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CHAPTER·! 

INTRODUCTION 

Systems ecologists s~ek to gain a more thorough understanding of 

ecosystems through the. application of systems theory concepts. Systems 

analysis.provides.a formal framework.for understanding ,and quantifying 

the interactions of a complex system such as an ecosystem. Th.e use of 

the formal mathematical tools of systems theory.necessitates a continual 

quantification of ecological concepts .in order for th~ir importance to 

be realized in the systems ecology area. 

The·primary goal of this research effort is the,quantifi~ation of. 

ecologic~l st~bility. The name ecological stability has been used to 

repre~.ent .. several different . ecosystem properties (2, J, 11, 12, 15, 22) • 

Ecological stability here will refer to the ability of an ecosystem to 

resist ch~nges in the presence·of perturbations. The responses of the 

individual components to perturbation give an indication of the eco­

system's resistance 1 to change~ Ecosystems with larger individual com­

ponent responses are less stable than other ecosystems with smaller 

responses (2, 11, 12, 18). Ecologicil stability, then, is a sensitivity 

concept since the response of the individual components is also an 

inq.ication of the sensitiv.ity of the ecosystem to perturbation. High 

sensitivity .to perturbation implies large individual·component responses 

and low stability, while low sensitivi~y implies high stability. Another 

major objec~ive of this research effort is to.develop a.total ecosystem 

1 



sensitivity measure and find its relationship to the ecological sta­

bility measure. 

2 

The importance of ecological stability can be seen during the pro­

cess of succession. Succession is.a process of seif-organization with 

the ecosystem passing through different states and immediately assuming 

any state which is more resistant to.further change (12)_. The strategy 

of succession is increased homeostasis with the physical environment in 

the sense of achieving maximum protection from its perturbations (18). 

The process of.succession is obviously closely tied to the concept of 

stability. Selecting a state more resistant to further alteration and 

achieving maximum protection from environmental perturbations imply.that 

increased stability is selected for during succession. So a measure of 

stability could be useful in one of two ways. First, long-term changes 

in a stability measure would indicate the dire~tion of succession. Also, 

a measure of stability could be used as an objective function for a con­

trol problem. 

The development of an ecological stability measure leads to con~ 

sideration of relationships among stability, diversity, and complexity. 

Diversity indices measure the variety and evenness in the apportionment 

of individuals, biomass, or energy content.among the species within an 

ecosystem. Although ecological stability .tends to increase during 

succession, diversity sometimes increases and then decreases (12). Thus, 

the cause-and-effect relationship betwee~ diversity and stability is not 

clear (18). Complexity of the food web structure, or connectivity, 

refers to the degre~ and-pattern of component interdependence in an 

ecosystem (21). Ecosystems become more organized and, hence, more com­

plex during succession suggesting that a relationship exists between 



stability and complexity. A properly chose~ measure of ecological 

stability should maintain the proper relationships to diversity .and 

complexity. 

3 



CHAPTER II 

REVIEW OF RELATED LITERATURE 

Introduction 

Ecological stability has been used to,represent several different 

properties of the ecosystem by different authors. The ecosystem pro­

perty which MacArthur (11), Odum (18), Margalef (12), and Conrad (2) 

call ecological stability is a sensitivity concept. The magnitudes of 

the responses of the individual componepts of the ecosystem in the 

presence of perturbation are taken as an indication of the stability of 

the ecosystem. Larger individual component responses by definition 

mean that the ecosystem is more sensitive to environmental perturbations 

,and, consequently, would be,judged to be less stable.than other eco­

systems with smaller individual component responses. Preston (3) and 

Margalef (3) equate ecological stability to persistance over time. The 

ecosystem or population which ,has persisted over many years would be 

considered more stable than shorter lived ones. Still others such as 

Lewontin (3) and May (14) define ecological stability in terms of re­

covery from perturbation, If an ec9system returns to its equilibrium 

state after being perturbed away, it is said to be stable regardless 

of the magnitude of the fluctuation,· This type of stability is equi­

valent to asymptotic stability of a dynamic mathematical model. 

4 
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Stability Measures 

MacArthur (11) was·the first to propose an ecological stability 

index. Th~s index is based on.choice of pathways for energy flow which 

was suggested by Odum (20). MacArthur's inde~ is best presented by an 

example. The q's between the compartments of Figure-! represent th~ 

likelih~od that the lower compartment is an energy source of the upper 

compartment. The index.is computed using the formula 

n· 
S = i: pi log pi, 

i=l 
(2.1) 

where the,pi's are the products of the q's along each path of the food 

web. For example, path ABDA yields p1 = q1 .q3.q7, path ACFA yields 

p2 = q2.q5.q11 , and s~.on. 

Choice ef.pathways.for energy flow may.be.interpreted two ways: 

choice of paths along t~e entire length of the food chain, which is 

MacArthur's interpretation, or.the choice of paths between individual 

compartments. The second interpretation resembles more closely what 

actually occµrs il). an ecosystem. The· flow of·. energy. which occurs based 

on a choice mad~ in nature spans only one link in the food web. At.any 

instant of time the choice of pathways for energy flow in the total eco-

system is a function of all the choices which result in a flow of energy 

along one link in the food web. 

Other stability measures not based o~ choice have been proposed by 

Patten (22) and Margalef (3). Pat;ten's·measure is given by 

det·P 
j' 

(2.2) 
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Figure 1. Hypothetical Food Web 



where p is the matrix of transition probabilities for the jth of M . j 

variables, 

7 

(2.3) 

Pid is the probability for decrease in the value of the variable 

following an increase, Pii for an increa~e following an increase, et~. 

The obvious. shortcoming of this measure. lies _in its. consist~ncy. No 

method is given for computing or estimating the transition probabiliti~s · 

le~ving them open to interpret~tion and inconsistent, 

Margalef defines ecological st~bility in terms of persistance over 

time •. The s~~bility measure is given by 

s 
n 

(1/ c ) ~ 
l i=l 

(2.4) 

where bi is the fraction that any species, i, is of the total biom~ss 

and ti is the time mea~ure-for the biomass to be reduced to 50%. Th1;1 

time measure, t., is closely related to the turnover time of a.compart-
J. 

men~. C id 1 th d d 1 ' li ons. er a genera n. ·or er compartment mo e assuming nl;!ar, 

donor-controlled energy flows (Appendix A). 

The ith mem'J:>er'of the set of n equations is given by 

n 

xi=-~ 
j=l 

(2.5) 

Turnover is defined as the ratio.of throughput. (Yi) to content (Xi) of 

the·ith compartment, 



For the linear,.donor-controlled energy flow assumption, 

So, 
n 
~ 

T. = k=l 
l. 

a.k X •• 
l. l. 

aik xi n 
= i: 

xi k=l 
aik' 

8 

(2.6) 

(2. 7) 

(2.8) 

The t~rnover time, Ti' is the reciprocal of the turnover, so equation 

(2.5) becomes 

n 

~ 
j=l 

1 
aj. X. -..,... X .. 

l. J 'i l. 

th If the inpu;s to the i compartment are removed, then 

. 1 
xi = - -r xi. . i 

Equation (2.10) has the solution 

(2.9) 

-t/-ri 
X = X • e (2.11) 

i O 

where X is the.initial condition and tis time. For this case the turn­
o 

over time,-r;_, is the time constant, or the time required for a 62% 

reduction from.the initial condition. Thus, the,stab:tlity measure pro-

posed by Margalef, summing a time measure, t (time required for a 50% 

reduction) weighted by percent biomass, is closely tied to summing 
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turnover times weighted by percent biomass. 

May (15) discusses the relationship between complexity of.the food 

web.and·the mathematical stability of generalized·Volterra-Lotka equa-

tions: 

m 
2 
j=l 

b.j N.), 
1 J 

(2.12) 

May's conclusion is that the.model (m equations. of the form of (2,12)) 

provides a specific counterexample.to any universal use of trophic link 

counti~g as a measure-of stability. While May has shown.that increased 

complexity of the food web sometimes leads to inst~bility of the gener-

alized Volterra~Lotka ecosystem model, a question arises as to.the 

biological signific:ance of this result, Is. the model. insta_bility a 

result of ecosystem interactions or simply a modeling insufficiency? 

The l~tter conclusion seems the more plausible, Ecosystem models are 

typically constructed to predict ,or reproduce measureme~ts of the 

number of individuals, energy, or biomass content of functional 

classes of .. individuals, The number of individuals, biomass, or energy 

content of. these functional classificaticms is determined by many 

factors such as competition, predation, or toleranceto environmental 

ch~ges. In tQe absence of fundamental physical-laws to describe 

these factors.they must.be described in the.context of a particular 

ecosystem. Wh~n fundam~ntal physical laws are used to-construct a 

model, then the behavior of the model can be used to infer system 

properti~s. For instance; a mathematical.model of electrical, net"7ork 

can be used to determine.the component values to assure stable 

behavior of-the netwark. But due tG>. the methods of constructing and 
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identifying the generalized Volterra-Lotka model, it seems unli~ely that. 

any ecosystem properties cause the instability of the model reported by 

May. 

Complexity Measures 

Complexity and connectivity refer to the degree and pattern of, 

component interaction. These ecc;,legical variables depend upon the 

number and relat:i,ve importance of the energy pathways in an.ecosystem.· 

Th~ only complexity measure appearing in the literature concerns itself 

with ,the number of energy pathways and ignores the relative importance. 

of each pathway (21). If the relat:i,ve importance compenent of .com­

plexity is ignored, a food web may appear to be quite complex when 

actually because of the small amounts of energy which pass through most 

of,the pathways, it is quite simple and for all practical purposes a 

linear , food chain. A more advanced approach would be ·to.· determine 

directly the.diversity ef links or pathways in the network pattern (18). 

Diversity Measures 

Diversity measures give an indication of the variety and evenness 

in the apportionment of individuals, biomass, or energy content among 

the species of an ecosystem.· Diyersity indices should be dimensionless, 

reasonably independent of sample size, and express.the relative impor­

tance of each .species. Many indices have been proposed (5, 13, 14, 16, 

23), but most fail to satisfy one or.more,of the above properties. The 

most.widely used formula is given by (25), 
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n 

D = ~ pi log pi 
i=l 

(2.13) 

h ' th b bili f 1 ti ' d' 'd 1 f h · th were.pi is. e pro a ty o se ec ng an in iv+ ua rom t e 1 

species. This probability, pi' is commonly estimated from sampled 

values (n/n) where ni is the number of·indiyiduals, biomass, or energy. 

content of the ith species and n is the total individuals, biomass, or 

energy content in the sample. This index has the desired properties 

and is now used commonly as a measure of diversity. 



CHAPTER III ; 

QUANTIFICATION OF-ECOLOGICAL-STABILITY 

Introq.uction 

Ecological, stability re:fers, to the ability ,of· an ecosystem to re­

sist changes :.in the. presence of pertux:bations. Ecological stability . 

has been related· to choice of pathways for energy flow (20). Choice 

dep(;lnds :~m the. degree ap.d patterp. of component _inte:r;9epende"Q.ce which . 

defin(;ls tq.e complexity _of .foqd ·web structu:r;e. Increased .choi~e results. 

from a lar_ger .and more c~mplex ·organic structul;'e wh::f,.ch mitigates, 

perturbat;ions, of the physical enviroilm.ent (18). Choke may be_ in- . 

creased ip. two,ways, either of which may or may·not be accompanied by, 

increased diversity; increased -numbers of; poss_ible alternatives, as 

energy soul;'ces . and cc;,nsulllers, or by a more uniform int~rdependence .. 

among the existing energy sou.rceEf and _consumers. But, a more divers_e · 

ecQsystem has the. potential of :beco111ing .more,complex and possessing 

more.choice than a less diverse one. 

In this,chapter a.meas1,1re of ecological stability _is.developed 

using .cbGice, presented: from _an· informatiOIJ. theory viewpoint,; as an. 

inde,x. Relat~onships ,among_ eco+ogical sta.bil_ity ,. diversity, and COJ:\l­

plexity. consistent wi_th oJ:?serv.ed behavior arise ,naturally witb.in t1'is 

development. The us~fulness.of the resulting ·ecological.stability 

m.ea$ure.is examined with the. aid of-dynamic math~matical models of two 

actual eco.systems. 

12 · 
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The Meaning of Choice 

The concept of choice is a fundamental consideration in information. 

theory, a mathematical theory developed in the.1940's by C. E. Shannon 

for dealing with communications systems (6). The most simple communi­

cation system consi$tS of a source, channel, and a receiver (Figure 2). 

The source output of Figure 2 might represent a set of sensors, a 

voice waveform, or a sequence of binary digits from a,magnetic,tape. 

Information from the source is transmitted through the channel which. 

may be as simple as the distance between two people, one speaking to 

the other, or as complex as a high frequency satellite communication 

link •. Due to the presence of noise, many communication situations can 

be,represented by probabilistic models. One probabilistic model may 

be vi.sualized as an experimep.t with outcomes chosen . from. a set of 

possible alternatives with a probability measure on the alternatives. 

The set of possible alternatives is called the sample space, each 

alternative being an ._element of the sample space. A sample space and 

its probability meai;rnre.is called an ensemble. In this development the 

source ensemble will be denote.d by X and the probability that the out.,­

come x will be a particular element ak of the sample space will be 

denoted by PX(ak). Si~ilarly, the received ensemble at the destination 

in Figure 2 will be denoted by Y, and the probability that the outcome 

y will be a particular element bj of the sample space will be denoted 

by Py(bj). 

If the source.is assumeGl. to consist of .K arbitrary events:and the 

kth event has probability PX(ak), then its self-information is.defined 

as (6). 
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NOISE 

P' 

SOURCE - CHANNEL· - RECEIVER - -

Figure 2. Block Diagram of a Simple Conununication System 
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(3.1) 

Thi~ def initi~n provides a _meas1,1re of infqrmation .associat~d wi1:h 'each · 

of the K arbit;tary events of the source. Tl).e unexpectedness at·the 

occt,1rreqce o~ an event is measured ratper : _than, its particular ·intere$t · 

or meaning, .i.e. PX(ak) = 1 yield.s IX(ak) = O, or no information ·con:­

veyed, The av.erage va:t.ue of self-information ove+ all .. the arbitrary. 

events · is the uncertainty associated -with the- se.lection of · an ,pvent and . 

is·known as the.entropy of the. ensemble. It is given,by·(6), 

(3.-2) 

Mutual information is, defined ae the, informatii:m P+ovided about. the 

event x "" ak by the occurrence of the event y = bj. · A quantitative 

measure of -mutual in~ormation should m~asure how ~ucl;1 information .the 

oc.currence of a particular alternative, bj, in tb,e Y ensemble provides 

al;>out.the oc.currence of so~e alternativ.e, ak' in the X.ense~ble~ The· 

probability, PX(ak), i~ an .!. priori probability concerning th.e oc ... 

currence of the alternative ak •. The occurl;.'ence of 01,1tcome y = bj 

cha,nges thh .!. priori.probability to the.!. posteriori, pro~ability 

PX/Y(a/bj'), which is· the probability that x = ak has oc.curred cc;mdi""." 

tioned on the occurrenc;e·of.the e,rent,y = bj. t widely,used_quantita-: 

tive measur-e,of·mutual-information is the,logarit~ of the ratio of 

.!. posteriori.to.!. priori- probability given by the formula (6), 
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(3.3) 

The expected value, which is called th.e average mutual information, b 

given by. (6), 

where PXY(ak.;bj) is the joint probability that y = bj and x·= ak have 

occ;!urred. 

Conditional·self-information can be interpreted as.the information 

that must be supplied to an observer.to specify x = ak after the obser­

ver has observed the occurrence of y = bjo · The conditional self­

information of·an event x"' ak, given the occurrence of y = bj' is 

defi1:1ed as (6), 

(3. 5) 

The average value of conditional self-information is given by (6),. 

(3. 6) 

and can be. interpreted as· the average information required to. specify x 

after y is known. 

Co~bining definitiqns (3.1), (3.3), and (3.5) the following re-

lationship results,. 
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(3.,7),. 

Rearra:nging and, averasing over th~ XY en,semble tqis relati,onship b~comes · 

H(X,/Y) = H(X) - I(X;Y) (3.8) 

whe:i::e H(X) can be interpreted as.the average uncertainty in X before 

ob•ervation of Y, I(X;Y) as the.average amount of uncer~ainty in X 

resqlved by the observation of the outcome in the Y eµsemble, and 

H(X/Y) as th_e average remaining uncertaintY, in X after the 1observation., 

The entropy, H(X), is a function only of the source, while I(X;Y) and 

H(X/Y)., for a given H(X), are ft;1nctions of the channel ,each with .a 

maximum, value of H(X) and· a m;l.nimui;n · va:J.,1.1e of zero. · The· aver.age. re­

mailling uncertainty as measul;'ed;by·H(X/Y) can be interpr~ted as·the 

effective freedom to e~ercise ,choic;:e in a system. No -uncertainty 

remaining in.X, af~er ol;>servation ·of-Y, would i~ply resolved.unce;tainty, 

I(X;Y), is _equivalent to initial average uncertainty, H(X), and the 

effective freedotll of choice is zero •. Simil,arly, remaining ayerage 

uncertainty equal to H(X) implies nQ resolvecl uncerta;tnty:(I(X;Y)=O) 

and freedoi:p. of choice is ma,ximum for the given X en~emble. The relation­

ship between retllaining average uncertainty and.choice is.illustrated in 

Figure 3. 

Because. of the many types . of connnunic.?,_tion systems, the, channel as 

shown in I Figur.e 2 may take many forms o ; . The cl).anne_l · might represent · a 

telephone, line, a storage med:j.um, a radio ·link, or a, biological .. 
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H(X)IP-----------------------

H (>vY) 

CHOICE 
. Figure 3. Relationships Among Entropy, H(X), Average Mutual 

Information, I(X;Y), Conditional Entropy, H(X/Y), 
and Choice 
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organism. since:the channel is usually subject to noise, ·it is usually 

specified in terms of the set of inputs available at the.input terll;linal, 

the set .of outputs avai.lable at. the output terminal,, and for each input 

the probability measure on. the output events conditioned· on. that .input. 

In the present study, a disc;:.rete memoryless channel· will be consider~d, 

For this cha~nel, the input· and output are each sequences from finite. 

sets of arbitrary .events and for which the output .at a given time 

depends statistically only on.the corresponding input.· The channel.is 

specified by the transition probability assignment P .. ,:l./X(j/k), given 

l.::j <J and l<k<K. By definition .PY/X(j /k) is the probability that 

arbitrary event y ,.= b, will be received given th,;1t · arbitrary event. J . . 

x = ak is the input. Of particular interest later is the form of. 

equation .(3,8) for the discrete memeryless channel.which. becomes, 

H(X/Y) 

Choice .in an Ecologic~! Context 

(3.9) 

Ecological stability .is.a dynamic.characterbtic.of·an ecosystem. 

Although the. convent:1.onal compartment,model diagram has.an impl,icit 

dependel).ce on titne, a modified compartment model diagram is,now intro, 

duced which e?plicitly shows·this-dependeneee Consider such a compart-

ment diagram as given- in Figure .4. · In .this diagram, the n. compartments,. 

denoted.by·X1 ~ :x2, ••• , xn.are represented at·two arbitrary times 

t 1 and. t 2 ~. The other terms of Figure. 4 are defined as fol];.ows: 
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• • 

• • 

• • 

• 
• fnn 

Figure 4. Modified Compartment Diagram 



Qi percentage of the total energy flow through the. 

th ecosystem at time t 1 which passes .through the i 

compartment, 

P j percentage of th.e total energy flow through the, 

ecosystem at·time t 2 which passes through the jth 

compartment. 

fij percentage of the total energy flow through the 

th th i compartment that pcisses to tq.e j compartment 

between times.t1 and t 2 ~ 

21 

The percentages Qi and Pi refer to.compartment Xi censidei::ed at differ-. 

ent times :With any difference in these .variables accounte.d for by fij. 

The re:j.ationships between these variables is provided by the equation,. 

n 

pj = °f=l fij Qi. (3.10) 

Diversity and the complexity .of .. food web structure, or connec-

tivity, are central to t~e development of an eco!ogical stability. 

meas\,lre, Divei::si ty indices .. usually measure the variety. and evenness in 

the apportionment of individuals, biomass, or energy content·amqng the 

species within an ecosystem; but since choice of pathways for energy. 

flow is being used as an index, diversity will refer to the throughput. 

of energy of the ecosystem. Throughput is related to content by, 

throughput = conter:i.t x turnover (3.11) 

wher,e tu:t:nover is . the reciprocal of tb.e time a specific increment of 

energy • remains in a compartment. Included· in .. the diversity of· the 
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throughput of energy are .. the flows which. rep~esent energy :Used and re-

spired by the ecosystem ·resulting in addi_tional environmen.tal. compart-. 

ments to represent these. va·riables.. These, addiUonal environmentai. 

compartments. were also used. by MacArthur .. (11) in a s::l,.milar -study. 

Although diversity .is .an important ecological concep_t; measures of 

diversity do. not provide an adequate .. expression ·of. component inter-

dependence but, merely the potenti~l for the. exist.ence of such inter, 

dependences.(12, 1a) •. Diver.sity does not:completely charact;.erize the 

cho::l,.ce of pathways for energy flow and, as has been demonstrat;.ed 

e~perimentally (7), cannot be used. exc:t,usively as a measure of, eco-

logical stability. The·choice.of,pathways for eQ.ergy flow and eco-

logical stability depend · also on. the degree and . patte_rn of component 

interdepen4ence which is defined as complex:l,ty of the.food.web 

struct;ure,. or conne~tivity. 

At ·time ·t1 , before knowledge,about the food.web is introduced, the. 

diversity of the ecosystem in terms ·of its tq.roughput as me.asured by 

(3.12) 

can be thought.of·as a measure.of the. uncerta::l,.nty.about howenergy frem· 

,specif:f.c · sources is distributed amQng the compartment$; The probabilitx, 

PX(x1) that;~ particular compartment w1i1 be ,selected,as·an.energy 

source is approximated by.the s~pled percentage, Qi,.as defined pre: 

viously. 

The·Jood web struct;.ure.determines·the pathways for energy tl)rough 

the ecosystem. This s~ruct;.ure, presqribes the dest;._inations and .relative 

amou:i;its t~ each of those,destinat:j.ons,of the energy t~roughput of each 
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compartment. The distribution .of energy.flow in an,ecosystein can.be 

appropriately represented using probabilistic models. For every incre"." 

ment of energy passing through a compartment, a probability .assignment 

can be made a~ to its ·ultimat;e destination. More form.ally, given that 

th a specific increment of ,energy has passed through th~. k compartment, 

PY/X~j/k) is the probab:t.lity, that the specific increment. of energy 

th will be taken up by the j compartment. This probability assignment 

specifies .the channel for the 'transmission' of energy through an eco-

system. The channel. probability assignment can be approximate,d with 

salilpled percentages as with the. diversity measure. · The probability 

PY/X(j/k) can be approx~mat~li by the sampled percentage fjk which has 

be.en previously defined, 

The .flow of ·energy through an ecosystem as,.defined in Figure 4 

specifies a discrete memoryless.channel. The average uncertainty 

resolved about the source of an in.crement of energy by its uptake can 

be,approximated using sampled percentages by, 

n 
I=~ 

k=l 

n 

~ 
j=l 

.:!.j_ 
Qi f ij log . P • 

j 
(3.13) 

The average remaining uncertainty as measured by equation (3.a) can be 

approximated by, 

S=.DT-I. (3.14) 

The average remaining uncertainty: is equivalent to effective ,choice of 

pathways for energy flow. So~ equation (3.14) is also. a measure of 

choice of pathways for en~rgy,flow and, ther~fore, is a useful index 



of ecological stability. 

Complexity refers to the degree a~d patter~ of component inter.­

dependence. and reflects the opportunit::1-es for choice .of path. So, a 

measure of choice can also be used as an. index of complexity of f o·od 

web structure. 

The proposed ecological stabilit;y measure, (3.14), is a function 

of the time period, 
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(3.15) 

If the time period is chosen to be the ·same length .. as the. period of any . 

of the majordriving functions, such as sunlight, and temperat\\re, then. 

only successional.changes will be seen. But, smaller time period 

selections will produce.seasonal,dynamics. The .smallest time period 

which may·be.chosen depends on the source,of the neceaaary energy.flow 

data. When actu.al data are being used, the primary conaidaration i1 

the discovery of all en~rgy,path~ays in the ecosystem. A.minimum time 

period bound, greater than·the longest,time between feeding• of all.the 

species of organisms within an ecosystem, must be e1tabliahad. When a 

continuous mathei.nat:t,cal.model generates the data, the diacr•t• energy 

flows.are modeled by equivalent continuous.energy flowa •. 'l'hua, tha,food 

web structure-is known at all times and no minimum time period bc;,und,ia 

nece111ary. 

'l'he quantitat:f,.ve definition of ecological stability, s, is 

conaiat-.nt wi.th statement, and .. obaervationa. made by aco.logiata about 

stability. Margalef (12) obaerved that, in aome ecoayatams,. divaraity 

increa~es then decreaaea . during auc.ceaaion. 'l'hb behavior can be 
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explained within the context; of equation (3.14). If .the species within 

an ecosystem become more interdependent, .the resolved uncertainty; I, 

decreases. If the .decrease .in I is gre~ter, than. the co.rresponding 

decrease in DT,as observed by Margalef, then the stability as measured 

by equation (3.14) may still incre.ase. Hutchison(9) states". 

complex trophic organization of a. community is more stable. than a 

simple one, •.• " This.statemen'!,: is tqtally consistent with both the 

rationale used in developing the stability measure as well as .its 

quantitative behavior. 

Stream Ecosystem Example.· 

The objective of this exper:iment is to determine th.e usefulness of· 

the stability measure as an objective function for a control prob.lem. 

A model is constructed using data from a study of the effects of an 

energy subsidy on a stream connnunity (27).. Using the model to simulate 

the ecosystem, the control problem is to determine the level of energy 

subsidy which maximizes th.e stability measure at the end of one year. 

From .1960 through 1963, Warren et. al. (27) studied product.ion, 

food habits, and food consumption of.coastal cutthroat trout in sucrose­

enriched and in unem;iched sec.tions ·of.Berry Creek, a .small woodlanq 

stream in the Willamette River Basin of Oregon. These experiments were 

part of a general study.of·the trophic:path\\tays through which energy 

from light, organic debris, and dissolved organic matter enters into· 

the production of fish and.other organisrp.s. The water in two sections. 

of the stream was continuously enriched by introducing S¥crose to main­

tai~ a 4.0 mg/1 concentrat~on, while two other stream sections were 

maintained in their natural state •. The trophic structureof the 
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woodland s1;:rea~ is typical of .most.ecosystems with primary pro~ucers, 

herbivores, carnivores 1 and top carnivores (Figure-5). Fr;om the data 

contained in Riffle A.and several general referenc;es (1, 10, 18, 27, 

28, 29; 30), a compartment diagram was.constructed (Figure 6). The 

energy flaws and contents·indicat;ed on the diagram are mean values.on a 

per month basis. From the.data in Figure.6, a linea:i;, donor-controlled 

model was developed. The model.includes the effects of light,· 

temperature, anq. terrestrial .import and is time varying. Th.e simulation 

period is one year with the mean val.ue of the energy contents of the 

compartments O'{er the simulat.ion .Period being equal .to the standing 

crops reported by.Warren, et al. in Figure.6. Although th~ model was 

construc;ted. using data. from unenriched sections o:f; the. stream, terms. 

were includ.ed which caused the energy . contents, of the compartm,ents to 

CQ.ange to those.of·the enriched sections, Riffle Bin Figure 5, when 

the sucrose concentration is inct;"eased from 0.0 to 4.0 mg/1. Thu~, 

the sucrose.concentration may.be.adjusted to.any desired intermediate 

value •. Since the energy contents generated by the model closely 

approximated those reported by Warren, et .aL (28) for 0.0 and 4.o 

mg/1 sucrose. concentrations, it seems ·reasonable that .. for intermediate 

sucrose concentrations.the model will .also generate energy contents· 

closely resembling tl:iose .· which might be , found experimentally. 

To determine the sucrose concentratio.n whtch maximizes the s1;:a­

bility index at the eI?,d of one year, a fine control grid was es.tablished 

with 0.4 mg/1 increments between 0.0 and 4.0 mg/1. Beginning with 

the initial conditions of the unenriched se~tions, simulations we:i;e 

performed at each of these grid points (Figure 7). Since the.model 

is linea:i;- and.the solut:l,ons.well behaved, the optimization m~thod 
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described above proved sufficient for the present study. A sucrose 

concentration of 2.0 mg/1 produced the maximum value of the stability 

index at the end of one year. This result is consistent with the 

rationale on which the stability index is based. An.additional source 

of energy is provided which creates additional energy pathways in the 

ecosystem (Figure 5). The additional energy pathways increase the 

choice of pathways for energy flow. For a sucrose concentration of 

2. 0 mg/1 effective choice is maximum indicating thi.s concentration 

would produce maximum stability, The stability index thus appears to 

be a viable objective function for this particular ecosystem and 

perhaps other ecosystems.where the.effect of a particular action on the 

total ecosystem is desired. 

The time period, equation (3,15), chosen for computing the stability 

index was one month. Because the data are generated from a continuous 

mathematical model, no minimum time period bound exists. So, the time 

period was chosen small enough to produce dynamic,behavior of the 

stability index over the simulation period. Several of the stability 

index trajectories are shown in Figure 8. The dynamic behavior of the 

trajectories ,is caused by a changing organization of the ecosystem, 

reflected in changes in the degree and pattern of energy flow. Eco­

systems are exposed to reoccurring environmental changes (4, 19) such 

as seasonal sunlight, moisture, and temperature variations. During 

ecological succession, organisms develop adaptive mechanisms in response 

to environmentai changes and adaptive changes made by other inter­

dependent organisms resulting in a changing organization of the ecosys­

tem. This adaptive process.also causes organizational.changes in 

response to reoccurring environmental changes such as yearly rhythms. 
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Seasonal.succession and otri.er periodicities .often follow the·same 

pattern as ecological succession, namely, an early seasonal blqom 

characterized by rapid growth of a few dominate species followed later 

in the season by incr~ased diversity, high B/P ratios,. and a relatively 

steady state in terms of P and R .. (18). In ecological succession these 

three. late season charac.teristics imply incre~sed .stab:!,.lity (18). The 

stability index trajectory for the unenriched stream section sh9ws that 

for seasonal succession they also imply increased stability (Figure 8). 

A definite and pronounced maximum occurs,in late January and early 

February. 

The response of.a species .to changes in an environmental factor 

is shown in Figure 9. Typically,. the1;e exists an optimu~ range of an 

environmental factor with respect to a particular species (26). 

Deviations of the,factor within.the optim1,1m ra~ge have little or no 

effect on the. population density of that species. But, deviations. 

from the optimum range.decrease.the population density ,until it 

b~comes zero when the minimum or maximum toleran~e·is.reaclled. Also, 

an interaction between factors.occurs causing the effect of.one factor 

not to be the same at all levels of another factor. This factor 

interacti.on may be either positively or negatively correlated. For 

instance, maximum temperature and light ·intens!ty and minimu~ oxygen 

concet).ttation in the. stream typically occur at the same time. As 

environment~l·condit3:ons deviate from tq.eir.optimum ranges the.enviion-. 

ment becomes more harsh with the most harsh.conditions occurring when 

the·total deviation is·greatest. Environme~tal.factors a:r;e closer.on 

th~ average to the minimum,or tnaJ!:imum tolerance levels.under most harsh 

conditions than at·any other time. So, perturbation is more.likely 
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to cause a.minimum or maximum tolerance level to be reached resulting 

in the lQcal. extinction of .a particular species. Perhaps, those 

organizations which possess higher stability (resistance to change) 

when.environmental conditions are most harsh are selected for during 

succession.· 
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As _the sucrose concentration is increased, the form of the sta­

bility index trajectory is changed (Figure 8), The stream conununity 

has.evolved such that it possesses specific organizations in response 

to environmental changes. The addition of sucrose caused this·response 

to be altered. This behavior suggests that-if a speGific sucrose con-. 

centration is:maintained; as it would be·with some pollutants (28), 

additional long-term community changes could be expected. 

Shortgrass Prairie,Ecosystem Example 

The object.ive of this experiment is to determine the usefulness 

of.the stability index as an indicator of the effect of environmental. 

stress. A mathematical model is used to simulate a shortgrass_prai:rie 

over a 20 year period .for normal and reduced moisture conditions. The 

behavior of the stability index is examined to determine the effects 

of the reduced moisture conditions,· 

The shortgrass prairie ecosystem to be considered is part of the 

Pawnee National Grassland in northeastern Colorado. The shortgrass 

prairie ecosystem can be,divided into four sections: abiotic, producer, 

consumer, anq. decomposer. The al?iotic·section consists of the system 

driving fl;lnct:1,ons .. such. as· light intensity, temperature, moisture, and 

nutrients 1 The producer section contains warm season and cool.season 

grasses, forbs, cacti, below-ground plant parts, plants s~anding dead, 
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and plant litter. The consumer section consists of wild and domestic. 

herbivores; 1::arniyores, birds, and insects. The decomposer section 

consists of 28 compartments, These compartments can be .. divided into 

f:i,.ve sectors: root, soil, litter, and carrion organisms, and a nit:i;-ogen 

pool subsystem. The function of.the decomposer section is to decay 

organic, matte.r from producers and consumers ari.d to generate a pool of 

inorganic.soil nitrogen.which then regulates plant primary production. 

The model to be used in the present study was produced as a_sys-

terns ecology class exercise .under the direction of Patten (24) and is 

an outgrowth of one developed by the Grassland Biome Study Group of.the 

United States International Biological Program. The model.is a piece~ 

wise linear, donor-controlled compartment model (Appendix B). The 

principal variables of the model are biomass (total dry weight of 

-2 -2' organisms in gm·.) and total inorganic,nitrogen, (gNm ). The model,is 

piecewise due to the method used to regulate plant net productioIJ. based 

on.the availability of soil nitrogen. Potential net photosynthesis.of 

the four compartments for plants living above ground, VA(I), I= 1, • 

, 4, was formulated from the driving variaqles of the abiotic sec-

tion: 

PHOTO(!)= SUN* TEMP* MOIST* EFF(I) (3.16) 

where EFF(I) represents consta.nt efficiency coefficients for. each of· the 

feur plant compartments. The system driving functions, sunlight, air 

temperature, and soil.moisturewere represented by the.following func-

tions:. 
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SUN= 200. * SIN(.12093 * t) + 400. (3.17) 

TEMP = (9.0 + 11.0 * SIN(.1293 * t - .3424)) * 0.061 (3.18) 

MOIST =,2,0 - 0.07692 * t (3.19) 

where.t represents time .in weeks. MOIST is assumed to be zero after the 

initial growing season of 23 wee~s. 

Availability of soil nitrogen to each plant compartment was taken 

as proportioned to the nitrogen pool·Q9: 

ANI(I) = FNI(I) * Q9 (3.20) 

where ANI(I) is nitrogen available.to VA(I) and FNI(I) are constant 

coefficients. A nonl.inear switch was introduced in the formulatiol). of 

actual net production: 

{
HOTO(I) 

FORCE(!)= 
ANI(I) 

PHOTO(!) .::_ ANI(I) 
(3.21) 

OTHERWISE 

This equation.sets actual net; production of VA(I) equal to potential 

net production PHOTO(!) if nitrogen ANI(I) is not limiting, or to an 

amount of photc;,synthesis equal (in biomass units) to available nitrogen· 

when the latter is limiting. 

To evaluatethe stability ,index all the flows.from.one c9mpartment 

to another must be known. In some inst;ances in the model formulat~on 

the biomass. flow from a compartment was said to go to a section or: 

sector of·the ecosystem rather than.to particular compartments (24). 

For example, a biomass flow.from the carnivores, C3, went to the 

carrion sector of the decomposer section, In the.se instances. it was 
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assumed that; the flow to each compartment in the section or sector was 

linearly proportioned to the percent biomass that particular compart-

ment was of the total biomass of the section or sector. 

The soil moisture driving function, equation (3.19), represents 

soil moisture storage over a normal 23 week growing season beginning 

on March 20. To moisture stress the model of the shortgrass prairie the 

soil moisture storage was reduced by 20% over the entire growing season 

resulting in the following equation for MOIST: 

MOIST= 1.6 - 0.06154 * t. (3.22) 

This moisture level is .within the normal operating experience of the 

shortgrass prairie ecosystem (24). The model was moisture stressed in. 

a similar manner by Patten (24) with the following results.· 

While aboveground biomass of vegetation declined in pro­
portion to the loss of soil water, roots, VB, were 
conserved (only 3% reduction). This is consistent with 
the known ecology of root.systems, which tend to be highly 
resistant to perturbing influences. Soil nitrogen, Q9, 
increased slightly; nitrogen never became limiting in this 
experiment due to the reduced values of PHOTO(!). Carrion 
AD increased slightly, but fecal material SH more than 
doubled. Un~sual accumulations of feces are symptomatic 
to range managers that something is out of balance in the 
ecosystem. The simulation appears to have captured this 
characteristic quite well. 

A 20 year simulation with normal moisture conditions showed that the 

shortgrass prairie was in steady state (24). 

In the. present.study the shortgrass prairie ecosystem was simulated 

over a 20 year period for both normal.and reduced moisture conditions 

and the stability measure observed over til]le, The time period chosen 

for computation of the stability measure is one week due to the 

piecewise nature of the model. The results of,the experiments appear.in 
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Figures 10, 11, 12, and 13, Stability .index trajectories for the first. 

and twentieth years for normal moisture conditions (Figure 10) showed 

the ecosystem to·be.in steady state as reported by Patten (24). Except 

for the first·ten weeks of the growing season, the.difference·between 

the trajectories is less than 2%. The twentieth ye,;ir trajectory is 

greater than the.first year trajectory for 39 weeks of the year. Sta­

bility index trajectories for the first and twentieth ye,1:lrs for reduced 

moisture conditions (Figure 11) indicated that.succession.had been 

reversed, The twentieth year trajectory was lower·than the first ye,;1r 

trajectory.for 48 week,s of the year. Continue9 exposure to reduced· 

moisture conditi.ons would be expected to lead to a less. complex and, 

therefore, less stable ecosystem. 

The shortgrass prairie ecosystem is.primarily det~rmined by mois­

ture conditi.ons (24), Sufficient reduction in moisture lel;lds to 

desert conditions and, thus, represents one of the,major threats to the 

continued existence.of the ecosystem, The reduced moisture conditions 

are encountered on a reoccurring basis (24). The components of.the 

ecosystem,could be expected to have adapted during succession to·this. 

reoccurring environmental ch~nge. During tl:;le first year of the 

simulation, tl:;le reduced. mobture trajectories are. greater (Figure 12). 

These results indicate that the xeric prairie ecosystem has evolved 

such that it possesses.a greater resistance to.change for reduced mois~ 

ture conditionso, These results are consistent with the.behavior 

observed in the previous example where maximum stability occurred 

seasonally when environmental conditions were most harsh. Continued 

exposure to reduced moisture resulted in changes in the ecosystem (24) 

which led to a gradual reduction of the stability index trajectory. 
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During the twentieth year, the stability index trajectories differed 

by less than 1% (Figure 13) as opposed to approximately 6% differences 

during 30 weeks of the first year. 

The model did not predict maximum stability when environmental 

conditions were most harsh during the year due to emigration. During 

the final 29 weeks of the simulation year, no soil moisture was avail­

able for primary production resulting in an emigration of herbivores 

and carnivores out of the ecosystem. The ecosystem is less complex 

during the time of the year when the environment is most harsh, re­

sulting in smaller values of the stability index. 

Summary 

A measure of ecological stability has been developed based on 

choice of pathways for energy flow. The concept of choice is 

developed from a quantitative concept from information theory. Re­

lationships among ecological stability, diversity, and complexity con­

sistent with observed behavior during succession arise naturally in 

the development of the stability index. Stability and complexity 

increase during succession, but diversity may increase during initial 

stages but decrease during final stages of succession. This behavior 

can be explained within the context of the stability measure develop-

ment, 

Two ecosystems were chosen to test the validity of the stability 

measure: a stream community and a xeric prairie. A model of the 

stream community was used. to test the validity of the stability index 

as an objective function with positive results. The stream community 

experiment led to consideration of annual changes in stability, a 
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subject which .has received little or no previous consideration. Ex.­

perimental results indicated that the stability index was maximum when 

environmental conditions were most harsh. The same results. were 

obtaineq from analysis of the shortgrass prairie model~ The short­

grass prairie is subjected to reoccurring low moisture.conditions 

which represent the greatest threat to its continued existence and, 

hence, could be considered harsh envi+onmental conditions. Consistent 

with the stream community results, the model predicted maximum sta­

bility for the most harsh environmental conditions. 



CHAPTER IV 

SENSITIVITY ANALYSIS 

Introduction 

The response. of an ecosystem to a perturbation is an .indication of,. 

its sensiiivity to that perturbation with larger fluctuation implying 

greater sensitivity. Envi~cmmental perturbation results .in ecosystem 

fluctuation by causing variationE! in energy flows·in.the ec;:osystem. In 

this chapter a total ecosystem sensiti~ity .measure will be developed 

for a linear, donor-controlled model~ This total measure will be con~ 

structed by summing modified sensitivity measures of each·ecosystem 

component to a perturbed e~ergy flow. Each individual.sensitivity 

measure will be modified by weighting functions.which reflect the 

relative importance of a perturbe4 energy flow to a particular com-. 

ponent and the intr:i.nsic characte.ristics of that component, 

Ecological stability is also based on.ecosystem response to per~ 

turbation, A less responsive ecosystem is said tq be more stable than 

a more responsive .one(~, 11, 12, 18). The development of a total eco­

system sensitivity measure allows the relat:i,onship to ecological sta­

bility to be quantified. 

A Total Ecosystem Sensitivity Measure 

A quantitative analysis of.sensitivity usually consists of taking 

partial derivatives of the functional relat~onships between the 

45 
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variables of interest and requires a mathematical model of the parti-

cular system under consideration (17). The model to be considered in the 

development of a totijl ecosystem sensitivity index is the so-called 

linear, donor-controlled (LDC) compartment model (Appendix A). The 

individuals within an ecosystem are grouped in~o functional,classes 

called compartments. The time rate of change of the energy content of 

the jth compartment is given by, 

Xj -= ~(FLOWS IN) - ~ (FLOWS OUT). (4.1) 

Assuming that the energy flow from one compartment to another depends 

linearly on the donor compartment, equation (4.1) becomes 

n n 

X j = F . + ~ a ij Xi - ,Z:: aj i X j , 
OJ i=l i=l 

(4 .2) 

where aij is.a constant satisfying the equation, 

(4.3). 

th th 
and Fij is the energy flow from the i to the j compartment. The 

If the i1ow F0 j represents environmental inputs for an open system. 

environment is modeled as a compartment, then the system is closed and 

F0 j is equivalent to zero •. The ta_tal ecosystem model, then, consists 

of n first .. order differential equations where n is· the numl;>er of com­

p~rtments · and equation (4.2) is the jth member of·these equations. 

Elton (4) observes that the,"chief cause of fluctuations in 

animal numbers is the in~tability of the environment." Environmental 
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perturbations cause fluctuations in the-ecosystem by f;lrst.causing 

variations in energy flows in.the ecosystem. These variations.in en~rgy 

flows then propogate through.the ecosystem along the.food web inter-

conneetion. From equation (4.1) it is apparent that energy flow 

variations cause perturbations in the rate.of change of the ene:i:gy 

content of the compartments which.are affected by this flow. Pe~tur-

bations. in the rate of change·of energy content, in turn, causes 

perturbations in the energy content, which then causes perturbations in 

the energy flows.to other compartments. A partial derivative which 

reflects this phenomenon is, 

= axj 
ax ' 

i 
(4.4) 

th th 
where Xi and Xj repres~nt t~e energy content of the i and j com-

partments of-the ecosystem, respectively. This-sensitivity measure-is 

an indication of the effect that a perturbed state, Xi, has on the rate. 

of change of another state, Xj. For the (LDC) model, as described by. 

equation (4.2), sij becomes, 

i 'F j 

n 
I a.j i = j 
i=l J. 

i=rj 

(4.5.1) 

(4.5.2) 

Odum (20) defines turnover as the ratio of throughput.to content or, 

n 

i: Fij 
j=l • (4. 6) 

xi 
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For thelinear, donor-controlled assumptio:Q equation (4.6) becomes. 

n 
~ aij xi n 

Ti = j=l = ~ aij, xi 
(4.7) 

j=l 

The self-sensitivity measure equation (4,5,2), then, is 

(4 .8) 

Since.this measure is negatively correlated to the other sensi~ivity 

measures ·it .. is a measure of a compartment's reaction to, being perturbed. 

A larger turnover implies that the recovery time from a perturbation will 

be smaller when compared to a smaller turnover. This effect will be 

considered later in the development. 

A total ecosystem sensitivity measure co~ld be constructed.by 

simply.summing tQe individual- sensitivity measures of equation (4.5,1): 

n 
~ 
j=l 

(4. 9) 

But, summing in this manner assumes that all energy flow~ are of equal 

importance to the ecosystem and all compartments have an equal ability 

to recover.from or resist perturbations.· These assumptions are not. 

realistic, Weighting functions are needed for each of the individual 

sensitivity measures reflecting the relative importance-of that parti-

cular energy flow to the to~al ecosystem.and taking into account.the 

intrinsic.characterist~cs of the compartments involved, 

The·,perturbation of· state Xi causes a variation in the energy· flow, 

.th th Fij' from the 1 to the j compartme~t. The impact.of the energy flow 
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th th variation on:the j · compartment depends on the. degree t9 which the j 

compartment relies on this energy flow to fulfill its energy require-

m~nt. A measure.of this dependence,is the percentage of the,energy 

consumed by the j~h compartment which is provided.by the ith compart-

ment, 

=-- (4.10) 

where Fij is the energy provided 
n, 

partment and I F ij is the total 
i=l 

n 

~ Fij , 
i=l 

by the ith compartment to th~ jth com-. 

th energy consumed by,the j compartment 

during some arbitrary time period. Substituting equation (4.3) into 

equation {4.10) gives 

l 
wij = 

Rearranging and multiplying by,. 

Ti 
T. 

1 

this weighting funct~on becomes, 

aij xi 
n 
,! a.j 
i=l 1 

xi 

n 
I x T 
k=l k k 

n 

~ (Xi Ti ) <I 
1 k=l 

wij = Ti n n 
(! ~ Tk) <I 
k=l·· i=l 

(4.11) 

(4.12) 

Xk Tk) 
(4.13) 

aij Xi) 
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In the develapment of the stability measure in Chapter III certain per-

centages-were defined, namely, 

Q1 percentage of the to_tal energy flow through the. eco­

system at .. time t 1 which passes through. the ith compart-

ment, 

Pj percentage of the total energy flow through the eco-

th system at ti~e t 2 which passes through t~e j compart~ 

ment, and 

th percentage of the total energy flow through the i 

th compartment that passes to the j compart~ent between 

times.t1 and t 2• 

Assume that Yi and Xi represent the total throughput.and content of the. 

th i compartment, respectively. These variables are.related tllrough 

equation (3.10), so 

Yi = T . X. , ( 4 .14) 
]. ]. 

th where Ti is the turnover of the i compartment. The percentage, Qi' 

is given.by 

(4.15) 

But, in t~rms,of the energy contents, Xi, equation (4.1,5) becomes-

(4.16) 
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The percentage, Pj, is given by 

(4.17) 

where 

fij 
=~ = ~ 

n Ti 
L a 1j 
j=l 

(4.18) 

Substituting equations (4.18) and (4.16) into equation (4.17) this 

perce~tage becomes 

(4.19) 

or, simplifying, 

(4.20) 

Using equations (4.16) and (4.20) the weighting function defined by. 

equation (4.13) becomes 

(4.21) 

Anot4er important consideration in determining the effect of a 

perturbed flow on the total ecosystem is.the intrinsic.characteristics 

of the compartments involved. A basic characteristic which is usually 
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well known and to a large extent determines a compartment's response 

or recovery time from a perturbation is the turnover time •. Turnover 

time is the reciprocal of turnover as defined in equation (4.7), A donor 

compartment with a shorter turnover time implies·a more rapid recovery 

from perturbations than a donor compartment with a longer turnover 

time~ thus, the effect of a perturbed energy flow on.the total eco-, 

system will be less if the energy flow originates from a compartment 

with a smaller turnover til!le, A second weighting function, then, is 

(4.22) 

By considering the turnover time of the donor compartment as weighting. 

functions, all_of the turnover timeswill be.considered as.the indivi-

dual sensitivity terms are summed. 

The individual sensitivity measure multiplied by the two weight-. 

ing functions.is 

1 T.. (4.23) 
1 

Rearranging and summing over all possible energy flows, the.total 

measure-becomes 
n 
~ (4.24) 
j=l 

The ordering of all possible values-of equation (4.24) on the real line 

will not.be change4 if the following logarithmic mapping is used: 

n n 
s1 = l: l: 

i=l j=l 
(4.25) 
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A sensitivity measure constructed in this manner measures the potential 

for change if all energy flows are perturbed. But, typically all 

energy flow~ are not perturbed simultaneously and a larger numQer of 

unperturbed·. energy flows decreases the sensitivity of·. the ecosystem 

to perturbation. A.consumer. is less sensitive to perturbations of a 

source if the consumer.depends on several sources rather than only 

upon the perturbe4 source. Similarly, a source is less sensitive.to 

perturbations of a consumer if the source is used by several.consumers 

rat~er than by only the perturbed consumer. A m~thod of taking this 

effect into account would b~ by subtracting equation (4.25) from an 

index of the potential,. numl>.er of pathways. One index would b~ a mea-

sure of the diversity of. the throughput of energy. The sensi~ivity 

measure now becomes, 

sN = n - s1 
T ' 

(4.26) 

where DT is defined by equation (3.12). This sensitivity measure pro­

duces higher values for less sensitive ecosystems and vice versa. 

Substituting equation.(4.18) into equation (4.25) the total sensitivity 

m~asure becomes, 

N n n n f_,,. 
s .. -I Q log Q -I I Qi fij log ....=.L-

i=l i i i•l j•l pj 
(4.27) 

This sensitivity measure,is identi~al to the ecological·stability 

measure developed in Chapter III. It·is apparent from its definition 

and· .statements· and discussions. by ecologists that . ecological· stability 

is a sensitivity concept. The relationship between the stability and 



sensitivity measures provides strong analytical evidence that the 

apparent qualit~tive relationship is t~ue. 

Summary 
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A.total ecosystem sensitivity measure) equation (4.27), has been 

developed for the linear, don9r-controlled class of models. A measure 

of the sensitivity of each state to flow variations, equation (4.5,1), 

was computed. Weighting functions, equations (4,21) and (4.22), based 

on reasonable assumptions, were introduced whtch modify each of the 

individual sensitivity measures. These weighting functions measure the 

relative importance of an energy flow to a particular compartment and 

take into account the intrinsic.characteristics of the components in­

volved. Summing over all possible energy flows, assuming a logarithmic 

mapping, and subtracting from an index of the potential number of 

energy pathways result in a total ecosystem sensitivity measure. This 

measure is identical to the ecological stability measure developed in 

Chapter III which is based on choice of pathways for energy flow. Thus, 

strong analytical evidence has been provided that ecological stability 

is a sensitivity concept. 



CHAPTER V 

DYNAMIC BEHAVIOR OF THE ECOLOGICAL 

STABILITY MEASURE 

Introduction 

The ecological stability inde;x: depends on tqe degree ,and pattern · 

of :component inte.rdependence. The chatlging degree and patter11 of 

component .interdependeI1,ce results in.dynamic behavior of the stability 

index when the time period is small. This chapter will consider th~ 

case where the energy flows are assumed-to be linearly proportionate 

to the energy contents of donor compartments. For this case the sta-. 

bility index is not.only.a functio11 of time perioq but :also an implicit 

function of time since it d~pends·on the energy contents of the com­

partments which are ft.mct:i,ons -of time, The linear, donor-controlled 

flow assumption presc;ribes the flow distribution from each of the 

compartment;:s, defined by the fij 's, to be the same throughout the !year. 

The stability ind~x then can be written as .a function only of the energy .• 

content-s of the compartments. Sin.ce, .for the linear, donor-controlled 

energy flow assumption, the derivatives of the energy contents with 

respect to time are known, the.derivative of the stability .index with 

respect .to time can be COlllputed u1:1ing the chain.rule.for differentation. · 

The computation of the der:i,vat:f:ve of the stability. in-dex ·will all,ow 

upper _and lower bounds ·on the r~te of change of_ the • index to be estab­

lished. 

55 
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Computation of the Derivative 

of thli! Stability Measu);'e 

The ecoJ,.ogical stabil;ity ,index is given-by· 

(5.1) 

If the energy flows a:c:e assumed linearly proJ>ortionate to the dcmor. 

compartment, .the percentage fij .becomes 

or,. 

where .aij is a constant for i=l,, 2,- ••• , n, j=l, 2, ••• , n 

(Appendix A). So the percentage f ij is a constall,t when the en~rgy . 

flows are assumed l:f:nearly pro~ortionate to .the donor,~omparment. 

Substitut:i,ng equations (4.16) and (4-.20) into equation (5.1) the 

st~bility index_ becomes 

-·x T X T X T 
_ "' i· i log i. i i i f log 

S = t ~ ~Tk. ~ ~T - f ~j ~k~Tk ij 
k . k _.k 

An expres~ion .for the rate of change of . the- stability ,inde)I: may ._be 

(5. 2) 

(5.3) 

(5.4) 

found by_ tak:i,.ng.tqe total derivative of the stability inde:x, S, with 

respect ·to time,, The _total derivative can be ,computed ,using the 
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composite function ~ule or chain ru.le. The, stability _inde~ defined. 

by equation (5.4) is a function of the energy cont;:ents 

,here the energy contents; are functions of time, 

The chain rule (8) prescribes that 

ds ~ as dxi · 
s = dt = L.J ax. · · dt · 

i=l. l. 

th To demonstrate the method used to compute S for a general n · order 

model, a third order example will be ,considered. For a third order 

example ·equation (5. 7) becomes. 

Expressions .for the time rate of change of the energy contents are 

given by, 

3 3 
~ aji xj - I: 
j=l i=l 

(5.5) 

(5. 6) 

(5. 7) 

(5.8) 

(5. 9) 

for i=l, 2,. 3. The only un,knowns in equat;:ion (5.8) are the partial 

as der,ivatives,, ·ax , i=l, 2, -3. Since the stability, index is composed of· 
i 

two te~s, these parti~ls will be computed in two parts.. The first. term 
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of equation (5.4) will be denoted by H and the second by I. The total 

derivat.ive now becomes 

• 3 ' 
s = ~ 

i=l 

aH aI dXi· 
<ax-ax) tl"t · 

i i . 

The first term, H, of .the st~bility .index can be written as 

The partial of H with respect to x1 is 

Simplifying, equation (5.12) becomes 

Similarly, the partials of 1;i with respect to x2 and x3 are 

(5.10) 

(5.11) 

(5.12)· 

(5 .13) 

(5.14) 
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and 

(5.15) 

th In a similar manner the partials for then order can be computed and 

a·general f6rmula derived: 

3H 
-= 
3X. 

1 

X.T. 
log« 

(5.16) 

The second term of the stability index, I, consists. of nine terms: 

a13(X1Tl+X2T2+X3T3) 

Tl(Xlal3+X2a23+X3a33) 

(5.17) 

(5.18) 

(5.19) 

(5.20) 

(5.21) 

(5.22) 



60 

(5.23) 

(5.24) 

(5.25) 

The partials of these nine terms with respect to x1 appear below: 

(5.26) 

(5. 27) 

(5.28) 

(5.29) 

(5.30) 
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ar6 -X2a23Tl · 
a23 (2XkTk) 

(5.31) k . 
-=· log ( · . ) 
clXl (2XkT~2 T2 Xlal3+X2a23+X3a33 

k 

clI7 -X3a31Tl a31 (2~Tk) 
(5.32) k -= log 

clXl (2~Tk)2. T3(Xlall+X2a2l+X3a31) 
k . 

cll8 -x3a32Tl a32(2XkTk) 
(5.33) log k -= 

(2~T )2 T3(Xla12+X2a22+X3a32) clXl 
k k 

cl 19 -x3a33Tl 
a33 (2 XkTk) 

(5.34) k -= - 2 log · 
clXl (2~Tk) · T3(X1G113+X2a23+X3a33) 

k ·. 

The nonl9garithm terms which result from' the diffet;entiation all sum to· 

zero. ell . The general term for~ is 
cl i 

Xkak.T. -! i: ] 1. 

k j (LX T ) 2 
k:fi mm m 

ak. 
log ft 

k J . 
(5.35) 

The total derivative of the stabil:t.ty index with respect to time is 

(5.36) 

, clH ell 
where "'ax"" and "'ax"" are given by equations (5.16) and (5.35), respectively. 

i i 
Since,. S is dimensionless, this derivative has· the same units as. turnover, 

namely, inverse time.: 
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Upper and Lower Bounds 

The derivative of the stability .measure consists of three terms, 

one.from equation (5.16) and two from equation (5.35) each multiplied 

by Xi and summed. over i, which will be denoted by s1 , s 2, and s 3 , 

respectively. Since all the variables in these terms are always posi-

tive except the Xi's, the relationship between,the signs of s1 , s 2 , and 

s3 and the signs of the Xi's must be.determined to establish upper and 

lower bounds. 

The sign of the fit;st term, equation (5.16) multiplied by Xi and 

summed over i, may be either positive or negative independent.of the 

signs·.of .the X. 's. The second term, s 2 , is given by the fir$t tei;-m of. 
l. 

equation (5.35) multiplied by X. and summed over i. Since . l. 

__::u 
~a .. log T.P. 
j l.J l. J 

> o.o, (5. 37) 

the sign of s 2 is determined by the signs of the.Xi's. The maximum 

value of this term occurs when the Xi's .are equal to their.maximum 

positive values. Similarly, the minimum value occurs when the X. 's 
l. 

are equal to their maximum negative values. The third term, s3 , is 

given by the.second term of equation (5.35) multiplied by X. and. 
l. 

summed over i. From inequality (5.37) it follows that the.sign of·S3 

is also determined by the signs of the X. 's. So, the maximum and 
l. 

minimum values of.s3 occur when the Xi's are·equal to their maximum 

positive and negative values; respectively. From equation (4.2), the 

maximum positive and negative values of X. are: 
l. 



To establish upper and lower bounds for S the inequality, 

log Z < Z - 1, 

will be used. If all the X. 's are.equal to their maximum positive 
]. 

values then, 

and 

<' 

I! T., 
0 ]. 

]. 

>-DT!T .• 
i ]. 

If all the Xo 's are equal to their maximum negative .values then, 
]. 

-ITO < sl < ~To . ]. . ]. 
]. ]. 

s3 > I!Ti, -
i 

and s2 < DT~Ti. - i 

Since,· 
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(5.38) 

(5. 39) 

(5.40) 

(5.41) 

(5.42) 

(5.43) 

(5.44) 

(5.45) 

(5.46) 



an upper bound of Sis 

UB = MAX ((l+I) ~ Ti, (l+DT) ~ Ti), 
]. . ]. 

Similarly a lower bound is 

LB = MIN (-(l+I) ~ Ti,-(l+DT) ~Ti), 

But, 

and, 

So, 

. 
Isl < 

]. ]. 

S = D - I, . T 

S > 0.0. 

(l+DT) ~ T., . ]. 
]. 

64 

(5.47) 

(5.48) 

(5.49) 

(5.50) 

(5.51) 

The rate of change of majQr structural and functional characteris~ 

tics of a'Q. ecosystem becomes smaller during succession (18). The sta-. 

bilit:y measure is a function .of·the metabolic structure a"Q.d function of. 

an ecosystem and should, theJ;"efore; exhibit·a decreasing rate of change 

during su.ccession. · Although diversity increases. during succession, 

Margalef (14) has observeq that diversity often decreases during the 

latter stages of s1,1ccession, · Turnovers, Ti, which are the reciprocal. 

of the turnover. times, become smaller during succession (18). So, 

during th~ latt:er stages of succession, ·the bound on the magnitude.of 
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the rate of change of the stability measure, equation (5.51), becomes 

smaller. This suggests that a sma11er rate of change of the,stability 

meal?ure could. be expected during the latter stages of succession. 

Summary. 

An analytical expression of·the time rate·of change of the sta-. 

bility measure has.been computed for the-linear, donor-contr<~lled class 

of ecosystem models. Upper and lower bounds on the rate of change.of 

the stability measure were determined. These bounds are functions of 

the.diver;sity of the throughput of energy and the sum of the turnovers •. 

Since the diversity and.· the turnovers typically decrease during the 

la1;:ter stages of succession, the rate of change of the stability mea­

sure could be expected to also decrease. 



CHAPTER VI 

RECOMMENDATIONS FOR FURTHER RESEARCH 

Odum (18) suggested computing the diversity of pathways. This 

computation requires knowledge,of the energy flow through each pathway. 

The probability .that.a given increment of energy passed through a 

particular path can be,. approximated by· a sample percentage 

(6.1) 

wher~ Fij is .,the total energy .which passed through the path from the 

.th t h .th d X ' h 1 fl h h h 1 o t e J compartment an Tis t e tota energy ow t roug t e 

ecosystem during some,arbitrary time period •. The diversity of pathways 

could then be computed using the formula, 

(6.2) 

where N is the number of compartments. The sampled percentages, Q. and . . 1 

fij presented in Chapter.III, are given by, 

and 

= F ij 
fij x. 

1 
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(6.3) 

(6.4) 
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where Xi is the total energy which passed through the ith compartment,. 

F .. is the total energy which passed through the path from the ith to 
1J 

the jth compartment, ·and XT is the.total energy flow through the eco-

system during some arbitrary-time period. So, 

where the kth path is· defined as th.e path from the i th to· the j th com-. 

partment. The .divet:sity of pathways now be~omes 

D = - ~ ~ Q .. f.j log Q •• f ... 
p i , 1 1 1 1J 

J 

(6.6) 

The percenta&es, Qi and f .. , are approximations of the probabilities, 
1J 

P/a1) and PY/X(b/ai). So, the product Qi.fij is an approximation of 

the joint probability PXY(ai,bj). Equation (6.6), then, represents an 

~pproximation of the joint _entropy 

l:I(XY) = ~ ~ PXY(a.,b.) log PXY(a.bj). 
, , 1 J 1 
1 J . 

(6. 7) 

The joint entropy can be written as, 

H(XY) = H(X) + H(Y) - I(X;Y) (6.8) 

where H(X) is the source entropy, H(Y) is the receiver entropy, and 

r(i;Y) is tQe average mutual information. An approximation, S, of the 

conditional entropy, H(X/Y), is equivalent.to choice of-pathways for 

energy flow in an ecosystem and has been proposed as a measure·of 
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ecological stability. Conditional:entrepy is given·by 

H(X/Y) = H(X) - I(X:Y). (6.9) 

So, 

H(XY) = H(X/Y) + H(Y). (6.10) 

But, the receiver entrqpy, H(Y) can be approximated by 

(6.11) 

where pj is the perc~ntage of energy which passes thrqugh ~he jth co~­

partment at.time.t2 (Figure 4). Therefore; the diversity of path,way~, 

equation ( 6 • 6) , is given ·. by 

D =.B + Dt (6.12) 
p 2 

whei:e Sis the stab:f,.lity measure.presented in Chapter III. Qualita-

tivdy, the diversity of pathways is:equivalent to choice of pathways 

for energy flow plus the,diversity of the throughput.of energy at time 

t 2• Although thi$ concise relationship exists; an ecological interpre-. 

tation is:lacking a~d needs to be considered. 
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The so-called linear, donor-controlled ecosystem model is a parti-

cular type of compartment model. Compartment models are based on the .. 

assumption that individuals within the ecosystem can be grouped into 

functional classes called compartments. For a,n compartment ecosystem 

the biomass, or equivalent energy of the individuais of each compart- .. 

ment is lumped and represented by the variaQles x1 , x2, . . . ' . x . 
n 

The 

th .th possible flow of biomass, or energy, from the i to the J compart~ 

ment is represented by F .. so that the mass.balance equation for each 
1J 

compartment is, 

x. 
]. 

n 
I F,. -
' 0 J]. J= 

(A.1) 

where the first summation gives the inflow and the second sum the out-

flow, and F . and.F. represent the interactions with the environment. 
OJ. J.O 

The assumption that the flows are linearly proportionate to the biomass, 

or energy, content of the donor compartment require~ that, 

= a .. x"' 
J.J ]. 

(A. 2) 

for all i=O and j indicated, where aij is the rate coefficient of the 

biomass, or energy, transfer from the ith to the jth compartment. The 

flows.F , are regarded as inputs which drive the ecosystem into steady-
01 

state. Thus, equation (A.l) becomes, 

- F " + 
OJ. 

n 
! aj . X, - (a. + 
j=l J. J J.O 

n 

~ 
j=l 

a .. )X., 
J.J ]. 

(A. 3) 

for each i=l, 2, ••• , n. The rate coefficients, aij' are computed 
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from average flows Fij and the average standing crops Xi as 

(A.4) 

Ecosystems and all of the flows which describe their structure are 

temperature dependent. The temperature dependence·of the,interactions. 

between compartments in an ecosystem model is defined through the use 

of a temperature coefficient which is usually designated by the symbol 

This Q10 factor describes the ratio of the flow F .. measured at 
l.J 

0 two temperatures differing by 10 c, and has the form: . 

(A. 5) 

The coefficient which modifies .the flow from the ith to the jth com~ 

partment to include the effects of te~per~ture is, 

(A. 6) 

where T(t) is the.actual temperature and TAV is the average temperature. 

The ecosystem inputs, representing the interaction of the ecosystem 

with its environment, are dependent upon, for example, temperature,· 

light, nutri.ents, and so on and are· represented by appropriate functions, 

of time. 



APPENDIX B 

PROGRAM LISTINGS FOR BERRY CREEK. 

AND GRASSLAND MODELS 

75 



G 
C eERRV CREEK MODEL 
c 
II EXEC CSMP360 
1/CSMPl.SYSIN DO* 
INITIAL 
STORAGE X(lll,Qllll,QB(lll,P(lll,All211,Fl1211 
~TCFAGE SUMllll 

CONSTANT Ql01=1.0,Ql02=1.0,Ql03zl.O,Ql04=1.0,Ql05=1.0,Ql06=1.0, ••• 
Ql07=1.0,QlG8=1.0 
CO~STANT !COUNT= 0 
CONSTANT C01=.0l,ClOR=7.25,ClOE=•75,Cl2=4.0825,Cl6=.7750,Cl4=1.725 
CONSTANT C20R=5.600,C20E=.05,C23=1.375,C25=.700,C26=.125, ••• 
C27=.40,C02=.1251 
CONSTANT C30R=7.8,C35=1.6,C36=.4,C37=1.,C30E=.2 
CONSTANT C04=.1975,C40=2.231,C46=.2231 
CONSTANT C50=.70,C56=.02 
CONSTANT C60=22.33 
CONSTANT C70=1.25,C76=.03572 
CONSTANT C08=.l,C80R=l01.33,C80E=8.,C82=13.33,C84=57.26,C86=.667 
CONSTANT AVG1=5833.3,0EV1=4462.6,AVG2=5l.9.DEV2=14.l 
CO~STA~T, TERR=l.5 
PARAMETER SUGAR= O.O 

FIXED !TIME 
FIXEC ICCUNT 
FIX ED I 
FIXED J 
FIXED JJ 
FIXED IJ 
DY~AMIC 

LE.AFIN = 133.33 
5 LIGHT=AVGl+DEVl*SIN(TI~E*6•28/12.+.261 

Xl = 1NTGRL(4.7,(-ClOR*Xl-ClOE*Xl-Cl2*Xl-Cl6*Xl-Cl4*Xl+C01*••• 
. LIGHTl*QlOl I 

X2=INTGRL(4.238,(-C20R*X2-C2CE*X2-C25*X2-C26*X2-C23*X2-C27*••• 
X2+C82*X8+Cl2*Xl+C02*LEAFINl*Ql021 
X3=1NTGRLl.474,I-C30R*X3-C30E*X3-C37*X3~C35*X3-C36*X3+1.25*X2 ••• 
l*Ql03) 
X4=INTGRLl13.60,I-C40*X4-C46*X4+C84*X8+Cl4•Xl+C04*LEAFINl*Q1041 
XS= I NTGRL( 4, 208 5, (-C 50* XS-C 56*X5+CZ 5*X2 +C35*X3 l*Ql05 I 
X6=1NTGRL(.3346,f-C60*X6+Cl6*Xl+C26*X2+C36*X3+C46*X4+C56*X5 ••• 
+C76*X7+C86*X81*Ql061 
X7=INTGRL(2.633,(-C70*X7-C76*X7+C27*X2+C37*X3+TERRl*Ql071 

NCSCRT 
X8=0.0 

!TIME =TIME+ .005 
IF(ITlME.EQ.ICOUNT) GO TO 83 
GO TC 82 

E3 ICCLNT =!COUNT+ l 
CO 100 J = 1 , 121 
,ll(J) = o.o 

1 a o. F < J 1 = a. o 
A(21= Cl2 
A ( 41 =. C14 
A(61 = C16 
A(91 = ClOR + ClOE 
.61141 = C23 
Aile I = C25 
ti I 1 7 I = C26 
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A(l81 = C27 
A(201 C20R + C20E 
A( 27t C35 
~(28) = C36 
A(291 = C37 
A(~ll = C30R + C30E 
A ( 391 = C46 
A(421 = C40 
A(501 = C56 
A(531 = C50 
A(641 = C60 
A(721 = C76 
A ( 7 51 C70 
A(7-;I = C82 
A(Sll = C84 
A(831 = C86 
A(E61 = CSOR + CSOE 
A(89I = COl 
A<lOll = C02 
A(lC~I = C04 
A '1181 = COB 
X( 11 .Xl 
X(21 = X2 
X ( 31 = X3 
X(41 = X4 
X(51 = X5 
X (61 = X6 
X(7J = X1 
X(SJ = XS 
X(9 I = LIGHT 
X( 101 = -LEAFIN 
X( 111 = SUGAR 
CBeAR=0.-0 
XBTOT=O.O 
cc 64 J = 1 , 11 

64 XBTCT = XBTOT + X(JI 
co c5 J = 1 , 11 
Qe(JI = X(JI/XBTOT 
IF(QB(JI.LE.0.00000011 GO TO 65 
CBBAR = DBBAR - 1.442695 * QB(JI * ALbG(QB(JII 

65 CONTINUE 
IJ = 0 
CO 11 I = 1 , 11 
SUlll(II = O.O 
DO 10 J = l , 11 
JJ = J + IJ 

10 SUM(IJ = SUM(ll + A(JJI 
IJ = 11 * I 

11 SUM(!)= SUMlil * X(Il 
SUMTCT = a.a 
DO 12 J = 1 , 11 

12 SUMTOT = SUMTOT + SUM(JI 
DO 13 J = 1 , 11 

13 ,1JJ = SUM(JI/SUMTOT 
IJ = 0 
DO lg I = 1 , 11 
DO 14 J = 1 , 11 
P(JI = O.O 
JJ = J + IJ 
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IF(SU~(lf.EQ.O.dl GO TO 71 
14 FIJJI = ACJJI * X(II I SUM(II 
71 IJ = 11 * I 
19 COI\Til\l.E 

IJ = 0 
CC 22 I = l , 11 
DC 15 J = l , 11 
JJ = J + IJ 

15 P ( J I = P ( J I + Q (I I * Fl JJ I 
IJ = 11 * IJ 

22 CONTINUE 
CB.AR= o.o 
CO lE: I = 1 , 11 
IF(Q(I).LE.C.00000011 GO TO 16 
CB.AR= CBAR - 1.442695 * Q( ti* ALOG(Q(Ill 

16 CONlINl.E 
AMI~ O.O 
IJ = 0 
DO 23 I = 1 , 11 
co 17 J = 1 , 11 
JJ = J + IJ 
IF(F(J.Jl.l:Q.c.o.OR.P(J).EQ.O.O) GO TO 17 
OIVl = FlJJI/P(JI 
IF(CIVl.LE.0.0000001) GO TO 17 
AMI = AMI + 1. 442695 * Q( I I * F.(JJI * ALOG(DIVlt 

17 COl'.TINUE 
IJ = 11 * I 

23 CONTINUE 
S = CBAR - AMI 

82 COI\TINLE 
PRTPLT S,DBAR,DBBAR,AMI 
TI~ER FINTIM=l2.0,DELT=.Ol,OUTDEL=lo0 
PRINT Xl,X2,X3,X4,X5,X6,X7,X8 

· MEHOD RKSFX 
ENC 
STOP 
ENCJOB 
II 
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Q 
~ · GRASSLAND MODEL 
e 
/I EXEC CSMP360 
//CSMFl.SYSIN CO• 
JNITIAL 
STORAGE SS(5l,ST(51,SB(5l 
$TCR(IGE <,;e (4U 
STORAGE EFF(4l,FNI(4l,PHOT0(41,FORCE(4l,ANI(4l,CA(4l,TB(4),0AI(41,TBI(41 
STORAGE OFORCE(ll 
STORAGE X(411,SU~(41l,Q(411,P(411,A(16811,F(l681l 
TABLE EFF(ll=l.3187,EFF(21=.13219,EFFJ3l=.13219,EFF(4)=.02902, ••• 

PARAMETER IQ9=8.0,MOINT=l.6,SLOPE=.06154 
FNI(ll=l.2519,FNI(2l=.12549,FNl(31=.12549,FNl(4l=.02755, ••• 
OAI(ll=.038462,DAI(21=.038462,DAif3l=.038462,DAI(4l=.000385, ••• 
TBI(ll=.06,TBI(2J=.05127,TBI(31=.05l27,TBI(41=.0023076 
PARAMEiER ICOUNT=O,ICGMP=O,SSAVG=O.O,OBAVG=O.O,OBBAVG=O.O 

PARAMETER RBI•0.0018,HDB=0.001347,SHATR=0.02, ••• 
LEACHI=0.00136,HMLI=0.02429,HA1=0.036432,HA2=0.025642, ••• 
H.11.3=0. 02 5642 .,HS =O. 00804 ,B=O. 0 

INCCN IC1=.001,IC2=0.0,IC3=.000716,IC4=0.0,IC5=0.0,VA10=0.0,VA20=0.0, ••• 
VA30=0 .O ,VA40=25 .o ,V BO= 560. 3, VS0;=65 • O, Vl 0=72.0 ,Q9=8.0, • • • 
VS=65.C,VA1=0.0,VA2=0.0,VA3=0.0, ••• 
IQ1=1.0,IQ2=0.48,IQ3=1.0,IQ4=.16,IQS=0.15,IQ6=0.4,IQ7=0o01, ••• 
IQ8=0.312,IQ10=3.0,1Qll=0.00153,IQ12=0.005,IQ13=0.2, ••• 
!Q14=0.2,IQ15=0.C0824,IQ16=0.02,IQ17=0.14367,Itl8=0.04859, ••• 
IQ19=0.31573,IQ20=0o0ll342,IQ21=l.8221,IQ22=2.59,IQ23=0.23416, ••• 
IQ24=0.21525,IQ25=0,l,IQ26=0.00319,IVB=560,IVL=72,ISH=5.0, ••• 
IAC=0.15,VBIN=0.874,VLIN=0.9653· 
CONSTANT SSAVG = O.O,DBAVG = OoOtDBBAVG = O.O 

CONSTANT HCll=0.00000339,HCI13=0.0697,HC!5=0.0l15,HCI43=0.0075, ••• 
HC2l=0.00008~167,HC6ll=0.000004862,HC3l=0.0005085,HC24=0.00024, ••• 
HC34=0.00024,RESPl=0.30398,~ESP3=0.2394,RESP4=2.107,P3=0.0058~, ••• 
P4=0.0Cl9,Al=0.5,A2z0.5,A3~0.83,A4=0.92,AS=0.37,Dl=0.002198, ••• 
C3=0.025,FNz0.1,V8Ql=O.OQ075, ••• 
VBQ2=0.0001923,VBQ3=0.00040384,VBQ4=0.0000962,VBQ5=0.00003846, ••• 

VBQ6=0.00003e46,VBQ7=0.00003846,VLQ8=0.002673,VLQ9=0.0004, ••• 
SHQ21=0.0207,SHQ22=0.0l962,SHQ23=0.002192,SHQ24=0.0021921••• 
ADQ17=C.026512,ADQl8=0.00467,ADQl9=0.0467,QlQ2=0.000962, ••• 
QlQ3=0.00384,QlQ4=0.0230B,QlQ5=0.001922,QlQ6=0.02308,QlQ9=.0091••• 
Q2Q9=0.00702,Q2Q20=0.0382,Q3SH=0.10l92,Q4SH=0.20l9,Q5SH=0.0705, ••• 
Q6SH=0.0529,Q3AD=0.0384,Q3Q9=0.002308,Q3Ql5=.0l924,... . 
C:3Ql6=0.0l924,Q17Q9=0.0057,Q24Q'il=0.04231,Q9Q26=0.00154, ••• 
Q4AD=0.0962,Q4Q9=0.00481,Q4Q15=0.0673,QSA0=0.0346, ••• 
Q5Q7=0.000654,Ql7Q20=C.Ol9,Ql8SH=0.0641,Ql8Q7=0.00519, ••• 
Q5(;9=0.000654,Q5Q15=0.011538,Q5Q16=0.000654,Q6AD=O.Ol92, ••• 
Q7Q,=0,0019,Q8Q9=0.02153,Q8Q20=0.ll04,Q10Q3=0.00256, ••• 
QlCQ8=C.00064,Ql8A0=0.02564,Q20AD=0.319,QlOQ9=0o009, ••• 
QlOQll=Oo00044,QlOQ12=0o00044,QlOQ13=0.00769,QlOQ14=0.0l398, ••• 
QllSH=0.022,QllAD=0.0179,QllQ9=0.03629,QllQ15=0.038, ••• 
Q11Ql6=0.0l35, ••• 
Ql2SH=0.135.Ql2AD=0.00462,Ql2Q9=0.0019,Ql2Ql5=0.00231, ••• 
Q12Q16=C.OOC77, ••• 
Q13SH=0.0577,Q13AD=0.0231,Ql3Q9=0.00096,Ql3Ql6=0.000192, ••• 
Ql4SH=O•l05,Ql4Q7=0o000384,Ql4Q9=0.000384,Ql4Ql6=0.0558, ••• 
Q15SH=0.346,Ql5AO=l•346,Ql5Q9=0e0212,Q16SH=O.l934,Ql6AO=Oo6731••• 
Ql6Q7=0.192,Ql6Q9=0.00718,~18Q9=0.001346,Ql8Q16=0.0064, ••• 
Ql9SH=0.0962,Ql9A0=0.0385,Q19Q7=0.00769,Ql9Q9=0.00192, •••. 
Q19Q16=C.0096,Q20SH=0.319,Q20Q9=0.0769,Q21Q22=0.002981, ••• 
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Q22Q9=0.00248,Q22Q20=0.C0248,Q23S~=Oo0423,Q23AC=0.063, ••• 
Q23(;9=0.0211,Q24SH=0.0423,Q24AD=Oo063423,Q25Q9=0.02,TAU=0.014, ••• 
,3Q0=0.06ll4,Q4Q0=0.1009,Q5Q0=0.03524,Q6Q0=0.0264,Q7QO=l.923, •• , 
Q8Q0=0.8912,QlCQ0=0,333,UllQO=O,ll2,Q12Q0=0,006T3,Ql3Q0=,04807,.;. 
tl4Q0=0,0448,Ql5QO=l.73,Ql6Q0=0.8o5,Q17Q0=0,26t,Q18Q0=0.0538,.,, . 
Ql9QO=C.0807,Q20Q0=3,84,Q21Q0=0,304,Q22Q0=0,204,Q23Q0=0,128,.,. 
SHIN=l,2955,ADIN=0.1776,Q26Q0=4,0,Q24QO=O,l2B,EFQ25=0,45,,,, 
(9Fl=0,02,RESP25=0.5 

FIX ED I 
FIXED ITIME 
FIX ED J 
FIXED JJ 
FIX ED IJ 
FIXED JS 
FIXED ICCMP 
FIX EC I CCU NT 
DYl'.AMIC 

NO SORT 

SUll.=4, + ( 2,*SL l 
TS=SINE(0,,120~3,5,9041 
TE~P=(9.+(TS*ll,ll*.061 
TEMP1=9.0 + (TS*ll,Ol 
Y=RAMP( el 
MOIST= MOINT - SLOPE*Y 

IFJY,GE.51,91 B=B+52. 
IF(Y,GE.50,01 MOIST= MGINT 
IF(MOIST,LT,0,1 MOIST=O, 
Re=ReI 
Q25Fl=SUN*TEMP*MCIST*EFQ25 
IF(SUN,LT.3.5,0R,SUN.GT.5,0l Q25Fl=O. 
IF(SUN.LT.4.01 Re=o.o 
LEACHA=LEACHI 
IF(SUN.LT.4.0l HML=O.O 

. IF ( s·uN •LT .4 .o l LEACl1A=O .o 
IF(TEMP.LE.0.01 Q25=0.0 
CC 3 I=l,4 
PHCTO(Il=SUN*MCIST*TEMP*EFF(Il 
DA(Il=CAI(II 
TB(Il=TeltII . 
IF(SUN.GT.4,51 GO TO 90 
PHOTO<l l=O.O 
CA(ll=CAI(ll*lO.O 
TB( 11=0.0 

90 IF(SUN.GT.4.01 GO TO 91 
PHCTC(21=o.o· 
DA(21=DAl(21*10.0 
TB(21=0·.o 
FHCTC(31=0.0 
DA(31=DAI(31*10.0 
TB(3l=O.O 

92 IF(SUN.GT.4.0l GG TO 93 
PHOTO( 41 =O. 0 
CA(4l=CAI(41*10.0 
TB(4l=C.O 

93 CONTINUE 
FORCE(Il=PHOTO(II 
ANI(Il=Q9*FNI(II 
IF(PHOTO(Il.GT.ANI(III FORCE(ll=ANI(II 

3 COt.TINUE 
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* 

* 

TU=(FCRCE(ll+FORCE(21+FORCE(3)+FORCE(411/40.0 
TAU=Tt/Q9 

IF(V.GE.8.0I SCALE=l.O 
IF(V.GE.18.) SCALE=O.O 
IF(Y.GE.22.1 SCALE=2.5 
IF(Y.GE.26.I SCALE=OoO 
VBVl=SCALE*VBQl 
VBV2=SCALE*VBQ2 
VLV8=SCALE*VLQ8*0.75 
VLVlO=SCALE*VLQlO*Oo25 

IF(v.e,.50.1 GO TC 5 
GO TO 60 

5 Cl=ICl 
C3=IC3 
C4=IC4 

60 CCI\TINUf 
Pl=0.000121 
HC6 l=HC HI 
IF(Y.GT.26.0I HC6l=HCelI*3oO 

7 CCNHNLE 
IF(Y.GE.31.C.ANO.V.LE.47.0) Pl=O.O 

* THII\GS ABOUT COWS 
IFC'I.LT.4.0l GO TO 8 
IF(Y.GE.26.0I GO TO 8 
P21=0.000208 
P23=0.C0208 
t-Cl2=0.00409 
HC22=0.0409 
I-IC32=0.C0448 
t-C62=0.00416 
R!:SPZ=0.421505 
IF(V.GT.5.01 EMC=O.O 
GC TC 9 

8 C2=0.0 
HC12=0.0 
t-,C22=0.0 
HC32=0.0 
HC62=C.O 
RESF2=0.0 
P21=0.0 
P23=0.C 

9 CGI\TINliE 
* INSECT PRODUCTION - DEATH - ETC 

IF(Y.LT.9.0I GO TO 20 
IF(Y.GE.24.01 GC TO 20 
P5=0.0l66 
RESP5=0.5502 
t-CI54=0.004899 
HC I 5.3=C.00011 
I-Cl 5=0.0115 
HC25=0.00433 
HC35=J.C07'33 
I-C65=0.00094 
D5a:0.0074 
IF(Y.GE.19.0l P5=0.0 
IF(Y.GE.23.91 D5=lo0 
GO "TC 21 
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* 
20 COl'\TINUE 

CS=C. 0. 
SHS=o.o 
(;6Q 7=0i. 0048 ,'16 Q9=0 .0019 2, Q6 Ql6=0 .0048, Q7SH=0.12, Q7AD= 0.115,. •. 
VLQl0=0.107,QiQ0~0.36e4,Q2Q0=0.17925,Q25AD=0.634, ••• 
SL=Sil'\f(0,.12093,~) 
H~L=HMLI 

91 IFCSUN.GT.3.71 GO TO 92 
IFCY.GE.O.O) SCALE=4.0 

* PRODUCTION - RABBITS 
IF(V.GT.4.0) EMC=0.58135 

* ADDll'\G .00016 AT WEEK 22 
~ESP5=C.O 
1-CI54=0.0 
HCI53=C.O 

* ALL INPUTS AND OUTPUTS (INSECTS) GO TOO 
HCl 5=0 .O 
HC25=0.C 
HC35=C.C 
HC65=0.0 

21 CONTINlE 
* COYOTES 

IF(V.LT.4.0) GO TO 30 
* BIRDS 

IF(Y.GT.20.0) XIM=O.O 
IF(V.GE.20.C) GO TC 30 
IF(Y.GT.4.0) EM=0.0036 
IF (Y .GT .s.o ). EM=O.O 
IF(.Y.GE.5.0) 04=0.0000076 
IFCY.GE.9.0) 04=0.0000126 
IFCV.GE.19.0) XIM=0.693*C4 
P4=0.0C19 

. I-C24=0.000662 
I-C34=0.000662 
HCl54=0.02948 
GO TO 40 

30 COI\TINUE 
C4=0.0 
P4=0.0 
HC24=0.0 
HC:l4=0. 0 
1-C I 54=0 .o 

40 COI\Tl NUE 
PPl=Pl*\/A3 
PP2=P2l*VA1 + P23*VA3 
FP3=P3*Cl 
PP4=P4*C5 
FPS=PS*VA3 
Fil=PPl/Al 
PI2:,:PP2/A2 
FI3=PPYA3 
FI4=PP4/A4 
PI5=PP5/AS 
Il=HCll*VAl+HC2l*VA2+HC31*VA3+HC6l*VS+Pll 
I2=HC12*VAl+HC22*VA2+HC32*VA3+HC62*VS+Pl2 
13=HC I 13*C 1 +HC I 53*CS+HC I43*C4+Pl 3 
I4=1-C24*VA2+HC34*VA3+hCJ54*CS+Pl4 
IS=HC15*VAl+HC25*VA2+HC35*VA3+HC65*VS+PI5 

82 



SCRT 

* 
* 

* 

* 

* 

Rl=RESPl*Cl 
R2=RESP2*C2 
R3=RESP3*C3 
R4=RESP4*C4 
R5=RESP5*C5 
S~l =Il*(l .0-Al I 
SH2:;I 2*C 1. O-A21 
Sl-3=I3'*Cl.O-A3J 
SH4=I4*Cl.O-A41 
SH5=I5*Cl.O-A51 
ClQO=SCALE*0.3684*0.5 
QlQ9=SCALE*O.ooq•o.5 
Q2QO=SCALE*O.l7925*0.5 
,2Q9=SCALE*0.00702*0.5 
Q8QO=SCALE*0.89l2*0.375 
Q8Q9=SCALE*C.02153*0.375 
ClOCO=SCALE*0.333*0.3 
QlCQ9=SCALe•c.c09*C.3 

HAl=HCll+HC12+HC15+P21*2•0 
HA2=HC21+HC22+HC25+HC24 
I-A3=HC3l+HC34+HC35+1-C32+P23*2•0+P5*2.73+P1*2o0 
HS=HC61+HC65+HC62 
HOB=VBVl+VBV2+VBQ3+VBQ4+VBQ5+VBQ6+VBQ7 
1-!Ml=Vl C9+Vl VlO 
LEACH=VLQ9+LEACHA 

SHIN=O.l*CSH1+S~2+SH3+S~4+SH51 
GR A=HA l*VA l+HA 2*VA2+HA3*VA 3+VS*HS 
CU~BIC=VAl+VA2+VA3+VS 

ADIN•C.2*(Dl*Cl+D3*C3+D4*C4+05*C5J 

VAlCOT=FORCECl)-HAl*VAl-TB(ll*VAl-DACll*VAl 
VAl=INTGRLCVAlO,VAlDOTI 
VA2COT=FORCE(2l•HA2*VA2-TBC21*VA2-DAC21*VA2 
VA2=INTGRL(VA20,VA2DOTI 
VA3DOT=FORCEC31-HA3*VA3-TBC3l*VA3-DAC3)*VA3 
VA3=INTGRLCVA30,VA3COTI 
VA4DOT=FORC E ( 4 I -TB C 41 *VA4-DA(4) *VA4 
VA4=INTGRL(VA40,VA4DOTI 
VBDOT=TE! Cl I *VAl +TB (2 I *V A2+T BC 3 I *VA3 +TB( 41 *VA4-RB*VB-HDB*VB 
VB=INTGRLC VBC,VSDOTI 
VSCOT=CA(ll*VAl+OA(2l*VA2+DAC31*VA3+DAC4l*VA4-HS*VS-SHATR*VS 
VS=INTGRL(VSO,VSOOT) 
VLOOT=SHATR*VS-LEACH*VL-HML*Vl 
VL=INTGRL(VLO,VLOOTI 

C lDOT= Il-R 1-SHl-Dl*C 1-HC I l 3*C l 
Cl=INTGRl(ICl,ClDCT) 
C2DOT=I2-R2-SH2+EMC 
CZ=INTGRLCICZ,CZDOTI 
C300T=l3-R3-SH3-C3*C3 
C3=INTGRLCIC3,C3DCTI 
C4COT=I4-R4-SH4-D4*C4-HCI43*C4-XIM+EM 
C4=INTGRL(IC4,C40CTI . 
C5DOT=I5-R5-SH5-D5*C5-HCI54*C5 
C5=l~TGRLC!CS,C500TI 
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* 
* 

* 
* 

QlCOT=V8Vl*VB-Ql*(QlQ2+QlQ4+QlQ5+QlQ6+QlQ9+QlQ3+QlQOI 
Q2DOT~VBV2*VB+QlQ2*Ql-Q2*(Q2Q9+Q2Q20+Q2QOI 
Q3CCT=VBQ3*V~+QlQ3*Ql+QlOQ3*QlO~Q3*(Q3SH+Q34D+Q3Q9+Q3Ql5+Q3Ql6+ ••• 
,3,c1 
Q400T=VBQ4*V&+QlQ4*Ql-Q4*(Q4SH+Q4AD+Q4Q9+Q4Ql5+Q4QOl 
Q5DOT=VBQ5*VB+QlQ5*Ql~Q5*(Q5SH+Q5AD+Q5Q7+Q5Q9+Q5Ql5+Q5Ql6+Q5QOI 
Q600T=~BQ6*VB+QlQ6*Ql-Q6*(Q6SH+Q6AO+Q6Q7+Q6Q9+Q6Ql6+Q6QOI 
Q700T=VBQ7*VB+Q5Q7*Q5+Q6Q7*Q6+Ql4Q7*Ql4+Ql6Q7*Ql6+Ql8Q7*Ql8+ ••• 
Cl9C7*'19-Q7*(Q7SH+Q7AD+Q7Q9+Q7QOI 
QBDOT=VLV8*VL+QlOQ8*QlO-C8*(Q8Q9+Q8Q20+Q8COI 
Q9DOT=VLQ9*VL+QlQ9*Ql+Q2Q9*Q2+Q3Q9*Q3+Q4Q9*Q4+Q5Q9*Q5+Q6Q9*Q6+ ••• 
C7Q9~~7+Q8Q9*Q8+QllQ9*Qll+Ql2Q9*Ql2+Ql3Q9*Ql3+Ql4Q9*Ql4+Ql5Q9*••• 
Ql5+Ql6Q9*Ql6+Ql7Q9*Ql7+Ql8Q9*Ql8+Ql9Q9*Ql9+Q20Q9*Q20+Q22Q9*··· 
Q22+Q23C9*Q23+Q24Q9*QZ4+QlOQ9*QlO+Q9Fl+Q25Q9*Q25-Q9*(Q9Q26+TAUI 
ClOOCT=VLVlO*VL-QlO*(ClOQ3+QlOQ8+QlOQll+Ql-OQ12+QlOQ13+QlOQ14+ ••• 
ClOQO+QlOQ91 
CllCCT=QlOQll*ClO-Qll*(QllSH+QllAD+QllQ9+QllQ15+QllQ16+QllQOI 
Ql2DOT=QlOQ12*QlO-Ql2*(Ql2SH+Ql2AD+QlZQ9+Ql2Ql5+Ql2Ql6+Ql2QOJ 
Ql3COT=Ql0Ql3*Q!O-Ql3*(Ql3SH+Ql3AD+Ql3Q9+Ql3Ql6+Ql3QOI 
C14DOT=ClOQ14*ClO-Ql4*(Cl4SH+Ql4Q7+Ql4Q9+Ql4Ql6+Ql4QOl 
U15DCT=Ql1Ql5*Cll+Ql2Cl5*Ql2+Q3Cl5*Q3+Q4Ql5*Q4+Q5Ql5*Q5-Q!5*(••• 
~15SH+Cl5AD+Q15Q9+Ql5QOI 
Cl6DOT=Q3Q!6*Q3+C5Ql6*Q5+Q6Ql6*Q6+Q11Ql6*Qll+Q12Ql6*Ql2+Ql3Ql6*••• 
Ql3+Ql4Ql6*Ql4+Ql8Ql6*Ql8+Ql9Ql6*Ql9-Ql6*(Ql6SH+Ql6AD+Ql6Q7+ ••• 
Cl6C9+Cl6QOI 
Ql7COT=ADQ17*AD-Ql7*(Ql7Q9+Ql7Q20+Ql7QOl 

Ql8DOT=ADQl8*AD-Ql8*(Ql8SH+Ql8AD+Ql8Q7+Ql8Q9+Cl8Ql6+Ql8QOl 
~l9CCT=ADQl9*AD-Cl~*(Cl9SH+Ql9AO+Q19Q7+Ql9Q9+Ql9Ql6+Ql9QOl 
~2CDOT=Q2Q20*Q2+Q8Q20*Q8+Ql7Q20*Ql7-Q20*(Q20SH+Q20AO+Q20Q9+Q20QOl 
C21DOT=SHQ2l*SH-Q2l*(Q21Q22+Q21QOI 
C22DOT=SHQ22*SH+Q21Q22*Q21-Q22*(Q22Q9+Q22Q20+Q22QOI 
Q23DOT=SHQ23*SH-Q23*(Q23SH+Q23AO+Q23Q9+Q23QOI 
Q24COT=SHQ24*SH-Q24*(Q24SH+Q24AD+Q24Q9+Q24Q-Ol 
C25DOT=C25Fl-Q25C9*C25-RESP25*TEMPl*Q25 
Q26COT=Q9Q26*Q9-Q26*Q26QO 
SHDOT=SHIN+Q3SH*Q3+Q4SH*Q4+Q5SH*QS+Q6SH*Q6+Q7SH*Q7+QllSH*Qll+ ••• 
Ql2SH*Ql2+Ql3SH*Ql3+Ql4SH*Ql4+Ql5SH*Ql5+Ql6SH*Ql6+Ql8SH*Ql8+ ••• 
Ql9SH*Ql9+Q20SH*Q20+Q23SH*Q23+Q24SH*Q24-SH*(SHQ22+SHQ23+SHQ211 
ADCOT=ACIN+C3AD*Q3+~4AD*Q4+Q5AD*Q5+Q6AD*Q6+Q7AD*Q7+QllAD*Qll+ ••• · 
Ql2AD*Ql2+Ql?AD*Ql3+Ql5AD*Ql5+Ql6AD*Ql6+Ql8AD*Ql8~Ql9AD*Ql9+ ••• 
Q20AC*C20+Q23AD*Q23+Q24AD*Q24-AD*(ADQ17+ADQ18+AOQ19l 

~l=INTGRL(IQl,QlDOTI 
C2=INTGRL(IQ2,Q2DCTl 
Q3=INTGRL(IQ3,Q300TI 
~4=I~TGRL(IQ4,Q4DOTI 
CS=INTGRL(IQ5,Q500Tl 
Q6=lNTGRL(IQt,Q600Tl 
Q7=INTGRL(IQ7,Q700Tl 
Q8=INTGRL(IQ8,Q8DCTI 
Q9=INTGRL(IQ9,Q900Tl 
ClO=INTGRL(IQlO,QlODOTl 
Qll=INTGRL(IQll,QllDOTl 
Ql2=INTGRL(IC12,Ql2DOTI 
Ql3=INTGRL(IC13,Cl3DOTI 
Ql4=INTGRL(IC14,Q14DOTI 
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~15=INTGRL(IQ15,Ql5DOT) 
Q16=INTGRL(IQ16,~16DOTJ 
Ql7=INTGRL(IC17,Ql7COTI 
Ql~=INlGRL(IQl8,Ql8COTI 
Ql9=INTGRL(iQ19,Q19DOT) 
Q20=I~TGRL(IC20,Q2000TI 
Q2l=INTGRl(IQ21,Q2lDOTI 
Q22=JNTGRL(IQ22,Q22DOT) 
Q23=INTGRL(IC23,Q23DOT) 
Q24=INTGRLCIQ24,Q24DOTI 
Q25=INTGRL(IQ25,Q25DOTI 
Q26=INTGRL(IC26,Q260GT) 
SH=INTGRL(ISH,SHDOTI 
AD=I~TGRLCIAC,ADCOT) 
GRAZ=HAl*VAl+HA2*VA2+HA3*VA3 
BUGS=C5+Ql6+Ql8+Q23+Q24+Q19+Q5+Q6 

PHOTOl=PHOTO(ll 
FCRCEl=FORCE(l I 

NOSCRT 
E4 ICC~P =!COMP+ 1 

X(ll=VAl 
X(21=VA2 
X(31=VA3 
X(41=VA4 
JC( 51 =VB 
X ( (: l:;:VS 
X(7)=VL 
lC(El=Cl 
X(9)=C2 
X 110 I =C3 
lC(lll=C4 
X<l21=C5 
X<l31=(,;t 
)((14l=Q2 
X(l51=C3 
X(l61=Q4 
X(l7J=Q5 
X(l8l=Q6 
X<l9) =C7 
X(201=Q8 
XC2U=(;9 
)('221=Ql0 
X( 23 )=Qll 
X(24J=Cl2 
)((251 =Ql3 
X(26)=Ql4 
X(2H=Cl5 
X(281=Q16 
X(2.9)=Cl7 
X(30l=C18 
X13ll=Ql9 
X(321=<:20 
X(331=C21 
X(34l=Q22 
X(35l=C23 
)((3(:J=Q24 
X(37l=Q25 
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X(38l=Q26 
X(39l=SH 
.l<(4C)=AD 
CO 2 4 . I = l , 16 81 
F(Il=O.O 

24 A(II = o.o 
A(51 =TB(ll 
A(6} =CA(l) 
A(81 = HCll*Al 
A{9) = t-Cl2*A2 + P21 
A<l2l = 1-'Cl5*A5 
A(461 ='!8(21 
A(471 =OA(21 
A(491 = HC2l*Al 
A ( 5 C I = HC 2 2 * A 2 
11(521 = t-C24*A4 
A ( 5 3 I = HC 2 5 * A 5 
AIS7J =TB(31 
A (8 8 I =CA (3 l 
tl(c;QJ = HC3l*Al + Pl 
A(c;lJ = HC32*A2 + P23 
11(931 = 1--C34*A4 
A(941 = HC35*A5 + PS 
All281=TB(41 
A(l291=CA(41 
A(l771 =VBVl 
A(l78) =VBV2 
A<l79) =VBQ3 
AllECI =VBQ4 
.0(181) =VBQ5 
A(l821 ;:VBQ6 
A( 1E31 =VBQ7 
.0(2051 =RB 
A(2121=SHATR 
.0(2131=1-'C61 
.0(214l=t-C62 
A(2171 =HC65 
/1(2661 =VLVE 
A( 2671 =VLQ9 
A( 2681 =VLVlO 
11(287) =LEACH 
XlTOT=X(331+X(34l+Xl35)+X(36) 
X2TOT=X(l7)+X(l81+X(l9l 
SHll=0.9*SHl 
SH22=C.9*SH2 
SH33==C. 9*SH3 
SH44=0 .9*SH4 
SH5!'::=0.9*SH5 
Dl l=O. E*Dl 
C33=0.8*C3 
044=0.8*04 
C55=0.8*05 
IF(X2TCT.EQ.O.O) GO TO 32 
A(3C41 =Oll*X(l7l/X2TCT 
A(3C51 =Dll*X(l8)/X2TOT 
A(306J =Dll*X(l9)/X2TCT 
Al3861 =033*X(l71/X2TOT 
/1(387) =033*X(l8)/X2TOT 
A(3881 =D33*X(l91/X2TOT 
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A(4271 =D44*X(l71/X2TOT 
A(4281 =044*XC181/X2TOT 
A(4291 =D44*X(l91/X2TOT 
A(4681 =055*X(l7)/X2TOT 
A(4691 =D55*X(l81/X2lOT 
A(4701 =D55*X(l91/X2TOT 

43 IF(X(SI.EQ.0.01 GO TO 34 
lF(XllOT.EQ.C.OJ GO TC 51 
A ( 2 9 7 I = HC Il 3 
A(3201 =SHll*X(331/(XlTCT*X(81) 
A(321) =SHll*X(34)/(XlTOT*X(81) 
A(3221 =SHll*X(35)/(XlTOT*X(8)) 
A(3231 =SHll*X(361/(XlTCT*X(611 
A(3261 =O.l*SH1/X(81 
A(3271 =0.2*Dl/X(81 
A( 3281 =RESP! 
GO TC 41 

51 A(320) =O.O 
A(~21> =O.O 
A(322) =O.O 
A(3231 =O.O 
A f 3 2 6 I = 0. 1 *SH~-/ X ( 81 
A(327J =0.2*Cl/X(8) 
A(3281 =RESP! 

41 IF ( X ( 9 I• EQ. C • 0 I GO TO 3 5 
IF(XlTCT.EQ.O.OI GO TC 52 
A(36ll ~SH22*X(331/(XlTCT*X(911 
A(3621 =SH22*XC34l/(XlTOT*X(9)1 
A(3631 =SH22*X(351/{XlTCT*XC911 
A(3641 =SH22*X(361/(XlTCT*X(9)1 
A(367) =0.l*SH2/X(91 
AC3691 =RESP2 
GO TO 42 

52 A ( 3611 =0-.0 
A(3621 =O.O 
A( 3631 =O. 0 
A(3641 =O.O 
A(3671 =O.l*SH2/X(91 
A( 36<;1 =RESP2 

42 IF(X(lOI.EQ.0.01 GO TO 36 
IF(XlTOT.EQ.0.01 GC TC 53 
A(4021 =SH33*X(331/(X1TOT*X(l01) 
A(4031 =SH33*X(34l/(XlTOT*XClOII 
A(4041 =SH33*XC351/(XlTCT*X(lOI) 
A(4051 =SH33*X(36J/(XlTOT*X(lOII 
A(4081 =O.l*SH3/X(l01 
A(4C91 ;0.2*03/X(lOI 
A(4101 =RESP3 
GG TC 44 

!:3 A(4C21 c:Q.O 
/1(4031 =O.O. 
A(4041 =O.O 
A(4C51 =O.O 
A(4081 =O.l*SH3/X(l01 
A(4091 =0.2*03/X(lOI 
A ( 4 l O I =RESP 3 

44 TF(X(lll.EQ.O.O) GO TO 37 
IF(XlTCT.EQ.0.01 GO TC 54 
A ( 4 2 0 I = H~ I 4 3 
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AC4431 =SH44*XC331/(XlTOT*X(llll 
A(444) =SH44*X(341/(X1TOT*X(llll 
A(4451 =SH44*X(351/(XlTOT*X(lll) 
A(4461 =SH44*X(361/(X1TOT*X(llll 
AC449) =O.l*SH4/XC111 
AC4501 =0.2*04/X(lll 
11(4~11 =RESP4+XIM/X(lll 
GO TC 45 

54 AC4431 =O.O 
11(4441 =O.O 
1114451 =O.O 
A(4461 =O.O 
AC4491 =O.l*SH4/X(lll 
11(4501 =0.2*04/X(lll 
A(4511 =RESP4~XIM/X(lll 

45 IFCX(121.EQ.O.OI GO TO 38 
IF(XlTCT.EQ.0.01 GO TC 55 
AC 4 c ll = HC I 54 
11(484) =SH55*Xl331/CX1TOT*X(l211 
11(4851 =SH55*X(341/(XlTOT*X(l211 
A(48cl =SH55*X(35)/(X1TOT*X(121) 
A(4871 =SH55*X(36)/(X1TOT*X(1211 
A(4g01 =O.l*SH5/X(l21 
A(49ll =0.2*05/X(l21 
11(4921 =RESP5 

55 AC4841 =O.O 
Al4851 =O.O 
11148£:I =O.O 
A( 4871 =O. 0 
A(490) =O.l*SH5/XC121 
11(4911 =0.2*05/Xl121 
A I 4 9 2 I =R E SP 5 
GO TC 46 

34 A(32CI =O.O 
A(2g7J = O.O 
II (3 211 =O .o 
A(3221 =O.O 
AC3231 =O.O 
A (3261 =O. 0 
A('.:271 ::Q.O 
AC3281 =O.O 
GO TC 41 

35 A( 3£:U =O.O 
AC3621=0.0 
AC3631:::0.0 
A(3c41=0.0 
AC3671=0,0. 
11(3681=0.0 
AC3c9l=O.o 
GO TC 42 

36 A(4C21=0.0 
11(403)=0.0 
AC4041::0.0 
AC4C51=0.0 
A(4C8l=O.O 
A(409l=O.O 
A(41Cl=O.O 
GO TO 44 

37 A(4431=0.0 
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A(420) = O.O 
A(444)=0.0 
A(445)=0.0 
A(446)=0.0 
A(449):0e0 
A(450)=0.0 
A(45l)=O.O 
GC TC 45 

38 A(484)=C.O 
A(46ll = O.O 
A(4851 =C.O 
A(486l=O.O 
A(487)=0.0 
A(490l=0;.0 
A(4c;ll=O.O 
A(492)=0.0 
GO TO 46 

:!2 A(3C41=0.0 
A(3051=0.0 
A(30l:t=O.O 
A(297)=0.0 
A(386l=O.O 
A(3e7l=C.O 
A(388)=0.0 
A(420)=0.0 
A(4271=0.0 
A(428l=O.O 
A(429l=O.O 
A(4l:81=0.0 
Al469)=0.0 
A(410l=C.O 
A(4H)=O.O 
GC TC 43 

.,,... A(:3201 =O.O 
A ( 32U=O.O 
A(3221=0.0 
A(3231=0.0 
11(:261=0.0 
A(327)=0.0 
A(3Hl=O.O 
A(362)=0.0 
A(3631=0.0 
A(3l:4)=0.0 
A(367l=O.O 
A(368l=O.O 
A(4C21=0.0 
AC 403 l=O·.o 
A(404)=0.0 
A(4C51=0.0 
A(408 )=O.O 
A(409)=0.0 
A(443)=0.0 
A(444)=0.0 
A(445)=0.0 
A(446)=0.0 
A(449)=0.0 
A(450)=0.0 
A.(484)=0,0 
A(485)=0.0 
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A(4861=0.0 
A(4871=0.0 
AC4901=0.0 
AC49ll=O.O 

46 A(505) 
AC 5Cl:I 
AC5071 
A(5Ct;I 
AC5121 
AC5331 
A(554) 
A ( 5 (: 5) 
A(574) 
A ( 5 c;s I 
A(601) 
A(602). 
AC l: 131 
A(6141 
A(6151 
A<t3l:I 
.11(642) 
A(l:541 
A( l:55 I 
A(656) 
AC l:15 I 
AC677) 
AC6831 
A(6841 
AC695) 
A(6961 
A(6t;71 
.11(716 I 
A(7181 

·A(725) 
A(1361 
.11(7371 
A( 738 I 
A (759 I 
AC 777 I 
A( 7781 
A (7791 
A(SCCI 
A(Blll 
A ( 820 I 
Al8581. 
A( Sl:11 
i(8761 
A, e8U 
A(882) 
A(8841 
A(8851 
AC8861 
AC 8871 
AC t;C2 I 
AC923) 
A(t;29) 
A(9301 
AC941) 
A(<;421 

=Ql '12 
=QlQ3 
=Ql Q4 
=QlQ6 
=QlQ.c; 
=QlQO 
=Q2Qt; 
=Q2Q20 
=Q2QO 
=Q3QC, 
=Q3Q15 
=Q3Q16 
=Q3SH 
=Q3AI: 
=Q3QO 
=Q4Q«; 
=Q4Q15 
=Q4SH 
=Q4AD 
=Q4QO 
=Q5Q7 
=Q5Q«; 
=Q5Q15 
=Q5Ql6 
=QSSH 
=Q5AC 
=Q5QO 
=Q6Q7 
=Q6Q9 
=Q6Ql6 
=Q6SH 
=Q6AC 
=Q 6'1 C 
=Q7Q9 
=Q7SH 
=Q7AD 
=Q7QO 
=Q8(;;9 
=Q8Q20 
=Q8QO 
=Q9Q26 
=TAU 
·=Q10Q3 
=Q10Q8 
=QlOQ<; 
=QlOQll 
=QlOQ12 
=Ql0Ql3 
=Ql0Cl4 
=QlOQO 
=Q11Q9 
=Qll Cl5 
=Q11Q16 
=QllSH 
=QllAD 
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A ( 943 l =QllQO 
A(<;l:4) =Q12Q9 
A(970) =Q1.2C:l5 
Al97ll =Ql2,l6 
Al <;82) =Q12SH 
A(<;831 =Ql2AC 
A(S84) =Ql2C:O 
Al 1C05 I =Ql 3Q<; 
A(l012l =Ql3Ql6 
Al 10231 =Ql3SH 
A( 1024 l =QUAD 
A<l0251 =Ql3C:O 
A(l0441 =Ql4Q7 
A(l046) =Ql4Q9 
A(l053 t =Ql4,16 
A( 10641 =Ql4SH 
A(l065) =Q14AD 
A (10661 =Ql 4C:O 
A( 1C87 I =Ql 5QS 
A<ll051 =Ql5SH 
A(llC6l =Ql5AO 
A( 1107 I =Ql5QO 
A ( 1126 I =Q16C:7 
Al 11281 =Ql6Q9 
A(l146l =Ql6SH 
/1(11471 =Ql6AD 
A(ll48l =Ql6QO 
A( 1169 l =Ql 7Q9 
/1(11801 =QlH:20 
A ( 118 91 =Q 1 7 Q O 
/1(1208) =Ql8Q7 
A(l2101 =Ql8C:9 
A ( 1217 I =Q l SQ 16 
A(l2281 =Ql8SH 
A<l2291 =Ql8AD 
A(l230) =Ql8QO 
A(l249 l =Ql9Q7 
A( 12511 =Ql 9Q9 
Al 1259 I =Ql9Ql6 
A(l269) =Ql9SH 
A(l270) =Ql9AD 
Al 1271 l =Ql9QO 
/1(1292) =Q20i;.;9 
A( 1310) =Q20SH 
/1(1311) =Q20AC 
A ( 13121 =Q20C:O 
Al 13461 ·=Q21Q22 
A ( 1353) =Q21QO 
A(l3741 =Q22i;.;9 
A( 1385 I =Q22Q20 
A (1394 l =Q22QO 
A(l4151 =Q23Q9 
A(l433) =Q23SH 
A 11434) =Q23AD 
A( 1435 I =Q23QO 
A(l4561 =Q24Q9 
A(l4741 =Q24SH 
A( 1475 l =Q24AD 
All476l =Q24QO 
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A ( 14971 -=Q :z 5Q c; 
A(l517) ~RESP25*TEMP1 
A '1558 I =026QO 
All 5911 =SHQ:11 
~ (15921 =SHQ22 · 
A( 15931 =SHQ23 
A(l6281 =ADQ17 
A<l629) =ADQ18 
A( lf30) =ADQ19 
A( 1641 l=FORCECl) 
A(l6421=FORCE(2) 
AC1643)=FORCEC31 
A(l644l=FORCE(4) 
A(H491=EMC 
A( 16511 =EM 
~ (1671) =Q25 Fl 
.X(4ll=l.O 
CBeAR=OoO 
XBTCT=OoO 
DO 64 J = 1 , 40 

64 XBTOT = XBTOT + X(JI 
00 65 J = l , 40 
QB(J) = X(J)/XBTOT 
IF(QB(Jl.LE.0.0000001) GO TO 65 
oaeAR = DBBAR - 1.442695 * QBCJI * ALOG(QB(JI) 

f5 COl\iTINUE 
IJ = o.o 
DO 11 I = 1 , 40 
SUM CI) = O. 0 
co 10 J = 1 , 41 
JJ = J + IJ 

10 SUM(Il =SUMI-II+ A(JJ) 
63 IJ = 41 * I 
11 SUM(II = SUM(II * X(Il 

SUMTOT = 0.0 
DO 12 J = 1 ., 40 

12 SUMTOT = SUMTOT + SU~(J) 
co 13 J = 1 , 40 

13 QCJ) = SUM(J)/SUMTCT 
IJ = 0 
CO 19 I = l , 40 · 
co 14 J = 1 , 41 
P(JI = O.O 
JJ = J + I J 
IF(SUM(Il.~Q.O.OI GO TO 71 

14 F(JJI = A(JJI * X( U I SUM( U 
71 IJ = 41 · * I 
19 COl\iTINUE 

IJ = 0 
CO 22 I= l , 40 
co 15 J = l , 41. 
JJ· = J + IJ 

15 P(Jl = PCJl + Q(Il*F(JJI 
IJ = 41 * I 

22 CONTINUE 
CBAR = O.O 
CO 16 I= 1 , 40 
IF(Q(IJ.LE.C.00000011 GC TO 16 
CBAR = OBAR - 1.442695 * Q(ll * ALOG(Q(lll 
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16 CONTINUE 
AMI = OoO 
IJ = 0 
CO 2 3 I = l , 40 
co 17 J = l , 41 
JJ = J + IJ 
IF(F(JJJ.EQ.c.o.oR.P(J).EQ.O.O) GO TO 17 
CIVl = FCJJ)/P(Jl 
lF(DIVl.LE.0.00000011 GC TO 17 
AMI= AMI + l.442695*Q(ll*F(JJl*ALOG(F(JJ)/P(J)l 

1 7 CCI\ TI NUE 
IJ = 41 * I 

23 CONTINUE 
5 = CB/IR - A~I 
IF(ICO~P.L~.51 GO TO ~6 
GC TC 97 

S6 SSAVG = SSAVG + S 
CBAVG = DBAVG + D8AR 
CBBAVG = DBBAVG + DBBAR 
SS ( ICCf'P l S 
ST(ICOf'PI = OBAR 
SB(ICOMP) = DBBAR 
GO TC 98 

S7 DIFFl = S - SS(ll 
DIFF2 = OBAR - ST(ll 
DIFF3 = OBBAR - SB(ll 
DO <; <; J = l , 4 
JS= J + l 
SS(Jl = SS(JSI 
ST(JI = ST(JSl 

99 SB(Jl SB(JSl 
SS(5l == S 
SH51 OBAR 
SB(51 = OBBAR 
SSAVG = SSAVG + DIFFl 
CBAVG = DBAVG + DIFF2 
CBBAVG = DBBAVG + OIFF3 
ICC"'P = 5 

G8 SAVG = SSAVG/ICOMP 
CAVG = CBAVG/ICCl'IP 
CDAVG = DBBAVG/ICOl'IP 
WRITE(6,95lICOMP,TIME,S,SAVG,OBAR,DAVG,DBBAR,DDAVG,AMI 

95 FORMAT(5X,I5,2X,Fl0.2,7(2X,Fl0.5)J 
METHOD RKSF.X 

END 
STOP 
ENCJGB 
II 

TI~ER CELT=.1,FlNTIM=l063.0,0UTDEL=lO.O 
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