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CHAPTER I 
 

 

THE COMPLEXITY OF COINFECTION: 

 A Literature Review of the History, Pathogenesis, and Therapeutic Options in Influenza 

Pneumonia with Secondary Bacterial Infections 

 

1. Pandemic Coinfection: A History of Influenza Pandemics and Secondary Bacterial 

Pneumonia  

Beginning in 1918, as World War I was coming to a close, an influenza pandemic 

occurred resulting in an estimated 50 million deaths worldwide [1-4]. The pandemic had killed 

well over double the number of people who had died due to World War I. Termed the “Spanish 

Flu”, this pandemic resulted in excessive mortality well beyond the expected seasonal influenza 

and targeted young, otherwise healthy adults with a swiftly deadly disease course [1, 5]. Based 

on preserved lung tissue sections and analysis of thousands of autopsies, over 95% of these 

deaths were due to bacterial superinfections,  primarily with pneumococcal pneumonia [5, 6]. In 

addition, over 70% were also bacteremic [6] and widespread pulmonary thrombi were noted on 

postmortem histopathology and examination [7]. Since 1918, several influenza pandemics have 

occurred. The “Asian Flu” pandemic (1957-1958) caused by the H2N2 virus affected primarily 

the young and elderly, resulting in an estimated 1.1 million excess deaths [8]. In 1968, the Hong  
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Kong Flu hit the world in two waves – the first causing excessive mortality in North America, and 

the second wave affecting Europe, Asia and Africa much worse than the first, coinciding with a 

drift in the neuraminidase antigen between 1968 and 1970 [9]. More recently, in 2009, the triple 

reassortment H1N1 virus, termed the “Swine Flu”, had killed roughly 285,400 people worldwide 

by its completion in 2010 [2, 5]. Throughout all these pandemics, bacterial coinfections 

continued to play key role in lethality, making it crucial to consider these bacterial co-pathogens 

when planning for a pandemic [10, 11].  

In an extensive review of influenza and bacterial coinfections from the 20th century, 

several more common pathogens were identified including Streptococcus pneumoniae (S. 

pneumoniae), Haemophilus influenzae, Staphylococcus spp. (in particular S. aureus), and other 

Streptococcus spp. [12]. Beyond the threat of high rates co-infections in pandemics, bacterial-

superinfections also contribute to about 65,000 deaths by seasonal influenza virus infections 

every year in the United States [2, 12], although the rates of bacterial coinfections were found 

to be considerably higher during a pandemic than during the seasonal influenza period – of 

those bacterial coinfections, 41% were identified as S. pneumoniae, followed by 25% 

Staphylococcus spp., 16% other Streptococcus spp., and about 13% H. influenzae. [12]. During 

the 1957 pandemic outbreak S. aureus was identified as most predominant bacteria in 

superinfections [13]. By the following pandemic in the late 1960’s, S. pneumoniae had again 

emerged as the predominant bacterial co-pathogen. Although coinfections are more frequently 

seen in pandemic outbreaks, they are also well documented in seasonal outbreaks. An 

estimated 28% of all seasonal influenza deaths are co-infected [14], and S. pneumoniae 

continues to be the most common single pathogen identified in 16.6% of co-infected cases [12]. 
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1.2. The association of S. pneumoniae in secondary bacterial complications following influenza.  

S. pneumoniae, also termed pneumococcus, is a gram-positive diplococci that commonly 

colonize the upper respiratory tract of 20-50% of healthy children and 8-30% of healthy adults 

[15]. Although generally asymptomatic when colonizing the nasopharynx, pneumococcus is also 

the most frequently seen bacterial agent in bacterial meningitis, otitis media, sepsis and all 

community-acquired pneumonia [15] and is correlated with an increase in intensive care unit 

hospitalizations and death [2].  Pneumococcal disease is difficult to classify because of the 

diverse nature of its various strains and serotypes which affect disease outcomes, coinfection 

models and transmission [16]. Pneumococci can express one of over 90 capsule types which 

greatly alters their pathogenicity, and makes development of effective vaccines and therapies 

difficult [16-18]. Diagnosis is also quite difficult, as many of the bacterial pathogens seen in 

coinfection, S. pneumoniae in particular, regularly colonizes the nasopharynx [1]. As the 

predominant co-pathogen in influenza coinfection, this mini review will focus on the proposed 

contributors to the pathogenesis of the synergistic coinfection of S. pneumoniae with influenza, 

as well as several therapeutic options being considered at this time.  

 

2.  Virus, bacterial and host factors contribute to the lethal synergism in Streptococcus 

pneumoniae superinfections. 

2.1 Virus-induced epithelial injury.   

It has been shown that mice exposed to influenza have hyperinflammatory responses 

with increased bacterial burdens and decreased pulmonary clearance of S. pneumoniae 

following coinfection compared to controls [19]. Although the exact mechanisms behind the 
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lethal synergism seen with coinfection remain unclear, numerous possible pathways and their 

associated pathology have been identified to establish the connection. Researchers have 

discovered that a complex network of viral, bacterial, host and environmental factors all 

intertwine to create the lethal synergism seen with influenza and secondary bacterial infections. 

This section will break down and summarize much of that research to more fully elucidate this 

complex system. 

2.1a. Pulmonary Epithelial Barrier Damage 

 Influenza infection cause extensive alveolar epithelial damage and surfactant disruption 

resulting in obstruction of small airways by sloughed cells, mucus and other debris [15, 20]. 

These pathologic changes help the invading bacteria to adhere and colonize in the respiratory 

tract. [21, 22] . The damage to the respiratory epithelium also leads to exposure of the 

underlying basement membrane and progenitor epithelial cells, resulting in an inability of the 

respiratory epithelium to repair itself and re-proliferate [23]. In addition, viral neuraminidase 

induces this exposure of bacterial adherence receptors and works in conjunction with bacterial 

neuraminidase to upregulate the viral infection and worsen this process [24]. As epithelial 

damage is worsened, a rise in lethality, likely due to bacteremia, is appreciated [23, 25]. 

Influenza has been shown to cause a long-lasting dysfunction of the alveolar-capillary barrier 

which can last for weeks after initial infection [26]. Exposure of the basement membrane and 

fibrin also increase bacterial adherence [4]. Further stimulation of angiopoietin-4 by influenza 

virus acts to worsen this barrier damage and promotes further inflammation and bacteremia 

[27]. Pandemic viral infections inflict high cytotoxicity on the alveolar epithelium, which could 

possibly cause increased bacterial superinfections and associated mortalities [2, 23]. In addition, 
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influenza infection also causes a decrease in mucociliary clearance and coordination, resulting in 

failure of removal of bacteria prior to the adherence to the damaged surfaces in the lung [15]. 

2.1b. Receptor Exposure and Bacterial Adherence 

 Sialylated mucins act as decoy receptors for the bacteria [1, 3, 4, 28]. The desialylation by 

influenza viral neuraminidase helps in bacterial adherence to epithelial cells. Damage of 

epithelial cells also expose glycans on their surface, thus enhancing pneumococcal adherence 

[28].  A variety of proteins are altered and displayed on epithelial cells following influenza virus 

infections, such as platelet activating factor receptor (PAFr), that promote bacterial adherence 

and disease [1, 29].  Despite this upregulation of PAFr, pneumococcal adhesion resulting in 

pneumonia and bacteremia is possible without PAFr, further highlighting the complexity of this 

disease [29]. Pneumococci also have a variety of virulence factors that allow adherence to these 

newly exposed receptors on damaged epithelium, laminin and fibrin, including pneumococcal 

surface protein A (PsaP) and pneumococcal serine-rich repeat protein (PsrP) [17]. PsaP is a 

lipoprotein pneumococcal antigen that aids in adherence to nasopharyngeal epithelial cells via 

E-cadherin, while PsrP is a lung-specific adherin [30]. 

2.2. Influenza virus-related factors.  

The influenza virus is from the family Orthomyxoviridae, and there are four genera 

within this family currently recognized that are distinguishable based on their antigenic 

differences between nucleoproteins and matrix proteins: Influenza A, B, C, and D, the first two 

of which are most often associated with significant human disease. The influenza virus contains 

a segmented, single-stranded RNA genome which encodes for eight proteins: polymerase PB2, 

polymerase PB1, polymerase PA, hemagglutinin (HA), nucleoprotein, neuraminidase (NA), 

matrix proteins M1 and M2, and nonstructural proteins. Influenza A viruses are further divided 
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into subtypes based on their HA and NA serotypes.  Hemagglutinin is responsible for viral 

recognition and binding to respiratory epithelial cells and subsequent entry, whereas 

neuraminidase, via the same sialic acid molecules, acts to aid in viral exit from the cell. As noted 

previously, both influenza virus and S. pneumoniae have neuraminidases which contribute to 

upregulating inflammation, infection and promoting colonization of bacteria in the lower 

respiratory tract [24]. Another viral protein, PB1-F2, has also been shown to enhance 

inflammation during coinfection through proapoptotic effects and mitochondrial dysregulation 

[31].  

2.3.  S. pneumoniae related factors.  

S. pneumoniae produces several virulent factors that can potentially contribute to the 

lethal synergism in coinfections. Currently, there are over 90 serotypes of pneumococcal capsule 

recognized and these serotypes have various levels of pathogenicity. The serotypes with the 

highest rates of lethality include serotype 3, 6A/B, 9N, and 19F [17]. All these more lethal 

serotypes, as well as many others, also contain a critical virulence factor, pneumolysin. 

Pneumolysin can form pores in the membranes of cells to cause lysis and activate the innate 

response after recognition by toll-like receptors, in particular TLR4, and also trigger 

inflammation independent of TLR recognition [32-34]. Pneumococcal serine-rich repeat protein 

(PsrP) is an adhesion and another virulence factor which aids in bacterial binding to the alveolar 

epithelium and participates in the formation of biofilms and bacterial aggregation [35-37]. 

Bacterial pili, although not expressed in all strains, allow bacteria to bind to epithelial cells and 

survive in the lungs while promoting lung injury and inflammation through a TNF-dependent 

inflammatory response [35]. S. pneumoniae is also known to use molecular mimcry to degrade 
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platelet activating factor and disable neutrophils through a shared phosphorylcholine moiety 

between PAF and the bacterial cell wall [38]. 

2.4. Host-related factors: The innate immune response  

Several studies have highlighted exaggerated immune responses in contributing to the 

synergism during bacterial co-infection. Among innate immune cells, high neutrophil influx has 

been linked with increased immunopathology in bacterial superinfections following influenza 

[19, 39]. Excessive, Mac-1 dependent [40], neutrophil accumulation that persists beyond 12 

hours post bacterial infection results in a greater bacterial burden and worsened disease [41]. 

Neutrophils are short lived and terminally differentiated cells, primarily involved in phagocytic 

clearance of the bacteria. The ingested bacteria are destroyed through the generation of potent 

oxidants after activation of the NADPH oxidase complex (respiratory burst) or by lytic enzymes 

and antimicrobial peptides within the phagolysosome. After bacterial coinfection, neutrophil 

numbers become excessive within hours, but macrophages and dendritic cells do not share the 

same disproportionate increase [42]. Myeloperoxidase measurements do not increase at the 

same rate as the neutrophil quantity, suggesting that these rapidly recruited neutrophils will not 

have the same antibacterial function that the initial responders did [42]. Functional impairment 

of neutrophils is seen through several capacities.  

Phagocytosis has been shown to be decreased in both neutrophils and macrophages 

following influenza infection [39, 42] and several pathways to this reduction have been 

evaluated including resistance to phagocytic granule components [43], and the downregulation 

of the MARCO receptor due to interferon production [4, 44, 45].  While some report that 

neutrophils and macrophages also have a marked decrease in reactive oxygen species following 

coinfection [45], others report that coinfection leads to increases in respiratory burst and 
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hydrogen peroxide production as well as increased neutrophil apoptosis, and decreased 

neutrophil survival [46]. TRAIL+ monocytes in coinfection are apoptosis inducing cells that cause 

significant lung damage as well [47]. Apoptosis of various cell types also appears to be affected 

by bacterial coinfection after influenza. Monocytes express a TNF-related apoptosis-inducing 

ligand (TRAIL) that can be blocked through CCR2 blockage and result in decreased bacterial load 

and protection if administered prior to coinfection [47]. In vitro, influenza virus has been shown 

to accelerate neutrophil apoptosis by enhancing Fas expression and activating caspase, 

decreasing neutrophil survival [46]. The significant neutrophil influx triggered by various viral 

and bacterial toxins such as PB1-F2 in a coinfection results in a cytokine storm and can lead to a 

severely damaging hyperinflammatory response which can be seen histopathologically as 

excessive neutrophilia, sloughing epithelium, hemorrhage, obstructed airways, pleuritic and 

large areas of lung consolidation [42]. Even the cellular response of natural killer cells to 

influenza infection is weakened, contributing to further risk of coinfection [48]. Innate cells can 

kill pathogens through oxidative burst, which creates toxic reactive oxygen species through 

NADPH oxidase complex or myeloperoxidase. Neutrophil killing of S. pneumoniae, however, 

does not appear to be dependent on NADPH –oxidase generation of reactive oxygen species, 

but does require neutrophil elastase and cathepsin G [49]. Gram positive bacteria such as S. 

pneumoniae can have a bacterial superoxide dismutase that can protect the pathogen from 

these toxic reactive oxygen species [43]. 

Neutrophils can potentially cause worsened inflammatory disease through the release 

of neutrophil extracellular traps (NETs). Brinkmann et al. was one of the first to describe the 

release of neutrophil extracellular traps, or NETs, as a form of microbial killing [50]. In response 

to inflammation, neutrophils are stimulated to release intracellular components through a 

process called NETosis. Over the last 15 years, NETOsis emerged as a programmed cell death 
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mechanism separate from apoptosis and necrosis. Morphologically, activated neutrophils 

involved in phagocytosis were shown to start the NETosis process by losing their nuclear 

lobulation as well as losing euchromatin and heterochromatin separation [51]. Next, 

membranes begin separating – first the nuclear membranes will separate and rearrange into 

vesicles and then the granular membranes also break down, resulting in a mixing of cytoplasmic, 

nuclear and granular components. Finally, the cell membrane disintegrates and the NETs are 

released [51, 52].  NETs not only bind gram-negative and gram-positive bacteria, but have been 

shown to bind fungi and viruses as well [50, 53, 54]. Through release of NETs, neutrophils are 

able to continue fighting infection even after their own cell death [see Figure 2.1].  

We have previously shown that excessive neutrophils and NETs contribute to alveolar-

capillary damage after influenza challenge in mice. NETs formation is dependent on redox 

enzyme activities [55]. NETs were first identified as a process of cell death that released DNA, 

histones and granular proteins such as elastase and myeloperoxidase to entrap and kill 

pathogens [50]. Since the initial identification of NETs, they have also been shown to be 

detrimental to the host – particularly through histones which induce endothelial and epithelial 

cell damage and worsened disease [56]. Further, using Pneumococcal superinfection following 

influenza, an extensive accumulation of NETs was recognized, especially in the damaged areas of 

the lungs, indicating their potential role in tissue injury. Moreover, NETs released during 

pneumococcal superinfection did not show any bactericidal or fungicidal activities. [57, 58]. Our 

recent studies have shown that NETs generation is dependent on the Pneumococcal capsule 

thickness and varies with the different serotype infections. The increase in thickness of the 

capsule results in enhanced tissue damage and lung pathology [18]. NETs have been identified in 

various inflammatory disease models other than pneumococcal pulmonary coinfection such as 

coinfection of otitis media and sepsis [59, 60]. Although the complete pathway for NETs 
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induction has yet to be discovered, S. pneumoniae has been shown to induce NETs through an 

enzyme called α-enolasae [61]. Paradoxically, a pneumococcal endonuclease, EndA, has been 

identified as an important virulence factor through its ability to degrade NETs and diminish their 

bactericidal response [62]. As with many other areas of the complex pathogenesis of 

coinfection, it appears that NETs too must be balanced between positive effects and those that 

are detrimental to the host. 

 

2.4a. What is NETosis?  

 

Figure 2.1 Neutrophil Extracellular Traps (NETs). This diagram summarizes the process of 

NETosis. Once neutrophils are activated and reactive oxygen species produced, chromatin and 

cellular membranes begin to break down so that NETs can be released. The release of this 

primarily nuclear material contains several key, toxic ingredients, including histones, neutrophil 

elastase, and myeloperoxidase which act to “trap” and kill pathogens in their sticky NETs. 
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The complete process of neutrophil activation leading to NETs formation and release is 

still being discovered. NETs release can be triggered by a variety of inflammatory mediators and 

proteins such as circulating histones, interleukin-8 (IL-8), bacterial enzymes (ie, α-enolase of 

Streptococcus pneumoniae), thick bacterial capsules, antibodies (possibly through the 

complement cascade), and viral PAMPs [18, 54, 58, 59, 61]. The most widely researched 

pathway of NETosis is NADPH oxidase 2 (NOX2) dependent where NOX2 generates reactive 

oxygen species (ROS) which are necessary for disintegration of the nuclear membrane during 

NETosis [51, 63]. A second mechanism has also been described that is NOX2 independent. This 

mechanism of NETosis relies on mitochondrial ROS and is triggered through rapid activation 

using calcium of a potassium channel, the SK3 channel [64, 65]. This novel mechanism was seen 

in response to Staphylococcus aureus infection and results in NETs release and entrapment 

without neutrophil lysis and death – it is rapid, oxidant independent, and aids in limiting 

bacterial dissemination [65]. It has also been suggested that NETosis is dependent on platelet-

neutrophil interaction. In a model of sepsis, platelet TLR4 had to bind a ligand (such as 

lipopolysaccharide) to then bind neutrophils and trigger NETs formation in the hepatic sinusoids 

and pulmonary capillaries, where the small diameter of the vessels allowed the NETs to be more 

effective at trapping [66, 67]. Platelets are activated by a high bacterial loads with LPS 

concentrations 100 times greater than that which activates neutrophils – therefore, platelets 

likely play an even more critical role in high bacterial load situations where NETs are released as 

a final defense [63]. Once the neutrophils are activated and ROS produced, the chromatin and 

cellular membranes will break down so that the NETs can be released [52]. Chromatin 

decondensation requires histone hypercitrillunation of the arginine residues on H3 and H4 by 

peptidylarginine deiminase 4 (PAD4) [68-70]. PAD4 deficient mice cannot form NETs [71], and 

PAD4 inhibitors limit NETs formation as well [72]. In addition, it has been shown that both 
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neutrophil elastase and myeloperoxidase (MPO) regulate this process as well with elastase 

translocating to the nucleus to degrade histones in a synergistic fashion with MPO [73]. 

Released NETs contain DNA, nuclear proteins and neutrophil granules associated toxic 

proteins, which have been identified for their antibacterial and anti-fungal effects. However, 

NETs-mediated host tissue damage has been linked in several clinical and diseases conditions.  

Histone proteins are one of the major protein components in NETs. Histones are necessary for 

DNA condensation and help form the nucleosome structure by binding their positive charges to 

the negatively charged DNA – this results in the superhelical DNA being wound around four pairs 

of core histones to mold the structure of the chromatin [74]. Histones can also undergo post-

translational modifications, such as methylation, which can regulate gene transcription and aid 

in the passage of epigenetic information through cell divisions as well [74]. Aside from their 

intracellular roles, the extracellular advantages and disadvantages of histones are crucial to 

understanding the effects of NETosis and will be described later. In addition to histones, NETs 

also release granular proteins such as neutrophil elastase and myeloperoxidase. These enzymes 

are not only effective microbial killers, but indiscriminately damage the host as well. 

Antimicrobial activities of NETs.  

Before discussing the deleterious effects of NETosis, it is important to recognize its role 

in microbial trapping and death. Scientists have known about the important role of the 

neutrophil as a first responder to microbial infection since the late 19th century [75]. Since then, 

scientists have discovered that circulating neutrophils are called to areas of injury or insult 

through cytokines and that these neutrophils are activated once they reach the site of infection. 

The activation results in phagocytosis of the microorganism where reactive oxygen species and 

antimicrobial peptides and enzymes can kill these infectious agents. This influx of neutrophils 
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has been shown to reduce progression to severe disease in many cases and is necessary to 

innate immunity [76]. Antimicrobial killing by neutrophils is not limited to phagocytosis. NETs 

also contain high numbers of antimicrobial molecules. During sepsis, LPS can bind platelet TLR4 

receptors which in turn interact with and activate neutrophils to form NETs. These NETs are 

effective bacterial trappers within small diameter vessels such as pulmonary capillaries [66]. 

With seemingly effective bacterial killing performed by NETs, it’s not surprising that bacteria 

have developed methods to evade killing. Many bacteria are trapped by NETs, but not actually 

killed. This trapping still allows the infection spread to be limited, but S. pneumoniae has been 

shown to evade NETs killing through expression of a DNase called endonuclease (EndA). This 

enzyme allows the bacteria not degrade the NET and escape [62, 77], and is required for full 

virulence of S. pneumoniae during pneumonia [62]. 

NETs capture and kill many microbes beyond bacteria. NETs have been shown to 

capture and kill both yeast and hyphal forms of Candida albicans [53]. In addition, viral-induced 

NETs also are important in the innate immune response to a variety of viruses, such as Influenza 

A Virus – interestingly, NETs induced by bacterial infection appear to be quite effective at 

trapping and neutralizing viruses, but those NETs induced by viral infections do not have the 

same effect on bacteria [54]. Not only do NETs trap virions, but they can directly neutralize them 

through defensins and MPO as well – virions removed from NETs have decreased ability to 

infect target cells [54]. 

The direct antimicrobial effects of histones within and outside of NETs have long been 

described and span various diverse microbes from bacteria and viruses to fungi and parasites as 

well. Methods of microbial killing are dependent on the type of histone and the pathogen. There 

are four core histones (H2A, H2B, H3, H4) and a linker histone (H1) that assist in nucleosome 
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formation. Although similar in structure, these five histones can further be divided into lysine-

rich (H1, H2A, H2B) and arginine-rich (H3, H4) proteins [74, 78].  These different histones display 

different antimicrobial properties. The effects of arginine-rich histones have been compared 

with lysine-rich on bacterial outer membrane protease T (OmpT) gene-expressing Escherichia 

coli and found to have different modes of antimicrobial action with the lysine-rich penetrating 

the cellular membrane and the arginine-rich remaining on the cell surface to cause a blebbing 

similar to that of other antimicrobial peptides [78, 79]. Histones not only bind to form the core 

of the nucleosome within the cellular nucleus, but can convey antimicrobial properties outside 

of the nucleus. Within the cytosol, histones can bind lipid droplets and then disassociate to kill 

bacteria in a Drosophila and possibly a murine model [80].  More importantly, extracellular 

histones, such as those released with NETs, have antibacterial properties as well. 

Besides antibacterial effects, NETs released-histones are also described for their 

antiviral effects. The arginine-rich histones (H3, H4) released in NETs have particularly potent 

ability to neutralize H3N2 and seasonal H1N1 influenza viral strains in vitro, although did not 

show any effect on the pandemic H1N1 strain [81]. The method of viral neutralization is still 

unclear, but the arginine-rich composition of these histones likely contributes to their innate 

immune effects. In addition to histones, NETs also release antimicrobial peptides and enzymes 

such as myeloperoxidase and elastase. Myeloperoxidase (MPO) converts hydrogen peroxidase 

to hypochlorous acid to defend the host against pathogens. Neutrophil elastase is also a 

proteinase that acts as an effective microbial killer. 

How is NETosis a detriment to the host during infection? 

Although NETosis may have shown positive effects in fighting infection, recent studies 

have emerged which indicate that these traps may play a larger role in facilitating disease than 
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fighting it. One of the biggest problems encountered with NETs release is their inability to 

identify friend versus foe when responding to infection. In models of sepsis, NETs have been 

shown to be significant players in the pathogenesis and severity of disease. Levels of NETs in the 

blood of septic patients correlates with organ dysfunction and disease severity, and, in an 

experimental setting, this damage is attenuated by degrading NETs with rhDNase in 

combination with antibiotic therapy [60]. In a dual infection murine model of pneumonia, NETs 

released during the primary influenza infection did not protect against secondary pneumococcal 

infection, but instead appeared to be associated with a synergistically worsened disease state as 

compared with influenza and bacterial infections alone [57]. Even within the middle ear, an 

antibody-induced NETs release was shown to create biofilms of pneumococcal bacteria 

secondary to influenza infection [59]. 

NETs are also identified in lung tissue and bronchoalveolar lavage fluid in a murine acute 

lung injury model and are present in higher numbers at areas of more severe damage [55, 56]. 

The sheer influx of neutrophils is shown to be associated with subsequent respiratory epithelial 

damage secondary to viral disease and others [82]. Specifically, NETs release is associated with a 

dose-dependent cytotoxicity to the alveolar epithelial cells. In addition, neutrophils and their 

release of NETs through platelet interaction have been shown to induce significant endothelial 

damage in vitro as well as hepatotoxicity [66]. 

Circulating histones including those associated with NETosis have been implicated in a 

variety of disease processes [56-58, 67, 74, 81, 83-89]. Not only are they known to damage 

cellular membranes due to their basic charge when unbound and outside the nucleus, but they 

also create a form of “sterile” inflammation through TLR2/4 activation of a variety of cell types 

eliciting a DAMP-like immunostimulatory effect [87]. In a study performed by Abrams et al. 
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assessing the role of circulating histones due to nonthoracic blunt trauma, high levels of 

histones were significantly associated with the incidence of subsequent acute lung injury and 

multiple organ failure [58].  More specifically, this lung injury was found to be mostly related to 

histone-induced endothelial damage and activation of coagulation. In addition, extracellular 

histones have been identified as important mediators in sepsis, directly related to significant 

endothelial damage, organ failure and death [88]. But how do these histones cause this 

damage? The charge differences between histones and DNA may contribute to more than just 

nucleosome structure – this charge difference allows extracellular histones bind to 

phospholipids in the cell membranes, and increase cellular permeability and a calcium influx 

which in turn triggers apoptosis leading to cell death [58]. Histone release with NETs, as well as 

myeloperoxidase release with NETs, have both been shown to result in dose-dependent alveolar 

epithelial cytotoxicity – if histones or myeloperoxidase are blocked, this cytotoxicity is 

diminished. Interestingly, the same effect is not seen with elastase inhibitors suggesting that this 

epithelial damage is more associated with histone and MPO release during NETosis [56]. 

Significant endothelial and epithelial damage is also evident secondary to histone cytotoxicity 

released during NETosis in severe glomerulonephritis [87]. Extracellular histones have been 

identified as cytotoxic toward endothelium in numerous studies, resulting in increased vascular 

permeability, hemorrhage, and thrombosis. The levels of histones also correlate with organ 

dysfunction and damage in a model of sepsis [88]. Perhaps most importantly for this project, 

histones have been shown to be crucial mediators of the damage caused in influenza 

pneumonia [83]. 

Microvascular and deep vein thrombosis further exacerbate disease associated with 

NETs release. Microvascular thrombosis has been hypothesized to occur due to platelet 

activation by extracellular histones. Thrombin formation is dose-dependently enhanced by 
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histones and dependent on histone-activation of platelets through platelet TLR2 and TLR4 [67]. 

This in turn can activate platelets resulting in excessive thrombi formation, especially in disease 

states such as sepsis [63]. It is also suggested that formation of microthrombi secondary to 

alterations in the microcirculation by NETs, can prevent necessary immune cells from reaching 

sites of infection [63]. NETs are also a key component of the scaffold of deep vein thrombi and 

PAD4 deficient mice (which cannot citrullinate histones prior to NETs release) have significantly 

lower incidences of thrombosis than wild type [70].  

In my particular model, why do I believe NETs to be more detrimental than helpful in ridding 

of the infection? 

Hirose, et al. looked at critically ill patients and evaluated levels of citrillunated H3 and 

NETs in their bloodstream to try and garner an idea of the role of NETs in the dissemination of 

inflammatory disease. During this study, they noted that the presence of bacteria within the 

tracheal aspirate at the time of intubation was a significant factor associated with the presence 

of NETs and Cit-H3, and then make a jump to conclude that NETs might play a pivotal role in 

innate defense [86]. Although the positive values of NETs in innate immunity are well-described, 

I tend to partially disagree with this assessment. Recent studies evaluating the detrimental 

effects of NETosis on the host during the innate immune response are becoming more 

numerous and show a significant link between NET release and tissue damage resulting in 

worsened disease severity. Although I have outlined many of these studies already, I will 

highlight a few again that relate closely to my model of dual infection and may help explain why 

I believe that NETs are an ideal potential target for therapy when planning combination 

therapies to treat dual infection pneumonia.  
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The infection model I used involves sublethal influenza infection administered 

intranasally to mice followed by a low dose of Streptococcus pneumoniae administered 

intranasally three day later. Although neither the influenza nor the bacterial infective doses are 

considered lethal on their own, this particular model has shown that the dual infection of these 

two results in a synergistically worsened and lethal disease course with the development of 

severe ARDS and bacteremia. Histopathology of the pulmonary tissue shows marked endothelial 

and epithelial damage resulting in vascular permeability that would most certainly aid in the 

dissemination of bacteria. In addition, markers of NETs (cit-H3/cit-H4) are clearly identified from 

samples taken from these infected mice. The severity of damage appears in conjunction with 

the neutrophil influx approximately three days after influenza infection and worsens drastically 

over the subsequent 72 hours. 

In a recent study using an acid aspiration-induced model of ARDS, extracellular histones 

were shown to have an inflammatory role with significant stimulation of systemic inflammation 

and pulmonary collateral damage, while blockage of these histones alleviated these signs [89]. 

Although the model for ARDS we are using is different, our preliminary results support these 

findings with increased damage and inflammation being related to the presence of NETs and 

extracellular histones. Our preliminary findings are also consistent with those identified by 

Moorthy et al. (2013) – in this study NETs were not only shown to result in enhanced lung 

pathology, but were also shown to have limited to no bactericidal effects [57]. Significant 

damage to the alveolar-capillary barrier was identified in this model as well. In addition, 

preliminary studies have confirmed that administration of histones directly to a virally infected 

mouse worsen disease pathology contradicting claims that histones act as anti-viral defense. I 

look forward to further discovering the workings of dual infection pathogenesis and will be 
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interested to further assess the capabilities of blocking NETosis as a therapy when considering 

combination therapies to treat ARDS. 

2.5. Toll-like Receptors and their Contribution to Immunopathology and Interferon Signaling 

Toll-like receptors are an important part of the innate immune response and recognize 

conserved patterns in a variety of pathogens. Upon recognition, these receptors trigger a series 

of events resulting in activation of the innate immune response through production of various 

pro-inflammatory chemokines, cytokines, interferons and recruitment of those innate 

responders such as the neutrophils and macrophages [90]. In particular, these TLRs can 

recognize cellular wall components of gram-positive organisms, such as those in S. pneumoniae 

[91] as well as pneumolysin, which stimulates IL-6 and TNF-α after interacting with TLR4 [32]. 

Influenza virus-induced desensitization of lung epithelial cells to bacterial TLR ligands can last 

months after the initial viral infection, creating an environment for increased susceptibility to 

bacterial infection for a long time after clearing influenza [92]. Influenza induces expression of 

toll-like receptors, such as TLR3 which acts to recognize RNA and DNA of pathogens after 

phagocytosis, and this not only sensitizes cells to secondary infection with pneumococcal 

pneumonia, but also decreases bacterial clearance and increases type I interferons, which have 

been shown to negatively affect survival in a murine model [93, 94]. Upregulation of this TLR3 

expression results in increased IL-12p70, which also plays a key role in coinfection [93]. In 

addition to impairment of phagocytosis, production of interferons after recognition of 

pathogens by TLRs plays a large role in pathogenesis of coinfection as well. Type I and II 

interferons are produced following recognition of viral nucleic acids by toll-like receptors (TLRs) 

[1]. The induction of type I interferon during a primary nonlethal influenza infection was shown 

to be sufficient to promote lethality with coinfection of S. pneumoniae [95]. IFN-1 targets 
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granulocytes in the bone marrow and prevents efficient recruitment to inflammatory sites [96]. 

Stimulation of type 1 interferons in coinfection also impairs macrophage recruitment due to 

decreased levels of CCL2, which promotes bacterial colonization [97]. In addition, mice deficient 

in type I interferon receptor signaling have improved survival and bacterial clearance [98]. With 

interferon signaling increase, an impaired production of the neutrophil attractants CXCL1 and 

CXCL2 was noted following coinfection. This may explain some of the impaired neutrophil 

response to the early phase of coinfection [98]. Pneumolysin, a cytolytic toxin of S. pneumoniae, 

induces substantial inflammation through activation of TLR4 [32]. TLR2 is also an important 

mediator of the damage associated with pneumococcal pneumonia [99].  As discussed, the 

innate immune response is necessary early in the disease course, but can result in worsened 

pathology if the response remains elevated for too long. 

Induction of adaptive immune response is also a critical determinant on the outcome of 

the diseases in bacterial superinfections. One mechanism by which type I interferon release in 

response to influenza infection results in worsened bacterial superinfection is through the 

suppression of γδ T cell production of interleukin-17 (IL-17) [95]. γδ T cells in the lung act as 

specialized innate responders and normally produce the majority of IL-17 in response to a 

variety of viral and bacterial infections [95, 100, 101] which can suppress the effects of bacterial 

superinfection. If type I interferon signaling is upregulated and IL-17 production suppressed 

through decreased γδ T cell function, bacterial colonization in the lungs is increased causing in 

deteriorated pathology and disease [95]. Influenza has been shown to induce expression of 

indolamine 2,3-dioxygenase which alters the inflammatory response and promotes IL-10 

susceptibility to S. pneumoniae [24, 102]. Pulmonary interferon-γ produced by T-cells can not 

only suppress phagocytosis, but also concurrently use this mechanism and others to inhibit 

bacterial clearance [44]. Coinfection has also been shown to result in a significant reduction in 
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the virus-specific CD8+ T-cell response within the sites of pulmonary inflammation [103]. B cells 

are also affected and lethal coinfection reduces the B cells’ response to influenza [104, 105]. 

Identifying the pathways most involved in this synergism and filling in the gaps with the 

pathology of the disease will not only improve our general knowledge in all coinfections, but, 

more importantly help identify therapeutic targets to improve clinical outcome in those 

affected. 

 

Figure 2.2 Overview of the complexity of coinfection. The lethal synergism seen with 

secondary bacterial infections and influenza pneumonia is created by a network of viral, 

bacterial, host and environment factors. A few of these factors are summarized in the above 

figure. (A) The virus damages and exposes attachment sites for bacteria which migrate from the 

upper to lower respiratory tracts and adhere (B). This adherence and continued host, viral and 

bacterial factors damage the epithelial and endothelial pulmonary barriers, promoting 

bacteremia and worsened disease (C). In addition, functional changes and PMN interactions via 

TLRs with pathogen components alter innate and adaptive immune functions and continue to 

add to the lethal synergism. 
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3. Current Prospective Therapeutics for bacterial superinfections. 

 Antivirals, antibiotics and supportive care have been the mainstay of treatment for 

influenza coinfections for quite some time. Many of the cases which end up hospitalized 

will result in ARDS which is often a precursor to sepsis. ARDS and sepsis are severe 

diseases with high rates of mortality. In addition, well documented resistance to both 

antiviral medications and antibiotics are being reported, making common options less 

effective than once believed. Another treatment difficulty is evident with pandemic 

outbreaks – pandemics primarily cause the most illness and death in developing 

countries where vaccines and antivirals are both too costly and have poor accessibility 

for those who most need it [11]. Due to these challenges, it is prudent to consider other 

treatment options that can both stand alone and act in combination with already 

available therapies to improve outcome in both seasonal and pandemic influenza 

outbreaks. 

3.1. Antivirals, Antibiotics and Combination Therapies 

Due to the complex nature of coinfection, a wide variety of therapeutic options and 

combinations of therapy are being evaluated for efficacy in a dual infection model of influenza A 

virus with subsequent pneumococcal infection. Combination therapies suggest the best results 

at this time, with one element of the combination being anti-viral therapy. Anti-virals are a 

mainstay of treatment and many are looking for alternatives to oseltamivir and inhaled 

zanamivir due to increasing concern for resistance to this medication [106]. Peramivir is another 

neuraminidase inhibitor that reduced mortality in coinfected mice better than oseltamivir by 

inhibiting viral replication resulting in improved bacterial clearance and survival [107]. Although 
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oseltamivir has shown effectiveness to both viral and bacterial neuraminidase, peramivir only 

seems to inhibit viral neuraminidase, and must be administered intravenously [107, 108]. 

Another neuraminidase inhibiting compound, artocarpin, was shown to have a bactericidal 

effect in vitro, reducing pneumococcal viability by a factor of over 1000, and reduced biofilm 

formation [108]. Historically, amantadine and rimantadine have been used as antiviral therapy, 

but these medications are only affective toward influenza A, not B, and have significant (>99%) 

resistance recorded for several strains of Influenza A, including circulating H3N2 and the 2009 

H1N1. For these obvious reasons, these medications are no longer recommended for use as 

antiviral therapy. There is increasing concern that similar resistance could develop with 

neuraminidase inhibitors, although levels of resistance this severe have yet to be documented.  

A second component to combination therapy of coinfection is antibiotic therapy. 

Several classes of antibiotics have been evaluated. Although β-lactams were initially considered 

a mainstay of treatment for pneumococcal pneumonia, it has been shown well over the last 

decade that standalone therapies are no longer ideal and that combinations with macrolides 

and fluoroquinolones are more effective, especially in light of emerging antibiotic resistance 

[109-111].  Macrolides such as azithromycin and clarithromycin are bacteriostatic and work by 

binding the 50S ribosomal subunit, thereby inhibiting protein synthesis. In addition to their 

antimicrobial effects, macrolides also have an immunomodulatory effect, which poses an 

additional benefit in combatting superinfections. Azithromycin in particular has been shown to 

improve survival in a mouse model of influenza and pneumococcal dual infection with almost 

double the survival rate than ampicillin (92% versus 56%) as well as improved outcomes over 

clindamycin [112]. Combination ampicillin and azithromycin for treatment of pneumococcal 

pneumonia not only decreases lung inflammation, but also decreases pulmonary vascular 

permeability and increases bacterial clearance, limiting the chances of septicemia [113]. A lower 
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number of inflammatory cells and proinflammatory cytokines are seen with macrolide 

treatment than standalone β-lactams as well as less severe lung histopathology – as this 

antibiotic is bacteriostatic, the reduction in an otherwise exacerbated inflammatory response 

seen with β-lactam therapy may be due to lessening in bacterial lysis [99, 112]. Another study 

comparing the effects of moxifloxacin, a bactericidal drug, with azithromycin in a murine model 

of acute bacterial rhinosinusitis supports this as the azithromycin treatment resulted in rapid 

bacterial clearance and reduced inflammation compared with the relatively limited effect of 

moxifloxacin [114]. Further evaluation of the potential negative effects of azithromycin in 

human disease is still needed, but a 2015 study evaluating cardiotoxicity of azithromycin in 

community-acquired pneumonia (CAP) showed that the QT prolongation suggested to be an 

adverse effect of therapy was not associated with treatment, but instead with the disease of 

pneumonia, regardless of the therapy administered [115]. 

3.2. Anti-Inflammatories 

 The use of corticosteroids in treatment of bacterial infections is always a hot topic and one 

heavily debated. On the one hand, some argue that the use of an immune inhibitor in 

combination with an antibiotic to reduce the bacterial burden can more effectively control the 

exaggerated inflammatory response seen in coinfection and that the use of steroids should 

improve survival rates. In a murine model, this seems to hold true – a susceptible murine model 

for the 2009 H1N1 pandemic showed that dexamethasone significantly improved survival rate 

and acute lung injury [116]. A reduction in the proinflammatory cytokine storm, and improved 

clinical outcomes was associated with combination treatment of dexamethasone and 

azithromycin in mice [42]. However, what is most concerning with corticosteroids was 

highlighted in a retrospective cohort study from 2011 in which the early use of glucocorticoids 
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was significantly linked with the development of more severe disease versus patients who did 

not receive the drug in pandemic H1N1 [117]. The in vivo benefits in human disease, particularly 

in a pandemic setting, are clearly still up for debate. 

 Toll-like receptor agonists and antagonists are a relatively new area showing promise as a 

potential combination therapeutic for pneumococcal coinfection. Special attention has been 

given to TLR2, which has been shown to mediate the extensive tissue damage, lung necrosis and 

mortality seen after bactericidal treatment of pneumococcal pneumonia in a murine coinfection 

model [99]. This mediation was independent of TLR4 or the pneumococcal virulence factor, 

pneumolysin. TLR2 also plays a role in transmission of disease, likely with a multitude of other 

factors – when a TLR2 agonist (Pam3Cys) was administered in a murine model of coinfection, 

contact transmission was diminished as well as inflammation and bacterial shedding [90]. A 

TLR2 agonist was again seen to reduce the severity of pneumococcal infection post-influenza in 

a murine model by decreasing bacterial loads and pro-inflammatory cytokines, subsequently 

leading to decreased vascular permeability and reduced bacteremia [118]. Macrophage-

activating lipopeptide 2 (MALP-2) is a TLR2/6 agonist that, when administered prior to 

pneumococcal coinfection, increases proinflammatory cytokine and chemokine release and 

enhances neutrophil recruitment without creating excessive inflammation, so also reduces 

bacterial loads and improves survival [119]. Like TLR2 agonists, TLR5, or flagellin, agonists also 

act as immunostimulants. Given in combination with an antibiotic, flagellin will decrease 

bacterial load and boost antibiotic activity by stimulating CXCL1 to recruit neutrophils and 

reduce bacteremia [120]. TLR3 also participates in the immunostimulatory response when 

stimulated by pneumococcal RNA. TLR3 acts through TRIF to secrete IL-12. In a coinfection, 

influenza virus upregulates TLR3 in dendritic cells, which helps prime the cells for recognition of 

pneumococcal disease [93]. In another study, a TLR4 agonist, UT12, showed promise in 
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improving clinical outcome and disease in a murine coinfection model after hastening the 

macrophage recruitment response [121]. Modulating TLRs is an interesting approach to 

understanding the pathogenesis of coinfection and, with further evaluation, may provide some 

promising combination therapies to attempt. The timing of therapy and its clinical relevance 

should still be carefully considered, as this therapy is effective when administered after 

influenza infection, but prior to secondary infection. 

 The role of γδ T cells in interferon signaling and IL-17 production is also being explored as a 

therapeutic for bacterial superinfections. Since superinfected mice inhibit IL-17, resulting in 

worsened bacterial replication and disease, the administration of recombinant IL-17 in these 

mice has improved bacterial clearance indicating that induction of IL-17 remains a potential 

novel therapy [95]. In a recent study, recombinant IL-17F was administered just prior to S. 

pneumoniae infection in a murine model and the therapy resulted in decreased bacterial 

colonization in the lungs [122]. In general, modulation of IFN-I signaling, IL-17 production and 

the function of γδ T cells all remain intriguing areas of study for treatment of dual infections. 

3.3. Chemokine receptor antagonists 

 A rapidly developing area of therapeutic interest lies in the discovery of targeting chemokine 

receptors to modulate the hosts’ immune response to infection and improve outcome. 

Chemokine receptor expression on the cell surface of human neutrophils has been shown to be 

altered by inflammation. Influenza infection triggers a swift and dramatic increase in 

inflammatory chemokines such as CCL2, CCL3, CCL5, and CXCL10 this are ligands for many of the 

receptors studied [123]. These phenotypic changes of the cell surface not only offer insight into 

the development and progression of ARDS from coinfection, but also potential therapeutic 

targets.  Since a hallmark sign of influenza pneumonia coinfection includes uncontrolled 
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accumulation of neutrophils into the alveolar space, it follows that intervention to slow or block 

any step in neutrophil recruitment or migration should be explored as a potential therapeutic 

for this disease. In ARDS, a hallmark of severe influenza coinfection, there is one chemokine in 

particular that seems to play a pivotal role – IL-8 (CXCL8) which is seen in increased 

concentrations in pulmonary edema fluid from septic patients with ARDS [124] and is also found 

in lower concentrations in ARDS survivors as opposed to non-survivors and so can be used as a 

prognostic indicator [125]. Most chemokine receptors have multiple ligands and CXCR1 and 

CXCR2 are not exceptions. CXCL8 is one ligand that binds with both CXCR1 and CXCR2 in humans 

and is considered the most potent neutrophil chemoattractant in BAL fluid from ARDS patients 

[126].   

CXCR1 and CXCR2 are both G protein coupled receptors and are expressed in several 

granulocytes including eosinophils, mast cells, T cells, and, most notably, neutrophils [127, 128]. 

In addition to granulocytes, CXCR2 is also found on pulmonary endothelial and bronchial 

epithelial cells, and the additional role of CXCR2 on these non-hematopoietic cells has been 

shown to be necessary for the marked increase in lung microvascular permeability seen in an 

LPS-induced model of ARDS [129]. In addition to IL-8 (CXCL8), CXCR2 has at least six other 

ligands including CXCL1, CXCL2, CXCL3, and CXCL6 [130]. These chemokines are called ELR+ 

chemokines (glutamic acid-leucine-arginine containing) and have been shown to mediate 

aberrant vascular remodeling in addition to inflammatory cell recruitment in both the exudative 

and fibroproliferative stages of alveoli damage in ARDS [131]. In addition to a role in ARDS, 

CXCR2 has been a hot topic of study for several years due to promising roles in numerous 

diseases ranging from cancer to arthritis to other more chronic pulmonary diseases [132-136].  
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As previously discussed, the challenge and limitations of using an animal model for ARDS 

include challenges with the chemokines, their receptors and the roles these play in the disease 

pathogenesis. One such difference is that CXCL8 does not exist in the rodent model, although 

homologues do exist as CXCL1 (KC) and CXCL2 (MIP-2). It is also unclear whether the mouse 

analog for CXCR1 is functional in the same way as human CXCR1 as it seems to be activated in 

different ways and does not seem to play the same central role in the pathogenesis of ARDS that 

it does in humans [137]. The application of studying CXCR1 in an animal model to evaluate 

human disease is still in question and needs further investigation. 

CXCL8 is not the only chemokine that has been considered potentially important in the 

development and progression of influenza coinfection. Several chemokine receptors have been 

shown to be affected by inflammatory disease and further investigation may indicate a role as 

well. A study looking at chemokine receptor expression in patients with chronic obstructive 

pulmonary disorder (COPD) and rheumatoid arthritis found several significant alterations in 

neutrophil phenotype involving CCR1, CCR2, CCR3, CCR5, CXCR3, and CXCR4 in BAL fluid when 

compared to circulating neutrophils [138]. In addition to evaluating chemokine receptor 

expression, Hartl et al. also explored whether neutrophils would chemotax to a variety of CC and 

CXC ligands and found this to be the case [137]. These findings may have been inferred from 

chronic inflammatory disease, but do support that neutrophils with various receptors can 

respond to a variety of ligands, likely even in our model.  

CCR1 appears to play a role in neutrophil recruitment in a variety of inflammatory 

models. Mice lacking CCR1 were found to have 35% fewer neutrophils than those with the 

receptor in a murine model of renal ischemia-perfusion injury, and blocking this receptor with 

BX471, a CCR1 antagonist, also suppressed neutrophil recruitment to the area of injury [139]. 
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CCR1 antagonism with BX471 has further been shown to protect against subsequent lung injury 

in models of acute pancreatitis [140] and secondary lung and liver injury in a murine sepsis 

model [141]. CCR1 in addition to CCR2 and CCR5 antagonists have been evaluated in clinical 

trials for rheumatoid arthritis, but, unfortunately, have yet to show much success. In these trials, 

CCR2 and CCR5 are not critical for monocyte recruitment to the site of inflammation, but it has 

been pointed out that CCR1 blockade still has great potential in this area with continued, 

targeted research [142]. CCR5 shares about 74% identity with CCR2, and there are antagonists 

such as TAK-770 which will block both receptors [143]. In addition to CCR1, CCR2, and CCR5, 

another CC-receptor of interest is CCR3.  This receptor has been primarily researched in models 

of asthma and is best known for its roles in mediating the recruitment of eosinophils. However, 

blockade of this receptor is still in question since a CCR3 antagonist, GW766944, does not 

significantly reduce eosinophils in the airways [144].The roles of CCR1, CCR2, and CCR3 have 

been further studied in a more acute, LPS-induced ALI model. Antagonism of these three 

receptors was shown to have a protective effect – when a CCR2b and CCR1 antagonist was used, 

decreases in fibrinolysis, vascular leakage and inflammatory gene expression were all noted. 

These findings were further supported in CCR1, CCR2, and CCR3 knockout mice which had less 

pulmonary edema, infiltration and overall disease as compared with controls with ALI [145]. 

Finally, CCL2 and CCL7 are also chemokines that may play an interesting part– in a study 

performed by Mercer et al, antibody neutralization of these ligands significantly reduced 

neutrophil accumulation in the BAL fluid in mice with LPS-induced lung injury [146]. 

Of the CXC-receptor antagonists, CXCR3 has also been further evaluated with its ligand 

CXCL10. CXCL10 is considered a non-ELR chemokine. In addition to CXCL10, CXCR3 also binds 

CXCL9 and CXCL11, but CXCL10 is most induced in infection [147]. These ligands are all induced 

by interferon-γ and are believed to promote Th1 responses [143]. CXCL10 is a primary 
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chemoattractant for both T cells and NK cells [148]. CXCR3 activation stimulates interferon 

responses which have been shown to contribute to severity in a ferret H5N1 model, where 

CXCL10 gene expression is markedly increased over H3N2 and control models [147]. A CXCR3 

antagonist, AMG487, reduced disease severity through reducing viral leads, reducing pulmonary 

edema, and delaying lethality in this H5N1 model [147] and has also been shown to potently 

inhibit cellular recruitment [149]. Other CXCR3 antagonists of interest include SCH546738, which 

shows promise in autoimmune disease and transplant rejection [150], and VUF10085, a more 

specific CXCR3 antagonist of interest [143]. Ichikawa et al. evaluated both a viral and non-viral 

ARDS mouse model in mice deficient in CXCL10 and CXCR3 and found that mice lacking CXCL10 

and CXCR3 had improved severity of disease and survival in both models [151]. CXCR3 inhibition 

is even being explored in breast cancer therapy as a metastasis suppressant [152] and has been 

shown to improve mitochondrial function and reduce apoptosis in liver disease [153]. One major 

challenge that is being addressed with CXCR3 antagonists is their inability to prove their efficacy 

by the time they reach Phase II clinical trials. The current approach to this problem is to embrace 

the complexity of these diseases and test broader spectrum antagonists, such as TAK-779, which 

target multiple receptors and may have greater efficacy in vivo [143]. Therefore, this receptor 

continues to be another intriguing potential target for therapeutic therapy in models of acute 

inflammation, such as influenza coinfection.  

CXCL12 and its receptor, CXCR4, also appear to play a role in promoting chemotaxis of 

neutrophils as well as suppressing cell death. In a study looking at lipopolysaccharide (LPS)-

induced lung injury, CXCL12 was shown to be a chemoattractant for cells expressing CXCR4 as 

well as a suppressant of neutrophil cell death and CXCR4 was found to be increased on the 

neutrophil cell surface after migrating from circulation into the inflamed lungs, possibly via an L-

selectin mediated pathway [154]. Neutrophils leave trails rich in CXCL12 as they infiltrate and 
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migrate to sites of inflammation. These trails aid in migration of other cell types, such as T cells, 

as well [155]. AMD3100, a CXCR4 antagonist, has been shown to block these trails [155], but in 

another study, this same antagonist was shown to aid in the redistribution of neutrophils from 

primary immune organs to other sites without compromising the neutrophil tracking to these 

inflamed sites [156]. AMD3100 is well established as an FDA approved drug in cancer therapy 

and helps with mobilization of stem cells and mature leukocytes and has been used in 

nanotherapy to control lung cancer metastasis [156, 157]. 

Perhaps the most promising chemokine receptor blocking for the treatment of influenza 

pneumonia and secondary infections is with CXCR2. Blocking CXCR2 has been shown to inhibit 

release of neutrophils from the bone marrow as shown in a study evaluating neutrophils lacking 

CXCR2 which were retained in the bone marrow resulting in neutropenia similar to a human 

congenital disease called myelokathexis [158].  Of course, blocking CXCR2 to the degree of 

resultant neutropenia would be catastrophic in any acute inflammatory disease, but blocking 

50% of the receptor can still have significant reduction in neutrophil recruitment to the alveoli 

while still being effective and not resulting in neutropenia [129].  Although CXCR2 antagonists 

seem to most affect release of neutrophils from the bone marrow, CXCR2 is present in 

neutrophils in every area – bone marrow, circulation, tethered at the endothelium, and within 

the tissues – so CXCR2 antagonism is likely to affect neutrophils at all locations [159].  

Although there are a few selective CXCR2 antagonists that have been studied, finding an 

effective agent that blocks both CXCR1 and CXCR2 may be more appropriate since several CXC 

chemokines act on both receptors and both seem important. Several dual CXCR1/2 antagonists 

have been evaluated. One such antagonist is SCH527123, which has been shown to have a 

higher affinity for CXCR2 than CXCR1. In a study evaluating a rodent and nonhuman primate 
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model of pulmonary inflammation, this antagonist effectively reduced pulmonary neutrophilia 

and mucus hypersecretion which would be beneficial in combatting bacterial coinfection [160].  

SCH527123 has also been shown to be potent in vitro, and inhibited human neutrophil 

chemotaxis as well as myeloperoxidase release in response to both CXCL1 and CXCL8 [161]. In 

another study performed in healthy humans exposed to an ozone challenge in order to induce 

neutrophil chemotaxis, SCH527123 effectively lowered neutrophil counts in sputum as well as 

decreased CXCL8 and myeloperoxidase in sputum as compared with glucocorticoid and placebo 

treatment [162].  

Several other dual CXCR1/2 antagonists have also been evaluated [see Table 1]. 

Simvastatin initially appeared to be a promising therapeutic option when evaluated in a murine 

model of bacterial-induced ALI [163], but a more recent large study evaluating the agent in 

humans with ARDS showed no significant difference in outcome between those patients treated 

with Simvastatin versus those who received a placebo [164]. DF2156A, another dual antagonist, 

has been studied in radiation-induced lung disease in the murine model with reduction in lung 

fibrosis seen [165]. One more dual antagonist that has been studied is Reparixin. Reparixin is a 

little different in that it prefers CXCR1 antagonism to CXCR2 [166]. In a study evaluating the 

agent in a murine model of acid-induced ALI, the effect of Reparixin on vascular permeability 

and neutrophil recruitment into the lung vasculature, interstitium and alveoli was measured and 

shown to improve gas exchange and reduce neutrophil recruitment [167]. In general, Reparixin 

has mostly been studied in ischemia/reperfusion injury models and patients and further 

evaluation in a dual infection model is necessary to assess its efficacy. 
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Table 1: A summary of CXCR1/2 antagonists that have been tested in lung injury models. 

 

3.4. Other Potential Therapeutics and Vaccination 

 Multiple other therapies are being evaluated as well. Several agents to reduce vascular 

leakage have also been evaluated with varying effectiveness including Slit2N, vasculotide, atrial 

natriuretic peptide, S1P, activated protein C, and doxycycline [25, 168]. Mathieu, et al. has 

started evaluating the use of nanoparticles carrying a plant virus coat protein and ssRNA that 

trigger a strong innate immune response in the lung during a coinfection [169]. Antibodies to 
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angiopoitin-4 have been shown to reduce damage secondary to influenza since angiopoietin-4 

causes barrier breakdown and furthers inflammation [27]. In a murine model, extracellular 

adenosine has alters the recruitment and bactericidal function of neutrophils which may 

improve outcome in coinfection [41].  

 Vaccinations are also a key area of research, especially when considering the effect these 

vaccinations may have in pandemic preparedness. Pneumococcal capsular polysaccharide 

conjugate vaccines have been shown to be very effective (100%) against otherwise lethal 

pneumococcal disease, but in coinfection, the results are not as promising with less than 40% 

survival with vaccination in a murine model [170]. The value of the current vaccine is evident 

already though, with the vaccine being 84-94% efficacious against the serotypes included and 

reducing the severity of disease and risk for hospitalization in those affected [4]. In the U.S. 

alone, we have seen a 39% reduction in clinical pneumonia in children since the vaccine has 

been introduced [171]. Imagine how effective the current vaccine will be once it’s more 

available in developing countries. 

 Coinfection of S. pneumoniae with influenza promises to be a relevant disease for many 

years to come. Despite the many recent advances in our knowledge base regarding the disease, 

the complexity of pathogenesis implies that an effective “shotgun” approach to therapy is 

doubtful and a fine-tuned combination of antimicrobial agents with immunomodulators is likely 

to be more effective when treating the disease. Because of the expansive diversity in both 

influenza viral strains and pneumococcal disease and their ever-changing patterns of resistance 

and survival, therapy effective for one combination may not consistently work for all. This 

literature review touches on several approaches to consider in therapeutic design, but 

continued discovery will be needed to better prepare for the next pandemic. 
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 My research project helps to fill some of these gaps. I hypothesize that chemokine receptors 

can be potential therapeutic target sites for combination therapy of severe dual infection 

pneumonia. As displayed in Figure 3.1, a variety of key factors contribute to the pathology seen 

in dual infection pneumonia, such as an exaggerated neutrophil influx, the release of neutrophil 

extracellular traps, and continued damage to the pulmonary epithelial-endothelial barrier 

caused primarily by host defenses to the pathogens. These factors contribute to the formation 

of acute respiratory distress syndrome and bacteremia, resulting in lethality seen in a murine 

model that mimics that seen in severe pandemics. Chemokine receptor antagonists can be used 

to control innate responses to infection and reduce damage to the host so that the coinfection 

may be better resolved or prevented entirely. 

 To test this hypothesis, we established a murine model of bacterial superinfection following 

influenza that mimics our proposed idea for pandemic influenza outbreaks and subsequent 

pneumococcal secondary infections. This model was established and the neutrophils’ influx and 

NETs induction were analyzed. Next, based on the chemokine receptor expressions, we chose to 

target CXCR2 for therapeutic efficacy in the combination treatment together with antivirals and 

antibiotics. In addition, we also established a swine model for influenza pneumonia for further 

testing this combination therapy to explore the pathogenic role of neutrophils in an animal 

model closer to a human.  
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Figure 3.1 Project overview. Coinfection is a complex synergism resulting in increased 

morbidity and mortality. The lethal synergism of influenza and Streptococcus pneumoniae 

copathogens acts in conjunction with an excessive innate immune response to create acute 

respiratory distress syndrome through impaired neutrophil function, cytotoxicity, 

microthrombosis and additional damage from dead and dying bacteria. This project focuses on 

the neutrophil’s response to infection and ways to target these responses in order to improve 

outcome. Our hypothesis is that if we target the innate immune response using chemokine 

receptor antagonists (CR Antagonists) in addition to targeting the pathogens involved with 

antiviral and antibiotic therapy, we can improve clinical outcome in a murine model of ARDS 

caused by influenza pneumonia with subsequent pneumococcal infection. 
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CHAPTER II 
 

 

ESTABLISHING AND CHARACTERIZING A MURINE MODEL FOR INFLUENZA 

PNEUMONIA WITH SUBSEQUENT PNEUMOCOCCAL PNEUMONIA 

 

Summary: A murine model for pandemic H1N1 influenza outbreaks with secondary bacterial 

coinfection is proposed and characterized. Mice receiving 100 TCID50 PR/8 H1N1 influenza A 

followed by 200 CFU S. pneumoniae 72 hours after initial viral infection have lethally synergistic 

disease with 100% mortality. Those mice receiving 200 CFU S. pneumoniae alone had minimal 

clinical disease. A significant and excessive neutrophil influx is noted on day 5 after viral 

infection (48 hours post bacterial infection). In addition, severe protein leakage, barrier 

breakdown, pulmonary pathology and bacteremia is evident at this same time. Neutrophil 

extracellular traps (NETs) are released in viral-alone and dual infected groups and byproducts of 

these NETs, histones, contribute to the pathology and barrier breakdown seen in this model. 

Dual infection animal models are complex and highly variable. We tested a variety of models to 

achieve a mode that best mimics a pandemic setting with a fairly severe pneumonia infection 

followed by a sublethal bacterial infection that together is lethally synergistic. The proposed 

murine model serves as a good base for further studies on the pathogenesis explaining the 

lethal synergism seen in influenza coinfection as well as for testing potential therapeutics. 
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Background: Influenza virus has long afflicted the human population and shaped the course of 

history over the last century. Since 1918, four major influenza pandemics have occurred with 

varying severity, but each pandemic has clearly illustrated the importance of better 

understanding the viral interactions with host and other organisms to be better prepared for 

future outbreaks. Arguably the deadliest outcome with influenza pneumonia is secondary 

bacterial infections.  Coinfections are more frequent in pandemic outbreaks than in seasonal 

influenza and are linked to rates of higher mortality [6, 12]. Postmortem samples from victims of 

the 1918 H1N1 pandemic clearly show that secondary bacterial infections were present in over 

95% of deaths, and it is believed that without these “pneumopathogens” most would have 

survived [6]. Throughout all pandemics, secondary bacterial infections continued to complicate 

the disease with Streptococcus pneumoniae being the most common pathogen identified [6, 11, 

12]. About 41% of coinfections are due to S. pneumoniae during influenza pandemics and about 

17% in seasonal outbreaks with Staphylococcus species as a close second [12].  

 As the scientific community becomes increasingly aware of the importance of 

coinfection with influenza pneumonia, we have also become increasingly aware of the 

complexity of coinfection. No single factor can be claimed solely responsible for the lethal 

synergism seen with coinfection, but instead a complex network of viral, bacterial, host and 

environmental factors contribute to the pathogenesis of the disease.  Viral and bacterial 

neuraminidases work together to create more severe disease through exposure of bacterial 

adherence receptors and upregulation of the initial viral infection [24, 28]. Influenza virus has 

also been shown to desensitize sentinel lung cells to bacterial TLR ligands and these effects can 

last months after viral infection making coinfection more likely and severe [92]. Viral PB1-F2 

enhances inflammation by promoting proapoptotic effects and disrupting mitochondria in 

coinfections [31]. Importantly, the influenza virus also induces destructive, long-lasting alveolar-
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capillary barrier dysfunction [26, 27] and a loss of the ability to effectively repair this destruction 

[23].  

 Bacterial factors, in particular those of S. pneumoniae, are key contributors to 

pathogenicity in coinfection as well. Influenza has been shown to promote the migration of S. 

pneumoniae from the upper respiratory tract, where it can often live as a commensal bacteria, 

to the lower respiratory tract where it is considered pathogenic [21, 22]. Once in the lower 

respiratory tract, factors such as pneumococcal serine-rich repeat protein [35-37] and pili [35] 

allow the bacteria to better bind to the airway epithelium. As already stated, bacterial 

neuraminidases can upregulate influenza infections and promote epithelial binding through 

galectins [24, 28]. Virulence factors, most notably pneumolysin, also contribute significantly [32-

34]. The complexity of coinfection is only compounded by the complexity of the bacterial 

pathogen itself – S. pneumoniae has over 90 recognized serotypes of capsule and a high rate of 

genetic variation [17]. 

 The host’s immune response is a significant contributor to pathology and clinical 

severity seen with influenza coinfections. Various innate responders are involved including 

monocytes, natural killer cells, dendritic cells, and neutrophils [47, 48, 57, 93]. An excessive 

neutrophil response beyond 12 hours post S. pneumoniae infection results in a greater bacterial 

burden [19, 39, 41] and significant host damage due to factors such as the release of neutrophil 

extracellular traps [55, 57]. Alterations in the function of innate responders can also contribute 

to coinfection lethality. In addition, interferon type 1 [44, 95-98] and interleukins such as IL-6 

[32], IL-10 [24, 102], and IL-12 [93] contribute to the complexity of this disease. The adaptive 

immune response is also affected to promote coinfection – affecting not only virus-specific CD8+ 

T cells [103], but γδ T cells [95] and B cells as well [104, 105].  
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 What is clear from this brief summary is the need to better understand these pathogen 

and host interactions so that novel therapeutic options and pandemic planning can occur. As 

with any therapeutic development, a consistent and controlled animal model for the disease is 

needed to assess for therapeutic potential prior to future development of these drugs. Variation 

of dual infection in human disease outside of experimental conditions is so vast, that identifying 

a model that will work in all cases is near impossible. Many options have been considered in 

various animal models, including, but not limited to mice, ferrets and pigs. In addition to variety 

in animal type, the sequence and infectious doses need to be established to fit the needs of the 

researcher. Our goal is to identify and characterize a dual infection model the emulates a 

pandemic influenza outbreak resulting in lethal synergism and high rates of mortality. To do this, 

various models had to be tested and compared to ensure the appropriate choice for future 

experiments.  

 

Methods: 

Pathogens 

Influenza A/Puerto Rico/8/34, H1N1 (PR/8) virus was obtained from the American Type Culture 

Collection (ATCC, VA). Viral titers were determined by tissue culture infectivity dose (TCID50) 

assay via infection of Madin-Darcy canine kidney (MDCK) cells. Streptococcus pneumoniae 

(serotype 3) was also obtained from the ATCC. Bacterial growth curves were established prior to 

infection [Figure M.1]. All pathogens were stored at -80°C until use. 
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Figure M.1: Streptococcus pneumoniae growth conditions were optimized.  Absorbance was 

measured over a 12-hour period. Samples were plated at various dilutions at specific 

absorbance (0.150, 0.300, and 0.800 Abs). Bacterial growth concluded that 0.300 Abs results in 

10^5 CFU/10 µL sample. The growth curve obtained was consistent among three independent 

experiments (A, B, and C).   

 

Animals 

Female Balb/c mice ranging from 6 to 10 weeks’ old were purchased from Jackson Laboratories. 

Mice were group-housed in microisolator cages in a BSL-2 facility, and were provided with food 

and fresh water ad libitum. Mice were clinically scored based on a modified version of the 

“mouse clinical assessment scoring for sepsis” (M-CASS) [172] [Table M.2].  Infection was 

performed under a mixture of xylazine (0.1 mg/kg) and ketamine (7.5 mg/kg) anesthetic via 

intraperitoneal injection. Mice were infected intranasally (IN) with a sublethal dose of 1000-100 

TCID50 PR/8 (H1N1) influenza in a 50 μl volume or given an equal volume of sterile phosphate-

buffered saline in controls. For dual infection studies, mice were administered either 104, 5x103, 

103, or 200 colony forming units (CFU) of S. pneumoniae IN in 50 μl volumes 72 hours after initial 

influenza infection, or administered PBS IN for controls. Mice were monitored closely for weight 

loss and clinical signs based on a modified “mouse clinical assessment score for sepsis” [172, 
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173]. All animal experiments were approved by the Institutional Animal Care and Use 

Committee (IACUC) of Oklahoma State University and were performed in strict accordance with 

their recommendations. 
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Table M.2: Murine Clinical Assessment of Septic Shock (MCASS) scoring was modified and used 

for murine studies. Mice were observed in an unstimulated, stimulated and disturbed state for 

the following criteria and weighed daily. An overall score from 1 – 4 with 1 being healthy and 4 

being most severe was assigned to each mouse. Any mouse receiving a score of 4 in any area 

was euthanized in these studies.  

 

Whole blood, bronchoalveolar lavage (BAL) fluid, and tissue collection 

For BAL fluid collection, the lungs were washed by intratracheal administration of 1.0 mL of 

sterile PBS in two 0.5 mL increments [55]. The recovery of BAL fluid was more than 85% for all 

animals. The BAL fluids were centrifuged at 200 xg for 10 minutes, and reconstituted in sterile 

PBS for cell counts and with 2% fetal bovine serum in PBS for flow cytometry analysis. BAL cells 

were concentrated using the CytoFuge 2 cytocentrifuge (StatSpin, Westwood, MA), and 

differential cell counts were performed using modified Giemsa staining. Whole blood was 

collected via terminal procedure of intra-cardiac collection. Blood and BAL cultures were 

performed at various dilutions after sterile collection. Cultures were performed on blood agar 

plates (Hardy Diagnostics) and incubated with CO2 at 37° C. Bronchoalveolar lavage fluid and 

whole blood (intracardiac) were collected from 3 to 5 days’ post influenza infection for many 

studies. Protein leakage was measured by the determination of the total BAL protein content 

using a DC Protein Assay Kit (Bio-Rad, CA). 

 

Histopathology 

Lungs from mice who did not have BAL collection were fixed with 4% formalin and collected for 

histopathology analysis after hematoxylin and eosin (H&E) staining. Mice were scored on a 1-4 

scale (4 being most severe) for severity in the following areas by a blinded, board-certified 

anatomic veterinary pathologist: necrotizing bronchiolitis, bronchiolar infiltrates, alveolitis, 

interstitial inflammation, hemorrhage, edema, and microvascular thrombosis. Necrotizing 
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bronchiolitis was defined as damage to the airway epithelial cells, presence of necrotic bodies or 

the total denudation of the airway lining. Total histopathologic scores were evaluated as a sum 

of all individual scores. 

 

Western Blot Analysis of Pulmonary Damage and Extracellular Histones 

BAL fluids were analyzed for the release of epithelial damage marker, T1-α, and the endothelial 

damage marker, Claudin-5. In addition, samples were also tested for extracellular histone 

release, which are indicative of NETs formation, as described previously [55]. Antibodies against 

histone protein H2A and citrullinated H4 (Millipore, MA) were used. Due to the absence of 

effective loading controls for BAL, normalization of protein content was accomplished through 

BAL collection methodology. BAL was collected with 1.0 mL sterile PBS with consistent recovery 

of 80-85%. Densitometry analysis was performed on all Western blots using ImageJ software 

version 1.51 (NIH).  

 

Transwell System Histone Experiments 

Transwell systems were established using 24 well plates and 6.5mm diameter, 3µm pore sized 

inserts (Corning). Initially, conditions were tested and optimized using epithelial (A549) and 

human umbilical vein hybrid endothelial cells (Eahy926) cell lines in both monolayer and 

coculture techniques. Cells were initially cultured in T25 flasks with DMEM media including fetal 

bovine serum and penicillin/streptomycin.  Cells were passaged once prior to culture on 

transwell membrane. In cocultures, Eahy926 cells were 2.0 x 105 cells were seeded on the 

basolateral side of the membrane and allowed to adhere and grow before reverting the inserts 

and seeing 2.0 x 105 A549 cells on the apical side. In monolayer cultures, only the apical side was 
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used. Epithelial resistance kinetics were established using an EVOM2 epithelial volt/ohm meter 

(World Precision Instruments).  

Initial histone experiments used coculture and added 10µg/mL histones to the apical 

chamber for 1 hours at 37°C before removing and adding 106 S. pneumoniae. Bacteria was then 

incubated with the cell culture for 6 hours and samples taken from the basolateral chamber for 

cultures at 30 minutes post inoculation, 2 hours, 4 hours, and 6 hours. Cultures were performed 

in multiple dilutions on blood agar plates. In addition, cells were stained with trypan blue at 6 

hours to assess for viability. All samples were performed in duplicate. For subsequent 

experiments, A549 cells were cultured in monolayer. And various concentrations of histones (0, 

10, 20, and 30 µg/mL) were incubated for 2 hours at 37°C before removal and addition of 106 S. 

pneumoniae to the apical chamber. Samples from the basolateral chamber were removed every 

2 hours for 12 hours starting at time 0 and cultured on blood agar plates. All samples were 

performed in duplicate and repeated for n=4.  

 

In vivo Histone Experiments 

Balb/c female mice were inoculated with either histones or PBS on day 0 ± 103 S. pneumoniae or 

PBS 24 hours after histone inoculation. The following conditions were established: 100µg 

histones + bacteria; 50µg histones + bacteria; 100µg histones (-) bacteria, (-) histones + bacteria, 

(-) histones (-) bacteria. Each group contained 6 mice. An additional group with 3 mice was 

inoculated with 300µg histones (-) bacteria. BAL, blood and tissue samples were collected 48 

hours after histone inoculation for cultures, cell counts, and histopathology. Mice were 

monitored closely and scored based on MCASS for the entire 48 hours.  

 

 



46 
 

Statistical Analysis 

The data are expressed as the means ± SEM. Statistical analyses were performed using Student’s 

unpaired t-test, paired t-test or analysis of variance (ANOVA) using GraphPad Prism 7 software. 

p < 0.05 was considered statistically significant. 

 

Results:  

1. Influenza and pneumococcal coinfection results in significant weight loss, inflammation, 

bacteremia, and enhanced pulmonary pathology. The first murine model assessed was 103 

TCID50 PR/8 H1N1 Influenza followed by 104 CFU S. pneumoniae 72 hours after initial viral 

infection. Both influenza-only and dual-infected groups are severely affected in this model and 

these groups lost significantly more weight than bacterial-only infected and healthy controls 

starting after day 2 [Figure 1.1]. Bacterial-only infected mice lost over 2% body weight by day 5. 

 

Figure 1.1: Mice with viral-alone and dual infection lose significant weight. Model tested: 1000 

TCID50 PR/8 H1N1 influenza ± 104 CFU S. pneumoniae (Serotype 3). [Control: Mice receive only 

PBS; Influenza: mice receive 1000 TCID50 PR/8 influenza; SP: mice receive 200 CFU S. 

pneumoniae on day 3; Dual: Dual infection model]. Bacterial infection was administered 72 

hours after initial viral infection. Influenza-only and dual infected groups lost significantly more 
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weight than bacterial-only or healthy controls beginning at day 2. Bacterial-only lost an average 

of 2.3% body weight by day 5 (day 2 post infection), whereas healthy controls steadily gained 

weight. n=5 mice per group. Statistical comparison performed by one-way ANOVA. 

****p<0.0001 (versus control). 

 

In addition to weight loss, influenza-only and dual infected groups saw sharp clinical decline 

beginning at day 2. Although weight loss matched between these groups, the dual infected 

group had a more severe clinical decline and progressed to endpoint on day 5. This clinical 

decline seen in the dual-infected group may be explained by cultures performed on the BAL and 

blood on day 5 [Figure 1.2]. 

 

Figure 1.2: Dual infection results in bacteremia by day 5. Balb/c mice were infected with 1000 

TCID50 PR/8 H1N1 influenza ± 104 CFU S. pneumoniae 72 hours after viral infection. Cultures 

were performed from 10 µL BAL and blood from each sample. No growth was noted in control 

or influenza-only groups and no contamination seen. Dual infected mice grew S. pneumoniae 

from both blood and BAL samples, whereas bacterial-only infected mice only grew S. 

pneumoniae from BAL. Symbols for Table A (CFU per 10µL sample): 0<+<10. 10<++<100. 

100<+++<1000. 1000<++++. n=2 shown in table. 

 

Dual-infected mice had marked bacteremia evident on day 5. In contrast, no bacteremia was 

seen in bacterial-only infected groups. Bacterial cultures from BAL were also denser than 
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bacterial-only, indicating that viral infection enhances bacterial growth both within the lung and 

the bloodstream, likely through barrier breakdown. Protein leakage within the BAL supernatant 

was measured [Figure 1.3 A]. The more severely affected groups, viral-alone and dual, have 

significantly higher amounts of protein leakage as compared to bacterial-alone and healthy 

controls, indicating increased inflammation in these groups. BAL cell counts were also higher in 

these groups due to a large inflammatory cell influx. Dual-infected mice had significantly more 

inflammatory cells in their BAL than viral-alone [Figure 1.3 B]. 

 

Figure 1.3: Viral-alone and dual infection results in marked vascular leakage and cellular 

infiltrations. Balb/c mice were infected with 1000 TCID50 PR/8 H1N1 influenza ± 104 CFU S. 

pneumoniae 72 hours after initial infection. BAL was collected on day 5 and the supernatant 

used for protein estimation using a DC Protein Assay Kit. A: Infected mice in both the influenza-

only and dual infection groups had significantly more protein than compared to healthy controls 

and bacterial only (SP) groups. There was no significant difference between influenza-only and 

dual-infected mice. B: Infected mice have significantly higher cell count numbers from BAL fluid 

collection. Dual infected mice are also significantly higher than influenza-only. Data are 

expressed as means ± SEM. n=4. Statistical comparisons performed via one-way ANOVA. 

*p<0.05; **p<0.01; ***p<0.001; ****p<0.0001 (relative to bacterial-alone (SP) unless otherwise 

indicated). 

 

Lung tissue was collected and formalin-fixed on day 5. Tissue sections were stained in 

hematoxylin and eosin for pathologic scoring, as performed by a blinded anatomic veterinary 
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pathologist. Mice were scored from 0 (healthy) to 4 (most severe) in 7 areas: necrotizing 

bronchiolitis, bronchiolar infiltrates, alveolitis, interstitial inflammation, hemorrhage, edema, 

and microvascular thrombosis. The sum of these scores for each mouse was calculated and used 

for overall comparisons between groups [Figure 1.4]. Mice receiving bacteria-alone had rare 

focal lesions with the majority of tissue mimicking that of healthy controls. Viral-alone infected 

mice were more severely affected with larger areas of pathology and more widespread disease. 

The most severely affected group was the dual-infected group with widespread pathology and 

large areas with complete loss of pulmonary architecture. 

 

Figure 1.4: Pulmonary pathology is severely enhanced in dual infection on day 5. Mice were 

scored from 0-4 in 7 areas: necrotizing bronchiolitis, bronchiolar infiltrates, alveolitis, interstitial 

inflammation, hemorrhage, edema, and microvascular thrombosis. After scoring, the sum of the 

scores for each mouse was calculated and used for overall comparisons. Severe pulmonary 

pathology was noted in influenza-only and dual infected groups as compared with healthy 

controls. Mice infected with only S. pneumoniae had few focal areas of moderate pathology, but 

were overall unaffected. Although no statistical difference was seen between influenza-only and 

dual infected mice, a trend toward enhanced pathology in dual infection was evident 

(p=0.0764). Data are expressed as means ± SEM. n=5 mice per group. Statistical comparisons 

made via one-way ANOVA. **p<0.01; ***p<0.001 (relative to controls). 
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2. Lower infective doses of pathogens maintain clinical model. Three additional models were 

next assessed with lower infective doses of both virus and bacteria. First, the dose of influenza 

virus was reduced 10-fold to 100 TCID50 while maintaining 104 CFU S. pneumoniae (serotype 3) 

on day 3. Bacterial-alone infected mice lost an average of 7% body weight by day 5, while the 

more severely infected viral-alone and dual groups lost significantly more weight [Figure 2.1]. 

 

Figure 2.1: Viral-alone and dual infected mice continue to lose significant weight at decreased 

viral dosage. 100 TCID50 PR/8 H1N1 influenza ± 104 CFU S. pneumoniae (Serotype 3). Bacterial 

infection was administered 72 hours after initial viral infection. [Control: PBS only; SP: S. 

pneumoniae on day 3; Influenza: PR/8 influenza-only; Dual: dual infection]. Influenza-only and 

dual infected groups lost significantly more weight than bacterial only or healthy controls most 

apparent after day 3. Bacterial-only lost an average of 7% body weight by day 5 (day 2 post 

infection), whereas healthy controls steadily gained weight. n=5 mice per group. Weights 

compared via one-way ANOVA. ****p<0.0001 (relative to controls). 

 

Bacterial cultures performed from BAL and blood samples on days 4-6 post viral infection 

mimicked that seen in the previous model. No growth was seen in viral-alone infected mice. 

Dual infected mice had significant growth of S. pneumoniae on all days in BAL with heavy 

bacterial burdens noted. In addition, bacteremia was evident in all dual samples on days 5 and 
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6, but not on day 4, indicating that barrier breakdown is occurring around this time. 

Interestingly, a single mouse had bacteremia on day 6 from the S. pneumoniae-alone infected 

group [Table 2.2]. 

 

Table 2.2: Primary influenza infection enhances bacterial dissemination.  Balb/c mice were 

infected with 100 TCID50 PR/8 H1N1 influenza ± 104 CFU S. pneumoniae 72 hours after viral 

infection. Cultures were performed from 10 µL BAL and blood from each sample. No growth was 

noted in influenza-only groups and no contamination seen. Dual infected mice grew S. 

pneumoniae from both blood and BAL samples, whereas bacterial-only infected mice grew S. 

pneumoniae from BAL and one sample grew S. pneumoniae 6 DPI from the blood. Symbols for 

Table A (CFU per 10µL sample): 0<+<100. 100<++<1000. 1000<+++<10,000. 10,000<++++. n=2 

shown in table. Table shows average growth. 

 

BAL was collected 4-6 days after viral infection (24-72 hours after bacterial infection) and used 

for cell counts and protein leakage estimation, both of which are indicative of inflammation. 

Viral-alone and dual infected groups had significantly more protein leakage as compared to 

healthy controls on days 5 and 6 [Figure 2.3 A]. On day 6, there is also a significant increase in 

protein leakage in the dual-infected group over viral-alone, indicated more severe damage to 

the lungs. Cell counts were also increased in dual infected mice on all three days [Figure 2.3 B]. 
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Figure 2.3: Infected mice exhibit significantly more inflammation. In this model, balb/c mice 

were infected with 100 TCID50 PR/8 H1N1 influenza ± 104 CFU S. pneumoniae 72 hours after 

initial infection. BAL was collected on days 4-6 and the supernatant used for protein leakage 

estimation (DC Colorimetric Protein Assay Kit (Bio-Rad). A: Infected mice in both the influenza-

only and dual infection groups had significantly more protein than compared to healthy controls 

and bacterial only groups on days 5 and 6 post influenza infection. In addition, there was a 

significant difference between influenza-only and dual-infected mice on day 6. B: Dual-infected 

mice have significantly higher cell count numbers from BAL fluid collection as compared with 

bacterial only groups. Dual infected mice are also significantly higher than influenza-only on day 

6 (p<0.05). Data are expressed as means ± SEM. Statistical comparisons made via one-way 

ANOVA. n=4. ***p<0.001; ****p<0.0001 (relative to healthy controls in Fig. 2.3a; relative to SP 

in Fig. 2.3b). 

 

Since this model resulted in a chance of bacteremia in bacterial-alone infected mice, the next 

two assessed models reduced the bacterial dose as well: 100 TCID50 PR/8 H1N1 influenza 

followed by either 103 or 5x103 CFU S. pneumoniae 72 hours after viral infection. This model 

maintained the weight loss previously noted in influenza-alone and dual infected groups, but the 

bacterial-alone infected mice, which were administered 103 CFU S. pneumoniae, gained weight 

over 5 days instead of losing weight [Figure 2.4]. 
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Figure 2.4: Influenza and Dual-Infected mice lose significant weight starting on day 3. Model: 

100 TCID50 PR/8 H1N1 influenza ± 103 or 5x103 CFU S. pneumoniae (Serotype 3). Bacterial 

infection was administered 72 hours after initial viral infection. Influenza-only and dual infected 

groups lost significantly more weight than bacterial beginning at day 2. Bacterial-only at this 

lower infective dose gained weight by day 5 (day 2 post infection). n=5 mice per group. 

Statistical comparisons made via one-way ANOVA.  ****p<0.0001 relative to SP. 

 

At this lower bacterial dosage, no mice from the bacterial-alone infected groups developed 

bacteremia and had a reduced bacterial burden within the lungs as well, based on BAL cultures 

[Figure 2.5]. Dual-infected mice mimicked that of previous groups with bacteremia developing 

on day 5 and significantly increased bacterial growth in BAL for both dual models. 
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Table 2.5: Dual infection results in bacteremia by day 5. Balb/c mice were infected with 100 

TCID50 PR/8 H1N1 influenza ± 103 or 5x103 CFU S. pneumoniae 72 hours after viral infection. 

Cultures were performed from 10 µL BAL and blood from each sample. No growth was noted in 

influenza-only groups and no contamination seen. Dual infected mice grew S. pneumoniae from 

both blood and BAL samples, whereas bacterial-only infected mice only grew S. pneumoniae 

from BAL. Symbols for Table A (CFU per 10µL sample): 0<+<100. 100<++<1000. 

1000<+++<10,000. 10,000<++++. n=3. Table shows average growth. 

 

Cell counts performed from BAL collected on days 4-6 indicate a significant increase in 

inflammatory cell numbers in the dual infected samples, especially apparent on day 6 [Figure 

2.6]. Overall, this latest murine model is similar to the previously tested models in severity for 

influenza-alone and dual infection groups with reduced disease in the bacterial-alone group. 
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Figure 2.6: Inflammatory cell influx is most notable on day 6. In this model, BAL fluid cell counts 

were significantly higher in influenza-only and dual-infected groups than that of bacterial-only 

infected mice. Data are expressed as means ± SEM. n=5 mice per group. Statistical comparison 

was performed via one-way ANOVA between same day samples. *p<0.05; **p<0.01 (relative to 

SP). 

 

3. Murine Models for dual infection result in significant pulmonary pathology and breakdown of 

the pulmonary epithelial and endothelial barriers. Further analysis of histopathology supports 

the severe clinical decline and inflammatory response seen in these models. Pulmonary tissue 

was collected and formalin-fixed on days 4-6. Lungs were scored as previously described.  
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Figure 3.1: Dual infection results in severe pulmonary pathology. Balb/c mice were infected 

with 100 TCID50 PR/8 H1N1 influenza, then 104 CFU S. pneumoniae 72 hours after initial 

infection. Bacterial only groups were administered 104 CFU S. pneumoniae. Dual infected mice 

received significantly higher scores than control mice. Influenza-only infected mice received 

significantly higher scores than control mice on 5 and 6 DPI. In addition, the dual infected group 

was significantly worse than the influenza-only group on all days (p<0.05 on 4,5 DPI and p<0.01 

6 DPI). Data are expressed as means ± SEM. Statistical comparison was performed via one-way 

ANOVA between same day samples. n=2 mice per group. ** p<0.01; *** p<0.001 (relative to 

healthy controls). 

 

Histopathology scores for the group receiving 100 TCID50 influenza ± 104 CFU S. pneumoniae are 

more severe in viral-alone and dual-infected groups than healthy controls. The dual infected 

groups are also statistically more severe on all three days as compared with viral-alone, with 

more widespread pathology and extreme damage [Figure 3.1].  After reduction in bacterial 

dosage, these trends do not change much, with dual-infected groups remaining the most severe 

on all days [Figure 3.2]. 
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Figure 3.2: Dual infection continues to result in severe pulmonary pathology after lowering 

bacterial dose. Balb/c mice were infected with 100 TCID50 PR/8 H1N1 influenza, then either 103 

or 5 x 103 CFU S. pneumoniae 72 hours after initial infection. Bacterial only groups were 

administered 103 CFU S. pneumoniae. Both dual infection groups received significantly higher 

scores than control mice. In addition, the dual infected group receiving 5 x 103 CFU bacteria was 

significantly worse than the influenza only group on all days (p<0.05). Data are expressed as 

means ± SEM. Statistical comparison was performed via one-way ANOVA between same day 

samples. n=2 mice per group. ** p<0.01; *** p<0.001 (relative to healthy controls). 

 

As previously described, histopathology scores were based on 7 major pathologic lesions. Of 

these, no mice in the bacterial-infected groups had evidence of necrotizing bronchiolitis or 

microvascular thrombosis. These mice also had only mild disease with few foci affected and 

most tissue appearing like that of healthy controls. Dual-infected mice scored higher in all 

categories than viral-alone and had the most severe disease with widespread areas of necrosis, 

pyogranulomatous inflammation and subsequent breakdown of pulmonary architecture [Figure 

3.3]. These severe, large areas of disease are clearly visualized in Figure 3.4 and can be 

compared with that of the other groups, showing less disease. 
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Figure 3.3: Dual infection results in significantly enhanced pathology in all infective models. 

Lungs were collected and formalin-fixed on day 5. Fixed sections were scored from 0 (healthy) to 

4 (severe) in the following areas: necrotizing bronchiolitis, bronchiole infiltrates, alveolitis, 

interstitial inflammation, hemorrhage, edema, and microvascular thrombosis. Bacterial-only 

infected mice had mild bronchiole infiltrates, alveolitis, interstitial inflammation, hemorrhage 

and edema at few focal locations. No necrotizing bronchiolitis or microvascular thrombosis were 

noted. Influenza-only and dual-infected mice had significantly more severe pathology. Data are 

expressed as means ± SEM. Statistical comparisons were made via one-way ANOVA. n=5 mice 

per group. *p<0.05; #p<0.01; @p<0.001; ^p<0.0001 (relative to healthy controls). 

 

 

Figure 3.4: Severe pulmonary pathology and extensive damage is evident on hematoxylin and 

eosin stained tissue sections. This figure acts as a visual representation of Figure 3.3. In 

addition, the extensive nature of pulmonary pathology evident in dual infection is evident with 
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large areas of severe pyogranulomatous inflammation and destruction of the pulmonary 

epithelium and endothelium affecting large areas of pulmonary tissue.  

 

The disease noted on histopathology is further confirmed by western blot analysis of Claudin-5 

and T1α. Claudin-5 is normally found at the tight junction of the endothelium and so is 

considered a sign of endothelial damage when identified in high quantities in BAL supernatant. 

T1α is typically part of type I pneumocytes and so is used as a marker for epithelial barrier 

breakdown in the lungs. Evidence of endothelial breakdown is seen in all infected groups based 

on western blot analysis, but is quantifiably more severe in dual and viral-alone groups [Figure 

3.5]. 

 

Figure 3.5: Dual infection results in significant pulmonary endothelial damage. Claudin-5, a 

marker for endothelial barrier breakdown, was measured from BAL supernatant using western 

blot technique. Findings confirm significant protein within the BAL supernatant indicating 

endothelial barrier breakdown within the pulmonary tissue in all infected samples. Samples 

were normalized by BAL collection technique (see materials and methods). 
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Epithelial barrier breakdown was also noted in all influenza-alone and dual infected mice from 

day 4-6 [Figure 3.6]. Detectable presence of this marker in bacterial-alone infected mice was not 

consistently noted, indicating some variation in the effect of the bacteria alone to increase 

epithelial permeability. 

 

 

Figure 3.6: Dual infection results in significant pulmonary epithelial damage. T1-α, a marker for 

alveolar epithelial breakdown, was measured from BAL supernatant using Western Blot 

technique. Epithelial breakdown is apparent in all infected samples, but most consistently in 

influenza-only and dual infected samples. Densitometry confirms that influenza-alone and dual 

infected mice have significantly more T1-α than bacterial-alone and healthy controls. Statistical 

comparisons made via one-way ANOVA. Data are expressed as means ± SEM. n=4. *p<0.05; 

**p<0.01 (relative to heathy controls). 
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4. Sublethal combination of influenza and S. pneumoniae results in a lethally synergistic murine 

model for influenza coinfection. In order to assess the effects of a much lower dosage of S. 

pneumoniae in combination with a severe, but not lethal dose of influenza, 100 TCID50 influenza 

was administered 3 days prior to administering 200 CFU of bacteria. Even at these low doses, 

viral-alone and dual infected mice lost significant weight between days 2-5, matching an 

increase in severity of clinical score. In addition, dual infected mice continued to be more 

severely affected than those with viral-alone infection [Figure 4.1]. 

 

Figure 4.1: Dual-infected and influenza-alone infected mice have similar weight loss, but have 

differences noted in clinical decline. Balb/c mice were infected with sublethal doses (100 TCID50 

intranasally) of influenza A/Puerto Rico/8/34 H1N1 virus or PBS followed by sublethal S. 

pneumoniae (200 CFU IN) or PBS three days after initial influenza infection. A and B: Infected 

mice lost significant weight and had significant increase in severity of clinical score starting on 

day 3 as compared with control and S. pneumoniae-only infected mice. In addition, significant 

differences (p<0.0001) in clinical score were noted between Influenza Only and Dual groups on 

days 4 and 5 post influenza infection. Data were expressed as means ± SEM. Statistical 

comparisons were made with one-way ANOVA and unpaired t-tests. n = 21 mice per group. 

**** p<0.0001. 

 

An excessive neutrophil influx is also noted on day 5, with significantly more total inflammatory 

cells seen in both viral-alone and dual infected groups and a trend toward the most cells in dual 

infected mice [Figure 4.2 A]. Images from cytospins clearly show this difference with the 

predominant cell type being neutrophils [Figure 4.2 B]. Differentials performed from these 
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cytospins confirm that neutrophils are the predominant cell type in both viral-alone and dual 

infected groups, with a higher percentage of neutrophils noted in dual than viral-alone, which 

had more macrophages present as a percentage of the cell population [Figure 4.3]. 

 

Figures 4.2: Excessive neutrophil influx seen in dual infection. Balb/c mice were infected with 

sublethal doses (100 TCID50 intranasally) of influenza A/Puerto Rico/8/34 H1N1 virus or PBS 

followed by sublethal S. pneumoniae (200 CFU IN) or PBS three days after initial influenza 

infection. A and B: Influenza-infected and dual-infected groups have significantly more cells in 

the BAL fluid than in S. pneumoniae-only infected groups as seen from cell counts performed via 

hemocytometer and cytospin data. A trend toward a significant increase in cell counts in dual 

infected mice compared with viral-only was also noted. Data were expressed as means ± SEM. 

Statistical comparisons were made via one-way ANOVA. n = 7-11 mice per group. * p<0.05; ** 

p<0.01 (relative to SP Only). 
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Figure 4.3: Neutrophils predominate inflammatory cell influx. Balb/c mice were infected with 

sublethal doses (100 TCID50 intranasally) of influenza A/Puerto Rico/8/34 H1N1 virus or PBS 

followed by sublethal S. pneumoniae (200 CFU IN) or PBS three days after initial influenza 

infection. Differentials performed on BAL fluid cells viewed after cytospin revealed majority 

neutrophils, especially noted in dual infections, with a significantly higher percentage of 

neutrophils in dual differentials compared with influenza alone. Data were expressed as means 

± SEM. Comparisons made via paired t-test. n = 3 mice per group. **** p<0.0001 relative to 

lymphocytes. #### p<0.0001 (relative to macrophages). 

 

Protein leakage as measured in BAL supernatant also supports the continued severity of the 

viral-alone and dual-infected models. Not only was more protein evident in these groups as 

compared with bacterial-alone and healthy groups, but these protein levels climbed from days 3 

through 6 [Figure 4.4]. 
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Figure 4.4: Protein leakage significantly increases between 3-6 DPI in both influenza-only and 

dual infected models. In this model, balb/c mice were infected with 100 TCID50 PR/8 H1N1 

influenza ± 102 CFU S. pneumoniae 72 hours after initial infection. BAL was collected on days 3-6 

and the supernatant used for protein estimation. 4-6 DPI samples in both the influenza-only 

infected group and dual infected group were significantly higher than that of controls or 

bacterial-only infected mice. In addition, there is a significant increase in protein leakage in 

these same groups from 3-5 days after initial viral infection with maximum damage resulting in 

leakage appearing on days 5 and 6. Data are expressed as means ± SEM. Comparisons 

performed via one-way ANOVA. n=4-8 mice per group. **p<0.01; ***p<0.001; ****p<0.0001 

(relative to healthy controls unless otherwise indicated). 

 

Similar trends to previously assessed models are also evident when evaluating histopathology. 

Lungs were collected and formalin-fixed on days 3-6 to be sectioned and scored by an anatomic 

veterinary pathologist. These sections were scored in the same manner as described previously. 

Notable pulmonary edema, pyogranulomatous inflammation, hemorrhage and widespread 

disease are evident on dual-infected lungs [Figure 4.5]. When compared in each key area scored, 

results remain similar to previous models as well, with minimally affected pulmonary tissue from 

bacterial infection alone and markedly more severe disease seen in influenza and especially 
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dual-infected groups [Figure 4.6]. These findings are again further supported by evaluating 

Claudin-5 and T1α markers through Western Blot analysis (data not shown). 

 

 

Figure 4.5: Dual infection results in severe pulmonary pathology. Lungs were collected and 

formalin-fixed for histopathology analysis between days 3-6 post influenza infection. Day 3 

samples for S. pneumoniae-only and dual infections were not collected since bacterial 

inoculation was performed at that time. Figure presents sum of scoring.  Paraffin-embedded 

lung tissues from 5 days post-challenge with infection or mock infection were stained with 

hematoxylin and eosin. Tissues affected through dual infection show most severe score with 

notable pulmonary edema, bronchiolitis, alveolitis, hemorrhage, microvascular thrombosis and 

interstitial disease. Infected samples were compared with controls. Data were expressed as 

means ± SEM. Comparisons evaluated via one-way ANOVA. n = 4 mice per group. * p<0.05; ** 

p<0.01; *** p<0.001. 
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Figure 4.6: Dual infection results in significantly enhanced pulmonary pathology. Individual 

areas scored include: necrotizing bronchiolitis, bronchiole infiltrates, alveolitis, interstitial 

inflammation, hemorrhage, edema, and microvascular thrombosis. Infected samples were 

compared with controls. Data were expressed as means ± SEM and compared via one-way 

ANOVA. n = 4 mice per group. * p<0.05; ** p<0.01; *** p<0.001. 

 

5. Lethally synergistic disease results in the release of neutrophil extracellular traps (NETs). NETs 

have been reported as a significant cause of pulmonary pathology and worsened clinical disease 

in influenza pneumonia [55, 83]. To identify if NETs release is apparent in this murine model, 

extracellular histones were measured from BAL supernatant. Both H2A [Figure 5.1] and 

citrullinated H4 [Figure 5.2] are quantifiably present in viral-alone and dual infected mice in all 

models, with minimal detection in bacterial-alone groups. Citrullinated H4 is considered a more 

specific marker for NETosis as histones must undergo citrullination in order to be released 

through NETs. 
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Figure 5.1: Accumulation of extracellular histones during influenza and dual infection. BAL 

supernatant was collected from all models on days 4-6. Figure shows sample of results on day 5 

for three tested models. H2A, extracellular histone, is present in all viral-alone and dual infected 

samples. H2A is minimally present to absent in bacterial-alone samples and absent in healthy 

controls. Densitometry confirms the increased presence of extracellular histone, H2A, in the 

BAL. Data are expressed as means ± SEM and compared via one-way ANOVA. n=4. *p<0.05; 

**p<0.01; ***p<0.001 (relative to healthy controls). 
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Figure 5.2: Neutrophil Extracellular Traps (NETs) are released in vivo during influenza-alone 

and dual infection. BAL supernatant was collected from all models on day 4-6 and western blot 

technique performed to assess presence of citrullinated H4 (citH4), an extracellular histone and 

by product of NETosis. Figure shows three results from day 5. CitH4 was present in all viral-alone 

and dual infection samples, while minimally present to absent in bacterial-alone groups. CitH4 is 

absent in healthy BAL. Data are expressed as means ± SEM and compared via one-way ANOVA. 

n=4. *p<0.05; **p<0.01; ***p<0.001 (relative to healthy controls unless otherwise indicated). 

 

Histones damage epithelial cells and increase bacterial translocation in vitro. 10 µg/mL histones 

were added to half of the inserts on the apical chamber of a co-culture transwell with A549 cells 

(epithelial) on the apical side of the membrane and Eahy926 (endothelial) cells on the 

basolateral side of the membrane. Histones were incubated on these cells for 1 hour before 

removal and the addition of 106 CFU S. pneumoniae to all apical chambers. Cultures from 
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basolateral chamber samples were performed over 6 hours by no growth was seen on any 

sample. However, after 6 hours, the cells were stained with trypan blue and a significant 

increase in the number of non-viable cells was noted in chambers treated with histones 

compared to those without (data not shown). 

 

Figure 5.3: Histones directly contribute to epithelial barrier breakdown and bacterial 

dissemination  An A549 epithelial cell monolayer was established on a transwell system and 

cells were exposed to varying levels of histones for one hour before incubation with S. 

pneumoniae. 10 µL samples were collected from the basolateral chamber and cultured over a 

12-hour time period. High levels of histones resulted in significantly more bacteria translocating 

across the epithelial barrier, but was not significantly noted until after 10 hours. Data are 

expressed as means ± SEM and are compared via one-way ANOVA. n=2. *p<0.05; ****p<0.0001 

(relative to no histone control). 

 

 Next, an A549 monolayer transwell system was established to test various 

concentrations of histones and their effects on translocation. The following conditions were 

tested: No histones, 10µg/mL histones, 20µg/mL histones, and 30µg/mL histones. After histone 

incubation, all wells were inoculated with 106 CFU S. pneumoniae and allowed to grow for 12 

hours. Samples were removed from the basolateral chamber every 2 hours for culture. 
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Statistical significance was only noted between groups starting at 10 hours post bacterial 

inoculation. The cells receiving 30µg/mL histones had significantly higher levels of bacterial 

translocation to the basolateral chamber than those receiving no or 10µg/mL histones at both 

10 and 12 hours [Figure 5.3]. Although significance is only established late, a trend toward this is 

apparent from early on, as can be seen in Figure 5.4, which outlines the first 6 hours of 

incubation. Overall bacterial growth for all conditions exponentially increases after 8 hours, 

although it increases much more in the wells treated with the highest amounts of histone 

[Figure 5.4].  

 

Figure 5.4: Histone effects on bacterial translocation. Although sample size is insufficient for 

statistical significance, a trend can be seen toward increased histone concentrations and an 

increase in bacterial translocation and subsequent bacterial growth from the basolateral 

chamber. This figures helps to illustrate the first 6 hours after inoculation. Overall, bacterial 

growth in all groups exponentially increases after 8 hours, but wells receiving higher levels of 

histones result in statistically significant increases in bacterial translocation. Data are expressed 

as means ± SEM. n=2.  

 

Histone inoculation in vivo results in increased morbidity and bacterial growth. Balb/c mice were 

inoculated with either 50 or 100 µg/mL histones IN ± 103 CFU S. pneumoniae intranasally 24 
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hours after histone inoculation and monitored over 72 hours for clinical signs and weight loss. 

Mice were euthanized after 72 hours and samples collected for cell counts, culture and 

histopathology. In addition, a smaller group was inoculated with 300 µg/mL histones, but the 

mice receiving 300 µg/mL histones had to be euthanized within an hour of inoculation due to 

steep clinical decline, likely from histone toxicity.  

 

Figure 5.5: Histones in combination with pneumococcal infection result in more pronounced 

weight loss. Balb/c mice were inoculated with either 50 or 100 µg/mL histones IN +/- 103 CFU S. 

pneumoniae IN and monitored over 72 hours for clinical signs and weight loss. The mice 

receiving 300 µg/mL histones had to be euthanized within an hour of inoculation due to steep 

clinical decline. Percentage weight lost over 3 days: Groups receiving S. pneumoniae lost 

between 3-5% of their weight over three days with the greatest weight loss noted in groups 

receiving both bacteria and histone inoculation. Clinically, mild lethargy was noted in the 100μg 

histone groups on day 1, and in the 100µg histone + SP groups on days 1, 2, and 3 (data not 

shown). Data are expressed as mean ± SEM. n = 6 mice per group for all studies.  

 

Groups receiving S. pneumoniae lost between 3-5% of their weight over three days with the 

greatest weight loss noted in groups receiving both bacteria and histone inoculation [Figure 5.5]. 

Clinically, mild lethargy was noted in the 100μg histone groups on day 1, and in the 100µg 

histone + SP groups on days 1, 2, and 3 (data not shown).  
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Figure 5.6: Histones enhance cellular influx and cause bacteremia in vivo. Balb/c mice were 

inoculated with either 50 or 100 µg/mL histones IN +/- 103 CFU S. pneumoniae IN and monitored 

over 72 hours for clinical signs and weight loss. Mice were euthanized after 72 hours and 

samples collected for cell counts, culture. A: BAL cell counts were significantly different between 

100µgHist+SP and SP only and controls. No other significant differences were noted. B: Cultures 

were taken on day 3. Results reflected are CFU/20μL sample. +: <50 CFU; ++: 50<CFU<500; +++: 

500<CFU<1000. n=3 Blood and BAL culture results indicated growth of SP in all BAL samples 

from mice inoculated with SP and in one blood sample, from a mouse within the 50 µg/mL 

histone+SP group. n=3. Data are expressed as mean ± SEM and compared via one-way ANOVA. n 

= 3 mice per group for all studies. * p<0.05 (compared with healthy controls unless otherwise 

indicated). 

 

Blood and BAL cultures were performed on day 3. Blood and BAL culture results indicated 

bacterial growth in all BAL samples from mice inoculated with SP and in one blood sample, from 

a mouse within the 50 µg/mL histone+SP group [Figure 5.6 B]. BAL cell counts were significantly 

higher in the 100µgHist+SP group as compared with the bacterial only and mock infected mice 

[Figure 5.6 A]. Histopathology shows increased pulmonary hemorrhage, especially in the mice 

inoculated with 300 µg/mL histones who were euthanized shortly after inoculation due to 

severe clinical decline [Figure 5.7]. 
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Figure 5.7: Histopathologic effects of histones in vivo include mild disease and hemorrhage. 

Balb/c mice were inoculated with either 50 or 100 µg/mL histones IN +/- 103 CFU S. pneumoniae 

IN. Mice were euthanized after 72 hours and samples collected for histopathology. The mice 

receiving 300 µg/mL histones were euthanized within an hour of inoculation due to steep 

clinical decline. Histopathology from mice show mild disease. Hemorrhage is most notable in the 

group receiving 300 µg histones. Mild alveolitis and bronchiolitis are also evident in those 

receiving histones. n = 3 mice per group for all studies.  

 

 

Discussion: 

Identifying animal models for influenza pneumonia with pneumococcal coinfection can 

be challenging due to the complexity of the disease. Variation of dual infection in human disease 

outside of experimental conditions is so vast, that identifying a model that will work in all cases 

is near impossible. My goal was to characterize and develop a murine model for dual infection 

pneumonia that resembles that seen in pandemic influenza outbreaks, where a severe H1N1 

influenza strain is predominant and coinfection results in a lethally synergistic outcome with 

high rates of morbidity and increased mortality. A murine model that best mimics this process 

can be used to better understand the pathogenesis of the disease and develop therapeutics that 
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may work well in combination with antibiotics and antivirals to combat the high morbidity and 

improve clinical outcome. 

 Various models have been tested. Factors to be considered include host, pathogens, 

infective dosages, and timing of secondary infection. Various hosts have been utilized in 

assessing dual infection: in particular mice, rats, ferrets and pigs. Due to the availability, cost, 

and ability to repeat consistent experiments, murine models are the most commonly used. 

Ferret models also appear rather ideal, and a ferret model has shown the same synergism seen 

in mice, dependent on the pneumococcal strain [16], but availability and cost is a factor for 

many. PR/8 H1N1 influenza A was chosen due to its consistency in a mouse model to limit 

variation. A sublethal dosage better mimics a pandemic for a typical, healthy population, where 

an individual may develop moderate to even severe disease, but does not always succumb to 

the virus alone. Streptococcus pneumoniae is the most common secondary bacterial agent seen 

in dual infection influenza pneumonia with over 40% of coinfections culturing S. pneumoniae 

during pandemic outbreaks [6, 11, 12], and so was chosen for the bacterial pathogen. As an 

often opportunistic pathogen, S. pneumoniae can be subclinical and often cause mild disease, 

which is complicated in dual infection, creating a synergistic model. The models tested in this 

study indicate that even decreasing the infective dose of S. pneumoniae by almost 1000-fold, 

still resulted in severe, lethally synergistic disease with bacteremia. Bacteremia is a common 

sequelae for severe influenza coinfection – during the 1918 H1N1 pandemic, over 95% of lungs 

cultured bacteria and an alarming 70.3% of assessed victims were bacteremic [6]. In this 

chapter’s proposed murine models, bacteremia is a consistent clinical finding from day 5 and 6 

(48-72 hours after bacterial infection) and correlates with a breakdown in the pulmonary 

epithelial and endothelial barriers, as seen by T1α and Claudin-5 detection as well as 

histopathologic changes at that time. Drastic differences were not seen between the tested 
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models. Due to the chance of bacteremia in our bacterial-only infected group at higher bacterial 

doses and the severity of the disease, our model essentially reduced infective dose to the lowest 

amount that still causes lethal synergism, which not causing significant disease in bacterial-only 

infected mice. 

 Timing of infection must also be considered. Consideration must be made to which 

agent is administered first, bacterial or viral, and how many days apart are they administered? If 

bacteria is introduced into the lower airways first, there may be a protective effect and 

enhanced adaptive response to influenza virus initially, although the ability of the host to 

neutralize the virus one month after infection is reduced [105]. In addition, pandemic outbreaks 

involve viral introduction first, with secondary agents taking advantage of the viral-induced and 

immunopathologic damage to the host to enter the lower airways and cause increased disease. 

If viral and bacterial agents are administered simultaneously, the synergism normally seen in 

infection is not present to the same degree [29]. However, if the viral burden is allowed to clear 

and the bacteria introduced seven days after viral infection, this synergism is clearly evident 

with an enhanced inflammatory response and bacterial burden [19, 29]. Significant neutrophil 

accumulation and functional impairment is noted in mice receiving secondary bacterial infection 

3 and 6 days after influenza infection as well [39]. The aim of our lab is to use this murine model 

to assess the therapeutic potential of neutrophils as a target for dual infection influenza 

pneumonia. Since the excessive inflammatory response is still present, our model allows for 3 

days between administration of influenza and S. pneumoniae. Based on our results, clinical 

disease develops from influenza on day 2, at which point bacteria is introduced 24 hours later. 

An excessive neutrophil influx is apparent in both viral-alone and dual infected groups, most 

notable at day 5 and 6. At this same time, pulmonary pathology and protein leakage are severe 
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in these models and support that pulmonary epithelial and endothelial barrier breakdown at 

this time allows for the bacteremia introduced on day 5 in the dual infected mice. 

There is also an increase in the release of neutrophil extracellular traps (NETs) in both 

influenza-only and dual infected BAL. We have previously shown that excessive neutrophils and 

NETs contribute to alveolar-capillary damage after influenza challenge in mice [174]. NETs 

formation is dependent on redox enzyme activities [55]. NETs were first identified as a process 

of cell death that released DNA, histones and granular proteins such as elastase and 

myeloperoxidase to entrap and kill pathogens [50]. Since the initial identification of NETs, they 

have also been shown to be detrimental to the host – particularly through histones which 

induce endothelial and epithelial cell damage and worsened disease [56]. Further, using 

pneumococcal superinfection following influenza, an extensive accumulation of NETs was 

recognized, especially in the damaged areas of the lungs, indicating their potential role in tissue 

injury. Moreover, NETs released during pneumococcal superinfection did not show any 

bactericidal or fungicidal activities. [57, 58]. A toxic byproduct of NETs, extracellular histones, 

are clearly present in those mice with more severe disease – the influenza-alone and dual-

infected mice. Transwell studies further support that histones alone can lead to epithelial and 

endothelial barrier breakdown, increasing permeability into the bloodstream, allowing for 

bacteremia and subsequent sepsis. Histones administered in vivo also appear to cause more 

severe disease and allow for barrier breakdown and bacteremia. Our data supports that 

increased NETs release and the presence of histones correlate with worsened histopathologic 

changes and clinical outcome in our murine model for dual infection pneumonia. 

In conclusion, the proposed murine model for influenza coinfection is a good 

representation of pandemic influenza outbreaks resulting in secondary infection that is lethally 

synergistic. Mice infected with 100 TCID50 PR/8 H1N1 and 200 CFU S. pneumoniae 72 hours after 



77 
 

initial viral infection have an exaggerated innate response, with predominantly 

pyogranulomatous inflammation. Significant protein leakage, pulmonary pathology, and barrier 

breakdown is noted on days 5 and 6 after influenza infection (48 hours after bacterial infection) 

and correlates with bacteremia in all dual infected mice. This murine model will serve as a good 

animal model to further assess the pathogenesis of the barrier breakdown and development of 

bacteremia and sepsis, as well as provide a consistent model for the testing of potential 

therapeutics for pandemic influenza coinfection [Figure 6.1]. 

 

Figure 6.1: Various strategies to be considered for the development of potential therapeutic 

targets in influenza coinfection. Upon development of the murine model, this schematic 

represents potential directions to consider for pathogenesis and therapeutic targets in severe 

dual infection pneumonia. This project focuses on targeting neutrophil influx in addition to 

bacterial and viral factors to improve clinical outcome. 
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CHAPTER III 
 

 

ASSESSING NEUTROPHIL CHEMOKINE RECEPTOR EXPRESSION AND 

PHENOTYPE IN A MURINE MODEL OF DUAL INFECTION PNEUMONIA 

 

Summary: It is well established that secondary bacterial infections complicate and promote 

lethality in cases of influenza pneumonia during pandemic outbreaks, and also in fatal cases of 

seasonal influenza infections. Current therapies rely on antibiotics and antivirals to work closely 

with supportive care measures to improve clinical outcome, but increasing evidence of antiviral 

resistance and continued severity associated with coinfection demand novel approaches to 

combination therapy be explored. The innate immune response to influenza pneumonia 

promotes coinfection and contributes significantly to pulmonary pathology and poor outcomes. 

We established a murine model for dual infection to evaluate the role of neutrophils in S. 

pneumoniae superinfection following influenza infection in mice. Previous studies in our lab has 

demonstrated pathogenic role of neutrophils in influenza pneumonia. Here, we characterized 

neutrophils for their phenotypic changes and functional responsiveness during primary influenza 

as well as secondary pneumococcal superinfection. Chemokine receptors are critical to 

neutrophil function and innate recruitment and are potential targets for the treatment of 

various diseases and clinical conditions.  For characterization of neutrophils, we evaluated 

expression of chemokine receptors including CC (CCR1, CCR2, CCR3, CCR5) and CXC (CXCR1, 
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CXR2, CXCR3 and CXCR4) and integrin molecules (CD16, CD62L and CD11b) during primary 

influenza and secondary pneumococcal infection in circulating and lung-recruited neutrophils. 

Our results have demonstrated that CXCR2 is the most predominantly expressed and induced 

chemokine receptor in both circulating and lung-recruited neutrophils during primary influenza 

and also S. pneumoniae superinfection. We also found that neutrophils acquire a novel 

expression of chemokine receptors including CCR1, CCR2, CCR3, CCR5, CXCR1, CXCR3 and CXCR4 

in lung-recruited neutrophils, but not in circulating neutrophils. CXCR2, which is highly 

expressed in both blood and bronchoalveolar lavage neutrophils, has diminished expression in 

pulmonary infiltrative neutrophils as compared with infected blood, but still is induced at the 

sites of inflammation in dual infection as compared with the less severe bacterial-only models. 

CC and other CXC chemokine receptors were minimally expressed (<10%) to absent in 

circulatory neutrophils, but acquire 30-40% expression on pulmonary neutrophils during severe 

infection.  Expression of CD16 was decreased in both circulating as well as lung-recruited 

neutrophils, while CD62L showed significant decreased in circulating neutrophils. Interestingly, 

CD11b was increased in both circulating as well as lung-recruited neutrophils. Functionally, 

blocking receptors such as CCR5 and CXCR2 can alter reactive oxygen species and phagocytosis 

function, complicating their effects. Chemokine receptors offer an interesting target for novel 

combination therapy in influenza with secondary pneumococcal pneumonia, and this study 

ensures their availability and highlights their potential for this role in a murine model of this 

disease. 

A. Introduction  

Bacterial co-infection is a common and often lethal sequela of influenza pneumonia.  

Among seasonal influenza outbreaks, bacterial co-infections contribute to an estimated 65,000 
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deaths in the United States alone each year [2, 12].  The lethality seen with bacterial co-infection 

of influenza pneumonia is only compounded in pandemics, and has been well documented for 

all major pandemics of this previous century, starting with the 1918 “Spanish Flu” [1-4]. 

Preserved lung tissue sections and autopsy analysis from lethal cases of this outbreak suggest 

that 95% of these deaths can be attributed to co-infection [5, 6]. Of the bacterial co-infections 

seen in influenza pandemics over the last century, 41% have been attributed to S. pneumoniae – 

other major pathogens include Staphylococcus spp. (in particular S. aureus), Haemophilus 

influenzae, and other Streptococcus spp. [12]. 

 Lethal pneumonia caused through coinfection often results in the development of 

acute respiratory distress syndrome (ARDS) and sepsis. Outside of anti-viral therapy and 

antibiotics, treatment of these complicating factors seen with dual infection pneumonia are 

largely supportive, and, unfortunately, many seemingly positive pharmacological agents (i.e., 

surfactant therapy, vasodilators, lisofylline, glucocorticoids) have no significant outcome on 

morbidity and mortality [175-180]. The need for more specific treatments is great, and 

neutrophils offer an intriguing prospect as a potential target for therapy. Unrestrained 

transmigration of neutrophils into areas of gas exchange in the lungs is a pathologic hallmark of 

influenza pneumonia and ARDS resulting in alveolar capillary damage, edema, parenchymal 

hemorrhage, pulmonary microvascular thrombosis, and hyperinflammatory cytokine responses. 

These changes are also documented in murine models of influenza pneumonia [55, 181, 182].  

The excessive innate response to influenza virus leads to a series of virus-inflicted and host-

mediated damages to the pulmonary epithelium and endothelium resulting in significant 

pathology and respiratory failure [3, 183, 184]. Acute lung damage seen in both influenza 

pneumonia and S. pneumoniae dual infections is well linked to excessive neutrophils and 

subsequent release of neutrophil extracellular traps (NETs) which are toxic to the host [18, 55, 
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57, 83, 185, 186]. The recruitment, extravasation, and activation of neutrophils are largely 

driven by chemokines and their receptors, justifying their value as potential therapeutic targets.  

A seemingly uncontrolled influx of neutrophils during the innate immune response to 

acute lung injury has long been thought to be a major contributor to the development of Acute 

Respiratory Distress Syndrome (ARDS) seen in severe dual infection pneumonia and resulting 

morbidity and mortality. This transmigration of neutrophils into the interstitial and alveolar 

spaces is controlled in part by the interaction of chemokines released from the site of injury with 

their corresponding receptors. Chemokines function as chemotactic cytokines to control 

transmigration, recruitment, and activation of immune cells to specific areas within the body.  

Not only are they crucial in pathologic disease processes including the initial response to acute 

inflammation, they are also necessary for maintenance of homeostasis [187]. Neutrophils are 

rapid and powerful protectors in the innate immune response, but are thought to be limited in 

their chemokine receptor expression with comparison to other leukocytes [138].  Neutrophils 

also appear to have a different phenotype of receptors as opposed to other leukocytes, with 

predominant expression of the CXC receptor family as opposed to the CC ligands; although it has 

been more recently shown that the CCR family plays a role in chronic inflammatory conditions 

such as chronic respiratory disease and rheumatoid arthritis [138].  The approximately fifty 

endogenous chemokine ligands and their respective receptors can be classified in many ways. 

Expressed on all leukocytes, chemokine receptors are often divided into two groups – G-protein 

coupled receptors which can be activated by pertussis toxin (PTX)- sensitive Gi-type G proteins, 

and atypical chemokine receptors which are independent of G protein [187]. They can also be 

divided into either inflammatory or homeostatic chemokines depending on whether they are 

expressed in inflamed tissues to recruit leukocytes or maintain physiologic movement of 

leukocytes for immune reconnaissance [188]. 
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A.1 Integrin Receptor Expression and Functional Changes in Neutrophil Biology.  

Before focusing on chemokines and their receptors, attention must be given to integrin 

expression and phenotypic changes in neutrophil biology that occur during dual infection 

pneumonia and subsequent ARDS. Further understanding phenotypic changes in neutrophils 

may help to clarify why some individuals are more susceptible to secondary infections after 

influenza pneumonia and how neutrophil phenotypic heterogeneity contributes to disease 

pathology.  

Various integrins and receptors have been used to characterize neutrophils via flow 

cytometry in addition to their forward and side scatter properties. Pillay, et al, described three 

morphologically distinct subsets of neutrophils that develop in response to chronic 

inflammation, two of which are not present in healthy controls [189]. In this study, the author 

used CD16 and CD62L to recognize these subsets, and defines the three groups as 

CD16dim/CD62Lbright, CD16bright/CD62Ldim, and CD16bright/CD62Lbright. Phenotypically, the 

CD16dim/CD62Lbright neutrophils are immature cells that have recently been released from the 

bone marrow, also called “bands”. The CD16bright/CD62Ldim neutrophils are older and 

hypersegmented and the CD16bright/CD62Lbright neutrophil subset population is seen in both 

infected and healthy controls alike. CD16, also known as FcγRIII, is a cell surface molecule that is 

expressed on several cell types including neutrophils, macrophages and natural killer cells, and 

has been shown to have reduced expression in many inflammatory conditions such as vaginitis, 

trauma, bacterial infection and viral pneumonia [190-192]. It has also been suggested that the 

decreased CD16 expression seen with acute inflammation could be due to the influx on 

immature neutrophils which are CD16dim [189]. CD62L, also known as L-selectin, mediates 

neutrophil rolling and adhesion to the endothelial cells. This receptor is shed when stimulated 
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by pro-inflammatory cytokines such as TNF-α in acute inflammatory insults such as with trauma 

[191, 193] and uremia [194]. 

CD11b is another frequently assessed integrin in models of acute inflammation. CD11b 

is a β2-integrin adhesion molecule that is part of the Mac-1 heterodimer, and is a major player 

in neutrophil recruitment and adhesion [190, 191, 193]. In contrast to CD62L, most studies have 

shown that CD11b significantly increases in cases of acute inflammation, corresponding to 

increased neutrophil activation [190, 191, 193, 195]. To summarize, models of acute 

inflammation such as bacterial pneumonia (primary or secondary), viral pneumonia, trauma or 

burns all seem to shed CD62L and reduce CD16 expression while increasing expression of 

CD11b. 

With increased activation during inflammatory conditions, the functional biology of 

these neutrophils is also drastically changed in an attempt to best combat the insult at hand. 

Apoptosis is downregulated during inflammation in order to prolong the neutrophil’s survival 

and viability to fight the infection [138, 191, 192]. This downregulation is thought to be partially 

driven by both the intrinsic pathway – through stabilization of the mitochondrial membrane 

potential by increases in Mcl-1 and decreases in Bax protein, and the extrinsic pathways – 

increased Fas and reduced activation [191]. This decrease in rate of apoptosis is especially seen 

in infiltrated neutrophils, such as those in pulmonary alveoli, as opposed to those in peripheral 

circulation [195]. Pro-inflammatory activation of neutrophils also results in increased reactive 

oxygen species production [191, 193, 194], increased degranulation [194], increased release of 

neutrophil extracellular traps [191], and decreased phagocytosis [190, 191]. Many of these 

biological changes are acting in an effort to best fight the immediate insult, without regard to 

secondary damage to the host tissues and subsequent risk for secondary infections. 
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A.2 Chemokines in dual infection pneumonia and subsequent ARDS 

Currently, treatment for ARDS is primarily supportive, and the need for more specific 

treatments is great. Several deceptively positive pharmacological agents have been evaluated in 

ALI (acute lung injury) and ARDS such as glucocorticoids, surfactants, nitric oxide and lysofylline, 

but several studies have now shown that these seemingly promising options do not have a 

significant effect on outcome and mortality [175]. Unrestrained transmigration of neutrophils 

into the areas of gas exchange in the lungs is a pathologic hallmark of the disease.   The 

extravasation of these neutrophils is driven by chemokines and their receptors, justifying their 

value as potential therapeutic targets. 

Chemokine receptor expression on the cell surface of human neutrophils has been 

shown to be altered by inflammation. These phenotypic changes of the cell surface not only 

offer insight into the development and progression of ARDS, but also potential therapeutic 

targets.  Since a hallmark sign of ALI and ARDS includes uncontrolled accumulation of 

neutrophils into the alveolar space, it follows that intervention to slow or block any step in 

neutrophil recruitment or migration should be explored. In ARDS, there is one chemokine in 

particular that seems to play a pivotal role – interleukin-8 (IL-8/CXCL8) which is seen in 

increased concentrations in pulmonary edema fluid from septic patients with ARDS [124] and is 

also found in lower concentrations in ARDS survivors as opposed to non-survivors, making IL-8 a 

prognostic indicator [125]. CXCL8 is one ligand that binds with both CXCR1 and CXCR2 in humans 

and is considered the most potent neutrophil chemoattractant in BAL fluid from ARDS patients 

[126].   

CXCR1 and CXCR2 are both G-protein coupled receptors and are expressed in several 

granulocytes including eosinophils, mast cells, T cells, and, most notably, neutrophils [127, 128]. 
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In addition to granulocytes, CXCR2 is also found on pulmonary endothelial and bronchial 

epithelial cells, and the additional role of CXCR2 on these non-hematopoietic cells has been 

shown to be necessary for the marked increase in lung microvascular permeability seen in an 

LPS-induced model of ARDS [129]. In addition to IL-8 (CXCL8), CXCR2 has at least six other 

ligands including CXCL1, CXCL2, CXCL3, and CXCL6 [130]. These chemokines are called ELR+ 

chemokines (glutamic acid-leucine-arginine containing) and have been shown to mediate 

aberrant vascular remodeling in addition to inflammatory cell recruitment in both the exudative 

and fibroproliferative stages of alveoli damage in ARDS [131]. In addition to a role in ARDS, 

CXCR2 has been a hot topic of study for several years due to promising roles in numerous 

diseases ranging from cancer to arthritis to other more chronic pulmonary diseases [132-136].  

CXCL8 is not the only chemokine that has been considered potentially important in the 

development and progression of ARDS. Several chemokine receptors have been shown to be 

affected by inflammatory disease, and further investigation may indicate a role in ARDS as well. 

A study looking at chemokine receptor expression in patients with chronic obstructive 

pulmonary disorder (COPD) and rheumatoid arthritis found several significant alterations in 

neutrophil phenotype involving CCR1, CCR2, CCR3, CCR5, CXCR3, and CXCR4 in BAL fluid when 

compared to circulating neutrophils [138]. In addition to evaluating chemokine receptor 

expression, Hartl et al. also explored whether neutrophils would chemotax to a variety of CC and 

CXC ligands and found this to be the case. These findings may have been inferred from chronic 

inflammatory disease, but do support that neutrophils with various receptors can respond to a 

variety of ligands, likely even in ARDS. 

The roles of CCR1, CCR2, and CCR3 have been further studied in a more acute, LPS-

induced ALI model. Antagonism of these three receptors was shown to have a protective effect 
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– when a CCR2b and CCR1 antagonist was used, decreases in fibrinolysis, vascular leakage and 

inflammatory gene expression were all noted. These findings were further supported in CCR1, 

CCR2, and CCR3 knockout mice which had less pulmonary edema, infiltration and overall disease 

as compared with controls with ALI [145]. CXCR3 has also been further evaluated for its role in 

ARDS with its ligand CXCL10. CXCL10 is considered a non-ELR chemokine. Ichikawa et al. 

evaluated both a viral and non-viral ARDS mouse model in mice deficient in CXCL10 and CXCR3 

and found that mice lacking CXCL10 and CXCR3 had improved severity of disease and survival in 

both models [151]. Therefore, this receptor poses another intriguing potential target for 

therapeutics in ARDS. CXCL12 and its receptor, CXCR4, also appear to play a role in promoting 

chemotaxis of neutrophils as well as suppressing cell death. In a study looking at 

lipopolysaccharide (LPS)-induced lung injury, CXCL12 was shown to be a chemoattractant for 

cells expressing CXCR4 as well as a suppressant of neutrophil cell death and CXCR4 was found to 

be increased on the neutrophil cell surface after migrating from circulation into the inflamed 

lungs, possibly via an L-selectin mediated pathway [154]. CXCR4 has been further described as 

acting antagonistically with against CXCR2 – CXCR4 expression promotes neutrophil retention in 

the bone marrow, whereas CXCR2 expression drives release [158]. Finally, CCL2 and CCL7 are 

also chemokines that may play an interesting part in ARDS – in a study performed by Mercer et 

al, antibody neutralization of these ligands significantly reduced neutrophil accumulation in the 

BAL fluid in mice with LPS-induced lung injury [146]. 

Neutrophils are generally thought to be limited in their chemokine receptor expression 

with comparison to other leukocytes [138, 196, 197], but several recent studies have shown that 

neutrophils acquire a novel chemokine receptor expression under various conditions of 

inflammation and injury [138, 198, 199]. These various chemokine receptors have been shown 

to be significant contributors to many diseases such as cancer [132, 134], arthritis [133], acute 
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lung injury [145], and various chronic pulmonary diseases [135, 136]. Despite what is known 

about neutrophils and their role in the pathogenesis of dual infection influenza pneumonia, this 

study is the first to our knowledge to provide a more complete understanding of the novel 

chemokine receptor expression obtained on neutrophils after infiltration to the lung in dual 

infection influenza pneumonia.  

A more thorough understanding of the neutrophils’ phenotype after recruitment to the 

lung in acute dual infection influenza pneumonia is required to better evaluate the neutrophil 

for targets with clinical potential in human disease. To address this need, we established a 

murine model for dual infection influenza pneumonia and evaluated neutrophil numbers as well 

as chemokine receptor expression at various time points through the disease course. Using flow 

cytometry analysis, we evaluated expression of chemokine receptors between circulating 

neutrophils and those which have recruited into the lungs in primary influenza pneumonia and 

with subsequent bacterial coinfection. In addition, effects of these altered chemokine receptors 

on neutrophil functional responsiveness were evaluated by neutrophil phagocytic activities and 

respiratory burst (measured by reactive oxygen species generation) by activating these 

chemokine receptors with their corresponding ligands in the presence or absence of receptor 

antibodies or antagonists/inhibitors.  

 

B. Methods 

Virus and Bacteria 

Influenza A/Puerto Rico/8/34, H1N1 (PR/8) virus was obtained from the American Type Culture 

Collection (ATCC, VA). Viral titers were determined by tissue culture infectivity dose (TCID50) 

assay via infection of Madin-Darby canine kidney (MDCK) cells. Streptococcus pneumoniae 
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(serotype 3) was also obtained from the ATCC. Bacterial growth curves were established prior to 

infection. All pathogens were stored at -80°C until use.  

 

Animals 

Female Balb/c mice ranging from 6 to 10 weeks’ old were purchased from Jackson Laboratories. 

Mice were group-housed in microisolator cages in a BSL-2 facility, and were provided with food 

and fresh water ad libitum. Mice were clinically scored based on a modified version of the 

“mouse clinical assessment scoring for sepsis” (M-CASS) [172].  Infection was performed under a 

mixture of xylazine (0.1 mg/kg) and ketamine (7.5 mg/kg) anesthetic via intraperitoneal 

injection. Mice were infected intranasally (IN) with a sublethal dose of 100 TCID50 PR/8 (H1N1) 

influenza in a 50 μl volume or given an equal volume of sterile phosphate-buffered saline in 

controls. For dual infection studies, mice were administered 200 colony forming units (CFU) of S. 

pneumoniae IN in 50 μl volumes 72 hours after initial influenza infection, or administered PBS IN 

for controls. Mice were monitored closely for weight loss and clinical signs based on a modified 

“mouse clinical assessment score for sepsis” [172, 173]. All animal experiments were approved 

by the Institutional Animal Care and Use Committee (IACUC) of Oklahoma State University and 

were performed in strict accordance with their recommendations. 

 

Whole blood, bronchoalveolar lavage (BAL) fluid, and tissue collection 

For BAL fluid collection, the lungs were washed by intratracheal administration of 1.0 mL of 

sterile PBS in two 0.5 mL increments [55]. The recovery of BAL fluid was more than 85% for all 

animals. The BAL fluids were centrifuged at 200 xg for 10 minutes, and reconstituted in sterile 

PBS for cell counts and with 2% fetal bovine serum in PBS for flow cytometry analysis. BAL cells 

were concentrated using the CytoFuge 2 cytocentrifuge (StatSpin, Westwood, MA), and 
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differential cell counts were performed using modified Giemsa staining. Whole blood was 

collected via terminal procedure of intra-cardiac collection. Bronchoalveolar lavage fluid and 

whole blood (intracardiac) were collected from 3 to 5 days’ post influenza infection for flow 

cytometry analysis and other studies. Lungs from mice who did not have BAL collection were 

fixed with 4% formalin and collected for histopathology analysis after hematoxylin and eosin 

(H&E) staining. Mice were scored on a 1-4 scale (4 being most severe) for severity in the 

following areas by a blinded, board-certified anatomic veterinary pathologist: necrotizing 

bronchiolitis, bronchiolar infiltrates, alveolitis, interstitial inflammation, hemorrhage, edema, 

and microvascular thrombosis. Total histopathologic scores were evaluated as a sum of all 

individual scores. 

 

Flow Cytometry  

The following antibodies were purchased from R&D (MN) Systems and used throughout the 

course of this study for chemokine receptor expression characterization of murine neutrophils: 

Mouse CCR1 Fluorescein isothiocyanate (FITC)-conjugated antibody, mouse CCR2 phycoerythrin 

(PE)-conjugated antibody, mouse CCR3 PE-conjugated antibody, mouse CCR5 FITC-conjugated 

antibody, mouse CXCR1/IL-8 RA PE-conjugated antibody, mouse CXCR2/IL-8 RB PE-conjugated 

antibody, mouse CXCR3 PE-conjugated antibody, and mouse CXCR4 fluorescein-conjugated 

antibody. These antibodies were selected due to their previously reviewed relevance in chronic 

inflammatory conditions and potential for therapeutic targeting [138]. Additional antibodies 

used in this study include mouse Ly6G (1A8) Peridinin Chlorophyll Protein Complex (PerCP)-

conjugated antibody (Biolegend, CA), mouse Fc gamma RIII (CD16) FITC-conjugated antibody 

(R&D, MN), mouse L-selectin (CD62L) PE-conjugated antibody (R&D, MN), mouse integrin alpha 

M/CD11b FITC-conjugated antibody (R&D, MN). In all flow cytometry studies, control BAL fluid 
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was not compared due to a lack of pulmonary neutrophils in naïve Balb/c mice. The collected 

whole blood and BAL fluid were aliquoted into 200 μl volumes for antibody staining.  2.0 ml of 

1x PharmLyse Buffer was used for red blood cell lysis and allowed to lyse for 15 minutes at room 

temperature. Samples were allowed to stain for 30 minutes, covered, at room temperature on a 

shaker. All samples were then centrifuged and washed with chilled PBS (with 2% FBS) 1-3 times 

before performing flow cytometry. Flow cytometry was performed on the BD FACSCalibur flow 

cytometer and analyzed with the corresponding CellPro software. Neutrophils were gated as 

Ly6G-1A8+SSCmed-hi. CD11b analysis was performed comparing mean fluorescence intensity 

between samples.  

 

PMN Functional Assays 

A 2’-7’-Dichlorodihydrofluorecein diacetate (DCFH-DA) flow cytometric assay (Invitrogen, CA) 

was used to assess reactive oxygen species production (ROS) in neutrophils from BAL fluid. In 

brief, BAL cells, with no added stimulation after collection, were treated with DCFH-DA and 

Ly6G-1A8 (Per-CP) antibody for 30 minutes at room temperature. The cells were then 

immediately analyzed using flow cytometry, and mean fluorescence intensity (X-Mean) 

compared between samples. In order to assess ROS function for CCR1, CCR3, CCR5, CXCR2, 

CXCR3, and CXCR4, a DCFH-DA (abcam, UK) flow cytometric assay was again used. BAL and 

blood were collected 3 days’ post influenza infection (1000 TCID50 PR/8) from 6 mice. Two mice 

were pooled for each sample. Neutrophils were isolated using the MACS neutrophil isolation kit 

(Miltenyi Biotec, Germany) as per protocol. Neutrophils were then divided between tubes with 

105 cells/100 µL volume per sample. 1 µg BX 471 (CCR1 Antagonist; Cayman Chemicals, MI), 

SB328437 (CCR3 Antagonist; Sigma, MN), CCR5 (Novus, CO), CXCR2 (Cell Applications, CA), 

CXCR3 (Bio X Cell, NH) blocking antibodies, and AMD3100 (CXCR4 Antagonist (R&D, MN) were 
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added in half the samples and incubated for 30 minutes at 37° C before adding 10 ng of the 

appropriate ligand (CCL3, CCL11, CCL4 (R&D, MN), IL-8, CXCL11, and CXCL12 (R&D, MN)) to all 

samples. 20 µM DCFH-DA was then added to each sample and the samples were incubated at 

37°C for 30 minutes before analysis via flow cytometry. Flow cytometry was performed on the 

BD FACS Aria. Results were compared via mean fluorescence intensity (MFI) using X-means. 

Data was graphed as relative function of the blocked samples to unblocked (x:1).  

 

For phagocytosis assays, BAL and blood were collected 3 days’ post influenza infection (1000 

TCID50 PR/8) and neutrophils isolated, divided and treated with or without the appropriate 

CCR1, CCR3, CCR5, CXCR2, CXCR3, and CXCR4 blockers and ligands as per ROS assay. 1 µg BX 471 

(CCR1 Antagonist; Cayman Chemicals, MI), SB328437 (CCR3 Antagonist; Sigma, MN), CCR5 

(Novus, CO), CXCR2 (Cell Applications, CA), CXCR3 (Bio X Cell, NH) blocking antibodies, and 

AMD3100 (CXCR4 Antagonist (R&D, MN) were added in half the samples and incubated for 30 

minutes at 37° C before adding 10 ng of the appropriate ligand (CCL3, CCL11, CCL4 (R&D, MN), 

IL-8, CXCL11, and CXCL12 (R&D, MN)) to all samples. pHrodoTM Red E. coli BioParticles 

(ThermoFisher, MA) were added to each sample (1 mg/mL), and cells were allowed to incubate 

at 37°C for 1.5 hours. Cells were then stained with Ly6G-1A8 antibody for 30 minutes at room 

temperature and washed twice to remove excess bacteria before flow cytometry. Flow 

cytometry was performed on the BD FACS Aria. Unstained, single-stained and no cell controls 

were used for data analysis. Results were compared via MFI. Data was graphed as relative 

function of the blocked samples to the unblocked (x:1). 
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Statistical Analysis 

The data are expressed as the means ± SEM. Statistical analyses were performed using Student’s 

unpaired t-test, paired t-test or analysis of variance (ANOVA) using GraphPad Prism 7 software. 

p < 0.05 was considered statistically significant. 

 

C. Results 

C.1. Dual infection results in excessive neutrophil influx and extensive pulmonary damage. Our 

murine model for dual infection pneumonia is highlighted by the development of bacteremia 

(confirmed by culture) approximately 48-60 hours after administration of S. pneumoniae with 

100% lethality before day 7 post influenza infection. Clinically, the mice receiving the dual 

infection have severe weight loss [Fig. 1.1] and rapid clinical decline from the time of bacterial 

superinfection on day 3 [Fig. 1.2]. S. pneumoniae alone infected mice did not lose significant 

weight. The weight loss seen in the dual infection groups mimic that in the influenza-only 

infected groups with a matched decline beginning at three days’ post infection [Fig. 1.1]. 

Although the decline in clinical scores is similar start at day 2 post infection with influenza-only 

and dual-infected mice, the clinical scores for mice with dual infection pneumonia is more 

severe by the endpoint, day 6, than in viral infection only [Fig. 1.2]. The sharp decline in clinical 

scores in the dual-infected mice correlates with the onset of bacteremia and the development 

of severe ARDS.  
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Figure 1.1 and 1.2 (see also Fig. 4.1 in Ch. 2): Dual infected mice lose considerable weight and 

have most severe clinical score by day 5. Balb/c mice were infected with sublethal doses (100 

TCID50 intranasally) of influenza A/Puerto Rico/8/34 H1N1 virus or PBS followed by sublethal S. 

pneumoniae (200 CFU IN) or PBS three days after initial influenza infection. 1.1 and 1.2: Infected 

mice lost significant weight and had significant increase in severity of clinical score starting on 

day 3 as compared with control and S. pneumoniae-only infected mice. Significant differences 

(p<0.0001) were also noted between influenza only and dual infected clinical scores on days 4 

and 5. Data were expressed as means ± SEM and compared via one-way ANOVA. n = 21 mice per 

group. **** p<0.0001 (relative to healthy controls). 

 

BAL fluid cell counts performed on days 3-5 post influenza infection show an increase in total 

cell numbers through day 5 of the dual-infected group with cell counts about 1.5 times higher in 

dual infected BAL as compared with influenza-only groups [Fig. 1.3, 1.4].  
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Figures 1.3 and 1.4 (See also Fig. 4.2 in Ch. 2): Significant inflammatory cell influx noted in both 

dual and influenza only infected mice. Balb/c mice were infected with sublethal doses (100 

TCID50 intranasally) of influenza A/Puerto Rico/8/34 H1N1 virus or PBS followed by sublethal S. 

pneumoniae (200 CFU IN) or PBS three days after initial influenza infection. 1.3 and 1.4: 

Influenza-infected and dual-infected groups have significantly more cells in the BAL fluid than in 

S. pneumoniae-only infected groups as seen from cell counts performed via hemocytometer and 

cytospin data. A trend toward a significant increase in cell counts in dual infected mice 

compared with viral-only was also noted. Data were expressed as means ± SEM and compared 

via unpaired t-tests. n = 7-11 mice per group. * p<0.05; ** p<0.01 (relative to SP Only). 

 

BAL differentials consistently indicate that the majority of these cells are neutrophils in both the 

influenza-only and dual infected groups, however there is a significantly greater percentage of 

neutrophils in the dual-infected mice than in the influenza-only infected mice [Fig. 1.5].  

 

Figure 1.5 (see also Fig. 4.3 in Ch. 2): Inflammatory cell influx is marked by neutrophilia. Balb/c 

mice were infected with sublethal doses (100 TCID50 intranasally) of influenza A/Puerto 

Rico/8/34 H1N1 virus or PBS followed by sublethal S. pneumoniae (200 CFU IN) or PBS three 

days after initial influenza infection. Differentials performed on BAL fluid cells viewed after 

cytospin revealed majority neutrophils, especially noted in dual infections, with a significantly 

higher percentage of neutrophils in dual differentials compared with influenza alone. Data were 

expressed as means ± SEM and compared via unpaired t-test. n = 3 mice per group. **** 

p<0.0001 relative to lymphocytes and #### p<0.0001 relative to macrophages. 
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C.2. Histopathology analyses. The clinical decline seen in our murine model can further be 

explained by examining histopathology. The following pulmonary pathologies were scored on a 

1-4 scale with 4 being most severe: necrotizing bronchiolitis, bronchiolar infiltrates, alveolitis, 

interstitial inflammation, hemorrhage, edema, and microvascular thrombosis. Total score (sum 

of individuals) was most severe in viral-only and dual-infected mice with only mild pathology 

noted in bacterial-only infected mice [Fig. 2.1].  

 

Figures 2.1 and 2.2 (See also Fig. 4.5 in Ch. 2): Dual infection results in severe pulmonary 

pathology and extensive damage. 2.1: Lungs were collected and formalin-fixed for 

histopathology analysis between days 3-6 post influenza infection. Day 3 samples for S. 

pneumoniae-only and dual infections were not collected since bacterial inoculation was 

performed at that time. Figure presents sum of scoring. 2.2: Paraffin-embedded lung tissues 

from 5 days post-challenge with infection or mock infection were stained with hematoxylin and 

eosin. Tissues affected through dual infection show most severe score with notable pulmonary 

edema, bronchiolitis, alveolitis, hemorrhage, microvacular thrombosis and interstitial disease. 

Infected samples were compared with controls. Data were expressed as means ± SEM and 

compared via one-way ANOVA. n = 4 mice per group. * p<0.05; ** p<0.01; *** p<0.001 (relative 

to healthy controls). 

 

Mice infected with influenza-only and dual infection develop marked pulmonary edema, 

interstitial inflammation, necrotizing bronchiolitis, alveolitis, and hemorrhage, with dual infected 

lungs more severely and diffusely affected than that of influenza-only infected pulmonary tissue 
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[Fig. 2.2, 2.3]. This damage as well as a heavy influx of neutrophils is evident when viewing the 

tissue from fixed specimens. In addition, large areas of pulmonary tissue are severely affected in 

our dual-infected model with little recognizable pulmonary architecture [Fig. 2.2]. Microvascular 

thrombosis was only recognized in influenza-only and dual-infected mice [Fig. 2.3].  No 

pathology was noted in the heart, liver, kidney, spleen, esophagus, small intestine, pancreas, or 

brain in any sample (data not included) in our model. 

 

Figure 2.3 (See also Fig. 4.6 in Ch. 2): Dual and Influenza Only infected mice have significant 

pulmonary pathology and microvascular thrombosis. Individual areas scored include: 

necrotizing bronchiolitis, bronchiole infiltrates, alveolitis, interstitial inflammation, hemorrhage, 

edema, and microvascular thrombosis. Infected samples were compared with controls. Data 

were expressed as means ± SEM and compared via one-way ANOVA. n = 4 mice per group. * 

p<0.05; ** p<0.01; *** p<0.001 (relative to healthy controls). 

 

C.3. Lung-Infiltrated neutrophils acquire a novel chemokine receptor expression in a murine 

dual infection model. We gated circulatory and infiltrated pulmonary neutrophils based on their 

FSC/SSC characteristics and expression of Ly6G-1A8. This approach was able to differentiate 

neutrophils (FSCmedSSCmed-hiLy6G-1A8+) from other leukocytes present in the samples [Fig 3.1].  
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Figure 3.1: Selection of neutrophils using flow cytometry. FSCmedSSCmed-hiLy6G-1A8+ cells are 

over 99% neutrophils as confirmed through cell sorting using the FACSAria flow cytometer. 

 

We selected a wide variety of chemokine receptors to assess through flow cytometry (CCR1-3, 

CCR5, CXCR1-4) from day 3 through day 5 after influenza infection, based in part by their clinical 

potential and previous interest in other models [138]. In dual infection samples, S. pneumoniae 

was administered on day 3, hence the lack of variance between influenza-only and dual 

infection groups on day 3. Our results indicate that neutrophils acquire a novel chemokine 

receptor expression upon infiltration into the lungs after infection with both influenza and 

influenza with subsequent pneumococcal pneumonia.  
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Figure 3.2: CCR1-Receptor Expression is induced in infiltrative pulmonary neutrophils. Blood 

and bronchoalveolar lavage (BAL) fluid were collected from influenza-only, dual, and mock-

infected mice on days 3-5 post initial infection. Sample were analyzed via flow cytometry and % 

expression on neutrophils compared between groups. Neutrophils were gated as Ly6G-1A8+ 

cells for subsequent analysis. Column 1 shows dot plots for blood and BAL fluid neutrophil flow 

analysis, respectively, from 4 days’ post influenza infection. Column 2 shows comparisons in % 

of neutrophils expressing the indicated receptor in blood and BAL fluid samples from 5 days’ 

post influenza infection and demonstrates the overall trend in % expression of receptor on 

neutrophils in all samples from days 3 through 5 post influenza infection.  3.2: CCR1 is induced in 

infiltrative pulmonary neutrophils (compared to control blood), most notably on days 4-5 

(compared to day 3), but no differences are noted between influenza-only and dual-infected 

groups. Data are expressed as mean ± SEM and comparisons were made via one-way ANOVA 

and unpaired t-tests. n = 3 mice per group for all studies. * p<0.05; ** p<0.01; *** p<0.001; **** 

p<0.0001 
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Figure 3.3: CCR2-Receptor Expression is induced in infiltrative pulmonary neutrophils. CCR2 is 

induced in infiltrative pulmonary neutrophils (compared to control blood), most notably on days 

4-5 (compared to day 3), but no differences are noted between influenza-only and dual-infected 

groups. Data are expressed as mean ± SEM and were compared via one-way ANOVA and t-tests. 

n = 3 mice per group for all studies. * p<0.05; ** p<0.01; *** p<0.001; **** p<0.0001 
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Figure 3.4: CCR3-Receptor Expression is induced in infiltrative pulmonary neutrophils. CCR3 is 

induced in infiltrative pulmonary neutrophils (compared with control blood), with no significant 

changes in BAL neutrophils from days 3-5, and no significant differences between influenza-only 

and dual-infected groups. Data are expressed as mean ± SEM and comparisons made via one-

way ANOVA and t-tests. n = 3 mice per group for all studies. * p<0.05; ** p<0.01; *** p<0.001; 

**** p<0.0001. 
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Figure 3.5: CCR5-Receptor Expression is induced in infiltrative pulmonary neutrophils. CCR5 is 

induced in infiltrative pulmonary neutrophils (compared to healthy blood), most notably on days 

4-5 (compared to day 3), and a trend toward differences exists between influenza-only and dual-

infected groups.  Data are expressed as mean ± SEM and comparisons made via one-way 

ANOVA and t-tests. n = 3 mice per group for all studies. * p<0.05; ** p<0.01; *** p<0.001; **** 

p<0.0001 

 

Aside from CXCR2, chemokine receptor expression was minimal to absent in control, influenza-

only, or dual-infected blood samples [Figures 3, 4] with fewer than 10% of circulating 

neutrophils expressing these receptors. In comparison with circulatory neutrophils, our results 

show that infiltrated neutrophils in BAL fluid have a significant increase in chemokine receptor 

expression for all receptors analyzed other than CXCR2 [Figures 3, 4] with most resulting in 

about 30-40% expression on pulmonary neutrophils. The acquisition of this novel receptor 

expression is most notable on days 4 and 5 post influenza infection with significant increases in 

expression seen in CCR1, CCR2, CCR5, CXCR1, CXCR3, and CXCR4 by day 4 as compared with day 
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3 [Figures 3, 4]. CCR5 expression appears to be higher in dual-infected pulmonary neutrophils 

than in viral-only infected pulmonary neutrophils (p=0.0592) [Fig. 3.5], and a significant 

difference seen between viral and dual-infected pulmonary neutrophils with CXCR4 [Fig. 3.9].  

 

Figure 3.6: CXCR1-Receptor Expression is induced in infiltrative pulmonary neutrophils. Blood 

and bronchoalveolar lavage (BAL) fluid were collected from influenza-only, dual, and mock-

infected mice on days 3-5 post initial infection. Sample were analyzed via flow cytometry and % 

expression on neutrophils compared between groups. Neutrophils were gated as Ly6G-1A8+ 

cells for subsequent analysis. Column 1 shows dot plots for blood and BAL fluid neutrophil flow 

analysis, respectively, from 4 days post influenza infection. Column 2 shows comparisons in % of 

neutrophils expressing the indicated receptor in blood and BAL fluid samples from 5 days post 

influenza infection and demonstrates the overall trend in % expression of receptor on 

neutrophils in all samples from days 3 through 5 post influenza infection. CXCR1 is induced in 

infiltrative pulmonary neutrophils (compared to control blood), most notably on days 4-5 

(compared to day 3), but no differences are noted between influenza-only and dual-infected 

groups. Data are expressed as mean ± SEM and comparisons were made via one-way ANOVA 

and t-tests. n = 3 mice per group for all studies. * p<0.05; ** p<0.01; *** p<0.001; **** 

p<0.0001. 
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Figure 3.7: CXCR2-Receptor Expression is induced in infiltrative pulmonary neutrophils. CXCR2 

is reduced in infiltrative pulmonary neutrophils as compared with blood, but induced within the 

BAL between days 3-5 post infection, but no differences in % expression are noted between 

influenza-only and dual-infected groups on 5 DPI. Data are expressed as mean ± SEM and 

comparisons made via one-way ANOVA and t-tests. n = 3 mice per group for all studies. * 

p<0.05; ** p<0.01; *** p<0.001; **** p<0.0001. 
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Figure 3.8: CXCR3-Receptor Expression is induced in infiltrative pulmonary neutrophils. CXCR3 

is induced in infiltrative pulmonary neutrophils (compared with control blood), most notably on 

days 4-5, but no differences are noted between influenza-only and dual-infected groups. Data 

are expressed as mean ± SEM and comparisons made via one-way ANOVA and t-tests. n = 3 

mice per group for all studies. * p<0.05; ** p<0.01; *** p<0.001; **** p<0.0001. 
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Figure 3.9: CXCR4-Receptor Expression is induced in infiltrative pulmonary neutrophils. CXCR4 

is induced in infiltrative pulmonary neutrophils (compared with control blood), most notably on 

days 4-5, and a significant difference exists between influenza-only and dual-infected BAL 

groups on day 5 post influenza infection. Data are expressed as mean ± SEM and comparisons 

made via one-way ANOVA and t-tests. n = 3 mice per group for all studies. * p<0.05; ** p<0.01; 

*** p<0.001; **** p<0.0001. 

 

These overall trends can be further visualized through Figure 3.10, 3.11, and 3.12 which show 

significant differences in pulmonary infiltrated neutrophils versus those in circulation from day 3 

through 5 post initial influenza infection. Although this induction is apparent from 3 days after 

influenza infection, it significantly increases after the third day and is maximally expressed on 

days 4 and 5 post initial influenza infection. Figure 5 also clearly shows that CXCR2 is highly 

expressed in both blood and BAL neutrophils under healthy conditions, and this chemokine 

receptor is the only one tested that has reduced expression upon infiltration into the infected 

lung. 
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Figures 3.10-3.12: Novel chemokine receptor expression apparent in influenza-only and dually 

infected PMNs – CXCR2 is especially highly expressed on infected neutrophils. Overall view of 

chemokine receptor expression comparing % expression with numbers of neutrophils expressing 

each receptor. Blood and bronchoalveolar lavage (BAL) fluid were collected from influenza-only, 

dual, and mock-infected mice on days 3-5 post initial infection. Samples were analyzed via flow 

cytometry and % expression on neutrophils compared between groups. Neutrophils were gated 

as Ly6G-1A8+ cells for all analysis. Since S. pneumoniae was administered on day 3, there is no 

difference between influenza-only and dual-infected groups on day 3. CXCR2 expression is 
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reduced on infiltrative pulmonary neutrophils, but remains high in all samples. Remaining 

receptors are minimally expressed in blood and significantly induced in infected BAL neutrophils. 

No significant differences are noted between influenza-only and dual-infected groups when 

comparing % neutrophils expressing receptor. Data are expressed as mean ± SEM. n = 3 mice 

per group for all studies. Statistical comparisons shown on previous figures. 

 

C.4. CXCR2 expression is induced in dual-infected mice. In contrast to other chemokine 

receptors analyzed in our study, our results indicate that CXCR2 is highly expressed in all 

circulating neutrophils with about 90% of neutrophils in healthy blood expressing CXCR2 and 97-

100% of neutrophils expressing CXCR2 in infected blood samples. Upon infiltration into areas of 

pulmonary inflammation, these neutrophils lose some CXCR2 expression, but the receptor 

remains highly expressed with over 75% of infiltrated pulmonary neutrophils expressing CXCR2 

[Fig. 3.7]. Despite the overall decrease in expression of CXCR2 upon pulmonary infiltration 

compared with circulatory neutrophils, expression is still induced in our dual infection model by 

day 5 as compared with day 3 [Figure 3.7]. This contrast between CXCR2 and other receptors 

analyzed can be especially visualized in Figure 3.10-3.12.  
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Figures 4.1-4.3: CXCR2 is induced in dual infection pneumonia. % neutrophils expressing a 

specified receptor was converted to quantity based on cell counts from BAL samples. After 

conversion, an overview is given comparing all receptors from 3-5 days after influenza infection. 

3 DPI is shown in 4.1. As clearly shown in % graphs, CXCR2 is significantly higher expressed than 

other chemokine receptors evaluated in this study. No dual comparison is provided since 

bacterial infection is administered on day 3 in our model. 4.2 and 4.3: A significant difference is 

seen in the numbers of pulmonary neutrophils expressing CXCR2 between influenza-only and 

dual-infected groups on days 4 and 5 post initial infection. Data are expressed as mean ± SEM 

and comparisons made via one-way ANOVA. n = 3 mice per group for all studies.  *** p<0.001. 

 

Since the BAL fluid cell counts are about 1.5 times higher in our dual infection model than they 

are in the influenza-only model, we used differences in BAL cell counts to convert these 

percentages to reflect numbers of neutrophils expressing each receptor type. After conversion 

from percentage to quantity, we clearly show a significant difference between the numbers of 

neutrophils expressing CXCR2 in our dual-infected versus our influenza-only infected models on 

day 5 post influenza infection [Figure 4]. 

 

C.5. Reduced CD16 and CD62L integrin expression in severely infected models. Various integrins 

present on neutrophils have been evaluated for their roles and prognostic potential in 

inflammatory models of disease. Two frequently assessed integrins are CD16 (Fc Gamma RIII) 

and CD62L (L-selectin). These integrins have been previously shown to be shed or expression 

decreased in several models including trauma, bacterial infection and viral pneumonia [190-

192]. 
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Figures 5.1 and 5.2: CD16 expression is reduced in more severe influenza-only and influenza 

coinfection. Blood and BAL were collected from mice 4 days’ post influenza infection for 

comparison. S. pneumoniae-only infected BAL is used as a model with minimal to no clinical 

disease for comparison. CD16 expression is significantly reduced in more severely affected 

models (influenza-only and dual-infected) as compared with S. pneumoniae-only and control 

samples in both circulatory [5.1] and pulmonary infiltrated PMNs [5.2]. Data are expressed as 

mean ± SEM and comparisons made via one-way ANOVA. n = 3-4 mice per group for all studies. 

* p<0.05; ** p<0.01 (relative to control blood or SP Only BAL). 

 

Integrin expression was evaluated 3-5 days’ post initial infection and results are shown from 4 

days’ post infection. Pulmonary infiltrative neutrophils from influenza and dual-infected mice 

have significantly reduced expression of CD16 when compared with bacterial-only infected mice 

[Fig. 5.1]. A significant difference was not seen in CD62L from the same samples [Fig. 5.3]. We 

show a significant reduction in both CD16 and CD62L expression in viral and dual-infected blood 

as compared with the less severe S. pneumoniae-only infected mice and healthy controls [Fig. 

5.2, 5.4]. 
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Figures 5.3 and 5.4: CD62L expression is reduced in circulatory PMNs in more severe disease. 

Blood and BAL were collected from mice 4 days’ post influenza infection for comparison. S. 

pneumoniae-only infected BAL is used as a model with minimal to no clinical disease for 

comparison. CD62L expression is significantly reduced in more severely affected (influenza-only 

and dual-infected) blood samples as compared with control [5.3], but no significant differences 

are noted in infiltrated pulmonary neutrophils between models [5.4]. Data are expressed as 

mean ± SEM. n = 3-4 mice per group for all studies. * p<0.05; ** p<0.01 (relative to control 

blood).   

 

C.6. Increases in CD11b Expression as a result of acute inflammation. CD11b is part of the Mac-

1 heterodimer that plays an active role in neutrophil recruitment and adhesion [200]. CD11b is 

also known as a potential prognostic indicator and marker for acute inflammation due to its role 

in neutrophil activation [201, 202]. CD11b was measured in control and infected blood samples 

as well as infected BAL fluid samples.  There was no significant difference noted between 

control and infected blood [Fig. 6.1]. In addition, no difference was noted between CD11b 

expression of infiltrative pulmonary neutrophils in viral-infection alone and coinfection models. 

Although no significant differences were seen within blood and BAL samples, a significant 

increase in expression of CD11b was noted in infiltrative neutrophils from BAL collection over 

neutrophils in circulation [Fig. 6.1]. 
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Figure 6.1: CD11b expression is enhanced in more severe disease. Blood and BAL were collected 

from mice 4 days’ post influenza infection for comparison. S. pneumoniae-only infected BAL is 

used as a model with minimal to no clinical disease for comparison. CD11b is significantly 

increase in influenza and dual-infected BAL as compared with all blood samples. Data are 

expressed as mean ± SEM and comparisons made via one-way ANOVA. n = 3-4 mice per group 

for all studies. * p<0.05; ** p<0.01 (relative to control blood).  

 

C.7. Effects of induced chemokine receptors on neutrophil functional responsiveness. In order 

to further assess chemokine receptor function in dual infection pneumonia, we selected six 

receptors (CCR1, CCR3, CCR5, CXCR2, CXCR3 and CXCR4) to perform functional studies based on 

their presence in BAL collected neutrophils and previously reported therapeutic potential in 

other models of inflammatory and chronic disease. CCR2 was not included due to its primary 

role and expression on macrophages. CXCR1 was not included due to differences in mouse 

versus human CXCR1 receptors and ligands. Functional properties evaluated include reactive 

oxygen species production and phagocytosis capacity.  
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Figures 7.1 and 7.2: Blocking specific chemokine receptors affects functional potential of the 

neutrophil. Infected BAL and blood were collected from mice. Reactive oxygen species (ROS) 

production was assessed using DCFH-DA ROS flow cytometric assays and phagocytosis was 

measured using pHrodo E. coli BioParticles and flow cytometry. 7.1: A trend (p=0.0742) toward 

increased ROS production in dual-infected pulmonary infiltrative neutrophils is seen as 

compared with influenza-only infected PMNs. 7.2: In an influenza infected model, there was a 

significant difference noted in ROS production between circulatory and pulmonary PMNs, with 

significantly more ROS production within the infected BAL PMNs. Data are expressed as mean ± 

SEM and comparisons made via paired t-test. n = 3 mice per group for 7.1 and n=9 mice per 

group for 7.2. Two mice were pooled per sample. ****p<0.0001 relative to circulatory 

neutrophils. 

 

C.7a. Reactive oxygen species (ROS) production assay. ROS effect of chemokine receptor 

expressions on ROS generation was first evaluated between influenza-only and dual-infected 

mice and was measured using a DCFHda flow cytometric assay on recently collected BAL 

neutrophils. Significant production was measured in all infected samples with a trend toward 

greater ROS production in dual infected BAL neutrophils over influenza-only infected samples, 

but no significant difference was noted between the groups [Figure 7.1]. Since the chemokine 

receptor expressions were showing similar pattern between influenza and dual-infected mice, 

we chose to evaluate the effects of these chemokine receptors expression on ROS generation. 

An influenza-only infected mouse model was then used for further ROS production studies as 
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expression of all chemokine receptors were comparable between primary influenza and S. 

pneumoniae superinfection. Blood and BAL were collected from infected mice 3 days after viral 

infection and neutrophils were isolated. Neutrophils collected from the infected BAL had 

significantly higher ROS production than those in the blood [Fig. 7.2].  

 

Figures 7.3 and 7.4: Blocking specific chemokine receptors affects functional potential of the 

neutrophil. Infected BAL and blood were collected from mice. Reactive oxygen species (ROS) 

production was assessed using DCFH-DA ROS flow cytometric assays and phagocytosis was 

measured using pHrodo E. coli BioParticles and flow cytometry. Data was compared as relative 

function of neutrophils with receptor blocked as compared with no blocking (x:1) 7.3: Blocking 

CCR1 significantly reduced ROS function for neutrophils within the BAL. Blocking CCR3, CCR5, 
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CXCR2, CXCR3, and CXCR4 had no significant effect. 7.4: For circulating neutrophils, blocking 

CCR5 and CXCR2 significantly enhanced production. Blocking CCR1, CCR3, CXCR3, or CXCR4 had 

no significant effect on ROS production. Data are expressed as mean ± SEM and comparisons 

made via paired t-test. n = 3 mice per group for all studies. *p<0.05; **** p<0.0001. Two mice 

were pooled per sample. 

 

Isolated neutrophils were also incubated in the presence or absence of CCR1, CCR3, CCR5, 

CXCR2, CXCR3 and CXCR4 blocking antibodies to assess changes in function. Our results indicate 

that blocking CCR1 significantly reduces ROS function in lung-infiltrated neutrophils [Figure 7.3]. 

In contrast, blocking CCR5 and CXCR2 in the circulating neutrophils significantly enhanced ROS 

production [Figure 7.4]. No other significant differences were noted in blocking the remaining 

receptors.  

 

Figures 7.5 and 7.6: Blocking specific chemokine receptors affects functional potential of the 

neutrophil. Infected BAL and blood were collected from mice. Phagocytosis was measured using 

pHrodo E. coli BioParticles and flow cytometry. Data was compared as relative function of 

neutrophils with receptor blocked as compared with no blocking (x:1).  7.5: Pulmonary 

neutrophils had reduced phagocytic capacity when compared with those in circulation. 7.6: 

Blocking CXCR2 reduced phagocytic capacity of circulatory neutrophils in a viral-infection model. 

Data are expressed as mean ± SEM and comparisons made via paired t-test. n = 3 mice per 

group for all studies. **** p<0.0001. Two mice were pooled per sample. 
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C.7b. Phagocytic activity. We measured phagocytosis capacity using pHrodoTM E.coli BioParticles 

on isolated neutrophils from viral-infected mice under a variety of conditions. Phagocytosis 

function is significantly reduced in neutrophils collected from infected BAL as compared with 

those from infected blood [Fig. 7.5]. Isolated neutrophils from blood were also incubated in the 

presence or absence of CXCR2 blocking antibodies. Blocking CXCR2 significantly reduced 

phagocytosis function in the blood [Fig. 7.6]. Isolated neutrophils from infected BAL were also 

incubated with CCR1, CCR3, CCR5, CXCR2, CXCR3, and CXCR4 blocking antibodies in the 

presence of their appropriate ligand to assess for receptor roles in phagocytic functions. 

Interestingly, blocking CCR5 and CXCR2 significantly reduces phagocytosis capacity of the 

pulmonary infiltrative neutrophil, while no significant effect was seen when blocking the 

remaining receptors [Fig. 7.7].  

 

Figure 7.7: Blocking CCR5 and CXCR2 significantly reduce phagocytic capacity of pulmonary 

infiltrated neutrophils. Infected BAL and blood were collected from mice. Phagocytosis was 

measured using pHrodo E. coli BioParticles and flow cytometry. Data was compared as relative 

function of neutrophils with receptor blocked as compared with no blocking (x:1).  Blocking CCR5 

and CXCR2 reduced phagocytic capacity of pulmonary infiltrative neutrophils in a viral-infection 



117 
 

model while no change was noted with blocking CXCR3. In addition, a reduction in phagocytic 

capacity was also seen when blocking CXCR2 in circulatory neutrophils which also have high 

levels of this receptor. Circulatory neutrophils without blocking were also performed to further 

compare blood to BAL neutrophils in other groups. Data are expressed as mean ± SEM and 

comparisons made via paired t-test. n = 3 mice per group for all studies. *** p<0.001; **** 

p<0.0001. Two mice were pooled per sample. 

 

Discussion 

One of the primary goals of this study is to characterize the changes seen in chemokine 

receptor expression, and identify the availability key receptors that may act as important targets 

with therapeutic potential. As seen in our results, the influenza-only infected and dual infected 

mice lose significant weight and show rapid and severe progression of clinical scores between 

days 3 and 5. Those mice given only S. pneumoniae showed mild weight loss without any 

obvious clinical signs and recovered shortly after infection. The viral-infected mice that are 

administered the subsequent pneumococcal infection decline rapidly and become bacteremic 

within 48-60 hours after bacterial administration, reaching their endpoint by day 6. 

Histopathology of pulmonary tissue from these infected mice showed pathologic lesions of 

ARDS with severe pulmonary damage, alveolitis and endothelial necrosis. Widespread disruption 

of alveolar epithelial-endothelial barrier was more prominently seen in dual-infected mice and 

this could cause exposure of basement membrane.  The exposure could facilitate bacterial 

adherence and dissemination into deeper lungs. In support of this, we found increased bacterial 

load, dissemination into deeper lungs and bacteremia within 48 hours after S. pneumoniae 

superinfection, while mice infected with bacteria-alone clear the bacteria within 24 hours. This 

model will serve as a good representation for pathogenic progression and severity that can be 

seen with pandemic influenza outbreaks wherein bacterial superinfections are involved. Due to 

complexity of the coinfections that can occur in nature, we had tested various coinfection 
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models as described in Chapter 2 and based on our analysis, we chose sublethal influenza 

followed by sublethal S. pneumoniae to explore the role of neutrophils.  

Previous studies from our laboratory and other investigators have demonstrated 

pathogenic role of neutrophils in bacterial superinfection following influenza [18]. Although 

neutrophils are essential in bacterial clearance, accumulated evidences indicate pathogenic 

contribution of excessive neutrophils recruited during bacterial superinfection. Interestingly, 

chronic inflammatory disease conditions have shown altered neutrophil phenotypic signature, 

which potentially influence their functional responsiveness [138]. It is not known whether 

neutrophils display any change in phenotypic changes or functional responsiveness during acute 

influenza pneumonia or bacterial superinfections. Hence, this study aimed to fill this critical void 

by characterizing neutrophils during primary influenza and S. pneumoniae superinfection for 

their phenotypic signature by evaluating chemokine receptors (CRs) expressions and their 

functional responsiveness. We evaluated CC and CXC CRs and integrins in circulating as well as in 

lung-recruited neutrophils.  Because healthy Balb/c lab mice contain extremely low numbers of 

neutrophils in their lung alveolar air spaces, it is difficult to draw comparisons using control mice 

to the healthy uninfected human population. Hence, we compared bacterial-only infected mice, 

which display minimum neutrophil influx without clinical signs. Our results clearly demonstrate a 

large influx of neutrophils in dual-infected mice and also influenza-alone infected mice 

compared to bacteria-only infected group that is most drastic at 5 dpi. This can be clearly seen 

both in our flow results and in cell counts. This neutrophil influx was found to be more 

prominent in dual infected samples with overall BAL fluid cell counts being over 1.5 times higher 

in dual infected samples at 5 dpi than in influenza-only infected samples. 
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Our data has shown that CXCR2 is a most predominant chemokine receptor expressed in 

circulating neutrophils. Neutrophils were positively identified by Ly6G positive expression and 

the total percent of CXCR2 positive cells were significantly increased in circulation in both 

primary influenza and secondary S. pneumoniae superinfection. Interestingly, all CC chemokine 

receptors were minimally expressed in circulating neutrophils in controls as well as infected 

mice. These findings suggest that CXCR2 is most critical chemokine receptor involved in 

neutrophil recruitment in response to these infections. In support of this, our recent findings 

demonstrated significant increase in CXCR2 ligand, mouse KC, levels in blood and BAL samples 

from influenza infected mice [83, 203].  

On the other hand, CXCR2 has a slight decrease in percentage of neutrophils expressing 

in the BAL compared with peripheral blood. This finding is supported by previous studies 

evaluating receptor expression in chronic inflammation [204]. CXCR2 has been shown to be 

suppressed by TNF-α previously with a suggestion that this allows for a modulation in the IL-8 

response so that neutrophils can be retained in the vascular space and also have enhanced 

production of reactive oxygen species [205]. CXCR2 is highly expressed in infected blood with 

almost all neutrophils present having the receptor. Despite this relative downregulation, CXCR2 

is the majorly expressed chemokine receptor found in lung-recruited neutrophils. Targeting 

CXCR2 has been shown to ameliorate lung injury in sublethal infected-infected mice [206]. Our 

recent study demonstrated that a combination of a CXCR2 antagonist together with antiviral 

agent confers high protection against lethal-influenza challenge in mice [83] thus suggesting a 

potential pathogenic role of CXCR2 induction during influenza. Another critical finding from our 

studies is that influenza and S. pneumoniae superinfection, triggers induction of CC chemokine 

receptors (CCR1, CCR2, CCR3, CCR4 and CCR5) in lung-recruited neutrophils. Expression of these 
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CC chemokine receptors were minimally expressed in circulating neutrophils from control as 

well as infected mice. 

Antagonism of CCR1, CCR2, and CCR3 receptors was shown to have a protective effect – 

when a CCR2b and CCR1 antagonist was used, decreases in fibrinolysis, vascular leakage and 

inflammatory gene expression were all noted. These findings were further supported in CCR1, 

CCR2, and CCR3 knockout mice which had less pulmonary edema, infiltration and overall disease 

as compared with controls with ALI [145]. CCR1 antagonism also has shown promise in limiting 

pulmonary injury resulting from acute pancreatitis [140] and sepsis [141] as well as in a renal 

ischemia model [139].  

In addition, we also found increased CXCR3 and CXCR4 expressions in the lung-recruited 

neutrophils. CXCR3 has also been further evaluated for its role in ARDS with its ligand CXCL10. 

Ichikawa et al. evaluated both a viral and non-viral ARDS mouse model in mice deficient in 

CXCL10 and CXCR3 and found that mice lacking CXCL10 and CXCR3 had improved severity of 

disease and survival in both models [151]. Antagonism of CXCR3 has also been shown to reduce 

disease severity in an H5N1-infected ferret model [147]. Therefore, this receptor poses another 

intriguing potential target for therapeutics in coinfections. CXCL12 and its receptor, CXCR4, also 

appear to play a role in promoting chemotaxis of neutrophils as well as suppressing cell death. 

In a study looking at lipopolysaccharide (LPS)-induced lung injury, CXCL12 was shown to be a 

chemoattractant for cells expressing CXCR4 as well as a suppressant of neutrophil cell death and 

CXCR4 was found to be increased on the neutrophil cell surface after migrating from circulation 

into the inflamed lungs, possibly via an L-selectin mediated pathway [154]. CXCR4 has been 

further described as acting antagonistically with against CXCR2 – CXCR4 expression promotes 

neutrophil retention in the bone marrow, whereas CXCR2 expression drives release [158]. 
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Finally, CCL2 (ligand for CCR1/2) and CCL7 (ligand for CCR1-3, 5) are also chemokines that may 

play an interesting part in ARDS – in a study performed by Mercer et al, antibody neutralization 

of these ligands significantly reduced neutrophil accumulation in the BAL fluid in mice with LPS-

induced lung injury [146]. Although the full potential of these receptors as therapeutic targets in 

pneumonia must still be explored, this study shows availability of each of these receptors in dual 

infection pneumonia and recommends further studies to elucidate their potential.  

Various integrins have been used to characterize neutrophils in addition to their forward 

and side scatter properties. We found that the expression of integrins, including CD16 and 

CD62L, decreased in circulating neutrophils isolated from both primary influenza and S. 

pneumoniae superinfection compared to the S. pneumoniae alone infected animal group. CD16 

expression was reduced on both circulating and lung-recruited neutrophils. Expression of CD62 

was decreased in both circulating as well as in pulmonary infiltrative neutrophils. CD16, also 

known as FcγRIII, is a cell surface molecule that is expressed on several cell types including 

neutrophils, macrophages and natural killer cells, and has been shown to have reduced 

expression in many inflammatory conditions such as vaginitis, trauma, bacterial infection and 

viral pneumonia [190-192]. It has also been suggested that the decreased CD16 expression seen 

with acute inflammation could be due to the influx on immature neutrophils which are CD16dim 

[189]. CD62L, also known as L-selectin, mediates neutrophil rolling and adhesion to the 

endothelial cells. This receptor is shed when stimulated by pro-inflammatory cytokines such as 

TNF-α in acute inflammatory insults such as with trauma [191, 193] and uremia [194]. CD11b is a 

frequently assessed integrin in models of acute inflammation and is a β2-integrin adhesion 

molecule that is part of the Mac-1 heterodimer, and is a major player in neutrophil recruitment 

and adhesion [190, 191, 193]. In contrast to CD62L, most studies have shown that CD11b 

significantly increases in cases of acute inflammation, corresponding to increased neutrophil 
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activation [190, 191, 193, 195]. Models of acute inflammation such as bacterial pneumonia 

(primary or secondary), viral pneumonia, trauma or burns all seem to shed CD62L and reduce 

CD16 expression while increasing expression of CD11b. Our results indicate that there is a 

significant increase in CD11b expression on infiltrative pulmonary neutrophils over those 

neutrophils identified in circulation, as seen by comparing mean fluorescence intensity between 

the two groups. Not only does this imply a heightened level of neutrophil activation from the 

neutrophils within the lavage, but CD11b also presents itself as an interesting target with high 

availability to block neutrophil recruitment and activation. CD11b has been shown to be a 

necessary component for successful diapedesis of neutrophils from the pulmonary 

microvasculature to the alveoli spaces in a LPS-induced model of acute pulmonary inflammation 

[200]. In addition, blocking CD11b has been shown to have significant effect in controlling the 

early inflammatory response by reducing neutrophil numbers in both the BAL fluid and lung 

tissue in an LPS-induced model of pulmonary inflammation [207]. Therefore, CD11b blockade 

may present an interesting and novel approach to treating dual infection pneumonia and 

improving clinical outcome for ARDS. 

Reactive oxygen species have long been shown to be important contributors to the 

endothelial damage seen in models of ARDS, sepsis and pneumonia. These ROS are released by 

neutrophils after being sequestered and activated in the pulmonary vasculature and are key 

substances in modulating pulmonary endothelial damage [208]. Production of reactive oxygen 

species from neutrophils collected in infected BAL fluid is significant, as expected, and our 

results also suggest a trend toward increased ROS production in dual-infected BAL versus that 

infected with influenza alone. Our results also concluded that ROS production was significantly 

enhanced with neutrophils from within the BAL versus those in circulation. Since the effect of 

ROS on the endothelium has been well-established, it would be logical to believe that these 



123 
 

toxic products are contributing to the severe histopathologic changes seen in the lungs of dual-

infected mice and potentially to bacterial dissemination as well. Further, to determine the role 

of induced chemokine receptors on ROS generation, we incubated neutrophils isolated from 

influenza infected mice with receptor specific ligands in the presence or absence of antagonists 

or antibodies to the receptors.  Our data show that blocking CCR1 in the lung-infiltrated 

neutrophils results in a reduction in ROS production. In addition, blocking CCR1 in the circulating 

neutrophils also trends to a decrease in ROS production. In contrast to CCR1, our data show that 

blockade of CCR5 and CXCR2 results in enhanced ROS production from circulating neutrophils. 

CCR3, CXCR3 and CXCR4 blockage had no effect on ROS production in either infected blood or 

BAL neutrophils. Due to the excessive neutrophil-mediated damage already noted [55, 83, 186], 

this should be taken into consideration when designing therapeutics. Our studies indicate a 

different result with phagocytosis capacity. Pulmonary infiltrative neutrophils have significantly 

reduced phagocytic ability as compared with those in circulation and blockade of CCR5 and 

CXCR2 in BAL and CXCR2 in blood further weakened the phagocytic ability of the cell. Reduced 

neutrophil function can contribute to the likelihood of severe co-infections and should also be 

considered when evaluating potential for antagonists in clinical disease. 

There are several challenges and limitations of using an animal model for ARDS including 

the host-specific differences in chemokines, their receptors and the roles these play in the 

disease pathogenesis. One such difference is that CXCL8 does not exist in the rodent model, 

although homologues do exist as CXCL1 (KC) and CXCL2 (MIP-2). It is also unclear whether the 

mouse analog for CXCR1 is functional in the same way as human CXCR1 as it seems to be 

activated in different ways and does not seem to play the same central role in the pathogenesis 

of ARDS that it does in humans [137]. The application of studying CXCR1 in an animal model to 

evaluate human disease is still in question and needs further investigation. In addition to 
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challenges common to animal models, this study is merely a partial characterization of the 

neutrophil during dual infection. Chemokine receptors, integrins, and functional studies were 

selected based on clinical therapeutic potential and previous studies. In particular, a more 

complete analysis of the functional impact of each receptor should be evaluated in this model. 

CCR1, CCR3, CCR5, CXCR2, CXCR3, and CXCR4 were chosen for initial analysis due to a variety of 

reasons. CXCR2 is highly expressed during infection and is a readily available target being 

analyzed in a variety of models. CXCR3 and CCR5 were also consistently induced after infiltration 

to sites of pulmonary infection and also show therapeutic potential in other models of disease 

that make these readily available antagonists to be tested in future trials. CCR2 is primarily 

involved in macrophage function and so was excluded. CXCR1 was also excluded due to limited 

functional role in murine models due to homology concerns with human CXCR1. Work should 

continue to gain a more complete picture of the neutrophil during dual infection. 

 In conclusion, our study revealed several novel findings. Firstly, we found that 

neutrophils acquire new phenotypic characteristics after they recruit into the lungs during acute 

influenza infection and also S. pneumoniae superinfection. Expression of CC chemokine 

receptors (CCR1, CCR2, CCR3, and CCR5) and CXC chemokine receptors (CXCR3, and CXCR4) 

were induced in lung-recruited neutrophils in primary influenza and S. pneumoniae 

superinfection compared to S. pneumoniae alone infected animal groups. Secondly, CXCR2 is the 

most predominant chemokine receptor expressed in both circulating as well as lung-recruited 

neutrophils compared to S. pneumoniae infected animals. Thirdly, these findings also 

demonstrate significant decrease in integrins expression on neutrophils during infection. Our 

findings also demonstrate that induced chemokine receptors including CCR5 and CXCR2 

significantly influence neutrophil functional responsiveness including phagocytic activities and 

respiratory burst. Our recent studies have demonstrated that stimulation of CXCR2 with IL-8 
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significantly induce NETs, which can potentially contribute to the acute lung injury. Overall, 

identifying induction of novel chemokine receptor expressions on neutrophils helps in not only 

understanding their pathogenic role in influenza as well as S. pneumoniae superinfection but 

also opens a new avenue to develop novel therapeutic strategies in alleviating lung 

pathogenesis during primary influenza as well as S. pneumoniae superinfection.   
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CHAPTER IV 
 

 

THE THERAPEUTIC POTENTIAL OF SCH527123, A CXCR1/2 ANTAGONIST, IN A 

MURINE MODEL OF DUAL INFECTION PNEUMONIA 

 

A. Introduction  

Our work to identify availability and functional properties of chemokine receptors 

achieves relevance through their clinical application in the dual infection model. As previously 

outlined, influenza coinfection is complex, and a lethally synergistic response is clear when 

bacterial, viral and host influences are all considered. The immune system’s response to 

infection is well documented to further aggravate injury and breakdown epithelial and 

endothelial barrier integrity within the pulmonary tissue, resulting in increased chances of 

bacteremia and worsened disease. Due to the complexity of coinfections, a simple targeted 

monotherapy is insufficient to treat such cases [109]. In addition, resistance to antivirals and 

antibiotics further insists on a combined approach to treatment. Combinations of antibiotics, 

and effective antiviral, and therapies that target the immune response are considered more 

optimal approach to treating these infections.  

Antibiotic therapy is a mainstay for treatment of any pneumococcal pneumonia, whether 

community acquired, healthcare-associated, or seen as secondary to viral infection. Three main 

classes of antibiotics have been more thoroughly considered in treatment of these infections:  
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β-lactams, macrolides, and fluoroquinolones. β-lactams – such as penicillin, cephalosporins and 

ampicillin – are broad spectrum and widely used drugs that inhibit cell wall synthesis in the 

bacteria by preventing the final cross-linking in the peptidoglycan layer. The result is a 

bacteriocidal effect. Historically, this class is the most commonly used for pneumococcal 

pneumonia, but a shift in the last couple of decades is pushing for other classes in combination 

or instead of β-lactams. Studies have shown significant resistance to penicillin in pneumococcal 

strains – one study revealed that in the United States, 34% of pneumococcal strains are 

penicillin non-susceptible with over 18% fully resistant [209]. In addition to resistance profiles, 

β-lactams such as ampicillin are not as effective as other classes either. In another model of 

secondary bacterial infection to influenza pneumonia, ampicillin only resulted in 56% survival, 

while azithromycin was at 92% survival with improved inflammation and less severe 

histopathology [112]. 

Macrolides (such as azithromycin, clarithromycin, and erythromycin) act by reversibly 

binding to the 50S subunit in ribosomes and therefore, preventing bacterial protein synthesis. 

The effects are bacteriostatic. Macrolides have been shown to not affect granule mobilization, 

but inhibit O2
- generation from neutrophils selectively, which may contribute to their effects 

[210]. One approach considered is to use macrolides in combination with β-lactams for 

treatment in influenza coinfections and other forms of pneumococcal pneumonia. An 

ampicillin/azithromycin treatment effectively reduced inflammation, improved bacterial 

clearance, decreased inflammatory cytokines such as TNF-α, IFN-γ and IL-6, reduced damaging 

myeloperoxidase, improved permeability, and decreased overall inflammatory cell recruitment 

in pneumococcal pneumonia [113]. Combination therapy of amoxicillin and clarithromycin in 

community-acquired pneumonia is more effective than either monotherapy [211]. In addition, 

the dosing regimen may also be influential to clinical outcome – pulsatile therapy, such as giving 
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an antibiotic every two hours for the first 6 hours of each day, results in improved outcome as 

compared with more standard dosing regimens such as every 12 hours [211]. Using mutant 

prevention concentration as a novel approach to evaluate drug-bacterial interactions for 

resistance, several studies have more thoroughly detailed resistance patterns between 

macrolides [212]. Interestingly, azithromycin is shown to be more likely to develop resistance 

than other macrolides, in particular clarithromycin [212-214]. Concerns regarding adverse 

effects of macrolides, in particular azithromycin are also to be considered. Some suggest that 

the cardiotoxicity seen with azithromycin usage in healthcare-associated pneumonia outweighs 

the benefits of the drug, making azithromycin usage contraindicated in this particular form of 

pneumonia [215]. 

Fluoroquinolones (most ending in –floxacin) are bacteriocidal drugs which prevent 

bacterial DNA from unwinding and replicating. Flouroquinolone resistance has also been shown 

to be on the rise, as opposed to most other classes which are starting to decline [209]. There is 

also some question as to the effectiveness of fluoroquinolones as compared with macrolides. In 

a murine bacterial rhinosinusitis model, moxifloxacin had a limited effect while azithromycin 

rapidly cleared the bacteria and reduced inflammation [114]. However, it is unclear if these 

differences would be apparent in a human host. Fluoroquinolones may become especially 

essential to treatment of otherwise resistant pneumococcal pneumonia. A combination therapy 

including levofloxacin and ceftriaxone shows promise in such cases by downregulating 

inflammation, improving clearance of the bacteria, and, additionally, downregulating expression 

of two key pneumococcal virulence factors – pneumolysin and autolysin [111]. Outside of these 

classes of antibiotics, there are several other therapeutics targeting bacterial virulence factors. 

For example, artocarpin, a bacterial neuraminidase inhibitor, shows promise in future therapies 
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by providing bactericidal effects without harming pulmonary epithelial cells in pneumococcal 

pneumonia [108]. 

Antivirals are a mainstay of treatment for any influenza pneumonia. Oseltamivir is the 

primary antiviral used at this current time to combat influenza outbreaks. Oseltamivir an oral 

antiviral that is a neuraminidase inhibitor acting on both influenzas A and B, the primary causes 

of seasonal influenza outbreaks. Although most agree that oseltamivir improves clinical 

outcome, the evidence is controversial. A fairly recent, and controversial, report indicated that 

oseltamivir did not reduce hospitalizations or severe complications associated with influenza, 

but these findings and the benefits of oseltamivir continue to be debated today [216]. 

Combination of antivirals with antibiotics are especially important during influenza pandemics 

and in high risk individuals. A study performed in human volunteers with confirmed influenza A 

and no comorbid pneumonia showed that combination therapy of oseltamivir and azithromycin 

resulted in earlier resolution of clinical disease [217]. Many are looking for alternatives to 

oseltamivir and inhaled zanamivir due to increasing concern for resistance to this medication 

[106]. Peramivir is another neuraminidase inhibitor that reduced mortality in coinfected mice 

better than oseltamivir by inhibiting viral replication resulting in improved bacterial clearance 

and survival [107]. Although oseltamivir has shown effectiveness to both viral and bacterial 

neuraminidase, peramivir only seems to inhibit viral neuraminidase, and must be administered 

intravenously [107, 108]. Historically, amantadine and rimantadine have been used as antiviral 

therapy, but these medications are only effective toward influenza A, not B, and have significant 

(>99%) resistance recorded for several strains of Influenza A, including circulating H3N2 and the 

2009 H1N1. For these obvious reasons, these medications are no longer recommended for use 

as antiviral therapy. There is increasing concern that similar resistance could develop with 

neuraminidase inhibitors, although levels of resistance this severe have yet to be documented.  
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The importance of controlling both the bacterial infections and host responses to those 

infection is clear. In a dual infection model, a clear link can be seen between severe pulmonary 

neutrophilia with resultant immunopathology and poor clinical outcome [42]. If neutrophils are 

depleted, the immunopathology is improved, but clinical outcome remains unchanged; on the 

other hand, if only azithromycin is used to treat the infection, we see improved outcome and 

bacterial clearance, but no improvement in immunopathology [42]. These findings support a 

combined approach. CXCR2 antagonists are currently showing the most promise in treatment of 

both chronic and acute inflammatory diseases, especially disease such as Chronic Obstructive 

Pulmonary Disorder (COPD) [218-221]. Under healthy, basal conditions, less than 2% of the 

neutrophil pool is in circulation at any one time [222]. CXCR2 activation releases mature 

neutrophils from the bone marrow as an innate response to inflammation, which is 

counteracted by CXCL12 activation of CXCR4, which retains neutrophils in the bone marrow 

[158]. There are several potent CXCR1/2 and CXCR2 selective antagonists on the market or in 

trials at this time. AZD5069, a selective CXCR2 antagonist, shows good potential as a drug in 

COPD models and human trials [220, 223, 224]. MK-7123 is another currently being tested in 

models of COPD [218]. Another well studied antagonist is Sch527123, a dual CXCR1/2 

antagonist. The full name is 2-hydroxy-N,N-dimethyl-3- [[2-[[1(R)-(5-methyl-2-

furanyl)propyl]amino]-3,4-dioxo-1-cyclobuten-1-yl] amino] benzamide [225]. First characterized 

in 2006 [225], this therapeutic has been shown to have good oral availability and acts as an 

allosteric antagonist binding both receptors, but having a preference for CXCR2 [161]. These 

pharmacological properties have also been thoroughly evaluated in a murine, rat and non-

human primate model [160]. Sch527123 binds with high affinity in mice (Kd = 0.20 nM) and is a 

potent antagonist of CXCR2-mediated chemotaxis (IC50 ~ 3-6 nM) [160]. When evaluated in 

COPD, Sch527123 effectively decreased neutrophil chemotaxis, while dexamethasone did not 
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[221]. In addition, Sch527123 has been shown to block pulmonary neutrophilia in an LPS-

induced murine model for pneumonia with an ED50 of 1.2 mg/kg [160]. There may be some 

benefit to using a CXCR1/2 antagonist. Although CXCR1 and CXCR2 may appear functionally 

redundant in their effects, this really isn’t true. Very different outcomes are derived from their 

activation and CXCR1 has a wider range of antimicrobial effects than CXCR2 activation [226]. As 

a dual CXCR1/2 antagonist, Sch527123 more effectively reduces neutrophil migration and 

activation than the selective CXCR2 antagonist, SB265610 [227]. 

After establishing an influenza coinfection model with significant neutrophil influx and 

resultant immunopathology and identifying availability of chemokine receptor targets, we 

selected a combination therapy including oseltamivir, clarithromycin and Sch527123 to test in 

this model. I hypothesized that a CXCR2 antagonist would reduce neutrophil recruitment to the 

lungs, and when used in combination with antiviral and antibiotic therapy, reduce 

immunopathology and improve clinical outcome. 

B. Materials and Methods: 

Pathogens 

Influenza A/Puerto Rico/8/34, H1N1 (PR/8) virus was obtained from the American Type 

Culture Collection (ATCC, VA). Viral titers were determined by tissue culture infectivity dose 

(TCID50) assay via infection of Madin-Darcy canine kidney (MDCK) cells. Streptococcus 

pneumoniae (serotype 3) was also obtained from the ATCC. Bacterial growth curves were 

established prior to infection. All pathogens were stored at -80°C until use. 
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Animals and Murine Model 

Female Balb/c mice (6-8 weeks old) were purchased from the Jackson Laboratories. 

Mice were group-housed in microisolator cages in a BSL-2 facility, and were provided with food 

and fresh water ad libitum. Mice were clinically scored based on a modified version of the 

“mouse clinical assessment scoring for sepsis” (M-CASS) [172].  Infection was performed under a 

mixture of xylazine (0.1 mg/kg) and ketamine (7.5 mg/kg) anesthetic via intraperitoneal 

injection. Mice were infected intranasally (IN) with a sublethal dose of 100 TCID50 PR/8 (H1N1) 

influenza in a 50 μl volume or given an equal volume of sterile phosphate-buffered saline in 

controls. For dual infection studies, mice were administered 200 colony forming units (CFU) of S. 

pneumoniae IN in 50 μl volumes 72 hours after initial influenza infection, or administered PBS IN 

for controls. Mice were monitored closely for weight loss and clinical signs based on a modified 

“mouse clinical assessment score for sepsis” [see supplemental figure 1] [172, 173]. All animal 

experiments were approved by the Institutional Animal Care and Use Committee (IACUC) of 

Oklahoma State University and were performed in strict accordance with their 

recommendations. 

 

Therapeutic Model 

Mice were treated with combinations of the following three drugs: oseltamivir 

phosphate, clarithromycin, and SCH527123. Oseltamivir 75 mg phosphate capsules (Alvogen) 

were stored at room temperature. Before use, the capsules were emptied and powder weighed 

for the appropriate amount. 75 mg of drug were present in 160 mg of total weight powder. The 

powder was then redistributed in phosphate-buffered saline to the appropriate volume. 

Clarithromycin 500 mg tablets (Citron Pharma L) were crushed with mortar and pestle and 

coating removed. The powder was also measured (500 mg drug per 780 mg total powder 
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weight) for the appropriate dosages and redistributed in PBS to be delivered in set volumes of 

100 µL per mouse. SCH5271213 was dissolved in dimethyl sulfoxide (DMSO) at 50 mg/500 µL 

and stored at -20°C. Before use, the appropriate volume of SCH527123 was dissolved in 0.4% 

methyl cellulose to be administered. All drugs were administered via gastric lavage.  

For survival studies, mice were infected intranasally (IN) with a sublethal dose of 100 

TCID50 PR/8 (H1N1) influenza in a 50 μl volume and then were administered 200 colony forming 

units (CFU) of S. pneumoniae IN in 50 μl volumes 72 hours after initial influenza infection. All 

combinations of therapeutics were tested. Depending on the particular experiment, oseltamivir 

phosphate was administered at 10-20 mg/kg every 24 hours for 3 doses starting on day 3 post 

influenza infection. Clarithromycin was administered at either 40, 50 or 100 mg/kg every 24 

hours for 3-7 doses beginning on day 3 post influenza infection. SCH527123 was administered at 

3 mg/kg every 24 hours for 3 doses beginning on day 3 post initial infection. All mice were 

monitored for weight loss and clinical score as per our approved guidelines. 

 

Whole blood, bronchoalveolar lavage (BAL) fluid, and tissue collection 

For BAL fluid collection, the lungs were washed by intratracheal administration of 1.0 

mL of sterile PBS in two 0.5 mL increments [55]. The recovery of BAL fluid was more than 85% 

for all animals. The BAL fluids were centrifuged at 200 xg for 10 minutes, and reconstituted in 

sterile PBS for cell counts and with 2% fetal bovine serum in PBS for flow cytometry analysis. 

BAL cells were concentrated using the CytoFuge 2 cytocentrifuge (StatSpin, Westwood, MA), 

and differential cell counts were performed using modified Giemsa staining. Whole blood was 

collected via terminal procedure of intra-cardiac collection. Bronchoalveolar lavage fluid and 

whole blood (intracardiac) were collected from 3 to 5 days’ post influenza infection for flow 

cytometry analysis and other studies. Lungs from mice who did not have BAL collection were 
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fixed with 4% formalin and collected for histopathology analysis after hematoxylin and eosin 

(H&E) staining. Mice were scored on a 1-4 scale (4 being most severe) for severity in the 

following areas by a blinded, board-certified anatomic veterinary pathologist: necrotizing 

bronchiolitis, bronchiolar infiltrates, alveolitis, interstitial inflammation, hemorrhage, edema, 

and microvascular thrombosis. Total histopathologic scores were evaluated as a sum of all 

individual scores. BAL and blood cultures were also performed on blood agar plates, incubated 

overnight at 37° C. 

 

Flow Cytometry 

The following antibodies were purchased from R&D Systems and used throughout the 

course of this study for chemokine receptor expression characterization of murine neutrophils: 

mouse CCR2 PE-conjugated antibody, mouse CXCR2/IL-8 RB PE-conjugated antibody, mouse 

CXCR3 PE-conjugated antibody, and mouse CXCR4 fluorescein-conjugated antibody. These 

antibodies were selected based on availability and due to their previously reviewed relevance in 

chronic inflammatory conditions and potential for therapeutic targeting [138]. Additional 

antibodies used in this study include mouse Ly6G (1A8) PerCP-conjugated antibody (Biolegend). 

In all flow cytometry studies, control BAL fluid was not compared due to a lack of pulmonary 

neutrophils in naïve Balb/c mice. The collected whole blood and BAL fluid were aliquoted into 

200 μl volumes for antibody staining.  2.0 ml of 1x PharmLyse Buffer was used for red blood cell 

lysis and allowed to lyse for 15 minutes at room temperature. Samples were allowed to stain for 

30 minutes, covered, at room temperature on a shaker. All samples were then centrifuged and 

washed with chilled PBS (with 2% FBS) 1-3 times before performing flow cytometry. Flow 

cytometry was performed on the BD FACSCalibur flow cytometer and analyzed with the 

corresponding CellPro software. Neutrophils were gated as Ly6G-1A8+SSCmed-hi.  
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Statistical Analysis 

The data are expressed as the means ± SEM. Statistical analyses were performed using Student’s 

unpaired t-test, paired t-test or analysis of variance (ANOVA) using GraphPad Prism 7 software. 

Survival studies were analyzed using GraphPad Prism 7 as well and statistical analyses 

performed using Mantel-Cox and Gehan-Breslow-Wilcoxon tests.  p < 0.05 was considered 

statistically significant. 

 

 

C. Results 

C.1. Sch527123, a CXCR1/2 antagonist, effectively reduces neutrophil influx in dual infection 

pneumonia. Before assessing the effect of Sch527123 in a murine survival model, I first had to 

establish that the drug would effectively reduce the inflammatory neutrophil influx to the lungs 

during infection. Balb/c mice were infected with either 100 TCID50 PR/8 H1N1 influenza only or 

in combination with 200 CFU S. pneumoniae (day 3) and BAL cell counts compared on day 5 post 

influenza infection [Figure 1.1]. 
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Figure 1.1: A CXCR2 antagonist, Sch527123, significantly reduces inflammatory neutrophil 

influx in dual infection pneumonia. 8 week old Balb/c mice were infected with either 100 TCID50 

PR/8 H1N1 influenza only or in combination with 200 CFU S. pneumoniae (day 3 post infection). 

Sch527123 was administered at 3 mg/kg every 24 hours via gastric lavage 3-5 days post 

influenza infection. Sch527123 effectively reduces neutrophil influx in either infection model, 

but is most notable in dual infection. Data are expressed as means ± SEM and comparisons 

made via unpaired t-test. n=5 mice per group. ** p<0.01. 

 

These cell counts were then more thoroughly compared over a 3-day period from 4 through 6 

days after influenza infection using both the influenza-only and dual infection models. Although 

Sch527123 appears to effectively reduce neutrophil influx regardless of day or model, this 

impact is most notable in the murine dual infection model on day 5 [Figure 1.2]. Day 5 after 

influenza infection (48 hours post bacterial infection) has the highest cell count numbers of the 

days measured as well as the most significant reduction in this population via Sch527123. 
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Figure 1.2: Sch527123 significantly reduces inflammatory cell influx with peaking effects 5 day 

after influenza infection. Balb/c mice were infected with either 100 TCID50 influenza PR/8 or 100 

TCID50 influenza PR/8 + 200 CFU Strep. pneumoniae (Dual) and then either treated with 3 mg/kg 

Sch527123 every 24 hours for 3 days beginning on day 3 or with water for mock treatment. Cell 

counts were highest in untreated groups on day 5 [dual p=<0.05; flu p=0.0683]. Sch527123 

significantly reduced cell influx in dual infected mice on day 5 post influenza infection. All data 

expressed as means ± SEM and comparisons made via unpaired t-test. n=3 mice per group. **** 

p<0.0001. 

 

C.2. CXCR2 expression on infiltrated PMNs is reduced in dual infection pneumonia. In addition 

to an overall reduction in the numbers of cells infiltrating the lungs during infection, there is also 

an apparent reduction in CXCR2 expression on these cells when treated with the CXCR2 

antagonist, Sch527123 [Figure 2.1]. This change in expression is not evident in circulatory 

neutrophils in the dual infection model. Although this study was limited in sample size, flow 

cytometry was used to assess the expression of CXCR2 with and without Sch527123 treatment 

in both influenza-only and dual infection models. Analysis was performed from day 3-6 post 

infection. In addition to CXCR2, a handful of other chemokine receptors were tested to see if 
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there was any obvious effect of the treatment on the expression in receptors other than CXCR2. 

The other receptors tested were CCR2, CXCR3, and CXCR4. No changes were noted in these 

other receptors regardless of treatment or model (data not shown). 

 

Figure 2.1: CXCR2 Expression is suppressed in infiltrated neutrophils with Sch527123 

Treatment. CXCR2 expression was measured on PMNs (Ly6G-1A8+) via flow cytometry 3-6 days 

post influenza infection. Although the sample size is too small for statistical significance, it is 

apparent that treatment Sch527123, a CXCR2 antagonist, reduces expression of CXCR2 on 

neutrophils infiltrating the lung in dual infection, while not affecting circulatory neutrophil 

expression. No differences were noted in either the BAL or circulatory samples for other 

receptors tested – CCR2, CXCR3, and CXCR4. n=1. 

 

C.3. Sch527123 significantly delays lethality when used in combination with oseltamivir and 

clarithromycin. In order to assess the clinical potential of Sch527123 in influenza coinfection, 

the established murine dual infection model was used as outlined in Figure 3.1. 
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Figure 3.1: An outline of the survival study plan. PR/8 H1N1 influenza was administered at 100 

TCID50 intranasally on day 0. 200 CFU S. pneumoniae, a sublethal infectious dose, was then 

administered 72 hours later. Various combinations of therapy including oseltamivir, 

clarithromycin, and Sch527123 were used. Survival studies were not carried out beyond 21 days 

after influenza infection. 

 

 



140 
 

 

Figure 3.2: Treatment outline for each survival study. This figure outlines the treatment 

protocols used for each survival study group in both table and schematic formats. Variations in 

dosage, frequency and timing were all employed to assess differences in treatment.  

 

Combinations of therapy tested are outlined in Figure 3.2. For initial comparison, we will look at 

group 1 – this treatment model did not start any treatment until 12 hours after bacterial 

infection. All medications were administered via gastric lavage every 24 hours. For group 1, 3 

doses of each medication were administered – 10 mg/kg oseltamivir, 100 mg/kg clarithromycin, 

and 3 mg/kg Sch527123 respectively. In group 1, four combinations of therapy were tested: no 

treatment, clarithromycin (antibiotic) only, Clarithromycin + Sch527123, and Clarithromycin + 

oseltamivir + Sch527123.  
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Figure 3.3: Group 1 did not have any significant differences in weight loss between the four 

tested groups. Data displayed as means ± SEM and comparisons made via one-way ANOVA each 

day. n=5 mice per group.  

 

As can be seen in Figure 3.3, no significant differences in weight loss between groups is noted. 

However, when clinical score is assessed using the modified murine scoring system for 

assessment of septic shock (MCASS), the combination therapy does show statistically significant 

improvement in clinical score when comparing groups seven days after initial influenza infection 

[Figure 3.4]. The outline for this scoring system is available in Chapter 2. In general, clinical 

features such as lethargy, hair coat, respiratory distress, posture and behavior are closely 

observed in both a stimulated and unstimulated state. Mice are assigned a score from 1 through 

4 with 1 being healthy and 4 being severely affected and requiring euthanasia. 
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Figure 3.4: Combination therapy slows clinical decline of dual infection influenza pneumonia in 

a murine model. Balb/c mice were infected with influenza and S. pneumoniae as per the dual 

infection protocol. No significant clinical improvement can be seen with antibiotic only or 

antibiotic + Sch527123 therapy, but those mice treated with a combination of all three therapies 

– antibiotic, antiviral, and the CXCR2 antagonist – have a slower clinical progression and a 

significantly improve clinical score on day 7 post influenza infection. Data expressed as means ± 

SEM and comparisons made via one-way ANOVA. n=5 mice per group. **** p<0.0001 (relative 

to no treatment group). 

 

As expected upon comparing clinical progression of the treatment groups, a delay in lethality is 

also noted in the combination therapy group [See Figure 3.5]. No difference in survival was seen 

between the group receiving no treatment and that receiving clarithromycin only with 100% 

fatality by day 7. The group receiving clarithromycin in combination with Sch527123 had 80% 

lethality by day 8 and 100% by day 10. In contrast, the group receiving all three medications 

survived the longest with 100% still surviving through day 9. Between days 9 and 11 all mice in 

the final group reached their endpoint, which correlated with completion of their medication 

and subsequent clinical decline. Overall, the groups receiving antibiotic and SCH527123 had 
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significantly improved lethality over that with no treatment. Combination therapy resulted in 

significant delay in lethality over all other groups. 

 

Figure 3.5: Combination therapy results in delayed lethality in a murine model of dual infection 

pneumonia. Mice were infected with PR/8 H1N1 influenza and S. pneumoniae as previously 

described. Treatments were administered as outlined in Table 3.2. No differences were seen in 

survival between the untreated group and that treated with clarithromycin alone. 

Clarithromycin in combination with Sch527123 delayed lethality slightly with only 20% survival 

on day 8 and 100% lethality by day 10, but was significantly improved survival over mice 

receiving no treatment. Combination therapy with all three – clarithromycin, oseltamivir, and 

Sch527123 – resulted in 100% survival through day 9 and was significantly improved over all 

other groups. Rapid clinical decline occurred between days 9-11 with 100% lethality by day 11. 

Overall, this combination was a statistically significant improvement over the other treatment 

models and the untreated group. n=5 mice per group. *p<0.05; **p<0.01 (relative to no 

treatment group. 

 

C.5. Modulation of treatment groups can result in survival in our murine dual infection model. 

After thorough evaluation of the previously described treatment model, an addition two 

protocols were outlined to be assessed. See figure 3.2 for treatment outlines for groups 2 and 3. 

Based on the previous steep decline of the combination therapy group between 9-11 days 
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resulting in 100% lethality, a model was proposed that allowed for 7 doses of antibiotic to be 

administered instead of just 3. This more closely mimics a typical antibiotic course in human 

disease. In addition, groups were compared starting antiviral and Sch527123 treatments at the 

start of more evident clinical disease (about 12 hours prior to bacterial infection), or only after 

the secondary infection was established. 

 

Figure 4.1: Surviving mice begin to recover weight after day 9. No significant differences were 

noted between groups regarding weight lost during infection. Group 2 included treatment 

groups which were administered antiviral and Sch527123 prior to bacterial infection – this group 

had more overall weight recovery between days 7-10, whereas Group 3, with fewer surviving, 

did not see weight recovery until after day 12. Abx: 50 mg/kg Clarithromycin, AV: 20 mg/kg 

oseltamivir; SCH: 3 mg/kg Sch527123. n=5 mice per group. 

Although weight loss was similar between all groups in the first week of infection, Figure 4.1 

shows that of those mice surviving beyond 7-10 days, a steady increase in weight gain can be 

seen as early as day 7-9 in some groups, with most surviving mice fully recovering their weight 

lost by day 21. In general, this steady improvement in weight gain is more evident about 2-3 

days earlier in those mice surviving group 2 compared with those in Group 3, which did not 

receive any medication prior to bacterial infection. This further highlights the importance of 

early intervention when there is a risk for coinfection.  



145 
 

 

Figure 4.2: Effective combination therapy requires antiviral administration. The above figure 

illustrates clinical scores comparisons on day 7 post influenza infection. Significant improvement 

in clinical scores is only noted in those groups receiving antiviral therapy, regardless of group. 

Treatment groups receiving the antiviral oseltamivir 12 hours prior to bacterial infection had the 

least severe clinical decline based on MCASS scoring through the first week. Of those treatment 

groups in Group 3, groups receiving both antibiotic and antiviral out-performed others. Full 

combination therapy with all three agents had significantly improved clinical scores (p<0.001) 

compared with no treatment and monotherapy, other than antiviral only. Abx: 50 mg/kg 

clarithromycin; AV: 20 mg/kg oseltamivir; SCH: 3 mg/kg Sch527123. Data expressed as means ± 

SEM. N=5 mice per group. ***p<0.001; ****p<0.0001 (relative to no treatment group). 

 

A closer look at clinical scoring through MCASS also illustrates significant differences between 

treatment groups that help to explain this recovery. Figure 4.2 compares clinical scores on day 7 

after infection, which is the time point where most mice either commit to their endpoint or start 

to show signs of clinical recovery, even if their weight loss persists for a few more days. Early 

intervention with antiviral therapy plays a large role in improved clinical score at day 7 as seen 

by viewing results from Group 2. In group 3, treatment groups receiving antibiotic and antiviral 

therapy did best. Combination therapy with all three medications was significantly improved as 

compared with no treatment and most monotherapy in both groups. These differences in 
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clinical scores also help to explain differences in survival seen between treatment groups. Group 

2 had to most overall survival [Figure 4.3].  

 

Figure 4.3: Early intervention key to survival. Treatment groups performing best were those 

receiving early intervention with antiviral therapy. Combination (**), AV+SCH (**), Abx+AV (*), 

and AV monotherapy all performed significantly better than the untreated mice. There was no 

statistical improvement between untreated mice and Abx+SCH or SCH/Abx monotherapies. 

Combination therapy also outperformed monotherapy except for antiviral monotherapy. 

Antiviral monotherapy was the exception with 40% overall survival and 80% of mice surviving 

through day 10. 40% overall survival was also seen in Abx+AV and Abx+AV+SCH groups. Most 

mice survived through day 10-11 in the Abx+AV+SCH group as compared to Abx+AV where a 

decline was noted at day 7. 20% survival was seen in dual therapy groups – Abx+SCH and 

AV+SCH. No statistical significance is seen between dual and combination therapy groups. n=5 

mice per group. *p<0.05; **p<0.01 (listed in text – relative to no treatment group). 

The antibiotic only group matched the group receiving no treatment in survival with 100% 

lethality by day 7.  Only mild improvement was noted in Sch527123 monotherapy, with 100% 

lethality on day 9. The only monotherapy that performed well was the oseltamivir only group, 

with 80% still alive through day 10 and 40% surviving through day 21. As a part of group 2, these 

mice received antiviral therapy at the start of significant clinical signs, which was 12 hours prior 

to bacterial infection. In addition to the antiviral monotherapy group, 40% overall survival was 
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also seen in the antibiotic + oseltamivir and antibiotic + oseltamivir + Sch527123 groups. 

Sch527123 improved combination therapy group outcome over Abx+AV – although their 

ultimate survival matched, the remaining mice survived through days 10/11 whereas a decline 

was noted in the group not receiving Sch527123 treatment on day 7. 20% survival was noted in 

the antibiotic + Sch527123 and oseltamivir + Sch527123 groups as well. Overall, combination 

therapy with 2 or 3 therapeutic agents outperformed monotherapy and early intervention 

appears to be significant in improving clinical outcome.  

 

Figure 4.4: Sch527123 therapy less effective when administered after bacterial infection. 

Overall, fewer mice survived from the Group 3 study than Group 2. 60% survival is noted in the 

Abx+AV dual therapy group and 20% in the antiviral monotherapy group. Most mice declined 

and reached end point at earlier time points compared with Group 2 as well. Several groups 

performed significantly better than the untreated mice: antiviral monotherapy (*), Abx+AV (**), 

AV+SCH (**), and combination therapy (**). Combination therapy also performed significantly 

better than Abx or SCH monotherapy (**) and Abx+SCH dual therapy (**). Abx: 50 mg/kg 

clarithromycin; AV: 20 mg/kg oseltamivir; SCH: 3 mg/kg Sch527123.  n=5 mice per group. 

*p<0.05; **p<0.01 (listed in text – relative to no treatment group). 

Group 3 focused on initiating therapy only after bacterial infection, with all medications starting 

12 hours after the administration of S. pneumoniae. Severe clinical decline is seen about 24 
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hours prior to this time, so it is not surprising that survival was not as prominent in these 

treatment groups as it was in Group 2. Only two groups saw any survival – antiviral 

monotherapy and antibiotic/antiviral dual therapy. A remarkable 60% survived in the 

antibiotic/antiviral dual therapy group. The 40% which did not survive were euthanized quickly 

by day 8. Overall, most groups saw significant declines in survival around day 8. Antiviral/SCH 

dual therapy fared better with 80% survival through days 10 and 11. However, without 

antibiotic therapy, none of this group survived to 21 days. Combination therapy with all three 

medications also saw a delay in lethality with mice surviving through day 10, even though none 

survived to day 21. Another interesting comparison comes from looking at the Sch527123 

monotherapy treatment groups between Group 2, where it was administered 12 hours prior to 

bacterial infection, and group 3, 12 hours after bacterial infection. In Group 3, all the mice 

reached endpoint on day 7, but these mice survived an extra 1-2 days when therapy was 

initiated earlier. Finally, combination therapy was compared between groups 1, 2 and 3 in Figure 

4.5. Although combination therapy effectively delayed lethality as compared with most 

monotherapy groups, only mice with early intervention antiviral and Sch527123 therapy 

survived through day 21.  
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Figure 4.5: Early intervention is key in successful combination therapy. Mice receiving 

combination therapy (clarithromycin, oseltamivir and Sch527123) had significantly delayed 

lethality over most monotherapy groups and those not receiving treatment. Survival (40%) is 

only noted in mice receiving combination therapy with early intervention of antiviral and 

Sch527123 treatments, starting at the onset of severe clinical decline, approximately 12 hours 

prior to bacterial administration. Refer to Table 3.2 for group descriptions. n=5 mice per 

treatment group. **p<0.01 (relative survival to both groups 1 and 3). 

 

C.5. Combination therapy reduces pulmonary pathology and clinical disease by day 5. In order 

to more thoroughly investigate why combination therapy is effective in delaying lethality in mice 

infected with dual infection pneumonia, an experiment was performed comparing no 

treatment, antibiotic-only, SCH527123-only and combination therapy (antiviral, antibiotic and 

SCH527123) on day 5 after influenza infection. Therapeutics were administered based on the 

Group 2 model, with antiviral and SCH527123 treatment beginning 12 hours prior to bacterial 

infection and antibiotic therapy starting 12 hours after bacterial infection. Our results indicate 

that combination therapy significantly reduces weight loss on day 4 and 5 when compared with 
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untreated groups. Antibiotic therapy also had significant reduction in weight loss compared with 

the group receiving no treatments [Figure 5.1]. 

 

Figure 5.1: Mice treated with combination therapy lose less weight. Balb/c mice were infected 

with 100 TCID50 PR/8 H1N1 followed by 200 CFU S. pneumoniae 72 hours after viral infection. 

SCH527123 was administered at 3 mg/kg every 24 hours beginning 12 hours prior to bacterial 

infection. Oseltamivir was administered at 20 mg/kg beginning 12 hours prior to bacterial 

infection. Clarithromycin was administered at 50 mg/kg beginning 12 hours after bacterial 

infection. Mice treated with antibiotic alone and combination therapy did not lose as much 

weight as the untreated mice on day 5 (p<0.01 for combination and p<0.05 for antibiotic 

monotherapy). Combination therapy also lost less weight than the SCH527123 treated group on 

day 5 (p<0.05). These same groups were also statistically different on day 4 (p<0.05). Data are 

expressed as means ± SEM. n=6 mice per group per day. **p<0.01; *p<0.05 (relative to no 

treatment group). 

Clinically, improvement was also seen with combination therapy. M-CASS scores over the 5-day 

period were used to compare groups. By day 5, mice treated with monotherapy have 

significantly lower clinical scores than untreated mice and combination therapy is significantly 

improved over all other groups. No differences were noted between antibiotic-alone and SCH-

alone treated mice [Figure 5.2]. 
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Figure 5.2: Combination therapy reduces clinical severity more than monotherapy. Dual-

infected mice were monitored over 5 days for clinical severity and scored based on the MCASS 

System (1 (healthy) to 4 (severe)). Beginning at day 3, there is statistical significance in 

differences between all groups (p<0.0001) other than SCH Only and combination therapy on day 

3 and the two monotherapies on day 4. Clinically, mice were statistically improved with 

monotherapy over no treatment and combination therapy of all three agents was better than 

any other group. Data are expressed as means ± SEM and comparisons made via one-way 

ANOVA. n=6 mice per group.  

Bronchoalveolar lavage was collected from 3 mice in each group on day 5 and cell counts were 

performed [Figure 5.3]. Mice receiving no treatment had significantly higher inflammatory cell 

influx compared with all other groups. Treatment with SCH527123 alone reduced the 

inflammatory cell influx by about 50%. Combination therapy had the greatest effect with the 

lowest number of inflammatory cells in the BAL on day 5. These findings can be further 

visualized with the provided images from cytospins of those BAL samples. 
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Figure 5.3: SCH527123 effectively reduces neutrophil influx in both monotherapy and with 

combination therapy. BAL was collected from dual-infected mice 5 days after influenza infection 

(48 hours post bacterial infection) and cell counts were performed. Mice receiving no treatment 

had the most excessive inflammatory cell response. Treatment with SCH527123 reduced this 

response by over 50%. Combination therapy with all three treatments had the lowest cell counts 

on day 5. Cytospins were stained and pictures provided. Data are expressed as means ± SEM. 

n=3 mice per group. ***p<0.001; **p<0.01; *p<0.05 (relative to no treatment group). 

Finally, histopathology was scored and compared between groups on day 5. Three mice in each 

group were euthanized and lungs collected and fixed in formalin for comparison. Lungs were 

scored from 0-4 (4 being most severe) based on 7 focus areas: necrotizing bronchiolitis, 

bronchiolar infiltrates, alveolitis, interstitial inflammation, hemorrhage, edema, and 

microvascular thrombosis. A sum of scores is provided for comparison in Figure 5.4. 

Combination therapy has significantly reduced pulmonary pathology on day 5 compared with 

untreated and antibiotic-alone infected mice. This reduction in severity as compared with other 

groups is clearly evident when viewing the lung tissue in the provided images.  
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Figure 5.4: Combination therapy reduces pulmonary pathology on day 5. Mice were 

euthanized on day 5 after influenza infection (48 hours after bacterial infection). Lungs were 

collected and formalin-fixed for histopathology scoring and comparison. Lung pathology was 

scored from 0-4 (4 being most severe) in these areas: necrotizing bronchiolitis, bronchiolar 

infiltrates, alveolitis, interstitial inflammation, hemorrhage, edema and microvascular 

thrombosis. These individual scores were summated and used from comparisons. On day 5, 

combination therapy resulted in significantly improved scores compared with both untreated 

and antibiotic monotherapy. Sample images from hematoxylin and eosin stained slides used for 

scoring are provided. Data are expressed as means ± SEM and comparisons made via one-way 

ANOVA. n=3 mice per group. *p<0.05; **p<0.01. 

 

D. Discussion 

 These research findings support that Sch527123 is an effective CXCR2 antagonist in 

murine models of influenza coinfection with a significant reduction in neutrophil influx seen by 

day 5 after influenza infection (48 hours after bacterial infection). In addition to controlling the 

hyperinflammatory innate response to infection, Sch527123 appears to reduce CXCR2 

expression on these infiltrated neutrophils within the lungs.  

 Overall, a delay in lethality is noted with this use of combination, triple agent therapy. 

These results are promising despite lack of significant survival. Our murine model used for these 
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studies is very severe with 100% lethality seen in all dual infected mice between days 6-7 after 

influenza infection. With combination therapy, most mice survive through day 10-11, regardless 

of when the therapy is initiated. In our dual infection murine model, the untreated mice decline 

rapidly. Without supportive care and fluid therapy, all mice lose significant weight within the 

first week, even those in treated groups. This makes it difficult to have mice recover before 

reaching their endpoint for the study. However, this makes survival in this model all the more 

impressive and supports that delays in lethality are also clinically relevant.  

Not surprisingly, Sch527123 monotherapy is ineffective at improving survival and clinical 

outcome in this model. With the complexity of influenza coinfection, it is relatively well 

established that monotherapy is unlikely to improve outcome in most severe cases of 

coinfection, especially during a pandemic outbreak. Interestingly, even though we do not see 

survival with any Sch527123 monotherapy treatment group, we do see a delay in lethality when 

started early (12 hours prior to bacterial infection) as opposed to after bacterial infection. Our 

results also support the need for early antiviral intervention. These are both key findings in our 

influenza coinfection research which provide evidence for the importance of early intervention 

with combination therapy by healthcare professionals, and the need for patients who think they 

may have influenza to see a healthcare provider as soon as possible. In our experiment 

comparing SCH527123 monotherapy, antibiotic monotherapy and combination therapy with 

untreated mice, we can see that even by day 5 there are marked differences between groups. 

Combination therapy effectively reduces pulmonary pathology and inflammatory cell influx. 

Both antiviral therapy and Sch527123 therapy lost some effectiveness when administered later. 

The mice in these studies saw a significant clinical decline due to their influenza infection 

between days 2 and 3. Therapy should really be administered at the start of moderate clinical 

signs, before a patient is hospitalized. 
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This research opens up several avenues for continued work in the area of combination 

therapy in influenza coinfection. One question yet to be answered asks how effective is 

Sch527123 if given over various time points? And is there a point at which it could be considered 

detrimental? When reviewing results from treatment groups receiving early intervention of 

Sch527123, the greatest effect on clinical outcome is noted in those groups receiving this drug 

near the start of severe clinical signs and before a secondary bacterial infection has occurred. In 

contrast, we can shift our focus to Group 3 which did not receive any medication prior to 

bacterial infection, regardless of treatment group. In this group we see 60% survival in those 

mice treated with dual therapy antibiotic and antiviral (no Sch527123), but by merely adding 

Sch527123 to this group to make it a triple combination therapy, we see 100% lethality. Does 

this mean that antagonizing CXCR2 and inhibiting neutrophil influx after bacterial infection is 

present can lead to poorer outcomes in influenza coinfection? We can’t draw that conclusion at 

this time, but continued studies in other animal models with various protocols should be 

continued to fully understand the nature of this antagonism before suggesting it be used in 

human disease.  

In conclusion, chemokine receptors continue to be an intriguing target for combination 

therapy in influenza coinfection. As the effectiveness of antiviral therapy and antibiotics alone is 

continually questioned due to resistance and variation in potency, identifying further therapies 

that can be used in combination with these two will be critical to improving clinical outcome 

moving forward. Influenza coinfection is complex and identifying an effective animal model 

difficult. In addition, antagonists may target multiple receptors, which has the potential to have 

an even greater effect, but may prove to be quite complicated in fully understanding how these 

therapies work. Although significant progress has been made in studying the potential for 

chemokine receptor antagonists is models of chronic inflammation, immune-mediated disease, 
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and cancer, this progress has not been as detailed in acute inflammatory conditions, in 

particular influenza coinfections. Results from this study support exciting findings that these 

antagonists may offer some hope to improving clinical outcome in severe cases, especially 

during pandemic influenza outbreaks when mortality is higher and treatments often prove 

ineffective.  
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CHAPTER V 
 

 

INFLUENZA PNEUMONIA IN A SWINE MODEL RESULTS IN A 

HYPERINFLAMMATORY INNATE REPSONSE AND THE RELEASE OF 

NEUTROPHIL EXTRACELLULAR TRAPS 

 

A. Introduction 

 The sharing of influenza viruses between pigs and humans has been apparent since at 

least 1918 [228, 229]. Even though the role of the pig in human influenza pandemics has long 

been speculated, it has been more widely recognized and researched over the last 25 years, 

especially due to the “swine flu” pandemic in 2009 [229]. Pigs are natural hosts for influenza A 

viruses, and pose an increased risk of transmission to humans with direct contact, as well as 

through aerosolized droplets and fomites. Transmission may occur from any swine source, but 

reports have detailed that increased risk to humans is present whenever pigs and humans come 

in close contact [230], such as in show pigs [231] and pigs as companion animals [232]. In 

addition, feral swine serve as a reservoir for swine influenza since they are often in close contact 

with wild birds and water fowl. In the US, it is estimated that about 5% of feral pigs carry 

antibodies to influenza A – these antibodies are mostly to swine influenza, but avian influenza is 

also present in substantial amounts [233]. Surveillance methods will be key to pandemic 

planning in the future [228], but are difficult due to variation in serological data collected and 
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a lack of standardization [234]. RT-PCR methods have been developed and protocols are now 

available for more standardized diagnostics [235]. 

 Pigs are animals of interest primarily due to their capability to serve as mixing vessels 

for various strains of influenza viruses to reassert and potentially cause more significant human 

disease. A recent review looked at over 1400 cases of swine and avian influenza in naturally-

infected humans and found that the avian-influenza infections were primarily H5N1, but other 

H5, H6, H7, H9 and H10 were all reported as well [230]. Of the highly pathogenic H5N1 human 

cases (HPAI), the World Health Organization reported that 59% of those infected died, and 

death spanned 15 countries. This high mortality associated with avian viruses emphasized the 

threat of reassortment in pigs to make an even more pathogenic virus which can more readily 

infect humans. Of the swine viruses, H1 and H3 predominate [230]. A primary consideration 

includes the availability of sialic acid receptors to bind the virus and create disease. The human 

respiratory tract has predominantly α-2,6 receptors on the ciliated cells of the upper respiratory 

tract, but a mixture of α-2,6 and α-2,3 as the tract progresses to the non-ciliated respiratory 

epithelium [236]. Human influenza viruses include α-2,6 galactose viruses which prefer to bind 

to α-2,6 sialic acid receptors [237]. Avian influenza viruses prefer α-2,3 receptors [238]. Pigs are 

infected by both α-2,3 and α-2,6 SA-galactose viruses and have both receptor types present in 

the respiratory epithelium, somewhat similar to human [239]. Transmission is much more 

complex than just receptor availability and many factors are still being researched to better 

understand this transmission. 

 Since pigs can naturally be infected with both avian and human influenza A viruses, they 

serve as high risk vessels for viral reassortment. The segmented viral genome facilitates simple 

exchange of genetic material if a pig is co-infected with two different influenzas, referred to as 
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antigenic shift if hemagglutinin is involved in this reassortment of genetic material [230]. 

Humans have little to no pre-existing immunity to viruses undergoing antigenic shift. The 

influenza virus may also undergo a series of mutations during replication, often amino acid 

substitutions. If hemagglutinin is directly affected by these mutations, the virus can undergo 

antigenic drift, which also exposes an otherwise naïve population to a virus with novel surface 

antigens [230]. Pigs have been used more recently in experimental models to try to recreate this 

antigenic shift or drift with varying levels of success. It has proven difficult for pigs to 

experimentally create the pandemic virus from 2009 through introducing triple reassortment 

virus and Eurasian swine influenza virus, supporting that this particular pandemic was a 

relatively rare event involving many complex and yet unknown factors [240]. More recently, a 

pig model has been successfully used to reassert H3N2 swine influenza with H1N1 avian/duck 

influenza [241]. In another study more closely evaluating the evolutionary dynamics of influenza 

virus in pigs, serial passages of virus effectively created a reassorted virus with enhanced 

pathogenicity [242]. 

 These shifts in viral subtypes can occur over longer periods of time between pandemics 

and season to season. During the 1918 “Spanish flu” pandemic, the predominant strain was 

H1N1, but a shift to H2N2 was seen around the time of the “Asian Flu” pandemic in 1957 and 

then another shift to H3N2 for the “Hong Kong” pandemic in 1968. Since the “swine Flu” 

pandemic in 2009-2010, seasonal influenza outbreaks have been predominantly the pandemic 

2009 strain of H1N1, which stems from the North American triple reassortment and Eurasian 

avian-like swine influenza viruses, as opposed to the previous H1N1 strains. H3N2 has replaced 

H2N2, which is now circulating in birds and pigs, but not humans. Climate and time of year also 

contributes to viral outbreaks and should be considered when planning for pandemics [243]. 
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 Various animal models have been considered for further studying influenza virus 

vaccines, treatment, and the pathogenesis behind the disease. Mouse models are the most 

widely used due to their availability and affordability, but several downsides are present to using 

mice to model this disease. First, mice require adapted viruses to see the same clinical disease 

anticipated in humans [244]. They also lack the influenza virus receptors found in humans [245] 

and don’t shed the virus, so transmission studies are not possible [246]. Ferrets are better 

models because they work well for transmission studies [247] and don’t need adaptation [244], 

but come at a much higher cost with limited availability and fewer available reagents [244]. 

Guinea pigs are a smaller, more manageable size and so have reduced cost, but also have few 

available reagents [244] and diminished clinical signs [248]. 

In contrast to many of the setbacks with other animal models, pigs are excellent models 

for influenza infection studies. Anatomically, their respiratory tract is very similar to the human 

anatomy [249] and has similar distribution of influenza A virus receptors [250]. The virus 

replicates easily in both the upper and lower respiratory tracts [251], and, as a natural host, can 

be infected with the same subtypes endemic in both species [250]. Swine influenza has a high 

morbidity and low mortality and results in a high fever and nasal discharge in most models – the 

clinical disease and pathogenesis are also similar to that of human disease [250, 251]. Pigs also 

make a great model for human immune parameters and response to infection since the H1N1 

virus induces a similar acute inflammatory immune response [251, 252]. In the last few years, 

the entire swine genome has been sequenced as well [253] and been found to be similar in size 

and complexity to the human genome. Several coinfection models have been evaluated in pigs 

[254-257]. In coinfection models with Bordetella bronchiseptica [255, 256], pigs have similar 

synergism to that noted in human disease and increased viral replication, enhanced bacterial 

colonization, production of proinflammatory cytokines, and exacerbated pulmonary pathology 
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are all seen in coinfection. This synergism is also evident in a coinfection model of swine 

influenza with Actinobacillus pleuropneumoniae [257]. Identifying and characterizing a swine 

model allows for many opportunities for studies related to viral pathogenesis, coinfection, 

therapeutics, and vaccine development [258]. This chapter outlines a swine model for influenza 

pneumonia that shows great potential for further studies assessing therapeutics and potential 

coinfection models of disease. 

 

B. Materials and Methods: 

Pathogen 

Influenza A/swine/Iowa/15/30 (H1N1) virus was obtained from the American Type Culture 

Collection (ATCC, VA). Viral titers were determined by tissue culture infectivity dose (TCID50) 

assay via infection of Madin-Darby canine kidney (MDCK) cells. Virus was stored at -80°C until 

use. 

Animals 

Piglets ranging from 10 to 12 weeks’ old were purchased from controlled farms and housed in 

large cages in a BSL-2 facility. Fresh food and water were provided ad libitum. Piglets were 

clinically evaluated each day for weight loss, nasal or ocular discharge, resting respiratory rates, 

lethargy and rectal temperatures. Infection was performed under a mixture of xylazine (2 

mg/kg) and ketamine (10 mg/kg) administered via intramuscular injection. Piglets were infected 

intranasally with a sublethal dose of 1 x 106 TCID50 Influenza A/swine/Iowa/15/30 (H1N1) 

delivered in two 0.5 mL increments. All animal experiments were approved by the Institutional 
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Animal Care and Use Committee (IACUC) of Oklahoma State University and were performed in 

strict accordance with their recommendations. 

Whole blood, bronchoalveolar lavage (BAL) fluid, and tissue collection 

Sample collection occurred on days 3 or 6 after influenza infection. Piglets were anesthestized 

with a xylazine (2 mg/kg) and ketamine (33 mg/kg) combination administered intramuscularly. 

Euthanasia was performed with 1 mL/10lbs pentobarbital administration via intravenous 

injection. For BAL fluid collection, the left lung was washed by intratracheal administration of 20 

mL of sterile PBS in two 10 mL increments. The recovery of BAL fluid was more than 85% for all 

animals. The BAL fluids were centrifuged at 200 xg for 10 minutes, and reconstituted in sterile 

PBS for cell counts. BAL cells were concentrated using the CytoFuge 2 cytocentrifuge (StatSpin, 

Westwood, MA), and differential cell counts were performed using modified Giemsa staining. 

Bronchoalveolar lavage fluid was collected on days 3 and 5 for infected piglets and at day 0 for 

healthy controls.  

 

Immunohistochemistry 

Immunohistochemistry analysis was performed on formalin-fixed pulmonary tissue sections for 

the detection of neutrophils and viral particles in the lungs using anti-CXCR2 and anti-PR/8 

antibodies respectively. 

 

Histopathology 

The right lung was fixed with 4% formalin and collected for histopathology analysis after 

hematoxylin and eosin (H&E) staining. Mice were scored on a 1-4 scale (4 being most severe) for 

severity in the following areas: necrotizing bronchiolitis, bronchiolar infiltrates, alveolitis, 

interstitial inflammation, hemorrhage, edema, and microvascular thrombosis. Necrotizing 
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bronchiolitis was defined as damage to the airway epithelial cells, presence of necrotic bodies or 

the total denudation of the airway lining. Total histopathologic scores were evaluated as a sum 

of all individual scores. 

 

C. Results: 

 

Figure 1.1: Infected piglets do not lose weight. Piglets were infected with Influenza 

A/swine/Iowa/15/30 (H1N1) at 1 x 106 TCID50 per piglet. Pigs were monitored daily for weight, 

rectal temperature, resting respiratory rate and clinical signs. Weights were unaffected by 

infection with an overall slight increase in piglet weight over 6 days. Other clinical signs included 

mild ocular and mild to moderate nasal discharge, first noted at 2 DPI and sustaining through 6 

DPI. Data are expressed as mean ± SEM. n = 6 pigs per group for all studies.  

 

1. Infected piglets have mild clinical disease in our model. Before assessing treatment efficacy in 

piglets infected with H1N1 influenza, a model for the clinical disease course was established. 

Our lab infected piglets with 1 x 106 TCID50 Influenza A/swine/Iowa/15/30 (H1N1) intranasally 

and compared weight loss, clinical signs, cell counts and gross and histopathology with mock-
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infected piglets. Infected piglets did not lose any weight and continued to eat and drink through 

the course of infection [Fig. 1.1].  

 

Figures 1.2 and 1.3: Clinical signs in infected piglets peak on days 4 and 5 post infection. Piglets 

were infected with Influenza A/swine/Iowa/15/30 (H1N1) at 1 x 106 TCID50 per piglet. Pigs were 

monitored daily for weight, rectal temperature, resting respiratory rate and clinical signs. 1.2: 

Rectal temperature peaked at day 5 with an average temperature of 103.2°F (Normal: 101.5-

102.5°F). 1.3: Resting respiratory rate peaked on day 4. Other clinical signs included mild ocular 

and mild to moderate nasal discharge, first noted at 2 DPI and sustaining through 6 DPI. Data are 

expressed as mean ± SEM. n = 6 pigs per group for all studies. 

 

Rectal temperatures peaked at day 5 with an average rectal temperature of 103.2°F (normal 

101.5-102.5°F) [Fig. 1.2]. Resting respiratory rates peaked at day 4 post influenza infection [Fig. 

1.3]. Mild to moderate nasal discharge was noted in all infected piglets beginning at day 2 and 

two infected piglets had mild ocular discharge. The pigs remained active and only mild lethargy 

was noted starting at day 3 post infection. 
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Figure 2.1: Inflammatory cellular influx is noted in infected pigs. BAL was collected in control 

pigs as well as on days 3 and 6 post influenza infection. Data from control pigs was unreliable 

due to some secondary infections present in the piglets at the time of sample collection. 

Therefore, an established average for cell counts in healthy pigs is provided as a comparison. An 

increase in BAL fluid cell counts is noted highest at day 6, and is significantly higher that day 3 

Both day 3 and day 6 cell counts are significantly higher than typical healthy pigs. Data are 

expressed as mean ± SEM. n = 6 pigs per group for infected studies and n=2 for control. *p<0.05 

relative to healthy controls. 

 

2. Infected piglets have hyperresponsive neutrophil recruitment to the lungs. As noted in our 

murine model, infected piglets continue to an excessive innate response despite a mild clinical 

disease course. Cell counts from bronchoalveolar lavage samples collected at 3 and 6 days after 

influenza infection are higher than healthy controls with an exaggerated response noted by day 

6 [Fig. 2.1]. In addition, the populations within these BAL cells shift over the course of infection – 

macrophages predominate at day 3, but by day 6, significant neutrophil recruitment is noted 

with neutrophils being the predominant cell type [Fig. 2.2]. These populations can be better 

visualized with the images provided in Figure 2.3.  
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Figure 2.2: Differential counts shift from predominantly macrophages to neutrophil by day 6. 

BAL was collected on day 3 and day 6 post influenza infection. Cytospins were prepped and 

differential counts performed manually. Alveolar macrophages predominate in control pigs as 

well as those 3 days post infection, but a clear shift to marked neutrophilia is seen by day 6. 

Other cells noted in minimal numbers include lymphocytes and eosinophils.  
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Figure 2.3: Neutrophils predominate on day 6 post influenza infection. BAL was collected from 

pigs 3 and 6 days after influenza infection. Cells were spun down for cytospin and stained with 

Diff Quick for differential counts and imaging. Stained cytospin samples provide a visual for the 

differential counts. On day 3, macrophages predominate with neutrophils as the second most 

populous cell type. On day 6, a marked shift to neutrophilia can clearly be seen in BAL cells with 

macrophages as the second most populous cell type. Eosinophils and lymphocytes were also 

present in small numbers. 

 

Immunohistochemistry was performed to further visualize the extent of neutrophil influx and to 

assess for viral spread with influenza infection. Fixed lungs were sectioned, prepped and stained 

with anti-CXCR2 antibodies to assess for pulmonary infiltrated neutrophils. CXCR2 is a 

chemokine receptor predominantly expressed on neutrophils. A marked increase in neutrophil 

influx is seen on day 6 after influenza infection as compared with healthy controls [Figure 2.4]. 

 

Figure 2.4: Neutrophil influx noted in viral-infected lung. Lungs were collected at 6 DPI and 

fixed for immunohistochemistry. Anti-CXCR2 were used to assess pulmonary-infiltrated PMNs. A 

marked increase in neutrophil influx is noted in infected lung samples [arrowheads indicate 

CXCR2 staining on pulmonary-infiltrated neutrophils].  

 

In addition to the extensive influx of neutrophils seen with influenza infection, the virus also has 

a widespread effect on the lung. Additional immunohistochemistry was performed on day 6 
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infected lungs sections using anti-PR/8 H1N1 antibodies which bind to the virus for visualization. 

As seen in Figure 2.5, infected lungs are diffusely infected with viral particles. 

 

Figure 2.5: Diffuse viral load present in influenza-infected pig lungs. Lungs were collected at 6 

DPI and fixed for immunohistochemistry. Anti-PR/8 antibodies were used to assess for viral 

particles within the lung section. Infected lung samples are diffusely infected with Influenza 

H1N1 particles as can be seen by extensive red fluorescence in infected tissue. Viral particles 

were detected in both the bronchioles and alveoli, as marked by the white arrows. 

 

3. Influenza infection causes multifocal pulmonary disease and extensive release of neutrophil 

extracellular traps. Lungs were grossly evaluated at the time of collection (day 3 and day 6) and 

compared with healthy control. On gross examination, infected lungs have expanses of dark red, 

multifocal pathology affecting all lung lobes, with some lung lobes being more severely affected 

than others [Figure 3.1 and 3.2]. The remaining pulmonary tissue appeared normal on 

examination. 
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Figure 3.1 and 3.2: Influenza infection results in focal areas of hemorrhage on gross pathology 

examination. Lungs were evaluated in all pigs at the time of sample collection. 3.1: Control 

lungs appeared healthy on gross examination, whereas those of infected pigs had expanses of 

dark red, multifocal disease affecting all lung lobes, with some more severely affected than 

others. The remaining pulmonary tissue was normal on gross examination. 3.2: Another view is 

provided for gross examination. Heart and mediastinum are labeled for reference. Within this 

left lung there are multifocal, dark red, well outlined regions affecting the entire lung. 

Remaining tissue unaffected by lesions appears normal on gross examination. Lungs were 

removed and formalin-fixed for further histopathologic analysis. 

 

Formalin-fixed lungs were sectioned and prepped on slides before being stained with 

hematoxylin and eosin for histopathology scoring. Lungs were scored from 0 (healthy) to 4 

(severe) in the following areas: necrotizing bronchiolitis, bronchiolar infiltrates, alveolitis, 

interstitial inflammation, hemorrhage, pulmonary edema, and microvascular thrombosis. A sum 

of each set of scores was calculated and used to compare overall pulmonary pathology between 

groups [Figure 3.3]. Severe alveolitis and necrotizing bronchitis with massive neutrophil influx in 

alveolar air spaces and bronchioles were prominently seen in 6 dpi infected lungs compared to 3 

dpi infected piglets. Alveolar epithelium showed disintegration and collapsed alveolar 

architecture within the damaged areas of the lungs. Although statistical significance was not 
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established for every area scored due to the small sample size, infected pigs showed increased 

pathology in every key area compared with controls [Figure 3.4].  

 

Figure 3.3: Infected pigs have enhanced pulmonary pathology and disease. Lungs were 

collected and formalin-fixed to be sectioned and stained with hematoxylin and eosin for 

histopathology. Samples were scored from 0 (healthy) to 4 (severe) in seven areas: necrotizing 

bronchiolitis, bronchiolar infiltrates, alveolitis, interstitial inflammation, hemorrhage, edema, 

and microvascular thrombosis. A sum of these scores is used in this figure for overview. Infected 

piglets scored significantly higher on day 6 as compared with controls. Data are expressed as 

means ± SEM and compared via one-way ANOVA. n=2-3 pigs per group. *p<0.05 (relative to 

healthy control). 
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Figure 3.4: Infected pigs have enhanced pulmonary pathology. Formalin-fixed lungs were 

sectioned and stained for histopathology. Scores were given in seven areas: necrotizing 

bronchiolitis, bronchiolar infiltrates, alveolitis, interstitial inflammation, hemorrhage, edema, 

and microvascular thrombosis. Pigs on both 3 and 6 days after influenza infection scored 

significantly higher than controls for necrotizing bronchiolitis. Infected pigs also scored higher 

than controls in bronchiolar infiltrates and alveolitis on day 6. Although statistical significance is 

not noted in other groups due to the limited samples size, it appears that infected pigs have 

notably worse pathology in all areas scored. Data are expressed as means ± SEM and 

comparisons made via one-way ANOVA. n=2-3 pigs per group. *p<0.05; **p<0.01 (relative to 

controls). 

 

Histopathology sections were also examined for the release of neutrophil extracellular traps 

(NETs). NETs were especially prevalent in areas of severe pyogranulomatous inflammation and 

disease in infected lung sections [Figure 3.4]. The areas with significant NETs release were 

mostly areas with complete disruption of the pulmonary architecture and severe alveolitis. 

Healthy controls did not have the same abundance of NETs, nor did the less severely affected 

areas of infected lungs. 
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Figure 3.4: Neutrophil extracellular trap (NET) release abundant in areas of severe 

pyogranulomatous inflammation. Infected lungs have large areas of moderate to severe 

pyogranulomatous inflammation. These areas are extensive and disrupt the pulmonary 

architecture. Upon closer examination of these more severely affected areas, neutrophils can be 

seen releasing neutrophil extracellular traps, NETs, through cellular membrane breakdown and 

the release of nuclear contents (appears as dark purple extruding from neutrophils). Control 

lungs retain normal architecture with no notable NETs release. 

 

D. Discussion: 

Establishing a swine model for influenza virus offers such potential for future studies. 

But before this experimental model can be put to use, we must ensure that it accurately reflects 

the clinical disease and inflammatory response required to best mimic human disease 

appropriate to the study. Our goal was to identify a swine model for influenza that resulted in 

moderate clinical disease and an excessive innate immune response to infection, of which 

neutrophilia predominated. Results indicate that piglets infected with 1 x 106 TCID50 Influenza 

A/swine/Iowa/15/30 (H1N1) intranasally developed clinical signs from days 2-6, with fever and 
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nasal discharge predominating as generally noted in swine influenza. Signs were mild to 

moderate and seemed to peak on day 4. Piglets did not lose weight over the 6-day time frame. 

This clinical disease is a great base for an experimental model to test therapeutics over a limited 

period of 6 days since the disease appeared to peak at day 4-5.  

In addition to clinical disease, infected piglets saw a sharp increase in cell counts 

responding to pulmonary infection. Although neutrophilia predominates throughout clinical 

infection in mice, pigs initially have a majority macrophage population within the 

bronchoalveolar lavage, which shifts to a marked, predominant neutrophilia by day 6.  Areas of 

severe pulmonary pathology were marked by heavy neutrophil influx through large areas of 

expansive pyogranulomatous inflammation. Areas of heavy neutrophil influx also resulted in 

increased viral particles in those regions and the release of neutrophil extracellular traps, which 

are known to cause worsened disease in influenza pneumonia [55, 83]. Due to these findings, 

this swine model offers a consistent and effective model for influenza to test various novel 

combination therapies targeting the innate immune response and subsequent damage to the 

host. This project was aimed to test the therapeutic efficacy of SCH527123, a CXCR2 antagonist, 

which has been tested in murine models on combination with antiviral agent, oseltamivir. Due 

to constraints on availability of the space the project has been temporarily stalled. The present 

study demonstrates that influenza infection in piglets show widespread alveolar damage 

accompanied by massive neutrophil-influx and NETs accumulation in swine-influenza infected 

piglets. Small airways show occlusions with neutrophils and NETs and a strong CXCR2-staining. 

These findings confirm the results obtained in a murine-model and demonstrate pathogenic role 

of neutrophils and NETs in influenza infection in piglets.  



174 
 

CHAPTER VI 
 

 

PROJECT SUMMARY 

 

Influenza virus has long afflicted the human population and shaped the course of history 

over the last century. Arguably the deadliest outcome with influenza pneumonia is secondary 

bacterial infections. Throughout all pandemics, secondary bacterial infections complicate the 

disease with Streptococcus pneumoniae being the most common pathogen identified. 

 As the scientific community becomes increasingly aware of the importance of 

coinfection with influenza pneumonia, we have also become increasingly aware of the 

complexity of coinfection. No single factor can be claimed solely responsible for the lethal 

synergism seen with coinfection, but instead a complex network of viral, bacterial, host and 

environmental factors contribute to the pathogenesis of the disease. The host’s immune 

response is a significant contributor to pathology and clinical severity seen with influenza 

coinfections. An excessive neutrophil response beyond 12 hours post S. pneumoniae infection 

results in a greater bacterial burden and significant host damage due to factors such as the 

release of neutrophil extracellular traps. Chemokine receptors are critical to neutrophil function 

and innate recruitment and are potential targets for the treatment of various diseases and 

clinical conditions. The importance of controlling both the bacterial infections and host 

responses to those infection is clear. In a dual infection model, a clear link can be seen between
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severe pulmonary neutrophilia with resultant immunopathology and poor clinical outcome.  

Various animal models have been considered for further studying influenza virus 

vaccines, treatment, and the pathogenesis behind the disease. Mouse models are the most 

widely used due to their availability and affordability, but several downsides are present to using 

mice to model this disease. In contrast to many of the setbacks with other animal models, pigs 

are excellent models for influenza infection studies, and should be considered for future studies. 

What is clear from this brief summary is the need to better understand these pathogen 

and host interactions so that novel therapeutic options and pandemic planning can occur. Our 

goal was to identify and characterize a dual infection model the emulates a pandemic influenza 

outbreak resulting in lethal synergism and high rates of mortality. Upon characterization of the 

model, the availability of chemokine receptors as therapeutic targets in disease was assessed in 

order to best control the excessive innate response seen in dual infection. Finally, identifying 

and characterizing a swine model allows for many opportunities for studies related to viral 

pathogenesis, coinfection, therapeutics, and vaccine development. 

We first worked to characterize a murine model for influenza pneumonia with 

subsequent pneumococcal infection that mimicked a pandemic outbreak. Several models were 

tested and each evaluated for excessive innate response, pulmonary pathology and clinical 

effect. In addition, histones were evaluated for their role in the pathogenesis of the disease. 

Next, we characterized neutrophils for their phenotypic changes and functional responsiveness 

during primary influenza as well as secondary pneumococcal superinfection.  For 

characterization of neutrophils, we evaluated expression of chemokine receptors including CC 

(CCR1, CCR2, CCR3, CCR5) and CXC (CXCR1, CXR2, CXCR3 and CXCR4) and integrin molecules 

(CD16, CD62L and CD11b) during primary influenza and secondary pneumococcal infection in 
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circulating and lung-recruited neutrophils. Effects of chemokine receptors on functional changes 

– reactive oxygen species production and phagocytosis – were also evaluated. 

After establishing an influenza coinfection model with significant neutrophil influx and 

resultant immunopathology and identifying availability of chemokine receptor targets, we 

selected a combination therapy including oseltamivir, clarithromycin and Sch527123 to test in 

this model. We hypothesized that a CXCR2 antagonist would reduce neutrophil recruitment to 

the lungs, and when used in combination with antiviral and antibiotic therapy, reduce 

immunopathology and improve clinical outcome. Finally, a swine model for influenza 

pneumonia was characterized in order to assess innate immune response to infection and the 

potential of this model for future therapeutic studies. 

The proposed murine model for influenza coinfection is a good representation of 

pandemic influenza outbreaks resulting in secondary infection that is lethally synergistic. Mice 

infected with 100 TCID50 PR/8 H1N1 and 200 CFU S. pneumoniae 72 hours after initial viral 

infection have an exaggerated innate response, with predominantly pyogranulomatous 

inflammation. Significant protein leakage, pulmonary pathology, and barrier breakdown is noted 

on days 5 and 6 after influenza infection (48 hours after bacterial infection) and correlates with 

bacteremia in all dual infected mice. This murine model will serve as a good animal model to 

further assess the pathogenesis of the barrier breakdown and development of bacteremia and 

sepsis, as well as provide a consistent model for the testing of potential therapeutics for 

pandemic influenza coinfection.  

In the next aim, we found that neutrophils acquire new phenotypic characteristics after 

they recruit into the lungs during acute influenza infection and also S. pneumoniae 

superinfection. Expression of CC chemokine receptors (CCR1, CCR2, CCR3, and CCR5) and CXC 
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chemokine receptors (CXCR3, and CXCR4) were induced in lung-recruited neutrophils in primary 

influenza and S. pneumoniae superinfection compared to S. pneumoniae alone infected animal 

groups. Secondly, CXCR2 is the most predominant chemokine receptor expressed in both 

circulating as well as lung-recruited neutrophils compared to S. pneumoniae infected animals. 

Thirdly, these findings also demonstrate significant decrease in integrins expression on 

neutrophils during infection. Finally, our findings also demonstrate that induced chemokine 

receptors including CCR5 and CXCR2 significantly influence neutrophil functional responsiveness 

including phagocytic activities and respiratory burst.  

Overall, identifying induction of novel chemokine receptor expressions on neutrophils 

helps in not only understanding their pathogenic role in influenza as well as S. pneumoniae 

superinfection but also opens a new avenue to develop novel therapeutic strategies in 

alleviating lung pathogenesis during primary influenza as well as S. pneumoniae superinfection.  

Sch527123 monotherapy is ineffective at improving survival and clinical outcome in this model. 

Interestingly, even though we do not see survival with any Sch527123 monotherapy treatment 

group, we do see a delay in lethality when started early (12 hours prior to bacterial infection) as 

opposed to after bacterial infection. Our results also support the need for early antiviral 

intervention. These are both key findings in our influenza coinfection research which provide 

evidence for the importance of early intervention with combination therapy by healthcare 

professionals, and the need for patients who think they may have influenza to see a healthcare 

provider as soon as possible. Results from this study support exciting findings that these 

antagonists may offer some hope to improving clinical outcome in severe cases, especially 

during pandemic influenza outbreaks when mortality is higher and treatments often prove 

ineffective.  



178 
 

With the final aim, our goal was to identify a swine model for influenza that resulted in 

moderate clinical disease and an excessive innate immune response to infection, of which 

neutrophilia predominated. Results indicate that piglets infected with 1 x 106 TCID50 Influenza 

A/swine/Iowa/15/30 (H1N1) intranasally developed clinical signs from days 2-6, with fever and 

nasal discharge predominating as generally noted in swine influenza. The present study 

demonstrates that influenza infection in piglets show widespread alveolar damage accompanied 

by massive neutrophil-influx and NETs accumulation in swine-influenza infected piglets. Small 

airways shown occlusions with neutrophils and NETs and a strong CXCR2-staining. These 

findings confirm the results obtained in a murine-model and demonstrate pathogenic role of 

neutrophils and NETs in influenza infection in piglets. 
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