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CHAPTER 1

INTRODUCTION

Systems ecologists seek to gain a more thorough understanding of
ecosystems through the application of systems theory concepts. Systems.
analysis provides a formal framework. for understanding and quantifying
the interactions of a complex system such as an ecosystem. The use of
the formal mathematical tools of systems theory necessitates a continual
quantification of ecological concepts.in order for their importance to
be realized in the systems ecology area.

The primary goal of this research effort is the quantification of.
ecological stability. The name ecological stability has been used to
represent several different ecosystem properties (2, 3, 11, 12, 15, 22).
Ecological stability here will refer to the ability of an ecosystem to
resist changes in the presence of perturbations. The responses of .the
individual components to perturbation give an indication of the eco-
system's resistance.to change. Ecosystems with larger individual com-
ponent responses are less stable than other ecosystems with smaller
responses (2, 11, 12, 18). Ecological stability, then, is a sensitivity
concept since the response of the individual components is also an
indication of the sensitivity of the ecosystem to perturbation. High
sensitivity to perturbation implies large individual component responses
and low stability, while low sensitivity implies high stability. Another

major objective of this research effort is to develop a total ecosystem



sensitivity measure and find its relationship to the ecological sta-
bility measure.

The importance of ecological stability can be seen during the pro-
cess of succession. Succession is.a process of self-organization with
the ecosystem passing through different states and immediately assuming
any state which is more resistant to further change (12). The strategy
of succession is increased homeostasis with the physical environment in
the sense of achieving maximum protection from its perturbations (18).
The process of -succession is obviously closely tied to the concept of
stability. Selecting a state more resistant to further alteration and
achieving maximum protection from environmental perturbations imply . that
increased stability is selected for during succession. So a measure of
stability could be useful in one of two ways. First, long-term changes
in a stability measure would indicate the direction of succession. Also,
a measure of stability could be used as an objective function for a con-
trol problem.,

The development of an ecological stability measure leads to con-
sideration of relationships among stability, diversity, and complexity.
Diversity indices measure the variety and evenness in the apportionment
of individuals, biomass, or energy ceontent.among the species within an
ecosystem. Althoﬁgh ecological stability tends to increase during
succession, diversity sometimes increases and then decreases (12). Thus,
the cause-and-effect relationship between diversity and stability is not
clear (18). Complexity of the food web structure, or connectivity,
refers to the degree and pattern of component interdependence in an
ecosystem (21). Ecosystems become more organized and, hence, more com-

plex during succession suggesting that a relationship exists between



stability and complexity. A properly chosen measure of ecological
stability should maintain the proper relationships to diversity and

complexity.



CHAPTER II
REVIEW OF RELATED LITERATURE
Introduction

Ecological stability has been used to represent several different
properties of the ecosystem by different authoers. The ecosystem pro-
perty which MacArthur (11), Odum. (18), Margalef (12), and Conrad (2)
call ecological stability is a sensitivity concept. The magnitudes.of
the responses of the individual components of the ecosystem in the
presence of perturbation are taken as an indication of the stability of
the ecosystem. Larger individual component responses by definition
mean that the ecosystem is more sensitive to environmental perturbations.
.and, consequently, would be, judged to be less stable than other eco-
systems with smaller individual component responses. Preston (3) and
Margalef (3) equate ecological stability to persistance over time. The
ecosystem or population which has persisted over many years would be
éonsidered more stable than shorter lived ones. Still others such as
Lewontin (3) and May (14) define ecological stability in terms of re-
covery from perturbation. If an ecosystem returns to.its equilibrium
state after being perturbed away, it is said to be stable regardless
of the magnitude of the fluctuation. This type.of stability is equi-

valent to asymptotic stability of a dynamic mathematical model.



Stability Measures

MacArthur (11) was the first to propose an ecological stability
index. This index is based on.choice of pathways for energy flow which
was suggested by Odum (20). MacArthur's index is best presented by an
example. The q's between the compartments of Figure. 1l represent the
likelihood that the lower compartment is an energy source of the upper
compartment. The index 1s computed using the formula

n
S = gil p; log py, _ (2.1)
where the,pi's are the products of the q's along each path of the food
web. For example, path ABDA yields P; = 4p-45:955 path ACFA yields
P, = q2'q5°qll’ and so on.

Choice of pathways for energy flow may. be interpreted two ways:
choice of paths along the entire length of the food chain, which is
MacArthur's interpretation, or the choice of paths between individual
compartments. The second interpretation resembles more closely what
actually occurs in an ecosystem. The flow of ' energy which occurs based
on a choice made in nature spans only one link in the food web. At any
instant of time the choice of pathways for energy flow in the total eco-
system is a function of all the choices which result in a flow of energy
along one link in the food web.

Other stability measures not based on choice have been proposed by
Patten (22) and Margalef (3). Patten's measure is given by

-1 4

S =M > det'P

s (2.2)
=1 ]
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Figure 1. Hypothetical Food Web



wherevPj 1s the matrix of transition probabilities for the jth of M

variables,

Pia Piy

P, = . (2.3)
Paa Paz
vPid is the probability for decrease in the value of the variable
following an increase, Pii for an increase following an increase, etc.
The obvious. shortcoming of this measure lies in its consistency. No
method is given for computing or estimating the transition probabiiities
leaving them open to interpretation and inconsistent.

Margalef defines. ecological stability in terms of persistance over

time.. The stability measure is given by

(2.4)

n
s=ep S by,
i=

1
where bi is the fraction that any species, i, is of the total biomass
and t:i is the time measure. for the biomass to be reduced to 50%. The
time measure, ti’ is closely related to the turnover time of a-compart—
. b .
ment. Consider a general n: "order compartment model assuming linear,

donor-controlled energy flows (Appendix A).

The ith member of the set of n equations is given by
. n n
X, =2 a, X, -2 a, X.. (2.5)
i .j= i=

Turnover is defined as the ratio of throughputt(Yi) to content (Xi) of

the~ith compartment,



Ti = Yi / Xi (2.6)
For the linear, donor-controlled energy flow assumption,
n
Y, => a, X,. (2.7)
i k=1 ik 71
So,
n
g_l 3y ¥3 %
I, = Y—mm = a,,. (2.8)
i Xi 1 ik

The turnover time, T;, is the reciprocal of the turnover, so equation

(2.5) becomes

% =5 a.x -%x. (2.9)
= Ty

. 1y
Xi ='_Ti, i (2.‘10)
Equation (2.10) has the solutien
_t/Ti
X, =X e (2.11D)

where Xo is the initial condition and t i1s time. For this case the turn-
over timé,1', is the time constant, or the time required for a 627
reduction from the initial condition. Thus, the stability measure. pro-
posed by Margalef, summing a time measure, t (time required for a 50%

reduction) weighted by percent biomass, is closely tied to summing



turnover times weighted by percent biomass.
May (15) discusses the relationship between complexity of the food
web. and the mathematical stability of generalized Volterra-Lotka equa-

tions:
. m
N, = N, (ai - JZ= b Nj). (2.12)

May's conclusion is that the model (m equations.of the form of (2.12))
provides a specific counterexample. to any universal use of trophic link
counting as a measure. of stability. While May has shown.that:increased
complexity of the food web sometimes leads to instability of the gener-
alized Volterra-lLotka ecosystem model, a question arises as to.the
biological significance of this result, Is the model instability a
result of ecosystem interactions or simply a modeling insufficiency?
The latter conclusion seems the more plausible. Ecosystem models are
typically constructed to predict or reproduce measurements of the.
number of individuals, energy, or biomass content of functional

classes of - individuals. The number of individuals, biomass, or energy
content of these functional classifications is determined by many
factors such as competition, predation, or tolerance to environmental
changes. In the absence of fundamental physical laws to describe
these factors. they must.be described in the context of a particular
ecosystem. When-fundamental physical laws are used to construct a
model, then the behavior of the model can be used to infer system
properties. For instance; a mathematical model of electrical network.
can be used to determine the component values to assure stable

behavior of the network. But due teo the methods of constructing and
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identifying the generalized Volterra-Lotka model, it seems unlikely that.
any ecosystem properties cause the imstability of the model reported by

May.
Complexity Measures

Complexity and connectivity refer to the degree and pattern of.
component interaction., These ecolegical variables depend upon the
number .and relative importance of the energy pathways in an ecosystem.’
The only complexity measure appearing in the literature concerns itself.
with the number of energy pathways and ignores the relative importance.
of each pathwéy (21). 1If the relative importance component of com-.
plexity is ignored, a food web may appear to be quite complex when
actually because of the small amounts of -energy which pass through most
of .the pathways, it is quite simple and for all practical purposes a
linear food.chain., A more advanced approach would be to determine

directly the diversity of links.or pathways in the network pattern (18).
Diversity Measures

Diversity measures give an indication of the variety and evenness
in the apportionment of individuals, biomass, or energy content among
the species of an ecosystem, Diversity indices should be dimensionless,
reasonably independent of sample size, and express.the relative impor-
tance of each species. Many indices have been prpposed (5, 13, 14, 16,
23), but most fail to satisfy one or more, of the above properties. The:

most. widely used formula is given by (25),
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ol
I
M e

. Py log Py (2.13)

Where,pi is the probability of selecting an individual from the ith

species. This probability, pi,.is commonly estimated from sampled
values (ni/n) where n, is the number of individuals, biomass, or energy
content of the ith species and n is the total individuals, biomass, or
energy content in the sample. This index has the desired properties

and is now used commonly as a measure.of diversity.



CHAPTER III .
QUANTIFICATION OF ECOLOGICAL -STABILITY
Introduction

Ecological stability refers to the ability of-an ecosystem to re-
sist changes in the presence of perturbations. Ecological stability
has been related to choice of pathways for energy fiow (20). Choice
depends .on the degree and pattern of component interdependence which
defines the complexity of food web structure. Increased choice results
from a larger .and more complex organic structure which mitigates,
perturbations of the physical environment (18). Choice may be in-
creased in two ways, either of which may or may not be accompanied by,
increased diversity; increased numbers of possible alternatives as
energy sources and consumers, or by a more uniform interdependence.
among the existing energy sources and consumers. But, a more diverse-
ecosystem has the potential of becoming more complex and possessing
more choice than a less diverse one.

In this .chapter a measure of ecological stability is. developed
using choice, presented from an-information theory viewpoint, as an
index. Relationships among ecological stability, diversity, and com-
plexity consistent with observed behavior arise naturally within this
development. The usefulness. of the resulting ecological stability
measure . is examined with the aid of dynamic mathematical models of two

actual ecosystems,

12
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The Meaning of Choice

The concept of choice is a fundamental consideration in information
theory, a mathematical theory developed in the 1940's by C. E. Shannon
for dealing with communications systems (6). The most simple communi-
_cation system consists of a source, channel, and a receiver (Figure 2).
The source output of Figure 2 might represent a set of sensors, a
voice waveform, or a sequence of binary digits from a magnetic tape.
Information from the seurce is transmitted through the channel which
may be as simple as the distance between two people, one speaking to
the other, or as complex as a high frequency satellite communication
link. Due to the presence of noise, many.communication situations can
be, represented by probabilistic models. One:probabilistic model may
- be visualized as an experiment with outcomes chosen from a set of
possible altefnatives with a probability measure on the alternatives.
The set of pessible alternatives is called the sample space, each
alternative being an element of the sample.space. A sample space. and
its probability measure.is called an ensemble. In this development the
source ensemble will be denoted by X and the probability that the out-
ccme x will be a particular element ay of the sample space will be
denoted by Px(ak), Similarly, the received ensemble at the destination
in Figure 2 will be denoted by Y, and. the probability that.the outcome,

y will be a particular element b, of the sample space will be denoted

3

If the source. is assumed to consist of K arbitrary events.and the

J
by PY(b

kth event has probability PX(ak)’ then its self-information is.defined

as (6).



NOISE

SOURCE

—={CHANNEL

— RECEIVER

Figure 2.

Block Diagram of a Simple Communication System
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Ix(ak) = ~ log Px(ak). (3.1)

This definition provides a measure of information associated with each
of the K arbitrary events of the source. The unexpectedness at the
occurrence of an event is measured rather.than its particular -interest
or meaning, i.e. Px(ak) = 1 yields Ix(ak) = 0, or no information con-
veyed. The average value of self-information over all the arbitrary
events is the uncertainty associated with the selection of an gvent and.

is known as the entropy of the ensemble. It is given.by (6),
K
HX) = —.Eil Px(ak) log Px(ak). (3.2)

Mutual information is.defined as the information provided about the

event x = a, by the occurrence of the event y = b,. A quantitative

k j'
measure of mutual information should measure how much information the

occurrence of a particular alternative, bj’ in the Y ensemble provides

about the occurrence of some alternative, in the X ensemble, The-

8
probability, Px(ak), is an a priori probability concerning the oc-

currence of the alternative a The occurrence of outcome y = b

' 3
changes this a priori probability to the a posteriori probability

PX/Y(ak/bj>’ which is the probability that x = a, has occurred condi-

k

tioned on the occurrence of the event.y = b A widely used quantita-

g

tive measure.of mutual information is the logarithm of the ratio of

a posteriori to a priori probability given by the formula (6),
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X/Y(a /b )

Px(ak) (3.3)

I(ak;bj) = log

The expected value, which is called the average mutual information, is

given by.(6),

Priradby) (3.4)
P, (ap )

K J
XY =2 2

k=1 4=1

XY(ak,b ) log

where PXY(ak;bj) is the joint probability that 'y = bj and x = ay have

occurred.
Conditional self-information can be interpreted as.the Information -

that must be supplied to an.observer.to specify x = ak after the obser-

ver has observed the occurrence of y = b,. The conditional self-

3

information of -an event x = a s given the occurrence of y = b

i is
defined as- (6),

(a /b)) = - log P

Iy /v 5 (a, /b ) (3.5)

X/Y

The average value of conditional self-information is given by (6),

K J
HX/Y) =2 2 P(a 3, ) log P_, (a /b ) (3.6)
1 31 A k X/Y "k

and can be interpreted as the average information required to specify x
after y is known.
Combining definitions (3.1), (3.3), and (3.5) the following re-

lationship results,
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IXY(ak;'bj) = Iz(a) - ‘IX/Y(.ak/b'j)" (3.7)

Rearranging and averaging over the XY ensemble this relationship becomes
H(X/Y) = H(X) - L(X;Y) (3.8)

where H(X) can be interpreted as.the average uncertainty in X before
observation of Y, I(X;Y) as the average amount of uncertainty in X
resolved by the observation of the outcome in the Y ensemble, and
H(X/Y) as the average remaining uncertainty in X after the observation..
The entropy, H(X), is a function only of the source, while I(X;Y) and
H(X/Y), for a given H(X), are functions of the channel each with a
maximum value of H(X) and a minimum value of zero. The average.re-
maining uncertainty as:measured,by-H(X/Y) can be interpreted as:the
effective freedom to exercise choice in a system. No -uncertainty
remainiﬁg in X, after observation of:Y, would imply resolved.uncertainty,
I(X;Y), is equivalent to initial average uncertainty, H(X), and the
effective freedom of cheice is zero. Similarly, remaining average
uncertainty equal to H(X)‘implies no resolved uncertainty.(I(X;Y)=0)
and freedom of choice is maximum for the.given X ensemble. The relation-
ship between remaining average uncertainty and choice is illustrated in
Figure 3.

Because.of the many types of communication systems, the channel as
shown in.Figure 2 may take many forms.. The channel might represent a

telephone. line, a storage medium, a radio link, or a biological
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-
~ Figure 3. -Relationships Among Entropy, H(X), Average Mutual

Information, I(X;Y), Conditional Entropy, H(X/Y),
and Choice
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organism. Since.the channel is usually subject to noise, it is usually
specified in terms of the set of inputs available at the input terminal, -
the set .of outputs available at the output terminal, and for each input
the probability measure on the output events conditioned on that input.
In the present study, a discrete memoryless channel will be considered.
For this channel, the input and output are each sequences from finite
sets of arbitrary events-and for which the output.at a given time
depends statistically only on.the corresponding input. The channel.is
specified by the transition probability assignment PY/X(j/k)’ given

1<j<J and 1<k<K. By definition P,, (j/k) is the probability that

Y/X

arbitrary event y.= b, will be received given that arbitrary event

3

X = a, is the input. Of particular interest later is the form of.

equation (3:8) for the discrete memeryless channel which becomes,

K K J P, (3/Kk)
H(X/T) = -5 P(a)logP (a) -5 S P.(a )P, (3/k)log—LE" (3.9)
| PR A S S - P e i 0 py(6))

Choice in an Ecological Context

Ecological stability is. a dynamic'characteristic of an ecosystem.
Although the conventional compartment model diagram has an implicit
dependence on time, a modified compartment model diagram is now intro-
duced which explicitly shows this -dependence, Consider such a compart-
ment -diagram as given. in Figure 4. 1In this diagram, the n.compartments,
Qenoted‘by~Xl? X2, . e o ,_Xn:are represented at twe arbitrary times

and t The other terms of Figure 4 are defined as follows:

ty 2%
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Figure 4.

>

Modified Compartment Diagram
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Qi - percentage of the total energy flow through the.
ecosystem at time t1 which passes . through the ith
compartment,

P, - percentage of the total energy flow through the,
ecosystem at time t2 which passes through the jth

compartment.

£, ~ percentage of the total energy flow through the

ith\compartment that passes to thejth compartment
between times,tl and t2.

The percentages Qi and P, refer to compartment X

i considered at differ-.

i
ent times.with any difference in these variables accounted for by fij'

The relationships between these variables is provided -by the equation,.

n
Pj = %__1 fij Q- (3.10)
Diversity and the complexity of.food web structure, or connec-

tivity, are central to the development of an ecological stability
measyre. Diversity indices usually measure the variety and evenness in
the apportionment of individuals, biomass, or energy content among the
species within an ecosystem; but since choice of pathways for energy .
flow is being used as an index, diversity will refer to the throughput.

of .energy of the ecosystem. Throughput is related.to content by,
throughput = content x turnover (3.11)

where turnover is .the reciprocal of the time a specific increment of

energy remains in a compartment. Included in the diversity of the
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throughput of energy are.the flows which represent energy.used.and re-
spired by the ecosystem resulting in additional environmental compart-.
ments to represent these variables. These additional envirommental
compartments were also used by MacArthur (11) in a similar study.

Although diversity is an important ecological concept; measures of
diversity do net provide an adequate expression of . component inter-
dependence but merely the potential for the existence of such inter-
dependences . (12, 18)., Diversity does not.completely characterize the
choice of pathways for energy flow and, as has been demonstrated
experimentally (7), cannot be used exclusively as.a measure of.eco-
logical stability. The choice of . pathways for energy flow and eco-.
logical stability depend also on.the degree and pattern of component
interdependence which is defined as complexity of the. food web
structure, or connectivity.

At ‘time t before knowledge, about the food . web is introduced, the

1’

diversity of the ecosystem in terms -of its throughput as measured by

Dp = - 2 Q logq, (3.12)

can be thought of as a measure.of the uncertainty about how energy from-
specific sources is distributed among the compartments. The probability,
Px(xi) that ‘a particular compartment will be .selected as an .energy
source is approximatéd by.the sampled percentage, Qi,;as defined pre-
viously. |

The food web structure.determines the pathways for energy through
the ecosystem. This structure prescribes the destinations and relative

amounts to each of those destinations of the energy throughput of each
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compartment. The distribution of energy flow in an,ecosystem can be
appropriately represented using probabilistic models. For every incre-
ment of energy passing through a compartment, a probability assignment
can be made as to its ultimate destination. More formally, given.that
a specific increment ‘of energy has passed through the,kth compartment,
PY/x(j/k) is the probability that the specific increment of energy
will be taken up by the jth compartment., This probability assignment
specifies the channel for the 'transmission' of energy through an eco-
system. The channel probability assignment can be approximated with -

sampled percentages.as with the diversity measure. The probability

(3/k) can be approximated by the sampled percentage f,, which has

Py/x ik

been previously defined.

The flow of energy through an ecosystem as,defined in Figure 4
specifies a discrete memoryless.channel, The average uncertainty
resolved about the source of an increment of energy by its uptake can

be. approximated using sampled percentages by,

£
S
Qi fij log Pj. (3.13)

=
1
M

(2%
A

1

The average remaining uncertainty as measured by equation (3.8) can be

approximated by,
§s=D, - I. (3.14)
The average remaining uncertainty is equivalent to effective choice of .

pathways for energy flow. So, equation (3.14) is also a measure of

choice of pathways for energy flow and, therefore, is a useful index.
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of ecological stability.

Complexity refers to the degree and pattern of component inter-
dependence . and reflects the opportunities for choice of path. So, a
measure of choice can algso be used as an index of complexity of food
web structure.

The proposed ecological stability measure, (3.14), is a function
of the time period,

At = t, -t

it (3.15)

2
If the time period is chosen to be the same length as the period of any
of the major driving functions, such as sunlight and temperature, then.
only successional changes will be seen. But, smaller time period
selections will produce seasonal dynamics. The smallest time period
which may be chosen depends on the source of the necessary energy flow
data. When actual data are being used, the primary consideration is
the discovery of all energy pathways in the ecosystem. A minimum time
period bound, greater than the longest time between feedings of all the
specles of organisms within an ecosystem, must be established, When a
continuous mathematical .model generates the data, the discrete energy
flows are modeled by equivalent continuous. energy flows. Thus, the food
web structure.is known at all times and no minimum time period bound is
necessary.

The quantitative definition of ecological stability, S, is
consistent with statements and observations made by ecologiata about
stability. Margalef (12) observed that, in some ecosystems, diversity

increases then decreases during succession. This behavior can be
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explained within the context of equation (3.14). If the species within.
an ecosystem become more interdependent, the resolved uncertainty, I,
decreases. If the decrease in I is greater than the corresponding
decrease in B},as observed by Margalef, then the stability as measured
by equation (3.14) may still increase. Hutchison (9) states ". . .
complex trophic organization of a.community is more stable than a

simple one, . . ."

This statement is totally consistent with both the
rationale used in developing the stability measure.as well as its

quantitative behavior.
Stream Ecosystem Example:

The objective of this experiment is to determine the usefulness of"
the stability measure as an objective function for a control problem.
A model is comstructed using data from’a study of the effects of an
energy subsidy on a stream community (27). Using the model to simulate
the ecosystem, the control problem is to determine the level of energy
subsidy which maximizes the stability measure at the end of one year.

From 1960 ﬁhrough 1963, Warren et-al., (27) studied production,
food habits, and food consumption ef coastal cutthroat trout in sucrose-
enriched and in unenriched sections of Berry Creek, a small woodland
stream in the Willamette River Basin of Oregon. These experiments were
part of a.generél study of the trophic.pathways through which energy
from light, organic debris, and dissolved organic matter enters into
the production of fish and other organisms. The water in two sections.
of the stream was continuously enriched by introducing sucrose to main-
tain a 4,0 mg/l concentration, while two other stream sections were

maintained in their natural state. The trophic structure.of the
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woodland stream is typical of most ecosystems with primafy,producers,
herbivores, carnivores, and top carnivores (Figure. 5). From the data
céntained in Riffle A and several general references (1, 10, 18, 27,
28, 29, 30), a compartment diagram was.constructed (Figure 6). The
energy flows and contents indicated on the diagram are mean values.on a
per month basis. From the data in Figure 6, a linear, donor-controlled
model was developed. The model includes the effects of ;ight,»
temperature, and terrestrial import and i1s time varying. The simulation
period is one year with the mean value of the energy contents of the
compartments over the simulation period being equal to the standing
crops reported by Warren, et al. in Figure. 6. Although the model was
constructed using data from unenriched sections of the stream, terms.
were included which caused the energy contents,of the compartments to
change to those of -the enriched sections, Riffle B in Figure 5, when

the sucrese concentration is increased from 0.0 to 4.0 mg/l. Thus,
the sucrose.concentration may:be adjusted to. any desired intermediate
value, Since the energy contents generated by the model closely
approximated those reported by Warren, et al. (28) for 0.0 and 4.0
mg/Ll sucrose.concentrations, it seems reasonable that for intermediate
sucrose concentrations the model will also generate energy contents:
closely resembling those.which might be found experimentally.

To determine the sucrose concentration which maximizes the sgta-
bility index at the end of one year, a fine control grid was established
with 0.4 mg/l increments between 0.0 and 4.0 mg/l. Beginning with
the -initial conditions of the unenriched sections, simulations were
performed at each of these grid points (Figure 7). Since the model

is linear and the solutions.well behaved, the optimization method
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described above proved sufficient for the present study. A sucrose
concentration of 2.0 mg/l produced the maximum value of the stability
index at the end of one year. This result is consistent with the
rationale on which the stability index is based. An additional source.
of energy is provided which creafes additional energy pathways in the
ecosystem (Figure 5). The additional energy pathways increase the
choice of pathways for energy flow. For a sucrose concentration of
2.0 mg/l effective choice is maximum indicating this concentration
would produce maximum stability. The stability index thus appears to
be a viable objective function for this particular ecosystem and
perhaps other ecosystems.where the effect of a particular action on the
total ecosystem is desired.

The time period, equation (3.15), chosen for computing the stability
index was one month. Because the data are generated from a continuous
mathematical model, no minimum time period bound exists. So, the time
period was chosen small enough to produce dynamic:behavior of the
stability index over the simulation period. Several of the stability
index trajectories are shown in Figure 8. The dynamic behavior of the
trajectories is caused by a changing organization of the ecosystem,
reflected in changes in the degree and pattern of energy flow. Eco-
systems are exposed to reoccurring environmental changes (4, 19) such
as . seasonal sunlight, meisture, and temperature variations. During
ecological succession, organisms develop adaptive mechanisms in response
to environmental changes and adaptive changes made by other inter-
dependent.organisms resulting in.a changing organization of the ecosys-
tem. This adaptive process.also causes organizational changes in

response to reoccurring environmental changes such as yearly rhythms.
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Seasonal succession and other periodicities often follow the same
pattern as ecological succession, namely, an early seasonal bloom
characterized by rapid growth of a few dominate specles followed later
in the season by increased diversity, high B/P ratios, and a relatively
steady state in terms of P and R (18). 1In ecological succession these
three late season charaqteristicé imply increased stability (18). The
stability index trajectory for the unenriched stream section shows that
for seasonal succession they also imply increased stability (Figure 8).
A definite and pronounced maximum occurs.in late January and early
February.

The response of . a species to changes in an environmental factor
is shown in Figure 9. Typically, there exigts.an optimum range of an
environmental factor with respect to a particular species (26).
Deviations of the factor within.the optimum range have little or no
effect on the populatien density of that species. But, deviations
from the optimum range decrease the population density until it
becomes zero when the minimum or maximum tolerance 1is reached. Also,
an interaction between factors occurs causing the effect of .one factor
not to be the same at all levels of another factor. This factor-
interaction may be either positively or negatively correlated. For
instance, maximum temperature and light -intensity and minimum oxygen
concentration in the stream typically occur at the same time. As
environmental conditions deviate from their optimum ranges the environ-.
ment becomes more harsh with .the most harsh conditions occurring when
the total deviation is greatest. Environmental factors are closer. on
the average to the minimum.or maximum tolerance levels.under most harsh

conditions than at any other time. So, perturbation is more likely
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to cause a minimum or maximum. tolerance level to be reached resulting
in the local extinction of.a particular species. Perhaps, those:
organizations which possess higher stability (resistance to change)
when environmental conditions are most harsh are selected for during
succession.’

As the sucrose concentration is increased, the form of .the sta-
bility index trajectory. is changed (Figure.8). The stream community
has evolved such that it possesses specific organizations in response
to environmental changes. The addition of sucrose caused this response-
to be altered. This behavior suggests that if a specific sucrose con-
centration is.maintained; as it would.be with some pollutants (28),

additional leong-term community changes could be expected.
Shortgrass Prairie Ecosystem Example:

The objective of this experiment 1s to determine the usefulness
of .the stability index as an indicator of the effect of environmental
stress. A mathematical model is used to simulate a shortgrass prairie
over a 20 year period for normal and reduced moisture conditions. The
behavior of the stability index is examined to determine the effects
of the reduced moisture conditiens.

The shortgrass prairie ecosystem to be considered is part of the
Pawnee National Grassland in northeastern Colorado. The shortgrass
prairie ecosystem can be ,divided into four sections: abiotic, producer,
congumer, and decomposer. The abiotilc section consists of the system
driving functlons.such.as light intensity, temperature, moisture, and
nutrients, The producer section contains warm season and cocol, season

grasses, forbs, cacti, below-ground plant parts, plants standing dead,
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and plant litter. The consumer section consists of wild and domestic
herbivores, ~arnivores, birds, and insects. The decomposer section
consists of 28 compartments., These compartments can be.divided into
five sectors: root, soil, litter, and carrion organisms, and a nitrogen
pool subsystem. The function of the decomposer section is to decay
organic . matter from producers and consumers and to generate a pool of
inorganic . soil nitrogen.which then regulates plant primary production.
The model to be used in the present study was produced as a sys-
tems ecology class exercise under the direction of Patten (24) and is
an .outgrowth of one developed by the Grassland Biome Study Group.of-the
United States International Biological Program. The model is a piece-
wise linear, donor-controlled compartment model (Appendix B). The
principal variables of the model are biomass (total dry weight of
organisms in gmfZB and total inorganictnitrogen,(gNmfZ). The model is
piecewise due to the method used to regulate plant net production based
on. the availability of soil nitrogen. Potential net:photosynthesis . of
the four compartments for plants living above ground, VA(I), I =1, .
o « s &, was formulated from the driving variables of the abiotic sec-

tion:
PHOTO(I) = SUN * TEMP * MOIST * EFF(I) (3.16)

where EFF(I) represents constant efficiency coefficients for each of the
four plant compartments. The system driving functions, sunlight, air
temperature, and soil moisture were represented by the following func-

tions:
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SUN = 200. * SIN(.12093 *.t) + 400, (3.17)
TEMP = (9.0 + 11.0 * SIN(.1293 * t - ,3424)) * 0.061 (3.18)

MOIST =.2.0 - 0.07692 * ¢ (3.19)

where t represents time in weeks. MOIST is assumed to be zero after the
initial growing season of 23 weeks.
Availability of soil nitrogen to each plant compartment was taken

as proportioned to the nitrogen pool Q9:

ANI(I) = FNI(I) * Q9 (3.20)

where ANI(I) is nitrogen available to VA(I) and FNI(I) are constant:
coefficients. A nonlinear switch was introduced in the formulation of
actual net. production:
PHOTO(I) PHOTO(I) < ANI(I)
FORCE(I) = (3.21)
ANI(I) OTHERWISE
This equation sets actual net production of VA(I) equal to potential
net production PHOTQ(I) -if nitrogen ANI(I) is not limiting, or to an.
amount of photosynthesis equal (in biomass units) to available nitrogen -
when the latter is limiting.

Io evaluate the stability index all the flows. from one compartment
to another must be known. In some instances in the model formulation
the -biomass flow from a compartment was said to go to a section or.
sector of .the ecosystem rather than to particular compartments (24).

For example, a biomass flow from the carnivores, C3, went to the

carrion sector of the decomposer section. In these instances. it was
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assumed that the flow to each compartment in the section or sector was
linearly proportioned to the percent biomass that particular compart-
ment was of the total biomass of the section or sector.

The soil moisture driving function, equation (3.19), represents
soil moisture storage over a normal 23 week growing season beginning
on March 20. To moisture stress the ﬁodel of the shortgrass prairie the
soil moisture storage was reduced by 20% over the entire growing season

resulting in the following equation for MOIST:
MOIST = 1.6 - 0.06154 * t, (3.22)

This moisture level is within the normal operating experience of the
shortgrass prairie ecosystem (24). The model was moisture stressed in.
a similar manner by Patten (24) with the following results. -

While aboveground biomass of vegetation declined in pro-
portion to.the loss of soil water, roots, VB, were
conserved (only 3% reduction). This is consistent with
the known ecology of . root systems, which tend to be highly
resistant to perturbing influences. Soil nitrogen, Q9,
increased slightly; nitrogen never became limiting in this
experiment due to the reduced values of PHOTO(I). Carrion
AD increased slightly, but fecal material SH more than
doubled. Unusual accumulations of feces are symptomatic
to range managers that something is out.of balance in the
ecosystem. The simulation appears to have captured this
characteristic quite well.

A 20 year simulation with normal moisture conditions showed that the
.shortgrass prairie was in steady state (24).

In the present.study the shortgrass prairie ecosystem was simulated
cver a 20 year period for both normal.and reduced moisture conditions
and the stability measure observed over time. The time period chosen
for computation of the stability measure is one week due to the

piecewise nature of the model. The results of.the experiments appear . in
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Figures 10, 11, 12, and 13. Stability index trajectories for the first.
and twentieth years for normal moisture conditions (Figure 10) showed.
the ecosystem to be. in steady state as reported by Patten. (24). Except
for the first ten weeks of the growing season, the.difference between
the trajectories is less than 2%. The twentieth year trajectory is.
greater than the first year trajectory for 39 weeks of the year. Sta-
bility index trajectories for the first and twentieth years for reduced
moisture conditions (Figure 11) indicated that succession had been
reversed. The twentieth year trajectory was lower than the first year
trajectory for 48 weeks of the year. Continued exposure to reduced’
moisture conditions would be expected to lead to a less complex and,
therefore, less stable ecosystem.

The shortgrass prairie ecosystem is.primarily determined by mois-
ture conditions (24). Sufficient reduction in moisture leads to
desert conditions and, thus, represents one of the major threats to the
continued existence.of the ecosystem. The reduced moisture conditions
are encountered on a reoccurring basis (24). The components of the
ecosystem could be expected to have adapted during succession to this.
reoccurring environmental change. During the first year of the
simulation, the reduced moisture trajectories are.greater (Figure 12).
These results indicate that the xeric prairie ecosystem has evolved
such.that it possesses . a greater resistance to.change for reduced mois-
ture conditiens., These results are consistent with the. behavior
observed in the previous example -where maximum stability occurred
seasonally when environmental conditions were most harsh. Continued
exposure.  to reduced moisture resulted in changes in the ecosystem (24)

which led to a gradual reduction of the stability index trajectory.
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During the twentieth year, the stability index trajectories differed
by less than 1% (Figure 13) as opposed to approximately 6% differences
during 30 weeks of the first .year.

The model did not predict maximum stability when environmental
conditions were most harsh during the year due to emigration. During
the final 29 weeks of the simulation year, no soil moisture was avail-
able for primary production resulting in an emigration of herbivores
and carnivores out of the ecosystem. The ecosystem is less complex
during the time of the year when the environment is most harsh, re-

sulting in smaller values of the stability index.
Summary

A measure of ecological stability has been developed based on:
choice of pathways for energy flow. The concept of choice is
developed from a quantitative concept from information theory. Re-
lationships among ecological stability, diversity, and complexity con-
sistent with observed behavior during succession arise naturally in
the development of the stability index. Stability and complexity
increase during succession, but diversity may increase during initial
stages but decrease during final stages of succession. This behavior
can be explained within the context of the stability measure develop-
ment .

Two ecosystems were chosen to test the validity of the stability
measure: a stream community and a xeric prairie. A model of the
stream community was used to test the validity of the stability index
as an objective function with positive resdlts. The stream community

experiment led to consideration of annual changes in stability, a
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subject which has received little or no previous consideration. Ex-
perimental results indicated that the.stability index was maximum.when.
environmental conditions were most harsh. The same results were
obtained from analysis of the shortgrass prairie model., The short-
grass prairie is subjected to reoccurring low moisture K conditions
which represent the greatest threat to its continued existence.and,
hence, could be considered harsh environmental conditions.. Consistent:
with the stream community results, the model predicted maximum. sta-

bility for the most harsh environmental conditioms.



CHAPTER IV
SENSITIVITY ANALYSIS
Introduction

The response of an ecosystem to a perturbation is an indication -of .
its sensitivity to that perturbation with larger fluctuation implying
greater sensitivity. Environmental perturbation results in ecosystem
fluctuation by.causing variations in energy flows in.the ecosystem. In
this chapter a total ecosystem sensitivity measure will be developed
for a linear, donor-controlled model. This total measure will be con-
structed by summing modified sensitivity measures of each ecosystem.
compoenent to a perturbed energy flow. Each individual sensitivity
measure will be modified by weighting functions which reflect the
relative importance of a perturbed energy flow to a particular com=-.
ponent and the intrinsic characteristics of that component..

Ecological stability is also based on. ecosystem response to per-
turbation. A less responsive ecosystem is said to be more stable than
a more responsive one (3, 11, 12, 18). The development of a total eco-
system sensitivity measure allows the relationship to ecological sta-

bility to be quantified.
A Total Ecosystem Sensitivity Measure

A quantitative analysis of .sensitivity usually consists of taking
partial derivatives of the functional relationships between the

45
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variables of interest and requires a mathematical model of the parti-
cular system under consideration (17). The model to be considered in the
development of a total ecosystem sensitivity index is the so-called
linear, donor-controlled (LDC) compartment model (Appendix A). The:
individuals within an ecosystem are grouped into functional.classes
called compartments. The time rate of change of the energy content of

the‘jth compartment is given by,

icj - Z(FLOWS IN) - Z(FLOWS ouT) . (4.1)

Assuming that the energy flow from one compartment to another depends
linearly on the donor compartment, equation (4.1) becomes

n n

Xj_= Foj +‘§11 aij X, - gil aji Xj s (4.2)

where aij is. a constant satisfying the equation,
Fij = aij Xi? (4.3)
th th
and Fij is the energy flow from the 1™ to the j compartment. The
flow-Foj represents envirenmental inputs for an open system. If the

environment is modeled as a compartment, then the system is closed and
FOj is equivalent to zero. The toetal ecosystem model, then, consists

of n first order differential equations where n is the number of com-

partments and equation (4.2) is the ij'member-of‘these equations.

Elton (4) observes that the ''chief cause of fluctuations in

animal numbers is the instability of the environment." Environmental
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perturbations cause fluctuations in the ecosystem by first causing
variations in energy flows in the ecosystem. These variations in energy
flows then propogate through.the ecosystem along the food web inter-
connection. From»equation (4.1) it is apparent that energy flow
variations cause perturbations in the rate of change of the energy
content of the compartments which are affected by this flow. Pertur-
bations in the rate of change of energy content, in turnm, causes
perturbations in the energy content, which then causes perturbations in
the energy flows.to other compartments. A partial derivative which

reflects this fhenomenon is,

3X
s,, = —L (4.4)

where Xi and X, represent the energy content of the ith and jth com-

3

partments of the ecosystem, respectively. This sensitivity measure. is

an indication of the effect that a perturbed state, X,, has on the rate

i ’

of change of another state, Xj. For the (LDC) model, as described by.
equation (4.2), sij becomes,

34 143 (4.5.1)

sij = .
n
a,, 1= (4.5.2)
%=1 13 ’
1#3

Odum (20) defines turnover as the ratio of throughput.to content or,

n
F,
_ ;%:;_lj_ (4.6)
Ti.' X
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For the linear, donor-controlled assumption equation (4.6) becomes.

n
2;1 359 %4 n
Ti = j~——igj———— = ;E aij' (4.7)
i j=1
The self-sensitivity measure equation (4.5.2), then, is
Sy = —Ti. (4.8)

Since this measure 1s negatively correlated to the other sensitivity
measures it is a measure of a compartment's reaction to.being perturbed.
A larger turnover implies that the recovery time from.a perturbation will
be smaller when compared to a smaller turnover. This effect will be
considered later in the development,

A total ecosystem sensitivity measure could be constructed by

simply summing the individual. sensitivity measures of equation (4.5.1):

n n
S, = S... (4.9)
T §=1 j2=l 13

But, summing in this manner assumes that all energy flows are of equal
importance to the ecosystem and all compartments have an equal ability
to recover. from or resist perturbations. These assumptions are not.
realistic. Weighting functions are needed for each of the individual.
sensitivity measures reflecting the relative importance of that parti-
cular energy flow to the total ecosystem and taking into account. the
intrinsic. characteristics of the compartments involved.
The perturbation of state Xi causes a variation in the energy flow,

Fij’ from the ith to the jth compartment. The impact. of the energy flow
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variation on. the jth compartment depends on the degree to which the jth
compartment relies on this energy flow to fulfill its energy require-
ment. A measure of this dependence, is the percentage of the. energy
consumed by the ij compartment which is provided by the ith compart-

ment,

1 4.10
Wij " n (4.10)
2 Figo
=1
th th
where Fij is the energy provided by the i~ compartment to the ] com-,
n.
partment and > Fij is the total energy consumed by the jth'compartment
i=1

during some arbitrary time period. Substituting equation (4.3) into

equation (4.10) gives

a,, X
S 5: R S
wij - AL | (4.11)
' a,, X,
Eil 131
Rearranging and multiplying by,
n
> X T
Ty L &L Kk, (4.12)
Ti n
> X T
1 k "k
this weighting function becomes,
n
a @ r, ) (2 %K)
1 14 i k=1
Wij = T - . (4.13)
i

S x 5
( T,) ( a, ., X.)
2 Tk 11

i=1 .



In the development of the stability

centages -were defined, namely,

Qi =

Assume that-
.th .
i compartment, respectively.

equation (3.

where Ti is

is given. by

But, in terms of the energy contents, X

percentage of the total
system at.time t1 which
ment,

percentage of the total
system at time t2 which
ment, and

percentage of the total

compartment that passes

t:,m_es(t1 and t2.

measure in Chapter III certain

energy flow through the.eco-
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per-

passes through.the i#h'compart-

energy flow through the eco-

passes through the jth compart-

energy flow through the ith'

te the jth compartment between

Y, and X, represent the total throughput.and content of the

i i

10), so

the turnover of the ith

These variables are related through

(4.14)

compartment. The percentage, Qi’

10 equation (4.15) becomes-

(4.15)

(4.16)
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The percentage, P,, is given by

k|
n
By = 521 £13 Y (4.17)
where

a a,,

£y = A . A (4.18)
S oa, °
j=1 3

Substituting equations (4.18) and (4.16) into equation (4.17) this

percentage becomes

noa, 4,0
Pj = ;21 = (4.19)
1= 1
> X T
“, kK
or, simplifying,
n
Pj = n (4.‘20)
> X T
o, kK

Using equations (4.16) and (4.20) the weighting function defined by.

equation (4.13) becomes

1 _ %49 1 |
Wiy = T, Q - ) (4.21)

Another impertant consideration in determining the effect of a
perturbed flow on the total ecosystem is.the intrinsic characteristics

of the compartments involved. A basic characteristic which is usually
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well known and to a large extent determines a compartment's response

or recovery time from a perturbation is the turnover time.. Turnover
time is the reciprocal of turnover as defined in equation (4.7). A donor
compartment with a shorter turnover time implies a more rapid recovery
from perturbations than a donor compartment with a longer turnover

time, thus, the effect of a perturbed energy flow on. the total eco-.
system will be less 1f the energy flow originates from a compartment

with a smaller turnover time. A second weighting function, then, is
1
==, .22
W T (4.22)

By considering the turnover time of the donor compartment as weighting
functions, all of the turnover times will be considered as the indivi-
dual sensitivity terms are summed.

The individual sensitivity measure multiplied by the two weight~

ing functions. is

¥ =a, —H-.q .= (4.23)

Rearranging and summing over all possible energy flows, the total

measure- becomes
Q 244 214

1 Ti Ti Pj

¥ =3 (4.26)
-3 ,

5 MF

1

The ordering of all possible values of equation (4.24) on the real line

will not .be changed if the following logarithmic mapping is used:

n n Q, a a,
st=S s AL g A, (4.25)
i=1 j=1. i i™]
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A sensitivity measure constructed in this manner measures.the potential
for change if all energy flows are perturbed. But, typically all
energy flows are not perturbed simultaneously and a larger number of
unperturbed energy flows decreases the sensitivity of the ecosystem
to perturbation. A consumer. is less sensitive to perturbations of . a
source if the consumer depends on several sources rather than only
upon the perturbed source. Similarly, a source is less sensitive to
perturbations of a consumer if the source is used by several consumers
rather than by only the perturbed consumer. A method of taking this
effect into account would be by subtracting equation (4.25) from an
index of the potential number of pathways. One index would be a mea-
sure of the diversity of. the throughput of energy. The sensitivity

measure new becomes,

s\ =D, -s§, (4.26)

—

where DT is defined by equation (3.12). This sensitivity measure pro-

duces higher values for less sensitive ecosystems and vice versa.

Substituting equation (4.18) into equation (4.25) the total sensitivity

measure becomes,

n n n £
i
-3 o logq -3 3 o £,y Log o (4.27)
i=1 i=1 j=1 3
This sensitivity measure. is identical to the ecological stability
measure developed in Chapter III. It is apparent from its definition

and statements and discussions by ecologists that ecological stability

is a sensitivity concept. The relationship between the stability and
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sensitivity measures provides strong analytical evidence that the

apparent qualitative relatioenship is true..

Summary

A total ecosystem sensitivity measure, equation (4.27), has been
developed for the linear, donor-controlled class of models. A measure
of the sensitivity of each state to flow variations, equation (4.5.1),
was computed. Weighting functions, equations (4.21) and (4.22), based:
on reasonable assumptions, were intreduced which modify each of the
individual sensitivity measures. These weighting functions measure the
relative importance of an energy flow to a particular compartment and
take into account-the intrinsic .characteristics of the components in-
volved. Summing over all possible energy fleows, assuming a logarithmic
mapping, and subtracting from an index of the potential number of
energy pathways result in a total ecosystem sensitivity measure. This
measure is identical to the ecological stability measure developed in:
Chapter III which is based on choice of pathways for emergy flow. Thus,
strong analytical evidence has been provided that ecological stability

is a sensitivity concept.



CHAPTER V

DYNAMIC BEHAVIOR OF THE ECOLOGICAL

STABTLITY MEASURE
Introduction

The ecological stability index depends on the degree and pattern -
of component interdependence. The changing degree and pattern of
component .interdependence results in dynamic behavior of the.stebility
index when the time period is small. This chapter will consider the
case where the energy flows are assumed to be linearly proportionate
to the energy contents of donor compartments. For this case the sta- .
bility index is not.only a function of time period but also an implicit
function of time since it depends on the energy contents of the com-
partments which are functions of time. The linear, donor-controlled
flow assumption prescribes the flow distribution from each of the

compartments, defined by the fi 's, to be the same throughout the year.

J
The stability index then can be written as a function only of the energy .
contents .of the compartments. Since, for the linear, donor-controlled
energy flow assumption, the derivatives of the energy contents with
respect to time are‘known, the derivative ef‘the<stability‘index with
respect to time can be computed using the chain rule for differentation.
The computation_ofithe derjvative of the stability index will -allow
upper and lower bounds on the rate of change of the.index to be estab-

lished.
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Computation of the Derivative

of the Stability Measure
The ecological stability index is given by

£
S=-210Q; log @3 -3 5 Q £, log _;j— . (5.1)
i ' i ] e J

If the energy flows are assumed linearly proportionate to the donor.

compartment, the percentage f,. becomes

i3

£i3 =§i‘j;—'%i—”_ ’ (5.2)
5 ij 71
or,.
24
£ = — 5.3
4" Sy, (5.3)
j.
where .a,, is a constant for i=1, 2, . . ., n, j=1, 2, . . ., 1

13

(Appendix A). So the percentage f is a constant when the energy .

ij
flows are assumed linearly proportionate te the donor comparment.
Substituting equations (4.16) and (4.20) into equation (5.1) the

stablility index becomes

£, XT
E‘ T 10g M _2 sl 50 £, Lo 1 Kk (5.4)
i XkT :2 XkT :SXRT %% amjxm

An expression for the rate of change of the stability index may .be
found by taking the total derivative of the stability index, S, with

respect to time, The total derivative can be .computed .using the
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composite function rule or chain rule. The stability index defined .

by equation (5.4) is a function of the energy contents
S = £(X;, Xys « « oy X)), - (5.5)
Where the energy contents are functions of time,
Xi~= gi(t). (5.6)

The chain rule (8) prescribes that

n dx
_ds _ 88 i'
s =3 jé; X, * Tdt - (5.7)

To demonstrate the method used to compute S for a genera1~nth order
model, a third order example will be considered. For a third order

example -equation .{5.7) becomes.

© 38 : 38 ‘ 3 &
S = Al X, + o, X, + X, X, (5.8)

Expressions for the time rate of change of the energy contents are

given by,

. 3 3
X, = o ay; %y - E;; ai5 Xy (5.9)

for i=1, 2, 3. The only unknowns in equation (5.8) are the partial

denivatives,‘%i— , 1=L, 2, 3. Since the stability index is composed of"
. i

two terms, these partials will be computed in two parts. The first term
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of equation (5.4) will be denoted by H and the second by I. The total

derivative now becomes-

§=Z RS-} S - S (5.10)

The first term, H, of the stability index can .be written as

U B G U & SN o B - Log o33 (5.11)
S 2RT 2T 25T T 2T 2K KT,
k k k k 'k k
The partial of H with respect to X1 is
an_ ZBTHSTON tog otk |+ %2Rf | L TaT
80X, : 2 >SX T 2 SX T,
1 (Elj(kak)‘ ka k (kakrk) ka k
X, T,T X, T
y23L (14 .1og«2§ 2 (5.12)
(2%,T) i kk
k
Simplifying, equation (5.12) becomes
- S XoTa  X3T3T) X473
"X, = p log 3on- + : o log ¥ - (5.13)
1 (XTI 11 (I X.T) 171
k- K
Similarly, the partials of H with respect to.x2 and X3 are
X,T.T, X, T, X,T.T X,T
3H 112 g Ll1,73372 033 (5.14)

oX X,T ?

2. (zx1p’ %2 (3 x 1)’ 2%2
K K
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and
sg %1TTs 4T XTI X,T, (5.15)
+ log o—— .

= log
9X .2 X, T 2 X, T
3 (:ikak) 373 (:%ink) 373

S . t
In a similar manner the partials for the n b order can be computed and

a general formula derived:

B _ s XTh %51 (5.16)
X, 3 p los g7 -

Jo(3XT) it

j# L Kk

The second term of the stability index, I, consists of nine terms:

Lot Log 211 & T Ty E5Ty) (5.17)
1 XlTl+X2T2+X3T3 ’Tl(Xlall+X2a21+X3a31)

X129 819 (X Ty X, Ty, T ) (5.18)
I, = ‘log

2 T, X, T,+X,T

1T, Ty R T, Tl(Xla +X,a,.,+X.a

127272273 32)

“Xfal3

I, = — 1og 213 T TyHE5Ty) (5.19)
3 [Ty T T(X e, K a, 4K, 0)
1512137535553,
. v 1 log 271 %y Ty K, Ty HE,To) (5.20)
4 T X TG, AT, 08 T (X Ay  +Koa, aa, )
L. 2% Log —2251 1%, Ty 5Ty) (5.21)
57 X, T +X, T, +X,T, 8

T2(X a,. +X.a. . +X.a,.)

1717272 7373 1712 72722 73732

ayq (X T X, T +X,T5) (5.22)

Ty(Xja)gHKyayg+¥5a54)

_ %o
6 X1T1+X2T2+X3T3

log
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Lo 8% Log 831 &y T, Ty+¥,T5) (5.23)
7 X1T1+X2T2+X3T3 T3(Xlall+X2a21+X3a31)
. X4839 Log aq9 (X Ty X, TyHX T4) (5.24)
8 X1T1+X2T2+X3T3 T3(Xla12+X2a22+X3a32)
Lo 3%33 log 23311 %, TyH%5Ty) (5.25)
9 XlTl+X2T2+X3T3 T3(Xla13+X2a23+X3a33)
The partials of these nine terms with respect to Xl appear below:
; a,. (X T)
I _ 21 Ty HsTy) Log g kk (5.26)
Xy (Zkak)z Ty (Xjag #Xa,,+X5a4,)
&
a, (2X T )
0, ), (KT HGT,) 1os 12745 (5.27)
9%, (SX,T) 2 T) (Xja;9tXya,,HKqa4,)
k
a (X T )
313 ) al3(X2T2+X3T3) log 13° ka k (5.28)
BXl (szTk)Z Tl(Xla13+X2a23+X3a33)
k
a, (X T )
i o Log 217 kK (5.29)
axl (ZX-ka)z T2(Xlall+X2a21+X3a31)
T
, _ a,, (2% T )
Ly %p20T log 22°2 Tk (5.30)
BXl T2(Xla12+X2a22+X3a32)

2
(2%, T,)
2Tk k
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_ a,, (X T )
Y X o log BREE (5.31)
TN » % Sk Ty(X18157%p8)51K4355)
AR
2, (SXT)
01, gy 1os 31¢2 %M (5.32)
axl» (ZXka)Z \ T3 (Xla11+X2a21+X3a31)
%
; a,, (XX T, )
2Ty Xgag,Ty 1og — 32 k?(k K (5.33)
NG X % Dk T3 (Xpa) 51 Xy89,7X333,)
k
a,, X T)
Xy (Sxr)’ T3(Xp2)3#%y8)31%5853)
Y

The nonlogarithm terms which result from the differentiation all sum to

zero. The general term for %)% is
1
aij(% AT
I ki 414 ey %Ki
K =2 2 log g5, -2 2 7 ey, - (3:39)
1 3 ( Zlékak) 17 ki i (SX.T) K

s=3 &L -3L,x, (5.36)
i i

where —33%{(— and;-g-}l;— are given by equations (5.16) and (5.35), respectively.
i i

Since.S is dimensionless, this derivative has-the same units as. turnover,

namely, inverse time. .
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Upper and Lower Bounds

The derivative of the stability measure consists of three terms,
one from equation (5.16) and two from equation (5.35) each multiplied

by Xi and summed over i, which will be denoted by Sl’ Sz, and S3,

respectively., Since all the variables in these terms are always posi-

tive except the X,k 's, the relationship between.the signs .of Sl, SZ’ and-

i
S, and the signs.of the }.(i's must -be determined to establish upper and
lower bounds.
The sign of the first term, equation (5.16) multiplied by'}.(:.L and
summed over i, may be either positive or negative independent.of the
signs.of the Xi's. The second term,-Sz, is given by the first term of.

equation (5.35) multiplied by Xi and summed over i. Since

a.

S ay; log ;_E—;i > 0.0, (5.37)
h| i]

the sign of S, is determined by the signs of the,Xi's. The maximum

2
value of this term occurs when the‘Xi's‘are equal to their maximum

positive values. Similarly, the minimum value occurs when the_Xi's

are.equal to their maximum negative values. The third term, S,, is

3
given by the second term of equation (5.35) multiplied by Xi and

summed over ‘i. From inequality (5.37) it follows that the sign of-S3

is also determined by the signs of the Xi's. So, the maximum-and

minimum. values of S, occur when the Xi's are-equal to their maximum

3

positive and negative values, respectively. From equation (4.2), the

maximum positive and negative values of Xi are:



To establish upper and lower bounds for S the inequality,

will be used. If all the Xi's are equal to their maximum positive

values then,

and

and

Since, -

X 2% s zkakixk'_

logz <2z-1

842 I2T,,
1
s, < DT%Ti.
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(5.38)

(5.39)

(5.40)

(5.41)

(5.42)

(5.43)

(5.44)

(5.45)

(5.46)
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an upper bound of § is
UB = MAX ((1+I) 5 Ti,(l+_ﬁT) > T, (5.47)
i i

Similarly a lower bound is

LB = MIN (-(1+I) % Ti,-(1+BT) Elj T). (5.48)
But,
S =_'15T - I, (5.49)
and, s > 0.0. (5.50)
So,
Is| < @D 21 (5.51)

The rate of change of major structural and functional characteris-
tics of an ecosystem becomes smaller during succession (18). The sta-
bility measure is a function of the metabolic structure and function of.
an ecosystem and should, therefore,; exhibit a decreasing rate of change
during succession. ' Although diversity increases during succession,
Margalef (12) has observed that diversity often decreases during the
latter stages of succession. Turnovers, Ti’ which are the reciprocal.
of the turnover times, become smaller during succession (18). So,

during the latter stages of succession, the bound on the magnitude of
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the rate of change of the stability measure, equation (5.51), becomes
smaller. This suggests that a smaller rate of change of the stability

measure could be expected during the latter stages.of succession.
Summary

An . analytical expression of the time rate of change of the sta-.
bility measure has been computed for the -linear, donor-contrelled class
of ecosystem models. Upper and. lower bounds on the rate of change of
the stability measure were determined.' These bounds are functions of
the diversity of the throughput of energy and the sum of the turnovers.
Since the diversity and the turnovers typically decrease during the
latter stages of succession, the rate of change of the stability mea-.

sure could be expected to also decrease.



CHAPTER VI
RECOMMENDATIONS FOR FURTHER RESEARCH

Odum (18) suggested computing the diversity of pathways.. This
computation requires knowledge of the emergy flow through each pathway.
The probability that.a given increment of energy passed through a

particular path can be approximated by a sample percentage
Fi'

P, =T s (6.1)
T

where Fij is the total energy which passed through the path from the.

th

i™ to the.jth compartment and X, is the total energy flow through the

T
ecosystem during some arbitrary time period. The diversity of pathways

could then be computed using the formula,

D = -2 P, 1og Py (6.2)

where N is the number of compartments. The sampled percentages, Qi and

fij presented in Chapter III, are given by,

X
i
Q, ===, (6.3)
17X,
and
Y]
£y = %, (6.4)
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where Xi is the total energy which passed through the ith compartment, .
Fij is the total energy which passed through the.path from the ith to
the jth’compartment, and XT is the total energy flow through the eco-

system during some arbitrary time period. So,

Pk>= Q. £.. (6.5)

where the kth path is defined as the path from the it~h to - the jt--'h com-.
partment., The diversity of pathways now becomes

Dp = - ;% ;? Qi.fij log Qi.fij._ (6.6)

The percentages, Qi and fij’ are approximations of the probabilities,
Px(ai) and PY/X(bj/ai)' So, the product Qi'fij is an approximation of
the joint probability PXY(ai’bj)° Equation (6.6), then, represents an

approximation of -the joint entropy

H(XY) = % %PXY(ai’bj), log PXY(aib.j)' (6.7)
The joint entropy can be written as,
H(XY) = H(X) + H(Y) - I(X;Y) (6.8)

where H(X) is the source entropy, H(Y) is the receiver entropy, and
I(X;Y) is the average mutual information. An approximation, S, of the
conditional entropy, H(X/Y), is equivalent to choice of pathways for

energy flow in an ecosystem and has been proposed as a measure of



68

ecological stability. Conditional: entropy 1s given by
H(X/Y) = H(X) - I(X:Y). (6.9)

So,

H(XY) = H(X/Y) + H(Y). (6.10)
But, the receiver entrepy, H(Y) can be approximated by

D, = - . log p, 6.11
t, %PJ g Py (6.11)

where Pj is the percentage of energy which passes through the jth'com-
partment at.time_t2 (Figure 4). Therefore, the diversity of pathways,

equation (6.6), is given by

=
I

S+ D (6.12)

where S is the stability measure presented in Chapter III. Qualita-
tively, the diversity of pathways is equivalent to choice of pathways
for energy flow plus the diversity of the throughput .of energy at. time
t2' Although this concise relationship exists; an ecological interpre-.

tatien is lacking and needs to be considered.
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The so-called linear, donor-controlled ecosystem model is a parti-
cular type of compartment model. Compartment models are based on the,
assumption that individuals within the ecosystem can be grouped into
functional classes called compartmeﬁts. For a.n compartment ecosystem
the biomass, or equivalent energy of the individuals of each compart-
ment is lumped and represented by.the variables‘Xl, X2, . e .,‘Xn. The
possible flow of biomass, or energy, from the ith to the jth compart-—
ment is represented by Fij so that the mass balance equation for each
compartment is,

. dXi n n
X, =——= 2 F,. - 2 F.., (A.1)
i dt =

where the first summation gives the inflow and the second.sum the out-
flow, and Foi and_Fio represent the interactions with the environment.
The assumption that the flows are linearly proportionate to the biomass,

or energy, content of the donor compartment requires that,
F,. = a; X, (A.2)

for all i=0 and j indicated, where aij is the rate coefficient of the
biomass, or energy, transfer from the it-:h to the jth'compartment. The

flows-Fo are regarded as inputs which drive the ecosystem into steady-

i

state. Thus, equation -(A,l) becomes,

X, =F , + > a,

n n

X, - (a, + 2 a,)X,, (A.3)
. ' ) i
=1 §i™j io -

1 M

for each i=1, 2, . . ., n. The rate coefficients, aij’ are computed
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from average flows Fij and the average standing crops'f; as

a,, =F ./X. . (A.4)

Ecosystems and all of the flows which describe their structure are
temperature dependent. The temperature dependence of the interactions,
between compartments in an ecosystem model is defined through the use
of a temperature coefficient.which is usually designated by the symbol
QlO' This QlO factor describes the ratio of the flow Fij measured at
two -temperatures differing by lOOC, and has.the form:

Q= Fy(T)/F, (). (A.5)

The coefficient which modifies the flow from the ith to the jth com-—
partment to include the effects-of temperature is,

T(t) - T

AV.
U4y " %o T 10 ¢ (4.6)

where T(t) is the actual temperature and T,  is the average temperature.

AV
The ecosystem inputs, representing the interaction of the ecosystem
with its environment, are dependent upon, for example, temperature,

light, nutrients, ‘and so on and are represented by appropriate functions,

of time.
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G
'

¢
’7
7/CSMP
INITIA
STORAG
STCFAG

FIXED
FIXEC
FIXED
FIXED
FIXED
FIXED
DYNAMI

5

BERRY CREEK MODEL

EXEC CSMP360

1.SYSIN D *

L

E X(11),Q(11),QB(11),P(11),A(121),F(121)
E SUM(11)

CONSTANT Q101=1.0,GQ102=1.0,Q103=1,0+Q104=1,0,Q105=1,09Q106=1e0r0¢¢

Q107=1.0,Q108=1.0
CONSTANT ICOUNT = 0O

CONSTANT C01=,01,4ClOR=7+254C10E=4754C12=4.08254C16=47750,C14=1,725

CONSTANT C20R=54600,C20E=405,C23=1,3754C25=4T00+C26=4¢125104+
C27=.40,C02=,1251

CONSTANT C30R=7489C35=1.69yC36=e44C37=1,4C30E=,2

CONSTANT C04=,16754C40=2.231,C46%.2231

CONSTANT C50=.704C56=.02

CONSTANT €C60=22.33

CONSTANT C70=1.25,C76=.03572

CONSTANT C08=.1,C80R=101423+yCB80E=8,+C82=13.33,C84=57.264C86=.667
CONSTANT AVG1=5833.3,DEV1=4462.64AVG2=51,9,DEV2=14.1
CONSTANT- TERR=1,5

PARAMETER SUGAR = 0.0

ITIME

ICCUNT

1

J

Jd

1J

c

LEAFIN = 133.33

LIGHT=AVGL+DEV1I*SIN(TIME*6.28/12.+.26)

X1 = INTGRL (447+4-ClOR*X1-C1OE*X1-C12%X1-C1l6%xX1~C14%X1+C0l*..,

CLIGHT)*Q101)

NCSCRT

X2=INTGRL( 44238, (~C20R% X2=-C 20E*X2~C25%X2-C26%X2=-C23*X2~-C2T%e e e
X2+C82%X8+C12*X1+C0O2*LEAFIN)*Q102)

X3=INTGRL( 4474 4 (-C30R%X3-C30E*X3-C2T*X3-C35%X23~C36%X3+1425%X2.0
)%Q103)

X4=INTGRL (13,60, (~C40%X4-C46%X4+CB84%XB+C 1a%*X1+CO4=LEAFIN) *Q104)
X5=INTGRL(4,2085, (-C50% X5-C56%X5+C25%X2+C35%X3)*Q105)

X6= INTGRL (4 33464 (~CO0%X6+C16%X1+C 26%X2+4C36*X3+L46%¥X4+C56% X500
+CT6%XT+C86%X8)%Q106) -

XT=INTGRL( 24633, (~CTOXXT~CTOEXXT+C27%X2+C3T*X3+TERR)%*Q107)

X8=0.0

ITIME = TIME + .005
IF(ITIME.EQ.ICOUNT) GG TO 83
GO TC 82

ICCULNT = ICCUNT + 1

Ca 100 4 =1, 121

A(Jd) =

[

c23
c25
C26
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A(l18) = c27

A(20) = C20R + C20E
A(27) = C35

A(28) = (36

A(29) = C37

A(21) = C30R + C30E
A(3S) = Ca46

A(42) = C40

A(50) = C56

A(53) = C50

A(e4q) = C60

A(72) = C76

A(75) = C70

A(7s) = C82

A(81) = (84

A(83) = C86

A(E6) = CBOR + CBOE
A(89) = C1

A{101) = CO2

A(1C2) = CO4

A(118) = CO8

x(1) = X1

X{2}) = X2

X{3) = X3

X(4) = X4

X(5) = X5

X(6) = X6

X(7) = X7

X(8) = X8

X{9) = LIGHT

X(10) = LEAFIN
X{11) = SUGAR

CBEAR=0,9

XBT70T=0.0

CC 64 J =1, 11
XBTCT = XBTOT + X(J)
€O ¢5J =1, 11

QB(J) = X(J)/XBTOT

IF(QB(J)+LE.C.0000001) GO TO 65

CBBAR = DBBAR - 1,442695 * QB(J) * ALOG(QB(J))
CONTINUE

10 =0

LO 11 I =1, 11

SUM(I) = 0.0

DO 10 J = 1 , 11

Jl=J+1J .

SUM(I) = SUM(I) + A(JJ)

IJ = 11 % 1
SUM(T) = SUM(I) * X(I}
SUMTCT = 0.0

D012 J =1, 1V
SUMTOT = SUMTOT + SUM(J)

D013 J =1, 11
G{J) = SUM(J)/SUMTOT
I =0

pg1s 1 =1, 11

D0 14 J =1, 11
P(J) = 0.0

Jg = J + 1J



ENC
STQ

ENCJOB

//

14
71
19

15

22

1¢

17
23

82

P

IF(SUM(T1).EQ.0.0) GO TO 71
FOJJ) = ACJJ) * XUI) / SUM(I)

I =11 % 1

CONTINLE

Iy =20

CC 22 1 =1, 11

DC 15 4 =1 , 11

Jb = J + 1J

P(J) = P(J) + Q(I) * F(JJ)

IJ =11 x [y

CONTINUE

CBAR = 0.0

CCle I =1 4 11 .

IF(Q(I).LE.C.0000001) GO TO 16

CBAR = [CBAR - 1.442695 * Q(I) * ALOG(Q(I))

CONTINLE

AMI = 0,0

IJ =0

DO 23 I =1 , 11
CO 174 =1, 11

Jd = J + I
IF(F{JJ)eEQeCa 0, 0R.P(J) e EQ.D.0) GO TQ 17
CIV1 = F(JJI/P(J)

IF(CIV1.LE.0.,0000001) GO TO 17

AMI = AMI + 1.442655 * Q(I) * FALJJ) * ALGG(DIV1)
CONTINUE

Iy =11 % 1

CONTINUE

S = CBAR - AMI

CONTINUE

PRTPLT S,DBAR,DBBAR,AMI

TIMER FINTIM=12.0,DELT=.01,0UTDEL=1.0
PRINT X19X219X3 9X49X5,X6 X7 4X8

" METFOD RKSFX
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C
¢ - GRASSLANC MODEL

c

£/ EXEC CSMP360

//CSMP1.SYSIN CD *

INITIAL

STORACGE SS(5)4yST(5)+SB(5)

STCRAGE CB(41)

STORAGE EFF(4) 4FNI(4),PHOTO(4) FORCE(4) yANI(4),CA(4)TB(4),DAI(4),TBI(4)

STORAGE DFORCE{(1) .

STCRAGE X(41),SUM(41),Q8(41),P(41),AC1681)sF(1681)

TABLE EFF{1)=1e3187,EFF(2)=0132194EFF(3)=el3219,EFF(4)=.029024¢4+
PARAMETER 1Q9=8,0,MOINT=1,6,SLOPFE=.06154
FNI(1)=142519,FNI(2)=,12549,FNI(3)=e¢12549,FNI(4)=e02755104,
DAT(1)=,038462,0A1(2)=4038462,DA1(3)=.038462,DA1(4)=+40002854e0e
TBI(1)=406,TBI(2)=,05127,TBI(3)=.05127,TBI(4)=.0022076
FARAMETER ICOUNT=0,ICCMP=0,S5AVG=0,0,D8AVG=0.04DBBAVG=0.0

PARAMETER RBI=0.,0018,HDB=C+001347,SHATR=0e02y04s
LEACHI=0400136,HMLI=0.02429+HA1=0s0364329yHA2=0,02564210¢+
HA3=0,025642 +H5=0.00804,48=0.0

INCCN IC1=.001,1C2=040,1C3=,00071641C4=0,0,1C5=0,09VAL10=0,0+VA29=0e0sees
VA30=0.0,VA40=25.09VB0=560e3yVS50=65.01VL0=T7240+Q9=8e07r00e
VE=€5.CyVA1=0.09VA2=0e091VA3=0e0r00>
IQ1=1.0+1Q2=0,4891Q3=1e0y1Q4=¢16+1Q5=0e1541Q6=0e4+IQ7=0.011¢0¢.0
1Q8=0.212,1Q10=3.0,1Q11=0.00153,1Q12=0.005+1Q13=0e2904e
1Q14=0642+1Q15=0.C0824,1Q16=0,02+I1Q17=0614367,1C18=040485%914a0¢e
1Q19=0431573, 1Q20=0,011342,1Q21=1.822141Q22=2.59+1Q23=0.234164...
1Q24=0.,21525,1Q25=0.1,1Q26=0.00319,IVB=560,1IVL=724ISH=5.0440»
IAC=0.15,VBIN=0,874,VLIN=0.9653
CONSTANT SSAVG = 0404DBAVG = 0.040BBAVG = U.0

CONSTANT HC11=0.00000339,HCI13=0.0697yHCL5=0401154HC143=0.00759¢10
HC21=0.000088167,HC511=0.0000048624HC31=0,00050859HC24=000024y000
HC34=0,00024 yRESPL=0.303G8,RESP3=0,23944RESP4=2,1074P3=0.00586944¢+
P4=0.0C19yA)=0e59A2=0.5yA3=0.83,A4=0,92,A5=0s37,D1=0,0021989¢4>
£3=0.025yFN=0.14VBQ1=0.00075¢c0.
VBG2=0,0001923,vBQ3=0.,00040384,VBQ4=0,0000962,VBQE=0.000038461+ .

VBQ6=0,00003846,VBQ7=C.0C003846,VLQ8=0.002673,VLQ9=0.0004y¢e.
SHQ21=0,02074SHQ22=0.01962,5HQ23=0,002192ySHQ24=0.0021921¢ ¢4
ADQ1l7=C.026512+ADQ18=0s004574ADQ1S=0.0467,Q1Q2=0,000962340¢
Q1Q3=0,00384,Q104=0,02308,Q1Q5=0,001922,Q1Q6=0.02208,Q1Q9=.00%ye e
€2Q9=0.,00702+Q2Q20=0.03824Q3SH=0,10192,Q4SH=042019yQ5SH=0407057¢ e
Q6SH=0.0529,C3AD=0,0384,Q309=0,002308,Q3Q15=.019244404 ‘
£3C16=0.,01924,Q17Q9=0.0057,Q24Q9=0.04231,Q9Q26=0,00154904¢
Q4A0=0,0962,C4Q09=0,00481,Q4Q15=0.06734C5AD=0e0346904+
Q5Q7=0.000654,Q17Q20=C¢ G19,Q1 8SH=0, 0641 ,Q18Q7=0400519¢ ¢
€569=0.0006544Q05Q15=0,011538,Q5Q16=0,000654,Q6AD=0+0192y400
Q7Q6=C.0019,Q8Q9=0,02153,Q8Q20=0.1104,Q10G3=0.002561¢ ¢+
Q1€Q8=0.000649Q18AD=0,02564,Q20AD=04319,G10Q9=0:00% e 0"
€10€11=0.00044,C10G412=0.,00044+Q310Q13=0.007694Q10Q14=0.01398ycee
Ql18H=0.022,Q11AD0=0.0179,Q11Q9=0.03629,Q11Q15=04038y¢ 0>
Q11Q16=040135, 440 '
Gl25H=0,1354+Q12A0=0.00462,Q12Q9=0,0019,Q12Q15=0.002311¢40
Q12016=C-OOG771... .
Q13SH=0.0577,Q13A0=0.0231,Q13Q9=0,00056+Q13Q16=0.000192e¢¢
€l4SH=0,105,C14C07=0,000384,Q14Q9=0.,000384,Q14Q16=Q+,0558y e+«
Q1l5SH=0e3464Q15AD=1.346,Q15Q9=0+s0212,4Q165H=0,1934,4Q16AD=0:673 10"
Ql6Q7=0.192,4Q16Q9=0.00718,418Q9=0,001346,Q18Q1 €=0,006410c»
C19SH=0,0962+Q19AD=0,0385,Q19Q7=0.,00769yQ19Q9=0.001921+ ¢
G19Q16=C.00969Q20SH=0.319,Q2009=0.0769,Q21Q22=0.002981 100
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Q22Q9=0.00248,Q22Q20=0. C0248,Q23SH=0+0423,Q23AC=0.0639.4. )
Q23C9=0,0211,Q24SH=0404239Q24AD=0.0634234Q25Q9=06029TAU=0s01490¢0¢+
€3C0=0.06114,Q4Q0=0,1009,Q5Q0=0.03524+Q6Q0=04,02644Q7Q0=149234¢00¢
Q8QG6=0.,8912,Q1CQ0=0.333,Q11Q0=0.112,Q12Q0=0.0067Y3,Q13Q0=+048079¢00
C14C0=0.,0448,Q15Q0=1.73,Q16Q0=0.8654Q17Q0=0+26€¢4Q18Q0=0.0528y404
Q19Q0=C.0807,Q20Q0=3,84,Q21Q0=0+304,Q22Q0=0¢2049Q23Q0=04128y 0+
SHIN=14.29554ADIN=0.1776,Q26Q0=4.0, 02400 061289 EFN25=0e45100e
GO9F1=0.02,RESP25=045
FIXED I
FIXEC ITIME
FIXED J
FIXED JJ
FIXEEC IJ
FIXED JS
FIXED ICCMP
FIXED ICCUNT
DYNAMIC
SUN=4., + ( ZO*ASL ) :
TS=SINE{Dy.120932,5.904)
TENMP=(9.+(TS*11.))*.,061
TEMP1=6G.0 + (TS*11.0)
Y=RAMP (R)
MOIST = MQINT - SLOPE*Y
NOSORT
IF(Y«GE«5149) B=B+52,
IF(YeGE«504C) MOIST = MCINT
IF(MOIST.LT.0.) MOIST=0.
RE=REI
Q25F1=SUN*TEMPXMCIST*EFQ25 - .
IF(SUNCLTe3e5s0R+SUNeGTe5.0) Q25F1=0.
IF(SUN«LT.4.0) RP=0,0
LEACHA=LEACHI
IF(SUNeLTe4e0) HML=0.,0
IF(TEMP.LE«C.0) Q25=0.0
CC 3 I=1,4
PHCTO(I)=SUN*MCIST*TEMP*EFF(I)
DA(I)=CAI(I)
Te(I)=TeI(I})
IF(SUNGT.445) GC TG 90
PHOTC(1)=0.0
CA(1)=CAI(1)%*10.0
T8(1)1=0.0
90 IF(SUN.GT.4.0) GO TO 91
PHCTC(2})1=0.0
DA(2)}=DAI(2)%*10.0
TB(2)=0.0
FHCTC(3)=0.0
DA(3)=DAI(3)*10.0
TB(3)=0.0
G2 IF(SUN.GT+4.0) GG TC 93
PHOTO(41=0.0
CA(4)=CAI{4)%10.0
TB(4)=C.0
63 CONTINUE
FORCE(I}=PHOTO(I)
ANI(I)=Q9*FNI(I)
IF(PHOTO(I)«GTLANI(I)) FORCE(I}=ANI(I)
3 CONTINUE



TU=(FCRCE(1)+FORCE(2)+FORCE(3)+FORCE(4))/40.0
TAU=TL/Q9

IF(Y+GE«8.0) SCALE=1,.0
IF(Y.GE.18+) SCALE=0.0
IF{Y.GEe22+) SCALE=2,5
IF(Y«CEe26.) SCALE=0.0
VBV1=SCALE*VBQl
VBV2=SCALE*VBQ2
VLV8=SCALE*VLQ8%0.75
VLV10=SCALE*VLQ10%*0.25

IF(Y.EC.50.) GO TC 5
GO 70 60

5 C1=1IC1
C3=1IC3
C4=1C4

60 CCNTINUE
P1=0,000121
HCE€1=HC£11
IF(YeGTe2640) HCOL=HCELIX*3,0

7 CCONTINLE
IF(YeGEs31eCeANDeYoLE«47.0) P1=0,0
THINGS ABOUT COWS
IF(YeLTe4.0) GO TO 8
IF(YeGE426.0) GO TO 8
P21=0,000208
P22=0,€0208
+C12=0.00409
HC22=0.0409
HC22=0,C00448
FC62=0.00416
RESP2=0,421505
"IF(YeGTe5.0) EMC=0.0
¢C TC ¢

8 C2=0.0
HC12=0.0
FC22=0,.0
HC32=0.0
HCé2=0.0
RESF2=0.0
P21=0.0
P232=0.C

S CCNTINUE
INSECT PRODUCTION - DEATH - ETC
IF(Y.LT.9.0) GO TO 20
IF(Y.GEs24.0) CGC TC 20
P5=0.0166
RESP5=0.5502
FC154=0,004899
HCIS3=C. 00011
FC15=0,0115
HC25=0,00433
HC35=0,C0733
FC65=0.,00094
D5=0,0074
IF(Y«GEe19,0) P5=0.0
IF(YsGEe23.9) DS=140
GO TC 21
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20

51

30

40

CONTINUE

C5=C.0
SH5=0.,0

C6Q7=040048,0609=0,00192,G6Q16=0.00489Q7SH=0612,Q7AD=0e115s0 400

VLQ10=0.,107yQ1Q0=0,36€64,Q2Q0=0s179257Q25AD0=04634 400
SL=SINE(0+.12092,0) :
HML=HMLI

IF(SUN.CTe3,7) GO TS 92
IF{Y«GE«OaO) SCALE=4.0

PRODUCTION - RABBITS

IF{Y+GTe4.0) EMC=0,58135

AGCCING «00016 AT WEEK 22
RESPS=C.0

+FCI54=0.0

HCIES3=C.0

ALL INPUTS AND OUTPUTS (INSECTS) GO 70O O
HC15=0.0 .
HC2&=0,C

HC3E=(C.C

HFC65=0.0

CONTINLE

COYOTES

IF(YeLTe440) GO TO 30

BIRDS

IF(YeGT+.20.0) XIM=0,0
IF(YeGEs20.C) GC TC 30
IF(Y.GT.4.0}) EM=0,0036
IF(Y«GTe5+0) EM=0.0

IF(YeGEe5.0) D4=0,0000076
IF(Y«GEa9.0) D4=C.0000126
IF{YaGE+19,0) XIM=0.,693%C4
P4=0.0C16

FC24=0.0006¢€2

FC34=0,000662

HCI54=0.,02948

GO T0 40

CONTINUE

C4=0.0

P4=0,0

HC24=0,0

HC24=0.0

FCI54=0.0

CONTINUE

PP1=P1%VA3

PP2=P21*%VALl + P23%VA3

FP3=p3*C1

PP4=P4*C5

FP5=P5%VA3

FI1=PP1/Al

PI2=PP2/A2

FI3=PP23/A3

PI14=PP4/A4

PIE=PPE/AS
T1=HC11*VAl1+HC21*VA2+HC31*VA3+HCO61*VS+PI1
12=HCL12%VAL+HC22*% VA2 +HC32%VA3+HC62%VS+P[ 2
13=HCI13*CLl+HCIS3*C5+HCI143%C4+PI3
[4=+C24*VA2+HC34*VA3+RCIS4%C5+P 14
I5=HC15%VAL+HC25%VA2+¢HC35%VA3+HC65%VS+PI5
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SCRT

3*

R1=RESPL*Cl

R2=RESP2%C2

R3=RESP3%*(C3

R4=RESP4*C4

R5=RESPS5*C5
SK1=I1%(1,0-A1)
SH2=12%(1,0-A2)
SE3=13*%(1.0-A3)
SH4=14*(1.0-04}
SH5=IS*(1,0~A5)
ClQ0=SCALE*0.3684%0.5
Q1CS=SCALE*0.009%0.5
€2Q0=SCALE*0,17G625%0,¢
C2GQ9=SCALE*0.00702%045
C8Q0=SCALE*Q0,8912%0,375
Q8Q9=SCALE*C.02153*%0.375
Cl10C0=SCALE*04333%0.3
Q1CQ9=SCALE*C.CC9*C.3

HA1=HC11+HC12+HC15+P21%*2,.,0

FA2=HC 21+HC22+HC25+HC 24
FA3=HC31+HC34+HC35+4FC324P23%2,0+P5%2, 713+P1%2, 0
HS=HC&61+HC654HC62
HDB=VBV14VBV2+VBQ3+VBQ4+VBQS+VBQA6+VBQ7
HML=VLC9+VLV10

LEACH=VLQ9+LEACHA

SHIN=0e41*(SK1+SH2+SH3 45H4+SH5)
GRA=HA1*VA1+4HA2*VA2+HA3*VA3+VS*HS
CUNBIC=VAL +VA2+VA3+4VS

ADIN=0,2*(D1*C1+D3*C3+D4*C4+D5*C5)

VA1CCT=FORCE(1)~HA1*VA1~-TB(1)*VAl-DA(1)*VAl
VA1=INTGRL(VA10,VA1DOT)
VA2COT=FORCE(2)-HA*VA2-TB(2)%VA2-DA(2)*VA2
VA2=INTGRL(VA20,VA2CQOT)

VA3COT=FORCE(3)}-HA3*VA3~-TB( 3)*VA3-DA(32)*VA3
VA3=INTGRL(VA30,VA3LGOT)
VA4DCT=FORCE(4)~TB(4)*VA4-DA(4)*VAL4
VA4=INTCGRL(VA4Q,VA4DOT)
VBOCT=TB(1)*VAL+TB(2)*VA2+TB(3)*VA3+TB(4)*VA4~RB*VB-HDB*VB
VB=INTGRL(VBQ,VvBDOT)
VSCOT=CA(1)*VAL+0A(2 ) *VA2+DA(3) *VA3+DA(4) *VA4~HS*VS~-SHATR*VS
VE=INTGRL(VSO,VSDOT)

VLDOT=SHATR*VS~LEACH* VL-HML*VL

VL=INTGRL(VLO,VLDQT}

C100T=11-R1-SH1-01*C1~-HCI13*C1
CLl=INTGRL{IC1,C1DCT)
C2D00T=12-R2-SH2+EMC
C2=INTGRL(IC2,C2D0OT)
C300T=13-R3-SH3=C3*(3
C3=INTGRL(IC3,L3DCT)

C400T= [4-R4=~SH4-D4*C4~HCTI43*C 4~ XIM+EM
C4=INTGRL(IC4,C4DCT)
CSDOT=15-R5~SH5-05%C5-HCI54%C5
C5=INTGRL(IC5,C500T)
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QLCCT=VBV1*VB-Q1*(QlQ2+Q1Q4+Q1Q5+Q1Q6+Q1Q9+Q1Q3+Q1QD)
Q2D00T=VBV2*VB+Q1Q2*Q1-Q2*(Q2Q9+Q2Q20+Q2Q0)
Q3CCT=VBQ3*VB+Q1lQ3*Q1+Q10Q3*Q10-Q3*(Q3SH+Q3AD+Q3Q9+Q3Q15+Q3Ql6+s0.
€3¢0)

Q4D0T=VBQ4*VB+Q1Q4%Q1-Q4%*(Q4SH+Q4AD+Q4Q9+Q4Q15+Q4Q0)
Q500T=VBQ5*VB+QlA5*Q1~Q5%( Q55H+Q5AD+Q5Q7+Q5Q9+Q5Q15+Q5416+Q5Q20)
Q6D0T=vBQ6*VB+Q1Q6*QL-Q6*(Q6SH+QOAD+Q6QT +C6Q9+Q6Q16+Q6Q0)
Q7D0T=VvBQ7*VB+Q5Q7*Q5+Q6Q7T*Q6+Ql4Q7*Q1l4+Q16Q7*Q16+Q18Q7*QLl8+es.s
CloQ7*C19-QT7* (QTSH+CTAD+QT7Q9+Q7Q0)
Q8DOT=VLV8*VL+Q10Q8*Q10-C8*(Q8Q9+Q8C20+Q8CQ0)
Q9D0T=VLQI*VL+Q1Q9*Q1+G 2Q9*Q2+Q3Q9*Q3+Q4Q9*Q4+Q5Q9%Q5+Q6Q9*Qb6+e e e
C7Q9%uT7+Q8Q9*Q8+Q11C09*Q11+Q12Q9*%Q12+Q13Q9*Q13+Q1l4Q9%Q14+Q15Q9%ese
Q1E+Q1€Q9*Q16+4Q17Q9*Q17+Q1 8GS*Q18+Q19Q9*%Q19+Q20Q9%Q20+Q22Q9%* e v s
Q22+Q2309*Q22+Q24Q5*Q24+010Q9*%Q10+Q9F 1+Q25Q9%*Q25-Q9*(Q9Q26+ TAU)
CLODCT=VLV10*VL-Ql0*(C10Q3+Q10Q8+Q10Q11+Q10Q12+Q10Q13+Q10Qlé+ess
€10Q0+Q10Q9) .
C11CCT=Q10Q11%C10~-Q11*(Q11SH+Q11AD+Q11Q9+Q11Q15+Q11Q1€£+Q11Q0)
Ql2D0T=Ql0Q12*Q10~-Q12*(Q12SH+Q12AD+Q12Q9+Q12Q15+Q12Q16+Q12Q0)
Ql3CO0T=Q10Q13%Q10~-Q13*(Q13SH+Q13AD+Q13Q9+Q13Q1£+Q13Q0)
C140C0T=Q10Q14*C10-G14*(CQ14SH+QL4QT+Q14Q9+4Q14Q1¢6+Q14Q0)
W150CT=Q11Q15%C11+G12C15%Q12+Q3¢15%Q3+Q4Ql5%Q4+Q5Q15*%Q5-Q15%*(sa
C15SH+C15AD+Q15Q9+4Q15Q0)
Cl6D0T=Q3Q16*%Q3+C5(Q16*Q5+Q6Q16*Q6+Q11Q16%Q11+Q12Q16%Q12+Q13Q16%*eee
Q1324Q14Q16%Q14+Q18Q16#Q18+Q19Q16%Q19-QLl6*(Q16SH+QLOAD+QL6Q7+e e
Ql689+€16Q0)

Ql7COT=ADQ1 7*AD-Q1 7*(Q17Q9+Q17Q20+Q17Q0)
Q18D0T=ADQ18*AD-Q18*(Q18SH+Q18AD+Q18Q7+Q18Q9+C18Q16+Q18Q0)
C19CCT=ADQ19*AD-Q19*%((195H+Q19AD+Q19Q7+Q19Q9+Q19Q16+Q19Q0)
420D0T=Q2Q20%Q2+Q8Q20*Q8+Q17Q20%Q17-Q20* (Q20SH+Q20AD+Q20Q9+Q20Q0)
(2100T=5HQ21*SH-Q21%*(Q21Q22+Q21Q0)
€22DCT=SHQ22*SH+Q21Q22%(Q21-Q22%(Q22Q9+Q22Q20+Q22Q0)
Q22D0T=SHQ23*SH-Q23*(Q23SH+Q23AD+G23Q9+Q23Q0)
Q24COT=SHQ24%*SH=-Q24*(Q24SH+Q24AD+Q24Q9+Q24Q0}
C25C0T=C25F1-Q25CQ9*%C25-RESP25*TEMPL *Q25
Q26C0T=Q9Q26*QS9~Q26%Q26Q0
SHOOT=SHIN+Q3SH*Q3+Q4SH*Q4+Q5SH*Q5+Q6SH*QE+QTSH*QT+QL1SH*QLl1+,0 e
Ql2SH*Q12+Q13SH*Q13+Q14SH*Q14+Q15SH*Q15+QLl6SH*QLl6+Q18S5H*Q1B+..s
Q1S SH*Q19+4Q20SH*Q20+Q23 SH*Q23+4Q24SH*Q24-SH* (SHQ22+SHQ23+SHQ21)
ADCOT=ACIN+Q3AD*Q3+U4 AD*Q4+Q5AD*Q5+Q6AD*QE64QTAD*QT+Q11AD*QLl1+ess -
QL2AD*Q12+Q12AD*Q13+Q15AD*Q15+Q16AD*¥Q16+Q18AD*Q18+Q15AD*Q1l %,
Q20AC*Q20+Q22AD*Q23+Q24AD*Q24~AD*(ADQ17+ADQ1 8+ADQ19)

Cl=INTGRL(IQ1,Q100T)
C2=INTGRL(1Q2,Q2DCT)
Q3=INTGRL(IQ3,Q3D0T)
G4=INTGRL(IG4,Q400T)
G5=INTGRL(IQ5,Q5DCT)
Q6=INTCRL(IQE,QEDOT)
C7=INTGRL{(IQ7,Q700T)
Q8=INTGRL(IQ8,Q8DCT)
Q9=INTGRL(IQ9,Q90CT)
ClO0=INTGRL(IC10,Q10COT)
Q11=INTGRL(TQ11,Q11DOT)
Ql2=INTGRL(IC12,Q12D0T)
Q13=INTGRL{(IC13,C€13D0T)
Ql4=INTGRL(IC14,Q14DOT}
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W15=INTGRL(IQ15,Q1500T)
Ql6=INTGRL(1Q16,Q16D0T)
QLl7=INTGRL(IQ17,Q17CCT)

Q1 8=INTGRL(IC18,Q18CGCT)
Q19=INTGRL{IQ19,Q13900T)
C20=INTGRL (1€20,Q20C0T)
Q21=INTGRL(IL21,Q2100T)
£22=INTGRL (1Q22,Q22D0T)
Q23=INTGRL(1C23,Q23DCT)
Q24=INTGRL(1C24,Q24DCQT)
€25=INTGRL (IQ25,Q2500T)
C2€6=INTGRL(1C26,C260CT)
SH=INTGRL(ISH,SHDOT}
AD=INTGRL(IAC,AQCOT)
GRAZ=HA1*VAL4HA2*VAZ2+HA3®VA3
BUGS=CE+4Q16+Q18+Q23+Q24+Q19+Q5+Q6

3% 7
PHOTO1=PHAOTO(1)
FCRCE1=FCRCE(1)
NOSCRT :
€4 ICCMP = ICOMP + 1
X(l)=val
X(2¥=VA2
X(2)=VA3
X{4)=VA4
X(5)=ve
X(€)=VS
X{7)=VL
x(8)=Cl1
X(9)=C2
X(10)=C3
X(11)=Csa
- X(12)=CS
X(13)=Q1
x(14)=Q2
X(15)=C2
X{16)=C4
X{117)=@5
X(18)=C6
X(19)=C7
X(20)=Q8
X(21)=C9
X(22)=Ql0
x(23)=qQ1l11
X{2&4)=¢12
x{(25)=Q13
X(26)=Q14
x(27)=C15
x(28)=Q1le¢
X{29)1=Q17
X{30)=Q18
X(321)=Q16%
X(22)=C20
X(33)=Q21
X(24)=Q22
X(35)=C23
x(2¢)=Q24
X(37)=CQ25



24

x(38)=Q2¢6
X{39)=SH

x(4C)=AD

CoO 241 =1, 1681
F(I})=0.0

A(I) = 0.0

A(S) =TB(1)

A(6) =CA(1)

A(B) = HC1l=%Al

A(S) = hCl2*A2 + P21
A(12) = MHC15%AS5
A(46) =7B(2)

A(4T7) =DA(2)

A(49) = hHC21%*Al
A{5C) = HC22 * A2
A(52) = KFC24%*A4
A(S3) = HC25%AS
ACET) =TB(3)

A(88) =CA(3)

A(50) = HC31%*Al + P}
A(S1l) = HC32%A2 + P23
2(93) = FC34%*A4
A(S4) = HC35*%A5 + PS5

A(128)=TB(4)
A(129)=CA(4)

AC177) =VBV]

A(l178) =vBV?2

A(179) =VBQ3

A(1€C) =VvBQ4

A(181) =VBGS

A(182) =VBQé

A(1€2) =vBQ7

A(205) =RB

A(212)=SHATR

A(212)=FkCH1

A(214)=FC62

A(217) =HC6S

A(266) =vLVE

A(2671) =VLQ9

A(268) =VLV1O

A(287) =LEACH
X1TOT=X(331+4X(34)+X(35)+X(36)
X2TOT=X(Ll7)+X(1B)+X(1S)
SH11=0,9%SH1
SH22=0.,5%SH2
SH23=(0,6%SH3
SH44=0.9%SH4

SH55=0, $%SHS

D11=C, %Dl

C33=0,8%(3

D44=0.8%D4

£55=0.8%D5
1F(X2TCT.EQ.0.0) GO TO 32
A(3C4) =D11*X(17)/X2TCT
A(3C5) =D11#*X(18)/X2TCT
A(306) =D11*X(19)/X2TCT
A(28€) =D23%X(17)/X2T0T
A(387) =D33%X(18)/X2T0T
A(388) =D33%X(19)/X270T
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51

41

\n
~N

42
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w
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A(427) =UTasexX(17)/X2T0T

A(428) =D44%X(18)/X2T07

A(42S) =D44%X(19)/x2T07
8(468)  =D55%X(17)/X2T0T

A(46S) =D55%X(18)/X2T0T

A(470) =D55*%X(19)/X270T
IF(X(8).EQe0.0) GO TO 34
IF(X1TOT.EQ.Ca0) GG TC 51
A(297) =HCI12

A(320) =SH11%X(33)}/(X1TCT*X(8))
A(3221) =SH11*X(34)/(X1T0T*X(8})
A(322) =SH11=%X(35)/(X1TOT*X(8))
A(3223) =SH11*X(36)/(XITCT*X(8))
A(326) =041%SH1/X(8)

A(327) =0,2%D1/X(8)

A(328) =RESP1 :

GO TC 41
A(320) =0.0
A(222) =0.0

A(323) =0,.0

A(22€&) =041%SH1/X(8)

A(327) =0.2%E1/X(8)

A(328) =RESP1

IF(X(9).EQ.C.0) GO TO 35
IF(X1T7CT.EQ.0.0) GO TC 52
A(361) =SH22%X(33)/({X1TCT*X(9))
A(362) =SH22*X(34)/{X1TOT*X(9))
A(363) =SH22%X(35)/ (X1TCT*X{9))
A(364) =SH22*%X(36) /({X1TCT*X(S))
A(36T) =04.1%5H2/X(9)

A(369) =RESP2

GO TO 42

"A(361) =0.0

A(362) =0.0

A(2€3) =0.0

A(364) =0,.0

A(367) =0.1%SH2/X(9)
A(36S) =RESP2
IF(X(10).EQ.0.0) GO TO 36
IF(X1TOT.EQ.0.0) GC TC 53

AC402) =SH33%X{(33)/(X1TOT*X(10))
A(403) =SH33%X(34)/(X1TOT*X{10))
A(404) =SH33%X(35)/(X1TCT*X(10))
A(405) =SH33%X(36&) /{X1TOT*X(10})
A(408) =0,1%SH3/X(10)

A(4C9) =0.2%D3/X(10)

A(410) =RESP3

GC TC 44

A(4C2). =0.0

A(403) =040

A(404) =0.0

A(4C5)  =0.0

A(408) =0.1%SH3/X(10)

A(409) =0.2%D3/X(10)

A(410) =RESP3

IF(X(11).EQ.0.0) GO TO 37
IF{X1TOT.EQ.0.0) GO TC 54
A(420) = HCI43
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45

£5

37

A(443) =SH44%X(33)/(X1TOT*X(11
A(444) =SH44%X(34)/(X1TOT*X(11
A(445) =SH&44*X(35)/ (X1 TOT*X (11
A(446) =SH44%X(36)/(X1TOT*X(11

A{449) =0,1%SH4/X(11)
A(450) =0.2*%D4/X(11)
8(451) =RESP4+XIM/X(11}
GC TC 45 :

A(443) =0.0
A(444) =0.0
A(445) =0.0
A(446) =0.0
A(449) =0.1%SH4/X(11)

A(450) =0.,2%D4/X(11}
A(451) =RESP4+XIM/X(11)
IF(X(12)«FQe040) GO TO 38
IF(X1TCT.EQ.0.0) GC TC 55
A(4€1) = HCIE4

A(484) =SHS55%X(33)/(X1TOT*X(12))
A(485) =SH55%X(34)/(X170T*%X(12)}))
A{486) =SHS55%X(35)/(X1TCT*X(12))
A(4871 =SHS55%X(36)/(X1TOT*X(12)}

A(4SQ) =0.1%SH5/X(12)
A(491) =0.2%D5/X(12)
A(4392) =RESPS

A(484) =0.0

A(485) =0.0

A(48¢) =0.0

A(487) =0.0

A(4S0) =041%SH5/X(12)
A(491) =0.2%D5/X(12)
A(492) =RESPS

CQ TC 46
A(22C) =0
A(267) =
A(321) =
A(322) =
A(323) =
A(326) =
A(=Z27) =

A(261)=0.0
A(362)=0.0
A(363)=0.0
A(2€41=0.,0
A(367)=0,0.
A(368)=0.0
A{2€9)=0.0
CC TC 42

.
[N eNeNeNoNoNo]

rPOOODOCOO!

A(443)=0.0
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(18]

w

T A(322

"A(220)=0

A(420) = O
A(444)=0.0
A(445)=0.0
A(446)=0.0
A(449) =0.0
A(450)=0.0
A(451)=0.0
GC TC 45

coooocoo l

A(3C4)=0.0
A(305)=0.0
A(20€)=0.0
A(2971=0.9
A(386)=0,0
A(2€7)=C.0
A(388)=0.0
A(420) =0.0
A(427)=0.,0
£(428)=0.0
A(429) =040
A(4€8)=0.0
A(470)=C.0
A(4€l1)=C.0
GC TC 43

. o

[eNoNoNoRaNaNal

A

-

M
[ZN]
—
-

A(223
A(zzé¢
A(327
A(3¢€1
A(362
A(363
A(3¢4
A(367
A(368
A(4C2
A(403
A(4Q4
A{4C5
A{408)
A(409)
A(443)
A(444)=

[eNoNoRoNoNoNe]
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e =joleNoNojoNaoNooNoR o]

- N Y W - " W

oW o oo onow wonn

[*NeoNojooRojlesNoNoNoNoNojoNoNooNoNoRoNo Yo oNoNoNo
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A(486)=0.0
A(487)=0.0
A(490)=0,0
A(491)=0.0
A(505) =QlG2
A(5CE)  =Q1Q3
£(507) =Q1Q4
A(5CS)  =Q1Q6
A(512) =Q1QS
A(533) =Q1Q0
A(554) =Q2QS
A(5€5) =Q2Q20
A(574) =Q2Q0
A(ES5)  =Q3QS
A(601) =Q2Q15
A(602) =Q3G16
A(€13) =Q3SH
A(614) =Q3AC
A(615) =Q3G0
ALE2E)  =Q4QS
A(642) =Q4Ql5
A(€54) =Q4SH
A(ESE)  =Q4AD
A(656) =Q4Q0
A(€75) =Q5Q7
AL677) =Q5Q6
A(683) =Q5Ql15
AL684) =Q5Q16
A(695) =Q5SH
2(696) =Q5AC
AL6ST)  =Q5Q0
A(716) =Q6Q7
A(718) =Q6Q9
"A(725) =Q6Q1l6
A(736) =Q6SH
A(737) =Q6AC
A(728) =Q6QC
A(759) =Q7Q9
A(777) =Q7SH
A(T78) =Q7AD
A(779) =Q7Q0
A(ECC) =Q8C9
A(811) =Q8Q20
A(820) =Q8QO
A(E58) =Q9Q26
A(EE1) =TAU
£(876) =Q10Q3
A(ESL) =Q10Q8
A(882) =Q10QS
A(884) =Q10G11
A(885) =Q10Ql2
A(886) =Q10Ql3
A(887) =QlOGClé4
A(SC2)  =Q10Q0
A(S23) =Q11Q9
A(S29) =Q11(15
A(920) =Q11Qlé
A(941) =Ql1SH
A(S42) =Q11AD
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A(943)

A(SE4)

A(S70)

A(9T1)

A(S82)

8($83)

A(SE4)

A(1C05)
A(1012)
A(1023)
A(1024)
A(1025)
A(1044)
A(1046)
A(1053)
A(1064)
A(10€5)
A(1066)
A(1CET)
A(1105)
A(11C6)
A(1107)
2(1126)
A(1128)
A(1146)
A(1147)
A(1148)
A(1169)
A(1180)
A(1189)
2(1208)
A(1210)
A(1217)
" A(1228)
A(1229)
A(1220)
A(1249)
A(1251)
A(1259)
A(1269)
A(1270)
A(1271)
A(1292)
A(1210)
A(1311)
A(1312)
A(1246)
2(1353)
A(1374)
A(1285)
£(1294)
A(1415)
A(1433)
p(1434)

A(1435)

A(1456)
A(la74)
A(1475)
A(1476)

=Q11Q0
=Q12Q9
=Q12¢15
=Ql2(16
=Q12SH
=Q12A0
=Q12¢0
=Q12Q¢
=Q13Q16
=Q13 SH
=Q13AD
=Q13¢0
=Q14Q7
=Q14Q9

=Ql4(16 .

=Q14SH
=Q1440
=Q14C0
=Q15Q5$
=Q155H
=Q1540
=Q15Q0
=Q16G7
=Q16Q9
=Q16SH
=QL6AD
=Q16Q0
=Q17Q9
=Q17620
=Q17Q0
=Q18Q7
=Q1 8¢9
=Q18Q16
=Q18SH
=Q18AD
=Q18Q0
=Q19Q7
=Q19G9
=Q19Q16
=QL9SH
=Q15AD
=Q19Q0
=Q20¢9
=Q20SH
=Q20AC
=Q20¢0

"=Q21Q22

=Q21Q0
=Q22(9
=Q22Q20
=Q22¢Q0
=Q23Q9
=Q23SH
=Q23AD
=Q22Q0
=Q24Q9
=Q24SH
=Q24AD
=Q24Q0
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€5

10

11

12

13

la
71
19

A(14S7) =Q25Q6S
A(1517) =RESP25*TEMP1
A(1558} =Q26Q0
A(1861) =SHQZ1
A(1592) =SHQ22
A(15932) =SHQ23

A(le28) =ADQ17
A(1629) =ADCl8
A(1€20) =ADQ1S
A(1641)=FORCE(1)
A(1642)=FCRCE(2)
A(1643)=FORCE(3)
A(1644)=FORCE(4)
A(1€45)=EMC
A(lé51) =EM
A(1677) =Q25F1
X{4l)=1.0
CBEBAR=0.0
XBTCT=0.0

D0 €4 =1, 40
XBTOT XBTOT + X{J)
00 65 =1 4 40
QB(J} = X(J)Y/XBTOT

([ 2

[N

IF(GB(J)LEL0.0000001) GO TO 65
DBEAR = DBBAR - 1,442695 * QB(J) * ALOG(QB(J))

CONTINUE

IJ = 0.0

DO 11 I =1 , 40

SUM(I) = 0.0

CC 10y =1, 4l

JJ = J + 1)

SUM{TI) = SUM{I) + A(JJ)
1J = 41 % |

SUM(I) = SUMLI) * X(I)
SUMTOT = 0.0

tC 12 J =1, 40

SUMTOT = SUMTOT + SuM{J)
CO 13 4 =14 40

QUJ) = SUMLJI/SUMTCT

I =0

O 19 I =1 4 40

CC 14 4y =1, 41

P(J)Y = 0.0

Jd = J + 1J

IF(SUM(I)«%Q.0.0) GO TO 71
FOJJ)Y = A(JI) = XCI) /7 SUMC(T)

1) = 41 % I

CONT INUE

14 = 0

L0 22 1 =1, 40
LO 15 4 = 1 4 41

Jd = Jd + 1J

PI)Y = PUIY + QUIYEFLIN)
IJ = 41 % |

CONTINUE

CBAR = 0.0

o 16 I =1 , 40

IF(Q(I}.LE.C.0000001) GC TO 16
CBAR = DBAR - 1,442695 * Q(I) * ALOG(Q(I))}
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END
STO

ENCJGB

//

1¢

17

<6

9%

58

CONTINUE
AMI = 0.0
1J = 0

Sf0 23 1 =1, 40
CC17 4 =1, 41
JI = J+ 14

IF(F(JJ) sEQsCe0.ORWP(J)eEQe0.0) GO TG 17

CIVl = F(JJ)/P(J)

IF(DIV1.LE.0.0000001) GC TO 17

AMI = AMI + 1.442695%Q(I)*F(JJ)*ALOG(F(JIJI/P(I))
CCNTINUE

IJ = 41 % 1

CONTINUE

S = CB&R - ANI

IF(ICOMP.LEWL5) GG TG S6

GG TC o7
SSAVG = SSAVG + S
CBAVG = DBAVG + DBAR
CBBAVG = DBBAVG + DBBAR
SS(ICCMP) = S
ST(ICOMP) = DBAR
SB(ICOMP) = DBBAR
GC TC 98
DIFF1 = S - SS{(1)
DIFF2 = DBAR - ST(1)
DIFF3 = CBBAR - SEB(1)
DO GS J =1 4 4 :
JS = J + 1
£5(J) = SS(JS)
STLJ) = ST(JS)
SB(J) = SBUIS)
£S(5) = S
ST(S5) = DBAR

" SB8(5) = DBBAR
SSAVG = SSAVG + DIFF1
CBAVG = DBAVC + DIFF?2
CEEBAVGC = DBBAVC + DIFF3
ICCMP = 5
SAVG = SSAVG/ICOMP
CAVG = CBAVG/ICCMP

95

[

COAVG = DBBAVG/ICCMP
WRITE(&,95) ICOMP,TIME,S,SAVG,DBAR ,DAVG,DBBAR,DDAVG,AMI
FORMAT (5X 315 42X Fl0e2+7{2X,F10e5))
METHOD RKSFX
TINMER CELT=,1,FINTIM=1063,0,0UTDEL=10,0
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