alternator, and the PMU discussed above. The batteries 

chosen for this comparison are 22.2V (6s) 11,000mAh LiPo batteries [22]. 

Table 3: Cases for comparison of hybrid-electric and battery-only endurance potential 

Case Engine 
Hybrid System 

Weight (lbs) 

Fuel Weight 

(lbs) 

# of 

Batteries 

Battery 

Weight (lbs) 

Total Battery 

Capacity (Ah) 

A DA35 6.74 4.46 4 11.2 44 

B DLE40 7.26 6.74 5 14 55 

C DLE40 7.26 9.54 6 16.8 66 

D DA50 8.19 11.41 7 19.6 77 

 

For each of these cases, calculations are done to determine the amount of time that each type of 

supply in each case could power a theoretical platform with an empty weight of 15 lbs, equipped 

with 8 KDE Direct 435 Kv electric motors with 18.5" dual-blade propellers for propulsion. These 

calculations are done using the provided data sheets for these motors to determine that power 

required for varying takeoff weights assuming a 22.2V system (6s) [23]. For example, with a 

power system weight of 11.2 lbs (Case A), the takeoff weight of the platform is 26.2 lbs. The 
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power required for eight of the chosen motors to produce 26.2 lbs of thrust is approximately 1200 

Watts. For a 22.2V system, this indicates a constant current draw of 54 amps. Equation 1 is used 

to calculate the time that the battery would be able to supply this required current for, based on 

the rated battery capacity, where tf is flight time in minutes, I is current draw in amps, and C is 

battery capacity in amp hours. 

    
    

 
  1 

Equation 2 is used to calculate the amount of time that the engine would be able to supply power 

based on the approximate fuel consumption rate and the amount of fuel that can be carried to 

match the weight o the battery-only power system. w is the amount of fuel in ounces and f is the 

fuel consumption rate in ounces per minute. 

       
2 

Figure 4 summarizes these calculations. 

 

Figure 4: Comparison of hybrid-electric and battery-only with four different power supply 

designs. 

 

These preliminary results show that a hybrid power system that is appropriately sized to supply 

the full power draw of a COTS multi-rotor UAS platform can potentially supply power for longer 

than a traditional LiPo supply of approximately equivalent weight. This comparison was done for 

four different power system weights in increasing order, with the power system weight for the 
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hybrid being system weight and fuel. With increasing GTOW (power system weight plus 

platform weight), the power draw increases, and therefore the engine size must also increase, but 

any remaining difference between the battery weight and hybrid weight is fuel allowance. As 

seen in Table 3, the amount of fuel being carried continues to increase, as well as the battery 

capacity, but the battery flight time barely increases over the four cases while the hybrid flight 

time consistently increases. This indicates that a hybrid power system would potentially not be 

limited by the affect of diminishing returns in the way that the LiPo battery supplies are. Because 

the hybrid power system has proven to supply more power, the implications of actually 

integrating such a system on a multi-rotor platform will be investigated. 
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CHAPTER III 
 

 

EXPERIMENTAL SETUP 

 

The major challenges for a integrating a hybrid-electric power system of a multi-rotor UAS 

platform have been identified as vibration, cooling, and noise. In order to explore these 

integration challenges, several experimental setups have been developed from which vibration, 

thermal, and acoustic data will be extracted from various test articles. The main test article is a 

50cc two-stroke gasoline engine, the DA50, chosen to be a representative of the type and scale of 

mechanical power source that could be utilized in a hybrid power system for multi-rotor aircraft. 

When it became necessary in vibration and noise experiments to isolate certain behaviors of the 

engine from the propeller used to load it, an electric motor capable of supplying the same 

mechanical power was used with the same propeller. The same electric motor was also used in 

attempts to replicate the engine vibration due to the similar mass and RPM range.  

A variety of instrumentation was used with the test setups explained in this chapter to collect the 

necessary data, including accelerometers for vibration measurement and microphones for acoustic 

measurements. 
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3.1 Technical Approach 

The ultimate goal of this work is to characterize the challenges that must be addressed when 

designing a hybrid power system (as described in Chapter 2) for a multi-rotor UAS. This overall 

goal has been divided into individual experimental goals for the three major challenges 

previously identified: vibration, cooling, and noise.  

3.1.1 Vibration 

When considering vibration, the goal is to gain a preliminary understanding of the potential issues 

of adding the vibrations of a hybrid power system utilizing a gasoline ICE to a multi-rotor UAS, 

before diving into the design process of a fully functional system. The first stage of this process 

will be to characterize the vibration signature of the DA50 on a test stand by measuring the 

oscillating acceleration produced by the engine during operation. The next stage is to design a 

simple system that can replicate the vibrations of the engine and be easily integrated with an 

existing multi-rotor platform. An electric motor of similar mass and power output to the engine 

will be used to drive an unbalanced cam designed to produce the same magnitude of vibrations at 

the same frequency. The final stage of this testing will be mount that simple system to a battery-

powered COTS multi-rotor aircraft, and conduct flight testing to observe any affect that the added 

vibration may have on the mission capabilities of the aircraft. These stages have been detailed in 

Figure 5, which will be referred back to frequently during the explanation of the experimental 

setups and results. 
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Figure 5: Testing goals for vibration, divided into three stages 

 

3.1.2 Cooling 

When considering cooling, the goal is to gain a preliminary understanding of the additional 

cooling (other than ambient air) required for a hybrid power system utilizing a gasoline ICE, 

before diving into the design process of a fully functional system. The thermal behavior of the 

sample engine (DA50) will be observed with a propeller as a load (and also a cooling source) to 

determine whether or not additional cooling is required. Calculations will also be made to predict 

the required cooling under different loads. Finally, the original hybrid endurance boost estimates 

made in Chapter 2 will be used to estimate the weight and power design margins for designing 

potential cooling systems. 

3.1.3 Noise 

When considering noise, the goal is to gain a preliminary understanding of how the noise 

signature of a hybrid power system utilizing a gasoline ICE would affect the existing noise 

signature of a multi-rotor UAS. The first stage towards this goal is to measure the acoustic 
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signature of the sample engine (DA50) with a propeller as a load. An electric motor with similar a 

similar power range will be used to drive the same propeller, and the acoustic signature of this 

will be used to isolate the engine's contribution from the propeller's contribution. The next stage 

is to measure the acoustic signature of a multi-rotor aircraft that is determine to be of the correct 

scale and power draw to be compatible with a hybrid power system utilizing the DA50 engine. 

The third stage is to use analytical methods to isolate the engine signature from other contributing 

signatures (propeller, ambient, etc.), correct for any differences in measurement distance, and 

combine it with the aircraft signature. The resulting combined signature can then be compared to 

the aircraft by itself, and conclusions can be drawn about the effect that adding a hybrid power 

system would have on the noise signature of a multi-rotor aircraft. These testing stages have been 

detailed in Figure 6, which will be referred back to frequently during the explanation of the 

experimental setups and results. 

 

Figure 6: Testing goals for noise, divided into three stages 
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3.2  Engine Test Stand 

The combustion engine chosen for experimentation is the Desert Aircraft 50cc engine (details in 

Appendix, Figure 88). In order to break in and test the engine, a stationary test stand (Figure 7) 

was built which would fix the engine in its upright position, allow airflow to the carburetor, and 

provide mounting surfaces for necessary sensors and actuators. A wooden 23x8 Xoar propeller is 

used to load the engine and provide cooling airflow to the cylinder head during this static testing. 

The test stand is equipped with a magnetic RPM sensor, and the engine is run with the 

recommended 50:1 gas-oil mix. A temperature loop sensor is tightened around the top fin of the 

cylinder head, where the highest temperatures are expected due to the combustion in the piston 

chamber. Ducting is routed from the outlet of the engine muffler to the lab's exhaust removal 

system which applies a negative pressure to draw the exhaust gasses from the testing area. 

 

Figure 7: Engine test stand configuration 

The engine is mounted to the stand with neoprene dampeners to allow the engine to move more 

freely. The engine is fixed at four points using the stock aluminum standoffs. Each dampener has 
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a rated capacity of 31 lbs and a rated shear capacity of 4.5 lbs. The rated deflection at capacity is 

0.07" and the rated shear deflection at capacity is 0.06". 

3.3  Electric Motor Test Stand 

The electric motor chosen for comparison testing is the Turnigy Rotomax 50cc, which has a 

similar mass (1.08kg) and mechanical power output to the engine. This brushless, outrunner 

motor has a KV rating of 172, so it is run on a 12s (44.4V) system to be able to consistently 

supply power at and above 6000 RPM. Multiple different test stand configurations were 

considered for testing the electric motor while closely replicating the conditions that the engine 

was tested with. Figure 8 shows the three different structural configurations used.  

   

Figure 8: Different stand configurations considered for vibration replication testing. 

 

Two different dampeners were also considered and tested. Dampener A is the same dampener 

used for the engine, while Dampener B has a rated capacity of 75 lbs and a rated shear capacity of 

25 lbs. The rated deflection at capacity is 0.03" and the rated shear deflection at capacity is 0.1". 

Additional specifications for both dampeners can be found in the Appendix (Table 20). 

Comparison testing is conducted with the different test stand configurations and the two different 

dampeners. The results are shown in Table 4. For the test with Stand 1 and Dampener A, a full 

test was not able to be completed due to the dampeners failing. 

Dampeners 

Stand 1 Stand 2 Stand 3 
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Table 4: Vibration Half-Amplitude (g) Produced by Cam  

m = 0.36 oz, r = 1.5 in 

Approx. 

RPM 

Stand 1 Stand 2 Stand 2 Stand 3 
Calculated 

Dampener A Dampener A Dampener B Dampener B 

3800 11.7 SAT 7.5 2.7 5.8 

4600 12.4 14 SAT 5.7 8.5 

5600 --- 10.5 SAT SAT 12.6 

6000 --- 7.5 SAT SAT 14.5 

 

As can be seen in Table 4, any changes to the physical characteristics of the test media can 

greatly affect the measurement of the vibration signature being produced. Due to the fact that all 

components (source and media) are coupled, and therefore behave as a whole, the measured 

vibration signature does not necessarily represent what is being produced by the source alone. 

This means that the experimental process detailed here cannot perfectly replicate the vibrations 

produced by a 2-stroke ICE. One of the goals of this work is to determine how strong vibrations, 

similar to those produced by a 2-stroke ICE, would affect the mission capabilities of a multi-rotor 

aircraft. Therefore this experimental process is designed to control as many parameters as 

possible (such as sensor accuracy) while accepting the inherent limitations of the measurements 

being made.  

While preliminary vibration replications efforts were conducted with Stand 1 and Dampener A, at 

the conclusion of this experimentation, it was decided that Test Stand 2 with Dampener B would 

be used for the ongoing replication efforts. Stand 2 is believed to most closely physically 

represent the engine test stand, and the larger dampeners are required for conducting the 

replication tests without risk of structural failure (due to the sometimes heavily amplified 

vibrations). 
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3.4  Instrumentation 

3.4.1 Vibration 

To measure frequency and estimate magnitude of vibration produced by the engine at varying 

RPM, a 3-axis accelerometer (the VectorNav VN100) was rigidly mounted with epoxy to a safe 

mounting location on the engine (Figure 9). The VN100 has a measurement range of +-16g with a 

maximum sampling rate of 200Hz. Temperature was monitored at several possible locations 

during preliminary engine tests, and the chosen location (on the bottom of the crank case) was 

found to provide the safest operating conditions for the accelerometer, which has a maximum 

operating temperature of 185°F. The coordinate system of the sensor is shown in Figure 9. The 

piston travels within the Z axis, therefore vibration in this axis is expected to be caused by the 

combustion and motion of the piston. The rotational plane of the crank contains the Z and Y axes, 

therefore vibrations in the Y axis are expected to be caused by the motion of the crank. However, 

these vibrations are expected to be relatively small. The thrust produced by the propeller acts in 

the X axis, therefore vibrations in this axis are expected to be caused by variation in the amount 

of thrust produced at each time step. 

 

 

Figure 9: Accelerometer orientation and measurement coordinate system for engine tests 

Z 

X Y 
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Figure 10 shows the same sensor mounted to the electric motor test stand, directly below where 

the electric motor is attached.   

 
  

Figure 10: VN100 accelerometer orientation and measurement coordinate system for 

electric motor tests 

 

Due to the different mounting orientation of the accelerometer in the electric motor testing, it 

should be noted that the Z axis in the engine data corresponds to the X axis in the electric motor 

data, and in both of these axes the additional acceleration due to gravity must be corrected for in 

order to observe only the acceleration due to the motion of the engine/electric motor. Likewise 

the X axis in the engine data corresponds to the Z axis in the electric motor data, and the Y axes 

are equivalent. 

To provide a larger range of measureable data frequencies, the Variense VMU931 is also used for 

vibration measurement. This sensor has a measurement range of +-16g and a maximum sampling 

frequency of 1000Hz. This sensor has a maximum operating temperature of 104°F, so the 

placement of this sensor on various test setups is also carefully chosen with temperature as a 

consideration. 

X 

Y 

Z 
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Figure 11: Placement of VN100 and VMU931 on engine, chosen based on areas of the engine which 

stay below sensor safe operating temperatures during engine operation. 

 

Figure 11 shows the placement of the both accelerometers on the engine, while Figure 12 shows 

the placement of the VMU931 on the electric motor test stand.  In both cases, the sensor is rigidly 

mounted with epoxy as close as possible to the center of mass of the test article being measured. 

 

  

 

Figure 12: VMU931 accelerometer orientation and measurement coordinate system for 

electric motor tests 

 

3.4.2 Cooling 

The instrumentation used for data thermal data collection is two different types of temperature 

sensors, both designed for use with the Eagle Tree eLogger V4 (data logger). One is a 
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temperature loop sensor, used to monitor the temperature of the engine cylinder head, and the 

other is a single-point temperature sensor used to monitor several locations on the engine.  

 
 

Figure 13: Placement of EagleTree temperature sensors used during engine testing.  

 

3.4.3 Noise 

All acoustic data is collected with G.R.A.S. 1/2-inch pre-polarized microphones with G.R.A.S. 

1/2-inch CCP pre-amplifiers. Table 5 and Table 6 show the relevant specifications of this 

hardware. 

Table 5: Microphone Specifications 

 
1/2" Prepolarized Pressure 

Microphone 

Frequency Range 

(+-2dB) 
3.15 Hz - 10 kHz 

Dynamic Range  

(w. CCP Preamp) 
18 dB(A) - 138 dB(A) 

Sensitivity  

(250Hz, +-2dB) 
50 mV/Pa 

Resonance 

Frequency 
14 kHz 
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Table 6: Preamplifier Specifications 

 1/2" CCP Preamplifier 

Frequency Range 

(+-0.2dB) 
2.5 Hz - 200 kHz 

Typical Noise 3.5 μV (typ.) 

Gain -0.30 dB 

 

National Instruments' NI USB-4431 DAQ is used for data collection, and all data is collected 

using the NI Signal Express Software (Table 7). 

Table 7: DAQ Specifications 

 NI USB-4431 

Sampling Range 102.4 kS/s 

Sampling Resolution 2.10 mS/s 

Dynamic Range 

(1kHz, 102.4kS/s) 
100 dB (typ) 

Amplitude Accuracy 

(-30C to 70C) 

AC @ 1kHz: +-0.052 dB 

DC: +-0.5% 

 

3.5  Tests 

3.5.1 Vibration 

During initial testing, the engine was throttled through seven phases and allowed to settle in each 

phase while acceleration data was recorded. The seven phases, selected based on throttle position, 

are shown in Table 8. The data from each full test is separated into each individual phase for 

graphing and processing such as frequency analysis. 
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Table 8: Vibration testing throttle phases  

Phase Approximate Servo 

Position 
Average RPM 

1 20% 3000 

2 25% 3800 

3 35% 4600 

4 45% 5600 

5 50% 6250 

6 75% 6400 

7 100% 6500 

 

The frequency of vibration oscillations in each phase is governed by Equation 3: 

          
   

   
 
     

      
 

3 

To obtain a baseline comparison point for the engine vibration measurements, a second set of 

tests is conducted with the same accelerometer (VN100), mounted as shown in Figure 10, to 

collect data while running the Turnigy RotoMax 50cc-size brushless motor with the same 23x8 

wooden propeller. This electric motor supplies comparable power to the DA50 but potentially 

with limited vibration and noise. To as closely replicate the previous setup as possible, the 

electric motor is mounted as shown in Figure 8 with the same dampeners used in the previous 

tests, and the same RPM phases are used (Table 8).  

Based on the rotating imbalance dynamics shown in Figure 14, the off-center mass (m) and radius 

(e) required to produce the same magnitude of vibrations as that measured from the engine can be 

calculated using the equation below. The RPM will be the same as the operating point of interest 

for the engine (6000 RPM) so that the frequency of the vibration is the same. 
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Figure 14: Theoretical system dynamics for rotating imbalance[24] 

 

Equation 4 is used to calculate the mass required at a given radius from center e, at a given 

frequency ω. F is the force created by the off-center weight, which is calculated by the mass of 

the oscillating object (engine) and the acceleration.  

       4 

Based on initial calculations, a simple adjustable cam (Figure 15) is designed which allows for 

variation in radius and mass for experimental adjustment. 

 

Figure 15: Basic design used for adjustable cam for which the off-center mass and radius 

can be changed to experimentally adjust vibrations produced during testing. 
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This cam design is tested by attaching it to the electric motor, and running it at multiple RPM on 

the test stand discussed on page 20, and the appropriate mass or radius adjustments are made 

before the vibration system is mounted to an sUAS for flight testing. The DJI M600 is chosen as 

the test sUAS platform due to its size and payload capacity, which allow for easy integration of 

the necessary hardware and electronics for operating the electric motor (schematic shown in 

Appendix, Figure 92). 

Flight-testing was conducted at the OSU Unmanned Aircraft Flight Station from 8:00am to 

9:30am on December 12th, 2017. DJI Go was chosen as the mission planning software, and 

flights were conducted both with and without the electric motor running. Communications with 

the electric motor are separate from the communications with the aircraft, with an independent 

receiver and transmitter. In order to simplify the payload design, the RPM of the attached electric 

motor is set on the ground, and then maintained throughout test flight. Three types of flight paths 

were planned (rectangular, point-to-point, and orbit) in order to observe if different dynamic 

maneuvers during flight changed how the vibration affected the platform, if at all. Due to 

electrical connection malfunctions only the rectangular flight path was successfully executed. 

The first flight, with the motor off, was used to set the waypoints in the mission planner. Once the 

points were set, the rectangular flight path was executed with the electric motor off. Upon 

completion of this flight, a second flight was conducted with the same set of waypoints, and the 

electric motor operating at approximately 5700 RPM. The RPM was set using a measurement of 

the acoustic signature during motor operation and manual identification of the peak attributed to 

the motor noise. All flights were flown at an altitude of 15m. 

Flight testing was repeated at the OSU Unmanned Aircraft Flight Station in March with a new 

cam design (Figure 16) in March 2018. The weather data for these flight tests can be found in the 

Appendix, Table 18. 
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Figure 16: Electric Motor with unbalanced cam mounted to M600 for flight testing (March 

2018) 

 

DJI Ground Station Pro was chosen as the mission planning software, and flights were conducted 

both with and without the electric motor running. As with the previous vibration replication 

flights, communications with the electric motor are separate from the communications with the 

aircraft, with an independent receiver and transmitter, and the RPM of the attached electric motor 

is set on the ground before takeoff. Once again, three types of flight paths were planned 

(rectangular, point-to-point, and orbit) as shown in Figure 17.  
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Figure 17: Flight paths used for all vibration replication comparison flights. 

 

3.5.2 Cooling 

Steady-state temperature tests were conducted to observe the thermal behavior of the engine at 

different power outputs with the active cooling flow provided by a 23x8 wooden propeller, which 

was also the source of loading for the engine. Predictive cooling calculations were also made to 

show the theoretical cooling requirements for a variety of power outputs of the same engine. 

3.5.3 Noise 

Initial measurements of the noise signature produce by the engine are taken in a lab setting on the 

engine test stand (Figure 7). Two G.R.A.S. 1/2-inch pre-polarized microphones with G.R.A.S. 

1/2-inch CCP pre-amplifiers are placed as shown in Figure 18 to collect data while running the 

engine with a 23x8 wooden propeller. The microphone orientations are chosen to be in-plane with 

the propeller, and 90° relative to the propeller plane. The engine is mounted in the same 

configuration (Figure 7), and running at the same operating points (Table 8) used in vibration 

tests.  

Rectangle

Orbit

Point-to-point
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Figure 18: Microphone array for acoustic measurements of DA50 with 23x8 wooden 

propeller 

To isolate the engine signature from the noise produced by the propeller, a second set of tests is 

conducted with the same two microphones placed in the same configuration shown in Figure 18 

to collect data while running the Turnigy RotoMax 50cc-size brushless motor with the same 23x8 

wooden propeller (Figure 10) on the electric motor Stand 1 (Figure 8). This electric motor 

supplies comparable power to the DA50 but with potentially limited vibration and noise. To 

further differentiate between the components of the noise signature that are contributed by the 

propeller and the electric motor, additional data is taken with the electric motor running without 

the propeller at the same operating points. 

Before recording acoustic data with the engine and electric motor running, ambient measurements 

are taken with the lab exhaust removal system active. This ambient data, the data from the engine 

tests, and the electric motor data with and without the propeller is processed, and the acoustic data 

from the electric motor tests is used to help identify which components of the overall noise 

signature can be attributed to the engine. 
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To better assess the acoustic signature of the engine, outdoor tests were conducted in March 2018 

to allow measurement in the geometric far-field of the engine. This was accomplished by spacing 

the microphones more than 125 times the diameter of the exhaust port away from the engine [25]. 

This testing was conducted with the engine test stand (Figure 7) and the electric motor test stand 

discussed on page 20. Due to the propeller being used to load the engine during this acoustic 

testing, the microphone spacing is also based on the geometric far-field of the propeller, which 

can be estimated as 10 times the propeller diameter[26]. To achieve the most quiet ambient 

environment possible, this testing was conducted from 10pm to 5am. The weather data for this 

testing can be found in the Appendix, Table 19. 

 

Figure 19: Microphone orientation and placement for outdoor engine far-field testing. 

 

Acoustic data was collected for two different aircraft of interest. The DJI M600 was measured as 

a compatible aircraft for the DA50 engine, and its corresponding theoretical hybrid power system. 

Acoustic data is collected while this aircraft hovered ~30 ft above a 20ft radius microphone array, 
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as shown in Figure 20. The weather data for these flight tests can be found in the Appendix, Table 

18. 

 

Figure 20: Microphone orientation and placement for acoustic data collecting during flight 

for multi-rotor aircraft. 

 

To visualize the acoustic impact that a small 2-stroke engine would have on a multi-rotor aircraft, 

an analytical approach based on the basic concepts of noise propagation (Equation 5) was taken 

to process the data from the M600 f lights and the outdoor measurements of the engine.  

           
    

 

    
   

5 

First, the ambient, electric motor, and propeller contributions are removed from the engine 

spectra, leaving what we will assume is a good estimation of the engine's independent 

contribution using Equation 6.  
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6 

The engine data is then corrected for the difference in measurement distance. The M600 was at 

the center of a 20ft radius microphone array, hovering 30ft above the microphones, making the 

direct distance approximately 36ft. The engine is therefore corrected by approximately -5dB to 

estimate how it would sound if it were also measured from 36ft instead of 20ft (Equation 7). 

                       
     

     
  7 

The M600 data is adjusted to a bandwidth of 2Hz (originally 1Hz) to match that of the engine 

data by using Equation 8 to combine the SPL every two frequencies, and finally, the two resulting 

spectra (engine only and M600 in hover) are added (Equation 8). 

                 
       

 

    
  

       
 

    
   

8 

All the equations discussed above were taken or derived from Ruijgrok [27]. 

3.6  Overall Bias Error 

Overall bias error considers all contributing instrumentation errors, including sensors, wiring, 

electronics, etc. The sensors and electronics used for vibration and temperature data collection did 

not have published error data, and so are not discussed here. Equation 9 [28] describes the method 

for calculating an overall bias for a combination of component errors, where u is each 

contributing error. 

                  9 

This overall bias calculation was conducted for the acoustic data collection equipment, and the 

results are shown in  Table 9. 
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Table 9: Bias Error for Microphone Measurements 

40AD 1/2" Pre-polarized Microphone ±2 dB 

26 CA 1/2" CCP Preamplifier ±0.2 dB 

NI USB 4431 ±0.032 dB 

Coaxial cable (150 ft) ±0.045 dB 

Connectors (2 per cable) ±0.1 dB 

TOTAL BIAS ERROR ±2.01 dB 
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CHAPTER IV 
 

 

RESULTS 

 

The test setups and instrumentation discussed in Chapter 3 are used to produce the results 

discussed here. 

4.1  Vibration 

One goal of this study is to examine the potential affect that the vibrations produced by a hybrid-

electric power system would have on a multi-rotor sUAS. To accomplish this,  

4.1.1  Objectives 

As detailed in Chapter 3, the goals for studying vibration as an integration challenge is to 

characterize the vibrations of a small two-stroke ICE, and use that data to predict how those 

vibrations will affect the mission capabilities of a multi-rotor aircraft (Figure 5). 

4.1.2 Initial Engine Characterization 

Of the initial seven RPM phases, only those under 6000 RPM (100 Hz) can be correctly measured 

by the accelerometer, which has a sampling frequency of 200 Hz. Therefore only the results in the 

first four phases will be presented and discussed. Table 10 shows the summary data for the engine 

running on the dampened stand. Within each phase, a time span of one second is selected  
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which displays consistent acceleration behavior and an RPM trend which centers around the goal 

RPM for that phase with smaller standard deviation between time steps. Within that time span, a 

representative amplitude (high and low point for a single time step) is measured, and the 

corresponding force is calculated. 

Table 10: Sample observed amplitudes in each axis at each operating point 

Phase RPM Axis Accel. Amplitude (m/s^2) Force Amplitude (N) 

1 3000 

X 198.4 281.8 

Y 205.5 291.9 

Z 100.1 142.0 

2 3800 

X 206.4 293.1 

Y 178.5 253.5 

Z 195.5 277.6 

3 4600 

X 166.4 236.3 

Y 140.7 199.9 

Z 180.2 255.9 

4 5600 

X 153.8 218.4 

Y 115.8 164.4 

Z 228.2 324.0 

 

It can be seen that there is significant acceleration, and therefore force, applied in all of the 

measured directions. The assumption is made that the motion in the X axis can be mostly 

attributed to the fluctuation in thrust produced by the propeller, further analysis will only be done 

on the Z and Y axes.  

 Figure 21 shows the results of frequency analysis conducted on the accelerometer data for the 

dampened stand in the Z axis. It can be seen that the major peaks in this axis correspond to the 

RPM in that phase. There is also a trend that as the RPM increases, the peaks that accompany the 

primary peaks become more significant. 



39 

 

 

Figure 21: FFT analysis of acceleration in Z axis with varying RPM 

Figure 22 shows the results of frequency analysis conducted on the accelerometer data for the 

dampened stand in the Y axis. It can be seen that the same peaks that correspond to the RPM are 

present, and the same trend of the peaks surrounding the RPM peaks becoming more significant 

with higher RPM still exists. However, for the lower RPMs, major peaks appear lower in the 

frequency spectrum. As the RPM increases, these additional peaks greatly decrease. When 

comparing Figure 21 and Figure 22, small traces of these unidentified lower-frequency peaks can 

be seen in the Z axis, but they are significantly less apparent than in the Y axis.  

 

Figure 22: FFT analysis of acceleration in Y axis with varying RPM 

Due to the larger vibration amplitudes in the Z axis than in the Y axis for the higher RPM, which 

represent the more efficient operating range of the engine, the acceleration comparison between 
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the engine and electric motor with the same propeller will only be presented and discussed for the 

Z axis. For this comparison, the Z axis from the engine measurements will be paired with the X 

axis from the electric motor measurements, as these axes both correspond to vertical motion. 

Figure 23, Figure 24, Figure 25, and Figure 26 show one second of the acceleration data from the 

engine with the propeller at each RPM, as well as the acceleration data from the electric motor at 

the closest matching RPM. These small samples were chosen from each data set as range which 

contained an RPM trend centering around the closest to desired RPM with smaller standard 

deviation between time steps, as well as consistent acceleration behavior.  

 

Figure 23: Comparison between acceleration of engine and electric motor with the same 

propeller, at approximately 3000 RPM in the vertical axis 

 

It can be seen that at approximately 3000 RPM, the vibration signature from the electric motor 

with the propeller is significantly lower than that of the engine with the propeller. This indicates 

that most of the vibration of the engine could potentially be contributed to the behavior of the 

engine alone.  
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Figure 24: Comparison between acceleration of engine and electric motor with the same 

propeller, at approximately 3800 RPM in the vertical axis 

 

It can be seen that at approximately 3800 RPM, the vibration signature from the electric motor 

with the propeller is still significantly lower than that of the engine with the propeller, but now 

there is visible amplitude modulation in the electric motor data. It still appears that most of the 

vibration of the engine could potentially be contributed to the behavior of the engine alone.  

 

Figure 25: Comparison between acceleration of engine and electric motor with the same 

propeller, at approximately 4600 RPM in the vertical axis 

 

It can be seen that at approximately 4600 RPM, the vibration signature from the electric motor 

with the propeller remains significantly lower than that of the engine with the propeller. This 

indicates that most of the vibration of the engine could potentially be contributed to the behavior 

of the engine alone.  
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Figure 26: Comparison between acceleration of engine and electric motor with the same 

propeller, at approximately 5600 RPM in the vertical axis 

 

It can be seen that at approximately 5600 RPM, the vibration signature from the electric motor 

with the propeller is significantly larger than at the lower RPM, and displays obvious amplitude 

modulation. The vibration signature from the engine with the propeller also displays obvious 

amplitude modulation at this higher RPM, but at a little more than half of the frequency of the 

electric motor with the propeller. During testing, it was visually observed that directly below and 

around 5600 RPM, the electric motor with the propeller was visibly vibrating much more strongly 

that at the lower RPM. It is not apparent what this distinct amplitude modulation affect and 

stronger electric motor vibration at this higher RPM can be attributed to, but it is thought to be 

caused by the physical characteristics of the test stand. 

4.1.3 Initial Vibration Replication 

The initial calculations of how much mass is required at a certain offset from center is shown in 

Table 11. 

Table 11: Initial Cam Calculations 

Rotational Velocity 5700 RPM 

+Z Acceleration 105 m/s
2
 

Engine Mass 1.33 kg 

Offset Distance 0.0254 m 

Offset Mass 0.01547 kg 
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The design point for the cam is chosen as 0.55oz (0.01547kg) placed 1 inch (0.0254m) from the 

center. However, to decrease risk in case of some kind of failure due to the induced vibration on 

the electric motor, much smaller masses were used in initial testing at 1 inch from the center, and 

the mass was steadily increased in multiple tests until the design point was safely reached.  

It is observed during testing that with 0.1oz and 1.35in from the center of the shaft rotating at 

5700 RPM, the engine vibration magnitude is being very closely replicated, so the data from this 

test is fully processed. Figure 9 shows the comparison between the engine vibration signature at 

5700 RPM and the electric motor vibration signature at 5700 RPM with a weight of 0.1oz at 

1.35in from the center of the shaft.  

 

Figure 27: Acceleration magnitude of electric motor with cam (0.1oz @ 1.35in) and engine 

at 5700 RPM 

 

A much smaller weight was required for replication than expected, so a comparison is done 

between the engine and the electric motor with no cam at 5700 RPM to identify any inherent 

system imbalances that might be contributing to the overall measured signature. It is found that 

the electric motor does produce vibration even without a load on it, which explains why less off-

center mass was required to replicate the engine vibration than originally calculated. When 

vibration is intentionally being produced, the inherent imbalance of the electric motor is 

amplified. 
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4.1.4 Sensor Validation 

In order to measure engine vibration above 6000 RPM (100Hz), the VMU931 is tested as a 

potential replacement for the VN100 in the vibration measurement tests. With both mounted on 

the engine, as shown in Figure 11, the engine is accelerated to 4600 RPM and data is taken. A 

representative second of data is taken from both sensors, and the results are shown in Figure 28. 

There appears to be significant variation both in the magnitude and behavior observed by the two 

sensors. The amplitude modulation observed in this measurement as well as previous with the 

VN100 is not present in the VMU931 data. The VN100 also measures lower maximum 

amplitudes, on the order of 4g (~40 m/s) less than the VMU931. 

 

Figure 28: Comparison of Engine vibration signature as recorded by VN100 and VMU931 

at 4600 RPM (~77 Hz) 

 

To determine which sensor is correctly representing the vibration signature of the engine, tests 

were conducted with the vibration table (Appendix, Figure 97) to provide a known vibration 

source, and an the MSR165 Data Logger as an additional sensor for comparison. 

A comparison of the magnitudes recorded by all of the sensors under the same stimulus from the 

vibration table (Figure 29) shows a vast discrepancy between the VN100 and the other two 

sensors. 
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Figure 29: Discrepancy between measured vibration amplitude from three different 

accelerometers with the same known stimulus.  Vibration amplitudes shown are the 

maximum observed amplitude measurement.  

 

The stimulus of the vibration table is set to a sine wave at a specific frequency and magnitude/ 

Comparison between the behavior of the VN100 and the VMU931 shows that the VN100 is once 

again recording data with distinct amplitude modulations which should not be present given the 

constant-amplitude sine wave input (Figure 30). 

 

Figure 30: Vibration signature as measured by the VN100 and VMU931 with a 75 Hz sine 

wave stimulus 

 

Based on these diagnostic tests, it is determined that the VN100 is not accurately representing the 
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vibration signature of the sample engine. Based on this conclusion, and the sampling frequency 

limitations of the sensor, previous attempts and vibration replication will be repeated in order to 

simulate the behavior at the test point of interest (6000 RPM) as well as correct for the under-

estimated vibration amplitude. 

4.1.5 Final Engine Characterization 

The engine is re-characterized using the VMU931.  

 

Figure 31: One-second representative measurement of engine vibration at approximately 

6000 RPM. Full amplitude is observed to be approximately 29g, which makes the effective 

single-direction amplitude 14.5g (~142 m/s^2) 

 

4.1.6 Final Vibration Replication 

The previous cam design calculations are repeated, but with the new measurements of the engine 

vibration signature taken using the VMU931 accelerometer (Table 12). 

Table 12: New Cam Calculations 

Rotational Velocity 6000 RPM 

Single-direction Acceleration 142 m/s^2 

Engine Mass 1.33 kg 

Offset Radius 1.5 in 

Offset Mass 0.36 oz 
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The previous cam design testing is also repeated, with the new cam design. The acceleration 

sensor (VMU931) is measuring full saturation at 6000 RPM with the current cam design with the 

chosen test stand configuration. This cam design is also tested while mounted to the M600 in a 

lab setting (propellers inactive) (Appendix, Figure 96). It is found to fully saturate the sensor in 

this configuration as well. The measured vibrations of the engine do not fully saturate the sensor, 

and based on calculations the current cam design shouldn't either. Therefore, it is determined that 

a reduction will have to be made to the off-center weight in the current cam design to account for 

inherent imbalance in the electric motor, which is thought to cause the higher vibration 

amplitudes being observed (also observed in previous cam designs and testing).  

To achieve a similar vibration magnitude to that measured from the engine, the offset mass is 

systematically reduced, and the resulting vibration measured, until this goal is reached. These 

iterative steps are shown in Table 13, along with the calculated vibration that the mass and offset 

should produce as well as the actual measured vibration. Any measurements above the saturation 

limit of the VMU931 (16g) are simply expressed as being in excess of this limit, which converts 

to ~157m/s^2. 

Table 13: Cam Mass Reduction Test Points (6000 RPM) 

Offset Mass 

(oz) 

Offset Radius 

(in) 

Calculated 

Accel. (m/s^2) 

Measured 

Accel. (m/s^2) 

0.36 1.5 142 >157 

0.288 1.5 114 >157 

0.246 1.5 97 >157 

0.162 1.5 64 147.2 

 

When the mass had been reduced to 0.162 oz, the measured acceleration was relatively close, but 

slightly higher than the signature of the engine. It would be preferable to overshoot the engine 

vibration rather than undershoot since the goal of this work is to observe a worst-case scenario. A 
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direct comparison between the vibration of the engine and the electric motor with the cam is 

shown in Figure 32. 

 

Figure 32: One-second representative vibration measurement of engine and electric motor 

with cam (0.162oz, 1.5in off-center) at approximately 6000 RPM 

 

In preparation for flight testing on the M600, the electric motor with the cam and all necessary 

power and control electronics are integrated with the platform. The electric motor is then run at 

6000 RPM, and the vibration signature measured while the aircraft rests stationary on the lab 

floor. The results of this testing are show in Figure 33.  
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Figure 33: One-second representative vibration measurement of the electric motor with 

cam (0.162oz, 1.5in off-center) on the test stand and on the M600 at approximately 6000 

RPM 

 

Once again, it is observed that the structure to which the vibration source is mounted to has a 

significant effect on the vibration measured. 

4.1.7 Flight Testing (December 2017) 

From the flight logs of the M600, multiple platform behaviors are examined for the initial 

vibrations at 5700 RPM. Figure 34 shows the actual path traveled by the platform while following 

the same waypoints from DJI Go, with and without the attached electric motor active. It can be 

seen that the flight with the electric motor active demonstrated a couple of distinct variances not 

seen in the flight with the motor inactive.  
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Figure 34: Comparison of platform location following the same flight path with electric 

motor on and off  

 

Figure 35 and Figure 36 shows the altitude during the flights with and without the motor active. 

The start time and flight time vary between the motor on and motor off tests, so in each figure 

plotted by data points, dotted lines indicate the data taken at altitude. It can be seen that there are 

some minor fluctuations in altitude during the motor on test that are not present in the motor off 

test. 

 

Figure 35: Comparison of altitude during flights with electric motor on and off (entire 

duration) 
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Figure 36: Comparison of altitude, starting when flight altitude is reached. Duration in 

seconds for both flights shown in boxes on right 

 

Figure 37 shows the velocity data from the aircraft during the two flights. It can be seen that the 

velocity of the platform fluctuates significantly more during the flight with the electric motor 

active than without. This observation explains the differing flight times from the motor off to the 

motor on test for the same flight path. 

 

Figure 37: Comparison of velocity with the same flight path with the electric motor on and 

off (from time that altitude is reached)  

 

Figure 38 shows the number of connected satellites during flight with the motor on and off. It can 

be seen that during the flight with the motor off, 16 satellites were consistently connected for the 
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majority of the time at altitude, while with the motor on the number of satellites fluctuates 

between 15 and 16 throughout the flight (in the same location at the same altitude). 

 

Figure 38: Comparison of number of satellites connected during the same flight path with 

the electric motor on and off (from time that altitude is reached 

 

4.1.8 Flight Testing (March 2018) 

From the flight logs of the M600, the waypoints and actual flight paths flown for testing the 

increased vibration at 6000 RPM have been plotted in Figure 39. 

 

Figure 39: Three different waypoint-driven flight paths with the actual path flown during 

each flight 

 

Starting with the rectangular flight path, other performance parameters such as flight velocity, 

signal strength, roll, pitch, and yaw are compared between motor on and motor off flights. 
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Composite velocity (independent of direction) is plotted relative to an approximately normalized 

start time (Figure 40). One key observation from the velocity data, as well as the other rectangle 

flight path data, is that with the motor on, the flight path took approximately 40 seconds (33%) 

longer than the with the motor off. The reason for this can be seen in the velocity plots: there are 

several points at which the aircraft lingers in a hover with the motor on where it did not with the 

motor off. 

 

Figure 40: Composite velocity of the aircraft during flight for the rectangular flight path, 

with the motor off and the motor on. Dotted lines indicate the corresponding behaviors 

between the two flights, which relate to location in the flight path. 

 

Signal strength has also been plotted relative to an approximately normalized start time (Figure 

41). It can be seen that with the motor running and producing vibration, the signal strength drops 

significantly more throughout the flight than with the motor off. 
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Figure 41: Signal strength during flight for the rectangular flight path, with the motor off 

and the motor on.  

 

Figure 42 shows the roll measurements reported by the on-board IMU during flight testing both 

with and without the motor active and producing vibration.  

 

Figure 42: IMU roll measurement during flight for rectangular flight path, with the motor 

off and the motor on. Dotted lines indicate the corresponding behaviors between the two 

flights, which relate to location in the flight path. 

70

80

90

100

0 20 40 60 80 100 120 140 160

70

80

90

100

0 20 40 60 80 100 120 140 160

Approximate Time from Start (s)

Motor Off

Motor On

-15

-10

-5

0

5

10

15

0 20 40 60 80 100 120 140 160

R
o

ll

-15

-10

-5

0

5

10

15

0 20 40 60 80 100 120 140 160

R
o

ll

Approximate Time from Start (s)

Motor Off

Motor OnSection BSection A



55 

 

 

Standard deviation is calculated for the labeled regions of roll behavior to better quantify the 

differences between the motor off and motor on flights (Figure 43). 

 

Figure 43: Standard deviation for two of the regions between the dotted lines in Figure 42 

both with the motor on and motor off. 

 

Figure 44 shows the pitch measurements reported by the on-board IMU during flight testing both 

with and without the motor active and producing vibration.  

 

Figure 44: IMU pitch measurement during flight for rectangular flight path, with the motor 

off and the motor on. Dotted lines indicate the corresponding behaviors between the two 

flights, which relate to location in the flight path. 
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Standard deviation is calculated for the labeled regions of pitch behavior to better quantify the 

differences between the motor off and motor on flights (Figure 45). 

 

Figure 45: Standard deviation for three of the regions between the dotted lines in Figure 44 

both with the motor on and motor off. 

 

Although the overall trend from the pitch and roll data appears to show that with the motor on, 

there is more variation in the platform orientation during flight than with the motor off (no 

additional vibration). However, Section A of the pitch data appears to break this trend. This is 

attributed to the fact that in Section A of the motor off data, there appears to be a steady increase 

in pitch over time that is not seen in the motor on data. This could be due to a difference in the 

wind conditions during that flight as compared to the motor on flight. 

Data from the two additional flight paths (octagon & point to point) showed similar trends to 

those discussed her for the rectangular flight path. The processed results can be found in the 

Appendix. An additional note from this flight testing is that at one point in between flight tests, 

the aircraft was on the ground, and the electric motor was active and producing vibration. At this 

time, the controller was attempting to connect to the aircraft, and a warning was produced stating 

that the IMU was unable to boot up. Through systematic reduction of the electric motor RPM 
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(and therefore the vibration magnitude) the IMU was eventually able to boot up successfully, 

around 4100 RPM.  

4.1.9 Precision Uncertainty 

Precision uncertainty for the vibration measurement tests is evaluated in a variety of ways. First, 

the variation of the engine RPM at a set throttle position is quantified (Figure 46). Over three 

different tests, it can be seen that the overall standard deviation in engine speed at a set throttle 

position is typically 8RPM. 

 

Figure 46: Precision uncertainty of engine RPM during repeated tests at with a goal RPM 

of 6000. Error bars show standard deviation of RPM for each specific test. 

 

The variations in measured acceleration from the engine at approximately the same RPM set 

point is quantified. It is found that based on the measurements from the VMU931, the standard 

deviation of the maximum amplitude (which is used for the vibration replication stages) measured 

at approximately 6000 RPM is 0.47g (Figure 47). 
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Figure 47: Precision uncertainty of engine acceleration measured from the VMU931 at a 

goal RPM of 6000, for both the maximum measured acceleration and the average measured 

acceleration. Error bars show standard deviation of acceleration amplitude for each specific 

test. 

 

For the electric motor vibration replication tests, multiple measurements of the same testing 

conditions were not available, so different measures were taken to analyze the variation in 

vibration behavior. First, a comparison is made between the standard deviation of the RPM of the 

electric motor during three tests with different acceleration magnitudes (Figure 48). The results 

show that in each case, the standard deviation in RPM is similar, and does not appear to correlate 

to the magnitude of the vibration being produced. On a whole, the standard deviation between all 

three tests is ~19RPM. 
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Figure 48: Comparison of three independent electric motor tests with a goal RPM of 6000. 

Average RPM displayed for each test with error bars of the standard deviation during that 

test. The cam weight and offset distance is noted (if applicable), and the overall average and 

standard deviation of the three tests is displayed. 

 

Finally, the standard deviations of the acceleration amplitude measured both with and without a 

cam attached and producing vibration are calculated (Table 14). It appears that the standard 

deviation may be related to the magnitude of the vibration being produced, implying that the 

system becomes more unstable when more vibration is being actively produced. 

Table 14: Comparison of acceleration consistency of the electric motor at a 

goal RPM of 6000 with and without forced vibrations 

 Cam Details Average Amplitude Standard Deviation 

Test 1 None 0.98 0.15 

Test 2 0.162 oz 1.5 in 27.4 1.42 

 

4.2  Cooling 

4.2.1  Objectives 

As detailed in Chapter 3, the goals for studying cooling as an integration challenge is to 

characterize the cooling requirements of a small two-stroke ICE, and use that data to anticipate 
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the affect that meeting the cooling requirements will have on the efficacy of a hybrid power 

system as an endurance booster. 

4.2.2 Steady-State Temperature Testing 

The RPM and temperature data from the steady state temperature test is plotted versus time in 

Figure 49. The three phases (4700, 5550, and 6250 RPM) can be clearly seen between ignition 

and engine shutoff. The average temperatures observed at each phase do not exceed 300°F. 

 

Figure 49: Temperature and RPM during steady-state temperature test 

The airflow estimates produced are shown in Table 15 along with the corresponding RPM values, 

power required to produce that airflow, and the steady state temperature reached by the cylinder 

head with an ambient temperature of 79°F. 
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Table 15: Steady-state temperature under given operating conditions 

RPM 
Power Req 

(HP) 

Induced Velocity 

(m/s) 

Est. Useful Velocity 

(m/s) 

Mass Flow 

(kg/s) 

Avg Temp 

(°F) 

4700 1.58 10.2 3.4 3.34 210 

5550 2.60 12.0 4.0 3.94 240 

6250 3.71 13.5 4.5 4.44 273 

 

While the propeller produces a significant amount of airflow, only a portion of it actually travels 

over the cooling fins of the cylinder head, which are located in the top portion of the propeller 

area and adjoining the center. The useful velocity has been estimated as one third of the total 

induced velocity. Based on these calculations, it can be seen that even with increasing forced 

convection (with increasing RPM), the temperature of the cylinder head continues to increase. It 

can be concluded that without forced convection, or some other external cooling such as a water-

cooled system, the cylinder head temperature would increase to a point of detriment to the engine. 

4.2.3 Predictive Calculations 

Predictive cooling calculations are conducted for the engine of interest in this study (the DA50) 

using basic convection cooling concepts. Equation 10 shows the relationship between volumetric 

flow required (    and the heat produced by the engine (Q). Heat produced by the engine is 

estimated based on the power output of the engine and an estimated thermal efficiency (η).    is 

the specific heat of air,   is the density of air, and    is the allowable rise in temperature. 

   
 

     
 10 

Based on the measured thermal efficiency of a larger two-stroke gasoline engine [29], a thermal 

efficiency of 0.3 is chosen for these calculations. This is assumed to be an over-estimation of the 

realistic thermal efficiency of the engine used in this study due to the smaller size of the engine. 

Required volumetric flow and required flow velocity based on an estimate of the frontal area of 
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the cylinder head, are calculated and the results displayed in Table 16. The center column can be 

compared to the steady-state temperature test conducted previously. The discrepancy in estimated 

velocities can be due to an overestimated engine efficiency, or inaccuracy in the estimate of 

useful velocity from the propeller. 

Table 16: Required Cooling Estimates for DA50 

Assumed η 0.3 0.3 0.3  

Rated Power 

5 3.7 2.68 HP 

3,729 2767 2000 W 

Waste Power 

(heat) 
8,700 6,455 4,667 W 

Max Allowable 

Temp 
300 273 300 °F 

ΔT 227 200 227 °F 

Estimated 

Cylinder  

Head Area 

0.058 0.058 0.058 ft
2
 

Required Flow 

Volume 
118.7 99.9 63.7 CFM 

Required Flow 

Velocity 
10.5 8.9 5.6 m/s 

 

A chart presenting cooling requirements for a given power output, using the same calculations 

discussed above, has been produced (Figure 50).  
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Figure 50: Required cooling estimates for a small two-stroke engine based on power output 

and an assumed thermal efficiency of 0.3.  

 

This chart can be used to estimate the amount of cooling required for different hybrid power 

systems. 

 

Figure 51: Estimates of the design margin for cooling hardware weight and electrical power 

for the four theoretical hybrid configurations discussed in Chapter 2 (Table 3). 

 

Figure 51 shows the amount of additional weight (for cooling hardware, or other) that could be 

added to the hybrid configuration discussed in Chapter 2 before the hybrid would match the flight 

time of the battery-only configuration. It also shows the amount of power that could be siphoned 
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for electrically-powered cooling systems from the excess being produced by the engine during 

flight. The cooling power margin was determined by subtracting the amount of power required by 

the platform in hover from the steady power supply capability of the hybrid system. Cases B and 

C have the same engine but carry different amounts of fuel (different takeoff weights), which is 

why case C has a smaller cooling power margin. From a design perspective, these margins give 

an idea of how feasible a endurance-boosting hybrid system is.  

4.3  Noise 

4.3.1 Objectives 

As detailed in Chapter 3, the goals for studying noise as an integration challenge is to characterize 

the acoustic signature of a small two-stroke ICE, as well as that of a compatible COTS multi-

rotor aircraft, and use that data to predict how the noise signature of the aircraft will change with 

the addition of the hybrid power system (Figure 6). 

4.3.2 Indoor Engine Characterization 

Initial testing is conducted in the lab with the experimental setup illustrated in Figure 7.  Figure 

52 and Figure 53 show comparisons between five different acoustic spectra: ambient background 

noise, noise produced by an electric motor with and without a propeller, and noise produced by an 

ICE with a propeller. The RPM of each test in the following data sets were all approximately 

6250. Figure 52 shows the data collected by Microphone A and Figure 53 shows the data 

collected by Microphone B, the locations of which are shown in Figure 18 and in the bottom-left 

corner of each figure. Both data sets were measured with a resolution of 10 Hz, therefore tones 

that fall between increments of 10Hz were not measured. 
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Figure 52: Comparison of narrowband acoustic spectra (ambient background noise with 

and without exhaust, electric motor with and without a propeller, and ICE with a 

propeller), all at 6250 RPM, with Microphone A at a distance of 115 inches 

 

 

Figure 53: Comparison of narrowband acoustic spectra (ambient background noise with 

and without exhaust, electric motor with and without a propeller, and ICE with a 

propeller), all at 6250 RPM, with Microphone B at a distance of 42.5 inches 
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The ambient measurements were taken with the lab exhaust removal system activated. The 

ambient spectrum shows a tone at 120 Hz and a considerable amount of broadband noise. The 

cause of the tonal content is not known but is believed to be due to the heating, ventilation and air 

conditioning (HVAC) in the testing room, while the broadband is caused by the turbulent air from 

the exhaust removal system. 

Two sets of data were collected which included propeller noise (shown in Figure 52 and Figure 

53): the electric motor with the propeller, and the ICE with the propeller. In all non-ambient 

spectra a 1/rev appears at approximately 100 Hz. For both electric motor cases, this tonal noise is 

believed to be caused by an instability in the electric motor. For the data from the ICE with 

propeller, this is caused by the combustion within the engine. The engine used for this test is a 

two-stroke engine that completes a power cycle at every revolution of the crankshaft. Therefore, 

the combustion noise produces a fundamental tone at the frequency associated with the RPM that 

is the same as the 1/rev. This type of noise also produces harmonics that occur at every multiple 

of the fundamental tone. These harmonics, as well as the rotor stator interaction noise, will in turn 

increase the tonal content at the BPF and its harmonics. Due to the presence of combustion noise, 

there is a clear increase in tonal noise at the 1/rev and its associated harmonics between the data 

for the ICE with propeller and the data for the electric motor with propeller.  

The noise produced by a propeller is well known and contains both, tonal content and broadband 

content[30]. The tonal content consists of the blade passing frequency (BPF), which can be 

calculated as the number of propeller blades multiplied by the RPM and divided by 60 seconds 

per minute. This tone appears at approximately 210 Hz, and its associated harmonics which 

appear at multiples of the BPF. The tonal content tends to dominate the lower frequencies while 

the broadband content dominates the high frequencies. It is also apparent that another tonal noise 
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source is present which is in the form of a rotor wake-body interaction between the exhaust duct 

and the propeller. This type of noise has been shown to exist in typical multi-rotor aircraft 

configurations[31], although the cause is typically the arm of aircraft that holds the electric motor 

and acts as the interacting body. These tones would appear at the BPF and every harmonic and 

has even been shown to appear at half harmonics. This rotor wake-body interaction noise is also 

present in the ICE case since the exhaust duct is in the same position, however the ICE case also 

has the presence of combustion noise at the same frequencies. 

Acoustic measurements were also performed without a propeller attached to the electric motor. 

The purpose of this test was to determine the noise produced by the electric motor and if this 

noise contributes to the overall noise produced by the motor-propeller system. At the lower 

frequencies (20-400 Hz) the ambient background noise with the lab exhaust removal system 

activated dominates, however at the higher frequencies (600-10,000 Hz) the spectrum becomes 

dominated with tonal content. At these higher frequencies the motor noise appears to be 

contributing to the overall system noise. Between 6,000 and 10,000 Hz, there is a clear increase in 

tonal content in the Electric Motor with Propeller spectrum that is not present in the ICE with 

Propeller spectrum. 

Table 17: Overall Sound Pressure Level of each acoustic 

measurement, calculated between 20 – 10,000 Hz 

Acoustic Measurement 
Mic A OASPL 

(20-10000 Hz) 

Mic B OASPL 

(20-10000 Hz) 

Ambient with Exhaust Off 50.0 52.4 

Ambient with Exhaust On 65.2 65.3 

Electric Motor Only 76.2 86.5 

Electric Motor with Propeller 105.3 106.4 

ICE with Propeller 110.9 111.8 
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Table 17 shows the overall sound pressure level (OASPL) for each acoustic measurement taken, 

calculated between the frequencies 20-10,000 Hz. As expected, there is a clear increase in 

OASPL as noise sources are added to the environment. The greatest difference occurs when the 

propeller is added to the electric motor, which resulted in an increase in OASPL of approximately 

20-30 dB depending on the microphone placement. However, the overall system noise increases 

again when the propeller is driven by an ICE, with an increase in OASPL of 5 dB. This increase 

can be considered significant due to the fact that the typical human can detect an increase of at 

least 3 dB. Assuming that the noise sources are in phase, the increase of 5dB over the entire 

frequency spectrum indicates that the noise source has been effectively doubled. It should also be 

noted that these results may vary depending on the orientation of the intake and exhaust ports of 

the engine relative to the microphones. 

4.3.3 Outdoor Engine Characterization 

To truly capture the far-field acoustic behavior of the engine, the previous tests were repeated in 

an open field at night (least background noise possible). The results from these measurements are 

shown in Figure 54. The ambient sound, unloaded electric motor, and both the electric motor and 

engine with the propeller operating at 6000 RPM are all plotted from 10 to 10,000Hz. The 

measurements from microphone B (Figure 19) are chosen as representative. 
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Figure 54: Narrowband acoustic data of DA50 engine and electric motor with 22x8 

propeller measured at a radius of 20 ft, microphone 1 (see Figure 19) 

 

4.3.4 Multi-Rotor Platform Characterization 

The M600 acoustic signature is measured while hovering 30ft above a 20ft radius microphone 

array. Figure 55 shows the ambient noise, the stock aircraft signature (no extra weight), as well as 

the aircraft signature under load, all plotted from 10 to 10,000 Hz. 
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Figure 55: Narrowband acoustic data of M600 hovering an altitude of 36 ft, loaded and 

unloaded, microphone 2 (see Figure 20) 

 

An important note about this data is that there is more than just a single clearly distinguishable 

BPF (blade passing frequency) for this aircraft, but instead a cluster of peaks around a specific 

frequency. This is due to the multiple rotors all operating independently of each other, with 

independently varying RPM [31]. Figure 56 shows the variation in motor RPM during steady 

hover, which can be attributed to imperfect weight distribution and, in certain cases, steady wind. 

Based on the motor schematic shown, it appears that the platform may be carrying extra weight 

towards motors one and six. 

-30

-20

-10

0

10

20

30

40

50

60

70

80

90

10 100 1000 10000

S
P

L
 [

d
B

 r
e
f:

 0
.0

0
0

0
2

 P
a
]

Frequency [Hz],  Δf = 1 Hz

Averaged Ambient

M600, Loaded

M600, Unloaded



71 

 

 
 

Figure 56: Average RPM with standard deviation error bars for a 10 second period of 

stable hover at an altitude of 36ft. Orientation of motors shown on the right. 

 

4.3.5 Analytical Source Combination 

Following the procedure detailed in Chapter 3, the far-field acoustic data for the engine obtained 

in Stage 1 is isolated from the other contributing signatures (propeller, ambient, etc.). What we 

will assume to be the fully isolated signature of the engine is shown in Figure 57. While there 

exists some broadband contribution from the engine, the most significant contribution is the tonal 

content the is clearly visible at 100 Hz and the corresponding harmonics. 
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Figure 57: Analytically extracted acoustic signature of the DA50 

After a distance correction of the engine data, and the compression of the M600 acoustic data to a 

Δf of 2Hz to match the engine data, the engine and aircraft signatures have been analytically 

combined. The results of these computations are shown in Figure 58, as well as the original M600 

signature and the corresponding ambient. The OASPL (80-10,000 Hz) for each data set is given 

in the legend. It is important to note what acoustic affects the analytical combination does not 

consider but could affect the actual combined acoustic signature such as interaction noise, 

constructive or destructive interference, reflection, etc. 
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Figure 58: Analytically combined M600 and DA50 acoustic signatures, rectified to the same 

measurement distance, in comparison with the original M600 signature and corresponding 

ambient. OASPL calculated from 80 to 10,000 Hz. 

 

This is the analytically produced acoustic behavior of the platform with additional weight and the 

noise from the engine. Coincidentally, the BPF of the platform's propellers (spinning at an 

average of 3000 RPM in hover) aligns with the firing frequency of the engine running at 6000 

RPM, which is approximately 100 Hz. This alignment would vary with different platform 

configurations and varying RPM of propellers throughout flight. As expected, the engine 

signature's greatest contribution to the overall signature is the massive tonal content at 100 Hz 

and the corresponding harmonics. This contribution can also be seen when comparing the OASPL 

for each data set. The OASPL range of 80-10,000 Hz is chosen to avoid the low frequencies 

where broadband wind noise dominates. Within this range, there is an increase of 12dB in the 

aircraft signature with the addition of the engine. 

4.3.6 Precision Uncertainty 

Precision uncertainty for the acoustic data is calculated as the standard deviation of three different 
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analysis are shown for the loaded M600 measurements and the engine with propeller 

measurements (Figure 59 and Figure 60). 

 

Figure 59: The precision uncertainty minimum and maximum values associated with the 

loaded M600 acoustic signature. 

 

 

Figure 60: The precision uncertainty minimum and maximum values associated with the 

acoustic signature of the engine loaded by a propeller. 
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The bias uncertainty associated with the acoustic data collection equipment (Table 9) is also 

plotted as minimum and maximum boundaries for the loaded M600 and engine with propeller 

measurements (Figure 61 and Figure 62). 

 

Figure 61: Bias uncertainty associated with the loaded M600 acoustic signature 

 

 

Figure 62: Bias uncertainty associated with the acoustic signature of the engine loaded by a 

propeller.
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CHAPTER V 
 

 

DISCUSSION & CONCLUSIONS 

 

The ultimate goal of this research was to fully characterize the implications of implementing a 

small internal combustion engine as a mechanical power source in a hybrid-electric power system 

for a multi-rotor UAS. Short of fully designing and implementing the theoretical hybrid-electric 

power system discussed, the experiments conducted were successful in meeting this goal. 

As expected, based on previous research, the vibration, cooling requirements, and noise of small 

internal combustion engines each present a unique and intricate challenge when considering 

integration with multi-rotor UAS platforms. Small internal combustion engines produce powerful 

vibrations in multiple axes, and even simplified replication of this vibration was shown to have a 

noticeable effect on the function of a multi-rotor sUAS. In the course of this study it became 

apparent that quantifying vibration is heavily dependent upon the physical characteristics of the 

test setup, and without fully integrating this engine on a flying multi-rotor platform, the affects 

cannot be perfectly replicated. However, strong vibrations clearly impede the critical functions of 

the on-board sensors, making vibration a very significant consideration when designing a hybrid 

power system for multi-rotor sUAS. 

 



77 

 

It is also shown that forced convection is required to cool a small internal combustion engine 

utilizing intermittent combustion (piston engine) and experimental estimates of the amount of 

flow required were made. Convection cooling theory is also used to predict based on power 

output how much cooling will be required. 

To assess the feasibility of adding cooling solutions to the hybrid power system design, estimates 

are made of the amount of design margin (of weight and power) for a theoretical hybrid and 

platform combination that could be used for external cooling (Figure 63). With correct sizing and 

careful design, the necessity for external cooling should not negate the endurance benefits of a 

hybrid power system. 

 

Figure 63: Estimates of the design margin for cooling hardware weight and electrical power 

for the four theoretical hybrid configurations discussed in Chapter 2 (TABLE). 

 

Along with initial characterization of the single-cylinder two-stroke internal combustion engine 

noise signature, an analytical prediction of the combined signature of a multi-rotor sUAS with an 

engine on-board has been presented. The results of the characterization indicate that the engine, 

which produces mechanical and combustion-related noise, has a significant amount of tonal 

content as well as some broadband, and a significant amount of noise overall. To more fully 
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this study to apply load during operation), other known contributing signatures were 

computationally removed. The isolated signature also clearly showed major tonal content with 

some broadband as well in the low to mid frequency range (approximately 80 to 1500 Hz). When 

analytically combined with the measured acoustic signature of a hex-configuration (6 rotors) 

multi-rotor sUAS, it is clear that the most significant contribution of the engine is the tonal 

content, which has the potential to increase the overall signature by 12dB (Figure 64). While 

noise may not be a critical concern for all sUAS applications, if noise mitigation is required, it 

must be effective specifically for major tonal content. 

 

Figure 64: Analytically produced hybrid signature, with notable features highlighted. 

OASPL calculated from 80 to 10,000 Hz. 

 

The challenges discussed herein, viz. vibration, cooling, and noise, while significant, are not the 

only ones that must be faced when designing a viable hybrid-electric power system for integration 
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is compatible with COTS sUAS and could be used as an endurance booster. While there are 

benefits to a system that can be implemented on any platform, the biggest opportunity lies one 

step further: the intentional design of a complete hybrid-electric multi-rotor sUAS. This type of 

approach would offer even more flexibility in tackling the major integration challenges identified 

and characterized in this study. It is also worth pursuing what other classes of UAS could benefit 

from this type of power system, as only rotary wing sUAS are considered in this study. 

Applications to small fixed wing systems and larger vehicles, both manned and unmanned in 

fixed wing and rotary wing configurations, are also of great interest. 
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APPENDICES 

 

i. Power System Sizing[32] 

 

Figure 65: Performance chart for Sullivan UV S676-400U-01 

 

Figure 66: Performance chart for Sullivan UV S676-500U-01 
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Figure 67: Performance chart for Sullivan UV S676-500U-21 

 

Figure 68: Performance chart for Sullivan UV S676-550U-01 
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Figure 69: Performance chart for Sullivan UV S676-600F-01 

ii. Additional Vibration Data 

a. Octagon Flight (March 2018) 

 

Figure 70: Comparison of velocity behavior between octagon waypoint flights with electric motor 

(with cam) off and on. Due to the different flight times, regions of similar flight behavior are marked 

with dotted lines. 
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Figure 71: Comparison of platform roll between octagon waypoint flights with electric motor (with 

cam) off and on. Due to the different flight times, regions of similar flight behavior are marked with 

dotted lines. 

 

 

Figure 72: Comparison of platform pitch between octagon waypoint flights with electric motor (with 

cam) off and on. Due to the different flight times, regions of similar flight behavior are marked with 

dotted lines. 
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Figure 73: Comparison of signal strength between octagon waypoint flights with electric motor (with 

cam) off and on. Due to the different flight times, regions of similar flight behavior are marked with 

dotted lines. 

 

b. Point to Point Flight (March 2018) 

 

Figure 74: Comparison of velocity behavior between point-to-point flights with electric motor (with 

cam) off and on. Due to the different flight times, regions of similar flight behavior are marked with 

dotted lines. 
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Figure 75: Comparison of platform roll between point-to-point flights with electric motor (with cam) 

off and on. Due to the different flight times, regions of similar flight behavior are marked with dotted 

lines. 

 

 

Figure 76: Comparison of platform pitch between point-to-point flights with electric motor (with 

cam) off and on. Due to the different flight times, regions of similar flight behavior are marked with 

dotted lines. 

-8

-6

-4

-2

0

2

4

6

8

R
o

ll

-8

-6

-4

-2

0

2

4

6

8

0 5 10 15 20 25 30 35 40 45

R
o

ll

Flight Time (s)

Motor Off

Motor On

-20

-15

-10

-5

0

5

10

15

20

P
it

c
h

-20

-15

-10

-5

0

5

10

15

20

0 5 10 15 20 25 30 35 40 45

P
it

c
h

Flight Time (s)

Motor Off

Motor On



90 

 

 

Figure 77: Comparison of signal strength between point-to-point flights with electric motor (with 

cam) off and on. Due to the different flight times, regions of similar flight behavior are marked with 

dotted lines. 
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iii. Additional Noise Data 

a. Analytical Source Combination 

 

 

Figure 78: Analytically subtracted narrowband acoustic spectra for the electric motor only, derived 

from the narrowband acoustic spectra shown in Figure 54 

 

 

Figure 79: Analytically subtracted narrowband acoustic spectra for the 22x8 wooden propeller only, 

derived from the narrowband acoustic spectra shown in Figure 54 
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b. Vibration Affect of Acoustic Signature 

 

 

Figure 80: Comparison of the loaded M600 with and without the electric motor active and producing 

additional vibration to show if the vibration has any significant affect on the acoustic signature of the 

aircraft. 

 

c. Microphone Comparison 

 

Figure 81: Averaged ambient measurements from all microphones in array for M600 flight tests 
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Figure 82: Loaded M600 acoustic signature from all 4 microphones in array 

 

 

Figure 83: M600 Unloaded acoustic signature from all 4 microphones in array 
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Figure 84: Averaged ambient measurement from all 4 microphones in array for engine field testing. 

Microphones A and C are at a height of 9ft, while microphones B and D are at a height of 4.5ft. 

 

 

Figure 85: Acoustic signature of electric motor with no propeller from all 4 microphones in array. 

Microphones A and C are at a height of 9ft, while microphones B and D are at a height of 4.5ft. 
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Figure 86: Acoustic signature of electric motor with propeller from all 4 microphones in array. 

Microphones A and C are at a height of 9ft, while microphones B and D are at a height of 4.5ft. 

 

 

Figure 87: Acoustic signature of engine with propeller from all 4 microphones in array. Microphones 

A and C are at a height of 9ft, while microphones B and D are at a height of 4.5ft. 
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d. Ambient Weather Conditions 

Table 18: M600 Flight Testing (03/29/2018) 

Time Temperature (F) Pressure (psi) Wind Speed (kts) Humidity (%) 

2:52 pm 58.6 14.19 6.3 60 

3:16 pm 56.2 14.19 3, gusting 7  

3:25 pm   7, gusting 10  

 

Table 19: Engine Flight Testing (03/16/2018-03/17/2018) 

Time Temperature (F) Pressure (psi) Wind Speed (kts) Humidity (%) 

1:40 am 52.9 14.13 1.8, gusting 4.8 44.5 

2:31 am 45.7 14.14 1, gusting 2.5 62 

4:58 am 41.8 14.15 0.7 75.3 

 

iv. Additional Specifications 

 

  
Displacement 50 cc 

Weight 2.94 lbs 

Bore 1.6771 in 

Stroke 1.3779 in 

Recommended  

Propellers 

2-bladed: 23x8, 22x10, 22x8 

3-bladed: 22x10n, 20x12, 20x10 

Figure 88: Desert Aircraft DA50 engine specifications [33] 
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 RPM 172 kv  

 Max Current 120 A  

 Watts 5300 W  

 No Load Current 44V/1.65A  

 Internal Resistance 0.021 ohm  

 Weight 1080 g  

 Diameter of Shaft 10 mm  

Figure 89:  Turnigy Rotomax 50cc electric motor specifications [34] 
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Table 20:  Vibration-Dampening Sandwich Mount with Stud & Insert [35] 

 Dampener A Dampener B 

Mount Type Threaded Stud and Threaded Insert Threaded Stud and Threaded Insert 

Thread Size 1/4"-20 1/4"-20 

Thread Type UNC UNC 

Capacity per Mount 31 lbs. 75 lbs. 

Deflection @ Capacity 0.07" 0.03" 

Shear Capacity per Mount 4.5 lbs. 25 lbs. 

Deflection @ Shear Capacity 0.06" 0.1" 

Diameter 5/8" 1" 

Height 5/8" 1/2" 

Thread Length 1/2" 1/2" 

Thread Depth 3/16" 3/16" 

Hardness Durometer 50A Durometer 50A 

Hardness Rating Medium Medium 

System of Measurement Inch Inch 

Shape Round Round 

Material Black Neoprene Rubber Black Neoprene Rubber 

Stud Material Zinc-Plated Steel Zinc-Plated Steel 

Insert Material Steel Steel 

Temperature Range 10° to 180° F 10° to 180° F 

RoHS Compliant Compliant 

Use these rubber sandwich mounts to minimize vibration between surfaces inside machinery 

and equipment, such as in circuit boards, small fans, compressors, and pumps. They're for use in 

compression and shear load applications. 

Neoprene rubber has good resistance to weather and acids and moderate resistance to oils. 
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v. Schematics and Pictures 

 

Figure 90: Engine wiring schematic 

 

 

 

Figure 91: Engine sensors and wiring  
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Figure 92: Electric motor electronics schematic 

 

 

Figure 93: Electric motor electrical and sensor connections 
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Figure 94: Additional Dampener Placement Figures 

 

  

Figure 95: Dampener placement on engine and electric motor test stand, dimensions in inches. 
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Figure 96: Electric motor with cam mounted to M600 on lab floor 

 

 

 

 

 

Figure 97: Sensor validation setup. A signal generator is used to produce a sine wave of a 

specific amplitude and frequency which is then sent through an amplifier to an actuator 

which stimulates all three sensors simultaneously. 
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Figure 98: Microphone array wiring schematic 

 

 

Figure 99: M600 flight testing 
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Figure 100: Engine testing in the propulsion lab
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