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Major Field: Plant and Soil Science 
 
Abstract: Double-crop soybean is a valuable production system in Oklahoma. However, 
due to the later planting date paired with environmental conditions present throughout the 
state, the high yield potential is associated with some degree of risk. Due to this high risk, 
growers have to appropriately manage inputs in order to minimize other risk factors. A 
trial was established in the spring of 2016 and 2017 near Perkins, Oklahoma on a sandy 
loam soil. Seven inputs were evaluated (previous wheat variety, seeding rate, row 
spacing, insecticide, fungicide, in-season N, foliar micronutrients, and seed treatment). 
These were evaluated based on a standard practice level and a high management level 
(i.e., farmer practice for N-management would be no additional N applied and high 
management would be 112 kg ha-1 N applied). In addition, a standard practice and high 
rate management check was added by fixing all inputs at those individual levels to allow 
comparison of the individual inputs. Stand counts were taken at V3, plant height at R2, 
NDVI at R3 and yield characteristics (percentage of two- and three-bean pods, pods 
plant-1, pods node-1, nodes plant-1 and seed weight g 1000 seeds-1) were taken at R8. 
Yield was determined by mechanically harvesting the middle 1.67 m of the plot. The high 
input system resulted in significantly higher yields than the standard practice system both 
years. Compared to high management system, only decreasing seeding rate resulted no 
significant differences (99 kg ha-1 increase) with all other treatments resulting in 
significant decreases (47 to 149 kg ha-1 decrease) in 2016. Compared to the high 
management system, only taking away micronutrients resulted in an increase (80 kg-1 ha-

1) with all other treatments resulting in decreases (15 to 824 kg ha-1 decrease) in 2017. 
This could indicate that higher seeding rates resulted in too many plants ha-1 due to poor 
environmental conditions and micronutrients are not needed within a double crop system. 
This increase in yield was possibly due to increased seed weight, lower plant population 
which resulted in a significant decline in pods plant-1 and no significant differences in the 
number of two- and three-bean pods. 
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CHAPTER I 
 

 

INTRODUCTION 

 

 The soybean (Glycine max L.) grain has many uses throughout the world, with 

the primary uses being for meal and oil products.  Soybean meal, made from the seed can 

contain up to 80% protein and is primarily used as animal feed but can be incorporated in 

many human foods (USB Staff, 2016). Conversely, soybean oil is primary used in the 

food industry, with consumers using more than 83% of US soybean oil for cooking, 

baking and/or frying. The remaining soybean oil is integrated into industrial applications, 

such as adhesives, coatings and printing inks, lubricants, plastics, and specialty products, 

with further applications in biodiesel (USB Staff, 2016).  

Soybean is the dominant oilseed in the United States accounting for about 90 % of 

the US production. Furthermore, soybean is the second most planted field crop in the 

United States, with 33.8 million hectares planted in 2017 (USDA, 2017).  According to 

the USDA Economic Research Service, large-scale soybean production did not occur 

until the 20th century. Following establishment, the soybean production industry began to 

expand rapidly. This drastic increase in acreage resulted from increased planting 

flexibility, higher yields, row spacing practices, crop rotations, and lowered production 
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costs. The greatest amount of hectares of soybean are grown in the upper Midwest, which 

account for more than 80% of the US soybean hectares.  

Similar to Midwest, soybean is a major component of Oklahoma cropping 

systems.  According to USDA survey, there were over 222,500 reported hectares planted 

in Oklahoma during the 2017 production season (USDA, 2017).  Soybean is planted 

throughout the state; however, due to climatic and cultural practices throughout the 

region, the eastern portion of the state has the highest hectares. In the western portion of 

the state where precipitation decreases, soybean yield potential lowers, and management 

becomes more critical. 

While a significant amount of the hectares of soybean in Oklahoma is grown as 

full season production, approximately one-third of the total planted hectares (over 74,000 

hectares) are planted within a double-crop system (USDA, 2017). A double-crop system 

is when two crops are grown and harvested on the same field within a single calendar 

year. For most of the southern US, this is when producers plant a summer crop following 

the harvest of a winter crop, which is primarily a small grain.  For Oklahoma, winter 

wheat harvest occurs from late-May until mid-June. Following harvest, soybean is 

planted within days to weeks, depending on soil moisture at harvest, with planting dates 

ranging from mid-June to early-July.   

 Although double-crop production systems have the potential to be very 

profitable, the higher stress associated with these systems, specifically associated with the 

later planting, require optimization of other production practices in order to achieve 

suitable yields. One of the most critical periods for these double-crop systems is rapid 
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emergence and vigorous early season growth. Therefore, planting practices as well as 

activities conducted at planting, such as row spacing, plant populations, and seed 

treatments, will greatly influence seedling vigor and survival. With focus placed on 

management at planting, most tend to overlook late-season management. This is mostly 

because early season management decision greatly influences the overall yield potential; 

however, the most sensitive time for biotic and abiotic stresses for soybean occurs during 

reproductive growth. Therefore, in order to optimize yield, practices during the later 

season, such as insecticides, fungicides, and fertility, should be carried out and 

implemented to optimize growth.  
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CHAPTER II 
 

 

REVIEW OF LITERATURE 

 

Seeding Rate 

Determining optimum seeding rate is difficult. Much of the challenge associated 

with determining optimum rates comes because of the highly variable environmental 

conditions immediately following planting. While it may seem that higher planting 

populations should result in higher crop yields, the literature has produced highly variable 

results (Costa, 1980; De Bruin and Pedersen, 2008; Oplinger and Philbrook, 1992; and 

Shibiles and Weber, 1966). The theory behind higher seeding rates that is more plants m-2 

should be the result in higher yields. However, these higher seeding rates have been 

shown to result in increased lodging and decreased number of branches per plant (Costa 

et al., 1980). Shibles and Weber (1966) further emphasized these results. They noted that 

soybean plants were able to produce more lateral branches at lower populations. In these 

lower populations, the lateral branches filled the inter-row spaces at lower leaf area index 

than that of higher populations. Consequently, higher plant populations can delay 

progression of the plant from vegetative to reproductive growth. This can result in 

increased vegetative tissue, which can decrease carbohydrates available during seed fill, 

potentially decreasing yield (Shibles and Weber, 1966). The effect of 



5 
 

plant population is dependent on other management factors. Devlin et al. (1995) showed 

that higher planting rates were more detrimental at wider row spacing. They indicated 

that this was mainly due to increased intra-row competition compared to if the plants 

were spaced over a larger area, as with narrower row spacing.   

The highly variable effect of plant population on soybean growth and yield is 

highlighted by the vastly different optimum planting populations documented in the 

literature. Weber et al. (1966) indicated that maximum yields were achieved at a 105,500 

seeds ha-1 planting density, while both Oplinger and Philbrook (1992) and De Bruin and 

Pedersen (2008) documented a need for a much higher plant population (462,200 and 

258,600 seed ha-1, respectively) for optimal yields.   

Row Spacing 

In the early 1990’s, soybean production in the United States began to move from 

a predominantly wide row (≥ 76 cm) cropping system  a narrow row (≤ 76 cm) system. 

According to Hesterman et al. (1987), narrow rows can provide tremendous agronomic 

and economic benefit, including increased light interception, earlier canopy closure, 

reduced within row plant competition, reduced soil erosion, and increased yields. 

Soybean grown in a narrower row spacing results in increased plant height as a means to 

compete for sunlight (Basnet et al., 1974). In a 3-year study in Michigan, Hesterman et al. 

(1987) reported 15% higher yields on 50 cm row spacing compared to 76 cm row 

spacing. Furthermore, they found an additional two to eight percent increase when row 

spacing decreased to 25.4 cm (Hesterman et al., 1987). This physiological benefit can 

frequently result in increased yields (De Bruin and Pederson, 2008; Pederson, 2007). The 
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exact increase associated with narrower planted rows varies but ranged from 248 kg ha-1 

(De Bruin and Pedersen, 2008) to 303 kg ha-1 (Pedersen, 2008). The added revenue of 

soybean in narrow rows was on average $36 ha-1 at $0.17 kg-1 soybeans (Hesterman et 

al., 1987). While a financial benefit may be present for soybean production in wider 

rows, a restrictive factor from switching from wider row spacing to more narrow is the 

cost of investment. As much of the country still plants soybean on wider rows (>76 cm), 

growers would need to invest in different equipment or modifying current equipment 

which can add substantial cost to the production system (Norsworthy and Oliver, 2009).   

While the literature suggest that, there is not a constant yield increase to wide row 

soybean production. Walker et al, (2010) indicated that soybean yield was not 

consistently impacted by row-spacing and environmental conditions played a critical role 

in determining the value of narrow or wide planted soybean. Heatherly and Hodges 

(1999) noted that in drought prone regions, row spacing did not significantly influence 

yields, and theorized that a better yield response would result from production practice 

that influence water use efficiency. This is critical, as narrower rows were previously 

thought to result in increased water use efficiency. However, it has been suggested that 

narrower spacing with soil moisture available early during growth will increase 

vegetative growth increasing water demand, therefore decreasing soil moisture available 

during critical reproductive stages (Alessi et al., 1981). Other general benefits have been 

theorized with wider row spacing, including less crop damage for late-season chemical 

applications, better seed singulation, and lighter equipment used in field (Vonk, 2013).   
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Seed Treatment 

Seed treatments are designed to manage diseases and insects on emerging 

seedlings. These treatments will typically consist of an insecticide, fungicide, or 

combination applied to the seed prior to planting. For soybean, the primary use of seed 

treatment is to control Rhizoctonia root rot, Phytophora root rot, Pythium seedling 

disease, and precursors to other pod and stem blight (Heatherly and Hodges, 1999). These 

seedling diseases can be quite detrimental and yield and have been shown to be reduced 

with the use of these fungicide seed treatments (Dorrance et al., 2003). However, 

Heatherly and Hodges (1999) showed that these seed treatments are only beneficial when 

germination or emergence occurs in unfavorable conditions, particularly for fungicides, 

such as cool soil temperature or excessive/deficient drought moisture. This is due to the 

need for three critical components to be available for infection, including susceptible 

host, pest present, and appropriate environmental conditions. Most of this is dependent an 

environmental conditions, due to a host and pest being normally present. Therefore, 

within the southern Great Plains, adequate conditions can be present during early planting 

to support the use of seed treatments but conditions are less favorable in later planting 

(Brunoehler, 1995; Draper et al., 2002). Seed treatments have shown a more consistent 

growth effect when planted into no-till or reduced tillage systems (Heatherly and Hodges, 

1999). This is critical as planting soybean in a double-crop system is typically performed 

within a high residue environment. Additionally, when seed treatments are applied, the 

risk of crop failure or crop replant were minimized. This is a result of treated seeds being 

more vigorous than those from non-treated seeds are. Additionally, these seedlings 

typically produced earlier, more complete and uniform canopy (Brunoehler, 1995; 
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Gustafson, Inc., undated; Soybean Digest, 1995). The use of seed treatments can help 

support the most critical factors of minimizing stress and increase early growth, 

potentially in the absence or during low-level disease incidence.   

Foliar Fungicide  

While foliar disease can result in significant reductions in yield, they are still 

typically less detrimental then other diseases and insects. The literature suggests that 

foliar fungicides having little impact on crop physiology or crop yield even in the 

presence of disease, depending on disease, environmental conditions, fungicide used, and 

incidence (Swoboda and Pedersen, 2009). However, the lack response to fungicide 

applications is not universally found. Wrather and Koenning (2006) showed a 7.2% 

decrease in soybean yield due to foliar disease incidence. Some yield responses are more 

pronounced. Horn et al. (1975) found a 73% yield increase from fungicide when used to 

control frogeye leaf spot. Yield responses from foliar fungicides are due to minimizing 

the impact on leaf area and photosynthetic capacity (Bassanezi et al., 2001). Mahoney et 

al. (2015) emphasized this. They indicated that soybean leaf area was increased by 27 to 

45% when Seportia brown spot (Septoria glycines Hemmi) was controlled with a 

fungicide compared to an untreated check, which resulted in a significant increase in 

yields. Marburger et al. (2016) found that in a high production treatment with fungicide 

the yield increase ranged from 4.6% to 7.0% of a yield increase compared to the standard 

practice. However, Marburger et al. (2016) also found that by taking that foliar fungicide 

out that the yield increase drops to 2.4% to 5.6%. This shows that by applying a fungicide 

there was a 2.2% to 2.4% decrease in yield. While yield responses can occur, not all yield 

increases can benefit the production system. According to Heatherly and Hodges (1999), 
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it is believed an economic yield increase from fungicide only occurs in high input, high 

yielding environments. However, Mahoney et al. (2015) indicated that environmental 

conditions or disease incidence and economic benefit and profit ranged from $50.03 ha-1 

through $53.73 ha-1 depending on environment either favoring or dissuading disease 

occurrence.   

Foliar Insecticide 

Similar to diseases, insects can be drastically yield limiting if it occurs during 

critical production periods. Insects cause yield loss by feeding on foliage, boring into 

petioles, stems, or seeds, stems, spreading diseases, and damaging seed (Hons and 

Saladino, 1995). Unlike disease, insect populations are highly dynamic and particularly 

mobile, with insect populations potentially migrating in or out of a field within a number 

of days. Additionally, for most insect pests, populations can grow rapidly. Therefore, it is 

critical to manage these pests when populations are lower. One of the most challenging 

aspects of insect management is managing around economic thresholds. According to 

Oerke (2006), it is becoming more economically practical to apply insecticides due to the 

higher yield loss potential that can occur in high input systems and the lower breakeven 

probability, which is supported by Orlowski et al. (2016). In a study conducted by 

Trybom and Jeschke (2017) looking at foliar fungicides and insecticides, an application 

of pyraclostrobin fungicide at R3 had a yield response of 1.2 kg ha-1, whereas the 

addition of esfenvalerate insecticide with the fungicide at R3 had a yield response of 1.8 

kg ha-1. Therefore, by adding insecticide in conjunction with the fungicide they were able 

to gain an additional 0.6 kg ha-1. In another study in Illinois, it was found that in a 

standard system, the addition of an insecticide added an additional 1.2 kg ha-1 yield 
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protection, while in a high input system failing to apply an insecticide resulted in a 0.8 kg 

ha-1 yield decrease (Mastrodomenico and Below, 2016).  

Micronutrients 

Micronutrients are essential plant minerals that are typically taken up in much 

lower amounts compared to macronutrients. There are six micronutrients required by 

plants: zinc (Zn), manganese (Mn), copper (Cu), iron (Fe) boron (B), molybdenum (Mo) 

and (Heatherly and Hodges, 1999). The element, element symbol, optimal concentration 

in Mg kg-1, and function within the plant can be seen below in Figure 1 from (Arnall, 

2012; Heatherly and Hodges, 1999; Pioneer, 2017). 

Figure 1. Functions of micronutrients in plants adapted from Pioneer (2017). 

Element  Element 
Symbol Concentration Function in plant 

Boron B 0.02 
Important in sugar transport, cell 

division, and amino acid 
production 

Copper Cu 0.01-0.03 Component of enzymes, involved 
with photosynthesis reactions 

Iron Fe 0.05 
Component of enzymes, essential  

for chlorophyll synthesis, and 
photosynthesis 

Manganese Mn 0.015-0.2 
Chloroplast production, cofactor in 

many plant reaction, activates 
enzymes 

Zinc Zn 0.02 
Component of many enzymes, 

essential for plant hormone 
balance and auxin activity 

Molybdenum Mo 0.001-0.005 
Involved in nitrogen metabolism, 
essential in nitrogen fixation by 

legumes 
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In a study conducted by Enderson et al. (2015), there was no treatment effect of 

B, Cu, Mn, and Zn foliar fertilization on yield, even though these applications did 

increase the concentration in the grain at several locations. Similar results were found by 

Freeborn et al. (2001) looking at soybean yield response to B. While the overall yield 

benefit of foliar fertilizers in current literature is limited, some studies report positive 

results. Caliskan et al. (2008) indicated that early season applications of Fe chelated foliar 

fertilizer increased growth at mid- to late-reproductive stages as well as seed yield in 

double-crop across two years in a Mediterranean production system. These benefits were 

mostly found in more alkaline soils, as these soils are more prone to Fe deficiency. Ross 

et al. (2006) also indicated a 4 to 130% increase in soybean seed yield when B was 

applied compared to when no B was applied. They also indicated that B application 

timing did not influence the yield response. While most of the in-field response of 

soybeans from foliar fertilizer are highly variable in certain environments, these 

applications particularly in high yielding environments can improve grain yields. 

Late season nitrogen 

Nitrogen (N) is required in the greatest quantity of all plant nutrients for most 

crops. This is because N is a major component of chlorophyll, which uses sunlight energy 

to produce sugars from water and carbon dioxide (Mosaic, 2016). A deficiency of N 

causes slowed growth, and older leaves become chlorotic and senesce prematurely due to 

translocation of N compounds to the growing points (Heatherly and Hodges, 1999). This 

is a major agricultural input for most agriculture crops, since soybean is a legume, it can 

typically produce high amounts of N needed for growth and development. This is done 

through a symbiotic relationship between soybean plant and Brady rhizobium japonicum, 
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within this relationship the bacteria produce plant available N and the plant supplies the 

bacteria with usable photosynthates (Heatherly and Hodges, 1999). This relationship will 

supply soybean with 70-85% of the total N needed growth and development, with the 

remainder coming from uptake from the soil. It has been theorized that applications of N, 

especially when low soil N is available, will be critical to maintain yields. These 

applications will typically be need late-season as the rapid increase in N usage from late 

vegetative through early reproductive (Mourtzinis et al., 2018). Wesley et al. (1998) 

demonstrated this aspect. They showed that soybean was responsive in six of eight site 

years with an average of 11.8% yield increase across responsive and nonresponsive sites. 

They theorized that at responsive sites, the soybean plants were well nodulated and had 

soil available N present, but the soybean plants were not able to take up N at a high 

enough rate to be efficient.   

Double-crop soybean behind wheat provides special problems in terms of N 

management. Planting no-till into wheat stubble may result in depressed N availability 

due to microbial immobilization of available soil N during decomposition of wheat 

residues (Heatherly and Hodges, 1999). Nitrogen applications to double-crop systems 

production systems aim to overcome these deficiencies. Due to soybean’s ability to fix N 

and little research done on double-crop soybean, there is a gap in the literature available 

on this topic.  

Summary 

With higher soybean prices compared to other commodities, interest has been 

spurred for maximizing soybean yields through increased inputs use in the production 
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system. However, there is little information available about intensive management of 

double-crop soybeans on yield and increases and profitability. Currently there is no 

research being conducted in the southern Great Plains examining management practices 

for maximizing double-crop soybean yields. In double-crop soybean in Oklahoma the 

majority of acres follow a winter crop and most farmers apply what they believe is to be 

enough inputs to grow both the winter crop and double-crop soybean. Through this study, 

we aim to determine the impact of input management on double-crop production in 

Oklahoma in terms of productivity and profitability. The hypothesis of this project is that 

current production practices are not reaching full yield potential for double crop soybean.
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CHAPTER III 
 

 

METHODOLOGY 

 

Field Experiment 

 The field research was conducted in 2016 and 2017 at the Cimarron Research 

Station, near Perkins, Oklahoma (35°98’58.89” N, 97°04’60.92” W). The soil series at 

the location was the Teller series, which is a fine sandy loam with a slope of 0-8%. 

Temperature and precipitation were collected for this site from a statewide weather 

station system established and maintained from Oklahoma State University, named the 

Oklahoma Mesonet (www.mesonet.org).  Average temperature and precipitation data are 

shown in Figure 2 and 3. 

 

 Two primary treatment schemes were utilized in 2016 and 2017 and established in 

a split-plot design. The first treatment, which acted as the main plot, was wheat variety 

planted prior to establishment of the soybean crop. The two wheat varieties utilized were 

Bentley and Gallagher. These varieties were chosen, as they possess two different types 

of growth, low-tillering (Bentley) and high-tillering (Gallagher). Wheat residue from the 

2015 planting were utilized for both 2016 and 2017. This is a result of an additional 

wheat crop, which was planted in 2016, but adequate stands were not 
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achieved. Therefore, separate wheat residue was used the successive year. The wheat 

crop was planted at 71.5 kg ha-1 for both varieties. A total of 132 kg N ha-1 were applied 

with 50% of the N being applied at planting and the remaining 50% at Feekes growth 

stage 5.  An additional 48 kg ha-1 of P2O5 and K2O was applied for the 2016 season, 

while only 10 kg ha-1 of P2O5 was applied in the 2017 season. All other wheat 

management practices were conducted based on Oklahoma Cooperative Extension 

Service best management practices. Throughout the trial, the wheat crop was treated as a 

single area indifferent of plot area. The yield of the individual plots was not measured but 

the area as a whole averaged 3,200 kg ha-1 in 2016. 

 The second treatment with acted as the subplot was input treatments which was 

set up using omission style treatment arrangement. This was done as agronomic 

management studies have a tendency to investigate important factors independently to 

make data analyzing easier. As a result, it is believed that this approach could undersell 

the interaction of some of these factors that take place in today’s production systems. As 

means to compensate for these interactions we used an omission plot arrangement to look 

at the value of individual inputs within a high input system and compare back to the low 

or high input check. The studies in 2016 and 2017 consisted of two planting populations, 

two row spacing’s, and two levels (high/low) input management. The breakdown of the 

treatments and there components are outlined in Table 1 for 2016 and Table 2 for 2017. 

The products that were used in this study are outlined in Table 3 showing the active 

ingredient, brand name, application rate and manufacturer. 

In 2016, a Monosem (Monosem Inc., Edwardsville, KS) 4-row planter was to plant the 

soybean crop at 76 and 38 cm row spacing. In 2017, the Monosem 38 cm row-crop 
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planter was used similar to 2016; however, the 76 cm row spacing plots were planted 

with a John Deere (John Deere, Moline, IL). Channel 4806 R2 soybean cultivar was used 

in 2016, but this was changed to Channel 4916 R2X/SR in 2017. This change in cultivar 

was due to seed availability. Glyphosate (potassium salt of N-(phosphonomethyl) 

glycine) was applied pre-plant both years (1.06 kg a.i. ha-1). In 2016 in season, 

applications of glyphosate (1.06 kg a.i. ha-1) were made as needed to control weeds. In 

addition, pyroxasulfone (3-[[[5-(difluorimethoxy)-1-methyl-3-(trifluoromethyl)-1H-

pyrazol-4-yl] methyl] sulfonyl]-4, 5-dihydro-5, 5-dimethylisoxazole) was applied pre-

plant in 2017 (0.18 kg a.i. ha-1). Paraquat dichloride (1, 1’-dimethyl-4, 4’-bipyridinium 

dichloride) (1.12 kg a.i. ha -1) tank mixed with glyphosate (1.54 kg a.i. ha-1) was applied 

as a burndown application in late May 2017. In 2017, an in-season diglycolamine salt of 

dicamba (3, 6-dichlro-o-ansic acid) (0.57 kg a.i. ha-1) tank mixed with glyphosate (1.54 

kg a.i. ha-1) was applied in mid-July. Plots were planted on 17 June 2016 and 16 June 

2017 at a depth of 1.27 cm to 1.91 cm. Cultural practices and treatment application dates 

are outlined in Table 4. 

Irrigation was applied three times in both years at a rate of 2.54 cm per 

application using an OCMIS Irrigation Gun with a 201 m retractable line (Knutson 

Irrigation, El Reno, OK). Though irrigation was not a part of the study, due to the sandy 

nature of the soil irrigation was necessary to keep the study alive.   

 Foliar micronutrients, fungicide, and insecticide applications were made using a 

CO2 backpack sprayer with a spray pressure of 103.4 kPa, spray volume of 140 L ha-1 and 

an application speed of 4.8 km hr-1. Boom length was 1.67 meters with nozzles (Teejet 

XR 11002; Teejet, Wheaton, Illinois) spaced 50.8 cm apart. 
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In 2016 and 2017, harvest area was 1.67 m by 6.7 m. Plots were harvested with a 

Wintersteiger Delta plot combine (Wintersteiger, Reid, Austria) on October 31 in 2016 

and 2017. Seed weight, moisture, and test weight were measured with an onboard 

Harvest Master weigh system (Juniper Systems, Logan, Utah). Yield was adjusted to 

13.3%. 

 In-season data was collected during both vegetative growth and reproductive 

growth.  Early season stand count were collected at the V3-V5 growth stage (Fehr and 

Caviness, 1977). These were collected by sampling one meter of row at two locations 

within each plot and averaging the two together to get a plot average. Normalized 

difference vegetative index (NDVI) was also collected using a handheld Greenseeeker 

(Trimble Inc. Sunnyvale, California). Readings were collected on the harvest rows at R3. 

Normalized difference vegetative index (NDVI) is a measure taken from the reflectance 

of the crop canopy. This NDVI value was used to measure the density of greenness of a 

patch of land, in this case the soybean canopy. As it does measure the density of 

greenness, it takes into account both chlorophyll content and total biomass.  Therefore, it 

can be used to indirectly measure either of these two aspects (Hansen and Schjoerring, 

2003). Height measurements were also taken on the harvest two or four rows at R2. 

Whole plant samples were taken prior to harvest by collecting one meter of row from 

non-harvested rows. These samples were used to evaluate soybean yield characteristics 

including, number of nodes, pods per node, and seeds per pod. Yield were determined by 

mechanically harvesting the middle two-rows of the entire plots. These plot weights were 

used to estimate grain yield on a per hectare basis. In 2017 during harvest, grain 

subsamples were collected from each plot following determination of plot weights. These 
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subsamples were used for determining protein and oil content using a Perten near infrared 

seed analyzer (Perten Instruments, Stockholm, Sweden). These samples were not 

collected in 2016 due to poor seed quality and limited seed availability. 



19 
 

 

Table 1. Treatment structure for the 2016 study in Perkins, OK. 

  

Low 
Input 
Check 

(1) 

High Input- 
No Seed 

Treatment 
(2) 

High Input- 
No In-

Season IPM 
(3) 

High Input- 
Low 

Planting 
Population 

(4) 

High 
Input- 
Wide 
Rows      

(5) 

High 
Input No 
Late N 

(6) 

High 
Input 
Check    

(7) 
Seed Treatment 

  
X X X X X 

Foliar Fungicide 
 

X 
 

X X X X 

Foliar Insecticide 
 

X 
 

X X X X 

Micronutrients 
 

X X X X X X 

Seeding Rate (370K) X 
  

X 
   

Seeding Rate (440K) 
 

X X 
 

X X X 

Narrow rows (38 cm) 
 

X X X 
 

X X 

Wide Rows (76 cm) X 
   

X 
  

Late-N (R2)- 112 kg 
 

X X X X 
 

X 
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Table 2. Treatment structure for the 2017 study in Perkins, OK. 

  Low 
Input 
Check 

(1) 

High 
Input- No 

Seed 
Treatment 

High 
Input- 
No In-
Season 

IPM 

High Input- 
Low 

Planting 
Population 

High 
Input- 
Wide 
Rows      

(5) 

High 
Input- 

No 
Late N 

(6) 

High 
Input- No 

Micro-
Nutrients 

(7) 

High 
Input-No 

Insecticide 
(8) 

High 
Input- No 
Fungicide 

(9) 

High 
Input 
Check 

(2) (3) (4) (10) 
Seed Treatment   X X X X X X X X 

Foliar Fungicide  X  X X X X X  X 

Foliar Insecticide  X  X X X X  X X 

Micronutrients  X X X X X  X X X 

Seeding Rate (370K) X   X       

Seeding Rate (440K)  X X  X X X X X X 

Narrow rows (38 cm)  X X X  X X X X X 

Wide Rows (76 cm) X    X      

Late-N (R2)- 112 kg  X X X X  X X X X 
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Table 3. Active ingredient, brand name, application rate L ha-1, and manufacturer of 
products used in 2016 and 2017. 

Active Ingredient Brand name Application Rates (L ha-1) Manufacturer 

pyraclostrobin, metalaxyl, 
fluxapyroxad; 
imidacloprid 

Acceleron 0.003 L kg seed-1 
Monsanto 

Company, St. 
Louis, MO. 

.20-.30-3.20-.001-
2.10%B-Fe-Mn-Mo-Zn Max- IN for Beans 4.6 L ha-1 

Winfield 
United, Arden 

Hills, MN 

pyraclostrobin Headline 0.9 L ha-1 

BASF, 
Research 

Triangle Park, 
NC 

Lamba-cyhalothrin; 
Chlorantraniliprole Besiege 0.7 L ha-1 

Syngenta, 
Greensboro, NC 

46-0-0%N-P2O5 -K2O Urea 112 kg ha-1 
Chouteau Lime 

Company, 
Pryor OK 

 

Table 4. Planting, treatment application, and harvest dates in 2016 and 2017 

 
Planting 

date 
Micro-

nutrients 
Late Season 

N 
Foliar 

fungicide 
Foliar 

Insecticide 
Harvesting 

date 

2016 6/17 7/20 8/5 8/23 8/23 10/31 

2017 6/15 7/13 8/4 8/18 8/18 10/31 
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Figure 2. Monthly air temperature and precipitation observed at Perkins, Oklahoma in 
2016. 

 

 

Figure 3. Monthly air temperature and precipitation observed at Perkins, Oklahoma in 
2017. 
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Farmer Demonstrations: 

 Farmer demonstrations were also conducted during 2016 and 2017 concurrently 

as means to validate the work done in the small-plot trail. Multiple field-scale 

demonstrations in 2016 and 2017. In 2016 the demonstrations were located in Haskell 

(Eastern Research Station) (35°44’31” N, 95°38’03” W), Afton (36°43’41” N, 94°56’08” 

W), and Miami (36°54’32” N, 94°49’60.27” W). These demonstrations consisted of the 

farmer providing at least two strips of their field equivalent to the cooperator’s header 

width wide; therefore, the exact width and length of these demonstrations varied between 

each individual location Table 5 and 6. Within these strips, one harvest pass was left and 

managed according to the producer’s typical management system. The other harvest strip 

was superimposed a high input management treatment similar to the high input check 

treatment (treatment 7 in 2016 and treatment 10 in 2017) of the small-plot trial detailed 

above. Because of the dynamic nature of producer common practice, no consistent 

treatments could be compared. In 2016, the intensive management scheme consisted of 

an application of Max-In for Beans (2-0-0) (4.64 L ha-1) at V3 and an application of 

pyraclostrobin (fungicide) (0.87 L ha-1), Besiege (insecticide) (0.73 L ha-1), and Max-In 

for Beans (micronutrients) (4.64 L ha-1) at R3. Products used and application timings are 

listed in Table 7 along with the active ingredient, brand name, and manufacturer in Table 

8. 

In 2017, a low, medium, and high level of the intensive treatment was 

incorporated to compare to the farmer practice strip. This was to identify the input level 

that was most profitable compared to the farm practice. The locations in 2017 were 

Blackwell (36°52’43” N, 97°18’04” W), Afton (36°40’27” N, 94°58’57” W), and Miami 
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(36°54’40” N, 94°48’36” W). The intensive management scheme in 2017 consisted of 

Gradual N (30-0-0) at a high (18.71 L ha-1), medium (14.03 L ha-1), and low (9.35 L ha-1) 

rate as recommended based on the label of the product. This product was tanked mixed 

with Max-In for Beans (2% Nitrogen, 0.2% Boron, 0.3% Iron, 3.20% Manganese, 0.01% 

Molybdenum, and 2.10% Zinc) (high- 4.64 L ha-1, medium- 3.48 L ha-1, and low- 2.64 L 

ha-1) at growth stage V5. Then at R3 Besiege (insecticide), pyraclostrobin (fungicide), 

and another application of Max-In for Beans was tank mixed at high (4.64 L ha-1 Max-In, 

0.73 L ha-1 Besiege, and 0.87 L ha-1 pyraclostrobin), medium (3.48 L ha-1 Max-In, 0.55 L 

ha-1 Besiege, and 0.66 L ha-1 pyraclostrobin) and low rates (2.64 L ha-1 Max-In, 0.37 L 

ha-1 Besiege, and 0.44 L ha-1 pyraclostrobin) according to the label of each product. 

Products used and application timing are listed in Table 9 along with the active 

ingredient, brand name, and manufacturer in Table 10.  

All applications in 2016 and 2017 were made with a John Deere 3320 tractor and 

378.5 L three-point sprayer set at 103.4 kPa and spray volume of 187 L ha-1. Application 

speed was 6.44 km hr-1. Boom length was 9.44 m with nozzles (Teejet TT 11003 (Teejet, 

Wheaton, Illinois) spaced 50.8 cm apart. 

Temperature and precipitation data for the 2016 growing season are given in 

Figures 4 and 5. The dominant soil series at each location where as follows: Afton and 

Miami Taloka Silt Loam; and Haskell Parsons Silt Loam. Temperature and precipitation 

for 2017 are given in Figure 6 and 7. The dominant soil series in 2017 was the same for 

Afton and Miami, with Blackwell having a Kirkland Silt Loam. 
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Table 5. Location, width (m), length (m), and area ha-1 of demonstration strips in 2016 
  

Location Width 
(m) 

Length 
(m) 

Area 
(ha-1) 

Miami 9.1 292.6 0.27 
Afton 10.7 364.2 0.39 

Haskell 1.5 76.2 0.01 
 

Table 6. Location, treatment, width (m), length (m), and area ha-1 of demonstration strips 
in 2017 

Location Treatment Width 
(m) 

Length 
(m) 

Area 
(ha-1) 

Afton 

High 10.7 159.1 0.17 
Medium 10.7 162.2 0.17 

Low 10.7 170.1 0.18 
Farmer 10.7 178.6 0.19 

Blackwell 

High 9.1 487.7 0.44 
Medium 9.1 487.7 0.44 

Low 9.1 487.7 0.44 
Farmer 9.1 487.7 0.44 

Miami 

High 9.1 363.6 0.33 
Medium 9.1 363.6 0.33 

Low 8.7 363.6 0.32 
Farmer 9.1 363.6 0.33 

 

Table 7. Locations, application rates, products, and growth stage at time of application in 
2016 

Location Growth 
Stage Max-In Headline 

(pyraclostrobin) 

Besiege 
(Lamba-

cy) 

Growth 
Stage 

Afton V3 4.64 L ha-1   V3 
R3 4.64 L ha-1 0.87 L ha-1 0.73 L ha-1 R3 

Miami V3 4.64 L ha-1   V3 
R3 4.64 L ha-1 0.87 L ha-1 0.73 L ha-1 R3 

Haskell V3 4.64 L ha-1   V3 
R3 4.64 L ha-1 0.87 L ha-1 0.73 L ha-1 R3 
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Table 8. Active ingredient, brand Name, and manufacturer of products used in 
demonstration strips in 2016 

Active Ingredient Brand name Manufacturer 

.20-.30-3.20-.001-2.10%B-Fe-Mn-
Mo-Zn 

Max- IN for 
Beans 

Winfield United, 
Arden Hills, MN 

pyraclostrobin Headline 
BASF, Research 
Triangle Park, 

NC 

Lamba-cyhalothrin; 
Chlorantraniliprole Besiege 

Syngenta, 
Greensboro, NC 

 

Table 9. Location, rate of product applied, and growth stage at time of application in 
2017 

Location Growth 
Stage Rate Gradual N Max-In Headline 

(pyraclostrobin) 
Besiege 

(Lamba-cy) 

Afton 

V5 
High 18.71 L ha-1 4.64 L ha-1   

Medium 14.03 L ha-1 3.48 L ha-1   
Low 9.35 L ha-1 2.64 L ha-1   

R3 
High  4.64 L ha-1 0.87 L ha-1 0.73 L ha-1 

Medium  3.48 L ha-1 0.66 L ha-1 0.55 L ha-1 

Low  2.64 L ha-1 0.44 L ha-1 0.37 L ha-1 

Miami 

V5 
High 18.71 L ha-1 4.64 L ha-1   

Medium 14.03 L ha-1 3.48 L ha-1   
Low 9.35 L ha-1 2.64 L ha-1   

R3 
High  4.64 L ha-1 0.87 L ha-1 0.73 L ha-1 

Medium  3.48 L ha-1 0.66 L ha-1 0.55 L ha-1 
Low  2.64 L ha-1 0.44 L ha-1 0.37 L ha-1 

Blackwell 

V5 
High 18.71 L ha-1 4.64 L ha-1   

Medium 14.03 L ha-1 3.48 L ha-1   
Low 9.35 L ha-1 2.64 L ha-1   

R3 
High  4.64 L ha-1 0.87 L ha-1 0.73 L ha-1 

Medium  3.48 L ha-1 0.66 L ha-1 0.55 L ha-1 
Low  2.64 L ha-1 0.44 L ha-1 0.37 L ha-1 
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Table 10. Active ingredient, brand Name, and Manufacturer of products used in 
demonstration strips in 2017 

Active Ingredient Brand name Manufacturer 

30-0-0 %N-P2O5-K2O 
(slow release) Gradual N 

Winfield United, 
Arden Hills, MN 

.20-.30-3.20-.001-
2.10%B-Fe-Mn-Mo-Zn Max- IN for Beans 

Winfield United, 
Arden Hills, MN 

pyraclostrobin Headline 
BASF, Research 
Triangle Park, 

NC 

Lamba-cyhalothrin; 
Chlorantraniliprole 

Besiege Syngenta, 
Greensboro, NC 

 

Figure 4. Monthly air temperature and precipitation observed at Haskell, Oklahoma in 
2016. 
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Figure 5. Monthly air temperature and precipitation observed at Miami, Oklahoma in 
2016. 

 

Figure 6. Monthly air temperature and precipitation observed at Blackwell, Oklahoma in 
2017. 
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Figure 7. Monthly air temperature and precipitation observed at Miami, Oklahoma in 
2017. 

 

 

Statistical Analysis 

 Stand counts, height, NDVI, yield characteristics, and yield was analyzed using 

SAS software version 9.4 (SAS, 2013). For grain yield, stand counts, height, NDVI, and 

yield characteristics, an initial analysis was conducted to determine the response of 

soybean crop yield to treatments between years. Results of that analysis suggested that all 

components should be kept separately between years. An analysis of variance (ANOVA) 

using PROC MIXED with a Dunnett test at a 95% confidence level was used to 

determine between treatment means for each year individually. For this analysis, previous 

wheat variety characteristic, treatment, and previous wheat variety characteristic x 

treatment were considered fixed effects. Replications and the overall error term were 
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given data collected. All figures were constructed in Microsoft EXCEL.  
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CHAPTER IV 
 

 

Results and Discussion 

 

Grain Yield: 

In the 2016 season, the low input management treatment yielded an average of 1401 kg 

ha-1, which is lower than the yields typically recorded for double-crop production within the state 

(1440 kg ha-1). These lower yields can be partially attributed to the environmental conditions 

experienced during the season, particularly during late July and early August. During this period, 

the soybean plant was progressing through pod development and pod fill the two most critical 

stages for stress (Casteel, 2010). Above average temperatures and low precipitation resulted in 

higher stress and diminished yields. 

During 2016 season, the high input treatment resulted in significantly higher yields than 

the low input check 1550 kg ha-1 to 1401 kg ha-1 (Table 6). This significant increase in yield 

indicated that the traditional management of soybean did not meet the full potential of the crop, 

even with the environmental conditions resulting in diminished yield potential during the 2016 

season. When comparing treatments to the high input treatment, there was no significant 

difference for any of the other treatments. In fact, reducing the planting rate from 444,600 seeds 

ha-1 to 370,500 seeds ha-1 resulted in a slight, but non-significant, increase in yields.
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The increased yield associated with the lower planting rates could indicate increased stress 

associated with a warmer summer and sporadic periods of dry conditions was compounded the 

increased plant population. Costa et al. (1980) and Shibles and Weber (1966) observed a yield 

increase in soybean when lowering the planting population. Costa et al. (1980) indicated that 

decreased yield with higher planting population could be attributed to decreased branching and 

decreased stalk integrity. With the exception of decreasing seeding rates to the lower planting 

rate, all treatments resulted in a numerical decrease in soybean grain yield compared to the 

check. This non-significant decrease from the high-input check indicates that all these production 

aspects had a slight impact on yields but no single production input significantly impacted yields 

in these conditions. This is further supported by the fact that, only the high-input check and the 

high-input treatment with decreased seeding rates resulted in a significant increase over the low-

input check. However, this lack of difference from the low-input check could be a result of 

decreased inputs paired with the increased stress of the higher seeding rates.   

The 2017 season was noted for having more consistent yields throughout the growing 

season with more favorable rainfall patterns and more mild temperatures. This resulted in more 

favorable conditions for soybean production at the location site. The low input management 

treatment yielded an average of 1052 kg ha-1. Compared to 2016, average yield for the low input 

management treatments were significantly lower than the state average (1440 kg ha-1). This 

could have indicated that the environmental conditions were unfavorable and overall yields 

would be lower compared to 2016, conversely, the high input management treatment and applied 

treatments, with the exception of wide rows, significantly increased yields over the lower input 

treatment. This demonstrated that the yield potential for 2017 was higher than that of 2016 and 

the low treatment scheme resulted in highly deficient soybean system.   
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 During the 2017 season, the high input treatment resulted in significantly higher yields 

than the low input 1876 kg ha-1 to 1052 kg ha-1(Table 11). This again indicated that the 

traditional management of soybean at lower rates did not meet its full yield potential, given the 

favorable environmental conditions experienced in the 2017 season. When compared to the high 

input treatment, shifting the application rate from high to low did not significantly influence 

yields. In fact, reducing the planting rate from 444,600 seeds ha-1 to 370,500 seeds ha-1, which 

resulted in higher yields in 2016, resulted in a slight but not significant decrease in yield. This 

decrease associated with the lower planting rates indicated that the environmental conditions 

were suitable to support the extra 74,100 seeds ha-1. Oplinger and Philbrook (1992) and De Bruin 

and Pederson (2008) observed a yield increase in soybean when raising the planting population 

but required a higher production potential. De Bruin and Pederson (2008) indicated that 

increased yield with higher planting population could be attributed to soils and environmental 

conditions that could support higher plants per square meter. As opposed to 2016, significant 

increases in grain yields of the applied treatments over the low-input check does not give 

adequate information due to the better environmental conditions. As these treatments contain all 

variables associated with the high input check with the exception of a single production variable. 

Therefore, it would be difficult to differentiate the benefit of an individual production practice. 

However, this does further emphasize the difference in production potential between 2016 and 

2017. It also demonstrates that high input soybean production can produce significantly higher 

soybean yields compared to traditional practices as long as environmental conditions exist to 

support higher production potential.   

In both 2016 and 2017, previous wheat variety significantly influenced soybean grain 

yield. In both seasons, the higher tillering wheat variety resulted in significantly higher yields, 
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when averaged across treatments. In 2016, the yield benefits of the higher tillering wheat variety 

ranged from 763 kg ha-1 through 40 kg ha-1 with an average of 254 kg ha-1 (Table 13). The 

benefit of tillering from the previous wheat variety varied but was more pronounced in 2017, 

with an average of 391.8 kg ha-1 but ranged from 793 kg ha-1 through 2 kg ha-1 (Table 15).  There 

is no literature that has indicated the physiology of the previous crop had any influence on grain 

yield of the successive crop in a double-crop system. The benefits of the higher tillering wheat 

variety providing a greater benefit of grain yields could be associated with stress, particularly 

moisture stress, in-season. With increased tillering there is an increased amount of biomass in the 

field, this increased biomass will provide better coverage and water savings in-season that a 

more single stem wheat variety will not be able to provide.   

Table 11. Yield kg ha-1 and significance level as compared to the high and low check during 
2016 and 2017 in Perkins, OK. 

Treatment Yield Significance 
 2016 2017 2016 2017 

 kg ha-1 
Significance 

to Low 
Inputa 

Significance 
to High 
Inputa 

Significance 
to Low 
Inputa 

Significance 
to High 
Inputa 

Low Input Check 1401 1052 - 0.03 - 0.007 
High Input- No Seed Treatment 1427 1788 NS NS 0.01 NS 
High Input- No In-Season IPM 1439 1720 NS NS 0.04 NS 

High Input- No Insecticide * 1621 * * 0.05 NS 
High Input- No Fungicide * 1708 * * 0.04 NS 

High Input- Low Planting Population 1649 1621 0.02 NS 0.05 NS 
High Input- Wide Rows 1503 1430 NS NS NS NS 
High Input- No Late N 1489 1861 NS NS 0.007 NS 

High Input- No Micronutrients * 1956 * * 0.002 NS 
High Input Check 1550 1876 0.03 - 0.007 - 

a Abbreviation - NS: non-significant according to Dunnett’s  test at p<0.05, * - Treatment was not part of study in that year 
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Table 12. Yield kg ha-1 by wheat variety characteristic during 2016 in Perkins, OK  

Variety  Yield kg ha-1 

Low tillering 1382 
High tillering 1636 

 

Table 13. Yield kg ha-1 and significance differences between varieties by treatment and during 
2016 in Perkins, OK 

Treatment 
Previous 

wheat 
characteristic 

Yielda 

kg ha-1 
      

Low input check 
Low tillering 1375a 
High tillering 1476a 

High input- No seed treatment 
Low tillering 1418a 
High tillering 1470a 

High input- No in-season pest 
management 

Low tillering 1072a 
High tillering 1835b 

High input- Low population 
Low tillering 1687a 
High tillering 1648a 

High input- Wide rows 
Low tillering 1244a 
High tillering 1784b 

High input- No in-season N 
Low tillering 1383a 
High tillering 1646a 

High input check 
Low tillering 1492a 
High tillering 1595a 

a Means within a treatment followed by the same letter are not significantly different                    
according to Dunnetts test at p<0.05. 

 

Table 14. Yield kg ha-1 by variety during 2017 in Perkins, OK  

Variety  Yield kg ha-1 

Low tillering 1469 
High tillering 1873 
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Table 15.Yield kg ha-1 and significance differences between varieties by treatment during 2017 
in Perkins, OK. 

Treatment 
Previous 
wheat 
characteristic 

Yielda 
kg ha-1 

      

Low input check 
Low tillering 878a 
High tillering 1224a 

High input- No seed treatment 
Low tillering 1584a 
High tillering 1992a 

High input- No in-season pest 
management 

Low tillering 1610a 
High tillering 1821a 

High input- Low population 
Low tillering 1369a 
High tillering 1873a 

High input- Wide rows 
Low tillering 1055a 
High tillering 1805b 

High input- No in-season N 
Low tillering 1682a 
High tillering 2061a 

High input- No micronutrients 
Low tillering 1917a 
High tillering 1994a 

High input- No fungicide 
Low tillering 1700a 
High tillering 1702a 

High input- No insecticide 
Low tillering 1224a 
High tillering 2017b 

High input check 
Low tillering 1673a 
High tillering 2076a 

a Means within a treatment followed by the same letter are not significantly different                    
according to Dunnetts test at p<0.05. 

 

Yield Characteristics: 

 Yield characteristics are frequently used to determine, the specific growth and 

developmental process that resulted in the increased yield when significant yield benefits exist. 

This could not only allow for determining what physiological trait resulted in the yield increase, 
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but indicate yield benefit that could be expected over several different environmental conditions 

or genetic materials.   

The yield for the low input treatment in 2016 yielded 1401 kg ha -1, and the high input 

treatment yielded 1550 kg ha -1. In the 2016 season, the low input management treatment had an 

average of 54.2% two-bean pods, 34.3% three-bean pods, and 11.8% one or no-bean pods. This 

high percentage of two-bean pods and low percent of three-bean pods can partially be attributed 

to environmental conditions experienced during the season, in particular late July and early 

August. While the low input check did have 15.8 nodes plant-1 and 29.2 pods plant-1, which was 

similar to all other treatments, a decrease in yield of 150 kg ha-1 was still observed. This 

percentage of two- and three-bean pod differences is a result of the soybean plant, which was 

progressing through pod development and fill, the most critical stages for trying to avoid stress. 

The above average daytime temperatures and low precipitation resulted in higher stress and 

diminished pod fill. This resulted in decreased pod fill and formation. Conversely, the high input 

treatment, which had all the treatments applied at high rates, resulted in lower percentage of two- 

bean pods and higher percentage of three-bean pods. However, the high input treatment did 

result in the higher number of one or no bean pods than the low input. This indicated that the 

traditional management system of soybean at the lower input rates did not reach their full 

potential. When comparing the high input treatment, not applying an IPM treatment resulted in 

significantly (P < 0.05) higher percentage of two-bean pods and lower percentage of three-bean 

pods. The increase in two-bean pods and decrease in three-bean pods could indicate that an IPM 

treatment is key to not allow a pest issue to compound the already stressed situation caused by 

the environment. This is contrary to what Swoboda and Pedersen (2009), which stated that foliar 

fungicides having little impact on crop physiology or crop yield even in the presence of disease, 
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depending on disease, environmental conditions, fungicide used, and incidence. However, it is 

supported by Bassanezi et al. (2001) which said responses from foliar fungicide are due to 

minimizing the impact on leaf area and photosynthetic capacity. Mahoney et al. (2015) found 

that leaf area increased by 27 to 45% when Septoria brown spot (Septoria glyclines Hemmi) was 

controlled using a fungicide compared to the untreated check. All other treatments did result in 

increased percentages of two-bean pods; however, in terms of three-bean pods, the high input 

check was average. This is further supported when comparing the low input check, where only 

the no IPM treatment was numerically higher in two-bean pods and lower in three-bean pods. 

This could indicate that, IPM is necessary even in years that the yield potential is not there.   

 In the 2016 season, the low input management treatment on average had 15.8 nodes plant-

1, 29.2 pods plant-1, and 1.88 pods node-1. While this is lower than what is normally expected, 

this is due to environmental conditions experienced during the season. Because of these 

conditions during the reproductive stages, high stress was experienced, and pod and node 

formation was hurt. The high input treatment resulted in a higher amount of nodes, but lower 

amounts of pods and pods per node. This indicated the plant sacrificed pods and pods per node to 

fill the pods with more beans in the high input system because of the poorer environmental 

conditions during in the 2016 season. When compared to the high input treatment, all treatments 

except the low density and no late season N treatments had more pods per plant. However, the 

high input treatment did have the highest nodes per plant, but the lowest pods per node. With that 

said, none of the differences were significant.  

 In 2017, a similar percentage of two- and three-bean pods were found with a lower 

percentage of one- or no-bean pods. The more even percentage of two- and three-bean pods 

indicated more optimal conditions experienced during 2017 compared to 2016. This was mainly 
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due to adequate moisture through the growing season the soybean plant did not encounter the 

stress it did during the 2016 season. However, the increased percentage of one- or no-bean pods 

compared to 2016 suggested that the low input treatment just ran out of the necessary sugars to 

fill those extra pods.   

 During the 2017 season, the high input treatment resulted in a lower percentage of two-

bean pods and higher percentage of three-bean pods compared to 2016. In 2016, 43.8% two-bean 

pods and 39.8% three-bean pods, and in 2017, 43.0% two-bean pods and 41.3% three-bean pods. 

This indicated that much more favorable environmental conditions accounted for more three-

bean pods. This also indicated that percentage of two- or three-bean pods might not be a good 

yield indicator. When comparing the high input treatment, only the no IPM treatment resulted in 

a significant difference. Nonetheless, the no seed protection and no micronutrients treatments did 

result in a numerical difference. The increase in three-bean pods suggested that seed treatment 

was not needed in this season due to the adequate conditions. This is supported by Heatherly and 

Hodges (1999) who stated that seed treatments are only shown to be of benefit when germination 

or emergence occurs in unfavorable conditions, particularly for fungicides, such as cool soil 

temperature or excessive/deficient drought moisture, and those conditions were not experienced. 

Another observation that can be made is that the application of micronutrients caused a decrease 

in three-bean pods. This is surprising as there is no literature out there to support that the 

application of micronutrients actually has a negative impact on the plant physiologically.   

 In the 2017 season, the low input management treatment averaged 21.5 nodes plant-1, 

47.25 pods plant-1, and 2.21 pods node-1. Due to better environmental conditions than 2016, 

higher node and pod counts were observed. As a result of these conditions, the soybean plant was 

not stressed during node and pod development, allowing the plant produce more pods and nodes.  
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 During the 2017 season, the high input treatment resulted in a similar number of nodes, 

pods plant-1 and pods node-1 compared to the low treatment check. Which is surprising 

considering there was an 800 kg ha -1 advantage in favor of the high input check. This indicated 

that there might be other non-measured factors that were affecting yield. Compared to both the 

high input and low input checks, no treatments resulted in a significant change in number of 

nodes, pods plant-1, or pods node-1. If we compare this to the yield of the treatments this is 

surprising as compared to the low input check all other treatment with the exception of the wide 

row treatment yielded significantly higher. In terms of comparing these results to the high input 

check, the only treatment that yielded significantly different was the low input check.  

 In the 2016 season, the low input management treatment had a 1,000 seed weight of 112 

g. The weight of the treatments were very similar. There were numerical differences as the low 

input check had the lowest seed weight.  The highest seed weight was observed in the low 

population treatment. This could indicate that low population resulted the right combination for 

the environmental conditions and that higher populations resulted in too many plants for the 

system. The low input check suggested that the use of added inputs increased seed weight and 

that a high input system was of benefit in increasing seed weight.    

 During the 2016 season, the high input check resulted in lower seed weight than all but 

the no IPM treatment and low input check. This may signal that the extra inputs in year with 

poor environmental conditions the plant was stressed and did not have the necessary other factors 

to translate the higher inputs into increased seed weight. When comparing the high input 

treatment, only low population and wide rows resulted in a significant difference (P<0.05). The 

increase in seed weight could indicate that higher population and narrow rows has a negative 

impact on seed weight in extremely dry years in a double-crop situation. 
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 In the 2017 season, the low input management treatment had a 1,000 seed weight of 

99.70 g. The weight of the treatments was widely variable. However, none were significantly 

different from the low input check. The highest seed weight was observed in the no 

micronutrient treatment with the lowest coming from the no insecticide treatment. This could 

indicate that the application of micronutrients caused some kind of physiological negative affect 

resulting in decreased seed weight. The no insecticide treatment could indicate that there may 

have been an insect issue resulting in the insect to take necessary energy from the plant that it 

needed to make more weight per seed.  

 During the 2017 season, the high input check resulted in lower seed weight than all but 

the no IPM and no insecticide. When comparing the high input treatment, only not applying 

micronutrients resulted in a significant difference (P < 0.05). The increase in seed weight could 

indicate that the application of micronutrients is not necessary in a double-crop situation and if 

you do apply, are lowering the yield potential. This is somewhat surprising as work done by 

Orlowski et al. (2016) showed that the use of micronutrients had no significant effect on seed 

weight all environments. In the case of the no IPM and no insecticide treatments, this result is 

similar to the results of Orlowski et al. (2016). Were they found that taking away a foliar 

fungicide application from the high input treatment resulted in a decrease in seed weight of  2.1 

mg seed-1, but by also taking away both the foliar fungicide and insecticide applications an 

additional 1.5 mg seed-1 was lost showing the importance of a foliar IPM in protecting seed 

weight.
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Table 16. Percent two-bean pods, percent three-bean pods, nodes plant-1, pods plant-1, pods node-1, and seed weight g 
1000 seeds-1 by treatment during 2016 in Perkins, OK. 

Treatment 
Percent 

two-bean 
Pods 

Percent 
three-bean 

Pods 

Significance 
two-bean to 
High Input 

Significance 
three-bean to 
High Input 

Nodes per 
Plant 

Pods 
per 

Plant 

Pods 
per 

Node 

Seed 
weight 

        g 1000 
seeds-1 

Low input check 54.2% 34.2% 0.07 0.66 15.8 29.2 1.9 112 
High input- No seed 

treatment 44.0% 38.8% 1.00 1.00 15.6 26.2 1.7 129 

High input- No in-season 
pest management 61.1% 23.4% 0.001 0.006 17.4 27.3 1.6 118 

High input- Low 
population 46.0% 42.3% 0.98 0.98 12.9 22.9 1.8 137 

High input- Wide rows 46.8% 34.0% 0.98 0.62 15.3 25.8 1.8 130 
High input- No in-season 

N 46.0% 45.5% 0.99 0.63 12.7 20.7 1.9 127 

High input check 43.8% 39.8% * * 17.8 23.6 1.6 124 
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Table 17. Percent two-bean pods, percent three-bean pods, nodes plant-1, pods plant-1, pods node-1, and seed weight g 
1000 seeds-1 by treatment during 2017 in Perkins, OK. 

Treatment 
Percent 

two-bean 
Pods 

Percent 
three-bean 

Pods 

Significance 
two-bean to 
High Input 

Significance  
three-bean to 
High Input 

Nodes 
per 

Plant 

Pods 
per 

Plant 

Pods 
per 

Node 

Seed 
weight 

      
  

      
g 1000 
seeds-1 

Low input check 41.5% 39.8% 0.99 0.99 21.5 47.3 2.2 99.7 
High input- No seed 
treatment 38.0% 48.1% 0.43 0.40 21.1 50.9 2.4 110.0 

High input- No in-season 
pest management 43.6% 39.3% 1.00 0.99 20.8 48.2 2.4 86.9 

High input- Low population 40.3% 45.3% 0.93 0.87 21.4 49.7 2.4 100.6 
High input- Wide rows 43.6% 43.0% 1.00 0.99 19.8 42.9 2.2 102.3 
High input- No in-season N 41.3% 44.1% 0.99 0.97 21.4 47.8 2.3 90.8 
High input- No 
micronutrients 38.1% 48.1% 0.43 0.39 18.8 51.3 2.7 122.7 

High input- No fungicide 37.2% 46.9% 0.26 0.60 22.3 44.6 2.0 97.3 
High input- No insecticide 43.3% 38.5% 1.00 0.98 18.5 42.4 2.3 77.7 
High input check 43.0% 41.3% * * 20.6 45.1 2.2 93.5 
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In-season Growth Parameters 

Early season plant populations could be an indication of several things. One of 

these aspects is early season seedling vigor. This early season vigor can be greatly altered 

by several aspects, including environmental conditions, early-season disease, and 

optimum planting conditions (Bradley, 2008; Dorrance et al., 2003). Therefore, primary 

treatment impacting early season plant populations should be seed treatments and 

planting populations, as they can impact the potential for early season disease or total 

seeds on a per hectare, respectively. The high-input check, which had both higher plant 

population and seed treatment, significantly increased early season plant population 

compared to the low-input check, which had neither seed treatments nor higher plant 

populations, with 181,000 plants ha-1 and 303,000 plants ha-1, respectively (Table 18).  

The high-input management treatments consisting of no seed treatment and lower seed 

population did not result in a significant influence of early season plant population 

compared to the high-input check. However, there was still a significant increase in early 

season plant population when compared to the low-input check. However, treatments that 

contained seed treatments increased emergence percentage by nearly 10% compared to 

those without seed treatment, excluding the low-input check. Gaspar et al. (2014) which 

found that the use of fungicide + insecticide seed treatments consistently increased plant 

stands supports this result. 

Overall, 2017 resulted in high emergence rates with an average of 319,000 across 

all treatments. Similar to 2016, the high-input check significantly increased plant 

populations compared to the low-input check, with 355,000 and 242,000, respectively 

(Table 18).  However, removing seed treatments and decreasing population from the 
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high-input check resulted in a significant decrease in plant population early in the season.  

Emergence percentage was still maintained at approximately 10% higher when a seed 

treatment was used compared with treatments without seed treatment. The differences 

between years could be explained by the conditions that existed around planting. In 2016, 

drier conditions existed. This lowered potential of early season diseases but also 

decreased the sustainable plant population, indicative of the overall lower plant 

populations. In 2017, not only did sites receive higher precipitation at and around 

planting, but soils were also cooler. This resulted in larger potential impacts on seed 

treatment but also increased sustainable plant populations. Bradley (2008) noted the 

benefit of seed treatment on soybean stands early in the production season. However, it 

was noted that this was not consistently seen. The benefits of soybean seed treatment will 

mostly be seen when planted into poor soil conditions (Tekrony and Egli. 1991; Bradley, 

2008; Heatherly and Hodges 1999). While these suboptimal soil conditions are typically 

associated with earlier planting dates associated with increased moisture and lower soil 

temperatures, the increased stress associated with the later planting of double-crop 

production could attribute to the value of seed treatments.  

The NDVI in 2016 was very low across all treatments with an average of 0.18.  

This is due to the below average conditions early in the season with higher temperatures 

and below average moisture. In addition, limited irrigation was applied earlier in 

reproduction due to mechanical restrictions. Therefore, water stress substantially 

decreased biomass production. Normalized difference vegetative index significantly 

decreased between low input treatment and high input treatment, 0.19 and 0.17, 

respectively (Table 18). This was not expected with the decreased growth with the early 
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season stress paired with the narrower row spacing associated with the high input 

treatments compared to the low input. The decrease in NDVI may indicate that with the 

increased stressed coupled with the high input scheme that the yield potential was not 

there to support the extra inputs. Eliminating the late-season N applications did decrease 

NDVI values but did not significantly influence these values. This could indicate that 

during these high stress environments, this late-season N application did not produce any 

healthier plants, according to NDVI values. Even with better conditions in 2017 and 

better NDVI values, no significant decrease in NDVI values were seen between high-

input check and the high-input plots without late-season N. However, it must be indicated 

these plots had substantially better growth resulting in very high NDVI values (0.83 

average). Therefore, a saturate of NDVI with little visual soil background resulted 

limiting the detection of differences between these two treatments. This theory is 

supported by Hatfield et al (2008) which states that saturation occurs because of the 

wavelength of the main absorption wavelength of pigments being relatively the same as 

the chlorophyll.  In 2017, there was also a significant increase in NDVI value when 

comparing the high-input check to the low-input check, 0.84 to 0.75, respectively. This 

reiterates the much higher growth potential in 2017 compared to the previous year (Table 

19).   

Similar to all the other in-season management, 2016 resulted in lower in-season 

plant height compared to 2017.  For 2016, plant height for the low-input management 

significantly increased compared to the high-input check (Table 18). This differs 

compared to what was expected, as the high-input check was with narrower row spacing.  

Traditionally, wider rows with consistent row spacing will result in higher intra-row plant 
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would be expected resulting in taller plants. However, Taylor (1980) also found this 

observation where increases in row spacing resulted in increased plant height. This is 

further emphasized by the only treatment that significantly differed from the high-input 

check was when the high-input system had wide rows. This effect was not found in 2017, 

where low-input check was lower compared to the high-input check, 81.5 cm compared 

to 85 cm, respectively (Table 19), which Pederson and Lauer (2003) support when they 

found height decreased as row spacing increased from 19 cm.  However, similar to 2016, 

shifting to wider row spacing within the high-input systems resulted in a numerical 

increase in plant height, 87.5 cm. This would indicate that wider row spacing resulted in 

decreased stress in 2016 when conditions were below average. However, when 

conditions were better, the higher-input system resulted in taller plants.    

Table 18. Early season stands (plants ha-1), NDVI, and plant height (cm) by treatment 
during 2016 in Perkins, OK 

Treatment Early season stands NDVI 
Plant 
height 

  (thousand) Plants ha-1   cm 
Low input check 181 0.19 65.2 
High input- No seed treatment 322 0.19 56.6 
High input- No in-season pest management 369 0.17 56.8 
High input- Low population 322 0.19 56.8 
High input- Wide rows 328 0.17 64.6 
High input- No in-season N 325 0.17 52.7 
High input check 303 0.17 57.6 
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Table 19. Early season stands (plants ha-1), NDVI, and plant height (cm) by treatment 
during 2017 in Perkins, OK 

Treatment 
Early season 

stands NDVI 
Plant 
height   

  
(thousand) 
Plants ha-1   cm   

Low input check 242 0.75 81.5   
High input- No seed treatment 308 0.83 84.6   
High input- No in-season pest management 319 0.84 83.5   
High input- Low population 324 0.83 86.1   
High input- Wide rows 283 0.78 87.3   
High input- No in-season N 340 0.85 80.0   
High input- No micronutrients 355 0.85 82.9   
High input- No fungicide 315 0.84 83.1   
High input- No insecticide 353 0.84 84.9   
High input check 355 0.84 84.9   

 

Overall, the physiology of previous wheat variety did not have a consistent impact 

on in-season growth parameters. In 2016, there is some indication that planting under the 

higher tillering wheat varieties could result in better crop establishment, with higher early 

season plant populations. However, several treatments with lower tillering wheat varieties 

resulted in significantly higher plant populations. Furthermore, some minor decreases in 

plant population early, did not affect plant growth parameters later in the season (Table 

20).  The impact of wheat variety in 2017 was even less pronounced than in 2016 (Table 

21).  This would indicated that any further differences in crop yield would be a result of 

later season stressors as no significant impact could be noted early in the season.   
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Table 20. Early season stands (plants ha-1), NDVI, and plant height (cm) by treatment and 
previous wheat characteristic during 2017 in Perkins, OK 

Treatment 

Previous 
wheat 
characteristic 

Early 
season 
stands NDVI 

Plant 
height 

    
(thousand) 
Plants ha-1   cm 

Low input check Low tillering 163 0.21 63.5 
High tillering 200 0.17 67.0 

High input- No seed treatment Low tillering 301 0.20 54.6 
High tillering 344 0.18 58.6 

High input- No in-season pest 
management 

Low tillering 387 0.18 53.3 
High tillering 351 0.16 60.3 

High input- Low population Low tillering 362 0.19 55.9 
High tillering 284 0.19 57.7 

High input- Wide rows Low tillering 251 0.16 58.8 
High tillering 406 0.18 70.4 

High input- No in-season N Low tillering 355 0.17 49.5 
High tillering 297 0.16 56.1 

High input check Low tillering 312 0.19 50.8 
High tillering 297 0.16 59.4 
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Table 21. Early season stands (plants ha-1), NDVI, and plant height (cm) by treatment and 
previous wheat characteristic during 2017 in Perkins, OK 

Treatment 

Previous 
wheat 
characteristic 

Early season 
stands NDVI 

Plant 
height 

    
(thousand) 
Plants ha-1   cm 

Low input check Low tillering 253 0.70 82.7 
High tillering 231 0.80 80.3 

High input- No seed treatment Low tillering 322 0.80 82.2 
High tillering 294 0.83 87.0 

High input- No in-season pest 
management 

Low tillering 308 0.84 83.3 
High tillering 330 0.83 83.7 

High input- Low population Low tillering 326 0.82 84.3 
High tillering 322 0.84 87.9 

High input- Wide rows Low tillering 333 0.76 85.7 
High tillering 244 0.80 88.9 

High input- No in-season N Low tillering 337 0.85 78.9 
High tillering 340 0.85 81.1 

High input- No micronutrients Low tillering 376 0.84 78.9 
High tillering 333 0.85 86.8 

High input- No fungicide Low tillering 317 0.84 84.6 
High tillering 314 0.83 81.6 

High input- No insecticide Low tillering 340 0.83 86.5 
High tillering 358 0.84 83.5 

High input check Low tillering 351 0.84 83.2 
High tillering 358 0.84 86.5 

 

Oil and Protein 

 Analysis could not be conducted in 2016 due to lower subsample collection and 

poor sample quality.  

 For protein in 2017, treatment average was 39% protein, with a low of 37% from 

the no late season N treatment and a high of 40.5% from the no IPM treatment. These 

results, even the lowest protein treatment, were higher than the standard for soybean of 

34.4%. No treatment significantly differed from the high input check. The largest 
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decrease from the high input check resulted from the removal of late season N (Table 22).  

This could indicate that N may be correlated with soybean protein in a similar manner to 

that of wheat, with later-season N resulting in higher grain protein in lieu of it being 

contributed to increased biomass. These results differed from the literature, which has 

found no increase in protein or oil content when adding N (Kaur et al., 2017; Wood et al., 

1993). In terms of the impact of in-season IPM, this would indicate this late season 

infestation would have an impact on grain quality. As there are several pod and seed 

feeding insects, higher infestation could result in significant damage to the seed directly 

from the insect of allow for post-secondary infection from diseases (Kanobe et al., 2015).   

 However, if we compare these percentages to United Soybean Board (2014) every 

treatment including the low input check was higher in oil. In 2017, oil content across all 

treatments averaged 20% with a low of 18.9% in the no IPM treatment and high of 20.6% 

in the no late season N treatment (Table 22).  This shows an inverse relationship between 

protein and oil content, where the lowest protein was where no in-season N was applied 

but resulted in the highest oil content (Hymowitz et al., 1972). There were no significant 

differences in oil when compared to the high or low input check. These results could 

indicate that a lack of foliar protection from insect and fungi results in a decrease in oil 

content. If we compared these results to the average oil, content documented by United 

Soybean Board (2014) the only treatment that is similar to their average is the no IPM 

with all other treatments being higher the average. 
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Table 22. Protein and oil content by treatment during 2017 in Perkins, OK 

Treatment Protein Oil 
      
Low input check 38.2 20.1 
High input- No seed treatment 38.7 20.5 
High input- No in-season pest management 40.5 18.9 
High input- Low population 38.8 20.4 
High input- Wide rows 40.0 19.8 
High input- No in-season N 37.2 20.6 
High input- No micronutrients 39.7 19.9 
High input- No fungicide 39.1 20.0 
High input- No insecticide 38.7 20.3 
High input check 38.9 20.1 

 

 Overall, the physiology of the previous wheat variety did not have a consistent 

impact on protein and oil content. In 2017, the only year we were able to collect protein 

and oil content due to poor conditions in 2016, there were two treatment that showed a 

difference between the two wheat characteristics, while the variety with the better result 

was not consent.  

Farmer Demonstrations: 

  During the 2016 season, the implication of our high input management treatment 

on top of what the producer was already doing increased grain yield an average of 446 kg 

ha-1 across the three locations (Table 23). This increase comes out to $156.10 hectare-1 

(based on $0.35 kg-1) increase in revenue generated. However, in order to determine if 

this system actually increased profit we need to take into account the $284.44 per hectare 

cost of the inputs. Therefore, with the revenue generated minus the cost, a net loss of 

$126.34 hectare-1 could be expected. This indicates that it was not feasible to do the high 

input system given the price at the time, as we needed an 807 kg ha-1 increase in grain 
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yield or $0.63 kg-1. The largest difference was seen in Miami with an increase of 463 kg 

ha-1 difference in the farmer practice and high input treatment. If we compare the results 

seen in 2016 from the demonstrations to the results of, the small plot study similarities 

can be seen as the high input system increased grain yield compared to the farmer 

practice (low input check). The economic return and profit at $0.35, $0.59, $0.80 of each 

location can be seen in Table 25. 

In 2017, the high rate of the high input management increased yield an average of 

232 kg ha-1 (Table 24), which resulted in an $82.20 ha-1 increase in revenue (based on 

$0.35 kg-1). However, the cost of the high rate was $193.00 ha-1, resulting in a loss of 

$110.80 ha-1. The medium rate increased yield an average of 266 kg ha-1, which resulted 

to $93.10 ha-1 increase in revenue; however, the cost of this treatment was $145 per 

hectare, resulting in a loss of $51.90 per hectare. The low rate increased yield by 94 kg 

ha-1, which figures to $32.90 per hectare increase in revenue, however the treatment cost 

$97.00 ha-1, resulting in a loss of $64.10 ha-1 (Table 26). These results would indicate that 

it is not feasible apply inputs at the high rate, further evaluation indicated that producers 

would need a 679 kg ha-1 increase in grain yield or $1.02 kg-1 for these applications to be 

economically viable. Additionally, growers would need 511 kg ha-1 increased in yield or 

$0.67 kg-1 for the medium rate, and 342 kg ha-1 increase in yield or $1.25 kg-1 for the low 

rate. The economic return and profit at $0.35, $0.59, $0.80 of each location can be seen in 

Table 26. The largest difference between the farmer practice rate and high management 

rate was seen at Miami were the medium application rate increased yield by 518 kg ha-1. 

Conversely, a slight yield decline was noted at Afton 10 kg ha-1 when the low input was 

compared to farmer practice. These results show that the yield response to be expected is 
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more based on and controlled by the environment. This can be supported when 

comparing Blackwell and the other two locations. The growing conditions were more 

favorable at Afton and Miami compared to Blackwell. Blackwell had a long period of 

drought from shortly after planting to late July resulting in a less noticeable response 

between rates and the farmer practice. If we compare the results of the demos to the 

small-plot study in 2017, we can still see similarities in the results with the high input 

system out yielding the low input system.  

Table 23. Yield (kg ha-1) of the farmer practice and demo strips during 2016 in Afton, 
Haskell, and Miami, OK. 

Location 

Farmer 
Practice 

Yield 

Demo 
Yield Difference 

  kg/ha-1 kg/ha-1 kg/ha-1 
Afton  3578 4004 426 
Miami  3897 4360 463 
Haskell 4918 5366 448 
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Table 24. Grain yield (kg ha-1) of the farmer practice and demo strips during 2017 in 
Afton, Blackwell, and Miami, OK. 

Location 

Rate Yield  
Difference 
compared 
to Farmer 
practice 

    kg/ha-1 kg/ha-1 

Afton 

High 3153 368 
Medium 3015 230 
Low 2775 -10 
Farmer 
Practice 2785 * 

Blackwell 

High 2339 81 
Medium 2309 51 
Low 2289 31 
Farmer 
Practice 2258 * 

Miami 

High 3028 246 
Medium 3301 518 
Low 3044 261 
Farmer 
Practice 2783 * 
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Table 25. Difference compared to farmer practice kg ha-1, return, cost of treatment, and profit during 2016 in Afton, Haskell, and 
Miami Oklahoma. 

Location 

Difference 
compared to 

Farmer 
practice 

Return 
@$0.35/kg 

Return @ 
$0.59/kg 

Return @ 
$0.67/kg 

Cost of 
Treatment 

Profit @ 
0.35/kg 

Profit @ 
0.59/kg 

Profit @ 
$0.80/kg 

 kg ha-1    $ ha-1 $ ha-1 $ ha-1 $ ha-1 
Afton 426 $149.10 $251.34 $285.42 $284.22 ($135.12) ($32.88) $1.20 

Haskell 463 $162.05 $273.17 $310.21 $284.22 ($122.17) ($11.05) $25.99 
Miami 448 $156.80 $264.32 $300.16 $284.22 ($127.42) ($19.90) $15.94 
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Table 26. Difference compared to farmer practice kg ha-1, return, cost of treatment, and profit during 2017 in Afton, Blackwell, and 
Miami, OK. 

Location Rate 
Difference 

compared to 
Farmer practice 

Return 
@$0.35/kg 

Return @ 
$0.59/kg 

Return @ 
$0.80/kg 

Cost of 
Treatment 

Profit @ 
0.35/kg 

Profit @ 
0.59/kg 

Profit @ 
$0.80/kg 

  kg ha-1    $ ha-1 $ ha-1 $ ha-1 $ ha-1 

Afton 
High 368 $128.80 $217.12 $294.40 $193.00 ($64.20) $24.12 $101.40 

Medium 230 $80.50 $135.70 $184.00 $145.00 ($64.50) ($9.30) $39.00 
Low -10 ($3.50) ($5.90) ($8.00) $97.00 ($100.50) ($102.90) ($105.00) 

Blackwell 
High 81 $28.35 $47.79 $64.80 $193.00 ($164.65) ($145.21) ($128.20) 

Medium 51 $17.85 $30.09 $40.80 $145.00 ($127.15) ($114.91) ($104.20) 
Low 31 $10.85 $18.29 $24.80 $97.00 ($86.15) ($78.71) ($72.20) 

Miami 
High 246 $86.10 $145.14 $196.80 $193.00 ($106.90) ($47.86) $3.80 

Medium 518 $181.30 $305.62 $414.40 $145.00 $36.30 $160.62 $269.40 
Low 261 $91.35 $153.99 $208.80 $97.00 ($5.65) $56.99 $111.80 
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CHAPTER V 
 

 

Conclusion 

 

This study aimed at identifying whether growers were limiting grain yields in 

Oklahoma double-crop soybean production systems due to input or management practice. 

Interactions identified between high input component and wheat variety characteristic 

were consistent in terms of yield. The results suggested previous wheat variety 

physiological characteristic was an important management strategy to maximizing 

soybean yield. Overall, a higher tillering wheat variety resulted in higher yields. In 

regards to input management, result suggested that growers could increase yields with 

increased input management intensity but the value of these inputs is very 

environmentally driven. The high input system did increase yields compared to the low 

input, traditional management. The results showed that of the high input components, in 

season IPM is the most influenced factor regardless of environmental condition. 

However, in years were we have poor environmental conditions, lowering the plant 

population and widening row spacing is also of benefit.  While seed treatment did not 

influence yield, we did see a 10% increase in emergence from those with seed treatment.     
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The farmer demonstrations validated the small-plot study increase in grain yield 

from the use of a high input system. However, when economic cost-benefit aspects were 

evaluated, there was an indication that these inputs did not greatly benefit farm value. It 

was seen that inputs increased yields by 366 kg ha-1, which equates to an average of 

$128.10 ha-1 increase in revenue; however, that increase cost us $232.22 ha-1 resulting in 

a net loss of $104.12 ha-1 at a soybean price of $0.35 kg-1. With the implementation of 

generic insecticides and fungicides along with an increase in the price of soybean per kg 

to $0.55 kg-1. 

In conclusion, with current “Farmer’s Practice” treatments, we are underselling 

yields. With that said the environmental conditions are a bigger factor than what any one 

input can overcome by itself.  Regardless of the environmental conditions, seed treatment 

did increase early season stands by 10%. If producers are looking for ways to improve 

double-crop yields, they should start by considering, planting a high tillering wheat 

variety to help maximize moisture retention in their soybean crop. Foliar IPM is an 

important input to consider if looking at a high management system as it was seen to 

protect against late season pest attacks maximizing yield potential. The one input that was 

seen to not be needed was foliar micronutrients, which decreased yield. However, none of 

this important if we do not see an increase in commodity prices as shown by the farmer 

demonstrations, as a high input system is not profitable at today’s prices. At today’s 

commodity prices our current farmer practices are the economically smart way to go.  
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APPENDICES 
2016 growing season data: 

Plot  TRT Rep Variety 
Population 

(ha) NDVI 
Height 
(cm) plants 

 

nodes pods 
 2 bean 

pods 
3 bean 
pods 

nodes/
plant 

pods/
plant 

pods/
node 

Yield 
(kg/ha) 

101 1 1 Bentley 114726 0.23 58.42 16  185 352 141 153 11.6 22 2 726.5 
102 2 1 Bentley 358519 0.2 55.88 26  260 412 117 206 10.0 16 2 929.8 
103 3 1 Bentley 444563 0.22 50.8 26  200 341 147 160 7.7 13 2 1006.0 
104 4 1 Bentley 415881 0.22 50.8 24  219 331 136 151 9.1 14 2 1194.0 
105 5 1 Bentley 243793 - - -  - - - - - - - 706.2 
106 6 1 Bentley 516267 0.2 38.1 25  158 205 130 75 6.3 8 1 558.9 
107 7 1 Bentley 301156 0.25 38.1 24  140 195 87 44 5.8 8 1 457.3 
201 7 2 Bentley 315496 0.17 45.72 30  289 550 275 165 9.6 18 2 1556.6 
202 4 2 Bentley 344178 0.17 50.8 29  249 604 217 242 8.6 21 2 1639.6 
203 6 2 Bentley 344178 0.17 45.72 29  149 730 335 294 5.1 25 5 1724.7 
204 1 2 Bentley 164919 - 58.42 -  - - - - - - - 1428.9 
205 5 2 Bentley 215111 0.15 66.04 23  237 513 246 175 10.3 22 2 1092.4 
206 2 2 Bentley 358519 0.2 45.72 33  280 462 268 103 8.5 14 2 939.9 
207 3 2 Bentley 315496 0.19 45.72 30  274 570 360 80 9.1 19 2 787.5 
301 4 3 Bentley 344178 0.19 68.58 30  254 478 230 212 8.5 16 2 2161.7 
302 7 3 Bentley 286815 0.17 63.5 28  292 452 245 155 10.4 16 2 1859.7 
303 1 3 Bentley 157748 0.25 71.12 24  244 472 283 157 10.2 20 2 2033.4 
304 2 3 Bentley 157748 0.21 55.88 -  - - - - - - - 2273.7 
305 6 3 Bentley 215111 0.15 58.42 25  207 342 233 75 8.3 14 2 1947.0 
306 5 3 Bentley 308326 0.17 55.88 17  132 198 110 65 7.8 12 2 1699.4 
307 3 3 Bentley 329837 0.17 55.88 28  238 344 181 98 8.5 12 1 1275.3 
401 4 4 Bentley 344178 0.16 53.34 25  252 373 186 151 10.1 15 1 1753.6 
402 6 4 Bentley 344178 0.15 55.88 27  261 364 188 136 9.7 13 1 1300.7 
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Plot  TRT  Rep Variety 
Population 

(ha) NDVI 
Height 
(cm) plants nodes pods 

 2 
bean 
pods 

3 
bean 
pods 

nodes/
plant 

pods/
plant 

pods/
node 

Yield 
(kg/ha) 

403 7 4 Bentley 344178 0.17 55.88 23 332 391 196 122 14.4 17 1 2094.7 
404 2 4 Bentley 329837 0.17 60.96 - - - - - - - - 1529.3 
405 1 4 Bentley 215111 0.15 66.04 23 234 447 263 137 10.2 19 2 1310.8 
406 3 4 Bentley 458904 0.14 60.96 26 243 426 245 91 9.3 16 2 1219.4 
407 5 4 Bentley 236622 0.15 58.42 21 210 468 211 163 10.0 22 2 1476.5 
501 1 1 Gallagher 236622 0.2 66.04 17 374 595 321 203 22.0 35 2 1476.9 
502 2 1 Gallagher 329837 0.2 55.88 19 466 836 390 219 24.5 44 2 1628.0 
503 3 1 Gallagher 358519 0.13 55.88 28 448 658 462 112 16.0 24 1 2101.6 
504 4 1 Gallagher 301156 0.18 55.88 24 330 600 288 252 13.8 25 2 2000.5 
505 5 1 Gallagher 272474 0.18 66.04 28 364 616 278 216 13.0 22 2 1852.5 
506 6 1 Gallagher 444563 0.17 50.8 30 345 480 165 270 11.5 16 1 1458.2 
507 7 1 Gallagher 301156 0.13 58.42 25 463 597 187 347 18.5 24 1 1478.5 
601 7 2 Gallagher 229452 0.18 55.88 22 440 628 261 297 20.0 29 1 1334.1 
602 4 2 Gallagher 186430 0.18 55.88 25 475 575 267 241 19.0 23 1 1669.2 
603 6 2 Gallagher 258133 0.18 53.34 22 484 795 278 448 22.0 36 2 1804.6 
604 1 2 Gallagher 136237 0.15 66.04 18 450 800 448 256 25.0 44 2 1524.2 
605 5 2 Gallagher 293985 0.18 66.04 20 560 952 421 332 28.0 48 2 1588.9 
606 2 2 Gallagher 444563 0.21 55.88 18 396 674 236 379 22.0 37 2 1280.4 
607 3 2 Gallagher 344178 0.2 50.8 18 465 791 530 159 25.8 44 2 1026.3 
701 4 3 Gallagher 372859 0.22 58.42 18 306 728 364 313 17.0 40 2 1178.7 
702 7 3 Gallagher 344178 0.19 60.96 17 323 743 298 335 19.0 44 2 1877.8 
703 1 3 Gallagher 200770 0.19 66.04 17 248 521 293 168 14.6 31 2 1332.6 
704 2 3 Gallagher 243793 0.16 60.96 16 288 512 252 214 18.0 32 2 1407.4 
705 6 3 Gallagher 193600 0.16 60.96 20 402 540 185 313 20.1 27 1 1580.3 
706 5 3 Gallagher 659674 0.2 76.2 26 624 858 380 278 24.0 33 1 1816.6 
707 3 3 Gallagher 315496 0.18 71.12 18 648 907 607 182 36.0 50 1 2283.8 
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2017 growing season data: 

Plot TRT Rep Variety Population 
(ha) NDVI Height 

(cm) Plants nodes pods 
2 

bean 
pods 

3 
bean 
pods 

pods/
node 

nodes/
plant 

pods/
plant 

Yield 
(kg/ha) 

seed 
weight Protein Oil 

101 1 1 Bentley 272474 0.64 78.7 20 386 912 288 328 2.4 19.3 46 711.1 68.8 38.3 18.0 
101 1 1 Gallagher 243793 0.8 76.2 24 506 1219.2 490 506 2.4 21.1 51 1213.0 91.2 37.4 20.9 
102 2 1 Bentley 344178 0.82 76.2 26 481 1201.2 489 502 2.5 18.5 46 938.1 83.9 40.2 20.0 
102 2 1 Gallagher 329837 0.84 84.5 21 389 877.8 323 401 2.3 18.5 42 1252.7 94.9 39.0 20.0 
103 3 1 Bentley 258133 0.77 77.5 24 430 948 427 353 2.2 17.9 40 1010.8 82.9 41.6 18.0 
103 3 1 Gallagher 372859 0.83 82.6 35 830 1333.5 662 515 1.6 23.7 38 1531.8 61.9 41.5 18.1 
104 4 1 Bentley 301156 0.81 75.6 30 513 1074 492 384 2.1 17.1 36 764.0 81.8 40.3 19.6 
104 4 1 Gallagher 344178 0.85 84.5 22 532 1106.6 425 526 2.1 24.2 50 1903.0 106.3 41.1 19.6 
105 5 1 Bentley 315496 0.68 87.6 28 596 1184.4 532 498 2.0 21.3 42 1058.1 84.6 41.0 19.2 
105 5 1 Gallagher 272474 0.78 87.6 39 698 1333.8 667 507 1.9 17.9 34 1761.9 99 41.4 19.0 
106 6 1 Bentley 372859 0.85 74.9 31 849 1602.7 707 707 1.9 27.4 52 1573.6 80.3 37.5 20.6 
106 6 1 Gallagher 344178 0.86 79.4 38 912 2147 779 1075 2.4 24 57 1691.2 11.9 41.1 18.6 
107 7 1 Bentley 401541 0.8 64.1 33 370 640.2 231 297 1.7 11.2 19 1625.4 147.4 42.9 18.3 
107 7 1 Gallagher 358519 0.86 83.8 21 473 945 292 561 2.0 22.5 45 1620.1 108.2 41.5 18.8 
108 8 1 Bentley 387200 0.84 83.8 32 672 1241.6 435 624 1.8 21 39 746.9 69.1 41.5 19.0 
108 8 1 Gallagher 344178 0.85 78.1 40 872 1372 624 508 1.6 21.8 34 1355.0 80 41.8 18.4 
109 9 1 Bentley 315496 0.87 79.4 26 510 1263.6 541 348 2.5 19.6 49 801.0 71.4 40.2 19.3 
109 9 1 Gallagher 372859 0.84 76.2 34 598 1118.6 493 439 1.9 17.6 33 1200.8 82.1 38.7 19.8 
110 10 1 Bentley 358519 0.81 81.3 22 524 1086.8 475 361 2.1 23.8 49 1641.5 86 38.9 19.6 
110 10 1 Gallagher 358519 0.83 76.2 32 694 1260.8 544 560 1.8 21.7 39 - 53.8 40.8 17.7 
201 5 2 Bentley 308326 0.77 86.4 37 781 1986.9 895 925 2.5 21.1 54 1148.4 92.6 38.5 20.7 
201 5 2 Gallagher 265304 0.74 89.5 34 636 1397.4 588 615 2.2 18.7 41 1836.4 123.3 40.6 20.3 
202 1 2 Bentley 293985 0.72 88.9 33 822 1815 729 746 2.2 24.9 55 943.7 92.5 37.9 20.0 
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Plot TRT Rep Variety Population 
(ha) NDVI Height 

(cm) Plants nodes pods 
2 

bean 
pods 

3 
bean 
pods 

pods/
node 

nodes/
plant 

pods/
plant 

Yield 
(kg/ha) 

seed 
weight Protein Oil 

202 1 2 Gallagher 186430 0.82 81.3 37 788 1443 625 599 1.8 21.3 39 1462.8 117.2 38.2 21.3 
203 10 2 Bentley 286815 0.85 78.7 22 405 948.2 273 486 2.3 18.4 43 1114.5 93.8 39.3 19.8 
203 10 2 Gallagher 344178 0.83 91.4 33 673 1590.6 726 660 2.4 20.4 48 2156.0 91.9 37.7 21.5 
204 4 2 Bentley 372859 0.84 86.4 28 560 1433.6 529 630 2.6 20 51 1038.1 78.1 37.8 19.8 
204 4 2 Gallagher 358519 0.85 87.6 27 707 1458 500 716 2.1 26.2 54 1633.4 109.4 37.8 21.3 
205 3 2 Bentley 401541 0.87 86.4 30 597 1575 675 450 2.6 19.9 53 1319.2 72.1 39.2 19.2 
205 3 2 Gallagher 286815 0.86 87.0 14 318 704.2 301 284 2.2 22.7 50 1789.2 97 41.1 18.7 
206 6 2 Bentley 387200 0.84 81.3 40 1060 2196 1068 640 2.1 26.5 55 1506.2 89 33.4 22.8 
206 6 2 Gallagher 301156 0.85 83.2 33 812 1795.2 789 782 2.2 24.6 54 2056.8 132.7 40.4 20.1 
207 2 2 Bentley 301156 0.81 85.1 23 465 1173 520 490 2.5 20.2 51 1673.0 80.5 41.1 19.3 
207 2 2 Gallagher 243793 0.83 89.5 21 542 1430.1 546 716 2.6 25.8 68 2683.2 142.1 39.7 20.2 
208 7 2 Bentley 372859 0.86 86.4 30 690 1716 609 930 2.5 23 57 1440.7 116.4 39.4 20.2 
208 7 2 Gallagher 301156 0.85 87.6 37 644 2430.9 955 1191 3.8 17.4 66 1867.6 118.3 39.4 20.0 
209 9 2 Bentley 415881 0.86 91.4 25 475 1030 450 435 2.2 19 41 1366.6 82.6 39.8 20.0 
209 9 2 Gallagher 301156 0.85 85.1 26 432 1079 520 367 2.5 16.6 42 1946.2 92.3 39.5 19.7 
210 8 2 Bentley 358519 0.86 91.4 27 629 1225.8 505 510 1.9 23.3 45 1959.6 113.9 38.9 20.5 
210 8 2 Gallagher 387200 0.85 80.0 34 745 1550.4 619 558 2.1 21.9 46 - 83.6 40.5 18.7 
301 8 3 Bentley 164919 0.8 80.6 28 650 1895.6 669 997 2.9 23.2 68 1183.4 - - - 
301 8 3 Gallagher 179259 0.77 80.6 31 515 837 180 570 1.6 16.6 27 1944.4 128.4 37.5 22.1 
302 9 3 Bentley 344178 0.79 88.9 25 473 1015 433 340 2.1 18.9 41 955.0 34.7 39.7 19.4 
302 9 3 Gallagher 387200 0.82 86.4 31 561 1205.9 462 558 2.1 18.1 39 2226.0 106.9 38.6 21.1 
303 1 3 Bentley 315496 0.72 88.3 30 708 1647 720 657 2.3 23.6 55 760.7 78.9 37.8 20.9 
303 1 3 Gallagher 358519 0.81 81.3 35 588 1323 627 371 2.3 16.8 38 1373.4 118.4 37.9 21.2 
304 6 3 Bentley 315496 0.83 78.7 30 501 1167 435 576 2.3 16.7 39 1184.8 89.7 33.9 22.1 
304 6 3 Gallagher 372859 0.82 81.9 27 478 974.7 419 392 2.0 17.7 36 2145.7 113.6 36.2 22.2 
305 2 3 Bentley 272474 0.85 86.4 27 599 1296 464 737 2.2 22.2 48 1582.9 94.4 38.8 20.4 
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Plot TRT Rep Variety Population 
(ha) NDVI Height 

(cm) Plants nodes pods 
2 

bean 
pods 

3 
bean 
pods 

pods/
node 

nodes/
plant 

pods/
plant 

Yield 
(kg/ha) 

seed 
weight Protein Oil 

305 2 3 Gallagher 272474 0.86 87.6 26 585 1167.4 390 629 2.0 22.5 45 2802.5 128.9 37.1 21.6 
306 5 3 Bentley 372859 0.79 91.4 23 414 830.3 370 324 2.0 18 36 911.4 98.3 41.2 19.1 
306 5 3 Gallagher 207941 0.84 91.4 37 636 1446.7 581 648 2.3 17.2 39 1367.1 119.9 41.9 19.1 
307 7 3 Bentley 401541 0.85 78.7 32 758 2185.6 778 1114 2.9 23.7 68 1715.9 108.7 37.3 21.9 
307 7 3 Gallagher 358519 0.86 88.3 31 549 2073.9 806 952 3.8 17.7 67 2425.7 121.4 39.7 20.1 
308 4 3 Bentley 329837 0.8 83.8 21 494 1152.9 395 573 2.3 23.5 55 1977.4 114 38.6 21.4 
308 4 3 Gallagher 301156 0.84 88.3 24 427 1528.8 665 804 3.6 17.8 64 1623.5 109.6 39.6 20.6 
309 10 3 Bentley 387200 0.87 85.1 24 370 940.8 408 377 2.5 15.4 39 2290.4 115.9 37.7 20.7 
309 10 3 Gallagher 401541 0.86 91.4 32 746 1552 902 464 2.1 23.3 49 2000.9 109.7 39.2 20.4 
310 3 3 Bentley 301156 0.87 81.3 43 1127 2343.5 1118 877 2.1 26.2 55 2116.2 112.2 38.5 20.8 
310 3 3 Gallagher 387200 0.85 73.7 30 543 1764 708 771 3.2 18.1 59 - 82.9 39.4 18.9 
401 5 4 Bentley 293985 0.81 77.5 37 884 1809.3 681 825 2.0 23.9 49 1101.0 66.2 37.5 20.7 
401 5 4 Gallagher 229452 0.82 87.0 41 828 1955.7 869 861 2.4 20.2 48 2254.1 134.7 38.0 20.6 
402 10 4 Bentley 372859 0.81 87.6 26 517 1063.4 447 442 2.1 19.9 41 1643.6 83 38.5 20.4 
402 10 4 Gallagher 329837 0.85 87.0 26 567 1359.8 528 658 2.4 21.8 52 2384.8 113.9 39.3 20.5 
403 9 4 Bentley 301156 0.81 86.4 34 622 1407.6 622 581 2.3 18.3 41 1773.3 40.4 37.8 20.8 
403 9 4 Gallagher 372859 0.85 86.4 32 634 1728 736 755 2.7 19.8 54 2695.6 111.3 36.0 22.4 
404 4 4 Bentley 301156 0.82 91.4 37 792 1639.1 733 673 2.1 21.4 44 1697.7 95 37.3 21.1 
404 4 4 Gallagher 286815 0.84 91.4 30 627 1308 588 558 2.1 20.9 44 2330.2 110.2 38.6 20.6 
405 1 4 Bentley 129067 0.73 74.9 19 486 1092.5 395 538 2.2 25.6 58 1096.8 113.5 37.6 21.3 
405 1 4 Gallagher 136237 0.77 82.6 27 524 1053 524 429 2.0 19.4 39 850.6 117.1 40.3 17.7 
406 3 4 Bentley 272474 0.82 88.3 44 801 1839.2 792 801 2.3 18.2 42 1992.6 96.4 40.5 19.4 
406 3 4 Gallagher 272474 0.85 91.4 43 847 2137.1 796 968 2.5 19.7 50 2087.6 89.5 42.2 18.4 
407 7 4 Bentley 329837 0.86 86.4 38 654 1314.8 631 475 2.0 17.2 35 2885.6 122 37.4 21.3 
407 7 4 Gallagher 315496 0.86 87.6 27 481 1444.5 583 621 3.0 17.8 54 2064.1 138.8 40.5 19.0 
408 2 4 Bentley 372859 0.84 81.3 19 424 1151.4 418 543 2.7 22.3 61 2142.8 139.8 36.8 21.4 
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(ha) NDVI Height 
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bean 
pods 
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plant 
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(kg/ha) 
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weight Protein Oil 

408 2 4 Gallagher 329837 0.82 86.4 21 393 980.7 380 462 2.5 18.7 47 1230.5 115.1 37.4 21.3 
409 8 4 Bentley 358519 0.87 82.6 34 728 1363.4 595 551 1.9 21.4 40 2908.6 98.9 37.4 20.9 
409 8 4 Gallagher 344178 0.85 87.6 25 725 1455 513 713 2.0 29 58 1836.3 103.2 38.0 20.5 
410 6 4 Bentley 272474 0.86 80.6 29 522 1374.6 545 690 2.6 18 47 2462.8 133.8 35.9 22.0 
410 6 4 Gallagher 358519 0.85 80.0 27 429 1155.6 435 535 2.7 15.9 43 - 75.5 39.8 17.0 
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Table 1A. Product cost at ha-1 and plot-1 basis in 2016 for small-plot study 

Product rate ha-1 cost ha-1 cost plot-1 
Max- In 4.6 L ha-1 $    71.58 $0.13 

Urea 112 kg ha-1 $    37.65 $0.07 
Foliar Fungicide (Headline) 0.9 L ha-1 $    88.07 $0.16 

Insecticide (Besiege) 0.7 L ha-1 $    52.99 $0.10 
Seed treatment 2.66 mL kg seed-1 $    32.10 $0.06 

Total cost  $  282.40 $0.53 
 

Table 2A. Product cost at ha-1 and plot-1 basis in 2017 for small-plot study 

Product  rate ha-1 cost ha-1 cost plot-1 
Max- In 4.6 L ha-1  $     28.64  $0.13 
Urea 112 kg ha-1  $     41.98  $0.19 
Foliar Fungicide (Headline) 0.9 L ha-1  $     75.85  $0.35 
Insecticide (Besiege) 0.7 L ha-1  $     59.75  $0.27 
Seed treatment 2.66 mL kg seed-1  $     32.10  $0.15 
Total Cost   $   238.32  $1.09 

 

Table 3A.  Product cost L-1 for 2016 and 2017 

Product price L-1 2016 price L-1 2017 
Max In $           15.32 $             6.13 

Foliar Fungicide (Headline) $         100.51 $           86.41 
Insecticide (Besiege) $           72.56 $           81.96 

Gradual N - $             2.55 
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