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CHAPTER I 

INTRODUCTION 

This dissertation deals with some nonparametric statistical tests 

which broaden the scope of app!ications of nonparametric methods to 

include some of the experimental designs which are usually presented 

in elementary statistical textbooks dealing with parametric methods of 

analysis but are not presented in elementary statistical textbooks 

which deal with nonparametric methods of analysis. In addition, 

multivariate nonparametric methods are presented for some of these 

de sign structures. 

Most of the theory for nonparametric tests has been developed 

since 1940, with a tremendous increase in the speed of development 

since 1950. These tests were viewed with skepticism for many years 

since they appear to use only a part of the data (usually the order 

relation between observations). However, the relative efficiencies of 

these tests, relative to the standard para.metric tests, have proven to 

be quite satisfactory. In many cases the nonparametric tests are 

superior even when the (often questioned) assumption of normality is 

met. 

Until the latter part of the last decade most of the nonparametric 

tests proposed in the literature were applicable to only the most 

elementary design structures. Within the past five years a number of 

tests have appeared which broaden this scope of application. Due to 

1 
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the newness of these tests as well as the level of mathematical sophis-

tication required to develop them, they have not yet appeared in a form 

which is accessible to most applied researchers. 

The purposes of this dissertation are to present some of these 

tests in a format analogous to that used by Conover [8] which is more 

accessible to applied researchworkers and to present the theory for 

some of these tests at a level such that individuals with a minimal back-

ground in mathematics and statistics may understand the general nature 

of the tests. Persons interested in the complete theory of these tests 

will find that most theories are developed and that complete references 

are given by Puri and Sen [ 17]. 

Several nonparametric tests are available for most of the situa-

tions discussed in this dissertation. The tests illustrated are those 
r. 

based on the function of the ranks l 
a(ri) = n+l ' (in most cases) 

which is a Wilcoxon type test. This choice was made because of the 

ease of computing the test statistic and because most people are 

familiar with the Wilcoxon statistic. Several examples are included 

to illustrate the use of the tests presented and, for each example the 

critical level ti of the test statistic is ·reported. The definition of 

critical level as given by Conover [8, p. 81] is "The critical level {t 

is the smallest significance level at which the null hypothesis would be 

rejected for the given observations. 11 Therefore, if G ::_a, H 0 is 

rejected at the a level of significance. The terms "observed 

significance level 11 and "as soc iated probability 11 are used by various 

subject matter areas instead of critical level. In the tests illustrated, 

midranks have been assigned as ranks in examl)les where ties have 

occurred in the data. 
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In most examples the exact distribution of the test statistic is 

laborious to tabulate; however, all the test statistics presented. in this 

dissertation (except the univariate Wilcoxon Signed Rank statistic} are 

asymptotically chi-square random variables. From the examples 

illustrated by this dissertation and the various authors referenced in 

this dissertation, it appears that the limiting distribution is a 

"satisfactory" approximation of the distribution of the test statistic, 

in most cases, even when the sample size is quite small. For this 

reason, the decision rule will be given in terms of the chi-square 

random variable with appropriate degrees of freedom. 

To be specific, Chapter II presents a bivariate sign test and the 

"basic permutation principle II which is used in many multivariate 

nonparametric statistical tests. Chapter II serves as a background 

for the tests presented throughout the remainder of the dissertation. 

Chapters III, IV and V present tests which appear to be the basic 

tests for extending the use of nonparametric statistics to more 

complicated designs and Chapter VI discusses the use of nonpara

metric statistical tests for interaction in a factorial experiment with 

a randomized complete block design of the experimental units. 



CHAPTER II 

DISTRIBUTION-FREE MULTIVARIATE 

RANK STATISTICS 

Nonparametric univariate rank tests are usually based on some 

function G of the ranks assigned to the data where the distribution of 

G does not depend on the distribution function of the sampled popula

tion when the null hypothesis is true. In considering multivariate data, 

each observation in the univariate case is replaced by a vector; how

ever, when each rank going into G is replaced by the corresponding 

vector of ranks it occurs that the distribution of G now depends on 

the unknown distribution function of the sampled population even when 

the null hypothesis is true. It is usually the case that distribution-free 

multivariate rank tests may be developed by considering some type of 

conditional distribution involving the multivariate function G or a 

similar function [17]. To see how this may be accomplished consider, 

a one sample bivariate sign test and a general procedure which can be 

used to develop some multivariate permutation tests which are based 

. on the ranks assigned to the data. 

The Bivarlate Sign Te st 

Let us first consider the bivariate sign test. This test is 

applicable to a bivarlate randomized block structure; that is, observa

tions on p = 2 variables under t = 2 treatment conditions within 

4 
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each of b blocks. Let Z.. denote the bivariate 0bservation in block 
lJ 

· i ( = l, 2, •.. b} receiving treatment j ( = 1, 2) having elements z .. 1 
LJ 

and Z .. 2 ; that Ls, Z .. = (Z .. 1 , Z .. 2 ). Thenforeachbl0ckdefine the 
LJ lJ lJ lJ 

bivariate vector of differences · X. as X. = z. 1 - z. 2 = (X. 1., X. 2) 
1 l l 1 l l 

where the element X. = z. 1 - Z .2 for s = 1, 2. The vectors 
lS 1 S 1 S 

Z.. and X. are defined here as row vectors instead of column 
lJ l 

vectors simply to facilitate the geometric argument which follows. 

Suppose the b vectors of differences are stochastically independent 

and the vector X. has a continuous distribution function F. (X) for 
1 1 

i = 1, 2, .•• b where X is an element of the two-dimensional 

Euclidean vector space R2 • We wish to test the hypothesis that the 

marginal medians of X are both zero, so we have 

i = l, 2, ... , b, where the F. 
l 

are otherwise arbitrary. We are then testing the hypothesis that the 

two treatments have the same location parameters within variables. 

Define the quadrants of the plane R 2 as usual denoting them as 

a. = P [X. e 0 1 U o3 ] and assume 
l 1 

0 < ai < l. Ifwe let 13i = P[Xie 0 3 1Xte 0 1 U 0 3 ] and 

y i = f [xi e 02 I xi e Q2 U Q4], then.· Ho may be written as 

· H 0 : 131 = yi = ~ for each i. This is true since we are saying that 

each component of the vector x . 
. · 1 

is as likely to be po-sitive as to be 

negative. From the sample X. with i = l, 2, ••. , b , let Y be the 
l q 

·\ 
number of X's in quadrant q for q = 1, 2, 3, 4,. 

4 • 
0 < Y < b for each q and :E Y = b. When 

- q - q=l q 
'true, Y 1 and Y 3 are identically distributed and 

Note that 

l 
H 0 : l3. = y. = 2- . is 

1 1 

Y 1 and Y3 have 

different distributions if H 0 is false. The same statement is true 

for Y 2 and Y 4 . The statement that Y 1 and Y 3 are identically 



6 

distributed follows from the definition of [3. and the null hypothesis, 
l 

since we are saying that an X has the same probability of being in 

0 3 and Q 1 given it is in Q 1 U 0 3 . A similar situation occurs with 

Y2 and Y4 . Thissuggestsbasingateston Y 1 -Y3 and Y2 -Y4 ; 

however the joint distribution of (Y 1, Y2 , Y3 , Y4 ) depends on the 

unknown values of F. (O, O) for i = 1, 2, •.. , b. This problem can be 
l 

resolved by considering the conditional distribution of (Y 1, Y2 , Y3, Y4 ) 

given N the number of Xi's in Q 1 U Q 3 and, hence, b -N the 

number in Q 2 U 0 4 . In order to have notation to use in considering 

the problem let n(O :::_ n :::_ b) be an integer and. let (i 1, i2 , ... , in), 

(in+l' in+2 , ... , ib) be a two part partition of the integers 

1,2,3, ... ,b with i 1 < i 2 < ... <in and in+l < in+ 2 < ... < ib 

where if n = 0 or n = b then one subset of the partition is empty. 

Also let E. . . be the eve;t that X,1 e Q 1 U 0 3 for 
11· 12' ..• , ln 

i = i 1• i 2 , .•• , in and Xie 0 2 U 0 4 otherwise. Using this notation 

we have 

and 

= ( a. a. 
11 12 

t •• a. )(1-a. ) (1-a. ) ... (1-a.) 
1n 1n+ 1 1 n+2 1b 

P[Y3= r_, Yz= r2IE. . . . ,Ho]= P[Y3= r·1· Yz= rzlN=n,Ho] 
1 1 1,12 , •.. ,in 

where O :::_ r 1 :::_ n,_ 0 < r 2 .< b-n. But this shows that Y3 and Y2 

are conditionally independent binomial variables with parameters 

I 
(n -) and • 2 . 

1 
(b- n, 2 ) respectively; therefore, a test can be based on 

• 



= 4 ( N) 2 4 ( . b-N) 2 
T N Y3-2 + b-N Y~--2- . 

The distribution.of probabilities for the statistic T, given, N and 

H 0 , may be tabulated from the knowledge that Y 3 and Y 2 are 

conditionally independent binomial variables and it may be approxi-

mated by the distribution of the chi-square random variable with two 

degrees of freedom for large b and · N. 

The more general multivariate sign test will be discussed. in 

Chapter IV as a special case of the multivariate Friedman statistic. 

The Multivariate Signed Rank Test 

A general procedure which is used in several multivariate rank 

tests will be illustrated by considering the multivariate signed rank 

test. The multivariate signed rank test is a multivariate extension of 

1 

the Wilcoxon signed rank test for matched pairs. The design structure 

to which it applies may be viewed as a p-variate randomized complete 

block design of 2 treatments and b blocks; that is, each sample point 

con.sists of a p-tuple of observed values. Also, the observations on 

the two treatments within each block represent repeated measures. 

Data: 

The data consists of b p-variate vectors of observations on 

each of 2 treatments; that Ls, Z .. = (Z .. 1, Z .. 2 , ... , Z .. ) 1 for 
lJ lJ lJ lJ p 

i = 1, 2, •.. , b and j = 1, 2 is the p-variate observation from the 

/h block and /h treatment. Let X. = Z . 1 - Z .2 be the p-variate 
l l l 

vector of differences between the two treatment vectors in block i. 



Assumptions: 

( 1) The Xi are independent p-variate random vectors. 

(2) The X. have continuous cumu'lative distribution 
1 

functions Fi (X, Q) with X e RP , Q e RP where 

Q is a vector of location parameters. 

(3) Fi(X, Q) is diagonally symmetric about Q; that is, 

(X - Q and Q - X have the same distribution). 

(4) The scale of measurement is at least ordinal. 

Suppose we want to test the hypothesis H 0 : Q :::: . <j> against the 

alternative H 1 : Q # <j>, then as before the joint distributi'on of the 

ranks assigned within the set { Jxij J, i:::: 1, 2, ... , b} for each 

·j :::: 1, 2, ... , p depends on the distribution functions F 1, F 2 , ... , F b 

of the sampled populatio;ns even when H 0 is true -- unless the 

variables X. 1, X. 2 , .•. , "x. are mutually independent. To obtain a 
1 1 lp 

conditionally distribution-free test, let D be the bx p matrix of 
x 

differences whose i th row is Xi. Consider the group Q of trans -

formations { fb} given by 

for r. = 0, l and i = 1, 2, •.. , b. For any D (fixed), n has 2b 
1 • X ~ 

distinct points:. 1 Under .H0 , the point.s. in Q are equally likely 
' 

because of the diagonal symmetry of each F .. 
1 

Denote the set of 2 b 

distinct points in Q by S(D ) , then the distribution of D given x .. x 

D e S(D ). is uniform on the zb points. A test function of cp(D ) 
x x x 

is selected by considering the particular alternative we want to test 

8 
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and such that the probability of type I error is a. The test statistic 

is developed as follows. 

The matrix of difference was defined as 

x11 x12 

x21 

D = x 

xbl 

where one can think about the . th 
1 row as the p treatment differences 

observed in block i. Define 

rll rl2 rlp 

r21 r2p 

R = 

rbl rbp 

as the bx p matrix of ranks obtained by ranking the absolute values 

of the elements withfo columns of the sample matrix 

order; that is, r.. is the rank of IX .. I among the 
lJ lJ 

D x in ascending 

IX, .I, lx2 . I, .•• , IXb. I for each fixed j = 1, 2, ... , p. Let 
iJ J J 

where 

b 
::?::: r .. c .. 

i= 1 lJ lJ 
for j=l,2, .•. ,p 



be 
1 

b+l 

c .. = 
lJ 

1 if X .. > 0 
lJ 

-1 if X .. < 0 
lJ 

times the sum of the signed ranks assigned to variable j. 

10 

Also let T = {T 1, T 2 , ... , Tp)' and let C be the b X p matrix whose 

(i, j) element is c ... 
lJ 

The covariance matrix V of the vector T 

whose (i, j) element is 

E[Tj ID e S(D ),Ho]= 0 x x 

v.. is obtained by noting that 
. lJ 

for each j and 

Thus 

If 1 = j , then V,, 
lJ 

I 
v .. ~ = 

lJ b{b + 1)2 

becomes 

v ~ ~ = 
ll 

b 
~ 

k= 1 

l 

(b + 1)2 

= 
b(2b +l) 
6 (b + 1) 

The test statistic for testing H 0 against H 1 is now defined as 

A problem arises in that V may be singular; however, this may 

be overcome by using the highest order non-singular minor matrix of 

V and the corresponding components of \T. 
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The conpitional distribution of probabilities for the statistic S, 

given that D E S(D ) x x and is true, can be calculated from the 

discrete uniform distribution with zb points. The amount of 

arithmetic required to do this calculation is prohibitive if b is large; 

however, the limiting distribution of S is the distribution of the chi-

square random variable with p degrees of freedom [17]. The 

following numerical example is given to illustrate the calculation of 

the exact conditional distribution and the test statistic for a particular 

case, 

Example: 

Four students were given a form A test and a form B test 

which were designed to measure both verbal usage and quantitative 

skills. Scores are recorded in Table I with the verbal usage score 

first and the quantitative skill score second. 

We wish to test the hypothesis that the two test forms are equiva-

lent. This can be accomplished by defining 

-5 1 

D 
-1 -5 

= 
x 6 3 

-4 8 

where D is obtained from Table I by subtracting the test scores on x 

form B from the corresponding test scores on form A and testing 



TABLE I 

TEST SCORES FROM TWO TEST FORMS MEASURING VERBAL 
USAGE (VU) AND QUANTITATIVE SKILLS (QS) 

Student Variable Form A Form B 

l vu 70 75 
QS 89 90 

2 vu 64 65 
QS 45 50 

3 vu 73 67 
QS 64 61 

4 vu 89 93 
QS 87 79 

12 

Now, under H0 , X is symmetric about <p and we may use the test 

outlined. This gives 

3 1 -1 -1 

R 1 3 c -1 -1 
= = 

4 2 1 1 

2 4 -1 1 

: ) ' -1 _25 ( 5 
v = 

36 -1 

T' = (-4, . 4) and S = • 3333 . 



13 

From the distribution of probabilities for S developed in the discus

sion which follows, ~ = P(S -~. 3333) = 1 which implies that our data 

has supplied the least possible support for H 1 ; hence, H0 would not 

be rejected, 

Theory: 

The distribution of the ranks assigned to the data depends on the 

distribution functions of the populations sampled, so it is necessary to 

use a conditional distribution or a limiting distribution to tabulate the 

distribution of probabilities for S. Tables of probabilities for the 

conditional distribution of S are not readily available, nor easily 

calculated, so it is convenient to use the limiting distribution. Even 

so, we will use the data in the previous example to illustrate the 

computations involved in tabulating the conditional distribution of S. 

The 24 points in S(D ) 
x 

and the corresponding values of C, T, and 

S are given in Table II. 

The values of S are found by considering the group of transfor-

mations 

where j. = 0, l and i = 1, 2, 3, 4. As Table· II shows we have 16 
l 

points in S(D ) 
x 

with 8 distinct values of S; since the points-in 

S(Dx) are equally likely under H 0 and each value of S appears 

e;xactly twice, the 8 distinct values of S are equally likely, each 

with probability . 125. We see that P [S ~. 3333] = 1 which does 

not give any support for the alternate hypothesis. We also note 
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TABLE U· - -· 

THE EXACT DISTRIBUTION OF S 

Point• or S(Dx) c• 5 T' s 

cs ·l 6 ·:)' (•l -1 ·:) (-2, 2) • 3333 ·l .5 3 ·l ·1 

I 

·:) ("s 6 -:) (-1 ( 0, 8) 2.2222 
-1 5 3 -1 

(-5 -6 ·:)' . (•l -1 ·:) (-8, 4) 3.2222 
-1 5 -3 -1 l -1 

(•5 -6 .:)' ("l -1 .:) (-4,4) .8888 
-1 5 -3 -1 l -1 

(-5 -1 -6 ·:)' ("l -1 -1 -:) (-10, -2) 3.6111 
-1 . -5 -3 -1 -1 -1 

(·: -1 -6 .:)' (-1 
-1 -1 .:) (-6, -10) 3.8888 

-5 -3 -1 -1 -1 

cs -1 6 .:)' (-1 
-1 .: ) (2, -6) 1.5555 

al -5 3 -1 -1 

es l 6 .:)' (•l .:) (4, 0) • 5555 
-1 5 3 -1 

c -1 6 -: )' G -1 -:) (4, 4) .8888 
-5 3 -1 

c ·:) 
. c ·:) 6 ( 6, 10) 3.8888 

5 3 

c -6 ~)' G -1 -:) (-2, 6) 1. 5555 
5 -3 -1 

c l -6 .:)' c -1 
.:) ( 2, -2) .3333 

5 -3 -1 

c -1 -6 ~)' c -1 -1 -: ) (-4, 0) • 5555 -s -3 -1 -1 

l~ .1 -6 .:)' c -1 -1 _;) ( 0, -8) 2.2222 
-5 -3 -1 -1 

G 
• 

G .: ) -1 6 .:) -1 
( 8, -41 3.2222 

-5 3 -1 

c l 6 .:) c l .:) (10, 21 3. 6111 
5 3 1 
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from this distribution that for a • 125 level of significance the critical 

value is 3. 8888 and that a randomized test is necessary for any 

smaller level of significance. 



CHAPTER III 

THE MULTIVARIATE KRUSKAL-WALLIS TEST 

FOR THE COMPLETELY RANDOMIZED 

DESIGN 

The -Multivariate Kruskal- Wallis test is a generalization of the 

univariate Kruskal-Wallis test and is used for -the multivariate multi-

sample problem.. It is applicable in the case of t independent random 

samples of size ni, i = 1, 2, ..• , t, from a p-variate -random vector 

in a completely randomized design or a one -way classification. In the 
t 

case that t = 2, the test statistic is L = ~ =~ T 2 where N = ~ n. 
i=l l 

and is the Hotelling's statistic except that the ranks 

assigned are used to calculate the statistic T 2 instead of the 

observed data. 

Data: 

The data consists of a random sample from each of t treatment 

populations where the ith sample is a p-variate sample of size n. 
,1 

for. i = 1, 2, ... , t and p > 1. The data from the /h sample may 

be displayed as the P x n. matrix X. where 
l 1 

xill 

x. = 
1 

xilp 

xi21 

xi2p 

16 

x. 1 in. 
1 

x. 
1n.p 

,1 
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and X.. denotes observation number j on variable number s under 
lJ s 

treatment i (or within sample i). Let F.(X, 0.) for Xe RP and 
1 1 

n. in RP denote the distribution function for the i th treatment, 
1 

where n. is a vector of location parameters. Let 
1 

XN = [x 1, x2 , ... , Xt] be the p x N matrix of observations. Assign 

the rank r.. to X.. where the X .. 's are ranked in ascending 
ys ~s ys 

algebraic order among the N elements {Xijs} for i = 1, 2, ... , t 

and j = 1, 2, ..• , n. for each fixed variable s; that is, the observa-
1 

tions taken within each variable are ranked as in the univariate 

Kruskal-Wallis test. Let R. denote the 
1 

matrix of ranks 

assigned to the data in sample i where the (s,j) elementis r .. 
lJ s 

Also define the p x N matrix R = [R 1, R 2 , ... , Rt]; that is, rows in 

R contains the ranks assigned within variable s. 

Assumptions: 

( 1) F.(X, 0,) is continuous for each i. 
1 l 

(2) The N p-variate vectors of observations are independent. 

(3) The scale of measurement is at least ordinal {within each 

variable). 

Hypo the sis: 

H 1 : Some two O's are not equal. 

Note that H 0 involves vect0r valued parameters 

' n. = {w. 1.·,w. 2., ... ,w. )' and implies that w. = w for all i, m and 
1 . 1 1 1p 1s ms 

s, but does not imply that w. = w.k for any i, s or k with sf:. k. 
18 l 
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Test statistic: 

Compute the p x p covariance matrix V = RR' - !_N(N+l)2 JP 
4 p 

where Jr is an r x c matrix with all elements 1 . Compute the t c 

p-variate vectors R. = (i='". 1, i='". 2 , ... , r. )' whose components are 
l 1 1 1p 

the means of the ranks assigned to the p-variables for the ith treat

ment; that is, for fixed i define 

s = 1,2, ... ,p. We also need 

u. = R. 
l 1 

ni 
1 

~ r .. = r. 
18 n. · 13 s 

1 j = 1 

N +l J p 
-2- 1 

for 

which is the p-variate vector of mean deviations for each treatment. 

The test statistic is 

L = (N - 1) 

Decision rule: 

t 
~ n. u. 1 

1 1 
i= 1 

V -1 
u. 

l 

The exact conditional distribution of the statistic L is- laborious 

to calculate so the limiting distribution of L is used. According to 

Puri and Sen [ 17]. the limiting distribution of L is the distribution 

qJ the chi-square random variable with p(t -1) degrees of freedom. 

~ 

Thus, H 0 is rejected at the a level of significance if 

L > ·7-2 [p(t -1), a] where x2 [p(t -1), a] is the 1 - a quantile from 

the distribution of the chi-square random variable with p(t -1) 

degr'ees of freedom . .. 
Example: 

Jerome L. Meyers [14] gives the data (Table III) from a 

completely randomized two -factor experiment. For a plausible 
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context, suppose the levels. of A represent two varieties of corn and 

the levels of B represent three fertilizers with the scores being 

yields in bushels for one-third ac~e plots. The Multivariate Kruskal-

Wallis may be used to test the "main effect" of Treatment A. 

H 0 : There is no difference in varieties. 

H 1 : There is a difference in varieties. 

This gives t = 2 treatments and p = 3 variates (levels of B) each 

with n 1 = n2 = 8 observations per treatment so N = 16.. Ranks 

assigned over the two levels of A for each fixed level of B are given 

in Table III. 

Bl 

TABLE III 

CORN YIELDS PER ONE-THIRD ACRE 
AND THE ASSIGNMENT OF RANKS 

Al A2 

B2 B3 Bl B2 

bbs'n Rank Obs'n Rank Obs'n Rank Obs'n Rank Obs'n Rank 

7 2 6 3.5 9 9 42 16 28 15 

33 15 11 6.5 12 12.5 25 9 6 3.5 

26 10 11 6.5 6 6.5 8 3 1 1 

27 11 18 12.5 24 16 28 12 15 10.5 

21 7 14 8.5 7 8 30 13 9 5 

6 1 18 12.5 10 10.5 22 8 15 10.5 

14 4 19 14 l 1.5 17 5 2 2 

19 6 14 8.5 10 10.5 32 14 37 6 

B3 

Obs'n Rank 

13 13 

18 14 

23 15 

1 1.5 

3 4 

4 5 

6 6.5 
2 3 



From Table III we calculate 

340 93.50 -18.0 

v = 93. 50 

-18, 0 

337.5 

-86. 5 

-86. 5 

338.5 

and U2 : ( 1i ' -4;/ -1) I 

thus 

. 003185 -.000898 ,-. 00060 
12 

-8 

8 ( 12 4. 5 6) -.000898 . 003424 . 000827 4.5 L - ·2·15 -- --, - 8 - 8 ' 8 ' 8 

-. 00060 .000827 . 003162 6 
8 

= 3. 261949 0 

Using the chi-square approximation (3 degrees ,of freedom) 

gives . 25 < ~ <. 50. An analysis of variance for the factorial 

experiment using the F test gives ~ > . 25 for the main effect of 

factor A. 

Theory: 

20' 

The distribution of the ranks assigned to the data depends on the 

sampled distribution functions (even when H0 is true). The statistic 

L is conditionally distribution-free under H0 and may be calculated 

from the uniform distribution over N ! points. For thls reason 

tables of probabilities for L are not readily available so it is 

convenient and apparently satisfactory to use the limiting distribution 

to approximate the distribution of L, Puri and Sen [17] show that 



the conditional limiting distribution of L is the distribution of the 

chi-square random variable with p(t -1) degrees of freedom. 
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CHAPTER IV 

SOME TESTS FOR TWO-WAY 

CLASSIFICATIONS 

The Ranking After Alignment Procedure 

for the Friedman Test 

One of the basic de signs in a two-way layout is the randomized 

complete block design. Conover [8] illustrates the use of the well 

known "Friedman test" for this design. He gives the usual assump

tions as: 

(1) The observations in different blocks are independent. 

(2) The observations within each block may be arranged 

in increasing order according to some criterion of 

interest. 

Since the Friedman test makes use only of the intrablo,ck ranks, the 

efficiency of this test may be improved in certain examples by a 

procedure Puri and Sen [17] call "ranking after alignment. 11 The 

''ranking after alignment" procedure uses an intrablock transformation 

then a ranking procedure· which ignores the blocks and thus makes use 

of interblock information as well as intrablock information. 

22 



Data: 

Let X.. be the observation in the i th of . b(b > 2) blocks 
lJ 

receiving the /h of t treatments. Let X. be the mean of the 
l• 

observations in block i. Align the data by subtracting x. 
l• 

from 
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each observation in block i; that is, let y .. = x .. - x. for each ·i 
lJ lJ l• 

and j and call Y.. the aligned observations. Next assign ranks 
lJ 

r .. to the N = bt aligned observations with·rank 1 assigned to the 
lJ 

smallest, rank 2 assigned to the next smallest and continuing in this 

manner with rank N assigned to the largest aligned observation. 

Assumptions: 

To simplify the communication consider the model 

X .. = µ. + 13. + T. + e .. for i = 1,2, ••. ,b and j = 1,2, ..• ,t where 
lJ l J lJ 

as usual µ. is the mean effect, 131 the effect of the ith block, T •. the 
J 

effe.ct of the · /h treatment and the e .. 1 s the residual error 
lJ 

components. Using this notation we may write the assumptions as 

follows: 

(1) e. = (e. 1,e. 2 , ••• ,e.t) for i= 1,2, .•• ,b are independent 
l l l l 

t-variate random vectors. 

(2) Gi (X 1, x2 , ••• , Xt), the joint commulative distribution 

function of the elements of e .. , . is continuous and 
lJ 

symmetric in its t arguments for each i = 1, 2, ... , b 

(3) The measurement scale is at least interval. 

(4) 
t 
E T. = 

l 
i=l 

0 . 
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Hypothesis: 

Test statistic: 

A few preliminary definitions and calculations are needed. in the 

computation of the test statistic. Let 

l b r .. 
T = ~ _.:!:l_ (T T ) . b LI N+l ' T = 1' 2''' .,Tt' 

J i=l 

2 1 b t 

(rij - ~ 
t 

rik)2 er = 
(N+1)2 b(t-1) 

~ ~ ~ and 
i= 1 j=l k=l 

1 t r.k 1 b 1 E. ~ 
1 then E ~ E. = = N+l = b 2' 1 t k=l i= 1 1 

The test statistic is defined as 

t 
SN = \ ~ (TJ. - ~ )2 

er j = 1 

Decision Rule: 

We can reject H 0 at the a ,level of significance if SN exceeds 

the 1 - a quantile of the conditional distribution of SN under H 0 • 

Again. the conditional d'istribution of SN is laborious to tabulate ·if b 

is large so the limiting distribution is used. Thus, the decisfon rule 

· is to reject H 0 at the a level of significance if SN exceeds the 
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1 - a quantile of the chi-square random variable with (t - 1) degrees 

of freedom, since the limiting distribution of SN is the distribution 

of the chi-square random variable with t - 1 degrees of freedom [17}, 

Example: 

Bing [1] compared the effect of several herbicides on the spike 

weight of gladiolus, The average weight per spike in ounces is 

recorded in Table IV. 

TABLE IV 

AVERAGE SPIKE WEIGHT IN OUNCES 

B 
~nt 2. 4-D TCA Check DN/cr Se sin x. 

L• 

1 2.05 1. 25 1. 95 1. 7 5 1. 75 

2 1. 56 1. 73 2.00 1. 93 1. 80 

3 1. 68 1. 82 1. 83 1.. 70 1. 76 

4 1. 69 1. 31 1. 81 1. 59 1. 60 

From Table V we can calculate T = (. 49, . 2 5, . 78, • 49) and 

SN = 50 9956 o Comparing 

3 degrees of freedom gives 

SN to the chi -square random variable with 

/\ olO<a<.25. 
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TABLE V 

RANKS OF THE ALIGNED OBSERVATIONS 

~ts 2.4-D TCA Check DN/cr Se sin E. 
B 1 

l 15 l 14 8 . 5588 

2 3 5 13 12 . 4853 

3 4 9 10 6 . 4265 

4 11 2 16 7 . 5294 

T. . 4853 
J 

.25 . 7794 . 4853 

Theory: 

The Friedman statistic is distribution-free under H 0, but the 

aligned variables within each block are usually dependent and it is 

necessary to use a conditionally distribution-free statistic in the 

ranking after alignment procedure. The alignment procedure sub-

tracts out the block effect and under H0 .leaves interchangable 

random variables. So the test is a test of interchangability of the 

aligned values Y il' Y12 , ... , Yit for each i. The joint commulative 

distribution of {Y. 1, Y. 2 •... , Y.t) is invariant under the t! permu-
1 1 l 

tations of the coordinates among themselves, for each i = 1, 2, ... , b, 

so there are (t!)b equally likely points in the group of transforma-

tions. For large b or t this makes computation of the distribution 

function difficult and for this reason it is again convenient to use the 

limiting distribution of SN which is the distribution of the chi-square 

random variable with (t - l) degrees of freedom [17]. Puri and Sen 
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[17] also show that the efficiency of the Friedman statistic relative to 

the variance ratio test for normal alternatives (parametric analysis of 

variances) is less than 3/rr and that the efficiency of SN relative to 

the variance ratio test is 3 I Tr when t = 2 and strictly greater than 

3 I Tr when t > 2 . Such an. increase in efficiency is not surprising, 

since the statistic SN assumed an interval scale of measurement 

(as does the variance ratio test) while the Friedman statistic assumes 

only an ordinal scale of measurement within blocks. 

The Randomized Complete Block Design 

With Several Observations per Cell 

A "ranking after alignment" procedure for the randomized 

complete block design with one· observation per cell has been discussed 

in the previous section. This section will extend the consideration to 

the case of several observations per cell [17]. 

Data: 

The data consists of m. observations on the 
J 

.th 
J of t treat-

ments within each of b blocks. The total number ·of observations is 
t t 

then N = b ~ m. = b M, where M = ~ m. . As before we align 
j=l J j=l J 

the observations by subtracting the block mean from each observation 

within that block. Next we assign ranks to the N aligned observations 

in ascending algebraic order (ignoring treatments) and let r .. k be 
lJ 

the rank assigned to the kth observation under the /h treatment 

in block i. We also denote the "average" of the ranks assigned to 

the bm. 
J 

observations on treatment j by (N+l) T(N,j) where 



and define 

2 1 
(J" = b(M -1) 

T (N' j) = 

b t mj 
~ ~ ~ 

i=l j=l k=l 

r ijk 
N +l 

hk-t i;l ';J 
(N +1/ 

as the (pooled) within block mean square of the rank scores. 

Assumptions: 

The assumptions, hypotheses and theory are the same as when 

we have one observation per cell except that the number of points in 
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the transformation space, used to calculate the conditional distribution 

of the test statistic, is larger. 

Te st statistic: 

The test statistic is 
b t 1 2 

= 2 ~ mJ. [T(N,J')-2] 
(J" j=l 

Decision rule: 

Reject H 0 at the a . level of s ignif~cance if SN exceeds the 

1 - a quantile from the chi-square distribution with ··t - 1 degrees of 

freedom. The chi-square approximation is used because the exact 

conditional permutation distribution of SN is. laborious to compute. 

Example: 

Five fertilizers were tested for possible different effects on 

yields of oats. The design is the randomized complete block design 



29 

with six blocks. The experimenter selected 3 sample quadrats, each 

,three feet square, as experimental plots and determined the yield of 

each of the 90 quadrats. The coded yields from Ostle [15] are give~ 

. in Table VI. 

TABLE VI 

OATS YIELDS 

~ 1 2 3 4 5 Block Mean 
s 

57 67 95 102 123 
1 46 72 90 88 101 83.06667 

28 66 89 109 113 

26 44 92 96 93 
2 38 68 89 89 110 77.06667 

20 64 106 106 115 

39 57 91 102 112 
3 39 61 82 93 104 79.46667 

43 61 98 98 112 

23 74 105 103 120 
4 36 47 85 90 101 78. 13333 

18 69 85 105 111 

48 61 78 99 113 
5 35 60 89 87 109 81.40 

48 75 95 113 111 

50 68 85 117 124 
6 37 65 74 93 102 80.00 

19 61 80 107 i'l8 
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TABLE VII 

RANKS OF THE ALIGNED OBSERVATIONS ON OATS YIELDS 

~ B 
1 2 3 4 5 

20 28 52 63 .. 5 88 
1 13 32 47 41 60 

4 27 44 70 78 

5,5 17 57 63.5 58 
2 12 34 52 52 84 

3 30 67 75 86 

10~ 5 21 49 66 81. 5 
3 10.5 25.5 40 55 68 

14 25. ,5 61. 5 61. 5 81. 5 

4 37 71. 5 69 89 
4 9 18 45.5 50 67 

2 33 45.5 71. 5 83 

15. 5 22 38 59 79.5 
5 7 23 48 43 74 

15.5 35 56 79.5 77 

19 31 42 85 90 
6 8 29 36 54 65 

1 24 39 73 87 

91 T. 9.6389 27.3333 50 62.8611 77.5833 
J 

1 2 
(Tj - 2) . 1553 . 0398 . 00244 . 0364 . 1243 

2 Using Tables VI and VII we can calculate <T = • 08728 and 

SN= . i:\(~)8 (. 3 58294) = 73. 8920. Then using the chi-square 

approximation (4 degrees of freedom) we see that ~ is ·less than 
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.. 001 and we have strong support for the alternative that the effects of 

the five fertilizers are unequal. 

Gerig's Multivariate Extension of the 

Friedman Statistic 

The univariate randomized complete block design has been 

discussed in the previous sections. Gerig [9] developed the Multi-

variate Friedman test which is a generalization of the Friedman test 

to the case where the observation in each cell of the randomized 

complete block design is a p-variate observation. Puri and Sen [17f 

also suggest a "ranking after alignment 11 procedure which will 

improve the efficiency in the case of additive block effects. Both of 

the·procedures will be discussed in the following.pages. 

Data: 

The data consists of a p-variate observation from each of the 

·N = b t cells with 

observation in the 

treatments. Let 

x .. 
lJ 

.th 
l 

s r .. 
lJ 

1 2 p = (X .. , X .. , ••• , X .. ) 1 denoting .the p-variate 
lJ . lJ lJ 

of b blocks which· received the /h of t 

denote the rank assigned to the observation on 

variable s. in block . i which received treatment j where the 
... ' ~ 

observations on each variable are rap.ked from 1 to t across the 

treatments ·within each block .. For block · i let R. denote the p X t 
' l 

matrix of ranks whose (s,j) 1 . s h . e ement 1s r .. ; t at 1s, 
lJ 

, .. 
~ .. 



1 1 1 
ril r.2 

l r "t l 

2 
r it 

R. = 
l . 

p 
ril 

p 
rit 

and let 

V. = l [R. R: - .!_ t(t + 1) 2 J p] • 
1 t-1 1 1 4 p 

Assumptions: 

( 1) F .. (X), the distribution function of X .. , is continuous 
~ ~ 

for each i and j . 

(2) F.,(X) = F.(X - Q.) 
~ l J 

for each i = 1, 2, ..• , b 

is a vector of location parameters; that is, 

_ 1 2 p r 
Q. - (w. ,w, , .•• ,w.). 

J J J J 

(3) The blocks are independent; however 

for j f. j' may not be independent. 

X .. 
lJ 

where Q, 
J 

and X .. , 
LJ 

(4) The measurement scale is at least ordinal within each 

block. 

Hypo theses: 

for j = 1, 2, ... , t and k=l,2, .•. ,t. 

H 1 : Qj -f. Qk for at least two values j -f. k. 

32 
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Please note again that H 0 involves vector valued parameters 

and does not imply equality of components within the vectors r.l. , but 
J 

and Qk implies equality between corresponding components of n. 
J 

for j :f. k. 

Test statistic: 

Some additional notation is needed to define the test statistic, so 

let 

l b 
v = 5" k:1 vi, 

and 

then the test statistic 

1 2 3 
T. = (T. , T. , T. 

J J J J 

T.s 
J 

t 
Q = b ~ T ~ v-l T. 

j = 1 J J 

1 
= b 

i= 1 

b s 1 
~ ·r .. - -(t+l) 

lJ 2 

Since v-l does not depend.on the index of summation j, Q may 

also be written as 

p 
Q = b ~ t v- 1(s, s 1 ) w(s, s 1 ) 

s=l s 1=1 

where -1 v (s, s 1 ) and w(s,•_s 1 ) are the (s, s 1 ) elements in the 

matrices v-l and W = T I T, respectively, and T is the t x p 

matrix whose (s, j) element is s 
T .. 

J 
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Decision rule: 

We can reject H 0 at the a level of significance if Q exceeds 

the 1 - a quantile of the conditional distribution of Q under H 0 . 

Again the conditional distribution of Q is laborious to construct if b 

and t are not small so the limiting distribution is used. Then our 

decision rule is "reject H 0 at the a level of significance if Q 

exceeds the 1 - a quantile of the dlstribution of the chi-square 

random variable with p(t-1) degrees of freedom" since the limiting 

distribution of Q is the distribution of the chi-square random variable 

with p(t-1) degrees of freedom [9]. 

Koch [11] has indicated that the multivariate Friedman test is 

a valid procedure to use in a randomized block experiment with a 

factorial arrangement of treatments to test the hypothesis that the 

main effect of one of the factors and all its interactions are zero. 

This is accomplished by letting the levels of one factor be the treat

ments and the combinations of levels of the other factors be the 

variables. 

Example: 

Pearce [16] gives a 3 x 3 factorial experiment in four blocks 

which will be used as an example. The experiment was conducted to 

determine the effect of growth substances upon peas. Doses of either 

1, 10, or 100 micrograms of Gibberellic acid were applied to either 

the 3rd, 6th or 9th node of the plant and a measurement of the 

thickness of the leaf was taken at node 10. The data is given in 

Table VIII with factor A representing the doses and factor B 

representing the node of application. Let a 1 , a 2 and ~3 denote 
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the treatment levels of 1, 10, and 100 microgram doses, re spec-

tively, and let b 1 , b 2 , and b3 denote the variables corresponding 

to an application of the dose to the 3rd, 6th and 9th nodes, re spec -

tively. 

Block 

1 

2 

3 

4 

TABLE VIII 

THICKNESS OF THE PEA LEAVES AT NODE TEN 
AND THE ASSIGNMENT OF RANKS 

Treatments 

Variable al a2 

Obs'n Rank Obs'n Rank Obs'n 

bl 9.0 3 6.6 1 6.7 

b2 7.6 3 6. 0 2 5.9 

b3 7. 1 1 8.7 2 9. 1 

bl 8.9 3 6. 5 1 8.8 

b2 8. 1 3 5.6 1 5.8 

~3 8.3 3 9.0 3 7.8 

bl 9. 1 2 9.2 3 6. 5 

b2 9.3 3 7.0 2 6.4 

b3 8.3 l 8. 5 2 9.0 

bl 9.0 3 8.9 2 7.0 

b2 7 . 2 3 6. 3, 2 5.9 

b3 8.0 2 8.3 3 7.0 

a3 

Rank 

2 

1 

3 

2 

2 

1 

1 

1 

3 

1 

1 

1 
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. If we wish to test that the main effect of A and the AB inter-

action are zero, we can use the theory in the previous pages when the 

levels of B are the variables within the vectors, thus we have p = 3. 

To test this hypothesis, let the levels of A be the treatments then 

assign ranks within the blocks across the levels of A for each 

variable (levels of B). The ranks assigned are also given in Table VIII. 

From Table VIII we calculate 

~ 
1 j ~ 

1 

~ ~ 
3 

~ Rl = 2 R = 1 R3 = 2 
2 

2 3 2 

~ 
2 ] [.00 . 75 -. 2J 

R4 = 2 and V = . 75 1. 00 -. 5 • 

3 -. 25 -. 5 1. 00 

Using the corrected mean vectors T 1 = (. 75, 1, -. 5) 1 , 

T 2 ={-.25,-.25,.5)', and T 3 = (-5, -.75,0) for the three levels 

of A, the value of the test statistic becomes Q = 8. 30. Using the 

chi-square approximation with 6 degrees of freedom shows 

• 20 < a < . 25, Thus the null hypothesis would not be rejected at any 

of the commonly used significance levels. 

Theory: 

As in tests discussed previously, the distribution of the ranks 

as signed to the data depends on the sampled distribution functions even 

• when .H0 is true. For this reason it is necessary to use a conditional 

permutation distribution as in other multivariate tests. Gerig shows 

the limiting distribution of Q to be the chi-square distribution with 
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p{t-1) degrees of freedom [9]. Gerig also discusses the efficiency of 

the statistlc Q relative to the univariate likelihood ratio test and gives 

a table of the efficiency when p is 2 and t > 2 for some different 

correlation coefficients. 

Special Cases of Gerig' s Statistic 

In the case where t = 2 the Multivariate Friedman Statistic may 

be calculated by considering the signs of the entries in the p-variate 

vector d. which is obtained by subtracting one column of the · p X 2 
l 

matrix R. from the other and thus it is a multivariate sign test. To 
l 

see how this is accomplished let d.s = 
l 

s s th 
r. 1 - r. 2 · be the s 
·1 · 1 

component of the s 
p-variate vector ~i. Note that di = :±: 1 for each 

i and s , since r.~ = 1 or 2 for all i, j and s .. Let k{s, s') be 
lJ 

s s' the number of blocks in which the signs of d. and d. are the 
l l 

b I 

same. Now 2b V{s, s') = E d.s d.s = 2 k(s, s') - b for s :/:. s' and 
i= 1 . l l 

2b V(s, s') = b for s = s'. Thus, V(s, s') = Zk(s, s') - b for s 4= s' 
2b 

1 
and V(s, s ') = 2 for s = s', Now if we let P s · be the number of 

blocks in which the sth component of d. is positive, then 
.l 

1 b 
3 1 

b 1 ~ (';"1+ ';;) Ts E 
s s 

= b ril - 2 = b E r.1 - b 1 . 1 2 i= 1 i= 1 1 1= 

1 ~ (';"! -'1;) 1 b d.s 
E l 

= = T b . 1 2 b . i= 1 1= 

1 p - (b - p ) 1 
= 2b = - (2 P - b) 

s s 2b s 

p 
1 s 

= b -r . 

.. 
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From this it follows that T; = -T: for all s. The test statistic Q 

may now be written as 

2 
Q = b ~ T~ v- 1 T. = 2b(T' v- 1 T} 

1 1 1 · 1 i= 1 

where both T 1 and V may be calculated by using the signs of the 

components of d. as indicated . 
. l 

One can also show that if the number of treatments is 2 and the 

number of variables is 2, the statistic Q is identical to the statistic 

T of the bivariate sign test discussed in Chapter II. So that the 

Multivariate Friedman is a generalization of the bivariate sign test. 

As an example, consider the example discussed in the previous 

section with the last two levels of A (deleting a 1 ) as treatments and 

test the hypothesis that the effects of a 2 and a 3 are the same using 

the data. in Table VIII. After ranking across the· levels a 2 and a 3 

for each of the levels of B, we have 

and 

thus 

and 
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For the calculation of T 1 and V we have P 1 = 2, P 2 = 3, P 3 = 2, 

k(l,2)=3, k(l,3)=2, and k(2,3)=1 which gives 

2 1 
0 

·1 1 
0 2 1 0 4 -z 2 4 

3 1 1 1 1 !/ 1 1 
Tl = 4 -z: = 4 and v = 4 2: ""i = 4 1 2 -1 

1 
0 0 

1 1 
0 -1 2 -z -4 2 

'•f·-)'. ·. 
~: . 

Further calculations show 

3 -2 -1 

-1 -2., .. 4 2 v = 

-1 2 3 
_.- ~~-· 

and 

3 -2 -1 0 

Q 2 · 4 [o, l, ~ -2 4 2 1 1 2 . = 4 = 8(4) T6 = 

.. 1 2 3 0 

Using the chi-square a.pJ:'roximation (3 degrees of freedom) shows 

' so we cannot say that the two levels of A appear to be 
. ~'. ·. 

different. 

The "Ranking After Alignment" Procedure for 

the Multivariate Friedman Te st 

As in the univariate case an alignment procedure can be intro-

duced, if we add two additional assumptions. The assumptions needed 

are: 

I 



(1) block effects are additive 

(2) The scale of measurement is at least interval. 

Using X .. = 
lJ 

1 2 p I 
(X .. , X .. , ... , X .. ) to represent the p-variate 

lJ lJ lJ 

• 

observation in the ith block receiving the /h treatment, then the 

p-variate aligned observation Y .. 
lJ 

is Y .. = X .. - X. where 
lJ lJ 1 • 

. 1 2 p I 
Y .. = (Y .. ,Y .. , .•• ,Y .. ) and 

lJ lJ lJ lJ 

s s 
Y .. = X .. 

lJ lJ 

l t s 
t EX .. for s=l,2, •.. ,p. 

lJ j=l 
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Next, ranks are assigned for each variable as. in the univariate case; 

that is, r.~ is the rank assigned to Y.~ among the N = bt observa-
- ~ ~ 

tions Y.~ with .i= 1,2, ... ,b and ·j = 1,2, ... ,t for each fixed 
lJ 

s=l,2, .•• ,p. 

Test statistic: 

Let T.s 
J 

blocks for the 

1 b 
= E r.~ denote the weighted mean over the 

b (N + 1) _ i= l . 1J 

sth variable and the /h treatment and let V be the 

p x p matrix whose (s, s ') element is 
• 

v(s, s ') = 
1 -~ f _(r.~ - 1t ~ r.~) (r.~ 1 

-
1t ~ r.~') 

i= 1 j = 1 lJ j = 1 lJ • lJ · j = 1 lJ 

Also denote the (s, s ') element of v-1 by -1 v (s,s') then the test 

statistic is 

I .· 
'· 

p p -1 t 
( s 1)( s' 1) s = b E E v (s, s') E . Tj - 2 Tj - 2 . 

s=l s '= 1 j= l 
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Decision rule: 

Reject H 0 at the a level of significance if S exceed S 
ot 

where S is the 1 - a quantile of the conditional distribution of S 
ot 

when b is small and S is the 1 - a quantile of the chi-square 
a 

random variable with p(t -1) degrees of freedom when b is large 

[ 17]. 

Example: 

Again look at a test for the~ ~ain effect of A in the 3 x 3 

factorial experiment from Pearce [16] which was discussed in the 

previous two sections. Table IX gives the aligned observations and 

the ranks assigned to the data. ... 
Computations from Table IX give T 1 = . 730769, Ti = . 423077, 

1 
T3 .634615, T 1 .346154, 

2 2 
= = T 3 = . 269231 Tl = • 807692, 2 3 

T3 = 1 . 394231, T 1 
2 = . 423077, T3 

3 
= • 4 71154 and 

v = 1 

(4)(2)(13) 2 

118.6667 

92.6665 

-61. 1662 

Further computation gives 

.027549 

1 v- 1 = -. 017775 
(4)(2)(13) 2 

. 010202 

and S = 7. 6415. 

92.6665 

127.9983 

-27.4995 

-1.017775 

.019667 

- .004646 

-61. 1662 

-27. 4995 

117. 3329 

. 010202 

-.004646 

. 012753 
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TABLE IX 

ALIGNED OBSERVATIONS ON THE PEA LEAVES 

Treatments 

Block Variable al a2 a3 

Obs'n Rank Obs'n Rank Obs'n Rank 

bl 1.5889 12 - .8111 3 - . 7111 4 

1 b2 . 1889 10 -1.4111 6 -1. 5111 5 

b.3 - .3111 2 1. 2889 10 1. 6889 12 

bl 1.2556 9 -1. 1444 2 1. 1556 8 

2 b2 .4556 11 -2.0444 1 -1. 8444 2 

b3 1. 1112 9 1. 3 556 11 . 1556 3.5 

bl . 9556 6 -1. 0556 7 -1. 6444 1 

3 b2 I. 1556 12 -1. 1444 8 -1. 7444 3 

b3 . 1556 3.5 .3556 5 . 8556 8 

bl 1. 4889 11 1.3889 10 - . 5111 5 

4 b2 -.3111 9 -1.2111 7 -1.6111 4 

b,3 .4889 6 . 7889 7 - . 5111 1 

The chi-square approximation with 6 degrees of freedom gives 

{:; > . 25 so we would not reject H 0 at the levels of significance 

usually quoted. 
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Theory: 

case. 

The theory for the multivariate case is similar to the univariate 

It differs in that the conditional distribution involves (t!)b 

points· instead of t! points which of course increase the amount of 

computation needed to calculate the exact conditional distribution of 

S. The limiting distribution of S is again the practical distribution 

to use and is the distribution of the chi-square random variable with 

p(t - 1) degrees of freedom (17]. 

, ... 



CHAPTER V 

SOME ST AT IST res FOR THE MIXED MODEL 

Most disciplines have many experiments which involve subjects 

being treated by several distinct treatments. Quite often we may 

consider the treatments fixed and the subjects random. The analysis 

of this type experiment leads to four cases depending on whether or 

not we have the following two assumptions [12]. 

A 1 : The 'additivity' of subject effects. 

A 2 : The 'compound symmetry' of the error vectors. 

Statistics which may be used in an analysis of two of these cases have 

been discussed in Chapter IV. Statistics which may be used. in the 

other two cases will be discussed here. 

Data: 

The data consists of a sample of size n from a p-variate 

random vector. Denote the n p-variate sample points by Xi for 

i=l,2, ... ,n where X. = (X. 1,x. 2 , .•• ,X. )'. 
l l l 1p 

Let 

denote the distribution function of X. and suppose 
l 

F.(X, Q.) 
l l 

·n. = (w. 1, w. 2 , ••• , w. ) ' is a vector of location parameters with 
l 1 1 . 1p 

W .. = [3. t T, 
. lJ l J 

effect of the 

for 

. th 
1 

i=l,2, •.. ,n, 

subject and T, 
J 

j = 1, 2, •.. , p where [3. is the 
l 

i~ the effect of the j th treatment • 
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Assumptions: 

( 1) The 

(2) The 

F.(X) are continuous for each i, 
1 

X. are independent random vectors, 
1 

(3) The joint distribution of any linearly independent set 

of contrasts among the observations on any particular 

subject is diagonally symmetric. 

(4) The scale of measurement is at least ordinal. 

Hypothesis: 

= T = 0 
p 

H 1 : Some T . is not equal to zero. 

The test statistic and the decision rule depend on whether or not the 

addit~onal assumptions A 1 and A 2 are valid. For this reason, 

test statistics will be given separately for the four cases. 
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Case I: Assume A 2 holds and A 1 does not hold. The test statistic 

is the Friedman Statistic which (with a decision rule) is discussed in 

Conover [8]. 

Case II: Assume A 2 and A 1 both hold. The "ranking after align

ment procedure II is a proper ·procedure to use and the test statistic 

S (with a decision rule) was discussed in Chapter IV, section I. 

Case III: Assume that neither A 2 nor A 1 hold. Assign the rank 

r.. to the observation X.. where the ranks are assigned over the 
0 0 

vari~ble s within the subjects; that is, r.. denotes the rank assigned 
lJ 
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to X.. among the observations X. 1, x. 2 , ... , X. for each fixed i. 
lJ . l l 1p 

Let R be the n x p matrix of ranks whose (i, j) element is r .. 
lJ 

and. let C be a p-1 
1 n 

x p matrix of constants such that c Jr = <I> • 

T. = - ~ r .. 
J n i= 1 lJ 

Let denote the average rank for the jth treatment 

with T·- (T 1,T2 , ... ,Tp)'. Also let 

be the (j, k) element of the p x p matrix V. The test statistic is 

W = T' C' (C VC')-l CT. 

2 I 
It should be noted that n CVC' = (RC') RC'= CR'RC'. This 

relationship will frequently facilitate computations. Similarly, 

n CT = CR' J f . 

Decision rule: 

For Case III as in previous examples the conditional distribution 

for W has 2n (not necessarily distinct) realizations and is laborious 

to calculate. For this reason the asymptotic theory· is used and H 0 is 

· rejected at the a level of significance if W exceeds the 1 - a 

quantile of the distribution of the chi-square random variable with 

p - 1 degrees of freedom [12]. 

Case IV: Assume A 1 holds but A2 does not hold. The test 

procedure is a generalization of the Wilcoxon signed rank test where 

we use certain contrasts of the variables as aligned variables. 

Calculate all possible within subject differences uijk = Xij - Xik for 
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i = 1,2, .•. ,n and j,k;, 1,2, ... ,p. Then assign the rank r. 'k to 
LJ 

u .. k where ranks are assigned to ju .. kl among 
:1J . . . ~ 

I u lj k I, I u2j k I, ... , j unj k j for j I k = 1, 2, ... , p. Let 

s .. = 
lJ 

be the ( i, j) element of the nxp matrix s of scores assigned 

where 

1 n 
Also let T. = ~ 

J n 
i= 1 

1 if u .. k > 0 
LJ 

z .. k = 0 if uijk = 0 
LJ 

-1 if u .. k < 0 . 
LJ 

s ... T = (Tl' T 2 •...• T p) I lJ 

* 1 n 
v (j,k) = 2 ~ siJ' sik 

n i= 1 

and let 

be the (j, k) element of the * p x p matrix V • One should note that 

it is necessary to calculate 

l<j<k~p since 

is 

u. "k only for 
lJ 

and 

i=l,2, .•. ,n and 

The test statistic 

* * 1 W = T' C'(C V C')- CT 

* where C is defined as in Case III. Note that W is a quadratic 

form in Wilcoxon signed rank statistics. As will be illustrated shortly 

by example the relationships n 2 C v* C' = C S' S C' and n C T = C S' J n 
1 

will usually facilitate computations. 
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Decision rule for Case IV: Again the limiting distribution is used and 

* is rejected at the a level of significance if W exceeds the 

1 - a quantile of the distribution of the chi-square random variable 

with p - 1 degrees of freedom [12]. 

Example: 

Clark and Schkade [4] suggest an experiment to study the rate 

of arrivals of automobiles at 4 particular toll stations. The number 

of automobiles arriving at the four toll stations in a 4 hour time 

period (8:00 a. m, - 12:00 p, m.) for each of six days is recorded in 

Table X, 

Days 

TABLE X 

NUMBER OF ARRIVALS AT THE GATES AND 
THE RANKS ASSIGNED 

Gates 

I 2 3 

Obs 1n Rank Obs'n Rank Obs'n Rank Obs'n 

1 490 2 525 3 475 1 527 

2 450 1 506 3 460 2 507 

3 510 3 473 1 525 4 492 

4 478 2 526 4 420 1 505 

5 504 3 502 2 4~9 1 530 

6 482 2 505 3 472 l 555 

4 

Rank 

4 

4 

2 

3 

4 

4 



TABLE XI 

DIFFERENCES OF THE RANKS ASSIGNED TO THE 
NUMBER OF ARRIVALS AT THE GATES. 

Days Gl - G2 Gl - G3 Gl - G4 

1 -1 1 -2 

2 -2 -1 -3 

3 2 -1 1 

4 -2 1 -1 

5 1 2 -1 

6 -1 1 -2 

Computation of W (the test statistic for Case III) will be 

illustrated for this example. 
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.... 

The entries under "Rank" in Table X give the 6 x 4 matrix ,,R 

of ranks assigned to the data where ranks are assigned within each 

day. The column headings, in Table XI result if and only if the matrix 

C is defined as 

c = 

-1 

0 

0 

0 

-1 

0 

~ 
-~ 

and the body of the table viewed as a matrix gives the 6·x 3 matrix 

RC' of differences in ranks. With RC' as defined in Table XI 



·[·5 36 CVC' = CR'RC' = -2 

13 

-2 

9 

-5 

50 

l~ -5 

20 

and from the column totals in Table XI 6(C T)' (-3,3,-8). 

From these we obtain 

.. 15752 -. 02541 -. 10874 

- 1 ( C V C I ) - l = - o Q 2 54 1 
36 . 13313 .04980 

-. 10874 .04980 . 13313 

and W = 3. 9837 o Note that it is not necessary to calculate T or V 

explicitly. Using the chi-~quare approximation with 3 degrees of 

freedom indicates that ~ > • 25. This gives little evidence that the 

rate of arrivals at the four gates are different. 

Example: 

,•c 
To illustrate the computations for the statistic W' (Case IV) 

an experiment discussed by Winer [21] to study the effect of four 

drugs upon reaction time to a series of standardized tasks will be used. 

The scores are mean reaction time on the series of tasks and are given 

. in Table XII. 

To compute the statistic the within subject differences are 

calculated and signed ranks assigned to the data by assigning ranks 

across subjects within each difference; that is, assign ranks within 

each column of differences in the same manner as one assigns ranks 

in the Wilcoxon Signed Rank Test. The differences are given in Table 

XIII and the signed ranks are given in Table XIV. 
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TABLE XII 

MEAN REACTION TIME ON THE SERIES OF TASKS 

~ 1 z 3 4 
s 

1 30 28 16 34 

2 14 18 10 22 

3 24 20 18 30 

4 38 34 20 44 

5 26 28 14 30 

TABLE XIII 

DIFFERENCES IN THE MEAN REACTION TIMES 

Persons Dl - Dz Dl - D3 Dl - D4 D2 - D3 D2 - D4 D3 - D4 

1 2 14 -4 12 -6 -18 

2 -4 4 -8 8 -4 -12 

3 4 6 -6 2 -10 -12 

4 4 18 -6 14 -10 -24 

5 -2 12 -4 14 -2 -16 
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TABLE XIV 

SIGNED RANKS 

Persons Dl - Dz Dl - D3 Dl - D4 Dz - D3 Dz - D4 D3 - D4 

1 1. 5 4 -1. 5 3 -3 -4 

2 -4 1 -5 2 -2 -1. 5 

3 +4 2 -3. 5 1 -4. 5 -1. 5 

4 4 5 -3. 5 4.5 -4. 5 -5 

5 -1. 5 3 -1. 5 4.5 -1 -3 

.. 

A score s.. (Table XV) is now assigned for each person and 
lJ 

each drug from Table XIV by adding the ranks assigned where the 

drug is the minuend and subtracting the ranks assigned where the drug 

is the subtrahend in the columns of Table XIV. For example, for 

person 1 , D 1 = 1. 5 + 4 - 1. 5 = 4 , D 2 = -1. 5 + 3 - 3 = -1. 5 , 

D 3 = -4 - 3 - 4 = -11, and D4 = -(-1.5) - (-3) - (-4) = 8.5. The 

matrix S of scores is given by Table XV. 
,,, 

The statistic w''' is now calculated in the same manner as W 

in Case III where the scores assigned in Table XV constitute the 

5 X 4 matrix S which now plays the same role as the matrix R 

played in Case III. This indicates that we need to calculate the matrix 

SC' of differences of the scores assigned to each drug for each 

person. This 5 x 3 matrix is displayed as the body of Table XVI 
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where C is the same as in the previous example (note column head-

ings in·Table XVI). 

TABLE XV 

SCORES FOR THE DRUGS 

Persons Dl D2 D3 D4 

1 4.0 -1. 5 -11. 0 8.5 . 
2 -8. O 4.0 - 4. 5 8.5 

3 2.5 -7. 5 - 4. 5 9. 5 

4 5.5 -4. 0 -14. 5 13.0 

5 0.0 s.o ..:IO. 5 5. 5 

TABLE XVI 

DIFFERENCES OF THE SCORES 
0 .. 

Persons Dl - Dz Dl - D3 Dl - D4 

1 5. 5 15.0 - 4.5 

2 -12.0 - 3. 5 -16.5 

3 10. 0 7.0 - 7.0 

4 9. 5 20.0 - 7. 5 

5 . - 5. 0 10.5 - 5. 5 



From Table XVI we can calculate directly 

389.50 

25 CV,:~ C' =CS' SC' = 332. 00 

59,50 

332.00 

795.50 

-266.50 

and 5(T C)' (8, 49, -41) which gives 

59.50 

-266.50 

428.00 

. 00605 -.00354 -. 00305 

- 1 (CV,:<C')-l :: 
25 -.00354 . 00366 . 00277 

-.00305 . 00277 . 00449 

and w* = 3. 81777. If we again use the chi-square approximation 

with 3 degrees of freedom, W,:~ gives 'd >. 25 which again gives 

· little evidence against the null hypothesis. From this we would 

conclude that the effects of the four drugs are the same, 
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CHAPTER VI 

FACTORIAL EXPERIMENTS 

2m Factorial Experiment in b Blocks 

The general setting is the 2m factorial arrangement of treat-

ments · replicated in b > 2 complete blocks. 

Data: 

For the sake of communication. let XiL denote the observation 

in block i under treatment combination L where L = (.t 1, .e 2, .•. , .em) 

and 1. = I, 2 denotes the level of factor j for j = I, 2, •.. , m. Also 
J 

let T t denote the main effect or interaction effect given by the ·vector 

t. = 0, I 
J 

denotes the absence or presence, 

respectively, of factor j for j = 1, 2, •.. , m with the understanding 

. that T = 0 for t = <j> • For example if m = 3 , treatment combina -
t 

tion L = (2, 1, 2) would indicate presence of the high level of the first 

factor, low level of the second factor and high level of the third factor. 

Similarly T would represent the main effect of the second (0, 1, O) 

factor and T would repres~nt the interaction effect of the first (1, 0, 1) 

and third factors. One can also remember that T(O, O, O) = 0. In 

addition,. let S denote the set containing the 2m vectors ·which are 

the possible values of the vector t and let ~i denote the effect of the 

i th block for i = 1, 2, , •• , b • The response of the plot in the i th 

block receiving treatment combination L may be represented by 
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X A + .!. "' (-l)Lt' + iL= t-'i 2 ~s Tt eiL where e.L 
1 

is an error variable for 

treatment combination L in the i th block. The various statistics 

used are based on the aligned observations [ 18] 

Y. t 
1, 

= 2 -(m-l) ~ (-l)Lt' X. 
"VY 1L 

for i = 1, 2, .•. , b , 

where "VY is the set containing the 2m vectors which are the possiible 

treatment combinations; that is, the possible values of L. 

Assumptions: 

(1) The for all L E "VY have jointly a continuous 

cumulative distribution function G. for each 
l 

i = 1,2, .•. ,b. 

(2) G. is symmetric in its 2m arguments. 
1 

(3) The b sets of 2m within block errors are independent. 

(4) The treatment effects are additive. 

(5) The scale of measurement is at least interval. 

Hypotheses: 

Several different hypotheses may be tested, however with some 

additional notation they can be written as one statement~ If we let 

s':~ = {t: t e S, t f:. 0} be the set of non-zero elements in S and let 

,:i: 
P be a.ny non-empty subset of S then the hypotheses may be 

written as: 

= 0 for au t E p 

H l, p: T t f:. 0 for some t e P. 
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Test statistic: 

The· test statistic will be given using different case.s which will 

depend on· the nature of the set P. · 

Case I: Suppose P contains a single element t. 

Test statistic: 

For small b the Wilcoxon signed rank statistic is used; that is, 

we assign the rank r{i, t) to I Yi, t I , ranking the I Yi, t I among the 

magnitudes IY 1,tl' IY2,tl, .•. , !Yb,tl for each. i = 1,2, ..• ,b. 

Then the test statistic is 

where 

b 

T {t) = :i:: r {i, t) c(i, t) 
i= l 

l if Y.t>O 
l, 

c{i,t) = 

O if Y. t < 0 • 
1, -

For larger b the test statistic is 

z {t) -

Decision rule: 

T{t) _ b{b+l) 
4 

b {b + 1 ){2 b + 1) 
24 

For small b, reject H0 at the a ·level of significance if 

T>Tl-{a/2) 

the 1 - { a /2) 

or if 

and 

T < T{a/Z) where T 1 -{a/Z) and T{a/Z) are 

a /2 quantiles, respectively, from the distribution 



for the Wilcoxon signed rank statistic. For· large b, reject H 0 at 

the a level of significance if I Z(t) I · exceeds Z Ux / 2 ) where 
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. . . . 

Z ( a / 2) is the 1 - ( a /2) quantile from the standard normal distribu-

tion. 

* Case II: P contains n > 2 distinct points of S ·; that is, 

P = {t1, t2 , •.• , tn}. If P contains more than 2 distinct points the 

additional assumption that the joint distribution of tp.e errors E i, L, 

L E W, is not only symmetric in the 2 m arguments but is also 

diagonally symmetric about zero is needed. Let 

then for small b, the test statistic is the multivariate signed rank 

statistic W(P) = b Q(t)' v* Q(t) where Q(t) = '9(t 1~Q(t2 ), ... , Q(tn]' 

* and V is the generalized. inverse of the n X n matrix V whose 

(j, k) element 

for j, k = 1, 2, •. ,, n. For large b, the test statistic is 

w*(P) 

which is easier to compute. 
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Decision rule: 

For small b, it is necessary to use the conditional distribution 

discussed in Chapter II. For large b, reject H 0 at the a -level of 

significance if W>:\P) exceeds the 1 - a quantile of a chi-square 

random variable with n degrees of freedom. 

Example: 

Snedecor [ 19] reports the data from an unpublished randomized 

block experiment which was used to learn the effect of two supplements 

to a corn ration for feeding pigs. The treatments had three factors; 

Lysine at 2 levels, Soybean meal at two levels and sex of pigs at two 
. 

levels. The data is reported in Table XVII. The number 1 is used 

to indicate the low level of a factor and a 2 to indicate the high level 

of a factor. Ordered three -tuples then give the treatment combinations. 

First we will consider the situation where P has a single element and 

test 

for each of the seven possible singleton sets P. The necessary calcu-

lations are given in the tables below. 

) 



TABLE XVIi 

AVERAGE DAILY GAINS OF SWINE 

Treatments 
Blocks 

(1, 1, 1) (1, 1, 2) (1, 2, 1) (1,2,2) (2, 1, 1) (2, 1, 2) (2,2, 1) (2, 2, 2) 

1 1. 11 L 03 1. 52 1. 48 1. 22 . 87 1. 38 1. 09 

2 .97 .97 1. 45 1. 22 1. 13 1. 00 1. 08 1. 09 

3 1. 09 .99 1. 27 1. 53 1. 34 1. 16 1. 40 1. 4 7 

4 , 99 .99 1. 22 1. 19 1. 41 1. 29 1. 21 1. 43 

5 .85 . 99 1. 67 1. 16 1. 34 1. 00 1. 46 1. 24 

6 1. 21 1. 21 1. 24 1. 57 1. 19 1. 14 1. 39 1. 17 

7 1. 29 1. 19 1. 34 1. 13 1. 25 1. 36 1. 17 1.01 

8 . 96 1. 24 1. 32 1. 43 1. 32 1. 32 1. 21 1. 13 



TABLE XVIII 

CALCULATIONS FOR TESTING SINGLETON SETS P 

~ 
{ (1, 0, O)} { (1, 0, 1)} {(1,1,0)} {(l, 1, l)} {(O, 1,0)} {(O, 1, l)} { (0, 0, l)} 

4 Tit cit rit 4Tit cit rit 4Tit cit rit 4Tit cit rit 4 Tit cit r it 4 Tit cit rit 4 Tit cit rit 

l . 58 l 7 -.52 0 7 -. 48 0 4 . 02 l 1 I. 24 1 7 . 10 1 2 -. 76 0 7 

2 . 31 l 3 • 11 1 1 -. 69 0 7 .37 1 5. 5 • 77 1 5 -. 09 0 1 -.35 0 5 

3 -.49 0 6 -.27 0 5 -. 35 0 2 -. 11 0 3 1. 09 l 6 • 61 l 8 . 05 l 1 

4 -.95 0 8 . 13 1 2 -. 49 0 5 • 37 1 5. 5 .37 1 z . 31 1 5 . 07 1 3 

5 -.37 0 5 -. 19 0 3 -. 63 0 6 .77 1 8 1. 35 1 8 -. 53 0 7 -. 93 0 8 

6 .34 1 4 -. 60 0 8 -. 16 0 1 -.50 0 7 .62 1 4 . 16 l 3 . 06 1 z 

7 . 16 1 2 .26 1 4 -. 42 0 3 -. 16 0 4 -.44 0 3 -. 38 0 6 -. 36 0 6 

8 -. 03 0 l -. 47 0 6 -. 85 0 8 . 09 1 2. .25 1 1 -. 25 0 4 . 31 1 4 

T(r) 16 7 0 22 33 18 10 

Q(r) . 02778 -. 15278 -. 25 . 05556 . 20833 0 -. 11111 

" . 8438 .1484 . 0078 .6406 • 0390 1. 00 • 3126 a 
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Entries in Table XVIII are calculated using Table XVII. From 

the observed significance levels in Table XVIII we see that the inter-

action of Lysine and soybean meal is significant at the . 01 level and 

that the main effect of soybean meal is significant at the . 05 level. 

Suppose we want to test the hypothesis that the effect soybeans 

was zero; that is, 

Ho: T(o, 1, o) = T(l, 1, o) = T(l, 1, 1) = T(o, 1, 1) = 0 

against 

To test this hypothesis we have P = {(O, 1, 0), (1, 1, 0), (1, 1, 1), (O, 1, l)} 

and we calculate 

* W (P) = 24(8) (9) 
17 

4 
:E [Q(t.)J2= 11.078 .. 

j=l J 

The chi-square approximation (df = 4) gives . 025 < a<. 05 so the 

hypothesis would be rejected at the . 05 level of significance but not 

at the . 01 level. 

Theory: 

The distribution of the statistic T has been tabulated quite 

extensively by McCormack [13]. Wilcoxon, Katti and Wilcox [20] and 

others which are referenced by these two publications. Approximations 

to this distribution of probabilities are given by Claypool [5] and 

Claypool and Holbert [6]. The asymptotic relative efficiency of W(t) 

is the same as that of the Wilcoxon signed-rank test with respect to 

the Student t-test and is discussed at some ·length by Conover [8]. 

The conditional distribution of W(P) has been discussed. in the section 

• 
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on the Multivariate signed-rank statistic in Chapter II. Sen [ 18] 

states that both the conditional distribution of W(P) and the con-

* . . ditional distribution of W (P) are asymptotically the distribution of 

~ . 
the chi-square random variable with n degrees of freedom and that 

the asymptotic relative efficiency of each relative to the parametric 

variance ratio test is the same as the asymptotic relative efficiency of 

W(t) mentioned above. At the same time the two statistics W and 

* W are quite different for small b; however, a meaningful compari-

son of them would be expensive to conduct due to the large number of 

points ·involved in their conditional distributions. 

Sen [18] discusses using the statistics based on T to estimate 

main effects and interactions and also discusses extensions of the 

tests to cover confounded or partially confounded designs. It is also 

of interest to note that the parametric procedures suggested by 

Cochran and Cox [7] are based on the aligned observations used in 

this procedure. 

Testing for Interaction in Factorial 

Experiments 

The general setHng considered is the 2-factor factorial arrange-

ment of treatments. in a randomized complete block design with one 

observation per cell. Denote"'the response in the ith block receiving 

the j th level of the first factor A and the kth level of the second 

factor · B as · X. 'k and assume the model 
.lJ 
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for 1 ~ i ~ n , 1 ~ j < a , 1 < k < b and N = n ah ; where µ. , 

the f3i, '\'j, 6k, ,rjk, and eijk represent the overall mean, the 
th .. · .. 

effect of block i, the effect of the j level of factor A, the effect 

of the kth level of factor · B , the effect of the AB interaction due to 

the /h , level of factor A and the kth level of factor B and the 

residual error, respectively. Also assume 

n a b a b 
E ~- = E '\'· = E 6k = E 1Tjk = E 1T.k = 0 .• 

i= 1 l 
j= 1 J j=l j= 1 k=l J 

The general idea of the tests is to align the observations to eliminate 

all effects except ,rjk and then use a statistic based on the ranks 

as signed to the aligned observations to test H 0 : "!'jk = 0 for each 

j = 1, 2, ••. , a, k = 1, 2, .•• , b against the alternative H 1 : ,rjk f. 0 

for some j and k, 

Data: 

The data consists of n independent random vectors 

(Xill' XilZ' ... , Xiab) with i = 1, 2, •.. , n. In the following we will 

let a subscript indicate the sum over the variable replaced by · ; 

that is, 
a 

X. k = E X .. k and. let 
1 • j = l lJ 

x = 
i 

x. 1 1a 

Also let Z. be the ax b matrix of aligned observations, 
l 



with the (j, k) element denoted by Z .. k where 
lJ 

Jr 
c 

is an r x c 

matrix with each element having the value 1 . One can note that the 
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elements of Z. are the contrasts used to calculate the sum of squares 
l 

for interaction in the univariate parametric analysis of variance for a 

. 2 -factor experiment [21], although they are not visible in the usual 

formulas used in the computation. 

Assumptions: 

(1) ei = (eill'eil 2 , ... ,eiab) for i = 1,2, ... ,n are n 

independent random vectors. 

(2) The distribution function 

for each i = 1, 2, . , . , n. 

G.(X) 
l 

of e. is continuous 
1 

(3) G. is symmetric in its arguments for each 
l 

.i=l,2, ... ,n. 

(4) The scale of measurement is at least interval. 

Hypotheses: 

Ho: TTjk = 0 for all j = 1, 2, ... , a, and all k = 1, 2, ... , b .. 

H 1 : rrj k :fi O for some i and j . 

Test statistic: 

The test statistic is given by cases for three different cases. 



Case I: a.= b = 2 when a = b = 2 we have 

z111 = -ZiZ l = -Zil 2 = Z i22 for each . i = 1, 2, ••• , n so we may 

use a one-sample location test based on zil l for i = 1, 2, •.. , n. 

The test statistic is the univariate Wilcoxon signed-rank statistic 

discussed by Conover [8]. 

Case II: a> 2, b=2 

When a > 2., b = 2 we have z .. 1 = Z .. 2 for each 
lJ ,lJ 

i = 1,2, .•. , n and j = 1, 2, .•. ,a, and our test can be based on the 

vectors {Z 111 ,zi21 ,zi3 l •.• Zial) for i = 1,2, ... ,n. The test 

statistic is SN which was discussed in Chapter IV. It is based on 

the na a.ligned observations z .. 1 where i = 1, 2, •.• , n, 
lJ 

j = l, 2, ..• , a. 

Example {Case II): 
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For a hypothetical context suppose it is desired to test the effect 

of two fertilizers {B) on three varieties {A) of wheat. One aere plots 

were harvested and results were recorded in bushels per acre 

{Table XIX). 

From Table XIX we have 

39) 
39 ·, 

43 

-2) 
~ . ' 

(
36 

x2 = 31 

41 

40) 
39 , 

49 

x3 = (:: 

57 

so ) 
62 ·., 

69 
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and 

(
11 -11) 

6z 3 = 1 - 1 

- 2 2 

so 30T = ( 17, 14, 14), 
2 

(J" = 13 
900 

and SN = 1. 384. The chi-square 

approximation (df = 1) gives . 10 < ~ < . 25 which shows little 

evidence of interaction between varieties and fertilizers. 

TABLE XIX 

WHEAT YIELDS IN BUSHELS PER ACRE 

~ s ao al a2 

l 35 39 29 39 33 43 

2 36 40 31 39 41 40 

3 46 50 55 52 57 69 

Fertilizers bo bl bo bl bo bl 

Case III: a > 3 , b > 3 , 

Te st statistic: 

Assign the rank r .. k to the aligned observation Z .. k in the 
. ~ ~ 

combined ranking of all N aligned observations. Let 



1 
(N+l)n 

and 

2 
er = (N + 1)2 

n 
:E r .. k, 

i= 1 lJ • 

~ (r .. k - ri·k - riJ·· + rl· .. )' 
i= 1 lJ 

n(a-l)(b-1) ~ ~ ~ (r .. k -ri,k - rl.J·· + ri· .. )2. 
i= 1 j = 1 k= 1 lJ 

The test statistic is 

L = 
n a b 2 

--z- :E :E (RJ. k) 
er j = 1 k= 1 

Rejection rule: 

Reject H 0 at the a level of significance if L exceeds the 

1 - a quantile of the distribution of the chi-square random variable 

with (a-l)(b-1) degrees of freedom. The distribution of the chi-
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square random variable is used since it is the limiting distribution of 

L and the exact permutation distribution of L is laborious to compute 

since it involves the discrete uniform distribution on (a! b!)n points 

[17]. 

Example: 

The example by Pearce (Table VIII) which was used to illustrate 

the use of the Multivariate Friedman test (a test for main effects) will 



be used to illustrate the test for interaction. C?rresponding to the 

notation used in this section we have 

and 

( 
9. 0 

x 1 = 6. 6 

6. 7 

( 
9. 1 

x 3 = 9. 2 

6.5 

7.6 

6.0 

5. 9 

9.3 

7.0 

6.4 

7. 1) 
8.7 , 

9. 1 

8. 3 ) 
8. 5 , 

9. 0 

L 0778 

• 5222 

- . 5556 

.0444 

z 2 = - , 9556 

. 9111 

. 0778 

z3 = .8444 

- • 9222 

, 1444 

z = 
4 

. 2778 

- . 4222 

0.6111 

. 1889 

- . .4222 

. 8111 

- . 2889 

- ,5222 

. 9778 

• 6556 

- ,3222 

• 1778 

- . 4889 

. 3111 

( 
8. 9 

x2 = 6. 5 

8.8 

( 
9. 0 

x4 = 8. 9 

7.0 

-1. 6889 

. 7111 

. 9778 

- .8556 

1. 2444 

- . 3889 

-1.0556 

- . 1889 

1.2444 

- . 3222 

. 2111 

. 1111 

8. 1 

5.6 

5, 8 

7.2 

6. 3 

5.9 

8. 3) 
9.0 , 

7.8 

8. 0) 
8. 3 , 

7.0 
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In addition, let R. be the a X b matrix of rank whose (J., k) element 
l 

is r .. k then 
lJ 



(
34,0 

R 1 = 8. 5 

7. 0 

(
20.0 

R 3 = 30, O 

4.0 

27.0 

17. 5 

11. 5 

32.5 

6.0 

14.5 

.1. 0) 
28. 0 , 

32.5 

2.0) 
17. 5 , 

32.5 

29.0 

16.0 

8.5 

23.0 

10.0 

26.0 

5. 0) 
35, 5 , 

13. 0 

14. 5) 
24. 0 , 

21. 0 

(4,37)T = (21, 35.3333, 56.3333, -4.8333, -24, 28.8333, -16.6666, 

-11.3333, 27.5), 
2 

o- =.174179 and L=7.8172. Thechi-square 
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approximation (df = 4) shows . 05 < G < . 10, so H 0 would not be 

rejected at the • 05 level of significance. 

Theory: 

Let 1 a 
E. = (I - - J ) 

1 a a a 
e. istheabyb 

1 

matrix with (j, k) element eijk' Let r be the a by b matrix 

with (j, k) element ,rjk, then considering the aligned observations 

we have Z. = r + E.. The conditional distribution of the test 
1 l 

statistic L may be computed by considering a group of transforma-

tions on the matrices E. . This group of transformations has 
l 

(a! b! )n points and leads to a discrete uniform distribution on 

(alb! t points for the conditional distribution of (Z 1 z 2 , .•• , Zn). 

This makes the distribution of L difficult to compute when a, b, or 

n is large, but the limiting distribution of L is the distribution of 

the chi-square random variable with (a-l)(b-1) degrees of freedom 

[17]. 
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